

Peter Naur: NOTES ON ALGOL TRANSLATOR AND RUNNING SYSTEM

CHAPEL HILL July - December 1961

Contents

Main principles of the Univ. of North Carolina Algol

60 processor

Introduction 1

. . Basic approach 1

- ‘Major divisions of work 3

up Main features of the running system 4

Ss The translator 10

Dependence on other work. New solutions 11

an History of project and members of the group 12

wot ALGOL TRANSLATOR

ee Main features of the translation passes 1

wt Identifier handling (pass 2) 3

Program for identifier handling 6

Collecting declarations and specifications (pass 2)9

The scanning method of pass 2 13
Macrochecking and the delimiter stack 28

The central reading program for pass 2 36

Ce ® Delimiter programs for pass 2 39

eh The check list _ AT

ge Chain terminations for the declaration stack 48
Declaration programs 49
Corrections and additions after 51

gz LOADING SYSTEM

ok Build-up of address modification code in
é load program 2

Loading of conditionals 9

ALGOL RUNNING SYSTEM
Representation of bl@cks and procedures in store 1

Block information in stack 2

Procedure and block entry administration 3

Discussion of parameter treatment 5

Representation of procedure call in store 9

Meaning of address in single identifier paramete4s10
etc. . :

- Computation Center
Untv, of North Carolina

- Chapel Hill, N.C, .

MAIN PRINCIPLES OF THE UNIVERSITY OF NORTH CAROLINA

ALGOL 60 PROCESSOR.

Introduction.

_. The following notes provide. the. background and an explanation of the main

solutions of the design of the ALGOL 60 translator for the UNIVAC 1105 at the

University of North Carolina at Chapel Hill, North Carolina. These notes are

written in December 1961. when the translator is still far from completed, Their

: main, purpose | is to serve as a ‘general, explanation of the preliminary notes on

the "Algol running system" and the "Algol translator" which are also being

“written at this time.

Basic approach. . :

‘The starting point of the work is the decision to implement the complete” 2

ALGOL 60 language, without exceptions. Owing to the generality of the language

this has not yet been done anywhere and has been approached in only a few places,

However, the experience gained in those progects where such an approach has been

made indicates that if ‘the problem is attacked in the proper manner a complete a

‘ALOT, 60, processor is entirely feasible. Under these circumstances this approach —

would seem to be. the obvious one to chogse in a university institution where

programming languages already « are at. the center of the interest.

| The second major consideration is that of Limiting the sheer bulk of the-*

work of writing the compiler. This has dictated the ‘following design decisions:

?) Wo attempt is made to provide facilities for ‘the user to run ALGOL programs.

| cannot be held completely in the core memory of the machine. In other words

ams which require more then 8192 words of store for instructions and variables

be handled by the basic ALGOL system. Work: sei.th such programs wild. require

Main principles. <2~

constructions in the source program will only be attempted “in those cases

where the optimisation can be achieved with virtually no extra effort as

far as the design of the translator is concerned. This means that the com-

plete design will start with a consideration of the most general and com-

plicated situations which are possible within the language. The principal
or

effort will go into the design of solutions af these situations which are

as efficient af possible. These solutions will to a considerable extent

be chosen with the available machine characteristics in mind. These general —

solutions will be used throughout, even in cases where an analysis of the ©

source program might reveal that they are unnecessarily general. |

The third major consideration is the speed of comptilation. Since it

is anticipated that a major share of the programs to be compiled by the

system will be short (student work) and will be used comparatively little

for running it is considered basic that the translator will work very fast,

particularly on short programs. This consideration is entirely compatible

with the above mentioned decision to make use of the general solutions even

when . they are not strictly necessary.

The © fourth consideration is checking. It has been considered essential

that virtually all errors of syntax and consistency would be detected by the

system and that extensive error print-outs would ‘be produced automatically, —

This again hes been found to be compatible with generality. Indesd, the

uniform, general treatment of all occurrences of each feature of the lan-

“gage has greatly facilitated the design of the run-time error r signalings

\

e
e

e
n
:

e
e

E
e

R
e

Main principles. -3-

Major divisions of work.

Previous experience has indicated that the above principles of design

dictate the division of the project into two distinct parts:

1. The running system. |

2. The translator.

Further that the logical order of dealing with these parts is the one indi~

‘cated. In other words, the focus of the attention is the running system.

The reason for this insistence on the run-time events is that owing.

to the complexity of ALGOL 60 it is not at all clear how the control of

the running program will be achieved in present-day computers. It is

obviouss however, that the running program will make use of a number of

permanent, internal, administrative, programe (or subroutines) for performing

such tasks as procedure calls, storage allocation, etc. The generality of

the final system will be critically dependent on the logic embedded in these

administrative programs. Again the structure of the running program itself |

will of course reflect the conventions of the available administrative

programs .

Now the proper work of the translator is to produce a running program

as its output. This means that it cannot be designed completely before the

exact, form of the running program has been established. Since this again

depends on the design of the runnin; system it is clear that the design mst

start with this letter.

O
E
E

ae
RM

g
e

Main principles. oh

Main features of the running systen.

The running system will be described under 8g subheadings as follows:

1. Description and notation.

2. Storage allocation.

3. Addressing.

1 « Procedure entry.
S. « Own variables,

Description and notation. Although the design of the running system

in its basic feabures has been directly influenced by the characteristics

of the UNIVAG 1105 the primary development and description of it has been

made in a slightly adapted ALGOL notation. Some features of this notation

are the following: The core store of the machine has been described in

several ways, essentially reflecting the fact that the distinction in ALGOL

between the program and the operands on which it works does not exist in

present~day general purpose machines. Thus the instructions of the running

program diself aré “represented as being the components of an array

array store [some lower bound : some upper vound

This representation is used when an instruction or a parameter within the

running program iteelf is used as an operand or changed. At run time the

array store will only occupy a part of the core store of the machine, other

parts being occupied by the programs of the administrative routines and

the stack (see storage allocation below).

| However, the instructions of the running program will alternatively be

represented as labelled basic ALGOL statements, the absolute address/ceing

pictured as a set of unique labels. Control is transferred to an instruc-

tion of the ‘running program by means of a go to statement to an element of |

a switch:

Main principles. | «be

switch instruction := instruction 1, instruction 2, instruction 3, ... 3

Basically the task of the translator is to initialize the components of

"store" and a few additional universal. variables (such as"first free see

below) and to transfer control to the correspondin; program through the

statement:go to instruction [some lower bound].

All variables of a program, including also some variable program parts,

will be stored as the composents of another array?

array stack [stack lower bound : stack upper bound |

This will occupy a part of the core store of the machine which is entirely |

separate from that occupied by store". The components of bie are initielly

undefined.

Storage allocation. The recursive procedures of ALGOL 60 dictate a

completely dynamic storage allocation -for all variables. It is well known

that owing to the bracketing character of the ALGOL 60 block delimiters

the logical way of arranging the variable storage is in the form of a stack

(see Dijkstra, Numerische Mathematik 2 (1960) 312-318). The essential

features of the stack, as this concept is used here, are the following:

1. The stack ta) 1inearly arranged section of the store in which at any

one time one end up to a certain dividing point has been reserved for specific

variables, while the other end is free storage, ready to be used for any

purpose.

2. The amount of storage reserved in the stack will in general vary

during the run of the program. Additional reservations are always made from .

the. current dividing point, using. the first free locations. Likewise cancel-

lations of reservations will only take place at the top of the reserved

section. In other words, reservations and cancellations will treat the

. i :
‘

Main principles. . b= . : ‘

16. Dec. 1962. —

stack like a push-down list.

3. References to the items held in the reserved part.of the stack are

not confined’ to the top element, but may be made to any element. The same

holds for changes ef the values of items.

Reservations will be made at the time of block entries, procedure calis,

- and references to formal parameters called by name. The amount of storage

reserved at a specific action will be determined) ty ¥ the translator, mxkept

partly by the run-time administrative programs. A complete list of the

reservations made at a procedure call is given in "Algol running system"

"page 2. Here the items FIXED FORMAT FIXED ORDER and VARIABLE FORMAT FIXED

ORDER are reserved according to information collected by the translator.

The remaining items are reserved according to information developed during

the procedure call, at run ting.

The parameters needed at block or procedure entry and the administrative

programs performing the appropriate reservations are shown on pages 1 and |

3 - in "Algol running system". The most important universal parameter in

these programs is the "first free". This defines the current top of the

stack. In fact, the locations stack [first free stack[first free + 1],

atack(first free + 2\, eee. are the first free locations in the stack area,

while the locations stack [first free - 1\, stack [first free « 2l, etc. are

the last reserved locations. |

Note that the seserved section includes temporaries. This corresponds

to the fact that the translator has replaced all anonymous intermediate .

quantities by local internal ones. Note also that reservations are made for

certain internal, administrative, quantities. These are the following:

Main principles. | w]e
16. Dec. 1961.

stack reference. This indicates’ where in the stack the entries for the pre-

vious block enterdd into the stack are located.

current address modi ficr. See section on addressing below.

return address. ‘This indicates the place in "store" to which control should

be transferred when an exit from the present block is made. —

” RERERENCE. This indicates the place in "store" where the block parameters —

of the present block will be found (or-treterenest, on page 1),

The exact form of most of the other items in the stack will be described:

in various “phhaces of "Algol ronning system",

Addressin ings Since no variables are allocated absolutely, at translate

time all references to variables of the program must be completed at run-

time. Since the UNIVAC 1105 has no index registers, and since the use of

subroutines would be intolerable because of the fast built-in floating

point operations,. the final addressing iff established by a direct address

modification technique. This works briefly as follows: Since all variables

declared in the same block head will share fate as far as their existence

is concerned the translator will be in a position to place all of them -

relatively to each other, In fact, the reservations VARIABLE FORMAT FIXED |

ORDER shown on page 2 of"Algol running system" show exactly the order in

which the translator will place the variables belonging to one block.

This means that in the running code all varibbles belonging to the same

plock head can be addressed completely, except for one common additive
0% Ova,

constant. This/ineans that the only addressing work left to the running

Re
et

cu

ld
ee

ca

de
ns

 S
aut

e
Bad

ia
d
t
d

ane
 d

eb
it

s
toe

ter

ch
es

Sateci
ne

ei
ne

 c
ata

e

system is the addition of the appropriate constant to all cecurrences of

addresses referring to variables of each particular block head at.each entry

Algol tranalator
Main principles. ; ~B-

16. Dec. 1961 .

into this block. This scheme requires the following information:

1, Associated with each block a variable indicating the current absolute

addressing of the variables belonging to the block mst be kept. This is

the "current address modifier placed at reference+7 (page 1).

2. Information eT. about which addresses in the program belong to

each block. This 4s aupplied in the form of a series of bit words attached

to each block (address modification code, see page 1 at reference+ll+p).

These bit words will have one bit for each address of the running program

within the range of the block. Clearly this method assumes that the running.

program is: atored in the same order es the original ALGOL program. Note also

that where blocks are nested all addresses inside the inner blocks will

‘appear in ‘several address modification codes.

As to the efficiency of this method note first that in simple programs

/ consisting only: of one block with, no procedures there is no loss of run time

whatever since all addresses will be modified once at the start of the pro- |

gran, and never again. Also, since the administrative codes have been

written so that unneccessary address modifications are omittéd, programs

which have no reoursive procedure calls and no arrays with variable bounds

and in which each procedure is only called in one procedure statement

will settle down in a state where no more modifications are necessary as

goon as all program: parts have been entered once. Thus in these cases

very ‘little time will be wasted on address modifications at run time.

The worst cases will be programs with recursive procedures and/or frequent-—

ly varying array bounds in outer blocks end little or no Looping: in inner

blocks. In these cases there can be no © question of talking about efficiency,

|

Mein principles. =a

16. Dec. 1961.

however, since there exist no alternative methods for handling these programs.

It may be of interest to note, however’, that since the modification of one

single address may be expected to be accomplished by the running administra-

tion in less than the tine of a floating point operation, the time needed

for address modifications should never exceed that needed for arithmetic

operations as long as real arithmetics is used. If the imermost block inclu-

des loops with operations on real variables the situation will be more favorable _

since one modification will give rise to many arithmetic operations.

Procedure entry. The implementation of procedure statements 4e based on

well-established principles and techniques. The mathhing of a procedure atate-

ment with the corresponding procedure declarations takes place entirely at

run time. _ References from inside the procedure body to the information supplied

in the call will make use of Linking information stored in a set of formal

Locations. Theee | are initialized at each call of the procedure. Thus, essential-

ly the task of the procedure entry administration is to take the information

given in the actual paraineters and the procedure heading and form the proper

contents in the formal locations. The logic of this transformation process

is described in the table of actions, "Algol rw ning system? page 12, and the

associated programs, pages 13 - 15.

Own variables. Own variables fall outeide the renge of the principles of

storage allocation described above. Their behaviour when occurring within

reoursive procedures is still not finally settled within the language. Here

they are treated as being similar to variables declared in the outermost block —

of the program. However, a special area of the sdore must be set aside for them

Main principles. . «10~
18, Dec, 1961 .

The translator.

In accordance with the basic approach the methods used for translation

have been chosen with a view to the speed of translation, and not with any

consideration of the generality of the method used. For this reason all mathods

based on general symbol manipulation maneuvses, as wall as those based on a

mechanical use of the metasyntactic description of the language,have been

rejected. |

Like the running eystem the translator is described mostly in Algol,

although with frequent use of tables: describing the logic. In spite of this

it 4s not intended to make use of any kind of bootstrapping techniques for

transforming the translator code into machine code. Indeed, it is felt that

by far the larger amount of work in writing a translator is the development of

the Logical principles and the statement of these principles in a complete

manner, Once thig.has been done the transformation into any specific lenguage

for a machine will be a very minor matter, Bootstrapping only affects the

transformation part of the job. Since bootstrapping implies a non-negligible

anount of extra work in setting up intermediate languages and translators for

them it is felt that the use of this technique might easily waste more effort

than it saves. - |

For a discussion of the actual principles used, see "Algol translator",

notes beginning 31. October 1961. Note that since these notes were written

while thdfievelopment work was actually proceding there are frequent corrections

or modifications of statements made earlier in the later parts of the text. _

Main principles. -“ll-
18. Dec. 1961. —

Dependence on other work. New solutions.

Since the main stress in the project has. beer: on arriving at a completed

workable system no particular strees has been: placed on obtaining original.

‘solutions. In fact, the solutions have ‘been shosen from whatever suggestions |

were judged to be the best within the framework of the basic approach. The

primary sources are the following:

lL. The work of Dijkstra and Zonneveld of the Mathematical Center, Amster~.

dam, The Netherlards. We owe to this group the conviction that a complete

system for ALGOL 60 is a practical proposition and the basic scanning method

of pass 2 of the translator. References : EW. Dijkstra, "Ein ALGOL-60-Uber~.

setzer fur die X1} Mathematik Technik Wirtschaft, Vol. 8, Vienna, Austria

(1961), pp 5-56 and 115-119. EW. Dijkstra, "Making a Translator for ALGOL —

- 605 ’ putomatic Programming Infomation Bulletin No. 7, APIC, College of

Technology, Brighton, England (1961), pp 3-11. Alao ‘Personal communi.cations

to Peter Naur in Harch 1960 and April 1961. |

: 2. The work of the group at Regnecentralen, Copenhagen, Denmark: J.. Jensen,

oo P, Mondrup, and P, Naur. Also some work of B. Mayoh. The work in this group.

BR
A

Se

has influenced the implementation of the progedure call. Also the practical

experience of this group in using a stack at run~time has been decisive.

References : J Jensen and P. Naur: "an Implementation of ALGOL 60 Procedures" ;

BIT 1 (1961), 38-L7. J. Jensen, P. Mondrup, and P, Naur, "A Storage Allocation

Shheme for ALGOL 60," BIT 1 (1961), 89-1023 Comm. ACM, 10 (October 1963)

3. The work of the "Rump Group". The treatment of own arrays is. essentially Pp that of Ingerman, Ref: Ps Ze Ingerinan, “Pynami.c Declarations" , Comm. ACM kyl |

: (January 1961) 59-60.

FE
R

Reg

TG

IE
E

OR
E

NN
ae

EL
R
a

CO
E
O
E
S

Main principles. - =12=
"18, Dec. 1961.

However, during the work some solutions were adopted which as far as we know

have not been described elsewhere. The more interesting ones of these are the

following:

1. The addressing scheme (page 7 of the Main Principles). The use of a —

direct address modification technique was suggested by John W. Carr, IIT.

. The scanning logic of pase 2 ("Algol translator"), particularly the

treatment of multiple delimiter meanings, as specified in the table of

delimiter meanings (page 25) and the associated algorithn (page 36-37).

3. The mechanisms for collecting declarations ("Algol translator", pages

9 = 12, with additions pageli7-18). |

History of project and members of the group.

The project was initiated by John W. Carr, III, Director of the Compu-

tation Center. The work described ‘in these notes was accomplished during July

to December 1961 during the stay of Peter Naur at Chapel Hill. In December the

active members of the group were:

Peter Brown

Robert B. DesJardins

Peter Naur

Miriam Shoffner.

The running system was largely developed during a series of lectures held from

July to August by P. Naur. Subsequently the remaining members of the ‘eraoup

checked the system out manually by means of specific examples (proprams inclu-

ding Ackermann's function and the General Problem Solver by Knuth and Merner |

and others). ithe Fhe programa for array declarations and the run-time alarm

output were written by Miriam Shoffner. The part of the translator developed

thus far was written as lecture notes by P. Naur from Oct. to Dec.

Algol translator. #l=
31. Oct. 1961

MAIN FRATURES OF THE TRANSLATION PASSES.

Tentatively it is assumed that the translation will include

‘lh separate scans of the source program, i.e. passes. The main

functions of each of these and some of the reasons for this divi-

sion of work will first be described. .

Pass 1: Reduction to the standard Algol form. This is a fairly

simple process. It will convert the hardware form of the progran

to a uniform internal representation in which each Algol basic

symbol has its unique character. This internal representation has

116 different characters: 52 letters, 10 digits, 2 logical values,

52 delimiters. In this process typorraphical features (space, change

to new line, etc.) are removed. Algol comments are kept, however. (7)

No checkin: is attempted. However, in order to determine when the

‘end of the program itas been reached a count of begins and ends must

be included. This must take special account of strings enclosed

in string quotes and comments.

' Pass 2: ,ldentifier matching, declaration collefting, build-up

of constant table, delimiter cnecking. In this pass an identifier

table is c@mpiled. This will have one item for each distinct iden-

tifier in the program, with no regard to scopes. In the output from

the pass every identifier will have been replaced by the number of

the identifier in this table. |

When scanning block heads the identifiers declared are compiled

in a declaration stack. At the corresponding block end the decle-_

rations for this block are removed from the declaration stack into

the output. | |

Literal constants (i.e. unsigned numbers, and strings) are com=

piled in a list of constants.

I
I
I

:
7 q

‘

Algol translator. | ~2=
31. Oct. 1961.

Pass 2, cont'u.

With the exception of arithmetic, relational, and logical

operators, the consistency of the program with respect to the

occurrence of all delimiters is checked. In addition, a number of

delimiters, which do not appear in the Alsol text, are added

(so-called pseudobrackets are converted into proper brackets).

Pass 3: Analysis of simple expressions. This is a backward

scan. Using the declarations assempled in pass 2 the meaning of

any identifier at any place is now known. The analysis will include

a complete check of the expressions and the conversion to machine

instruction form.

Pass h: Loading, internal references. In this pass the final

absolute addressing will be made. All implitit references (for-sta-

tements, then, else, etc.) are worked out by the loader from the

context. Explicit references (labels, procedure identifiers) are

based on a simple symbolic address system.

