Peter Naur: NOTES ON ALGOL TRANSIATOR AND RUNNING SYSTEM
CHAPEL HILL July -~ December 1961
Contents

Main principles of the Univ. of North Carolina Algol
60 processor

Introduction 1
‘) Basic approach 1
o - Major divisions of work 3
VI Main features of the running system 4
- The translator 10
; : Dependence on other work. New solutions 11
w History of project and members of the group 12
e ALGOL TRANSLATOR
R Main features of the translation passes 1
'f(ﬂf, Identifier handling (pass 2) 3
i Program for identifier handling 6
Collecting declarations and specifications (pass 2)9
The scanning method of pass 2 13
Macrochecking and the delimiter stack 28
The central reading program for pass 2 36
Sl ® Delimiter programs for pass 2 39
e The check list - 47
s Chain terminations for the declaration stack 48
Declaration programs 49
Corrections and additions after 51
b LOADING SYSTEM _
A Build-up of address modification code in
g load program 2
Loading of conditionals 9

ALGOL RUNNING SYSTEM

Representation of bl@cks and procedures in store 1

Block information in stack 2

Procedure and block entry administration 3

Discussion of parameter treatment 5
9
0

Representation of procedure call in store
Meaning of address in single identifier parameteis]
etc. A '

- Cutiputation Center .
Undv, of North Carolina

- Chapel Hill, N.C,

MAIN PRINCIPLES OF THE UNIVERSITY OF NORTH CAROLINA

ALGOL 60 PROCESSOR.

Irrtroduction. ,

. . The following notes provtde the background aml an explanation of the main
~solutions of the design of the ALGOL 60 transilstor for the UNIVAG 1105 at the
Un:lversity oi‘ North Carolina at Ghapel Hill, North Carolina. These notes are
; written in December 1961 when t.he translator is still far from completed, Their"

‘main. puryose is t.o serve as a general explanation of the prelind.nary notes on
 the "Algol rurming system" and the "Algol translator" which ave also being
written at this time.
Basio approach. ’
The starting point of the work is the decision to‘ implemeni‘. the comple‘bc“’
; AIGOL 60 language, without exceptions. Owing to the generality of the language
this baa not yet been done anywhere and has been approached in only a few plam
Hoquer, the experience gained in those progects where such an approgch has boon
_made indicates that 1f ‘the problem is attacked in the proper manner a complete o
TA.IEOL 60 processor is entirely feasible, Under these circumstancea this apprmh
would seem to be the obvious one to chosse in a university mstit.ution where
_pm@amming languages already are at the center of the interest.
| ‘l‘ho second major considerat.ion is tha.t of 1imit.ing the sheer bulk of the
lvork of writing the compiler. This has dictated the follow:mg design decisiana:
: } Eo attcmpt is made to proﬁde facilities for the user to run ALGOL programa
V cannot. be held completehr in the core memory of the machine. In other mrda
g which mquire more "then 8192 words of store for instructions and va.rhbln

be handled by t.he basic ALGOL aystem. Work " with such programs w:lll requiro

Main principles. 2w

constructions in the source program will only be attempted‘in those cases
where the optimisation can be achieved with virtually no extra effort as
- far as the design of the translator is concerned. This means that the com-
plete design will start with a consideration of the most general and com-
plicated situatiohs which are possible within the language. The principal
effort will go into the design of solutionsf:; these situations which are
as efficient ap possible. These solutions will to a considerable extent
be chosen with the availsble machine characteristics in mind. These general
solutions will be used throughout, even in cases where an analysis.of.the '
gource program might reveal that they are unnecessarily general,

The_third major congideration is the spéed of compdilation. Since it
is anticipated that a madof share of the prograhs to be compiled by the
system will be short (student work) and will be used cowﬁaratively little
for runniﬁg it is éonsidered basic that the translator wili work very fast,
particularly on short programs. This consideration is entirely compatible'
with the above mentioned decision to make use of the general solutions even
when . they are not strlctly necessary.

The fourth con51deration is checking. It has been considered essential
that virtually all-errors af syntax and consgistency would be detected by the
system and that extensive error print-outs would be produced automatically

This again has been found to be compatible with generallty. Indesd, the

. uniform, general treatment of all occurrences of each feature of the lan-

'guage has greatly facllltated the deslgn of the run-time error signallng.

LT RS

Main principles. -3~

Major divisions of work.
Previous experience has indicated that the above principles of design
dictate the division of the project into two distinct parts:
1. The running system. |
2. The translator.
Further that the logical order of dealing with these parts is the one indi-

\cat,ed. In other words, the focus of the attention is the running system.

The reason for this insistence on the nm—tim events is that owing

4o the complexity of ALGOL 60 it is not at all clear how the control of

the running program will be achieved in present-day computers. It is
obviousy however, 'bhat the running program will make use of a number of
permanent, internal, administrative, programs (or aubrout.ines) for performing
such tapk; as procedure calls, storage allocation, etc. The generality of
the final system will be critically dependent on the logic embedded in these
administrative programs. Again the structure of the running 4prong' itself |
will of course reflect the conventions of the available administrative
programs.

Now the proper work of the translator is to produce a running program
as its output. This means that it cannot be designed completely before the
exact form of the running program has been established. Since this again
depends on the design of the runnin; system it is clear that the design nms£

start with this latter.

h i A i

Main principles. _/ <l

Main features of the running systenm.
The running system will be d@soribed under é snbheadings as follows:
1. Description and notation. '
2. Storage allocation.
3. Addressing.
| « Procedure enéry.

5 « Own variables,

Description and notation. Although the design of the running system

in its basic feabures has been directly influenced by the characteristics
of the UNIVAC 1105 the primary development and description of it has been
made in a alightly adapted ALGCOL notation. Some features of this notation
are the foiléwing: The core store of the machine has been described in
several ways, éssentially reflecting the fact that the distinction in ALGOL
betwesn the program and the operands on which it works does not exist in
present-day general purpose machines. Thus the instructions of the running
program itaelif are "represented as being the components of an array
array store [some lower bound : some upper bound |

This represenpat.ion‘ is used when an instruction or a parameter within the
running program itself is used as an operand or changed. At run time the
array store will only occupy a part of the core store of the machine, other
parts being ocdupied by the programs of the administrative routines and
the stack (see storage allocation below)

| However, the instruction; of the running program will alternatively be
represented as labelled basic ALGOL sbatements, the absolute address/veing

pictured as a set of unique labels. Control is transferred to an instruc-

tion of the ‘rinning program by means of a g0 to statement to an element of |

a switch:

‘,«w._‘wwrwm..wiu,._..w..ww,,H_,‘..V,W.V.,A,,_

Main principles. i 5=

switch instruction := instruction 1, instruction 2, instruction 3, ... 3
Basically the task of the translator is to initialize the components of
"store" and a few additional universal variables (such as"first free) see
below) and to transfer control to the corresponding program through the
statement:go to 1nstruction [pome lower bound] .

All variables of a program, including also some variable program parts,
willl be stored as the compoments of another array'

array stack [?tack lower bound : stack upper bound |
This will occupy a part of the core store of the machine which is enxirely
separate from that occupied by "store". The components o;h:hzzazﬁe initially
undefined.

Storage allocation. The recursive procedures of AtGOL 60 dictate a

completely dynamic storége alloéatioh'jfor all variaﬁles. It is well known
that owing to the bracketing character of the ALGOL 60’block delimiters

the logical way of arranging the variable storage is in the form of a stack
(sée Dijkstra, Numerische Mathematik 2 (1960) 312-318). The essential
features of the stack, as this concept is used here, are the follOWing:‘

1. The siack i%iiinearly arranged section of the store in which at any
one time one end up to a certain dividing point has been reserved for specific
variables, while the other end is free storage, ready to be used for any
purpose.

2. The amount of storage reserved in the stack will in general vary
during the run of the progranm. Additiohal regservations are always made from
the current dividing point,'usingathé first free locations. Likewlse cancel-
lations of reservations will only take place at the top of the reserved

section. In other words, reservations and cancellations will treat the

- i ¢
i

Main principies. , e ’ ' .
16. Dec. 1961, ‘
stack like a push-down list.

3. References to the items held in the reserved part.of the stack are
not confined to the top element, but may be made to any element. The same
holdar for changes ¢f the values of items,

Raseﬁaﬁom will be made at the time of block entries, procedure calls,
- and references to formal parameters called by nams. The amount of storage
reserved #t’ a specific action will be de‘berminegizyuy the translator, mzEspt
partly by the run~time administrative programs. A complete list of the
reservations made at a procedure call is given in "Algol running system"
 page 2. Here the items FIXED FORMAT FIXED ORDER and VARTABLE FORMAT FIXED
ORDER are reserved according to information collected by the translator.
The remaining items are reserved according to information developed during
the procedure éall, at run tims.

The para_meterg needad &t ‘blbck or procedure entry and the administrative
pfogram perfornﬁ.ﬁg the appropriate reservations are shown on pages 1 and |
3 = 4 in "Algol running system". The most important universal parameter in
these programs is the "first free". This defines the current top of the
stack. In fact, the locations stack[first free] stack[first free + 1],
atack[first. free + 2], «s.. are the first free locatiohs in the stack area,
while the locations stack E‘irst free - 1], stack [_first free ~ 2], etc. are
the last reserved locations. |

Note that the meserved section incl;:‘.daa temporaries. Thié corresponds
to the fact that the translator has replaced all anonymous intermediate
quantities by local internal ones. Note also that reservations are Mda for
certain internal, administrative, quantities. These are the foilowing:

Méiﬁiprinciﬁléé; j Y &

16.vDec. 1961. ' ‘ :

stack referénce. This ihdicétes'ﬁhere.iﬁ the stack thé entries for the pfe-
vious block ent&eréd into the stack are located.

current address modifier. See sectlon on addressing below.

return address. Thls indicates the place in tstore" to which control should

be transferred when an exit from the present block is made.

ERERERENCE; This indicates the place in "store" where the block parameters -

of the present block will be fOuhd (cf.“referenceﬁ on page l);:

The exact form of most of the other 1tems in the stack will be described:

in various pbaces of "Algol runnlng system®,

Address ing, Since no variables are allocated absolutely at translate
time all references to variables of the program must be completed at Tun-

time. Since the UNIVAC 1105 has no 1ndex registers, and since the use of

, subroutines would be intolerable because of the fast built-ln floating

point operations, the final addressing ifi established by a direct address

modification techniqué. This works briefly as follows: Sinée all vériables
declared iﬁxthe same block head will share fate as far as their existence B
is cohéérnedvthe translator will be in a position to place all of them ¥
relatively to each other, In fact, the reservations VARIABLE TORMAT TIXED B
ORDER shown on page 2 of"Algol iunning system" shoﬁ exactly the order in
which the translato: will place the variables belonging to one block.
Iﬁis means thét in the running code all varibbles belonging to the same
block head canube addreésed compietel§;vexcept for one coﬁmon'édditivé

a9 Qia,
constant. Thiqf%eans that the only addressing work left to the running

G ns <unin t Einh Kima T n a Bos . 1 e k. S i e

system is\the,addition‘of the apprppriate constant td all occurrences of

addresses referring to variables of each particular block head at.esdch entry

Algol translator ‘
Main principles.) =8~
16. Dec. 1961 _

into this block, This scheme requires the following information:

1. Associated with each block a varisble indicating the current absolute

addressing of the variables belonging to the block must be kept. This is

the "current address modifier" placed at reference+7 (page 1).

2. Infomat.im 7w+ gbout which addresses in t.he program belong to
each bleck. 'I’hia is supplied in the form of a aerias of bit words attached
to each block (aﬂdress modification code, see page 1 at referenoe+11+p)
Theae bit words will have one bit for each address of the running program
within the’ range of the block. Clearly this method assumes that the running.
program is’ stored in the same order ss the original ALGOL program. Note also
that ithe're blbcks are nested all addresses inside the inner biocks will

'appear in several a.ddraas modification codes,

As to the efﬁ.ciency of this method note first that in simple pmgrams

, consisting only of one block with no procedures there is no loss of run t:l.me

whatever since eJ.I addresses will be modified once at the start of the pro~ |

: gran;. and never again. Also, sinne the adnﬂ.niatrative codes have been

wr_itten so that unneccessary address modifications are onﬁ.t'oed,programg
which have no reoursi_.va procedure calls and no ura&s with variablé bounds
and in which each procedure is only called in one procedure statement

will aeﬁtlé down in a state irhere no mére modi-fications are nacessary as
soon as all program. parts have been entered once. Thus in- these cases

very ittle time will be wasted on addreas modificationa at run time. ~

The worst cases wlll be prog;rama w:!.th recursive procedurea and/or frequent~ -
1y varying arrey bounds in outer blocks and 1little or no loopinc in inner
blocks. In these cases thers can be no queation of talking about efﬁ.ciency;

|

Mein princiéles. L =P

16. Dec. 1961.

hdwavbr, since there exist no alternative methods for ha.ndling these programs.
It may be of interest to note, hoﬁever, that since the modification of one
single address may be expected to be accomplished by the running administra-
tion in less than the time of a fldating point opera‘bibn,the time needed

for address modifications should never exceed that needed for arithmetic
operations as long as real arithmetics is used. If the imnermost block inclu-
des loops with operations on real variables the situation will be more favorable
gince cne modification will give rise to many arithmetic operations.

Procedure entry. The implementation of procedure statements is based on

well-established principles and techniques. The mathhing of a procedure state-
ment with the corresponding procedure declarations takes place entirely at

- run tims, Referencea from inside the prooednre body to the information supplied

in the call will maka use of 1inld.ng information stored in a set of formal
locations. Theae are initialized at each call of the progedure. Thus, essential-

1y the task of the procedure entry administration is to take the information

given in the actual parameters and the procedure heading and form the proper
oonténts; in the formal locations. The loglic of this transformation process
is described in the table of agtioﬁq ,"Algol rw.ning system® page 12, and the

assoclated programs, pages 13 = 15.

Own_variables. Own verisbles fall outside the range of the principles of

storage allocation described above, Their behaviour when occurring within
recursive procedures is still not finally settled within the language. Here
they are treated as being similar to variables declared in the outermost block

of the program. However, a special area of the sbbre must be set aside for them,

Main principles. . =10~
180 Dac, 1961 ’

The translator,

In accordance with the basic approach the methods used for tranalationr
have been chosen with a view to the speed of trenslation, and not with any
congideration of the generality of the method used. For this reason all mMa
based on general symbol manipulation mansuvees, as wall as those based on a
mechanical use of the mtuyntéctic deacﬁ.pt.ioh of the language,have been
rejeoted. |

Iike the running eystem the translator is described mostly in Algol,
although with frequent use of tables describing the logic. In spite of this
it is not intended to make use of any kind of bootstrapping techniques for
transforming the translator code into machine code. Indeed, it is felt that
by far the larger amount of work in writing a translator is the development of
the lopca;l principles and the statement of these principles in a complete
manner, Once this. has besen done the transformation into any specific language
for a machine will be a very minor matter; Bootstrapping only affects the
transformation part of the job. Sian bootstrapping implies a non-negligible
amount of extra work in setting up intermediate languages and translators for
them it is felt that the use of this technique might easlly waste more effort
than it saves. a |

For a discussion of the actual principles used, see "Algol translator",
notes beginning 31. October 1961. Note that since these notes were written
while th%levelopm'ent work was actually proceding there are frequent corrections
or modifications of statements made earlier in the later parts of the text.

Main pzd.ncipléa.‘ 5 &
18. Dec. 1961, -
Dependence on other work. New solutions.

Since the main atress in the project has been on arriving at a coguplé’c.ed*
workgble system no particular strees has been pl#ceql on obtaining original.
‘solutions. In fact, the solutions have ‘been shosen from whatever suggestions
were judged to be the best within the framework of the basic approach. The
primary sourcéa are the following:

1., The work of ﬁd.:)kstra and Zonneveld of ‘t.he Mathematical Center, Amster-
dam, The Netherlards. We owe to this group ths conviction thait a complete
system for ALGOL 60 is a praética‘l. piopbsi‘bion and the basic scenning Imethod
of pass 2 of the translator. Referenceaz E.W, Dijkstra, "Bin ALGOL-60~Uber-
setzer fur die X17 Mathematik Technik Uirbschaft Vol. 8, Vienna, Austria
(1961), pp 54=56 and 115-119. B, -Dijkstra, "Making a Translator for ALGOL

. 60'; ' Automatic Prograxmﬁ.ng In.fomation Bulletin Wo, 7, A”’IC, College of
Technology, Brighton, England (1961), pp 3-11.. A‘Lso personal communi.cations
to Peter Naur in Barch 1960 and April 1961, | .
' 2. The work or the group at Ragnecantralen, Copenhagen, Denmark° Jo. Jensen,
~ P, Mondrup, and P, Naur. Also some work of B, Mayoh. The work in this group |

o AR

has influenbed the implementation of the progedure call. Also t.he practical

expeﬁence 'of this group in usiqg a stack at run~time has beeh decisive.

: 'Re:f.ferancesz J . Jensen and P. Naui':b "gn Tmplementation of ALGOL 60 Pfocedure_s" s

BIT 1 (1961), 38-47. J. Jensen, P. Mondrup, and P. Naur, "A Storage Allocation

Sbheme for ALGOL 60," BIT 1 (1961), 89-102; Comm. ACM L, 10 (October 1961)
3. The work of the "Rump Grcup" The treatment of own arrays is essent:.ally

F’ that of Ingerman. Raf° P. Z. Ingemen, "Dynand.c Declarations" Comm. ACM 4,1
| (January 1961) 59—60

Main principles. - =l2=

"18. Dec. 1961.

Howevﬁr, during the work some solutions were adopted which as far as we know
have not been described elsewhere. The more interesting ones of these are the
following: '.

1. The addressing scheme (page 7 of the Main Principles). The use of &
direct address modification teohnique was suggeat.ed by John W. Carr, III.

. The scanning logic of pass 2 ("Algol translator"), particularly the
treatment of multiple delimiter meanings, as specified in the table of
delimiter meanings (page 25) and the associated algorithm (page 36=37).

3. The mechanisms for collecting declarations ("Algol translator", pages
9 = 12, with additions pagel7-L8). |

History of project and members of the group.

The project was initiated by John W. Carr, III, Director of the Compu-
tation Center. The work described in these notes was accomplished during July
to December 1961 during the stay of Peter Naur at Chapel Hill. In December the
active members of the group were:

Peter Brown

Robert B. DesJardins

Peter Naur

Miriam Shoffner.

The running system was largely developed during a series of lectures held from
July to August by P. Naur. Suﬁeequenﬂy the remaining members of the ‘gmoup
checked the system out manually by means of spécific examples (§rograms inclu-
ding Ackermann's function and the General Problem Solver by Kmuth and Merner |
and others). #ism The programs for array declarations and the run-time alarm
output were written by Miriam Shoffner. The part of the translator developed
thus far was written as lecture notes by P. Naur from Oct. to Dec.

Algol translator. =l=
31. Oct. 1961
MAIN FRATURES OF THF TRANSLATION PASSTS.
Tentatively it is assumed that the translation will include
l} separate scans of the source program, i.e. L} passes, The main
functions of each of these and some of the reasons for this divi-
sion of work will first be described.

Pass 1: Reduction to the standard Algol form. This is a fairly

simple process. It will convert the hardware form of the program

to a uniform internal representation in which each Algol basic

symbol has its unique character. Thls internal representation has

116 different cheracters: 52 letters, 10 digits, 2 logical values,

52 delimiters. In this process typorraphical features (space, change
to new line, etc.) are removed. Algol comments are kept, however. (?)
Nbfcheckigz is attemptgd,‘&owever, in order to determine when the
‘end of the program“ggéabeen%reached a count of begins and ends must

be included. This must take special account of strings enclosed

In string quotes and comments.

" Pass 2: ,Jdentifier matching, declaration collefting, bulld-up

of.constant table, delimiter cinecking. In this pass an identifier

table 13 cémpiled. This will have one item for each disﬁinct iden-
tifier in the program, with ﬁo regard to scopes. In the output from
the pass every identifier will have been replaced by the number of
the identifier in this table, |

When scanning block heads the identiflers declared are compiled
in a declarstion stack. At the corresponding block end the décla~w
rations fér this block are removed from the declaration stack into
the output. |

Literal constants (i.e. unsisned numbers, and strings) are comQ

piled in a list of constants.

B el C

-

g
-
3

Algol translator. | -2
31. Oct. 1961.

Pess 2, cont'lu.

With the exception of arithmetic, relational, and logical
operators, the consistency of the program with respect to the
occurrence of all delimiters is checked. In additlion, a number of
delimiters, which do not appear in the Alrol teit, are added
(so-called pseudobrackets are converted into proper brackets).

