A MANUAL OF
GIER ALGOL 4

developed by

Tove Asmussen, Jern Jensen, Sgren Lauesen, Paul Lindgreen,
Per Mondrup, Peter Naur, and Jorgen Zachariassen

Third edition of A Manual of GIER ALGOL
by

Peter Naur

A/S REGNECENTRALEN . COPENHAGEN
1967

CONTENTS
mTROwCTIm L] L L] [] * L] [L] L] * * L - [] * * * L] L] - * [] [3 [] L] L] [] . L] 5
6. 8-CHANNEL PUNCH TAPE CODE AND FLEXOWRITER KEYBOARD . o o+ . e s e e b
601- Printing graphic characters . ¢ o o ¢« o« o o o o ¢ ¢ o o ¢ o 6
602.Blank-Ooooooo-sooolo.oo0000000006
6.5. Control characters « « « « o ¢ o ® ® 5 & 8 s 6 8 2 s 0 & 0 @ 6
60,"‘. Flexowriter keyt’oard ® ® 6 8 5 8 & 5 8 5 o & 8 & & & 8 s & & 6
6.5. Numerical representationd . ¢« 4 ¢ ¢ ¢ 2 0 ¢ o 0 0 0 e 0 e T
To THE RELATICON BETWEEN GIER ALGOL AND ATIGOL 60 ¢ ¢ v ¢ s o o s « ¢« » B
Te.1. Character representation of Progreams . « « « « ¢« « o ¢ « o o 8
Te2e Use Of cOMMENT 4 o 4 ¢ o ¢ o o ¢ ¢ 6 ¢ o ¢ ¢ 0 ¢ 06 060 0 0 o 11
Tede Arithmetic values and operations « « « s o o ¢ ¢ ¢ o o » o 11
70}"'0 Reserved identifiers . . 4 8 6 & 0 0 9 s 0 0 0 06 08 2 08 a2
TeS5e Standard fUNctions ¢« o o« o o o o ¢ ¢ s o ¢ ¢ o ¢ 0 0 0 0 o o 15
7.6. Arithmetic expressions ® 6 8 o 6 86 6 o 5 6 86 0 8 8 0 0 8 0 e 1>
7.7+ Boolean expressions, bit patterns, and strings . « « « « « o 14
708- Integers 838 1abels , 4 ¢ ¢ o s s o ¢ 2 e e 0 s 0 0 0 s 0 e 16
7.9. For statements S & & ® 2 0 & 8 6 6 & 9+ B 6 " 6 6 8 8 e e 16
7.10. Procedure statements ® & & @ & 9 0 6 * e ¢ B 0 e 0 6 0 o » 17
7.11. Order of declarations ¢ & 8 0 8 0 6 0t 6 S 0 0 0 0t s b e 17
7.12.0wn............o...............17
7013. Procedure declarations ® 2 0 0 6 9 &t ® T P 0 " s e e e e 17
7.1"". Case eXPressions . « 2 4 6 o o 0 6 6 e 2 0 0 e 0 6 0 s s o 18
7.15. Case statements « « « o« s« o ¢ o o s o & & 5 8 & 8 s 6 % 8 @ 18
7.16. General 1imitations « ¢« « ¢ ¢« o ¢ o ¢ ¢ o o s o ¢ o o s s s 19
8. EXTERNAL MEDIA AND MACHINE CONFIGURATIONS ¢ o o o ¢ o o o o o o o o 20
8.1. Stendard Procedure BeleCt , o o o ¢ ¢ ¢ ¢ o ¢ ¢ o ¢ s 0 o N
8.2, Standard procedure SyStem . « ¢ ¢ ¢ o o o ¢ o+ ¢ ¢ o 0 0 o o 21
9, STANDARD QUTPUT PROCEDURES . 4 o o o o o ¢ o o 0 ¢ o ¢ o s o o ¢ ¢ 22
9.1, Identifiers and main characteristics o o o ¢ o ¢ o ¢ a o o o 22
9.2+ Standard pProcedure: WriteChAr o+ o« o o o o s o o ¢ ¢ o » o & 22
9.5. Standard Procedure' WIIteer o+ ¢ o o ¢ o 2 ¢ o ¢ s 0 o o o + 23
9."" Standard procedure. writetext . o ¢ ¢« ¢ ¢« ¢ ¢ o ¢ s 0 0 s o 23
9e5e LaYOULS & o 4 o ¢ ¢ ¢ ¢ ¢ ¢ 6 6 06 06 6 ¢ 06 660606060 e0e 2k
9.6. Standard procedure: write InteEEr . o o o o o o s s o o o o 26
9¢Te Standard procedure: Write o« o« o o o o o o o o ¢ ¢ o ¢ o o o 27
10, STANDARD INPUT PROCEDURES . 4 o o o o ¢ o o s ¢« ¢« ¢ s s s ¢ ¢ ¢ o 30
10,1, Identifiers and maln charactexristics . .« ¢« « o o o ¢ ¢ o o« 30
10.2, Standard procedure; Kbohi o o o o« o o » e s 0 0 00 00X
1043« Input medium and character representation P - |
10.}4 Standard Procedure: 1lyNn . o ¢ o o o o s ¢ s s 8 s 0 ¢ o & o I
10,5, Lower and UPPeY CASE. o o o & ¢ o o ¢ s o s o o s o o o o & 2
10060 Blind characters . . ® ¢ 8 ® ¢ 8 ® ® o & 8 8 8 et e 6 8 08 52
10.7. Standard Integer: ChaAr .+ « o o ¢ ¢ ¢ ¢ ¢ ¢ s ¢ 0 ¢ ¢ ¢ o & 32
10.8 Exit conditions . « « © + 6 6 4 0 0 b s e e e e e e e
10.9. Numeral recognition and overflo e s 6 s s s 0 s 0 e 0 e e 3

CONTENTS 3

10,10, Standard procedure: read integer

10,11, Stendard procedure: read I'e8l « o « « « o o o o » o o o o 34 |

10,12, Standard procedure: read general ¢ o ¢ ¢ o o 4 2 o & s o o 56
10,13, Stendard procedure: read StTINZ .« « « o o o o o o o o o « 40

11, STORAGE ADMINISTRATION DURING PROGRAM EXECUTION . o o o o o o « o 42
Msle Gler storege undts . o o ¢ o ¢ ¢ 0 o ¢ ¢ ¢ 0 0 06 6 0 0 0 @ b2
1120 Storage of variabled8 o+ 4 o o 2 ¢ s @ ¢ o o ¢ o 0 ¢ ¢ o o @ hp
113 Storage of PIYOZYall o« o« o o # o ¢ » & o & o o o & » o ¢ o o ll'3
11oho Ioop storage contrIol .« o o o o o o o o s ¢ 0 8 0 0 ¢ 0 o o il
1145 Data storage on backing 8tore ¢« « « o ¢ o ¢ o o 0 ¢ ¢ & o o)‘"5
11,6, Backing store and catalogle « « « o o o « s o o o o s o o » 40
11¢7+ Standard Procedure: I'eSEIrVe o« « ¢ o o o o s s o 2 o o s o o L6
11,8, Standard procedure: Where « « « « o ¢ « o ¢ o o ¢ ¢ o o o o YT
11,9, Standard procedure: Cancel o« o o o ¢ o o o o o o 6 s o o o L8
11,10, Standard procedures: put 2nd @€t o« o o o o o + o o o o o o U8
11.11« Advice on semi-permanent data storage o ¢ s 06 0 0 00 0 0 90
11.12. Advanced user information e ¢ o @ ® * 0 & 5 ¢ * % e s @ 50
11.15, Standard procedures: 11 and US o « o « o s ¢ o s ¢ o o & o 51

