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Calculation of the Value of a Determinant. 

ALGOL ~ procedure: DETERMINANT. 
Pet ed bem GU Te es lO Og ed Be TY a EPS 

15_ Scopes 

The following procedure calculates the value of a determinant of 

the order n >2. The determinant is not altered by the procedure. 

A shortening ‘of the running time is obtained if many nuibers in the 

determinant are zeroe 

2+,Method. 

The calculatiori method is based on the elimination of the elements 

below the diagonal, so the value of the determinant is simply the product 

of the elements in the diagonal. 

If an element in the diagonal is zero, the row will be interchanged 

with another row and the sign of the determinant will be changed. 

The elimination process proceeds from left to right. If, during the 

elimination process @ coulomn where the elements below and on the diagonal 

equals zero is obtained, the value of the determinant is zero. 

3._Use_of the Procedure » 

The procedure will be copied into the program in the place where there 

is written: 

comment libroxy DETERMINANT; 
The order must be n > 2. 
The procedure call can be of the well known type: 
q i= DETERMINANT (D,8); 
qa will then obtain the value of the determinant D of the 8 th. order.
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D 3s= 13 

for p := 1 step 1 until n do 
begin 
m = p35 
if alp,p| 5 O then go to elimination; 

form :=m + 1 step 1 until n do 
if a[mp | 4 O then go to interchange of rows; 

DETERMINANT :=.0; go to end of procedure; 

interchange of rows: 

D := — D; 
for q := p step 1 untiI n do 

ae ee 

begin k := alma]; alm,a] ?= alp,a]; alp,a] := k; ends 

elimination: 

for m i= m +1 step 1 until n do 
begin 
k := a[m,p]/a[p,p]; 
if k = 0 then go to next row; 
for qd. i= p +1 step 1 until n do 
alm,q] = a[m,q] ” k x alp,a]; 

next row? - 

end of m; 

DETERMINANT := D; 

end of procedure: 

end 5 
wpa ee 

Ivar Balslev. 

Helge Vilstrup.
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ALGOL = procedure: CROUT. 

ea bee ee 

The procedure CROUT solves a system of linear equations A X y = b 
with different right hand sides. A is a square matrix of order n, y and 
b are vectors of dimension n. The problem is equivalent with solving 
a matrix equation A X Y = B when Y and B are matrices with n rows and 
m colums, 

' In order to deminish accumulated round-off errors Mgller’s device 
(ref [2]) is incorporated in the procedure, Please note that the procedure 
call differs slightly from the call of SA10, 

2.Method. 

The solution is based on Crouts method with row interchanges, First 
the matrix A is equilibrated, i.e, the row vectors are scaled with integers 

of the form 2K\p where p is chosen so that a norm Ni for each row i satifies 
the inequality ' ' 

//2<Mi<1. 
As a norm we use the maximum norm defined by 

Ni. = max(aha(Alt,j]))5 J = 1925 wecscecees tls 
Then the matrix A is transformed into its triangular decomposition LU = A. 
Lis a lower triangular matrix with all elements above the diagonal equal to 
zero and with elements L(k,k) = 1 for all k. U is an upper triangular matrix 
with all elements below the diagonal equal to zero. Next the right hand side b 
is transformed in accordance with the triangularization, When the triangulari- 
zation has been finished the back substitution takes place giving the solution 

y corresponding to the b. 
By scaling the rows in A to roughly the same maximum magnitude the 

procedure is allowed to select effective pivotal elements in the triengu- 

larization. 
This algorithm is based on an original algorithm published in Com. of the 

ACM (ref[1]). The main differences are the introductions of scaling and 
Mgller’s device which increases the accuracy end the substitution of the reali pro- 

cedure INNERPRODUCT by for- statements resulting in a much faster algol proce- 
dure. 

By the triangularization enough information will be stored for the procedure 
to transform a new column vector b without repeating the triangularization 

and we can then compute a new solution of the linear system with the same 

A but with a new right hand side, 

The procedure CROUT also computes the determinant of the matrix A,
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4. Ose of the Procedure. 

The procedure call shall be of the form 

CROUT (n,A,b,f,pivot,det, repeat, exit); 

The parameters are: 

n ° 

A : 

b : 

£ ° 

pivot 3: 

det : 

repeat : 

exit ° 

Te 
o. 

integer, is the order'of the coefficient matrix 
declared as real array A [1:n,1:n], holds the coeffient 
matrix of the equation: system when CROUT is called first 
time (with repeat = false). Upon exit from CROUT, A holds 
the triangular matrices L and U and‘it must not be changed 
if subsequent calls'with repeat = true are wanted. 
declared as real array b [1:n], holds the right hand side 
pefore the call‘and the’ solution when the call is finished. 

: declared as = array f [1:n] is assigned values which 
are factors originating and used in equilibration of the 

coefficient matrix A during the first call with repeat = 

false, These'values must not be changed if subsequent calls 

with repeat = true‘are' wanted. 

declared as integer array pivot[1:n], is assigned values 
which are row indices originating: from the triangularization of 
A during a call -with repeat = false, These'values must not 
be' changed if subsequent calls with repeat = true are wanted, 

real, is assigned the value of the determinant of A when 
repeat '= false, ‘otherwise it is unchanged in the call. 

boolean, is false when CROUT is called first time with a 
coefficient matrix and true in subsequent calls with the 

same matrix, 

is a label to which the procedure exits if the matrix is 

singular. It must exist in the program in such a place that 

it is known at the position of the call. 

eee ene 

Communications of the ACM, 1961, pow 176-1776 
O,Mgller.. Quasi Double-Precision in Floating Point Addition, 

BIT5(1965) pp. 37-50, and BIT5(1965) pp. 251-255. 

O.Lang Rasmussen. K.Grau Sérensen,
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comment A.E.K,. February, 1967 the procedure CROUT solves a 

system of linear equations A X y = b with different b as described in SA10/13 

procedure CROUT(n,A,b,f,pivot,det, repeat, exit) 5 
value n3 

array Asb, ES 
integer ny 

integer array pivots 

real détz; 

poolean repeats 
Tabel exits 
begin’ ° 
integer k,i,j,;imax,p3 real t,q, in,c,u,v,s3 
if'+,repeat then 
begin 
dets=13 cco ttt 

for’ i:+1'step 1 until n do 
begin comment equilibrate A[1:n;1:n]3 
q:=03, for j:=1 step 1 until n'do' ‘ 

begin ti=abs(AlT,j]); If t5q then q:=t ends 
Lf g=0 then go to exit; 

£[4] :=t:=2M=entier(1n(q)/0.693147181+1) )5 
for j:51 step 1 until n do Afi, j]:=alt, j]xt; 

end equilibrationy ~~ 
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for'k:=1 step 1 until n do 
begin comment triangularization: :' 
t°:='03 for ii=k step 1 uae n do 
begin u:=c:=03 
for p:=1 step 1 until k-1 do 
begin v:=A[i, p]xA[p;K]::°°" 
if abs(u)<abs(v) then begin in:=u3 u :=v3 v:=in end; 
Si=u + V3 c:=c + Cera) )+(u-(s2(5-0))))3 ~~ 
urs 

ends 
ins=u + c3 
qa:=A[i,k] ‘:='A[1,k] <"in3 
if: abs(q)>+ then begin t:=abs(q)3 imax := i3 end if; 
‘end i3 ~~ 
pivot[k] := imax; 
comment the: largest pivot element A[imax,k] in column k is found; 
if imax'+-k then 
begin comment nt Interchange rows k and imax$ 

det := <detss 
for'js=1 step 1 until n do bh 
begin t :=ATk,j]3 Alk,j] z= Alimax,j]; Alimax,j] := t3 end j; 
end interchanges 

:= A[k,k]3°° 
fq-s=0 then get exits Hs
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q3=1 Vas so 
for is=k+1 step 1 until n do 
ATE, il := gx A[i,kTs



Cr 

for: J pekcet step 1 until n do 
begin Ur=C!=03 _ Swipes 

for’p p:=1 step 1 until k-1 go 

begin v:=A[K,p]xA [p3J 13°" 
if Tf abs(u)<aba(v) then begin in:=u3 u:=v3 vs=in end3 
s25u + v3 esac + ((v-(S-u))+(u-(s-(s-u))))3 ~~ 
Uutss 
ends 

insu + c3A[k,j] := Alk,j] - ins 
end j3 

end k3 
end =,repeats: oc! 
for i:= 1° step 1-until n ‘do 5 bit] : = blilxr[i]; 
for k:=1° step 1 until | n do 
begin comment process righthandsides 

p= pi= pivotlk Ty t := blip] blip] : = blk]; blk] 
usscs=O3 C8 tt 
for’ p:=1 step 1 until k-1 do 
begin v:=A[k,plxbIpls °° 
if TP abs(u)<abs(v) then begin in:=u3 u:=v3 visin end; 
sisu + v3 ct=c + ((v-(8 =a) )+(u-(s-(seu))))3 ~~ 
utes 
end$ 

ZInz=u + c3 
blk] := b[k] - in 
a righthandsi des 

for'ki=n'step'-1 until 1 do 
begin comment ° backsubstitution; 

if -,repeat then det := Alk, x] x det/ flk]; 
U:=ci=03 pes 

for'p:= k+1 step 1 until n do 
begin vi=Al[k,pIxb[plI3— 7: ~ 
if abs(u)<abs(v) then begin in:=u3 u:=v3 vi=in end; 
Si=u + v$ cise + ((ra(3u))+(u-(s-(s-u))))s ~~ 
ures 
end3 

inz=u + c3 
bik] := (b[k] ~in)/Alk,k] 
end backsubstitution; 

end CROUT$ 
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Polynomial Approximation. 

