..3 -

relative: If relative has the value 1 the least stuares method is applied
with respect to the relative error as described above, else with respect to the
absolute error, - N '

drumomega., drumR drumlI, druma., drumb  drume :

o Drumplace values assigned to the first elements of the arrays k,
Rk, Ik, [A], [B],[Xﬁ. These values must be chosen to permit space enough for the
respective arrays. It 1s noticed, that W k, Rk and Ik have each m elements and
[A] (p+q#1) elements, while [B] and [X] have each p+q+1 elements.

drumA: The drum section beginning with this drumplace value is to contain
the greatest number of elements of the following two: U(p+g+1) or 4 m.

reals: error:
The desired error according to the above described error criterion for
stopping the iterations.

lgbels: singular:

This label originates from the procedure DRUMCROUT 2 (by 0. Lang Rasmussen)
which is used to solve the matrix equation. The procedure goes to singular when
the determinant of matrix [A] is zero.

Besides the existence in the fast memory of the actual parameters correspond-—
ing to the above mentioned formal parameters, the procedure requires the presence
in the drum store of the arrays ® k, Rk and Ik at the positions determined by the
respective drumplace numbers as explained above.

As to the results of the work of the procedure,the following is important:

The calculated coefficients of the polynomials of the fit function are stored
on drum at the drumplace drumc. The order of the coefficients is:

a0, al, a2, ... | ap; b1, b2, ... , bq when_the fit function is written on the
form: a0 + als + a2s“ +.e. + apsp
G (s) = 1+ bls + b2s? +...D+qusg

The real and imaginary parts of G(wk),k = 1,2,..., m, are slso ctlculated"
and’ stored on drum at the drumplace drumA. The order is: RG1,RG2, ... , RGm IG1,
IG2, ces IGm.

1 oeee

Notige: -

The quantity jperror,, which was specified by the user, after the application
of the procedure alters its value to the actual error of the resulting fit func-
tion. Similarly, the integer N, meximum number of iterations desired, alters its
value to the ggctual number of iterations performed. B

The arrays (0 k; Bk and Ik originally placed on drum by the user, are unviola-
ted during the calculations. .

Computing, time \

The computing time is propertional to the number of iterations performed and
increases according to the second power of the quantity p+g+l. With p+g+l = 14 and
10 iterations the computing time has been measured to about 10 minutes.

Remarks %o, the _Algorithm:

If the relative error in a certain fit point tends to infinity (i.e. exceeds
1070) the value 170 is substituted. Similarly the weighting factor 1/ |P1(wk) ]2
is bounded within the limit 70.

It is noted that the case of the determinant of [A] being zero is closely
related to the degree of indeterminacy of the ctefficients of the fit function
(f.ex: if the known function is a real constant, all choices of p an q except
P =0, q =0 lead to indeterminacy).

It may be of interest to illustrate the use of the parameter No by an exam-~
ple:



ol

Let J[1:L] be an integer array containing the iteration numbers after which
printing of results is desired. The printing is supposed to take place at label W.

a:
1
J .
COMPFIT ( ooee NNo,'.....)
W: if error < a then goto Outs
error := a3 No:= J[i]; end of ij
Out:

Algorithm: No := O;
for i:=
Jli

ld 1
ld
-—
5 -
(N
1~
}g_, -
B
1]
.
 In]

)-u--

we

This algorithm is used in the program PROFIT (see ref. 3).

References:
1) E. C. Levy: Complex - Curve Fitting.
IRE Transactions on Automatic Control, May 1959.
2) C.K. Sanathanan and J. Koerner:
Transfer Function Synthesis as a Ratioof Two Complex Polynomials.
IEEE Transactions on Automatic Control, May 1963.
3) N. Kjer-Pedersen: PROFIT. A program for Complex - Curve Fitting. P - 201.
Risg - M - 124, Sep. 196k,
The Algorithm

ocedur COMPFIT (m,p,q‘N No,error,relative drumomega drumR drumI, druma, drumb,

drumec drumA 31ngular)
integer m,p,q,N,No relative drumomega drumR drumlI, druma, drumb, drumec  drumA;

e, et

real error;
label singular;
Al begln -
integer 1,J,k,nyt; o
real epsa, epsph determlnant‘y,a,b; y = (3.11159/180) A2;
n:=No;
Iteration: v
B1: begin comment The arrays lambda,S,T,and U are calculated and stored on
drum; - o
real array fitpoint omega,R,I,W[1:m];
cgomment The array fitpoint is used as a means of gradually raising the power
of omega. The elements of W are the weighting factorss
drumplace:= drumomega; from drum (omega)
if n =0 then
for k:=1 gtep 1 uptil m do W[k]:= 1 glse
begin drumplace:= drumA; from drum (R); from drum(I); from drum(W); end;
drumplace := drumR; from drum(R)
drumplace:= drumI- from drum(I)s;
C1: begin
réal array lambda[0:2xp];
for k:=1 step 1 until m do
fltpOlnt[k] = 13



for k:= 1 gtep 1 until m do begin

If 1=0 then fitpoint[k]:=1 else

fitpoint(k]:= omega [k]xfitpoint[k];

lambda[1i]:= lambda[1 |+fitpoint[k wik] end; ends

= X
drumplace:= drumA; to drum(lambda);
gnd of C1;

C2: begin

real array S[0:p+q];

for k:= 1 step 1 uptil m do
fitpoint[k]:= 1;

for i:= 0 gtep 1 until p+a do begin

s[i]:= o
for k:= 1 step 1 uptil m do begln

3
1 e
if 1=0 thep fitpoint|k]:=1 else

fltpoint[k]:= omega[k |xfitpoint[k];
S[i]:= s i;+fitpoint[k]xW[k]xR[k] ends ends
to drum (S);

end of C2s

C3: begin

real array T[0:p+ql;

for k:= 1 step 1 until m do
fitpoint[k = 15

Lor i:= 0 step 1 until p+q do begin
T[1]:= 03 |

for k:= 1 step 1 until m do begip
1f 1=0 then fitpoint|[k]:=1 else

fitpointFEj:— omega[k Jxfitpoint[k];

;+fitpoint[k]xW[k]xI[k] ends ends

w9 x

for k:=1 step 1 until m do
fitpoint[k]:= 13

for 1:= 0 gtep 1 until 2xq do begin
U[1]:= o

for k:= 1 step 1 uptil m do begin
Uli]:=U

ste
if 1=0 then fitpoint[k]:=1 else
fitpoint[k |:= omega[k Jxfitpoint[k];
1 J+fitpoint[k]xWk]x (R[k] A 2+1[k] 4 2) end; end;
to drum (U);
end of Chy
end of B1j
B2: begin gemment The system of p+q+! linear equations is, row after row,
constructed and stored on drum; o

real array row[0:p+q],lambdal0:2xp],S,T[0:p+q],U[0:2xq];
integer t;

drumplace:= drumA; from drum (lambda); from drum(S);from drum(T);from drum(U);
drumplace:= drunb;
for 1:= 0 step 1 until p do

for i:=1

s

if entier (i/2) = i/2 then row[i]:= -S[1] else row[i]:=-T[1];
8 ti

if entier (

row[p+i]:= U[i] elge row[p+i]:= 0jto Arum(row)s



U

drumplace = druma;

for i:= 0 gtep 1 untll p do begin

for J:= O gtep 1 until p do begin

if entier (i/2) = i/2 A entier ?J/Z) + J/2 then row [j] := 0;
If entier (i/2) = 1/2 A entier (j/2) = j/2 ‘then begin

Ti= (3+2)/25 row [

= (~1) A txlambda[i+j]; end;
A entier (j/2) = j/2 gbgg row [§] :=0;

2
nt 2) 2 then begi
62:f(fq)firtiiémbdi[ifaj; - tranns

if entier (i/2)
if entier (i/2)
= (§+1) /25 row [

._H_.-H-.-.

end;
for j:=1 step 1 until q 4

if entier (1/2) = i/2 A entier ?3/2) T J/2 the ben n begin
tr= (3+1)/25 row [pry] :=(-1) A th[i+J]; end;
if entier (i/2) = 1/2 A entier (j/2) = j/2 then begin
tr= (3/2)5 row [p+j] :=(-1) A wxs[1+j]; end;
if entier (i/2) 1/2 A entier (3/2) = 3/2 then bezin
ti= (3/2); row [p+j] : txT i+J} ends
if entier (i/2) i i/2 A entier (i/2) T 3/2 then begin
t:= (j -1)/2; row [p+j] :=(-1) /}\ txS[i+ |3 ends
end;
to drum (row); ends;
for i:=1 gstep 1 until g do b gin
for j:= 0 gtep 1 until p do beg
it entler i/2) = i/2 A entier 73/2 ¥ J/2 then begin
to= (3+1)/25 row [3] :=(=1) *th[i+J s end;
if entier (i/2) = 162 A entier (j/2) = 3/2 then bezin
ti= (§+2)/25 row [§] :=(~1) th[i+J s end;
;f entier (i/2) + 1/2 A entier (J/2) = j/2 then bezin
(3/2)5 row [3] t=(-1) AtxT[i+3]; end;
f entier (1/2) i i/2 A entier (j/2) 7 J/2 then begin
ti= (J41)/25 row [§] :=(-1) ftxS[i+]; ends
end;
for J:= 1 step 1 until q do beg
if e ntler (i/2) = i/2 A entier % 2) + J/2 then row [p+)] :=0;
if entier (i/ 2) = 1/2 A entier (3/2) = j/2 then begin
ti= (3/2); row [p+y] :=(=1) AbxU[1+3]; ends
if entier (i/2) T 1/2 A entier (3/2) = j/2 then row [p+j] :=0;
L ntler (1/2) T 1/2 A entier (j/2) % j/2 then begin
1= (J-1)/25 row [p+i] :=(-1) A txU[1+j];end;
€nd;
o drum (row); end;
§~g of B2;

B3: begin comment The system of equations is normalized by

T g Yot

dividing each equation with the length of the left side vector;

real array row, norm[o P+QJ,
real fixs

o e et

drumplace drumas

for i:= 0 step 1 until p+q do begin
Fix:= drumplace,

from drum(row)s;

norm[i]:= 0

for j:= 0 step 1 until p+g do
norm 1} = norm%i]+row J]fiZ;
norm|i |:= sqrt(norm(i]);

for j:= 0 gtep 1 until p+q do



£ norm{i] $ 0 then

%ow[d]:= row( j]/norm{i];

drumplace:= fix;

to drum(row); fix:= drumplace;

drumplace:= drumbg

from drum(row);

if norm{1] $ 0 then row[i]:= row[i]/norm{1];

drumplace:= drumb;

to drum(row);
drumplace:= fix;
ends

by 9

gnd of B3;

Bh: begin comment The equations are solved by means of the procedure DRUMCROUT?
and the results, which are the desired coefficients of numerator and denominator
polynomials of fit function, are stored on drum;

comment AEK february 7th. 1963 - the following procedure is a

drum version of SA - 10 it solves a system of linear equations Ay = b
as descreibed in SA - 263

until £ do h = h +u x v

it

progcedure DRUMCROUT 2(ta,tb,ty,n,det);

integer tk,td k,1,j,imax,timax, p;

real temp,quot; -

real array A1 1A2|b|YI:1 mn];

det :=1.0; tk := ta; drumplace := tbs td:= from drum(b);

for k :=1 step 1 untll n do

L1 : begin drumplace := ta;
for p := 1 step 1 until k-1 dg

L2 : begin comment transport k-1 elements from column k to fast memory storage;
from drum(A1); A2[p] := A1[k]

gnd L2;

temp := 03 drumplace := tk;

for i :=k step 1 until n do

L3 : begin

from drumzA1); drumplace := drumplace - td;
A[k] := A1[k ]-INNERPRODUCT (A1 [p] A2[p],p, 1 k-1);