12, MACHINE CODE I GIER ALGOL 4 » o o o o o ¢« ¢« s o s ¢ s s 0 o 6 s & 53
12,1, Oversall Pos8ibilities . o ¢ ¢« ¢ o ¢ ¢ o o 0o o 2 e 0 0 0 0 8 53
12.23yntax............ ¢0000000000053
12,3, Storage allocation and addressing of Algol quantities . ., . 54
12'4 Slipnames o+ o ¢« ¢« ¢ ¢« o ¢ ¢ 2 ¢ o o o « s o 2 ¢ 9 0 s 0 » 35
1245, Code specifications + o« « « ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ s s « 55
12.6. Classes and structures of quantitles . « o o o o o o o o « 56
12.7. Core code and standard procedure gier . + « o o o o s o o« o 58
1208n Machine code format . « o« o« o o ¢ o s o ¢ o o s 0 o 0 5 o o 59

13. CMG TU mm *® & o @ & @ o © * @& B & B & s F o @ s & o0 61
13,1, Gler AlgOl systems ¢ # ¢ & % ¢ & & ¢ 8 8 % * s 8 8 8 8 s 8 61
1542, Translation + « o « o « o o ¢ ¢ o ¢ o s ¢ s s o 0 0 6 « o o O
1543 Pass Information .« o o o o o ¢ o ¢ ¢ o ¢ s ¢ ¢ o s ¢ « o ¢ 66
13.2"‘. Pass output 4 ¢ 6 6 6 8 B & 8 4 4 8 e e et & 6 & et 0 s e @ 66
13.5. Execution . . . ® 8 9 & & ¥ S 0 % 8 0 0 8 8 " e 0 0 " 8 0 67
13.6. Operator contIol .« ¢« ¢ o o o o o 0 o ¢ ¢ 0 4 0 06 0 0 0 ¢ o 68

14, PAPER TAPE FORM OF SYSTEM « « o o o 6 o 6 s o o o s s s 0 0 0 s » 69
1‘*.1 « Tape identification and check o« o« o o ¢ o ¢ ¢ o ¢ o 0 ¢ o o 69
1“-.2. Translator and library TBPES 4 4 ¢ ¢ o ¢ 0 ¢ 0 0 0 008 0 2 [0
1‘#.5. Modified 1IDrary « ¢« o ¢ ¢ o ¢ 6 o o s ¢ o ¢ 6 0 06 0 06 0 0 (D
Append.‘l.x le Execution times o+ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 6 ¢ ¢ ¢ ¢ ¢ ¢ 0 ¢ 0 ¢ o 7“'
= 2, Execution termination .+ « ¢« ¢ o o o o s ¢ o s e 0 00 ¢+ [0

- 5. Messages from translator . . N EEE N ENE 80

- ,"'o Environment descr‘lp'tion T EEEEEEEEENE T 85

Alphaibeticindex.....................-.....88

The Algol 60 Report.,

Throughout the present Manual reference is made to the Algol 60 Re-
port or the Revised Algol 60 Report, The differences between these two
documents are slight and do not influence the numbering of sections., The
full references of these reports are as follows:

J. W. Backus, et, al.,, Report on the Algorithmic Language Algol 60 (ed.
P, Naur), Numerische Mathematik 2 (1960), pp. 106-136; Acta Polytechnica
Scandinavica: Math, And Comp. Mach. Ser, no. 5 (1960); Comm. ACM 3 no. 5
(1960), pp. 299-314.

J. W, Backus, et. al., Revised Report on the Algorithmic Langusge Algol
60 (ed, P. Naur), Regnecentralen, Copenhegen (1962); Comm. ACM 6 no. 1
(1963), pp 1-17; Computer Journal 5 (1963), pp. 349-36T; Numerische Ma-
thematik 4 (1963), U20-b53,

Other reports relevant to Gler Algol.

(1) P, Naur: The Design of the Gier Algol Compiler, BIT 3 (1963) 124-140
and 145-166; also in Ammual Review in Automstic Programming 4 (ed. R.
Goodman), Pergamon Press 1964,

(2) Pé Nemr: Checking of Operand Types in Algol Compilers, BIT 5 (1965)
151-163,

(3) J. Jensen: Generation of Machine Code in Algol Compilers, BIT 5
(1965) 235-245,

(4) P, Naur: The Performance of a System for Automatic Segmentation of
grogmms Within an Algol Compiler (Gier Algol). Comm. ACM 8 (1965), 6T1
T

(5) P. Naur: Program Translation Viewed as a General Data Processing Pro-
blem, Comm. ACM 9 (1966), 176-179.

INTRODUCTICN, 5

INTRODUCTI(N,

The present book 18 the users’ manual of the Algol 60 compller sy-
stem for the Gier computer known as Gler Algol 4. This system was deve=
loped during 1965 - 67 and is a further development end revision of the
system described in a Manual of Gler Algol III, distributed in 1964,

Like the previous versions, Gier Algol 4 is based directly on Algol
60, &and the Revised Report on the Algorithmic Language Algol 650 mst be
regarded as the primary definition of the programming lsnguage, For this
reason the numbering of sections in the present manual continue those of
the Algol 60 Report.

The differences between the present new system and the previous ver-
sion are so numerous and extensive that the manual has had to be rewrit-
ten in all of its parts. Very briefly the more important changes are: (1)
Integer variables are represented as 40-bit fixed point numbers, with a
corresponding gain in renge and speed of operation. (2) Patterns of ko
bits may be manipulated freely and at high speed, by special operators.
(3) Case expressions and statements, first suggested by C.A.R. Hoare in
Algol Bulletin 18, 1964, are sdmitted. (4) The selection of input for in-
put and output has been made more flexible., (5) A means of ascertaining
the available machine configuration is included. (6) The standard output
procedures have been revised and a simple, fast procedure added to the
set, (7) The input procedures have been overhanled for greater speed and
flexibility, (8) It has been made possible to store elements of arrays in
the buffer store, thereby increasing the capacity for varisbles by a fac-
tor of about 6. (9) Subscription has been revised, for higher speed, (10)
Means for communicating with semi-permsnent data areas on a backing disk
storage unit are included. (11) Machine language may be written within a
program. (12) The check during trsnslation has been extended to include
actual persmeters, in most ceses. (13) The source program may be formed
by combining texts from seversl places esnd medie during trenslation. (1k)
Both the translator and the translated program mey be stored on any of
severel media,

In writing the present manual an attempt was made to follow the de-
finitions of IFIP-ICC Vocsbulary of Information Processing, first English
language edition, 1966. This, in several cases, proved to be a definite
helip.

The manual was ‘typed by Kirsten Andersen, who also contributed ex.
cellent quality punching of the programs of the system itself, Her help
is gratefully acknowledged,

6 6., 8-CHANNEL PUNCH TAPE CODE AND FLEXOWRITER KEYBCARD.