ALGOL - procedure: POLY 1. 

1. Scope. 

The procedure calculates the coefficients alo] .... a[P] in a polynomial 
approximation of a least squares fit to a function y = F(x) on the basis of N 
corresponding values of abscissa x and ordinates y eventually provided with 
weights w. 

2, Method. 

The coefficients in the polynomial are found by use of orthogonal polynomials 
as described in a paper by G.E. Forsythe in J.Soc.Indst. and Appl. Math. 5 (1957) 
p.p. 74 - 88, 

3. Use of the procedure. 

The procedure will be copied into the program where the following comment 
is written: 

comment library POLY 1; 

The procedure call is of the type: 

POLY 1 (N,P,x,y,w,@,WEIGHING ); 

The parameters are: 

N the number of (x,y,w) velues, an integer 

Pp the wanted polynomial degree, an integer 

x & reel array [1:N] in which the abscissa of the fitting points must be 
placed by the main program before call of the procedure. 

y & reel array [1:N] in which the ordinete of the fitting points must be 
placed by the main program before call of the procedure. 

Ww a reel arrey [1:N] in which the weights on the fitting points mst be 
placed by the min program before call of the procedure if WEIGHING is 
false the w array can be the same as the y array 

a @ real array [0:P] in which the polynomial coefficients will be stored 
by the procedure 

WEIGHING is a boolean | the value of which can be true, meaning use weights or 
false, meaning use no weights.



ae 

procedure POLY1(N,P,x,y,w,@,WEIGHING); 
integer N ,P3 

boolean WEIGHING; 

array X,y,\W,a3 

comment A,E.K, August 2nd.1962. Least squares fit of a polynomiel approximation 
as described in SA -133 

begin 

integer J,k /03 

real aire, peta , XPROD , YPROD SQ, SQSUM , OLDSQSUM, R , olda; 

array error, orpol oldorpol[ 1: N], eupal « 1: P], gilgeora {Os Pd; 

for n := 1 step 1 until N do 
begin 

error[n] := y[n]; 
orpol[n] := 03 
oldorpol[n] := 1 
end of initial setting; 

ll 

alfa := olda := cora[-1] := 03 
beta := OLDSQSUM := 13 

for k := 0 step 1 until P do 
begin 

XPROD := YPROD := SQSUM := 03 

for n := 1 step 1 until N do 

begin 

error [n] := error[n] - olda x orpol[n]; 
R := oldorpel[n] x beta: 
oldorpol[n] := orpol[n] 
R := orpol[n] := R + orpol[n] x (x[n] + alfa); 
if WEIGHING then R := orpol[n] x w[n]; 
SQ := R x orpol[n]; 
SQSUM := SQSUM + SQ; 

YPROD := YPROD + R x error[n]; 
XPROD := XPROD + SQ x x[n] 

end for n; 

a[k ]:=olda:= YPROD/SQSUM; 
oldeore [k]:= 03 
cora [k]:= 13 
if k>0 then 

for ji= k-1 step -1 until 0 do 
begin 

R := beta x oldcora[j]; 
oldeora[j] := cora[j]; 
cora[j] := alfa x oldcora[j] + R + coral j-1]; 
a[j] := alj] + olda x cora[j] 
end for j; 

beta := -SQSUM/OLDSQSUM; 
OLDSQSUM := SQSUM; 
alfa := ~XPROD/SQSUM 
end for k; 

end of POLY-13; 

Erik Hansen.
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Solution of a system of linear equations. 

ALGOL - procedure: CROUT 2. 

‘lk. Scope, 

This procedure which is a simplified version of SA-10 in that respect 
that it can solve only one system of linear equetions Ay = b where A is a 
square matrix of order n, y and b columm vectors of dimension n. The proce- 
dure makes use Of a real procedure INNERPRODUCT which is placed immediately 
before procedure CROUT 2, 

2. Method, 

The solution is based on Crouts method with row interchanges. First 

the matrix A is transformed into its triangular decomposition LU = A. L 
is a lower triangular matrix with all elements above the diagonal equal to 
zero and with elements L(k,k) = 1 for all k. U is an upper triangular matrix 
with all elements below the diagonal equal to zero, At the same time the 
right hand side b is transformed in accordance with the triangularization. 
When the triangulerization has been finished the back substitution takes place 
giving the solution y corresponding to the b. 
The procedure CROUT 2 also computes the determinant, det, of the matrix A, 
Iwo nonlocal identifiers appears in the procedure 

1. the nonlocal label , Singular, to which the procedure exits if matrix A 
is singular i.e. if the determinant of A is zero. 

é. the real procedure INNERPRODUCT which forms a sum of products to be used 
in procedure CROUT 2. The real procedure INNERPRODUCT may be declared in the 
head of any block which includes the block in which procedure CROUT 2 is 
declared. 

4. Use of the Procedure, 
  

The procedure will be copied into the program where the following 
comment is written: 

comment library CROUT 23 

The procedure call shall be of the form 

CROUT 2 (A,b,n,y, det); 

All parameters A,b n y,det have to be declared in the program before the 
call of procedure CROUT 2. A shall be declared as a real two-dimensional 
array A[1:n,1:n], b and y as one-dimensional arrays b,yli:n], n is declared 
es en integer and det as a real, 

Before the call of the procedure values must be assigned to A\b, and n(this 
ay 2 done by the programmer or by the program itself which uses the proce. 
dure ).
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By using this call the procedure CROUT 2 performs the triangularization 
of A, the transformation of b and solves the equations. The elements of 
the solution vector will by CROUT 2 be assigned to the real array y. The 

procedure will change the values of A and b but not n, The procedure 
will compute the determinant of A and assign the value to the real det, 
If the matrix A is singular en exit is made from the procedure CROUT 2 to 
the label singular in the program, At the place in the program to which 
the exit is wanted one writes, singular:followed by some statement, e.g. 
go to .... or other statement. 

4, Comments to the procedure, 

In this section some comments to the real procedure INNERPRODUCT and 
procedure CROUT 2 are written to facilitate the understanding of the proce- 

pipes, Reference to these comments are made in the algorithm by numbers 

uy 1, 4,2 ete. referring to the following subsections. Reference should 

otherwise be made to Communications of the ACM he 1961, pp. 176-177. 

4,1, INNERPRODUCT forms the sum of u(k) x v(k) for k = S,,St1, st2).... 
f.1, f. If s > f the value of INNERPRODUCT is zero, INNERPRODUCT may be 
declared in the head of any block which includes the block in which CROUT 2 
is declared, 

4.2. We have found that Alimex,k] is the largest pivot in columm k. Now 
we interchange the rows k and — 

4,3 The row interchange is done, We proceed to the elimination, 

4.4, The triangulartzation is now finished and we skip to the back 
substitution. 

2:AlLgorithm, 

comment A,E,K, july 16th, 1962 ~ the following procedure is a modified 
version of SA-10 in that respect that it can solve a system of linear 
equations Ay=b with only one b as described in SA-14 to which the following 
comments refers 

alae sf: 

integer k,s,f3 
real u,v; 

comment s 2 a
 

(ut
e 
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begin 
reel h3 
h := 03 
for k t= s step 1 until f do 
h:=h+u x v3 

INNERPRODUCT := h 
end INNERPRODUCT; 

procecure CROUT 2(A,b,n, y det); 
value ns 

array A )b 13 

  



~3— 

begin 

integer k,i dy imax )B3 

real TEMP , quots 
det := 13. 
for k t= 1 step 1 until n do 

Li : begin 
TEMP := 03 
for i :=k step 1 until n do 

L2: begin a 
Ali,k] t= Ala k] - INNERPRODUCT (A[i,p], Alp,k],p,1,k-1)3 
if abs(ALt, 1) > TEMP then 

13 3 begin 

TEMP := abs(A[i,k]); imax := i 

end L4 

end L23 

comment section 4,23 

if imax 4 k then 

Lh :begin det := - det; 
for j := 1 step 1 until n do 

L5 : begin 

TEMP z= A{k,j]3 Alk,j] := Alimax,j]; Alimax,j] := TEMP 

eno, D0) 

TEMP := b{k]; blk] := blimax]; blimax] := TEMP 

end Lh; 

comment section 4,4; 

if A[k k] = 0 then go to singular; 
quot := 1,0/A[k kK]; 
for i:c=k +1 ste 1 pal n do 

Ali 1k] = quot x aa, k 
for’ j :=k +1 step 1 until n do 
Alk j] :s A[k,j] = INNERPRODUCT- (ALK p], Alp, j],p,1,k-1)s 
pied := b[k] - INNERPRODUCT (A[k Pl vip] ,p, 1 ket) 

end L1; go to 16; 

comment section , hs 

16: for k :=n step -1 until 1 do 

L7: begin det := A[k,k] x det; 
ylk] := (b[k] - INNERPRODUCT(A[k,p], ylp],p, k+1 yn))/Alk 

end L73 

end CROUT 23 

Ole Lang Rasmussen,
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Solution of a system of linear equations 
  

ALGOL-procedure: DRUMCROUT | 

1. Scope. 

The real procedure DRUMCROUT 1 written in GIER-ALGOL III solves a 

system of linear equations A x y = b, where A is a square matrix of order n, 
y is the solution and b the right hand side, both are vectors of dimension n. 

The procedure can solve a system with several right hand sides, b, 
without repeating the triangularization of matrix A, i.e. it can solve a matrix 

equation A xX Y = B where A is a square matrix of order n, Y and B are matrices 
with n rows and m colums. 

DRUMCROUT 1 assumes that the matrix A and a right hand side b are 
stored on drum. The solution y will be stored on drum, by the procedure. 

