
BIT 6 (1966), 1-23

THE COBOL COMPILER FOR THE SIEMENS 3003

PER BRINCH HANSEN and ROGER HOUSE

Abstract.

This paper describes the design of a fast Cobol Compiler with extensive error

detection. It is implemented as a 10 pass compiler on the Siemens 3003 computer

with a core store of 8000 words, using one systems tape and two working tapes.

The structure of the object program produced by the compiler is discussed with

respect to storage allocation, administration of files, and addressing of data items.

In the description of the compiler particular emphasis is placed on the error detec-

tion phase, where the source program is analysed with respect to syntax, data

descriptions and operand types.

Contents.

1. Introduction. 0... eee eee eee een eee teen e ene 1

2. The Systems Configuration....... 0.06. c eee eee eee eee eee eee eee 2

3. The Object Program... 0. ce eee eee eee n eee 3

4. Multipass Translation......0 0.00. c eee eee ee eee renee ene 4

5. The Intermediate Languages 0.6... cece eee eee eens 5

6. The General Pass Administration. 0.0... 000 cece eee eee ees 6

7. The Translation Process...... 0.00. c ccc eee een eee eee nes 7

8. The Analysis of Syntax... 0... cece cee eee eee eee ees 7

9. The Analysis of Data Structures... 2.6... cece eee eee ees 9

10. The Analysis of Data Descriptions........... 06.6 cee eee eee eee eee 11

11. The Analysis of Operand Types... 0.0.6... eee 13

12. The Generation of Machine Code... .. 0... cece eee eens 15

13. The Handling of Errors... 0.0... cece eee eee eee nee 16

14. Copy Processing... 1... eee eee eee e ene e ene 17

15. Other Tasks... . 0... cee eee eee eee teen e tenes 18

16. Summary of the Passes... 0.6... eee eee eee teenies 18

17. The Debugging System... 0... 6. ce ene renee ences 19

18. Evaluation of the Compiler.... 0.0... . 0... ee eee eens 20

Acknowledgements... 2.2... ccc ee ee eee eee een een e tees 22

References... 0. ee ee eee eee eee eee eee 22

Appendix: Selected Operation Times.... 0.6... 60 0c eee ee eee tee eee eee 23

1. Introduction.

The Siemens Cobol Compiler was developed by the compiler group at

Regnecentralen, Copenhagen, headed by Peter Naur and Jorn Jensen.

The compiler processes full elective COBOL 61, except for a few minor

BIT 6 — 1

2 PER BRINCH HANSEN AND ROGER HOUSE

omissions mainly dictated by the characteristics of the machine and by

the existing conventions for data formats on tape. It is implemented as

a 10 pass compiler on the Siemens 3003 computer with a core store of

8000 words, using one systems tape and two working tapes. In this con-

figuration it processes a Cobol source deck at the rate of 250 cards per

minute, generating final machine code.
The contract for the development of a Cobol compiler was given to

Regnecentralen as a result of the demonstration of the highly successful

GIER ALGOL compiler at the IFIP Conference in Munich in August,

1962. After an initial period spent in getting acquainted with the language,

the design and programming of the system was initiated in March, 19638.

Effective testing of individual passes started in May, 1964, and the final

system, amounting to 39000 instructions, was delivered in July, 1965,

after a total effort of 15 man-years.
The major problem of implementation turned out to be the numerous

definition problems created by the vagueness of the official Cobol report

(ref. 1). The basic translation scheme was largely taken over from the

GIER ALGOL compiler as described by Peter Naur (ref. 2). The present

paper describes in detail the design of the Siemens Cobol compiler. The

novel features, as compared to the GIER ALGOL compiler, are: the

analysis of the complex data structure, the handling of the Copy features,

and the administration of data files at run time.

2. The Systems Configuration.

The Siemens 3003 is a large-scale, tape-oriented computer with a mini-

mum core store of 8000 words. Each word consists of 24 bits interpreted

as a one-address instruction, a binary integer, or 4 alphanumeric charac-

ters. Words and characters may be indirectly addressed. Index registers

are not available. Parallel binary operations take 30 to 70 microseconds,

serial character operations from 200 to 500 microseconds.

The minimum configuration of peripheral units used by the translator

consists of a typewriter, a line printer (750 lines per minute), three mag-

netic tape units (46000 characters per second) and a card reader (650

cards per minute). The typewriter is used for messages to the operator

and instructions to the monitor. The source program is input from the

card reader and listed on the line printer together with possible error

messages to the programmer. One tape contains the translator, segmented

into 10 passes, and two working tapes are used to store the partially

translated program. The final object program is normally generated on

one of the working tapes, but it may also be punched on cards or paper tape.

THE COBOL COMPILER FOR THE SIEMENS 3003 3

3. The Object Program.

This section describes the structure of the object program produced

by the compiler. The main problems are the storage allocation, the ad-
ministration of files, and the addressing of items.

Program structure. The translated program is stored on magnetic tape,

punched cards, or paper tape, as relocatable binary code. It is divided into

segments in accordance with the specification in the Cobol Procedure

Division. The first segment is the so-called fixed portion, which is held

permanently in the core store after the initial loading. The following seg-

ments are only transferred to the core store when the execution of the
program calls for them.

The fixed portion consists of tables describing data files, storage loca-

tions for items in the Working Storage and Constant Sections, and proce-

dure code. The procedure code is composed of fixed subroutines and some

generated sequences of instructions. The fixed routines, called the Run-

ning System, administer the peripheral units and perform complex data

operations (subscription, multiplication, editing, etc.). These routines may

be regarded as part of the systems library, i.e. they are only included as

required by the particular source program. For the simple operations

(perform, move, add) the compiler generates short sequences of instruc-
tions referring directly to the operands.