-8~

if abs (A1[k])>temp then

Lk : begin temp := abs(A1[k]); timax := drumplace; imex := i
snd Lhs

to drum(A1)

end L33

comment we have found that element k in row imax is the largest pivot
element in column k, we now interchange rows k and imax;

if imex f k then

L5 : begin det := -det;
drumplace := tk; from drum(A1);

drumplace := timax; from drum(A2);
drumplace := tk; to drum(A2);

drumplace := timax; to drum(A1);

temp := b[k]; b[k] := b[imax]; b[imax] := temp
end L5;

P v

comment end of row interchange, next follows elimination;
drumplace := tk; from drum(A1);

1f A1[k] = 0 then goto singular;

quot :=1.0/A1[k];

for 1 :=k+ gtep 1 until n do

L6 : begin

from drum(A2); A2[k] := quot x A2[k];
drumplace := drumplace -td; to drum(A2)
end L6;

drumplace := taj

for p :=1 step 1 until k-1 do

L7 : begin

from drum(A2);

for j := k+1 step 1 uptil n do

ml3] t= m0T = m0pT o 2lT];

end L7; ) S
b[k] := b[k] ~ INNERPRODUCT (A1[p],b[p],p,1 k~1);
drumplace := tk; to drum(A1); tk := drumplace
end L1

gomment end of triangularization now comes back substitution;

Py

for k :=n gtep -1 until 1 do

L8 : begin

drumplace := drumplace -td; from drum(A1);
drumplace := drumplace -td; det := A1[k] x det;
y[g]ig(b[k]-INNERPRODUCT(A1[p],y[p],p,k+1,n))/A1[k]
gnd Los

o

drumplace := ty; to drum(y);

end DRUMCROUT 23 ‘ '

DRUMCROUT 2 (druma.| drumb  drume, p+q+1 , determinant);
gnd of Bl



e

B5: begin comment Real and imaginary part of numerator and denominator of fit
function are caleculéited for each fit point and stored on drumg
real grray fitpoint,A,B,C,D[1:m],row[0:p+q];

comment The

. g et g

array fltpoint is here used to contain the values of omega 42

drumplace := drumomega; from drum(fitpoint);
drumplace:= drumc; from drum(row);
for k:= 1 step 1 ugggl m_do begin
fltpoint[kj fltpoint[k]
if entier(p/2)= p/2 then Jj:= p else J:= p-1;
bi= row[J];
if J > O then
for 1:= j-2 gtep -2 uptil O do beein
ai= - fltpoint k |xbs
b:= a+row[i]; ends A[k]
if entier (p/2) = p/2 zbsa J'=p~1 glse J:= p;
if J= -1 then b:= 0 glge
bi= row| Jj
if J > 1 then
: 1:=j -2 step -2 uptll 1 do begin
= —fltpoin%%~ﬁ xbs
b:= atrow[i]; gnd B[k] = bxsqrt(fitpoint[k]);
if entier (q/2) = qf2 the J = q glse J:= q-13
bi= row[p+j[31f j=0 then b:=0;
if § > 2 then
for i:= J-2 gtep -2 uptil 2 do begin
ar= - fitp01nt k |xbs
bi= a+ row[p+i]; end; C[k]:= 1—fitpoint[k]xb;
if entler(q/2)— 2 then J:= q~1 glse j:= q;
if J= -1 then b:= 0 glse
bi= row| p+j ;
if J > 1 then
for 1:= j-2 step -2 uptil 1 do begin
a:= —fitpoint[k]xb;
b:= a +row[p+]; end; D[k]:= bxsqrt(fitpoint[k]);

gnd k;
drumplace:= drumA; to drum(A)s;to drum(B)sto drum(C)j;to drum(D);

gnd of B5;

B6: begin comment Real and imaginary part of fit function are calculated for
each fit point, compared with input values and stored on drum. Weighting factors
for next iteration are calculated and stored on drum. Criterion for stopping the
iterations is applied;

real array A,B,C,D,R I[1 im];

real ea ep;

drumplace:= drumd; from drum§A); from drum(B); from drum(C); from drum(D);
drumplace:= drumR; from drum(R);

drumplace:= drumI; from drum(I);

ti= 0; ea :=ep = 03

for k:= 1 sﬁe 1 unflﬁ m do 3)be 2in ] A [ 4

epsa:= (A[k |xC[k]+B[k |xD[k /(c[k 2+D[k ] REk];

epsph = (B[k]xC[k]—A[k]xD[k])/(C[k] 24Dk 4 I[k];

Clk]:= 2+B 2<4=T0

(if relative =1 then(if Al k
then 170 else 1/(A[k] 2+B%k]42)

77 (C[k A2 D[k 1A2));

Alk]:= R[k]+epsas B[k] = I[k]+epsph



e

if (sqrt(A[x]42 + B[k]A2)xi~70 < sqrt(R[klh2 + I[k]f2)) (sqrt(R[%{*Z +

l

psa:= abs(sqrt(R[k] A2+I[k] A2)-sart(A[k] A 2+B[k] 42))/sqrt(RBk]

-10-

0) then

2+I[kj

A2)

I
=
(0}
L (0]

epsa:= 10703
epsph:= abs((if Rk] £ 0 A abs(I[k%xm—J 54) < abs(R[k]) then
( if R[k] > 0 then arctan (I[k]/R[k]) elge
(if I[k] = 0 then 3.14159 else(if I[k [>0 then arctan(I[k]/R[k] + 3.14159
else arctan?I[kB R[k]) - 3.14159)))elge sian(I[k]) x3 14159/2)
~(if Alk] 40 A abs(B[k]xp~154%) < abs(A[k]) then
(if Alk] > 0 then arctan(B[k]/A[k]) else
(if B[x] = 0 then 3.14159 glse (if B[k] > O then arctan(B[k]/A[k]) + 3.1L159
glse arctan(Bfﬁi/A[k]) ~ 3.11159))
slse sign (B[k])x3.14159/2))
x 180/3.14159;
eat= eg + epsa/}z ep:= ep + epspM2
end;
n:= n+l; drumplace:= drumA; to drum(A); to drum(B); to drum(C);
if n=N v(ea +y x ep)/m < error /L 2 then goto Stop glge goto Iteration;
Stop:
N:= nj
error := sqrt((ea+yxep)/m);
end of B6;
end of A1 and procedures

oy

N. Kjer-Pedersen.



DANISH ATOMIC ENERGY COMMISSION September 1964
Research Establishment Risg SA - 67
Reactor Physics Section 25 copies
Computer Group

Solution of a system of linear equations

ALGOL - procedure CROUT L,

1. Scope.

The real procedure CROUT 4 solves a system of linear equations Ay =
with different right hand sides. A is a square matrix of order n, y end b are
column vectors of dimension n, The problem is equivalent with solving a matrix
equation AxY=B where Y and B are matrices with n rows and m columns. The value
of CROUT L4 is the determinant of the coefficient metrix A.

2, Method.

The solution is based on Crouts method with pivoting such as described
for procedure CROUT in SA 10, It is therefore not repeated here. The main dif-
ference between CROUT and CROUT L is that the real procedure INNERPRODUCT in
CROUT here is replaced by an innerproduct procedure written in machine code,
which results in a considerably increased speed of computation, Furthermore an
equilibration procedure has been incorporated in CROUT 4, The resl procedure
CROUT L is an extension of CROUT % in that respect that it can process several
right hand sides in contradistinction to CROUT 3 which only can solve a linear
system with one right hand side.

5. Use of the procedure,

The procedure consists of two parts, the algol procedure and a machine
code. The procedure call shall be of the form

CROUT h(nlAldrumwlengthlexitlfactorlpivot[repeat);
where the parameters are:

repeat: declared as boolean. The first time CROUT L is called this variable
must have the value false. In all the following calls the variable shall
have the value true,

declared as integer is the order of the coefficient matrix.
declared as real array A[1:n 1:n+1] contains on the first call the coef-
ficient matrix in Ail'n|1 n] and the first right hand side to be proces-
sed in A[1:nn+1]. On the later calls the other right hend sides to be
processed. are stored consgecutively in A[1: n]n+1]

On exit of each call the solution vector is stored in A[1:n'n+1]. During

£

the first call the procedure performs a triangularization of the coeffi-

cient matrix. The triangularized matrix is stored in A[1:n 1.n] where
it shall remain during the following calls of the procedure



- 2 &

drum? declared as integer contains the value of the standard variable drumplace,

when the innerproduct in code is stored on the drum by the standard pro-
cedure gierdrum. (see below).

length: declared as integer contains the number of machine-words occupied by the
machine code as supplied by the standard procedure gierdrum. (see below).

exit: a label to which a jump is made from CROUT U4 when the coefficient matrix
is singular,

factor: declared as real arrasy factor [1:n] contains factors used in the equili-
bration process. These factors are computed end stored by the procedure
during the first call with the boolean variable repeat having the value
falseI and they shall remain in this erray during the following calls.

pivot: declared as integer array pivot [1:n] contains row indices originating

from the triangularization of the coefficient matrix stored in.A[i:n|1:n].

These row indices are stored by the procedure during the first call with
the boolean variable repeat having the value false, and they shell remain
in this array during the following calls.

The innerproduct in code must be stored on the drum before the call of
CROUT L, This shall be done by the program and can be performed in the following
way.
Assuming that the variable drum has been assigned some value of drumplace
one writes e.g. in the beginning of the program:
if kbon then
begin
Writetext({<
message to operator: innerproduct-code in tapereader});
typechar;
drumplace:= drum;
gierdrum({(innerpﬁ,length);
writetext({<
message to operator: set KB:= N});
typechar;
end;
writetext({<
m essage to operator: datatape in tapereader});
typechar;
When the program is started with KB=L after the transletion is completed
GIER stops ready for input of innerproduct-code, After input of the machine code
GIER stops for switching off the KB-button. Started agein it stops ready for input
of data after which the computation begins. The first parameter, {(innerp$l in the
procedure call gierdrum ({<innerp}|length) is a code identification for innerpro-
ductl which must be written exactly in this way. To the second parameterl lengthl
1s assgigned the number of machine-words in the code.
The determinant of the coefficient matrix is obtained as the value of
CROUT L during to first call of procedure.

L, References.

