
A COURSE OF

ALGOL 60 PROGRAMMING

with special reference to the DASK ALGOL system

Second edition

by

Peter Naur

REGNECENTRALEN, COPENHAGEN

1961

Imtroduction . . «© eee ee ewe wee

The Cours@ . «+ 6 es ee ee ee me Hh hw he

Aneawers to some of the probleme .. 2. 2. 2 eae
Appendix 1. A progrem for « small table

- 2. The solution of a realistic problier
- %. The testing of algoritims.
- h. The use of blocks and procedures . . *

©
©

©
&©

@
@

*
*

©
#@

©
©

@

e
e

8

©

&

8

o
e

@

©

@

#

@

2
*

©
©

@
@

@

*
>

oo

@
a

e
®

o
e

©

©

©

8

8

eo

¢
@»

©
8

@
@

¢
@

@
@

#@
@

&

32
3h
37
38

INTRODUCTION. 5

INTRODUCTION.

The difficulty of learning the algorithmic language ALGOL 60 may be
both under and over-estimated. While it is true that a few hours of study
under suitable supervision may place the student in a position to express
himself intelligently in a basic part of the language, it is clear that a
complete mastery of all the possibilities of the language will require
considerably more study. On the other hand the feeling of despair which

may seize the student who for the first time tries to acquaint himself
with the ALGOL 60 report is caused largely by the special character of
this report. In fact, being designed to present as concise and complete a
description of the language as possible, the ALGOL 60 report cannot be ex-
pected to act as a well balanced first introduction as well.

The purpose of the present course is to act as a guide for the stu-
dent who wishes to acquire a thorough knowledge of the language and some
facility in expressing himself in it. Since thoroughness is aimed at it
seems obvious from the outset that the course must be based firmly on the
ALGOL 60 report itself. For this reason the course itself basically con-
sists only of a set of directions in how to read the ALGOL 60 report and
a set of accompanying exercises. Only occasionally have special notes,
dealing with particular points in the ALGOL 60 report, been added. Thus
it is hoped that having worked through the directions given in the present
course, the student will be ina position to understand the ALGOL 60 re-
port and to use it as his standard reference.

Since the course was written primarily for students of the DASK ALGOL
translator system the special characteristics of this system are explained
and used. This gives the added advantage over a pure reference language
course that conventions for input and output are available. On the other
hand since the DASK ALGOL representation in its appearance lies very close
to the reference language much of the material presented will probably be
of more general interest.

Because of the special character of the course the student who is
completely unprepared will need an informal introduction to the language.
Danish readers may use one of the following articles for this purpose:

W. Heise: ALGOL - et internationalt sprog for elektronregnemaskiner.
Ingenigren nr. 17,. 1. sept. 1959 (this article is somewhat out of date,
being based on a preliminary version of the language, but will serve as
introduction all the same).

P. Naur: ALGOL — det internationale sprog til at beskrive logiske og
numeriske processer. Nordisk Matematisk Tidsskrift, Bind 8 (1960) 117.

6 INTRODUCTION .

The course is divided into consecutively numbered points. Within each
of these points additional notes and problems may appear. Section numbers
will refer to the sections of the ALGOL.60 report. References to A MANUAL
OF THE DASK ALGOL LANGUAGE will be written as for example MANUAL section
7.1.2. For each point there is left space open for the student to note the
time required to work that point.

THE COURSE. 7

THE COURSE.

1, Read through section i, not including 1.1. (Time min.)

2. Read through the same section, this time noticing particularly the fol-
lowing concepts:

arithmetic expressions
assignment statements
statements
labels
compound statements
declarations
blocks
programs (Time min.)

3. Read carefully through the problem description given in Appendix 1. Try
to recognize instances of some of the concepts listed in point 2.

(Time min.)

3 Problem 1. Which of the concepts listed in 2 do not appear in the pro-
blem description of Appendix 1%

4, Study section 1.1 Formalism for syntactic description. (Time min.)

4 Note 1. The meaning of the syntactic formilae may be further explained
by saying that words enclosed in the bracket < >, like <ab>, denote clas-
ses whose members are sequences of basic symbols. Class designations of
this kind are found in any description of a language. For describing ordi-
nary natural languages designations like word, verb, noun, are used. This
of course introduces the logical difficulty that a clear destinction be-
tween the language described and the language used for description (the
meta-language) is not made (the designation verb is itself a word, but not
averb). This difficulty is avoided in the description of ALGOL by intro-
ducing the special mark < > for metalinguistic classes.

The fact that the syntactic rules of ALGOL may be described fully and
conveniently by means of the very simple formalism of section 1.1 is of
course simply a consequence of the way the language has been defined.

8 THE COURSE.

4 Problem 1. Half of the following sequences are values of <ab> as defined
in section 1.1, the rest are not. Find those which are
1. 213 : 5. 2.73(9. (a+b)
2. (C. 6. a | 10. 1234567
3. {12(34 7. [27cacc¢ 11. [22(2(3)
k, 00 8. (a 12. 987(65

(Time min.)

5. Read once carefully through sections 2, 2.1, 2.2.1, Z2e2e2, 2.5, inelu-

ding the footnote 1 to section 2.1. Do not try to learn this section by
heart.

5 Note 1. Note the following special features of the DASK ALGOL represen-—
tation:

The DASK ALGOL alphabet includes #,2£,¢,%.
+ is not included in DASK ALGOL.
For { DASK ALGOL uses 4
5 is not included in DASK ALGOL
For =, DASK ALGOL uses -,
For ' and* DASK ALGOL uses { and }
For Boolean DASK ALGOL uses boolean
The third form of conment is “permitted only in the restricted form
end <any sequence of digits or letters> (Time min.)

5 Problem 1. Some of the following characters or groups of characters re-
present basic ALGOL 60 symbols, others do not. Using sections 2 - 2.3 as
reference, find those which do.
i. a7 5. A 9. end
2. function 6. x 10. 0
3. value 7. 11. wntil

.- 8. =: 12. =»
(‘Time min.)

5 Problem 2. Use the comment conventions to contract the following sequen-
ces as much as syntactically possible:
1. areb+3 3 comment Now comes the inner loop 3; V: PW:=n 3
2. begin comment This is executed whenever q¢7 3; if PQ=0 then go to W ;
3. Q[n]r=n+7 end section 2 else go_to WW
4, tu:mvu/2 end block V and end block sub V ;

(Time min.)

6. Study section 6: 8-channel punch tape code and flexowriter keyboard.
(Time min.)

6 Problem 1. For each of the delimiters which is not an underlined word,
find out how it will be typed using the DASK ALGOL keyboard. Assuming that
the previous case shift is unknown, find the number of keys to be depres-
sed for each of the delimiters. Arrange the delimiters in groups according
to the number of keys to be depressed and find the number of delimiters in
each group. . (Time min.)

THE COURSE. 9

7. Study sections 2.4.1 - 2.4.3.

7 Note 1. In DASK ALGOL only the first six characters of an identifier
will be recognized. Thus, although identifiers of any length may be used,
two identifiers, to be different, must differ in one or more of the first
six characters.

7 Note 2. The complete list of reserved identifiers of DASK ALGOL is given
in MANUAL section 7.4.

7 Note 3. The sentence in section 2.4.4 on the same identifier denoting
different quantities implies that at any one place in an ALGOL program one

cannot have an identifier denoting, say, both a simple quantity (a number)
and a matrix {an array of numbers). This restriction is not obvious since
it is always possible to recognize array identifiers by the following bra-
eket []. (Time min.)

7 Problem 1. Some of the following sequences of characters can be used as
identifiers, others cannot. Mark those which can.
1. begin 2 « P.2 9. ‘TVPFQ
2. axv Start value 10. V7
3%. 4711 7. number 11. a2ov3
4, = ppp3 8. Q(2) 12. epsilon

(Time min.)

8. Read section 2.5.1 - 2.5.4. (Time min.)

8 Note 1. In DASK ALGOL numbers must be confined to the following ranges
~ 524288 ¢ integer ¢ 524287
2.9439 ¢ abs(real) ¢ 3.40,38

8 Problem 1. Write numbers having the same values as the following, but
which do not include an exponent part.
i. si 293.48 3. gt 5.
2. 98.12,¢2 h, 7 11854,-5 6. Be. +e

/ (Time. min.)