Discussion. 1t has been considered basic that only simple

scans would be made, i.e. that in each scan the text of the pro-

pram would be taken in order from one end to the other. Secondly

no restrictions on the order in which the program is written,

other than those of Algol 60, have been imposed. Thirdly, a

fairly complete checking has been aimed at. |

These considerations force the use of a two-scan process.

Indeed, no completes processing of expressions is possible ina

one-scan process since the declarations will not in peneral be

known. Pass 1 and pass 2 might very well be merged. It seems

desirable to separate the machine dependent process of pass 1

Algol translator. ~3-
31. Oct. 1961.

Discussion of passes, cont'd.

and the machine independent pass 2. Again the division of work

among passes 3 and l is not necessary. The advantage of the

division is that no absolute addressing of the prorram, or evei

calculation of lengths of code becomes necessary until the loadiie

stage.

The following is a more detailed discussion of various problems,

beginning with pass 2.

IDENTIFIER HANDLING (pass 2).

The main advantages of the present method for handling iden-~

‘tifiers are:

1. Identifiers are at once replaced by an internal repre-

sentation.

2. the tables used are few and short.

3. The tables are relocatable.

lh. No sorting is used.

5. It imposes no restrictions on the language: arbitrarily

long identifiers can be handled.

The IDENTIFIER TA3LE. This table is generated during pass 2.

It will have one entry for each distinct identifier. liven if the

same identifier is used with different meaning in different blocks

the IDENTIFIER TABLE will have only one entry for it. Thus each |

identifier may be completely characterized by its number in the

IDENTIFIER TABLE.

Before the start of translation of a program the identifiers

|
|

Algol translator. “le

31. Oct. 1961.

Identifier handling, cont'd.

of standard procedures are placed as the first items of the

IDENTIFIER TABLE.

The IDENTIFIFR TASLE has two parts: 1) the pramary words,

ana 2) the secondary words.

Short identifiers, i.e. those having 5 characters or less,

only use the primary words. The corresponding secondary word

may be used for holding a part of another long identifier, as

explained below.

Long identifiers use cne primary word for the first 5 charac-

ters, and any number of secondary words, holding characters each.

Assuming an alphabet of 52 letters and 10 digits each character

occupies 6 bits. When dealing with groups of 4 or 5 characters

no gain can be achieved by packing these characters as tightly

as theoretically possible.

Structure of primary words: 3 parts:

1) L bit: O for short, 1 for long identifier.

2) 30 bits: For short identifiers: all characters.

" long " : first 3 and last 2 characters.

3) 5 bits: The number of characters modulo 32.

‘nis structure has the following advantages: 1) It will make

spurious coincidences of the primary words of long identifiers

exceedingly rare. 2) It retains the first few characters, which

is useful for error print-out during translation and the like.

Secondary words. If primary word no. n refers to a long

identifier the first secondary word belonging to this identifier

will also be no. n. Further secondary words of this identifier

Algol translator. 0 Be
31. Oct. 1961.

Identifier handling, cont'd.

will have numbers less than n, making use of such positions in

the secondary word table which correspond to short identifiers.

The secondary words of the same identifier, as well as the free

locations in the secondary word table,are linked together.

Structure of a secondary word:

1) 2h bits: characters of the identifier.

2) 12 bits: Link to next secondary word of the identifier, if

there are more. For the secondary word at position q the link

is always less than q (might be negative).

Initially the link part of all secondary words with index $0 is

set to indicate the immediately preceding word. As long identifiers

are added ail free words will remain linked together.

Example of identifier table: For simplicity assume that

each word will only hold 2 characters (not 5 or 4). Further assume

that the sequence of identifiers shown in the left column have

been entered in the table, in the order snown. Then the situation

will be as shown in the ritht hand columns:

Identifier: Primary Index . Secondary
& Mark Char. No. Char. Link
blb2 oa
c ol =e
did2d3dy 0 gd Wl
8 0 a 1 1 aly. Qo
f L bl 2 b2 1 -

gle2g3ghe5 0 e 1 3 a3 1
h 1 di 8 l d2 3
4 0 6 1 5 gh. 0
jl je 0 f 1 6 23 5

kK 1 el 10 7 ge 6
mim2 QO h 1 8 ol]

0 i L 9 8
1 jl h 10 je 9
0 k L 11 9
L ml Tt 12 m2 11

13 11

Algol translator. - , ~6-

31. Oct. 1961.

PROGRAM FOR IDENTIFIMR HANDLING.

Yhe program will:

L. Read from input the letters and digits up to the next

delimiter and form the proper internal representation.

2, Check whether the identifier is already in the identifier ©

table, and if it is not insert it in the table.

3. & In any case exit > with a value of the proper

identifier number placed - in i.

The exact structure of the primary word is takes as follows:

(bit 35 is the most significant):

Bit 35: more mark
Bits 3h to 30: number of characters modulo 32.

= 29 - a: ist character
- 23 ~ 16: ana -

= 17 - 12 : 3rd =

- ll- 6: \th ~
- 5} O: 5th -

Structure of secondary word:

Bits 35 to 30: lst character
29 - 2k: 2nd ~<

- 23+ 18: 3ra “
- UZ- La: kth -
= ll = O: Link

array word list 1: iF identifier table fo: ds secondary [qs I;

comment Enter here with symbol = letter, showing that an identi-

fier is coming; | |

take identifier: n := 03 word counter := 03; short := true; word ?= 03

“for k := 1, 2, 3 do

begin
word := word + 64.1(5-k) * symbol;

n t= 0 + 13 input(symbol);

Algol translator.
31. Oct. 1961.

OP ee
ca fav Mim

Program for identifier handling, cont'd.

new words:

assemble il:

assemble 2:

if class(symbol) = celimiter then

go to assemple 3

end reading of first 3 characters;

lastbutone := symbol; last := dummy; input(symbol);

if class(symbol)=delimiter then |

word := word + 6i, x lastbutone;

go _to assemble2

end;

last := symbol; n := n + 13

word counter := word counter + 1;

word zist[word counter } := 03

for k := 1, 2, 3, 4 do

begin
input (symbol);

if class(symbol)=delimiter then

go _to assemple 1

word list [word counter] =

word List jwora counter } +

6h. f(6-k) * lastbutone;

lastbutone := last; n := n + 13

last := symbol

end;

go to new word;

if k=l then word counter := word counter ~ 1;

word := word + 64% last;

word := word + 64f2 “lastbutone;

Algol translator. ~8-
31. Oct. 1961.

Prosram for identifier handling, cont'd.

assemble 3; word := word + (a =n + 32 * 32) 2730 +

(if na5S then 0 else moremark);

. 1 := highest number;

search: for I := identifiertable |i} woile

I # word Ai>O doi t= i - 1;

if i = G then

begin
c™ ,

‘ m t= 1 s= highest number := highest number+l;

identifier table[i] := word;

for k := l step 1 until word counter do

| scecndary|m\:= secondary (mm | +

| vord list |x];

: m=l.nkpart(secondary({m})

| secondary highest number+1) := mi

m™ end i= 0

— glsy begin
m 3s= 1;

rk :=1 step 1 until word counter do

_

begit:

if wordlist [kl]

identifierpart (secondary[m})

thei) TF=t- ~13; go to search end;

m tt linkpart (secondary {m])

end f:r k

Algol translator. a
2. Nov. 1961.

COLLECTING DECLARATIONS AND SPECIFICATIONS (pass 2).

The functions of this mechanism are:

1. To collect the declarations and specifications of the program

in a form suitable

a. to be used during the analysis and checking during pass 3,

b. to form the information to be inserted at the end of blocks

and procedures (appetite, etc.);

c. to form the full specifications of formal parameters, and

de to construct the relative addresses of all variables within

each block.

2. To check that no two identifiers are declared twice in the same

block head.

3. To check that full specifications are avaihable for formals.

Structure of the DECLARATION STACK. The above functions are

executed with the aid of a declaration stack, This is a table

operated in a stack like manner, holding the information supplied —

in declarations and specifications. Within the declaration stack

all items of identical nature are linked together, forming a

ehain. Altogether 23 independent chains are maintained, one for

each of the combinations marked by an x in the following table:

No type raal integer Boolean

Simple variable, local x x x

» own x x x

Array, local x x x.

" «own x x x

Switeh x

Procedure x

<type> procedure, call only x x x

; call and assign x x x

Label x

Formal x

Stop x

Algol translator. -10-
2. Nov. 1961.

f

Collecting declarations and specifications (pass 2). cout d-

The followin=s table shows the information held in the various

kinds of items and a suzsested bit assisnment within a 36 bit word:

Identifier Link Other
Bits 35-26 25-16

type x x
array identifier x
array bounds x 35-26: number of identifiers

15-0 : - - subscripts

switch x x 15-0 : - - expressicns

procedure (no type) x x 15-0: symbolic address

type precedure x x 15-0: ~ -

‘Label Xx x 15-0: - <

formal x x 15-0: specification and value

stop x 15-0: kind of stop: 1) Block
2) procedure (no type)
3) type procedure

Notes on the table:
Symbolic addresses are integers associated with procedure identi-

fiers and labels, identifying each of these uniquely throughout

the program. ach array segment will give rise to an entry having

one word for each identifier plus one comron word describing the

pounds. Block begin will cause entry of a stop. Frocedure iden-

tifier without type enters two wprds, cne describing the iden-

tifier, followed by e stop. lype procedure identifiers cause

entry of 3 words: 1. procedure identifier linked as call only;

2. stop, and 3. procedure identifier linked as call and assicn.

Dynamics of the DECLARATION STACK, Each new declaration will

eause the appropriate word to be entered and the corresponding

Link to be up-dated. Also a check that the identifier has not

already been declared in the same block is carried out.

formal parameters are entered in a Similar manner. Speci-

fications cause the appropriate information to be inserted in the

Algol translator, -1ll-
2. Nov. 1961. ,

Collecting declarations and specifications (pass 2). cont'd.

~ te

word already reserved for this formal parameter. This word must

be available (check)

At block end all entries corresponding to the latest block

are removed from the table.’ Since ‘this must be done separately Por -

each chain the declarations will be sorted according to their

nature just by following each chain down to the latest stop.

The information removed from the declaration stack may be trans-

.mittead to the output string of pass 2; as in the present descrip-

tion.. This will assume that pass 3 is a packward scan. Alternatively

it may be transferred to a’ special table on the drum. ‘If this is

done special account must be taken of the location of the decla-

rations for each block in this table in such a manner that in the.

forward scan of pass 3 the proper declarations may be referenced

at each block begin.»

Example of the use of the DMCLARATION STACK. Consider the

contents of the déclaration stack during the pass 2 of the follo-

wing “program:

begin real A, B3
real procedure P(A, B); value A; veal A3 procedure’ B;

begin real C, D;
Es

Fe.

end of P;

integer C, Dy

array EB, G(1:2, 1: 3}s
Fs

end of program;

The following tables show she values of all relevant variables, -

including the identifier table and the declaration stack, both

just: before the scanning of"end of ‘P™ and before the seaminz

Algol translator. ~l2-

2. Nov. 1961.

Collecting declarations and specifications (pass 2) cont'd,

of “end of program".

Initial |dust before jJust before

end of P lend of prog.

General variables: , oo:

current top 1 . te LO

next symbolic 1 re 5

_ End of chain variables: , a.

last real , ol ~& 2

last integer -1 -1 5

last real array -1 =1 8

last raal procedure to call a ~1 3 3

last real procedure to call and assign-1 a) -1

last Rabel -1 11 &¥

last formal -1 7 ad

-Last stop 0 im 0

Identifier table just before end of program:

identifier number 1 2 3 4 5 6 7 8

identifier . A B FP CG D E F G

Declaration stack: _ . .

Items 1 to 3 do not change between “end of P" and "end of program".

Item no. Identifier link Other Identifier Link Other

number number

1 1 (=A) ~1
2 2 (=B) L

3 3 (=P) -1 symbolic 1 . .

Just before end of P Just before end cf program

hy (stop) QO type proc. l. (=C) od

5 3 (=P) -l symbolic 1 ' & (=D) hy

6 1 (=A) “lL real value 6 (=E)

7 2 (=3B) 6 procedure 8 (=G) ;

8 . (=C) .2 -1 2ident:2subsc..

9 5 (=D) 3 7 (=F) -1 symbolic

10 6 (=E) -1 symbolic. 2

11 7 (=F) 10 symbolic 3

The algorithms for handling the declaration stack might

be included at this stage. However, since they are intermixed

with the scanning procedure of pass 2 this latter procedure will

first be discussed:

Algol translator. 1 3
3. Nov. 1961.

THE SCANNING METHOD OF PASS 2.

The scanning method bescribed below is essentially based on

the method used by E. W. Dijkstra (private communication to P%

Naur, April 1961). The basic algorithm of this method is as fol -

lows:

1. Read the source program up to and including the next

delimiter.

2. Perform the program for the interpretation of the new

delimiter.

3. Go to point 1.

In this. process it is convenient to exclude the ALGOL deli-

-miters entering into literals (i.e. unsigned numbers and strings)

from the chess of delimiters. If this is done point 1 may cause

reading of one out of 3 combinations: 1) Delimiter only, 2) Iden-

tifier and delimiter, and 3) Literal and delimiter. As an example

of this method the following st#ing

afp + 5.63) t= w3 _

would require 5S of the above cycles, the parts rend in these cy-

cles being:

al pt 5.63) := wW w
e

mv 4

Jefore developing the programs for the interpretation of

each of the delimiters the question of syitactice cnecks during

+

ass DP will be disevased. two aspects of this will be distinguished:

ra
nt

AH

mierecheexing and macrochécking:

Algol translator... ~le
3. Nov. 1961. :

‘The scanning method of pass 2, cont'd.

Microchecking. By microchesking will be understood the

checking of the compatibility of adjecent symbols. When deriving

the appropriate rules for this it is useful to introduce the

class of operands, meaning the - conjunction of the

classes of(l1) Identifiers not followed vy (or (2) subseripted

variables (3) Function designators (I) Expressions enclosed in

parentheses and (5) Literala (1.e. unsigned numbers , .

strings, logical values). For each basic step of the sean it

4s now passible to define the value of the operand situation

as be-ing an integer deseribing what has been found immediately

preceding the new delimiter, accord ling to the following table:

Operand situation Construction preceding delimiter

‘Not operand
“Ydentifier
‘Subscripted variable oe oS
function designator or proceduz ‘e statement
Expression enclosed in parentheses
Literal W

i
t

f
o

H
O

Basic principle for mierochesking:? Derive from the ADGOL

syntax information on whet cher in the given situation the new

S. delimiter is compatible with the operator situation.

whe usefulness of this 2pt spoach is due to the fact that

for many combinations t the situation is irrelevant in determining

compatibility. For example the Poll owing are universally Inadmis-

sible combinations:

Sui cremanrartece
A go to! Pts | for _ =f

| | F

Algol translator. ~15-
3. Nov. 1961. |

The scanning méthod of pass 2, cont'd.

In fact, the following general rules hold:

The following 16 delimiters can never. follow an operand:

Group A.

= goto if for comment begin own Boolean integer

real array switch procedure string label value

The following ad delimiters must always follow an operand:

rN

Group B.

®/o os PT 6 £€ = > > € ES y A then ao
&® : := step until while) £ 4 |

Of these E will only accept identifier and := will only accept

identifier or subscripted variable.

The following aciimiters may or may not follow an operand:

| Group C. (ecause of Commas following array Sequrets }

~ + =. 3 end else (4 |

a

- ‘tthe remaining 5 ALGOL 60 delimiters all belong to literals:

t 1

* 10 4
| These rules can be derived rigorously from the syntax of

| ALGOL 60. The ones of group A will be more or 1éss obvious to

anybody familiar with the language. Many of those of eroup B

follow from the fact that any expression must end with an operand.

,

The proof of this can be derived directly from the ALGOL 60 syn-

tax. We must consider the 3 possible expressions separately.

Algol translator. ~16-
3. Nov. 1961.

the scanning method of pass 2, cont'd.

First aritimetic sznésstong: Acconeint to the section 3.3! ‘Loof

the \LA0L 60 report the last part of any ithmet ic expressior

must. ‘be a simple arithmetic ‘expression. The last part of this

masta term. ‘the last part of this must be a factor. The last.

part of this must be a primary. But since a primary is an ope-

rand in the ‘sense used here it follows that any arithmetic ex-

pression ends with an operand. The demonstration for the two

other cases follows in a similar manner « Consequently any ex-

pression ends with an operand. fn adéition the proof snows that

the game holds for cterm>, éfactor>, <implication>, < «Boolean

term, <doolean factor>, and <Boalean secondary >.

Now at is easy to verify from the ALTOL 60 syntax that

each of ‘the following delimiters, in any occurrence, wild be

preceded: by one or other of the above mentioned constructions:

xe fet © € = 2 > € BDV A | Shen

do ‘step until until while 1

Wais proves the inembership of group 3 for each of these delLiini -

ters. Bor the remaining ‘members. of spoup 3 quoted above:

mo DL |
an individual investigation of the various uses of each of these

symbol s is necessary tO prove the tiembersaip of group Be his. may >

Aowever, be carried through in a straightforward MANEL o

The above rules are situation iridependent. They will ‘serve

to catch a number of errors by testing whether the class of the.

new . delimiter is compat ible with the operand situation. the fur-

ther microchecking will make use of situation dependent parameter

Algol translator. ol f-

(3, wove. 1961.

The seanning method of pass 2, cont'd.
we me ee

having the orm of a one-dimensional Boolean array (a bit word)

accomodating one truth value for each combination of operand and

delimiter which has net already been cnuecked for. Thug according to

this scheme the action of each delimiter program (i.e. the program associated -

with e@ ch delimiter) will do 3 things: (1) Check that the delimiter is com-

‘patible with the current situation parameter. {2} Do whatever action is neces=

sary for this delimiter. (3) Assign a new value to the situation parameter.

As a simple illustration of this approach condicer the scanning of the following

piece of program:

begin integer a, b;

Scamming begin will set the situation parameter to admit a great variety of

delimiters, in fact all those which may appeer at the beginning of a decla-

ration or a statement: go to if for comment begin own Boolean

integer real array switch procedure ; end (: [os

The appearance of integer imnediately restricts the set of admissible successors

to the following: , $3 array procedure

The appearance of , restricts the successors even further: ’ $

Finally the ; again opens up all the same possibilities as existed after begin.

| It should be noted that this does not yet exhaust the possibilities of

microchecking. Obviously this scheme would let such errors which arise from

incorrectly writing one kind of operand at a olace where only another is correct

pass by. Example: begin integer 7, b; However, detection of such errors

depends on the meaning of the delimiter, which again depends on the context.

Yor this reason it is convenient to merge the microchecking and the mechanism

for handling the imltiple uses of delimiters into a single unified scheme.

- This will be described next.

(#9)

Algol translator. -18-

13. Nov. 1961.

Multiple meaning of delimiters. Practically all delimiters are used

for more than one purpose and the particular meaning of a delimiter must

be derived from the context. This will be handled by means of an extension _

of the basic scanning method in combination with the scheme for microcheckin;;

as follows:

The program associated with each delimiter will be split up into as

many programs as there are meanings for this delimiter. Which particular

program|to be used will be given in the current situation parameter. This

then will now be an integer array with one element for each delimiter, The

delimiter

value given for a particular| will at eny time tell whether this delimiter

is admissible, and if so, what meaning of it is pertinent.

The above scheme is sufficient for the complete scanning of ALGOL 60

declarations except where these contain expressions or statements. It is

therefore possible to give complete information on the necessary delimiter

programs. This is included below, in the following form: For each subprogram

for a delimiter the particular meaning of this delimiter handled by the sub-

program is briefly desorited. Thenfollows, for those delimiters which admit

operands, the admissible operand situation (see table page 14). Finally

the list of admissible successors.

own :
ownl | First symbol of declaration.

Successors: type.
integer real Boolean

typel First symool of declaration.

comal semicolon] arrayl procedurel

type2 Following own
Successors: commal semicolonl arrayl

type3 In specification .

