
Vo? TO 86& Kheovee

RC 702 PICCOLO MICROCOMPUTER —

PROBLEM _ANA AND PROGRAMMING WITH

~ STRUCTURED BASIC

A practical and educationally sound
approach to computing for people who

are non-mathematical or non-technological,

or both or neither.

By Roy Atherton.

FVN

CONTENTS

Chapter

1. The Background

2. Preliminary Ideas

3. Repetition

4. Decisions and Procedures

5. More Complex Structures

6. Handling Data

7. Complexity, Modularity, Procedures

8. Sequential Files

9. Direct Access Files

10. Case Studies

11. Problems and Projects

PROBLEM ANALYSIS AND

PROGRAMMING WITH COMAL

By Roy Atherton.

"Ah love ! could thou and I with Fate conspire

To grasp this sorry Scheme of Things entire,

Would not we shatter it to bits and then

Re-mould it nearer to the Heart's Desire."

- Rubaiyat of Omar Khayyam (Fitzgerald)

INTRODUCTION

In 1968 Edsger Dijkstra published a paper entitled "GOTO Statement
Considered Harmful". That year also contributed to the name of a programming
language called Algol 68. Bot these events were moves towards establishing
principles for methodical computer programming which implies methodical
problem analysis.

Perhaps the most significant event in this movement was the publication
in 1971 of a definition for Pascal by Jensen and Wirth. This language was
invented as a vehicle for teaching programming but its theoretical basis is
so sound and its authors are such practical people that it became a major
computer language inside and outside of educational circles in less than a
decade.

To put this achievement in perspective one has to remember that there
is a huge investment in existing languages and other software and it is not
easy for new languages to break in. What are the strengths of Pascal that
have made it popular ? Undoubtedly the most important quality of Pascal is
that it incorporates exactly those features which enable and encourage methodical
problem analysis and programming. The “Harmful GOTO" becomes almost redundant
and the writing of a correct program in Pascal is almost certain to be of
educational value to all but the very experienced and expert programmers.

Curiously an almost parallel development was the language BASIC
(Beginner's All-Purpose Symbolic Instruction Code) invented by Kemeney and Kurtz in

the mid-sixties. This language has such an easy syntax and simple vocabulary
that it is cheap to implement, it can be used with the smallest machines, and
it seems amazingly easy to learn. Typically a user would be surprised and
pleased at his seemingly rapid progress in the early stages of learning to
program, though he would be likely to become slightly puzzled at the
difficulties experienced with even moderately complex problems.

The cheapness and deceptive simplicity of BASIC made it very popular
with schools, small colleges and other low-budget organisations, and of course
it was the "natural" language for the personal computer market based on the
cheap microcomputers of the late seventies. Pascal, on the other hand, was
very much a part of the mainstream of development of computer science in the
seventies. It helped to spread those concepts which had been identified as
fundamental to methodical problem analysis and programming. It has been
suggested that these simple structural ideas can do for the structural aspects
of computer programming what Newton's laws of motion did for mechanics - provide
a simple and precise set of concepts which constitute a framework for the
methodical analysis and solution of problems and also provide a sound basis
for further theoretical discussion and development. The writer is aware of
the power and universality of Newton's laws of motion (notwithstanding
Albert Einstein) and the comparison may not be fully justified but certainly
something important with an air of permanence has occurred in the world of
computing. But was it a case of separate development - a kind of apartheid
in computing ? Were the advocates of BASIC unaware of the other major
stream of activity ?

The answer is a resounding "yes". Certainly in UK and probably
in most other countries. Teachers of computing in schools and colleges

were usually mathematicians with a little knowledge of computing, perhaps

Fortran (a precursor of BASIC) or Algol 60 (a precursor of Pascal) but

they would quickly discover that only the brighter well-motivated pupils

could cope with these languages. BASIC arrived like mannah from heaven

and suddenly it seemed possible to teach computing and develop syllabuses

and curriculum material for the lower age groups and the average ability

pupils.

But some teachers were unhappy about BASIC. They noticed how easy

it was for them and their students to get into a tangle. Borge Christensen

of the Teacher Training College in Tonder, Denmark, tells of student, John,

who asked for help in debugging a rather convoluted program. After some

patient re-analysis the bug was discovered and so were two statements which

had become redundant in the processes of amendment and re-amendment. The

writer's own worst example of control paths which Dijkstra has likened to a
plate of spaghetti is illustrated (Al).

The most successful attempt to deal with this problem - to diminish

the gulf between progressive computing practice and school work - is COMAL.

Christensen realised that Algol and Pascal were a bit too difficult for

much of school work and decided to work on the enhancement of BASIC instead.

His idea was to identify the minimum requirements for well-structured

programs at school level and incorporate the necessary features into BASIC -

to combine the simplicity and easy operating environment of BASIC with the

structural strength, theoretical correctness and practicability of Pascal.

These ideas were published in 1975, just about the time that the program

in Al was discovered. In education the growing popularity of a seriously

defective language, in the context of minimal teacher experience and negligible

teacher training, created severe problems. Their severity was not less

because it was obscured by the excitement and enthusiasm for this topical new

subject.

In the second half of the nineteen seventies COMAL (Common Algorithmic

Language) was developed, tested and refined until finally a standard version,

COMAL 80, was agreed by a number of manufacturers and educationists based in

Denmark but with good connections in other countries including USA and UK.

There are other moves towards structured BASIC such as the French LSE,

ANSI structured BASIC and individual manufacturers' developments but a

computer language is a work of art as well as a science and it is easy to

get it out of balance - to do too little or too much or spoil it in some way.

In the writer's opinion COMAL is right for the job though it will undoubtedly

be developed further, probably on the data processing side. COMAL can do for

school computing what Pascal has done elsewhere.

While the writer takes full responsibility for any ideas or opinions

expressed in this work, he wishes to acknowledge with gratitude the debt he

owes to many computer people on whose work he has drawn freely. In particular,

to Edsger Dijkstra, Nicklaus Wirth, Ken Bowles, Peter Grogono, David Barron

and Borge Christensen.

Chapter one

THE BACKGROUND

"There is always a simpler way."

- Tom Gilb, Computer Consultant.

1. THEMES AND ORGANISATION OF THIS BOOKLET

This booklet is written for anyone who wishes to make a start on
learning computer programming. Following the ideas of Ken Bowles of the
University of California, San Diego, pictures and text will be the main
source of illustrations rather than mathematical concepts. This approach
will obviously appeal to a wider audience. Mathematically inclined
readers will have no difficulty in finding suitable problems for practice.

Topics are not treated in depth because the detailed rules of syntax
can be safely left to a second stage. The first stage aims to cover
enough syntax and technique to enable the reader to begin to develop the
essential skills of programming and problem analysis almost immediately.

This seems a more pleasant way of tackling the subject and is likely to
maintain motivation. A second stage will return to previous topics and

cover some new ones in a manner which aims at comprehensive coverage rather
than easy learning though there is very little in COMAL that could be
described as difficult. However, that does not preclude the solution of

some extremely difficult problems in COMAL if that is necessary or desired.

In the earlier parts of stage one the reader can be assured of
progress by following the text and typing everything enclosed in the

rectangular boxes. This is intended to ensure that operational details

are learned quickly and correctly by doing. Later, when such troublesome

but essential details have been well treated a more natural format will be

used.

As will be explained in the next section, computer programs are

sets of instructions for manipulating things such as pictures on screens,

texts, files of information, accounts, simple or complex mathematics and so

on. But it is much more pleasant and fruitful to learn the essentials by

manipulating simple things even though this may seem slightly unpractical

at the time. Accordingly the following items will be used in illustrative
programs and exercises in most of this book.

Numbers
Random numbers
Alphabetic characters
Random alphabetic characters
Words and short sentences
Simple displays on the screen (lines and rectangles)

One final point follows the growing practice of differentiating between
keywords and other words of a program with lower and upper case letters.
The writer observes the Piccolo COMAL usage of putting keywords in lower case.
Identifiers (names chosen by the user) are in upper case. This is simply to
break up the solid appearance of a program and to make it easier to read and
understand. The Piccolo system will force words of a program into this pattern
so the user need not worry about the shift keys unduly.

1. [aveces

2. WHAT IS COMPUTER PROGRAMMING ?

A knitting pattern is carefully sequenced precise set of instructions
for a knitter to operate on wool to produce, say, a woolly jumper.

KNITTING
INSTRUCTIONS

INPUT OUTPUT

KNITTER
+

WOOL > NEEDLES » JUMPER
+

SCISSORS
ETC.

The knitter is programmed to process the wool (input) and turn it
into a jumper (output). The pattern writer had to start with the idea of
a jumper and break down the task of knitting it into subjobs until
eventually he produced a set of instructions using concepts understood by
the knitter. Such concepts would include the words PURL, CAST OFF, STITCHES,
REPEAT, ROW and others.

A cook is similarly "programmed" by a recipe for a cake.

RECIPE
;

INPUT | / OUTPUT

FLOUR COOK |
BUTTER + CAKE —_ SUGAR STOVE ?
MILK +
etc. IMPLEMENTS |
A computer program is analogous to the knitting pattern or recipe,

but the input is information instead of wool or food,

PROGRAM

INPUT / OUTPUT

COMPUTER
INFORMATION , | SYSTEM INFORMATION —_——— ————>

and the output is information instead of a jumper or a cake. The output
may be numbers, words, pictures, or data for the control of machines but
the programmer must understand both the nature of the problem and the
concepts in which the solution or program may be expressed. These concepts
are embodied in the particular computer language in which the programmer
will express his solution. Different languages would allow different ways
of expressing the solution. For example many languages would allow a
programmer to write something equivalent to :

sum @—— first + second

or in BASIC :

S=F +S

Both these statements would cause a computer to take two numbers from two
memory locations, add them and store the result in a third location. They
are user-oriented types of statement because a user could easily and
naturally understand them. They are examples of “high-level” (user or
problem-oriented) languages.

The same job could be programmed ina machine oriented language as

follows,

LDA FIRST
ADD SECOND
STORE SUM

This sequence of three separate instructions is closer to the machine that the
user reflecting more closely the actual operations of a computer rather than
a human person's natural way of thinking and expressing his thoughts.

It is important to understand that computer programming can occur at
these different levels. But there are many more concepts in computer
programming than simple addition and there are many design criteria for
computer languages. The results of several decades' work has been to
produce hundreds of languages in thousands of "dialects" and the most common
way of attempting to classify them is illustrated below.

Programming Languages

High Level Low Level

(User oriented, problem oriented) (Computer oriented)

This is a crude classification and in fact there is a whole spectrum
of languages. Some high level languages are higher than others in the
sense that they provide more problem/user oriented concepts than others.

The point is laboured because the essential fundamental concepts necessary
in the analysis of nearly all non-trivial problems were only identified
firmly and positively about a decade after high level languages had begun to
appear. Thus a language like Fortran (c.1958) is primitive compared with
Pascal (c.1971) but quite a lot better than working with a machine oriented
language.