8 Problem 2. The values given by the following numbers may, in some cases,
be expressed more economically by using .a number with an exponent part.
Show where this is the case.
1. 1'7000 3. 0.00134 5. ~+0.0020041298
2. 1000 4, §=1.0024 6. 170

(Time min.)

8 Problem 3. Some of the following sequences of characters represent num-

bers, some do not. Mark those which do.
1. -.0 08 5. ~17.2.30 9. 13.411 732

2. +13.47,,+18 6. +4.2 10. 2.
4, x 0 7. =88, -7 11. x 644.2

kh, (16.20) 8. 1, ak 3 12. 12.,8
(Time min.)

10 THE COURSE.

9. The sections 2.6 and 2.7 may be skipped for the moment. Read section
2.8. Continue to read section 3 up to and including section 3.1.3 leaving
out, however, anything dealing with subscripts or arrays.

9 Note 1. A recursive definition ia a definition which uses the defined
object itself as a part of it.

G Note 2. The definition in section 3.1.1 of a simple variable is unne-
cessarily complicated since the construction <variable identifier> is com-
pletely equivalent with <simple variable>. The formulation given was cho-
sen because it was considered desirable that there exist a <variable iden-
tifier> analogous to <array identifier>, <procedure identifier>, and

<switch identifier>. (Time min.)

9 Problem 1. Which of the examples of section 3.1.2 denote simple varia-
bles? (‘Time min.)

10. Study section 5.1.1 - 5.1.3 on type declarations.

10 Note 1. Remember that DASK ALGOL writes boolean. (Time min.)

10 Problem 1. Some of the following sequences denote type declarations,
some do not. Mark those which do.

1. integer q10. qii, h 7+ gwn boolean true
2. integer 8. . integer K2, (v)
3. boolean integer 9. realks; B
4, Integer a5, 7 10. integer kappa, Kappa
5. real nusber, HH 11. real 2.34
6. integer 2akb, L2, k2 12. real STUFF

min.) - (Time

14. Read sections 3.3.1, 3.3.2, the first paragraph of 3.3.3, and 3.3.4 -
5.5.5.2, leaving out, however, anything dealing with function designators,
if clauses, and subscripted variables. (Time min.)

11 Note 1. DASK ALGOL does not include +.

11 Example 1. The proof that a given construction is an ALGOL 60 arithme-
tic expression is equivalent to showing that ‘the construction may be for-
med through applications of the rules of section 3.3.1. Thus for example
the construction

ax(o+t+exdheAf) x¢
is proved to be an expression through the following steps:

Primaries: a b c a e f &
Factors: a b c ad &

and therefore also: dae
and again: aa e r f

Terms; a b ec
end therefore also: ecxdhelit

Simple arithmetic expressions: b
and therefore also: b+eexdhede

THE COURSE. 11

Arithmetic expression:

rector Factor:
Term: a

and therefore also: a
Simple arithmetic expression: .
Arithmetic expression:
Through the analysis we have ned occasion to introduce the following num-
bers of syntactic units:

v
o
o
r
o
o
o

t
+
e
e
e
e
e
e
t

e
a
n
.
a
o
g
a
a
n
a

x
x
M
M

K
K

xX

P
B
A
R
A
A
 A
 e

e

e

e

e

@

€ x
x
x
 x

X

x &
x &

x &

Primartes: 8

Factors: 8
Terms: 6
Simple arithmetic expressions: 3
Arithmetic expressions: nN

 (Time min.)

11 Problem 1. Analyze in the same way as in the previous example the con-
struction of each of the following arithmetic expressions and find the
number of different syntactic units in each case.

1. ((P))
2. eee
3. +A-Bx(C+DA(E-F))
Having worked through these examples you will realize that the apparently
rather complicated rules of section 5.5.1 essentially are only a concise
formulation of the ordinary rules for writing arithmetic expressions.

Time min, }

11 Problem 2. Some of the following sequences are arithmetic expressions,
some are not. Mark those which are.
1. axb/chd/exf 5. 3.8h,(7+n)/4
2. +8ax-b 6. +403

3. 26x45 + Q 7. -(+(-v))
Ke 2x 6/4.3 8. p/araxtu-v (Time min.)

11 Problem 3. For each of the correct arithmetic expressions of 11 Problem
2 write a reasonable type declaration for the variables which occur in the
expression. (Time min.)

11 Problem 4. Assuming that at a certain point in a program the values of
seven simple variables are as follows:
va = 2, vb = 3, vew 4, vd= 5, ve= 6, vf = 7, ve = 8,
find the values of the following expressions:
1. va+ve x vb / ve
2. vwdx {vs + vg)/ ve / va
3. ve vd - vb)
4, vt Cope Cae oy 4 ei ete}
5. vax (vb x (vg - vb 4 va /(ve / va)) - 2 x va) / (vg - vb)

6, tothe r
. D
gee as
9. ((({vb x va - ve) x (-va) + vd) x va + ve)x(vf - vd)) -vg + 2
10. ve # (vg - vb
11, {ve - va) , vb # ve
12. (ve - vf - va) + ve (Time min.)

12 THE COURSE.

11 Problem 5. Write the following mathematical expressions as ALGOL ex-
pressions, without using redundant parentheses:

1. St s.=t
ye

@
2. (U-wW)(1 - ia 2k))

3, ant

n
he?

n
5. ats

6. (a")8
q

Te —2o_
yott

a ~ b tan
_.___e(a - e |*)

i(j-k) (-9-)
h +q ™P (Time . min.)

12. Read sections 4.2.1 - 4.2.4 ignoring for the moment the references to
subscripted variables and the entier function.

12 Example 1. As explained in greater detail later statements and declara-
tions are normally seperated by a semicolon and consecutive statements
will normally be executed in the order in which they are written. Thus a
part of a program might look like this:

real a, b, bq 3
aw bis 73
pimat+5 xb - 2.5,-1 3
a mp+ (a+ 3)/(-0" ~ 3) ;

= pisegqg-b x 0.2 3
In order to follow the action of: these atatements it is useful to write a
table with a columm for each variable, where each new value of this varia-
ble is entered. Such a table is shown below, where in addition the inser-
ted numbers from 1 to 6 show the order in which the new values are formed.

a b p qa

1: 7 2: 7 3: 27.77 4s 27.27
5: 25.87 6: 25.87

Tus the final values of a, b, p, andq, are 25.87, 7, 25.87, and 27.27,
respectively. | (Time min.)

THE COURSE. 13

12 Problem 1. Using the same system as in 12 Example 1, follow the action
of the following statements and find the final values of the variables.

real ri, ra, rb $3
cnueese me 1,33
n <=

ri ie nv(n + 45) ;
rb ren + 6/(6 x ri + 0.5) 3
issn sen = 2 3

j :=rb-1
va te (j- i) x ri x (rb -4) ;
ri:sratrbt+n+i+j+8x ris
bim (ri -rbxn+j- ra), (ro-j) + ra;
jr=niei+nze(j- 2) 3
iw=n+ ra 3 (Time min.)

13. Read sections 3.4.1 - 3.4.6.2. (Time min.)

13 Note 1. In DASK ALGOL the implication operator > is not included.

13 Problem 1. Using the same technique as the one explained in 11 Example
1, analyze the following Boolean expressions and find the number of rela-
tions, Boolean primaries, Boolean secondaries, Boolean factors, Boolean
terms, implications, simple Booleans and Boolean expressions entering into
each of them:

wise A (P>QvW)) |
2>17.2VWAQv-,T (Time min.)

13 Problem 2. For each of the expressions of 15 Problem 1, write suitable
type declarations for the identifiers. (Time min.)

13 Problem 3. Using the same scheme as in 12 Exemple 1, work through the

following. statements and find the final values of all variables...
real ra, rb 3

integer ia ;
boolean ba, bb ;
ra := 7.5 3
fa := 5 3
ro := 3x Ta - 2 x la 3

ba := rb > faa la > Ta
ra: 2x (ra - ia) -1
ba :@ -, ra > lav ba ;
bb := (ba = rb > fa) A ra < rb 3 .
ba := -,(ba v bb) 3 (Time min.)