Successors: coma 5 semicolor }array2 procedured

arr
arrayl In de@laration

Successors: comna2 leftbracel
array2 In specification

Successors: comma5S semicolon}

Be
vi
be

et

coon
Bh
er
ca
ii
se
s

Algol translator. o1l9=
13, Nov. 1961.

Multiple meaning of delimiters (pass 2), cont'd.

state num pat

switch ,

(a9) switch First symbel in declaration
. Suecessors: colonequall

(4) switch2 In specification,

Successors: commaS semicolon3

procedure

(} 6) procedurel In declaration '

Successors: leitparenthesisl semicolon2

(iy) procedure? In specification

Suecessors: conmaS semicolon3

value

valuel Following formal parameter part.

Suecessors: commal, semticolor 5
string

stringl Specification
Suceessors: comma5 semicolon3

iabel
labell Svecification

Successors: comna5 semicolon}

(28) semicolonl Following type declaration
Operarid situation: 1

Successors? gotol 4fL forl commentl begin] ownl integerl

reail Booleanl arrayl switch] procedurel senicolon?

endl leftparenthesis2 colonl colonequal2 leftbracket2

(26) semicolon? Following procedure <identifier> _
Operand situation: 1

Sucessor: goto? if2 for2 comment) begine semicolLon&7

Leftparenthesis3 eolon2 leftbracket3 colonequal3 codel

(34) senicolon3 Following - — specification.
Operand situation: 1

Success sors: commentl integer3 real3 Boolean} array2 switch?

procedure2 stringl labell ae gotoSz ifkz begin3yg

‘semicolon’ leftparenthesis3 colon2 leftbracket3

solonequal3 fer2 eedd

(34 semicolonl, Following formal parameter part

Operand situation: 0

~ Stecessorst comment] integer3 real3 Boclean3 array2 switch2

procedure2 -stringl labell valuel

(25) semicolonS Following array segment .
Cperand situation: 0
Successors: Sans as for semicolon].

(29) semicolonS Following value part -
Operand situation: 2

Successors: comment] integer? real3 Boolean} array2 switch2

procedure? sbtringl labell

(ay) semicolon? After dwany statement or procedure -eatt without-parameters

. Operand si tuations 0 or 1
Successors: \gate E

So anthocted potent defttrackete —cotomsqual?
Depend GR matching symes) in. gtacke (see pune 33-34/

ns elie ee ae he ae . vm ee

Algol translator. @2Q—

Tbe Nove 1962

“Multiple meaning of delimiters (pass 2}, combtd.

ee

t

semicolon’ Following procedure zdmakafiies heading wn

Sperend situation: 0 or 1

E Successors: Same as for semicolon 1

| semicolon? in expression (finishing assignment or goto statement)

| Operand situation: 1 to 5

Suecessors: Depends on the matching syyibol in stack as follows:

gotol Like semicolon 7

gote2 or oto} = = 1 be BLCheor Uva see pure

colonequal2 - - 7 S33

colonequal3 - ~ 2

' Operand situation: OF |

Zn - “Sucessorst Same as for’ semicolon?

. (18) semicolonll Following end of procedure body

| Operand situation: 0

, Successors: Like semicolonl

begin
‘beginl Statement

.

Successors: gotol if. forl comnentl beginl ownl integerl

reall Booleanl arrayl switchl procedurel semicolon?

endl leftparanthesis? colonl leftbracket2 colonequal2

begin2 — Procedure body

Successors: Same as for begin 1

(a/ semicolonl0 Following normal procedure cali with parameters
3

(49)eomat Type declaration list

Operand situation: 1

Successors: comral semicolonl

coma2 Array declaration identifier list

. Operand situation: 1

Successors: unchanged

commag Formal parameter list

rN Qperand situation: 1
Successors: unchanged

coma -. Value list
Gperand situation: 1

Successors: unchanged

comma5 Specification list
Operand situation: 1

Suecessors: cownaS semicolon}

‘comnaé Array segment =

po Operand situation: 0 .

os Suecessor: comma2 leftbracketi.

- commal In expression

Operand situation: 1 to 5
Successors: notl if} plusl minusl semicolon? end2 else2

leftparanthesisl bioperatorl dol colon} stepl

untill whilel leftbracketl rightbracket3/ comma?
rightparenthesis2 Wen
Note: This set of successors will be referred to as

the begin of expression successors.

Algol transiator. | tLe

20. Nov. 1961

Multiple meaning of delimiters (pass 2), cont'd.
~~ oe meee

|
notl Anywhere

Successors: plus] minusl semicolon? end2 else2 leftparl

- binaryoperatorl thenl dol leftbracket

comma? rightparenthesis2 (no. 7)

go _ to

gotol Normal statement

oe Successors: segin of expression (no. 2)

gotol Following procedure heading

| CO - Successors: Begin of expression (no. 2)

i EB
ifl Normal statement

- - Successors: Begin of expression (no. 2)

c™ if2 ' Following procedure heading
, Successors: Begin of expression (no. 2)

if3 Begin of expression
7 Successors: Begin of expression (no. 2)

ifh Following else
Successors: Begin of expression (no. 2)

for oo

forl ~ Normal statement .
Successors: colonequalk leftbracket5 (no. 22)

for2 Following procedure heading

Successors: - colonequall, leftbracket5 (no. 22)

comment
commantl Anywhere

._ Successors: Unchanged

+ 20

plusl minusl = Begin of arithmetic expression

, _ Operand situation: 0 - 5

Successors: notl plus2 minus2 simicolon? end2 else2

leftparenthesis binaryoperatorl thenl dol

~ colon3 stepl untill whilel leftbracketh

oe rightoracketl comma? rightparenthesis2 (nos 2)

plus2 minus? In expression.
Operand situation: 1 = 5
Successors: No. 1

end .
endl ' ‘Following statement

. Operand situation: 0 or 1

end2 In expression _
Operand situation: 1 - 5

“ Successprs for endl or end 2 depend on matching symbol in

stack as follows:

beginclear, beginblock: €any string..> endl semicolon7

elsel (no. 104.
peginbody: <anystring ..> semicolonll (special treatment)

 i ws ee

Algol transiavor.

20. Nov. 1961

“4ultiple meaning

else
elsel

else2 _

(
leftparentheisl

leftparenthesise

leftparenthesis3

leftparenthesish

x / * ‘

2<-2>4

y

then

thenl

wee

of delimiters (pass 2), cont'd.
~~ mm ee mm we

In statement

Onerand situation: O or 1

In expression

Operand situation: 1 - 5 bbw

Successors for else i and else2 depend on matching if in

stack as follows:
;

distatement: gotol ifl, forl beginl semicolon? endl

t leftparenthesis2 colonl leftbracket2

Wis colonequal2 (no. 9)

t “fexpression: noti if plusl miimusi semicolon? end2

else2 leftparenthesis) binaryoperator] |

dol colon3 stepi untill whilel leftbrackett
rightbracketl comma’? rightparenthesis2

(no. 3)

Procedure heading

Operand situation: 1

Successors: comna3 rightparenthesisl (no. 21)

Procedure statement, normal

Operand situation: 1

Successors: Begin of expression (no. 2)

Procedure statement as body

Operand situation: 1

Successors: Segin of expresson (no. 2)

Subexpression or function designator

Operand situation: 9 or 1 .

Successors: Begin of expression (no. 2)

In expression (these form part of binaryoperator)

Operand situation: 1 = 5

Successors: notl plus2 minus2 semicolon? end2 else2

leftparenthesis binaryoperatorl thenl dol

colon3 stepl untill. whilel leftbracketh

rightbracketl comma? rightparenthesis2 {no. 1)

AY De

In expression (these are the remaining binary operators)

Operand situation: 1 ~ = 5

Successors: plusl’ minus] notl semicolon? end2 else2

leftparenthesis binaryoperatorl then dol

leftbracketl comma? rightparenthesis2 (no. 7)

In expression

Gperand situation: 1 - 5

Successors depend on matching if:

ifstatement: gotol forl beginl semicolon? endl elsel

leftparenthesis2 colonl; leftbrackete ,

colonequal2 (no. 8)

ifexpression: noti plusl minusl else2 leftparen-

thesis); binaryoperatorl leftbracketl (no. 5)

Bese heey en oie aes ets

ALBQOA URES AU a oe

20. Nev. 1951

‘yltiple meaning of delimiters (pass2), cont'd.
-— = oe oe me ee he

do

dol

colonl

colon2

colon3

colon

In expression :
Operand situation: 1 ~ 5
Successors: gotol ifl fori beginl semicolon? endl elsel |

leftparentheisis2 colonl lefthrachsne syronemual?
no. il

Label of statement
Operand situation: 1

Successors: gotol ifl forl beginl semicolon? endl elsel

leftparenthesis2 colonl leftbracket2 colonequal2

, (no. 11)

Following procedure heading
Operand situation: 1
Successors: No, 11
In expression
Operand situation: 1 - 5
Successors: Segin of expression (no. 2)
Label of unconditional
Operen:i situation: 1
Successors: Noe 8 (see thenl)

step until while

stepl —
untill
whilel

4
rightbracket]

| C
leftbracketl
leftbracket2
leftbracket3
leftbracketl
leftbracket5
leftbracke t6

= ss

colonequall

colonequal2

ae

in expression
Operand situation: 1 - 5
Successors: Begin of expression (no. 2)

In expression
- Operand situation: 1 ~ 5
Successors depend on matching [as follows:

Larray: : comma6 semicolonS (no. 13)

[left part : colonequal2 (direct check)
[subscr.var. : No. 1 (see x / + [) with cperand sit.=2

{for-variable : colonequal, (direct check)
{left part or assignment expression: plus2 minus2

semicolon? end2 else2 binaryoperatorl

colonequalS (no. 6) with operand sit.=2 .

Assignm. statement Successors: Segin of expression (no. 2) -

Following proc.head
Subser. var. .
For-controlled var.
Continued assignment

Array declaration t Operand situation: 1

‘Switch declaration
Operand situation: 1
Successors: Begin of expression (no. 2)
Normal assignment

Operand situation: 1 or 2
Successors: notl if3 plusl minusl semicolon? end2 else?

leftparenthesish. binarycperatorl leftbracket6

colonequal5 . {noe hy)

- bL.op.

Aigol tranclator. ~2hj-
20. Nov. 1961

Multiple meanin; of delimiters (pass 2), cont'd.
ee

colonequal3 Following precedure headin;
Operand situation: 1]

Snecessors: No. k
colonequall, For clause

perand situation: 1 or 2
Successors: Begin of expression (no. 2).

eclonequalS Continued assipmment
Operand situation: .. . 1 er 2. Suecessors: No. ik.

rightparenthesisl Formal parameter oart.
Qperand situation: 1
Successors: <letter string>:(semicolenl (special treatment)

rightparenthesis2 In expression

Operand situation: 1 ~ 5
Successors depend on matching, (:

(proc. statement +: <letter stringy:(semicolonty *
endl elsel (no. 20) with operand sit.
x QO. .

(subexpression : No. L with operand sit. = 3
(fune. desig. : <letter string>:{ Ne. 1 with

operand sit. = 4
code

codel Following procedure heading.
Operand situation: 0

Successers: Depends on code language.

the information on successors given above may be condensed into the

following brief table, which lists the permissible successors in each of

31 different states. The numbers of these states have alsc been given above.

in this table those delimiters which behave in an identical manner as far

as their occurrence is concerned have been combined into a single entry.

The groups which have been formed:in this way are:

. vering go t = orf for
gowo, covering go to, begin, and for .

type, = integer, real, soolean

string, - strin: and label

i xfeft<Serrtavre

step - step, until, while, and }
a Cerner

¥€

ee
 e
e

e
S

P
E

ad

lg

,

Algol translator. =25—
20. Nov. 1961.

Multiple meaning of delimiters (pass 2), cont'd.
wlll

TABLE OF DELIMITER MEANINGS.

le

n
n
m
n
m
w

‘
m
p

State number

Delimiter 10+ 20+ 30+
1234567 8901238567890123456789901

« (not) “@xr i yyv7 @ ;
go to begin for (4 2a
if 343 ho o2 2210
comment, Lilid

OE 1
intezer real Boolean 2 133
array 2 11 122

“switch 122

rocedure 2 1 122

String label | il
value Tr

+. 2121121) a 2 —?
Sx . BIDX YOTTTT 6533212 in 727 ¥
end ~~~ 2222 221111 1 12

else 22222221 11 Z

. hhhub 422 2 1 322 3
binary operator li’Vaidridl
then Li 1
do Lil 1

3 333 hil 2 2121 2

step until while] 1! |
i hhh6k h22 2 ~ 5 1 322 3
3 777 7 L655 121 3 2 -

rd 5 5 22 2 kl, 322 3
) : 222 2 1 :

code . ‘ 1 i.

Note that in this table two states have been omitted since they atimit only one

delimiter. These are: (1) Expecting semicolon, resulting from rigihtparen-

thesisl, and (2) Expecting semicolonll, resulting from endimatching beginbody.

In both cases the elimination of possible comments in the text will reauire

a special treatment anyway. oy

The above 31 states correspond to well defined situations in the input

string. The following is ‘an approximate description of these situations and

a list of the delimiters which may precede each of them:

Algol. translator. «26

20. Nove 1961

“itiple meaning of delimiters (pass 2), cont'd.

9. Expecting statement after else. else

10.

11.

12.

13.

ih.

156

16.

17.

18.

19.

20.

21.

22.

23.

2k.

25.

HEANING OF STATES AND PRECEDING SYMBOLS.

In . expression. + -xfef)]

Expecting expression. , go to if step until while (_ 3

Expecting expression after else. slse

Expecting left part or exoression. :=

Expecting unconditional expression. then

Following subscripted variable which follows :=. 3

In Boolean expression. 1< 4° > 77 AV>7PE

Expecting unconditional statement. then :

Following end of block or compound statement. end

‘Expecting statement, not comment. do :

In value parte value 3 |

Following array segment. 3

In specification. array switch procedure string label

Following ctype> as specifier. integer real Boolean

In procedure declaration heading. procedure |

In type list. , :

Following own <type?. integer real Boolean

 Following non~-own type declarator. integer real Boolean

Following. procedure statement.)

“In formal parameter list. (>

Following for. for | :

Following switch as declaretor. switch

Expecting array segment. array ;

Following own. own

ae

vo Re

Algol translator. ~27-

20. Nov. 1961

‘altiple. meaning of delimiters (pass 2), cont'd.

26. Expecting procedure body. 3

27. Expecting statement or comment . 3 |

28. Expecting declaration or statement. 3; begin

29. Expecting specification. 3

30. Expecting value part or specification. 3

31. Expecting procedure body or specification. $5

The information given inthe table of delimiter meanings (page 25) may

of course be handled an many. different ways. The whole table may be stored

in the machine. If it is packed as closely as possible in a binary machine

it will need 31 items of 50 bits. Several cases lend themselves to a special

treatment, however. Thus value is only possible in state 30, while the delimiters.

- , comment, string, label, binary operator, step, until, while, and J may be

checked — » more simply by testing the magnitude of the state number when these

are chosen as above. If this is done the table only needs 31 items of 5 bits.

It is thus clear that the storage requirements of the present mechanism km are

very modest.

It should be noticed at this stage that the above mechanism is designed

to ignore any possible checking of types. The reason for this is that it is

impossible to do a complete type checking because declarations for identifiers

are generally not available at this stage. The complete type checking will

be performed during pass 3. However, the above mechanism also does not check

that delimiters on each side of expressions match properly. This is the task

of the macrochecking which will be described next. This also will provide the

mechanism for determining the kind of left parenthesis, bracket, end, ebb.

which natehes kaw wight one. This has already been used in some of the above

discussions on the successors of delimiters.

Algol translator, ~28-
21. Nov. 1961.

MACROCHECKING AND THE DELIMITER STACK.

For the purpose of checking and matching delimiters which permit arbi-

trary expressions to occur in between them a stack (push-down list) of

delimiters will be used during the scanning of pass 2. This stack will.

at any time during the scan contain one entry for each delimiter having

a left parenthesis character, which has not yet been matched by a corre-

sponding right symbol, and which will admit arbitrary nesting of other

brackets to appear before this matching will take place.

Each symbol in the delimiter stack will be one out of 28 different

possibilities. In order to describe the meaning and dynamics of thse symbols

the life history of each of then will-now be given, in terms of the following

four kinds of events: (1) Creation. An item is said to be created when

it is entered at the top of the stack, the other items being pushed down.

(2) Changes. These convert the symbol in question to some other symbol.

This happens only at the top of the stack, and 211 other itemc remain un-

changed. (3) Recreation. This denotes that the symbol in question is for-

med from some other symbol. Only at top of stack. (4) Annihilation. This

indicates that the symbol in question is removed from the top of the stack,

the other items being popped up. Where in the following descriptions one

or more of these events are omitted it means that no event of this kind will

ever také place for that particular symbol.

i. beginclean. |
Creation: beginl .
Changes: To beginblock by ownl, typel, arrayl, switch.

fo beginprocedure by procedurel.

Annibilat.on: endl or 2¢ .

2. beginblock |
Changes: To beginprocedure by prodedurel

Recreation: From beginclean by owml, typel, arrayl, switchl.

P ~ beginprocedure by semicolon’, 9, 9H, 11.
Annihilation: endl or 2.

Algol translator. “29 =

21, Nov. 1961. ,

Macrocheciing and the delimiter stack, cont'd.

ono -=2 ee we

3, beginprocedure
Changes: To beginblock by semicolon? , 9, &, 11.

Recreation: From beginclean or beginblock by procedurel

lh. beginbody
Creation: begin2

Annihiliation: endl,2.

S. (call

Creation: leftparenthesis2,3 °° sit Fr be aT

Annihilation: rightparenthesisL

rc
6. (subexpression

Creation: leftparenthesisl, with operand situation = 0

Annihil.: raghtparenthesis

7. (function desig.

- Creation: leftparenthesis) with operand situation = 1

Annihil.: rightparenthesisz,

8. Larray,

Creation: leftbracketl

Changes: To [array: by colon}

Recreation: From [array: by comna?

9. Larray:

Changes: To array, by comma?

Recreation: From [array, by colon}

Annihil.: rightbracketl

c~ 10, [leftpart
Creation: leftbracket2, 3

Changes: To :sassign | by rightbracketl

il. heft or assign

Creation: leftbracket6

Annihil.: rightoracket|

le. [subser.var.
Creation: leftbracketh

Annihil.: rightbracket |

i3. [for-var,
Creation: leftbracketS

Changes: To :=for by rightbracketl «

1h. :=switch
Creation: colonequall

Annihil.: semicolon?

Algol translator. 3 0=
21. Nov. 1961.

dacrochecking and the delimiter stack, cont'd.
ad

15. :=assign
Creation: colonequal2,3
Recreation: From [leftpart by rightoracketl
Annihil.: semicolon?, end2, else2

16. :=for
Creation: colonequalh
Changes: To do by dol, to step by stepl, to while by whilel
Recreation: From until and while by comma7

17s goto
Creation: gotol, 2
Arnihil.: semicolon?, &md2, else2

18, ifstatéement
Creation: if1,2
Changes: To thenstatement by thenl
Recreation: From elsestatement by ifh

19. ifexpression
Creation: if3
Changes: To thenexpression by thenl
Recreation: From elseexpression by if

20, thenstatement
Creation: None
Changes: To - elsestatement by elsel, 2
Recreation: From ifstatement by thenl
Annihil.: semicolon?, 9, 16, 11, endl,2

21. thenexpression
Changes: To elseexpression by else2
Recreation: From ifexpression by thenl

22. elsestatement.
Changes: To ifstatement by if]
Recreation: From thenstatement by elsel, 2
Annihil.: semicolon7, 9, pe ll, endl, 2

23. elseexpression
Changes: To ifexpression by ifl
Recreation: From thenexpression by else2
Annibil.: semicolon9, end2, dol, colon3, stepl, untill, whilel, rightbracketl,

comma7, rightparenthesis2 +hen4

2h. step
Changes: To until by until
Recreation: From :=for by stepl

se
 a

ch
e,

ib
a

t
e
e

ES

E
B
S

M
e
e

e
e

e
e

F
lo

se
s

Algol transtator. -31+ 2.ed. 2h. Nov.61

el. Nov. 1961. .
,

Macrochecking, and deliniter stack, cont'd.

