
Biography

Per Brinch Hansen

Per Brinch Hansen was born 13 November 1938, in
Copenhagen, Denmark. He is a pioneer in the develop-
ment of operating system principles and parallel pro-
gramming languages.

Significant work
Written over a period of more than 30 years, Brinch

Hansen’s technical papers and textbooks describe a relent-
less search for simplicity exemplified by the RC 4000 mul-
tiprogramming system; the Solo operating system; the
monitor notation for modular parallel programming; the
parallel programming languages Concurrent Pascal,
Edison, Joyce, and SuperPascal; and his scientific programs
for parallel architectures. Throughout his career, Brinch
Hansen attempted to recognize the essence of complex
software problems and express them in terms of a small
number of abstract concepts. The technical ideas he rec-
ognized are now standard material in textbooks on oper-
ating systems and parallel programming. His scientific
work can be divided into three phases: operating system
principles (1966–1972), parallel programming languages
(1972–1988), and computational science (1988–1998). In
recent years, he has devoted increasing energy toward
documenting the historical origins of modern operating
systems and concurrent programming concepts.

Brinch Hansen studied electrical engineering at the
Technical University of Denmark. After graduating in
1963 he joined the Danish computer company
Regnecentralen. There he was a member of a Cobol com-
piler group headed by Peter Naur and Jorn Jensen. He dis-
covered that writing is a rigorous test of simplicity: “It is
just not possible to write convincingly about ideas that
cannot be understood.”1 At Regnecentralen he was
responsible for the architecture and software of the RC
4000 minicomputer. The RC 4000 real-time control sys-
tem was his first experience with multiprogramming and
semaphores (1967). The project succeeded because they

used the simplest possible techniques to solve an unfa-
miliar problem of modest size.

The RC 4000 multiprogramming system introduced
the novel idea of a system kernel for parallel processes
and message communication that can be extended with
a variety of operating systems.2 Brinch Hansen left the
computer industry in 1970 and became a university
researcher in the US.

The implementation techniques of operating systems
were reasonably well understood in the late sixties. But
most systems were too large and poorly described to be
studied in detail. While Edsger Dijkstra had clarified fun-
damental aspects of process synchronization, most of the
literature on operating systems emphasized implementa-
tion details of particular systems rather than general con-
cepts. The terminology was unsystematic and incomplete.

At the time there really were no suitable textbooks on
operating systems. Universities were therefore unable to
teach core courses on the subject. In 1970 Alan Perlis
invited Brinch Hansen to spend a year at Carnegie Mellon
University where he wrote the first comprehensive text-
book on the principles of operating systems, Operating
System Principles.3

Of the process of understanding operating systems he
said:

While writing the book I reached the conclusion that operat-
ing systems are not radically different from other programs.
They are just large programs based on the principles of a more
fundamental subject: parallel programming.

Starting from a concise definition of the purpose of an oper-
ating system, I divided the subject into five major areas. First,
I presented the principles of parallel programming as the
essence of operating systems. Then I described processor man-
agement, memory management, scheduling algorithms, and
resource protection as techniques for implementing parallel
processes.

I defined operating system concepts by algorithms written
in Pascal extended with an (unimplemented) notation for
structured multiprogramming. The book includes a concise
vocabulary of operating system terminology, which is used
consistently throughout the text.3

The combined work of Dijkstra, Tony Hoare, and
Brinch Hansen on programming notation for operating
system concepts led to the initial development of paral-
lel programming languages. It began in 1971 with Hoare’s
notation for a conditional critical region that delays one
or more processes until a Boolean expression is true.

Biographies
Thomas Haigh, Editor
University of Pennsylvania

2 IEEE Annals of the History of Computing Published by the IEEE Computer Society 1058-6180/03/$17.00 © 2003 IEEE

Unfortunately, this elegant idea is inefficient
because it requires periodic reevaluation of the
expression as long as it is false. One of Brinch
Hansen’s first papers on programming language
concepts proposed an (equally inefficient) vari-
ant of conditional critical regions for priority
scheduling. A more original idea was his intro-
duction of scheduling queues, which eliminat-
ed superfluous evaluation (but complicated the
programming somewhat).4

Dijkstra, Hoare, and Brinch Hansen suggest-
ed another parallel programming concept in
1971: the monitor, which combines synchro-
nization procedures with the shared variables
upon which they operate. Brinch Hansen’s oper-
ating system book3 introduced a programming
notation for monitors (shared classes), based on
the class concept of Simula 67. Somewhat later,
Hoare published a similar notation for monitors.
His proposal included a variant of Brinch
Hansen’s scheduling queues (“conditions”).

