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Calculation of the Value of & Determinant.

ALGQL - procedure: DETERMINANT.

R T R L L il L TR s R

1 _Scope.

The following procedure calculates the value of a determinant of
the order n 22. The determinant is not altered by the procedure.
A shortenlng ‘of the running time is obtained if many nunbers in the
determinant are zero.

25 Method.

The calculatior method is based on the elimination of the elements
below the diagonal, so the value of the determlnant is simply the product
of the elements in the diagonal.

If an element in the diagonal is zero, the row will be interchanged
with another row and the sign of the determlnant will be changed.

The elimination process proceeds from left to right. If, during the
elimination process a coulomn where the elements below and on the diagonal
equals zero is obtained, the value of the determinant is zeroe.

3s.Use_of the Procedure.

The procedure will be copied into the program in the place where there
is written:

comment 1ibrary DETERMINANT;

The order must be n » 2.

The procedure call can be of the well known type:

q := DETERMINANT (D 8);

a will then obtain the value of the determinant D of the 8 th. order.
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D =13

for p := 1 step 1 until n do

begin

m := pj

if a[p,p] + O then go to elimination;

form :=m + 1 step 1 until n do

if a[m;p] % O then go to interchange of rows;
DETERMINANT := O; go to end of procedure;

interchange of rows:
D := - D :
for g = p step 1 until n do

ot st

begin k :=a[m,q]; alm,q] = alp,al; alp,a] := k; end;

elimination:
for m :=m +1 gtep 1 until n do
begin - '

k :=a[mpl/alp pl;

if k =0 then go o mext rov;
for q_ :=p + 1 step 1 until n do
a.[mlq] = _a'[mlq] - k x aIPIQ:I;

next row: -
end of mj

DETERMINANT := Dj
end of procedure:
end;

e

Ivar Balslev.
Helge Vilstrup.
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ATGOL - procedure: CROUT,

........

The procedure CROUT solves a system of linear equations AX y =D
with different right hand sides, A is a square matrix of order n, y and
b are vectors of dimension n, The problem is equivalent with solving
a matrix equation A X ¥ = B when Y and B are matrices with n rows and
m columns,

- In order to deminish accumulated round-off errors Mgller’s device
(ref[2]) is incorporated in the procedure, Please note that the procedure
call differs slightly from the call of SA10,

2.Method,

The solution is based on Crouts method with row interchanges. First
the matrix A is equilibrated, i.e, the row vectors are scaled with integers
of the form 24@ where p is chosen so that a norm Ni for each row i satifies
the inequality ‘ '

1/2 < Ni < 1,

As a norm we use the maximum norm defined by

N1 = max(aba({Al1,3]1))s J = 1585 sssssenesselis
Then the matrix A is transformed into its triahgular decomposition IU = A,
L is a lower triangular matrix with all elements above the diagonal equal to
zero and with elements L(k,k) = 1 for all k. U is an upper triangular matrix
with all elements below the diagonal equal to zero, Next the right hand side b
is transformed in accordance with the triangularization, When the triangulari-
zation has been finished the back substitution takes place giving the solution
y corresponding to the b,

By scaling the rows in A to roughly the same maximum magnitude the
procedure 1s allowed to select effective pivotal elements in the triengu.-
larization,

This algorithm is based on an original algorithm published in Com, of the
ACM (ref[1]), The main differences are the introductions of scaling and
Mgller’s device which increases the accuracy and the substitution of the real pro-
cedure INNERPRODUCT by for- statements resulting in a much faster algol proce-
dure,

By the triangularization enough information will be stored for the procedure
to transform a new column vector b without repeating the triangularization
and we can then compute a new solution of the linear system with the same
A but with a new right hand side,

The procedure CROUT also computes the determinant of the matrix A,



........................

%, Ose of the Procedure,

The procedure call shall be of the form
CROUT (n,A,b,f,pivot,det,repeat,exit);

The parameters are:
n : Iinteger, 1s the order'of the coefficient matrix
A : declared as real array A [1:n,1:n], holds the coeffient
matrix of the equation'system when CROUT is called first
time (with repeat = false). Upon exit from CROUT, A holds
the triangular metrices L and U and'it must not be changed
if subsequent calls'with repeat = true are wanted.,
declared as real array b [1:n], holds the right hand side
before the call'and the solution when the call is finished,
£ : declared as-d array £ [1:n] is assigned values which
are factors originating and used in equilibration of the
coefficient matrix A during the first call with repeat =
false, These'values must not be changed if subsequent calls
with repeat = true'are wanted,
pivot : declared as integer array pivot[1:n], 1s assigned values
which are row indices originating from the triangularization of
A during a call with repeat = false, These'values must not
be'changed if subsequent calls with repeat = true are wanted,
real, is assigned the value of the determinant of A when
repeat = false, 'otherwise it 1s unchanged in the call.
repeat : boolean, is false when CROUT is called first time with a
coefficient matrix and true in subsequent calls with the
same matrix,
is a label to which the procedure exits if the matrix is
singular, It must exlist in the program in such a place that
it is known at the position of the call,

o'

det

oo

exit

a0

.........

1. Communications of the ACMY, 1961, pps 176=1T7T«
2o O.Mgller, Quasi Double-Precision in Floating Point Addition,
BIT5(1965) pp. 37-50, and BIT5(1965) pp. 251-255.

O.Lang Rasmussen. K.Grau Sgrensen,
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comment A.E.K. February, 1967 the procedure CROUT solves a
system of linear equations A X y = b with different b as described in SA10/1,
procedure CROUT(n,A,b,f,pivot,det,repeat,exit);

value ng

array 'A,b,f3

integer n3 ' '

integer array pivots

real dets

boolean repeat?

Tabel exits

begin -

Integer k,i,j;imax,p; real t,q, in,c,u,v,s;

1f'=,repeat then

Pegin

dets=1y 0 '

for-i:=1'step 1 until n do

Degin comment equilibrate A[1:n;1:nl;

q:=03 for j:=1 step 1 until n-do’ '

begin Ti=abs(A[T;3T); if ©>q then a:=t end;

I q=0 then go to exit;
Fli]:=t:=AN(=entier(1n(q)/0.693147181+1));

for j:=1 step 1 until n do A[i,jl:=A[1,J]xt;

end equilibraxlon'

.....

for 'k:=1 step 1 until n do

begin comment triangularizations
t :='03 for i:=k step 1 untll n do
begin us=ce=03

for p:=1 step 1 until k-1 do

begin vi=A[1,plXA[p,k]; "~

if abs(u)<abs(v) then begin in:=uj; u :=v; vi=in end;
si=u + vj ci=c + (r:(§:m+(u-(5-(S~u)))) o
ui=s

erd;

in:=u + c3
q¢=A[1,k] :='A[1,k] < in; -

if: abs(q)>t then begin t:=sbs(q); imax := 1; end if;

end i3 -

pivot[k] := imax;

conment the largest pivot element A[imax,k] in column k is found;
1T imax '+ k'then

begln comment interchange rows k and imax;

det := -dets

for'j:=1 step 1 until n do s
beégin t :=ATk, 315 Alk,j] := Alimax, 3]s Alimax,j] := t; end j;
end interchange;

:= Alk,k];
f q = 0 then goto exits

e jQ

-q_' /Q: o
for i:=k+1 step 1 until n do
li' k] := oX A[i,k];



.....

for: j'—k+1 step 1T until n do

begin us=e=0y

for p:=1 step 1 until k-1 do

begin vi=A[k,pIxXAlD,315 '~

if abs(u)<abs(v) then begin in:=uj u:=vj vi:=in endj
sz=u + v3 ci=c + ((va(s-u))+(u=(s=(s-u))))s
us=s

ends

Int=u + c3Alk,3] := Alk,3] - ing

end Js

end k;

end -,repeaty:

For 1:= 1 'step 1'until n do b[i] = b[ilxf[i]s

For k:=1'stép 1 until n do

begin comment process rlghthandside;

D= plvot[kJ, = b[pls b[p] = b[k]s blk] := t3
u=c=0y "'

for-p:=1 step 1 until k-1 do

begin vi=A[Kk,plxblpls

if abs(u)<abs(v) then begin in:=u; u:=v; vi=in end;
st=u + vy ci=c + ((v-(8 -u5$+(u-(s-(s-u)))), -
us=s

end;

In:=u + cg

blk] := blk] -~ in

end righthandside,

AAAAA

for ki=n-'step'-1 until 1 do

begin corment backsubstltution,

if -,repeat then det := Alk, k] X det/ flkl;
ﬁflc.—o, """

for 'p:s= k+1 step 1 until n do

begln vi=Alk,pIXblpl;

if abs(u)<abs(v) then begin ini=u; u:=vj vi=in end;
Sr=u + Vs ci=C + (T;:KE:EjT#(u-(s—(s-u)))), T
us=s

end;

Int=u + cj

blk] := (b[k] -in)/Alk,k]

end backsubstitution;

end CROUT;
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Polynomial Approximation.

ALGOL - procedure: POLY 1.

1. Scope.

The procedure calculates the coefficients alo] .... a[P] in a polynomial
approximation of a least squares fit to a function y = F(x) on the basis of N
corresponding values of abscissa x and ordinates y eventually provided with
weights w.