1. Communications of the ACM, L, 1961, pp.176-7T. '

2. S8A - 10, CROUT  ALGOL procedure by 0. Lang Rosmussen 3/6 - 1962

3. SA - 1b/1, CROUT 2 ALGOL procedure by O. Lang Rasmussen 5/7 - 196k

L, SA . 6L, ' CROUT 3 ALGOL procedure by O. Lang Rasmussen 8/7 - 196k

5. SM - 9, INNERPRODUCT procedure by 0. Lang Rasmussen 10/9 - 196k

1



5. Algorithm,

real procedure CROUT 4(n A drum (length exit factor pivot, repeat);
value n,drum length,lnteger n drum length,
real array A factor; lnteger array plvot boolean repeat;label exit;
begin
integer 1,j,imax k pl p2 p5‘ph gem;
real t q_det detfactor,
booleqn array code[1:length];
boolean entry;
gem:= drumplace;
drumplace:=drum;
fromdrum(code);
clerproc(code[Q] A p1‘p21p3 pl entry);
detfactor:= det := 13
if repeat then goto Li;
f9£ ir=1 step 1 until n do
begin comment equilibrateAl1 m, 13 tn+1 13
q:= 0;
for j:=1 step 1 until n do
begln ti= abS(A[ilJ]), lf t > q then q:=t end;
if o= g= O then goto exity
factor[1i] := t:= 2 A (-entier(in(q)/0. 6951&7181“ ));
for j:= 1 step 1 until n+1 do A[llJ] = Al1,jIxt;
detfactor:= detfactorxt;
end equilibration;
P5'—1:
for k :=1 step 1 until n do
begln comment triangularizetion starts;
t = 0;
p2:=k;ph:=k.1;
for i :=k step 1 until n do
begin
ple=i;
Al1 k] := Ali k] - gler(entry);
if abs(A[l k]§ > t then
begln t &= abs(A[l kl); imax := 1 end;
end;
pivotk ]:=imax;
comment the largest pivot element Alimax k] in column k is found;
if imax k then
begin comment interchange rows k and imax;
‘det := -det;
for j =1 sbtep 1 until n+1 do
pegin t := Alk,J1; ATk 3] &= Alimax (J15 Alimax j] := t cnd;
end 1 interchange of rows,
if A[k k] = 0 then goto ex1t,
1Al k1
for i:=k+ 1 step 1 until n do
ATT k] := q x AT k1;
p1'—k'




for j :=k + 1 step 1 until n+1 do
begin

p2:=j;

Alx,3] := Alk,j] - gier(entry)
end;

det:=Alk k ]xdet;
end.trlcngularizatlon,

goto 12;

Li:

for 1 :=1 gtep 1 until n do Ali n+1] A[iln+1]xfactor[i];
P2 =n+1;p3:=1;

for k:=1 step 1 until n do

begin

te= A[plvot[k] n+1 13 Alpivot[k] n+1]:= Alk n+1]; Alk o+l Je=ts
pli=ks phs -k-1,

Alk n+1]:= Alk n+1] - gier(entry)

end;

L.2;
p2¢=n+1; plt=n;
for k :=n step ~1 until 1 do
begin comment backsubstitutlon,
ple=k; p3s=k+1;
A[k nt1] :=(Alk n+1] - gier(entry))/Alk k1;
end backsubstltutlon,

CROUT L:= det/detfactor;
drumplace: = gem;
end CROUT L;



6. Innerproduct in code.

[innerproduct in code]
b al2

= . , , L .
Qq 10.3+39, 9+l1, 15+53, 21+37. 27+37. 33+57. 39; {<innerp}
¥

Tfirst entry]

arn a3 D sRadr:=jump adress
ar al ,er(p9) sentry: =hv-instruction
arn ph ,er al sarray description
arn(al)  blefm ;Radr:=c2=n+2
ga alt , tkm-10 salifadr]i=c2
gt a8 sa8[tal Ji=c2
arn(al) sl -
ar (al) bl H
tkm 30 er al salladr ]:=arrey length+constant
arn ph ,tkm 10 sRadr:=adr[last element ]+1
sr al er ol sal[adr]:=basisadr-constant
it (p5) | ba a3 sa3ladr ]:=pl
it (pb) \pa 210 sal0[adr J:=p2
it (p7)  ba all sallladr]:=p3
it (p8) | pa al12 sal2[adr]:=ph
hr s1 sreturn to ALGOL
[later entries]
a5t arfnm0  befml sRadr:=pl
Xr sMadr:=pl
als mknm0 D sR18:=pixc2
tkm9 ar al sRadr:=plxc2+basisadr-constant
ga a7 sa7ladr ]:=Radr
al10: arfnm0 tkfm1 sRadr:=p2
ar al 'ga a8 ;a8[adr ]:=basisadr+p2-constant
alt: arfnm0 tkfm1 H :
ga a2 sa2fadr l:=p3
srml DX sRadr:=p5-1, Madr:=Radr
mkn (alt) D ,R18"(p3 15xc2
tkm9 oc 08 ,qB[adr]'—ba31sadr+p2+(p5 1)xc2-constant
al2: arfnm0  tlefm-9 sRtal s=ph
gt a5 gp ab 5[ tal J:=phk abladr]:=p
a2s ppmO ,grn a9 5pi=p3,a9: =o'
a5: bs p t0 jif p>ph then a6 else a7
abs: ppm0 Jhr st sreturn
aTl: arfn p0 3RF:=Alp1,p)
aB: mkfm0 0 3RF:=A[p1 pIxAlp,p2]
arf a9 Igrf a9 saccumulate product
PP p+l v ab spr=p+l, jump
al: hv ;hv-instructionlstorage for basisadr-constant
ag: aq sworking cell
e
8

0. Lang Rasmussen.



DANISH ATOMIC ENERGY COMMISSION April 1967
Research Establishment Risg SA - 69/1
Reactor Physics Department 50 copies
Computer Group

Solution of a system of linear equations

ALGOL-procedure: DEUMCLOUT L.

1. Scope.

The real procedure DRUMCROUT 4 written in GIER-ALGOL III solves a
system of linear equations A X ¥ = b, where A is a scuare matrix of order n,
y is the solution and b the right hand side, both are vectors of dimension n.

The procedure can solve a system with several right hand sides, b,
without repeating the triangularizstion of matrix A, i.e. it can solve a matrix
equation A X Y = B wvhere A is a scuare matrix of order n, Y and B are matrices
with n rows and m columns.

DRUMCROUT 4 assumes that the matrix A and a right hand side b are
stored on drum. The solution y will be stored on drum, by the procedure.

2. Method.

The solution is based on Crouts method with pivoting such as described
for procedure CROUT in SA-10/1 sections 2 and will not be repeated here.

DRUMCROUT 4 is equivalent to DRUMCROUT 1 with respect to its action but
most of the arithmetic work is done in machine-code. Special care has been ta-
ken in order to reduce the number of transfers of drum tracks holding the data.

The use of machine-code has resulted in considerably shorter computing

time compared with DRUMCROUT 1.

3.Use of the procedure.

The procedure consists of two parts, the algol procedure and the machine-
code which again is separated in two parts,the first being an initializing se-
cuence, while the second holds the subroutines used in the computations. This
splitting up of the mechine-code is done in order to save place in the stack.

The determinant of the coefficient matrix is obtained as the value of DRUM-
CROUT 4 during the first call of the procedure, with repeat = false. In calls with
repeat = true the value of DRUMCROUT 4 is undefined.

The procedure call must be of the form:
DRUMCROUT2 (n,ta,tb,ty,tf,tp,tr,s1,l],sE,lE,repeat,eXit);
where the parameters are:

n: integer, the order of coefficient matrix;



ta:

th:

ty:

tf:

tp:

5712

s1,s2:

11,12:

repeat:

- D =

integer, the value of drumplace corresponding to the storage on the

drum of the first row of the coefficient matrix A of dimension [1:n,7:n].
This matrix i1s stored compactly row by row but so that each row starts
at the beginning of a drum track. When stored in this way the values of
drumplace for two elements in the same colummn but on consecutive rows
will differ by a quantity which is divisible by LO(= number of words on
a drum track). The coefficient matrix A must be stored on the drum befo-
re the first call of the procedure. During the first call of the proce-
dure (repeat = false) the elements of A are changed because A is trian-
gulated. The triangulated matrix must not be changed if subsequent calls
with new right hand sides (repeat = true) are wanted.

integer, the value of drumplace corresponding to the storage on the drum
of a real array of dimension [1:n] which holds the right hand sides used
in turn.

integer, the value of drumplace corresponding to the storage on the drum
of a real array of dimension [1:n] which holds the solution vector y. It
may be remarked that the value of ty can be set equal to the value of tb,
in this case the right hand side will be replaced by the solution.

integer, the value of drumplace corresponding to the storage on the drum
of a real array of dimension [1:n] which holds the factors computed and
used in equilibration of the coefficient matrix during the first call

(repeat = false) of the procedure. These factors must not be changed be-

cause they are used in all subsequent calls (repeat = true) with the sa-
me coefficient matrix but with new right hand sides.

integer, the value of drumplace corresponding to the storage on the drum
of an integer array of dimension [1:n]. This array holds the pivots origi-
nating from the triangularization of the coefficient matrix during the

first call (repeat = false) of the procedure. The pivots must not be chan-

ged because they are used in all subsequent calls (repeat = true ) with the
same matrix , but with new right hand sides.

integer, the value of drumplace corresponding to the storage on the drum
of an integer array of dimension [1:n]. This array holds the values of
drumplace corresponding to the storage of the rows of the coefficient ma-
trix A and they are stored during the equilibration process in the first
call (repeat = false of the procedure. These drumplace numbers are permu-
tated during the triangularization according to the pivoting and must not
be changed because they are used in all subsequent calls (repest = true)
of the procedure with the same mabtrix, but with new right hand sides.

integer, the value of the standard variable drumplace, when the first
respectively the second part of the machinecode is stored on the drum
by the standard procedure gierdrum (see below). They must not be changed
throughout the program.

integer, the number of machine-words occupied by the first respectively
the second part of the machinecode such as supplied by the standard pro-
cedure gierdrum (see bhelow). They must not be changed throughout the pro-

gram.
boolean. During the first call of DRUMCROUT I this parameter must have

Xhe value false. In all subsequent calls with the same coefficient ma-
trix but with new right hand sides it must have the value true.



exit: a label to which jump is made from DRUMCROUT L4 if the coefficient
matrix is singular.

Before the call of DRUMCROUT 4 the machine-code must be stored on the drum.
Assuming that sl has been assigned an appropriate value one writes in a suitable
place in the program using the procedure, the four consecutive algolstatements.

drumplace:= s1; gierdrum ({<initiay}, 11);
s2:= drumplace; gierdrum ({<subrou}, 12);

The procedure administers by itself the transfer of machinecode from the
drum to the fast memory storage.

The first parameters ¢<1n1t1a$ respectively <<subrou} are code identi-
fications for the first respectively the second part of the machine-code. They
must be written exactly in this way. To the second parameter 11, respectively
12 are assigned the number of machine-words in the first respectlvely the second
part of the code. This assignment is done by the standard procedure gierdrum.

L. Running time and storage requirements.

The speed of computations depends of course strongly on how the loop struc-
ture of the algol procedure matches with the tracks of the drum on which the pro-
cedure is stored.

The algol procedure requives 21 Giumiracks,the first pexrt of the machine-
code 51, the second part 54 words in the fast memory storage.

Tests of the procedure with different systems have shown the following compu-

tation times:

order of gystem computation time
20 32 sec
40 2 min O sec + 5 sec for every new right hand side
| 2 min 26 sec + 7 sec - - -
60 I min 54 sec + 9 sec - - -
80 8 min 50 sec + 13 sec - - -
81 10 min 30 sec + 15 sec - - -

5. References.

1. Communications of the ACM, 4, 1961, pp 176-77

2. sA-10/1  CROUT ALGOL-procedure February 1967

3. SsA-22/2  DRUMCROUT 1 - April 1967

Ole Lang Rasmussen.