Storage allocation. The following figure shows the utilization of the core
store at run time.

fixed portion

temporary segment

free space

buffer

cancelled buffer

| buffer

buffer

The fixed portion resides in the lower end of core. The temporary

segments and the buffer areas compete for the rest of the core store.

To make the best use of the available store it must be possible to cancel

segments and buffers. For segments this is achieved by letting each

temporary segment transferred to core overwrite the previous segment.

New buffer areas are created at the other end of the core whenever a

data file is opened. The buffers are chained together by a list of file table

addresses defining the order in which the files have been opened. When

a file is closed its buffer areas will be cancelled. This is done simply by

deleting the file table address from the chain list. A request for a new

4 PER BRINCH HANSEN AND ROGER HOUSE

buffer is made in the following way: a look-up in the relevant file table

defines the area needed. This is compared with the size of the free space

between the program segments and the nearest buffer. If the space is

adequate, the new buffer is immediately created on top of the last one.

Otherwise the entire core store must be examined for gaps (previously

cancelled areas) which can be closed by a compression of the active buf-

fers. This compression is performed on the basis of the chain list and the

buffer pointers kept in the file tables. The compression routine is also

used to make room for new temporary segments.

File administration. The system processes four kinds of data files:

magnetic tape, card input, card output, and line printer. At run time all

requests for block transfers are handled by tables defining the type and

the current status of each file. The first part of these file tables has a

format independent of the type of peripheral unit. The table parameters

define the current input-output status, the size and location of buffer

areas, the base address of the current data record, as well as the ad-

dresses of subroutines that interpret the verbs Open, Close, Read, and

Write for the given unit type. Apart from these general parameters, each

file table holds some information special for the given type of file. For

tape files these are the values of label record items and the addresses of

Declarative Use procedures.

Addressing of variables. Working Storage items and Constant Section

items are stored in the fixed portion. Literals from the Procedure Division

are stored inside the segments where they occur. These items can be

addressed absolutely, because all segments are transferred to the same

place in core. Items from data files are processed directly in the buffer

areas, thus avoiding a movement of every record inside a batch to a fixed

working area. These items are addressed relative to the base of the cur-

rent record. The record base addresses kept in the file tables are updated

every time records are read or written. The drawback of this method is

that item addresses must be computed at run time. The amount of

address calculation is limited, however, by the ability of the compiler to

remember an item address over a sequence of generated instructions (un-

til a procedure name or an input-output statement appears).

4, Multipass Translation.

The philosophy behind the multipass translation scheme has been

discussed by Peter Naur (ref. 2). The limited size of the core store forces

upon us the use of magnetic tapes as auxiliary stores for the translator

and the program being translated. The fundamental design problem is

THE COBOL COMPILER FOR THE SIEMENS 3003 5

to minimize the traffic between the tapes and the core store. The solu-

tion is to divide the translator into a number of segments on the systems

tape, each of which is small enough to be held entirely in the core store.

These translator segments, called “‘passes’’, are taken into core one by

one. Each pass performs a single, sequential scan of the Cobol program

and produces as output an intermediate program version, that is stored

on one of the working tapes, forming the input to the next pass. The

intermediate output thus goes back and forth between the two working

tapes until an object program has been produced. By using a strictly

sequential processing scheme, random references to the systems tape and

the working tapes are avoided.

The success of the multipass system becomes evident when it is com-

pared to a onepass system, where the entire translator and the source

program reside in core after the initial loading. The basic compilation

time for a program is composed of the time taken to load the compiler

and the subsequent processing time. The loading time depends mainly

on the total size of the compiler and is thus independent of the number

of passes. The same is true of the processing time, depending only on the

overall logic of the compiler. In a multipass system the compilation time

is increased by the time taken to transfer the intermediate program ver-

sions between the working tapes. This increase is proportional to the

number of passes.

For small programs the loading time is dominant, so that the multi-

pass system is just as fast as a onepass system. For bigger programs the

compilation time is increased by a factor f. By ignoring the loading time

we get the following conservative estimate: f is less than (1+ passes x

transfer time / process time). The average processing time per Cobol word

is about 20 msec. With 10 passes and a transfer time of 0.04 msec per

word per pass we find f= 1.02. The extra time cost of the multipass system

as compared to a onepass system is thus negligible. The low value of the

transfer time results from using a simultaneous, two-buffer system in the

communication with the working tapes. With a one-buffer system, f

would increase to 1.11.

5. The Intermediate Languages.

The first translator pass transforms the source program, word by word,

to an internal representation of “bytes” and “strings”. A byte is a

binary integer (equal to a computer word) used to represent a Cobol key-

word or a programmer-introduced noun. Keywords are represented by

positive integers of fixed value, called directing bytes, because they direct

6 PER BRINCH HANSEN AND ROGER HOUSE

the individual passes to specific work actions. Nouns are represented by

negative values preceded by directing bytes to indicate whether they are

data nouns or procedure nouns.
A character string is a sequence of 6-bit units (terminated by a special

end mark) used to represent literals, level numbers in data descriptions,

and sequence numbers of source cards. Strings are headed by directing

bytes indicating their type. Literals are also supplied with bytes defining

their size, point location, and sign.

The bytes are normally used by the individual passes as entries in

switch tables or data tables. This results in a very clear and fast logic.

The uniform structure of the byte string greatly simplifies the packing

and unpacking of input-output blocks to be performed by the general

pass administration.

6. The General Pass Administration.

The complete translation process is monitored by a translator segment

called pass 0, which remains in core after the initial loading. Pass 0 con-

sists of routines that are needed by all the passes, mainly to handle

peripheral units. It administers the transfer of control from one trans-

lator pass to the next, as well as the intermediate input-output of bytes

and strings. In addition, pass 0 controls the operation of the typewriter

and the line printer. Finally it contains the Help system used for the

debugging of the translator.

