
-4 -~

relative: If relative has the value 1 the least squares method is applied
with respect to the relative error as described above, else with respect to the
absolute error. * ~

drumomega., drumR , drumI, druma , drumb , drume :
se Drumplace values assigned to the first elements of the arrays k,

Rk, Ik, [A], [B] [xl These values must be chosen to permit space enough for the
respective arrays. It is noticed, that Wk, Rk and Ik have each m elements and
[A] (ptq+1) elements, while [B] and [X] have each ptqt1 elements.

drumA: The drum section beginning with this drumplace value is to contain
the greatest number of elements of the following two: 4(p+q+1) or 4 m.

reals: error:

The desired error according to the above deseribed error criterion for
stopping the iterations.

igbels: singular:
This label originates from the procedure DRUMCROUT 2 (by 0. Lang Rasmussen)

which is used to solve the matrix equation. The procedure goes to singular when
the determinant of matrix [A] is zero.

Besides the existence in the fast memory of the actual parameters correspond—
ing to the above mentioned formal parameters, the procedure requires the presence
in the drum store of the arrays & k, Rk and Ik at the positions determined by the
respective drumplace numbers as explained above.

As to the results of the work of the procedure, the following is important:
The calculated coefficients of the polynomials of the fit function are stored

on drum at the drumplace drumc. The order of the coefficients is:

QO, al, A2, «6. ; ap, b1, b2, ... , bq when the fit function is written on the
form: aQO + ais + a2s~ t+ee50 + apsP

G (s) = 1 + bd1s + b2s2 tees + dgS”

The real and imaginary parts of G(wk),k = 1,2,..., m, are also célculated”
and stored on drum at the drumplace drumA. The order is: RG1,RG2, ... , RGm,IG1,
IG2, «es IGm. yt eee ¥

Notice: ~
The quantity ;yerror,, which was specified by the user, after the application

of the procedure alters its value to the actual error of the resulting fit func-
tion. Similarly, the integer N, maximum number of iterations desired, alters its
value to the actual number of iterations performed. “

The arrays (Wk, Rk and Ik originally placed on drum by the user, are unviola-
ted during the calculations. .

Computing, time
The computing time is propertional to the number of iterations performed and

increases according to the second power of the quantity ptq+1. With pig! = 14 and
10 iterations the computing time has been measured to about 10 minutes.

Remarks, to, the, Algorithm:
If the relative error in a certain fit point tends to infinity (i.e. exceeds

4070) the value #70 is substituted. Similarly the weighting factor 1/ [Pt (Wk) [2
is bounded within the limit 70.

It is noted that the case of the determinant of [A] being zero is closely
related to the degree of indeterminacy of the ctefficients of the fit function
(f.ex. if the known function is a real constant, all choices of p an q except
p= 0, q = 0 lead to indeterminacy).

It may be of interest to illustrate the use of the parameter No by an exam-
ple:

oben

Let J[1:L] be an integer array containing the iteration numbers after which

printing of results is desired. The printing is supposed to take place at label W.

a:= error; ‘

1 BSeR 1 until L do begin

CONPPTE (coos 1 NNO, ‘ceeds
W: if error < a then goto Out;
error := a; No:= J[i]s; end of i;
Out:

Algorithm: No := 0;
for is=

Ji
N:

This algorithm is used in the program PROFIT (see ref. 3).

References:

1) E. C. Levy: Complex - Curve Fitting. :
IRE Transactions on Automatic Control, May 1959.

2) C.K. Sanathanan and J. Koerner:
Transfer Function Synthesis as a Ratio’of Two Complex Polynomials.
IEEE Transactions on Automatic Control, May 1963.

3) N. Kjer—Pedersen: PROFIT. A program for Complex - Curve Fitting. P - 201.
Ris - M- 124, Sep. 1964.

Zhe, Algorithm:

ocedur @ COMFIT (,p,4;%, No, error, relative j Smamomera ye crunk, drum , druma , drumb ,

drume ‘artim ‘einaular bi
integer m,p,q,N,No relative , drumomega, drum, druml, druma, drumb , drume , drumA; fa et at

real error;
label singular;
Al: begin =
integer i,j,k,njt;
real epsa, SpSpi, aotemnitnatst, sey bs y := (3.14159/180) 42;
n:=No;

Thetatdon: noe
Bi: begin comment The arrays lambda,S,T,and U are calculated and stored on
drums ~ oe
real array fitpoint, omega, R,I,W[1:m];
comment The array fitpoint is used as a means of gradually raising the power
of omega. The elements of W are the weighting factors;

drumplace:= drumomega; from drum (omega);

ifn =0 then
for ki= 1 step 1 until m go W[k]:=1 elge

begin drumplace:= drumA; from drum (R); from drum(I); from drum(W); ends
drumplace:= drumR; from ” avum(R);
drumplace := drums from drum(I);
C1: begin
real array lambdal0 :2x
for k:= 1 StSP, 1 until m do
fitpoint| i]: = 1%

rt at

Tamibdal i]: := 03

if i=0 then fitpoint|k]:=1 else
fitpoint|k]:= omega [k|xfitpoint[k];
lanbda[i]:= lambda[i]+fitpoint[k xl] ends
drumplace:= drumA; to drum(Lambda) ;
gad of C1;

for k:= 1 step 1 until m do begin

nds;

C2: begin
real array S[O:ptq];
for k:= 1 step 1 uptil m do
fitpoint[k]:= 1;
for i:=0 step 1 until pta do begin
S[i]:= 0;
fox ki= 1 step 1 until _m do begin
if i=0 then fitpoint|k]:=1 else
fitpoint[k]:= omega[k]xfitpoint[k];
S[i]:=s 2 [etd tpodnt[k }eiL i xR] end; ends
to drum (S)s
end of C23

C3: begin
real array T[O:ptq];
for ki= 1 step 1 until m de
fitpoint[k]:=1;
for i:= 0 step 1 until pta do begin
TLi]:= 0;

for ki= 1 step 1 until m do begin
if i=0 then fitpoint[k]:=1 elge
fitpoint/k |:= omega[k]xfitpoint[k];
Tlij:= 7 A fttpoint| i Jw[k pet [ie] end; ends
to drum (T

gad of C3;
°
?

for k:= 1 step 1 until m de
fitpoint[k]:= 1;
for i:= 0 step 1 until 2xq do begin
Uli]:= 03
for k:= 1 step 1 until m do begin
if 1=0 then fitpoint[k]:=1 else
zi potntl = omega[k]xfitpoint[k];
Ula]:= Uli]+fitpoint[k]xW[k]x(R[k] A 2+I[k] 4 2) ends ena;
to drum (U);
gnd of Ch;

end of Bi;
B2: begin cemment The system of ptq+1 linear equations is, row after row,
constructed and stored on drum; mo
real arrey rowlO:ptq],lambda[0:2xp],S,T[o:ptq],U[o:2xq];
integer t;
drumplace:= drumA; from drum (lambda); from drum(S);from drum(T);from drum(U);
drumplace:= drumb;
for i:= 0 step 1 until p do
if entier G/e) = PP Ee rouft }2= -S[i] else row[i]:=-T[1];
for i:= 1 step 1 until a do
if entier (1/2) = 1/2 then row[pti]:= -U[i] else row[pti]:= 0;to drum(row);

N
o
n

<6—

crap Lacet =

for i:= 0 gt
for j:= 0 ste
if entier (1/2) =i j/2) + 5/2 then row [j] :
if entier (i/2) = 14 j/2) = 3/2 then begin
t= (j+2)/2; row [j] := (-1) 1 txlembaali+j]; end;
if entier (i/2) t i/2 A entier (j/2) = 3/2 then row [i] :=0;

i
J

Pp
iL p do rac

2 we et et et

at entier (i/2) +.1/2 A entier (j/2) 4 j/2_then begin
= (j+1)/2; row [Jj] :=(-1) 4 txlambdali+j]; end;

10
 ds

for j:=1 step 1 unt 1 q do
if entier (i/2) = 1/2 ie Belo) 4 7 Jj/2 then
tr= (j+1)/25 row [ptj] :=(-1) A manta Js aut
Af entier (i/2) = 1/2 A entier (j/2) = 5/2
ti= (5/2); row [ptj] :=(-1) 4 ue 13 end
if entier (1/2) ¢ 1/2 a Cntr (j
ti= (5/2); Gn ma ted]) A vatho) 3 gud

10
 i

-
ID

1d

ID

Io
"

I 00
 re IS

it
Cu

s

“
I

~
b

&
ict

Si
t

ta

10
 09 is

i Jo a aphine (j/2) ¢ 3/2 then
tis j- Sse row [p+j] :=(-1) seal iat ends

Io

10

pO

Ih

3

ends;
to drum (row); ends;
for i:= 1 step 1 until q do b Seen
for j = 0 step 1 until p do beg
a7 entier i/2) = i/2 a career PG /2) ¢ j/2 then begin

2 r= (j+1)/23 row [j] :=(-1 ye ey
if entier (1/2) i/2 A entier (j/2) = j

:= (j42)/23; row [j] :=(-1) AtxS[i+j]3 ¢
if entier (1/2) 7 i/2 A entier (j/2) =

i)

ot

=

t:= (3/2); row [j] :=(-1) AtxTli+j]; ends
if onties (1/2) i i/2 a entier (j/2) = 5/2 then begin

tr= (j+1)/23 row [J] :=(-1) AtxS[i+3]5 ends
end;
for J:= 1 step 1 until a do beg
if e entder (i/2) = i/2 A entier a j/2) + 3/2 then row [p+)] :=0;
if entier 2) = i/2 ~ entier (j/2) = j/2 then begin
t= (3/2); row [prs] :=(-1) AtxU[i+j]; ends
if e entier (i/2) f 1/2 4 entier (j/2) = j/2 then row [ptj] :=0;
$ enter (1/2) = ye A entier (j/2) + j/2 then begin

ti= (j-1)/23 row [ptj] :=(-1) 4 tx 143 Jsends
ends

to drum (row); ends
end of B2;

B34: begin comment The system of equations is normalized by ang Sant Sad et |

eee each equation with the length of the left side vector;

real array row, norm[O:ptq];
real fix;
a

drumplace := drumas
for i:= 0 step 1 until pta do begin
fix:= vum(eon)s3
from drum(row)s;
norm[i]:= 0;
for j:= 0 step 1_until ptq do
norm i} = norn[t Jerow a) Aes
norm] i|:= sqrt(norn[t]);
for j:= 0 step 1 until ptq do

£ norm[i] +0 then
ls row[j]/norm[i];

drumplace:= fix;
to drum(row); fix:= drumplace;
drumplace:= drumb;
from drum(row);
if norm[1] ¢ 0 then row[i]:= row[i]/norn[i];
drumplace:= drumb;
to drum(row)s
drumplace:= fix;
ends egies 9

gnd of BS;

B4: begin comment The equations are solved by means of the procedure DRUMCROUT2
and the results, which are the desired coefficients of numerator and denominator
polynomials of fit function, are stored on drum;

comment AEK february 7th. 1963 -— the following procedure is a
drum version of SA - 10 it solves a system of linear equations Ay = b
as descreibed in SA - 26;

real procedure INNERPRODUCT(u,v,k,s,f);
Value s,f; ~
integer k,s,f3
real Urvs

begin
real hs
h := 03

for k := s step 1 until, f doh i=h+ux v;
INNERPRODUCT := h
end INNERPRODUCT;

procedure DRUMCROUT 2(ta, tb, ty,n, det);