6. Algorithm.

comment A.E.K. April the 30th 1967. -the procedure DRUMCROUT 4 written in GIER-
ALGOL III solves a system of linear equations Axy= b with different b as descri-
bed in SA-69/1;

real procedure DRUMCROUTW(n,ta,tb,ty,tf,tp,tr,sl,11,s2,12,repeat,exit);
value n,ta,tb,ty,tf,tp, tr,s1,11,s2,12;
integer n,ta,tb,ty,tf,tp,tr,s1,11,s2,12;
boolean repeat; label exit;
begin
integer 1i,J1,J2,J3,k,imax,gem, p,m,r,N;
real t,q, h det, detfactor real array a[l:n]; integer array row, pivot[1:n];
boolean e1 e2,e3,el, e5,e6 boolean array coded[1:127];
gem: _drumplace drumplace:=s2;fromdrum(code?);
N:=(n:40)xk0; if N<n then N: —N+uo
begin boolean array codel[1:11];
drumplace:=s1; fromdrum(codel);
gierproc(code1[u],codea,e1,eg,e3,eu,e5,e6,j1,je,jj,n,t);
gierproc(code2[2],a);
if repeat then go to right hand side;
det:=detfactor: :T “K:=ta;
begin comment equlllbratlon, array al[1:N];
gierproc(codel[2],a1);
for i:=1 step 1 until n do
begln
drumplace:= row[i] :=k;fromdrum(al); h:=gier(el);
if h=0 then goto exit;
ali] :=t:=2A(-ent entler(ln )/0.693147181+1)); gier(e2);
detfactor:=detfactorxt; drumplace:=k;k:=k+todrum (al);
end 1i;
drumplace:=t{; to drum(a);
end equilibration;
end code 1;
Tor p:=40 step 4O until N do
begin comment triangularization;

m:=if p=4O then O else 1;

K :=p=L0;
for k: —k+1 while k<nAk<p do
begln
t:=0; =0;
begin array al[m:p-40],a2[p-39:p];
gierproc(code2[l4],al); gierproc(code2[6],a2);
for i:=k step 1 until n do
begin
TF pSUO then begin drumplace:=row[i]-N+p-LO;:fromdrum(al) end;
EFhmplacE“:?bwTTT:ﬁ+p;fromdrum(aE);
if k41 then
begln
Iif k- -1>p=-39 then a2[k-1]:=a2[k=1]xq else all[k-1]:=al[k=1]xq;
JT:=1; j2:=k=1; j3:=p-UO;
h:=a2[k]:=a2[k]-gier(e3?);
drumplace:=row[i]- N+p,todrum(ae),
if k- 1<p -39 then begin drumplace:=row[i]-N+p-4O;to drum(al)end
end h=1 else h:=a2(1];
if abs (h)>t then begin t:=abs(h); imax:=i end;
end. ds
pivot[k]:=imax;
if imax:k then




-5 -

begin comment interchange drumplace numbers;
det:=-det;i:=row[k];row[k]:=row[imax] ;row[imax] :=i
end imax#k;
end;
begin array all[1:p);
gierproc(code2[L],al);
drumplace:=row[k]-N+p; fromdrum (al); t:=al(k];
if t=0 then go to exit;det:=detxt;
if k<nthen
begln
r:=1f k=p then p+l1 else p-39;
begln array a2{k+1:n],a3[r:N];
glerproc(zade2[6],32); gierproc(code2[8],a3);
a.~1/t J1:=k+1; j2:=n; gier(el);comment set element of array equal to zero;
for i:=1 step 1 until k-1 do
begln
drumplace:= row[i]; fromdrum(a3);al[il:=a3[k+1]; j3:=i; gier(e5);
end i;
drumplace:=row[k]; fromdrum (a3); gier(eb); alk]:=a3[k+1];
drumplace:=row[k];to drum(a3);
end; end k<n;
end;
end i
end p, triangularization;
drumplace:=tr;todrum(row) ;drumplace :=tp;todrum(pivot ) ;
DRUMCROUT 4:=det/detfactor;
right hand side:
drumplace:=tb; fromdrum(a);
begin comment multiply right hand side with eguilibration factors;
array f£l1:nl;
drumplace :=tf;fromdrum(I);
for i:=1 step 1 until n do a[i]:=a[ilxf[i];
end of multiplication;
drumplace :=tp; fromdrum(pivot);
drumplace:=tr; fromdrum(row);
for p:=h0 step 4O until N do
begln comment elimination of right hand side;

array alll:pl;

glerproc(code 2[4],a1); k:=p=ko;
for k:=k+] while k<rAk<p do
begin

tr=a[pivot[k]];alpivot[k]]:=a[k]; a[k]:=t;
drumplace:= row[k]-N+p; fromdrum(al);
Jl:=13 j2:=k=1; j3:=k; alk]:=al[k]-gier(e3);
end k;
end p, righthandside;
for p:=N-39 step -LO until 1 do
begin comment backsubstitution;
array al[p:NJ;

m:=1f p=N-39 then nelse p+39;
for k:=m step-1 -1 until p P do
begzin
drumplace:= row[k]; fromdrum(al);
Jl:i=k+1; j2:=n ; j3:=n+l;
alk]:=(alk]-gier(e3))/al[k];
end k;
end backsubsitution;
drumplace:=ty;todrum(a); drumplace:=gem;
end DRUMCROUTk;




7. Machine code.

[machine code to DRUMCROUT 4]

b df,e5
b b3,c5

;codel,initializing, gierproc(codel[4],code2,el,e2,e3,el,e5,e6,j1,i2,33,n,t)

n

el:cl: aq 10‘5+499+57,15+19.21+57.27+37°35+57.59;¢<initia#,working cell

r

5

9]

hsb?
gack
hsh?
arc2
arnbl D
arce
arnb2 D
arc2
arn m 4]
arcl

arn m d2
arcl

arn m d3
arc]

arn m al
arcl

arn m 45
arcl
it(pl)
arn m db
axrcl
it(p12)
arn m 47
arcl
it(p13)
arfn(pih)
gac3l
pach

hv
it(ph)

arn mg t=
ar(r-1)t-

tkm30
arn plt
srecl

alt

Tgreatest element]

bl

c3:al:
a2:
clh:

al:
aL& 5

e

gpa2
grfn cl
it m0
ppm0
anfn O
hv a3 LT
enfn(ck)
pp p+l
anfn cl

D

1
1

,hrs]
,grel
,8r(p5)
,er(p6)
,er(oT)
,8r(p8)
,8r(D9)
,8r(p10)

,gac2
,pa(c2)

,gac2
,pt(c2)

,gace
,pa(c2)
, tkfm]
,1t(p15)
shrsi

,ba r+i

,grel
,tkm 10
,hrsi

, bpm1

sbs P
, hvalt
,snfel

,grf el
,hval
, hrsi

e Ve We Wwe VLo L

e Ve Lo o e Lo We Ve

°
2

J

store basis-constant for array al
Radr:= basis-constant for code2
jump order to address code2[1]-1

Jump to greatest element in variable el

Jump to multiply with common factor in variable e2
Jump to subroutine 1 in variable e3

jump to subroutine 2 in variable el

Jjump to subroutine 3 in variable e5

jump to subroutine 4 in variable eb
Radr:= reladr in code2 of order b2
store abs.adr. of order b2 in code 2
store abs. adr[j1]

Radr:=reladr.in code 2 of order 1b2
store abs.adr.of order 1b2 in code?
store abs.adr[j2]
Radr:=reladr. in code 2 of order b3
store abs.adr. of order b3 in code 2
store abs. adr[Jj3]

Radr:= n

store n

store abs. adr[t],return to ALGOL.
hv~instruction, working cell
store address of dopevector

;R:=lengthx2/(~39)

;R:=(1length+constant )x2A(-39)

.
s

store(length+constant )x24(-9)

;Radr:=last element+1
;Radr:=basisadr-constant

We We We Wo Ve Ve Wo s \eo

store p-reg. p:=]

working cell:= O

if p>n then go to next order
retabl.p-reg. jump

RF:= abs(al[p])-abs(c)

if RF<O then go to a3

if RF>0 then store abs(al[p])

p:= p+l, Jump

RF:= max abs(al[p]), return to ALGOL



b a’

[multiply with common factor]

has gp a2 ,pp ml 3 pi=l

al: it(c3) ,bsp ;5 if p>n then go to next order

a2: pp mO ,hrsi ; retabl p-reg. retur to ALGOL
arfn(ch) 5 RP:=allp]

c5: mkf m0 ,erf(ch) ; RF:=al[plxt, store RF

e2: PP p+l ,hval 3 Ppi= pHl, jump

e

e

b b7,c8

]

code2, subroutines 1,2,3,4]

n
e3:cliqa 10.3+20.9+38.15+41.21+50.27+20. 33+18.39;¢<subrou}, workng cell
1
- hsb1
gach ,hrsl ; store basis-constant for array a
hsb]l
gacl ,hrsl ;store basis-constent for array al
hsbl
gacbh ,hrsi ; store basis-constant for array a2
hsb1
gac8 ,hrsi ; store basis-constant for array a3
bl: it(pht) ,ba r+l ; store address of dopevector
arn m0 t-1 5 R:= lengthx24(-39)
ar(r-1) t-1 ; R:=(constant+length)x2/}(=39)
tkm 30 ,ercl ; (constant+length)x24-9)
arn pl ,tkm 10 ; Radr:=last element+]
srcl ,hrsi ;5 Radr:= basisadr-constant
[storing the values of j1,J2,J3, < 511]
[d5]b2: arfn mO , tkfm 3Radr:=j
[a6] gac2 ,arfn mO ; store j1,Radr:=j2
tkfml ,gac3 : store j2
[a7]v3: arfn mO ,tkfm] sRadr:=j3
gach ,hrsi ; store j3, return
b a2

Tsubroutine 1, innerproduct 1]

[da1]bk: hsb2 3 store J1,32,33,
gpal ,8rincl ;s store p-reg., working cell:=0
c2: ppmO 5 P:=DpI
cl:al: it mO ,bs p ; 1f p>j2 then next order
al: ppm0— ,hrs1 ; retabl. p-reg. return to ALGOL
c5: arfa 1o : Ri:= a[p]
ch: it m0 — ,bsp ; if p>j3 then next order
ch: mkf DO V 3 RF:=a[plxa2[p]
aT: mkf p0 5 RF:=a[plxal[p]
arfel ,grfci ; accunulate product
ppp+1 s hva2 5 Pi=DH1, jump
e
ba2

[subroutine 2, set zero to array a2]
[d2]b5: hsb2 ; store J1 and j2,j3 not used in this routine

2
gpa2 ,pp(c2) ; store p-reg. p:=jl
al: it(c3) , bsp ; if p>j2 then next order
az2: PpmO , hrsi ; retab p-reg. return to ALGOL
grfn(c6)  ,ppp+l 3 a2[pl:=0
hval 5 Jump

o



b a2

[subroutine 3, innerproduct 2]

[d3]b6: hsb3
gpal » ppm0
ar(cT) D
tkm=10 ,gtar
pp(c2)

a3: it(e3) ,bsp

al: ppmO ,hrsi

cB:a2: arfn po , mkfm0
arf(cb) ,erf(cbh)
PPP+1 shva)

e

b a2

Tsubroutine 4]

[a4]pT7: gpa2 , Pp(c2)

al: it(e3) ,bsp

a2: ppmO ,hrsi
arfn(c8) ,srf(cb)
gri(cB) , PPp+]

eli: hval

e

Vo e Ve s Vs Ve e e Ve G

.
2
N
s
.
)
.
)
o
2
.
3

Radr:=j>

store p-reg. p:=0
Radr:=absadr al[j3]

absadr allj3]

pi=Jl

if p>j2 then next order
retab. p.reg. return to ALGOL
RF:= a3[plxal[Jj3]
a2[pl:=a2[pl+al[j3]xa3[p]
pi=p+1, jump

store p-reg. p:=jl

if p>j2 then next order
retab.p-reg.return to ALGOL
RF:=a3[p]-a2[p]

a3[p]:=RF

Jump

d1=bl=c1+1,32=b5-c1+1,d3=bb-c1+1, dh=bT-c1+1,

d5=b2-c1+1,d6=d5+1, d7=d6+2
e

e5: hsml

n

h kompud/3

3c

he

qo el.19+e2.39
hs 1

h kompud/3

3¢

be

qo e3.19+ek. 39
zq O

c
]
1

jfnjojo]



DANISH ATOMIC ENERGY COMMISSION September 1967
Research Establishment Risg SA - 81/1
Reactor Physics Department 25 copies,
Computer Group.