4h THE COURSE.

14. Convince yourself that according to section 3.5.1 a label may be an
unsigned integer or an identifier and that a designational expression may
be a label. Read sections 3.5.5 and 4 and the first three lines of section
4.4.1. Read sections 4.3.1 - 4.3.3.

14 Note 1. In DASK ALGOL unsigned integers cannot be used as labels.

14 Problem 1. The following statements generate a sequence of values for —

SUM. Find the first four of these values.

real p, 4, SUM ;
integer n ;
ntwi13
p 32 0.5 3
SUM := 0 3

q:m13
loop:SUM := SUM + q/n 3

gQ:m@qxp}3
nimwn¢+ i;
go _to loop ; (Time min.)

15. Read sections 4.4.1 - 4.4.3. (Time min.)

16, Read sections 4.5.1 - 4.5.4 ignoring for the moment those syntactic u-
nite which have not yet been defined during the course.

16 Note 1. The necessity of introducing the <unconditional statement> ari-
ses because a construction like

if Bl then if B2 then S := exp else V1" Q+ 15
must be avoided since its meaning is not clear. (Time min.)

16 Note 2. The basic point of the syntax of conditional statement is the
following:

An if can never follow a then.

16 Problem 1. Using the system of 12 Exemple 1 follow the action of the
following statements and find the final values of all variables.

real u, W 3
boolean B ;
u

oe deepen ape nee

=

1 c \ nN

repeat ; 3
if 2 - ifu>OaAW > -2 then u i= i/u
else if B then go_to Z
else go_to end 3

Zs B i= falge ;
use W+2x u 3

go_to repeat 3
end: Bimu>W (Time min.)

THE COURSE. 15

17. Read sections 4.1.1 - 4.1.3 ignoring the syntactic units which have
not yet been covered: procedure statements, for statements. Read also sec-
tion 5.

17 Note 1. Section 4.1.1 gives the important rules of how to join state-
ments and declarations together to form a program. The main difficulty of
this section is that of punctuation, particularly of when to write semi-
colon and when not to. The difficulty is directly connected with the use
of the delimiter end. As a guide for the student the relevant rules may be
restated as follows:

PUNCTUATION RULE 1: Within a program the first symbol following any
statement (whether basic or not) must be one of the following three:

3 else end
PUNCTUATION RULE 2: Any sequence a ee end end end... within a

program must always be terminated by semicolon or else.
Punctuation rule 1 follows directly from the sy syntactic rules gover-

ning statements (sections 4.1.1, 4.5.1, 4.6.1, and 5.4.1). Punctuation ru-
le 2 follows from observing that an end, whenever it occurs, is the last
symbol of some statement, and then applying punctuation rule i.

(Time min.)

17 Note 2, Recall the special comment conventions for end (section 2.3).

17 Note 3. In DASK ALGOL the declarations in a block head cannot be given

in an arbitrery order, but must appear in the following order:
First: type declarations
Second: array -
Third: switch -
Fourth: procedure -

17 Example 1. The concept local may be illustrated by an example of a pro-
gram structure as follows:
Li: begin real A, B, C 3

L2: Ps Asm B+2xC 3

L3: begin real A, D ;

"Lh: Q: Am2xB+C 3
L5: Dim 24+BraAgz

L6: P; C te 2x A -Ds;

L7: go to P 5

1B: goto R 5
19: end | eee

L10: R: go _to P

Lit: end

16

Here we have a larger block,
smaller block from L3 to L9.

THE COURSE.

from L1 to L11, containing as one statement a
In the outer block we work with the identi-

fiers A, B, and C, which are local to this block. In the statement at L2 a
value is assigned to this A.
and a D. This A,

The inner block introduces a new, local, A
then, has no relation to the A of the outer block, which

is now screened. The variables B and C, on the other hand, are the same in
both blocks. At L4 they are used to assign a value to the local A. This
value is again used to assign a value to the local D at L5 . These opera~
tions make no use whatsoever of the A of the outer block. At L6 a value is
assigned to the non-local C, using the local A and D. Labels are automati-
cally local. Thus the labels Q and P at L4 and L6 are only accessible from
inside the inner block. The go to statement at L7 will therefore lead to
the statement at L6. The go to statement at L8, on the other hand, will
lead out of the inner block to L10 because the identifier R, being not de~
clared in the inner block, will be non-local. The moment this passage out

of the inner block occurs the local variables A and D are completely lost.
The go to statement at L10 will lead to L2 because the label P at L6 is
local to the inner block and thus inaccessible from L10. (Time min.)

17 Problem 1. Using the system of 12 Example i follow the action of the
following program and find the values of those variables which are defined
at the label STOP.

begin real W, 5, B, C 3
W Li: om 0 3

L2: S 33
L3: Bie 2xW-Sz3
Lh; Crm B-W;s

begin real P, W 3
L5: Wisse B-2xC 3
L6: P := Ch2 - B 3
L7: AA; Wee P-2xW 3
18: Crs C+i13
L9: if W > 1 then go_to AA 5
L10: SwmwW-P+S5S

end 5
Lif: WemW-C+S5S 3

STOP:

end 5 (Time min.)

17 Problem 2, Check the syntactic structure of the program of 17 Problem
1 against the rules of section 4.1.1 and find the number of unlabelled
basic statements, basic statements, unconditional statements, statements,

compound tails, block heads, unlabelled compounds, wlabelled blocks, com-
pound statements, and blocks. (Time min.)

18. Read section 2.7.

18 Note 1. The scope of a label comprises, so to speak, all those state-
ments from which the label may be seen.

18 Note 2. The definition of scope should be changed to read:
The scope of a quantity is the set of basic statements,

and for clauses... .
if clauses

THE COURSE. 17

18 Example 1. The concept of scope may be illustrated by the example given

in 17 Example 1. The scopes of the different quantities are as follows:
Scope includes statements at

A and P in outer block L2 110

B, C, and R L2, Lk, L5, L6, L7, L8, Lio
D, Q, and A and P in inner block LE, L5, L6, L7, L8

(Time min.)

18 Problem 1. Find the scopes of all the identifiers of 17 Problem 1.
(Time min.)

18 Note 3. The meaning of the second paragraph of section 2.4.3 should now
be clear.

19. Read sections 5.2.1 - 5.2.4.4. (Time min.)

19 Note 1. In DASK ALGOL own errays cannot be handled (cf. MANUAL section
7.12).

19 Problem 1. Write a declaration for the following arrays:
MatA and MatB, having two subscripts, the first running from i to k,

the second from i to n,
Zoop, having four subscripts, the first rumning from -7 to +7, the

second from 1 to 10, and the third and fourth from 0 to 1.
(Time min.)

20. Read (revise) sections 4.1.1 - 3.1.4.2, paying special attention to
the subscripted variables. (Time min.)

21. Convince yourself that according to section 3.3.1 subscripted varia-
bles may be used in the same way as simple variables in arithmetic expres-
sions. (Time min.)

22. Read (revise) sections 4.2.1 - 4.2.4. (Time min.)

22 Note 1. In the fourth example of section 4.2.2 there is a mistake in
some of the editions of the ALGOL 60 report. The first symbol should be S
(not 8s, cf. section 2.4.3). (Time min.)

22 Example 1. The detailed explanations of sections 4.2.3.1 - 4.2.3.3 are
relevant in a case Like:

real n 3 array A{i: 10] ;
n 3:2 2
Afn + 14 mniwen+2y

Section 4.2.4.1 produces:
A[3] := n r=

Section 4.2.3.2 gives the value of the expression as 4.
Section 4.2.3.3 assigns 4 to n and A[3]. (Time min.)