Value ta, tb, ty)n;
integer ta, tb, ty,n;
real dets

begin

integer tk, td,k,1,j, imax, timax,p;

real temp,quot;

real array Al ,A2,b,y[1 in];

det := 1.0; tk := tas drumplace := tbs td:= from drum(b);
for k := 1 step 1 until n do
L1 : begin drumplace := ta;

for p := 1 step 1 until k-1 do
L2 : begin comment transport k-1 elements from column k to fast memory storages

from drum(A1); A2[p] := Ai[k]
gnd Le;

temp := 03; drumplace := tk;

for i := k step 1 until n de

15 : begin
from drum(A1); drumplace := drumplace — tds:
A1[k] := At[k]-INNERPRODUCT (A1[p],A2[p],p,1,k-1);

~B~

if abs (Ai[k])>temp then
Li : begin temp := abs(A1[k]); timax := drumplace; imax := i
end Lh;
to drum(A1)
end 13;

comment we have fourid that element k in row imax is the largest pivot
element in colum k, we now interchange rows k and imax;

if imax + k then

L5 : begin det := -det;
drumplace := tk; from drum(A1);

drumplace := timax; from drum(A2);
drumplace := tk; to drum(A2);
drumplace := timax; to drum(A1);
temp := b[k]; b[k] := bl imax]; b[imax] := temp
end L5;
at a fet

comment end of row interchange, next follows elimination;
drumplace := tks; from drum(A1);
if Ai[k] = 0 then goto singular;
quot := 1.0/A1[k];
for i := kl step 1 untdl n de
L6 : begin

from drum(A2); A2[k] := quot x A2tk];
drumplace := drumplace td; to drum(A2)
end L6;

drumplace := ta;

for p := 1 step 1 until k-1 de

L7 : begin
from drum(A2);
for jJ := k+1 step 1 until n do

aia] := t[3T = M[pt « A2C3
end 17; Se
b[k] := b[k] - INWERPRODUCT (A1[p],[p],p,1,«-1)3
drumplace := tks; to drum(A1); tk := drumplace
end 11;

comment end of triangularization now comes back substitution;

for k :=n gtep -1 until 1 do

L8 : kegin
drumplace := drumplace -td; from drum(A1);
drumplace := drumplace -td; det := At[k] x det;
vlc]2= (oli]-INWERPRODUCT (A1[p],y[P],p,e#1 yn))/A1[Kc]
end L8;

H
o
t

drumplace := ty; to drum(y);
end DRUMCROUT 2;
DRUMCROUT 2 (druma, drumb , drume , p+q+1 , determinant) ;
end of Bis

-~9-

B5: begin comment Real and imaginary part of numerator and denominator of fit
Fonction are calculéted for each fit point and stored on drums
eal array fitpoint,A,B,C,D[1:m],row[O:ptq]; array

comment The array fitpoint is here used to contain the values of omega A23
drumplace:= drumomega; from drum(fitpoint);
drumplace:= drume; from drum(row)s
for k:= 1 step 1 until m do begin
Pitpolst| tins Fitpoint| Kk] R 23
if entier(p/2)= p/2 then j:= p else j:= p-1;
b:= rowlj]s
if j > 0 then
for i:= j-2 step -2 until 0 do begin

- fitpoint|k]xb;
atrowli]; ends Alk]:=

if entier (p/2) = p/2 ses. jisps else J:= ps
if J= -1 then b:

= row J];
i j > 1 then

EQE is=j -2 nil ~2 until 1 do begin
wT

o
o

o
n

ii

‘tl oO

10

re

in

IO

-fitpoint|k] xb; et

b: atrow[i]; ends B[k]:= bxsqrt(fitpoint[k])s
if entier (q/2) = a/2 then j:= 4 else J:= a-13
bi= row|ptj];i£ J=0 then b:=0;
if j> e then
for i:= j-2 step ~2 until 2 do begin
as= — Pttpoint k]xbs
b= a+ row[pti]; end; C[k]:
if entier(q/2)= 2 then j:
if j= -1 then b:= 0 else
bis row p+j |

if j > 1 then
for i:= j-2 step -2 until 1 do b

‘ =fitpedartl ik ebg
q~-1 else j:= q3

tae ase a

egin

ai= -fitpoint[k]xb;
b:= a trow[pti]; end; D[k]:= bases (tpointik 5 end k;
drumplace:= drumA; to drum(A)s;to drum(B);to drum (C) ; to drum(D)

end of B5;

B6: begin comment Real and imaginary part of fit function are calculated for
each fit point, compared with input values and stored on drum. Weighting factors
for next iteration are calculated and stored on drum. Criterion for stopping the
iterations is applied;

real array A,B,C,D,R [1 zm];
real ea, ep;

drumplace := drumA; from cri from drum(B); from drum(C); from drum(D);
drumplace := arumR; from drum(R);
drumplace := drum; from drum(I);
t:= O03; ea := ep := 03

for k:= 1 step 1 until m do begi

epsa: ate eee othe) (ciel A24+D[k] 4 2) -R[k]
epeth:= ht edeti pote) (la fest 42 ya
C{k]:= (if relative = 1 then(if A[[] 24BL k A2<0-70
then 170 else CALA ee sits
4 (C[k oop k}42));
cl = R[k]+epsa; Bik]: = sToTeeans

we

w
o

~10-

ig (sart(A[k 2 + B[k2)xu-70 < sqrt(R[k]f2 + I[k]}2)) “TYEE fas

epsa:= abs(sqrt(R[k] Ao+I[k] A2)-sart(A[k] A 243[k] oyyenttee 2+tTk] 42
epsa.:= 40703
epsph:= abs ((if Rk] $0 A srotan (if 54) < abs(R[k]) then

(if Rik] > 0 then arctan (I[k]/R[k]) else
(if Ifk] = , then 3.14159 else(if I[k|>0 then pretan (TLic]/RL«]) + 3.14159

‘i
l

10

te

It
a

10

else arctan (z[k I/t k]) - 3. po) eles sign(I[k]) 3. 14459/2)
-—(if A 3 A abs (BL k]xio-154) < abs(A[k]) then
(if ates O then arctan(B[k]/A[k]) else

(ig B[k] = 0 then 3.14159 else (if B[k] > 0 then arctan(B[k]/A[k]) + 3.14159
else sooty A[k]) = 3.14159))
else sign (B[k])x3. 1159/2 2))
x 180/3.141593
ea:= [- + epsa2; ep:= ep + epsph)2;

ends

n:= n+13 drumplace:= drumA; to drum(A); to drum(B); to drum(C);
if n= N "v (ee +y x ep) /m < error A 2 then goto Stop else goto Iteration;

error := sqrt((ea+yxep)/m);
end of Bé6;
end of A1 and procedures ram at Pm

N. Kjw#r—-Pedersen.

DANISH ATOMIC ENERGY COMMISSION September 1964
Research Establishment Ris¢ SA - 67
Reactor Physics Section 25 copies
Computer Group

Solution of a system of linear equations

ALGOL - procedure CROUT 4,

1. Scope.

The real procedure CROUT 4 solves a system of linear equations Ay = b
with different right hand sides. A is a square matrix of order n, y and b are
column vectors of dimension n, The problem is equivalent with solving a matrix
equation AxY=B where Y and B are matrices with n rows and m colums. The value
of CROUT 4 is the determinant of the coefficient matrix A.

2, Method,

The solution is based on Crouts method with pivoting such as described
for procedure CROUT in SA 10, It is therefore not repeated here. The main dif-
ference between CROUT and CROUT 4 is that the real procedure INNERPRODUCT in
CROUT here is replaced by an innerproduct procedure written in machine code,
which results in a considerably increased speed of computation, Furthermore an
equilibration procedure has been incorporated in CROUT 4, The real procedure
CROUT 4 is an extension of CROUT 4 in that respect that it can process several

right hand sides in contradistinction to CROUT 3 which only can solve a linear
system with one right hand side.

3. Use of the procedure,

The procedure consists of two parts, the algol procedure and a machine
code. The procedure call shall be of the form

CROUT 4(n,A,drum,length, exit factor pivot repeat);

where the parameters are:

repeat: declared as boolean. The first time CROUT 4 is called this variable
must have the value false. In all the following calls the variable shall

have the value true.
declared as integer is the order of the coefficient matrix.

declared as real array A[1:n,1:n+1] contains on the first call the coef-
ficient matrix in ATi m,1:n] and the first right hand side to be proces

sed in A[1:n,n+1]. Qn the later calls the other right hand sides to be
processed are stored consecutively in A[1:n,n+1].
On exit of each call the solution vector is stored in A[{1:n,n+1 J. During

cc

the first call the procedure performs a triangularization of the coeffi-
cient matrix. The triangularized matrix is stored in A({tin,1:n] where

it shall remain during the following calls of the procedure.

wi 2

drum: declared as integer contains the value of the standard variable drumplace ,
when the innerproduct in code is stored on the drum by the standard pro-

cedure gierdrum. (see below).
length: declared as integer contains the number of machine-words occupied by the

machine code as supplied by the standard procedure gierdrum. (see below).

exit: a label to which a jump is made from CROUT 4 when the coefficient matrix
is singular,

factor: declared as real array factor [1:n] contains factors used in the equili-

bration process. These factors are computed and stored by the procedure

during the first call with the boolean variable repeat having the value

false, and they shall remain in this erray during the following calls.

pivot: declared as integer array pivot [1:n] contains row indices originating

from the triangularization of the coefficient matrix stored in A[i:n,1:n].
These row indices are stored by the procedure during the first call with
the boolean variable repeat having the value false, and they shall remain
in this array during the following calls.

The innerproduct in code must be stored on the drum before the call of
CROUT 4, This shall be done by the program and can be performed in the following
way.

Assuming that the variable drum has been assigned some value of drumplace,
one writes e.g, in the beginning of the program:
if kbon then

begin

writetext({<

message to operator: innerproduct-code in tapereader});
typechar3;
drumplace:= drum

glerdrum({<innerp}, length);
writetext({<
message to operetor: set KB:= N});
typechar3;

ends
writetext ({<

m essage to operator: datatape in tapereader});
typechar ;

When the program is started with KB=L after the translation is completed
GIER stops ready for input of innerproduct-code, After input of the machine code
GIER stops for switching off the KB-button, Started again it stops ready for input
of data, after which the computation begins. The first parameter | {<innerp}, in the
procedure call gierdrum ({<innerp}, length) is a code identification for innerpro-

duct , which must be written exactly in this way. To the second parameter | length,

is assigned the number of machine-words in the code.