The intermediate program text is stored on the working tapes, and

the administration of block transfers is performed by pass 0. Inside a

pass the next input byte is accessed simply by incrementing a buffer

pointer by 1. Each block is terminated by a special end-byte which trans-

fers control to a routine that makes the next input block available. The

output of a byte is done by calling an output routine with the relevant

byte as a parameter.
The transfer to a new pass consists of rewinding the working tapes to

the beginning of the intermediate strings and loading the next segment

from the systems tape.
The final object program produced by a translation is placed at the

end of one of the working tapes, overwriting the previous end label; it is

terminated by a new end label. During the translation the intermediate

byte string is output after the end label. In this way it is possible to per-

form batch compilations without destroying previously compiled object

programs.
Handling of peripheral units. The simultaneous operation of the central

processor and the peripheral units is utilized extensively during trans-

THE COBOL COMPILER FOR THE SIEMENS 3003 7

lation. The two working tapes are mounted on different data channels,

allowing the input and output of each pass to run simultaneously. This

results in an overall gain of about 10 percent in translation speed. In

pass 1 this is augmented by simultaneous reading and listing of the source

program.

In order to obtain a tolerable performance of the magnetic tapes, in-

formation was included in each block about its size and block number.

The tape routines check this information after each block transfer. If a

whole block or part of it is skipped because of hardware trouble, a special

procedure is initiated to recover the last position on the tape and repeat

the transfer. This recovery procedure permits any movement of the tape

before the translator is started for a new attempt, including rewinding

and moving the tape reel to another unit on the same channel. Our

experience shows that these procedures are vital to the effective opera-

tion of the tapes.

7. The Translation Process.

The translation consists of an analysis phase, aiming at a complete

error detection in a single compilation, and a generation phase, where

the final machine code is generated.

The analysis phase may be summarized as follows: The syntactical

analysis (passes 1-2) checks the formal structure of the program. The

data structure analysis (passes 3-4) checks the existence and uniqueness

of items referred to at run time. The data description analysis (pass 5)

checks the consistency of the data descriptions. The operand type

analysis (pass 6) checks the compatibility of the description of an item

and its uses at run time.

The generation phase consists of the selection of appropriate instruc-

tion sequences (pass 7), the assignment of final addresses (passes 8-9),

and the actual generation of the final machine code (pass 10).

8. The Analysis of Syntax.

The primary aim of this analysis is to provide later passes with a

program string of correct syntax, even when the source program contains

illegal constructions.

Analysis of single words. Pass 1 analyzes the source program at the

character level in order to delimit single words and literals and reduce

them from the character form to an internal representation of bytes and

strings. Apart from some analysis of context which is necessary in order

to recognize the use of integers as level numbers and procedure names,

each word is processed independently of its surroundings.

8 PER BRINCH HANSEN AND ROGER HOUSE

The character analysis is controlled by means of a transition matrix

according to a method of Peter Naur (ref. 2 and 3). In each cycle a

single word is scanned, character by character, up to the next blank

character. The logic is controlled by a single integer-valued state. The

current input symbol (a character) and the state value are used to look

up a transition matrix. The selected element of the matrix defines a

new state value and the address of a work action to be performed.

The character analysis acts as an input routine between the source

program and a word matching routine which converts reserved keywords

and programmer-introduced nouns to unique byte values. The word

matching is implemented as a variant of the Williams Name Reducer

(ref. 4) using a refined search technique through linked lists. When a

word has been delimited, an index is calculated from the internal represen-

tation of its first and last characters. This index is used to reference a

switch of 126 entries. Each entry points to a list of Cobol words (some

lists may be empty). A search is now performed in the selected list, com-

paring its elements to the input word. The matching element holds the

address of a work action and an output byte value. For non-matched

input words, a new byte value is created, and the word itself is placed

at the end of the list. The principle of switching on a function of the first

and the last characters ensures an even distribution of all words among

the 126 lists. In this way the average number of comparisons per word is

minimized. Switching on the first character alone would make some

lists much longer than the rest (for example, reserved words beginning

with A and 8).
Analysis of word structures. From the point of view of pass 2 the source

program is composed of “clauses” with a fixed structure of keywords

and operands. After removal of optional keywords (performed by pass 1),

these Cobol formats are all headed by unique keywords, the format-

firsts, which serve to identify them. Examples of format-firsts are

FILE-CONTROL, PICTURE, and WRITE. Pass 1 recognizes these

format-firsts and precedes them by a unique byte, that is used by pass 2

to delimit the structures. The syntax is checked by pass 2 at three levels

of context:
Divisions. The sequence of Cobol formats is checked by means of a

transition matrix. This table defines the global structure of divisions,

sections, paragraphs, and sentences.
Clauses. The interior keyword structure of clauses and verbs is checked

by comparing the input string with the contents of fixed threaded lists.

Expressions. The structure of conditions and formulas and of qualified

and subscripted names is analyzed by means of another transition matrix.

THE COBOL COMPILER FOR THE SIEMENS 3003 9

The description of Cobol clauses by threaded lists may be illustrated

by the verb, WRITE, which has the following format in the source

program:

WRITE <dataname) [FROM <dataname)]

AFTER

BEFORE

Pass 1 removes the optional words, ADVANCING and LINKS, inserts

a directing byte, FORMAT-FIRST, in front of the keyword WRITE,

and precedes the datanouns and integers by directing bytes, DATANOUN

and NUMERIC-LITERAL. The legal input to pass 2 may therefore be

described by the following table:

<dataname)
ADVANCING <integer) | LINES|

entry: link: identifier: alternative:

1 2 WRITE no

2 3 DATANOUN no

3 7 FROM yes

4 8 AFTER yes

5 8 BEFORE yes

6 - FORMATFIRST no

7 4 DATANOUN no

8 6 DATANOUN yes

9 6 NUMLIT no

This format table has an entry for each byte that may appear inside

the clause. An entry holds 5 parameters: (1) An identifier defining the

value of a legal input byte. (2) A link to be used as the next entry if the

present input byte matches the identifier. (3) A Boolean indicating

whether the format allows an alternative byte value at the given point.