The purpose of the discussion is to establish that within the
general classification of high level languages some are much more helpful
than others. And one of the most profound ways in which a language can
help a user is to allow him to articulate easily and explicityly exactly
those constructs which are essential to programming. This is particularly
important in an educational context. The details will be explored later
but now we should consider the elements which are processed by a computer
program.

By and large the items manipulated by most computers are numbers,
text, graphics and control signals though there are other items such as
sounds which may become increasingly important. Numbers and text (words)
are familiar items and computer control of machines is outside the scope
of this book but graphics need some discussion.

Generally speaking a programmer can draw his pictures in terms of
points, straight lines and rectangles. He can draw them on special
plotting devices or on a TV screen. Other facilities may be available
to him such as "flashing" a portion of a screen or "fading" out a picture.
Mathematical routines may help him to draw curves or rotate a picture
giving a three dimensional effect. It all depends on the particular
combination of hardware and software at his disposal.

In summary a computer program is a sequence of instructions written
in a particular language. The instructions will cause a computer to
process input information to produce a needed form of output information.

Example

Sort
Program

INPUT / OUTPUT

List of COMPUTER List of
names in ————>]| SYSTEM ————_—————_>__ names
random sorted
order alphabetically

A sort program can be written in many ways in many languages using
a variety of styles. The following chapters will shed some light on the
problem of making these choices appropriately.

3. GETTING READY

Follow the separate instructions for starting the computer and

setting up COMAL. The stages are as shown.

COMPUTER

SYST

The operating system becomes live and is used to load COMAL.

1. SWITCH ON

2. COMAL IS re [serane Sto

Control has passed to COMAL.

3. COMAL RECEIVES
INSTRUCTIONS

OPERATING Ye INSTRUCTIONS
SYSTEM 2 >

JM

4, COMAL EXECUTES
INSTRUCTIONS

Mart OPERATING COMALS & INSTRUCTIONS
SYSTEM = Aas As

Notice that some parts of the operating system, COMAL, and possibly a

program of instructions, can be stored simultaneously though all three

cannot be "live" at the same instant. It is quite easy to move control

between the three items of software as necessary.

For precise details of the starting procedure see appendix.

Chapter two

PRELIMINARY IDEAS

"It is possible to be a great computer (sic)

without having the slightest idea of

mathematics."

- NOVALIS, Schriften, Zweiter Teil,Berlin
1901.

1. PRINT statements

Type print "Football Match" a

Notes

1. Type exactly what is in the rectangle now
and throughout the booklet.

2. a means RETURN key.

The computer should have obeyed the statement instantly
but now type,

10 print "Football Match" &~

This time nothing seems to happen but the computer has
stored the information as part of a program. Now type,

run &~

and the stored program will be executed.

More about print statements later, but for the present
note that you have written a PRINT statement.

print is a KEYWORD

"Football Match" is a STRING CONSTANT because
it is a string of characters which cannot change.
The quotes are used to define the beginning and
end of the string. They are not strictly part
of it.

2. NUMBER STORES AND ADDRESSES

A very simplified but useful view of the computer is to imagine
it as a set of pigeon holes with addresses (chosen by the programmer) all
connected to a processing unit.

FIRST

PROCESSING SECOND
UNIT THIRD

PENULTIMATE

LAST

Each pigeon hole can store one number at any one time though it
may change during the running of a program.

The instruction

let FIRST = 35

will cause the number 35 to be stored in the pigeon hole with the address
FIRST. In order to check that this has happened type,

print FIRST gf

(Note the absence of quotation marks)

This instruction, without quotation marks, means

"Copy the number from pigeon hole "FIRST" onto the screen"

Now type,
let SECOND = FIRST
print SECOND »

It is easy to infer that

SECOND = FIRST

means "copy the number from pigeon hole "FIRST" into pigeon hole "SECOND"."

The notation
FIRST €— SECOND

would reflect the process better but we must use =. let may be omitted in
the following program. The use of line numbers causes the instructions to

be stored but not executed.

10 FIRST=7 &
20 SECOND = FIRST&®™
30 THIRD = FIRST + SECOND &
40 print FIRST, SECOND, THIRD a

Before typing | rung |write down what you expect as output from the

program.

The addresses we have used are called numeric identifiers and the
general form of the assignment statements is,

<numeric identifier > = <numeric expression >

We will not give a more formal definition but it is useful to think
of such statements as

<address > €— <Sequence of operations>

Such a view will make statements like

COUNT = COUNT + 1

make sense. A conventional mathematical interpretation would be quite

different.

An <expression> or <sequence of operations > can be very
simple or quite complex as will be seen later.

3. WORD PROCESSING

Computers store and process words (strings of characters) just as
easily as numbers but the storage arrangements are slightly different. If
a programmer writes FIRST the system will allocate a standard amount of
memory sufficient to store any number but a string of characters can be
almost any length and the computer needs to be told how much storage to
reserve. A dollar sign must be appended to the identifier of a string
address for similar reasons. The instruction

dim TITLE$(20)

means
"Set up a store for up to 20 characters and call it "TITLE$".

This is one example of diniensioning data storage, i.e. telling the
computer how much space to reserve and how to organise it.

new &~
10 dim TITLE$(20)ac

Type 20 TITLE$="Footbal1" a
30 print TITLE$ a
run a

Note new « caused the old program to be deleted and made ready

for a new one.

The computer should print "Football" but it has done a good deal more.
Firstly it has stored the program. Secondly, during the running (execution)
of the program it did three things.

line 10 caused a portion of memory to be reserved for up to
twenty characters and gave an address "TITLE$" to that
list of memory. The $ indicates a STRING address
rather than a number address.

TITLES

line 20 caused the characters "Football" in the form of codes
to be stored.

TITLE$

Football

line 30 caused the contents of the store with address TITLE$

to be printed.

Notes 1. TITLE$ is a STRING VARIABLE because it refers to a store for
character strings which may change during the running of a program.

2. TITLE$ = "Football" is catled an ASSIGNMENT STATEMENT because
it assigns a "value" to the variable TITLE$. It could also be
written

let TITLE$ = "Football"

and for this reason it is also called a let statement. The keyword
let is optional whether numeric addresses or string addresses are
involved.

Now type (do not type new)

15 dim GAME$(10),HEADING$(30)x
30 GAME$="Match" x”
40 HEADING$=TITLE$+" "GAME$ a

50 print HEADINGS a
list x

The complete program should be listed. Check it to see if it makes
sense and then type runx. The computer should output

Football Match

4. EDITING

By typing lines with appropriate numbers we can add, insert or replace
existing lines.

20 ® will delete line 20 and 100,200 will delete all lines from

100 to 200.

new will delete a complete program.

The reader should experiment with the EDIT feature by typing, for
example, EDIT 80. The four "arrow" keys can then be used to move the cursor,
delete characters or create space for insertions. auto « will cause the
system to provide line numbers automatically and the ESC key will terminate
this.

5. RANDOM NUMBERS AND CHARACTERS

Type print rnd(1) x

and a "random" number will appear. It will be in the range 0 to l.
(If it contains an E do not worry. This is a special form in which the
number after E indicates the necessary shifting of the decimal point).

These raw random numbers are not very useful but we can tailor them
to our needs. For example to simulate throws of a die we must do the

following.

1. Multiply the random number by 6.
2. Cut off the fractional part.
3. Addl

30 R=int(R)+1
40 print Raw

Type |

}

run «~ |
All this can be combined in a single statement,

Type

print int(rnd(1)*6)+1 ¢%

The psuedo random numbers are actually computed and a program will

always produce the same sequence unless something like :

5 randomize a

is placed at the beginning of a program. The line number may be different.

6. RANDOM ALPHABETIC CHARACTERS

We can turn random numbers into random letters quite easily. The

internal codes for the capital letters are :

A 65
B66

Z 90
(see appendix A3).

The random number range must be 65 to 90 and this is easily achieved

by
CODE = int(rnd(1)*26) + 65

In order to print the character corresponding to this code we must

use chr(CODE).

Type} new 4
10 CODE=int(rnd(1)*26)+65 &
20 print chr(CODE)«
run a

7. STORING PROGRAMS ON DISCS

To save a program on disc you need to know (or decide) the program

name which may be up to eight characters which must be letters or digits.

For example, to save a program called PROG] on a disc, type

save PROG

This program may be brought from the disc in main memory by typing,

load PROG1&

A list of programs and other files on a disc may be obtained by

typing,

lookup
SRE

for the disc in the drive.

When using SAVE the user should ensure that an existing program is

not unintentionally overwritten. |THE SYSTEM DOES NOT CHECK.

10. [uaee

8. SCREEN DISPLAYS

The screen consists of 24 lines of 80 character positions as shown.

Col.1. Col.37. Col.80.

+ + +

Tine 1

 line 11 |

Position (37,11)
 line 24 a

Position (80,24)

The special procedure CURSOR will be used for some simple
introductory work with the screen. A fuller description of Piccolo
graphics capability is given in appendix. A4,

Load the program CURSOR and add lines as follows,

load CURSOR &
print chr(12)& (to clear screen)
exec CURSOR(37,11¥ (to position cursor)
print "*" a
run «~

This should cause an asterisk to be plotted at position 37,11
on the screen. Any character may be placed in any screen position
using this method.

11. Jowcaee

9. INPUT

We have seen that numbers or strings can be sent into computer
addresses by such statements as :

FIRST
WORD$

6
"blue"

A more flexible method of inputting data is to use a data statement
(usually placed at the end of a program) together with read. The effects
of the above two assignments could be achieved as follows.

new &
10 dim WORD$(4)a

Type 20 read FIRST, WORDS A
30 print FIRST; WORD$&
40 data 6,"blue" «

This is a trivial example but moderately large amounts of data may be

handled in this way.

Exercises 1.

1. Use the auto command to help you to enter a program which does
the following.

(a) Print the words "First Program"
(b) Store a random number in the variable "random"
(c) Print the contents of "random"

Use the ESC key to escape from auto mode.

2. Run the program and store it on a disc giving the program
your initials as its name (no dots). Establish that the
program has been stored by typing new x before retrieving
the program. _

3. Edit the program to make it store a random letter of the
alphabet in a variable "RANLET$" and print the result.

4. Write program which prints a row of ten As starting at
position (50,3) on the screen.

5. Delete the program using the line numbers (not new) and
type list x” to show that the program is deleted.

6. Use a data statement to record the numbers 3,4,5. read them

into three addresses FIRST, SECOND, THIRD and print their sum.

12. Juvsees

10. SUMMARY

We have dealt with three distinct types of communication with the
computer.

(1)

(2)

(3)

Statements like print 3 + 4 which are not stored
but executed immediately.

Control commands which are really part of the
operating environment rather than language statements.
These commands are run, list, new, edit and save.
There are some others.

Numbered statements which are stored as a program
but not executed immediately.
In this category are print and let.

——

We have also covered some introductory ideas.