The determinant of the coefficient matrix is obtained as the value of
CROUT 4 during to first call of procedure.

h, References,

1, Communications of the ACM, 4, 1961, pp.176-77.
2. SA- 10, CROUI ALGOL procedure by 0. Lang Rasmussen 3/6 - 1962
3. SA ~ 14/1, CROUT 2 ALGOL procedure by 0, Lang Rasmussen 5/7 - 1964
4, SA « 64, CROUT 3 ALGOL procedure by 0. Lang Rasmussen 8/7 - 1964
5. SM- 9, INNERPRODUCT procedure by 0. Lang Rasmussen 10/9 ~ 1964

D. Algorithm,

real procedure CROUT 4(n,A, drum j Length exit factor pivot, repeat)3
value n, drum Tiugihsinbebe! n drum length;
real : array Al factor; aEbeeer array | pivots boolean repeat;label exit;
begin

integer 1,j,imax,k,p1,p2 ,P3,P4, gem;
real t rq, det, dettactor;
bool ean array code[1:length];
boolean entry;
gem:= drumplace3

drumplace:=drum3

fromdrum(code) 3;
gierproc(code[2], A pl pees, ph entry);
detfactor:= det be 13

if repeat then goto L1;

for is= 1 step T until n do
begin comment equilibrateAT1: ni: mn+1 |;

q= 05
for j:= 1 step 1 until n do
begin tt= abs (A[1 J ly itt tog then q:= t end;
if g= g= 0 then goto Voxits
factor[i] := tz= 2 4 (-entier(1n(q)/0. 69514718141))3
for j:= 1 step 1 until n+1 do ACi,g]: = Ali, j xt;
detfactor:= detfactorxt;

end equilibration;

por=13
for k := 1 step 1 until n do

begin comment triangularization starts;

% e= (“= O3

p23=k3 pl: =k.13
for i :=k step 1 until n do
begin _
pl s=13

A{i,k] := Ali,k] - gler(entry);
it abs(ALt, «]) > t then
begin bors ‘abs (ALL | k])3 imax := i ends

end;
pivot[k]:=imax;
comment wae largest pivot element A[imax ik] in coluwm k is found;
if imax A k then

begin comment interchange rows k and imax;

‘det := -~det;

for j <= 1 step 1 until nt1 do
begin t := A[k k ds ATk id] t= Al imax Js Alimax,j] := t ena;
end Interchange of rowss

ie if Alk k] = 0 then goto exit;
1/Alk 13

for is=k+1 st 1 until n do
ATi,k] := qx ALEK;
pl: =k3

for j :=k +1 step 1 until n+1 do
begin

per=j3
A[k,j] := Alk,j] - gier(entry)

ends
det: =A[k k]xdet;
end triengulerization;

goto 12;

Lt:

for i :=1 step 1 until n do A{i,n+1] := A[i,n+t]xfactor[i];
p2:snt+l sps:=15

for k:=1 step 1 until n do
begin
$r= Atpivotlk Jn]; Alpivot[k] n+1]:= A[k n+1]3 Alk n+1]:=t3
plr=k; plr=k-13
A[k n+1]:= A[k ,n+1] - gier(entry)

ends
L2:

p2t=nt+1; pl:=n;
for k :=n step -1 until 1 do
begin conment backsubstitution;

ple=k3 p3:=k+1;

A[k n+1] :=(A[k,n+1] - gier(entry))/Alk,k];
end backsubstitution;

CROUT L:= det/detfactor;
drumplace:= gems

end CROUT 4;

6. Innerproduct in code.

[innerproduct in code]
bale

, Co.

qq 10. 3+39. 9441. 15453, 21437. 27437. 33+57. 393 {<innerp}
Yr

[first entry]

[later entries]

aj:

alts

alo:

alt:

ales

aes

ads

ab:
al:

al:

93 $2
l
u
j
o

arn a3

ar al
arn pl
arn(at)
ga alt
et a8
arn(al)
ar (al)
tkm 30

arn pl
sr al

it(p5)
it (p6)
it(p7)
it(p8)
hr stl

arfnmO

xr

mknmO
tkm9

ga a7
arfnmO

ar al

arfnmQ

ga a2

srm1

mkn (al)
tkm9

arfnmO

gt ad
ppm,
bs p

ppmO
arfn pO

mkfmO

arf a9

pp p+
hiv

aq

D

er(p9)
ar al

, tkfm'
,tkm-10

te-1
t-1
gr al

; tkm 10

jar al

;pa ad
pa 2.10

| pa ail

| pa ale

, tkimt

D
ar al

)tkimt

e a8
tkfim'

DX

D

‘ac a8
) tkim-9

ep a6
oe ag

hr sl

tO

ert a9

jhv ad

;Radrs:=jump adress

sentry: =hv-instruction

sarray description
3Radr?=c2=n+2

sali[adr]:=c2
sa0[tel J:=c2
°
a

o

sailadr]:=array length+constant
3;Radr:=adr[last element]+1
3a1[adr]:=basisadr-constant
sa3[adr]:=p1
3a10[adr]:=p2
3al1Ladr]:=p3
3al 2[adr]:=pl
sreturn to ALGOL

3Radr:=p1
3Madr:=pi1

3R18:=ptxc2
;Radr:=p1xc2+basisadr- constant
sa7Ladr]:=Radr
;Radr:=p2
3a8[adr]:=basisadr+p2- constant
a

sa2[adr }:=p3
3Radr:=pd-1, Madr: =Radr
SR18:=(p3- 1)xe2
jaSlfadr }: basi sndr+p2+(p3- 1)xc2.constant
3Rtel f=ph
so5[tal]:=ph a6ladr]:=p
3Pi=p5 a9: =0'
gif ppl then a6 else a7
3;return

3RF:=A[pl ;p]
RF:=A[p1,p]xAlp, p2]
saccumulate product

spi=ptt | jump
shv-instruction , storage for basisadr-constant

jworking cell

QO. Lang Rasmussen.

DANISH ATOMIC ENERGY COMMISSION April 1967

Research Establishment Risg SA - 69/1
Reactor Physics Department 50 copies
Computer Group

Solution of a system of linear equations

ALGOL-procedure: DRUMCHOUT }.

1. Scope.

The real procedure DRUMCROUT 4 written in GIER-ALGOL III solves a
system of linear equations A xX y = b, where A is a scuare matrix of order n,
y is the solution and b the right hand side, both are vectors of dimension n.

The procedure can solve a system with several right hand sides, b,

without repeating the triangularization of matrix A, i.e. it can solve a matrix

equation A xX Y = B where A is a scuare matrix of order n, Y and B are matrices

with n rows and m columns.

DRUMCROUT 4 assumes that the matrix A and a right hand side b are

stored on drum. The solution y will be stored on drum, by the procedure.

2. Method.

The solution is based on Crouts method with pivoting such as described

for procedure CROUT in SA-10/1 sections 2 and will not be repeated here.

DRUMCROUT 4 is equivalent to DRUMCROUT 1 with respect to its action but

most of the arithmetic work is done in machine-code. Special care has been ta-

ken in order to reduce the number of transfers of drum tracks holding the data.

The use of machine-code has resulted in considerably shorter computing

time compared with DRUMCROUT 1.

4.Use of the procedure.

The procedure consists of two parts, the algol procedure and the machine-

code which again is separated in two parts,the first being an initializing se-

cuence, while the second holds the subroutines used in the computations. This

splitting up of the mechine-code is done in order to save place in the stack.

The determinant of the coefficient matrix is obtained as the value of DRUM-

crRouT 4 during the first call of the procedure, with repeat = false. In calls with

repeat = true the value of DRUMCROUT 4 is undefined.

The procedure call must be of the form:

DRUMCROUT2 (n, ta, tb, ty, tf, tp, tr,a1,11,82,12, repeat, exit) ;

where the parameters are:

n: integer, the order of coefficient matrix;

ta:

th:

ty:

tf:

tp:

brs

s1,s2:

11,12:

repeat:

«2 «

integer, the value of drumplace corresponding to the storage on the

drum of the first row of the coefficient matrix A of dimension [1:n,1:n].
This matrix is stored compactly row by row but so that each row starts

at the beginning of a drum track. When stored in this way the values of

drumplace for two elements in the same colummn but on consecutive rows

will differ by a quantity which is divisible by 40(= number of words on

a drum track). The coefficient matrix A must be stored on the drum befo-
re the first call of the procedure. During the first call of the proce-
dure (repeat = false) the elements of A are changed because A is trian-

gulated. The triangulated matrix must not be changed if subsequent calls

with new right hand sides (repeat = true) are wanted.

integer, the value of drumplace corresponding to the storage on the drum

of a real array of dimension [1:n] which holds the right hand sides used

in turn.

integer, the value of drumplace corresponding to the storage on the drum

of a real array of dimension [1:n] which holds the solution vector y. It

may be remarked that the value of ty can be set equal to the value of tb,
in this case the right hand side will be replaced by the solution.

integer, the value of drumplace corresponding to the storage on the drum

of a real array of dimension [1:n] which holds the factors computed and
used in equilibration of the coefficient matrix during the first call
(repeat = false) of the procedure. These factors must not be changed be-

cause they are used in all subsequent calls (repeat = true) with the sa-
me coefficient matrix but with new right hand sides.

integer, the value of drumplace corresponding to the storage on the drum

of an integer array of dimension [1:n]. This array holds the pivots origi-
nating from the triangularization of the coefficient matrix during the

first call (repeat = false) of the procedure. The pivots must not be chan-

ged because they are used in all subsequent calls (repeat = true) with the
same matrix , but with new right hand sides.

integer, the value of drumplace corresponding to the storage on the drum

of an integer array of dimension [1i:n]. This array holds the values of

drumplace corresponding to the storage of the rows of the coefficient ma-

trix A and they are stored during the equilibration process in the first

call (repeat = false of the procedure. These drumplace numbers are permu-

tated during the triangularization according to the pivoting and must not

be changed because they are used in all subsequent calls (repeat = true)

of the procedure with the same matrix, but with new right hand sides.

integer, the value of the standard variable drumplace, when the first

respectively the second part of the machinecode is stored on the drum

by the standard procedure gierdrum (see below). They must not be changed

throughout the program.

integer, the number of machine-words occupied by the first respectively

the second part of the machinecode such as supplied by the standard pro-

cedure gierdrum (see below). They must not be changed throughout the pro-

gram.

boolean. During the first call of DRUMCROUT 4. this parameter must have

the value false. In all subsequent calls with the same coefficient ma-

trix but with new right hand sides it must have the value true.

exit: a label to which jump is made from DRUMCROUT lL. if the coefficient

matrix is singular.

Before the call of DRUMCROUT 4 the machine-code must be stored on the drum.

Assuming that sl has been assigned an appropriate value one writes in a suitable

place in the program using the procedure, the four consecutive algolstatements.

drumplace:= s1; gierdrum (¢<initia}, 11);

s2:= drumplace; gierdrum (<<subrou}, 12);

The procedure administers by itself the transfer of machinecode from the

drum to the fast memory storage.

The first parameters «<initiad, respectively <<subrou> are code identi-

fications for the first respectively the second part of the machine-code. They

must be written exactly in this way. To the second parameter 11, respectively

12 are assigned the number of machine-words in the first yospectively the second

part of the code. This assignment is done by the standard procedure glerdrum.

4. Running time and storage requirements.

The speed of computations depends of course strongly on how the loop struc-

ture of the algol procedure matches with the tracks of the drum on which the pro-

cedure is stored.

The algoi procedure requives 21 crumbvracks, the first pax rt of che machine~

code 51, the second part 54 words in the fast memory storage.

Tests of the procedure with different systems have shown the following compu-

tation times:

order of system computation time

20 32 sec

ho 2 min O sec + 5 sec for every new right hand side

Wy 2 min 26 sec + 7 sec ~ - -

60 lh. min 54 sec + 9 sec ~ - -

80 8 min 50 sec + 13 sec ~ - -

81 10 min 30 sec + 15 sec - - =

2. References.

1. Communications of the ACM, +, 1961, pp 176-77

2. SA-10/1 CROUT ALGOL=procedure February 1967

3. SA-22/2 DRUMCROUT 1 - April 1967

Ole Lang Rasmussen.