(Alternative identifiers are always stored in consecutive entries). (4) The

address of a work action to be performed on a matching input byte. (5)

The address of an error action to be performed in a non-matched entry

with no alternatives.

For clarity only the first three parameters are shown in the above

example.

In the output from pass 2, redundant clauses have been deleted, and

ambiguous keywords are replaced by unique bytes. Clauses with illegal

syntax are erased completely.

9. The Analysis of Data Structures.

The main task of this analysis is to ensure that all names in the source

program refer to one, and only one, defined data item or program point.

10 PER BRINCH HANSEN AND ROGER HOUSE

This analysis is divided into two passes. Pass 3 collects the data and

procedure names where they are defined in the program and builds a

table describing their tree structure. This table is provided with internal

links enabling pass 4 to replace each qualified reference to an item by a

single, unique byte representation.
The following example shows to the left a data structure described

inside a Cobol Data Division and to the right the corresponding name

table built by pass 3:

tree program name

FD A entry: item link link link

Ol B 1 A 0 2 0

02 C 2 B 1 3 0

02 D 3 C, 2 4 7

Ol £ 4 D 2 5 0

02 C 5 E 1 7 0

02 F 6 ff 5 - 0

7 CL 5 6 0

The byte values given to single nouns (A, B, C, etc.) in pass | are

consecutive integers (1, 2, 3, etc.). They act as direct entries in the name

table. In the above example the noun “C”’ occurs at two points in the

name tree. In the input to pass 3 both occurrences have the same byte

value (3). Pass 3 associates the direct entry (3) with the first occurrence

of “C’’, and generates a separate entry (7) for its second occurrence.

This duplicate entry is placed at the end of the table and connected to

the first entry by an internal link (the name link). The name table has

an entry for each point in the name tree. The internal links are:
The tree link. This points to the most recent item with a lower level

number, i.e. to the parent of the present item.
The name link. This connects multiple occurrences of the same noun.

The program link. This defines the order in which all nouns are in-

troduced in the source program (including nouns introduced by the Copy

clause). This link is used to process the clauses Copy, Redefined, and

Renames.
Pass 3 uses a stack (or push-down list) to establish the tree link in the

name table. Each element in the stack holds an entry in the name table

together with the corresponding level number. For each entry processed

an unstacking is performed until the level number in the top of the stack

is less than the one in the present entry. The tree link for the present

entry will then be in the top of the stack.
When the name table, defining all items, is complete, pass 4 will scan

THE COBOL COMPILER FOR THE SIEMENS 3003 Il

the program to analyze all references to these items. Take the following

reference: C IN B, represented by the byte values (3,2). Pass 4 must

establish that this qualification sequence exists once, and only once, in

the name table. After having looked up the table entry for the first

noun (C), pass 4 will follow the tree link searching for the following

noun (B). The next step is to use the name link of the first noun (C) to

find the entry for its second occurrence (C,) and repeat the search along

its tree link. By performing this process for all duplications of the original

entry the uniqueness of the reference is determined.

The output of a qualified data name consists of two bytes: one defin-

ing its unique entry in the name table, the other one defining the entry

for the corresponding file name. Referring to the previous example, the

qualified names, C IN B and C IN £, will appear as byte values (3, 2)

and (3,5) in the input to pass 4. In the output they are transformed to

(3,1) and (7,1), respectively. This representation of data names corre-

sponds to the addressing at run time, where items are represented by

the address of a file table and a relative address inside the current record.

The output of a procedure name is a unique symbolic address and a

segment number. The look-up of procedure names differs somewhat from

that of data names, because of the rule that paragraph names need only

be unique inside the current section.
The above method used to analyze data names, though similar to the

one reported by M. E. Conway (ref. 5), was developed independently by

our group.

10. The Analysis of Data Descriptions.

The purpose of this phase is to collect descriptions of all files and

data items in a form suitable for the final code generation. This informa-

tion, collected by pass 5, is stored in the name table created by pass 3.

An important part of this analysis is to control the consistency of the

data descriptions. This is done in two steps.
Pass 5A scans the Environment and Data Divisions of the source

program. During this scan all explicitly stated information about items

is collected, and all copy processes are completed. In this phase each

item is processed as a unit, independent of all other items. Consider the

following data description:

02 A CLASS AN POINT LEFT 1, SIZE 5, PICTURE 9.9

Here pass 5A will report the local conflict between the explicit class

clause (alphanumeric) and the point location clause (implying a numeric

12 PER BRINCH HANSEN AND ROGER HOUSE

item). Likewise the conflict between the size clause and the size derived

from the picture will be detected.

The method used for checking data descriptions of single items has

been described by Paul Lindgreen (ref. 6). The current class of legal

description clauses is defined by a single machine word, where each bit

is associated with a specific clause, such as “alphanumeric’’, “‘size’’, etc.

This Boolean vector is initialized to “all clauses allowed’’. The occurrence

of a clause will cause a test of a single bit followed by an updating of the

vector. The updating is performed by logical addition of a constant

vector determined by the clause. As an example: the clause “alpha-

numeric’’ will forbid subsequent class clauses as well as the point loca-

tion clause.
Pass 5B performs a rescan of the complete description table of data

items in their order of introduction (as defined by the program link in

the table). The purpose of this scan is to verify that descriptions of

group items are compatible at all levels. As an example:

01 A NUMERIC SIZE 5.

02 B PICTURE $999.

02 C PICTURE 999.

In this case there is a conflict between the group size (5) and the sum

of elementary sizes (7). There is also a conflict between the group class

(numeric) and one of the subordinate classes (B is alphanumeric).