18 THE COURSE.

22 Problem 1. Using again the system of 12 Example i follow the action of
the following program and find the values of all variables at the label
STOP.
begin integer 1, } ; integer array A[1:3, 1:2], c[0:2] s

se i oye
C[j-1] s= ALS dt] c= jG i+ 2un J+ 23
Al2xi, C[j-2-3x1] -3] seg -2x13
Cc aye seiiwmi+t js;
Alc({gj-iti/2, 4xA[i1,1] - 3xi] := aft, 2x(1-j)] := a[2,2] - alt,i] 3
i: - A[3,2] 3
Jom i-dj3
A -j-2] := c{i-1] := 7 3
Afa[2,2], c[1] - c[o]] ss cls] 2x13
STOP:
end (Time min.)

253. Read sections 4.2.1 - 3.2.5. Ignore the concepts <string> and <switch
identifier> and the references to procedure declarations and procedure
statements. If necessary use the alphabetic index at the end of the ALGOL
60 report to find the definitions of any other syntactic units.

24. Convince yourself that, according to section 3.3.1, function designa-
tors may be used in arithmetic expressions in the same wey as simple va-
riables. (Time min.)

24 Problem 1. Follow the action of the following statements and find the
final values of all variables.

begin real r, p, 8, log 3
:= k x arctan(1) ;
72 x sin(p/6) ; r

p= p/r 3
8

r

hd

= 5 + cos(p x sqrt(2xr,2 + 1)) ;
:= sien(r}S - 2 x s)x(s - r) 3

log := Infsx(s+r))/1n(10) 3;
p i= px (str) |
end | (Time min.)

THE COURSE. 19

24 Problem 2. Write an algorithm for calculating the complete solution of
the second order equation

Ac’ + Be + C = 0

The algorithm should be written as a block having the real variables A, B,.
and C, supplied from outside and itself supplying the solution in the form
of two complex numbers. These should be expressed as four real variables
using the following identifiers:

zir real part of first solution
zii imaginary part of first solution
zer real part of second solution
zZ2i imaginary part of second solution.
The quantities which have a meaning outside the block of course

should not be declared in the block head.
The solutions are given by the usual formula:

If B°_WAC is negative this formula should be used for finding both of the

complex solutions. If, however, B*-4AC is positive the following method
should be used for avoiding forming the numerator as the difference be-
tween two nearly equal numbers: The above formula should be used only for
finding one of the roots, namely the one which results from taking that
sign of the square root which makes the numerator be formed as the sum of
two numbers of equal sign in other words from taking + the square root
when B is negative and —- the square root when B is positive. The other
real root may then be formed from

22 = =~

where z1 denotes the first rob.
If AsO the equation is Ainear and should be solved as such. If also

B=O the algorithm should go to a label outside the block called INDETERMI-
NATE.

If the two solutions degenerate to one both z1 and 22 should be set
equal to the correct solution. If the solutions are real the imaginary
parts should, of course, be set to zero.

Check your algorithm by following the action of it for the following
sets of the parameters:

Parameter set A B Cc

1 0 0 2
2 0 4 8
3 2 0.) (C8
4 1 «10 9
5 -1 +10 -9
6 - +
7 2 -8 26
8 4k o°.60O06°8 (Time min.)

25. Read (revise) sections 5.3. i - 3.53.5 paying special attention to the
mechanism of the if clause and else (see particularly the second paragraph
of section 3.3.3).

20 THE COURSE.

25 Note i. In an expression like

if B then pelsea+r
it is important to notice that the meaning is equivalent to

if B then p else (q + r)
and not equivalent to

(if B then p else q) +1
The reason for this is the following: The + in the original expression
must, according to section 3.3.1, stand between a <simple arithmetic ex-
pression> on the left, and a <term> on the right. The <term obviously is
r. The <simple arithmetic expression> must be q. It cannot be

if B then p else q
since this is not a <simple arithmetic expressiom. (Time min. }

25 Problem i. Follow the action of the following statements and find the
final values of all variables.

begin real a, b
ais 7 3

V: btm if a > 10 then 15+a else 13-a ;
aw i7-b 3}

if ard then go_to V 5
STOP:
end (Time min.)

25 Problem 2. Find out whether the following construction is correct or
not, and prove your conclusion on the basis of section 3.3.1:

A + if q<O then 7 else 4 (Time min.)

25 Problem 3. Write an algorithm for finding the polar coordinates r and
v when the rectangular coordinates x and y are given. This is equivalent
to solving the equations

rcos v = X
rainv=sy

The angle v, which should lie in the range from 0 to 27, should be deter~
mined through the use of the standard function arctan. The quadrant must,
however, be determined from the sign of x or y. Be sure that your algo-
rithm will work also for x and/or y = 0. If both are zero v. should be set
to zero.

Check your algorithm by following its action when x and y are given
initially as follows:

Case; 1 2 5 4 5 6 7 8 9
x 0 1 1 0 -1 -1 -1 0 1

y oO O 414 4 4&4 O -4t -1 -1 (Time min.)

26. Read section 3.3.6 and MANUAL section 7.6. on the arithmetics.
(Time min.)

27. Read (revise) section 3.4.1 paying special attention to the if clause
and else. (Time min.)

THE COURSE. 21

27 Problem 1. Find the value of the sixth expression of section 3.4.2:
if k<1 then s>welseh¢c

for the following three sets of values of the variables:
k 8 Ww h ¢

Set 1 ~1 2 2 \ 3
2 2 2 2 4 3
3 1 an) 2 2 (Time min.)

27 Problem 2. Find the value of the last expression of section 3.4.2:
if if if a then b else c then d else f then g else h<k

for the following three sets of values of the en entering variables:

a b c a ft & h k
Set 1 true true true false false false 5 7

2 false true false false true false 5 4
3 false false false true false false 5 4

(Time min.)

28. Read sections 3.5.1 - 3.5.4 and 5.3.1 - 5.3.5. These sections are in-
timately bound together and cannot be understood without reference to each
other. Read (revise) sections 4.3.1 - 4.3.5.

28 Note 1. The kind of situation referred to by the remark of section
5.3.5 may be illustrated by the following example:
begin switch W := tt, Q[n + 2] 3

switch Q r= Q1, Q2, @ 3

“ e ° Ca e eo

A: begin real n 3;

TT: £0. to w[2] ;

end. block A
end
The go to statement at TT refers to W[2]. The designational expression for
wf2] is Q{n+2]. Into this expression the variable n enters. Owing to the
declaration real n in the head of block A the statement TT is outside the
scope of the n of a[n+2 J. Consequently the go to statement is undefined.

(Time min.)

28 Problem 1. Follow the action of the following statements, write a list
of the labels to which the go to statements successively refer and find
the final values of the variables:

begin integer n, 8 3
switch S := SB, $2, S83, STOP ;
switch W := TW, S[n- 38 +7] 3

om 7

TW: go to S{n - 4];
SB; nien-i1 3

Sismetrny
- go to W[n - 2];

S83: nten - 23
sian-2 3
goto W[n-s-1];

STOP:
end (Time min.)

22 THE COURSE.

29. Read sections 4.6.1 - 4.6.6. (Time min.)

29 Note i. The definition of <for statement> contains an ambiguity which
has not yet been officially resolved. Until this happens it is recommended
that it be corrected to read:

<for statement>:= <for clause><unconditional statement> |
<labe}):<for statement>

29 Note 2. In DASK ALGOL the controlled variable of a for clause can only
be a simple variable, not s subscripted variable.

29 Problem 1. Find the values assigned to the controlled variable in the
following for statements and the final value of a:

begin real p, g, r, 8 3 integer k, m3
P:m=l3 aie 23 rie 53 8 rm O 3
for k :=p+q,q-pP, reap-gqgdos :e=at+k sy
for m := q step r until 7xq + 1dos :=s-my}
for k := 2, 8, 2 step 2 until 6 do s := s + 2xk 3
for mim 8 + 45, m+ 2 while s<O do 8 := s — m ¢-
for k := 1 step 1 until 5 do .

for m := 3 step -1 until O dos = s+kim3;3 (Time min.)

29 Example 1. For statements are particularly useful for executing opera-
tions on vectors and matrices (described in ALGOL as arrays). A simple ex-
ample is the addition of two vectors VA and VB to give a third VC. This
May be expressed as

integer 1 3 array VA, VB, VC [1 : n] 3
for 1 := 1 step 1 until n do Vc[i] := ‘Var] + VB[il 3

Note that the quantity n cannot be declared in the same block head as the
arrays VA, VB, VC (cf. section 5.2.4.2).