6. Algorithm.

comment A.E.K. April the 30th 1967.-the procedure DRUMCROUT 4 written in GIER-

ALGOL III solves a system of linear equations Axy= b with different b as descri-

bed in Sa-69/13

real procedure DRUMCROUTH(n, ta, tb, ty, tf, tp, tr,s1,11,s2,12,repeat, exit) ;
value n,ta,tb, ty, tf, tp, tr,s1,11,s2,12;
integer n,ta, tb, ty, tf, tp, tr,s1,11,s2,12;
boolean repeat; label exit;

begin
integer i, j1,32,j3,k, imax, gem, p,m,r,N3
real t,q, h, det, detractors real array ali:n]; integer array row, pivot[1:n];
boolean el, e2,e3,eh, eB a0s0 boolean array code2[1:12];
gem: ~arumplace; drumplace:=s23;fromdrum(code2) ;
N:=(n:40)x40; if N<n then N; N+;
begin “poolean array codel[1:11];
arumplace:=s1; fromdrum(code1);
gierproc(codei[], code2, e1, e2, 63, elt, 5, e6, j1, 32, 33,n, t)5
gierproc(code2[2],a);
if repeat then go to right hand side;
det :=detfactor: 2=13 “Kista;

begin comment fae array al[1:N];

gierproc(codel [2], a1)
for i:=1 step 1 wee n do

begin

drumplace:= row[i]:=k;fromdrum(al); h:=gier(e1);
if h=O then goto exit;

ali] :=t:=2/(-ent: amhier(lah)/0.693147181+1)); gier(e2);
detfactor:=detfactorxt; drumplace:=k;k:=k+todrum (al);
end i;

drumplace:=tf; to drum(a);
end equilibration;

end code 13

for p:=ko step 4O until N do
Sezin comment — triangularization;

m:=if p=40 then O else 13

k:=p-40;
for k: ak+1 while k<m\k<p do
begin

€:=03, =O ;

beein array al[m:p-40],a2[p-39:p]3
gierproc(code2[4],al); gierproc(code2[6], a2);
for i:=k step 1] until n do

begin

if plo thes peat drumplace : eae i]-N+p-40;fromdrum(al) end;

if kt then
begin

if k- -1>p-39 then a2[k-1]:=a2[k-1]xq else al{k-1]:=al[k-1]xq;

jlisl3 ja:sk-13 j3:=p-40;
h:=a2[k]:=a2[k]-gier(e3);
drumplace:=row[i]- +p; todrum(a2);
if k- -1<p- -39 then begin drumplace:srow[i]-N+p-40;to drum(al)end

end k+1 else hi=all1];
if abs (h)St then begin trsabs(h); imax:=i end;
end i;

pivot[k] =imax;
if imax-tk then

- 5s

begin comment interchange drumplace numbers;

det :=-det;i:=row[k];row[k] :=row[imax] ;row[imax] :=i
end imax+k ;

end;
begin array al[1:p];
gierproc(code2[4],al);
drumplace:=row[k]-N+p; fromdrum (al); t:=al[k];
if t=O then go to exit;det:=detxt;

if k<nthen “~~
begin

r:sif k=p then pt+l else p-39;

peat array a2(k+1l:nJ,a3[r:N];
gierproc(code2[6],a2); gierproc(code2[8], a3);
aint /b3 jl:sk+13; j2:sn; gier(el4);comment set element of array equal to zero;
for i:=1 step 1 until ke] do

begin

drumplace:= row[i]; fromdrum(a3);a[i]:=a3[k+1]; j3:=i13; gier(e5);
end i;

drumplace: srow[k]; fromdrum (a3); gier(e6); alk]:=a3[k+1];
drumplace:=row[k];to drun(a3);

end; end k<n;
end;

end | EG

end p, triangularization;

drumplace:=tr ;todrum(row) ;drumplace :=tp;todrum(pivot);
DRUMCROUT h:adet /detfactor;
right hand side:

drumplace:=tb; fromdrum(a);
begin comment multiply right hand side with equilibration factors;
array fL1:n];
drumplace :=:tf ;fromdrum(*) ;
for i:=1 step 1 until n do ali]:=a[i]xf[il];
end of multiplication; ~
drumplace:=tp; fromdrum(pivot);
drumplace:=tr; fromdrum(row) ;
for p:=40 step 40 until N do
begin comment elimination of right hand side;

array alli:pl3

Fier woul eon 2[4J,al); k:=p-0;
for K:=k+1 while k<m\k<p do

begin

t:=a[pivot[k]];e[pivot[k]]:=a[k]; alk]:=t;
drumplace:= row[k]-N+p; fromdrum(al);
jlisl3 j@:=k-13 j3:=k; alk]:=al[k]-gier(e3);
end ky

end p, righthandside;

for p:=N-39 step -40 until 1 do
begin comment backsubstitution;

arrey al[p:N];
m:sif p-N-39 then nelse +39;

for “Kiam step-1 until p do

besin ~~
drumplace:= row[k]; fromdrum(al);
jl:sk+1; jé:=sn 3 j3:=n+1;

alk] :=(a[k]-gier(e3))/al[k];
end k;

end backsubsitution;

drumplace:=ty;todrum(a); drumplace:=gem;
end DRUMCROUTH 5

7. Machine code.

[machine code to DRUMCROUT 4]

b d/,e5
b b3,¢c5
3codel, initializing, gierproc(codel[4],code2,e1,e2,e3,e4,e5,e6, j1, j2, j3,n,t)
n

el:cl: aq 10. B+ 99457 .15419.21457 .274+37. 33457 . 39;4<initiat, working cell

r

hsp3

gach
hsb3

arc2

arnb1l D

arce

arnbe D

arce

arn m dl

arc]

arn m d2

arc]

arn m d3

arcl

arn m al
arcl

arn m d5

arcl

it(pl1)

arn m d6
arcl

it(pl2)
arn m a7

arc]

it(p13)
arfn(p14)
gach
pac5

G2: hv

b3: it(p)
arn mO te

ar(r-1)t-
tkm30

arn pi
srcl

b al
[greatest element]
bis gpae

grfn cl

c3:al: it mo

ae: ppmo

eh: anfn pO
hv a3 LT

anfa(ch)
ad: pp pti
al: anfn cl
e

D

1
]

,hrsi

,ercl

»er(p5)

,er(p6)

,er(p7)

,er(pS)

,er(p9)

,er(pl0)

»gace

, pa(c2)

y»gace

»pt(c2)

,»gace

» pa(c2)
, tkfm]

,it(p15)
,urs]

, pa r+]

,ercl

, tkm 10

, ors]

» ppm1

»bs p
, hvalt
,snfcl

,erft cl

ynval

urs

“o
e

W
e

W
e

w
e

b
o

W
e

No
o

We

Wo

Wo

We
e

Go

wo

wo

store basis-constant for array al

Radr:= basis-constant for codee

jump order to address code2[1]-1

jump to greatest element in variable e1

jump to multiply with common factor in variable e2

jump to subroutine 1 in variable e3

jump to subroutine 2 in variable elt

jump to subroutine 3 in variable e5

jump to subroutine 4 in variable e6
Radr:= reladr in code2 of order be

store abs.adr. of order be in code 2

store abs. adr[jl]
Radr:=reladr.in code 2 of order 1b2

store abs.adr.of order 1b2 in code2

store abs.adr[je]
Radr:=reladr. in code 2 of order b3

store abs.adr. of order b3 in code 2

store abs. adr[j3]
Radr:= n

store n

store abs. adr[t],return to ALGOL.
hv-instruction, working cell

jstore address of dopevector

3R:=lengthxe/(-39)
3R:=(length+constant)x2/(-39)
3 store(lengtht+constant)x2/\(-9)
jRadr:=last element+1

3; Radr :=basisadr-constant

Ne
o

oe

Wo

we

be

to

we

to

No
e

store p-reg. p:=1

working cell:= 0

if pen then go to next order

retabl.p-reg. jump

RF:= abs(al[p])-abs(c1)
if RF<O then go to aj
if RF>O then store abs(al[p])
p:= ptl, jump
RF:= max abs(al[p]), return to ALGOL

db a2

[multiply with common factor]
bes gp ae >Pp ml

al: it(c3) , bsp
ae: pp mo ,nrsl

arfn(cl)
e5: mkf m0 ,erf (ch)
e2: pp ptt ,hval
e
e

b b7, 08
[code2, subroutines 1,2,4,4]
n
e
r
~ hsb1

gac5 ,ors!
hsb]

gacT , ors]

hsb]

gac6 ,hrs1
hsb1

gac8 , hrs]
bl: it(p4) > pa r+

arn m0 t-1

ar(r-1) t-1
tkm 30 ,ercl
arn pl ,tkm 10
src] ors]

[storing the values of j1, 2, 93,
[a5]b2: arfn mO , tkfm1
[a6] gacl ,arfn m0

tkfml ,gacd
[d7]b3: arfn m0 , tkfm!]

gach ,hrs1

b a2

[subroutine 1, innerproduct 1]
[di]b4: hsb2

gpal »erfnel
ea: ppmo
c3:a2: it m0 ,0S DP

al: ppm , hrs!
@5: arfn pod

ch: it mO~ , bsp
c6: mkf pO V

eT: mkf po
arfel_ ,erfel
ppp+l 5 avae2

e
ba2
[subroutine 2, set zero to array

[d2]b5: hsbe

gpa2 » Pp(c2)
al: it(c3) , bsp
ae: ppmO ,orst

grfn(c6) =, ppp+1
hval

{o
O

I

°
?

°
a

°
>

°
2

?

3

> prs]
if pon then go to next order

retabl p-reg. retur to ALGOL

RF:=al[p]
RF:=al[p]xt, store RF
p:= ptl, jump

B:el:qa 10.34+20.9+38.15+41 .214+50.27+20. 33+18.39;<¢<subrou}, workng cell

store basis-constant for array a

jstore basis-constant for array al

.
3

.
>

°
?

.
2

°
2

°
3

’

°
?