6.1, PRINTING GRAPHIC CHARACTERS.,

Lower Upper Code Lower Upper Code

case case , case case
a A y 00 o O, w W , O 400,
b B s 00 o+ O, X X 3 00 000,
e C y 000 . 00, y Y s 000.
d D s 00 4O , Z Z s, O O O,
e E 5 000 40 O, 2 E , 000 &,
f F 5 000 ,00 , % %] s O 00, 00,
g G ;3 OO0 4000, 0 A y O s
h H sy 00 O. R 1 V » « O,
i I , 0000, O, 2 X s .« O,
J J 3 00 .« O, 5 / 3y O « 00,
k K , 00 ¢« O, b = s 0,
1 L s © . 0O, p) 3 3 O .0 0,
m M , 00 40 6 [; O .00,
n N , O 40 0, 7] R +000,
o 0 , O 400 , 8 (, Ou
P P , O O ,000, 9) , ©O0. O,
q Q y O 00, ,) » s ©000. 00,
r R 3 O Os 0O, . : s 00 Q. 00,
s S , 00 . 0, - + s O .
t T s, O « 00, < > ; 00 « O,
u U , 00 40 , | s 0400 ,
v v , O .00, The key for _|dogs not advence the carriage.

6.2, BLANK.
BLANK s O e

6.3, CONTROL CHARACTERS.

LOWER CASE , oooo,., o , UPPER CASE , ocoo.,0 ,

CAR RET 30 « , TAB s 000,00 ,
STOP CODE , 0. 00, TAPE FEED , oooo,000, PUNCH ADRES ,o e
PUNCH OFF , o o.000, PUNCHON , o 0.0 , AUX CODE » 0.0 ,

PUNCH ADRES and AUX CODE insert their respective codes when depressed
simltanecusly with any other key.

6.4, FLEXOWRITER KEYBOARD,

START STOP PUNCH AUX STOP TAPE

READ READ AIRES CODE CODE FEED
T™MB PUNCH x / = ; [1 () A VvV | PUNCH

oFF 2 3 4 5 6 789 01 oW

Q WEZRTJYUTIOZP > CAR

g w e r ty uil o p < RET

6.5. NUMERICAL REPRESENTATI(NS, 7

6.5. NUMERICAL REPRESENTATICNS.

In the following table the characters have been arranged according
to the numerical equivalent of the hole combination according to the rule
of section 10.3., The first columm gives the decimal velue of the charac-
ter, +the second and third columns give the lower and upper case charac-
ter, respectively, and the fourth column contains a G in the cases where

the character 1s available

LOWER UPPER

0 SPACE
1 1 \Y
2 2 X
3 3 /
L L =
5 5 3
6 6 {
T T 1
8 8 (
9 9)

10 (NOT USED)

11 STOP CODE

12 END CODE

13 g 2

14 |

15 (ROT USED)

16 0 A

17 < >

18 s S

19 t T

20 u U

21 v v

22 W W

23 X X

ol y Y

25 z Z

26 (NOT USED)

27 ’ n

28 CLEAR CODE

29 RED RIBBON

30 TAB

31 PUNCH OFF

G

only in Gier,

but not on the flexowriter.

ILOWER UPPER

(SN X

Ko IQopgH

(NOT USED
g

Q-wo "WoEE R4S+

PUNCH N
iND’I‘ USED)
NOT USED)
(NOT USED)

nc‘m-ﬁ

H Q=g Qb

S RO

B

5
3
-

UPPER CASE
SUM CODE

BLACK RIBBON G
TAPE FEED

CAR RET

8 7. THE RELATION BETWEEN GIER AILGOL AND ALGOL 60,

7. THE RELATION BETWEEN GIER ALGOL AND ALGOL 60.
T.1. CHARACTER REPRESENTATION OF PROGRAMS,

The basic symbols of Algol 60 are represented with the aild of the
character set given 1in section 6, Sequences of characters which do not
represent Algol symbols according to the rules below will produce an
alarm during translation.

There 1s a choice of input medium and the possibility to let the
program text consist of pleces taken from several media, This is further
explained in section 13,2.1.

Telele Single character symbols.
Telelele Letters and digits. Gler Algol adds the letters

2 Eg g
to the reference alphabet. The appearance of all letters and digits may
be seen from section 6,
Te141.2, Delimiters, As apparent from section & the following simple re-
ference languesge symbols are directly aveilable in Gier Algol:
teX/<=>VA, . .p:;3()I[]

Tele2s Compound symbols.

Compound symbols must asppear exactly as shown in this section, with-
out additional characters such as BLANK or CARRET.
Tele2e1s Underlined words. Underlined words are produced in Gier Algol by
depressing the underline () key immediately preceding each letter of the
word, The symbols are the Tollowing:

true - false go to 1f then else for 4o step until while comment begin end
own Boolean IntegeT real erray switch procedure string label velue

Boolean and boolean may be used interchangeably., Also go to, goto, and
g0 TO.

T.1.2.2, Compound symbols similar to reference language, The following
compound symbols, most of which are produced by combining the underline
() or stroke (|5 with other characters, are similar to those of the re-
ference language:

< > $ = =

T.1.2.3, Compound symbols differing from reference language. The follow=-
ing compound symbols show a noticable deviation from the reference lan-

guage:
Reference langusge 1\ - - d A - o
Gler Algol A - 2 < 3 : >

Tele2,4. Extensions of Algol 60. Add the following:

7.1, CHARACTER REPRESENTATI(N OF PROGRAMS,

Basic symbol

abs
entier
round
mod
shift
cese
'6?"""
core

code

message

Reference

AN =30 =3 [0 1O =3 = ~J 1~]

Class

arithmetic operator

pattern operator

’ 7'15 - -
escepe symbol
separator
layout bracket
separator

o1 medium selector
o1 - -

Tele3. Other characters in input.
Telse3s1s CAR RET cannot be used between the charscters of an identifier

or a munber,
7.1 05.2.

ready covered is given in the table below,

shed: (1) Before first begin., (2) Within a string,
gram context. In addition the possible copying done as message

sequential operator

The resction of the translator to the input characters not al-

Three contexts are distingut.

(3) In eny other pro-

(section

Te1.7) and as prelude and line output (sectiom 13,2,5) is indicated. The

reaction denoted char is an erro

(appendix 3).
Character

10 (not used)
11 STOP CODE

12 END CODE
1358 8%

15 zno'b used)
26 (not used)
28 CLEAR CODE
29 RED RIBBON
30 TAB

51 PURCH OFF
42 (not used)
L PUNCH N

45, 46,47(not used)
61 SUM CODE

62 BLACK RIBBON
63 'TAPE FEED
65=126

127

Parity error

Before begin | In string
char char
ignored ignored

see section T.1.5
letter letter
char char
cher char

see section T.1.4
char char
ignored ignored

see section T.1.6
char | char

see section T.1.6
char ! char

see section T.l.4
char ;char
ignored y 1gnored
char . char
ignored ' 1ignored

r reaction giving‘the text:

In program
char
ignored
char

char

char

char

ignored
| char

| char

char
lgnored
char
ignored

char or stop depending on machine

character

. Message, pre-
- lude, line

| ignored

copled
ignored
copied

ignored
ignored
copiled

ignored
1gnored
copled

ignored
copled

ignored
copled

ignored
ignored
ignored
ignored
ignored

10 7.1+ CHARACTER REPRESENTATICN OF PROGRAMS.