Pass 3: Analysis of simple expressions. This 1s a backward

scan., Using the declarations assempled in pass 2 the meaning‘of

any identifier at any place is now known. The analysis will include
a complete check of the expressions and the conversion %o machine
instruction form.

Pass li: Loading, internal references. In this pass the final

sbsolute addressing will be made. A1l impli¢lt references (for-sta-

k tements,'then, else, etc,) are worked out by the loader from the

context. kxplicit references (labels, procedure identifiers) are

based on a simple symbolic address system.

Discussion. It has been considered basic that only simple
scans would be made, i.e. that in each scan the text of the pro-
pram would be taken in order from one end to the other. Secondly
no restrictions on the order in which the program is writien,
other than those of Algol 60, have been imposed. Thirdly, a
fairly complete checking hés been aimed at. |

These conéiderations force the use of a two-scan process.
Indeed, no complets proceséing of expressions is pdssible in a
one-scan process since the declarations will not in peneral be'
known. Pass 1 and pass 2 might very well be merged. It seems

desirdble to separate the mechine dependent process of pass 1

Algol translator. -3-
31. Oct. 1961.

Discussion of passes, contid.

and the machine independent pass 2., Again the division of work
among passes 3 and l} is not necessary. The advantage of the

! division-4s that no absolute addressing of the prosram, or eve:
calculation of lengths of code becomes necessary until the loadiig
atage.

The following is a more detalled discussion of various problems,

@ beginning with pass 2.
IDENTIFIER HANDLING (pass 2).
The maln advantages of the present method for handling iden-
infiers are:
1. Identiflers are at once replaced by an internal repre-
| sentation.
ir o 2. The tables used are few and short.
3° The tables are relocatable.
E —~ | li. No sorting is used.

5. It imposes no restrictions on the language: arbitrarily

long identifiers eén be handled.

The IDENTIFIER TA3LE. This table is generated durlng pass 2.

It willl have one entry for each distinct identifler. Even if the
same identifier is used with different meaning in different blocks
the IDENTIFIER TABLE will have only one entry for it. Thus each
identifler may be completely characterized by its number in the
IDEN&IFIER TABLE.

Before the start of translation of a program the 1dentiflers

Algol translator. -l -
31. Oct. 1961.

Identifier handling, cont'd.

of standard procedures are placed as the first items of the
IDENTIFIER TABLE.
The IDENTIFIFR TARBLE has two parts: 1) the pr&mary words,
and 2) the secondary words.
Short identifiers, i.e. those having 5 characters or less,
only use the primary words. The corresponding secondary word
may be used for holding a part of another long identifler, as
explained below.
Long identifiers use cne primary word for the first 5 charac-
ters, and any number of secondary words, holding L. characters each.
Assuming an alphabet of 52 letters and 10 digits each character
occupies 6 bits. When dealing with groups of 4 or 5 characters
ﬁo gain can be achieved by packing these characters as tightly
as theoreticaliy possible.

Structure of primary words: 3 parts:

I 1) 1 bit: O for short, 1 for long identifler.

AU LA LGN i ST

| 2} 30 bits: For short identifiers: all characters.
" long " : first 3 and last 2 characters.
3) 5 bits: The number of characters modulo 32.

ihiz structure has the following advantages: 1) It will make
spurious coincidences of the primaery words of long identifiers

exceedingly rare. 2) It retains the first few characters, vaich

% ' is useful for error print-out during trenslatlion and the like.

Secondary words. If primery word no. n refers to a long

? identifier the first secondary word belonging to this identifier

will also be no. n. Further secondary words of this identifier

Algol translator. ¢ 5=
31, Oct, 1961.

Identifier handling, cont'd.

will have numbers less than n, making use of such positions in
the secondary word table which correspond to short identifiers.
The secondary words of the same identifler, as well as the free

locations in the secondary word tasble,are linked together.

Structure of a secondary word:

1) 2l bits: li characters of the identifiler.

2) 12 bilts: Link fo next secorndary word of the identifier, if
theré are more. For the seccndary word at position q the link
is slways less than g (might be negétive).

Initially the link part of all secondary words with index £ O 1is

set to indicate the immediately preceding word. As long ldentifiers

are added all free words will remain linked together.
Example of'identifier table: For simplicity assume that

each word will only hold 2 characters (not 5 or). Further assume

thet the sequence of identifiers shown in the left column have

been entered in the table, in the order shown. Then the éituation

will be a8 shown in the right hand columnse¢

Identifiler: Primary Index - Secondary
a Mark Char. No. Char. Link
blb2 -2
¢ ~1 : -2
dld243dly 0 g5 -1
e 0 a 1 1 aly 0
f 1 bl l 2 b2 1
glg2g3sle5 0 c 1 3 a3 1
h 1 ar - 8 L a2z 3
i. 0 e 1 5 gl 0
jije 0 f 1 6 23 S
k 1 gl 10 1 ge 5
mlim2 0 h 1 8 -1
0 i 1 9 8
1 i L 10 je 2
0 k 1 11 9
1 ml I 12 me 11
13 11

Algol translator.- } -6~
31. Oct. 1961.
PROGRAM FOR IDENTIFIRR HANDLING.
The program will:
1. Read from.input the letters and digits up to the next
delimiter and form the proper intermal representation.
2, Check whether the identifier is already in the identifier -

table, and if it is not insert it in the table.

3. & In any case exlt .» with a value of the proper
/Nf identifier number placed in i.
The exact structure of the primary word is takes as follows:
(bit 35 is the most significant):
Bit 353 more mark |
Bits 3l to 30: number of characters modulo 32.
- 29 - 2t 1st character
v - 23 - 18: 2na -
- 17 - 12 : 3rd -
- 11l = 6: Lith -
- 5 - 0: 5th -
Structure of secondary word:
Bits 35 to 30: 1lst character
. - 29 - ZLI.: 2nd ‘ -
. - 23 - 18: 3rd -
- 17 - 12: kth -
- 11 - 0O: Link

array word list [l:]; identifier table [@:]; secondary ﬂrq: j;
comment Enter here with symbol = letter, showing that an identi-
fier 1s coming; | |
take identifier: n := 03 wofd counter := 0; short := true; word := 03
.Eﬂﬁ k :=1, 2, 3 do
begin
word := word + 6L T(5~-k) * symbol;

n :=n + 1; input(symbol);

Algol translatlor.
31. Oct. 1961.

e
ca f av e

Program for identifier handling, cont'd.

new word:

essemble 1:

agsemble 2:

Af class(symbol) = cdelimiter then
go to assemple 3
end reading of first 3 characters;
lastbutone := symbol; last := dummy; input(symbol);
if class(symbol)=delimiter then |
word := word + 6l » lastbutone;
7o _to assemble2
end:
last := symbol; n :=n + 13
word counter := word counter + 1;
word 1ist[ﬁord cbunterj := 03
for k :=1, 2, 3, It do
begin
input(symbol);
if class(symbol)=delimliter then
go _to assembple 1
word list{word‘counter] 1=
word list E\rord counter] +
6l F(6-k) * lastbutone;
lastbutone := last; n :=n + 1;
last := symbol
end;
£0_to new word;
if k=1 then word counter := word counter - 1;
word := word + bl * lpst;

word := word + 64f2 *1lastbutone;

Algol translator. -8
31. Oct. 1961.

Program for identifiler hahdling, cont'd.
assemble 3: word := word +‘(n <n+ 32 % 32)x 2T30 +
(1if n% S then O else moremark);
1 := highest numbar;
search: for I := identiffertable(i waile
I #wordai>0 do i =1 - 1;

if 1 = (then

begin
N '
’ m ¢= 1 := hichest number := highest number+l;

identifier table[i] := word;
for k := 1 step 1 until word counter do

; soccndary{m}:= secondaryﬁh] +

; vord list[k];

| m=1.nkpart(secondarym})

'L secondary.highest nuﬁber-ﬁl_] 1=

e end 1 =0

els: begin

m = 13
for k :=1 step 1 until word counter go
bagig

if wordlist[k]#

identifierpart(secondary[m])
thaif17=1-1; go to search end
m i+ linkpart{secondary{m})

end fir k

Algol translator. o
2. Nov. 1961.

COLLECTING DECLARATIONS AND SPECIFICATIONS (pass 2).
The functions of this mechanism are:
1. To collect the declarations and specificstions of the program
in a form suitable
a. to be used during the analysis and checking during pass 3,
b. to form the information to be inserted at the end of blocks
and procedureé (appetite, ete.),
6. to form the full specifications of formel parameters, and
d. te construét-the relative addresses of all variables within
each block.
2. To check that no two identifiers are declared twice in the same

block head.

3. To check that full specifications are avaibable for formals,

Structure of the DECLARATION STACK. The above functions are

executed with the aid of a declaration stack, This is a table
operated in a étack 1ike wanner, holding the information supplied
in declarations and specifications. Within the declaration stack
all items of identical nature are linked tOﬂether, formiﬁg a
chain. xltogether 23 independent chains are maintained, one for
each of the combinations marked by an x in the following table:

No type raal integer Boolean

Simple variable, local X x x
s OWn b 4 X x
Array, local X x x
"o, own X X bd
Switch x
Procedure x
<type> procedare, call only X X X
, call and assign x X x
Label b
Formal x
Stop X

Alzol translator. =10~
2. Nov. 1961.

4
Collecting declarations and specificetions (pass 2). cont'd -
The followin~ table shows the information held in the various
kinds of items and a2 surmested bit assisnment within a 36 bit word:

Identifier Link Other
Bits 135-26 25-16

type b 4 X

array ldentifier X

array bounds X 35-26: number of identifilers
15-0 : - - sgubscripts

switch X x 15-0 : - - expressions

procedure (no type) x P 15-0: symbollc address

type procedure X x 15-0: - -

label b d z 15-0: - -

formal X X 15-0: specification and value

stop x 15-0: kind of stop: 1) Block

2) procedure (no type)
3) type procedure
Notes on the table:
Symbolic addresses are integers aasoclated with procedure identi-
fiers and labels, identifying each of these uniquely throughout
the program. fach array segment wiil give rise to an entry having
one word for each identifier plus one cormmon word describing the
vounds. 3lock begin will cause entry of a stop. Procedure lden-
tifier without type enters two wprds, cne describing the iden~-
tifier, followed by & stop. lype procedure identifiers cause

entry of 3 words: l. procedure identifier linked as call only,

2. stop, and 3. procedure‘identifier linked as call and assirn.

Dynamics of the DECLARATION STACK. Each new declaration will

cause the appropriate wérd to be entered and the corresponding
link to be ub«dated, Alsd s check that the identifier has not
already been declared in thc same block 1is carried out.

Pormal parameters are entsred in a similar manner, Speci-

fications cause the appropriate information to be inserted in the

Algol translator, -11-
2+ Nov. 1961, '

Collecting declarations and specifications (pass 2). cont'd.

- o e e

~word already reserved for this formal parameter. This word must
be available (check) s
At block end all entries corresponding to Lhe latest block
are removed from the table. Since this must be done separately Por.
each chain the‘declaratidns will be sorted'éccording to their
—~ nature just by following each chain down to the latest stop.

The information removed from the declaration stack may be trans-

.mitted to the output string of pass 2, as in the p}ésenﬁ descripé
tion.- This will assuﬁe thatjbass 3 is = backward scan.’Alternatchly
it may be transferred to a special table on the drum. If this is
done special account must be taken of the location of the decla-w
rations for each block in this tsable in such a manner that in the.
forward ‘scan of pass 3 the proper declarations may be referenced:

at each block begin.

Example of the use of the DFCLARATION STACK. Consider the

contents of the declaration stack during the pass 2 of the follo-
winb[program:

begln real A, 3,
real procedure P(A, B); value Aj ﬁeal A procedure*B;
begin real C, D;
e
P
end of Pj;
1nteger C Dy

array B, G(l:2, 1: 3]
e

end of program;

The following tables show %he values of all relevant variables, -

including the identifier table and the declaration stack, both

7ust before the scanning of"end of P" and beforo the scannln¢'

Algol translator. ~12-
2. Nov. 1961,

Collecting declarations and specifications (pass 2) cont'd.

R - -

of "end of program".

Initial |Just before |Just before

end of P end of prog.
General variables: v B
current top 1 12 : 10
next symbolic 1 I 5
~ End of chain variables: ' o -
last real ' e 9 2
last integer -1 ' -1 5
last real array -1 -1 8
last real procedure to call o -1 3 3
last real procedure to call and assign-l .5 -1
last dabel ' - -1 11 9
last formal -1 _ 7 -1
-last stop 0 I 0

, Identifler table just before end of program:
jdentifier number 1 2 3 L 5 6 7 8
identifier - A B P C D E F G

, Declaration staclk: o _ u _ _
Ttems 1 to 3 do not change between "end of P" and "end of progranm'.

Item no. Identifier 1ink Other Identifier Link Other
number number
1 1 (=A) ~1
2 2 (=B) 1
3 3 (=P) -1 gymbolic 1 v .
Just before end of P Just before end of progsram
Iy (stop) 0 type proc. i (=C) -1
5 3 (=P) -1 symbolic 1 © B (=D) Ly
6 1 (=4) -1 real value 6 (=F)
7 2 (=B) 6 procedure 8 (=3) .) ' v
8 L (=C) .2 -1 2ident:28ubsc.:
9 5 (=D) 5 7 (=F) -1 symbolic L
10 6 (=E) -1 symbolic. 2
11 7 (=F) 10 symbolic 3

The algorithms for handling the declaratioh stack might
be included at this stage. However, since they are intermixed
with the scanning procedure of pass 2 this latter proéedﬁré wili

first be discussed:

Algol translator. w3
3% Nov. 1961, :
THE SCANNTNG METHOD OF PASS 2.
The scanning method bescribed below is essentially based on
the method used by E. W. Dijkstra (private commmication to P
Naur, April 1961). The basic algorithm of this method is as fai~
lows:
1. Read the source program ﬁp to and iﬁcluding the next
delimitgr. .
25 Perform the program for the interpretaﬁion of thé new
deiimitef;

3., 3o to ﬁbint 1.

In this. procéss it is convenient to exclude the AL3OL deli-

‘miters entering into literals (i.e. unsigned numbers and strings)

from the cless of delimiters. If this is done point 1 may cause
reading of one out of 3 combinations: 1) Delimiter only, 2) Iden-
tifier and delimiter, and 3) Literal and delimiter. As an example

of this method the following stding

afp + 5.83} = w;
would require 5 of the above cycles, the parts read in these cy-

cleg beling:

al p 5.83] 1= W

wae

33]

jefore developing the prosrams for the interpretation of

;.

cach of the delimiters the question of sywtactle cnecks durin
nass & will be discuased. Uwo aspects of this will be distinguisied:

microchesing and wacrochecking.

Algol translator. . ~llp-
3. Nov. 1961. :

‘The scanning method of pass 2, cont'd.

- e n o Y ses e s

Microchecking. By microchekking will be understood the

checking of the compatlbility of adjedeht.symbols; Qhen deriving
the appropriate rulés for this it 1is ﬁséful f& intfoduce tﬂe
class of operéhds,’méaning fhe o o conjunction of ﬁhe
classes of (1) Identifiers not followed by'(or E(E) Subséripted

variables (3) Function designators (lj) Expressions enclosed in

™ parentheses and (5) Literals (l.e. unsigned numbers,
strings, logical values). For each basic step of the scan it
| is now passible to define the value of the operand situation
; 28 be-ing an integer desc zribing what has been found immédiately
s ' ' o
| precsding the new delimlter, -accord Jnv to the fOllOWln table:
3 .
: Opérand situation Construction precedlng dellmiter
0 Not operand
1 Tdantifier
2 Subscripted variable o .
3 ‘unctlion designator or orocedu ¢ statement
L Expression enclosed in pareﬁtneues
5 Literal
N

Basic pﬂincipje iOT m;crocnos&lng: Defivc from Lhe xLQOL
syatax *ﬁkormatxon on whe hew in the given s;tuatlon the new
delimiter is c ompatlee WLbn the ov“°atbr éituation;

‘he uéefulness of’ this ﬂ{ sroach is dué to‘the féct that
fFor many combinations t Le situation is irrelevant inwdetermiﬁing
compatibility. For ékamplé ﬁhe LOI wxng are universally 1nédmis;
gible combinations:

S

\ A go to’ Pis| for =/

o v) o . 4 R

Algol translator. ~15-
3. Nov. 1961. |

The scanning method of pass 2, cont'd.

In fact, the following seneral rules hold:
‘The following 16 delimiters can never follow an operandf

Group A,

~ go to if for comment begin own Boolean integer

real array switch procedure string label value

The following 2; delimiters must always follow an operand:

~
Group B,
*/ &1 < & % 3 > 4% = = 4 A then do
~@9 o= step until while) [] |
Of these E will only accept identifier and := will only accept
identifier or subscripted variable.
The following gbdelimiter; may or may not follow an operand:
| Group C. (Lecause of covames ‘O“O“\""‘ﬂ arvey Qeqme,w{-5>
N end else (|
7

Y . 1he remaiqiﬁgNS ALGOL 60 delimiters all belaﬁg‘to literals:

{ 1
10—

E ' These rules can be derived rigorously ffomvthé syntax of
| ALGOL 60. The ones of group A will be more or 1éss obvious to
anybody familiar with the language. Many of those of 5foup B

follow from the fact that any expression must end with an operand.

Y,

~ The proof of this can be derived directly from the ALIOL 60 syn-

tax.' We must consider the 3 possible expressions'sépafately.

Alpoi translator. ~16-
3. Nov. 1961.

The scannlng method of pass 2, cont'd.

ulrst arlthmetlc expre.sions..ﬂccordlnv to the sectlon).5 1 of
vthe \LGOL 60 report the 1ast part of any er ic expresslox
must be a 31mple aritnmetic expressxon; The 1ast paft of this
mustAa term; ‘he Wast part of thls must be = factor. lhe last.
part of tﬂlS must be a prlmary. 3ut since a prlmary 1s an ope—
rand in the sense used here 1t follows that any arlthmetlc ex~

p?e381on ends Wlth an operand. The demonstra+1on for the two

other cases follo"s in a similar Manner . Consequently any ex-

0ress1on ends w1ta an opcwand° Ln qdcltlon tne proof suaows that
the game holds for <term>, <factor>, <imvlicatlon>, Sooloan
term>, <&oolean factor), and <Bo&lcaﬁ secondary).

How it is casy to verlfy from the ALOL 60 synbax that
each of the followinb dellmlters, in any occ’rrence, Wlll be
precedud by one or other of the above menuloned construct10ns‘

7’*/%‘5‘<<=3_>=;-§-;:>\//\Lhen

—

ég step untll while]

Tn¢s proVes the membersalp of croup 3 for eaeh of these de]lMlu

ters. Far the remalnln‘ ‘members. of *roup B quoted above.

x == L |
an 1nolv1dual 1nvestL”atlon of the various uses of each of taese
symbo s is necessary to nrove Lae membersqlp of group B Unls may,
nowever, bo carrLed thwough in a stralmntforwarc manaera

The above rules are situation 1nuependmnt. iney will ‘serve
Lo cetca a nuaber 01 errors by testunw wnetner the class of the

new aeTlmlter is compet ble w1th tnc onerand 31tuat10n. The fur-

tner mlcrocnecklng will make use of 31tuat10n dependent parametef

Algol translator. w17 -
3., Mov. 1961,

The scanning method of pass 2, conl'd,

- o s e

havine the orm of a one-dimensional Boolsan array {a bit word)
accomodating one truth value for each combination of operand and
delimiter which has nct aii.réady been chaecled for. Thus according to
this scheme the action of each deliwitsre ﬁragr&m (i.e. the program associated
with es oh delimiter) will do 3 things: (1) Check that the delimiter is come
‘patible with the‘current situation parameter. (¢} Do whatever action is neces=
sary for this delimitér. (3) Assign a pew value to the situation parameter.

As a simple illustration of this approach condicer the scanning of the following
piece of program:

22553 integer a, b;

Scanning begin will set the situation paramneter to admit a great variety-of

delimiters, in fact all thosé which may appear at the beginning‘of a declae

ration or a statement: go to if for comment begin own Boolean

integer real array switch procedure ; end ([=

The appearance of integer immediately restricts the set of admissible successors

to the following: , 3 array procedure

The appearance of , restricts the successors even further:) H

Tinally thev; again opens up all the same possibilities as existed after begin,
| It should be noted that this does not yet exhaust the possibilities of
microchecking; Obviously this schemé would let such érrors which arise from
incorrectly writing one kind of dperaﬁd at a place where only another is cqrrect
pass by. Example: begin integer 7, b; Hewever, detection of such errors
depends on the meaning of the delimiter, which again depends on the context.