Apart from checking that an explicit group description is consistent,

pass 5 B will also ensure that it is complete, i.e. that size is specified at

all elementary levels. If size and class are not specified at a group level,

this information will be derived from the elementary levels.

Pass 5 B uses a stack to check the data descriptions of group items.

A sequence of subordinate items (with ascending or identical level

numbers) will be placed in the stack, one after another, until an item

with a lower level number signals the end of the last group item. At this

point an unstacking is performed. During this process an accumulated

size and class is formed for items on the same level. When a level ends,

the accumulated information is tested against the size and class specified

for the group item in the top of the stack. The unstacking, accumulation

and checking continues until the input item and the stack item have

identical level numbers.
After pass 5, the entries in the name table will hold the following

information:
Type information. This is an integer used for the type checking in

pass 6. Primarily it indicates whether the operand is a file, a record, a

THE COBOL COMPILER FOR THE SIEMENS 3003 13

group, or an elementary item, and whether it is alphanumeric or numeric.

Address information. Pass 5 generates symbolic addresses for all run

time file tables, and calculates the relative addresses of all data items

inside a record.

Structure information. Data items are described by their size and

a possible point location. Information about files is kept in a separate

table, the extra table, which defines the type of peripheral unit, the

recording mode, and the area needed for buffers.

11. The Analysis of Operand Types.

Pass 6 completes the formal analysis of the source program by checking

that the uses of operands in the Procedure Division are compatible with

their descriptions in the name table. As a final preparation for the genera-

tion of code, all names in the program are replaced by complete data

descriptions, and all procedure statements are converted to Reverse

Polish form.

Verbs. In a statement like the following: ADD A, B GIVING C, the

byte values for A, B, and C are used to look up the name table to ensure

that A and B are described as elementary numeric items, whereas C

must be an elementary numeric or edited item not belonging to the Con-

stant Section. The conversion to Polish form (A, B, +, C, =) is straight-

forward, because there is no parenthesis structure.

Expressions. Formulas and conditions are converted to Reverse Polish

form by the well-known algorithm described by Dijkstra (ref. 7). This

method is based on the use of an operator stack and a priority system for

the operators. Simultaneously with this conversion, the checking of oper-

ands is performed by a pseudo-evaluation of the expression. This process

imitates the run time evaluation, working with the descriptions of the

operands instead of with values. The evaluation, which is based on input

in the Polish form, assumes the existence of an operand type stack.

Each time an operand occurs, a description of its type is stacked. When

a binary operator is met, it will be checked for compatibility with the two

operand types in the top of the stack. Following this the two operand

types are replaced in the stack by a single resulting type. As an example

consider the following condition composed of an alphanumeric and

numeric relation:

IF A =‘B’ AND C+5 = D THEN...

The following figure shows to the left the Polish string developed for

this expression. The corresponding development of the operand type stack

during the pseudoevaluation is shown to the right:

14 PER BRINCH HANSEN AND ROGER HOUSE

Polish string: Type stack

A alphanum

‘B’ alphanum, alphanum

= Boolean

C Boolean, numeric

5 Boolean, numeric, integer

+ Boolean, numeric

D Boolean, numeric, numeric

= Boolean, Boolean

AND Boolean

THEN -

The evaluation proceeds as follows: The first operator (=) tests whether

the two (alphanumeric) types in the top of the stack are compatible.

The resulting type of this alphanumeric relation is ‘Boolean’. Following

this a numeric variable (C) is added to an integer literal (5). The resulting

sum is of type “numeric”. Evaluation of the complete numeric relation

(C +5=D) gives a Boolean result. Finally the combination of two Boole-

ans, by AND, is in itself a Boolean. The stack ends up by holding the

type of the complete expression. The operator, THEN, checks that this

type is Boolean.

In the checking of operand types, each operand is described by a bit

pattern in one machine word. Each bit in this type vector is associated

with a given class of operators (e.g. arithmetic, numeric assign, relation,

etc.). With this representation the check whether an operand is correct

involves only the test of a single bit. This method of type checking is due

to Peter Naur (ref. 8).

Formulas. Pass 6 supplies all arithmetic expressions with the following

collective information: (1) An indication of whether ROUNDING and

SIZE ERROR tests are specified. (2) The maximum size and point

location for the entire expression.

Conditions. In abbreviated relations like the following: IF A

GREATER B AND LESS C ..., the missing terms are copied from the

nearest complete relation. In order to generate optimal code for com-

pound conditions, all logical operators (AND, OR, NOT) are replaced by

conditional jumps which ensure that the minimum number of relations

are evaluated at run time. This may be illustrated by the above example,

where it is apparent that the relation following AND need not be evalu-

ated if the preceding relation turns out to be false. In this case the com-

piler will replace the AND operator by a special byte, FALSE-GOTO

instructing pass 7 to generate a conditional jump instruction. As de-

THE COBOL COMPILER FOR THE SIEMENS 3003 15

scribed by Per Brinch Hansen (ref. 9), this transformation can be com-

pletely integrated with the algorithms for the type checking and the

conversion to Polish form.

12. The Generation of Machine Code.

The final object program is produced in 4 steps. Pass 7 simulates the

run to select appropriate sequences of machine instructions. Pass 8 scans

the program to define all symbolic addresses created by previous passes.

Pass 9 distributes the final addresses to the places in the program where

they are used. Pass 10 produces the final program, as directed by the

output from passes 7-9.
Code selection. The final program contains two kinds of code: (1) calls

of routines in the running system performing complex operations (e.g.

read a record), and (2) code consisting of operations which are built into

the machine and which address the operands directly (e.g. addition,

simple move).
Pass 7 specifies the code to be generated by a simulation of the run,

similar in principle to a method described by Jorn Jensen (ref. 10). This

method uses an operand stack to operate on the descriptions of the

operands. The stack keeps track of where the operands exist at run time,

and which working areas are used for intermediate results. The major

aim is to minimize the use of intermediate working areas (by changing

the order of reference to operands), and to generate simple code for

simple operations (e.g. an addition involving an assignment to one of

the operands is performed directly in the receiving area).