2. Method.

The coefficients in the polynomial are found by use of orthogonal polynomials
as described in a paper by G.E. Forsythe in J.Soc.Indst. and Appl. Math. 5 (1957)
p.p. T4 - 88.

5. Use of the procedure.

The procedure will be copied into the program where the following comment
is written:

comment library POLY 1;

The procedure call is of the type:
POLY 1 (N P x,y,w,a WEIGHING);

The parameters are:

N the number of (x,y,w) velues, an integer
P the wanted polynomisl degree, an integer

X a real urray [1:N] in which the sbscissa of the fitting points must be
placed by the main program before call of the procedure.

y 8 reel crray [1:N] in which the ordinaste of the fitting points must be
placed by the main program before call of the procedure.

w a reel arrey [1:N] in which the weights on the fitting points must be
placed by the muin program before call of the procedure if WEIGHING is
false the w array can be the same as the y array

a e real array [0:P] in which the polynomisl coefficients will be stored
by the procedure

WEIGHING is a booleanI the value of which can be true, meaning use weights or
falseI meaning use no weights.
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procedure POLY1(N P x,y,w, & WEIGHING);

integer N P,
boolean WEIGHING;

array X,y,w,a;

comment A,E.K, August 2nd.1962. Least squares fit of a polynomial approximation
as described in SA -13;

begin

integer j k (s

real alfa beta XPRDD YPRODISQ SQSUM OLDSQSUMlR olda;

array error orpol oldorpol[1 N], cora[ 1:P], oldcora[O PJ;

forn :=1 step 1 until N do
begin

error[n] := y[n];

orpol[n] := 0;

oldorpol[n] := 1

end of initial setting;

olda := cora[-1] := 0O
OLDSQSUM := 1;

alfa :
beta :

e

o

for k := 0 step 1 until P do

begin

XPROD := YPROD := SQSUM := O

for n := 1 step 1 until N do

begin

error [n] := error[n] - olda x orpol(nl;

R := oldorpel[n] x beta;

oldorpol[n] := orpol[n]

R := orpol[n] := R + orpol[n] x (x[n] + alfa);
if WEIGHING then R := orpol[n] x w[n];

SQ := R x orpollnl;

SQSUM := SQSUM + 35Q;
YPROD := YPROD + R x error[n];
XPROD := XPROD + SQ x x[n]

end for n;

a[k]:=olda:= YPROD/SQSUM;
oldcora [k]:= O;

cora [k]l:= 1;

if k30 then

for j:= k-1 step -1 until O do

begin

R := beta x oldcoralj];

oldcoralj] := coraljl;

cora[j] := alfa x oldcora[j] + R + cora[j-1];
alj] :=alj] + olda x coraly]

end for j;

beta := -SQSUM/OLDSQSUM;
OLDSQSUM := SQSUM;

alfs := ~XPROD/SQSUM
end for k;

end of POLY-1;

Erik Hansen.
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Solution of a system of linear equations.

AIGOL - procedure: CROUT 2,

1. ScoEe,

This procedure which is a simplified version of SA-10 in that respect
that it can solve only one system of linear equations Ay = b where A is a
square motrix of order n, y and b columm vectors of dimension n. The proce-
dure mekes use of a real procedure INNERPRODUCT which is placed immediately
before procedure CROUT 2,

2. Method,

The solution is based on Crouts method with row interchonges. First
the matrix A is transformed into its triangular decomposition LU = A, L
is a lower triangular matrix with all elements above the diagonal equal to
zero and with elements L(k k) = 1 for &1l k. U is an upper triongular matrix
with a1l elements below the diagonal equal to zero. At the same time the
right hand side b is transformed in accordance with the triangularization.
When the triangularization has been finished the back substitution takes place
giving the solution y corresponding to the b,
The procedure CROUT 2 also computes the determinant, det, of the metrix A,
Two nonlocal identifiers appears in the procedure

1. the nonlocal label singular, to which the procedure exits if matrix A
is singular i.e., if the determinant of A is zero.

2. the real procedure INNERPRODUCT which forms a sum of products to be used
in procedure CROUT 2, The real procedure INNERPRODUCT msy be declared in the
head of any block which inc¢ludes the block in which procedure CROUT 2 is
declared.

5. Use of the Procedure.

The procedure will be copied into the program where the following
comment is written:

comment library CROUT 2;

The procedure call shall be of the form
CROUT 2 (A,bn,y, det);

All paraometers A b n v ,det have to be declared in the program before the
call of procedure CROUT 2. A shall be declared as a real two-dimensional
arroy Al1:n 1:n], b and y as one-dimensional arrays b,y[1:n], n is declared

os an integer and det as a real,

Before the ccll of the procedure values must be assigned to Albl and n(this
ey be done by the programmer or by the program itself which uses the proce-
dure).
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By using this call the procedure CROUT 2 performs the triangularization
of A, the transformation of b and solves the eguations. The elements of
the solution vector will by CROUT 2 be assigned to the real array y. The
procedure will change the values of A and b but not n, The procedure
will compute the determinant of A and assign the value to the real det.
If the mafrix A is singular en exit is made from the procedure CROUT 2 to
the label singular in the program, At the place in the program to which
the exit is wanted one writes| singular:followed by some statemen‘bl e.g.
go to .... or other statement.

L. Comments to the procedure.

In this section some comments to the real procedure INNERPRODUCT and
procedurc CROUT 2 are written to facilitate the understanding of the proce-
dures. Reference to these comments are made in the algorithm Ly numbers
+.1] 4,2 ete, referring to the following subsections., Reference should
otherwise be made to Communications of the ACM L 1961, pp. 176-177.

l:.1. INNERPRODUCT forms the sum of u(k) x v(k) for k = s, s+1, 842 ...,
-1, £. If s > T the value of INNERPRODUCT is zero, INNERPRODUCT mey be
declared in the head of any block which includes the block in which CROUT 2
is declared,

L.2. We have found that Alimex k] is the largest pivot in columm k. Now
we interchaonge the rows k and 1max.

4,3 The row interchange is done, Ve proceed to the elimination,

L, L, The triangularization is now finished and we skip to the back
substitution.

5 Eﬁquz;;itlnn.

comment A E.K, july 16th., 1962 . the following procedure is a modified
version of SA-10 in that respect that it can solve a system of linear
equations Ay=b with only one b as described in SA-1k to which the following

comments rafer;

real procedure INNERPRODUCT (u v k,5,f);
value af;

Jntegér k s 1,
rg;l u!v,

comment section U, 1;

begin
Teal hj

h := 0;

for k := s gtep 1 wntil £ do
h:=h+ux v

INNERPRODUCT : = h
end INNERPRODUCT;

procecurs CROUT 2(A b n, y,det);
vaWue n;




P
begin
mteger ki 1d imax 1 B3
real TEMP quot,

det i= 1,
for k =1 step 1 until n do

L1 : begin
TEMP := O;
for i :=k step 1 until n do

12: begin L
Al kT := A[i k] - INNERPRODUCT (A[4,p], Alp k]l p,1k-1);
if abs(Al1 k1) > TEMP then

T3 ¢ begln
TEMP := abs(A[i k]); imex := i

end L3
end I2;

comment section 4,23

if imex 4 k then

Lh :begin det := - det;
for j ¢=1 step 1 until n do

L5 :begin
EW:=MMﬂ;MMﬂ:=MMMMhAHm%ﬂ:=EW

end L5;

TEMP := blk]; blk] := blimax]; blimex] := TEMP
end Lb;

comment section U, 3;

if Alk k] = 0 then go to singular;
quot := 1.0/Alk k]J;

for i =k + 1 step 1 until n do

Ali k] = quot x Afli e ls

for J = k + 1 step 1 until n do

ik 3] := Alk,j] - INNERPRODUCT (Alk p], Alp, j], p,1,k-1);
b[kﬁ := b[k] - INNERPRODUCT (A[k 1] b[pﬁlp 1 k-1)

end L1; go to 16;
comment section U,L;

I6: for k :=n step -1 until 1 do

L7: begin det := Alk k] x det; ‘
ylk] = (blk] - TNNERPRODUCT(A[k p], y{p],p, k+1 n))/Alk k]

end LT3
end CROUT 2;

Ole Leng Rasmussen,
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Solution of g system of linear equations

ALGOL-procedure: DRUMCROUT |

1. Scope.
The real procedure DRUMCROUT 1 written in GIER-ALGOL III solves a
system of linear equations A X ¥y = b, where A is a square matrix of order n,
y 1s the solution and b the right hand side, both are vectors of dimension n.
The procedure can solve g system with several right hand sides, b,
without repeating the triangularization of matrix A, i.e. it can solve a matrix
ecuation A X Y = B where A is a square matrix of order n, Y and B are matrices
with n rows and m columns.
DRUMCROUT 1 assumes that the matrix A and a right hand side b are
stored on drum. The solution y will be stored on drum, by the procedure.

2. Method.
The solution is based on Crouts method with pivoting as described in

SA - 10/1 section 2, and will not be repeated here.

3. Use of the procedure

The determinant of the coefficient matrix is obtained as the value of
DRUMCROUT 1 during the first call of the procedure with repeat = false. In calls
with repeat = true, the value of DRUMCROUT 1 is undefined.