........................

AIGOL~procedure CHEBAPPROX .,

G

1, Scope

The procedure approximate a discrete'function y[i]=f(x[1]) 1=1,2 . . . m,
defined on a closed interval x[1] < x[1] < x[n] by a set of m points (x[i],y[i])
The apprOX1mation is glven as a finite serie of the form

y= f(x)= (al0l/2 ) x To(u) + a[1] x T1gu)+ e o o o +aln] x T(u) (1)
with  u= (2 X x = x[m] - x[11)/(x[m] -rx[1]), =1gug 1,¢x[1] < x < x[m],

Tj(u) 1s the Chebyshev polynomisls of order j, § = 0,1 325 .« o on, vhich are dem
fined on the interval - 1 <u< 1.:
The procedure computes the coefficients a[0], a[1], essssaln] and the appro-

ximation 1s characterized by the fact that the absolute value of maximum deviation
" of the approximation from the given point set (x[i],y[1]) is minimum,

.........

Survey of ‘the theory.

The theoretical background for the procedure is the second algorithm of Remez,
We seek a vector c¢ such that the maximum norm on an interval [a,b] of the function

r(x)= £(x) - P(x) = £(x) - (c1 X g1(x) + c2 X g2(x)+ oo + cnxgn(x)) is minimum.
The set of functions gi(x),1 = 1,25 eeeon, 1s assumed to satisfy the Haar condition:

Te gi(x);ié,1,2 sessnly are continuous on [a,b]
2e any set of n vectors of the form
[21(x), g2(x); eees. an(x)]
is independent, Expressed otherwise, each determinant.

81(X1) ceeaese gn(x1)

D[x1,x2,o.m]= » °

-
(@]

(2)

él(m) seeoce .«.én(xn)

for distinet x1,%2;..¢4¢¢%0,
We will show that all determinants D[x1 x2, seesoxnn] With X1 < X2 < ,,,.. 30
have the same sign,
The proof follows that given in (ref,[11).
We assume the converse i.e, that there exists two sets



-2 -

X1 < X2 < esv0ve0 < X0, 8N4 ¥1 < Y2 < s00e0ss < YN
for which we have
Plxly 22y senswwssss®n] € 0 < Dlyt, y2 yn]
Since D is continuous in the variables there exists a k, (0 < k < 1) such that
Dlk X X1 + (1=K) X ¥1, cevaneoenssok X xn + (1=k) X yn] = 0
From the Haar condition is then follows that
kX xi+ (1-k) X y1 = k X xj + (1-k) X ¥

for some distinct i and j, Hence xi - xJ and yi - yj must have opposite signs

which contradicts our assumption regarding xi and yi. This proves the proposition,
According to the alternation theorem (ref[1]) the necessary and sufficient condition
for that P(x) is the best approximation to £(x) on a given subset X in the interval
[a,b] is, that r(x) exhibits at least n+1 alternations on X, i.e. r(x[1])=-r(x[1-1])
=+||r||for 1=1,2 ,...n+1, x[1] is & nember of X and ||z |= max |r(x)]. '

Remez” algorithm proceeds as follows:

Starting with an arbitrary set X of n+1 elements (points) in the interval
[a,b] we can compute a vector ¢ for which max lr(x[i]))?is minimum, From the
alternating theorem follows that r(x[i]) are of equal magnitude | rll but of
alternating signs., Then we seek a new subset Y such that |r(y[1])] > ||r||end
of alternating sign. It should be remarked that r(y[i]), the deviations in the
new subset, are not necessarily of the same magnitude., This completes the first
computing cycle, In the next cycle we use the subset Y in place of X,

The successively generated P(x) can be shown to converge uniformly to the
best approximation (ref[1]).

Application,

We now apply the theory on the discrete problem, As our g - functions we
take the Chebyshev polynomials Tj(x) and the élements of the ¢ vector is denoted
by a[O]/E, 3[11‘, ‘rrc'r-a[n]l )

The computation of the coefficient a[i], i = 0,1,2 eesen 1s done by repeated
solution of a linear system of order n + 2 with n + 2 varisbles.

The equation systen to be solved is of the form:

+d=y[1] (3)

ao/axTofxﬁ']) +a1xT1€x[1]) + eoene +arxTn(x[1])
x[2]) + ¢eoe. +anxTn(x[2])-a=y[2]

a0/2xT0(x[2])  +al1xT1

‘e o o o ® e ‘e 6 ‘e "6 e ® ‘0@ "6 6 © © © @& O © © 6 o -0 -0 .06 © o

@ o o o o ‘0’0’0 ‘0”06 0 € @ © 0 © 6 © 6 ° o 0 6 a4 © & o6 .60

a0/2xT0(x[n+2]) +a1xXT1(x[n+2])+ voeon +anxXTn(xn+21)~(=1)An+2)d=y[n+2]

where )
x[1] < x[2] < veeenee < x[1] < x[1+1] <. .... < x[n+2] (4)

are the reference points, The n+2 unknowns to be found are a0/2, al, an and
the deviation d in the reference points.,

It can easily be verified that the system of Chebyshev polynomials [TO(x),
T1(X), oeeesTn(x)] satisfy the Haar cond:tion and that the determinant



s B =

To(x[11),  T1(x[1]), T2(%X[1]), ceeeoccosscasss Tngx[1]) +1
To(x[2]),  T1(x[2]), T2(x[2]), ceeecsoccesecsses Tn(x[2]) -1 (5)

....O.».‘.’...l.'lnl.‘l..l...l....‘.'... +O.

e e L] ° L] ° ‘. o ° °® [ ° o L] L d ° e ® e ° Ed L ° ° L] ° ° ° ° L ° ° L] L L] e o °

To(x[n+2]), TI(x(n+2]), T2(%x[N+2]1), secsoesacecees Tn(x[n+2]) ~(=1) Aln+2)

Since x A j, 0 < j < n can be written as a linear combination of Ti(x), O <1<y,
it is easily verified that the determinant in (5) can be transformed to

1, x[1], x[1]42, x[1]4n; + 1
D= 1, x[2], =x[2]i2, x[2]An, -1

1, x[n+2], [n+2]A2, x[n+2ldn, -(-1)A(n+2)

We observe that any of the n+1 minors of order n+!1 which 1s a cofactor to the
elements in the last columm is a Wandermonde - determinant which is + 0 because
of (4). Every subset of n+1 different row vectors of dimension n+1 (1, x[1],
x[1IA2, eeeee, x[1]fn), 1= 1,2 ... n+2, thus satisfy the Hasr condition, and
as shown sbove these minors all have the same sign,

Let M be the minor which is cofactor to element i in the last column we
find for the determinant D in (6)

(6)

D= (+#1) X (MI4M2 + eveeese + Mnt2) 4 0

Hence also the determinant in (5) is = O

Starting with a set of n+2 approximately equally spaced reference points
the procedure computes a set of coefficients alil, iseee 0,1, coes N.

Then the deviations from the approximation are computed for all m points.
In the reference polnts the deviation d has alternating sign but same magnitude.
Among these m point the procedure selects those n+2 points in which the devia-
tion with alternating signs are numerically greatest, Some of these may be
the old reference points., These points work as new reference points,

In every computing cycle a set of values a[0]l,.al[1]l, ... alnl, d is compu-
ted. The absolute value of d (the reference point deviation) is increased from
one cycle to the next, At the same time the absolute value of the maximum deviation
in the m points is decreased,

The iteration stops when the absolute value of d equals the absolute value of
the maximum deviation or when the absolute value of d reach its maximmum.

3, Use of the procedure,

The procedure call is of the type.
CHEBAPPPROX(n,m,X,y,a maxdeviation);

where

T integer is the order of approximation,

ms integer 'is the number of points (x,y)

X3 real array x[1:m] contains the abseissae, and

¥i. real array y[1:m] contains the ordinates of the m points
a: real array al[O:n] contains the values of the coefficients

in‘'the Chebyshev approximation computed and stored by the procedure,
maxdeviation: real contains on exit the maximum deviation in the m points.

The n and m must satisfy the inequality m > n+2,

The points (x,y) must be stored with increasing values of x, i.e. x[1] <
x[e] < sesee < X[m-1] < X[m]:

In order to test that these conditions are satisfied the programmer can
insert a small testprogram immidiately before the call of the procedure, Such
a testprogram can looks as follows



if 'm'< n+2 ‘then

BEgln

outtext (d<error:number of points too small or degree of approximation too large})s
goto end of program,

end’ ....... o P A |

begln 1nteger is boolean error; error:= false

for i:= 1| step 1 until m-1 do

it x[i] > x[I+1] then

D ]

begln error:= true;
outtext (4

error: x| ), output ( {nd$,1) outtext (4<] >x[$), output (dnda},i+1);
outtext ( <]$)

end, e

if error then goto end of programp

end; -

When the coefficient al[0], ali], ....aln] has been found we can compute
corresponding values of x and y by (1) This am be done by SA-96,

h._Referenqg

[1] E W. Cheney: Introduction to Apvroximation Theory, Me., Graw Hill 1966.

0, Lang Rasmussen,



.............