By the fall of 1972 Brinch Hansen was
already committed to the goal of developing a
parallel programming language with a modu-
lar (“object-oriented”) notation for processes
and monitors. At the California Institute of
Technology he defined the programming lan-
guage Concurrent Pascal, which supports mon-
itors and parallel processes for implementation
of modular operating systems. Because syn-
chronization errors can be extremely difficult
to locate by program testing, Concurrent Pascal
was designed to permit the detection of such
errors during compilation. With the help of a
couple of students, a portable implementation
of the language was running on a PDP-11 mini-
computer at the end of 1974. Concurrent
Pascal had obvious limitations by today’s stan-
dards. But, in 1975, it laid the foundation for
the development of programming languages
with abstract concepts for parallelism.

Brinch Hansen used Concurrent Pascal to
program the portable operating system Solo as
a realistic test of the new programming lan-
guage. The most significant contribution of Solo
was undoubtedly that the program text was
short enough to be published in its entirety in
a computer journal.5 The portable implementa-
tion of Concurrent Pascal and Solo was highly
successful in spreading the software to almost
200 installations worldwide. The time was now
ripe for a book about the principles of abstract
parallel programming, and so he produced The
Architecture of Concurrent Programs6 while at the
University of Southern California. The book
includes the complete text of three model oper-
ating systems written in Concurrent Pascal.

Technology was now moving from multi-

processors with shared memory toward multi-
computers with distributed memory. For micro-
computer networks, Brinch Hansen proposed a
combination of processes and monitors called
distributed processes, which communicate by
means of synchronized “remote procedure
calls.”7

After Concurrent Pascal, Brinch Hansen
designed the parallel programming languages,
Edison and Joyce, to experiment with Hoare’s
concepts of conditional critical regions and
synchronous message communication,
respectively.8,9

At the end of the preface to his collection
of classic papers,1 Brinch Hansen said of his
activities:

In the 1990s the programming problems of oper-
ating systems have surfaced again in parallel sci-
entific computing: there is a serious need for
machine-independent programming languages
and algorithms. To understand this challenge I
spent five years writing portable multicomputer
algorithms for typical problems in science and
engineering. My book, Studies in Computational
Science,10 describes this work.

In 2002, the IEEE Computer Society award-
ed Brinch Hansen its IEEE Computer Pioneer
Award for his accomplishments in operating
systems and concurrent programming.
Fittingly, this recognition came after several
years of work on his part to document histori-
cal developments in these areas, and to cele-
brate and illuminate the accomplishments of
his fellow pioneers. His efforts in this area have
already produced two edited volumes, one
focused on classic operating systems11 and the
other on the major breakthroughs in concur-
rent programming.12 Brinch Hansen recently
joined the editorial board of the IEEE Annals of
the History of Computing, where we hope to ben-
efit from his expertise and enthusiasm.

Quotations
“Writing is a rigorous test of simplicity: It is

just not possible to write convincingly about
ideas that cannot be understood.”1

“Programming is the art of writing essays in
crystal clear prose and making them
executable.”6

“Although the practical demands of soft-
ware design make simplicity essential, a more
profound reason is to be found in the nature of
creative work. The joy of discovery and the
pleasure of making something work are the

January–March 2003 3

most powerful drives in science and engineer-
ing. To sustain this motivation, a software engi-
neer must look for astonishing simplicities and
beautiful patterns of design.”13

Biographical bibliography
P. Brinch Hansen, “The Programmer as a Young Dog,”

The Search for Simplicity: Essays in Parallel
Programming, IEEE CS Press, 1996, pp. 142-146.

P. Brinch Hansen, “Monitors and Concurrent Pascal: A
Personal History” History of Programming
Languages II, T.J. Bergin Jr. and R.G. Gibson Jr.,
eds., ACM Press, 1996, pp. 121-172.