7.1.4, Character check sum

During input of the program to the translator, a check sum of all
charscters is formed, This may be used to check the currect transcription
and reading of characters, The check is performed every time the charac-
ter 61, SUM CODE, is encountered. This character causes the next follow-
ing character in the input to be compared with a check character, formed
as follows:

1) The input sum is put to zero each time CLEAR CODE 1is met in the
input, and at the end of the SUM CODE action.

2) Each character in the input csuses the input sum to be increased:

input sum := input sum + 1 + character

3) To form the check character, use the value of the input sum which

excludes the SUM CODE itself and compute:

check character := (input sum + input sum : 32) mod 32 + 31
If the check character formed in thils way differs from the one found in
the Input, the error messsge
sum
is given.

Tele5. END CODE and pause,
In any context the END CODE charascter will cause the message
line <line number> pause
to be output on the operator typewriter, whereafter the machine will
stop, To continue the translation, the operator mst type BLANK on the
typevwriter.

71,6, PUNCE OFF and PUNCH ON.

With respect to the treatment of these characters the translator may
operate in two modes, selected when the translation 1is initlated, see
section 13.,2.6. In one mode the two characters cause output on the
error output medium of the messages

line <line number> off
and

line <dine number> on
respectively, and the program text following any PUNCH OFF character, up
to the first following PUNCH ON character, i1s ignored by the translator.
In the include-off-on mode PUNCH OFF and PUNCH ON are ignored,

Te1.T. Messages to the operator,

To ensble the programmer +to glve guldance to the operator during
program translation, the following faeility for output of messages is in-
cluded, Wherever the delimiter comment is permitted in the program it mey
be replaced by message, During the Tirst phase of the translation this
will cause the ¥oITowIng characters, up to the first semicolon, to be
output on the alarm message medium (cf. section 13.2.6). Otherwise the
action will be as though comment had been written,

T.'. CHARACTER REPRESENTATION OF PROGRAMS. 11

7.1.8. The end of a program.

The program extends from the first begin found in the input to the
end which syntactically matches that begin. No further characters are
input by the translator.

T.2, USE OF comment.

Following the delimiter comment not only any sequence of basic sym-
bols, but any sequence of chaTacters specified in section 6.5 is admit-
ted up +to the first following semicolon (3;). For a special use of com-
ments following end, see section 11.k,

Te3. ARITHMETIC VALUES AND CPERATICNS,

Integers are held in fixed-point form. This gives the range:
-2A39 = -549 755 813 888 < integer < 549 755 B13 887 = 2439 - 1

Reals eare held as Tloating~-point numbers. This gives the range of
non-zero real values:

2A(~512) = T.458,-155 < abs(real) < 1.341,154 = 24512
The precision of real values corresponds to 29 significant binary digits.
Thus one unit in the last binary place will correspond to a relative
change of the number of between 2,-9 and 4y-9.

As described below, the transletor will sometimes insert an opera-
tion for converting arithmetic values from integer to real form, l.e. the
float operation, This conversion is done by the instruction nkf39, This
implies +that integers larger than 2429 in absolute value will have their
rightmost digits set to zero,

When the result of an operation exceeds the number range, the system
will sometimes call an alarm. This causes a print out of a message and a
termination of the execution of the program.

In the following explanations of the arithmetic operations, the
identifiers 1 and r stand for operands of types integer and real, respec-
tively. Mixed type indicates one integer and one real operand.

The action of all arithmetic operators is given in +the following
table:

12 T.5. ARITHMETIC VALUES AND OPERATICNS.

Operand Machine instructions Reaction on range
types exceeded
Addition, subtraction + -
Integer Fixed point Incorrect result
Mixed Float the integer, then as real
Real Floating Spill alarm
Multipliecation X
Integer Fixed point Milt alarm
Mixed Float the integer, then as real
Real Floating Spill alarm
Division /

Integer Float both, then as real
Mixed Float the integer, then as real
Real Floating Spill alarm

Integer divide, modulo
Integer Special fixed point routines

s mod

Incorrect result

Power A, yielding always a real result

i A1 Float left operand, then as r A i

rAil Successive floating point multiplications See note below
1A r Float left operand, then as r A r

rAT Calculated as 2 A (r X log2r) Spill alarm

The power operator with an integer exponent calls the spill alarm on

renge exceeded. This happens already when the result of the operation

sbs(left operand A (nearest greater power of two(sbs{right operand))))
exceeds 24512,

In the evaluation of expressions involving seversl operations any
necessary floating operations are done as late as possible consistent
with the evaluation rules of Algol 60. For exsmple, in the expression
r+ 1 X1 the miltiplication is done in integer form and only +the result
of 1t 1s floated before the addition., If it 1s desired to operate on in-
tegers in real mode arithmetics, one of the operands mst be assigned to
& real variables before the operation.

Round=off from type real to type integer is performed by means of
the machine instruction tkf <29, This implles that real results of abso=-
lute velue in the range from O to 2429 will yield correct integers on
rounding, while reals with absolute value in the range from 2429 to 2A%0
will be rounded to an integer having too few significant figures., Real
results larger than 2A39 or smaller than -2439 will yield completely er-
roneous results if rounded.

7.4. RESERVED IDENTIFIERS,

A reserved 1dentifier is one which may be used in a program for a
standard purpose without having been declared in the program., If the
standard meaning 18 not needed in a program the identifier may freely be
declared to have other meanings.

The complete list of reserved identifiers arranged alphabeticelly 1s
a8 follows:

7.4, RESERVED IDENTIFIERS. 13

Identifier Reference Identifier Reference

abs 3.2,4 readinteger 10,10

arcten 3.2,4, 7.5.1 resdresl 10.11

cancel 11.9 read string 10.13

char 10.7 reserve 11.7

checksum 9 select 8.1

cos 3.2.4, T.5.1 sign 3.2.4

entier 34245 sin 3.2.4, 7.5.1

exp 3.2.4 sqrt 3.2.4, T.5.1

get 11.10 system 8.2

gier 12.7 trackstransferred 11.3

il 1113 us 11.13

kbon 10.2 where 11.8

1n 3.2.4, 7.5 write 9.7

lyn 10.L writechar 9.2

put 11.10 writecr 9.3

readgeneral 10.12 writeinteger 9.6
writetext 9.k

T+5. STANDARD FUNCTIONS,

T.5.1. Precision.

The algorithms for calculating the standerd functions arctan, cos,
exp, ln, sin, and sqrt, incorporated in Gier Algol will all yield results
having an error less than that which corresponds to about 2 units in the
last place of the result or the argument, whichever gives the greater er-
ror. As one consequence of this the functions sin and cos for absolute
values of the arguments larger than about 410 ere worthless, their values
being usually 0 or 1.

70 5.2c Ala«r.msc

Certein misuses of the standard functions will cause termination of
execution of progrem (see Appendix 2). Note, however, that 1n(0) will
supply the result -9.35,40 and not call the alarm,

T.6. ARITHMETIC EXPRESSICNS.,

The treatment of arithmetic types and the precision of real arithme=-
tic are described in section 7.3. Alarms are described in Appendix 2.
Several additional operators have been included., abs, entier, round,
integer, and real are monadic operators of high precedence, which may
precede any operand and one another in an arithmetic expression, thus for
example.
f := abs r + sin(real b) - (if -, real b < integer h then entier c else
Tound d/}\a.bs TJ - abs reEI m;
The Precedence of these new operators being higher than that of any
other, this expression will be eveluated as if the following form had
been written:
f = (sbs r) + sin(real b) - (if -,(real b) < (integer h) then (entier c)
else (round dJN(abs f)) = (ebs(Te Teal m));
Their efTect 1s as follows:

14 7.6. ARITHMETIC EXPRESSIONS.