25. until
Changes: To :*for by comma7, to do by dol

Recreation: From step by untill

26. while
Changes: To :=for by comma7, to do by dol

Recreation: From :=for by whilel

o7. do.
Recreation: From :=for,” “~~ wuntili, and while by do

Annihil. : semicolon7, 9, tM, 11, endl, 2, elsel, 2

28. program.
Creation: By initialization of translator

Annihiliation: semicolon 7,9

In describing the actions performed on the stack by the various deli-~

miter programs it is convenient to divide the relevant delimiter programs

into four groups, as follows:

Group 1: Programs entering a new item into the stack. These programs

correspond to symbols having the character of deft brackets or pseudobra-

ckets. The groups has the following 20 members beginl, 2, leftparenthesis2,

35h, leftbracket1, 2, 35 hy 5, 6, colonequall, 2, 35 4; gotol, 2, ifl, 2, 3.

Group 2: Programs changing the top elenent of the stack, without any

need for search or check. fhere are 8 members: if, ownl, integerl, reall,

Booleanl, arrayl, switchl, procedurel.

Group 3: Programs performin ing simple search and check. These programs

represent delimiters which all terminate an expression, but not a statement.
neal ttindeeeninnneneeeatiiliioes et

They will all perform an action having two steps: (1) Test whether the top

of the stack is Nelgeexpression". If so annihilate this item. (2) Test the

(possicly new) top of the stack and perform an appropriate action, according

to the indications in the following table. In this table each delimiter

soa

Sil
a i
a
i
n

Algol translator. . 932-
2h. Nov. 1961.

Macrochecking and delimiter stack, cont'd.

is represented by a column and the elements in the top of the stack which

are of interest in this connection each have a line. A symbol at the

crossing between the line for an element and the colum for a program

indicates that this element is acceptable for the program and will induce

an action according to the fdllowing code:

L means: leave the element unchanged in the stack

A - 3: annihilate this element

Ch - : change the element.

TABLE OF SIMPLE SEARCH AND CHECK LOGIC.

while
ghtbrasketl | rightparenthesis2

;
P
i

>
E
>

W
N

do thenl
y step J colon3

until
In stack

9, farray:
10, ftpart
‘12. leubscr.var.
13. [for var.
ll. [left or assign
1h. s=switch
16. :=for
25. until
26. while
5. ‘(call

7. (function desig. L
6. (subexpression .

18. ifstatement Ch
a ifexpreasion . Ch

[array, a Ch
abe step | Ch

ao
d

Ch Ch

r
o
p

r
e
h
i
r
e

s
e
o

S
S
P

>
>

>

Group i: Pro rforming & ral_search and check. The programs

in thie group represent delimiters which terminate expressions and/or : state-
paalinaisaiiiaas ta

ments. Owing to the fact that arbitrarily deep nesting of for and if clauses

is possible in ALGOL the search performed by the delimiter programs of this

et

Algol translator. @33-
2h. Nov. 1961.

Macrochecking and delimiter stack, cont'd.

group may remove an arbitrary number of elements from the delimiter stack.

The logic of this search is deseribed in the following table. The meaning of

this is as follows: At each stage of the search there is defined the value .

of an integer called the Search State. Using the current Search State and

the symbol in the top of the stack as argunents, the table gives the action

to be performed (L, A, And Ch having the same meaning as above) and the

new value of the Search State. The letter e in the position of the new

Search-State indicated that the “search has been completed. The integer ‘fol-

lowing this e gives the new state number associated with th is completion.

Prior to the search the delimiter program will initialize the Search State

as follows: bog

Delimiter program Initiel Search State FES 5
semicolon? 2.

9° - 1 _

endl 5 °
2 h 3

elsel 8
2 7

TABLE OF ACTIONS AND NEW SEARCH STATES .

Search +- semicolona e-—— end -——— 1 relse-— elseialt.)

State 1 2 3. 4 5. 6 7 8 8a 9a
In stack r ,

bveginclean : L,e27 L,e27 A,e10 A,e10 L,e6 ©

beginblock _ Lye27? Lye27 A,e10 _ Ayeld L,e

beginprocedure | Ch, e28 Ch,e28 . Lse

 beginbody -L,e27 “G,e27 A,e(special) A,e(special) Le

:*gwitch A,e2b :
:*assign Or AS” A,8

goto A,2: A,5 A,8
thenstatement = A,3 A,6 Ch,e9 A,Ya

thenexpression Ch,e3

elsestatement A,3 A,6
elaeexpressioA,1 A,k ° A;7

do . A,2 =As2 A,5 ASS A,8 A,8a A,8a

program L,ell Lyell

i
al

a
i

i
e
t
e
k

a A
S
E

ia
i
a

a
a

Algol translator. . =3h-
2h. Nov. 1961.

Macrochecking and delimiter stack, cont'd.

In considering this table it should be noted that a certain simpli-~
ond “T

fication has already been made use of in Search States 1 and 4. In fact,

these ae columns form the combination each of two columns, one of which

admits elseexpression while the other does not. This combination of two

columns into one clearly would be inadmissible if nothing were known about

the items in the stack. However, the very detailed microchecking reflected

in the table on page 25 will already have avoided that any illegal sequence

of entries into the delimiter stack will ever have hade the chance of building

Upe For this reason, although the above table certainly rettects the way

in which the actual searching will take place it is unnecessarily complex.

As a matter of fact only three columns, one for each of the three deli-

miters, is necessary:

{TABLE OF REDUCED SEARCH LOGIC.

In stack Delimiter: semicolon end else

beginclean L,e27 | A,e10
beginblock L,e27 ~ A,el0
beginprocedure Ch,e28
begin body L,e27 A,e(special)
:=switch A,e28
:=assign —»A,repeat © A, repeat A,repeat
goto ‘ A,repeat A, repeat A, repeat
thenstatement A,repeat. A, repeat Ch,e9

thenexpression Ch,e3
elsestatement A, repeat . A, repeat
elseexpression A, repeat A,repeat A, repeat

do. “ Ayrepeat A,repeat A,repeat

program Lell -

Here the word repeat means that*the search should be continued, using the

rules in the same column.

It. should further be noted that this searching logic is based on a.

definite rule for the interpretation of the correspondence between thens

Algol translator. =35-
2h. Nov. 1961.

Macrochecking and delimiter stack, cont'd.
— ee mee

and following elses. This rule is that else will search back to the first

then in the stack, but.no further. hus the association of then and else

in the following examole would be as indicated in the lines:

begin if .. then for ... do. if ... then .. %* ws. @lge 6. t= oe §

An alternative rule would be to have any else which does not find an expres=

sion then search back to the previous begin as indicated here:

begin if .. then for ... do if... then .. i™ «.. else .. t= «. 3

The searching logic appropriate to this rule is given as else(alt.) in the

table on page 33. Lt is obvious that the present treatment.will take care

of either rule with very little change.

The items in the stack will of course be represented by suitably chosen

integers. The following assignment will make the integers relevant to each

delimiter form an unbroken sequence:

1. thenexpression li. program 21. (call
2. thenstatement 12. s=switch . 22. (function desig.
3. goto 13. Tarray: 23. (subexpression
. s*assign 1h. [leftpart 2h. ifexpression
5. do 15. [subser var. . 25, ifstatement

6. beginclean 16. [for 26. [array,
7. beginblock 17. [left or assign 27.step
8. beginbody 18, :*for 28. elseexpression
9. elsestatement 19. until
10. beginprocedure 20. while

The only exception is "elseexpression" which will be treated in a special

way because of ibs unique character (in fact, it will be treated alike

by all delimiters).

Initiglize! dorm Loloctend > next eyrn ooh . =A)

DELIMTeR stack [de] += ° pvogrem ">

fax | 34 xp 1 unbl 23 uv last ittw Cy: a -1;

lack lcalized old : 4;

(éfate SH oe os

| highest | momberis correuk “ep t= last hop: =O;

Cleo: by pe ond neyt; decl:s rej

tape has appeared! ;- jeloe °

nor wad wort ’

Algol. translator. ~36«
2. Nov. 1961. Do

THE CENTRAL READING PROGRAM FOR PASS 2.

If the logic developed in the preceding sections is included ,the

basic scanning process of page 13 will be given approximately by the fol-

lowing algor ithm:

nitialize: $s 4 dsc blockna next symbole :> 73

DELIMITER sTacK[ds|:= "program"}

state :* 11;

decl 2» re 3

type has appeared := false;

normal next: operand situation := 03

normal next2: input(symbol);

comment The Label take identifier is ‘ion page 6;

if class(symbol) = letter then go to take identifier;

if class(symbol) = numeric then go to take number;

if symbol. = left string quote then go to take string;

if clase(symbol) = logical value then

begin operand situation. r= 55

i := if symbol=true then 1 “else 2 3

go _to next after operand .

ends |
if class (symbol)=B thengo to alarm;

go to check occurrence;

mo com.ent The following entry is used by rightbracketl and

rightparenthesis2 and after input of logical value;

next after operand: input(symbol);

Algol translator. ~37-

2h. Novémber 1961

The central reading program for pass 2, cont'd.

check delimiter following operand:

if class(symbol) + delimiter of class 38 or C then

go to alarn:

check occurrence: case := DELIMITER MEANING [state 3 symbol | 3

if case = 0 then go to alarm;

go_ to pass2 program [symbor | 3

The classes of symbols used in this program are slight modifications of

the classes of page 15:

Class name Symbols belonging to class

numeric <digit> . 10

B — «Jae SS #2? $ eDVA then do: := step until

white)C Ju’
Bor C . x fefe<g=>> * 2 DVA then do : := step until

. while ye + = 3 end else (,

The array DELIMITER MEANING is given in the table on page 25. The switch

pass2program has one element for each delimiter, i.e. 8 elements. The
lead to programs which

labels “take number" and "take string") perform actions similar to those of

the identifier handling program on pages 6 to 8, i.e. as many input symbols

as are necessary to complete the construction in question are processed.

| The output will be an item number in a constant table, <ssigned to i.

The following is a first sketch of the delimiter programs which will.

be entered through the "pass2procram" switehy and which will handle decla~

rations.

a
a
n

Algol eransiatgr: = 38

27. Nov.-1961. .

The central reading’ program for pass 2, cont'd.

First note that in consequence of the above logic the operand situation

at the time of entry into the delimiter programs is known as follows:

Class characteristic Members Known operand

In "BY In "B or CH
situation

Yes Yes xfatcegrz>#arva then do : := #0

step until while) []

Yes No wv? Alarm

No Yes += 3 end else (,; 0 to 5

No No “1 go to if for comment begin own Boolean = 0

integer real array switch procedure string

Label value code

In some of the delimiter programs additional checking of the operand situa-

tion must be carried out. The required operand situation for each delimiter

sub-program is given on pages 18 ~ 2h.

In addition most of the delimiter programs must assign a new value to

+ the state according to the information on pages 16 = 2). In the brief

descriptions below the appropriate information on the new state and the

operand situation has been etated in an abbreviated form, thus: .

ownl (25) means that the successor state should be 25 whihe no operand

checking is necessary,

comm22 (~,1) means that the state should remain unchanged, while the

operand situation mst be i,

comma? (2,1-5) means that the new state should be 2, while the operand

situation met be 1, 2, 3,-4, or 5.

Unless otherwise stated all delimiter programs will return to "normal

next". or "normal next2",

Algol translatem - -39—
27. Nov. 1961. ~

DELIMITER PROGRAMS FOR PASS 2.

ownl (25):SET BLOCK;

Boolean: decl :* bools go to type [case)s

integer: decl:= int; go to type [case];

real: go to type [case]; | |

typel (19): SET BLOCK; type has appeared t= true;

type2 (18): decl = decl + ownmark;

f~ - type3 (15): type has appeared := trues

arrayl (2h): SET BLOCKs decl := decl + arraymark; ‘eopmstev ‘=O;

array2 (1h): decl := decl + arraymark;

switch] (23): SET BLOCK; decli= switch mal »

switch? (1): decl := ewitchmark; |

procedurel (16): SET BLOCK; goto protedure 2} comment bv ght she 1= 16,

procedure? (14): decl := if type has appeared then decl rocmark else proomark;

valuel (12): 3
Ni |

string] (14): decl := stringmarks

~~ label (14)::+ decl := labelmark;
|

semicolon) (28,1): DECIARE TYPE; decl:= re; “type has appeared :* false;

-gemicolon2 (26,1): DECLARE PROCEDURE; decl:=re; type has appeared := false;

semicolon3 (31,1): SPECIFY; decl:= res type has appeared := false;

semicolon (30,0): 3 1s exewledl vy right Parrewhres 1s 1) page 42;

gemicolonS (28,0): GOMPEETE-ARR
AT-SEGHENTs- decl:=re; type has appeared := false;

semicolons (29,1): SET VALUE;

semicolon7: Depends on search in stack (page 33 = 3).

semicolon: (28, O-1): FINISH HEADING; COMPLETE PROCEDURE DECLARATIONS

‘©

Mgol transiator. he
27. Nov. 1961.

Delimiter programs for pass 2, cont'd.

semicolon9: Depends, on search in stack (pag. 33 « 3h).

semicolonll (28,0): COMPLETE PROCEDURE DECLARATION; ' doneby end, see page 4b,

beginl (28): Bat(beginclean); deth:z re; | ine 0 from below

begin2 (28): FINISH HEADING; Ent(beginbody)s

commal (17,1): DECLARE TYPEs

comma? (#,1)1 DECLARE ARRAY; eovnter ecounter +4]

comma3 (-,1)1 DECLARE FORMAL;

comnal (2,1): SET VALUE;

comma5 (14,1): SPECIIY; |

commas. (2),,0): GCOMPLETE-ARRAY-SEGHENT douw bet | +e,

comma7 (2,1+5): Depends on simple search in stack (pag. 32)

notl (7): Produces output |

code) (state suitable for scanning of machine languace,0): FINISH HEADING;

gotol (2): Ent(goto);

goto2 (2): FINISH HEADING; Ent(goto);

4f1 (2): Ent(ifstatement);

if2 (2): FINISH: HEADING; Ent(ifstatement);

if3 (2): Ent(ifexpression); ,

4th (2): Ch(ig delimiter stack[{ds |= elsestatement then ifstatenent else 1fexpres}

forl (22): 3 | |

for2 (22): FINISH HEADING;

comment (-): 3

pluel (1): Producea output
plus? (1,1-5): Produces’ output
minus] (1): Produces output
minus2 (1,1-5): Produces output

Algol translator. . ane
27. Nov. 1961.

Delimiter programs for pass 2, cont'd.
oe tee

endl : Depends on search in stack (paz. 33 - | 3h).

end2: Depends on search in stack (pag. 33 - 3h).

elsel: Depends on search in stack - ~_ .

else2: = ~ = «#« = = “ |
Lormal

leftparenthesisl (21,1): DECLARE PROCEDURE; decl:=pe} type has appeared:= false; ©

leftparenthesia2 (2,1): Ent("(call")s;

leftparenthesis3 (2,1): FINISH HEADING; Ent("(call");

leftparenthesis) (2,0-1): Ent(if operand situtation=0 then n(gubexprtelae"(funots)

x / « T (1): Produce output .

<4 * 2 > Pada V (7): Produce output

Ch(4fDELIMITER STACK [as] =
ifst then thenst else thenex)

doi. (11): Performs simple search in stack (pag. 32); Ch(do);

thenl: Depends on simple search in stack (pag. 32) 5

colon] (11,1): DECLARE LABEL; |

colon? (11,1): FINISH HEADING; DECLARE LABEL; |

colon3 (2): Performs simple search in stack (pag. +32)3feubes, counter: :=] +gubsercount:
Ch(tt [array: tt) \

colon (B,1)+ DECLARE LABEL; 4

stepl (2): Simple search in stack (pag. 32); Ch(step);

untill (2): - = = = | = = 3 Ch(until); ‘e
e

whilel (2) to ” ~ “ ~_ Ch (while)3 , i

w
a

rightbracketl: Depends on simple search - w
e

leftbracketl, (2,1): subse counter:=0; Ent("[array,"); DECLARE ARRAY;

- Yeftbracket2 (2,1): Ent("[eftpart");

leftbracket3 (2,1): FINISH HEADING; Ent(" (aeftpart");

Leftbracket (2,1): Ent("[subser");

leftbracketS (2,1):. ine (" (fox);

3 . - CORR OTE Ten crm mmaco maya agassmers 9 7 emery = aterm wa MRNAS SGT RCE RETIRE OS et TS gi TR RE REIRSON CIE SORT CELSO EN ESTE

Algol translator. <)j2—
27. Nov. 1961.

Delimiter programs for pass2, cont'd.

‘leftbracket6 (2,1): Ent(" [aeftor assign")

colonequall (2,1): DECLARE SWITCH; Ent(":=switch"); Covinten i= & \

colonequal2 (l,1+2): Ent(" s*assign");

colonequal3 (4,1): FINISH HEADING; knt(":=assign");

colonequall, (2,1=-2): Ent(":=for")

mo colonequalS (h,1-2): 3
DECLARE fORMAL3

rightparenthesiel (unique successor,1)#|Seareh for letter string_or semicolon),

rightparenthesis2: Depends on simple search.

LETTER string TeLLows Aron
anew

leg gn, 4 symbol seumreolen Voom LAMA (“sermrcolon waisei ny);
dewiz rey

bye hes op peene A it felt >
“o A= So-

rk ; ,

Algol translator. wl3-
5 » Dec. 1961. ‘

Delimiter programs for pass 2, cont'd.
~~ ee em te

ia

The programs which perform a simple search in the stack (see page 31 -

32) will now be described in detail. They all make use of procedures which

will be described later. flowever the following procedure is used so frequently

that a description is in place already here:

procedure TEST FOR ELSE EXPRESSION}
Ce pegin top of stack := DELIMITER STACK[ds] ;

if top of stack = else exoression then

begin Produce output; co. sent Output will be discussed later;

ds := ds ~ 1;
top of stack := DELIMITER stack [ds]

end
ends

The following programs will also make use of the numerical equivalents of the

elements in the stack given on page 35.

comma7: TEST FOR ELSE EXPRESSION; state :* 23; -

begin switch comma/match :* switchelement, arraybound, leftpart,

subscriot, forvariable, left or assign, for elenent,

until, while, procedure call, function designator;
o to comma7match[top of stack - 11];

STAR "impossible comma"); .
switchelement: COHPIEATE GHERGH HESSEN Py gobo noumn See yraced secounler vy

arraybound: DELIMITER STACKCds] += “farray,"; ste precedwre colt;
procedure call:
function designator: COMPLETE ACTUAL PARAMETER; go to normal next;

leftpart:
subscript:
forvariable:

left or assigns: COiMPLUTE SUBSCRIPT; go to normal next;

for element: COMPLETE FOR ELEMENT; go to normal next;

until: COMPLETE UNTIL;
reset for list: DELIMITER STACK Yas} s= "eefor'ts go to normal next;

while: COMPLTE WHILE; go to reset for list;
end comma 7 switching; _ ,

rightbracketl: TEST FOR ELSE EXPRESSION; ds := ds ~ 13 operand situation := 2;

begin switch rightbracketmatch :=* arraybound, leftpart, subscript,

forvariable, left or assign;
go to rightbracketmatch [top of stack - 12};
ALARM("impossibe righturacket");

_ arraybound: COMPLETE. ACTLAL PARAMETER3
COMPLETE ARRAY SEGMENT; state := 13; go to normal next;

Algol translator. ~lh-
5. Dec. 1961.