The procedure call shall be of the form:
DRUMCROUT1 (n,ta,tb,ty,tf,tp,tr, repeat,exit);

where the parameters are:

n: integer, the order of coefficient matrix;
ta: integer, the value of drumplace corresponding to the storage on the

drum of the first row of the coefficient metrix A of dimension [1:n,1:n].
This matrix is stored compactly row by row but so that each row starts
at the beginning of a drum track. When stored in this way the values of
drumplace for two elements in the same colummn but on consecutive rows
will differ by a quantity which is divisible by L4O(= number of words on
a drum track). The coefficient matrix A must be stored on the drum befo-
re the first call of the procedure. During the first call of the proce=-
dure (repeat = false) the elements of A are changed because A is trian-
gulated. The triangulated matrix must not be changed if subsequent calls
with new right hand sides (repeat = true) are wanted.




th:

ty:

tf:

tp:

tr:

repeat:

exit:

- P -

integer, the value of drumplace correspondlng to the storage on the drum
o7 a real array oif dimensioin: [1:n] which holds the right hand sides used
in turn.

integer, the value of drumplace corresponding to the storage on the drum
of a real array of dimension [1:n] which holds the solution vector y. It
may be remarked that the value of ty can be set equal to the value of tbh,
in this case the right hand side will be replaced by the solution.

integer, the value of drumplace corresponding to the storage on the drum
of a real array of dimension [1:n] which holds the factors computed and
used in equilibration of the coefficient matrix during the first call

(repeat = false) of the procedure. These factors must not be changed be-
cause they are used in all subsequent calls (repeat = true) with the sa-

me coefficient matrix but with new right hand sides.

integer, the value of drumplace corresponding to the storage on the drum
of an integer array of dimension [1:n]. This array holds the pivots ori-
ginating firom the triangularization of the coefficient matrix during the
first call (repeat = false) of the procedure. The pivots must not be chan-
ged because they are used in all subsequent calls (repeat = true) with the
same matrix , but with new right hand sides.

integer, the value of drumplace corresponding to the storage on the drum
of an integer array of dimension [1:n]. This array holds the values of
drumplace corresponding to the storage of the rows of the coefficient ma-
trix A and they are stored during the equilibration process in the first
"”-‘-L (""T\f\"t = p :'""\ "'n J‘l"h ""“OC(’(‘U"‘L‘, 'T'L‘P"f‘ J"‘J”O“T“"‘O n *YL\"(‘O are T"f\""
mutated during the trlangularlzatlon according to the pivoting and must
not be changed because they are used in all subsequent calls (repeat = =
true) of the procedure with the same matrix, but with new right hand sides.

boolean. During the first call of DRUMCROUT 1 this parameter must have
the value false. In all subsequent calls with the same coefficient ma-
trix but with new right hand sides it must have the value tr ue.

a label to which jump is made from DRUMCROUT 1 if the coefficient
matrix is singular.

i, Running time and storage requirements.

The speed of computations depends of cavse strongly on how the loop
structure of the procedure matches with the tracks on the drum on which
the procedure is stored. The procedure requires 21 drumtracks. Tests of
the procedure with different systems have shown the following computation

times:



Oorder of system computation time

20 4O fec

Lo 2 min 56 sec + 8 sec for every new right hand side
1 3 min 28 sec + 10 sec - - -

60 8 min 12 sec + 18 sec - - -

80 16 min 39 sec + 31 sec - - -

81 77 min 30 sec + 35 sec - - -

5.References.

1. Communications of the ACM, 4, 1961, pp 176-77.

2. SA-10/1 CROUT Algol procedure. February 1957

Ole ILang Rasmussen.



6. Algorithm.

comment A.E.K. April the 26th 1967. - the procedure DRUMCROUT 1 written
in GIER-ALGOL IITI solves a system of linear equations A X y = b with
different b as decribed in SA- 22/2:

real procedure DRUMCROUTI(n,ta,tb,ty,tf,tp,tr,repeat,exit);

valus n,va, tb, ty,tf, tp, tryinteger n,ta,tb,ty,tf,tp,tr;

boolean repeat; label exit;

1nue5er i,J,k, imax, gem, p,m,r, N;real t,q,h,det,detfactor;
l fﬂ:ay a[1 :n]; integer array v pivot,rowl[1: n]

gem T=drumplace;

IM:=(n:40)xk0;if N<n then N:=N+40;

if- ,r-épeat theﬁ T

begin T

deti-detfactor:=1;

k:=ta;

begin comment equilibration;

array =1[1:8];

for i:=1 step 1 untii n do

drumplace.~“ow[1] =k ;fromdrum(al);h:=0;

for j:=1 step 1 until n do begin t: —abs(a1[3]);if t>h then h:=t end;
i7 h=0 then goto exit; o o o
ali]:=t: éﬁ(-entler(ln )/0.693147181+1) );

for j:=1 step 1 until n do al[j]l:=al[jlxt;

detfactor:=detfactorxt;

drumplace:=k;k:=k+todrum(al);

end 1i;

comrent store factors on drum;

drumplace: =tf; todrum(a);

end equilibration;

for p:=L0 step 4O until N do

oegln comment triangularization;

m:=if p=L0 then O else 13

PP

k :=p-L0;
for k:=k+1 Hpile kankSp do
begin

begin array al[m:p-40],a2[p=39:p];

e Tt i e membee

for i:=k step 1 until n do

IF pSlO then begin drumplace:=row[i]-N+p=4O; ;fromdrum(al) end;
drumplace:=row[i]-N+p; fromdrum(a2);

17 k~1 EE@E

begln

if k=1>p-39 then a2[k-1]:=a2[k-1]xq else allk=-1]:=al[k-1]xq;
h:=0;

for j:=1 step 1 until p-4O do h:=h+al[jlxaljl;

for j:=p-39 step 1 until k-7 do h:=h+a2[jlxaljl;
h:i=a2[k]:=e2[k]-h; drumplace:=row[i]-N+p; todrum(a2);

i k-1<p~ 39 then begin drumplace:=row[i]-N+p- =4O todrum(a1 end;
end kit 1 alng u:—a:’Tl ke

if abs(h)/w then begin t:=abs(h);imax:=1 end;

end ij;

Tivot[k]:=imex; comment largetst pivot element A[imax,k] is found;
EE imax%k then
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begin comment interchange drumplace numbers;
det:==-det;i:=rovw[k];rowlk]:=row[imax];row[imax] :=1i;
end 1ma‘*k

end

bgfln array al[1:p];

drump¢ace i=row[k]-N+p;fromdrum(al);

t:=al[k];
if t=0 then goto exit;det:=detxt;
if k<n Then
beFlﬂ T

r :=if k=p then p+l else p-39;
begin arvay e2[k+1:n],a3[r:N];
q: _1/t for 1:=k+1 step 1 until n do a2[i]:=0;
for i:=T step 1 until k-1"do -_
begin
drumplace:=row[i]; fromdrum(a3);a[i]:=a3[k+1];h:=al[i];
for Jji=k+l step 1 until n do a2[j]:=a2[j]l+hxa3[J];
end I1;
drumplace:=row[k] ; fromdrum(a3) ;
for i:=k+l step 1 until n do a5[1]-—a5[1] a2[i]; alk]:=a3[k+1];
drumplece :=rov| k] ;todrum(a3);
end;
end k<n;
end;
end k;
end p,triangularization;
drumplace :=tr;todrum(row); drumplace:=tp;todrum(pivot);
DRUMCROUT'1 ::=det /detfactor;
end-,repeat;
drumplace:=tb;fromdrum(a);
begin array £[1:n];
EFGEEHEEQ;f:tf sfromdrum(f);
for i:=1 step 1 until n do a[i]:=a[i]xf[i];
end;
drumplace :=tp; fromdrum(pivot);
drumplace :=tr; fromdrum(row) ;
for p:=40 step 4O until N do
begin comment elimination of right hand side;
Brray alll:Dl;
k:=p-40;
for ki=k+1 while k<eAk<p do
begin
Titalpivot[k]];alpivot[k]] :=alk];alk] :=t;
drumplace:=row[k]-N+p;fromdrum(al); h:=0;
for i:=1 step 1 until k-1 do hi=h+al[ilxalil; alk]:=al[k]-h;
exd k;
cad p,rigkht hand sids;
for p:=N-39 step ~4O until 1 do
Pegin comment backsubstitution;
array ailp:Nl;
m:—if p=N-39 then n else p+39;
for K:=m step -1 until p do
begin - -
drumplace ;=row[k]; fromdrum(al);h:=0;
for i:=k+l step 1 until n do h: ~h+a1[1]><a[1],
all:]:=(alk]=h) )/al[ki;
end k;
end. backsuhstitution;
drumplace :=ty;todrum(a) ;drumplace :=gem;
endDRUMCRCUTT 3
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Determination of a Zero of an Arbitrary Function
ALGOL-procedure : HYP,

1. Scope,

The following procedure determines with prescribed accuracy a zero of an
arbitrary function in a prescribed interval, If the values of the function
at the end points of the interval are different from zero and have the

same s‘ignl a jump to a prescribed label will occur.
2. Method.