2. Method. 

The solution is based on Crouts method with pivoting as described in 

SA - 10/1 section 2, and will not be repeated here. 

4. Use of the procedure 

The determinant of the coefficient matrix is obtained as the value of 
DRUMCROUT 1 during the first call of the procedure with repeat = false. In calls 
with repeat = true, the value of DRUMCROUT 1 is undefined. 

The procedure call shall be of the form: 

DRUMCROUT1 (n, ta, tb, ty, tf, tp, tr, repeat, exit); 

where the parameters are: 

ni integer, the order of coefficient matrix; 

ta: integer, the value of drumplace corresponding to the storage on the 

drum of the first row of the coefficient metrix A of dimension [1:n,1:n]. 

This matrix is stored compactly row by row but so that each row starts 

at the beginning of a drum track. When stored in this way the values of 

drumplace for two elements in the same colummn but on consecutive rows 

will differ by a quantity which is divisible by 40(= number of words on 

a drum track). The coefficient matrix A must be stored on the drum befo- 

re the first call of the procedure. During the first call of the proce~ 

dure (repeat = false) the elements of A are changed because A is trian- 
gulated. The triangulated matrix must not be changed if subsequent calls 

with new right hand sides (repeat = true) are wanted. 

 



th: 

ty: 

tf: 

tp: 

tr: 

repeat: 

exit: 

= © = 

integer, the value of drumplace corresponding to the storage on the drum 

or a real array of Gimensiou [1:n] which holds the right hand sides used 
in turn. 

  

integer, the value of drumplace corresponding to the storage on the drum 
of a real array of dimension [1:n] which holds the solution vector y. It 

may be remarked that the value of ty can be set equal to the value of tb, 
in this case the right hand side will be replaced by the solution. 

integer, the value of drumplace corresponding to the storage on the drum 

of a real array of dimension [1:n] which holds the factors computed and 
used in equilibration of the coefficient matrix during the first call 

(repeat = false) of the procedure. These factors must not be changed be- 

cause they are used in all subsequent calls (repeat = true) with the sa- 
me coefficient matrix but with new right hand sides. 

integer, the vaiue of drumplace corresponding to the storage on the drum 

of an integer array of dimension [1:n]. This array holds the pivots ori- 

ginating from the triangulerization of the coefficient matrix during the 

first call (repeat = false) of the procedure. The pivots must not be chan- 

ged because they are used in all subsequent calls (repeat = true) with the 
same matrix , but with new right hand sides. 

integer, the value of drumplace corresponding to the storage on the drum 

of an integer array of dimension [1:n]. This array holds the values of 

drumplace corresponding to the storage of the rows of the coefficient ma- 

trix A and they are stored during the equilibration process in the first 
eal (zenest = ° alse) of the procedure, These drurnplace at mhers are per= 

mutated during the the triangularization according to the pivoting and must 

not be changed because they are used in all subsequent calls (repeat = = 

true) of the procedure with the same matrix, but with new rignt hand sides. 

boolean, During the first call of DRUMCROUT 1 this parameter must have 

the value false. In all subsequent calls with the same coefficient ma- 
trix but with new right hand sides it must have the value tr ue. 

a label to which jump is made from DRUMCROUT 1 if the coefficient 

matrix is singular. 

4, Running time and storage requirements. 

The speed of computations depends of cause strongly on how the loop 

structure of the procedure matches with the tracks on the drum on which 

the procedure is stored. The procedure requires 21 drumtracks. Tests of 

the procedure with different systems have shown the following computation 

times:



order of system computation time 

20 hO sea 
LO 2 min 56 sec + 8 sec for every new right hand side 
hy 3 min 28 sec + 10 sec - - - 
60 8 min 12 sec + 18 sec - - ~ 
80 16 min 39 sec + 31 sec ~ = 
81 17 min 30 sec + 35 sec - - ” 

2-References. 

1. Communications of the ACM, 4, 1961, pp 176-77. 

2. SA-10/1 CROUT Algol procedure. February 1967 

Ole Lang Rasmussen.



6. Algorithm. 

comment A.E.K. April the 26th 1967. - the procedure DRUMCROUT 1 written 
in GIER-ALGOL III solves a system of linear equations A x y = b with 
different b as decribed in Sa- 22/2: 

real procedure DRUMCROUT1(n,ta,tb,ty,tf,tp, tr, repeat, exit); 
value n, va, tb, ty, tf, tp, trsinteger n,ta,tb, ty, tf, tp, tr; 
boolean repeats;label exit; 

begin 
integer 4 i,j,k, imax, gem,p,m,r,N;real t,q,h,det,detfactor; 
real ecrey all in]; integer array y pivot,rowl?: nl; 
ae t=drumplace; 
W:=(n:hO)xhO;if N<n then N:=l+40; 
if-,repeat then — 

  

begin 
det:=detfactor:=1: 
k:=ta; 

begin comment equilibration; 
7 ailTinl; 

for T:=1 step 1 until n do 
begin TO ~~ 
drumplace :=row[i] :=k;fromdrum(al)3h:=0; 
for j:=1 step 1 until n do begin t: -abs(al[j])sif t>h then h:=t end; 
iv h=0 then goto exit; ~~ a ~— oe 
ali}:=t: THO (~entier(In(h ) /0.693147181+1) ); 
for j:=1 step 1 until n do al[j]:=al[j]xe; 
detfactor :=detfactorxt; 
drumplace:=k;k:=k+todrum(al ); 
end i; 

comrent store factors on drum; 
drumplace : =tf; todrum(a); 
end equilibration; 
for p:-lO step 40 until N do 
begin comment triangularization; 
m:=if p=40 then O else 13 

————— 

  

k:=p-li0; 
for kr=k+1 while k<nAk<p do 

begin ee 
t:=03 

begin array al[m:p-40],a2[p-39:p]; 
for i:=k step 1 until n do 
begin oe 
if polo then begin drumplace:=row[i]-N+p-40;fromarum(al) end; 
drumplace:=rowLil]-N+p; fromdrum(a2) ; 

  

if k41 then 
begin 

if’ k-1>p-39 then a2[k-1]:=a2[k-1]xq else al[k-1]:=al[k-1]xq;3 
he+03 

oor j:=1 step 1 until p-4O do h:=htal[j)]xalJ]; 
for j:=p-39 step 1 until k-7 do h:=h+a2[j]xal jl]; 
h:sa2[k]:=e2[k]-h; Grumplace:=row[i]-N+p; todrum(a2); 
if k-i<p- 39 then begin drumplace:=row[i]-N+p-0; ;todrum(al) end; 
ead ke 1 elec “h r=alli ts 

if TP abs(h)st “then begin t:=abs(h);imax:=1 end; 
end i; 

pivot[k]:=<imax; comment largetst pivot element A[imax,k] is found; 
af imaxtk then
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begin comment interchange drumplace numbers; 
det :=-det;i:=row[k] ;row[k] :=row[ imax] ;row[imax] := 
end imax-tk ; 

end; 

begin array al[1:pl; 
arumlaee: ::=row[k]-N+p;fromdrum(al); 
t:=al[k]; 
if t=O then goto exit;det:=detxt; 
if k<n then 
begin — 
r :=if k=p then p+] else p-39; 
begin n array all k+l inj,as[r:N]3 
qisi/t3for i:=k+1 step 1 until n do a@[i]:=0; 
for i:=1 T step ] until 1 ke] “do 

begin 
drumplace:=row[i]; fromdrum(a3);a[i]:=<a3[k+1];h:=al[i]; 
for j:=k+1 step 1 until n do a2[j]:=a2[j]+hxe3[J]; 
end 1; 

drumplace :=row[k] ;fromdrum(a3) ; 
for i:=k+1 step 1 until n do a3(i]:=a3[1]- a2[i]; alk] :=a3[k+1]; 
cxunplece :srowlk] ;todrum(a3); 
end; 

aa kx3 

end; 
end k; 
end p, triangularization; 
drumplace :=tr;todrum(row); drumplace:=tp;todrum(pivot); 
DRUMCROUT1 :=det /detfactor; 
end-, repeat ; 

adrumplace:=tb;fromdrum(a); 
begin array 2f1:n]; 
dputal geass fromdrum(f); 
for i:=i step 1 uavil n do ali]:=afilxf[i]; 
end; 

drumplace :=tp;fromdrum(pivot) ; 
drumplace :=tr:fromdrum(row): 
for p:=40 step 40 until N do 
begin comment, “elimination of right hand side; 

azcay alll:p]3 
k:=p-0; 
for kisk+1 while k<mk<p do 

begin 

Ei al pivot[k] ];alpivot[k]] :=a[k] salk] :=t; 
darumplace:=row[k]-N+p;fromdrum(al); h:=0; 
for i:=1 step 1 until k-1 go h:shtal[i]xa[i]; alk] :=a[k]-h; 

end k; 
end. p,risht hand sids; 

for p:=N-39 step -40 until 1 do 
begin comment backsubstitution; 
eee a 

array ailp:N]; 
M:sif p=N-39 then n else pt393 

for K:=m step -1 until p do 
begin ~— ~ 
@rumplace:=row[k]; fromdrum(al )3;h:=0; 
for i:=k+1 step 1 until n do h: “nial (ilxelil; 

alic]:-(aik]-h)/at (kT; 
end k; 

end. backsubstitution; 
arumplace:=ty;todrum(a) ;drumplace :=gem; 
endDRUMCRCUT! ; 
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Determination of a Zero of an Arbitrary Function 

ALGOL-procedure : HYP. 

1. Scope. 

The following procedure determines with prescribed accuracy a zero of an 

arbitrary function in a prescribed interval, If the values of the function 

at the end points of the interval are different from zero and have the 

same sign, a jump to a prescribed label will occur, 

2. Method. 

The basic method is hyperbolic interpolation using two points with function 

values of the same sign and one point with function value of the opposite sign. 