¥or this reason it is convenient to merge the microchecking and the mechanism
for handling the imultiple uses of delimiters into a single unified scheme.

- This will be desecribed next.

()

Algol translator. «18-
13. Nov. 1961.

Multiple meaning of delimiters. Practically all delimiters are used

for more than one purpose and the particular meaning of a delimiter must

be derived from the context. This will be handled by means of an extension
of the basic scanning mebhod in combination with the scheme for microchecking
as follows:

The program associated with each delimiter will be split up into as
many programs as thaere are meaningg for this delimiter. Which particular
prograﬁizo be used will be given in the current situation parameter. This
then will now be an integer array with one element for each delimiter, The

delimiter ,
value given for a particularkgill at eny time tell whether this delimiter
is admissible, and if so, what meaning of it is pertinent.

The above scheme is sufficient for the complete scanning of ALGOL €0
declarations except wherve these contain expressions or statements. It is
therefore possible to give complete information on the necessary delimiter
programs. This is included below, in the following form: For each subprogram
for a delimiter the par%iculaf meaning of this delimiter handled by the sube
program is‘Briefiy desaribed,,Theéxdllows, forxthose delimiters which admit
operands, the admissible operand situation (see table page 1llj). Firally
the list of admissible SUCCessors.

gwn L
ownl First symbol of declaration.

Successors: typel.
integer real Boolean

typel First symcol of declaration.
comnal semicolon) arrayl procedurel
type2 Following ouwn
Successors: commal semicolonl arrayl
type3 In specification ‘
Successors: comma 5 semicolor } array?2 procedured
arr
arrayl In dedlaration

Successors: comna? leftbracel
array?2 In specification
Successors: commab semicolon3

PRIV

| S

Algol translator. -19=
13, Nov, 1961,

‘ultiple meaning of delimiters (pass 2), cont'd.
Séﬁtt nuvwb.b(
switch '
(1’5) switchl First symbol in declaration
. Successors: colonequall
(ry) switch?2 In specification. ,
Successors: commaS semicolon3
procedure
((,) procedurel In declaration)
Successors: leitparenthesisl semicolon2
‘ (u) procedure? In specification
Successors: commab semicolon3

value
valuel Following formal parameter parb.
Successors: vommal; semicolor 5
string

stringl Specification
Successors: commab semicolon3
labsl
labell Specification
Successors: commab semicolon3
(18) semicolonl Follovzin%g, type Jeclwat:.on
Operand situation: 1
Successors: geto" ifl forl commentl beginl ownl integerl
reall Booleanl arrayl switchl procedurel semicolon?
endl. leftparenthesis2 eolonl c,olonequalZ leftbracket?2
<16) semicolon? Following procedurg <identifier> .
Operand situation: 1
Sucessor: goto? if2 for2 commentl begin? semicolon®7
,..,ftpare%hesisji nrolon?2 lefthbracket’ colonegual3 codel
(31) semicolon3 Following - - specification.
Operand situation: 1
QUC\.«GS sors: commentl integer3 real3 Boolean3 array2 switch?
procedure? stringl labell go‘ao\&z if)\2 beginkg
semcolonS leftparenthesis3 colon2 leftbracket3
: colonequall fevl eodd
(30) gemicolonl Fellowing formel parameter paz't. '
Opsrand situation: O
~ Successors: commentl integer3 reall Boclean3 array? switch2
procedure? -stringl labell wvaluel
(i&‘) semi.colonb Following arvsy segment
Cperand situabion: O
Successors: Sams as for semicolonl.
(2‘1) semicolond Following valuve part -
Operand situation: 1
Sucecessors: commentl integer? real3 Boolean3 array2 switch2
procedure?2 stringl labell '
(‘L?) semicolon? After dwmmy statement WWM&TWWWWE
. Operand si &ua‘c.:\.on. 0 or 1
Succossors: 3

WMHWW’WWZ
_Depeud MR mobdhing sy stocle(see pasc 3334/

T i . = L

Aigol translator. " @20
1. Nov. 1961

ultiple meaning of delimiters (pass 23, conbid.

-—owm mE X W e A o

semicolon8 Following procedure kdemisrfius huading e
Cperand situation: O or 1
Successors: Same as for semicolon 1
cemicolon? In expression (finishing assignment or gobo statement)
Opersnd situation: 1 to 5
Successors: Depends on the matching sypboel in stack as follows:

gotol Like semicolon 7

goto2 or roto3 - - 1 fo A cLLor v see m
colonequal? - - 7 13
colonequal3 - - 1

(iﬂ} semi.colonly Following normsl progedure cell with parameters

* Operand situation: O

o

“Sucessorst Same as for seiricolonT

QiB) semicolonll Following end of procedvre body

Operand situationt: O
Successors: Like semicolonl
begin
‘beginl Statement , -
Successors: gotol ifl forl commentl beginl ownl integerl
reall Booleanl arrayl switehl procedurel semicolon?
, endl leftparanthesisz colonl 1leftbracket? colonequal?
begin2 Procedure body
Successors: Same as for begin 1
5)
(1q}comma1 Type declaration list
Operand situation: 1
, Successors: comral semicolonl
conmma Array declaration identifier list
‘ Operand situation: 1
: Successors: unchanged
commagd Formal parameter list
Operand sitvation: 1
Successors: unchanged
commal; - Value list
Operand situation: 1
Successors: unchanged
commab Specification list
Operand situation: 1
Successors: cownaS semicolon3
comnab Array segment
Operand situation: O ,
Successor: comma? leftbracketl
- comma? In expression
Operand situation: 1 to 5
Successors: notl -<ifd plusl minusl semicolon? end2 elsel
leftparanthesisl bioperatorl dol colon3 stepl
untill whilel leftbracketl rightbracket3{ comma?
rightparenthesis2 Whewd
Note: This set of successors will be referred to as
the begin of expressicn successors.

Algol transiator.

20, Nov. 1961

@ Lo

#ultiple meaning of delimiters (pass 2), cont'd.

M e G B M em we W ey wa A e

L e
notl

go to
gotol

gotold.

, ;;»izj-'
if1-

1£2
if3
ifh

for
forl
for?2

comment
commantl

+ e
plusl minusl

plus? minus?2

end -
endl :

<

end2

Anywhere
Successors: plusl minusl semicolon? end2 else2 leftpark
: binaryoperatorl thenl dol leftbracketl
comma7? rightparenthesis2 (no. 7)

Normal statement . ‘
Successors: “Jegin of expression (no. 2)
Following procedure heading :

- Successors: Begin of expression (no. 2)-

Normal statement

Successors: Begin of expression (no. 2)
Following procedure heading
Successors: Begin of expression (no. 2)
Begin of expression

Successors: Begin of expression (noc. 2)
Following else

Successors: Begin of expression (no. 2)

Normal statement

Successors: colonequalli leftbracket5 (no. 22)
Following procedure heading

Successors: - colonequally leftbracket5 (nc. 22)

Anywhere
Successors: Unchanged

' Begin of arithmetic expression

Operand situation: 0 - 5

Successors: notl plus2 minue2 stmicolon? end2 else?2
leftparenthesish binaryoperatorl thenl dol
colon3 stepl untill whilel leftbracketh
rightoracketl comma? righiparenthesis? (nos 1)

In expression,

Operand situation: 1 - 5

Successors: No. 1

Following statement
Operand situation: O or 1
In expression
Operand situation: 1 - 5 ;
Successprs Tor endl or end 2 depend on matching symbol in
stack as follows:

beginclear, beginblock: ¢any string..) endl semicolon?

elsel -(no. 10§.
peginbody: <anystring ..> semicolonll (special treatment)

Algol transiator. idm
20. Nov, 1961 '

‘ltiple meaning of delimiters (pass 2), cont'd.

- e e se W ww e e m w we oh e

else
elsel In statement
Ooerand situation: O or 1

else? In expression
= Operand situation: 1 = 5 i
: Successors for else 1 and else2 depend on matching 3f in
- stack as follows: .
| cEEstatement: gotol ifly forl beginl semicolon7 endl
1 t leftparenthesis2 colonl leftbracket2
| e colonequal2 (no. 9)

t ifexpression: notl ifli plusl mimusl semicolon9 end?2

ﬁ , else? leftparenthesisl binaryoperatorl’
| dol colon3 stepl untill whilel leftbracketd
i s rightbracketl comma? rightparenthesis?
I (. (no. 3)

leftparentheisl Procedure heading
Operand situation: 1
{ Successors: comma3 Trightparenthesisl {no. 21)
leftparenthesis2 Procedure statement, normal
' Operand situation: 1
. Successors: Begin of expression (no. 2)
leftparenthesis3 Procedure statement as body
Operand situation: 1 ,
Successors: Begin of expresson (no. 2)
leftparenthesisly Subexpression or function designator
. Operand situation: O or 1 .
y ﬁ Successors: Begin of expressicn (no. 2)
x/ @ .
‘ In expression (these form part of binaryoperator)
Operand situation: 1 = 5
, Successors: notl plus? minus2 semicolond end2 else?
% leftparenthesish binaryoperatorl thenl dol
k colon? stepl untill whilel leftbracketl
rightbracketl comma? rightparenthesis2 (no. 1)
42 =2>FAVDE : : :
In expression (these are the remaining binary operators)
Operand situation: 1 - = = 5
Successors: plusl minusl notl semicolonS end2 else2
Jeftparenthesisl, binaryoperatorl thenl dol
leftbracketl comma7 rightparenthesis2 (no. 7)

-

then
thenl In expression ,
Operand sitvation: 1 = 5
Successors depend .on matching if:
ifstatement: gotol forl beginl semicolon? endl elsel
: leftparenthesis2 colonl leftbrackete '
colonequal? (no. 8)
ifexpression: notl plusl mimusl < 7 else?2 leftparen~
thesisl, binaryoperatorl leftbracketl (mo. 5)

S

P P R e by
ALGLa WLENBLSTUN . o

20. Nov. 1951

Mltiple meaning of delimiters (pass2), cont'd.

“w A s G W am ws we e = .

do
dol In expression '
| Operand situation: 1 - 5
| Successors: gotol ifl forl beginl semicolon? endl elsel
' leftparentheisis? colonl leftbracket2 colonequal?
(no. 11)
colonl Label of statement
Operand situation: 1
Successors: gotol ifl forl beginl semicolon? endl elsel
leftparenthesis? colonl leftbracket2 colonequal?
. (no. 11)
colon? Following procedure heading
Operand situation: 1
Successors: No. 11
colon3 In expression
Operand situation: 1 - 5
Successors: Yegin of expression (no. 2)
colonk Label of unconditional
Opersn. situation: 1
Successors: No. 8 (see thenl)
step until while
stepl In expression
untill Operand situation: 1 - 5
whilel Successors: Begin of expression (no. 2)

1. rightbracketl In expression
~ - Operand situation: 1 -~ 5
Successors depend on matching [as follows:
Larray: : commab semicolonS (no. 13)
[left part : colenequal? (direct check)
[subscr.var. : No. 1 (see x / + 1) with cperand sit.=2
~ Lfor-variable : colonequally (direct chsck) _
[1eft part or assignment expression: plus2 minus?
semicolon? end?2 else?2 binaryoperatorl
colonequal5 (no. 6) with operand sit.=2 .

C

leftbracketl Array declaration Operand situation: 1

leftbracket?2 Assigonm. statement .% Successorg: degin of expression (no. 2)
leftbracket3 Following proc.head.

leftbracketh Subser. var.

leftbracketb For-controlled var.

leftbracketbd Continued assignment

colonequall " 8witch declaration

Opérand situation: 1
Successors: begin of expression (no. 2)
colonequal? Normel assignment
. Operand sibuation: 1 or 2
Successors: notl if3 plusl minusl semicolony end2 elseZ
leftparenthesish bLinaryoperatorl leftbracketbd
colonequai’d _ : {(no. 4)

Algol translator. -2}~
20. Nov. 1961

Multiple meaning of delimiters (pass 2), cont'd.

W ek e mn G e e s am wm e e

colonequall Following procedurs heading

Dperand situation: 1

Successors: Ho. U
colonequally For clause

perand situation: 1 or 2

Successore: Segin of expression (no. 2).
cclonequalkh Continued assipnment .

) Operand situation: . L 1 or 2. Successors: No. 4.

rightparenthesisl Formal parameter part.

Operand situation: 1

Successors: <letter stringd:(semicolonly (special treatmeny)
rightparenthesis2 In expression

Operand situation: 1 -~ 5

Successors depend on matching (i

(proc. statement : <letter stringy:(semicolondq ¥
endl elsel [no. 20) with operand sit.

= 0 .
{subexpression : No. 1 with operand sit. = 3
{func.desig. : {letter stringp:(Ne. 1 with
operand sit. = |
code
codel Following procedure heading.

Operand situation: O
Successers: Depends on code language.

The information on successors given above may be condensed into the

following brief table, which lists the permissible successors in each of

31 different states. The numbers of these states have alsc been given above.

In this table those dslimiters which behave in an ideniical menner as far
a3 their occurrvence is concerned hdve been combined into a single entry.
The groups which have bsen formed in this way are:

goto, covering go to, bagin, and for |

type, S integer, real, Soolean
string, - strin: and label
~bi.op. -~ x /el <=2t AvD=

step o step, until, while, and

-

T T e - ._7;‘;.“7 .

Algol translator. «25-
20, Wov. 1961.

Multiple meaning of delimiters (pass 2), cont'd.

w e G e W e s W W =

TABLE 0F DELIMITER MEANINGS.

. State number
Delimiter 10+ 20+ 30+
12345 6 890123&567890123&5678901
- (not) (L_@il.) 1‘11 :
o to begin for A N N | 211 2
%f" 343 L 1 211 2
" comment 111111
o 1
Inteser real Boolean ~ 2 1333
A array ' 2 11 1222
. ‘switch 1222
rocegdure 2 i l222"
t ' string 1abel 111
value l . 1T
. 2111121/ 1 3 9 -
; 3 e - 9999 9977776533211 "77 Y
: end "~ 2222 2211111 1 11
] else 22222221 11 1
bhhbld L22 2 1 322 3
! - binary operator 1111111
~ then . 11 1
do 111 1
: ‘ 333 b1 1 211 2
gtep until while] ; .
L \ "W k6L L2222 2 . 5 1 322 3
s 777 7 L6585 111 3 2 .
. s 5 5 22 2 L1, 322 3
—) » 222 2 1 -
< codse) _ : 1 1

Note that in this table two states have been omitted since they admit only one
f* delimiter, These are: (1) Expecting semicolonl, resulting from righutparen-

thesisl, and (2) Expecting semicolonll, resulting from endlmatching beginbody.

In both cases the elimination of possible comments in the text will recuire

a special treatment anyway. o
‘The above 31 states correspond to well defined situations in the input
string. The following is an approximate description of these situations and

a list of the delimiters which may precede eagp of thems

Algol translator. «26-
20. Nov. 1961

'!"iultiple meaning of delimiters (pass 2), cont'd.

JEANING OF STATES AND PRECEDING SYMBOLS.
1. In expressz.on..+ -xZe)]

2. Expecting expression. , go £0 11' step~ until while (3=

3. Expect:mg expression after else. slse

L. Expecting left part or exosression. :=

5. Expecting unconditional expression. then

6. Following subscripted variable which follows :=. 3
7. In Boolean expression. n < < =271 AVD =

8. Expecting unconditional statement. then :

9. Expecting statement after else. else
10, Following end of block or compound statement. end
11. Expecting statement, not comment. do

12, In value part. El_}_l_g 3 |

13. Following array segment.]

ih. In specification, array switch procedure string label

15. F‘ollowix_lg <type> as specifier. integer real Boolean
16. Ih —;Srocedure declaration heading. procedure |

17. In type list. ,

18. Following own <typep. integer real Boolean

19. Following non~own tyve declarator. integer real Boolean

20. Following. procedure statement.)

21, In formal parameter 1151; « »

22. Following for. for | .
23. Following switch as declaretor. switch
2li.. Expecting array segment. array ,

25. Following own. own

e

Algol translator. ~27-
20. Nov. 1961

“ultlple meaning of delimiters (pass 2), cont'd.

26. Expecting procedure body. ;

27. Expecting statement or conment . 3 |

28. Expecting deciaration or statement. ; begin
29. Expecting specificatien‘ 3

30. Expecting value paft or specification. 3

31. Expecting procedure body or gpecification. ;

The information given inthe table of delimiter meanings (page 25) may
of course be handled in many. dmfferent ways. The whole table nay be stored
in the machine. If it is packed as closely as p0351ble in a binary machlne'
it will need 31 items of 50 bits. Several cases lend themselves to a speclal
treatment, however, Thus value is only possible in state 30, while the delimiﬁersf

= , comment, string; label, binary operator, step, until, while, and v] may be

checked -~ '~ more simply by testing the mqgnitude of the state number when these
are chosen as dbOVe. If this is done the table only needs 31 items of 45 bits.
It is thus clear that the storage requlrements of the pxesent mechanism kx are
very modest.

It should be noticed at this stage that the above mechanism is designed
to ignore any possible checking of types. The reason for this is that it is
impossible to do a complete type checking because declarations for identifiers
are generally not available at this stage. The complete type checking will
be performed during pass 3. However, the above mechanism also does not check
that delimiters en eech side ofuexpressions match propefly. This is the task
of the macrochecking which will be described.next. This also will provide the
mechanism for‘detefmining the kind of left parenthesis, brackee, end, etb.
which match:sg;;:nf1ght one. This has already been used in some of the above

discussions on the successors of delimiters.

Algol translator. «28-
21, Nov, 1961.
MACROCHECKING AND THE DELIMITER STACK.

For the purpose of checking and matching delimiters which permit arbi-
trary expressions to occur in between them a-fﬁii? (push~down list) of
delimiters will be used during the scanning of pass 2. This stack will
at any time‘during the scan coﬁtain one entry for each delimiter having
a left parenthesis character, which has not yet been matched by a corre-
sponding right symbol, and which will admit arbitrary nesting of other
brackets to appéar before this matching will take place.

Each symbol in the delimiter stack will be onc out of 2@ different
péssibilities. In order to describe the meaning and dynamics of th®se symbols
the life history of each of them.will'naw be given, in terms of the following
four kinds of events: (1) Creation. An item is said to be creéted when
it is entered at the top of the stack, the other items being pushed down.

(2) Changes. These convert the symbol in question to some other symbol.
This happens only at the top of the stack, and =11 other itemc remain un-

changed. (3) Recreation. This denotes that the symbol in question is for-

med from some other symbol. Only at top of stack. (L) Annihilation. This
indicétes‘ﬁhat the symbol in question is removed from the top of the stack,
the other items being popped up. Where in the following descriptions one

or more of these events are omitted it means that no event of this kind will
ever take place for that particular symbol.

1. beginclean.

Creation: beginl

Changes: To beginblock by ownl, typel, arrayl, switchl.
To beginprocedure by procedurel.

Annihilat.on: endl or 2, ,

2. beginblock

Changes: To beginprocedure by orocedurel

Recreation: From beginclean by ovml, typel, arrayl, switchl.
~ beginprocedure by semicolen?, 9,/;8; 11.

Annlhilation. endl or 2.

Algol translator. 29
21, Nov. 1961. '

Macrocheciking and the delimiter stack, cont'd.

W WR W em W Y W aa e e

3. beginprocedure
Changes: To beginblock by semicolon?, 9,(34, 11.
Recreation: From beginclean or beginblock by procedurel

L. beginbody
Creation: begin2
Annihiliation: endl,2.

50 (call .
Creation: leftparenthesis2,3 - .~ < ¥ EAEE
Annihilation: rightparenthesiskL
~ :
6. (subexpression
Creation: leftparenthesisl; with operand situation = O
Annihil.: reéghtparenthesisd
7. (function desig. ‘
5 - Creation: leftparenthesisl with operand situation = 1
i : Annihil.: rightparenthesisk,
8. [array,
Creation: leftbracketl
Changes: To [array: by colon3
Recreation: From [array: by coixna?
9 {array:
Changes: To [array, by comma?
Recreation: From [array, by colon3
Annihil.: rightbracketl
~ 10. [leftpart

Creation: leftbracket2, 3 _
Changes: To :=assign by rightbracketl

1l1. Ileft or assign
Creation: leftbracketb
Annihil.: rightbracket!

12. [subscr.var.
Creation: leftbracketh
Annihil.: rightbracket |

13. [for-var.
Creation: leftbrackeib
Charges: To :=for by rightbracketl -

1L :=switch
Creation: colonequall
Annihil,.: semicolon$.

Algol translator. | «30-
21. Nov. 1961.

dacrochecking and the delimiter stack, cont'd.