.........

procedure CHEBAPPROX(n,m;x;y,a,maxdeviation); -
value n;m3 integer n,myreal maxdev1ation,real array X,y,a3
begin comment A,E.K., - September 1967.This procedure fits as described
in SA 81/1 a discrete function given as m points (x,y)
by a Chebyshevapproximation of order n:
y=a0/2+a1XT1(x)+a2XT2(X)++ 00 e s oo +anxTn(x)
where Tn(x) is the Chebyshev-polynomial of degree n and
an the corresponding Chebyshev coefficient, This fit by
Chebyshev polynomials is the best approximation in the
o ' Chebyshev sense'i,e, in the'Chebyshev-norm;
real’ p,q,d maxd; integer array IN[O:n+3]jarray b[1:n+2];
begln comment starting reference points;
1nteger is
= (m1)/(n1)3
IN[n+] := IN[n+2] i= my IN[O] :
for 1 := n+1 step -1 until 1 do IN[i] =(1i-1)xq+13
p'*(x[m]+x[1])xo 53q:=(x[m]-x[1])x0,5;
end starting reference points;
maxd:=03
starts -
begin comment computation of the Chebyshev coefficient and the deviation
in the reference points by solving a linear system of n+2
B equations with n+2 variables;
real ‘array Af1:n+2,1:n+2];
begin comment compute coefficient matrix and the right hand sidej
real c,uo, u1,u2, integer i,J,k,
d'*1. .....
for i :=1 step 1 untll n+2 do
begln
ki=IN[il3 e 2= 2x(xfk]-p)/as Ali,1]:=13ul:=03u2:=~1;
for:'j:=2 step 1 until n+1 do o
begin u0 T=cXul1-U8; u2:=ul} ul:=uOzA[1i,j]:=cxulx0.5-u2;end j;
Al n+2]:=dsd:=-dsb[1] =y [k]; —
end is
end coefficient matrix and right hand side;
begin comment solution of the linear systems
integer 1, 3,k,imaxsreal h sb3
for k:=1 'step 1 until n+2 do
begin comment trlangularlzatlon startss

tt.—O- .....
for 1 =k step 1 until n+2 do

begin

he="Ali,k]g oo

for ji= 1 step 1 until k-1 do h := h-A[i,j] X A[J,k],
—T—k] := hj- B

if: abs(h)>t then begin t := abs(h); imax := i end;
end 1; -
1f imax = = k then

begin T

For 1:=1 gtep 1 until n+2 do

begln comment interchange rows k and imax;
t = Alk,iTs Alk,1] := Alimax,il; Alimax,i]
end interchange of rows:

Tr=b[k] ;b[k] :=b[imax] sb[imax] :=t;
Egg}maxgk,

i
ct
Ve



:= 1.0/A[k; k], """
for 1-—k+1 step 1 until n+2 do A[1 k] hxA[i,k]s
for:i:=k+1 step 1 until n+2 do

_é

h:
fo

hi= Alk,1]3
for J:=1 step 1 until k-1 do h := h-A[k,J] X A[J,l],
T,yl] = h:
end 13 e e
hi=b[k];for j:=1 step 1 until k-1 do h'—h-A[k Jxolilsplkl:=
end triangularlzation,
for k =ni+2 ' step -1 until 1 do
begin comment backsubstitution for Chebyshev coefficients and the devia-
tion dj
hoi=blk]; o o
for j:=k+1 step 1 until n+2 do h := h-A[k,J] xbl[3]s
blk]:=h/A[K k]
end k3
blT]:=2xb[1]; d:=b[n+2];
end solution of linear systemj -
‘end ' chebyshev coefficients; -
begin comment compute’deviations 'and new reference p01nts,
real'array 'Tl1:m]; integer imaxjreal Tmax; ''' ' "
begin comment dev1at10ns, real c; U0, sut,u2s integer i,j,k,ss -
Tmax:=03 s:=13k:=IN[s]: -
for'i := 1 step 1 until m do
begin T e ce et
ii‘"i*k/\s<n+2 then begin Tli]:=d3d:=-djs:=s+13k:=IN[s] end else
begln T
u2 = ul = 03 ‘c':= 2-x(x[il-p)/a;
for'j := n+l1 step =1 until 2 do .
begin -
W0 :=b[j] + ¢ X ul - u2y u2 :=ulj ul := o
end j;
TEE] e=y[1]-((b[1]+cxu1)x0.5-u2);3
end else-statementy: -+ '+ Co
IF Tmax< abs(T[l]) then begin Tmax := abs(T[1]); imax := i end; -
‘end i -
IFf Tmax=abs(d) then o srer  wapd
bégin maxdeviatIon:=Tmax;for i:=0 step 1 until n do a[i]°-b[i+1],f
goto END'ends
1f @40 then
begin it abs(d)>maxd then
Pegin maxd:=abs(d)smaxdeviation:=Tmax; -
for 1:=0 step 1 until n do al[i]:=b[i+1];.
end else goto END endj
énd ' deviations;
begin - comment new reference pointsy e
integer 1i,J,k, imin,gmax,real T TJ,extremum;booleanfound,
J¢=03 found'*falSe,
for ji=j+1 'while . J<n+2A-, found do
IF IN[j= 1]<imax/\imax<IN[J+1] then
begin comment an interval: containing T[imax] is foundj
I TIIN[JTIXT[imax]>0 then begin found:= =true; jmax:=j end else
begin comment T[IN[3F]1] and T[imax] are of opposite signj
1f Imax<IN[1]| then
begin comment 'move the'reference point set to rights:
for 1:=n+2 step -1 until 2'do IN[1]:=IN[i-1]sfound:=truesjmax:=J;
end elge 1f imax>IN[n+2] then o
begin comment move'the reference point set to lefts
for 1:=T"step 1 until n+1 do IN[1]:=IN[1+1];found: —-true,,jmax.—g,
end,end,end;




IN[jmax] :=imax;

if'd40 then '''c e ' R X

Tor ' J:=jmax+1 step 1 until n+2, jmax-1 step -1 until 1 do

begin comment after having placed a reference point in the point of
maximum deviation we proceed by changing the position of
the remaining reference pointsy

k:=IN[j]3TJ:=T[k];extremum:=abs(Tj);imin:=IN[ j- 1],1max:=IN[J+1],

for i:=imin'step 1 until imax do -

begin comment the deviations T[imin] and T[imax] being of the same sign,
we look for the meximum deviation of opposite sign,T[1],the
point of which is the newreference point IN[jl;

Ti:=T[1]}3

1f TIXT3>0 then + - o e Lo Riwe 13

begin if abs(Ti )>extremwn ‘then begin extremum:=abs(Ti);k:=1 end end;
end 13 -
IN[3]1:=

end j;

end new reference points}

end deviations and new reference points;

goto starts

END:. end CHEBAPPROX;

—end-of—pregrams-



BANISH ATOMIC ENERGY COMMISSION November 9th 1965
Research Establishment Risg SA - 85
Reactor Physics Department 50 copies

Computer Group

Petermination of a real zero of a resl function

ALGOL-procedure: HYPAR.

1. Scope.

The following beolean procedure determines with prescribed accuracy
a zero of g real function in a prescribed real interval. If the values
of the function at the end points of the interval differ from zero and

have the same sigam, the value of HYPAR will be true, otherwise it will

be false,

The zero is found iteratively: The function is approximated by a
hyperbola with a vertical asymptote. This gives a four point iteration
scheme, which is used, if the four previous points are on the same
branch of the hyperbola. Otherwise parabolic interpolation is used.

If the actual convergence rate twice in succession is lower than that
corresponding to bisection, this latter method is used.

The two extra points needed to start the process are generated
by means of bisection and parabolic interpolation.

The iterations are stopped, when the horizontal distance from
the last point to a point on the other side of the x-axis is less than

the input parameter eps.

5. Use of the procedure.

The procedure will be copied into the program where the following

comment is written:

comment library HYPAR;

The procedure call must have the form:

HYPAR (F,x,y,d,eps);



-2 .

F is the name of a real procedure ( with one formal parameter)
determining the function for which a zero is wanted.

X 1s the name of the zero (a real variable). The value of x must
equal a first approximation to the zero,

y is the name of a real variable, whose initial value must be F(x).

d is the name of a real variable, whose initial value is determined
in the following way:

abs(d) is the accuracy with which x is thought to be known, so
that simple functioning of the procedure is obtained, when a zero is
situated in one of the intervals (x,x+d).

sign(d) is determined so that d has the same sign as the function
values immediately to the left of the zero.

eps is the (real) accuracy wanted for x; a relative accuracy
rel way be prescribed by inserting rel X (name of zero) in the

place of eps in the procedure call.

It is suggested that one should use the first part of HYPAR for
finding an interval containing a zero in case one has no a priori
knowledge of such an interval.

For instance one might use the following statements to find a
smallest zero z to the right of some point x1, when it is known
that the distance between z and the next zero is greater than a certain
function (assumed, for simplicity, nondecreasing) £(z)>0, and that

zZ<x2:
x:=x1; y:=F(x1); s:=sign(y);
for d:=f(x)Xs while HYPAR (F,x,y,d,relxx) do
begin if x>x2 then goto Abrahams skgd end;
The idea of using some variables (x,y and d) as both input and output

parameters is due to Erling Jensen.

44 Reference.

For a further discussion of this and related methods see

Regnemaskinememo No 11.



5, Algorithm,

boolean procedure HYPAR(F,x,y,d,eps);

real x,y,d,eps;

real procedure F;

begin
real x1,x2,x3,xl4,y1,y2,y3,y4,4,B,C;
integer p;

HYPAR:=false;

x1:i=x3 yl:=y;

if y=0 then goto out;

x2:=x:=x+dxsign(y); y2:=y:=F(x);

if y=0 then goto out;

if yiXy2>0 then begin HYPAR:=true; gote out end;
x =(x1+x2)/2;

y := F(x);

if y = O then goto out;

x3:1=x2; y>5:=y2;

if sign(y) = sign(y2) then

begin x3 :=x1; x1:=x2; y3:=y1; yl:=y2; end;
x2:=x; y2 := y;

d := abs(x3-x2);

p:=0;

goto par;

hypar:

A = (Y1=yh)x(y2-y3 )x(x1-x2 )X (xh=x3)+(x3-x2 )X (x1-xlt )X (y1-y2 )X (yh-y3) 3
B := (yIX(x3-x2)-y3X(x1-x2) )X (yh-y2 )x(x1-x2)x(x3-x2)

+(ylx(x3-%2) -y 3 (xh-x2 ) )X (y2-y1 )X (x3-%2 )X (xlt-x2)

+(yIX(xh-x2) -ylix (x1-x2) )x(y2-y3 )X (x1-x2 )x(xlt-x2);

Cr=(%1=%2 )X(x3-%2 )X (xt-x2 )xy2x ( (xh=x3 )X (y1-y3)+(x3-x1 )x(ylt-y3));

if sign((x1-x2)X(y3-y2)+(x3-x2)x(y2-y1))

F(1f (xb-x2)X(x3-x2)<0 then sign((x1-x2)x(ylh-y2)+(xk-x2)x(y2-y1))
else sian((xh-x )X (y3-y2)+ (x3-22)x(y2-y4) )

then




par:
begin

xh :=x2;

A = (y2-y1)X(x3-x2)+(y3-y2)x(x1-x2);
B:=(y2-y1)X(x3-x2 A2+ (y3-y2 )x(x1-x2)A2;

C:=y2X(x1-x2)X(x3-%2 )X (x3-x1);
end; '
v :=Bf2-UxaxC;

if y<O then y:=0 else y:=2xC/(B+sign((x3-x2)XC)xsqrt(y));

if abs(y)>d/2 then

begin if p=1 then y:=(x3-x2)/2; p:=1-p; end else

if yx(x3-x2-y)<0 then y:=(x3-x2)/2; x:=x+y;
d := abs(x2-x);

xhi=x1; yhi=yl;

y = F(x);

if ¥ = 0 then goto out;

if sign(y) = sign(y3) then

begin
x1 := x3; X3 := x2;
y1 :=y3; y3 = y2;
end

else

begin

X1 1= x2; y1 := y2;
end;

X2:=X; y2 :=y;

if abs(x3-x2) < eps then goto out;

if d>eps then goto hypar;

if F(x+epsxsign(x3-x2) X y< O then goto out;

d :=( x3-x2)/2 x sign(y);

for x :=( x+x3)/2,x+dxsign(y) while abs(d) > eps
begin d := d/2; y:=F(x); end;

out:
end of HYPAR ;

p:=0;

G. K. Kristiansen.



DANISH ATOMIC ENERGY COMMISSION December 20th 1965
Research Establishment Risg SA- 86
Reactor Physics Department 25 copies
Computer Group

Solution of algebraic equations

ALGOL - procedure LEHMERNEWTON.