If this method would give a bad result | bisection is used, and after six 

successive failures the procedure will go over to bisection. 

5. Use of the procedure. 

The procedure will be copied into the programme where the following comment 

is written: 

conment library HYP; 

The procedure call must have the form: 

HYP (x,F |x1,x2,eps,error)s 

x is the name of the zero 

F is the name of a rel procedure (with one formal parameter) determining 

the function for which a zero is wanted, 

x1 and xe are the end points of the interval inside which a zero is 

to be determined. 

eps is the accuracy with which one wants to determine X; eps is not 

specified as value, so that a relative accuracy e may be prescribed by 

inserting e x x (if x is the name of the zero) in the place of eps in the 
procedure call. e should not be chosen less than 10-9 , since otherwise 

round-off errors could increase the running time significantly. 

error is the label mentioned in the first section,



lh, Additional remark, 

The difference between this HYP version and SA-31 is that the use of 

arrays is avoided, which diminishes the running time for the procedure 

itself, This may have some significance in cases where the F-procedure is 

not very slow. 

5. Algorithm, 

procedure HYP (x, F, x1, x2, eps, error);- 

value x1, x23 real x, x1 x2, eps; label error; real procedure F3 

comment: A,E,K,.- May 30th 1963 ~ this procedure locates 

a zero for the function F as described in SA-31/13 

integer p; real x3 ,f1 /fe2 3, T Nf 

f1:=F (x1); £2: tas if eixe2%0 then goto error; p:=03 

if f1=0 then x:=x1 else if f2=0 then x:=x2 else goto bis; goto out; 

hyp: . . 
= 1/£1-1/£33 Ne=(1/£1-1/£2)/ (xt-x2)+(1/£3~1/£2)/ (x2-x3)3 

if MOrsbs(£3) >ebs(£2) then x:=x+T/N else goto bis; 
if abs (x-x2) abs (x1-x2)/2 then 

bis: : 

xr=(x1+x2)/2; f:=F(x); if f=0 then goto out; 

if sign(f)=sign(f2) then 
begin x3:=x23.f3:=f23 p:=p+1 end else 

begin x3t=x13 PS:=f13 xt:=x23 f1:=f2; if p<6 then p:=0 end; 

x2:ex3 f2s=f3 / 

if abs(x1-x2) >epsxabs(x2-x3) eps then 

goto if p< then hyp else bis; 

  

out: 

ends; 

G.K. Kristiansen.
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Romberg Quadrature 

ALGOL procedure: romberg 2. 

1. Scope, 
b 

The procedure calculates a definite integra f F(x)dx. 
a 

2.Method. 

The integral is calculated by a method proposed by W. Romberg [1] and advo- 
cated by E. Stiefel, e.g. [2]. This algorithm is adapted from [3]. Round off er- 
rors are diminished according to [4]. This is the only difference between romberg 
and romberg 2. 

If the integral is approximated by a sequence of polygones 
TLO,0] = (b-a)/2x(f(a)+f£(b)); T[O,1] = (bea) /4x(£(a)+2xf((atb)/2)+£(b)) etc. 
each of which is found by the trapezoidal rule applied to subintervals, it may be 
shown that (T[0,K+1]-1)/(T[0,K]-1) ~—y1/4, for K A, ae 
Here I is the correct value of the integral and it is dupposed that F(x) may be 
expressed by a fourier-sum. A new sequence of valves may now be formed, assuming 
that the value of I which makes this expression equal to 1/4 is a better approxi- 
mation: T[1,K] = (4xp[0,K+1] - T[O,K] )/3, which has the rate of convergence 1/16, 
and generally we find 

T{m,K] =(4AmxT[m-1,K+1] - TLm-1,K])/(4Am-1); 

The sequence T[m,0] converges towards the integral if F(x) is Riemannintegrable. 
It is calculated from 2\(m+K)+1 values of F(x). 

The calculation is finished when two successive T[m,0] agree to within a pre- 
scribed relative error, delta. Yet, this is not a sufficient criterion to ensure 
the correct value of the integral, so a further condition is introduced, equivalent 
to a minimum number of mesh points, which must be reached before the exit from the 
procedure may take place. On the other hand it may happen that the permitted error, 
delta, never is reached, so an upper number of mesh points is prescribed, upon which 
exit to an alarm label takes place. When each functionvalue is added to the sum, the 
difference between the addend and the increment in the sum is found, and this diffe- 

rence is summed separately, and finally added to the sum. In this way the round off 

errors are considerably deminished. 

  

= 

5. Use of the Procedure. 

The procedure call is of the type; 

al := b + romberg 2(F,x,a,b, delta, nmin, nmax,n, FORMANGE):



The parameters are 

a real expression, which defines the function to be integrated. It 

  

F 
must depend on the simple real variable 

x which is the integration variable. The value of x on exit from the 
procedure is not defined. 

a is the lower limit (real). 
b is the upper limit (real). 
delta is the relative tolerance on two successive approximations (real). 

nmin is the least number of subintervals permitted on exit (integer). 
n is the actual number of subintervals used by the procedure (integer). 

The call must hold an identifier, declared as integer, in the corre- 
sponding position. 

nmax is the maximum number of subintervals (integer). If n > nmax, exit 
takes place to the alarm label 

FORMANGE 
It should be noticed, that this call is identical with the call of 

SIMPSON 2 (SA-11). Yet for a certain n, SIMPSON2 has calculated 2n+1 values 
of 

ber, 

F(x), while romberg2 only has found n+1 values. Tests indicate that rom- 

ge will find the answer in about half the time, the SIMPSON2 procedure needs. 

  

4. Comments on two pit falls. 

a. The reason why a comparison between two consecutive approximations is 

not sufficient to determine when the integration is finished will be seen 

from this example; 
16 Tr 

 cos(x)dx 
0 

Number of subintervals 4 8 
Romberg - value 16 16 
but the true value is 0. 

b. Consider the integral 2 1/x ax It is evident that a much smaller 
<2 

mesh-size will be needed near the lower bound than near the upper one, so 

the calculation is performed much quicker if the integral is written as 

J 1/x dx + Ch ax 
‘2 4 
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6. Algorithm. 

real procedure romberge (F,x,a,b, delta, nmin, nmax,n, FORMANGE) ; 
value a,b, delta, nmin, nmax; 
real F,x,a,b,delta; integer nmin,n,nmax; label FORMANGE; 
begin real l,u,m,s,ul,err,f; integer g,h,j,ord; ord:=ln(nmax)x1.5; 
begin real array lO: ord]; 

    

  

            

l := beaj; x:=a3; ut= Fs x = b5 t[O] := (utF)/2; 
nN ss . s s= QO; ord = ord-1 
for h := 0 ‘step 1 until ord do 

begin u := err := 03; 

m:= 1/n; 
for j := 1 step 2 until n-1 do begin 
x t= atjxm; f i= Fy ul := u+ £3 err := err +(f-(ul-u)); 
us= ul ends 

: i= ul + & err; 

b:i=t[h+]] := u/ntt[h]/2; 
& := 1; for j := h step -1 until O do 

begin g = xe; a 
Di=tlJ] i= b+(b=tL9])/(g=1 ends 
if n5nmin\abs(s)xdelta>abs(b-s “8) then goto slut; 
if nSnmax /2then goto FORMANGE ; n := 2xn; s := b end; 
slut : romberge := bXL end end. moments 

Leif Hansson.
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Computation of the coefficients for a polynomial 

ALGOL-procedure POLYCOEF. 

1.Scope. 

Let the polynomial 

P(z) = alnixz{n + aln-1]x2/\(n-1) + aln-2]xz/\(n-2)+...t+al1]xz + al0],where 

a[n]=1, have the roots m[1],m[2],...... ,m[n]. Then it can be written in the form 

P(z) = (z-ml1])x(z-m[2])x(z-m[3])x..... -x(z-m[n-1])x(z-m[n]). 

The procedure POLYCOEF computes the coefficients aln-1],a[n-2],...,al1],al0] by 

means of the roots. 

2. Method. 

Let P(z) be a polynomial of degree p3 by division of P(z) with z-m, 

we get a polynomial Q(z) of degree p-1 and a remainder r. The connection 

of alp], alp-1],....alO0] and the coefficients of Q(z), alp-1],qlp-2]..... 
q{O] are given by the following equations: 

alp-1] = alp] 
qlp-2] = alp-1] + mql[p-1] 
qalp-3] = alp-2] + maql[p-2] 

qglO] = ali] + mq[1] 

r = alO] + mq[O] 

If mis a root of the equation P(z) = 0 then the remainder r is zero. 

Rearrangeing the equations we get 

alp] = qlp-1] 
alp-1] = q[p-2] - mqlp-1] 
alp-2] = qlp-3] - mxq[p-2] 

all] = q{lO] - mali] 
alO] = - mq[O] 

where r is put equal to zero because of the nature of the problem. 

Let qlp-1], qlp-2],....... qlO] where g[p-1]=1,be the coefficients for a 

polynomial Q(z) of degree p-1 corresponding to the roots ml1]..... m{p-1], then 

with m= m{p] the above equations give the coefficients alp]....al0] where 

alp]=1, for a polynomial P(z) of degree p corresponding to the roots m[1]....m[pl. 

The method of computation therefore consists in repetetive use of the 

above equations with p varying from 1 ton.



%3. Use of Algorithm. 
  

It is assumed that both the roots, and the coefficients aln],.....al0] 
may be complex numbers. 

The procedure call is of the type 

POLYCOEF(n, A); 

where 
n is the degree of the Polynomial, declared as integer. 