The basic method is hyperbolic interpolation using two points with function
values of the same sign and one point with function value of the oprosite sign.
If this method would give a bad resultI bisection is used, and after six

successive failures the procedure will go over to bisection.

%, Use of the procedure.

/

The procedure will be copied into the programme where the following comment

is vritten:

comment library HYP;
The procedure call must have the form:

HYP(x’le1lx2'eps,error);

x 1s the name of the zero

F is the name of a rel procedure (with one formal perameter) determining
the function for which a zero is wanted,

x1 and x2 ere the end points of the interval inside which & zero is
to be determined.

eps is the accuracy with which one wants to determine X; eps is not
specified as value| so that a relative accuracy e may be prescribed by
inserting e x x (if x is the name of the zero) in the place of eps in the
procedure call, e should not be chosen less than 510-_.9l since otherwise
round-off errors could increase the running time significantly.

error is the label mentioned in the first section.



L, Additional remark.

The difference between this HYP version and SA-31 is that the use of
arrays is avoided, which diminishes the running time for the procedure
itself, This may have some significance in cases where the F-procedure is

not very slow.

5. Al gorithm,

procedure HYP(xI F, x1, x2, eps, error);"

value X11X2; real xlx1|x2|eps; label error; real procedure F;

comment: A.E.K. - Moy 30th 1963 - this procedure locates
o zero for the function F as described in SA-31/1;
integer p; real x3,f1 f2 f} TN, f;
f1:=F(x1); £2: ~F(x2), if f1xf2>0 then goto error; p:=0;
if £1=0 then x:=x1 else if £2=0 then x:=x2 else goto bis; goto out;

hyp: ) ) )
= 1/£1-1/13; We=(1/£1-1/£2)/ (x1-x2)+(1/£3-1/£2)/ (x2-%3);
if NHOAsbs(£3)>ebs(£2) then x:=x+T/N else goto bis;

if abs(x-x2)abs(x1-x2)/2 then

bis::

x:=(x14x2)/2; £:1=F(x); if £=0 then goto out;

if sign(f)=sign(f2) then

begin x3:=x2;. f3:=f2; p:=p+1 end else .

begin x3:=x1; f3:=f1; x1:=x2; f1:=f2; if p<6 then p:=0 end;
*x2iexy f2:=r; )

if abs(x1-x2) depssabs(x2-x3 ) deps ‘then

goto if p<6 then hyp else bis;

out:

end;

G.K,Kristiansen.
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Romberg Quadrature

ALGOL procedure: romberg 2.

1.Scope.

b
The procedure calculates a definite integral.J[ F(x)dx.
a

2.Method.

The integral is calculated by a method proposed by W. Romberg [1] and advo-
cated by E. Stiefel, e.g. [2]. This algorithm is adapted from [3]. Round. off er-
rors are diminished according to [U]. This is the only difference between romberg
and romberg 2.

If the integral is approximated by a sequence of polygones
T[0,0] = (b-a)/2x(f(a)+f(b)); T[0,1] = (b-a)/kx(f(a)+2xf((a+b)/2)+£(b)) etec.
each of which is found by the trapezoidal rule applied to subintervals, it may be
shown that (T[0,K+1]-1)/(T[0,K]-I) ~—¥1/L,for K X B
Here I is the correct value of the integral and it is éxpposed that F(x) may be
expressed by a fourier-sum. A new sequence of values may now be formed, assuming
that the value of I which makes this expression equal to 1/4 is a better approxi-
mation: T[1,K] = (xT[0,K+1] - T[0,K] )/3, which has the rate of convergence 1/16,
and generally we find

T[m,X] =(bAmxT[m-1,K+1] - T[m~1,K])/(WAm-1);

The sequence T[m,0] converges towards the integral if F(x) is Riemannintegrable.
It is calculated from 2/A(m+K)+1 values of F(x).

The calculation is finished when two successive T[m,0] agree to within a pre-
scribed relative error, delta. Yet, this is not a sufficient criterion to ensure
the correct value of the integral, so a further condition is introduced, equivalent
to a minimum number of mesh points, which must be reached before the exit from the
Procedure may take place. On the other hand it may happen that the permitted error,
delta, never is reached, so an upper number of mesh points is prescribed, upon which
exit to an alarm label takes place. When each functionvalue is added to the sum, the
difference between the addend and the increment in the sum is found, and this diffe-
rence is summed separately, and finally added to the sum. In this way the round off
errors are considerably deminished.

-

5. Use of the Procedure.

The procedure call is of the type:

al := b + romberg 2(F,x,a,b,delta, nmin, nmax,n, FORMAINGE ) :



The parameters are

F a real expression, which defines the function to be integrated. It
must depend on the simple real variable

X which is the integration varisble. The value of x on exit from the
procedure is not defined.

a is the lower limit (real).

b is the upper limit (real).

delta is the relative tolerance on two successive approximations (real).

nmin is the least number of subintervals permitted on exit (integer).

n is the actual number of subintervals used by the procedure (integer).

The call must hold an identifier, declared as integer, in the corre=-
sponding position.
nmax is the maximum number of subintervals (integer). If n > nmax, exit
takes place to the alarm label
FORMANGE
It should be noticed, that this call is identical with the call of
SIMPSON 2 (SA-11). Yet for a certain n, SIMPSON2 has calculated 2n+1 values
of F(x), while romberg? only has found n+1 values. Tests indicate that rom-
berg2 will find the answer in about half the time, the SIMPSON2 procedure needs.

L Comments on two pit falls.

a. The reason why a comparison between two consecutive approximations is
not sufficient to determine when the integration is finished will be seen
from this example:

16 el
5 cos(x)dx
“0

Number of subintervals i 8

Romberg - value 16 16

but the true value is O.

b. Consider the integral 65 1/x dx It is evident that a much smaller

.2

mesh-size will be needed near the lower bound than near the upper one, so
the calculation is performed much guicker if the integral is written as

1 ¢
déi 1/x dx + _{ 1/x dx
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6. Algorithm.

real procedure romberg? (F,x,a,b,delta,nmin,nmax,n, FORMANGE);
value a,b,delta, nmin,nmax;

real F,x,a,b,delta; integer nmin,n,nmax; label FORMANGE;

begin real 1,u,m,s,ul,err,f; integer g,h,J,ord; ord:=ln(nmax)x1.5;
begin real array t[O ord],

1 :=b-aj x:=a; u 1= F; x 1= b; t[0] := (wF)/2;
H = 2; 8 1= 0; ord 1= ord-1;
for h := 0 step 1 until ord do
begin u := err := 0, -
m := 1/n;
for j := 1 step 2 until n-1 do begin
X i= atjxm; T :=F; Ul := u + f; err := err +(£=(ul-u));
u := ul end;
u = ul ¥ e err;
b:=t[h+1] := u/n+t[h]/2;
g :=1; for J := h step -1 until O do

begin g -—ﬁkg,
b:=t[j] := b+(b- -t[31)/(g=1)end;

if n>nm1nAabs(s)xdelta>abs(b s) then goto slut;

if nSnmax /2then goto FORMANGE ; n := 2xn; s := b end;
slut : romberg? := bxl end 929 romberge;

Leif Hansson.
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Computation of the coefficients for a polynomial

ALGOL-procedure POLYCOEF.

1.Scope.
Let the polynomial

P(z) = alnlxzfn + aln-11xzA(n-1) + aln-2]xzA4(n-2)+...+al1]xz + a[0],where

a[n]=1, have the roots m[1],m[2],...... ,m(n]. Then it can be written in the form

P(z) = (z-m[1])x(z-m[2])x(z-m[3])x..... .X(z-m[n=-11)x(z-m[n]).

The procedure POLYCOEF computes the coefficients aln-1],aln-2],...,al1],a[0] by
means of the roots.

2. Method.

Let P(z) be a polynomial of degree p; by division of P(z) with z-m,
we get a polynomial Q(z) of degree p-1 and a remainder r. The connection
of alpl, alp-1]1,....al0] and the coefficients of Q(z), alp-1l,q[p-2].....
ql0] are given by the following equations:

alp-11 = alp]

alp-2] = alp-1] + mxq[p-1]
qlp-3] = alp-2] + mxq[p-2]
qlol = al1] + mxql[1]

r = a[0] + mxq[O]

If m is a root of the equation P(z) = O then the remainder r is zero.
Rearrangeing the equations we get

alpl = qlp-1]

alp-1]1 = qlp-2] - mxqlp-1]
alp-2] = gqlp-3] - mxq[p-2]
al1] = ql0] - mxq[1]
al0] = - mxq[0]

where r is put equal to zero because of the nature of the problem.

Let g[p-1]1, alp-2],....... ql0] where g[p-1]1=1,be the coefficients for a
polynomial Q(z) of degree p-1 corresponding to the roots m[1]..... m[p-1], then
with m= m{p] the above equations give the coefficients alp]....a[0] where

alpl=1, for a polynomial P(z) of degree p corresponding to the roots m[1]....m[p].
The method of computation therefore consists in repetetive use of the
above equations with p varying from 1 to n.



3. Use of Algorithm.

It is assumed that both the roots, and the coefficients alnl],.....al0]
may be complex numbers.
The procedure call is of the type

POLYCOEF(n, A);

where
n is the degree of the Polynomial, declared as integer.