29 Problem 2. Write a block for multiplying matrix A (subscripts from i to
i and 1 to j) by matrix B (1 to j by 1 to k) to form a matrix C (1 to 1 by
1 to k). Mathematically this is expressed as

C = A. x B
Pq 5|«CPS sq (Time min.)

30. As an introduction to the study of the remaining part of the language,
' -the procedure mechanism, the following notes may be of help.

The procedure concept essentially has developed from the desire of
being able to: introduce any needed extension the basic mechanisms of the
language. A few examples of such extensions are matrix arithmetics, tran-
scendental function such as Bessel functions, and integration of differen-
tial equations.

In ALGOL all such mechanisms may be expressed by means of procedures.
The ALGOL procedure concept is based on procedure declarations and proce-
dure statements. A procedure declaration is the means of defining a new

THE COURSE. 23

mechanism and associating an identifier with it. Thus the essential part
of a procedure declaration is a piece of more elementary ALGOL language,
the so-called procedure body. The rest of the procedure declaration, the
procedure heading, only serves to specify the manner in which the proce-
dure body is connected with the rest of the program.

The procedure declaration never executes any operations by itself. In
order to put the process defined in it to work it is necessary to call it
by means of a procedure statement. This, then, may be thought of as a
short hand description of the complete process defined in the procedure
declaration. This is all the more apt since the same procedure may be cal-

led from any number of different places within the same program.
Now read section 5.4.1 - 5.4.6. If necessary use the alphabetic in-

dex of definitions. (Time min.)

30 Note 1. In agreement with the correction of 29 Note 1 the declaration
for Absmax should be corrected as follows: Insert a begin inmmidiately be-
fore if and an end between the two end's.

30 Problem 1. In each of the 5 examples of section 5.4.2 localize the pro-
cedure heading and its constituents: procedure identifier, formal perame-
ter part, 3 , value part, specification part, and also the parameter deli-
miters. Find the formal parameters. Finally for each of the identifiers in
the procedure bodies find out whether it is local, formal, or non-local.

(Time min.)

30 Problem 2. Quote the proces {dentifier of those of the procedure de-
clarations of section 5.4.2 which define _ the value of a function designa-
tor. (Time min,)

31. Read sections 4.7.1 - 4.7.4 and 4.7.7.

31 Example 1. The important rules of section 4.7.3 may be illustrated by
the following elaboration of the examples of sections 4.7.2 and 5.4.2, The
first procedure statement of section 4.7.2:

Spur(A)Order:(7)Result to:(V) me
ean only make sense if it occurs in a block where, besides the declaration
for the procedure Spur, declarations for A and V hold as follows:

array A[1:7, 1:7] 3 real V3
Now the effect of the rule of section 4.7.3.1 will be to add the as-

signment statement
nis 7

and the declaration integer n at the head of the procedure body.
The effect of the rule of section 4.7.3.2 will be to replace a by A

and s by V. throughout the procedure body. Thus, the effect of the above
procedure statement is the seme as that of the following block

begin integer k, n 3
n:= 7 3
Vim 0 3
for k := 1 step 1 until n do V := V+ Alk,k]

————

end (Time min.)

24 . THE COURSE.

31 Problem i. In the same way as in 31 Example 1 execute the operations of
section 4.7.3 to find the effects of the remaining procedure statements of
section 4.7.2:

Transpose (W, v+1)
Apemax (A, N, M, Yy, I, K)
Innerproduct (alt, P, ul]; B[P], 10, P, ¥) (Time min.)

31 Problem 2. Assuming that the value part: value n were removed from the

effect of the procedure statement
Transpose (W, v+1) (Time min.)

31 Problem 3. Find the values of the quantities R, I, and K, at the label
FINIS of the following program (the declaration for Abamax is that of gec-
tion 5.4.2):
begin array zero[1:2, 1:2]; real R3 integer I, K ;
zero[1,1] := zero[1,2] := zero [2,1] := zero [2, 2] =O}
Absmax (zero)size:(2, 2)Result: (R, I, K) 3
FINIS:

end $5
If you find the result wnsatisfactory what improvement of the procedure
declaration could you suggest. (Time min.)

32. Read sections 4.7.5 - 4.7.6.

32 Note i. In DASK ALGOL it will not be possible to call arrays by value.

32 Note 2. In DASK ALGOL procedures calling themselves, or using their own
identifier within their bodies recursively, cannot be handled.

42 Note 3. The remark of section 4.7.6 is closely related to that of sec-
tion 5.3.5 (see 28 Note 1).

32 Example 1. Formal parameters should generally be called by value when.
they represent pure input data to the procedure, in other words when in
the procedure statement they may correctly correspond to expressions. The
effect of calling a formal parameter by value is

a) To screen the corresponding actual parameter, i.e. to make sure
that it is left unaltered by the procedure. statement.

b) To economize the procedure call in the case thet an expression,
and not just a simple variable, is entered in the corresponding position.

¢) To allow the use of the formal parameter as an internal working
varlable of the procedure body.

The following example will serve to bring out these points:

THE COURSE. 25

procedure EX(A, B) 5 value Ay real A, By
begin integer k 3
A := AX2 — sin(A x (AMS - 1)) ;
B:2 03 ,
for k := 1 step 1 until 5 do B := B+ Ax (B+ 1)/k 45
end

If this procedure is called only as follows:
EX(a,b)

value A May correctly be omitted. In this case the value of the variable a
would, however, be changed by the procedure statement. If the procedure is
called as follows:

EX(ptq,)
value A is necessary, since if it were not present the meaningless con-
struction

" -p +a := (ptq)4f2 - sin((pta) x ((pta)43 - 1))
would result from the application of the rules of section 4.7.3. In addi-
tion value A evidently achieves an economy in evaluating the first basic
statement of the procedure body, since the sum pt+q is only evaluated once.

It should be noted, however, that not all pure input data should be
called by value. An example of this is presented by the formal parameters
a and b of the procedure Innerproduct of section 5.4.2. Evidently, the
whole meaning of this procedure depends on the possibility of not calling
these parameters by value. (Time min.)

32 Problem 1. Write the declaration for a procedure for solving second or-
der equations, using the principles of 24 Problem 2. (Time min.)

32 Problem 2. Write a declaration for a procedure for finding the polar
coordinates from the rectangular ones (cf. 25 Problem 3). (Time min.)

32 Example 2. If a procedure has no formal parameter part it must work on
_ Mon-local quantities of the procedure body. An example would be the follo-
wing:

procedure R ; Q := sqrt(xf2 + y42)
This procedure works on the three non-local parameters Q, x, and y. These
must, of course, have a scope which includes the block in the heading of

which the above declaration occurs.
Another variant is

real procedure R 3 R := sqrt(x}2 + yh2
This must, to be useful, be used in expressions, e.g.

S:=p+q+R
This exemple will serve to warn the reader that an apparently simple addi-
tion may, in fact, imply a procedure call.

26 THE COURSE.

32 Example 3. The most intractable consequences of ALGOL will be realized
if the above possibilities are combined. Thus the procedure

real procedure Sneaky(z) 3 value z 3 real z ;
begin Sneaky := z+ (z - 2)A2 3

Wise zt+il
end Sneaky
will, when used in an expression such as

P := Sneaky(v - 1) + 2
cause a change of the value of W behind the back of the user, so to speak.
Furthermore this construction will cause the effect of

Pip := Sneaky(k) x W
to be different from that of

Pip := W x Sneaky(k)
Evidently such possibilities, if used. must be handled with utmost cau-
tion. (Time min.)

33, Read section 2.6.1 - 2.6.3.

33 Note 1. DASK ALGOL uses the symbol , for space and effectively two dif-
ferent kinds of string quotes:

for layouts
{< for other strings

Strings within strings cannot be used.

34. Read sections 5.4.6, 4.7.8 and MANUAL sections 8 ~ 8.7 on DASK ALGOL
STANDARD OUTPUT PROCEDURES.

34 Note 1. Most of the complications of the syntax of section 8.3.1 arise
from the following restrictions:

1. The neighbours of a space symbol , on either side must be n, d,
or.0, and cannot be . or another ,

2. The sequence of letters d and digits O may start with a number of
d's and must be followed by a number of O's, but the two cannot be mixed,

(Time min.)