Operator | Operand Result Effect
type type
abs Integer integer Absolute value, like the standerd pro-
- or real or real cedure abs, but without change of type
entler real integer Greatest integer not greater than the
value of the operand
round real Integer Nearest integer
Tnteger | real or integer Integer represented internally by the
_— boolean same bits as the operand
or string
real integer Real represented in internal, floa-
- boclean ting, packed form by the same bits as
or string the operand

The operator mod (modulo) resembles : (integer divide) in that it is
dyadic, has the same precedence as :, and requires two integer operands.
The result is the remainder of the Integer division:

amodb 1s the same as a - {(a : b} X b
provided tha® & and b produce no side-effects,

T.7. BOOLEAN EXPRESSIONS, BIT PATTERNS, AND STRINGS.

TeTels Boolean values.

Boolean variables serve both as single binary values and as patterns
of ‘4O bits, Used as bit patterns sand supplemented with the operators
integer, real, boolean, and string, they will allow arbitrary manipula~-
TIons of parts of machine words,

The positions of a bit pattern are numbered from O (left) to 39
(right). The truth value of a bit pattern is glven by the value of the
bit in position 0 as follows:

0 corresponds to false
1 - - True

Iiteral bit patterns may be written directly in the Algol program in
three different ways:

1) true has bit value 1 and false has bit value O, in all positions
0 to 39, -
_ Note that boolean values computed by means of relatlional operators
generally will not be represented by the bit patterns written in the pro-
gram as true and false.

2) ErbIltrary patterns may be written in a notation which builds them
up from part patterns as follows., Each part pattern is written as one un-
derlined, unsigned integer, indicating the number of bits in the part
pattern, followed either by an unsigned integer, glving by its binary re-
presentation, the actual pattern, or by the letter m, denoting a part
pattern having digit 1 in all positions. According to the taste of the
resder the letter m may be thought of as a pleture of several ones, or to
stand for the word many. Examples of part patterns: ‘

7.7. BOOLEAN EXPRESSICONS, BIT PATTERNS, AND STRINGS. 15
Notation in program Pattern
L 5 0101
5 33 100001
1T 1022 01111111110
"E m 11111

Parts patterns may be joined to one another by writing them next to
one another, The final 40 bit pattern is obtained by filling in extra O-
bits to the right, as necessary. Example: the pattern written

L 5633111022 5m
will look “as Tollows (where to help the human reader the 40 bits have
been grouped by fives):

01011 00001 01111 11111 01111 10000 00000 00000

3) Bit patterns may be written as digit layouts, as used to control
certain output procedures (ef. section 9.5).

The logical operators, =, =, V, A, and -, will operate on all 40
bits of their operands in parallel, and may thus be used to menipulate
bit patterns., Examples of applications:

vAi2 T
extracts from v the bits in positions 9, 10, end 11, setting the remain-
der of the pattern to 0.

wVy
packs the bits of w and y into one pattern.

As g further aid +to the effective utilization of bit patterns an
operator, shift, has been added. shift is a dyedic operator of low prece-
dence, requiring as its first operand a boolean value, which is interpre-
ted as a bit pattern, and as its second operand en integer value, inter-
preted as a nunber of cyelic shifts of the pattern. The result of the
operation is of type boolean and 1is the bit pattern obtained from the
first operand by performing that number of cyclic shifts which is given
by the second opersnd, shifting left for a posltive number, right for a
negative number, - Examples:

P =q shift J + k
By the low precedence of shift this is evalusted as

(p = q) shifrt (TFEK)
Suppose we have executed

w =20 13 10 9;
Then the result of

w shift -5
can be writfen 25 13 10 9. The result of w shift -15 1s 59 30 13, The
nmuber of shifts™ should be kept between -572 and 511, but There is no
check of this.

TeTe2s String velues and expressions.

Within a string is admitted, not only any sequence of basic symbols,
but any sequence of characters, with the exceptions mentioned in section
7.1 03.2t

In the internal representation the characters of strings are packed
into one or more machine words omitting the string quotes. Each character
uses 6 bit positions, corresponding to the value of the chsracter given
in section 6.5, with the exceptions:

16 T.7. BOOLEAN EXPRESSIONS, BIT PATTERNS, AND STRINGS.

CAR RET is represented as 63
L - - - 0, i.,e., as BLANK

Characters for UPPER CASE and LOWER CASE are included as needed, but all
strings are understood +to begin and end in lower case. The end of a
string is indiceted by the character value 10. Strings having 6 or fewer
characters are packed Into one word and sppesr In this way at run tinme,
longer strings are stored on the backing store like program segments and
appeer as words referring to the backing store.

Pettern representation of short string (6 or fewer characters):

Bits 0 - 3 Patterm 1010, i.e. decimal wvalue 10
- k4 « 9 Character no. 6

- 10 -15 - - -5

- 16 - 21 - - L Unused character positions ere set
- 22 .27 - - 3 to 001010, i.e. decimal velue 10

- 28 - 33 - - 2

- 34 - 39 - -1

The word referring to a long string has zeroes in bit positions
0 -9 and 20 - 29, The remaining positicns supply the track nmmber and
track relative address, However, since the track number is counted rela-
tive to 8 base number which 1s not directly availeble +to the user, not
even using machine code, the pattern form will not be given,

For additional facilities related to strings, see section 9.u4.k,

In addition to string values, more general string expressions may be
formed as =a conditional or case expression and by using the operator
string., An le of a string expression is as follows:

1t b then 4<constant} else string (p-q)
gtrin'é_' expressions should be added To the class of expressions of Algol

Ce

The internal bit pattern representation of values of types integer,
real, and string, may be obtained with the aid of the operator booleen,
which like the operators integer, real, and string, has high precedence,
and has as result a boolean value which 1s the bIT pattern used internal-
1y for representing the operand.

As a general rule, the operators integer, real, boolean, and string,
do not glve rise to any action during Program eXecution, They merely sup-
press the type alarm action which would take place during translation 1f
they were omitted.

7.8, INTEGERS AS LABELS.

Integers cennot be used with the meaning of labels in Gier Algol,

Te9« FOR STATEMENTS,

The controlled variable must be simple.

7.10., PROCEDURE STATEMENTS, 17

7+.10. PROCEDURE STATEMENTS,

7+10.1. Recursive procedures,
Recursive procedures will be processed fully in Gier Algol.

T+10.2, Handling of types.,

Gier Algol 4 checks that the actual Parameters of a procedure mat-
ches the corresponding specifications whenever the identifier of the pro-
cedure is not formal. In parsmeters called by name, strict type agreement
is required, both for simple variaebles, expressions, array and procedure
identifiers, integer specification requiring an actusl parameter of inte-
ger Type, real specifications one of real type, ete. In parameters called
by value, integer specifications may correspond to real parsmeter and
real specification to integer parameter.

In & call where the procedure identifier is formal, no check of the
actual parsmeters is made., If the Parameters do not match the formals as
indicated above the result is unpredictable,

Te10.3, Standard procedures.