" e e s @ W e es W W M e

15, :=assign

Creation: colonequal2,3 :

Recreation: From [}eftpart by rightbracketl
Annihil.: semicolon?, end2, else2

16. :=for

Creation: colonequall

Changes: To do by dol, to step by stepl, to while by whilel
Recreation: From until and while by comma?

17 goto
Creation: gotol, 2
Arnihil.: semicolon?, Bnd2, else?2

18. ifstatément

Creation: ifl,2

Changes: To thenstatement by thenl
Recreation: From elsestatement by ifl

19, ifexpression

Creation: if3

Changes: To thenexpression by thenl
Recreation: From elseexpression by ifl

20. thenstatement

Creation: None

Changes: To - elsestatement by elsel, 2
Recreation: From ifstatement by thenl
Annihil.: semicolon?, 9, ;&, 11, endl,?2

21, thenexpression ‘
Changes: To elseexpression by else2
Recreation: From ifexpression by thenl

22. elsestatement.

Changes: To ifstatement by ifl
Recreation: From thenstatement by elsel, D
Annihil,: semicolon7; 9, ;a‘ 11, endl, 2

23. elseexpression

Changes: To ifexpression by ifl

Recreations: From thenexpression by else2

Amnibil.: semicolon9., end2, dol, colon3, stepl, untill, whilel, rightbracketl,
comma?, rightparenthesis2 +hend

2L. step
Changes: To until by untill
Recreation: From :=for by stepl

Algol transiator. 31~ 2.ed. 2h. Hov.61
21- \IOV. 19610 : '

Macrochecking and dellmlﬁer stack, cont'd.
25. until ' .

Changes: To :=for by comma7, to do by dol
Recreation: From step by untill

26. while

Changes: To :=for by comma?7, to do by dol
Recreation: From :=for by whilel

27. do |

Recreation: From .-for, “ untili, and while by do
Annlhll.. semicolon7, 9, 3, 11, endl, 2, elsel, 2

28 program
Creation: By initlallzatlon of translator
Annlhlllation' semicolon 7,9

In describing the actions performedton'the‘stack by the_various deli-
miter programs it is conveniept‘to divide the relevant delimiter programs
into four groups, as follows:

Group 1: Programs entering a.new item into the stack. These programs

correspond to symbols having the chara cter of left brackets or pseudobra—
ckebs. The groups has the following 20 members. beginl, 2, leftparenth95182,
3,5k, 1eftbracket1 2, 3, h, 5, 6, colonequall, 2, 3, ks gotol, 2, ifl, 2, 3.

Group 23 Programs chagging the top element of the stack, without any

need for search or check. There are 8 members: ifli, ownl, integerl, reall,
Bcoleanl, arrayl, switchl, procedurel.

Group 3: Programs perfo 4_3‘31mp1e search and check. These programs

represent dellmlters which all terminate an expression, but not a statement.

N.,/-./\,M».W..‘\Ww I o Bl

They w1ll all perform an action having two steps: (1) Test whether the top
of the stack is "elseexpression" If so annlhllate this item. (2) Test the
(possicly new)vtop'of.the stack and perform an appropriate action, according

to the indications in the following table. In this table each delimiter

Algol translator. ' =32=
2hc NOVO 19615

Macrochecking and delimiter stack, cont'd.

W A e e me G e e e W W

is represented by a column and the elements in the top of the stack which
are of interest; in this connection each have a line. A symbol at the
crossing between the line for an element and the column for a program
indicates that this element is acceptable for the program and will induce
an action according to the fdlowing code:

L means: leave the element unchanged in the stack

A - : annihilate this element

Ch -~ : change the- element.

TABLE OF SIMPLE SEARCH AND CHECK LOGIC.

while
rightbracketl l rightparenthesis?2

' l do thenl
V step } colon3

until

E
-3

In stack

9, [array:
10, ftpart
'12. |subscr.var.
13;: |for wvar.
11. {left or assign
1. :=switch
16, s=for
26. while
504?(0331
7. (function desig. L
6. (subexpression .
18. ifstatement ch
1g. ifexpression * . Ch
. larray, o Ch
2k, step v : Ch

B

g
g

t‘ggt"t"t"t"t"t"g g
B8

LB

Oroup ly: Programs performing a general search and check. The programs
in this group represent delimiters which terminate expressions and/or state-

P e e e

ments. Owing to the fact that arbd.t;arily deep nesting of for and if clauses
is possible in ALQOL the search performed by the delimiter programs of thia

|

Algol translator. ‘ ~33-
2. Nov. 1961.

Macrochecking and delimiter stack, cont'd.

group may remove an arbitrary number of elements from the delimiter stack.
The logic of this search is deseribed in the following table. The meaning of
this is as follows: At each stage of the search there is defined the valué ‘
of an integer called the S______,SJ&LJ Us:mg the current Search State and
the symbol in the top of the stack as arguments, the table gives the action

to be performed (L, A, And Ch having the same meaning as above) and the

N new value of the Search State. The letter e in the position of the new
3 | * ’
| Search-State indicated that the search has been completed. The integer fol=-
lowing this e gives the new state number associated with th is completion.
Prior to the search the delimiter program will initialise the Search State
as follows: Soq o
Delimiter program Initial Search State s
semicolon? 2.
9 1 -
endl A 5 °
2 L 3
elsel 8
2 7
: /\ ,) TABLE OF ACTIONS AND NEW SEARCH STATES.
Seardh — semicolon -+ r——— end — relse — elselalt.)
State 1 2 3 h 5 6 7 8 8a 9a
° In stack ' '
beginblock . L,e27 L,e27 A,el0 . A,el0 L,e
beginprocedure ' Ch,e28 Ch,e28 , _ L,e
" beginbody ' L,e27 L,e27 A,e(special) A,e(special) L,e
t=gwitch A, 628 2 :
goto A2 A5 : A,8
thenstatement = 4,3 A,6 Ch,e9 A,va
thenexpression / Ch,e3
elsestatement A,3 A6
elseexpressiod,l ‘ Al AT
“ do v A2 A,2 A5 A,5 A,8 A,8a A,8a

program L,ell Lyell

e s A S S S g A

Algol translator. ‘\ «3l~
2. Nov. 1961.

facrochecking and delimiter stack, cont'd.

In considering this table it should be noted that a cermn simpli-
fication has already been made use of in Search States 1 and ,jl '7In fact,
thesetg': columns form the combination each of two columns, one of which
admits elseexpression while the other does not. This combination of two
columns into one clearly would be inadmissible if nothing were kno'-m about
the items in the stack. However, the very detailed microchecking reflected
in the table on page 25 will already haife avoided that any illegal sequence
of entries into the delimiter stack will ever have hade the chance of building
up. For this reason, although the above table certainly reflects the way
in which the actual searching will take place it is unnecessar:.ly complex.
As a matter of fact only three columns, one for each of the tkree deli-
miters, is necessary:

TABLE OF REDUCED SEARCH LOGIC.

In stack Delimiter: semicolon end else

beginclean Lye27 | A,el0

beginblock L,e27 < - A,el0

beginprocedure Ch,e28

begir - body L,e27 A,e(special)

t=gwitch A,e28 ' v

t=assign —sA,repest - A,repeat A,repeat
goto ’ A,repeat A,repeat A,repeat
thenstatement A,repeat. A,repeat Ch,e9
thenexpression : Ch,e3
elsestatement A, repeat A,repeat
elseexpression A,repeat A,repeat A,repeat
do A,repeat A,repeat A,repeat
program L,ell

Here the word repeat means that“the search should be continued, using the
rules in the same column,
It should further be noted that this searching logic is based on a.

definite rule for the interpretation of the correspondence between thens

Algol translator. -35-
2L. Nov. 1961. .

ilacrochecking and delimiter stack, cont'd.

- mm W an me s W W we ww em e W

and following elses. This rule is that else will search back to the first

then in the stack, but.no further. lhus the association of then and else
in the following example would be as indicated in the lines:

begin if .. then for ... do if ... then .. 1= ve. €l8€ .. 1= .o '3

An alternative rule would be to have any else which does not find an expres-
sion theh search back to the previous begin as indicated here:
begin if .. then for ... do if ... then .. := ... else .. 1= «. }

The searchiﬁg logic appropriate to this rule is given as else(alt.) in the

table on page 33. [t is obvious that the present treatment.will take care
of either rule with very little change.

The items in the stack will of course be represented by suitably chosen
integers. The following assignment will make the integers relevant to each

delimiter form an urbroken sequence:

1, thenexpression 11i. program 21, (call

2. thenstatement 12. s=switch . 22. (function desig.
3. goto 13. larray: 23. (subexpression
L. i=assign 1L. ‘[leftpart 2. ifexpression

5. do 15. [subscr var. 25. ifstatement
6. beginclean 16, [for 26, [array,

7. beginblock 17. [left or assign 27.step

8. beginbody 18, :=for " 28. elseexpression
9. elsestatement 19. until

10.beginprocedure 20. while

The only exception is "elseexpression" which will be treated in a special
way because of ibs unique character (in fact, it will be treated aliks

by all delimiters).

In tiglize!

dot= bloctend ' V‘.CX+ Y hal Ioogc_ \.‘-:4)

‘&PI :~1 LP‘\UM—!(230& last lk\M[\TB --1.
lu;{, L"”\llzed old 4

‘5*“&\»11}

Oleor Fype owet mext :

V\orv)vsﬂg th)d— B

hi ﬂ‘ncbk v\vmbcl't corrent ba\a t= la,&#'h;p =0 ;
AecL = re)

fgpe his appewred ;- feloc

Algol translator. «36«
2)4- NOV. 19610 { . :
THE CENTRAL READING PROGRAM FOR PASS 2.
If the logic developed in the preceding sections is included the
basic scanning process of page 13 will be given approximately by the fol-

lowing algér ithms

nitialize: Kk Ie—dg I~ ‘ - — 3y ds.= blocknor next sgmbouc'-‘-‘"f)'
DELTMITER STACK[d8]:= "program;
$ - state := 113
a decl t= re - ;
type has appeared := false;
normal next: operand situation := o3
normal next2s input{symbol);
comment The 1abei take identifier is on page 6;
if class(symbol) = letter then go to take identifier;
if class(symbol) = numeric then go to take number;
if symbol = leff. string quote then go to take string;
if class(symbol) = logical value then
~ | begin operand situation. := 5;

i := if symbol=true then 1 fg_ll_._é_gz 3
go_to next after operand 4
end; |
if class(symbol.)n‘B thengo to alarm;
go _to check occurrence;
c com.ent The following entry is used by xﬁ.ghtbracketl and
rightparenthesis2 and after input of logical value;

next after operand: input(symbol);

Algol translator. -37=
2k, November 1961

The central reading program for nass 2, cont'd.

check delimiter following operand:

if class(symbol) 4 delimiter of class B or C then

go to alarm;
check occurrence: case := DELIMITER HMEANING [state 3 symbol] 3

if case = 0 then go to alarm;

go to pass2 program [symbol] 3

The classes of symbols used in this program are slight modifications of

the classes of page 15:

Class name Symbols belonging to class
numeric <digit> . 10 |
B % /4 1€<L =22 § 2>V A then do : := step until

while) []

BorC V x /+7<&=>>% mDOVA then do : := step until

_ while)[] + - ; end else (,
The array DELIMITER MEANING is given in the table on page 25. The switch
passZprogram has one element for each delimiter, i.,e. L8 elements. The
lead to programs which
labels "take number® and "take string)oerform actions similar to those of

the identifier handling program on pages 6 to 8, i.e. as many input symbols

as are necessary to complete the construction in question are processed.

| ‘The output will be an item number in a constant btable, cssigned to i.

The following is a first sketch of the delimiter programs which will.
be entered through the "pass2proyram” switch, and which will handle decla~

rations.

g

Algol tra.nsl*’ =38
27. Nov.-1961. .

The central reading’ progrmn for pass 2, cont'd.

First note that in consequence of the above logic the operand situation

at the time of entry into the da]:l.miter programs is known as follows:

Glasscharacteriatic Members Known operand
In"B* In "B or C" : gituation
Yes Yes K/+T<._<_=}_>+a::w\ then do ¢ := $ 0

step until while) []

Yes No o ! | Alarm
No Yes + = 3 end else (, 0to5
No No - go to if for comment begin own Boolean =0

integer real array switch procedure string

label value code

In some of the delimiter programs additional checking of the operand situa-
tion must be carried out. The required operand situation for each delimiter
sub-prograia_ is given on pages 18 - 2L.

In addition most of the delimiter programs must assign a new value to

- the state according to the information on pages 16 -« 24. In the brief

descriptions below the appropriate information on the new state and the
operand situat.ion has been stated in an abbreviated form, thus: .

ownl (25) means that the successor stats ,shoulél be 25 whide no operand
checking is necessary,

commz2 (=-,1) means that the.. state should remain unchanged, while the
operand situation mst be 1,

comma? (2,1-5) means i;ha(t. the new state should be 2, while the operand
situation mst be 1, 2, 3, L, or 5.

Unless otherwise stated all delimiter programs will return to "normal

next" . or "normal neicbZ"-.

N

Algol translabe. 39
27. Nov. 1961. :
DELIMITER PROGRAMS FOR PASS 2.

ownl (25):SET BLOCK;

Boolean: decl = bools go to type[gase];

integer: decl:= int; M type [oasel;

real: go to type[casel; | |

typel (19)s SET BLOCK; " type has appeared t= true;

type2 (18): decl ¢= decl + ownmark;

type3 (15): type h#a appeared 3= trus;

arrayl (2l4): SET BLOCKj decl = decl *+ arraymarks ’cou“lev (=0

array? (1l): decl := decl + arraymark;

switchl (23): SET BLOCK; olecli= switchwalk)

switoh? (1h): decl := switchmark; |

procedurel (16): SET BLOCK; gobe protedore 2; compacnl bk skl e = 46

procedure2 (1k): decl 3= if type has appeared then decl rocmark else proomark;

valuel (12): 3 R |

stringl (1k): decl := stringmark;

labell (1h)::~ decl := labelmark; |

aenﬂ.eolonl (28,1) DECIARE TYPE; decl:= re; type has appeared :® _i:é.__]ﬁg;
gemicolon2 (26,1)1 DECLARE, PROCEDURE; decli=re; type has appeared t= false;

semicolon3 (31,1): SPECIFY; decl:= re; type has eppeared 1= false;

semicolonk (30,0): 3 15 exetled by right Pﬂw"‘w‘i‘ ‘JW 41,

semicolons (28,0): SOMPIFTE-ARRAT-SEGMENTS- decl:=re; type has appeared := false;

semicolond (29,1): SET VALUE;

semicolon7: Depends on search in stack (page 33 - 3L).

semicolonBs (28, O-1): FINISH HEADING; GOMPLETE PROCEDURE DECLARATION;

A Y

Algol trensiator. T
27. Nov. 1961.

Delimiter programs for pass 2, cont'd.
semicolong: Depends. on search in staqk (pag. 33 = 3h).

semicolonll (28,0): COMPLETE PROCEDURE DECLARATION; " doneby end, soe page 4b,
beginl (28): Ent(bsginclean); detl:>re; | fine 0 frovs below
begin2 (28): FINISH HEADING; Ent(beginbody);

commal (17,1): DECLARE TYPE;

comina? (=,1): DECLARE ARRAY; sovnbe®izcounied £

comma3 (=,1): DECLARE FORMAL;

cormaly (-‘,1)§ SET VALUE;

comma$ (1h,1): SPECIFY; |

commab. (2;,0): GOMPLETE—ARRAY-SEGMBNT spunbed! '~'07'

comma? (2,1=5): Depends on simple search in stack (pag. 32)

notl (7): Produces output |

‘codel (state sultable for scanning of machine language,0): FINISH HEADINGs

gotol (2): Ent(goto);

goto2 (2): FINISH HEADING; Ent(goto);

ifl (2): Ent(ifatatement);

1£2 (2): FiNISH~HEADING; Ent(ifstatement);

i£3 (2): Ent(ifexpression); ' .

1£ly (2)1 Ch(if delimiter stack[ds | = elsestatement then ifstatement else ifexpreé-)ja:'
forl (22): 3 | |
for2 (22): FINISH HEADING;

commentl (-): 3

plusl (1): Produces output

plus2 (1,1-5): Produces output

minusl (1): Produces output
minus2 (1,1=5): Produces output

Algol translator. _ wlile
27. Nov, 1961. "

Delimiter programs for pass 2, cont'd.

endl : Depends on search in stack (pag. 33 - 3l¢)
end2: Depends on search in stack (pag. 33 - 3k).
elsel: Depends on search in stack - - .
else2: = - - - - - ‘

Formded , :
leftparenthesisl (21,1): DECLARE PROCEDURE; decl:=p¢} type has appeared:= false; -
leftparenthesisz (2,1): Eat("(call”);
leftparentheais3 (2,1): FINISH HEADING; Ent("(call");
leftparenthesish (2,0-1): Ent(if operand situtation=0 then “(subexpr"else"(flmctj!')
* / & T (1): Produce output ‘

KL #2234 =22n v (7): Produce output

Ch(ifDELIMITER STACK [ds] =
ifsrih__g_r_x_ thenst else thenex)

dol (11): Performs simple search in stack (pag. 32); Ch(do);

thenl: Depénds on simple search in stack (pag. 32) 5

colonl (11,1): DECLARE LABEL;

colon? (il,1): FINISH HEADING; DECLARE LABEL;

colon3 (2): Perfoms simple search in stack (pag. 32),{aubsc counter: =1+subscrcouht§
Ch(ft Larray. #)

colonk (8,1): DECLARE LABEL; 3

stepl (2): Simple search in stack (pag.32); Ch(step);

untill (2): - - = = = = ; Ch(until);

-e

whilel (2) $ - - - e - - Ch (while); : “

\sa

rightbracketl: Depends on simple search -

-e

leftbracketl (2,1): subsc counter:=0; Ent("[array,"); DECLARE ARRAY;
" leftbracket? (2,1): Ent(t[leftpart®);

leftbracket3 (2,1): FINISH HEADING; Bb(" {1eftpart);

leftbracketly (2,1): Ent("[subscr”);

1eft.brécket5 (2,1): Lfnt.(" Lforu)s

1 . - TTenaeTene T T T ML I T T T A TRA Sy Y e T T T S TR O TN DI S IR N IS I KT

Algol translator. «}j2-
27, Nov. 1961.

Delimiter programs for pass2, cont'd.

‘leftbracketd (2,1): Ent(" [lef‘bor_ assign'.')
colonequall (2,1): DECLARE SWITCH; Ent(":=switch"); GO\JM-M:-Q;
colonequal? (L,1«2): Ent(" s=assign");
colonequal3 (L,1): FINISH HPADING; knt(":=assign");
colonequally (2,1-2): Ent(":=for")
™, colonequals (l,1-2): 3
DECLARE ORMALj
: rmpmmhﬂiﬂmwwcmmﬁﬁsmm‘"mmmmqg ‘semicolonl
rightparenthesis2: Depends on simple search.

LEVTER. STRAIN§ FoLLOWS Preon

——————

e g 4 sywbol* sewancolen P ALAn (" somiacolom M\vstw..-(“))
‘{edl: rc,')
e hos preant d iz &&t)‘
© =36

vt ’

Jgol translator. «li3=
5 » Dec. 1961. '

Delimiter programs for pass 2, cont'd.

M e m Es am am e e e M G S M W
-

The programs which perform a simple search in the stack (see page 31 -
32) will now be déscri'bed in det4il. They all make ﬁse of procedures which
will be described laté;-. flowever the following procédure is used so frequently
that a2 description is in place already here:

— procedure TEST FOR ELSE EXPRESSION;
‘ R——-Ee___ﬂ top of stack := DELIMITER STACK[ds] ;
if top of stack = else expression then
begin Produce output; co. .ent Output will be discussed later;
: ds = ds - 1;
top of stack := CELIMITER STACK [ds]
end

end;
The following programs will also make use of the numerical equivalents of the

elements in the stack given on page 35.

comma7: TEST FOR ELSE EXPRESSION; state t= 2; - :
begin ewitch comma7match := switchelement, arraybound, leftpart,
‘ subscript, forvariable, left or assign, for element,
until, while, procedure call, function designator;
o to comma7match{top of stack - 117 ;
ﬁm("impossible comma"); '

Y switchelement: wﬂmwﬁyownmcwkrtﬁ
arraybounds DELIMITER STACK [ds] 1= ‘larray,"; 92t precedore coll;

procedure call: :
function designator: COMPLETE AKCTUAL PARAMETER; go to normal next;
leftpart:
subscripts
forvariable: ,
left or assign;: COIPL:TE SUBSCRIPT; go to normal next;
for element: C(OMPLETE FOR ELEMENT; go t0 normal next;
untils COAPLITE UNTIL;
regset for list: DELIMITER STACK [ds] = "z=for'; go to normal next;
while: COMPLRTE WHILE; go to reset for list;
end comma 7 switching; : '
rightbrack?ﬁ: TEST FOR EISE EXPRESSION; ds := ds - 13 operand situation := 2;
begin switch righturacketmatch := arraybound, leftpart, subscript,
forvariable, left or assignj
go to rightbracketmatch [top of stack - 127 ;
ATARM("impossibe righturacket");
. arraybound: CO.IPLETE. ACTLAL PARAMETER;
CO{PLETE ARRAY SEGMENT; state := 13; go to normal next;

Algol translator. =4~
50 Dec. l961a

Delimiter programs for pass 2, cont'd.