<

store basis-constant for array a2

store basis-constant for array a3

store address of dopevector

R:= lengthx2/\(-39)
R:=(constant+length)x2(-39)
(constant+length)x2/\-9)
Radr:=last element+1

Radr:= basisadr-constant

511]
SRadri=j

°
3

°
3

store jl,Radr:=je

store j2

3Radr:=j3
°
3 store j3, return

store j1,J2, 93,
store p-reg., working cell:=0

p:=pl

if p>je then next order

retabl. p-reg. return to ALGOL

RF:= a[p]
if p>j3 then next order
RF :=a[p]xa2[p]
RF:=a[p]xai[p]
accumulate product

P:sptl, Jump

a2]
store j1 and j2,j3 not used in this routine

store p-reg. p:=j1

if peje then next order

retab p-reg. return to ALGOL

a2[p]:=0
jump

b a2

[subroutine 3, innerproduct 2]
[d3]b6: hsb3

gpal » ppmO
ar(c7) D
tkm-10 ,eba2
pp(c2)

a3: it(c3) , bsp
al: ppmO ,orsl

c8:a2: arfn po tik £mO
arf(c6) ,ert(c6)
Ppp+1 »hvad

e

b a2

[subroutine 4]

[ah4]b7: gpa2 » PP(c2)
al: it(c3) , bsp
a2: ppmO ,ors!

arfn(c8) ,srf(c6)
grf(c8) » Ppp+

el: hval
e

Ne
o

Wo

We

We

Wo

Ve

We

We

we

wo
e

°
3
°
3
°
?
°
2
°
?
e
3

Radr:=j3
store p-reg. p:=0

Radr:=absadr al[j3]
absadr al[j3]
p=Jl

if p>je then next order

retab. p.reg. return to ALGOL

RF:= a3[p]xa1[j3]
a2[p] :=a2[p]+al[j3]xa3[p]
p:=ptl 3 Jump

store p-reg. p:i=jl

if p>je then next order

retab.p-reg.return to ALGOL

RF:=a3[p]-a2[p]
a3[p] :=RF

Jump

dl =bl.-c1+1, d2=b5-c1+1, d3=b6-cl+1, d=b7-cl+1,
A5=b2-c1+1, d6=d5+1 , d7=d6+2
e

e5: hsm]

n
h kompud/3
3c

he

qo e1.19+e2.39

hs 1

h kompuda/3
4c

he

qa e3.19+el. 39
zq O

S oO M1

[
M
}
O
l
O
!
}

DANISH ATOMIC ENERGY COMMISSION September 1967
Research Establishment Risg SA - 81/1
Reactor Physics Department “25 copies.
Computer Group.

CE ee

ALGOL-procedure CHEBAPPROX.

seine

1. Scope

The procedure approximate a discrete'function y[iJ=f(x[1]) 1=1,2...m,
defined on a closed interval x[1] < x[i] < x[n] by a set of m points (x{4],yltl).
The approximation is given as a finite serie of the form

y= f(x)= (afo]/2) x TOo(u) + ali] x T1(u)+ ee ee t-aln] x Tn(u) (1)

with us (2x x - x[m] - x[1])/(xIm] - x[1]), -«l<us 1, -xf1] <x < x[m].

Tj(u) ts the Chebyshev’ polynomials of order j, j =0,1 225. ee ef, which are de
fined on the interval ~« 1 <u < 1.:

The procedure computes the coefficients a[0], a1], eees,aln] and the appro-
ximation is characterized by the fact that the absolute value of maximum deviation

“ef the approximation from the given point set (x[i],y[1]) is minimum.

eee hk eee

Sing of the theouiy,:

The theoretical background for the procedure is the second algorithm of Remez.
We seek a vector ¢c such that the maximum norm on an interval [a,b] of the function

r(x)= f(x) - P(x) = f(x) = (cl x g(x) + c2x g2(x)+ so. + enxen(x)) is minimum.

The set of functions ei(x),i = 1,2, seen, is assumed to satisfy the Haar condition:

tT. gi(x),1= 1,2 eeeeN, are continuous on [a,b]
260 any set of n vectors of the form

[ei(x), 22(x), eos. en(x)]
is independent, Expressed otherwise, each determinant,

21(x1) e@ececooo en(x1)

D[x1,x2,..xnJ= |. s si

oO

(2)

@1(xn) eceece . n(n)

for distinct x1 ,%2566eseXMe
We will show that all determinants D[x1 x2, eoeeexn} with x1 < x2 < ..560. xm

have the same sign,

The proof follows that given in (ref.[1]).
We assume the converse i.e, that there exists two sets

- 2a

X1 < 2 < eecovee < x, and YI < y2 < wooceee < yn

for which we have

D[z1y XB, csedavecs skh] <0 < Diyt, yS seeeeesoeeeayn

Since D is continuous in the variables there exists ak, (0 <k <1) such that

D[k X x1 + (1-k) X yy ceenncoonoook X xn + (1-k) X yn] = O

From the Haar condition is then follows that

kX xi + (1-k) x yi = k xX xj + (1-k) x yJ

for some distinct 1 and j. Hence xi - xj and yi - yj must have opposite signs
which contradicts our assumption regarding xi and yi. This proves the proposition,
According to the alternation theorem (ref[1]) the necessary and sufficient condition
for that P(x) is the best approximation to f(x) on a given subset X in the interval
[a,b] is, that r(x) exhibits at least n+1 alternations on X. i.e. r(xf[i])=-r(x[i-1])
=+||r||for 1=1,2n+1. x[i] is a nember of X and [|x| |= max |xr(x)], .

Remez’? algorithm proceeds as follows:
Starting with an arbitrary set X of n+1 elements (points) in the interval

[a,b] we can compute a vector c for which max [e(xi])) ts minimum, From the
alternating theorem follows that r(x[i]) are of equal magnitude | r| | but of
alternating signs. Then we seek a new subset Y such that |r(y[i])] > ||r| lana
of alternating sign. It should be remarked that r(y[i]), the deviations in the
new subset, are not necessarily of the same magnitude. This completes the first
computing cycle. In the next cycle we use the subset Y in place of X.

The successively generated P(x) can be shown to converge uniformly to the
best approximation (ref[1]).

Application,

We now apply the theory on the discrete problem. As our g - functions we
take the Chebyshev polynomials Tj(x) and the elements of the e vector is denoted
by alo]/2, ali], eweeealnl, :

The computation of the coefficient a[i], i = 0,1,2 ...n is done by repeated
solution of a linear system of order n + 2 with n + 2 variables,

The equation systen to be solved is of the form:

so pant xt tener fatty) + eooee tanxTn(x[1])+d=y1] (3) a0/exTo(x[2]) +aixtt(x[2]) + +amTn(x[2])-d=y[2]

“@ @ © @ oe ‘@ “e*@*e"e@ @*e9~-e 6© © © © a 5» © © © © -0 0.6 © @

o e@ @ @ @'e@“e*'e@*e@*e' e0 © © © © © © © © 8 © © 6 8 © 6 © © .06

a0/exTo(x[n+2]) +a1xT1(x[nt+2])+ .ocee +anxTn(x!n+27)-(-1)A(nt2) d=y[n+2]

where .
x[1] < x[2] <6. < xli] < x[t43] <..... < x[m2] (4)

are the refererice points, The n+2 unknowns to be found are a0/2, al, an and
the deviation d in the reference points.

It can easily be verified that the system of Chebyshev polynomials [T0(x),
T1(xX), »seeeIn(x)] satisfy the Haar condtion and that the determinant

5%

TO(x[1]), T1(xl1]), Te(xl1]), cecccccevcccses met +1
To(xf2]), Ti(xl2]), Te(xl2]), ceccccccccceoee T(x[2]) = (5)
oe ee @ @ @ @ & © ee ee © @ e@© © @ @ © © 8© © © © © & © © © © © © © © © © @ @ 40,

e e e e e e e e e e 6 e e e e e e ® e e s e ® e e e e e e e @ e e e e oe @ e

To(x[n+2]), T1(x(n+2]), T2(x[nt+2]), weccccccccoee Tn(x[n+2]) =-(-1) A(nt2)

Since x A j, 0 < j <n can be written as a linear combination of Ti(x), 0 <i<d;
it is easily verified that the determinant in (5) can be transformed to

1, xl1],; x[1]h2, x[1]An,; +1
D= 1, x[2], xflel4e, x[2]An, -1

1, x[n+2], [n+2]h2, x[n+2]An, -(-1)A(n+2)

We observe that any of the n+1 minors of order n+1 which is a cofactor to the
elements in the last columm is a Wandermonde - determinant which is + O because
of (4), Every subset of n+1 different row vectors of dimension n+1 (1, x[1],
x[i],2, .eoe0, xli]An), i= 1,2 ... nt+2, thus satisfy the Haar condition, and
as shown above these minors all have the same sign.

Let M be the minor which is cofactor to element i in the last column we
find for the determinant D in (6)

(6)

D= (41) x (M14M2 + 2.00006 + Mnt2) +0

Hence also the determinant in (5) is + 0
Starting with a set of n+2 approximately equally spaced reference points

the procedure computes a set of coefficients alil, deswe Ogly: sews He

Then the deviations from the approximation are computed for all m points.
In the reference points the deviation d has alternating sign but same magnitude.
Among these m point the procedure selects those n+2 points in which the devia-
tion with alternating signs are numerically greatest. Some of these may be

the old reference points, These points work as new reference points,
In every computing cycle a set of values alO],. ali], ... aln], d is compu-

ted. The absolute value of d (the reference point deviation) is increased from
one cycle to the next. At the same time the absolute value of the maximum deviation
in the m points is decreased,

The iteration stops when the absolute value of d equals the absolute value of
the maximum deviation or when the absolute value of d reach its maximum.

3. Use of the procedure.

The procedure call is of the type.
CHEBAPPPROX(n,m,x,y,a maxdeviation) 3

where —stttrres

ns integer is the order of approximation,
m3 integer'is the number of points (x,y)
x real array x[1:m] contains the abseissae, and
yi real array y[1:m] contains the ordinates of the m points
as real array alO:n] contains the values of the coefficients

in‘the Chebyshev approximation computed and stored by the procedure.
maxdeviation: real contains on exit the maximum deviation in the m points.

The n and m must satisfy the inequality m > n+2.
The points (x,y) must be stored with increasing values of x, i.e. x[1] <

x[2] < sceee < x[{m-1] < x[m]:

In order to test that these conditions are satisfied the programmer can

insert a small testprogram immidiately before the call of the procedure. Such
a testprogram can looks as follows

if‘m'< n+2 then
begin
outtext ({<error:number of points too small or degree of approximation too large}) 3
goto end of program;
end ' oe ee eee eae sh eee

begin integer ‘13 boolean error; error:= false
for i:= 1 step 1 witil m m=-7 do
at’ TF x4] > x[i+1] ‘then™

ere ae

begin error:= true$
outtext (4<
error: x[3 output ((4nd) outtext (¢<] Slt) 5 output (4nat,1+1);
outtext (<1)
ends me

if error then sake end of programs

ends —

When the coefficient alo], ali],aln] has been found we can compute
corresponding values of x and y by (1). This am be done by SA-96.