A is a one-dimensional array, declared as real array A[O:2xnt+1] 

Before the call of procedure POLYCOEF the roots of the polynomial 

must be stored in A, the real parts in elements of A with even indexes 
the imaginary parts in elements with odd indexes starting in Af2] and 

A[3] respectively. 
The procedure stores the coefficients in A so that alO] is stored 

in A[O],af1], alilin ale],al3]...etce the real parts in elements of 
A with even indexes and imaginary parts in elements with odd indexes. 

4. Algorithm. 

procedure POLYCOEF(n, A); 
value njinteger nj;real array A; 
begin comment this procedure computes the coefficients for a polynomial 

with given complex roots as described in SA-373 
integer i,j,m; 

real r,s,x,y3 

ALOJ:=13 al1]:=03; m:=2xn; 
for i:= 2 step 2 until m do 

begin r:=s:=0; x:= Ali]; y:= ALi+1]; 
for j:= i step -2 until 2 do 

begin AL j] := Alj-2] - rxxtsxy; 

  

  

Al gj+1]:= Alj-1]- sxx-rxy; 
r c= Alj-2]; s:= alj-1]; 

end 3 
ALO] := - rxx + sxy3 AL1] c= -sxx - rxXy3 
end i$ 

end procedure POLYCOEF3 

QO. Lang Rasmussen.
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Tr: nsformetion of verieble in © complex polynomiel. 

ALGOL . procedure COMPOLYTRANS.— 

1, Scope. 

Let P(z) = c{n]xzAnte[n-1 ]xcA(n-1)4....... +-[1 ]xzta[0] be e generel 
complex polynomial; the procedure COMPOLYTRANS makes e trensformetion of 

the verieble z given by z =c + fx cl where 21 is the new veriable, the 

fector f is = recl constent «nd c © complex conThis trcensformetion 

gives 6 new polynomiel P1(21) in <1. 

2. Method. 

The Taylor expension of the polynomiri P(z) eround z=c is given by 

P(z) = P(c) + (z-c)x(a1P(c)/dz Yr. 
eeoevr 5 e006 Oe > > 2 e@@e 

e )/azA2) a! 

oar eee 

which cen elso be written es 

P(z) = P(e) + )/t) seed GLa) ae wat (z-c)/£)A2x#A2x (a2P(e dene f 
bas : +(( ays ‘Joxehoa(ane(c)/acta) )/né ee 

where diP(c)/ds, d2P c)/azhe pewmenesy anP(c)/az4n ere the first, second,..... 
end ath derLvati ves ‘s D(z) for s=c. Substituting z=c+fxz1 we get 

Pi(st) = P(c)+z Hexic 1M Jaz )/i? +21Aextdox(a2P(e)/acde)/2! 
anf Menten (c)/acAn) ad ecoc eo @ > 22> 7 # Ow Te LF OVE WHE 

which is the T ylor expension of P1(z1) «round z1=0 expressed by the velues 

of P(z) nd its derivetives in c=c 

Division of P(z) by z-c gives the ren=inder P(c) snd the quotient poly- 
nomir1 

(a1P(c)/az)/1!+(2.c)x(a2P(c)/azA2)/2h+. ....4(z-0)A(n-1 )x(anP(e)/azAn)/nf 

Division of this quotient polynomiel by <-c gives the remeinder 
(aiP(c )/dz Vi. end the quotient polynomiel 

(a2P(c)/azA2)/2!4......4(2-0)A(n-2)x(anP(e)/ae4An)/n/ 

end so on. 

oe the remainders (d1P(c)/dz)/1. ,(d2P(c)/dch2)/2. (aaP(c /ach3) /3.. 
(dn c)/dzAn) )/n. are multiplied by f the AR jeeee ff we get the coat h.elents 
to a z1A2 21A3,.....214n in the expe ‘nsion of Pt ai), l.e, the constant coef- 
ficients in the polynomial P1(z1). The comput. ston of the coefficients in 
P1(z1) therefore consists in successive division of P(z) with sac giving re- 
meinders which, except for the first, is multiplied by powers of f.



-“ 2 = 

5. Use of the procedure. Z 

The procedure cell is of the type 

COMPOLYTRANS(n,A,2,b,f)3 

degree of P(x), declered ss integer. 

one dimensionsl errey conteining the complex coefficients in P(<) 
declsred es reel crray A[O:2 x n+i]. The reel perts cre stored in 

ALO], A[2], ATE A[2xn] snd the imeginary perts in A[1], 
A[3], als]. ‘A[2n+1 1; [0] is stored in ACO], Alt ],<f4] in 
A[2] ALZ ],: efal in Afexn], AL2xn+t ] before the erll of procedure. 

& 8 ere the rerl ond imeginery perts of the constcnt Cy they sre decl-- 

red cs reel. 

fs € constent declered -s reel. 

m
S
 

The procedure stores the coefficients of Pi(z1) in A in the seme order 

es those of P(z). 

4k Algorithm. 

procedure COMPOLYTRANS(n,A,°,b, £8 
integer n3; 

reel 2,b 23 

reel errs : 

begin comment procedure COMPOLYTRANS mekes « trensformetion of the verisble 

z in » complex polynomial P(z), such as described in SA-38; 

  

integer i,d3 

reel s,t,u,v,q3 

      

g:=13 

for i:=0 step 1 until n do 

begin s:=t t:=03 

for j:=n step -1 until i do 
begin u:= A[2xj] * axs - bxt; 

viz AL2xj+i] + -xt + bxs3 
if j=i then begin u: UXGS vi= vxq end; 

Al@xj J:=s:sus  AL2xj4+1] :=t:=v3 

end Jj; 
ci= axfs 

end i35 

end COMPOLYTRANS ; 

O. Leng Resmussen
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Trensformetion of verisble in 2 reel polynomial. 

ALGOL - procedure REPOLYTRANS. 

1. Scope. 

Let P(x) =e{n]xxAnta[n.-1 IxxA(n-1 )+......4 of4 IxxtalO] be © reel polyno- 
micl; the procedure REPOLYTRANS mekes o bate nsfermation of the recl verisbie 
x given by x = ¢ + f x xl where x1 is thenen verieble, f end « sre recl 

constents. This trensformetion gives 7 new polynomicl P1(xi) in xt. 

2. Method. 

The Tcylor expension of the polynomizl P(x) eround x=a is given by 

P(x) = P(e) + (xr (arp )/ar)/ 17 oor rl all )/axh2)/2l + 
tone eo. ¢(x-2)Anx(dnP(e)/axAn)/n! 

which cen elso be written -s 

P(x) = P(e )+((x-2)/f)xtx(atP(<)/ax)/1! + ((x-2)/t )AextA2x (d2P(- )/axA2) 
HGce ites (x-2) We dace (anpt« ache) )/ni ul ye! 

where diP(e)/dx, d2P(a)/dxh2,...... /dnP(; )/axjn are the first, second,...... 
end the nth derivetives of ptx) for x=e. Substituting x=atfxxl we get 

Pi(x1) = P(-) 1x£x(diP(s)/ax)/i! x1 Axt2x(d2P(e) axhe)/2! 
Fee ets + ay ales oe anP(a) )/axAn)/ni at 

which is the Tsylor expension of Pi (x1) sround x1=0 expressed by the velues 
of P(x) end its derivatives for x=a. 

Devision of P(x) by x-c gives the remeinder P(a) end the quotient polynomial 

I (a1P(- )/ax)/i! + (x-2)x(a2P(c)/axk2)/2! 4.5... 4(xee )A(net )x(anP(2)/axdn)/n! 

Division of this quotient polynomial by x-e gives the remainder 
(dP1 (- \dax)/1. end the quotient polynomicl 

(d2P(a)/axA2)/2.42.....5 + (xe )M(n-2)x(dnP(a)/dx4n)/nf 

end so on. 

When the remeinders (d1P(+)/dx)/1. , (d2P(e)/dxh2)/2. , (a3P(e )/axh3) VB. vae. , 
(anP(s)/axAn)/n. cre mltiplied with fy tho £45 ,. he we get the coekPiclents 
to x pxtae )x143,. exiAn in the expansion of Pi (xt), i.e. the constent coeffi- 
cients in the pol ymoml el Pl(xi). The computetion of the coefficients in Pi (x1) 
therefore consists in successive division of P(x) with x-- giving remeinders 
which | except for the first is multiplied by powers of f.



= 2 « 

4. Use of procedure, 

The procedure cell is of the type 

REPOLYTRANS(n,A,~ ,f)3 

degree of P(x) declered ss integer; 
s one dimensional arrey contsining the coefficient in P(x): declsred as 
reel errey A[O:n]; -[0] is stored in ALO], eft] in Alt ],...... a[n] in 
A{n] before the ecrll of procedure. 

e,f: ere constents declered <s reel. 

eo
 

The procedure stores the coefficients of Pi(x1) in A in the seme order ¢s 
those of P(x). 

4. Aleorithm, 

peeciute REPOLYTRANS (n, A @ f)s 
velue n, 2, f3 

integer a real « if 

real errey A3 

begin comment procedure REPOLYTRANS mekes © tr:nsformetion of the variable 
x in «© reel polynomiecl P(x), such es described in SA.%9;3 
inteser i,d3 

reel s,ujqs 
q t= 13 
for i :=0 step 1 until n do 
begin s := 03 

for j :=n step - 1 oe i do 

begin u t= AT3 J + 8X S3 A{j] := 7=u end j3 
AliT:suxc3 ¢t=c¢x ¥3 ~~ 
end i; 

end REPOLYTRANS; 

O. Lang Resmussen.
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Determinetion of the meximum of « function with one 

and only one meximum. 