34 Problem 1. Show the printed results of the following statements:

begin real Pp, q $
Pi293
q := 2/p 3
tryk vr 3.
tryk tekst ({<p,=,}) ;
tryk ({d.d}, p

tryk ({sdd.dddd}, -p+a})
end 3 (Time min.)

34 Problem 2. Write four layouts which will produce the numbers in the
following four columns

y 12.354 1 1-973 2h, it 17 ' 1 7 777 a4] 5,

, 0.027 43, ,+.000 12, ,- 230 , , 628.3 '
1555.6 1 »~ 013 45, wt 1545+ 6, ' ~1.538 719;

1-1300,)-12, 0.222 2

THE COURSE, 27

35. Read MANUAL sections 9 - 9.7 on STANDARD INPUT PROCEDURES .

35. Problem i. Find the exact output from the following program when sup-
plied with the input symbols shown below:
begin integer u, v, w}3
real procedure Innerproduct (a, b, k, p) 3 value k 3
integer kK, Pp 3 Feal a, b 3
begin real s ;

sim 0 3 for p:= 1 step 1 until k do s:s 8 +a xb ;
Innerproduct := s

end Innerproduct ;

PROGRAM:
trykkopi ({</3});
Ts u, Vv, ws
begin onteger F a, Ry - h k

afi:u, 1:v], Bli:u, ; Sica .
S: lssstreng; if streng ({<Ar}) then Bo. re T;

dws(Q, R)3 trykvrs tryk({- Q, tryk({-daad.da}, Innerproduct(A[P, ai ‘BP, R], u, P))
goto 5;

Sample input data /
Example of les, lesstreng, streng.

Q R Sum(A[i, Q}8[1, R])

arrays: um3,ve22,weh,

a 2,

a1 oA.

75, 6,

As

~9, -.8, =~.7,

wet, —5, ~oA,

B:

6, Th

8, oF

28 ANSWERS TO SOME OF THE PROBLEMS.

3 Problem 1. Assignment statements, labels.

k Problem 1. 3,4,6,7,10,12.
5 Problem 1. 3,4,5,7,11.
5 Problem 2. 1. a:mb+3 3 Vs: PW:=n 3

2. begin if PQ=0 then go to W 3
53. Q nji=n+7 end end else go_to WW
4. tursvu/2 end end 5

6 Problem 1.
2keys: +-x/C#r>vaiegyis () 0)
3 keys: A $ t -; ty
k keys: >=

7 Problem i. 1,4,6,7,11,12-
8 Problem i. 1. #729500000. 2. 9812. 3. 1000. 4&. -.000001854.

5. -.000001. 6. -4800.
8 Problem 2. 1. ing. 2. de 3. -134y-5-
8 Problem 3. 1,2,7,9-
9 Problem 1. The 5 first.

10 Problem i. 1,3,5,7,10,12.

Simple arith. expr.:
Arithmetic expr.:

11 Problem 2. 1, 3, hh, 7, 8.

11 Problem 3. 1. integer a, b 3 real c, 4d, e, f. 3. realQ. 4. -.
7. real v. 8. real PY, ars, tu, Vv.

41 Problem &. 1: 4, 2:5, 3: 16, 4: 7, 5: 2, 6: 4096, 7: 4096, 8: 2 to the
18th power, 9: 10, 10: O 14: 4, 12: 0.

11 Problem 5. 1. S + (s - t)/vh2
(u - Wee AS Te [la ~ ¥))

11 Problem 1. Expression: 1 2 3

Primaries: % 5 8
Factors: 3 5 8
Terms: 3 5 TT

3 3 6
3 2 3

2e

36 aatn +m

yoo
5. axld+s in)
6. GAQAVAB

7. P a/rXs
8. (a-b/e/ (d-eh(f+))/ (aAtAC J) +a4(m/ (nep)))

12 Problem 1. ri = 23, ra=2, rb= 10, n#2, is 4, j= 2.

13 Problem 1. Expression no.
Relations

Boolean primaries
Boolean secondaries

Boolean factors
Boolean terms

Implications
Simple Boolean expressions

Boolean expressions
-13 Problem 2. 1. boolean c, s, W 3 real P, Q

2. real u 3 boolean W, "Q, t

13 Problem 3. ra = 4, “rb = 12.5, ja = 5. bas false, bb = true

14 Problem 1. SUM = 0, 1, 1.25 1.333333..
16 Problem 1. B = true, u = 13/15 W= ~17/15.

V
W
I

A
I
N
A

P
R

R
U
E
E
F
E
N
O

ANSWERS TO SOME OF THE PROBLEMS. 29

17 Problem 1. W= -8, 8 = -9, B= 13, C7.
17 Problem 2. Unlabelled basic statements: 12, basic statements: 24, un-

conditional statements: 26, statements: 28, compound tails: 28, block
heads: 2, unlabelled compounds: 0, wnlabelled blocks: 2, compound sta-
tements: 0, blocks: 2.

18 Problem 1. S, B, C: all statements. W in outer block: 1, 2, 3, 4, 11,
STOP. W in immer block, P, AA: 5, 6, 7, 8, 9, 10.

19 Problem 1. array MatA, MatB [1:k, 1:n], Zoop ts -7:+7, 1:10, O:1, 0:1]
22 Problem 1. i=2, j=-3, ofthts 1 5, a(t, 2 =-2, A(2,1}«7, A[2,2}=3, a[3,1}=

u, A[3,2 b-2, clo ke clo feb.
2k Problem 1. p=3.1 ise. LaF ys s=5, log=i.
25 Problem i. a = +9, b = 26,
25 Problem 2. Not correct. if q<O then 7 else 4+ is not-a <term.
27 Problem 1. 1. false. 2. “false. 3, true.
27 Problem 2. 1. true. 2. false. 3. false.
28 Problem 1. n = 4, s=7. S3, TW, SB, STOP.
29 Problem 1. k #3, 1, 1.8 = 5.

m= 2, 5, 8, 13, 14. 3 = -35.
k = 2, -31, 2, 4, 6. 5 = -69.
m= -24, -22, -20, -18. s = 15.
kai, m= 3, 2, 1, 0. 8 = 25,
k= 2, m=3, 2, 1, 0. 8 = 59.

k=3, m=3, 2, 1, 0. 8 = 57.
keh mes, 2, 1, 0. 8 = 79.
k= 5, m= 35, 2, 1, 0. 8 #105..

29 Problem 2. The arrays must be declared in a block outside of the block
in which the matrix multiplication is carried out.

begin array A[i:i, 1:3], Bli:3, 1:k], C{1:t, 12k] 5
* s . . *

begin integer m, n, p 3 real 8 ;
for m := 1 step 1 until i do
for n := 1 step 1 until k do

begin s := 0 5
for p := 1 step 1 until j do s := s + A{m,p]xB[p.n] ;

C[m,n] im By
comment For running time economy the simple variable 8,
and not C[m,n], is used during the summation;

end for m og n
end block ;

end outer block
30 Problem 2. Step.
31 Problem 1. Transpose (W, v+1) will be executed as:
begin real w; integer 1, k, n 3

mvytily

for i := 1 step 1 until n do
for k := iti s 1 until n do
begin w i= WILT 5

wii,k re wik.t] 3
Wik, 1] saw

end for k

——

30 ANSWERS TO SOME OF THE PROBLEMS.

Absmax (A, N, M, Yy, I, K) will be executed as:
begin integer p, @ 3
Yy := O 3

for p := 1 step 1 until N do for q := 1 step 1 until M do
begin if abs(Alp,a]) > Yy then

begin Yy := abs(A[p.q]) 3 I := p 3 K :=q end
end for p
end procedure Absmax
Note that an extra begin end bracket has been inserted in order to make
the statement following do unconditional.