4, Reference

[1] EW. Cheney: Introduction to Approximation Theory. Me. Graw Hill 1966,

QO. Lang Rasmussen,

eb eee ee eee

bbe ee tee

procedure CHEBAPPROX(n,m; x;y a,maxdeviation)$ fates
value n,m$ ‘integer n,msreal maxdeviation;real array X,y,a3
begin comment A.E.K, - September 1967.This pr procedure fits as described

in SA 81/1 a discrete function given as m points (x,y)
by a Chebyshevapproximation of order n:
y=a0/2+a1xT1 (x)+a2xT2(x)+.eeee05 +anXTn(x)
where Tn(x) is the Chebyshev-polynomial of degree n and
an the corresponding Chebyshev coefficient. This fit by
Chebyshev polynomials is the best approximation in the

. Chebyshev sense'i.e. in the 'Chebyshev-norm;
real’ L-ppaydy maxd; integer array IN[O:n+3]sarray b[1:n+2]3
begin: comment starting reference points} —
integer 13

T= (me1)/(n+1)3
iNine] := IN[n+2] := m3 IN[O] :
for i := n+1 step -1 until 1 do Nt): =(i-1)xq+13
pra(arindexl TO, 53a:=(xlm] -x[T])x0.53
end starting reference points;

maxd:=0$3
starts: tcc!
begin comment computation of the Chebyshev coefficient and the deviation

“ in the reference points by solving a linear system of n+2
sees equations with n+2 variables;

real array A[1:n+2,1:n+2]35
begin comm comment compute” coefficient matrix and the right hand side3
real c,u0, eh ge integer T,Jsk3
a:=13 ©

for'i :=1 step 1 until n+2 do

begin

kisIN[i]3‘e:s= Ox(xfk]-p)/as Ali, 1]:=13ul:s0su2s5-13
for'j:=2 step 1 until n+1 do -
begin ud 350xu1-u23 us u2s=ul$3 ul:=uds3 sA[i, jg] s=cxutxO. 5-u23end 3
Ali,n+2] s=dsd:=-dsb[i]:=y[k]; ~~
end 13

énd' coefficient matrix and right hand side;
begin: comment solution'of the linear system}
integer "d5dsk> imaxsreal h,t3
for'k:=1 step 1 until n+2 do
begin comment triangularization starts3
t'3=03 Hee

for: isk step 1 until n+2 do

begin

he:= Ali,k]g¢° tee
for j:= 1 step 1 until k-1 do h := h-Af[i,j] x ALJ] 5
Ali,k] := hy" cuhes
if abs(h)>t then begin t := abs(h)3 imax := i end;
end i; ~~
if imax + = k ies
begin shes

for t:=1° step 1 until nt2 do
begin comment interchange rows k and imax$

t:= Alk,i]s Alk,i] := Alimax,il; Alimax,i] := ts
end interchange of rows?

t:=b[k] sb[k] :=bL imax] sb [imax] :=t3
endimaxics

:= 1.0/Alk, x]s renee
or i:=k+1 step 1 until n+2 do 5 Alt, Adie hxAli,k] 3”
pas :=k+1 step 1 until n+2 do
ee
hess Alk,i]s¢- ct
fon ji=1 step 1 until k-1 do h t= noAlk, 3] x Alj,ls
Alk,il: = hs

end ig *') ttt hts
hi=b[k]3for j:=1 step 1 until ‘Ke do 5 hichealle, jlxb[jlsb[k]:=
end triangularization; |
for: k t=nt+2'step -1 until 1 do
begin comment backsubstitution for Chebyshev coefficients and the devia-

tion d3

hessblk]3 ct
for j:=k+1 step 1 until n+2 do h i= nal, 3] xb g]s
bik] :=h/Alk,k]3
end ks

dET]:=exb[1]3 d:=b[n+2]3
end solution of linear system3 -

end‘ ¢hebyshev coefficients; -
begin: comment compute 'deviations'and new reference points$ |

real’: array TEism]s: integer’ imaxjreal Tmax3 '''''''
begin comm comment deviations; mer cy UO 91 yul,u23 integer i,j,k,s3 -
Tmax:=03 s:=l3k:=IN[s]$ TS
for'i := 1 ES t until m do
begin se teyoeens

If ‘T#kAs<n+2 then begin T[i]:sdsd:=-d3s:=s+13k:=IN[s] end else
begin —

u2':= ul := Osic':= 2 x(x[i]-p)/as3

h'
fo

for'j := n+1 step =1 until 2 do.
begin ~
uO':=blj] + ¢ xX ul - u23 v2 r= ul3 ul := ud
end j3

PET] s=y[1]-((o[1]+exu1)x0. 5-u2) 3
end else-statements‘‘'' ‘'''' mo

If “Tmax< abs(T[i]) then begin Tmax := abs(T[i]); imax := i end;
‘end i; ~—

if “Tmax=abs(d) then ay thee 0 mane
bégin maxdeviation:=Tmaxsfor i:=0 step 1 until n do > aftlsepiter]s .
goto END: ends
if d+to'then
begin if “Sbe(a)>maxd + then
begin maxd:+abs(d) smaxdeviation:=Tmaxs -
for T:=0 step 1 until n do al[i]:=b[i+1]3.
énd else goto END ends ~~
end ‘deviations;
begin: comment new reference'pointss ttt"

integer i i,j,k, imin, jmaxsreal Ti gtd, exbremumisooleantounds
jt=03 found: =false;

for j:=j+1 ‘while . jxn+2A-, found ‘do
if “In[j- 1]<immaxAi max<IN [5+] then
begin comment an interval: containing T{imax] is found;

if ‘TTINTJTIxT[imax]>0 then begin found:= =true3 jmax:=j end else
begin comment TLIN[j]] and T[imax] are of opposite sign;
if ‘imax<tIN[1] then
begin comment 'thove the'xeference point set to rights'

for 1:=n+2' step -1 until 2'do IN[i]:=IN[i-1]sfound:= =trues jmax:=J3
end’ else’ it’ “fmax>IN[n+2 | then
begin comment move'the reference point set to lefts:
for I:=T step 1 until n+1 do IN[1]:=IN[1+1];founda: nT
end} ends end$

IN[jmax] :+imax;
if‘d4o then is, wnaiie se ms
for j:+jmax+1 step 1 until n+2, jmax-1 até “1 until 1 do
begin comment after having placed a reference point in the point of

maximum deviation we proceed by changing the position of
the remaining reference points;

k:#IN[j]3Tj:=T[k] 3 extremum:=abs(Tj)simin:=IN[j- 1]simax:=IN[j+1]3.
for'i:=imin' step 1 until imax do ~
begin comment the deviations T[imin] and T[imax] being of the same sign,

we look for the maximum deviation of opposite sign,T[i],the
point of which is the newreference point IN[j]3

Ti:=T[i];
AfTIxTj>O then © tt ttt .p THe ENS
begin if abs(Ti T)>extremun 4 then 1 begin extremum:=abs(Ti)sk:=1 end ends
‘end i3 —
INTj1:=
end Jd

end new reference points;
end deviations and new reference points;

goto' start;
END: end CHEBAPPROX3

~—cnd_of_presrem;~

BANISH ATOMIC ENERGY COMMISSION November 9th 1965

Research Establishment Ris¢ SA - 85

Reactor Physics Department 50 copies

Computer Group

Petermination of a real zero of a real function

ALGOL-procedure;: HYPAR.

1, Scope.

The following béolean procedure determines with prescribed accuracy

a zero of a real function in a prescribed real interval. If the values

of the function at the end points of the interval differ from zero and

have the same sigma, the value of HYPAR will be true, otherwise it will

be false.

The zero is found iteratively: The function is approximated by a

hyperbola with a vertical asymptote. This gives a four point iteration

scheme, which is used, if the four previous points are on the same

branch of the hyperbola. Otherwise parabolic interpolation is used.

If the actual convergence rate twice in succession is lower than that

corresponding to bisection, this latter method is used.

The two extra points needed to start the process are generated

by means of bisection and parabolic interpolation.

The iterations are stopped, when the horizontal distance from

the last point to a point on the other side of the x-axis is less than

the input parameter eps.

3. Use of the procedure.

The procedure will be copied into the program where the following

comment is written:

comment library HYPAR3;

The procedure call must have the form:

HYPAR (F,x,y,d,eps)3

~2.

F is the name of a real procedure (with one formal parameter)

determining the function for which a zero is wanted.

x is the name of the zero (a real variable). The value of x must

equal a first approximation to the zero,

y is the name of a real variable, whose initial value must be F(x).

d is the name of a real variable, whose initial value is determined

in the following way:

abs(d) is the accuracy with which x is thought to be known, so

that simple functioning of the procedure is obtained, when a zero is

situated in one of the intervals (x,x+d).

sign(d) is determined so that d has the same sign as the function

values immediately to the left of the zero.

eps is the (real) accuracy wanted for x; a relative accuracy

rel way be prescribed by inserting rel x (name of zero) in the

place of eps in the procedure call.

It is suggested that one should use the first part of HYPAR for

finding an interval containing a zero in case one has no a priori

knowledge of such an interval.

For instance one might use the following statements to find a

smallest zero z to the right of some point x1, when it is known

that the distance between z and the next zero is greater than a certain

function (assumed, for simplicity, nondecreasing) f(z)>0, and that

Z<x2:

x:=X13 yi=F(x1); s:=sign(y);
for d:=f(x)xs while HYPAR (F,x,y,d,relxx) do

begin if x>x2 then goto Abrahams skgd end;

The idea of using some variables (x,y and d) as both input and output

parameters is due to Erling Jensen.

4 Reference.

For a further discussion of this and related methods see

Regnemaskinememo No 11.

5, Algorithm.

boolean procedure HYPAR(F,x,y,d,eps)3

real x,y,d,eps3

real procedure F3

begin
real x1,x2,x3,x4,y1,y2,y3,y4,A,B,C3

integer p;

HYPAR:=false;

X1:=x3 yl:sys3

if y=0 then goto out;

x2:=x:=x+dxsign(y); y:sy:=F(x)3

if y=0 then goto out;

if yixye>0 then begin HYPAR:=true; gote out end;

x :=(x1+x2)/2;

y := F(x)3
if y = 0 then goto out;

XI:=KX23 yI:aye;

if sign(y) = sign(y2) then
begin x3 :5x13 x1:=x23; yS:syl3 yl:sye23; end;

x2:=xX3 ye := y3

da := abs(x3-x2);

p:=05

goto pars;

hypar :

A r= (yl=yh)x(y2-y3)x (x1 -x2)x(xb-x3)+(x3-x2)x(x1=xlt)x(y1 -y2)x(y4-y3) 3

B i= (y1X(x3-x2) -y3x(x1-x2))x(y-y2)x(x1-x2)x(x3-x2)

+(yhx(x3-x2)-y3x(x4-x2))x(y2-y1)x(x3-x2)x(x4-x2)

+(y1x(xl-x2) -ylx (201 -x2))x(y2-y3)x(x1-x2)x(xbb-x2) 5

Cr=(X1 =x2)x(x3-x2)x (x4--x2)xyex((x4-x3)x(y1-y3)+(x3-x1)x(yl-y3))3

if sign((x1-x2)x(y3-y2)+(x3-x2)x(y2-y1))

+(if (x4-x2)x(x3-x2)<O then sign((x1-x2)x(yl-y2)+(xh-x2)x(y2-y1))

else stgn((x4-x2)x(yS-y2)+(x3-x2)x(y2-ylt)))
then

par:

begin
x4 :=x23

A = (y2-y1)x(x3-x2)+(y3-ye)x(x1-x2);
B:=(y2-y1)x(x3-x2 e+ (y3-y2)x(x1-x2 23

C:=sy2x(x1-x2)x(x3-x2)x(x3-x1)3

ends .
y :=B/2-4xaxc;

if y<O then y:=0 else y:=2xC/(Btsign((x3-x2)xC)xsqrt(y));
if abs(y)>d/2 then

begin if p-1 then yia(x3-x2)/2; p:=1-p3 end else p:=05
if yx(x3-x2-y)<O then y:=(x3-x2)/2; x:=x+y;
d := abs(x2-x)3

x4:=x13 ylheisyl;

y := F(x);

ify = 0 then goto out;

if sign(y) = sign(y3) then
begin

1 ra
 iv
)

re
o x] ss x33 x5 ¢s

yl := y33 y3: u S<
 fo

No
o

6, { %S Ne
o Ss { = ye;

X2:=x3 ye := y;

if abs(x3-x2) < eps then goto out;

if d>eps then goto hypar;

if F(xt+epsxsign(x3-x2) x y< 0 then goto out;

d :=(x3-x2)/2 x sign(y);

for x :=(x+x3)/2,x+dxsign(y) while abs(d) > eps do

begin d := 4/23 y:sF(x); ends

out:

end of HYPAR ;

G. K. Kristiansen.

DANISH ATOMIC ENERGY COMMISSION December 20th 1965
Research Establishment Risg sa- 86
Reactor Physics Department 25 copies
Computer Group

Solution of algebraic equations

ALGOL = procedure LEHMERNEWTON.