1. Scope. 

The following procedure determines the maximum value of a function with 
one «nd only one maximum in © prescribed interval. 

2.Method. 

The method is besed upon a division of the intervel into 4 smeller intervils 
end the procedure determines within which of these the meximum must be. 
These intervels ere then egein divided into 4 intervels end so on until the 
intervels ere smaller then delte. The use of erreys mekes the procedure usefull 
in ceses where the function is slow. 

3. Use of the procedure. 

The procedure will be copied into the pogrem where the following comment 
is written. 

comment library MAX; 

The procedure call must be of the form: 
MAX (F\x,2,b,delte); 

Where the peremeters ere: 

F is the neme of the function for which e maximum velue is wented ; 
and F is e reel expression. 

x is the veriable. On exit from the procedure the velue of x is not 
defined. 

a,b are the end points of the intervel where the function is considered, 
end a is the lower limit. 

delte is the accurecy with which one w nts to determine the ergument for 
the maximum value;delta is not specified es a velue; so that © reletive 
eccuracy ,,e,, mcy be prescribed by inserting ;,exx,, in the place of 
delt: in the procedure cell. 

As triel functions were used 

Fi = 3,5xcos(x) @=-13 b = 3; 

F2 = 3,5xcos(x) a= 93 b= 35 

F3 = 1n(x) . x © = 0,53 b= 35 

Fho= .xf2 + lx + 2 a = 0; ® = hy



«Qe 

FD ul -3,675xxkB + 0,003xxh2 + 3, 141592 = b 

F6 = 0, 731h6xxA2 +b 31b67xx + 7, 141952 e= 153 d 

The eccuracy required was delta = 10-6, 

The members of celculetions of functions were respectively 248, 

The celculations of the maximum of the ebove functions were per. 

  

  
  

4, Algorithm. 

reel procedure MAX(F 18 b, delta); 
velue : @,b3 reel F 1X e,b delte 3 

begin 

reel o,p,ysinteger j; reel errey r[0:4]; 
Oi:= as pi= bd 

Ai y:= (p- o)/ ds xis0; r[O]:= Fs j:= 03 
B: j:= j+l3 if j= 5 then 

begin if (p- 0)<delt= the then 

begin 

MAX: =r[4]; goto stop; 
end; ° 

O:=o+3xy3 goto A; 
end; 

xiso+jxy3 r[j]i= Fs if rfj]orfj-1] then goto B; 
D: if j=1 then 
begin 

if (p- 0) <delte then begin MAX := r[O];goto stop; end; 
pi=o+y3 y:= (p-o)/Us3 j:= 03 goto B; 
end; 

E: - if (p-o)<delte then 

begin MAX := r{j- 113 goto stop; end; 
o:= orm 0+ (5-2) p= o+2xy 3 

y:= (p-o)/4 3 rlO]:=r[3-2]3 rl4)s=rfg]; rf2):= rfj-1]; 
xrsoty3 rf ]:=F3 x:so+3xy3 r[3]:=F3 j:=13 
if r[j] < rfj- 1] then goto D3 j:= j+l; 
if rlj] < rlj-1] then goto E; j:= j+i; 
if r{j] < r[j-1] then goto Es j:= j+ts 
if rlj] < r{j-1] then goto E; goto B; 
stop: end; 

HW 

K.M@ller Pedersen. 

il 103 

25, 48, 49, 46, 51. 

functions ebout 
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Computation of the characteristic polynomial of a matrix 

ALGOL ~ procedure Danilevski 

1. Scope. 

By means of the method of A.M Danilevski the coefficients of the characteri- 

stic polynomial of a real matrix A is found. 

2. Method. 

The given matrix A is transformed to its companion matrix C by applying 

a finite sequence of similarity transformations 

1 
S(k) A(k) S(k), k = 0,1,2..... eee e eens tt A(k+1) 

A. S (k) S(k) = EB; E = unit matrix. Ul where A(0) 

A and C are similar matrices and therefore they have the same characteristic 

equation. The companion matrix C of A is of the form 

  

fo 0 0 0 eftynl/ 
| 1 O O 0 cl2,n]; 
/O 1 0 0 e[3,n] | 

C = f- - = - - | 
- oo. fe - _ | 

0 0 O 1 e[n,n] 

and the characteristic polynomial of C is 

zAn-c[n,n]xzA(n-1)-c[n-1,n]xzA(n-2)- «2... -c[2,n]xz-c[1,n] = 0 

which is also the characteristic polynomial of A because of the similarity of 
A and C, 

The transformation of A to C is performed such that A is first transformed 
to almost triangular form (Hessenberg form) i.e.a matrix H of the form 

h{1,1], hl1,2],......... vol 1,n]| 

    

1 , hfe el,.......... hl2,n] 
H = Oo , 1 yaece- eee hf3,n] 

| SO oe 
i Oo , © ypurscesae 1,h[n,n] | 

During this sequence of transformations we employ a search for pivots as is 

advocated for in [1]. The similarity transformations are not executed by elemen- 

tary matrices as in [1] but follows the line of Faddeeva [2]. Secondly the al- 
most triangular form is transformed to C. 

We first describe the transformation to almost triangular form. We begin by 

zeroing the elements alu,j] of A for j = 1,2,..... n-2. This is done by postmulti- 
plication of A by the matrix.



-2- 

; 
i 1 

  

1 0 0 

i O 1 0 O 

=* oc ~ last] ‘ere’ ° 

Lo , 0 0 1 

where atay{]jaln,el,....1.ela,n-1] are elements of A(0). 
The element aln,n-1] is the pivotal element for this operation and as 

we want it to be relatively large if round-off errors shall be as small as 

possible we make a search for the greatest element among aln, j] for j = 1,2, 

».i..n=1 followed by an exchange of respective columns. An exchange of co- 
lums is equivalent with a postmultiplication of an elementary matrix, and to 

secure the similarity this must be followed by an exchange of corresponding 

rows which is equivalent to premultiplication with the inverse of that elemen- 

tary matrix. After the largest (in magnitude) off-diagonal element of A is 
moved to the position (n,n-1) we know that 

abs(aln, j]/aln,n-1]) < 1 

for 1 < j < n-2 and hence the operation to zero of aln,j] for these values of 
j is a relatively accurate proces. It shall be remarked that the elements ali,n] 

for i = 1,2,.....n are not affected by this operation because of the form of 
L(O). This postmultiplication of A by L(O) shall be followed by a preultipli- 
cation of A(O)L(O) with the inverse Ir1(0). It is easily verified that 

14 0 0 0} 
' 0 1 0 0; 

wi * - - i 
L (o)=; - " - 

jaln,1], aln,2], ,aln,n-1], 0, 

| 0 ; O , J O ’ 1 
; 4 i 

as L(O‘ L (0) = E. (EB = unit matrix). When this operation is finished we have 
a matrix a] 

A(i) =L (0) A(o) L(o) 

which is similar to A(O) and which elements in the positions (n,1),(n,2)...... 
(n,n-2) are zero while the element in positions (n,n-1) is 1. 

The next step is to zero the elements in A(1) in the positions (n-1,1), 

(n-1,2),.....(n-1,n-3), while the element in position (n-1,n-2) shall be 1. 
This proces is done by the similarity transformation A(2) = L71(1)a(1)L(1) 
where 

  

| 1 0 0 0,0 
| 0 1 O 0,0 

wae | o Dt 
)_aln-1,1] ,  aln-1,2]_ , 1 » 0,0 
i” aln-t,n-2] ~ aln-1,n-2] aln-1,n-2| 
/ 0 0 0 1,0 
' 0 » Oo Fs 0 » OO,
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0,0 
1 0 0, 0 

-1 ~. . a x . - 

L (1)= - 7 - - -« 
ia(n-1,1], aln-1,2], jaln-1jn-2], 0,0 
| 0 ; o , 0 , 1,0 
; 2 g 0 3 0 3 0, 1 

Here a{ni1,1],aln-1,2],..:.alhs1j)n«2] are elements in the matrix A(1). 
Again an exchange of columns and rows must preceed the post- and premultipli- 
cation with L(1) ana L7'(1) if the pivotal element now in position (n-1,n-2) 
is not the largest in magnitude. 

Continuing these processes we finally arrive to the almost triangular 

form H. 
In the second part of the transformation i.e. the transformation from 

almost triangular form H to the companion matrix C we wish to zero elements 
on and above the diagonal. 

We begin with zeroing the element in the first column of H. This is ob- 
tained by premultiplication of H with a matrix of the form 

1, -hli,1], 0, 0 
U(O) = oO, 1 , O 0 

a 0 3 

4 

o
m
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, » | 

followed by a post multiplication by u7!(0), the inverse of U(O). It is easily 
verified, that 

1,1], O, 0 
0 0 

; 1 

t 

o
t
-
a
r
 

1 

e oO
 

=] 
because U(O)U(O) = E. When the operation is finished we have the matrix 

H(1) = U(o)HU-!(0) 

which is similar to H. 

The next step is to zero the appropriate elements in the second column. 

This is done by the similarity transformation 

H(2) = U(1)H(1)U(1) 71 
where ij 

1; 0, -hl1,2]l,0, » 0 
Oo,1, -hl2,2],0, , 0 

u(1) = 6,6, 1 «4 Oy » 0 

0,0, 0 3 3 3 

and 

»O, bli,2], 6, » 0 
—, O,i1, bf2,8], 0, , 0 

u(r) = - - - = = 

0,0, Oo ,0, » 1    



oe Et 

h[1,2] and h[2,2] are now elements in H(1). 
Continuing this proces we finally arrive to the companion matrix C of A. 