Innerproduct (A[t, P, u], B[P], 10, P, ¥) will be executed as:
begin real s ; integer k ;
k 38 10 3 8 := O 3
for P := 1 step 1 until k do s := 8 + (A(t, P, uj) x (B[P]) ;
Ywms
end Innerproduct

31 Problem 2.
begin real w 3 integer i, k 3
for i := 1 step 1 until (v+1) do

for k t= 1+1 step 1 until (v+1) do
begin w := W[i.k] 3 WLi.k] := W[k.i] ; W[lk,i] := w end

end Transpose

31 Problem 3. R»«0O, I and K are undefined. Since the user must expect
that all of these quantities are defined upon exit from the procedure
this is unsatisfactory. Two possible improvements of the procedure decla-
ration may be suggested to remedy this: 1. Replace the first statement of

the procedure body by, e.g., y := -1. 2. Replace the relational operator
> by >.

32 Problem 1.
procedure EQ20R (A, B, C, zir, 21i, z2r, z2i, INDETERMINATE) ; .

' value A, B, C 3; real A, B, C, air, 211, z2r, z2i 3 label INDETERMINATE ;
begin real discriminant ;

if A #0 then go to normal ;
if B = 0 then go to INDETERMINATE ;
zir := 22r := ~ G/B 3 go to set zero 3

normal: discriminant :=BL2-8xAxC3
if discriminant > 0 then go to real solution ;

complex: gir i= z2r:ie -B/2]7 4;
aii := sqrt(-discriminant)/2/A 3
z2l := - 211 3 go to finis 3;

real solution: zir := (-B+(if B>O then -1 else 1)xsqrt(discriminant))/2/A;_
| z2r im C/A/zir 3 .

set zero: zli ¢m 221 := 0 3
finis:

end BQ20R

ANSWERS TO SOME OF THE PROBLEMS. 31

32 Problem 2.

procedure Poler (x, y, r, v) 5 value x, y $ real x, ¥, m1. V $3
begin r z= sqrt(x}2 + yA2) ; 2 |

v := if y=O0 then (if x0 then O else 3.14159265)
else arctan(-x/y) + (if yoo then 1.5707963 else 4.7123889)

end f —

34 Problem 1.
p = 9.0- 8.7778

3% Problem 2, ndd.d00,00 +.ddddd +4dd00,sdd -n,ddd.000, 0,.-da

35 Problem 1.

Example of les, lesstreng, streng.
Q = -R Sum(ali,Q kB1,R])

7-90
80

id
2 8
3 8.50 fh

h
o
 Ww
W

32 Appendix 1. A PROGRAM FOR A SMALL TABLE.

A PROGRAM FOR A SMALL TABLE.

An illustration of ALGOL.

As an illustration of the use of ALGOL the complete solution of a
simple problem is given below. The additional notes will enable the reader
to pick up some of the basic features of the language in an informal man-
ner.

It should be noted that the ALGOL program gives a complete descrip-
tion of the solution of the problem. Indeed, an ALGOL translator system

will be able to build up a complete machine code for the solution on the
basis of the ALGOL program in precisely the form given below. Both the
translation and the solution will be performed with the speed and effici-
ency characteristic of the electronic calculators. Consequently, once the
ALGOL program has been written the problem is practically solved. There
remains only = purely routine operation of the electronic calculating ma~
chine.

Definition of the problem.

It is desired to calculate a table of the following function:

2 3
Acab(u, length) = u(length = O92! w)

2u. +

lengthy
The perameter u varies from 0,0 to 5.0 in steps of 0.2. The parameter
length assumes the following six values

length = 1.0, 1.2, 1.4, 1.6, 1.8, 2.0.

The results should be printed ina table with seven colums and a heading
as shown below (the commas indicate spaces):

prrrattraretrerepsreesanes pDable of function Acab.

DULTEVEPTOPEDU OPPO P eet eee eee pp Length

sUrrenerrtoOncrrrssstearsere este beter r etree One rear seer attr 20O

OcOrg py XX XKXy gy RHA y gp RRA yy pp AMOK yp KKAAKK, 1») MHA

etc.

Appendix i. A PROGRAM FOR A SMALL TABLE. 33

ALGOL program:
begin

comment Program for Acabs
ee

real u, lengths

tryktom (50) ;

tryktekst ({<

u 1.0 1.2
+) 5
for u := 0.0 step 0.2

until 5.01 do

begin trykvr 3

tryk({a.a}, u)
for 72 1.0 step 0.2

RAP net) 2.01 ae

begin trylmi (5) ;

are (eee 2-0,037xuh3 /
(2xu42+Dengdeht))

— leagh

end

end 3

tryktom (50)

end 3

Notes:
Any program must be embraced within the
statement bracket begin end.
Notes in plain language may easily be
included.
This declares that the quantities deno-
ted by u and length represent arbitrary
real numbers. There is a considerable
trot in choice of designations for
qudnitities in ALGOL.
This is the first active instruction of
the program. It causes 50 empty rovs of
tape to be punched by the output punch.
This will facilitate the handling of the
tape of results. - The following in-
struction punches the heading.

Table of function Acab.

length
1.4 1.6 1.8 2.0

This construction causes the following
statement (from begin to end) to be exe-
cuted repeatedly by with u#0.0, 0.2,
0.4, ete.
Output of a carriage return code (vr =
vognretur). This includes line feed.
u is printed with one decimal.
Inside the larger repetitive process a
smaller repetition is performed, for the
calculation and printing of the six co-
lumns in each line. ,
In front of each function value 5 spaces
(mellemrum) are printed.
The function value is calculated and
printed in a layout of two digits before
and three after the decimal point. A-
rithmetic expressions must be written

linearly. Spaces and carriage returns
may, however, be inserted freely.
This the section controlled by the
for construction.
This ends the section controlled by the
for u construction.
Output of a suitable piece of empty”
tape.

This is the end of the program.

34 Appendix 2. THE SOLUTION OF A REALISTIC PROBLEM.

THE SOLUTION OF A REALISTIC PROBLEM.

The following formulation of a problem is taken over directly from
that presented by a physicist:

It is desired to tabulate the following expressions for 1, and Aber:

1
tg 2e, + :

Ll, = -F
2 1 1 1- = tg 2e, + (te 2e, + =)te e,

where

r
c = T+ te

° rc
(for e, 45”, 1, becomes == <)

Aber = -Hr [c, + Cy |

where

2 A RE Pie a

1
KH = 5 “8 tu Ee te ep?) |/1+ + tee)

r
7 «60+ 3 tee — roy 1 ;

1 2 r 2/2 1, [1+ i + tg e,) Pp

r
=— +35 tge ne Bee

a LS [1 + GE + te ep) Pl?

The parameter values are the following:

1, is 50
e, assumes the values 0 to 50 degrees, in steps of 5 degrees

assumes the values -20 to -50 degrees, in steps of 5 degrees
r~ assumes the values 30 to 120 in steps of 5

eo
n
e

The results should be tabulated in 11 tables, one for each of the va-
lues of e,, the value of which should be printed at the head of the table.
The arrangement of the tables should be as follows:

11 = 50, ei = 20

e2 = -20 -25 -30 35 —o 45 -50

r 12 Aber 12 Aber 12 Aber 12 Aber etc.

The results, which will be smaller than 1000, should be printed with

one decimal.