(1)

CONSTANTS

VARIABLES
(addresses,
identifiers)

e
e
 2)

3)

4)

5)

6)

7)

Data storage concepts relating to both numbers and
strings of characters.

NUMBERS STRINGS

1 2 "Football"

3.6 "Match"

FIRST, THIRD TITLE$

HEADING$
Some simple operations on numbers (+,*) and strings (+).

Random numbers and simple uses.

Cursor control for screen displays.

Simple editing of programs.

Use of disc storage for programs.

First ideas about input of data.

13. Jeaee

Chapter three

REPETITION

"Full thirty times hath Phoebus' cart gone round

Neptune's salt wash and Tellus' orbed ground,

And thirty dozen moons with borrow'd sheen

About the world have twelve times thirties been..."

- Player King in Hamlet

1. REPEATED OPERATIONS-1. FOR LOOPS.

The power of computers could not be exploited properly if every computer
action was separately programmed. By programming the repetion of certain
sequences a user can "magnify" his effort. Clearly, it will be necessary
to specify very carefully :

(1) The start of the sequence
(2) The number of times it must be repeated

(or some other way of ending the loop).
(3) The end of the sequence

It might be expected that a programmer should be able to write something
like :

repeat 6 TIMES
print "This is a repeat"
END OF SEQUENCE

This is not so and a different construction is used,partly for historical
reasons,and partly because experience has shown that it is often useful for
the loop counter (which the computer must set up) to be made quite explicit
by the programmer.

new
auto

Type for COUNT=1 to 6
print "This is number"; COUNT

next COUNT

ESC
run

Notes

1. The symbol for RETURN will no longer be placed at the end
of each line. The reader will understand that the RETURN
key must be pressed even though the symbol is omitted.

2. The for statement :

(a) sets up a counter and defines its
initial and final values;

(b) defines the start of the repeated
sequence (the next line).

3. The next statement simply defines the end of the
repeated sequence.

14. [uvoee

4. Notice the "indenting" of the print statement. This is
an instance of an important feature of COMAL. It has two
advantages :

(a) Readability of the program is enhanced.
(b) In more complex work if successive indenting

is not fully reversed by the end of the program
an error is revealed.

In the rest of this booklet indenting will be shown
but the user need not provide it. After typing in
a program list will reveal the correct indenting of
each line.

Exercises 2.

1. The number of repetitions may be as few or as many as necessary.

Use the edit 10 command to alter the 6 in line 10.
Note especially the effects of making it 1 or 0.

2. In a football match simulation there are two halves and the

overall structure of such a program might be :

for HALF = 1 TO 2
<complex sequence of instructions>

next HALF

Write and test a three line program to simulate this structure

using one line such as print "Half a game" to represent the
complex sequence of instructions.

3. Test the rnd(1) function by typing

new
auto
for CHANCE = 1 to 10

print "Number"; CHANCE; "is"; rnd(1)
next CHANCE

ESC
run

Note that the "random" numbers generated are in the range 0 - 1.

15. [uveece

Exercises 3.

1. Alter the above program to draw a rectangle whose top left
hand corner is position 30, 10 and size 20 units across,
5 down.

2. Alter the program resulting from exercise 1 so that instead
of drawing 20 columns 5 units high it draws 5 rows 20 units
across. Time the running of each program. Which is faster

and why ?

3. PROGRAM STRUCTURE-1.

What has been achieved and understood so far is of far-reaching
importance and the reader is now familiar with a number of elements of
programming which have taken the form of simple sequences or loops.
The relationships between these elements are also worth noting - they may
be in succession or they may be "nested". If we denote linear sequences

by a dash and loops by J then all the following are possible valid program
structures.

1 1
|

||

HT
]

M
I
L
T

HI 1

Nesting may be as deep as one would normally wish though there are limits.

The interesting thing about this is that, apart from a few exceptional

circumstances, there is only one other necessary type of relationship

between program elements, though there are several more types of element.

One can create other more complex relationships in infinite variety but,

unless there are special reasons, such things are unnecessary, hard to
read and educationally obstructive.

i
t

[| |||

4. REPEATED OPERATIONS-3. _repeat..... until

Sometimes the end of repetitions of a sequence of instructions is
decided by a condition rather than by some predetermined number. For example,

no one except the referee knows exactly when the half time or final whistle

will be blown. In our simulation we can use the rnd(1) function to

introduce an element of randomness. We introduce a degree of realism by

splitting each half into 540 five second time slices. In each slice an

event such as pass, tackle, gain ground, shoot etc. can occur but after the

540 time slices there will be a few more to make up for stoppages at the

referee's discretion. Eventually a point is reached where the game must end

soon and we allocate, say, a 20% probability of the game ending in each time

slice. We want to say something like :

repeat
game continues

until end of half

17. Joveee

The actual syntax is very similar.

Type

new
auto
repeat

print "Event"
until rnd(1)< 0.2
print "End of half"

ESC
run

Repeated runs of the program will not produce different effects but if
the word randomize is inserted at line 5 each run will produce an
unpredictable effect.

Exercises 4.

The statement D = 6*rnd(1)+1 will produce some number in the range
1 to about 6.99 and store it in a pigeon hole with address "D". The
function int(D) will chop off the fractional part. Thus the statement
DICE =int (D) will produce some whole number in the range 1 to 6.

ow

O
m

wD

Simulate dice throws until a six appears, then stop.

Simulate throws of a pair of dice (as in monopoly) printing
the total score each time until a double is thrown, then stop.

Repeat the experiment in (1) twenty times and find the average
number of throws it takes to get a six.

The triangular numbers are :

. we oe etc.

1 3 6

Find the first triangular number which is bigger than 1000.

Generate and print letters of the alphabet randomly until
a Z appears, then stop.

Print the letters of the alphabet in sequence up to R.

What is the result of doubling 1 twelve times ?

Find the sum of the first ten natural numbers.

Write a program which prints the times of buses scheduled
every fifteen minutes from 7.00 p.m. to 11.00 p.m.

18. Joeee

Chapter four

DECISIONS AND PROCEDURES

"There's a rule saying I have to ground

anyone who's Crazy.” ..cceeneee

"Sure there's a catch. Catch-22. Anyone

who wants to get out of combat duty isn't

really crazy."

- Doc Daneeka in "Catch 22"

1. STRING VARIABLES AND STRING OPERATIONS

We know from long experience about numbers and operations with numbers,

e.g. 7 x 3 = 21, and we know about string constants, e.g. "This is a string
constant". It is now necessary to look at string variables (names and

addresses reserved for storage of strings) and some operations with them.

We can reserve strings storage space by the statement :

dim TEXT$(100), WORD$(10), CHAR$(1)

This would allow us to store a modest sentence in TEXT$, a word in WORD$

and a single character in CHAR$.

The main operations with strings are concerned with :

joining strings
taking parts out of a string
putting parts into a string

We have already seen how strings may be joined. The idea of indexing

provides a neat unified approach to the other two jobs. The Piccolo

automatically provides each character in a string with an unseen index.

Consider the string :

"A herb for a lamb chop"

placed in text$. The system will index it as follows.

tal Thle[r[ol Itfotr] jal [ila{m |b] [ch fol p |
123 456... . " 4415 1617... . 22

We can copy the word "lamb" into WORD$ with the instruction

WORD$ = TEXT$(14:4)

which places in WORD$ the string obtained by starting at the 14th. position

and counting 4.

19. [avesecae

The same technique can be used for placing something into
a string. For example,

TEXT$(14:4) = "pork"

will change the string to :

A herb for a pork chop

There are three other useful functions for manipulating strings

and characters.

len(TEXT$) would return the value 22 (length of string)

ord(TEXT$) would return, 65, the value of the code of
the first character.

chr (65) would return the character "A"

Enter and run the following program.

dim TEXT$(100), WORD$(10), CHAR$(1)
TEXT$ = "A herb for a lamb chop"
WORD$ = TEXT$(14:4)
print WORD$

This should produce the word "lamb".

Now add the extra statements and run again :

TEXT$(14:4) = "pork"
print TEXT$
print len(TEXT$)
print ord(TEXT$)
print chr(66)

The output should be :

A herb for a pork chop

22
65
B

2. DECISION MAKING - IF...THEN...ELSE

We have already programmed the computer to make decisions because it

has had to decide when to finish looping. A more explicit type ofdecision

making is needed in programming as in everyday life : "If the weather is

good I will walk, otherwise I will catch the bus". This sentence would

be formalised in COMAL as :

if the weather is good then
I will walk

else
I will catch the bus

endif

But a computer cannot do these things, only simulate, so the actual

syntax would be something like :

if WEATHER$ = "good" then
print "Walk"

else
print "Catch bus"

endif 20. [avaee

Something in the preceding part of the program would determine the
"value" of WEATHER$ and the decision would be made accordingly. As in
loop structures the sequences of instructions may be of any length.
For example PRINT "Walk" could be replaced by a number of statements,
some of which might constitute a loop or even another if...then...else
construction. _

Examp le

Search the string "A herb for a lamb chop" and print the indices
of "lamb".

10 dim TEXT$ (100) ,WORD$(10)
20 TEXT$="A herb for a lamb chop"
30 for TEST=1 to len(TEXT$)-3
40 WORD$=TEXT$(TEST : 4)
50 =6if WORD$="lamb" then
60 print "Found at indices"; TEST; TEST+3
70 else
80 print “not found this time"
90_—s endif

100 next TEST

3. PROBLEM ANALYSIS AND PROGRAM STRUCTURE

The "Lamb Chop" program is worthy of study not just for examples of
programming techniques but also for its structure. The following points
should be noted.

(1) The program consists of simple statements and "Control structures"
(for loop and if...then structure)

(2) These elements are related to each other by being in sequence
or by nesting. The if...then structure is nested within the
for loop.

(3) Indentation indicates nesting and there are three “levels”.
The dim statement is at level 1. The if statement is at
level 2 and the print statements are at level 3.

(4) Every control structure must be opened (by for or if) and
closed (by next or endif)

(5) After the opening keyword the indentation starts and it
is reversed by the closing keyword.

(6) In addition to making the structure visually apparent the
system of indentation provides a check on correctness. The
indentation should “come home" at the end of the program.

Readers with experience of other computer languages may have wondered
why flowcharts have not been used yet. The answer is that the emphasis in

COMAL (or any well-structured modern language) should not be on the flow of control

but rather on the elements which constitute the program and the proper
relationships between them. Once these concepts are understood, the analysis
of a problem becomes a matter of identifying the necessary elements and
fitting them together.

2l. Jasaee

Programmers have been urged to use flowcharts to develop an algorithm
but how often has the flowchart been written after the program ? And how
often has the flowchart been updated along with program updates ? Flowcharts
are useful for certain special jobs such as conveying complex procedures but
for everyday programming they have serious drawbacks and they are unnecessary
if one adopts systematic methods using the proper concepts.

Even so, there is much to be gained from some form of visual
representation of an algorithm. In the early stages ideas may be encapsulated,
tested and modified until they seem right. An outline of a job may be
represented and details filled in later. Finally a correct details visual
representation of an algorithm is more easily followed by the programmer or
by someone else. A useful way of representing algorithms visually is by
means of a structure diagram.