If a subdiagonal) pivot element is found to be zero in applying these processes, 

that is, if at an intermediate stage of the method we obtain a matrix of the 

form 

BC 

o
t
t
o
m
a
n
 

A(k) = | 
Oo D 

for some k where B and D are square blocks and O zero matrix, we cannot zero 
the appropriate elements in the last column of B. But in this case the matrix 

partitions and we can therefore apply the method to B and D separately. 

3. Use of procedure. 

The procedure call is of the type 

Danilevski (n,A)3 

where 

n, declared as integer is the order of the matrix 
A, declared as real array Ali:n,1:n] contains the elements of the given 

matrix which must be stored before the procedure call. The companion matrix 

is stored by the procedure in array A and the last column of the companion 

matrix stored in the array elements 

ali nl, elf), ciccsasss al[n,n] 

are the coefficients in the characteristic equation 

zhn - aln,n]xzA(n-1)-aln-1]xzA(n-2)- ......... - al2,n]xz-ali,n] = 0 

of the companion matrix as well as the original matrix. 

4, References. 

[1]: On the Danilevski method by Eldon R. Hansen 
J.A.C.M. 10(1963) p. 102-109. 

[2]: Computational Methods of Linear Algebra by 
V.N. Faddeeva 1959.



5. Algorithm. 

procedure Danilevski(n,A)3; 
value n;integer n;real array A; 
begin comment this procedure computes the coefficients of the characteristic 

polynomial of a matrix with real elements such as described in SA-49; 

integer i,j,k,k1; 

real temp; 

comment transformation of matrix to companion matrix; 

if n=1 then goto L3; 
for i:=n n step -1 -1 until 2 do 

begin comment transform A to almost triangular form; 

comment find greatest pivot element in row i; 

temp:=0; 
for k:=1 step 1 until i-1 do 

if abs(Ali,k])>temp then begin temp:=abs(A[i,k]):k1:=k end; 
if temp=0 then goto L1; ~ 

comment exchange columns and rows in A; 

for j:=1 step 1 until i do 

begin temp:=A[j,kT]3 Al j,k1]:= Alj,i-1]3 ALj,i-1]:=temp end j; 
for k:=1 step 1 until n do ~~ 

begin temp:= A[k1,k]; A[kT,k]:= Al[i-1,k]; Ali-1,k]:=temp end k; 
for k:=1 step 1 until i-2 do 
begin comment arr ayAl1:i-1,1:i-2] is changed by postmultiplication; 

temp:=A[i,k]/A[i,i-1]3 
for j:=1 step 1 until i-1 do Alj,k]:= Alj,k]-Alj,i-1]xtemp; 
end k; ~~ 
temp:=1/Ali,i-1]; 
for j:=1 step 1 until i-1 do A[j,i-1]:= A[j,i-1]xtemp; 
for k:=1 step 7 until n do” 

begin comment arrayAl1:i- my 1:1-2] is changed by premultiplication; 

temp:=0;. 

for j:=1 step 1 until i-1 do temp:=temp+tA[i, j]xAlj,k]; 
Ali-1,k]:=temp; - ~~ 

end k; 

comment change row i in A; 

for k:=1 step 1 until i-2 do Ali,k]:=0; Afi,i-1]:=13 
LT: ne end transform to almost triangular form; 

ki: 
for es =1 step 1 until n-1 do 

begin comment transform almost triangular form to companion matrix; 

if ALk+T, k]=0 then begin k1:=k+13 goto L2 end; 

for i:=k1 step 1 until k k do — _— 
begin temp:=ALi,k]; 
for j:= k+1 step 1 until n do Ali,j]:= Ali,j]-tempxA[k+1,j] end i; 

i:= k1 step 1 until k do A[it1, ket] :=ALi+1, k+1]+Ali,k] 3 
or i:=k1 step 1 until k do A[i,k]:=0; 

Les end k; 
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L3:end Danilevski; 

O, lang Rasmussen,
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7 / 
‘random ‘ generates a sequence of rectangularly distributed, pseudo- 

random numbers, one in each call of the procedure. 

2. Method. 

The successive pseudo-random numbers are generated from the formula 

‘random [n#1] := 125 x random[n] (mod 2796203). 

This formula generates a permutation of all integers 0 < i < 2796203. 

Different values af random [0] cause only a cyelic shift in the generated 
numbers. The less significant bits should not be expected to be random. 

Most litterature on this subject is concerned with the production of 

random digits in all positions and with taking advantage of the structure of 

the computer and the use of overflow. No such considerations are relevant to 

an algolprocedure, on the opposite overflow must be avoided. 

Fach call of the procedure takes approximately 8.6ms. Additive gene- 
rators are faster, but are reported not to be statistical satisfactory. The 
advantage in speed is however less than what may be gained by rewriting the 
procedure into the program so that there are no formal parameters. Also the 
placing of the procedure across a track transition is of equal importance. 
Consequently additive generators have not been considered further. 

The procedure call is of the type 

a := b + random (A,B,x0); 

Here A and B are the bounderies of the interval in which the random numbers 
are distributed. A < random < B. 

In the very first call, x0 must be used as the value of random [o]. 
This may be done by using a 6~digit number. In subsequent calls, x0 =O.



real procedure random (A,B,Y); 
Value A,B,Y; real A,B; integer Y; 
begin integer ©; 
own integer 

C2=Xx1253 
X:=C-2796203xentier (C/2796203 )s 
random:=Xx (B-A)/2796203+A end random; 

Qe nwtests. 

The randomness of the numbers have been tested in several ways. 
N is the number of calls in each test. All tests use the first N numbers 

with the starting value xO = 100001. 

N 1/N Er 1/N E(x 4 2) 
50 0.50235 0.32714 

100 0.48140 0.30822 
500 0.49729 0.32628 

1000 0.49701 0.32852 
100000 0.50059 0.33363 
200000 0.50018 0.33327 

Expectance value 0.5 0 «55333 

10.000 and 90.000 random numbers were formed. The interval was 
divided into 100 equal parts and the number (fi) of random numbers within 
each part was counted. 

chi-square = k/N x sum((fi-N/k) , 2) was computed. k = 100 intervals. 
For N = 10000, chisquare was 112.46, which corresponds to a probability 

of 80 - 90 percent with 99 degrees of freedom. 
For N = 90000 the value was 98.53, which corresponds to a probability of 

50 - 60 percent. 

An autocorrelation of 3000 random numbers with shifts up to 511 gave 5.9 percent 
as the biggest correlation coefficient. 

The period is as mentioned above 2796202 different numbers. 

Hull, T. E. and Dobell, A. Rv: ~ 
Random Number Generators, SIAM Review, 4, 3, July 1962, pp.230~254, 

with 148 references. 

Leif Hansson.
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ALGOL, =, engeedure, CROUP. 3. 

The real procedure CROUT 3 solves a system of linear equations Ay = 
where A is e« square matrix of order n, y and b are colum vectors of di- 

mension n. The value of CROUT 4 is the determinant of the coefficient matrix 

A. The difference between CROUT 4 and CROUT 2 is that the central part (the 

innerproduc’s) of CROUT 4 is written in machine code which has the effect 

that the speed of computation is increased in comparison with CROUT 2. 

‘ 

22. ethod.. 

The solution is based on Crouts method with row interchanges as described 

in SA-14/1 and is therefore not repeated here. 
CROUT 4% and CROUT 2 are completely equivalent, the only difference 

is that tne innerproduct is written in code in stead of the for-statements 

in CROUT 2 (and the algol procedure INNERPRODUCT in former issues) which 
results in a considerably increased speed of computation. 

whe 

32..U8e. of, REocedure » 

The procedure consists of two varts, the algol procedure, and a code. 

The procedure call shall be of the form 

CROUT 3(n,A,@run, length, exit); 

where the parameters are: 

n Geclared es integer is the number of equations 
As declared as seul array A[1:n,1:n+1] contains on entry the 

coefficient matrix in ‘A[1 in, j :n] and the right hand side in 
the columa Ai: nyo J. On exit the solution vector is stored 
in the colum vector A[1:n,n4 ]. 

drum: declared as integer cont tains the value of the standard variable 
drumplace, when | the innerproduct in code is stored on the drum 

by the standard procedure gierdrum(see below). 
length: declared as integer conteins the number of machine words occu- 

pled by the code as supplied by the standard procedure gierdrum 
(see below). 

exit: a jJabel to which CROUT 3 goes when the matrix is singular. 

    

The innervroduct in code mst be stored on the drum before the call 
of CRCUT 3. This shall be done by the vrogram and can be performed in the 
following manner. 

Assuming that the veriable drum has been assigned some value of drum- 
place, one writes e.g, in the beginning of the program:



if kbon then 
begin . 
writetext({< 

message to operator: innerproduct-code in tapereader}) ; 
typechars 
drumplace:=drums 
gierdrum({<innerpp, length) ; 
writetext¢< 
message to operator: datatape in tapereader}); 
typechar ; 

ends 
When the program is started after the translation is completed GIER 

stops ready for input of code. Started again it stops ready for input of 
data after which the computation starts. The first parameter, <<innerpp, 
in the procedure call gierdrum ({<imnerp},length) is a code identifi- 
cation for innerproduct, which must be written exactly in this way. The 
second parameter, length, is assigned the number of machine-words in the 

code, 

The procedure identifier CROUT 3 contains on exit the value of the 

determinant. It shall be remarked that all elements in A[1:n,1:n#1 ] are 
changed by the procedure. 