- an W em yvm e e e Seamws

leftpart: COMPLETE LEFT, SUBSCRIPT LIST;

input(symbol); '

if symbol = colonequal then go to colonequal?; -

ATARA("colonequel missing™); exch abber syeremsl ;
subscript: COMPLETE SUBSCRIPT LIST; state 3= 13 go to rbrmatmeschs— /
forvariable: COPLETE ¥OR SUBSCRIPT LIST; ’

input(symbol);

if symbol = colonequal then go to colonequall;;
o~ ALARM("colonequal iissing?); dy
S left or assign: COMPLLTE SUSSCRIPT LIST; state = 63 go to next after operél

end rightbracketl switchings
dol: TEST FOR LLSE EXPRESSION;
state := 11; DELL:ITER STACK [ds] := "do"
begin switch domatching := for variable, until, while;
o to domatching[top of stack - 17);
ﬁﬂﬁd("impossible do");
for variable: COMPLETE FOR ELEMENT; go to for clause finished;
until: COMPLETE UWTIL; go to for clause finished;
vhile: COPLETE Wi.ILE; ‘ _
for clause finished: COMPL:TE FOR CLAUSE; go to normal next
end do switching; .
stepl: TEST FOR ELSE EXPRESSION;
if top of gtack # ":=for" then ALARM("impossible step");
PELIMITER STACK [ds] = ateps state := 23 po to normal next;
whilel: TEST FOR ELSE EXPRESSION;
if top of stack % ":=for" then ALARM(*impossible while");
DELIMITER STACK [ds] := while; state := 2; go to normal next;
a rightparenthesis2: TEST FOR ELSEEXPRESSION;
begin switch rightparenthesismatching := eall, function designator,
o subexpression;
go to zd.ghtparenthesismtching[top of stack - 20];
ALARM("impossible right parenthesis");
calls COMPLETE ACTUAL PARAMETER;
if LETTER STRING FOLLOWS then begin state := 2; go to normal next ends
COMPLETE PROCEDURE CALL; state := 203 operand situation := O; ‘
go_to check delimiter following operand;
~ function designator: CO//PLETE ACTUAL °ARAMETER; :
if LETTER STRIX'G FOLLOWS then begin state := 23 go to normal next endj
COMPLETE FULCTION DESICHATOR; state t= 1; operand situation := L '
go to check delimiter followiny operand; ‘
subexpression: COMPLETE SUBEXPRESSIOH; state := 1; operand situation := 3;
o to next after operand; -
end rightparenthesis2 switching;
thenl: TEST FOR ELSE EXPRESSION;
COPLETE IF CLAUSE;
if top of stack = ifstatement then |
begin DELIMITER STACX [da] 3= thenstatement;
state := 8
end

Algol translator. . o hs- Revised: 11. Dec.61
So Dec, 1961o ' ¥l

Delimiter programs for pass 2, cont'd.

else if top of stack = ifexpression then
begin DELIAITER STACK [ds] := thenexpression; state := 5 end
else ALAR("impossible then");
0 to normal next;
colon3: TEST 102 ELSE EXPRESSTON
COMPLETE ACTUAL PARAMITER; 50 0SC coumbedf = Svbse coumbes +4
if top of stack = "[array, " then
" begin DELIMITER STACK [ds] := "[array:" ;
state := 2; go to normal next
end
else ALARM("impossible colon®);
untill: TEST FOR LLSE FXPRESSION;
COMPLETE UWTIL;
if top of stack = step then
begin DELIMITER STACK [ds] := uniil;
state := 2; go to normal next
end .
else ALARM("impossible until");

Next the programs performing a general search in the stack will be described.
These are based on the lbgic described on page 3li. They all make use of procedures
which will be defined later. The following one should, however, be stated already
here: : ' o

procedure TEST FOR PROCEDURE CALL; ‘ L
B¢ - -if operand situation = 1 then COMPLETE CALL WITHOUT PARAMETERS
-7 ‘else if operand situation ¥ O then ALARM("impossible operand");

semicolon9: if operand situation = O then ALARM("impossible semicolon®);
... TEST .FG.: ELSE EXPRESSION;

o to semicolon search 3;
semicolon7: TEST FOR PROCEDURE CALL; .

go to semicolon search 2; ‘
semicolon search 1: ds 3= ds - 1; .
semicolon search 2: top of stack := DELIMITER STACK\ds});

semicolon search 3: begin switch semicolonmatch := thenstatement, goto, assign,

’ do, beginclean, beginblock, beginbody, elsestatement,
Leginprocedure, program, switchdeclaration;
go to semicolonmatch ftop of stack - 1];
ALARM("impossibe semicolon");

thenstatement: :
elsestatement: - COMPLETE CONDITIONAL STATEMENT;
. ‘ o to semicolon search 1;
goto: _ COMPLETE GO TO; go to semicolon search 1;
assign: COMPIETE ASSIGN; go to semlicolon search 1;

do: COMPLETE FOR; go to semicolon searchl;

Algol translator. =li6= Revised: 1l. Dec. 61

Delimiter orograms for pass 2, cont'd.

- e e @) e M W e ar s w > @

beginclean:
beginblock:
beginbody: state := 27; o 1o normal next;
beginprocedure: : COMPLETE PROCEDURE_DECLARATION;
: ' DELIMITER STACK[ds] := "begin block"'
' state := 28; go to normal next;
programs , COMPLL.TE PROGRAM;
switch declaration: COMPLETE ACTUAL PARAMETER;
» COMPLETE PROCEDURE CALL;
ds := ds - 1; state := 28; go to normal next;
—~ end semicolon switching,
end2: if operand s:.tuation = 0 then ALARM("impossible end");
TEST FOR ELSE LXPRESSION;
go to eliminate comment;
endl: TEST FOR PROCEDURE CALL;
top of stack := DELIMITER STACK[ds];
eliminate comment: input(symbol);
if symbol = begin. then ALARM("impossible end comment!"!");
| If symbol ¢+ end A Symbol ¢ semicolonAsymbol % else then
go to eliminate comment;
« . 2go 0 end search 2;
end- search 1:%op of stack €= DELIMITER STACK{ds];
% end search 2: ds := ds = 1
' begin switch endmatch := thenstatement, goto, assign, do, beginclean,
: beginblock, Leginbody, elsestatement;
;r go to endmatch [top of stack - l];
ATARM("impossible end®);
‘ —~. thenstatemenit:
' elsestatement: COMPLETE CONDITIONAL STATEMEWT; go to end search 1;
; goto: COMPIETE GO TO; go to end search 1;
assign: CO:PLETE ASSIGN; go to end search 1;
‘ do: COMPIETE FOR; go to end search 1;
beginblock: COMPLETE 3LOCK;
veginclean: operand situation := O;
i . -state := 105 go to chuck occurrence;
:r beginbody: i if symbol # semicolon then ALARM("semicolon missing");

COMPLETE PROCEDURE DECTARATION;
state := 28; 50 to normal next;
end end switching, v

else?: if operand situation = O then ALARM("impossible else");

TEST FOR ELSE EXPRESSIOW; go "go to else scarch 3;
elsel: TEST FOR PROCTDURE CALL; go to else search 2;

else searchl: ds := ds - 1;
else search?: top of stack := DELIMITER STACK[ds];
else search3: begin switch elsematch := thenexpression, thenstatement, goto,
assign, dos
go to elsematch [too of stack__l,
ALARM("impossible else");

Algol translator. -7~
11. Dec. 1961

Delimiter programs for rass 2, cont'd,

e MR Ge W A Ws M me we W W

thenexpression: - COMPLFTE THEN EXPREGSIONS
DELIMITER STACK [ds] := "elseexpression”;
state := 3; go to nppmal next;
thenstatement: COMPIETE THEN STATEHENT;
- o DELIMITER STACK [ds] := velse statement"'
state := 95 po to normal next;

go to: COMPLETE GO TO; go to else search 1;
; - assign: COIIPLETE ASSIGr; go to else search 1;
| do: COMPLETE FOR; go to else scarchl;
end else switching; -
7~ This essentially finishes the description of the scanning process for pass 2.

It is now possible to return to the description of the zlgorithms for handling
the declaration stack (see page 12). Before this is done it is however neces-
sary to make an addition to the description of the declaration stack. This

follows next,

THE CHECK LIST.
In addition to the identifier table (pag. 3 ff) and the declaration stack

(pp» 9) a check list will be used. This will have one item for each item on the

identifier table. Purposes:
~ 1) To check against double decl#rations.

2) Facilitatexspecifications.

Each item in the check list has two parts:

1) The block number whezm belonging to the muxwsmt quantity currently asso-
ciated with the identifier described in the corresponding item of the
identifier table. | |

2)‘The item number of the DECLARATION STACK where the declaration (if any)
for the correlponding identifier is found.

If the identifier has not yet been declared the check list ehbyy will be =.0,

Vhen an identifier is redeclared in another block the entry in the check list

Algol translator. -8~
12, Dec. 1961.

The check list, cont'd.

is put into the DECLARATION.STACK. All such entries wil]l form a new chain in
the DECLARATTON STACK, being connected with links. The structure of the corre-
sponding' madhine, words will be assumed to be as follows:

Entry in check list: Bits 35-26: DWCLARATION STACKX index
15« 0: block no.

When the entry is transferred to the DECLARATION STACK the link is added:

Link: Bits 25-16.
The chain of such entries st.arﬁs at the point in the DECLARATION STACK indicated
by the index;

last localized old.

CHAIN TERMINATIONS FOR THE DECLARATION STACK.

In the following programs the following values of constants are assumed:

arraymark = 3 N int = 3 re = 2

blockcontant=2l; labelmark= 1 stringmark = 12
Bool = ownmark = 12 switchmark = 11
formal = 23 procmark = 13 typeprocmark = 6

The chain terminations for the chains in the DECLARATION STACK will be placed

in a vector

integer array last item [1 :‘23}

The subscripts of this véctor corresponding to the different chains is given

in the following table. The extra note in this table indicates whetker in a pro=
cedure heading the kind of quantity indicated in the declaration is possible as

a specification (S) and whether it is compatible with a value part quatation. (V).

1 label SV 8 real proc., call only S(V) 1l own real

2 real sV 9 int. = - - - 15 own integer

3 integer sV 10 Bool. - - - - 16 oun Zoolean

L Boolean 'SV 11 switch S 17 own real array

S real array SV 12 string S 13 own integer array
6 int.array Y 13 procedure S 19 oun Boolean array

20+22 <typeyproc.,call and ass.
23 formal .

7 Bool.array sV

Algol translator. 4 ~43-
) 12, Dec. 1961 .

Chain terminations for the declaration st.ack,' cont'd.

- 4m B SR W G Em W W WP Sk M S

Note that 12 string is never used as a chain termination, lhe numerical assigg~
ment is convenient becausc of checking. In the case of {type> procedures & valus
quatation is only pessible if the corresponding actual parameter is a procedure.
without parameters. Under these circumstances the specification <type > procedure
is unnecessarily rostrictive and it is in fact converted to <type? in the pro~.
grams Lelow. ‘

DECLARATION PROGRAMS.
—~. Now many of the programs called on pages 39 to 47 can be defined:

rocedure SET BLOCK;
Comment This will be called at the beginning of each declaration. It will
do the block entry work if this has not already been done;
1f DELIMITER STACK[ds] = beginclean then
begin DELIMITER STACK[ds] := beginblock;
DECLARATION STACK [c'urrent top] 3= last stop*2ﬁ.6+blockconstant* 2T9; _
last stop := current top; _
current top := current top +1;
block no = block no + 1
end SET BLOCK;

procedure DECLARE(mark);
comment This takes care of several different mechanisms which have had
Individual identifiers in the programs above, as followst

Previous identifier: Uses
DECLARE TYPE ‘ DECLARE(D)
DECLARE ARRAY DECLARE(O)
e DECLARE SWITCH DECLARE(no of elements)
DECLARE FORMAL DECLARE,(0) o
In addition the procedure is called by DECLARE PROCEDURE ‘¥ and DECLARE
LABEL;

Q_e_@b%g identifier is old then .
begin if blockmumberpsrt{check list[i]) = block no then
' ALARM("double declaration"); ,
DECLARATION STACK [surrent top]:= check 1ist[i]+last localized oldx2f1§
last localized old := current top; '
current top := current top + 1;
end stacking of previous meaming;
cheek 1ist[i] := block no + current top x 21263
DECLARATION STACK[current to ;Hé
1v2126 + last item [decl]~ + mark;
last item[decl] := current top;
current top = current top + 1
end DECLARE;

Algol translator. S B0
120 Dec' 1961 o . -

Declaration programs, cont'd.

nrocedure SET VALUE;
begin integer k, item; »
k := declaration stack part(check list [i]);
item := DECLARATION StACK[k];
if kSlast stopVother part
~ TECLARATIO! STACK[k] := item + value mark |
end SET VALUE;

procedure IPECIFY;
begin integer ik, item, note, specifier;
K= declaration stack part(check list{i]);
item := DECLARATION STACK[k];
if k<last stop then ALRRM("impossible specification")
‘else begin note := otherpart(item);
if note = valuemark then
begin if decl>10 then _
: ALARM("impossible combination of value and spec™)
' else specifier := if decl»>7 then decl-6 clse decl;
comuent fhe previous statement converts type pro-
cedure into type 3 -
end check of consistency of value
else if note = O then begin specifier := decl;

else ALARM("immossible or doublé speéificatiox;’*'); s

 DECTARATION STACK[k] := item + specifier =29
, end doing the specification
end SPECIFY; ' ' '

. procedure DECLARE PROCEDURE;
: ~ begin DECLARE(next symbolic); '
DECLARATION -STACK [current top] := last stop= 2116 + decl;
last stop := current top;
current top := current top + 1;
block no ¢= block no + 1;
if type has appeared then ‘ _
begin DECLARATION STACK Jcurrent top] := |
122726 + last item[decl+12]x2]16 + next symbolics
last item[decl + 12 := current top;
current top := current top *+ 1;
check list[1] t= cieck list[i] + 2x2T26 +1
end entering .second entry;
output{ ');
last symbolic := last symbolic + 1;
 orint(first 3 characters(primary word{i])
end DECLARE PROCEDURE; |

item) $ O then ALARM("impossible value c,uobe") 3

i

Algol translator. ~51- Revised 13. Dec. 61.
12. Dec. 1961.

Declaration programs, cont'd.

procedure DECTARE LASEL;

begin decl := 13
DHCLARE(rext symbolic); :
Output()
next symbolic := next symbolic + 1;
print(first 3 characters(primery word[i]); '
end DECLARE LAZEL;

Boolean procedure TEITER STRING TOLLOWS;

vegin Hoolean read on; ‘ ‘
input (symbol); - ‘
IETTER STRING FOLLOWS := read on := class(symbol) = letter;
if = read on then po to linishod;

repeat: input(symbol);
1f class(syrbol) = letter tlien go to repeat; '
'i_:f_ symbol # colon then ALARM("impossible parameter delimiter®);
input(symbol); '

if symbol # leftprrenthesis then ALARM("impossible parameter delimiter");

finished: .
end LEITER STRING FOLLOWS;

rocedure FINISH HEADING; : '
beﬁg_- integer k, specifier, item; integer index;
' = O3) C .
index := last item{23}; comment This is position of last formal;
specifier := "no more parameters”; s
repeat: if index >last stop then
begin item 3= DECLARATION STACK Jindex!;
DECLARATION STACK[current top + k] :=
first 3 characters(primary word|idendifier part(item)])
+ specifier; ‘
specifier := otherpart(item); ,
if ‘specifier = O then ALARM("specification missing");
Tndex := linkpart(item); :
k :=k + 13
g0 to repeat -

~

end; . . '
output(first 3 characters(primary word g': identifier. part(
DECLARATION STACK [last stop - 1])])
'+ gpecifier); : :
for j 1= k-l step -1 until O do output (DECLARATION STACK[J' + current top])
‘end FINISH HEADING; |

. procedure Ent(s); integer s; begin ds := ds + 13 DELIMITER STACK[ds] i= 8 end;

orocedure Ch(s);, DELL:IITER STACK [ds] := s3

w,haer $)

Algol translator.
21. Dec. 1961,
CORRZCTIONS AND ADDITIONS.
Page 1.
In pass 1 the "change to new line" should be kept as aﬁ*@xtra character in the
output, in order to facilitate ALARM output (see page 8b)
In ALCOL comment only the symbol comment itself need to be kept, unless it is

desired to output comments during ALARA output. I.e. all symbols following comment

up to and including ; may be deleted. This is assumed in the program for comment
on page 4O. Comments follow1ng end need not be removed by pass 1, however (see the
program at "eliminate comment! on page L6). e
Page 6. - -
In line 10 read: o i3
3. In any case exit with a value of the proper identifier ' er placed in
i and the Boolean variable."identifier is old" set to true if the identifier
did not have to be added to the identifier table, otherw1de‘to false.
In 5th line from bottom read:
take identifiert n :=1; . . .
In the last line delete "n :=n + 13"
Page 7.
In line 5 insert extra line to read:
go to assemble 33
n:=n+1
end reading of first 3 characters;
In line 8 change to read:
if class(symbol)"dellmiber then go to assemble?;
and remove the following L lines.
Page 8.
Change page number to 8a.
In line 5 underline "else"
In line 19 insert two statements to read:
~ secondary [highest number + 1]:= m;
check 1ist[i] := 0;
identifier is old := false

endi=0
In the two last lines insert to read:
end for k;
" identifier is old := true
end;)

operand situation := 1;
go to check delimiter following mem operand; comment On page 37;
Page 9.
In second line above table read: Altogether 2L independent chains . . .
Add extra line in table at bottom of page:
Entries from the checklist x
Page 10.
In table, line for array 1dent1fier, put x in column for Link.

Add item to table:

check list entry, with x for link and Other: 35-26: position in DECLARATION STACK,
15-0: block number.

Add note: The check list entries are items of the check list (page L47) which

have temporarily been removed because the corresponding identifier has assumed

a local significance.

L

~

Algol translator Co CORRECTLONS AND ADDITIO:'S 2.
21, Dec. 1961.

Insert the attached page 8b between 8a and 9.

Page 12.

The example does not include the items belonging to the check list. Also the
end of chain variables should be changed to be components of the array "last item"
(thg algorithms for working with the DECLARATIONS STACX are found on pages L9
.Sl . . .
Page 15.

Move , i'rom group B into group C (because of commas following array segments).
Change the numbers of memvers of the groups accordingly.

Page 18.

Add the numben of the successors as on pages 21 ff, as .. . given on pages
39 ff.

Page 19. :

- Add the number of the successors as on page 18.

semicolon3, correct successors as follows: goto2 1if2 begin2
add " " n : for2 codel
semicolon?, Read: :
After statement
Operand situation: O or 1.
Successors: Depend on matching symbol in stack (see page 33-3L).
semicolon9, for successors see page 33-3L.
SemicolonlO: Delete completely.

comma?, correct successors: if3 rightoracketl
add " ¢ thenl
Page 2l. \ . "
rightparenthesis2, in successors in case of (proc. statement, correct to:
semicolon?
Page 25.

“In table.in line for ; change as follows:

for state 20: 10 to 7, for state 26: 7 to 8, for state 31: 7 to 8.
Page 28,
Iine 11: read . . . out of 28 different . . .
Page 30: .
17. goto, Annihil.: read: semicolon 9, end2, else2
In 20. thenstatement and 22. elsestatement delete semicolon 10
In 23. elseexpression, Annihil., add thenl
Page 36. Change beginning of algorithmto read:
Initializes ds := block no := next symbolic := 1;
DELIMITER STACK[dsl := "program"; _ :
for j := 1 step 1 witil 23 do last item[j] := ~1;
Tast localized old 3= -1; :
state = 113
highest number := current top := last stop := O3
clear type and next: ‘
. decl := re;
type has appeared := false;
nopmal next: .« s s

Page 39.