1 Scope.

The procedure LEHMERNEWION solves an algebraic equation of order n

with complex coefficients

P(z) = afn]xzjn + a[n-1]xz}(n-1) +2. + all]xz + a[O] = 0

where z =x + iy.

2 Method.

The procedure is a combination of the procedure LEHMER([3],[4]) ana
the fast iterative Newton process. By means of the Lehmer procedure a circle
is found, which contains only one root in its interior. Then the root is com-
puted by Newton iteration.

The theoretical backgrund of the method is the lemmas of Cauchy and Rouche

which is stated below without proofs as they can be found in every standard text-

book on complex analysis.

Lemma 1. Let C be the unit circle, then

1'(1/(z-a) jaz
Je

2i if fal <1

#’

[ovteanes
. Cc

ul Oo
 if ja] >1

where the integral is taken along the unit circle in the positive sense.

Lemma 2. Let P(z) be a polynomial with no roots on the unit circle C. The

number of roots of P(z) inside C is then given by

(1/2ra)] (P1(2) P(e) ae
a

where P1(z) is the derivative of P(z). Multiple roots are counted according to
their multiplicities.

Lemma 3. Let P(z) and Q(z) be two polynomials such that

|P(z)| < ja(z)| for |z| = 1

then Q(z) and P(z) + Q(z) have the same number of roots inside the unit circle
(Rouche s theorem).

By means of these lemmas D.H. Lehmer has developed a powerful method for

finding the roots of a polynomial. The description of the method is a little
complicated and the reader is recommended to study the original work of

D.H. Lehmer [1]. For a short introduction to the method the reader may consult
[2]. In what follows an outline of the method will be given in order to clarify
the computational process.

The circle

la-c | 23

ean by a linear transformation

Z= rxzl +c

be transformed into the unit circle. If a polynomial f(z) has a root, a, inside
the circle |z-c| < r then the polynomial

e(z1) = f(rz1 +c)

has the root

b= (a-c)/r

where |b| <1, i.e. inside the unit circle, then our problem to find a root
inside a given circle can be replaced by the problem of finding 4 root inside

the unit circle.

Given the polynomial

g(z) = aln]xzAn + a[n-1]xz/(n-1) +.........+ all]xz + a0]

where we assume g(0) + 0 (otherwise g(z) has the root z = 0). We form the poly-
nomial

G(z) = z\nxe(1/z) = alO]xzjn + all]xz\(n-1) +......+ a[n-1]xz + afn]

where the coefficients a[0], al1],....,a[n] are the complex conjugates of those
of g(z) in reversed order. The polynomials T(g(z)) given by

T(g(z)) = alO]xe(z) - afn]xG(z)

is certainly of lower degree than g(z) because the coefficient of z/n is zero.
It is easily verified that the constant

a[0]xa[0] - aln]xaf[n]

is real. If T(g(0)) 4+ 0 we can form a new polynomial

T(T(e(z))) = Te(e(z))

from T(g(z)) in the same way as T(g(z)) is formed from g(z). T2(g(z)) again
is of lower degree than T(g(z)). Continuing in this way we obtain a finite
sequence of polynomials

T(g(z)), T2(e(z)), T3(e(z)), .-..--. » Tk(g(z)) (1)

where 1 <k <n and

We will denote by di the degree of Ti(g(z)) so that

n= dO > dl > d2 > sasessss > dk >0

Lehmer has proved the following lemma

Lemma 4. Let g(z) be a polynomial of degree d with no root on the unit circle C

and m roots inside C. Let T(g(0)) 4 0. Then T(g(z)) has no root on C and has m or

d = m roots inside C according as T(g(0)) is positive or negative.

Based on these four lemmas Lehmer has proved the following

THEOREM.

Assume that g(0) 4+ 0. If for some h > 0, Th(g(0)) < 0 then g(z) has at

least one root inside the unit circle. Otherwise if Ti(g(O)) >O for 1<i<k

and T(k-1)(g(z)) is constant, then g(z) has no root inside the unit circle.

The detailed proof of this theorem is found in [1]. It shall be emphasized

that the theorem says nothing about the existence of roots inside the unit circle
in the case that the constant therm in one of the polynomials in (1) is zero.

Assuming that g(z) of degree dO has m roots inside and no roots on the

unit circle (this can always be arranged by an appropriate chose of the
circle which shall be transformed to the unit circle). Assuming that there

is a minimum h such that

Th(g(0)) <0 (2)
2

Ti(g(0)) >O forO<i<h

Then applying lemma 4 in turn to the polynomials

a(z), T(e(z)), T2(e(z)), «+-.-., T(h-1)(a(z))

which are computed such that their degrees form an arithmetic progression

with the difference -1 starting with dO, we conclude that each of these poly-

nomials has m roots inside C. Applying the lemma once more to T(h-1)(g(z))

we Observe that Th(g(z)) has d(h-1) - m roots inside C. Since dh is the num-
ber of roots of Th(g(z)) we have

dh > d(h-1) - m
or ~

m>a(h-1) - dh >0

i.ew mM> 1.

Hence g(z) has at least one root inside C. If now dh = 0, i.e. Th(g(z))
is a constant which according to (2) is smaller than zero then T(h-1)(g(z))
is a polynomial of degree 1 and has only one root which is inside C. From

lemma 4 it follows that also g(z) has only one root inside C.

The procedure makes a systematical search for roots in the complex plan

starting with the unit circle around origo, such as described in [1], [3].

Having thus found a circle which contains only one root this is finally com-

puted by Newton iteration. During this iteration it is tested whether the

iterands all stay within the circle found, otherwise the circle is decreased

by repeating the Lehmer procedure. When a root is found it is refined by a

Newton iteration in the original equation before it is removed from the

ecuation. The procedure then continues the search for the next root. The

roots are found roughly in order of increasing modulus.

4. Test of the procedure.

The procedure has been tested on several polynomial equations both

with real and complex coefficients. The use of Newton iterations in connec-

tion with Lehmer s method has resulted in a faster procedure than the pure
Lehmer procedure. It has been observed that the speeds are increased with a

factor up to 6

4. Use of algorithm.

The procedure call must be of the type

LEHMERNEWTON(n, A, tol) ;

where

n :; declared as integer is the degree of the polynomial P(z)

A : declared as real array A[O:n,0:1] contains the complex coefficients.
The real parts of the coefficients are stored in a[0,0],a[1,0]......
A[n,O] and the imaginary parts in A[0,1],a[1,1],......A[n,1]. The co-
efficient a[O] is stored in a[0,0],a[0,1],a[1] in a[1,0],a[1,1],....,
a{n] in A[n,0O],a[n,1].
The roots found by the procedure are stored in A such that the first

root is stored in A[n,O],a[n,1], the second in A[n-1,0],A[n-1,1],....
the nth root in a{1,0],a[1,1]. The real part of a root is stored in an
element of A with second index 0, the imaginary part in an element of
A with second index 1.

tol: declared as real is a measure of the accuracy of a root. When the ith
approzimation z[i] to a root has been found and the(i+1)th approxima-
tion z[it+1] is known to be found within a circle with z[i] as centrum
and tol as radius then z[i] is accepted as a root. If tol is chosen

too small the procedure will come to an end when it is looking in vain

for a root.

5. Reference.

[1] D.H.Lehmer, A machine method for solving polynomial equations, Journal

of the Association for Computing Machinery vol 8,pp 151-162. (1962).

[2] Selected Numerical Methods, chapter IV,pp 278-280 publ. by Regnecen-
tralen, Copenhagen 1962.

[3] Ole Lang Rasmussen: Solution of polynomial equations by the method of
D.H. Lehmer, BIT 4, pp 250 - 60. (1965).

[4] Sa-34, LEHMER, February 26th 1964.

6. Algorithm.

procedure LEHMERNEWTON(n, A, tol) ;
value n,tol;integer n;real array Asreal tol;
begin comment A.E.K. december 22th 1965 =the procedure LEHMERNEWTON finds

approximate values for the roots to a polynomial equation P(z)=aln]xzAn+
a[n-1]xz/\(n-1)+...+a[1]xz+a[0]=0 with complex coefficients as described in
SA-86.The procedure is a combination of two procedures, the Lehmer-procedure

for an effective localization of a root and the fast Newton iteration process.
The Lehmer procedure is developed in accordance with the method devised by

D.H.Lehmer described in Journal of the A.C.M. volume (1961) pp 151-162.
The parameters are:

n: degree of the polynomial equation.
At array of dimension A[O:n,0:1] containing the complex coefficients a[n],

a[n-1],.....a[1],a[O] which are stored according to the following rules.
Re(a[k]) in a[k,0]
Im(a{k]) in a[k,1] forn>k>0O
The roots z[1],z[2],....z[n] will be stored in A according to the same
rules and such that the first root found will be stored in A[n,0],a[n,1],

the second in A[n-1,0],A[n-1,1],etc......the last in a[1,0],a[1,1].
tol: parameter giving the tolerance of the solution. If z is some approxima-

tion to a solution then this approximation is accepted if the next ap-
proximation shall be found within a circle with center z and radius r
where abs(z)xtol>r;

integer m,i,k,p,q3
real S,xc,yc,r,r1,r2,al,a2,a3,newxc,newyc, temp;
real array a, b[O: n,O; 1];
boolean Bl, B2;

procedure SYNDIV(m, b,x,y,r,B);
value m,x,y,r; integer msreal x,y,r;real array b;boolean B;

begin comment The procedure SYNDIV is used with B having the value false when
a root to the polynomial equation P(z) = O has been found and shall be removed
from the equation. When B has the value true then SYNDIV makes a linear trans-
formation of a polynomial f(z) within a circle with center (x+iy) and radius r
to a polynomial g(z) within the unit circle;
integer i,j,k; real g,s,t,u,v3
aq s= 1;

if B then k:=m else k:=0;

for i:=0 | step] “until k do

begin s:=t:=03
~~ for j:=m step -1 until i do

begin u:=b[j,0]+xxs - yxt; vi=b[j,1]+xxt + yxs;
bl j,O0]:=s:=u; bl j,1]:=t:=v;

end j3

if B then begin b[i,0]:=uxq;b[i, 1] :=vxq3q:=qxr end;
end i;

if -,B then for j:=0 step 1 until m-1 do
begin b[j,0]:=b[j+1,0];b[3, 1]:=bL j+1, 1 Jena;
end SYNDIV;

procedure T(m,c,d);
value m; integer m; real array c,d;
begin integer j;

for j := 0 step 1 until m do begin c[Jj,0]:=a[Jj,0]; clj,1] := alj,1] end;

end Ts;

integer procedure ROOT(m);
value msinteger m;

begin comment The integer procedure ROOT(m) constitute the central part of

the algorithm. If the constant term in the polynomial g(z) is zero then g(z)
has the root zero and ROOT will be assigned the value 1.If the constant term
is different from zero then the procedure computes the coefficients in the

finite sequence of polynomials T(g(z)), T(T(g(z))),...- in turn and by examin-
ing the signs of the constant term in each of these polynomials answers the
fundamental question whether the polynomial equation g(z) = 0 has a root inside
the unit circle.If the answer is affirmative ROOT will be assigned the value 2

if there is only one root and the value 3 if there are more than one root in-
side the unit circle. If the answer is negative ROOT will be assigned the va-
lue -1.In the case that the constant term in one of the polynomials is zero
Lehmers theorem gives no answer to the question and ROOT will be assignedthe

value 0;

integer q,i,imax; real al,a2,a3,al,b1,b2, b3, bl;
if a[0, oj-ovalo, 1]40 Then
begin

for q:=m step -1 until 1 do

begin

al:=a2:=abs(a[0,0]) + abs(a[0,1]);
for i:=1 step 1 until q do
begin comment The coefficients for the polynomials computed by ROOT(m) are
apt to become either very large or very small in absolute value, so that they
can have values beyond the range of numbers for the computer used. In order to

refute this eventuality the coefficients are divided by a common factor. Let a
norm of a complex number be defined by | |z||=||x+iy| |= |[x|+ |y|. Find for the
actual polynomial the coefficients with the greatest and smallest norms and.