Delimiter programs for pass 2, cont'd.
~~“ wm we ee en

leftpart: COMPLETE LEFT, SUBSCRIPT LIST;
input(symbol);
if symbol = colonequal then go to colonequal2; :

ALARA("colonequel missing"); ext abter wyerenrel;

subscript: COMPLETE SUBSCRIPT LIST; state := 1; go to normainext2s— J
forvariable: CiIPLETE FOR SUBSCRIPT LIST; ‘

input(symbol);
if symbol. = colonequal then go to colonequal;

a ALARM("colonequal iissing"); dy

4 left or assign: COMPLOTE SLSSCRIPT LIST; state := 63 go to next after operah

end rightbracketl switching;
dol: TEST FOR MLSE EXPRESSIONS

state 1= 11; DELIMITER STACK [ds] := "do"
begin switch domatching := for variable, until, while;

© bo domatching [top of stack ~ 17);
SP THH("impossible do");

for variable: COMPLETE FOR ELEMENT; go to for clause finished;

until: COMPLETE UNTIL; go to for clause finished;

while: COMPLETS wWi-ILE;

for clause finished: COMPLETE FOR CLAUSE; go to normal next

end do switching;
stepl: §§ TEST FOR ELSE EXPRESSION;

if top of stack + ":=for" then ALARM("impossible step");
DELIMITER STACK [ds] := step3 state := 23 go to normal next;

whilel: TEST FOR ELSE EXPRESSION;
if top of stack + ":=for" then ALARM("impossible while");

DELIMITER STACK [ds] := while; state := 23 go to normal next;

on rightparenthesis2: TEST FOR ELSEEXPRESSION;
begin switch rightparenthesismatching := eall, function designator,

oo subexpressions
go_to rightparenthesismatching [top of stack ~- 20];

ALARM("4inpossible right parenthesis");
call: COMPLETE ACTUAL PARAMETER;

if LETTER STRING FOLLOWS then begin state := 23 go to normal next ends

COMPLETE PROCEDURE CALL; state := 203 operand situation := 03 ,

go to check delimiter following operand;

_ function designator: CO.iPLETE ACTUAL PARAMETER;

if LETTER STRI?G FOLLOWS then begin state := 23 go to normal next end$

COMPLETE FUNCTION DESIGNATOR; state t= 13 operand situation := h;

go_to check delimiter following operand;
subexpression: COMPLETE SUBEXPRESSION; state := 1; operand situation := 33

o to next after operands; —
end rightparenthesis2 switching;

then: TEST FOR ELSE EXPRESSION;
COMPLETE IF CLAUSE;
if top of stack = ifstatement then |

begin DELIMITER STACK [as] := thenstatement;
state := 8

end

Algol translator. = 8 =. — Ah5- Revised: 11. Dec.62

5. Dec. 1961. ‘ yo.

Delimiter programs for pass 2, cont'd.

else if top of stack = ifexoression then

begin DELIMITER stack [ds] := thenexpression; state := 5 end

else ALAR("impossible then");
79 to normal next;

colon3: TEST TO? ELSE EXPRESSTON§

COMPLETE ACTUAL PARAMRTER; 6v¥S¢ qwonled = Subse eounte +4 j

if top of stack = "[array, " then
~ begin DELIMITER STACK [ds] z= "“[array:" ;

state := 23 go to normal next

end

else ALARM("impossible colon");
untill: TEST FOR ELSE FXPRESSION$

COMPLETE UNTIL;
if top of stack = step then

begin DELIMITER STACK [ds] := unitl;
state := 23; go to normal next

end .

else ALARM("impossible until");

Newt the programs performing a general search in the stack will be described.

These are based on the lbdgic described on page 3. They all make use of procedures

which will be defined later. The following one should, however, be stated already

heres oo

procedure TEST FOR PROCEDURE CALL; , ae
fees «LE operand situation = 1 then COMPLETE CALL WITHOUT PARAMETERS

"" @ise if operand situation * 0 then ALARM("impossible operand");

semicolon9: if operand situation = 0 then ALARM(Mimpossible semicolon");

-.,fEST FO ELSE EXPRESSIONS;

© to semicolon search 33
semicolon7: TEST FOR PROCEDURE CALL; _.

go_ to semicolon search 23;

semicolon search 1: ds := ds ~- 1; _

semicolon search 2: top of stack := DELIMITER STACK \ds]};
semicolon search 3: begin switch semicolonmatch := thenstatement, goto, assign,

do, veginclean, beginblock, beginbody, elsestatement,

beginprocedure, program, switchdeclaration;

go to semicolonmatch [top of stack - 1];
ALARM("impossibe semicolon");

thenstatement:

elsestatement: . + COMPLETE CONDITIONAL STATEMENT;
o to semicolon search 1;

goto: COMPLETE GO TO; go to semicolon search 1;

assign: COMPLETE ASSIGN; go to semicolon search 13

dos COMPLETE ORs; go to semicolon search] ;

Algol translator. -l6~ Revised: ll. Dec. 61

Delimiter »rograms for pass 2, cont'd.
— mn a ee ewe ele

beginclean:
beginblock:
beginbody: state := 273 go to normal next;
beginprocedure: COMPLETE PROCEDURE DECLARATION;

DELIMITER STACK {ds} := "begin block";
state := 28; go to normal next;

program: COMPLETE PROGRAM;
switch declaration: COMPLETE ACTUAL PARAMETER;

COMPLETE PROCEDURE CALL;
ds := ds - 1; state := 28; go to. normal next;

end semicolon switching;

end2: if operand situation = 0 then ALARM("iimpossible end");
TEST FOR ELSE EXPRESSION;
go_to eliminate comment;

endl: TEST FOR PROCEDURE CALL;
top of stack := DELIMITER STACK {ds} 5

eliminate comment: input(symbol);
if symbol = begin. then ALARM("impossible end comment");
if symbol + end ~ symbol # semicolon~ symbol 4 else then

go to eliminate comment;

+ .%go to end search 2;
end: “search l:top of stack ‘= DELIMITER sTaCK{ds);
end search 2: ds := ds = 13

begin switch endmatch := thenstatement, goto, assign, do, beginclean,
beginblock, >eginbody, elsestatement;
go to endmatch [top of stack - 1];

ALARM("impossible end");
thenstatemerit:
elsestatement: _ COMPLETE CONDITIONAL STATEMENT; go to end search 1;
Roto: . COMPLETE GO [03 go to end search 1;
assigns COMPLETE ASSIGN; go to end search 13
dos COMPLETE FOR; go to end search 1;
beginblock: COMPLETE 3LOCK;
veginclean: operand situation := 0;

oo _ state := 103 go to chuck occurrence;
beginbody: . if symbol + semicolon then ALARM("semicolon missing")s

COMPLETE PROCEDURE DECLARATION;
state := 28; £2 to normal next;

_ gnd end switching;

else2: if operand situation = 0 then ALARM("impossible else");
TEST FOR ELSE EXPRESSION; go “go to else search 3;

eélsel: TEST FOR PROCDURE CALL; go to else search 2;
else searchl: ds := ds - 1;
else search?: top of stack := DELIMITER STACK[ds]};
else search3: begin switch elsematch := thenexpression, thenstatement, goto,

assign, do3
go_to elsematch [too of stack] ;
ALARM("imoossible else"); —

Algol translator. -l7~
i. Dec. 1961

Delimiter programs for oass 2, cont'd,
~— = ee ee ee oe ee le le

thenexpression: ' GOMPLETE THEN EXPRESSIONS$
DELIMITER STACK [ds] := "elseexpression" ;
state := 3; go to noomal next;

thenstatement: COMPIETE THEN STATEMENT;
, a DELIMITER STACK [ds] := "else statement";

state := 9; go to normal next;
go to: . COMPLETE GO TO; go to else search 1;

_ assign: COMPLETE ASSIG'; go to else search 1;
do: COMPLETE FOR; go to else searchl;

end else switching;

This essentially finishes the description of the scanning process for pass 2.

It is now possible to return to the description of the «lgorithms for handling

the declaration stack (see page 12). Before this is done it is however neces-

sary to make an addition to the description of the declaration stack. This

follows next,

THE CHECK LIST.

In addition to the identifier table (pag. 3 ff) and the declaration stack

(pp. 9) a check list will be used. This will have one item for each item on the

identifier table. Purposes:

1) To check against double declarations.

2) Facilitate specifications.

Each item in the check list has two parts:

1) The block number whezm belonging to the suxmmuk quantity currently asso-

ciated with the identifier described in the corresponding item of the

identifier table. | |

2) The item number of the DECLARATION STACK where the declaration (if any)

for the corresponding identifier is found.

If the identifier has not yet been declared the check list ehtyy will be =.0.

When an identifier is redeclared in another block the entry in the check list

Algol translator. ~1j8~

12. Dec. 1961.

The check list, cont'd.

is put into the DECLARATION.STACK. All such entries wil} form a new chain in

the DECLARATTO! STACK, being connected with links. The structure of the corre~

sponding machine words will be assumed to be as follows:

Entry in check list: Bits 35-26: D'CLARATION STACK index

15 O: block no.

when the entry is transferred to the DECLARATION STACK the link is added:

Link: Bits 25-16.

The chain of such entries starts at the point in the DECLARATION STACK indicated

by the index;

last localized old.

CHAIN TERMINATIONS FOR THE DECLARATION STACK.

In the following programs the following values of constants are assumed:

arraymark = 3 - int = 3 re zs 2
blockcontant=2l; — labelmark= 1 stringmark = 12
Bool = yy ownomark = 12 switchmark = 11
formal = 23 procmark = 13 typeprocmark = 6

The chain terminations for the chains in the DECLARATION STACK will be placed

in a vector _

integer array last item [1:23]

The subscripts of this vector corresponding to the different chains is given

in the following table. The extra note in this table indicates whether in a pro

cedure heading the kind of quantity indicated in the declaration is possible as

a specification (S) and whether it is compatible with a value part quetation + (V).

1 label sv 8 real proc., call only S(V) 1h own real
2 real sv 9 int. = “= - 15 own integer
3 integer SV 10 Bool. -. - - - 16 own Zoolean
, Boolean SVs 11 switch Ss 17. own real array
5 real array sv 12 string Ss 13 own integer array
6 int.array i 13 procedure 8 19 own Boolean array

7 Bool.array SV 20-22 <type>proc.,call and ass.
23 formal

Algol. translator. 4 -43-
; 12. Dec. 1961 e

Chain terminations for the declaration stack, cont'd.
uw ee ee om el

Note that 12 string is never used as a chain termination, Ihe numerical assiga~

ment is convenient because of checking. In the case of <type> procedures a values

quatation is only pessible if the corresponding actual parameter is a procedure.

without parameters. Under these circumstances the specification <type > procedure

is unnecessarily rostrictive and it is in fact converted to <type> in the pro~. —

grams below.

DECLARATION PROGRAMS.

mo. Now many of the programs called on pages 39 to 47 can be defined:

rocedure SET BLOCK;
Comment This will be called at the beginning of each declaration. It will

do the olock entry work if this has not already been done;

4f DELIMITER STACK[ds1 = beginclean then
beyin DELIMITER STACK[ds] := beginblock;

DECLARATION STACK fourrent top] := last stop*2116+blockconstant* oto;

last stop := current top; .
current top := current top #1;
block no :* block no + 1

end SET BLOCK;

procedure DECLARE(mark)s
comment This takes care of several different mechanisms which have had

Individual identifiers in the programs above, as follows: Previous identifier: Use:

DECLARE TYPE | DECLARE(O)
DECLARE ARRAY — DECLARE(0)

a DECLARES SWITCH DECLARE(no of elements)

DECLARE FORMAL DECLARE? (0): 8
In addition the procedure is called by DECLARE PROCEDURE aiaf and DECLARE
LABEL; a

begin iz identifier is old then -

begin if blocknumberpart(check list [i]) = block no then
ALARM("double declaration");

DECLARAT/‘ON STACK (purrent top]:= check list [i|+last localized oldx2fg
last localized old := current top; .

current top := current top + 1;
end stacking of previous meaning;

check list[i] s= block no + current top x 27263
DECLARATION STACK[current to: a

4v2f26 + last item [dec] | + mark;
last item[decl] := current top;
current top :~ current top + 1

gnd DECLARE;

Algol translator. a a 5Qer +
12, Dec. 1961 a , 6

Declaration programs, cont'd.

procedure SET VALUE$

begin integer k, item;
k := declaration stack part(check list [a})s
item := DECLARATION Svack[k}; : |
if kSlast stoovother part item) # O then ALARM("impossible value quote") 3

DECLARATION STACK[k] := item + value mark
end SEL VALUE;

procedure SPECIFY;

begin integer x, item, note, specifier;
i= declaration stack part(check list[i]);

item := DECLARATION STACK[|3
if kSlast stop then ALRRM("impossible specification")

‘@lse vegin note := otherpart(item);
if note = valuemark then

begin if decl>10 then |

ALARM("impossible combination of value and spec") |

else specifier := if decl>7 then decl-6 else decl;

coment fhe previous statement converts type pro-

cedure into type ;

end check of consistency of value

else if note = 0 then begin specifier := decls

else ALARM("immossible or double specification"); 8

DECLARATION. STACK[k] := item + specifier x 2}9
end doing the specification

end SPECIFY; . oO

_ procedure. DECLARE PROCEDURE;
~ begin DECLARE(next symbolic);

DECLARATION STACK [current top] := last stop~ 2716 + deci;
last stop := current top;
current top := current top + 1;
plock no := block no + 13
iff type has appeared then

begin DECLARATION STACK fcurrent top] := |
“4n2f26 + last item[decl+12[x2T16 + next symbolic;

last item[decl + 12] := current top;
current top := current top + 1;
check list[i] := check listJi] + 2> 2726 +1

end entering second entry;

output()3
last symbolic := last symbolic + 1;

_ print(first 3 characters(primary word{i])

end DECLARE PROCEDURE; |

Algol translator. ~51- Revised 13. Dec. 61.

12. Dec. 1961.

Declaration programs, cont'd.

procedure DECLARE LA3kL;
begin clecl :* 13

DECLARE(next symbolic);

Output(3
next symbolic := next symbolic + 1;

print(first 3 characters (primary wortlfi]); .
end DECLARE LAREL3

Boolean procedure LELTER STRING TOLLOWS;

cegin Hoo. ean read on;

input (symbol); a
cr. LETYER STRING FOLLOWS := read on := class(symbol) = letter;

if - read on then go to finished;
repeat: inout(symbol);

if class(symbol) = letter then go to repeat;

if symbol # colon then ALARH("imoossible parameter delimiter");

input (symbol);
if symbol # leftpzrenthesis then ALARM("impossible parameter delimiter");

finished: *
end LETTER STRING FOLLOWS;

rocedure FINISH HEADING;
begin integer «, specifier, item; integer index;

, z= O; . co 7

index := last item{23}; comment This is position of last formal;
specifier := "no more parameters" ; -

repeat: if index>last stop then.
begin item := DECLARATION STACK findex! ;

DECLARATION STACK[current top + k] <=
first 3 characters(primary word{idendifier part (item)])

~

“™ + specifiers
specifier := otherpart(item);
if specifier = 0 then ALARM("specification missing");

Gndex := linkpart(item);
k 3:= k +1;

go _ to repeat |

end; oe eo .
| output(first 3 characters(primary word/identifier. part(

| DECLARATION STACK[iast stop - 1])])
+ specifier); .

for j := kel step ~1 until O do output (DECLARATION STACK] j + current top|)

‘end FINISH HEADING; ~ |

. procedure Ent(s); integers; begin ds := ds + 13 DELINITER stack [ds | = 8 end;

procedure Ch(s);,DELI:ITER STACK [ds] := 5;

walege o a)

Algol translator.
21. Dec. 1961.

CORRSCTIONS AND ADDITIONS.
Page 1.

In pass 1 the "change to new line" should be kept as arMctra character in the

output, in order to facilitate ALARM output (see page 8b).

In ALGOL comment only the symbol comment itself need to be kept, unless it is

desired to output comments during ALARM output. I.e. all symbols following comment
up to and including 3; may be deleted. This is assumed in the program for comment

on page 0. Comments ’ following end need not be removed by pass 1, however (see the

program at "eliminate comment" on page 6). ek
Page 6. -
In line 10 read: mo

3. In any case exit with a value of the proper identifier er placed in

i. and the Boolean variable.."identifier is old" set to true if the identifier

did not have to be added to the identifier table, otherwide‘to false.
In 5th line from bottom read:
take identifier: n:= 1; ...
In the last line delete '"n := n + 13"
Page 7.
In line 5 insert extra line to read:

go_to assemble 33
nent]

end reading of first 3 characters;
In line 8 change to Fead:

if class(symbol)=delimiter then then go to assemble2;
and remove the e following lines.
Page 8.
Change page number to 8a.
In line 5 underline "else"
In line 19 insert two statements to read:

- secondary[highest number + 1]:= ms
check list[i] := 0;
identifier is old := false

end i = 0
In the two last lines insert to read:

end for k;
' {dentifier is old := true

end; :
operand situation := 1;
go to check delimiter following max operands comment On page 373

Page 9.
In second line above table read: Altogether 2l, independent chains...
Add extra line in table at bottom of page:
Entries from the checklist x
Page 10.
In table, line for array identifier, put x in colum for Link.

Add item to table:
check list entry, with x for link and Other: 35-26: position in DECLARATION STACK,

15-0: block number.
Add note: The check list entries are items of the check list (page 7) which
have temporarily been removed because the corresponding identifier has assumed

a local significance.

o

.

Algol translator uo CORRECTIONS AND ADDITIO;S 2.

21. Dec. 1961.

Insert the attached page 8b between 8a and 9.
Page 12.
The example does not include the items belonging to the check list. Also the
end of chain variables should be changed to be components of the array "last item"
(the algorithms for working with the DECLARATIONS STACK are found on pages hg

-51 . .
-

Page 15.
Move , from group B into group C (because of commas following array segments).
Change the numbers of memvers of the groups accordingly.

Page 18.
Add the number of the successors as on pages 21 ff, as °. . given on pages

39 ff.
Page 19.

_fdd the number of the successors as on page 18,
semicolon3, correct successors as follows: goto2 if2 begin2

add " " " : for2 codel
semicolon7, Read:

After statement
Operand situation: 0 or l.
Successors: Depend on matching symbol in stack (see page 33-3).

semicolon9, for successors see page 33-3).
Semicolonl0O: Delete completely.
comma7, correct successors: if3 rightbracketl

add " : thenl
Page 2h. . e ,
rightparenthesis2, in successors in case of (proc. statement, correct to:

semicolon?
Page 25.

‘In table.in line for 3; change as follows:
fer state 20: 19 to 7, for state 26: 7 to 8, for state 31: 7 to 8.

Page 28,
line ll: read .. . out of 28 different...
Page 30: ,
17. goto, Annihil.: read: semicolon 9, end2, else2 |
In 20. thenstatement and 22. elsestatement delete semicolon 10
In 23. elseexptession, Annihil., add thenl
Page 36. Change beginning of algorithwto read:
Initialize: ds := block no := next symbolic := 13

DELIMITER STACK[ds| := "program's _
for j := 1 step 1 until 23 do last item] j| :~ -1;
Tast localized old :* <1;
state :=* 113
highest number := current top := last stop := 03

clear type and next: .
; decl 3" re;

type has appeared := false;
noomal next: ee

Page 39.
In arrayl add: counter := 0;
In switch] add: decl :* switchmark;
In procedurel add: go to procedure2; comment Sut still state := 163

- Algol translator CORRECTIONS AND ADDITIONS “3.