STRUCTURE DIAGRAM

Natural Walk Starts Natural Walk Ends

Level 0 Lamb Chop °
p——_——!

Level 1| dim TEXT$(100) | TEXTS="A herb..... " (for TEST=1 to len (TEXTS) -3)

 WORD$(10) _—

Level 2| WORD$= WORDS$="I amb"
TEXT$(TEST:4)

— \

True

Level 3 print print
"FOUND" "Not Found"

Symbols and Terms

(1) A loop is represented by a box with curved ends ()

(2) A branching is represented by a lozenge shaped box < >

(3) Counting the program title as level zero the levels of
the diagram correspond to the levels of indentation in
the program.

(4) The diagram is technically known as a "tree" in computer
science, graph theory or school mathematics.

(5) The lines are called "branches" and the boxes are called "nodes".

22. Joven.

Programs from Diagrams

When learning to program some elements must be learned first before a
tree has any meaning but later some programmers on some occasions would draw
the diagram before encoding the program. If the diagram is available there
is an easy way of writing the program by using the rules below.

(1) Follow a "Natural Walk" around the tree. Imagine all the lines are walls
and walk around by starting at the title and keeping a wall always on the
left as you "walk".

(2) When you come to a box or node write down a simple statement for a
rectangular box.

(3) If the box represents a for structure you will come to it once on
the way down and once on the way up. Write down the opening statement
the first time and the closing statement the last time.

(4) If the box represents an if...then structure you will come to it
three times corresponding to the three keywords if...else...endif.

Relationships

There is a little more to be learned about structure diagrams but the
main ideas have been covered. However, it is worth emphasising that two types
of relationships between elements of a program are exhibited clearly in structure
diagrams.

(1) Sequential relationships are found by moving from left
to right along the same level.

(2) Nesting is denoted by moving to the next level, down when
the structure is opened and up when the structure is closed.

In summary the structure of a program should reflect its function in

three ways.

(1) The program design should reflect the job it is performing.

(2) The coding should reflect this function. It should be easy
to relate the coding to the original analysis of the problem.
"Clever tricks" should not be used unless there is some specific
advantage to be gained and if they are used they should be well

explained.

(3) The presentation of the program should reflect its function.
Headings, comments, remarks and the indentation help the reader
to see more easily what the program does.

There is nothing really new about these ideas. Good programmers have

followed them for years but the programming languages invented in the 1980s

not only make it easier to follow the principles, they positively encourage

systematic methods. Thus the people who program computers properly are

themselves properly programmed with correct concepts and good methods.

Edsger Dijkstra summarised the main objective in 1968; "We should do our

utmost to shorten the conceptual gap between the static program and the dynamic

process, to make the correspondence between the program (spread out in text

space) and the process (spread out in time) as trivial as possible."

23. [uvecvece

4. SIMPLIFYING A PROBLEM - PROCEDURES

The idea of splitting a complex job into a number of simpler jobs is
fundamental in human affairs. Even the most egalitarian of politicians
recognises the general responsibility of a prime minister and the division
of this responsibility amongst his cabinet colleagues. They in turn. will
further subdivide amongst parliamentary secretaries and they amongst senior
civil servants and so the process goes on tunil a job is simple enough to
require no further sub-division. The same is true of the organisation of
industries or colleges. Hierarchical systems are not a political theory so
much as a practical way of handling complexity - making it manageable without
losing the overview of the original major objectives.

Essentially a procedure is a self contained sub-program or subroutine
which can be called by the main program to perform a particular sub-job.
The lamb chop program can be rewritten using procedures for the two print
statements. This is artificial but it will illustrate the syntax,
vocabulary and structure diagram symbols for procedures in a context which
is already understood.

10 dim TEXT$(100) ,WORD$(10)
20 TEXT$="A herb for a Jamb chop"
30 for TEST=1 to len(TEXT$)-3

Mai 40 WORD$=TEXT$(TEST : 4)
Prog 50 if WORD$="Tamb" then
rogram |} 60 exec FOUND —_—_———.

70 else PROCEDURE CALLS
80 exec NOTFOUND —_——
90 endif

100 next TEST

[110 stop
120 proc FOUND
130 =print "Found at Indices"; TEST; TEST+3

Procedure |140 endproc
Definitions |150 proc NOTFOUND

160 print "Not found this time"
170 endproc

24. [eves

Chapter five

MORE COMPLEX STRUCTURES

A Cambridge Don well known for his discriminating
judgement of wines once observed that for many

years water had never passed his lips. An

undergraduate, thinking to catch him out, promptly

asked :
‘But, Sir, surely you clean your teeth ?'

‘Yes, of course,' he replied, ‘for my teeth

I use a light Moselle.’
- Quotable Anecdotes,Leslie Missen.

1. WHILE LOOPS

A well known probtem in computing is the "Drunken Duncan" simulation in
which Duncan starts in the middle of a grid of squares and staggers, in a
random manner, North, East, South or West to the next square. A first analysis
of this problem might be :

repeat
choose a direction
move to the next square

until he is off the grid

This could equally well be achieved with a WHILE loop :

while he is on the grid
choose a direction
move to the next square

endwhile

Note the condition for exit is turned round so that we have :

while (reason for looping)
(action)

endwhi le

This contrasts with the repeat loop :

repeat
action)

until (reason for finishing)

Both loops can achieve the same result. Sometimes one seems more
natural than the other and that is a good reason for choosing but sometimes
the while loop will do what the repeat loop cannot. If the "reason for looping"
were false at first entry to the Toop no action would take place at all and
control would go to the point after endwhile. If a repeat loop had been used
the action would have taken place at Teast once even if this was not wanted.
An example may clarify this.

25. Lovevee

Example

Write a program to simulate a person going to bed at midnight and
getting up at some time after seven o'clock according to the following rules,,.

(1) Count time in units of one minute

(2) Until exactly seven o'clock there is a one percent chance
of the person waking up in any one minute but he goes to
sleep again immediately

(3) After seven o'clock there is a five percent chance of his
waking up in any one minute and when he awakes he gets up
and the simulation ends.

Analysis

1. For simplicity we will count the time in minutes

12.00 - 12.01 1
12.01 - 12.02 2

12.58 - 12.59 59
12.59 - 1.00 60

6.59 - 7.00 420
7.00 - 7.01 421

2. The first part from time = 1 to 420 is just a for loop.

3. We may try to do the second part with a repeat/until loop
and write something like the following.

for TIME = 1 to 420
if rnd(1) < 0.1 then print "Woke up at"; TIME

next TIME
repeat

TIME = TIME +1
until rnd(1)< 0.05
print "Got up at";TIME

Unfortunately this has a slight flaw. Due to the way the for loop works
the value of time on exit is 421. The man has no chance of waking up at time 421
because this value is increased to 422 before the until statement causes a test
to be made. We could reset time to 420 before entering the repeat loop but
this is a well known type of situation and there is a standard solution for it.

The trouble is that a sequence in a repeat/until loop will always be
executed at least once and there are many situations where there must be the
possibility of the sequence not being executed at all. The right technique
here is the while loop.

while rnd(1)> 0.05
TIME=TIME+1

endwhile
print "Got up at"; TIME

26. Javeee

The meaning of while must be carefully defined. It has the meaning
"During the time that". For example "While your mother is out you must not
open the front door". It does not have the meaning applicable in some parts
of England : "I am waiting while (until) my mother gets home."

Notice also that the condition has been turned round. We say in effect

while he hasn't woken up
increase the time count

endwhile

but in the other version we say

repeat
increase the time count

until he wakes up

The while loop is a powerful concept and has the general form

while (reason for looping)
sequence

endwhile

Generally speaking the repeat/until loop is a little easier to use and
more natural to read, but there are situations in which a while loop is a more
natural solution.

It is worth mentioning at this point that almost all repeat situations
can be covered by choosing one of the for, repeat or while constructions.
In all of these loops, on exit, control goes to the element which follows the
structure. Exit is determined bya programmed number, by a condition tested
at the end of the sequence or by a condition tested before the sequence is
started. There are some special circumstances, such as aborting a program
because of some error condition where a different technique is needed.

Exercise

Write and test a program to simulate the sleeper described in
this section.

Investigate the value of time at different points in the program.

27. /

MULTIPLE DECISION MAKING-2. CASES

. When there is a binary quality about a decision the if statement is the
natural way to do it. Any decision with well-specified criteria could be split
into a sequence of binary decision but the result might not reflect the nature
of the problem. For example, if we wish to program the "Drunken Duncan"
simulation, in which a man moves randomly from the centre of a grid of squares,
we might group North and South together.

i Go North Go South |< Go East>

This can be programmed using the if/then/else construction, but the
result is not natural to read because the decision required is one from many
rather than two genuinely binary choices. A more natural construction*
would be as follows.

DIR = rnd(1)*4+1
if DIR = 1 then

Go North
endif
if DIR = 2 then

Go East
endif
if DIR = 3 then

Go South
endif
if DIR = 4 then

Go West
endif

* The CASE statement of COMAL-80 is preferable when it becomes available.

28. [uaseae

The corresponding structure diagram is shown using the multiple
decision concept.

DIR = rnd(1)*4+1

a

Go North Go East Go South Go West

The simulation can be watched by running a program which uses the PLOT
routine.

1. Load CURSOR from the disc.
2. Add the following program starting at line 50.

AC = 40; DN = 10
print chr(12) (clears screen)
repeat

exec CURSOR (AC,DN)
print "*"
DIR = int(rnd(1)*4)+1
if DIR = 1 then DN=DN-1
if DIR = 2 then AC=AC+1
if DIR = 3 then DN=DN+1
if DIR = 4 then AC=AC-1

until AC<20 or AC>60 or DN<1 or DN>20
print "Duncan exits at position"; AC; DN

Notes 1. See appendix for explanation of CURSOR routine
and the use of special character codes.

2. Duncan will always follow the same route in
repeated runs but the use of randomize at about
line 55 will make him more random.

3. Duncan can be made to show every move bv inserting

a delay loop after exec CURSOR (AC,DN) and following
the delay loop with print " ".

4. A delay loop is just a for statement followed by
a next statement.

29, 7

Chapter six

HANDLING DATA

"Number, the inducer of philosophies,

The synthesis of letters, ...cceeee "

- Aeschylus.

1. MORE ABOUT INPUT

We have seen some simple types of input from data statement, but
handling data is about the avoidance of errors and the detection of the
few that remain.

Type in the following program and run it.

for COUNT = 1 to 5
read ITEM
print ITEM

next COUNT
data 23,17,36,27,22

You will observe that the statement

read ITEM

causes a number to be taken from the data statement and placadin address ITEM.
Data is taken in strict sequence every time a read statement is executed.

It is easy to set up and edit data statements, and COMAL (or BASIC)
provides a natural facility, for handling small and medium amounts of data,
which has no rival for simplicity in any other language. However, one must
be ultra-careful about possible errors if our methods are to survive when
applied to larger sets of numbers. The possible errors and their avoidance
are listed.