A number of special actions, including input and output of data, are
expressed as calls of standard procedures, These calls conform to the
syntax of calls of declared procedures (cf. section 4,7.1) and should be
regarded in all respects as regular procedure calls or funtion designas-
tors, with the exception that identifiers of standard procedures with Pa~
rameters may not be used as sctual parameters,

T«11., CORDER OF DECLARATIONS,

In Giler Algol declarations may appear I1n any order in the block
head,

Te12+ Own,

In Gier Algol own can only be used with type declarations, not with
array declarations.

Te15. PROCEDURE DECLARATICONS.

T«13+1+ Recursive procedures.
Recursive procedures will be processed fully in Gier Algol,

Te13.2+ Arrays called by value.
Gier Algol cannot handle arrays called by value.

18 7.13. PROCEDURE DECLARATICNS.

Te1%.3. Specifications.
The specifications of formal parameters mst be complete, 1.e. each
parameter must occur Just once in the specification part.

T.13.4, Lebels called by value.
Lebels cannot be called by value in Gier Algol (the Revised Algol 60
Report leaves the question unanswered) o

T.14, CASE EXPRESSICNS.

Gier Algol 4 includes an extension, kmown as case expressions and
statements, which was first proposed by C. A. R, Hoare in the IFIP Wor-
king Group 2.1 on Algol. These constructions are a natural generalization
of conditional expressions and statements, for expressing a cholce, mnot
only between two but among any number of possibilities,

701)“‘010 Smtaxo

<csse expression> :i= <case claunse>(<expression 1ist>)

<case clause> ::= case <arithmetic expression> of

<expression list> TT= <expression>|<expression TTst>, <expression>

The complete case expression may be written whereever an expression of

the same type is admitted.

T.14,2, Examples.
case k of (a, b-c, 4, g)
case round gq of (a/b, if ¢ = d then w else t, case s of (p,a,¥))

Telk,3, Sementics,

A case expression is evaluated as follows, First, evaluate the
arithmetic expression of the case clsuse, Next, select that expression of
the expression 1ist which corresponds to the result of the first evalua~-
tion, in the sense that the result 1 corresponds to the first expression,
the result 2 to the second, etc. Finally, evaluate the expression thus
gselected to obtain the value of the complete case expression,

The arithmetic expression of <the case clause must be of type inte-
ger, If there exists no expression corresponding to its value, the execu-
tion will +terminate with an alarm, The types of the individusl expres-
sions of the expression 1list must be compatible. The type of the complete
case expression is the same as that of the constituents if these are all
alike, snd real if both types integer snd real occur.

7-1""."". ILimitation.
The expression list may contain at most 34 expressions.

T.15. CASE STATEMENTS.

Te15e14 Syntex,

<case statement> ::= <case clause> begin <statement list> end

<otetement 1ist> :i= <statement>|<sTatement list>; <stetement>

The complete case statement may be written whereever a statement is sad-
mitted,

T«15. CASE STATEMENTS. 19

7.15.2- Ebcamples.

case K of begin q = s; m =t - y; g0 to v end

case t - u of begin P(u); -

- case v of begin t (= y3 y = w := p; u := r end;
s:=r-b -

end
7015.3. Semgntics,

A case statement is executed as follows, First the arithmetic ex-
pression of the case clause is evaluated and thereby selects one of the
statements of the statement 1list. Next, this statement is executed. Un~
less this execution defines its successor explicitly, the execution ther
continues with the statement following the complete case statement,

If there exists no statement corresponding +to the velue of the ex-
pression of the case clause, the execution terminates with an alarm,

T.15.4, Limitation.
The statement list may contain at most 34 statements,

T+.16, GENERAL LIMITATIONS.,

Gler Algol imposes a number of limitations caused by the finite size
of the tebles used during compilation. However, with one exception these
limitations shall not be mentioned further here, partly because only very
exceptional programs are likely to exceed the capaclity, partly hecause a-
larm messages during compilation will indicate when they are viclated
(see appendix 3). The exception 1s the l1imitation that the mmber of
variables which are active simmltaneocusly at any time during the execu-
tion of & program must be confined to about 650. This problem is discus-
sed in detall in section 11.2.

In machines equipped with the additional buffer store unit, the ele-
ments of arrays may be stored there, and the capacity will be about Looo
subscripted and 650 simple varisbles,

g o S et e et

20 8. EXTERNAL MEDIA AND MACHINE CONFIGURATIONS.

8. EXTERNAL MEDIA AND MACHINE CONFIGURATIONS,
8.1, STANDARD PROCEDURE: select.,

At run time the selection of the data input and output medium is
controlled partly by select-statements 1in the Algol text, partly by a
mask which may only be controlled by actions outside the realm of the Al-
gol text, in a manner which will not be described further here.

The select-statements correspond to a standard procedure with the
following heading:
integer procedure select(u); integer u;

The action of select is assoclated with a machine instruction held in the
run-time administration, of the followlng form:

vy last-select t meask
where mask 1s 896 unless it has been changed by an actlion outside the Al-
gol program. The action of select may be described as follows:

select := last select;

last select := uj;

execute the vy instruction;

The execution of the vy instruction assigns the velue of last select,
properly masked, to the by-register. There is no check that the value of
u is sensible.

Two consequences of this action may be noted, First, if the mask 1s
unchanged, a modification of the contents of the by-register by direct
operator asetion, using the push-buttons of the control panel of the ma-
chine, will remain active until the next following call of select, while
1t 1s not influenced by input or output statements. Second, 1f the mask
is chenged, such modifications of the contents of the by-register may be
made insensitive to calls of select.

The significance of the bits of the by-register depends on the peri-
pheral units attached to the machine and therefore differs somewhat from
one machine to the other. A common arrangement is as follows:

by=-value Meaning
0 Input from paper tepe reader with stop on pari-
ty errors
1 Input from typewriter
3 Input from paper tape reader, no stop on parity
errors
8 Output on line printer
16 Qutput on typewriter
32 Output on paper tape punch

Tt is possible to select one input medium and several output media
in one operation, by calling select with the sum of the corresponding by-
values, Thus, for example, in order to select input from paper tape rea-
der and output on typewriter and on punch, we must call select(51).

8.1. STANDARD PROCEDURE: select. 21

At first entry into the Algol progrem, last select and the by-regi-
ster are normally set to 35: Input from paper tape, output to punch.

In general, the by-values appropriate to the particular machine in
which the program is opersting may be obtained through a call of system
(cf, 8,2). 1In this way it is possible to write progrems which accomodate
themselves in the particular maschine environment. In programs written on-
ly for one machine, absolute by-values may of course be used without dif-
ficulty.

8.2, STANDARD PROCEDURE: systerm,

8:2:1. Implied procedure heading
procedure system(A); <type> array A;

8.2.2. Semantics.

Each call of system transfers an array of 40 elements, describing
the characteristics of the surrounding machine, to the array given as pe-
reneter, The first version of the form of this description is given in
appendix L4, Because of the possibility of so far unforseen extensions of
machines, +thils description may not remsin complete in the future. The
form has been chosen in such a way that it leaves a considerable capacity
open for future extensions, without thereby msking it necessary to modify
the existing conventions.

The array glven as persmeter must have precisely 40 elements, other-
wise an execution alarm is called.

22 9. STANDARD (UTPUT PROCEDURES.