In arrayl add: counter := 0O ‘

In switchl add: decl := switchmark;

In procedurel add: go to procedure2; comment Sut still state := 163

- Algol translator‘ CORRECTIONS AND ADDITIOWNS 3.
21. Dec. 1961

Page 39,cont'd.
In procedure2 change to read: . . then decl+typeprocmark else . . .
In semicolonly add: Is executed by rightparenthesisl, page L2.
In semicolon 5 delete: COMPLETE ARRAY SEGHE:T;
Page 40, ,
In semicolonll add: Is done by end, see page L6, line 12 from below.
In beginl add: decl := rej . '
In comma2 adu: counter := counter + 13 v
In commab mdt change to read:
commab (24,0): counter := O3
Page Ul.
leftparenthesisl, read:
e « « DECLARE PROCEDURE; decl := formal;
colonequall, add: counter := O;
rightparenthesisl, read:
rightparenthesisl (unchanged or 30,1): DECLARE FORMAL; if — LETTER STRING FOLLOWS then
begin if symbol = semicolon then ALARM("semicolon missing");
decl := re;
type has appeared := false;
state := 30
end;
Page 43. :
6 lines following comma7, read:
" switchelement: counter := counter + 1; go to procedure call;
Page Uli.

In line 7 read:
subscript: COMPLETE SUBSCRIPT LIST; state := 1; go to next after operand;
Page U5.
 The line following colon3, read:
ﬁOMPLETE ACTUAL PARAMETER; subsc counter := subsc counter + l;
Page U49.
In comment to procedure DECLARE, in same line as DECLARE TYPE read: DECLARE(O)
Page 50.
- In procedure SPECIFY remove begin to reads: ~
else if note = O then specifier := decl;
In 3rd line of procedure DECLARE PROCEDURE add factor to read:
v s . last stopx 2716 + declx 219;
Change 3rd line from below to read:
next symbolic := next symbolic + 1;

PAGES WHICH HAVE BEEN REVISED:
8b (new Page), 31, 45, 46, 51 '

Algol translator - Loading system
Decenber 18, 1961 wle

The loading system of the Algol system will have various tasks
to performe

1) Buildeup of address modification codes
| 2) expansion of macros from pass 3 :
| ' a) Basic symbols such as "beginblock" etc, will be expanded into
| "oalladdress:= 3
“ sgo to bdock entry:", stc.
b) Macros proofuded by the analysis of expressions will be
expanded into 1105 instructions. ‘
3) setting up of all forward reference, e.g., REFERENCE, designational
expression in go to statements, linkage of if..then..else etc.
4i) address modificatiIon of the outer block
™ 5) Bringing system into core
v - 6) Addition and address modification of standard procedures to
the program,

It is hoped that the length of th3 loader will be less than or
equal to the length of the running system so that there will mx be no
imaging of the loader and/or parts of the program. At this point in the
development of the system, it is assumed that there will be no such
imaging and subsequent coding is written under this assumption,

Algol translator e Loading system
December 18, 1961 : w2e

BUILD~UP OF ADDRESS'MODIFICATION_CDDE IN T.OAD PROGRAM
' The partial address modification codes are buhlt-up
;n a single code stack. This steck is divided into seetlons
corresponding to thevggggiens-of the prbgram.where respectively
1, 2, 3, .;., n independent codes are in the process of being
bullteupe whee v J"JWZ/(MD’W«
The current state of the code stack is described by five

parameters:

1., DEPTH: The number of codes being built-up = the number
of unclosed sections. (Initial value = 0)
2. TOP STOP: The address of the last stop code,
- (Initial value = 0) _
3, - LINES: ‘The number of lines (complete orfincomplete) for
each block in the top level., (Initial value = 0)

4o BITNUMBER: The number of the last bit in the last line .

in the top level which has just been fllleds

' (Initial value = 0)

S, INDEX: If one line or less is required for the code

: word within a section INDEX = TOP STOP., Otherwise
INDEX is the address of the last complete line in
the section. (Initial value = address of the flrst
location in the code stack which 1s to be used
for storing the address modification code words
while they are being builtaup)

STOP Codes. Each section ends with a stop code which
contains parameters 2, 3, and L (above) for the section,. The
stop code is generatéd each time a new section is opened.

EXAMPLE: When the loading has proceeded aé follows:

Az begin

[u)

=

[
we

begin

*;3

D: begiq

the code stack will have the following structure:

e vt

ol translator - loading system
%igaumr>18,]s61 3w

Last bit
Location Bloek Line No. 4in line Code Stack

g A 1 35
, A 2 17 ‘
"9 Stop (6,17,2)
10 2 1l 35
11 C 1 '35
12 A 2 35
13 ¢ 2 35
I A 3 9
15 -C 3 9
16 , Stop (9,9,3)
7~ 17 A 1 31 .
18 c 1 31
19 D 1l 31
Note that no trace of B has been left in the code stack.
On meeting end the code a) takes out the code for the last
block b) removes the. last stép and ¢) collapses the remaining
words, (see CLOSE BgOCK procedure)
. he
Procedures. KukE¥ procedures xxx used in the address
modification portion of tane load program are:
1. Initaidize load program
2. Open Section |
3. Close Section
~ e Mark (n)

xhgﬂ.ﬂnmdhﬁor-lomﬂmgawute
Dacember 18, 1961 ' '-bf

Procedure Initialize load prosroms

Comment Is used to set parameters in the 1oéd program
to the proper initial values, INDEX, whioh specifies

the first free location in the codeo stack, is assumed

sets

Begin
depth 3= top atop := lines :# bitnumber := 0,

end)

Adyd11uwmahﬂmr-Iomﬂng:mahnn
December 18, 1961 . | «Se

Procedure open section;

8omment 1s used when block begin, procedure body egin
or parameter expreasion is encountered;

egin ,
depth = depth + 1}

code stack C}ndex + depté]:z combination (top stop, 1inea,
bitnumber); '

top stop 3= index + depth,
lines := 03,
bitnumber :3.35 5

ends

; Algol translator - Loading system
| ’ December 18, 1961 wbe

procedure mark (n); value n; integer nj

comment Marks the next bit in the ntth block and advances
to next. For n=0 only advance;

begin Aif bitnumber = 35 then o
begin bitnumber i= O3

index := index + depth;
for p:= 1 step 1 untll depth Bo
code stack Eindexﬁ:g t= 03

1ines := lines + 1:
end v

else bitnumber := bitnumber + 1;

iIfn#O then

code stack [}ndex + nf:= code stack C}ndex+€)+
24#+(35«-bitnumber); '

[

=

=)
s

Algol translator - Loading system
December 16, 1961 =

proceldure close section;

comment Is used.to load the completed address modifications
code Tnto the running code and clean up the code stacks’

beﬁin-
nteger k;

for k:= depth step depth until 1ines x depth do
J'compile (code stack [fop stop + k])3

0old bitnumber := bitpart (code stack Zﬁop stop])3
m_:=ldepth := depth = 13

,;2 depth = 0 then go to 1lg&ding finished;

old top stop := stoppart (code stack [%op stoﬁ])3

old bitnumber + 13
= 36 - u;

u

v

old lines := linepart (code stack [%op stoé]):

for k := top stop = depth = 1 step depth until
Topstop = 1 + depth x (lines - 2) do
begin _
\ move := k {top stopel + depth x (lines-2) v
bitnumber + old bitnumber > 3l;

m := m+13'

for 8 := 1 step 1 until depth do

begin , _
Sodestack [k+s] := codestagk [k+s] +
2P (-u) x codestack [k+s+m] ;

if move then codestack,[k+s+depté]:=
" 2 f\v X codestack | k+s+m]
Bnd '
end; o
top stop := old top stop;

k t= (lines+labels) x 2 + constant;

comm§¥§_ k is required to xmmmwwm set to zero the address

mo cation words of outer blocks which refer to parameters
and address modification words of inner blocks. Constant '
is equal to the no. of parameters at RFFERENCE. and following;

lines := lines + old lines + (ig,move then O else =1);

bitnumber := bitnumber + old bitnumber + (1f move then =35
else 1); |

Algol translator - loading system -8
Decamber* 18’ 1961) -

index = top stdp'+ devth x (lines « 1)3
for s t= 1 step 1 until X do mark (0);

end ciose sectiong

-~

Algol translator - Loading system '
December 18, 1961 . «Gen

Loading of conditionals

A% load time there will be a stack of delimiters kept by the
loading system to be used to insure the proper linkage of the if's, then's,
and else's. The stack will also include a symbol marking the end of the
conditional expression, In the following code "program" indicates the
gection of core storage in which the actual running program is stored

and "location" 1is the index keeping trakk of this storage. "ff" is used
%o indicste the first free of this particular stack deseribed above.

f.hon: if stack[ff -]:l;‘ then 4 ssemk stack@f -]J # else then
begin
£ry=ff + 33 |
stack{es = 3]s ="dummy
ends
stack [ff = 2]s=location;
stack&‘f - 1]:="then“;

elses programf_staékgtf - gzI s=locationg
program[}ocation]:-stack[ff - 3]3
stack?f- 3]znlocation;

stackgf -‘yl‘_]gi"else'! 3

end of conditional: sembeulma: p:?atack&’f - 3];
for q:=p whils q F dummy do

begin
pi=programjq]s

" program E]‘zalocation
ends
if stack]ff - 1} = then then program)}fackﬁtf - ZJJ:'-location;
ff1sff « 3y

‘Algol rumning systen
December 8, 1961 =

@l
Reprebentation of blocle and procedures in store
Bloek Proc. ' ' 4§

call addresa}=q;
§: go to procedure/Bock entry;
reference .
specifications and identifiers in
: forward order
address of lst inst.iarray and switch declarations
other code '

bd b4 bd

¢ ®» ® O

go to end;

reference tappetite (total for variable format
in fixed order)
snumber of labels (p)
snumbexr of integers
mumber of reals
snumber of booleans o
snumber of array coefficient sets
tdepth of recursion.
scurrent. address modifier
taddress. of first instruction
+ 9 :address follewing declaration
+ 10stypa /7 '
+ 11slabel 1 (goal and identifier)
+ 122 label 2
-

LR R JB B B BE BN J

O3 nEwWw N -

+10 + p tlabel p
+ 11 + p iaddress modification code

xuuxxuuuuuuuunuuu P DADEDIDIDIDIDI DY A DU PL 4

PP P B b b B D B B b b B BB B B b B

‘Form of specifications:

- Specification 1 brief identifier of procedure
Specification 2 brief identifier of formal 1
Specification 3 ¥rief identifier of formal 2

. . 5 :
: . . h ‘ . n-,
%no more parameters" brief identifier of fo;-pal n

L

T

Algol running system
December 11, 1961

Block information in stack

FIXED FORMAT
FIY-D ORDIR

VARIABLE FORMAT
FIXID ORD:R

ARTABIF. FORMAT
VARTAPLE ORDER

VARIABLE FORMAT

”2-

Stack reference

current address modifier
return address
REFLRENCE

Value of type procedure

formal locations

labels

integers

reals

booleans .

array identifiers and coefficients
awitch identifiers and tables
temporaries

expressions a&s ac-ual parameters
subscripted variables as actual parameters
arrays called by value (components)

local arrays (components)
Local switch elements being expressions

Algol mming system :
December 11, 1961 v 3=

Procedure and block entry adminis’cratim

block entry: proeednre s-g}_sg

Eo %o %3

procedure enfry: procedurss=truss

X: stack[first freeJsestack references
REFERENCE: »gtore [call address2+1]s

‘ atack[_firat free + ﬂ:-stora[RrFERENCE + ?]; conment current address modifier
to stacks ,

stack{first free + 3]s=REFERENCE;

stack referencezvﬁrst frees

first free:=first free + L o+ store[REFmENCE]g

atore[RBF'FRBNCE »6]:°st.ore [P_"‘FERENCE + 6] + 13 comment count depth of racursion;

| address of formali=stack reference + (if store[REFERBNCE +. 1@ defines a
type procedure then 5 else L);

if —procedure then go to (s

address of actual:ecall address + lj
address of specifications=call address2 + 2;
last return:=Ll;

regular retum_zf-PE;
W
FE: address of specification:=address of'apecitication + 13
Wi specification:»atore[address of specifications
if specification = no more parasmeters then
if store{address of actual] = end mark then go to transformaticm
finished ' |

8136

Algol running system
December 11, 1961 wlje

1l begin
printtext (#Noneagreement between number of formals and
number of actuals#)s
new lines
hot pointseaddress of actuals
£ %o alar}
end
end;
go to parameter treatments

trmforﬁtim finisheds proceduress=trues
REFERENCE:wstack [stack reference + 33
QQ: modify addresses (stack reference + L)3

amk[stack reference + 2]:- 1f procedure then address of actual + 1
@lse ~1; comment this sets the return;

for ki=l step 1 mntdl store[REFERENCE + 1] do

" stack[addrees of formal + k = ﬂ:wmbimtion(étoregﬁm'ERENCE +10 + ¥,
stack reference); comment this sets the labels Into the stacks

L

ge o thction&toreﬁﬁmm@ + @]3

Algol running system
December 11, 1961 oSu

Discussion of parameter treatment

Farameter treatment is used by
1) procedure entry
2) array declaration
3) switch declatation
1i) special functions (sing cos, eted)

Input parameterst :
address of actual « will be counted on to next parameter if exit

N through regular return or left at same value if exit through
A last return
address of formal & will be increased by% by regular return or left
unchanged by last return
specification = must be $ no more parameters. Will be changed
arbitrarily. '
regular return « set by each action using parameter treatment and used
as exit if a proper actual parameter is found
last return - set by each section using parameter treatment and used
as exit when actual kind and type = end mark

Variables useds
address of actual
address of formal
address of specificaticn
entry base
expression
value
specification

N ~ actual kind and type

RS) i

[4

Algol ruming system
December 11, 1961 ’ e
parameter treatment: actual kind and typss=gtore[address of actualls
ir actualk kind and type = end mark Yhen go to instmction[last retum];
actual address:wstere[address of actual + 1];
if kind (actual kind Aand. type) = formal then
bigin
‘actual kind and types=stack[adtusl addrese]s
actusl address :ﬂatackLsctual address + 1];
formals~true
end
else formals=falses
if name rsm or value {specification) = value then

begin

round:-:yl'pa(apeciﬂcation) = integer Atype(actual kind and type)
= roals

floatsstype(specification) = real ~type(actual kind and type) = integer

ends .
go %o action{aotion table factual kind and type, spoificationl];

next parameter: ~address of actuals=address of actual + 2 j
next parameter after expressions address of formals=address of formal + 33

gg‘ to thctiiun megeinregular return]s

Algol rumming system

December 11, 1961 T
ends valuet=stack(atack reference + Ll;
DECREASE IEVEL;

| | return:éatack[ﬁrst free + 23

1 if return>>0 then go 1o instruction(return]

e |

A

e go to instmctionLatore[REFEEENCE + 91l)s

exdt from parameter expressions first free:=first free « 13
g o m:truetion[_atack [first rreoj + 1];

i
J

Algol ruming system
Decerber 11, 1961 wBe

| procedure DECREASE LEVELy
begin
REFERENCEse stack[stack reference + 3|3

Dsegtore [REFERENCE + 6 Jswstore[REFERENCE + 6] = 1; comment desrease.
depth of recursions mse—————

if DZ1 then modify addresses (atack@tacl; reference + 1J)3
first freesvgtack referencej
stack referencetsstack[first freel;

ends

TR

Algdl running system
Decerber 1, 1961 e

Representation of procedure call in store

if formal procedure identifier then n‘bore[p]:wtack[foml + 1] 3
call address:«p; |

Pt go to store[procedure stert]; comment this address was possibly set
in the above statements ‘

actual parameter {kind
address

actual parameter . { kind

addreass
° e
° .
o °
- *end mark”

There mist be complste matching of types in all parameters called by name.

Tn a type procedure the procedure identifier has two meaningss:

1) it calls the procedure ’

2) 1t represents the value. of the procedure,

We have set the arbitrary rule that a procedure identifier can only be

assigned to in the body of the procedure for which it is the identifier.

Consider the following example:
begin real p, q3 boolean Bl, B2j

ocedure Pp '
beg : -
13p + q ‘ ‘ Such an examples would be cone
ends sidered to be illegal in our
mafﬁgce_gg.rz Qs , system since the procedure
begin identifier Q is ascigned to
if Bl then from without the procedure Q.
else IT B2 then P If we call P before Q has been
-9.1.32 Qs=T3 called we nowhere have & loca-
ends tion in which to put the vilue
. of Q.
[]
pr=Q;
P3
L]
end;

Algol running system
December 11, 1961

wl0w

Maaning of address in single identifier parameters

Actual parameter

Meaning of address

Simple variable

array identifier

switch
procedure (ang kind)
label

formal

location where value of vaiiable is siorad

location where representation of the
identifier is stored in the stack

entry point of switch declaration
Jocation of start of procedure

location where representation of label
(goal and mark) is stored

formal location in the stack

Representation of expression as actual parameter im store

kind
reference
¢ode for: values=expressiong

[]

ge to exit from parameter expressiong

appetite (temporaries)
current address modifier
address following dedlaration
address modificaticn code

Algol running system
December 11, 1961

-'11-‘

Information in the three formal locations in the stack

Call by name

Actual parameter £ £+1 £+2

STMPIE variable kind and type address of value not used

array identifier kind and type address of rerresentation| notwsed
of identifier

switch ‘kind and type address of representation/ not used
of identifier

procedure kind and typc procedure start not used

label kind and type where representation is not used
stored in stack

expressiong’ kind and type entry of representation not used
in stack

| Call by value

Kind of value

INTEGER '

real sctual value not used not uged

boolean

label goal, mark not used not used

array ‘ftype, array" address of first address of

| coefficents

olament

Algol running system
December 11, 1961

'!‘ablé of actual parameters and aesociated actions

Actual parameter

Simple vardable
integer
rea

Array identifier

~ integer

T4
Procedure identifier
no parameters

integer
veal

parameters

T

Tea
subseripted variablef

integer

re
other expression

integer

rea
Simple variable
boolean
Array ldentifier
boolean
Procedure
boolean
no parameters
paranmeters
subscripted variable
boolean .
other exprassion
boolean 4
La
Designationalexpression
. Procedure, no type
Switch identifier
Stringconstant

a

D
DY mm

F A

F3

& o

F A

In case of a double
entry, the left entry
refers to name, the one
to the right to value.
A single entry always -
»ofers to name.

Bianka indicate error
gituations.