1 Scope.

The procedure LEHMERNEWTON solves an algebraic equation of order n
with complex coefficients

P(z) = alnlxz4n + a[n-1Ixz4(n-1) + ¢vevvvveee. + a[llxz + a[0] =0

where z = x + iy.
2 Method.

The procedure is a combination of the procedure LEHMER([3],[4]) and
the fast iterative Newton process. By means of the Lehmer procedure a circle
is found, which contains only one root in its interior. Then the root is com-
puted by Newton iteration.

The theoretical backgrund of the method is the lemmas of Cauchy and Rouche
which is stated below without proofs as they can be found in every standard text-
book on complex analysis.

Lemma 1. Let C be the unit circle, then

01/ (z-0))az
S

21 if |a] <1

s

i?(1/(z-a))dz
. C

]
o

if |a] > 1

where the integral is taken along the unit circle in the positive sense.

Lemma, 2. Let P(z) be a polynomial with no roots on the unit circle C. The
number of roots of P(z) inside C is then given by

(1/2?,:1‘)5'(5»1 (z)/P(2))dz

Y.

where P1(z) is the derivative of P(z). Multiple roots are counted according to
their multiplicities.

Lenma, 3. Let P(z) and Q(z) be two polynomials such that
iP(z)| < |q(z)| for |z| =1

then Q(z) and P(z) + Q(z) have the same number of roots inside the unit circle
(Rouche s theorem).

By means of these lemmas D.H. Lehmer has developed a powerful method for
finding the roots of a polynomial. The description of the method is a little
complicated and the reader is recommended to study the original work of
D.H. Lehmer [1]. For a short introduction to the method the reader may consult
[2]. In what follows an outline of the method will be given in order to clarify
the computational process.



The circle
‘Z-C , = I
can by a linear transformation
z = rXzl + ¢

be transformed into the unit circle. If a polynomial f(z) has a root, a, inside
the circle |[z-c| < r then the polynomial

g(z1) = f(rzl + c)
has the root
b= (a-c)r

where [b| <1, i.e. inside the unhit circle, then our problem to find & root
inside a given circle can be replaced by ‘the problem of finding & root inside

the unit circle.
Given the polynomial
g(z) = alnlxz/An + a[n-11xz(n-1) +.........+ a[1lxz + a[0]

where we assume g(0) 4 O (otherwise g(z) has the root z = 0). We form the poly-
nomial

G(z) = #fnxg(1/z) = a[Olxz/jn + a[1lxzf(n-1) +......+ a[n-1Ilxz + a[n]

where the coefficients a[0], a[1],....,a[n] are the complex conjugates of those
of g(z) in reversed order. The polynomials T(g(z)) given by

T(g(z)) = al0lxg(z) - alnlxa(z)

is certainly of lower degree than g(z) because the coefficient of zfn is zero.
It is easily verified that the constant

a[0]xal0] - a[n]xa[n]
is real. If T(g(0)) 3 O we can form a new polynomial

T(T(e(z))) = T2(&(z))
from T(g(z)) in the same way as T(g(z)) is formed from g(z). T2(g(z)) again
is of lower degree than T(g(z)). Continuing in this way we obtain a finite
sequence of polynomials

T(g(z)), T2(a(z)), T5(g(z)), +vvv... , Tk(g(z)) (1)

where 1 <k <n and
We will denote by di the degree of Ti(g(z)) so that

n=49d0>481 >d2 > sesessss >dk >0



Lehmer has proved the following lemma

Letmma, L. Let g(z) be a polynomial of degree d with no root on the unit circle C
and m roots inside C. Let T(g(0)) 4 0. Then T(g(z)) has no root on C and has m or
d - m roots inside C according as T(g(0)) is positive or negative.

‘Based on these four lemmas Lehmer has proved the following

THEOREM.

Assume that g(0) £ 0. If for some h >0, Th(g(0)) < O then g(z) has at
least one root inside the unit circle. Otherwise if Ti(g(0)) >0 for 1 < i <k
and T(k-1)(g(z)) is constant, then g(z) has no root inside the unit circle.

The detailed proof of this theorem is found in [1]. It shall be emphasized
that the theorem says nothing about the existence of roots inside the unit circle
in the case that the constant therm in one of the polynomials in (1) is zero.

Assuming that g(z) of degree dO has m roots inside and no roots on the
unit circle (this can always be arranged by an appropriate chose of the
circle which shall be transformed to the unit circle). Assuming that there
is a minimum h such that

Th(g(0)) < 0 ()
2
Ti(g(0)) >0 for 0<i<h

Then applying lemma L4 in turn to the polynomials
g(z), T(e(z)), T2(g(2z)), +-0cv., T(h-1)(e(z))

whick are computed such that their degrees form an arithmetic progression
with the difference -1 starting with d0, we conclude that each of these poly-
nomials has m roots inside C. Applying the lemms once more to T(h-1)(g(z))

we observe that Th(g(z)) has d(h-1) - m roots inside C. Since dh is the num-
ber of roots of Th(g(z)) we have

dh > d(h-1) - m
or
m > d(h-1) = dh >0

i.e.m> 1,

Hence g(z) has at least one root inside C. If now dh = O, i.e. Th(g(z))
is a constant which according to (2) is smaller than zero then T(h-1)(g(z))
is a polynomial of degree 1 and has only one root which is inside C. From
lemma, 4 it follows that also g(z) has only one root inside C.

The procedure makes a systematical search for roots in the complex plan
starting with the unit circle around origo, such as described in [11, [3].
Having thus found a circle which contains only one root this is finally com=-
puted by Newton iteration. During this iteration it is tested whether the
iterands all stay within the circle found, otherwise the circle is decreased
by repeating the Lehmer procedure. When a root is found it is refined by a
Newton iteration in the original equation before it is removed from the
ecuation. The procedure then continues the search for the next root. The
roots are found roughly in order of increasing modulus.



5. Test of the procedure.

The procedure has been tested on several polynomial equations both
with real and complex coefficients. The use of Newton iterations in connec-
tion with Lehmer s method has resulted in a faster procedure than the pure
Lehmer procedure. It has been observed that the speeds are increased with a
factor up to 6

L. Use of algorithm.

The procedure call must be of the type
LEHMERNEWTON(n, A, tol);
where
n : declared as integer is the degree of the polynomial P(z)

A : declared as real array A[O:n,0:1] contains the complex coefficients.
The real parts of the coefficients are stored in A[0,0],A[1,0]......
A[n,0] and the imaginary parts in A[0,1],a[1,1],......A[n,1]. The co-
efficient a[0] is stored in A[0,0],A[0,1],a[1] in A[1,0],A[1,1]1,....,
a[n] in A[n,0],A[n,1].

The roots found by the procedure are stored in A such that the first
root is stored in A[n,0],A[n,1], the second in A[n-1,0],A[n=-1,1],....
the nth root in A[1,0],A[1,1]. The real part of a root is stored in an
element of A with second index O, the imaginary part in an element of
A with second index 1.

tol: declared as real is a measure of the accuracy of a root. When the ith
approzimation z[i] to a root has been found and the(i+1)th approxima-
tion z[i+1] is known to be found within a circle with z[i] as centrum
and tol as radius then z[i] is accepted as a root. If tol is chosen
too small the procedure will come to an end when it is looking in vain
for a root.

5. Reference.

[1] D.H.Lehmer, A machine method for solving polynomial equations, Journal
of the Association for Computing Machinery vol 8,pp 151-162. (1962).

[2] selected Numerical Methods, chapter IV,pp 278-280 publ. by Regnecen-
tralen, Copenhagen 1962.

[3] Ole Lang Rasmussen: Solution of polynomial equations by the method of
D.H. Lehmer, BIT L4, pp 250 - 60. (1965).

[4] sA-34, LEHMER, February 26th 196L.



6. Algorithm.

procedure LEHMERNEWTON(n, A, tol);

value n,tol;integer njreal array Ajreal tol;

begin comment A.E.K. december 22th 1965 =-the procedure LEHMERNEWTON finds

approximate values for the roots to a polynomial equation P(z)=a[n]xzAn+

a[n-1]xzf(n=1)+...+a[11xz+a[0]=0 with complex coefficients as described in

SA=86.The procedure is a combination of two procedures,the Lehmer-procedure

for an effective localization of a root and the fast Newton iteration process.

The Lehmer procedure is developed in accordance with the method devised by

D.H.Lehmer described in Journal of the A.C.M. volume (1961) pp 151-162.

The parameters are:

n: degree of the polynomiagl equation.

A array of dimension A[O:n,0:1] containing the complex coefficients a[n],
a[n-1],.....a[1],a[0] which are stored according to the following rules.
Re(al[k]) in A[k,0]

Im(alk]) in Alk,1] for n >k >0

The roots z[1],z[2],....2[n] will be stored in A according to the same
rules and such that the first root found will be stored in A[n,0],A[n,1],
the second in A[n-1,0],A[n-1,1],etc......the last in A[1,0],4[1,1].

tol: parameter giving the tolerance of the solution. If z is some approxima-
tion to a solution then this approximation is accepted if the next ap-
proximation shall be found within a circle with center z and radius r
where abs(z)xtol>r;

integer m,i,k,p,q;

real S,xc,yec,r,rl,r2,al,a2,a’,newxc,nevyc, temp;

real array a,b[O n,0: 1],

boolean B1,B2;

procedure SYNDIV(m,b,x,y,r,B);
value m,x,y,r; integer mj;real x,y,r;real array b;boolean B;
begin comment The procedure SYNDIV is used with B having the value false when
a root to the polynomial equation P(z) = O has been found and shall be removed
from the equation. When B has the value true then SYNDIV makes a linear trans=-
formation of a polynomial f(z) within a circle with center (x+iy) and radius r
to a polynomial g(z) within the unit circle;
integer i,j,k; real qg,s,t,u,v;
a =13
if B then k:=m else k:=0;
for i:=0 ; step 1" until k do
begln s:=1t:=0;