§. STANDARD OUTPUT PROCEDURES.

The standard output procedures serve to transfer the results of pro-
grams to external media. Upon transfer, the results must always exist in
the form of strings of characters. These characters and thelir correspon-
ding internal, integer values are given in section 6.

It is common to all standard output procedures that the medium to
which output 1s made is controlled by calls of standard procedure select
(section 8,1). Another common feature is that a check sum of the output
characters 1s formed., This check sum 18 accessible to the programmer
through a standard procedure of the followlng description:

integer procedure check sum(u); integer u;
Degln check sum := cheracter sum; character sum := u end;

This check sum 1is of limited utility, however, since 1t may be checked
only if the external medium 1s read by means of standard procedure lyn,
but not by eny other input procedure or by the translator (cf. T.1.l4).

9.1, IDENTIFIERS AND MATN CHARACTERISTICS.

Identifier Example, reference Effect
vritechar writechar(49) procedure writechar outputs the
section 9,2 character corresponding to the va-
Jue - of the parameter.
writeer writeer procedure writecr outputs one
section 9.3 TAR RET character.
writetext writetext(4<FI=}) procedure writetext outputs a
section 9.4 string of symbols.
writeinteger writeinteger(procedure write integer outputs a
4pdd.da}, n) value glven as an integer, but with
section 9,6 a decimal point inserted in a spe-
¢ified- location.
write write(4-dd.ddb, q) procedure write outputs the values
section 9.7 of an arbitrary number of arithme-
tic expressions in & specified 4i-
glit layout,

9.2, STANDARD PROCEURE: writechar.

9.2.1, ' Implied procedure heading
procedure writechar(u); integer u;

9.2.,2, Examples,
writechar(49)
writechar(symbol - case)

9.2. STANDARD PROCEDURE: writechar. 23

94243, Semantics.

Each call of writechar causes the character corresponding to the va-
lue of the actual parameter to be output. The correspondence between the
integers and the characters is given in section 6.5. If the value of the
actual parameter is negative or larger than 127, the effect is undefined.

The UPPER CASE and LOWER CASE characters must be output explicitly
where needed. Where writechar is called side by side with calls of write-
text, writeinteger, or write, 1t is important to note that these latter
will assume the output to be in lower case vhen a call is made and will
also leave it 1In lower case when the call is completed.

945« STANDARD PROCEDURE: writecr.

9.%.1, Implied procedure declaration
procedure writecr; writechar(6h);

9.3.2, Exsmple

wri'becrj

9.3.5. Sementics
The effect of the call is fully explained in section 9.3.1.

90'4'. STANDARD PROCEDURE: writetext,

9.4,1, Implied procedure heading
procedure writetext(u); string u;

9.4.2, Examples

writetext({<alpha = }),

writetext(formal string),

writetext(string 4 10 6 1o 6 356 386556356 u9)
wri‘betext(ﬂen +<yes} else f(‘no:ﬂ',

90'"'.3. Semantics

Each call of writetext causes output of the characters of the proper
string resulting from the eveluation of the actual parameter. String ve-
lues and expressions are described In section 7.7.2.

9.4, Variable strings.

Short strings may be manipulated as bit patterns in the form given
in section 7.T7.2. When used as parameter to writetext +the pattern must
be converted to string type with the ald of the operator string, see sec=
tion T.7.

In order to allow also manipulation of long strings, the action of
procedure writetext is as follows: Whenever the procedure finds the cha-
racter value 15 in the string word, this is taken as a signal that a new
string word should be obtained through a repeated call of the actual pa-
rameter, To make use of this action, the progremmer must write the actual
parameter so that a series of calls of it will deliver the successive
parts of the string to be ocutput. Each part of the string mst have the
format of a short string, as given in section 7.7.2, except that bits

24 9.4, STANDARD PROCEDURE: writetext.

0 = 5 must have the pattern 1111, i.e. decimal value 15. The output ter-
minates when the character value pattern 1010, 1i.e. decimal value 10, is
fou.n.d'

As an 1llustration the following block cdauses the string packed in
character form into the successive elements of Boolean array TEXT[0:q] to
be output.

beglin integer p;

eger procedure p step;
begIn p step := p; p := P+ 1 ;e_rig_;

pi=0;

write text(string TEXT[p stepl)

end;

The packing of characters into TEXT must conform to the following general
pattern:

Bits 0-3 k-9 10-15 16-21 22-27 28-33 3k.3g

TEXT[0] 15 no.6 no.5 no.k no.3 no,.2 no.1
TEX?[1] 15 no.12 no.11 Nn0.10 no.% no.8 no.7
TEXT[m] 10 Last characters, use 10 as filler

If by mistake the leading bits are neither 10 nor 15, the procedure
will output the corresponding character and exit.

9.5. LAYOUTS,

The standard procedures writeinteger and write, described in sec-
tions 9,6 and 9.7, use bit patterns to control the £orm of the character
string representation of numbers., The bit patterns are values of type
Boolean, as discussed in section 7.7. For use with the output procedures
These values are usually most conveniently written in the form of lay-
outs, as described below.

9e5.1. Syntax

<slgn> :i= <empty>| - | + +

<exponent layout> ::= ,,<si Sd |<exponent layout>d

<zeroces> :3= 0 |<zeroes>0 | roes> 0

<positions> ::= 4 <positions>d <positions>‘,_d

<D-positions> ::= sitions> | <D-positions>0 | <0-positions>,0

<p-positions> ::= <To sitions>|p<posi‘tions>|p <positions>

<p=O=positions> ::= <p-positions>|<p-0-positions>0|<p-0-posi'bions> 0

<decimal layout> ::= <p~O-positions>|<p=0-positions>.<zerces>|
<p-positions>.<0-positions>| «<D=-positions>

<layout tail> ::= <decimal layout>|<decimal layout><exponent layout>

<layout st = <sign><layout teil>|,<layout string>

<lgyout> ::= <Layout string>}

In this syntax BLANK and 2 oy be used interchangeably.

9.5. LAYOUTS. 25

9.5.2, Examples
ad, a
%dd&O0.0!_Owdd}

+pb
2240 _&dd.ddo_,_o:l»
222
9.5.3+ Pattern representation of layouts
The 40-bit pattern representation of a layout may be derived from
the following rules:

Bits O = 19 Representation of BLANKs: First, a 1 for each leading BLANK
of layout. Second, one 0. The following positions correspond
to the following character positions of the decimal layout
with the sign and BLANKS omitted, The pattern has 1 if the
corresponding layout position is followed by BLANK, other-

wise 0.
20 - 23 b = number of significant digits, i.e, p and 4 Y
2k . 27 h = - - digits before the point Yy

28 - 29 fn = sign of number part (no sign =0, - =1, + =2, +=3)1
30 - 33 d = number of digits after the point4 -

3L p, 0 if not present, 1 if present 1

35 = 37 s = number of digits in exponent

38 . 39 fe = sign of exponent (coded as fn) 7

In the following exasmple, BLANKs in the bit pattern have no signifi-
cance other than to help the reader:

h
| i |
b a]
r—
Layout string: , »+pdd, dd0.00,0~d4
Pattern: 10001 000001 00000000 0101 0110 10 0011 1 010 O1

P h fn 4 p s fe

9.5.4, Limitations.