21. Dec. 1961

Page 39,cont'd.
In procedure2 change to read: . . then decl+typeprocmark else...
In semicolon) add: Is executed by rightparenthesisl, page lj.
In semicolon 5 delete; COMPLETE ARRAY SEGME!HT;
Page]0. .
In semicolonll add: Is done by end, see page 6, line 12 from below.
In beginl add: decl s=* re3 \ , ,
In comma2 adi: counter :* counter +13 v
In comma6 ast charige to read:
comma6 (2,0): counter := 03
Page ll.
leftparenthesisl, read:

e « « DECLARE PROCEDURE; decl := formals;
colonequall, add: counter := 0;
rightparenthesisl, read:
rightparenthesisl (unchanged or 30,1): DECLARE FORMAL; if ~ LETTER STRING FOLLOWS then

begin if symbol = semicolon then ALARM("semicolon missing");
decl :* re3
type has appeared := false;
state := 30

ends
Page }3.
6 lines following comma7, read:

hh switchelement: counter := counter + 1; go to procedure call;
Page 4.
In line 7 read:

subscript: COMPLETE SUBSCRIPT LIST; state := 1; go to next after operand;

Page 15.
~The line following colon3, read:
i ACTUAL PARAMETER; subsc counter := subse counter + 13

Page 49.
In comment to procedure DECLARE, in same line as DECLARE TYPE read: DECLARE(0)

Page 50.
- In procedure SPECIFY remove begin to read:

else if note = 0 then specifier := decl;
In 3rd line of procedure DECLARE PROCEDURE add factor to read:

- 4 6 6 last stop 2T16 + decl « 2¢9;
Change 3rd line from below to read:

next symbolic := next symbolic + 13

PAGES WHICH HAVE BEEN REVISED:
8b (new page), 31, G5, U6, 51

Algol translator ~ Loading system
Decenber 18, 1961 «le

The loading system of the Algol system will have various tesks
to perform:

1) Buildeup of address modification codes
| 2) expansion of macros from pass 3

| . a) Basic symbole such as "beginblock" etc, will be expanded into
"calladdress:= 3
sgo to bhock entry:", etc.

b) Macros proogfuded by the analysis of expressions will be
expanded into 1105 instructions. |

3) setting up of all forward reference, ef.) REFERENCK, designational
expression in go to statements, linkage of if..then..else etce

h) address modification of the outer block
om 5) Bringing system into core

vO 6) Addition and address modification of standard procedures to
the program.

It ig hoped that the length of th8 loader will be less than or
equal to the length of the running system so that there will mm be no
imaging of the loader and/or parte of the program. At this point in the
development of the system, it is assumed that there will be no such
imaging and subsequent coding is written under this asesunption.

Algol translator «© Loading system
December 18, 1961 . a2e

BUILD-UP OF ADDRESS MODIFICATION CODE IN LOAD PROGRAM

-. The partial address modification codes are butiteup

in a single code stack. This stack is divided into seetions

/ .
corresponding to the seobions- of the program.where respectively

ls 25 35 eoog 1 independent codes are in the process of being

built-up. whe w wee wate mrecrblee Gf (etna) Ailoahoer

The current state of the code Stack is described by five

van parameters:

1. DEPTH: The number of codes being builteup = the number

of unclosed sections. (Initial value = 0)
2. TOP STOP: The address of the last stop code,

(Initial value = 0)
36° LINES: ‘The number of lines (complete orfincomplete) for

each block in the top level. (Initial value = 0)

lo BITNUMBER: The number of the last bit in the last line .
in the top level which has just been filleds
(Initial value = 0)

S. INDEX: If one line or less is required for the code
word within a section INDEX = TOP STOP. Otherwise

INDEX is the address of the last complete line in

the section. (Initial value = address of the first
location in the code stack which is to be used
for storing the address modification code words
while they are being built-up)

“— STOP Codes, Each section ends with a stop code which

contains. parameters 2, 3, and l. (above) for the section,. The

stop code is generated each time a new section is opened.

EXAMPLE: When the loading has proceeded as follows:

As begin

® 3 a

we

begin

Ds begin

the code stack will have the following structure:

La
an

 s
itt

sev
aat

ol translator ~ Loading system

Decenber 18, 1961 oj-

Last bit
Location Bloek Line No. in line Code Stack

g A 1 35
A 2 17

9 Stop (6,17,2)
10 A 1 35.
11 C 1 35
12 . A 2. 35
13 Cc 2 35
i A 3 9
15 C 3 9
16 . Stop (9,9,3)

re 17 A 1 31
18 Cc 1 31
19 D 1 31

Note that no trace of B has been left in the code stack.
On meeting end the code a) takes out the code for the last
block bQ removes the last stop and c) collapses the remaining
words, (see CLOSE BLOCK procedure)

he |
Procedures. FSHE procedures arm used in the: address

modification portion of tne load program are:

1. Initalaize load program

2. Open Section |

3e Close Section

oc he Mark (n)

Algol translator « Loading syste
December 18, 1962 he

Procedure Initialize load prorrams

Comment Is used to set parameters in the load prorram
to the proper initial values. INDEX, which specifies
the first free location in the code stack, is assumed
sets

Begin

depth ;= top atop := lines :© bitnumber := 0,

end,

Algol translator = Loading systen
December 15, 1961 . | a5e

Procedure open section;

Bomment is used when block begin, procedure body begin |

or parameter expression is encountered;

begin’

depth = depth + 15

code stack (index + depth] := combination (top stop, lines,

bitnumber) 3

top stop := index + depth ,

lines := 0,

bitnumber := 35 5

ends

Algol translator « Loading system

December 18, 1961 bee

procedure mark (n); yalue ns integer n;

comment Marks the next bit in the n'th block and advances

to next. For n=0 only advance;

begin if bitnumber = 35 then ~

begin bitnumber z= 03

index := index + depth;

for pi= 1 step 1 until depth Bo
code stack Cindexep] 2= O03

lines := lines + 1;

end 4

else bitnumber := bitnumber + 1;

ifin #0 then

code stack [index + n/:= code stack [index+n) +

2e(35+bitnumber) 5

@ 3 2 ws

Algol translator - Loading system

December 18, 1961 “Jo

procedure close section;

comment Is used to load the completed address modifications

code Into the running code and clean up the code stack;°

pega
nteger k;

for k:= depth step depth until lines x depth do

~~ compile (code stack [top atop + k])3

old bitnumber := bitpart (code stack)top stop]);

m := depth s= depth - 13

if depth = 0 then go to lgfding finished; |

old top stop := stoppart (code stack [top stop |)3

old bitnumber + 13

= 36 - u;

ué

v

old lines := linepart (code stack [top stop] 3

for k := top stop = depth - 1 step depth until

Topstop - 1 + depth x (lines - 2) do
begin’

, move := k<top stopel + depth x (lines~2) v

pitnumber + old bitnumber 7 343

m 3= m+1 5

for s := 1 step 1 until depth do
begin

Godestack [k+s] := cqdestack [k+s] +
2P(eu) x Godestack /k+s+m] ;

if move then codestack [k+ts+depth] :=

"2 hv x codestack [k+s+m]
Bnd ,

ends |

top stop := old top stop;

k s= (linestlabels) x 2 + constant;

commer k is required to xmmarzm set to zero the address

mo cation words of outer blocks which refer to parameters

and address modification words of inner blocks. Constant

is equal to the no. of parameters at REFERENCE. and following;

lines := lines + old lines + (if, move then O else -1)3 |

bitnumber := bitnumber + old bitnumber + (if move then @35

else 1)3)

Algol translator - loading system 8
December 18, 1961 -

index := top atop + depvth x (lines « 1)3

for 8 t= 1 step 1 until & do mark (0)5

end close sections

.

Algol. translator ~- Loading system
December 18, 1961 =Sen

Loading of conditionals

At load time there will be a stack of delimiters kept by the

loading system to be used to insure the proper linkage of the if's, then's,

and else's. The stack will also include a symbol marking the end of the

conditional expression. In the following code "program" indicates the

gection of core storage in which the actual running program is stored

and “location” is the index keeping trakk of this storage. "ff" is used

to indicste the first free of this particular stack described above.

then: if stack]ff - if then, sami stack{¢r - 1] f else then

begin
ffs=ff + 33 |

stack{rr = 3\:="dummy"

ends

stack (ff = 2]:*location;

stack [re = 1[2="then";

elset programjstack{ff « ay] selocations

program|location|:=stack) ff ~ 3|5

stack) ffe 3]:=Locations
stack }ff - L}s=Meisers
end of conditional: sondoutan pratack| ff “ 3]s

for q:=p while q # dummy do

begin

p2=program) qs

"program Jaq | s*location

ends

Af stack)fr - 1\ = then then progran)etack [ff - 2] ietocations

ff:eff - 3;

Algol. running systen
December 8, 1962

wo

Representation of blocle and procedures in store

call addresat7q;
@: go to procedure/Rock entry;

reference .
specifications and identifiers in

forward order

address of 1st inst.:array and switch declarations
other code

bd
 b
d
 4

¢
#
 @#
6

go to ends

reference tappetite (total for variable format
in fixed order)

snumber of labels (p)
snunbexr of integers
snumber of reals
snumber of booleans a
snumber of array coefficient sets
tdepth of recursion.
scurrent address modifier
taddress. of first instruction

+9 saddress follewing declaration

+ 10stype _ {
+ Lslabel 1 (goal! and identifier)
+ 122 label 2

s

+
t
+
e
o

+
o

+
+

C
o
n

A
W
N

&

+10 +p label p
+11 + p saddress modification code a

h
o
l
o
t
e
t
a
l
s
l
e
l
e
l
s
l
e
l
a
l
e
l
a
l
a
l
a
l
a
l
a

Pd

ba

a

a
E

a
d

t
t

ba

bt

D4
 b

d
bd

 b
e

Pd
bd
 D

a D
d
B
B

Dd

t
d

Form of specifications:

' Specification 1 vrief identifier of procedure

Specification 2 brief identifier of formal 1

Specification 3 rief identifier of formal 2
a t :

. _« . n , e n-!/

"no more parameters" brief identifier of formal n

a,

Algol running system
December 11, 1961 ~2=

| . Block information in stack

| FIXED FORMAT Stack reference

: FIX-D ORDER current address modifier
return address

REFERENCE

! r~ VARIABLE FORMAT Value of type procedure

: FIXD ORDER formal locations
labels
integers

reals
beoleans .
array identifiers and coefficients

gwiteh identifiers and tables

| temporaries

“TARTABLE, FORMAT expressions as ac’ual parameters

VARTAPLE ORDER gubscripted variables as actual parameters

arrays called by value (components)

VARIABLE FORMAT local arrays (components)
Local switch elements being expressions

Algol running system
December 11, 1961 b30

Procedure and block entry administration

block entry: procedure refalses

go to %3
procedure entry: procedure : strus3

X: stack[first free }sestack references

REFERENCE: estore [call address2+1];

stack| first free + 1] :=etore| RiFERENCE + 7]s connent comment current address modifier

to stacks

stack(first free + 3}seREFERENCEs

stack reference: first free;

first free:sfirst free + h + etore[REFFRENCE]j

store | REFERENCE 5 al seatore {pEFERENCE + 6] +13 comment count depth of recursion;

address of formal:=stack reference + (if etore| REFERENCE +. 10) defines a

type procedure then 5 else h)s

if “procedure then go to Qs
address of actualrecall address + 13.

address of specification:=call. address? + 23

last returnr=L2;

regular returnt>FEs

goteMs
PEs address of specifications address of specification + 1s

Wi specification:*atore[addrese of specification};

if specification = no more parameters then

if store[address of actual] « end mark then go to transformation

finished . |

else

Algol running system
December 11, 1961 calyeo

ds begin
printtext (#Non-agreement between number of formals and

number of actuala/)s

new lines

hot pointseaddress of actuals

go to alarn}
end

ends

go to parameter treatments

transformation finished: procedure:=trues

REFERENCEzastack(stack reference + 3]5

QQ: modify addresses (stack reference + l)5

stack/ stack reference + 2]r= if procedure then address of actual + 1
Gise ~13 comment this sets the returns

for krel step 1 until store[REFERENCE + 1] do

- stack[address of formal + k « i] s~conbina tion (store| REFERENCE +10 +kls
stack reference); comment this sets the labels Into the stacks

RE

go to inatruction{ store [REFERENCE + dds

Algol running system
December 11, 1961 aSe

Discussion of parameter treatment

Parameter treatment is used by
1) procedure entry

2) array declaration
3) switch declatation

l,) special functions (sink cos, etc)

Input parameters¢t
address of actual « will be counted on to next parameter if exit

om through regular return or left at same value if exit through

last return
address of formal # will be increased by & by regular return or left

unchanged by last return

specification = must be f no more parameters. Will be changed

arbitrarily.
regular return « set by each sption using parameter treatment and used

as exit if a proper actual parameter is found

last return « set by each section using parameter treatment and used

as exit when actual kind and tyre = end mark

Variables used:
address of actual
address of formal
address of specification
entry base —
expression
value
specification

o ~ actual kind and type

T
e
e

e

°

Algol. running systen
December ll, 1961 whe

parameter treatment: actual kind and typer=store/address of actual};

at actual kind and type = end mark jthen go to instruction|[last return];

actual addrese:eatere (address of actual + 1);

if kind (actual kind and type) = formal then

bagin

‘actual kind and typersstack[adtual addresal s

actual address :=gtack(actual address + 1);

formal: =true

end

else formal:=falses

if name wim or value §specification) = value then

begin

rounds =type (specification) = integer tpe(actual kind and type)

floats=type(specification) = real atype(actual kind and type) = integer

ends .

go to action[action table (retual kind and type, spoification)];

next parameter: address of actuals=address of actual + 2 3

next parameter after expressions address of formalesaddress of formal + 33

go to instruction megenin(reguiar return]s

r

Algol ruming system

December 11, 1961 “Ta

end: valuersstack(stack reference +};

DECREASE LEVEL;

returnr=etack| first free + 2];

if return>0 then go to instruction|return]

e
|

mee
@ go to instruction| store [REFERENCE +9 J3

exit from parameter expressions first free:=first free = 1;

go to instruction, stack [tiret free | + 1]s

Algol ruming system
Decenber ll, 1961 Be

| procedure DECREASE LEVEL;

begin

REFERENCEs© stack[stack reference + 3]s

D:estore[REFERENCE + 6]:sstore[REFERENCE + 6] +13 comment decrease.

depth of recursions
aomneenaten

if D=1 then modify addresses (stack(stack reference + 1])3

first freerestack reference 3

stack referencerstack(first free] s

ends

F
e

Algol running system
December ll, 1961 Duo

Representation of procedure call in store

if formal procedure identifier then store! p|:setack| formal + 1 3

call address:=p; |

pt go to store[procedure start]; comment this address was possibly set
in the above statement;

actual. parameter j Kind
address

actual parameter { kind
address

° ee

° °

e °

-“end mark”

There mist be complete matching of types in all parameters called by name.

In a type procedure the procedure identifier has two meanings?

1) 4t calls the procedure
2) it represents the value. of the procedure.
We have set the arbitrary rule that a procedure identifier can only be

assigned to in the body of the procedure for which it is the identifier,

Consider the following example:
begin real p, a3 boolean Bl, 52;

ocedure Ps
begin

-

sop + q . Such an example would be con-

ends sidered to be illegal in our

real procedure Qs system since the procedure

begin identifier Q is assigned to

if Bl then @ from without the procedure Qe

eise if BZ thon P If we call P before Q has been

else Q2875 called we nowhere have a loca-

ends tion in which to put the value

° of Q

°

p2Q3
Ps

*

ends

Algol running system
December 11, 1961 «10

Maaning of address in single identifier parameters

Actual parameter

Simple variable

array identifier

switch

procedure (ang kind)

label

formal.

Meaning of address

lecation where value of vatiable is stored

location where representation of the
identifier is stored in the stack

entry point of switch declaration

location of start of procedure

location where representation of label
(goal and mark) is stored

formal location in the stack

Representation of expression as actual parameter im store

kind
reference
code for: values"expressions

e

Be to exit from parameter expressions
appetite (temporaries)
current address modifier
address following dedlaration
address modificaticn code

Algol rumning system
December 11, 1962 while

Information in the three formal locations in the stack

Call by nane

Actual parameter £ £+2 £+2

STMPLE variable kind and type address of value not used

array identifier kind and type address of rerresentati/ on} notwed

of identifier

switch ‘kind and type address of representation) not used
of identifier

procedure kind and type procedure start not used

label kind and type where representation is not used
stored in stack

expressions’ kind and type entry of representation not used
in stack

| Call by value

Kind of: value

INTEGER
real -: actual value not used not used

‘boolean

label, goal, mark not used not used

array address of first address of "type, array" element coefficents

Algol running system |
December 11, 196° lz

Mable of actual parameters and associated actions

 Actval parameter

Simple vardable
integer re A| A

ral AIF A
Array identifier

_ integer
FB B

real BiF SB
Procedure identifier

no parameters

integer Fel Cc

ress eye c
parameters e

wae rea
subseripted variableg

integer fe} €

real E|GE
Other expression

suiegse CDi D

D\G D rea
Simple variable

boolean
Array identifier

boolean
Procedure

boolean
no parameters
parameters

gubscripted variable
boolean :

Other exprassion
boolean

La
Designationalexpression

_ Procedure, no type

Switch identifier
Stringconstant

In case of a double

entry, the left entry

refers to name, the one

to the right to value.