A is a one-dimensional array, declared as real array A[O:2xn+1]

Before the call of procedure POLYCOEF the roots of the polynomial
must be stored in A, the real parts in elements of A with even indexes
the imaginary parts in elements with odd indexes starting in Al2] and
A[3] respectively.

The procedure stores the coefficients in A so that al0] is stored
in A[0],A[1], al1]in A[2],A[3]...etc the real parts in elements of
A with even indexes and imaginary parts in elements with odd indexes.

L. Algorithm.

procedure POLYCOEF(n,A);

value njinteger njreal array Aj

begin comment this procedure computes the coefficients for a polynomial
with given complex roots as described in SA-3T;

integer 1i,Jj,m;

real r,8,X,¥;

A[OT:=1; A[1]1:=0; m:=2xn;

for i:= 2 step 2 until m 4o

begin r:=s:=0; x:= Alil; y:= A[i+1];

for j:= i step -2 until 2 do

begin A[j] i= A[j-2] = rxx+exy;

Alg+1]:= A[j=1]- sxx-rXy;
r := Al§-2]; s:= A[§-1];
end];
A[0] := - rxx + sxy; A[1] := -sxx - rXy;
end 1i;

end procedure POLYCOEF;

0. Lang Rasmussen.
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Tr:nsformetion cf verisble in = complex polynomiel,

ALGOL . procedure COMPOLYTRANS.

1. Scope.

Let P(z) = clnlxzAnte[n-1 IxcA(n-1)+.. .... +:[1Ixz+e[0] be a gener:l
complex polynomiczl; the procedure COMPOLYTRANS mskes 2 trensformetion of
the verieble z given by z = ¢ + £ x 1 where z1 is the new verieble, the
fector £ is # recl constent :nd ¢ ¢ complex conThis tronsformetion
gives & new polynomisl P1(z1) in z1.

2. Method.

The Taylor expansion of the polynomirl P(z) eround z=c is given by

P(z) = P(c) + (z-c)x(atP(c)/dz )/ Aux(dE c3/dﬁii§?2
o nx(dnP( dz B

which cen ¢lso be written es

P(z) = P(c) + /f x1x(d1P(c /dr /v, (z-c)/f)Aexthox(a2p(c /d~
e : +(( _mc)/f AnfonX\an(c)/dLAn )/nl! /2!

where d1P(c)/dz, d2P(c)/dzf2 ......., anP(c)/dzfn ere the first, second, . ....
end nth derlvetlveq OL P(r) for z=c. Subgtituting z=c+fxzl we get

P1(z1) = P(c)+r 1x?x(d1P(c )/az)/1! w1hexehox(a2p(c)/azhe /2f
o anr%nx(an c\/dzin)/n

-------------------------

which is the T ylor expsnsion of P1(z1) (round z1=0 expressed by the velues
of P(z) nd its derivstives in -=c

Divigion of P(z) by z-c gives the rem-inder P(c) =nd the quotient poly-
nomisl

(dJP / /1 7—c)x(d2P(c)/d242)/2?+ ..... i3 ) A(n 1 )x(anP(c /d.}n)/nf

Divigion of this quotient polynomisl by =-c gives the remsinder
(a1P(c)/dz)/1. =nd the quotient polymnomisl

(a2P(c)/azA2) /2 +. ... .. +(z-c)A(n-2) (c)/azhn)/n!
end sO on.

When the remainders (a1P(c)/dz)/1. (d2P(c)/azA2)/2.(azP(c)/dzA3)/5. .. ..
(dn /dz*n /ﬂ are multiplied by T f)Q IAﬂ o,.,ﬁfAH we get the coefficients
to 21 21/2 Z1A5 ....z1An in the exps neion, of P1(z1), i.e. the constant coef-
flc1entb 1n the polynomL°l P1(z1). The computation of the coefficients in
P1(z1) therefore consists in successive division of P(z) with z.c giving re-
meinders which, except for the firstI is multiplied by powers of f.
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5. Use of the procedure.

=

The procedure cell is of the type
COMPOLYTRANS(n!AlaIbe);

degree of P(:)| declared cs integer.

one dimensionsl errey conteining the complex coefficients in P(:z)

declered s reel crray A[0:2 x n+i]. The resl perts -re stored in

A[O]l Al2], [hi A[2xn] =nd the imeginary prrts in A[1],

A[3], A[5] A[2xn#11; ¢[0] is stored in Afo], A[1],<[1] in

Al2] A[ 31,6 .;[n] in A[Exn]lA[an+1] before the crll of procedure.

¢, b sre the ve<¢ :nd_lm,gln,ry psrte of the constont c, they sre decl:-
red c¢s resl.

£ ¢ constent declered rs rerl.

° se

=S

The procedure stores the coefficients of P1(z1) in A in the seme order
¢s those of P(z).

L AMlgorithm.

procedure COMPOLYTRANS(n A = b, £l

integer n;

reel 2,b T3

reel srray A;

begin comment procedure COMPOLYTRANS mckes o tronsformetion of the verisble
z in » complex polynomiel P(z), such as described in SA-38;

integer i,j;
resl s, t,u\v, q;
q:=1;
for i°—O step 1 until n do
Eégin t:=0; “’
:=n step -1 until i do
= A[2xj] + axs - bxt;
Al2xj+1] + xt + bxs;
if j=1 then begin u:=uxg; v:= vxq end;
Al2x3 Ji=s:=u; A[2xj+1] :=t:=v;
end
g:= gxIf;
end i;
end COMPOLYTRANS;

o’
)
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=
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.
l

0. Leng Rasmussen
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Trensformetion of verisbhble in =2 resl polynomial,
ALGOL -~ procedure REPOLYTRAIS,

1. Scope.

Let P(x) =colnlxxAn+aln-1IxxA(n-1)+......+ =[1Ixx+a[0] be = resl polyno-
micl; the procedure REPOLYTRANS mckes o tf nsfermation of the recl verisbie
¥ given by ¥ = ¢ + £ x x1 where ¥1 is thenem verieble, £ end & sre recl

constents. This tronsformetion gives o new polynomicl P1(x1) in x1.

2. Method.
The Trylor erxpsnsion of the polynomisl P(») sround x=a is glven by

Hx)=PG)+(xm)(MPQ/iﬁﬂ;4—Ll)%ﬂﬁP )/axAe) /2l +
+ov oo+ (vee)dox(anP(2)/dxAn ) /n!

which cen £lso be written =3

P(x) = P(e)+( x-2)/T)xix(a1Pp( dx f+ - )f&xﬂ®<&P &A_ oi
:,g,,:.{,+ (-2) /f)*éxf&ﬁx(an /dxﬁn )/ni i e

vhere diP(¢)/ax, a2p(a)/axA2,...... ,dnP(: )/axAn are the first, second ......
cnd the nth derivetives of P{x) for x=z. Subgtituting x=s+fxx1 we get

Pi(¥1) = P(.) + xIxfx(aiP(z)/dx x1AextAex(a2p(a)/axA)/2 !
I.? ..... + y1knif4n£|dn; (2)/daxAn)/n! exr2)f

which is the Teylor expension of Pi(x1) sround x1=0 expressed by the velues
of P(x) end its deriveatives for x=a.

Devision of P(x) by x-z gives the remesinder P(a) ¢nd the quotient polynomizl
; , ' i
(a1p(- )/ax)/1! + \x-e)x(dEP(:)/dxAQ)/Zf +ovew ot (x=2)A(n-1)x(dnP(2)/axhn ) /n!

Division of this quotient polynomicl by x-& gives the remsinder
(ap1 (- /dx)/i ¢nd the quotient polynomicl

(a2P(a)/axA2)/2 +1. . .. (%0 )AM(n-2)x(dnP(a)/dxhn ) /nf

cnd =0 on.

When the remeinders (d1P(c)/dx)/1. (a2P(e)/axq2)/2. QBP( /dAX% /3. ... ,
(anP(= /dy*n)/n cre rultiplied with fA; l|5 An we get the coeff1¢1ents
to x1 V1A2 X1X5 ‘TA@Aln the eraanOﬂ of P1(V1) i.e. the constont coeffi-
Clent< in the pOlyDOHl“l P1(x1). The computetion of the coefficients in P1(x1)
therefore consists in successive division of P(x) with x-¢ giving remcinders
whichl except for the first is multiplied by powers of f.
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4. Use of procedure.

The procedure cell is of the type
REPOLYTRANS(n A, - | T);

degree of P(x) declered ¢s integer;

e one dimensional srrcy conteining the coefficient in P(x); declesred as
resl errey A[O:nl; =[0] is stored in A[0], e[1] in Alr],...... aln] in
Aln] vefore the crll of procedure.

¢,f: cre constents declcred es resl.

=8

The procedure stores the coefficients of Pi(x1) in A in the seme order es
those of P(x).