Pass 7 delivers 4 kinds of output: (1) Address bytes instructing pass 8

to define internal program points. (2) Operand bytes consisting of sym-

bolic base addresses (of file tables or the working storage area) and rela-

tive addresses. These are replaced by absolute addresses in pass 9, and

in pass 10 they are inserted as address parts of the generated instructions.

(3) Instruction bytes which direct pass 10 to generate specific sequences

of instructions. (4) A bit vector defining the routines to be included from

the running system.

Address definition. In earlier passes symbolic addresses are created

whenever a reference is needed from one point in the program to an-

other. Examples are procedure addresses created in pass 4, file table

addresses created in pass 5, and conditional jumps from pass 6. These

symbolic addresses are consecutive integers. They act as direct entries

in a table of final addresses to be built by pass 8.

The final addresses are defined in the following way. When pass 8

16 PER BRINCH HANSEN AND ROGER HOUSE

begins, an address pointer is set to zero. The directing bytes from pass 7

instruct pass 8 to increment the address pointer in accordance with the

number of instructions to be generated in pass 10. Thus, for example,

when the bytes DEFINE SYMBADDR 5, are encountered, the address

pointer will contain the final address of that particular point in the

program. The current value of the address pointer is then placed in word

5 of the address table.

Pass 8 also creates the run time file tables on the basis of the informa-

tion in the extra table delivered by pass 5.

Address distribution. Pass 9 completes the addressing by distributing

the final addresses in the address table. When a directing byte followed

by a symbolic address is encountered, the symbolic address is used as

an entry in the address table to get the final address. As an example:

the input bytes GOTO SYMBADDR 5 might be output as GOTO

FINALADDR 2093.

Final generation. The final program is put together by pass 10. The

entire running system is stored as one segment of machine code on the

systems tape inside pass 10. Only the necessary routines are included

in the object program. This selection and relocation of running system

routines creates an addressing problem when the included routines refer

to each other, or are referred to by the generated code. To handle this,

the address parts in the included routines are modified by a special

routine on the basis of a table which contains the original base addresses

and the sizes of all running system routines.

13. The Handling of Errors.

When an error has been detected the compiler will modify the offend-

ing spot in the source program in such a way that later passes will ac-

cept it as formally correct. This approach allows the translation to

proceed through all the checking phases without going astray or produc-

ing an avalanche of error messages. Code generation, however, is not at-

tempted for programs with formal errors.

Syntactical errors. Clauses with erroneous keyword structure are com-

pletely removed from the source program. Because of the strictly se-

quential processing this cannot be done during a single scan. The solu-

tion adopted is to let pass 2 number all format-firsts consecutively.

When an error is detected inside a format the current format number is

placed in a list which is left in core in order that pass 3 may recognize

and erase the erroneous structure.

Semantical errors. A reference to an item that is undefined or ambigu-

THE COBOL COMPILER FOR THE SIEMENS 3003 17

ous (pass 4), an inconsistent data description (pass 5), or an operand

that is used in the wrong context (pass 6) is handled by replacing the

actual operand by a pseudo-operand of ‘‘undeclared type’’. This type of

operand is accepted in all contexts by later passes.

Error messages are displayed on the line printer following the listing

of the source program. Each message is preceded by a sequence number

identifying the erroneous source card.

14. Copy Processing.

Copy from Library. The Cobol Library is stored on the systems tape

between pass 1 and pass 2 in the form of Cobol card images. The inclusion

of library code, performed by pass 1, thus merely involves a change of

input from cards to tape. An exception is the INCLUDE clause, where

parts of the library text must be replaced during the inclusion. Likewise,

if a data description is copied from the library, the level numbers must

be adjusted to their surroundings. This is done by pass 3.

Standard Label Records. Pass 2 creates a data description of label

records.

Renaming of files. This option is interpreted as a shorthand method

for rewriting a complete file description. When a file is introduced by

renaming in pass 3, the name of it is stored temporarily together with

the name of the file being copied. When all data names in the File Sec-

tion have been processed, entries for the renaming-files are created in the

name table. Only the file name itself gets an entry, connected by the

tree link to the file being copied, whereas no entries are created for the

subordinate items (this is merely a space saving device). The renaming

is completed in pass 7, where file descriptions are copied inside the extra

table.

Copy of data items. COPY of group items is handled in pass 3 by inter-

nal copying of the entries in the name table. This solution is very at-

tractive compared to a literal copying of the source text, since such a

process would require two additional passes. Copy clauses pointing back-

wards in the source program are processed when they occur in the input.

During this process the level numbers and the table links are adjusted.

Copy clauses pointing forwards are stored temporarily and processed at

the end of the Data Division.

Pass 3 only copies information about the tree structure, but not the

corresponding data descriptions. The copy clauses are therefore trans-

mitted to pass 5, which performs similar copying inside the description

table.

Copy of data values. The original value clauses result in code which at

BIT 6 — 2

18 PER BRINCH HANSEN AND ROGER HOUSE

run time is performed first. The copying of values can therefore be handled

by subsequent code which moves the already inserted values to the copy

items.

15. Other Tasks.

Literals. Pass 1 outputs literals as character strings preceded by bytes

defining their size, point location, and sign. In pass 7 literals used as

operands are adjusted to the size of the surrounding operands by ex-

tending them with leading and trailing zeroes (or blanks). Figurative

constants are adjusted by a duplication of their basic value. Pass 7 then

reserves storage areas for the literals and generates code to initialize

their values.