Error Avoidance

1. Wrong item Use whatever validation methods are
possible. e.g. check possible range
of each number.

2. Too few items Try to know or make the program know
exactly how many numbers to expect and
use a for loop. Too few items will
cause an error.

3. Too many items Place an item as a control at the end of
the sequence. It should be recognisably
different from the others - negative, zero
or very large or an asterisk. Test for
this item at the end of input.

4. Compensating omission and Break the sequence of numbers down into
later insertion of extra "records" and test end of record
item characters as well as end of file marker.

30. [occas

for RECORD = 1 to 3
for COUNT = 1 to 5

read ITEM
if ITEM>0O and ITEM<100 then print ITEM

next COUNT
read ENDREC
if ENDREC = -1 then print RECORD; "OK"

next RECORD
read ENDFILE
if ENDFILE = 999 then print "File correct"
data 17,21,18,32,23,-1
data 16,27,31,19,24,-1
data 16,30,28,21,33,-1,999

Methods on these lines can be used successfully with substantial amounts
of data but users must be aware that control and correction of errors is
absolutely necessary.

data statements can also be used for non-numeric data.

dim ITEM$(10)
for COUNT=1 to 3

read ITEM$
print ITEM$

next COUNT
data "Blue", "Green", "Red"

Sometimes a program needs to interact with a user so that further
processing takes account of the user's response. The input statement causes
the program execution to pause so that data can be typed by the user.
Three things are needed :

Program Pauses Message to User Data is received

and the corresponding statement is :

input "Please type a number and RETURN key", ITEM

The program pauses, the message appears and the user types, say, 18
The number 18 is stored in item and the program proceeds.

The following program tests arithmetic skill,

FIRST = rnd(1)*10; SECOND = rnd(1)*10
THIRD = FIRST + SECOND
print FIRST; "+"; SECOND;
input "=", ANSWER
if ANSWER= THIRD then print "Very Good"

The input statement may seem to be quicker than using read and data but
it should only be used for interactive purposes. Whenever possible the read and
data methods with careful error avoidance are preferable. In the long run this
will take less keyboard time and provide an efficient and psychologically
rewarding method of handling data.

31. [vveecees

One further useful input function is

key(0)

This will accept a single character from the keyboard without the need
for pressing the return key. The function should be used in an assignment
statement because the result must be stored somewhere.

example

Notes

(1)

(2)

(3)

print "Answer yes (Y) or no (N)"
ANS = key(0)
if ANS = 121 then print "Yes"

The input character is not automatically displayed on
the screen.

The particular advantages of this function over the
input statement are :

(a) No need for the RETURN key.

(b) Programmer chooses whether to display result.

The ASCII code of a character is stored in the function
key(@). The ASCII code of "Y" is 121 (denary) as
illustrated in the example above.

32. J oveeee

21. VARIABLES ADDRESSES - ARRAYS

Suppose we have four boarding houses in Brighton and a travel agent
wishes to place four holiday makers, one in each

N ZS \
SEAVIEW HIGHCLIFF ROSELAWN SUNNYSIDE

The holidaymakers arrive in a DATA statement.

"BEN", "ALF", "JIM", "KEN"

 DATA

© ©

The agent programs the holidaymakers into the houses.

read SEAVIEW$
read HIGHCLIFF$
read ROSELAWN$
read SUNNYSIDE$

oN Z™ ZS

SEAVIEW | _HIGHCLIFF ROSELAWN SUNNYSIDE

_EGACLITE |

BEN ALF | JIM KEN

Thus we have assigned values (holidaymakers) to the variables (houses),

but if there were 40 or 400 holidaymakers and houses a better method would be
needed. We wish to do the same process to a sequence of houses - we want the
address in the process to vary. An array enables this to be done. We declare
four houses (string array) of three characters each.

dim HOUSE$(4,3)

Assuming the same data as before a simple for loop will place a
holidaymaker in each house

for NUMBER = 1 to 4
read HOUSE$ (NUMBER)
print HOUSE$(NUMBER); " "; NUMBER

next NUMBER

The method can be applied to any number of houses. Try the complete program.

LZ™~ ZS Ne

HOUSE$ (1) | HOUSE$ (2) HOUSE$ (3) HOUSE$ (4

BEN ALF JIM KEN

33. Javene

NB The notation HOUSE$(2) when referring to a string array address
means the whole string.

Consider the numerical problem of simulating one hundred throws of
a die and counting the frequency of each score.
six (numeric)

BOX (1)

boxes,
We set up an array of

BOX(2) Box(3)| ‘| BOx(4) BOX(5)

BOX (6)

When a score is generated we increase the count in the corresponding
box. We coul d proceed as follows,

for COUNT = 1 to 100
DIE = int(rnd(1)*6)+1
if DIE = 1 then BOX(1) = BOX(1)+1
if DIE = 2 then BOX(2) = BOX(2)+1
if DIE = 3 then BOX(3) = BOX(3)+1
if DIE = 4 then BOX(4) = BOX(4)+1
if DIE = 5 then BOX(5) = BOX(5)+1
if DIE = 6 then BOX(6) = BOX(6)+1

next COUNT

It is much easier to take advantage of the variable address concept
more directly,

for COUNT = 1 to 100
DIE = int(rnd(1)*6)+1
BOX(DIE) = BOX(DIE)+1

next COUNT

Finally the program below reads ten numbers into an array and sorts
them into ascending order.

for COUNT = 1 to 10
read BOX(COUNT)

next COUNT
for RUN = 1 to 9

for PAIR = 1 to 9
if BOX(PAIR)>BOX(PAIR+1) then

TEMP = BOX(PAIR)
BOX(PAIR) = BOX(PAIR+1)
BOX(PAIR)+1 = TEMP

endif
next PAIR

next RUN
for COUNT = 1 to 10

print BOX(COUNT);
next COUNT
data 2,5,3,9,8,1,7,6,4,0

34.

Write a short explanation of why it works.

This is called a bubble sort or a shuttle interchange sort.
Its efficiency can be improved in two substantial ways but it is
still about the slowest type of computer sort process and time taken
increases approximately as the square of the number of items.
Its merit is that it is very short and easy to understand.

. The power of arrays lies in the fact that in using them we are
able to vary addresses. We have seen from the early stages the idea
of a memory location in which the contents vary. We see this in a
conceptually convenient way as the value of a variable changing as
the program runs.

An array enables the addresses (and therefore the memory location
itself) to vary as the program runs. Thus we can make a process apply
to whole sets of data quite easily. The idea of arrays seems comparable
in importance to the stored program concept, repetition (loops), decisions
or procedures (modularity).

35.

Chapter seven

COMPLEXITY, MODULARITY, PROCEDURES

"The White Rabbit put on his spectacles. “Where shall I
begin, please your Majesty ?" he asked.

“Begin at the beginning", the King said, very gravely,

"and go on till you come to the end: then stop."

- Alice in Wonderland.

It is not easy to discuss the handling of complex problems without
actually dealing with a long job. Apart from logical problems or tricky
bits of programming the sheer size of program makes it highly desirable to
try to break it into sub-jobs.

The examples that follow, although not long or as complex as they
might be, do illustrate methods of breaking down a job into smaller jobs
and using procedures. There is a small overhead in using a procedure :
at least the words exec, proc and endproc are extra. In these examples
the results could be achieved by other methods but they are written in
such a way as to illustrate the best ways of approaching larger, more
complex programs.

The first example is short and, once a procedure for printing lines has
been conceived and written the rest is easy. It seems unnecessary to use
an elaborate analysis or a structure diagram. However, the second example
is quite complex and will be explained in great detail. Structure diagrams
will also be used. The reader should not be too concerned if some details
are difficult to understand. What should be appreciated is the way the
job is broken down into parts with clear relationships to each other.

Example 1. Numbers for Psychology Testing

A psychologist requires eight sets of random digits in the range 0 - 9
for short-term memory tests. In each set there should be ten lines of
numbers starting with three to a line and increasing to twelve to a line,
followed by another ten lines which start at twelve and decrease to three.

Analysis

1. Suppose we have a procedure LINDIG (NUM) which prints NUM digits
on a line.

2. This procedure should be called by a for loop which varies NUM
from 3 to 12 and then by a second for loop which does the reverse.

3. The whole should be with a forloop which does the job eight
times.

36. [osacees

1 to NUM
print int(rnd(1)*10);

next DIGIT
print

3 to 12
=] to 8

exec LINDIG
next NUM

exec LINDIG
next NUM
print

for NUM=12 to 3 step -1

100 next SET

for NUM

for DIGIT

Two of the eight sets are shown

10 randomize

110 proc LINDIG
120

20 for SET

130

160 endproc

30
40
50
60
70
80
90

140
150

Program

Sample of Output

nN
mo

O
n

w
o
r
e

T
O
o
O
n
M

A
A
A
I

wowsrmEe
D
a
e

-
~
r
t
r
O
O
n
a
n

o
f
r
O
W
D
w
O
o
O
n
w
o
r
m
e

m
u
o
n
w
a
s
c
a
o
n

H
A
D
O
n
A
M
M
O
M
T

A
M

O
r
a
m

a
w
n

l
o

A

M
L
N

M
D
O
O
M
A
t

e
t

oO
A
p
P
O
M
A
N
T
M
O
M
M
A
O

W
D
D
W
A
M
A
W
M
M
N

A
M
O

O
W
M
e
o

P
U
M
O
K
M
N
O
M
M
O
N
M
N
A
A
W

N
A
D
A
M

M
U
M

A

A
W
A
L
N
M
™

O
M
A

S
H
M
O
M
O
N
n
N
M
M
M
O
A
A
M
M
M

W
W
M

A
N
D
O
W
O

D
M

T
F
A
A
D
M
N
M
H
M
N
A
N
M
O
W
M
N
W
H
M

O
N

D
A
D
O
N
T
H
M
A
R
D
D
M
O
N
M
A
M

NA

O
D
A
M
A
M
A
V
D
H
R
D
D
V
W
O
W
O
O
A
T
A
M
O
D
A
T
O
D
O
M

T
T
F
O
N
W
O
M
T
M
N
N
M
A
T
D
O
M
A
N
D
O

O
M

W
F
H
W
O
A
M
A
M
N
U
O
A
R
A
O
M

O
N
S

t
a
s

O
D
A
M
N
W
D
O
D
M
A
M
A
M
A
M
M
O
W
D
O
W

O
O

M
n
~
M
R
O
M
D
K
N
R
D
W
O
A
T
O
M
O
D
D
O
W
F
H
W
O
O

N
O
P
F
M
M
M
N
N
W
M
D
M
O
A
M
T
F
N
O
M
O
n
R
N

M
A

Example 2. Quicksort

Bubblesort even with various enhancements is not very practical because
the time taken increases with the square of the number of items. Thus it
takes 100 times longer to sort 100 items than to sort 10 items.