find the greatest power of 2/Ap (p integer) lesser than or equal to the square
root of their product. This power of 2 is the factor used in this context;

ad:=abs(a[i,O]) + abs(ali,1]);
if O<a3\a3<al then al :=a3;
if a3Z>a2 then a2:=a3;

end;
= O/\(-entier(1n(sart(al)xsqrt(a2))/0.693147181));

for i :=0 step 1 until q do

begin ali, OJ:=a[i,O]xa sali, 1]:safi,1]xaZ end;
comment Compute the coefficients in the sequence of polynomials T(g(z)),
T(T(e(z))),.-..
imax:= q:23 al: :zaf0, ‘on; a2:sa[0,1];a3:=a[q,O];a4:=alaq, 1];
a[0,0]: mal /2+a2\2-03\2~aly\2;

a[0,1]:=a[q,0]:=alq,1]:=0;
if a[0,0]>0 then
begin

for i:=1 step 1 until imax do

begin bl:sa[i,0]; be:=ali,1]; b3:=alq-1,0]; b4:=alq-i,1];
ali,O]:= alxbl+a2xbe - a3xb3 - alxbli;
ali,1]:= alxb2 = a&xbl + adxbl - alxb3;
if q#2xi then
begin

alq-1,0]:= alxb3 -a3xb1 + aexbl - alxb2;
alq-i,1]:=alxbl -alxb1 + a3xb2 -a2xb3
end;

end iz
ROOT: =-1
end else

begin if a[0,0]<O then begin if q=1 then ROCT:=2 else ROOT:=3 end
else ROOT :=0; goto exit end;

end a5 _

end else ROOT:=

exit:end procedure ROOT;

procedure NEWTON(m,r,xc,yc,a,b, exit);
value m,r;integer msreal r,xc,yc;real array a,b; label exit;
begin comment an approximate root is refined by a Newton process;
real a00,a01,a10,al1,s,x,y,newx, newy, deltal , delta2;
boolean firstiter;

X s= xc3 y := ye; firstiter:=true;

rep;

T(m,a,b); SYNDIV(m,a,x,y,1, true);
a00 := a[0,0]; a01 := afO, 17; alO := a[1,0]; all := a[1,1];
6 t= al N2+al 12;
newx := x-(a00xal0+a01xal1)/s;
newy := y~ Sa recat it
if sqrt ((newx-xc)A2+(newy-yc)A2) > r then goto exit;
delta2:=sqrt((newx-x)2+(newy=y)A2) ;
if firstiter then begin deltal :=delta2;firstiter: =false;goto labell end;

if delta2<deltal - ‘then di deltal:=delta2 else goto label2;_

Tabell:x := newx3 “y t= newy; goto reps.

label2:xc := newx} ye := newy;
end NEWTON;

S :s13 a3:= 0.707106781;
T(n,b,A)3
for mt=n step -1 until 1 do

begin comment B Beginning with a circle with ‘center in the origin and radius §

the procedure starts the search for a root to the given polynomial P(z). For

the first root, S = 1, corresponding to the unit circle.The search for the
following roots starts with the greatest rootfree circle around origin found

during the computation;

rs= S3 xc := ye := 0;
comment Isolate a root by Lehmers procedure.Find radius rl such that a poly-

nomial f(z) has a root inside an annulus bounded by concentric circles with

radius r1 and 2xrl and the center (xctiyc);
Lehmer :nextapprox:

issls
Li:

Bl :=B2:=false;
Ie: .
T(m,a,b); SYNDIV(m,a,xc,yc,r,true); q:= ROOT(m);
if q=1 then goto deflation;

if q> then

begin Bl:=true;if B2 then goto L3;r:=r/2;goto 12 end;
if a=0 then

begin comment No answer to the auestion whether a root exists can be given,

repeat the process with a greater circle;

i:sit+l; q:s2}i3 ri=rx(q-1)/(q-2); goto Li;end;
if a=-1 then

begin B2:=true;rl:=r3;if -,Bl then begin r:=2xr;goto L2 end;end;
Lo:
if xc=O0Ayc=0 then begin S:=rl;goto eight circles end;
if sqrt(xc2+ycf2)xtol>exr1 then goto deflation;
eight circles:

r2:=5xr1/6; rl := 2ares
for p:=1,2 do
begin comment The annulus which certainly contains at least one root is covered

with 8 circles, and the first one containing a root is chosen. If no circle can

be found, the limits of accuracy for computation has been reached and this sta-

ge of approximation must be accepted. The 4 circles with centers on the axis are

examined first next the other;

if p=1 then begin al:=O;a2:=-rl end else begin al :=a3xrlja2:=-al end;
for k:=7,2,3,4 do OO
begin

temp:=-a23 a2:sal; al:= temp; newxc:= xctal3; newyc := ycta2;

if newxc=xcAnewyc=yc then goto deflation;

comment A circle with center(newxc+inewyce) and radius r2 shall now be trans-
formed to unit circle;
ro:= re; i:=1;
Lh;
T(m,a,b); SYNDIV(m,a,newxc,newyc,r, true); q:=ROOT(m);
if q = 0 then

begin comment No answer can be given whether the circle in question contains
a a root, the process is (enya with a greater circle;

fimdtl; q:=3xeAi; ri=rx(q-1)/(q-2); goto Lh

end;

if o>0 then

ecein

s=nNewxc syc:=newyc};
if ‘G22 then goto Newton;
ri=r/2; goto nextapprox;
end;

end k;
end p35.
goto deflation;
comment end of Lehmers procedure;

Newton:
NEWTON(m,r,xc,yc,a,b, Lehmer) ;
NEWTON(n,r,xc,yc,a,A,Lehmer);
deflation:

SYNDIV(m,b,xc,yc,1,false);
b[m,O] := xc; blm,1] := ye;
end m3

T(n,A,b
end procedure LEHMERNEWTON;

O. Lang Rasmussen

DANISH ATOMICENERGY COMMISSION September 1967
Research Establishment Ris¢ SA - 96
Reactor Physics Department 25 copies
Computer Group

Chebyshev approximation

ALGOL-procedure CHSUM

1. Scope.

The real procedure evaluates the function f(x) given as a Chebysherv approxi-
mation.

f(x) = alo]/2 + alt] x T1(x) + ale] x Ta(y) +......-t aln] X Tn(x)
in an interval x] <x < xe.

2. Method.
——

The algorithm is based on a recursiv technic given by Clenshaw, see ref[1] or
ref[2].

3. Use of the procedure.

The procedure call is of the type

CHSUM (n,x,x1,x2,a)3
where

n: integer is the order of the Chebyshev approximation.

x: real is the independent variable for which the function f(x) shall be evaluated
x1,x2: real is the lower respective the upper end of the interval for x.

at array alO:n] contains the coefficients in the Chebyshev approximation.

4. References.

[1]: C-E.Fr@berg Lerobok i numerisk analys, 1962, p. 253
[2]: Modern Computing Methods sec.ed. 1961, pp 76-77.

QO. Lang Rasmussen

5. Algorithm.

real procedure CHSUM (n,x,x1,x2,a)3
value n,x,x1,x23; integer n; real x,x1,x23 array a;
begin comment this real procedure computes the value of a function f(x) given as a

Chebyshev approximation

f(x) = (alo]/2) x TO(x) + ali] x T1(x) +........ e+ aln] x Tn(x)
in the interval x1 < x < x2, such as described in SA-96.;

integer i; real c,u0,ul,u2;

v2 := ul := 03

© t= 2X(2xx-x2-x1)/(x2-x1);
for i := n step -1 until 1 do

begin ~
u0 := ali]+cxul-u2;
v2 := uls ul := ud;

end;

CHSUM := (a[0]+cxul)/2-u2;
end CHSUM;

DANISH ATOMIC ENERGY COMMISSION March 19¢8
Research Establishment RIis¢@ SA~101
Electronic Department 25 coples

Varlable_Integer_ layout
ee eee ee ee ee ee ee oe es ee i ee ee ee ee ee he ee es

It is often useful printing Integers, so the number of

printed characters equals the number of digits in the Integer

plus a possible stIgn.

2. Method

In GIER ALGOL III layouts are of type boolean. This makes

It possible to pack your own layouts, as described In A MARUAL

OF GIER ALGOL III p.51.

A boolean array layout[1lin] ts declared In the outermost

block. n is the largest number of digits Cnot greater than 9)

In any Integer to be printed. In layout[m] Is packed an Integer

layout with m digits €1 <m < n) and the appropriate sign code.

To print Integer b, compute the number of digits In b as

d= entlerClogCb))+1 Cwith base 10), output Clayout[d],b);

wlll print b with d digits Cand a possible sign).

Example: After outtext({¢{<p=}); we want output of three

Integers with a maximum of 5 digits Cn=5). The first number

must be without sign Cor space) if It is positive and with

sign if It is negative. The other numbers are to be printed

with the proper sign and no spaces.

begin
boolean array layout{[1:16];
comment We want 2 sign codes and 5 digits wich gives 10 diffe-

rent layouts;
Integer n; se

for n:= 1 step 1 until! 5 do
begin

packClayout[n],0,39,0,20,23,n,24%,27,n, 24, 34,1);
pack(layout [n+5],0,39,0,20,27,n, 24%, 27,1, 29,20, 2,34, 4,193

layout[1:5] contains the layouts {¢n}, ¢ndt,, ¢nddddy}.
In MANUAL p.16 is shown, that alarmprtnting wil Insert a

minus sign in front of a negative number.
Tayout[6:10] contains {+n}, f{+nd}, ..., ¢tndeddt;

begin

begin
logl0O:= If a = 0

else entier (C0

end 10910;
comment The program [ts Inserted here. A short example Is shown;
Integer Py vr;

then 1
~434294485x1InCabs(Ca)))+1

p:= -357;
r:=10521;

n:= -539;3
outtextC(t<p=}) ;
outputClayoutLlogl0Cp>1,p);
outputClayout[loglOCr)+5]1,4r);
outputClayout[1logl0Cn)+5],n);
comment Note that printing of Integers with mors than n Cin this

case 5) digits, causes elther a wrong layout or the mes-
sage Index;

end program block
end outer block;
output of this program Is

p="357+10521-539

B. Runge.