T for J:=m step -1 until i do

begin u:=b[j,0]+xxs - yxt; v:=b[Jj,1]+xxt + yxs;

b[j,0]:=s:=u; b[j,1]:=t:=v;

end Jj;
If B then begin b[i,0]:=uxq;bli,1]:=vXxq;q:=axr end;
end 1,

if -,B then for j:=0 step 1 until m-1 do
begin b[J,0]:=b[j+1,0T;b[j,1T:=b[j+1,1Tend;
end SYNDIV;

procedure T(m,c,d);

value m; integer m; real array c,d;

begin integer j;

for j =0 step 1 until m do begin c[j,0]:=d[j,0]; c[J,1] := d[J,1] end;
end T;




integer procedure ROOT(m);
value mjyinteger m;
begin comment The integer procedure ROOT(m) constitute the central part of
tThe algorithm.If the constant term in the polynomial g(z) is zero then g(z)
has the root zero and ROOT will be assigned the value 1.If the constant term
is different from zero then the procedure computes the coefficients in the
finite sequence of polynomials T(g(z)), T(T(g(z))),.... in turn and by examin-
ing the signs of the constant term in each of these polynomials answers the
fundamental question whether the polynomial equation g(z) = O has a root inside
the unit circle.If the answer is affirmative ROOT will be assigned the value 2
if there is only one root and the value 3 if there are more than one root in-
side the unit circle. If the answer is negative ROOT will be assigned the va-
lue -1.In the case that the constant term in one of the polynomials is zero
Lehmers theorem gives no answer to the question and ROOT will be assignedthe
value O;
integer q,1i,imax; real al,a2,a3,al,bl,b2,b3,bl;
WOHOVa[O 1];""hen
begin
for q:=m step -1 until 1 do
begin

al :=a2:=abs(a[0,0]) + abs(a[0,1]);
for i:=1 step 1 until q do
begin comment The coefficients for the polynomials computed by ROOT(m) are
apt to become either very large or very small in absolute value, so that they
can have values beyond the range of numbers for the computer used. In order to
refute this eventuality the coefficients are divided by a common factor. Let a
norm of a complex number be defined by ||z ||=|[|x+iy||= |x|+ [v|. Find for the
actual polynomial the coefficients with the greatest and smallest norms and
find the greatest power of 2Ap (p integer) lesser than or equal to the square
root of their product. This power of 2 is the factor used in this context;
a3:=abs(a[i,0]) + abs(ali,1]);
if O<a3Aa3<al then al:=a3;
if a3>a2 then a2:=a3;
end;

= 2/\(-entier(In(sart(al)xsqrt(a2))/0.693147181));

for 1 :=0 step ! until g do
begln ali,0f:=a[1d, O]xai,aI_'T] =ali,1]xa3 end;
comment Compute the coefflclents in the sequence of polynomials T(g(z)),
TZTZgZz))) .
imax:= q:2; a1 —a[O O] a2:=a[0,1];a3:=a[q,0];ak:=alq,1];
al0,0]: —a142+a242-a342-ah42
a[0,1]:=a[q,0]:=alq,1]:=0;
if a[0,0]>0 then
begin
for i:=1 step 1 until imax do
begin bl:=a[1,0]; b2:=a[i,1]; b3:=alq-i,0]; bh:=a[q-i,1];
ali,0]:= alxbl+a2xb2 - a3xb3 - alixbl;
ali,1]:= alxb2 - a2xbl + a3xbl - alixb3;
if q42xi then
begin
alg-1,0]:= alxb3 -a3xbl + a2xbh - alixbl;
alg=i,1]:=alxblk -alixbl + a3xb2 -a2xb3
end;

end else
begin if al0,0]<0 then begin if q=1 then ROCT:=2 else ROOT:=3 end

else ROOT :=0; goto exit end;
end q;




end else ROOT:=
exit:end procedure ROOT;

procedure NEWTON(m,r,xc,yc,a,b,exit);

value m,r;integer mjreal r,xc,yc;real array a,b; label exit;
begin comment an approximate root is refined by a Newton process;
real a00,a01,a10,al11,s,x,y,nevx,newy,deltal,delta?;

boolean firstiter;

X = xc; y := yc; firstiter:=true;

rep:

T(m,a,b); SYNDIV(m,a,x,y,1,true);

a00 := a[0,0]; a01 := a[0,17; al0 := a[1,0]; all := a[1,1];

8 f= a1042+a11d2; '

newx := x-(aO0xal0+allxall)/s;

newy := y- (aO1xa10-aOOxa11)/s,

if sqrt ((newx-xc)A2+(newy-yc)A2) > r then goto exit;
delta2:=sqrt( (newx-x )A2+(newy-y)A2);
if firstiter then begln deltal :=delta2;firstiter: -false,goto labell end;
1f deltac<deltal - then deltal:=delta2 else goto label?;

Tabell :x := newx; y := newy; goto rep,
label2:xc := newx; ycC := newy;

end NEWTON;

S :=1; a3:= 0.707106781;

T(n,b,A);

for m :=n step -1 until 1 do

begln comment Beginning with a circle with center in the origin and radius S
the procedure starts the search for a root to the given polynomial P(z). For
the first root, S = 1, corresponding to the unit circle.The search for the
following roots starts with the greatest rootfree circle around origin found
during the computation;

r := S; x¢c :=yc := 0;

comment Isolate a root by Lehmers procedure.Find radius rl such that a poly-
nomial f(z) has a root inside an annulus bounded by concentric circles with
radius r1 and 2xrl and the center (xc+iyc);

Lehmer :nextapprox:

=1

L1:
Bl :=B2:=false;
12:

T(m,a,b); SYNDIV(m,a,xc,yc,r,true); q:= ROOT(m);

if g=1 then goto deflation;

it a>1 then

begin B1-—true,1f B2 then goto L3;r:=r/2;goto 12 end;

if o=0 then

begln comment No answer to the cuestion whether a root exists can be given,
repeat the process with a greater circle;

i:=i+1; q:=2Ai; ri=rx(q-1)/(q-2); goto L1;end;

if o=-1 then

begin B2:=true;rl:=r;if -,B1 then begin r:=2xr;goto 12 end;end;
L

if xc=0Ayc=0 then begin S:=rl;goto eight circles end;

if sqrt(xeA2+ycA2 )xtol>2xr! then goto deflation;

eight circles:

r2:=5xr1 [6; v1 := 2xr2;

for p:=1,2 do
begin comment The annulus which certainly contains at least one root is covered

with 8 circles, and the first one containing a root is chosen. If no circle can
be found, the limits of accuracy for computation has been reached and this sta-




ge of approximation must be accepted. The 4 circles with centers on the axis are
examined first next the other;

if p=1 then begin al:=0;a2:=-r1 end else begin al:=a’dxrl;a2:=-al end;

for k:=1,2,3,F do "'

begin -

temp:=-a2; a2:=al; al:= temp; newxc:= xc+al; newyc := yc+a2;

if newxc=xcAnewyc=yc then goto deflation;

comment A circle with center(newxc+inewyc) and radius r2 shall now be trans-
formed to unit circle;

r o= r2; i:=1;

Lh:

T(m,a,b); SYNDIV(m,a,newxc,newyce,r,true); q:=ROOT(m);

if q = O then

begin comment No answer can be given whether the circle in question contains
a root, the process is repeated with a greater circle;

11=14+1; q:=3x2/\i; r:=rx(q-1)/(g-2); goto Lk

end;
if ¢>0 then
begin

XC :=NEWXC;yC :=Newyc;
if q=2 then goto Newton;

r:=r/2; goto nextapprox;

end;

end k;

end p;

goto deflation;

comment end of Lehmers procedure;

Newton:

NEWTON(m, r,xc,yc,a,b, Lehmer) ;
NEWTON(n, r,xc,yc,a, A, Lehmer);
deflation:
SYNDIV(m,b,xc,yc,1,false);
b[m,0] := xc; b[m, 1T := yc;
end m;

T(n, A,b);

end procedure LEHMERNEWTON;

0. Lang Rasmussen



September 1967
Sa - 96
25 copies

DANISH ATOMICENERGY COMMISSION
Research Establishment Risg
Reactor Physics Department
Computer Group

Chebyshev approximation

ALGOL-procedure CHSUM

1. Scope.

The real procedure evaluates the function f(x) given as a Chebysherv approxi-

mation.
f(x) = alol/2 + a[1] x T1(x) + al2] x T2(y) +...... ee.e.t aln] x ™(x)

in an interval xl <x S x2.

2. Method.

The algorithm is based on a recursiv technic given by Clenshaw, see refl[1] or
ref[2].

5. Use of the procedure.

The procedure call is of the type
CHSUM (n,x,x1,x2,a);

where

n: integer 1s the order of the Chebyshev approximation.

X real is the independent varisble for which the function f(x) shall be evaluated
x1,x2: real is the lower respective the upper end of the interval for x.

a: array alO:n] contains the coefficients in the Chebyshev approximation.

4. References.

[1]: C-E.Frgberg Lerobok i numerisk analys, 1962, p. 253
[2]: Modern Computing Methods sec.ed. 1961, pp 76-TT.

0. Lang Rasmussen

5. Algorithm.

real procedure CHSUM (n,x,x1,x2,a);

value n,x,x1,x2; integer n; real x,x1,x2; array a;

begin comment this real procedure computes the value of a function f(x) given as a
Chebyshev approximation

f(x) = (alol/2) x To(x) + al1] x T1(x) +........ vt aln] X ™(x)

in the interval x1 < x < x2, such as described in SA-96.;

integer 1; real c,u0,ul,u2; -7

u2 := ul := 03

c = 2x(2xx-x2-x1)/(x2-x1);

for i := n step -1 until 1 do
begin -
w0 := alil+exul-u2;

u2 = ul; ul := uo;

end;

CHSUM := (a[0]+exul)/2-u2;
end CHSUM;



DAMNISH ATOMIC ENERGY COMMISSION March 19C8
ikesearch Establishment Rlisg¢g SA-101
Electronic Department 2% coples

Varlable_lntecer_layout

It Is often useful printing Integers, so the number of
printed characters equals the number of diglts in the Integer

plus a possible sign.

2. Method

In GIER ALGOL III layouts are of type boolean. This makes
It possible to pack your own layouts, as described In A MARKUAL
OF GIER ALGOL III p.51.

A boolean array layout[l:n] is declared In the outermost
block. n is the largest number of digits (not grecater than 9)
In any integer to be printed. In layoutim] Is packed an integer

lavout with m digits (1 €< m < n) and the appropriate slgn code.

To print Integer b, compute the number of digits In b as
d:= entier(log(b))+1 (with base 10), output Clayoutid],b);

will print b with d digits (and a possible sign).

s ey e B ot e o o i i G ot W e e G

Example: After outtext(§<p=%}); we want output of threce
Integers with a maximum of 5 digits (n=5). The flrst numbor
must be without sign (or space) If It is positive and with
sign if It is negative. The other numbers are to be printed

with the proper sign and no spaces,



bealn

boolean array layout[1:101; : ,

comment We want 2 sign codes and 5 digits wich gives 10 diffe-
rent layouts;

Integer n;

= e 2L v

- - -

1

|
T
o}
(9]
~
~
-
]
<
Q
c
(d
~—
3
L]
[
i
]
D
N
Q
N
W
o )
™~
=
e
~
J
N
=
N
~

e

layout[1:5] contains the layouts $n}, 4nd}, ....., ¥ndddd}.
In MANUAL p.16 is shown, that alarmprinting wil Insert a
minus sign in front of a negative number.
layout[6:10] contalns <+n}, +nd}, ..., <+ndddd};
bealn

beagln

logl0:= [f a = 0
else entier (0

end logll;

comment The program is Inserted here. A short example Is shown;

Integer p, r;

then 1
LL43h29u485%x1nCabs(a)))+1

p:= =357;
r:=10521;
n:= =539;

outtext({<p=});

output(layout[1ogl0(pl1,p);

output(layout[1ogl0(rd)+5]1,r);

output(layout[1ogle(nd)+5],n);

comment Note that printing of Integers with mor2 than n (in this
case 5) dlgits, causes either a wrong layout or the mes-
sage Index;

end program block

end outer block;

output of this program Is

p==357+10521-539

B. Runge.,