A number of sort processes based on the idea of exchanging elements
have been used and documented. Quicksort is one of the most interesting
and is claimed to be one of the fastest available.

First it is necessary to understand the idea of a "stack". A stack is
an array of data which behaves like a stack of plates - the last on the stack
is the first off.

 >

A plate is ‘ A plate is
"PUSHED" _— "POPPED"
on to the —_——- off the
stack. == stack.

STACK

In quicksort our "plates" will be pairs of numbers which define the
start and end of sub-arrays of the main array of names to be sorted..

. --' --l SP (Stack Pointer) = 4

item 3

item 2
 item 1

f — RIGHT ELEMENT

The stack pointer (SP) will always point at the next empty place on

the stack which will be a two dimensional array

LEFT ELEMENT

STACK (20,2)

This short program shows the working of a stack in such a way that
the user can PUSH pairs of numbers on to it, POP them off, or finish by
running out of numbers on the stack. There will be two procedures PUSH
and POP.

proc PUSH
INPUT “Enter two numbers" ,LEFT,RIGHT
STACK (SP,1) =LEFT
STACK (SP,2) =RIGHT
SP = SP+1

endproc

38. [uweee

proc POP
IF SP=1 THEN STOP
SP = SP-1
LEFT = STACK(SP,1)
RIGHT = STACK(SP,2)
PRINT LEFT,RIGHT

endproc

The main program simply establishes the stack, sets the stack pointer
and inputs commands from the user.

dim STACK(20,2), OP$(4)
SP = 1
repeat

input "POP or PUSH?"; OP$
if OP$ = "POP" then exec POP
if OP$ = "PUSH" then exec PUSH

until 2= 1

Program _

10 dim STACK(20,2),0P$(4)
20 SP=1
30 repeat
40 input "POP OR PUSH ? ",OP$
50 if OP$="POP" then exec POP
60 if OP$="PUSH" then exec PUSH
70 until 2=1
80 proc PUSH
90 input "Enter two numbers. ",LEFT,RIGHT

100 STACK(SP,1)=LEFT
110 STACK(SP,2)=RIGHT
120 SP=SP+1
130 endproc
140 proc POP
150 if SP=1 then stop
160 SP=SP-1
170 LEFT=STACK(SP,1)
180 RIGHT=STACK(SP,2)
190 = print LEFT,RIGHT
200 endproc

The Quicksort Method

Suppose we wish to sort the eleven names into alphabetical order.

JIM BEN ZOE PAT VAL KEN RON HAL LEN ALF TOM

1 2 3 4 5 6 7 8 9 10 11
4

LH POINTER RH POINTER

LEFT END RIGHT END

COMPARATOR

39. [aseceee

JIM

1

Choose a "comparator" KEN by taking
the number 43 (LEFT END + RIGHT END) = 35(1+11)=6

Move LH POINTER from LEFT END until it encounters
a name which should go to the right of KEN

Move RH POINTER from RIGHT END until it encounters
a name which should go to the left of KEN

Exchange ZOE and ALF and continue moving pointers,
exchanging where necessary, until the pointers cross

PAT will exchange with HAL

VAL will exchange with KEN and we have :

 BEN ALF HAL KEN VAL RON PAT LEN ZOE TOM

4 6 11

We have divided the original setinto two subsets 1 to 4 and 6 to 11 with
KEN in his correct position because everything to his left will stay to his
left and everything to his right will stay to his right whatever further
shuffling might occur.

7. We place the right hand set pointers on a stack (6 and 11).

8. Continue the process with the left hand set.

9. If there is no left hand set (i.e. it is down to one element)
pop a pair of numbers of the stack and continue with them.

10. Stop when the stack is empty.

List of Identifiers

LEND,REND Left and Right ends of sub-array
LHP ,RHP Left and Right pointers
LEFT RIGHT Left and Right items on stack
COMP$ Comparator
STACK (20,2) Stack
ITEM$(11,3) Array of names
SP Stack Pointer
NUM Number of names

Procedures

FILL Filis array
SORT Sorts array
PRINTIT Prints sorted array
POP Pops two numbers off stack
PUSH Pushes two numbers on to stack
SWAP Exchanges two items

40. [vvseeee

Stack

4

3

2

1

a—SP (next

LEFT END _ f f rient END

Structure Diagrams

QUICKSORT

empty place)

INITIALISE FILL
SORT : PRINTIT

read for K = 1 to NUM
NUM

read ITEM$(K)

Place pointers
on stack

41.

PRINTIT

for K = 1 to NUM :

print ITEM$(K) |

POP

| Subtract
1 from SP

read pointers
from stack

SORT

repeat
until 2=1

exec | Set LH & RH Select repeat (HP+1 < REND ’ <inp-1> LEND
POP | pointers comparaton until

i pointers
cross

[| exec exec
PUSH | POP

while while LHP

ITEMS(LHP)<COMP$] (ITEMS(RHP)>coMPS]\ << RHP /

t]

| LHP=LHP+1 [RHP=RiP-1 | exec SWAP

The detail in the above diagrams varies. Some details have been
left until the program because it seemed more natural to do so.

42. /

Program

10 dim ITEM$(11,3),COMP$(4),STACK(20,2) , TEMP$(4)

20
30

290
300
310
320
330
340
350
360
370
380
390
400

420
430
440
450
460
470
480
490
500
510
520

exec FILL
SP=1; LEND=1; REND=NUM
exec PUSH(1,NUM)
exec SORT
data 11, "JIM", "BEN","ZOE", "PAT", "VAL", "KEN"

data "RON" "HAL", "LEN", "ALF", "TOM"

stop
proc FILL

read NUM
for K=1 to NUM

read ITEM$(K)
next K

endproc
proc SORT

repeat
exec POP
LHP=LEND; RHP=REND
COMP$=ITEM$((LEND+REND) div 2)
repeat

while ITEM$(LHP) <COMP$ do
LHP=LHP+1

endwhile
while ITEM$(RHP) > COMP$ do

RHP=RHP-1
endwhite
if LHP-< RHP then exec SWAP

until LHP= RHP
rem *** stack pointers to right sub array ***
if LHP+IKREND then exec PUSH (LHP+1,REND)
rem *** stack pointers to left sub array ***
jf LHP-1>-LEND then exec PUSH(LEND, LHP-1)

until 2=1
endproc
proc POP

if SP=1 then exec PRINTIT
SP=SP-1
LEND=STACK(SP,1); REND=STACK(SP,2)

endproc
proc SWAP

TEMP$=ITEM$(LHP); ITEM$(LHP)=ITEM$(RHP); ITEM$(RHP=TEMP$

endproc
proc PUSH(LEFT,RIGHT)

STACK(SP,1)=LEFT; STACK(SP,2)=RIGHT
SP=SP+1

endproc
proc PRINTIT

for K=1 to NUM
print ITEM$(K); " "5

next K
stop

endproc

ALF BEN HAL JIM KEN LEN PAT RON TOM VAL ZOE
‘

43.

Comments

While Quicksort is a simple idea, what happens at the end of a run,
when the pointers meet, sometaimes causes problems. The above program is
written in such a way that the pointers never cross and at the end of a run
both LHP and RHP will point at the comparator which divides the data into
two subsets. However, the program fails for data which contains a number
of repetitions. For example, it would sort A,A,A,A,A,B,A,A,A,A,A but
the program would not stop because on the second run the pointers would
never meet.

This problem is discussed by wirth(2) and he gives a solution which
involves swapping elements which are equal and moving the pointers on so
that they do not always point at the comparator at the end of a run.
The writer prefers the program as given with a smal] amendment to cure
the problem of a number of identical elements,

(1) Change line 270 to read

270 until LHP => RHP

(2) Add

265 if ITEM$(LHP) = ITEM$(RHP) then RHP=RHP-1

These amendments force at least one pointer to keep moving when
otherwise both might get stuck. However, a full discussion of these
processes is beyond the scope of this treatment.

The algorithm with the amendment works for the data sets

ABCDEFGHIJK

KJIHGFEDCBA

AAAAABAAAAA

It has also been tested with 100 randomly generated four-character items.
The program given on the next page uses Wirth's algorithm.

Reference

(1) Wirth, N. Algorithms + Data Structures = Programs, Prentice Hall,1976.

44, [ewes

380
390
400
410
420
430
440
450
460
470
480
490
500
510
520

dim ITEM$(11,3),COMP$(4),STACK(20,2), TEMP$(4)
exec FILL
SP=1; LEND=1; REND=NUM
exec PUSH(1,NUM)
exec SORT
exec PRINTIT
data 11, "JIM","BEN", "ALF", "HAL", "KEN"
data "VAL", "RON", "PAT", "LEN", "ZOE", "TOM"

stop
proc FILL

read NUM
for K=1 to NUM

read ITEM$(K)
next K

endproc FILL
proc SORT

repeat
exec POP
repeat

LHP=LEND; RHP=REND
COMP$=ITEM$((LEND+REND) div2)
repeat

while ITEM$(LHP)<COMP$ do
LHP=LHP+1

endwhile
while ITEM$(RHP)> COMP$ do

RHP=RHP-1
endwhile
if LHP < =RHP then exec SWAP

until LHP> RHP
rem *** stack pointers to right sub array ***
if LHP<REND then exec PUSH(LHP,REND)
REND=RHP

until LEND= > REND
until SP=1

endproc
proc POP

if SP=1 then exec PRINTIT
SP=SP-1
LEND=STACK(SP,1); REND=STACK(SP,2)

endproc
proc SWAP

TEMP$=ITEM$(LHP); ITEM$(LHP)=ITEM$(RHP) ; ITEM$(RHP)=TEMP$
LHP=LHP+1; RHP=RHP-1

endproc
proc PUSH(LEFT,RIGHT)

STACK(SP,1)=LEFT; STACK(SP,2)=RIGHT
SP=SP+1

endproc
proc PRINTIT

for K=1 to NUM
print ITEM$(K); " ";

next K
stop

endproc

45.

Chapter eight

SEQUENTIAL FILES

"And it must follow, as the night the day."

Polonius to Laertes in "Hamlet".

It is usual to distinguish between sequential files and direct access
files. An example of the former might be a file on a cassette in which the
records can only be accessed in sequence. For example to find the seventeenth
record of a cassette file it may be necessary to read the first sixteen as well
even if the information is not used.

The records in a Piccolo disc file are automatically numbered and can be
accessed directly by using the required number. Clearly a direct access file
with numbered records can also be accessed sequentially and the idea is useful.
The first example is a simple process of placing "records" in sequence on a
file. Each record will consist of the letters :

ABCDEFGHIJ

and we will need a string variable DAT$(10) to hold this ten-letter record.

We must create the file by providing the system with the following
information.

1. The filename
2. A file variable to record the "status" of the file and to

indicate any errors.
3. A file buffer of 128 bytes. This will be used by the system

and should not be used by the programmer while the file is "open".
4, The size (in bytes) of a record.
5. The number of records in a file.