1 hekerences., 

1. Communications of the ACM, 4,1961,pp.176-77. 
2. SA-14/1, July 1964. 

4 
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comment A.E,K. this algol procedure solves a system of linear equation 
as described in SA 64. The algorithm uses innerproduct in code; 

real procedure CROUT 3(n,A, drum, letigth, exit)s 
value n,drum,length;integer n, drum, length; 

Real ‘peray As 
Label, exits 
begin’ - ~ 
jnteger I,J ,tmax,k,p1,p2 73, pt, gem; 
real t,q,det, detfactors 

boolean array code[1: length ]; 
boolean ensrys 
gem:=drumplaces 

drumplace :=Crums 
fromdrum (code) sree gm 
gierproc(code[2],A,p1,p2,p3, pl entry) 
detfactor:='det := 1: 
for'i:= 1 step 1 until n do 
begin corment equilibrateAl4 :n,1:n41 J; 
ai 03 
for Ji= 1 sten 1 until n do tee aie a 

s hen gi= % ends bepin t:= ebs(Ali,dj); if t> a; 

if a= 0 then goto exits 
tr= 2 4 (-entier(1n(q)/0.693147181-+1))s 
£ 

2 
ih
 

on Ji= 1 step 1 until nt1 do Ali,j]e= Ali,g ]xts eS 

detfactor:= detfactorxts 
quilibrations ata 

® 3S Qu o 

x 
ke;
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1 step 1 until n do 
47 k ‘ 
i Koo. 

Lossrahy 

= comment triangularization starts; BO Pee te



bt 3:= 03 

p2t=ks p4:=k=1;° 
fori i= k step 1 until n do 
begin 
pl: =13 

Afi, kl = Ali x] - gler(entry); 
if: abs (AL 4, K]) > t then 
begin t := ‘abs (ALi, i]; imax : 
ends’ 
coument the largest pivot element Alimax,k] in column k is found; 
if imax +k then 
begin c comment interchange rows k and imax; 
det := wadets 

for j := 1 stey 1 until nt1 do . 

begin t := Alki ]s “ALK J]: 5 Aine, #1, Afimax, 3] : = t end; 
snd interchange of rows 3 

Afi:,k] = 0 then goto exits 
@* te Pale, k]s 
for a i= k'4 1 step 1 until n do 
Ali, k] *=q x Ali,k]; 
pl Fey 

for j t= k +1 step 1 until nt1 do 
begin 
rae mcatietbas 

p2i=j3 - 
A[k,3] := A[k,5] - gier(entry) 
ends 
end triangularizations 

pet=nw 5 plt=ns 

for k isn sten “I mata 1 de 
begin corment backsubstitution; 
pl s=ks ‘D3! =H 3 
det™:= A[k,k] x det; 
Afk n+ ] :=(ALk, nH | - gier(entry) Yate, ids 
end. packsubsti tution; 
CROUT 3:= det/detfactor; 
drumplace :=gems 
end CROUT 3; 

nds ul 

6..,.dnnerproduct in code. 
PE a SG Eg arg De DS Fare 

[innerproduct in code] 
b ale 
s . — 

aa 10.3459. 94H £15+55.21437.27437.33+57.393¢<innerpt 

Nets cst entry] 

arn az B 3;Radr:=jump adress 

ar all jer(p9) = ;entry:=hv-instruction 
arn pl jer al sarray description 
arn(al) — ;tkfm1 3Radr:=c2=n+2 
ga alt )tkm~10 papa |i=02 
gt a8 3a8| tal | :=c2 
azn(at) = t-1 
ar (al) +1 
tkm 30 ar at 3al[adr]:=array length+constant 
arn pl ;tkm 10 ~—s- s Radr:=adr[last element ]+1 

Lo
e 

w
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sr al 

it(v5) 
it(n6) 
it(p7) 
it{p8) 
hr si 

[later entries | 

ar: 

alts 

alo: 

aii: 

al2: 

ab: 

axrfnmQ 
xP 
mknimQ 
tkm9 

ga al 
arfiamQ 
ar al’ 
arfninQ 
ga a2 

srm 
rakn (al) 
tkm9 

arin, 

et ad 
ppd 
bs p 

ppm 
arfn' pO 
mkrmd 
art aQ 

pp pt 
hv 

aq 

yer al 

7pa ad 
ypa ato 

;pa att 

;pa at2 

tim 

D 

jar at 

ytkfm1 

jg a8 
,; tkimt 

DX 
D 

yac a8 
;tkim-9 
yep a6 
ern ag 

tw 
yor st 

vert a9 
pov ad 

-~uo 

3a1| adr |:=basisadr-.constant 
3a3[ adr |:=p1 

3a10[ adr | :=p2 
satt[adr |:=p3 
321 2| adr | :=plt 
sreturn to ALGOL 

3Radr:=p1 
3Madr:=pt 
3R18:=pixc2 
3 Radr :=pi xc2+basisadr-constant 
3a7[adr |:=Radr 
;Radr:=p2 
:a8| adr |:=basisadr+p2~constant 
9 

sa2[ adr }:=p3 
;Radr:=p3—1 , Madr :=Radr 
»R18:=(p3—1 }xc2 
3a8[ adr |:=basisadr+p2+(p3-1 )xe2-constant 
sRtel:=p+ 
305[ tek |:=pl,a6[adr]:=p 
3p2=pd ,a9z=0 
3if p>pl then a6 else a7 
sreturn 

sRP:=A[plyp] 
sRF:=A[ p1,p]xA[p, p2 ] 
saccumutate product 
sp:=ptl , dump 
jhv-.nstruction, storage for basisadr-constant 
working cell 

0. Lang Rasmussen.
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Description of ALGOL - procedure SA_- 65 ! 
REOREs 

This procedure deals with the problem of fitting a known complex analytical 
function of a complex variable with a rational algebraic function of this com-— 
plex variable. 

The known function may be given by experimental or computed values of real 

and imaginary part, corresponding to a series of purely imaginary values of 
the argument. 

Method. 

The method used is originally developed by E. C. Levy (ref. 1) and later 
improved by C. K. Sanathanan and J. Koerner (ref. 2). The present version is 

that of ref. 2, slightly modified by the author. 

In the following a very short description of the method of ref. 2: 
The known function F(s) is given in the m points sk = je)k, k = 1,2,+.6,m 

by the quantities Rk(jwk) (real part) and Ik(jW@k) (imaginary part). The ratio- 
nal algebraic function is an = P(s)/Q(s), where ie, and Q(s) are polynomials. 

The difference between the complex values of F(ji)k) and G(j@k) is 

Ek = F(j@k) - P(jWk)/Q(3@k) 

The criterion for the best pessible fit as expressed by the least squares 
method would be: mn 2 

ker [EK | adjusted to minimum. 

However, this criterion leads to a system of very complex, non-linear equa- 
tions and is consequently substituted by the following as a first approximation: 

& [Ek Q(juk) | “adjusted to minimum. 

This eriterion Lends to a matrix equation: 

[A] [X] = [B] (see ref. 1) 

there [A] is a quadratic matrix of order ptqt1, p and q being the degrees of 
the polynomials P(s) and Q(s) respectively, while [X] is a vector presenting the 
desired coefficients of these polynomials, assuming the zero-order term of Q(s) 
adjusted to unity.



Dim 

. Now, denoting the fit function polynomials which results from this first 
approximation by P(s) and Q{s) a secend approximatien is performed according to 
the criterion 5 

© |&k Oj k me i o-fh Ih adjusted to minimum. 

It turns out that this operation does not alter the general form of the 
terms in the above matrix equation. Thus an iteration can be performed, and 
it is clear that if this iteration converges it must converge to the ideal 
least squares method approximation. 

The general convergence properties of this method have not been investi- 
gated, but’ it is a practical experience that a good approximation may be obtained 
after, say, 3 iterations in many cases where the know function is related to 
a nuclear reactor transfer function. 

The modifications introduced in the present version are as follows: 

1) Instead of the weighting function W(jik) = 1 /|Q"(jwk) |2 uged in ref. 2 
the user of this procedure may choose the alternative 1/|P' (jWk)|*. Assuming 
that the iterations converge, this leads to the fulfilment of the criterion 

m a 2 
4 By [xk | adjusted to minimum 

al 
with &k =§k/G(jwk). 

In other words, the least squares method is applied with respect to an 
error quantity which is very near to the relative error £k/F(j@k). 

2) The elements of the matrix [A] are very often such that a direct calcu- 
lation of the vector [X] leads to serios numerical deficiencies. 

In order to avoid this, the single linear equations of the matrix equa- 
tion are normalized by dividing with the square root of the sum of the squares 
of the left side coefficients. 

3) As a criterion for stopping the iterations an error quantity is construc- 
tedi after each iteration and compared with a quantity stated by the user. The 
former quantity is | an OHS a, 
actual error = | (5 (SS) + epk* )/m 
whe:re eak/ak is the relative error in amplitude and epk the error in phase 
(in, radian measure) for the k th fit point. 

It is“noticed that this criterion does not influence the way the proce- 
durre works, except as to stop the calculations. 

Usee_of the Algorithm: 

The procedure call is COMPFIT (m,;p,4,N,No, error, relative, drumomega, drumR, 
drum, druma, drumb , drume , drumA, singular) ; 
Thee formal parameters have the following meaning: 

dntvegers: 
number of fit points. 

degree of numerator polynomial. 

degree of denominator polynomial. 

maximum number of iterations desired. 
No: This formal parameter allows the user to break the series of itera~ 

tions f.ex. for printing of preliminary results. If No is zero, which must always 
be the case the first time the procedure is called for solving a certain problem, 
the weighting function is equalled to unity at all fit points. If No is different 
from zero the procedure takes over from the drum store values of the weighting 
function thus assuming that these values have been constructed during a preceding 
procedure call and not later destroyed. It is noticed that the procedure, in 
counting the iterations performed, always assigns the number No+1 to the first 
iteration within a procedure call. 
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