L. Al gorithm.

procedure REPOLYTRANS (nlAlslf);

velue n e f3

integer n; resl = T3

real srroy Aj

begin comment procedure REPOLYTRANS mckes o tr:nsformetion of the vsrisble
X, in ¢ reel polynomiszl P(x), such =s described in SA.70;

integer 1,33

resl s\u, q;

g :=1;

for i := 0 gtep 1 until n do

begin s := 03
for j :=n step -
begin u := Alj] +
A[fT“:= ux g gl
g 4s

end REPOLYTRANS;

|

until i do
x g3 A[§T := s :=1u end 33
g x 1

o -

0. Lang Resmussen.
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Determination of the meximum of & function with one
and. only one meximum,

1. Scope.

The following procedure determines the meximum velue of & function with
one ¢nd only one maximum in & prescribed interval.

2.Method.

The method is besed upon a division of the intervel into U smeller intervils
end the procedure determines within which of these the meximum must be.

These intervels ere then sgein divided into L intervels end so on until the
intervels ere smaller th:n delte. The use of erreys mckes the procedure usefull
in ceses where the function is slow.

3. Use of the procedure.

The procedure will be copied into the pogrem where the following comment
is written.

coment library MAX;
The procedure call must be of the form:
MAX (F x, &b delte);

Where the percmeters cre:

F is the name of the function for which e meximum velue is w:nted |
and F is £ reel expression.

X is the veriable. On exit from the procedure the velue of x is not
defined.

ab are the end points of the intervel where the function is consideredl

end a is the lower limit.

delte 1is the accurecy with which one w nts to determine the crgument for
the maximum value;delta is not specified s a velue; so that 2 relstive
gccuracy |,e,, mey be prescribed by inserting 1 1€8%%,, in the place of
delt: in the procedure csll.

As triasl functions were used

F1 = 3 5xcos(x) a=-1; Db =3;
F2 = 3 Sxcos(x) a=9; b = 5;
F3 = In(x) - x ¢ =05 b=23;
Fi = 42 + bsx + 2 a = 03 b = L;



=P

F>5

]

-3,675%xxA8 + 0,003xxA2 + 3 141592 g = 3 b

F6 = -0,751L46xxA2 + b 3146Txx + 7 141952 2 =.15; b

The zccuracy required was delta = 1.6,

The members of celculstions of functions were respectively 148,

The celculeations of the maximum of the ebove functions were per.

L, Aleorithm,

resl procedure MAX(F y]a b delta);
velue elo, resl F 1 X, o deltg,

begin

resl o p,ysinteger j; reel srrey r[0:L4];

0:= aj p:= b}

At yi= (p-o)/l; ¥i=0; r[0]:= F; j:= 0}

B: j:= j+1; if j= 5 then

begiu if (p- 07<delt° then

begln

MAX:=r[L]; goto stop;

end; -

0t=0+3xy; goto Aj;

end;

xi=o+3xy; rljli= F; if r[j1>r[j-1] then goto B;
D: if j=1 then

begin

if (p- )(deltc then begin MAX := r[0];goto stop; end;
pr=oty; y:i= (p-0)/U; ji= 0; goto B;

end;

ET—if (p-0)<delte then

begln MAX := r[j-1]; goto stop; end;

o:= 0+(J—2)X‘J: pi= 0+2xy; T

yi= (p-o)/b ; r[0]:=r[3-2]; 2[kli=r[j]; r[2]:= x[j-1];
x:=o+y; r[1]:=F; x:=o+3xy; r[31:=F; j:=1;

if r[3] < r[j- 1] then goto D; ji= j+1;

if r{j] < r[j-1] then goto E; j:= j+1;

if r[jl] < rl3-1] then goto E; jr= j+1;

if r[j] < r[j-1] Then goto E; goto B;

stop end;

I

K.Mgller Pedersen.
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Computation of the characteristic polynomial of a matrix

ALGOL -~ procedure Danilevski

1. Scope.

By means of the method of AM Danilevski the coefficients of the characteri-
stic polynomial of a real matrix A is found.

2. Method.

The given matrix A is transformed to its companion matrix C by applying
a finite sequence of similarity transformations
=1

A(k+1) = S(k) A(k) S(k), kK = 0,1,2. 0 0ineeeennnn.

1

A. 8 (k) s(k) =E; E = unit matrix.

I

where A(0)

A and C are similar matrices and therefore they have the same characteristic
equation. The companion matrix C of A is of the form

O 0 © 0 c[1,n]
1 0 0 0 cl2,n]
O 1 0 0 c[3,n]
C = = = - -
0 0 O 1 cln,n]

and. the characteristic polynomial of C is
zAn-c(n,nlxzA(n-1)-cln-1,nlxzA(n-2)= ......- cl2,nlxz-c[1,n] = 0

which is also the characteristic polynomial of A because of the similarity of
A and C.

The transformation of A to C is performed such that A is first transformed
to almost triangular form (Hessenberg form) i.e.a matrix H of the form

j n(1,11, nl1,2],......... .al1,n]!

1, nl22l,....ou.... h(2,nl

H = o |, T ,.e.v-v....h[3,n]
I - 5 - PEEETEREE: el = i

" o, B unassssa 1,h(n,n];

i

During this sequence of transformations we employ a search for pivots as is
advocated for in [1]. The similarity transformations are not executed by elemen-
tary matrices as in [1] but follows the line of Faddeeva [2]. Secondly the al-
most triangular form is transformed to C.

We first describe the transformation to almost triangular form. We begin by
zeroing the elements al[x,j] of A for j = 1,2,..... n-2. This is done by postmulti-
plication of A by the matrix.



-2 -

1 0 0
0 1 0 0
% - - - _
ol = “afr[fﬂ] - i%ﬁfiu’ T
i 0 s, O 0 1
where a[n;i],é[n,e],....;.a[n,n-1] are elements of A(0).

The element aln,n-1] is the pivotal element for this operation and as
we want it to be relatively large if round-off errors shall be as small as
possible we make a search for the greatest element among aln,j] for j = 1,2,
..i..n=1 followed by an exchange of respective columns. An exchange of co-
lumns is equivalent with a postmultiplication of an elementary matrix, and to
secure the similarity this must be followed by an exchange of corresponding
rows which is equivalent to premultiplication with the inverse of that elemen-
tary matrix. After the largest (in magnitude) off-diagonal element of A is
moved to the position (n,n-1) we know that

abs(aln,jl/aln,n-11) < 1

for 1 < j < n-2 and hence the operation to zero of aln,j] for these values of

j is a relatively accurate proces. It shall be remarked that the elements ali,n]
for i = 1,2,.....n are not affected by this operation because of the form of
L(0). This postmultiplication of A by L(0O) shall be followed by a preultipli-
cation of A(0)L(0) with the inverse Ir1(0). It is easily verified that

1 0 0 o

0 1 8 0]

-1 - - - '
L (0)=: - - - f
aln,1], aln,2], _ ,aln,n-1]1, 0}

Lo o, e 9, 1]

x = 1 V
as L(0° L (0) = E. (E = unit matrix). When this operation is finished we have
a matrix -
A(1) =L (0) A(0) L(0)

which is similar to A(0) and which elements in the positions (n,1),(n,2)......
(n,n-2) are zero while the element in positions (n,n-1) is 1.

The next step is to zero the elements in A(1) in the positions (n-1,1),
(n-1,2),..... (n-1,n-3), while the element in position (n-1,n-2) shall be 1.
This proces is done by the similarity transformation A(2) = L-1(1)A(1)L(1)
where

E 1 0 0 0,0
0 1 0 0, 0
L(1) = - - - - -
a[n-1,1] , aln-1,2] , 1 , 0,0
T aln-1,n-2] ~ aln-1,n-2] aln-1,n-2J
0 0 0 1,0
0 , 0 , 0 , 0, 1




1 0 0 0,0
1 0 0,0
-1 - . - - - -
L (1) = - = - - -
ald-1;1]; =ln1;2], saln-1;n-2], 0,0
0 , o, 0 ., 1,0
0 , o, 0 ., 0,1
Here a[n-1,1],aln-1,2],..:.alh=1,n.2] are elements in the matrix A(1).

Again an exchange of columns and rows must preceed the post- and premultipli-
cation with L(1) &nd L7'(1) if the pivotal element now in position (n-1,n-2)
is not the lhrgest in mégnitude.

Continuing thesge processes we finally arrive to the almost triangular
form H.

In the second part of the transformation i.e. the transformation from
almost triangular form H to the companion matrix C we wish to zero elements
on and above the Jdiagonal.

We begin with zeroing the element in the first column of H. This is ob-
tained by premultiplication of H with a matrix of the form

b1, -n[1,1], o, 0 %
U(o) = 0, I Ol
0, o , o, o1 {

3
H

followed by a post multiplication by U'1(O), the inverse of U(0). It is easily
verified, that

(@)
-

o
-

o

P 1

szt s

=1
because U(0)U(0) = E. When the operation is finished we have the matrix
H(1) = u(o)ru-(0)
which is similar to H.
The next step is to zero the appropriate elements in the second column.

This is done by the similarity transformation

H(2) = u(1)H(1)u(1) !

where i
1,0, <hi1,2], 0 , , O
0, 1, -n(z2,2], o, , O
u(1) = 0,0, T 5,0, » 0
OJO) 0 k] 3 ]
and
» © s Bl1,R1, 6, , 0
- 0,1, hnlez], 0, ; O
U(“): - - - - -
0,0, 0 , 0, > 1




= B

h[1,2] and h(2,2] are now elements in H(1).