Significant publications
In addition to those listed in the “References

and notes” section, here are some of Brinch
Hansen’s significant publications:

P. Brinch Hansen, “The Programming Language Con-
current Pascal,” IEEE Trans. Software Engineering,
vol. 1, no. 2, June 1975, pp. 199-207.

P. Brinch Hansen, “SuperPascal—A Publication
Language for Parallel Scientific Computing,” Con-
currency-Practice and Experience, vol. 6, no. 5,
Aug. 1994, pp. 461-483.

P. Brinch Hansen, Programming for Everyone in Java,
Springer-Verlag, 1999.

References and notes
1. P. Brinch Hansen, The Search for Simplicity: Essays

in Parallel Programming, IEEE CS Press, 1996.
2. P. Brinch Hansen, “The Nucleus of a

Multiprogramming System,” Comm. ACM, vol.
13, no. 4, Apr. 1970, pp. 238-242.

3. P. Brinch Hansen, Operating System Principles,
Prentice-Hall, 1973.

4. P. Brinch Hansen, “Structured
Multiprogramming,” Comm. ACM, vol. 15, no. 7,
July 1972, pp. 574-578.

5. P. Brinch Hansen, “The Solo Operating System,”
Software-Practice and Experience, vol. 6, no. 2,
Apr.–June 1976, pp. 141-205.

6. P. Brinch Hansen, The Architecture of Concurrent
Programs, Prentice-Hall, 1977.

7. P. Brinch Hansen, “Distributed Processes: A Con-
current Programming Concept,” Comm. ACM,
vol. 21, no. 11, Nov. 1978, pp. 934-941.

8. P. Brinch Hansen, “The Design of Edison,”
Software-Practice and Experience, vol. 11, no. 4,
Apr. 1981, pp. 363-396.

9. P. Brinch Hansen, “Joyce—A Programming Lan-
guage for Distributed Systems,” Software-Practice
and Experience, vol. 17, no. 1, Jan. 1987, pp. 29-
50.

10. P. Brinch Hansen, Studies in Computational
Science: Parallel Programming Paradigms, Prentice-
Hall, 1995.

11. P. Brinch Hansen, ed., Classic Operating Systems:
From Batch Processing to Distributed Systems,
Springer-Verlag, 2001.

12. P. Brinch Hansen, ed., The Origin of Concurrent
Programming: From Semaphores to Remote Proce-

4 IEEE Annals of the History of Computing

Biographies

Background of Per Brinch Hansen
Education: Brinch Hansen earned an MS in electrical engineer-

ing in 1963 from Technical University of Denmark. Professional
experience: Regnecentralen (Copenhagen): 1963–1970, systems
programmer; 1967–1970, head of software development; Carnegie
Mellon University: 1970–1972, research associate; California
Institute of Technology: 1972–1976, associate professor of com-
puter science; University of Southern California: 1976–1982, pro-
fessor; 1982–1984, Henry Salvatori Professor of Computer Science;
Technical University of Denmark: 1984–1987, professor; Syracuse
University: 1987–present, distinguished professor of computer sci-
ence. Honors and awards: Doctor Technices, Technical University
of Denmark, 1978; Fellow, IEEE, 1985; Chancellor’s Medal, Syracuse
University, 1989; IEEE Computer Pioneer Award, 2002.

Deaths Noted
Recent months have seen the passing of many important fig-

ures in the world of computing. While obituaries of the following
men are already widely available, the Editorial Board hopes to pub-
lish more considered biographies and remembrances in future
issues of Annals. If you have stories related to them, or feel able to
write a balanced and authoritative overview of one these lives, then
please contact Thomas Haigh, editor of the Biographies depart-
ment, at thaigh@sas.upenn.edu.

• Saul Amarel (1928-2002). Founder of the Rutgers University
computer science department and an influential researcher in
artificial intelligence.

• Samuel D Conte (1917-2002). Founder of America’s first com-
puter science degree program at Purdue University.

• Ole-Johan Dahl (1931-2002) and Kristen Nygaard (1926-2002).
Developers of the Simula I modeling language and Simula 67
general-purpose language, generally recognized as the ances-
tors of all subsequent object-oriented programming languages.
They were winners of the 2001 Turing Award, the highest honor
of the ACM.