Condition names. The value clauses for a condition variable are treated

as a declaration of a Boolean procedure to be generated by pass 7. The

reference to a condition name at run time is a call of this procedure to

test whether the variable has one of the values associated with the con-

dition name.

Picture. Picture characters are converted to a unique string of bytes

in pass 1. In pass 5 a data description (size, class, and point location) is

extracted from the picture, and a description of possible editing opera-

tions is generated for pass 7. Pass 7 generates the run time parameters

for the editing routine. These involve descriptions of the source and the

receiving items, a string containing the fixed insertion characters, and

the identification of a floating string to replace leading zeroes.

Renames. The renames clause allows the programmer to refer to a

sequence of elementary items inside a record, without respect to the

previously defined group structure. Pass 4 will look up a unique represen-

tation of the first and the last elementary items embraced by the renames

reference. This is done by means of the program link. Pass 5 completes

the renames process: the relative address of the renames item is set

equal to the relative address of the first elementary item, and the size

is calculated as the total size of all the elementary items.

Redefines. This clause allows the programmer to go back to a previous

point in the data tree and redefine the structure from that point. It

allows him to reference the same storage area with different names. A

redefines clause causes pass 5 to set the current relative address inside a

record back to its value at the redefined point.

16. Summary of the Passes.

Pass 1. Analysis of single words:

Listing of source program. Inclusion of library code. Conver-

Pass 2.

Pass 3.

Pass 4.

Pass 5.

Pass 6.

Pass 7.

Pass 8.

Pass 9.

Pass 10.

THE COBOL COMPILER FOR THE SIEMENS 3003 19

sion of source program to bytes and strings. Deletion of optional
symbols.

Analysis of word structures:

Syntactical check of clauses. Deletion of redundant clauses.

Differentiation of ambiguous keywords. Recording of incorrect
clauses.

Collection of data structures:

Construction of data name table. Start of Copy Processing.

Delimiting of segments in Procedure Division. Deletion of in-

correct clauses.

Distribution of unique names:

Qualified names are checked for existence and uniqueness and

replaced by single byte values. Subscripts are supplied with

names of the lower array levels. Move Corresponding statements

are split into single moves.

Collection of data descriptions:

Construction of data description table. Completion of Copy

processing. Descriptions are checked for consistency. Relative

addressing of data items.

Distribution of data descriptions:

Operand names are replaced by their descriptions. Conversion

of statements to Reverse Polish form.

Check of operand types.

Selection of code:

Selection of running system routines to be included and code

pieces to be generated. Assignment of working locations.

Definition of final addresses:

Construction of address table. Generation of file tables.

Distribution of final addresses.

Generation of object program:

Inclusion of running system routines. Generation of code pieces.

Segmentation of program.

17. The Debugging System.

The division of the translator into passes makes it possible to design,

program, and debug each pass as an autonomous program. This is an

important point when the task of writing a compiler must be distributed

among a group of people.

In order to achieve a systematic and thorough testing of the compiler,

the following scheme was used. The passes were checked individually,

20 PER BRINCH HANSEN AND ROGER HOUSE

but in their natural sequence (pass 1 was debugged first, then pass 2,

etc.). The test input to each pass consisted of Cobol source programs

specially written to involve all the logic of the pass. The sequential testing

scheme ensures that these source programs will be transformed into cor-

rect input bytes by the previously debugged passes. The debugging of

the current pass is then reduced to verifying that the output bytes pro-

duced by it are correct.

The main task of the debugging system, Help, is to print out the

values of output bytes and strings from the passes. The setting of the

debug state is done by preceding the Cobol source program by a special

test card, indicating from which passes the test output is wanted. A

test option is also provided for the listing of internal tables built-up by

the passes. It should be stressed that the Help system does not affect a

normal translation either by space or longer run time. The Help system

is loaded in the upper end of core and is overwritten unless a test card

indicates that it should be protected. The test mode is set by replacing a

number of dummy instructions inside pass 0 by jumps to the Help system.

About 280 Cobol programs of an average size of 60 source cards each

were needed to check the entire system. The total computer time used for

assembling and debugging of the translator was approximately 600 hours.

18. Evaluation of the Compiler.

The following is an evaluation of the size and performance of the trans-

lator itself and the object programs produced by it. In describing the

performance of the object programs we will be more concerned with

advising the user how to make the best use of Cobol as it is, rather than

in debating the merits of the language.

The size of the translator is as follows:

Phase: Program size: Fixed tables:

(words) (words)

Pass 0 1510 110

Pass 1 3200 1660

Pass 2 1840 3300

Pass 3 2080 190

Pass 4 1470 190

Pass 5 4050 300

Pass 6 3000 370

Pass 7 3180 450

Pass 8 1690 760

Pass 9 330 200

Pass 10 3950 1270

Running system 4900 0

The total system 30200 + 8800

THE COBOL COMPILER FOR THE SIEMENS 3003 21

The rather large size of Siemens COBOL (39000 words of 24 bits) as

compared to GIER ALGOL (5800 word of 42 bits) is due to the com-

plicated structure of the COBOL 61 language. Instead of having a few

basic constituents that may be used in many contexts (like in ALGOL

60) COBOL 61 consists of a large number of unrelated clauses, each of

which requires a special piece of code in each pass.
The speed of the compiler has been measured during translation of a

series of realistic Cobol programs. This indicates a basic loading time of

the compiler itself of 45 seconds plus an average translation time of 0.25

seconds per source card (or 15 milliseconds per generated instruction).

As an example, a source program consisting of 750 cards was translated

into an object program of 12460 instructions in 3.8 minutes.