-
-

Specificatioh

integer

integer array

- real arra

1htéggg_ procedtira -

real procedure

boolean

' boolean array

boolean procedure-

label

switch

rocedure

stri

Algol rumning system
Decenmber 11, 1961)3~

Action A = take value of gimple variable
values=stack [adBual address |3
asglen values stack[address of formal):=if float then floatf(value) '
STse if round then entier{value + 0.5)

else values

go to next parameter;

Action B = take value of array

atack[address of formal]iespecification ~ value marks
stack[address of formal + 1] s=first free;

actual address2:sstack|adtual address *+ 2}s

actual address:=gtack[actual address + 1)s
stack[a&dress of formalt ?ggactual ad&ressﬁg

for j:*actujll address step 1 until actual address + sﬁack[gctual address?
+2 |=1do

values=stack(] J;

stack[first free |:=if round then entier (value + 0,5)
; else if fToat then floatf (value)

AN

else value;
first freetsfirst free + 1
ends

go to next parameters

Algol running system
Decefiiber 11, 1961 wllje

Action C « take value of procedure without parameters

expression bases=first free;
STACK SITUATION3

call address:=WW;
Wit go to instruction[actual address;
‘Ww + 1f "end mark"

UNSTACK STTUATIONS

£o to assign valuej comment in Action Aj

Action D = take/ value of expression

expression base:=first frees
| entry:=if formal then actual aidress else STACK EXPRESSION;
| if formal then address of actuali=address of actual + 2;
STACK STTUATION;
stackgﬁrst free |1=P;
Pirst free 1=first free + 13
Py go to imstructionfentryl;
| | y: UNSTACK SITUATION;
E stack[address of formall:=if formal then floatf (value)
r : else if round then entier (value + 0,5)

else valuey

g° to next parameter after expressiong

Algol running system

Decenber 11, 1961 wlSe

Action E - take value of subscripted variable
expression base:=first freeg

entryt=if formal then actual address else STACK EXPRESSIONg
if formal then address of actual:=address of actual + 23
STACK STTUATION;

stack[first free)s=Fl;

first frees=first free + 1;

Fl: go to instructionfentry];

value:=stask{address];

go toys comnent in Action Dj

Action T « take simple nams
stack(;address of formal]:=actual kind and tyres
stack[address of formal + 1] s=actual address;

go to next parameters

Action G « take name of expression
stack{eddress of formal]t=actual kind and types

stack faddress of formal + 1) t=if formal then actual address else STACK
EXPRESSIONs

go o if formal then next parameter ¢lse next parameter after expressiong

4lgol rumning system
December 11, 1961 wlfm

procedure modify addresses (modifier); value modifier;-integer modifier;’

begin
integer amounts ,
amourggs smodifier - store[REFERENCE + 7)3

if amount # O then
begin
store] REFERENCE + 7 |s=modifier;
comment now modify addressess between store| REFERENCE + 8] amd
REFERENCE = 2 using code stored at REFERENCE + 11 + store
[REFERENCE + 1] ;
end -

Algol running system
December 11, 1961 wll=
integer procedurs STACK EXPRESSION;

comisnt uaéa actual address, first free, address of actual as none
Tocal parameterss;

begin
intoger Jgamewn’; |
amountsfirst free = store'[actnal address +]] 3
1f anount 4 0 then
begin
store [actual address mdl + 1] :efirst free;

comment now modiBy addresses between address of actual + 2
and actual address - 2 using code stored at actual address + 3;

ends
 first freessSTACK EXFRESSION:=first free + store[actual address];
for j:=address of actual + 2 step 1 until actual address - 1 do
begin
stack|first free]i=store[s]s
first free:=first free + 1
ends
address of actuslt=store [gctual address + 2]
endg

|

o e

Algol rumning system
Decenber 11, 1961 18-

procedure STACK SITUATION;

begin
stack[first free]s=expression bases
stack[first free + L}s=address of actuals
stack[first free + 2]1=addrecs of formal;
gtack[firet free + 3/1=address of specificationg
stack[first free + L] :afloats
stack(first free + S lserounds

- stack [first free.+ 6Jt=regular return;

gtack [first free + 7Ji=last returns
étsck[first free + 8]:u0|m arrays
“stack [firet free + 9Jsmexists dhreadys
stack [first free + l_f_)p-address in stack;
stack [first free + 11 t=ns

© first freeswfirst free + 12

ends

N
prodedure UNSTACK SITUAT ION;

begin
ni=stack [first fﬂree} - lj;
address in stacks=stack [girst free ~ 2]s
exists already:wstack[first free = 3]s
oun arraysestack {first free - L];
last returnﬂstack&irst free - S];
regiiitr return:egtack|first free = 613
rounds=stack| first free = 8;
floats=stack\first free -

address of apecificatia tack [first free = 93
address of formal s=stack[first free = 10]s

Algol running system
/“Daceuber 11, 194)%=

i
i

address of actualimstack[first free = 11)’;
REFEFENCEtwgtack [stack reference + 3;
first frees=stack]first free = 12]

ends

R T A 20~

Representation of arrays in the store

~J

call address:=W3s

w3 0 to array declarations
+1 s '(Eee below for explanation)
2 : number of identifiers
+3 3 kind and type
+ ¢ fkind and tvpe of first lower bound
dress See page 10 for exphnation of
| and type of first upper bound address
‘ dress

[]
L]

-]

"end mark®

A" is the first address of a three-~word packet in the area reserved by
block entry in the stack.

A tkind and type of array
" +3tA0 (address of first element of array)
_+21A1 (address of first element in coefficient vector)

o Three words for each #dentifier

Al s number of subacripts (n)
5 +1: 8
+2¢ ¢[0)
+ 3: ¢l1]

Algol rumning system
Decanber 12, 1961 w20 01w

Storage of arrxys

Congider the following declaration:
array A.,B'[llﬂll’lz%m’ o s @ ’11.’“’33

These arrays will be stored row-wise in consecutive locations: (in the stack)

AO $A lqseseyly

AOML=1tA[L o1y s Lade oo slnays
Aottt Bl ioh vl

§D ‘BIJ'].’]Q ,13, eoe ’J-J

°

o 9

In general the location of A[il,ii,iy,..,iggia ghven by:

(1) A0 + . (1ely)#(inay=lp g Jx(un=1p+1) +(ip_o=ly o)x(up=1g#1)x(un 1 =1n3+1)
*oo ot (191 Ix(ug=1y#1)x(upy =1 +1)xe ..;?ug-gle +1).

The number of locations eccupied by the array is given by

Ln(unn-ln#l)t(un_l-]n.l"l)Xo eox(32'12*1)1(111-11"‘1) .
(1) may be rewritten as follows:

(2) A0+1n+1,,_1=(nn-1n+1)ﬂ-n,gx(uncln+1)x(un.1~1n,1*1)+._._,.*ilx(un-ln'«l)x
oo ox(uz=15+1) ~ (Ip* e x(u =1 +1) *+4 0o t1g (el +1ixe 0o x(up~1p+1))

At the time of the array declaration, the coefficients of the terms in (2)
are calculated and atored in Al+3 through Al+m+2 where n is the number of
subscripts. The final term of (2) is calculated (it is referred to as s)
and stored in Al+l., The total length of the array is stored in Al*2,

(2) 1s then used to calculate the address of an element when necessary,
For a declaration like the one above, only one set of ceofficients is
calculated and A+2 and B+2 both refer to AL,

In the case of swn arrays, the values of '.1!%, s 1,50, 50009l 5u, are stored
immediately preceding the coefficient vector s thit %hey may be used if
the own array is redeclared for discerning if the old and new arrays have
comnon slements. ‘

Algol running system

December 11, 1961 w2l=

array declaration: own array:cexists already:=false;

own array entry: address in stackiscall addresswt 13

ne=03

address of actualis=call address + (if own array then 5 else L)3
regular returnbenext subscripts .

last returns=form coefficients;

next subscript: address of formals=first frees

first frees=first free + 1; |

ngen + 13

specification:="integer value's

go to parameter treatments

form coefficientss ni=(n = 1) ¢ 23
first fréet~first free - 13
if exists already then go to check for overlaps

address of last ci=store[address in stackl+ 3 x atore[addrese in stack + 1-_}
t+(§._f;mamyttnn3xn+20he2+n);

stack [address of last ¢]s=l;
81=03
for pi=address of last ¢ step -1 until address of last c «n +1do

begin

stack[p = 1)t=stack]p) x (stack[first free = 1) = stack[First free
- 27 + 1)3 '

st=g + stack[ﬁrat free - 2] x stack[p];
first free s=first free = 2
ends
stack [address of last ¢ = n = 1] 1=e3
stack[address of last ¢ = n = 2] t=ng

if own array then go to create new own array;

Algol running system
Decenber 11, 1961 22w

for pi=l step 3 until store[address in stack + 1x3-24

begin
stack{atore[addres in stack] + p|iefirst frees |,

first frees=first free + atackLaddress of last ¢ = n];
staek[store[addraas in stack]-v p* 1]:=addresa of last c » n = 23
stack|store [address in stack | + p = 1] t=store [address in stack + 2]

ends
g0 to mibmm instruction[address of actual + T

~ Algol running system
December 12, 1961 w22l

Discussion of own quantities

We bhave décided to rule out the use of own variables in connection with
recursion,

Simple own variables will have ‘absolute locations dmmediately fadAowing
the program and will be referenced by ‘absolute” addreseing. They will
act as if they are declared in the outermost block of the program,

Own arrays:

Own arrays will not be kept in the stack as %&¥ non-own arrays. They will

be stored in and "own area" (presumed at this time to be in hijh end of core).
The locations A, A+l, A+2, AL, etc, are not in the stack as with non-own

but are in the section mentioned above immediately following the
program, :

Referencing elements of own arrays 1s doss exactly as referencing of
non-oOWn ATTAYSe '

When an own array is declared, various actions may be takens

1) If the array does not already exist, the array is created in the own
area and the proper addresses are supplied to the locations in the section
following the program, The values of the upper and lower bounds are also
stored in the section.

2) If the array already exists in the own area, & check is made to detere
mine whether the new subscript bounds are the same as the old ones, If m,
no other action is taken, @therwise, a new version of the array is
ereated in the own area, the new values of the coefficients and bounds

are stored, and the old array is removed from the own area and the proper
collapsing of the area is done., Cogmon elements, if any, are stored in

the proper sfications of the new array.

Algol running system :
December 11, 19& *23-

<

Representation of own arrays in store

call address:«W6j
wé s ﬁg to own array declaration;
+1 : A o
+2 3 number of identifiers
+3 ¢ kind and type
+ s exists already (booleand
45 {kindandtypeoerbound

L]
address
{3 |
{{, ' See page 20 for explanation of A and these. locations,
"end mark®
A s Marray, Wf‘"
+1 s A0 (address of first element of array in own area)
+2 3 Al (address of first element of coefficient vector)
i .
{ Three words for each identifier
[] ®

A4 .
°

a
Al=l H vfxn
Al: number of subscripts (n)
Al+ls 8
A1e23 o[0)
[) L]
[] e

[. L J
Al+ n + 2: ofn]}

Each own array in the own areafl is headed by a 3eworl packets (to be used

to release locations in the own area when an array is redeclared to be of

‘AD e 3t A a different size) |

AO « 23 number of identifiers

AD « 11 address of first word of 3-worik packet agsodiated with next own array

Al « 2 x n3 1}

Al«2xn -1
1
[]

A].gol running system

Decesber 11, 1961 w2l

oxn array declaration: own arrath

exists alreadysestore[call address + L];

go Yo own array entrys cament in array declarations
check for overlaps no change:=overlaps=trues

address of bounds:=first free - 13 comment address of bounds points to
last upper limits -

address of old le-atack[Z + storeladdress in stack] J= 2 x n;

for mz=1 gtep 1 until n do

~
begin
current old lowert=etackf{address of old L1 = 2 + 2 x m}s
current old upper:=stack[address of old Il » 1 +2xnj;
current new hwer:astack[address of bounds = ife2x(n~ m)_];
current new upper:-atacktaddress of bounds - 2 x (n = m)]3
; Lr:enaximum lower[m]s=if current old lower< current new lower then
: current new lower else current old lowers
Uzqﬁnimum'upper[m] t=if current old upper< current new upper then
current old upper eilse current new uppers
overlap:=overlapA U=2Lg |
~ nochanges:= no changeA current old lwer =current new lowerA
current old upper = current new upper - ‘
ends :
5 if no change A overlar then
r vegin

first freer=first free « 2 x nj
g0 to instrictionfaddress of actual +]J
gnds
atack[firat free]s-n;
address of g:=first free + 1;
% > first frees= first free + 3 + nj

!

Algol running system
December 11, 1961 - «25=

address of last c:=address of 8 + n + 13

 gtack[address of last d =l

stack] address of 8 ¥=03
for p:=address of last ¢ step »1 until address of st ¢ = n + 1 do

begin

stack[p - ﬂwstackB] x (stack]address of bounds = stack [address
of bounds = 1) +

stack[address of g)i=stack[address of s]+ stack[p] x stacl{ address
of bounds - 1];

address of boundsle=address of bounds = 2
end;

address of bounds:=address of bounds + l; comment acdress of bounds now
points to first lower limits

number of identifiers:sstore[address in stack + I ;

number to collapsg_lmtack[address of old Il + 2 x n + 2] x number of identifiers;
comment number to collapse & three less than totals

bottom of region:wstackf_store fiddress in stack) +]J + number bo collapses

first free owns=first free oWn « stack[address of s +]J x number of
identifiers « 3;

if - no change A-1overlap then go to collapse;

me=lg |

current addres of old]1]:=stack/store Z;ddrass in stack + 1] 3
current address of new[l]:=first free own + L |

MOVE FLEMENTS;

collapse: number of collapse:unumber 40 collapse + 33

for p:= bottom of mgion o 1 step =1 until first free own - 1 + number to
“collapse do

stack]p Js= stack[p « number to collapse|;
first free own:=first free own + number to collapsej

stack[first free own + 1] :=store [address in stack] ;

Algol running system
December 11, 1961 «26e
stack[first free own + 2 [tenumber of identifierss

gtack]first free own + 3)sslinks=first free own + mumber of identifiers x
stack[address of 8 + 1] + I |

for pted gtef 3 mtil(nmber of identifiers - 1) x 3 do

stack[store [address in stjcla +p+1tsfirat free om + L +p x
stack fddress of s + 1l;

Ks if link = bottom of region then go to move subscripiss
for p:=0 gtep 1 until stack[link + 1] 1do

gtack|stack Einkj-o- 3xp+ ﬂsnstack[atackflinkj +3xp* 1]*- PX
r to collapses

atack&link " 2] :wmck[unk + 2] + number to collapse;
linkee stack|[link + 23
go to K
move subscripts: for p:=0 step 1 until 3 xn + 2 do
atack@ddress of old L1 + p]:-stack[address of bounds + p/3
first freet=address of bounds;
Ng store[address 48 stack + 3] 1=trueg
g° to instruction[address of actual + s
create new own arrays _f_ggptco_g_tgglg_n_g}_anolg_g
stackf address of last o = 3xn =2 + p| e-;stackigirat free + pl3
old first free own:=first free ownj '

first free own:efirst free om = 3 ~ store] address in stack + 1] x stack
[address of last ¢ = ns 4

 stack[first free on + 1 1=store Jaddress in staci]s

stack]first free own + 2] sva‘toreiaddreas in gtack + 13
stack[first fres own + 3):=old first free on + 1
for preatore faddress in stack + 1] x 3 ~ 2 step =3 untdl 1 do
begin ,
old first free own:=old first free own = gtack|address of last ¢ = o ;

stack[store [address in stack] + p[t=old first free own + 1 3

Algol running system
December 11} 1961 2T

stack[store[address in stack]+ p +]J:iaddreas of Jast c w n = 23
stacl] store[address in ataclf] + p = 1] t=store[address in stack + 2]

ends

go to N3

Algol running system
December 11, 1961 w28

procedure MOVE ELEMENTS;

begin

integer 33
for Js=maximum lower[m] step 1 until minimm upper{m] do

\ if m = n then
for ps=0 step 1 until nomber of identifiers - 1ldo

F
|
E . ‘
| stack[) - stack \nddress of bounds + 2 x (m = 1)}* current
| address & newm) + p x stack[address of g + 1]]se stack
—~ [J ~ stack[address of old L1 +2 x (m = 1)]+ current address
& oldm] + p xfetack address of old L1 + 2 x n + 21]

else
begin

mg=m+ls
current address of old[mJi=ourrent address of oldim - 1] +

stack [address of old 11 + 2 xn + 1 + m]x (J = stack
[;ddrguofoldLl-Z*Z:(m-l)]);

current address of newiml:scurrent address of new[M - U+
stack[address of g + m] x (J - stacklaldress of bounds
~2+2xm-1))

MOVE EIEME'TS3 .
Myom - l
ends
ends

Algol running system
December 11, 1961 : w2

Representation of switches

The translator produdes scmething very much like a procedure call, At
block entry time, after address modification, this call is performed, all
expressions called by name., The effect of the call is to transfer into a
section of the appetite section of the stack the names of the elements

of the switch declaration. Subsequent switch designaters will only make
use of this information in the stacke.

Switch declaration
call address:-mi“
w9 H ﬁd_i_;_g_ switch declarationg
+1 ss of 83 (ses below for explanation of this addrecs)

42 of first switch element
+3 address
[[-]
. { o See page 10 fot explanation of address
[[.
"end mark®

The switch elsments are ¥representaed exactly as parameters of a procedure
call, There are three pogssibilitiess

1) label
2) designational expression
3) formal parameter.

SwWtlch identifier in stack

S s "awitch®
+1s first address of table
+23 number of entries

first address of table: |
° - : address
. .
The forma of the items in the table is the same as that of the con tents
otf gormal lacations, Two possibilities: ‘

1) label
2) designational expression.

Algol running system

December 11, 1961 30

ewitch declaration: address of switch:=store [call address + 1];
stack[address of switch]i=Mawitoh®

address of formaliestack[address of switch + 3l seaddress of switch + 3;
address of actuals=call address + 23

n:=0s

regular returns=SW;

last returns=SW2;

specifications="label™s

Eo Yo parameter treatment;

SWs nben+ls

ge to parameter treatments

SW2: stack[address of switch + 2 Ji=n;

g0 o instructionfaddress of actual + il3

Algol Runnign System
Decembeyr 11, 1961 e3le

Representation of subsgcripted variables

Occurrence: _ Actual parameter in stack | left part | Expression
Running code: tempOs="non-integert;
templ:=exply
o a
LN []

] L]
" ~ L4" ¢ tempnimexpng
first addresss=gtack[A + 1l
address of ceefficients:= stack{A + 2];
call address t=Whs

Whs go to address of subscripted variable | Wh: go to take
i value of
gubscripted
variable;
ge o exit from temp0:=
parameter expression address;
Examples of accurrencess
Actual parameter in stack Alexpl, o o « 5 expn],
In left part A{_axpl, e s o0 ¢ expn]za
Inexpresa'ion ' eoa*’A[,explgoﬂagexmj*o-a

Ehh

Algol running system
Decsmber 11, 1961 =32

take value of subscripted variable: take valuei=trues
g o ts
address of subscripted variable: take value:=falses;

t¥ address of subscript:=tstore[call address = lﬂ" @ stack Jaddress of
coefficients]s

ir stackl addkess of subscript] # "noneinteger then

begin
number of svbserip?s of
printtext(#Error in"subscripted variable#);
new ‘line;

hot point 1=call addresss

ge %o alarml
ouds

address := = stackLaddress of coefficlents + J];'
for miel step 1l ‘t_mtil stackEtddress of coeffici'ent;ﬂ do

addressi=address + stack[address of coefficlents + 2 + m] x stack
[address of subscript + m]s

if addressZ O V address = stack [address of coefficients + 2] then
begin
prigttext(#subscript of array olement too largeff)s
new line;
hot points=call addressgp
go 1o alarml
end;
addresss=address + first address;
iftake value then value s=stack address] 3
g0 to instructior]eall address + Lg

Algol running system
December 11, 1961 =33=

Representation of left parts

done before calculation ' done after
of expression calculation
simple declared variable nothing assign directly
formal variable calculate or take address assign to addess
to temporary found in
: temporary
subscripted variable calcitlate addresSto temp, assign to address
found in
~ temporary

Representation of formal identifierf as leftepart variable

Fformal
Formal 1s=stack(sdébbcampis) 5

f i
formmal 2 =& SRS

call addresss®WS;

WS: go to take address of formals
temps saddress;

teke address of formal: if ld.nd(férmal 1) = simple variable then
begin
add;esa s=formal 23
g0 to instruction[call address + 1]
‘ends |
if kind(férmal 1) = subscripted variable then
begin
‘ at-ackairst free] s=call address;
| first frees=first free + 13
go to instruetion[fornal 8]
endg
printtext(#Error in formal as left-part variablef);

-

L

Algol running system ‘
December 11, 1961 w3l
new lines

hot pointei=call addresss

go 1o alarmly comment kind(formal 1) = procedure identifier or other
expressions

Representation of formal name parameters within procedure body

formal 1sep tack] eteumsms formall ;
formal 2:=stackwrml + 13
VY
call address:=u3
us go to take valus of formal; comment this jumps to the fixed administration
and Eind(formal 1) has one of | values: '
1) simple variable
2) procedure identifier

3) subscripted variable
li) expressiong

take value of formals if kind (formal 1) = gimple varisble then
begln |
valnes=gtack]formal 2];
g to instruction kall address + 1|
a R
stack[_firét :t‘ree]==call addresss
first Pfrees=first free + 1lj
if kind (formal 1) = procedure identifier then
begtn <
call address:<Wls
Wis go.to ‘store @omal 2]3
“Wielt Pend mark?
go o exit from paramster exprésaion
ends |
if king (formal 1) = subscripted variable then

Algol running system
December 11, 1961 =35
begin
atack[first freegp= W23
first free:=first free + 1§
W2: go to instruction I_f;ormal 2_7;
comment We now go off into the routine (placed in the stack)
repregenting the subscripted variable. Thie routine
1) puts the address of the subseripted variable in "“address"
2) Jumps to exit from parameter expression. At this stapge first
free will always have the same value as when the routine was
entered, From exit from parameter expression we finally reﬁurn
to the following:s
values=gtack faddres 81;
go to exit from parameter expressiony
ends

comment We now the case when kind (formal 1) indicates an expression;

go lo instruction Kgormal 223

Algol running system
Dacember 12, 1961 36

Alarm output for the rumning system

alarm: gjcoment This entry will be used when an actual machine fault
(dtvide by U, SCC fault, etc.) occurs. The kind of fault will be printed
according to a bit configuration in some reglaster set by the operator,
Hot point will be set to indicate the actual machine location of the fanlt.s
alarm}s if hot point< store bottom then go to procedure or b&ock;qg_m?ﬂmef "%n
' J
if stack[first free - 1]>first free then go to exit to administration;

meat on Pze Y55 :
if gtore[stack[first free - ﬂ] @ "go to take value of switch designator”
then go to switch alam; Comment 0n page ¥4 ;

printtext(#Error in expression called by name#) 3
new lines v
REFERENCEs=s tack[staci. reference + 3];
nyefiret specifications=stors REFERENCE + 8];
for mesm gtep -1 msik while storq m) § "go to procedure entry”gg_
first epecifications=first specification = 13
first specification:=firsfbpecification + 2
printéext(#In body of procedure #)3
printtext(ffidentifier part(store[first specification]));
new line
stack point:»gtack reference + ‘h;
if gtore | REFERTNCE + 10] defines a type then
begin |

printtext(#value of proceduref);