Appendix 2. THE SOLUTION OF A REALISTIC PROBLEM. 35

SOLUTION 1.

begin comment This is a direct, but uneconomical program for 12 and Aber;
integer 11, e1, e2, r 3
real 12, c, ci, c2, Aber ;

begin real COS 3
u :# u/57.2957795 3 COS := aoe(u)
tg r= if COSmO then ,20 else. sin(u)/cos

end tg ; comment It is easy to see that this way of treating the singula-
rity of tg is correct in the present application 3

BEGIN OF PROGRAM:
tryktom (50) 3 11 := 50 3;
for e1 := 0 step 5 until 50 do

begin tryktekst({<__
11,=,50,,e1,=,}) 3 tryk({ad}, e1) 3
tryktekst (<<

11162," oe No cusauasessse25usassusssnraa-3Ossssussssssss-35#) ;

ye { detapiarsece Op paris teppei
$

for r := 30 step 5 until 120 do
begin tryk vr; tryk(aaah r) 3

ese r/ll +
ci i= (fated atates) rho (ao a2eto1)2)

/aqrt(1+(r/11+te(e1))A2) 3
for e2 := -20 step -5 untli “50° y

begin 12 := raltg(2xe2)+1/ eo} c
2xe2 /os yal 2x02)+1/e)xta(e2)) $

tryk ({~dddddd.
c2 i= si3 ial) nro aha (a/v) 2)

/eqrt(1+ arte. ;
Aber := -1142x12/2/r, ety (e1))A2)

ane hiareee e1+e2) 3
tryk ({addd Aber)

end for e2

end for rj
tryk sum

end for el ;
tryk tom (50)
end program 3

This program may be improved considerably, perticularly with respect to
efficiency. Obviously many parts of the expressions will be evaluated over
and over again with the same numbers. This may be avoided by rewriting the
formalae so as to evaluate as much of an expression as possible as soon as
the entering quantities have been assigned. Also the repeated evaluations
of tg(e2) may be avoided by preparing a table of this quantity. Finally
the denominators of the formulae for cl and c2 may conveniently be evalua-
ted through a procedure. These features have all been incorporated in the
following version of the program.

36 Appendix 2. THE SOLUTION OF A REALISTIC PROBLEM.

SOLUTION 2.

begin comment Improved program for 12 and Aber;
integer 11, e1, r, &, i ;

real 12, crec, M, mi, m2, 1, tgeit3, Aber 3

array tane2, tan2e2, tant} [1:7] 3
real procedure tg(u) ; value u ; real u ;
begin real COS 3

u := u/57.2957795 3 COS := cos(u)
tg := if COS=0 then ,20 else sin(u)/Cos

end tg 3 comment It is easy to see that this way of treating the singula-
rity of tg is correct in the present application ;

So a ee om li

or cl and c2 3; value y 3 real Ly}
begin y:eityk2; HELP := 1/y/sqrt(y) end HELP ;

BEGIN OF PROGRAM:
for 1 := 1 step 1 until 7 do
begin tane2[i] := tg(-5 x i - 15) 3

tan2e2[i]:= tg(-10 x 1 — 30) 3
tant3[i] := 3 x tane2[1]

end for i ;
tryk tom(50) 3 11 := 50 3 Q := 1250 3
for e1 := O step 5 until 50 do

begin tryktekst({<
11,=,50,,e1,=,}) 3 tryk(t{dd}, e1) ;
tryktekst (t<
ann e220 vee vesres se 25 perenne Opa rsrtann rar 35h) §
tryktekst = (€<yyanpisrsprrs Or ser sa risen rari eaeg sy 50

5
tgel.:= tg(e1) 3 tgeit3 := 3 x tgel ;
for r := 30 step 5 until 120 do

begin tryk vrs tryk({daad}",r) ;
erec := 1/(r/11 + tgel) ;
M := Q x ((r/11 + tge1)A2 + 1) 3
mi := (r/11 + tge1t3)/1142 x HELP(r/11 + tge1) 3
for i := 1 step 1 until 7 do

begin 12 := -r x (tanzea(s + erec)
- | f(1-tan2e2[a]xcrec+(tan2e2[i }erec)xtane2[i]) ;
tryk (fraaaaaa. , e2) 3
m2 := n/12ttant5 (4))/12A2xHELP(12+tane2[4]) 3
Aber := -Mxl2xsqrt((r/12+tane2[1])A2+1)x(mi+m2) ;
tryk({-dddd.d}, Aber)

end for e2
end for r ;
tryk sum
end for ei ;

tryk tom (50)
end program 3

It will be clear from this example firstly that the efficiency by
which a process will be carried out may be improved even by just a simple
revision of the formulae. Secondly that the establishment of the most
suitable formulae in a given case depends directly on the desired form of
the output. |

Appendix 3. THE TESTING OF ALGORITHMS. 37

THE TESTING OF ALGORITHMS.

Experience shows that it is rare for an algorithm to be correct when
it is first written up. The testing of algorithms must therefore be consi-
dered to be a very important part of ALGOL progremming. The following
notes are intended as a first guide to thia subject.

Errors in an ALGOL program may be of two essentially different kinds:
(1) errors of form and (2) errors of content. In testing an algorithm
these two kinds of errors should be treated sepatately.

Errors of form (syntax).

Errors of form (syntactical errors) may be eliminated completely
through a purely mechanical process. Indeed it is possible to let the AL-
GOL-to-machine-code translator perform syntactic checking and reject in-
correct programs. Likewise a manual checking may be (and should be!) per-
formed in a routine manner. In ALGOL programs this is a comparatively easy
matter owing to the easily readable form of the language. In performing
the check the following list of some frequent errors may be useful:
1. Forgotten or wrong occurrence of 3 or else or end (cf. the punctuation

rules 1 and 2 , point 17 Note 1).
2. Declarations of simple variables forgotten.
3, Multiplication symbol x omitted.
4. then omitted (there must be one for every if).
5. Underlining of basic symbols forgotten.
6. Mixture of integer and real type variables on the left side of assign-

ment statements.

Errors of content.

Errors of content are errors which cause the algorithm to perform a
different action from the one intended. Since the description of the in-
tended action is often vague and leaves a considerable freedom for the
writer of the algorithm the detection of this type of error may often be
quite difficult. Even so there are some general suggestions which may be
of help:
1. For each variable check that it is never used before a value has been

assigned to it.
2. Make sure that no division by zero or any other undefined operation

(in, sqrt, etc.) can occur.
3. Check for special values of input parameters, particularly zero.
4h, Remember to take absolute value when doing test on magnitudes of quan-

tities.
5. For each if clause of the program establish two test situations one

which makes the Boolean true and one which makes it false,- and check
that the algorithm behaves correctly in both cases by following its
action statement by statement.

6. Note that the method of following an algorithm step by step, as ex-
plained in point 12 Example 1, far from being a beginners device must
be considered as the basic method for testing algorithms. When combin-
ed with a choice of values of input parameters made according to
points 3 and 5 above it is the most efficient method for constructing
correct algorithms.

38 Appendix 4. THE USE OF BLOCKS AND PROCEDURES.

THE USE OF BLOCKS AND PROCEDURES.

An important step in the planing of an ALGOL program is the subdivi-
sion of the process into parts which may conveniently be written as blocks
or procedures. In order to be able to do this the programmer must have a
clear idea of the properties of these ALGOL units. As a first introduction
the following notes may be useful.

Blocks are useful for expressing such parts of the program which form
@ closed process. In particular a block is indispensable if in a process
an array is needed whose size depends on the results of previous calcula-
tions. Such an array must be local to a block. In addition any other quan-
tity (simple variable, label, switch, procedure) which is used only inter-
nally during the work of the block, but which has no interest when this
work is done may be declared to be local to the block. This is perticular-
ly useful when different blocks of a program are written by different pro-
grammers. By using blocks the programmers will only have to agree on the
non-local identifiers of the blocks, while inside each block the program-
mer is free to choose the identifiers of working quantities.

Procedures have three different important uses: i. Generalization of
the use of blocks. 2, Abbreviation of small ad-hoc functions. 3. Form of
communication of closed processes between programmers at different times
and places.

1. Any block may be converted into a procedure by adding a heading to
it. The heading will attach an identifier to ‘the block and usually name
some or all of the non-local identifiers as formal. Where the block in
question is written specially for the program this conversion can be re-
commended only if the mechaniam of the block is used two or more times
with different non-local quantities, corresponding to two or more calls
of the procedure, since evidently a call of a procedure is a more elabo-

rate process than a simple entrance into the corresponding block.
2. Frequently the formulae of a program may be shortened through the

use of suitable function designators, As in 1 above this will be economi-
eal only if the corresponding ad-hoc procedure is used more than once du-
ring the progran.

3. Ina near future it is safe to expect that all important methods
of numerical analysis will be expressed in the form of ALGOL procedures
and published (cf. the Algorithms section of the Comm. ACM and the ALOGOL
Programming section of BIT). Since these procedures presumably will be a-
bove average with respect to efficiency it 1s strongly recommended that
they be used wherever possible.