To be compatible with other programming systems running on the

Siemens 3003 the compiler was assembled as a relocatable program. In

the absence of index registers the necessary address modification is

performed by a loading routine. This accounts for about two thirds of

the basic 45 seconds.
The reading and listing of the source program (pass 1) takes about

30 percent of the total translating time. Relatively slow are also the

syntactical analysis (pass 2=10 percent), the run time simulation (pass

7=9 percent) and the final generation (pass 10=15 percent). The re-

maining passes are quite fast (4-7 percent each).

A comparison with the performance of other Cobol compilers has been

made on basis of the Report on Bureau of Ships Cobol Evaluation Pro-

gram (ref. 11). The participant manufacturers in this experiment were

Remington Rand, RCA, IBM, General Electric, and National Cash

Register. The fastest translation reported was obtained by the COBOL 60

translator developed for the GE-225. This machine is very similiar to the

Siemens 3003 with respect to storage capacity and internal speed. Using

a card reader, a line printer, and 6 magnetic tapes a Cobol program of

328 cards was translated into 4300 instructions in 16 minutes. Our own

tests indicate that the corresponding translation time on the Siemens

3003 would amount to 2 minutes only.
To enable the user to estimate the run time of object programs in

advance, and to point out certain very time consuming operations, a

selected set of Cobol statements have been timed on the Siemens 3003.

The execution times, listed in the appendix, point to the following

bottlenecks in the running system:
Arithmetic. Exponentiation, multiplication, and division, being per-

formed by subroutines, are 10-50 times slower than the built-in addition

and subtraction.

22 PER BRINCH HANSEN AND ROGER HOUSE

Data scanning. Examine and editing are necessarily quite slow because

the source item must be analyzed character by character.

Address computations. Operations involving a conversion of decimal

integers to binary addresses (go to ... depending, reference to subscripted

variables) require about 1 millisecond per conversion. This will probably

turn out to be the major bottleneck in realistic programs. A considerable

improvement would result if binary integers were introduced as variables

in the Working-Storage Section (defined as data names with level number

77 and the description, USAGE COMPUTATIONAL).

File handling. The running system has been tested extensively for

typical conversion runs, such as cards-to-cards, cards-to-printer, cards-

to-tape, tape-to-printer, and tape-to-tape. In such applications the peri-

pheral units were operating at full speed.

Acknowledgements.

The basic overall design of Siemens Cobol is due to Peter Naur and

Jorn Jensen. The design, programming, and testing of the individual

passes was done by Sven Eriksen, Jorn Jensen, Peter Kraft, Paul

Lindgreen, Ole Riis, Peter Villemoes, and the present authors. We wish

especially to record our debt to Peter Villemoes for his coordination of

the group during the initial phases of the design, and to Mrs. Berta Kiar

for her invaluable assistance with the documentation of the system.

Finally, Dr. Herbert Donner, Mr. Helmut Hoseit, and Miss Karin-Herta

von Lucius of Siemens und Halske in Munich should be given credit for

their patience and aid to the group during the debugging.

REFERENCES

1. COBOL-1961, Report to Conference on Data Systems Languages, U. 8. Department

of Defense, 1961.

2. Naur, P., The Design of the GIER ALGOL Compiler, Annual Review of Automatic

Programming 4, Pergamon Press, London, 1964. BIT vol. 3, no. 2-3, 1963.

3. Naur, P., State Analysis of Linear Texts, (unpublished), June 1965.

4. Williams, F. A., Handling Identifiers as Internal Symbols in Language Processors,

Comm. ACM 2, June 1959.

5. Conway, M. E., Design of a Separable Transition-Diagram Compiler, Comm. ACM 6,

July 1963.

6. Lindgreen, P., Collection and Mutual Control, of RECORD-Description in COBOL by

means of an Implicit State-Technique, Proc. NordSAM 64, Stockholm, August 1964.

7. Dijkstra, E. W., ALGOL 60 Translation, Annual Review of Automatic Programming

3, Pergamon Press, London, 1968.

8. Naur, P., Checking of Operand Types in ALGOL Compilers, Proc. NordSAM 64, Stock-

holm, August 1964. BIT vol. 5, no. 3, 1965.

THE COBOL COMPILER FOR THE SIEMENS 3003 23

9. Brinch Hansen, P., An Optimal Compilation of Boolean Expressions in COBOL 61,

Proc. NordSAM 64, Stockholm, August 1964.

10. Jensen, J., Generation of Machine Code in ALGOL Compilers, Proc. NordSAM 64,

Stockholm, August 1964. BIT vol. 5, no. 4, 1965.

11. Siegel, M., and Smith, A. E., Interim Report on Bureau of Ships COBOL Evaluation

Program, Comm. ACM 5, May 1962.

Appendix: Selected Operation Times.

Statement: Test example: Milliseconds:

go to (simple) GO TO P. 0.02

go to (depending) GO TO P, Q, R DEPENDING ON I. 1.13

alter ALTER P TO PROCEED TO Q. 0.07

perform (empty loop) PERFORM P. 0.22

relation IF B GREATER C THEN. 1.14

addition ADD B TO C. 0.5

division DIVIDE B INTO C 5.7

multiplication COMPUTE A = B+¥C. 17.2

exponentiation COMPUTE A = G*«*I (I = 2) 14.2

(I = 3) 26.0

(I = 4) 29.8

move (simple) MOVE B TO C. 0.29

move (editing) MOVE X TO Y. 3.8

examine EXAMINE B TALLYING ALL 9. 6.3

subscripted variable COMPUTE B = D (J). 1.25

COMPUTE B = E (I,J). 2.20

COMPUTE B = F (I,J, K). 3.12

Test operands: Picture:

A 9(16)

B, C, D, E, F 9(8)

G 9(4)

ILJ,K 9

x 9(6) V9(2)

Y 3333,889.99—

A/S REGNECENTRALEN

COPENHAGEN

DENMARK