The names of the first three items will be chosen arbitrarily as :
FNAME, FVAR and FBUF$ and we will establish a file of 100 records of 10 bytes
each. The two program lines will do this :

5 dim DAT$(10), FBUF$(128)
10 create "FNAME", FVAR, FBUF$, 10, 100

Filename __t |

File variable

File buffer

Record length

Number of records

The next thing the program does is place, say, 90 records on the file.
This requires the put construct :

30 put FVAR, RECNUM : DAT$

File variable
Record number

Variable holding data
for record

46. [owes

Finally we must close the file. The system will ensure that any
necessary processing is completed and the variable FBUF$ will be available
for other purposes if required. The complete program is now given.

5 dim DAT$(10) ,FBUF$(128)
10 create "FNAME" ,FVAR,FBUF$, 10,100
15 DAT$="ABCDEFGHIJ"
20 for RECNUM=1 to 90
30 put FVAR, RECNUM : DAT$
40 next RECNUM
50 close FVAR

Having established a file it is useful to be able to check that it
does exist and is correct. We use another program to open and read (get)
records from the file.

The information needed to open a file is given.

The filename
A file variable
A file buffer
The record length

This information is used in an open construct.

R
P
w
W
N
r
F
E

5 dim DAT$(100,10), FBUF$(128)
10 open "FNAME", FVAR, FBUF$, 10

The next requirement is to get records from the file.

30 get FVAR, RECNUM: DAT$(RECNUM)

File variable

Record number

Variable receiving data

Finally the file is closed and the data is displayed on the screen
or printer.

5 dim DAT$(100,10) ,FBUF$(128)
10 open "FNAME" ,FVAR,FBUF$,10
20 for RECNUM=1 to 90
30 get FVAR,RECNUM : DAT$(RECNUM)

40 next RECNUM
50 close FVAR
60 for R=1 to 90
70 = print DAT$(R); "" 3
80 next R

A more complex record

Suppose we wish to establish a set of records consisting of student
names, year, course number.

For example :

Name Forenames Year Course

COUSINS JANET 2 F5/024
(20 ch) (20 ch) (1 ch) (6 ch)

The total record length is 20 + 20 + 1 + 6 = 47 bytes.

47. [owes

NB. It is the programmer's responsibility to ensure that data in the
record is properly matched to any variables used.

5 dim FBUF$(128),NAME$(20) ,FORENAME$(20) ,Y$(1),C$(5)
10 create "FNAME" ,FVAR,FBUF$,47,2
20 for R=1 to 2
25 read NAME$,FORENAME$, Y$,C$
30 put FVAR,R : NAME$,FORENAME$,Y$,C$
40 next R
50 close FVAR
60 data "COUSINS", "JANET", "2", "F5/021"
70 data "SMITH", "JIM", "2", "F5/021"

The file can be read and the two records printed.

5 dim FBUF$(128) ,NAME$(20) ,FORENAME$ (20), Y$(1),C$(6)
10 open "FNAME" ,FVAR,FBUF$, 47
20 for REC=1 to 2
30 get FVAR,REC : NAME$,FORENAME$,Y$,C$
35 print NAME$,FORENAME$,Y$,C$
40 next REC
50 close FVAR

COUSINS JANET 2 F5/021
SMITH JIM 2 F5/021

Mixing of String and Numeric Data

Numeric data e.g. 27 may be treated as string data in the form "27".
It would need to be converted to numeric data for any arithmetic processing.
Alternatively a second file can be created for the numeric parts. We will
call it NUMFIL, its buffer will be NUMBUF$, and its file variable will be
NUMVAR it will contain the records :

13, 15, 12, 14
9, 14, 12, 13

5 dim NUMBUF$(128)
10 create "NUMFIL",NUMVAR,NUMBUF$,16,2
20 for R=1 to 2
25 ~=read M1,M2,M3,M4
30 put NUMVAR,R : M1,M2,M3,M4
40 next R
50 close NUMVAR
60 data 13,14,12,14
70 data 9,14,12,13

We can now write a program which will read data from both files and
produce a complete external record.

5 dim FBUF$(128),NAME$(20) ,FORENAME$(20),Y$(1),C$(6),NUMBUF $(128)
10 open "FNAME" ,FVAR,FBUF$,47
15 open "NUMFIL",NUMVAR,NUMBUF$, 16
20 for R=1 to 2
30 get FVAR,R : NAME$,FORENAME$,Y$,C$
32 get NUMVAR,R : M1,M2,M3,M4
35 print NAME$,FORENAME$,Y$,C$, " “3M13M2;M3;M4
40 next R
50 close FVAR
60 close NUMVAR

COUSINS JANET 2 F5/021 13 14 12 = #14

SMITH JIM 2 F5/021 9 14 12 = 13

48. [vsceeee

Up to 90 files may be stored on one Piccolo diskette and the complexity
of file handling operations may be developed very substantially by the
programmer .

Data Control

As mentioned in the previous chapter data must be checked at all stages
to ensure that it is correct. A data file should be constructed in such a
way that it can be tested for errors in the ways already applied to data
statement files. This generally means having extra characters in a record
and extra dummy records purely for test purposes.

The file variable also provides information about any errors in
connection with file operations. So far we have used the file variable to
identify files for reading (getting), writing (putting) and closing but it
can also be used for error detection.

After an operation the file variable will take values as follows,

Value indication

correct operation
diskette not inserted
no room in catalogue
too many files open
diskette is write-protected
reading/writing outside file area
file already exists
file does not exist
no room on diskette
read/write diskette error C

o
o
n
a
n

P
w
n
r
n
r
e

©

w
 on

Vv

mK

This introductory booklet is not the place for a full discussion of files,
their design and use but with care and practice modest forms of data processing
can be successfully accomplished with a Piccolo. In this area of work the
Piccolo's large memory, wide screen and disc system, together with the greater
safety and readability of COMAL programs, are considerable assets.

49. Jeveeee

Chapter nine

DIRECT ACCESS FILES

"If circumstances lead me, I will find

Where truth is hid, though it were hid indeed

Within the centre."

Polonious to Hamlet.

A serial file, like pop music on a cassette is fine for many purposes
as long as things can be done in sequence, perhaps with some aids like fast
forward or backward winding. By contrast, track number 5, say, of a long
playing record can be played by moving the needle to it directly.
However, though the L.P. may be used as a direct-access system it can
also be played sequentially if the listener wishes. Piccolo disc files
are similar.

In the previous chapter files were treated in a sequential way because
the concept of a sequential file is widely used. However, each record
in the disc-files are numbered and may be accessed directly by simply
quoting the record number. In the case of medium-sized or large files
this can make a considerable difference to the speed of operations. It is
also generally more efficient because it reduces wear on the discs and disc
drives.

Since all Piccolo disc-files are direct access files there are no new
techniques to learn for creating reading or writing to files. What is more
interesting are the ways in which direct access files may be used.

Records and keys

We may wish to set up a file of names, addresses, year number, course
number etc. and access it according to a given name. For example, suppose
we have 1000 records and wish to find the one belonging to

FOOT Michael

This is the key and in some more sophisticated languages such as COBOL
it would be possible to find the record by simply quoting this key. In
COMAL however we have to devise a way of finding the right record fairly
quickly. Perhaps the most obvious way would be to create a separate file
of all the names and their associated record numbers. This could be used
first, reading it into a large array and then doing, say, a binary search.
This would imply about 1000 x 20 bytes, or 20K of data. This could work
perfectly well but if the file of keys became too large it could be split
into say AKEY, BKEY..... FKEY..... ZKEY - 26 files, each probably less than
2K bytes and fairly easily constructed from the main file.

Simulated Case Study

We will simulate some of the processes of direct access files by the
following procedure. It would be unrealistic to use only small sets of
test data because the problems of handling small amounts of data are different.
Even this modest-scale simulation will avoid some problems associated with
handling real data but it will be a reasonable introduction.

50. Jase

1. Generate 100 random four letter words. These will be the
keys.

2. Generate 100 random six letter words. These, together with
the keys, will constitute 100 10-letter "records".

3. Sort the records into alphabetic order of their keys and
place in a file.

4. Create a second file of keys only with record numbers.

5. Write a program which will, for a given "key"

(a) Search the key file and obtain the
record number .

(b) Get the required record.

Generation of Records

KEE$(100,4) will hold the keys ready for sorting. A simple bubble sort
will be used but it will be adapted to make it faster. The sort program of
chapter six will be altered in three ways to make it more efficient but it
will still be one of the slowest computer sort methods.

) Each run length will decrease by one
) A flag will indicate if no exchanges have occurred

and the sort will be complete.
) A set of "pointers" (numbers) will be sorted so

that the actual data is not moved.
4) We will print the value of run each time because

a sort process is slow and it is useful to see what
is happening.

Ww

(1
(2

(

(

The idea of sorting pointers can be confusing. But consider a simple
case of four items.

KEE$(1) KEE$(2) KEE$(3) KEE$(4)

PINK BLUE GREY [coro |

t “i--s and 4 t t

oy 3
POINT(1) POINT(2) POINT(3) POINT(4)

We say :

if KEE$(POINT(1)) > KEE$(POINT(
(exchange contents of POINT(1

so that POINT(1) points at BLUE
and POINT(2) points at PINK.

2)) then
} and POINT(2))

51. Jwwseees

File Creation and Entry of Records

We require a file of 100 records each with 10 bytes. The key will
be placed in the first four bytes and the rest of the record in the last
six. Thus we require to generate six letter random words and associate
them with the four letter words already generated.

The file will be created as follows,

Create file, 100 records of 10 bytes.

Generate six letter word.

3. Place it with a four letter word on a record
in alphabetical order of the four letter word.

4. Repeat (2) and (3) 100 times and close file.

Once this file is established it will be a simple matter to use it

to create a second file of keys and record numbers. This will be used

to access the first file. The point is that however large the records

may be we can still access them directly fairly quickly.

Sections of the program are given below,

Main Program

10 randomize
20 dim KEE$(100,4) ,POINT(100) ,WORD$(6)

30 dim REC$(10),DBUF$(128)
40 exec FILKEES
50 exec SORT
60 exec PRINTIT
70 exec FILEM

Fill array with 100 four letter keys

80 proc FILKEES
90 for COUNT=1 to 100

100 WORD$=""
110 POINT (COUNT)=COUNT
120 for CHAR=1 to 4
130 WORD$=WORD$+chr (int (rnd(1)*26)+65)
140 next CHAR
150 KEE$(COUNT)=WORD$
160 next COUNT
170 endproc

52. J iveaee

Sort pointers for alphabetical order

180 proc SORT
for RUN=1 to 99

FLAG=0
for PAIR=1 to 100-RUN

if KEE$(POINT(PAIR))> KEE$(POINT(PAIR+1)) then
TEMP=POINT (PAIR)
POINT(PAIR)=POINT(PAIR+1)

190
200
210
220
230
240
250
260
270
280
290
300
310

next PAIR

POINT(PAIR+1)=TEMP
FLAG=

endif

(
1

if FLAG=0 then exit
print RUN;

next RUN
320 endproc

Print keys in order

330 proc PRINTIT
340
350
360

for K=1 to 100
print KEE$(POINT(K)); "

next K
370 endproc

mW.
>

Create and enter 100 words in file "DIRECT"

380 proc FILEM
390
400
410
420
430
440
450
460
470
480

create "DIRECT" ,DVAR,DBUF$,10,100
for R=1 to 100

WORD$="""

for CHA=1 to 6
WORD$=WORD$+chr (int (rnd(1)*26+65))

next CHA

REC$=KEE$(POINT(R))+WORD$

put DVAR,R : REC$
next R

close DVAR
490 endproc

Sample of Output from Main Program

The sample shows that there were 84 passes in the SORT operation and
some of the four letter keys.