• Edsger Wybe Dijkstra (1930-2002). Developer of key operating
systems concepts, pioneer in numerous areas of computer sci-
ence, and elegant polemicist for mathematic rigor in all aspects
of programming. Winner of the 1972 Turing Award and numer-
ous other honors.

• Keith Uncapher (1922-2002). Former director of the Computer
Science Division of the RAND Corporation and founder of the
Information Sciences Institute at the University of Southern
California, in which he oversaw seminal work in packet-switch-
ing technology and the Internet’s domain name system.

dure Calls, Springer-Verlag, 2002.
13. P. Brinch Hansen, Programming a Personal Com-

puter, Prentice-Hall, 1983.
J.A.N. Lee

janlee@cs.vt.edu

Thomas Haigh
University of Pennsylvania

thaigh@sas.upenn.edu

Obituary

Edward Louis Glaser

Edward Louis Glaser, 1986. (Courtesy Cheryl
Glaser.)

Edward Louis Glaser was born 7 October 1929;
he died in October 1991 in Los Angeles. Blind
since childhood, he once quipped “I’ve been
accused of having superb far vision, but my near
vision isn’t too good.”1 Glaser was an early
visionary of computer science. He served in
industry, led government research projects, and
helped to found an academic computer science
department. His insights into the nature of
computation illustrated how little this new dis-
cipline has in common with the world of the
senses.

Losing sight, gaining confidence
Glaser was born with severely impaired

vision and was completely blind by the age of
eight. His parents, James and Margaret Glaser,
had difficulty accepting their son’s “disability.”
He found solace in music and spent one year
convincing his apprehensive parents to let him
play the piano. Once they consented, he
showed extraordinary talent and made rapid
progress. By his early teens, he was often sneak-
ing out to improvise with professional musi-
cians at bars near his hometown of Glencoe,
Illinois.

When not entertaining crowds with his
keyboard wizardry, Glaser often spent time
developing his sleight of hand. A family friend
had introduced Glaser to magic shortly after
blindness overtook the boy, and Glaser was
immediately hooked. Performing magic tricks
in front of other people increased his confi-
dence, encouraging him to act in several

Gilbert and Sullivan operettas while attending
North Shore Country Day School.

Glaser established a reputation as a “gadget
freak” at an early age, devoting hours to the
design of circuits at age 11.2 At 14, he earned a
ham radio operator’s license and spent much of
his time constructing a radio. Upon comple-
tion, he freely explored the airwaves, on equal
footing with the sighted.3 He yearned for sim-
ilar independence in the outside world. That
became a possibility two years later when
Glaser received a seeing-eye dog. His new friend
provided an autonomy that “opened up a
whole new life for him. It was the first time he
hadn’t had to rely on another person.”4 Over
his lifetime, he would grow attached to six such
dogs, all of which served as his eyes and his
constant companions.

With new poise, Glaser prepared to tackle
Dartmouth College as a music and drama
major. However, in the middle of his sopho-
more year, he discovered mathematics. The
transition from music to a more technical field
felt natural, Glaser explained in a later inter-
view: “Whether you are writing music or
designing computers, the creative intellect
becomes strengthened.”3 Though he
exchanged drama for physics, Glaser kept his
performance ability fresh by hosting an early
morning radio show on the college station.

Significant work
Graduating Phi Beta Kappa from Dartmouth

with a degree in physics, Glaser initially want-
ed to pursue employment in actuarial mathe-
matics. He faced rejection from insurance
companies that refused to believe a blind man
could operate their IBM machines. One compa-
ny was willing to hire Glaser, but its personnel
manager told him “that handicapped people
couldn’t do work as well as anybody else [so]
they were going to hire him at 25 percent under
the minimum.5 Glaser turned that job down.

Months later, Glaser visited his fiancée at
Bryn Mawr during a campus showcase of
opportunities for women in the sciences.
Having previously memorized a few boards and
their wiring, Glaser approached the men from
IBM. He later said,

So I went up to see the SSEC [Selective Sequence
Electronic Calculator], and I figured as long as I
was here, I could ask some questions about this
IBM stuff that I couldn’t do. They talked to me
for a few hours and figured out there was noth-
ing I couldn’t do, so I got hired. I was the only
one they got from Bryn Mawr that year.6

January–March 2003 5