A single entry always -

refers to naM@e

a
r
r
a
y

Pe
al

ar
ra

S
p
e
c
i
f
i
c
a
t
i
o
n
:

i
n
t
e
g
e
r

re
al

 in
t
e
g
e
r

Blanks indicate error

gituations. in
te
ge
r

ro
ce
du
re

|

La
be
l

st
ri

e
w
i
t
e
h

-

a
r
r
a
y

b
o
o
l
e
a
n

o
c
e
d
u
r
e

.

 r
o
c
e
d
u
r
e

r
o
c
e
d
u
r
e

r
e
a
l

bo
ol
ea
n

b
o
o
l
e
a
n

Algol running system

December 11, 1961 ol3~

Aetion A = take value of simple variable

value s=stack (actual address |3

assign value: stack[address of formal|:=if float then floatf (value)
=Tse if round then entier(value + 0.5)

else values

go to next parameter;

Action B ~ take value of array

atack(address of formal]:especification ~ value marks

stack[address of formal + 1} :sfirst frees

actual addrecs2:sstack|adtual address + 23

actual address:=stack|actual address + 1};

stack [address of formal* actual address? 5

for sete address step 1 until actual address + stack[actual address2

+2 |e 1 do

value :eetack(J |;

stack[first free }:=if round then entier (value + 0.5)

. wise if float then floatf (value)
aan else value;

first greerefirst free + 1

ends
go to next parameters

Algol running system
Decefiber 11, 1961 olen

Action C take value of procedure without parameters

expression base:*first free;
STACK SITUATION;

call address :<hW;

Wit go to instructionfactual address |;

“Ww + 1f "end mark"

UNSTACK SITUATION;

£9 to assign value; comment in Action A;

Action D =» take value of expression

expression base :=first frees

| entry:sif formal then actual aidress else STACK EXPRESSION3

! if formal then address of actual:=address of actual + 23

STACK SITUATION; |

stack/ first free }:= P:
first free :=first free + Ls

Ps go to instruction[entry];

stack/address of formal):=if formal then floatf (value)
@ise if round then entier (value + 0.5)

@ise values. -

| | y: UNSTACK SITUATION; ©
'

|

go to next parameter after expressions

Algol running system

December 11, 1961 wh 5a

Action E « take value of subscripted variable

expression base:=first frees

entryt=if formal then actual address else STACK EXPRESSION s

if formal then address of actual:saddress of actual + 23

STACK SITUATION;

stack[first free }:=Pls

first freer*first free + 1;

Pl: go to instruction[entry];

value:stask[address];

go to ¥3 comment in Action D3

Action F e take simple name

stack{address of formal]:sactual kind and tyre;

stack[address of formal + 1]s=actual address s

go to next parameters

Action G + take name of expression

stack[address of formal |:-actual kind and types

stack faddress of formal + J :eif formal then actual address else STACK

EXPRESSION$

go to if formal then next parameter else next parameter after expresaiong

Algol running system
December 11, 1961 =16~

procedure modify addresses (modifier); value modifier; -integer modifiers

begin

integer amounts

amoungrsmodifier store[REFERENCE + 7];
if amount A 0 then

begin

atore| REFERENCE + 7 |smodifier;

conment now modify addressess between store| REFERENCE + 8} and

REFERENCE = 2 using code stored at REFERENCE + 11 + store

[REFERENCE + 1] ;

edt

Algol running system
December 11, 1961 wl7=

integer procedures STACK EXPRESSION;

coment uses actual address, first free, addrese of actual as non=

local parameters

begin

integer J5a-0w's |
anountssfirst free store [actual address + 1) 3

Af anount 4 0 then
begin

store (actual address mil + 1] :«first frees

comment now modiBy addresses between address of actual + 2
and actual address ~ 2 using code stored at actual address + 3;

gnds

"first: freessSTACK EXPRESSIONs«firet free + store|actual address];

for jrmaddress of actual + 2 step 1 until actual address + 1 do

begin

stack |firet free]:=store[3 Js

first free:*first free + 1

ends .

address of actualt=store [actual address + 2]

ends

|

a
a
n

Algol rumming system

December 11, 1961 «1~

procedure STACK SITUATION;

begin

stack[first free |:=expression bases

stack[first free + L}s<address of actuals

stack[first free + 2] ssaddrecs of formals

stack[firet free + 3/:saddress of specifications

stack[firet free + lj] :=floaty

etack[firet free + 5] serounds

mo stack Iriret free. + 6J:=regular return;

stack [first free + 7Js*last returns

stack [first free + 8) sown arrays;

stack first free + glraexiste dhreadys

stack ffirst free + 1Opeaddress in stack;

stack/first free + 1a) sng

first freerefirst free + 12

ends
~~

prodedure UNSTACK SITUAT TON;

begin —
niestack [first free - ul;

address in stack: stack first free ~ 2]5

exists already:»etack/first free - 3]s

own array:estack [firat free ~)]3

last returnsestack [first free ~ S|;

regvitr return:estack[firet free = 6];

round:=stack| first free « Gi
floats-stack|first free ~

address of specificatic tack [first free = 9]s
address of formal :=stack/first free « 10]

Algol running system
December ll, 1961 ale

\
4

address of actual:=stack(first free « 11 }s

REFERENCE testack [stack reference + 3;

firet freersstack| first free = 12]

ends

asm se eT Ie BET 20

Representation of arrays in the store

oJ

call address:=W33

W3 o to array declaration;
+1 : oe below for explanation)
42 ¢ number of identifiers
43°: kind and type
+, :jkind and type of first lower bound

dress See page 10 for explanation of
| and type of first upper bound address
: dress

e

@

2

“end mark”

"A" is the first address of a three-word packet in the area reserved by
bleck entry in the stack. —

A kind and type of array
' #h:A0 (address of first trat element of array)
_*2:Al (address of first element in coefficient vector)

o Three words for each édentifier
Al : number of subscripts (n)

r™ +1: 8
#22 cf[0)
+ 3: of 1)

Algol running system

December 12, 1961 ~20 ode

Storage of arrgys

Consider the following declaration:

array A,B,[1, sty 91) 2025 one slnta,] 5

These arrays will be stored row-wise in consecutive locations: (in the stack)

AO sA lasece

ho*u «1, tA [ta gly sladereslners Ao aa nt BES ee eta

BO tB) 14 12 a135 ooe slg

°
Oo

@

In general. the location of AJSpstgstgereepin|is given by:

(1) AO +. (Lpelg,)#+(dner@Iney 6 (Un=ly th) Ay =Ayag)X(Ugmdy th)xe(tpeanly.1*))

Foee* (4401,)x(ugely tL)x(Uge—lye1 th) X- wanlugel +1).

The number of locations eccupied by the array is given by

Lo(ugel, +1)x(tp.3~lye1*t xe 0 ex(Ugely+1)x(u,-1; +2) .

(1) may be rewritten as follows:

(2) AO+4 +4.92(tye tL) ty agX (typed yt) (ty. Hy 712) + 000th x(t y=tn*h)x

oo ek(ugely*l) = (Lytle x(v,91,*2) Fo eethyx(tte], +1 hx. s0x(ug~19*1))

At the time of the array declaration, the coefficients of the terms in (2)

are calculated and atored in Al¢3 through Al+n?2 where n is the number of

subscripts. ‘The final term of (2) is calculated (it is referred to as a)

and stored in Al+1, ‘The total length of the array is stored in Alt2.

(2) is then used to calculate the address of an element when necessary.

For a declaration like the one above, only one set of ceofficients is

calculated and A+2 and B+2 both refer to Al,

In the case of ewn arrays, the values of 2m 9 List pocogsd, st, are stored

immediately preceding the coefficient vector s that they may be used if

the own array is redeclared for discerning if the old and new arrays have

common elements. .

Algol running system

December ll, 1961 21.

array declaration: own array:cexists already:false};

own array entry: address in stack:*call addresewt 1s

ne=03

address of actualf:=call address + (if own array then 5 else h)s

regular returnbenext subscripts .

last return:*form coefficients;

next subscript: address of formals=firet frees

first free:sfirst free + 1; |

neon + 1

specification: =tinteger value'ts

go to parameter treatment;

form coefficients: ns=(n = 1) 23

first frée:*first free - 1;

if exists already then go to check for overlaps

address of last c:=>store[address in stack|+ 3x store/ address in stack + 1\

ef om array then 3 xn + 2 else 2 + n)3

stack[address of last ¢]:°13

8203

for p:saddress of last o step <1 until address of last c «n+ 1 do

begin

stack|p = 1)r=stack[p) x (stack[first free - 1} = stack[first free
- 2] + 1);

sie + stack(first free « 2| x stack/p]s

first free :=first free = 2

ends

stack [address of last c +n = 1] :98;

stack[address of last c =n = 2] sens

if own array then go to create new own array;

Algol running system

Decenber 11, 1961 220

for prel step 3 until store[address in etack + 1] x32 do

begin

stack(atore/ addres in stack] + p|:sfirst frees,

first freessfirst free + stack |address of last c = n]3

stack|atore [address in stack|+ p+ 1|rsaddrese of last cw n= 23

stack] store /address in stack] + p= 1] :sstore [address in stack + 2|

ends

go to mmm instroction|address of actual + ri

’ Algol running system
December 12, 1961 =22 el

Discussion of own quantities

We have décided to rule out the use of own variables in connection with

recursione

Simple own variables will have ‘absolute locations dmmediately fadiowing
the program and will be referenced by “absolute’addreseing. They will
act as if they are declared in the outermost block of the program.

Own arrays:
Own arrays will not be kept in the stack as %& non-own arrays. They will
be stored in and "own area" (presumed at this time to be in high end of core).
The locations A, Atl, A+2, Al, etc. are not in the stack as with non-own

but are in the section mentioned above immediately following the
progran, :

Referencing elements of own arrays 1s doma exactly as referencing of
non-0wn arrayse

When an own array is declared, various actions may. be takens
1) If the array does not already exist, the array is created in the own
area and the proper addresses are supplied to the locations in the sedion
following the program, ‘The values of the upper and lower bounds are also
stored in the section.

2) If the array already exists in the own area, a check is made to deter~
mine whether the new subscript bounds are the same as the old ones. If m,
no other action is taken, Otherwise, a new version of the array is
created in the own area, the new values of the coefficients and bounds
are stored, and the old array is removed from the own area and the proper
collapsing of the area is done. Coygmon elements, if any, are stored in
the proper séications of the new array.

Algol running system
December ll, 1961. 230

q

Representation of own arrays in store

call address:=63
wW6 : ge te own array declaration;

41 3A oo
+2 ¢: number of identifiers

+3 +: kind and type
+ $ exists already (boolean)
45 find and type of First Tower bound

3
address

L; |
i. See page 20 for explanation of A and these. locations.

Yend markt

A so: "arrays type"
+1: AO (address of first element of array in own area)

#22 Al ‘(address of first element of coefficient vector)

ro
f Three words for each identifier

e e

e .

9

a

Al~l. : an
Als number of subsoripts (n)
Altls a
Ale2: o[0}

@ 9

e eu

o : ®

Alt n+ 2: ofn)

Each own array in the own areaff is headed by a 3worl packets (to be used

to release locations in the own area when an array is redeclared to be of

‘AO ~ 32 A a different size) |

AO «2: mumber of identifiers
AO «il: address of first word of 3-work packet aggodiated with next own array

ALlaw2xni i
Al«2xne1l

‘t
e

Algol running system
Decenber 11, 1961 w2he

own array declaration: own arrayietrues

exists alreadysestore [call address + ||;

go to own array entrys comment in array declarations

check for overlap: no change:*overlap:=trues

address of bounds:efirst free - 13 comment address of bounds points to
last upper limits

address of old Llrestack|2 + storeladdress in stack] J» 2 x ns

for mz] step 1 until n do |
vextn

current old lowerteetack(gddress of old LL = 2 +2xm|Js

current old upper:=stack[address of old Ll~ 1 +2x n];

current new lowerr=stackjaddress of bounds = i@~2x(n-~ m)] 5

current new upper res tack] address of bounds « 2x (n « m)] 3

Leemaximum lower]m]s«Lf current old lower current new lower then
current new lower else current old lowers

Ureninimum upperl m] eeif current old upper< current new upper then

current old upper else current new uppers

overlap:"overlap” U2L 3

r™ nochange:= no changeA current old Jwer =current new lower”

current old upper = current new upper —
ents

if no change overlap then —

begin

first free:=first free ~ 2 x ny

go to instri.ctionfaddress of actual + 1]

ends |
stack|first free |:=n3

address of g:°first free + 13

j 3 first freere first free + 3 + ns

ey

Algol running system

December 11, 1961 ~ #25e

address of last c:"address of 3 +n + 13

_ stack[address of last d :=13

stack] address of s 5°03

for preaddress of last ¢ step ~l until address of et ¢ «n+ 1 do

begin

stack[p « Lseatack|y] x (stack]address of bounds J~ stack laddress
of bounds = 1] +

stack[address of s]:estack [address of. s [+ otack{ pl x stacl{ address
of bounds = 1];

address of boundsbh«address of bounds - 2

ends
address of bounds:=address of bounds + 13; comment acdress of bounds now

points to first lower limit;

number of identifiers:=store [address in stack + J) ;

number to collapsebestack| address of old LL+2xn+ 2] x number of identifiers;

comment number to collapse £# three less than totals

bottom of region:=stack[store fiddress in stack) + 1] + number 60 collapses

first free own:2first free Own « stack [address of s + 1] x number of

identifiers — 3;

if + no change 4~ overlap then go to collapse;

mt=lg |

current addres of old) 1]:=stack/ store Jaddress in stack] + 2] 3

current address of new)1]:*first free own + hs |

MOVE ELEMENTS

collapse: number of collapses snumber to collapse + 33

for p:= bottom of region | « 1 step «1 until first free own = 1 + number to

“collapse do

etack] p)s= stack] p « mumber to collapse };

first free own:=first free own + number to collapses

stack|first free own + 1) :=store [address in stack] s

Algol running system
December 11, 1961 «260,

stack[first free om + 2|:mnunber of identifiers;

stack|first free om + 3|relinkr=first free own + mumber of identifiers x
stack/address of s + 1] + hy |

for pt=0 step 3 until(number of identifiers « 1) x 3 do

stack| store [address in stack] +p + ijrefirst free om +h +px
stack faddress of s + 1];

K: if link = bottom of region then go to move subscripts

for ps0 step 1 until stack[link +1] - 1 go

stack} stack fink) + 3xpt 1) estack] stack {1ink] *+3xp* 1+ px

r to collapses

atack| Link + 2) restack |link +2] + number to collapse;

Linkse stack|link + 2];

go to Ks
move subscripts: for p:90 step 1 until 3 xn + 2 do

stack (address of old Ll + p] testack |address of bounds + p/s

first freersaddress of bounds;

Ns store/address iit stack + 3] setrues

go to instruction/addresa of actual + Ls

create new own arrays for pr=0 step 1 until 2xn~ 1 do

stacl{ address of laste -3xn-=2 + pl reotack)firet free + pis

old first free own:-first free own;

first free owntefirst free om = 3 ~ store) address in stack + 1] x stack
[address of last c = nJs

 stack[first free om + 1] r=store Jaddress in stack] s

stack)first free om + 2] seutore jaddress in etack + 1];

stack [first free own + 3]:s0ld first free om + 1s

for p:=store faddrees in stack + 1} x 3 ~ 2 step ~3 until 1 do

begin .

old firet free omn:=old first free own = stack|address of last ¢ ~ a);

stack[store [address in stack] + p(reold first free om +13

Algol running system
December 11} 1961 =27=

stack[store[address in stackJ+ p + 1] smaddress of last c on = 23

stack{ store[address in stack] + p = 1 :estore/address in stack + 2]

ends
| go to Ng

Algol running system
December 11, 1961 Be

procedure MOVE ELEMENTS;

begin

integer Js

for jsemeximum lower[m step 1 until minim upperLm] do

\ if m =n then

for pr90 step 1 until number of identifiers « 1 do
:
| . ;

| stack[) = stack \address of bounds + 2 x (m = 1)+ current

| address if new[m] + p x stack[address of 6 + 1) J: stack

~ [j ~ stack[address of old Ll +2 x (me 1)]+ current address
tf oldin] + p xfptack(addresa of old LL + 2xn + 2)

else

begin

mromtls

current address of old[mJseourrent address of oldjm = a] +

stack [address of old Ll +2xn+1+mJx (Jj = stack

[address of old Li = 2+ 2x (m= 2)))s

current address of new|m]:ecurrent address of new[M - u+
stack[address of a +m) x (j « stackLa'dress of bounds
w2+2x (mo i)s)s

MOVE ELEME'TSs .

Msem « 1

ends
gads

Algol running system
December 11, 1961 29 =

Representation of switches

The translator produdes something very much like a procedure call. At

block entry time, after address modification, this call is performed, all

expressions called by name, The effect of the call is to transfer into a

section of the appetite section of the stack the names of the elements

of the switch declaration. Subsequent switch designators will only make

use of this information in the stack.

Switch declaration

call address:<w9
Jaration; W 8 to switch dec

+] 2 es of 8s (see below for explanation of this address)

42 63 of first switch element

+3 address

e os

® { a See page 10 fev explanation of addresa.

@ e
.

fend mark

The switch elements are frepresentaed exactly as parameters of a procedure
call, There are. three possibilities:

1) label
2) designational expression
3) formal parameter. |

SWiich identifier in stack

S : "awitch"
+1: first address of table
+2: number of entries

first address of table: |
° - address

e ®

fhe forma of the items in the table is the same as that of the con tents

of formal lacations. Two possibilities: ,

1) label
23 designational expression.

Algol running system
December 11, 1961 30.0

ewitch declaration: address of switch:=store [call address + 1];

stack]address of switch |re"awiteh"

address of formal:estack[address of switch + jj :-address of switch + 35

address of actualsecall address + 23

ns=O3

regular return:=SW3

last returns =SW2 3

specification:="label" s

fo to parameter treatment;

SWs nben+ls

go to parameter treatments

SW2s stack[address of switch + 2 }rens

go, to instruction {address of actual + 1);

Algel Rumnign System
December 11, 1961 ojle

Representation of subscripted variables

Occurrence: _Actual parameter in stack | left part | Expression

Running code: temp0:="non-integer" ;
templ:«exply

e a

@. s

e @

Wh ~ 4" : tempn:eexpng
cr first address:=stack[A + 1];

address of ceefficients:= stack[A + 2]; |
call address :-Wh;

Wh: go to address of subscripted variable | Wh: go to take
value of
subscripted
variable;

go to exit from temp0:=
parameter expression address 3

: Examples of accurrences$

Actual parameter in stack eAlexpl, « « « 5 expnl,s
In left part Alexpl, eee g¢ expnts=

In expression oe « t Alexpl, o « « 5 expnit oes

go
d

Algol running system
December 12, 1961 o32=

take value of subscripted variable: take value:=trues

go to ts
address of subscripted variable: take value:=false;

t¥ address of subscript:-"store/call address = 4} @ stack)address of

coefficients]; —

if stack{ addkess of subscript] # "non~integer then

begin
number of subseript® of

printtext(#Error in“subscripted variable#);

new Lines

hot point sscall addresss

go to alarml

ends
address :* - stack| address of coefficients + al3

for mel step 1 until stack |address of coefficients] do

address:«address + stack[address of coefficients + 2 + n] x stack

[address of subscript + mls

if address 4 0 V address 2 stack faddress of coefficients + 2] then

begin
printtext (feubseript of array element too largel);

new Lines
hot points:=call address 3

go to alarm

ends

address:saddress + first address;

iftake value then value :=stack[address)

go to instruction call address + 1)3

Algol. running system
December 11, 1961 o332

Representation of left parts

done before calculation done after

of expression calculation

simple declared variable nothing assign directly

formal variable calculate or take address assign to addzss
to temporary found in

. temporary

subscripted variable caichlate addresSto temp. assign to address
found in

temporary
Representation of formal identifierf as leftepart variable

formal
Formal lsestack(Mpormre pate);

f w+
formal 2 3% etack) sia Nn

call address:53

WS: go to take address of formals

temp: saddresa;

take address of formal: if Icind (formal 1) = simple variable then

begin

address seformal 23

go to instruction] call address + 1]

‘ends |

if, kind(férmal 1) = subseripted variable then

begin

stack [first free] recall addresss

first free:*first free + ls

go 4p instruetion[formal @ |

ends

printtext(#Error in formal as leftepart variable#)s

le

Algol. running system
December 11, 1961 =3~

new line;

hot point:=call address 3

go to alarmls comment kind(formal 1) = procedure identifier or other

expression;

Representation of formal name parameters within procedure body

formal L:sstack{aeammaamat formal ;

formal. 2:=stack)sammmemetictorma] +s

call address :*y3

us go to take value of formals comment this jumps to the fixed arministration

and Bind(fermal 1) has one of) values:
1) simple variable
2) procedure identifier
3) subscripted variable
lh) expressions

take value of formal: if kind (formal 1) = simple variable then

begin

value: "stack] formal 2]

go to instruction jcall address + 1|

ends
stack|first free =call address;

first free:=first free + 1;

if kind (formal 1) © procedure identifier then
begin

call address:“W13

Wis go.to store [formal 2];

“wiels "end mark

go to exit from parameter expression

ends |

if king (formal 1) = subseripted variable then

Algol running system
December 11, 1961 =35=

begin
stack | first freeg= W2;

first free:*first free + 1g

W2: go to instruction Jformal 2/s

comment We now go off into the routine (placed in the stack)

representing the subscripted variable. Thie routine

1) puts the address of the subseripted variable in "address"

2) jumps to exit from parameter expression. At this stare first

free will always have the same value as when the routine was

entered. From exit from parameter expression we finally return

to the following: 3

value :=gtack {addres a \s

go to exit from parameter expressiony

ends

comment We now the case when kind (formal 1) indicates an expression;

go to instruction (formal 223

Algol running system
December 12, 1961 wha

Alarm output for the running system

alarm: j;comment ‘This entry will be used when an actual machine fault

(dtvide by 0, SCC fault, etc.) occurs. The kind of fault will be printed |

according to a bit configuration in some register set by the operator.