Continuing this proces we finally arrive to the companion matrix C of A.
If a subdiagonal) pivot element is found to be zero in applying these processes,
that is, if at an intermediate stage of the method we obtain a matrix of the
form

i B C i
A(k)= ; H

|02

¥ 1
for some k where B and D are square blocks and O zero matrix, we cannot zero
the appropriate elements in the last column of B. But in this case the matrix
partitions and we can therefore apply the method to B and D separately.

5. Use of procedure.

The procedure call is of the type
Danilevski (n,A);
where
n, declared as integer is the order of the matrix
A, declared as real array A[1:n,1:n] contains the elements of the given
matrix which must be stored before the procedure call. The companion matrix
is stored by the procedure in array A and the last column of the companion
matrix stored in the array elements
al1,n]); alZm), icivsiess aln,n]
are the coefficients in the characteristic equation

zhn - aln,nlxzA(n-1)-aln-1IxzA(n-2)- ......... - al2,nlxz-al1,n] = 0

of the companion matrix as well as the original matrix.

4, References.

[1]: On the Danilevski method by Eldon R. Hansen
J.A.CM. 10(1963) p. 102-109.

[2]: Computational Methods of Linear Algebra by
V.N. Faddeeva 1959.



5. Algorithm.

procedure Danilevski(n,A);

value njinteger njreal array A;

begin comment this procedure computes the coefficients of the characteristic

polynomial of a matrix with real elements such as described in SA-49Q;
integer 1i,j,k,k1;

real temp;

comment transformation of matrix to companion matrix;

if n=1 then goto L3;

for i:=n step -1 until 2 do

Eggin comment transform A to almost triangular form;

comment find greatest pivot element in row i;

temp:=0;

for k:=1 step 1 until i-1 do

if abs(A[T,k])>temp then begin temp:=abs(A[i,k]);sk1:=k end;

if temp=0 then goto LT; T

comment exchange columns and rows in Aj;

for j:=1 step 1 until i do

begin temp:=A[j,k1]3 Alj,k1]:= A[3,i-1]; Alj,i-1]:=temp end j;

for k:=1 step 1 until n do T

begin temp:= A[k1,kJ; AlkT,k]:= A[i-1,k]; Ali-1,k]:=temp end k;

for k:=1 step 1 until i-2 do

begin comment arrayA[1:i-1,7:i-2] is changed by postmultiplication;

temp:=A[1,kJ/A[1i,i-1];

for j:=1 step 1 until i-1 do Al[j,k]:= A[j,k]-A[j,i-1]xtemp;

end k; —_

temp:=1/A[1,i-1];

for j:=1 step 1 until i-1 do A[j,i-1]:= A[j,1i-1]xtemp;

for k:=1 step 1 until n do

begin comment arrayA[1:i:T,1:i-2] is changed by premultiplication;

temp:=0;

for j:=1 step 1 until i-1 do temp:=temp+A[i,jIXA[],k];

ATi-1,k]:=temp; .

end k;

comment change row i in A;

for k:=1 step 1 until i-2 do A[i,k]:=0; A[i,i-1]:=1;

Ii: end end transform to almost triengular form;

k1=1;

for k:=1 step 1 until n-1 do

Eggin comment transform almost triangular form to companion matrix;
if Alk+1,k]=0 then begin k1:=k+1; goto L2 end;

for i:=kl step 1 until k do T T

begin temp:=A[1i,k]; —_

for j:= k+1 step 1 until n do A[i,j]:= A[i,j]-tempxA[k+1,j] end i;

for i:= k1 step 1 until k do A[i+1, k+1]'—A[1+1 k+1]+A[1,k] ;7
or i:=k1 step 1 until k do A[i,k]:=0;

= end k;

Il

L3:end Danilevski;

0. Lang Rssmussen,
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7 / .
‘random’’ generates a sequence of rectangularly distributed, pseudo-
random numbers, one in each call of the procedure.

ganMethod,

The successive pseudo-random numbers are generated from the formula

‘random [n+1] := 125 x random{n] (mod 2796203).

This formula generates a permutation of all integers 0 < i < 2796203,
Different values af random [0] cause only a cyclic shift in the generated
numbers. The less significant bits should not be expected to be random.

Most litterature on this subject is concerned with the production of
random digits in all positions and with taking advantage of the structure of
the computer and the use of overflow. No such considerations are relevant to
an algolprocedure, on the opposite overflow must be avoided.

Each call of the procedure takes approximately 8.6ms. Additive gene-
rators are faster, but are reported not to be statistical satisfactory. The
advantage in speed is however less than what may be gained by rewriting the
procedure into the program so that there are no formal parameters. Also the
placing of the procedure across a track transition is of equal importance.
Consequently additive generators have not been considered further.

3.-Use.of. the procedure,

ot P 3 B P W B P e et Do

The procedure call is of the type
a :=b + random (A,B,x0);

Here A and B are the bounderies of the interval in which the random numbers
are distributed. A < random < B.

In the very first call, x0O must be used as the value of random [0].
This may be done by using a 6-~digit number. In subsequent calls, x0 = 0.



real procedure random (A B,Y);

cedure
value A,B,Y;'zgél AB; integer Y;
9

e

C:=Xx125;
X:=C-2796203xentier(C/2796203);
random:=Xx (B-A)/2796203+A end randoms

DenLlests.

The randomness of the numbers have been tested in several ways.
N is the number of calls in each test., All tests use the first N numbers
with the starting value x0O = 100001.

N 1/N §r 185 (x A 2)
50 0.50235 0.3271k4
100 0.48140 0.30822
500 0.49729 0.32628
1000 0.49701 0.%2852
100000 0.50059 0.33363
200000 0.50018 0.3%327
Expectance value 0.5 0.33333

10.000 and 90.000 random numbers were formed. The interval was
divided into 100 equal parts and the number (fi) of random numbers within
each part was counted.

chi-square = k/N x sum((fi-N/k) A 2) was computed. k = 100 intervals.

For N = 10000, chisquare was 112.#6‘ which corresponds to a probability
of 80 -~ 90 percent with 99 degrees of freedom.

For N = 90000 the value was 98.55, which corresponds to a probability of
50 - 60 percent.

An autocorrelation of 3000 random numbers with shifts up to 511 gave 5.9 percent
as the biggest correlation coefficient.
The period is as mentioned above 2796202 different numbers.

Hull, T. E. and Dobell, A. R.: ‘ -
Random Number Generators' SIAM Review, &‘ 3y July 1962, pp.230-254,
with 148 references.

Leif Hansson.,
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system of linear equations

Rttt g

Solutbior

ittt vnxn‘- Sty e

ALGOL, - procedure CROUT

RpEs By e EER == R

.

S

o 5C0RE
The real procedure CROUT 3 solves a system of linear equations Ay =
vhere A 1s & square matrix of order n, y and b are column vectors of di-~
mension n. The value of CROUT 3 is the determinant of the coeffiecient matrix
A. The diffevence between CROUT 3 and CROUT 2 is that the central part (the
innerproduct) of CROUT 3 is written in machine code which has the effect
that the speed of computation is increased in comparison with CROUT 2.

A3 IS ae

The solution is based on Crouts method with row interchanges as described
in SA-14/1 and is therefore not repeated here.

CROUT 3 and CROUT 2 are completely equivalent, the only difference
is that the innerproduct is written in code in stead of the for-statements
in CROUT 2 (and the algol procedure INNERPRODUCT in former issues) which
results in a considerably increased speed of computation.

PR It

3...Use, of, mrocedure,

The procedure consists of two varts, the algol procedure, and a code.
Me procedure call snsll be of the form

CROUT 5(nA,&rum, length,exit);
where the parameters are:

n: Geclared gs integer is the number of equations

A declared as 1L array A[1: n 1:n+1] contains on entry the
coefficient matrix in A1 in, 1:n] and the right hand side in
the column A{1: n,a+1] 0a ex1t The solution vector is stored
in the colum vector A[1:n n+ ].

drums: declared as integer cont alnq the value of the standard variable
drumplace, when +he innerproduct in code is stored on the drum
by the standard procedure gierdrum(see below).

length: declared as integer conteins the number of machine words occu-
pied by the code as supplied by the standard procedure gierdrum
{see below).

exit: a label ©o which CROUT 3 goes when the matrix is singular.

The innervroduct in code mst be stored on the drum before the call
of CRCUT 3. This shall be done by the program and can be performed in the
following manner,

Assuming th=at the verisble drum has been assigned some value of drum-
place, one writes e.g, in the beginning of the program:



if kbon then
begin ,
writetext({<
message to operator: innerproduct-code in tapereader*);
typechar;
drumplace:=drum;
gierdrum({<innerp$,length);
writetext<
message to operator: datatape in tapereader})s
typechar;
ends

When the program is started after the translation is completed GIER
stops ready for input of code. Started again it stops ready for input of
data after which the computation starts. The first parameter, #<inner 1
in the procedure call gierdrum ({<innerp} length) is a code identifi-
cation for immerproduct, which must be written exactly in this way. The
second parameter, length, is assigned the number of machine~words in the
code.