‘print(1,5,2,8tack [stack point])s

new lines

staék pointi=gtack point + 1

ends

printtext(#Formals#)s
new line;

Algol ruming system :
December 12, 1961 7 w3-

far msvatack point step 3 while specification part(store] first specification])
"no more parameters" do

begin
printtext(identifier part(stors[first specification + 1]));
i aﬁcﬁimtim part(store[ﬁrst epecifi.cation]) = name then
begin
printtext(#Called by name#);
new lineg
if stack[n + 1]¢ hot point then
parameter in errors=identifier par'a(store[rirst specification

+ 1)) | |
end
else
1f Iind(store[first specification]) # array then
begin
print(1,5,2,stac n e]);
new line
g-n-d.;,
far pr=D gtep 1 until stack[stack/m + 8]+ 2] - 1 do
begin
print(1,5,2,8tack[atackfm + 1 + p))s
new line
ends

first specifications=first specification + 13
gstack point:=gtack point + 3
snd;
printtext(#Parameter in errorids
printtext(parameter in error)s

Algol running system
December 12, 1961 -38-

new lines
1¢ gtore REFERENCE + 11 # 0 then
begin .
printtext(#labels#)s
new line;
print labels=falses
| g.%?';]-gﬁmmcn + 11 gtep'l until REFERENCE + 11 + store/ REFERENCE
begin
printtext(identifier part(store(m]));

new lines

-gmfmm+mutou):mmm+ﬂmn

begin
1 goal part(store(n)) 4 stack[first free « 1A goal
=part(store/m + 1]) Zstack[first free - 1] then
- .
printtext(#Error between these two labels#);
new lines
print labels=true
ond |

end '
s+""1; paint iz stacK porwr */

% print label then

g

b

i

orinttext(fError after last label#)s
nev line ‘

end

Algol running system
December 12, 1961 w39

DUMPs if store[REFERENCE + 2] # O then
begin

Wymisionpsy
printtext(#Integers#);
new lines

for msestack point gtep 1 untll stack point + storel REFERENCE + 2 do
begin |
print(1,5,2,8tack{m]);
new line
ends
stack pointsestack point + gtore] REFERENCE + 2]
ends
if store[REFERENGE + 3] # O then
begin
prinstext(#Reals#);

new line;

for mrsstack point step 1 until stack point + store[REFERENCE + 3] do
pegin
print(l,S,Z,stack[m]);
new line
ends
stack point:=stack point + store [REFERENCE + 3 |
end; ﬂ
1f store| RIFERENCE + L | # 0 then
bogin
printtext(#Booleans#) s
new line;
for m:=stack point gtep 1 until stack point + stbreY_REFERENCE + lﬂ do

Algol running system _ "
December 12, 1961 =}i0-"

begin
print(stack[ml);

new line
end;
\ : stack points=stack point ¢ storelREFmENCE + lﬂ
end;
if store[REFERENCE + 5] f 0 then
' printtext(#Arrays#}; ‘
new lineg
for ms=0 gtep 1 until store[REFERENGE + §] = 1 do
‘begln Xo int
psestackM+ 1 + 3 x mg ‘
for 1= stack[p] step 1 until stack[p] + stack[stack[p + 1} + 2 do
begin
print(1,5,2 ,stack[j);
new line
_ends
new line
ond
gods
if atore[REFERENCE + lojindicates outer block then $
first frees=stack zfererenoe H
stack reference:-stack[first freejj

hot pointe=if atackﬁgirst free + 2] = =1 then store\RCFERENCE + 9] else stack
[first free + 27; ‘

go to alarmljcomaent on prge F6
procedure or bloek: REFERENCE:=stack[stack reference + 3 [;

ey

Algol running system ,
Decemb?r 12, 1961 . ‘ @)l
if store[REFERENCE + 10] indicates a block then go to blockseonment om page ¥3;
printtext (#Error in procedure body#);
me=first speci_fication==store[REFERENCE + 8];
for ms=m gtep -1 while store\'_m] # "go to procedure entry" do
first specification:=first specification = 13

first specifications:=first specification + 23

8 printtext(identifier part(store[first spe gific,ati_gn])3
new lines;
stack point:=stack reference + b
4f store{REFDRENCE + 10) defines a type then
begin
printtext(#Value of proceduref);
print(1,5,2,8tack] stack point])s
new lines
gtack pointie=stack point + 1j
& ends
print text (#Rormals#)s
nsw line;

for m:=first specification step 1 mmikh while sbhm[mj # "no more parameters" do
Rogin . mal
printtext(identifier part(atore bwl));
if specifiéation part(storg m]) = name then
begin | |
printtext(#Called by namef);
new line
end
i else

Algol running system .
December 12, 1961 -lj2e

if tYP@(atore[_m]) = array then

begin

for ps=stack latack point + 1] step 1 until stack[stack point
=% 1] + stack[stack{gtack point ¥ 2]+ 2] -1 do

begin
print(1,5,2,8tacq p])3
new line
. o
ﬂ.
elce
begin
print(1,5,2,stack] stack point]);
new line
.ends
stack point:%tack point + 33

ends
DUMPL: if store[REFERENCE + L] # O then

begin
printtext(#Labels#) s
new lines |
print label:=falses
for m:=ROFERENGE + 11 gtep 1 until REFERENGE + 11 + store] REFERENCE+1] do

begin
printtext(identifier part(storen));

new lines
if m # REFERENCE + 10 + store] REFEREICE. + 1 then

begin

Algol runnigg system

December 12, 1961 3=

if goal part(store[_mj) 4 hot point,\goal part(store[H % M)
| >hot point then .
? vegin

printtext(#Error between these two labels#)s

R U~k

new line;
‘print hb.e].:-m
~ end
. , onts 4
stack pointsestack poiht + 1

R, O TR T T e SRR

ands
if —print label then
begin
printtext(#irror after last label#);
new line
ond
end;
g0 to DUMP; Commen?t on rege 37;
blocks Printtext(#Error in blockf)s
aew lines
stack pointsestack reference + L
g0 $0 DUMFl; Lomment on pege ¥4;
parameter value: printtext(#Expression called by valuef);
new line; |
first specifications=a idress of specification:=stack[first free ~ 18];

for m;;:ddreas of spacificétion step -1 while w{[m] # "go to procedure
“ent: do '

first specificationt=first specification - 1;
first specificationi=first specification+ 23

orinttext(#In procedure heading #)s

Algo) running system

December 12, 1961 ' wly)j
storelfirst specifieation)]

printtext(identifier mémubn

new lineg

REFERFNCE:# stack[stack reference + 3];

‘stack pointi=stack reference + (if atoreT_R*‘FERENCE-* 1(2)] defines a type then

S else L)
printtext(#Formals#)s
new lines

for mi=first speciﬁcaﬁdn gtep 1 until address of specification do

m ;
 printtext(fidentifier part(stora[&"*)qs
ir ape}eifieatd.on part(store[m]) = name then
begin
printtext(#Called by name#);

new line

"R

if specification part(storelm)) = array then
P.';E.-E

mstack [atack point + ﬂ tack [atack point
:]*-atack stack [stack po +2 + Je 1l do

begin
Frint(1,5,2,8tack]p])s
~ new line
end

ke

pringi(1,5,2,8tack{etack point]);

I; el

Algol running system
December 12, 1961 , «liSm
new line
end
endy
sﬁck points-aﬁack point + 3
a0y |
printta;t(identﬁicr part(store{address of specification + ﬂ))"
printtext(fError in this parsmeterfds |
new 11ne§. . -
hot pointsestack]first free - 12]3
firgt frees=stack referenceg
stack references=stack]first freeJs
o |
go $o bo alarmly Commen’ c,onnvn +on Pafﬁ-"é)

exit to administrations if atackfgmt free - 1] indicates array declaration
then

begin
prmtteq;u(#ﬁrror in#ls :
if ‘stack[first free 5| then printtext (fown#)s
printtext(farray declaraticnf)s
new lines
printtext(#Error in bound nmber#);
print(1,5,2,8tack[first free « 2]);
new line . |
end
else go to parameter valnes Comment pn f«7€. 43
hot pointe=stack [first free = 1];
first free:=firat - 133
£0 Yo alarmly Conmend on Fefe 36,

? ﬁgb?rngzi?gi%m wdi=

switch alarms printtext(#Error in switch demxkaccmbiwnd designatord)s
new lineg

hot pointc*ﬁaokfﬂrqt free - 1l;

firat freetefirst free = 13

go toalammls e'onher."f 0a page 26,

PSRRI e e P RE AR T O et e

Algol running system /

December 12, 1961 ' w7~

Representation of labels

A label is stored in the stack as a pair of addresses:

1) Mark:s the value of stack reference at time of entry into the block in
which the label is local.

2) Goal: the machine address of the first instruction representing the .
statement where the label is stored.

Representation of go to statementss:
Running codes: Cod£ 7o value:="goal and mark"s

call address:=un}
uus go to go tog

go to: if goal part(value) = O then go to instructionfecall address + 1\s
Q: if mark part(value) # stack reference then
begin
DECREASE LEVEL;
gotoQ
end;
g0 o instruction[goal part(value)]s

Representation of awitch designator in running code:

In exprassion

Occurrences. - @Rdtual Parameter
.» sthen S|expression]else ««.

e, »S{expression|,

suﬁsc%tsﬂexpression;
first address of table: %teck%" +1];
number of entries:=stack|sS +
call address:=WR2;
Wi2s @o to take value of switch designators

Wl2s g_ o to exit from , m:\
parameter expression

b e i n

Algol punning system g
December 12, 1961 : «);8-

take value &f switch designator: if subscript £ 0 v subseript > number
of entries then

bagin
valuet=03
go o 1nstruction[call address + 1]

ends comment this case is the undefined switch designator; See section
5.3.5 of the AIGOL Reports

address of expression:=3 x (subscript = 1) + first address of tatle;
if kind(stack[address of expression]) = label then
begin . ,
va]na:*atack[stack&ddress of expression + 1]];
g0 %o instruction[call address + 1]
end;

comment We are now left with the case where kind(stack address of expression)
= designational expressionj

stackﬁ'irst free] :=call addresss
first freet=fiist free + 1;
go o instrnction&tack[gddress of expression +]J];

Algol running system
December 12, 1961 waly Gen

>

Representation of assigmment statements when the leftepart list is more
than one identifier or rmmsmfmxmzh includes a formal identifier or a
subscripted variable.

The addresses to which the walue is to be asgigned are assumed to be in
temporaries in the stack, These “emporaries have the following form:
TP wvalue address
and the last temporary of the group has the form:
MJO FILL.
Then the contents of the temporaries form a complete subroutine psrforming
the assignment in the following manner:
temp0: TP value addressl
templ:s TP value address2
o »
L] [-]

L] -]
tempn: TP value addreasn
temp(n + 1)s MJD FILL.
Then the action to be taken by the running code after evaluation of the
expression is of the form:
RJ temp(n + 1) tempO.

Algol rum:lng gystenm : ,
December 18’ 1961 -50-

umber output
N r Wk rvargn k

We will write the value of any pumber ton output as N and the resulting

‘ number printed as P“. » 4 :)

} ' Any Py will be in the forn of a mantissa and a decimal exponent, the latter
being an integer. The format of Fy is described by three parameters, i,d,e:

vi gpecifies the number of digits of the mantissa before theA dectithal pt.
d specifies the number of digits of the mantissa after the decimal pt.
e specifies the number of digits of the exponent, ' _

— | Thus Py is in the following forms - . S
(sign of mantissaf(i ts)(decimal point if d¥0)(d digits)(sign of
exponent if ey0)(e digits)

The three parameters are written in the output statements
print(4, 4, e,Lexpression(a) to be output>) '

. Leading seros of Py are suppressed except that the integer gero as &
mantissa will be output as '0!', Flus signs are printed as spaced.
The mantissa is rounded to make it correct to its last digit. g

When ef0 it is evident that N, i, e, and d do not uniquely ddtermin Fy: -
. If N=s6, i=3, d=1, e=l, then Py= , -
Seete
ar” (b)‘ng.6u1'
or (¢)euubdOuu .o
etc. wlur ot enomanles o -
In this case the print routine determines the f t of Py by placing the
N . first significant digit as far to the left as possible, subject to the
restrictions on the value of the exponent imposed by the fixing of e,
Hence, in our example Py=(a), If d and e are too small, & may ve that
no significant digits are output in the mantissa.(e.g., if N=,7x10", i=
2, d=1, e=l, inould be, (1/1700+9. In théx example when the expfonent
assmues its least possible value the rounded mantissa is still less than 0.1,)

Alarm printing. o

- It may be that 1 and e are too small to represent a large number (elgl, N-lolﬂ,
im3, e=0orl). In this case e will e autamatically increased by 1 until.

the most significant digit of N can be placed in the leftmost position of

Pye An error indication ('e!) is given each time e is increased by 1 (In

the above example Pith e=0, Pywee 100,12), &

[« %

NOMNON W

NVWOOE'N

NOOHODOOO

70
Gu? Oah-l
00080
[¥1Y]

80l
14000
0,10

L ul.ﬁoo i

“Algol mmning syatem
‘December 18, 1961 . «52=

Number output

Nonelocal quantities
address of actual
call addvess -
address of formal
first free
regular return
last return

J _
specification
parameter treatment

Local quantities
label reentry, print zero, conversion, Q, SS, print finished, Se
. next value, skipj, tpemed, OPr;
integer i, d, e, signum, e, s exponent, max exp, number of digits,
: number of zeros, digits before point, kj

real number, f
Boolean only sj’aaoea yoty wxf»om—v-f- ol

ras

\ |
D:g?éﬁ' 18, 1961 53w

Procedure print(a, eeessep)3 comment this procedure will print the
values of any number of expressions supplied as parameters. The three
firast parameters should be none-negative integers defining the digit
layout as followss (@, the mumber of digits before the decimal pointf,
d, the number of decimals, e, the mumber of exponent digitsg

begin
address of actualt=call address + 13
addreas of foml:-first freeg
first freer=first free + O3
reguddr reutrn:=SSg
last returnseprint finisheds
Js=03
St specificationi="integer value®;
8o %o parameter treatments
SS: if j42 then
begin
Je=j+l;
\ gotes
ends

- & regular returng=SSS;

next values specificati n:=real value'"g |
gO to parameter treatments

8SSt i:éatéck[.first free = 8];

drwgtack [first free - 6];

S':vstack[girst free - L3
'numbersastaakE’ﬁst‘ free = 2];

Af number = nonsense then go to skips
..simumsaeign(mmber);

fronormalized bimi'y fraction(abs (numbér))3
e2=normalized binary exponent(abs(number))s

Algol running .
Decosber 18,1008 e

| » | | cp +Hhe £
gomment The layout is dofined by i, d, e,. The mmber isn & |

n = £ x 2fe2 $efel,
| ‘this is first rewritten in the form -
\ n = £ x 107610 x 278’2 where 0202 = =3 and then # the form
| nef x 10710 where 0,14 £ <1 as followss
i'eentry: exponent parti=false;
~ reantrj exponents if £ = O then go o print sero;
010383 |
conversion: if e2>0 then
begin
010:=910+13
e21%e2 - 33
fe=208x
ot
else if e2¢- them
begin
010.2e10 « 13
e2:me2 & U5
4= (10/16) x £
edd
else go to final adjustments

!

if £<.0,5 then
w.
32 x f3
62:=02 - 1

ends
ge o cmversion;

fmimeme
- f£inal adjustments fief x 2Te2s
if $2001 then
begin
f:f 10 x £3
olbs-elo -1
ends & &3«‘
‘commn:!:ér object is that the printed mimber willd-begin with a non-gero
set the exponent accordingly. If this is not rossible due to the
exponent excee 'ing its maximum possible value we have an error. In this
case an error indication('e!) is given and the cubput format ifs adjusted
 (es=e+l) until the number can be output satisfactorily, If on the other
hand the exponent would be less than its minimum possible value we "right
shift" the number, i.e. introduce leading zeros be redueing "number of
digits", until this is rcmedied or we are left with all zeross
Az exponént:-a‘m - i; ,
05@:-10'73 - 13 comment fixuesn form tabbe;
Af aba(exponent)< max exp then
number of digitss=i + d
else if exponent <0 then
begin
ng.,?nber of gigitss=i + d + max exp 4~ expohent;
if mmber of digits M40 then
print gero:
begin
runbey-of-digitetr=0s
expenenbr=dy owponel: = O,
nombur of zeross=l + dj
g0 Yo ofPT
e

else

exponents=-max exp

Algol running system ‘
December 18, 1961 @56

end

else
begin
output(#e#);
etoe + 1
go to Py comment this is the case of alarm printing;
gnds ’
nunber of zeross=i + d - number of digits;
Lref + 0.5 xﬁOﬂ:r‘;mnber of digits)s comment roundings
if £21 then
begin
f£:=0,13 comment a small Zenth;
el0:=e10 + 33 |
o Q
end overflow on roundings

comment We now output the number, Ieading zeros are suppressed except
the the integer zero if appearing as the mantissa is output as *0';

opT.output(signum);
digits before pointesij
only spaces yets=trues

for ki=l tpp 1 until i +d do

begin
if digits before point = 0 then
begin |
output(#.#)3

only spaces yet:=false
ond;
digits before pointi=digits before point - 1;

4Algol running system :

if number of zeros>0 then

begin

] : mmber of zeross=number of zeroces < 1lj

¥ output(if only spaces yet A(d ¥ 0 v digits before point f

‘ | 0 vexponent part) then #.# else #0§)
end | |
else
~ begin
’ | f£1=10 x f3
output{entier(f));
f1ef - entier(f)
ont .
ends
4 0 >0 then

begin comment We now set up the exponenﬁ in the form f x 2fe2 where
" 045% £=<1 and return to the start of the conversi.n

d:=0g and output routines
isveg

a
o3=03
f:=normalize(abs(exponent])s

e2sapower of 2(abs(exponent));

comment Even if exponent is gerc, the routine will be run in order
tc print the proper number of spacess ’

signm:%ign(exponent);
exponent paﬁ:ﬁig_ug}
go %o reenti'ye.xrone T
end |
vak‘ip: address of formals=address of formal = 2;
g0 to next values

Algol running system
December 18, 1961 w5 8w

print finished: first frees=first free - 83
g0 0 instruction[address of actual + 13

\ Algol running system
? December 18’ 1961 -59.
Gutput tape handler
Local wariables
character counter

] ‘ word counter

a blockette counter

o cors_index

- coro[O:ll?J = psuedo=buffer

| line is full

Input parameter - sygmbol

~ initialize:; CRi=trues
g0 %o initialize2;
- final dumps blockette# counter:=5;
pyubolt="carriage return"s '
output: iff mymbol = carriage redtin then

begin
if line is full then
f‘ line is fulls=falses
go to ingtruction[call address + 1];
~ oy
CRe=truey

go to end of line

CE. =end:§f¢s, Ise |
Af line is full” then go to overflow;
worssword + symbb} x 64N5 = character counter);
if character counter45 then

character dounter:=character counter + 1
olss ,
. end of lines

begin

N
i

ngo], rumning systeym
December 18, 1961 : b0

~

coreJcare index le=words
if worjd counter 219 A7 CR then
pegtn |
word counterz=word counter + 13

core indexs=core iddex + 1

end
else
begin
if blockettey counteytS then
begin
'blocleei;ter counters=blockettef ccunter + 13
core iﬁdex:-20 x blockette counter
end
slse
 begia

TRANSFER TO BUFFERg
WRITE ON TAPE;
initialize2: for k:=0 step 1 until 119 do
core{k]:="6 spaces"s
blockette counter:=core indext=0
end;
line if SullseJCRj
word coaunters=0
ety
character ¢wnter=-uurd:==0
(.ﬂ’ _
B Yo imtruction@all address + 1];

Algol rumning system
December 12, 1961 «100=

uSong of the Daskerkopi"

"Twas kopi and the skrvy sluts
'Did tai and tryk in the klarg

All strengy were the l@ sstreng,
And the tryktoms spild eXpeseecsse

(®Song of the' Habberwocky" by lewis Carroll, translated into Danish(?)
August 2L, 1961)

by Curt Outlaw, University of North Carolina,