Hot point will be set to indicate the actual machine location of the faults

alarn}: if hot point< store bottom then go to procedure or bhockscanmeay oH
2

ig stack[firet free ~ 1]>first free then go to exit to administrations
meaton my SS} .

if store|stack|/first free - i] | = "go to take value of switch designator"
then go to switch alarms Comment on page. ¥6;

printtext(#@rror in expression called by name#) 3

new line;

REFERENCEseatack[staci. reference + 3];

mrefirst specification:=store[REFERENCE + 8];

for mr«m step <1 mask while storg.m|¥ "go to procedure entry’ do

first specification:=first specification = 13

first specification: =firsthpecification + 25

printeext(#In body of procedure #)3

printtext (identifier part(store)first specification]))s

new Lines
stack pointr=stack reference + hs

if store|REFERINCE + 10 | defines a type then

begin |
printtext(#value of procedure#);

‘print(1,5 2 sstack [stack point])s;

new lines

stack point:=stack point.+ 1

ends

print text(#Formals#)

new line;

Algol ruming systen | ,

December 12, 1961 we 37=

for m:"atack point step 3 while specification part(store| first specification })
"no more parameters" do

begin

printtext(identifier part(store[first specification + 3J))s

if specification part(store] first specification]) = name then

begin
printtext(#Called by name#);

new line;

if otack/m + 1]¢ hot point then

parameter in error: identifier part(store] first specification

+ 2/) | |
end

else

if kind(store[first specification]) # array then

begin

print(1,5,2,stack(m «a]);

new Line.

end.

else
for preO step 1 until stack[stackin +4 + 2] - 2 do

begin

print(1,5,2,stack/atack[m + i+ p})s

new Line

ends

first specification:=first specification + 1s

stack point:sstack point + 3

ends

printtext(#Parameter in error#)s

printtext(parameter in error);

Algol running system

December 12, 1961
=38e

new line;

if etore_RFFERENCE + 2] 4 0 then

begin .

printtext(#labels#)s —

new line;

print labelsefalses

_ for ny REPENS + 12 step’ 1 until REFERENCE + 11 + store/ REFERENCE

+ 1j do. , ,

begin

printtext(identifier part(store[m]))s

new line;

“at mf REFERENCE + 10 + etore[REFERENCE + 1.) then

begin |

sp goal part(store{n)) 4stack/first free = 1)/ goal
~part(store/m + iJ) 7etack|first free = 1] then,

vegin

printtext(#Error between these two Labels#) 3

new lines

print label: true
end |

e

seer pointsz Stack porwr +f

print label then 4

b q

printtext(#Brror after last label#)s

new line .

ond

Algol running systen
December 12, 1961 239 oo

DUMP: if store[REFERENCE + 2| # 0 then

begin

Spek.
printtext(#Integersi#)

new line;

for mreatack point step 1 until stack point + storq REFERENCE + 2 | do

begin |
print(1,5,2;stack[m])s

new Line

ends
stack point:sstack point + stord REFERENCE + 2|

ends
if store[REFERENCE + 3| # 0 then

begin

prinhtext(fReals#);

new line;

for msestack point step 1 until stack point + store/ REFERENCE + 3] do

begin
print(1,5,2,stackLm |);

new line

ends

stack point:=stack point + store [REFERENCE + 3 |

ends .
if store) REFERENCE + 4 | 0 then

begin

printtext(#Booleans#) 5

new line;

for mz=stack point step 1 until stack point + store|REFERENCE +l] do

Algol running system

December 12, 1961 lO

begin

print(stack[m J);

new line

end;

stack point:=stack point + store) REFERENCE + y]

ends

if store[REFERENCE + 5} # 0 then

begin a.

printtext (#Arrays#} ,

new line;

for ms#0 step 1 until store| REFERENCE + $] - 1 do

‘Regen pe tnt
p:estack'+ 1 + 3 x mg .

for ri stack[p] step 1 untd} stack[p] + stack[stack[p + 1) + 2] do

begin
print(1,5,2 stack] yy);

new line

_ ends

new line

ond
ends

if gtore| REFERENCE + 10] indicates outer block then $

first free:=stack reference $

stack reference: =stack| first free |;

hot points=if stack)first free + 2] = el then store\RDFERENCE + 9] else stack

[first free + 273

go te alarml;comment on prge FG 5

procedure or block: REFERENCE:satack]atack reference + 3];

ee

Algol running system
Decenber 2, 1961 ' elle

if store[REFERENCE + 10] indicates a block then go to blockseonment on page 4F;

printtext(#Error in procedure body#);

m*first specification:=store| REFERENCE + 8]s

for msem step <1 while store{m] # "go to procedure entry" do

first specification:=first specification = 13

first specification:=first specification + 25

c printtext(identifier part(store[first spe cification] 3

new line;

stack point:=stack reference +hs

if store|REFERENCE + 10} defines'a type then

begin

printtext(#Value of procedure#) ;

print(1,5,2 stack] stack point]);

new line;

stack pointsestack point + 14

oO ends
printtext (#Rormals#)s

new line;

for m:=first specification step 1 mmixh while athe) m] 7 "no more parameters" do

Pegi mit
printtext(identifier part(store be]))s

if specification part(store{m]) = name then
vegtin | |

printtext(#Called by namef);

new line

end

, else

Algol running system”.

December 12, 1961 whe

if type (store) m]}) = array then

begin
for psestack latack point + 1| step 1 until stack/(stack point

“"F 1] + stack(stack|stack point + 27 +2] - 1 do

begin

print(1,552,stacl{ p]);

new line
- and

ond

else

begin
print (1,5,2 stack) stack point]);

new line

ends
stack points =stack point + 3;

ends

DUMPL: if store[REFERENCE + 1] # 0 then

begin

printtext(#Labels#) 5

new lines |

print label:=falses

for m:°REFERENCE + 11 gtep 1 until REFERENCE + 11 + store) REFERENCE+1] do

begin

printtext(identifier part(store In }));

new lines .

‘ig m # REFERENCE + 10 + store{ REFEREICE + 1) then

begin

EY
Ei

Be
e
e

e
o

Algol runnigg system
December 12, 1961 #h3~

if goal part(store[m}) ¢ ~ hot point Agoal part(store/ i 3 1)
phot point then

begin
printtext(#Error between these two labela#!);

new line;

‘print labels =trus

end

gods
stack pointsestack poiht + 1

Snds
if —print label then

begin

printtext(#Error after last label#);

new line

end

ends

go to DUMP; Comment? on page I;

blocks Printtext(#frror in block#)s

new lines
stack point:=stack reference +)

go to DUMPL;fomment on poze +h)

parameter value: printtext(#Expression called by value#);

new Line; |

first specificationsa dress of specification:=stack(first free ~ 16}; __

for oe of specific&tion step <1 while $eSm) # "go to procedure
“vent: do ,

first specification:efirst specification - 1;

first specification:*first specification+ 23

text(#In procedure heading #)s

Algol running syste
December 12, 1961 . ala

storelfirst specification]
print text (identifier part (SSS aeaaaeaNnaE:))

new lines

REFERENCE: stack[stack reference + 3];

stack points=stack reference + (if store] REFERENCE* 10] defines a type then |
5 else h);

printtext(#formals#) ;

new lines |

for m:efirst specification gtep 1 until address of specification do

begin :

- printtext(#identifier part (store!S"S}s

if specification part (store[m]) = name then

begin

printtext(#Called by name#)s

new line

BB

if specification part(store]m)) © array then

“

sstack[stack point + step tack latack point
aT T+ stack stack /stack po ae es + eet 1 do

begin
print (1,5,2,etack)p])s
new Line

end

gE

is

pring(1,5,2,stack[etack point));

i pede.

Algol running system
December 12, 1961 ol S=

new line

end

ends
stack pointrestack point + 3

nds |
printtext (identifier part(store[addreas of specification + 1]))s

printtext(#Error in this parameter#)s |

new lines, - —_

hot pointrestack[first free - 12];

first freer-stack reference;

atack reference:=stack) first free |;
om |

go to alarmls coanen! coanen ton page 5

exit to administration: if , stack)firet free = 1] indicates array declaration
then

begin

printtext(#Error in} s :

ig stack/firet free © 5] then printtext (#own#)s _

printtext(#array declaration#) 3 -

new line $

printtext(#Error in bound number)

print(1,9,2,stack)first free « 2\)s

new line . |

end

gise go to parameter values Comment on pg e- #8

hot pointrsstack [first free = 1);
firet frees*firat - 133

Bo to alarms Conmen? on page 36;

December 12,1961 whi6~

switch alarm: printtext(#Error in switch dentate designatory) s

new line;

hot pointrestack[firet free ~ 1);

first freersfirst free = 1;

gO toalarmls Comment oa page 365

cr
ee

OI

Algol running system
December 12, 1961 “ «17 ~

Representation of labels

A label is stored in the stack as a pair of addresses:
1) Mark: the value of stack reference at time of entry into the block in

which the label is local.
2) Goal: the machine address of the first instruction representing the .

statement where the label is stored.

Representation of go to statements:

Running code: Cové FoR value: =" goal and mark"
call address:=uu3

uus go to go tos

go to: if goal part(value) = 0 then go to instruction[eall address + 1 |:

Q: if mark part(value) f stack reference then

begin

DECREASE LEVEL;
go to Q

ends
go to inatruction[goal part(value)]s

Representation of switch designator in running code:

Tn expression Occurrence 3. - Sdtual Parameter
.» athen Slexpressionjelse os. 2, %6, »Slexpression| »

Sk6Sdriptseexpression;
first address of table: weeds, +1;
number of entries:"stack|S +
call address:=Wl2;

Wi2s @o to take value of switch designators

W112: go to o to exit from wWi2:
parameter expression

io
ce

cm
mm

ai
ba
en
e

wa
e

ea
t

Algol tunning system .
December 12, 1961 ol8—

take value @f switch designator: if subscript £ 0 y subscript > nunber

of entries then

begin

value :=03

go to instruction[call address + i]

end: comment thig case is the undefined switch designator, See section

Toded of the ALGOL Report;

address of expression:*3 x (subscript = 1) + first address of takie;

if kind(stack[address of expression}) = label then

begin .

value:sstack/ stack [address of expression + 1]]s

go to instruction /call address + 2|

ends

comment We are now left with the case where kind(stack address of expression)
= desipnational expressions

stack{ first free] :=call address;

first free:=fiist free + Ls

go to instrnetion|stack[address of expression + i |

Algol running system
December 12, 1961 ealy Sen

>

Representation of assignment statements when the leftepart list is more

than one identifier or tmmamfmumath includes a formal identifier or a

subscripted variable.

The addresses to which the value is to be assigned are assumed to be in

temporaries in the stack. These “emporaries have the following form:

TP value address

and the last temporary of the group has the form:

MJO. FILL.
Then the contents of the temporaries form a complete subroutine performing

the assignment in the following manner?

tempO: TP value addressl

templ: TP value address2

e rf)

° 9

e 2

tempn: TP value addreasn

temp(n +1): MJ0 FILL.

Then the action to be taken by the running code after evaluation of the

expression is of the form:
RJ temp(n +1) temp.

Algol running system
December 18, 1961 a500

umber output
N r igre vearan be

We will write the value of any number to, output as N and the resulting

number printed as Re . /

Any Py will be in the form of a mantissa and a decimal exponent, the latter

being an integer. The format of Fy is described by three parameters, 1,056:

4 specifies the number of digits of the mantissa before the decithal pt.

ad specifies the number of digits of the mantissa after the decimal pt.

e specifies the number of digits of the exponent.

Thus Py ie in the following form: - 7 i

(sign of mantissal (i ts)(decimal point if 4f0)(d digits)(sign of ©
exponent if ef0)(e digits)

‘The three parameters are written in the output statements

print(4, d, e, 4 expression(s) to be output?) .

Leading geros of Py are suppressed except that the integer zero as &
mantissa will be output as 'O'. Plus signs are printed as spaced.

The mantissa is rounded to make it correct to its last digit. -

When ef0 it is evident that N, i, e, and d do not uniquely ddtermin Py: -
If Nxe6, i=3, d=l, el, then Pye .

ln are te ouugebut

or (¢)euuO.0uu/ on
etc. whur Lt cngletintes) De

In this case the print routine determines the f + of Py by placing the

first significant digit as far to the left as possible, subject to the

restrictions on the value of the exponent imposed by the fixing of e.
Hence, in our example P,=(a). If d and e are too small, Mi may be that
no significant digits are output in the mantissa.(e.g., if N=.7xl0""5 is

2, d=l, el, Pywould beiye0-9. In théx example when the expgonent

asamues its least possible value the rounded mantissa is still less than 0.1.)

Alarm printing. |

- It may be that 1 and e are too small to represent a large number (elgi, no1o4,
in3, esQorl). In this case e will te automatically increased by 1 until |
the most significant digit of N can be placed in the leftmost position of

Pye An error indication ('e') is given each time e is increased by 1 (In
‘the above example #ith e90, Pysee,100,12). og

Qs

N
O
K
M
N

N
H

h
w

N
N
W
O
O
R
N

N
O
O
K
F
O
O
O
C
O
 uTDels

ev oOh uh

wr=0080
tia

80a)
vse O00
Qu 010.2

ts v0 00 id

Algol gonning syaten
‘December 18, 1961 7 52~

Number output

Nonelocal quantities —
address of actual
call address
address of formal
first free
regular return
jast return |

J
specification
parameter treatment

Local quantities
dabel, reentry, print zero, conversion, Q, SS, print finished, S,

_ next value, skipg, tcp, OPT; |
integer i, dy e, signum, ek, » exponent, max exp, number of digits,

number of zeros, digits before point, k3

real number, f
Boolean only spaces yety vapors” frock:

, |

Desesber 18, 1961 ~53«

Procedure print(ay ese.ees)3 comment this procedure will print the
Values of any number of expressions supplied as parameters. The three
first parameters should be nonenegative integers defining the digit
layout as follows: &#, the number of digits before the decimal pointf,
d, the number of decimals, e, the number of exponent. digits;

begin

address of actualrecall address + 1;

address of formal:=first frees

first freer=first free + 33

reguaar revtrn:*9S3

last return:=print finisheds

J2903

St specification:=*integer value";

go to parameter treatments

SS: if j42 then

begin

JemBrls

\ gotes
ends

- ¢ Regular return:sSSS 3

” next values specificati n:sreal value"; |

go to parameter treatments

SSS issstack [first free = 8s

drsatack first free = 6];

Frestack [first free = hs

‘nunber ss taak [First free = al;

if number = nonsense then go to skips

‘signomseign(mmber);

f:"normalized binary fraction(abs (number) 3

e2:enormalazed binary exponent(abs(number)) s

Algol running

December 18,190 She
| . | | in the F,
goument; The layout is defined by i, d, e,. the number isn

nef x 2%e2 def,

| "this is first rewritten in the form -

n= f x 10te'l0 x 2fe'2 where 07022 <3 and then & tie form

| nef x 10fel0 where 0.1¢f41 as followss
reentry: exponent part: =false;

rN reentry exponents if f = 0 then go to print sero;

210398; :

conversion: if e2>6 then

begin

@10:>e10+1;

e2:7e2 @ 33

£250.8 xf
ent

else if e2é-h then
begin

e10.7010 = ls

e2:m02 Bhs

fre (10/16) xf

oud

else go to final adjustments;

i

if f<0.5 then
begin

Foals

e2:7e2 = 1

“ands
go to caversion;

Algol run systen
_ Decenber 1B 1988 . a55e

- final adjustment: fref x 2782;

Af $001 then

begin

f= 10 x £3

e10:9010 “1

— 6 began
ee object is that the printed mumber wiii—vegin with a non-zero

set the exponent accordingly. If this is not rossible due to the

exponent excee ‘ing its maximum possible value we have an error. In this

case an error iddication('e') is given and the cubput format ids adjusted

- (er=e+1) until the number can be output satisfactordy, If on the other
hand the exponent would be less than its minimum possible value we "right

shift" the number, i.e. introduce leading zeros be redueing "number of

digits", until this is remedied or we are left with all zeros;

As exponent1=e10 - as

Pr fae exp:1078 - 13 comment siounm form tale;

if abs(exponent)< max exp then

mumber of digite:=i + d

else 4£ exponent 0 then
- begin

number of gigits:=1 + d + max exp * exponent;

if number of digits wm<0 then

print zero:

begin
number-of—digsater-03

expenendr=Os- exponent = O,

nombur of zeros:*i + ds

go to off

end

elise
exponent:=max exp

Algol running system
December 18, 1961 -56—

end

else

| begin

| ! output (fe#)s

| erxe + 1s

go to Ps comment this is the case of alarm printing;

| ends (
a

| : number of zeros:*i + d - number of digits;

: fref + 0.5 x#10N number of digits); comment rounding;

: if fZ1 then

begin
: f:-0.13 comment a small Senths

| el0:7e10 + Bs

bo 10 0
end overflow on rounding;

comment We now output the number. Leading zeros are suppressed except

the the integer zero if appearing as the mantissa is output as ‘O's

c™
oPT. output(signum)s

digits before point:=1;

only spaces yet:=trues

for k:ol stpp 1 until 1 + d do
begin

if digits before point = 0 then

begin |

output (#o#)3

only spaces yet:=false

ends
digits before point:"digits before point = 1;

Algol running system

if number of zeros>0 then

begin

7 | mumber of zeross=number of zerves @ 13

| output(if only spaces yet a(d # 0 v digits before point f
| O Vexponent part) then #.# else #0#)

end | |

else

rc begin

| f:=10 x fs

output(entier(f));

fref ~ entier(f)
ont

ends

Sf 070 then
begin comment We now set up the exponent in the form f x 2fe2 where

™ O.5< £<1 and return to the start of the conversi-n
de=03 and output routines

L:*e3

f™
e303

f£:=normalize(abs(exponent})s

e2sspower of 2(abs(exponent));

comment Even if exponent is sero, the routine will be run in order
te print the proper number of spaces;

signum:=sign(exponent);

exponent parts=trnes

go to reentry ex pone ur

end |

skips address of formal:=address of formal « 23

go to next values

Algol running system
December 18, 1961 a5 Be

print finished: first free:=first free - 53

go to instraction[address of actual + 1];

Algol running system —
December Bs 1961 a5 Je

Gutput tape handler |

Local wariables
character counter
word counter
blockette counter
core index
core| 02119) = psuedo-buffer
line is full

Input parameter - sygmbol

initialize: CR:=true;

£0 to initialize2;

‘final dumps blockette# counter:=53

pymbol:="carriage return";

output: ify symbol = carriage redtrn then

begin

if line is full then
bogta

line is full:=falses

go to instruction[call address + 1];

ones
ORistrues

go to end of line

, ends
Ch: = By Ise 5
if line. is full then go to overflow;

wora:sword + symbol x 6X5 = character counter);

if character counter <5 then

character dounter:=character counter + 1

else

_ ond of line:

begin

Algol rumning systeym
December 18, 1961 ah0=

rc
z
ee

core]core index le=word;

if worfd counter 419 A7CR then
vegin |

word counter:=word counter + 1;

yo core index:=core index + 1

end

else

— «begin
" Af blockettey countey¢S then

begin

blockettex counter reblockette® counter + 13

core index:#20 x blockette counter

end

else

begin
TRANSFER TO BUFFER;

WRITE ON TAPEs

“Anitialize2: . for k:=0 step 1 until 119 do_

: core|K]|:="6 spaces" s

blockette counter:*core index:=0

ond;
line if Bullse 7CR3

word conter:*0

ey
eharacter counter: =word:=0

ox

go to instruction [call address + u]s

Algol running system
December 12,° 1961 ~100<

c

"Song of the Daskerkopi"

‘Twas kopi and the skrvy sluts

‘Did tex and tryk in the klars
All strengy were the la sstreng,

And the tryktoms spild expecescoes

translated into Danish(?) ("Song of the Habberwocky" by Lewis Carroll,
by Curt Outlaw, University of North Carolina, August 2h, 1961)