The procedure identifier CROUT 3 contains on exit the value of the
determinant. It shall be remarked that all elements in A[1:n,1:n+1] are
changed by the procedure.

k. Beferences,
1. Communications of the AT, L4 1961 pp.176~77.
2. SA-1k/1, July 196k,

i

RenBlgord thm,

comment A.E.K. this algol procedure solves g system of linear equation
as described in SA 64. The algorithm uses innerproduct in code;

real procedure CROUT 3(n,A,drum,lenigth,exit)s

value n,drum,length;integer n,drum,length;

real array Aj

tabel exity

lnteger I J,imax k pl p2, 03, pk gem;
real ©,q,det, detfactor;

boolean array code[1:length];
boolean entrys;
gem:=drumplaces
drumplace:=drumng
fromdrum(code); e =
glerproc{code[2] A p1,p2, D3, pt entry);
detfactor:="det = 1 ‘

begin cormeat equilibrateA[1:n‘1:n+1];

-

Lep 1 tnbll n do
be t gnd;

= 1 S = ’ [>9g X '
= ebe(Ald,3 )5 if € > q then q:=

AL q= 0 then poto exit; -
te= 2 A (~entier{in(q)/0.693147181+1));

for J:=1 ghen 1 unGll ntl do Al1,5]:= A[1,J]xt;
detfactor:= detfactorxts

end equilibrationg

pPii=ls



t 1= 03
P2 i=kyphi=k-1s-
for'i i= k gfep 1 until n
beein
ple=is
Af1, k] = A[i k] - gler(entry);
if a'bs(A[l k]$ > t “then
begxg t = abs(A i k] ); imax := i ends;
ends '
corment the largest pivot element Alimax k] in column k is found;
if imex &'k then
begin ¢ comment 1nterchange rows k and imaxs
det := —det-
for'J :=1 gten 1 until n+l do . ' '
begin t := ALk, j]; "Wk, g] : A[lmax,g], A[lmax,a] = t end;
end 1nterchanpe of rovs;
All5,k] = 0 then goto exit;

g $= I/A[k ks

for 1 =k +1 step 1 until n do

<>y PG Ry

Ali,x] :=q x A[ixk];

IO

Pl ‘-i<~

for'J =k +1 gtep 1 wntil n¥l do
begin

p2 J? -

Alk,3] := A[k,3] - gier(entry)
ends

W

end triangularizations

p2°—n+1; plt:=n; ‘

for k :=n §§99 =1 wntil 1 do
begin comment backsubstitution;
Pl e=kgy p5 =k+4

det:= A[k k] x dets

A[lx.,nﬂ] “(A[k n+1] ~ gier(entry) )/A[k k],
end backsubstitutlon,

CROUT 3:= det/detfactor;
drumplace :=gems

end CRCUT 3;

6.+..Inneroproduct in co ode,

reiee

[ innerproduct in code]
b a12

- _ . o
q 10.3459. 9441 . 15453 21437, 2T+37.33+57. 39 ; f<innerp}

[f¢ rst entry |

arn a3 D sRadr:=jump adress

ar al 8r(p9)  jentry:=shv-instruction

arn ph gr al sarray description

arn(al) tkfml sRadr:=c2=n+2

ga alt  tkm=-10 ;ah[adr}:=02

gt a8 ;a8| tel |:=c2

arn(al)  t-1 :

ar (a1) t-1 ;

tkm 30 ar al sal[adr]:=array length+constant

arn ph ytkm 10 ;Radr:=adr[last element]+



- -

sr al gr al ;a1 adr | :=basisadr-constant
it{v5) Tpa a3 sa3| adr | :=p1

it(pb6) (ra al10 ;a1o%adr]:=p2

it(p7) pa all  jal1|adr |:=p3

it(p8) pa al2  ;al2|adr|:=ph

hr s1 sreturn to ALGOL

[later entries]

a’: arfnm) p tkfml sRadr:=pl
X s Madr:=pl
ali: rknm) D sR18:=pl1xc2
thm9 yar al s Radr :=p1xc2+basisadr-constant
ga af sa7[adr | :=Radr
al10: arfom) | tkfml sRadr:=p2
ar al’ jge. a8 ;aBladr]:=basisadr+p2-constant
all: arfnnQ y tfm 3
ga a2 sa2[adr]i=p3
srral DX sRadr:=p3-1  Madr:=Radr
mkn(ald) D ;R18:=(p3»45x02
thm9 7ac a8 saB[adr | :=basisadr+p2+(p3-1)xc2-constant
al2: arfnm) Jtkfm-9  sRteli=ph
gt a5 ep ab sa5[ tel | :=pht,a6[adr] :=p
a2: P ern a9 sD:=p3,a9:=0
a5: bs p w0 sif p>plt then ab else a7
ab: ppr) jhr 81 sreturn
a7: arfn pQ sRF:=A[ p1 D] -
a8: kim0 £Q sRF:=A[ p1,p]xA[p,p2]
arit a9 j&rf a9 saccumulate product
Pp pH yhvab sPi=p+1  jump
al: hv shv-ingtruction,storage for basisadr-constant
ag: aq sworking cell
@
s

0. Lang Rasmussen.
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Description of ALGOL - procedure SA - 65

REORC.

This procedure deals with the problem of fitting a known complex analytical
function of a complex variable with a rational algebraic function of this com-

plex variable.

The known function may be given by experimental or computed values of real
and imaginary part, corresponding to & series of purely imaginary values of
the argument.

Method,,

The method used is originally developed by E. C. Levy (ref. 1) and later
improved by C. K. Sanathanan and J. Koerner (ref. 2). The present version is
that of ref. 2, slightly modified by the author.

In the followlng a very short description of the method of ref., 2:

The known function F(s) is given in the m points sk = jek, k = 1,2,..0m
by the quentities Rk(jewk) (reel part) and Ik(jwk) (imaginary part). The ratio-
nal algebraic function is Ggs) = P(s)/Q(s), where P§S) and Q(s) are polynomials.

The difference between the complex values of F(jwk) and G(jwk) is

£k = F(Jwk) - P(§Wk)/Q(Jwk)
The criterion for the best pessible fit as expressed by the least squares
method would be: m 2
k}%]Ek | adjusted to minimum.

However, this criterion leads to a system of very complex, non-linear eque-—
tlons and 1s consequently substituted by the following as a first approximation:

kr;% |€£x Qo) | zad,justed to minimum.
This criterion lééds to a matrix equation:
[A] [X] = [B] (see ref. 1)
there [A] is a quadratic matrix of order p+q+1; p and q being the degrees of
the polynomials P(s) and Q(s) respectively, while [X] is a vector presenting the

desired coefficients of these polynomials, assuming the zero-order term of Q(s)
adjusted to unity.



D

. Now, denoting'the fit function polynomials which results from this first
approximation by P(s) and Q(s) a secend approximatien is performed according to

the criterion 3
2 1€xo (i x
w2 lﬂw_FQ?%}—HZ}h?* adjusted to minimum.

It turns out that this operation does not alter the general form of the
terms in the above matrix equation. Thus an iteration can be performed, and
it 1s clear that if this iteration converges it must converge to the ideal

least squares method approximation.
The general convergence properties of this method have not been investi-

gated, but' it is a practical experience that a good approximation may be obtained
after, say, 3 iterations in many cases where the known function is related to

a nuclear reactor transfer function.
The modifications introduced in the present version are as follows:

1)  Instead of the weighting function W(jlwk) = 1/|Q'(jLDF)|2 uged in ref. 2
the user of this procedure mey choose the alternative 1/|P' (jwk)|®. Assuming
that the iterations converge, this leads to the fulfilment of the criterion

m o 2
“kﬁh ]u,k ] adjusted to minimum
o
with £k =5k/G(jwk).
In other words, the least squares method is applied with respect to an
error quantity which is very near to the relative error t;k/F(jGDk).

2)  The elements of the matrix [A] are very often such that a direct calcu-
lation of the vector [X] leads to serios numerical deficiencies.

In order to avoid this, the single linear equations of the matrix equa-
tion are normalized by dividing with the square root of the sum of the squares
of the left side coefficients.

3) As a criterion for stopping the iterations an error quantity is construc-
ted after each iteration and compared with a quantity stated by the user. The
former quantity is k2 5

actiual error = V (5 (555)+ epk™)/m

where eak/ak 1s the relative error in amplitude and epk the error in phase

(in. radian measure) for the k th fit point.
It is'noticed that this criterion does not influence the way the proce-

durre works, except as to stop the calculations.

Uses, of the Algorithm:

The procedure call is COMPFIT (m'p,q,N,No,error,relative,drumomega,drumR,
druml, druma  drumb  drume  drumh , singular);
Thep formal parameters have the following meaning:
intyegers:
number of fit points.
degree of numerator polynomial.
degree of denominator polynomial.
maximum number of iterations desired.

N This formal parameter allows the user to break the series of itera-
tions f.ex. for printing of preliminary results. If No is zero, which must always
be the case the first time the procedure is called for solving a certain problem,
the weighting function is equalled to unity at all fit points. If No is different
from zero the procedure takes over from the drum store values of the weighting
function thus assuming that these values have been constructed during a preceding
procedure call and not later destroyed. It is noticed that the procedure; in
counting the 1terations performed, always assigns the number No+l to the first
iteration within a procedure call.

o =g =g