1
23
43
63
83

EVZK
HXOE
KZJR
NMZJ
QOFC
TQMV
WRLJ

2
24
44
64
84

FCGL
TALC
LBDQ
NQRH
QWHD
TSWQ
XALR

3
25
45
65

AHOV
FEUR
IBNR
LDFG
NSGV
QXPQ
TUHC
XHAJ

4 5 6
26 27 28
46 47 48
66 67 68

AIBQ AULE BGGC BOPK
FPHH GAAR- GEIY
IFUN ITLX IZJW
LEVJ LG@GQ LJPL
NSON OAKY OBBC
QZBE RAKZ RBEE
TWSD =UFAI ~—-USHO
XZOK YEHO YMLQ

53.

7
29
49
69

30 .) nn
50 BL kee eee eee
70 ne

eee ere ee renee evreeeee

oeoereerereeee eee ee neseas

eeeoeeesce ese neces eeese

eee eeneoeeeer ener eeresen

Creation of Key File

1. The file "KEYFIL" is created and the file
"DIRECT" is opened.

2. The Records from DIRECT are placed in an
array and the keys are extracted.

3. The four letter keys are placed in the file "KEYFIL"

10 dim KBUF$(128) ,DBUF$(128) ,REC$(100,10) ,WORD$(4), ITEM$(10)
20 create "KEYFIL",KVAR,KBUF$,4,100
30 open "DIRECT", DVAR,DBUF$,10
40 for RECNUM=1 to 100
50 Yet DVAR,RECNUM : REC$(RECNUM)
55 next RECNUM
60 for RECNUM=1 to 100
70 WORD$=REC$(RECNUM,1 : 4)
80 put KVAR,RECNUM : WORD$
90 next RECNUM

110 close DVAR
120 close KVAR

Search of Main File Using Keys

1 Both files are opened.
2. The required key is entered.
3. KEYFIL is searched to get record number.
4 Record number is used to access "DIRECT".
5 Required record, if it exists, is printed.

10 dim KBUF$(128) ,DBUF$(128) ,SEEK$(4) ,WORD$(4), ITEM$(10)

20 open "KEYFIL",KVAR,KBUF$,4
30 open "DIRECT", DVAR,DBUF$,10

40 input "Enter required key.",SEEK$
50 put KVAR,100 : SEEK$
60 RECNUM=0
70 repeat
80 RECNUM=RECNUM+1
90 get KVAR,RECNUM : WORD$

100 until WORD$=SEEK$
110 if RECNUM=100 then
120 print “Not found."
130 else
140 get DVAR,RECNUM : ITEM$
150 print RECNUM,ITEM$
160 endif
170 close DVAR
180 close KVAR

71 RFWYPICTOU

54. [asdees

Procedure for illustration of D.A. Files

(1) Run DIRFIL

Generate 100 ten letter words and file in "DIRECT".
The words will be sorted in alphabetic order of
their keys (first four letters). The sort keys
are printed.

(2) Run SETKEYF to set up separate file of 4 letter
keys only.

(3) Run SEARCH and use one of the keywords to find
corresponding record. The record with record
number will be printed if it exists.

(4) A simple program to read and display the file
"DIRECT" was also used to check that it was
correctly stored on the disc.

The system is a simple outline. Other techniques for access
and sorting could make the operation considerably faster. Attention
would also need to be paid to error avoidance and testing.

55.

1 gmerconemcmnenenere

———— 45 FOR X=S TO D2 STEP S\R2=1 . TOOO00E+06

— 75 IF F>=0 THEN 40

-207 PRINT "ALL TUBES GONE"\S=1.Q00000E-03\ B=O\GOTO 45 <<——

APPENDIX Al.

MOON LANDING PROGRAM

20 PRINT "TIME(S)", "HEIGHT(M)","VEL(M/S)","FUEL(KG)","BURN(KG/S)"

30 GO=1 .62\M=26000\ D=1 OOOM F=1 3000\ T=1\ T1=0\ S=1
33 P=1125\R=3\ V=1 O0\ U=100
40 PRINT 11,D,V,F,\ INPUT B,D2\B=ABS(B)

47 G=G0-2*D/R2\IF D<1.000000E+07 THEN 50\ PRINT "TOO FAR our"\ STOP

50 v=u+T*G-(BeP*t) /((M+(M-T*B))/2)\T1=T14+T <

60 M=M-(T*B)\ D=D=((0+V) /2*t)\ UaV\ P=F-B*T

65 Kex+(B*.23)-9.87854\ IF P*B+G*100>250000 THEN 220
70 IF De=O THEN 110\ NEXT X\IF K>2000 THEN 200 \IF K>1500 THEN 210

1T —)

90 PRINT "OUT OF FUEL AT"; Ti\B=O\S=1.000000E-O3\GOTO 45
410 PRINT "ON MOON AT ";11;"SECONDS. LANDING VELOCITY" ;V ———_——
120 IF V<10 THEN 160 \IF V<20 THEN 170

130 PRINT "ALL CREW KILLED.BLASTED NEWCRATER ";V*11.78;"KM WIDE"\ STOP

160 PRINT "SAFE LANDING"\STOP

170 PRINT "CREW INJURED ";INT(3. 2*v/17.46);" BONES BROKEN"\STOP <@

200 PRINT "POWER TUBE BURN OUT’; R-1;"LEFT"\ R=R-1\IF R<-O THEN 207 <———~

205 P=P/(4-R)\GOTO 75

 210 PRINT "PQER TUBES TOO HOT"\GOTO 75 .——

220 Z=RND(O)*30\PRINT "BLACK-OUT FOR"; INT(Z*D2) ; "SECS" $$$

230 D2=Z\B=25\GOTO 45

The above program was written by a teacher who does not understand
why some neople object to the liberal use of GOTO statements.

Try to follow the progran. The flow lines on the right are
conditional jumps and those on the left simple jumps.

Do you think the program has any discernable structure ? Does it
have what Dijkstra has called "Spaghetti-like control paths" ?

How many times do you think RUN was typed in writing and debugging the
program ? Do you think the exercise had any educational value ?

>

Ww

rN
APPENDIX A2.

PICCOLO STARTING PROCEDURE

Connections

(a) keyboard to port J4. Screw in screws.

video to IN socket. Switch to 75. unless a slave video
is used.

(c) video power connection. Screw in.

(d) Computer power.

Switch on computer and video.

Place system in drive - hold disc by label edge face upwards.

Close disc drive shutter.

Press re-set switch.

The computer should load and start COMAL. An asterisk will indicate this.
The LOAD or LOOKUP commands can now be used.

EXIT from COMAL with BYE then use :

CATALOG to format a disc.

SYSTEM to save COMAL on disc.

COMAL to return to COMAL.

switching off

1.

2.

Remove disc and place in envelope.

Switch off computer and terminal if further use is not
required for 15 minutes.

It is not advisable to move the video monitor until
15 minutes after switching off.

APPENDIX A3

CHARACTER CODES

The characters generated by the COMAL function CHR(N) are given below.
N is a denary number.

N

ON CHR(N) N CHR(N) CHR(N) N CHR(N)
0 32 SPACE 64 @ 96 \
1 33] 65 A 97 a
2 34 " 66 B 98 b
3 35 f 67 c 99 c
4 36 $ 68 D 100 d
5 le— 37 % 69 E 101 e
6 XY CUR 38 & 70 F 102 f
7 BLEEP 39 ’ 71 G 103 g
8 CUR L1 40 (72 H 104 h
9 CUR R4 41) 73 I 105 j

10 CUR D1 42 * 74 J 106 j
11 43 + 75 K 107. k
12 CL SCR 44 , 76 L 108 1
13 CUR ST LN 45 - 77 M 109 m
14 PRINTER SG] 46 , 78 N 110 n
15 PRINTER N 47 / 79 0 111 0
16 48 0 80 p 112 p
17 49 1 81 Q 113 q
18 50 2 82 R 114 r
19 51 3 83 5 115 5
20 52 4 84 T 116 t
21 53 5 85 U 117 u
22 54 6 86 v 118 v
23 55 7 87 W 119 W
24 CUR R1 56 8 88 xX 120 xX
25 57 9 89 Y 121 y
26 CUR U1 58 90 Z 122 z
27 59 91 [123 {
28 60 92 NX 124 ‘
29 CUR HOME 61 = 3 ~] 125 }
30 DEL EO LN 62 > 94 f 126 ~
31 DEL EO SCR} 63 ? 95 - 127

Graphics

For a full description of graphics the manuals should be consulted.

The following procedures will be useful for certain types of application.

Each identifier contains a "Z" so that possible conflict with user's

APPENDIX A4.

identifiers is avoided.

mM

on a 160 x 72 grid.

a
o
n

&

WwW

CURSOR (ACROSS,DOWN) positions cursor

PLOT (ACROSS, DOWN) positions cursor and plots a small square

PUTPIC places all screen data on a disc file.

GETPIC retrieves screen data from a disc file.

DRAW draws a picture fast using the screen data.

PRINTIT outputs screen data to printer.

7. SCREEN incorporates all the above procedures.

To use any procedure it should be loaded from the disc.

then write a program which calls the procedure.

user should replace the sample routine with his own.

All the procedures use the identifiers as indicated.

should not use identifiers which conflict with any of those used in a procedure

incorporated in his program.

CURSOR

PLOT

PUTPIC

GETPIC

DRAW

PRINTIT

SCREEN

AZ across position
DZ down position

the identifiers of CURSOR plus :
SPZ$(80) 80 spaces
LINEZ$(24,8)
LZ
BLANKZ
ACZ, DNZ
ACPOZ, DNPOZ
BITZ
CODEZ

FNAMZ$(10)
FVARZ
FBUFZ$(128)
LZ
LINEZ$(24,80)

same as PUTPIC

the identifiers

LZ
LINEZ$(24,80)

LZ
LINEZ$(24, 80)

Screen data
Working variable
Procedure to clear screen LINE$
Formal parameters of PLOT
Positions in 160 x 72 array
Bit in semi-graphics character
Semi-graphics character code

File name
File variable
File buffer
Working variable
Screen data

of CURSOR plus :
Working variable
Screen data

Working variable
Screen data

All the above procedures and identifiers

The user may
In the case of PLOT the

Clearly the user