Only such layout strings which may be represented by bit patterns,
as shown in section 9.5.5, are acc'ép'ba.ble 4o the translator. Consequent-
ly, the following limitations must be observed:

Within the decimal layout: The total number of symbols p and d must
be < 153 +the total number of symbols p, d, and O, written to the left of
the™point must be < 15; the total number of symbols d and O written %o
the right of the point must be < 15; the sum of the number of leading
BLANKs end the number of character positions from the first non-BLANK to
the rightmost character position preceding a BLANK, not counting BLANKs,
mist be < 19.

The number of symbols d in the exponent layout must be <-T.

i

26 9.6. STANDARD PROCEDURE: write integer.

9.6, STANDARD PROCEDURE: write integer,

9461, -Implied procedure heading
procedure write integer(LAYOUT; EXPRESSION);
value LEYOUT; Boolean LAYOUT; integer EXPRESSICN;

9.6.2. Examples
writeinteger(4-~ddd.dd}, q - t)

write integer(q A (v shift 16), k[1])

9.6.3, Semantics

Each call of write integer causes output of the value of the exprese-
sion given as second parameter in a form econtrolled by the first parame-
ter. In order to achieve high speed, only some of the features of the
layout string (or, equivalently, the bit pattern) have an effect on the
form of output thus:

1) Exponent layouts have no effect end should be omitted.

2) Zeroes should not be used,

3) Following +the leading BIANKs the layout string should continue
with either p or - and no p. Thus the signs + and + cannot be
used., -

The layout should be regarded as a picture of the final output character
string, which will have one position for esach position written in the
layout string, The digits of the value of the EXPRESSION will be Placed
in +the p and 4 positions, aligned such that units will be placed in the
rightmost position of the layout string, BLANKs and point will be inser-
ted where they occur in the layout string, If the layout siring conteins
- (minus) the first position to the left of the first digit printed will
be printed as - if the value of the EXPRESSIN is negative, otherwise as
BLANK. The treatment of leading zeroes of the numersl, i.e, of the digit
positions to the left of the first digit which is different from zero, is
controlled by the presence of p and point in the layout string, If p is
present, +the leftmost =zeroes are always output as zeroes, If p is not
present, leftmost zeroes until, but not including, the first position to
the left of the point are output as BLANK, while any following zeroes are
output as zero,

9.6011'. Alarm printing

By alarm printing is meant that the value of the EXPRESSION cannot
be accomodated in the form described by the layout string, If the value
is too large the output will correspond to & layout obtained by adding
the sufficlent number of d-s to the left of the point or first & of the

layout string.

9.6.5. Limitations and other possibilities

The procedure will never output a numeral of more than 12 cherac-
ters, If the layout has more than 12 p-s and d-s, the effect will be as
though some of the d-s had not been present.

If the layout does not satisfy the sbove mentioned 1limitations some
output will be produced, in a form which will not be deseribed in full
here., We only mention that if a negative nmumber is output with a layout
without a minus sign, the output has the wrong sign.

9.6, STANDARD PROCEDURE: write integer, 27

9.6.6. Examples of layouts and output
In order to indlcate the exact output, commes are inserted immedia~
tely preceding and following each numeral,

Nurber $pad,aaat £,,,pdd.dd,dd}

0 ,0007000, , 000, 00 00,

1 ,000 001, , 000,00 01,

23456 ,023 usé, s, 002,34 56,

33344555 333 Milbsss, . 333,.4h L5555,

Number {:-dd dddj» 4:,,, .dad, dat €, ,-ad.ad}
0 .000" 00, , 0.00,

1 , , .000 01, , O. o1,
234 , -23u, , =002 3h, s =2.34,

9¢7. STANDARD PROCEDURE: write.

9.T.1. Implied procedure heading

procedure write(LAYOUT, EXPR1, EXPR2, .44)3

value LAYOUT, EXPR1, EXPR2, .. ;

Boolean LAYOUT; real EXPR1, EXPR2, ... }

The call may have any number of expressions as parameters,

9.7.2, Examples,

write(£ddd.o0}, P)

write(<,,,-dy-dd}, eps, delta, g/16)

write(1ay0 A (m shift 16) A (m shift 12), p - a)

9.Te3. Semantics

Each call of write causes output of the numerals representing the
values of +the second and following parameters, In a form defined by the
value of LAYOUT. In what follows this form is described in terms of the
layout string. If the LAYCUT is given as a pattern, the form of output is
defined through the correspondence between a layout snd a pattern given
in section 9.5.

The layout string gives a symbolic representation of digits, blanks,
and special characters of the numeral produced as output. Indeed, except
for alarm printing, the numeral will have exectly the same number of cha~
racters as is present in the layout., The symbols of the layout have the
following significance:
9.Te3+1s Sign, The four possible signs signifly:

Empty, The number is supposed to be positive. No sign will be ocute
put. A negative nmumber causes alarm printing (section 9.7. k),

- (minus). A sign will be output, wusing BLANK for positive, and -
for negative nunbers, It will appear as the first or second character to
the left of the first digit or the decimal point, with at most a layout
BLANK in between,

+ (plus). A sign will be output, using + for positive, snd - for ne-
gative mmbers, pleced as explained for - (minus).

+ (plus minus). Using + for positive end - for negative numbers, the
sign Will be output as the first charscter following leading BLANKs,

28 9.7. STANDARD PROCEDURE: write,

9¢T3e2. Digits. Letters 4 and p represent digits. letter p may only ap-
pear as the first character following the sign. The total mmber of let-
ters 4 and p glves the maximum number of significant digits In the nume-
ral. Smell numbers will appear with less than this nunber of significant
digits, If p is used all leading zeroes of the numeral will be output as
0. Otherwise such leading zeroces will be printed as O only in the units’
position and in positions to the right of the decimal point, while iIn po-
sitions to the left of the units’ they will be output as BLANK.

97433, Zeroes. Zeroces may appear at the end of & decimal layout. They
influence the representation of the number in ‘the following manner. If m
zerces are present at the end of the decimal layout, <the exponent output
will be exactly divisible by m+14, For this to be possible at the same
time as the position of the decimfl point within the complete numeral is
kept fixed, the significent digits are allowed to move to the right,
using the zero-positions, to an extent depending on the magnitude of the
number, If no exponent layout is included the exponent 0 1s understood
and the rule holds unchanged.

9.,7.3.+, BLANKs, BLANK will appear in the numeral in all positions where
the layout string has the character BLANK or ,.

94Te3.5. Decimal point. The decimal point will always be printed in a
fixed position within the numeral. If the numeral includes digits to the
right of the point, it will appear as . otherwise as BLANK,

9.T.3.6. Scale factor., An exponent layout will give rise to output of a
seale factor in the numeral. The character y will appear imediately be-
fore the exponent sign, If the scale factor is unity, the whole scale
factor will be replaced by BLANKs, Note that the layout string cannot
contain an exponent leyout without a decimal layout.

9.T«3.7. Round off, Before output, all numbers will be correctly rounded
of f to the number of significent digits given in the numeral.

9¢Tolte Alarm printing.

By elarm printing is meant that the nmmeral will have more positions
than the layout string., Alarm printing will occur as follows:
9.T.lte1s Negative number output with layout having empty sign. The cor-
rect - will be inserted, using one extre position.
9.7.4.2, Number too large for layout. In this case the layout actually
used is derived from the one given as parameter by inserting an exponent
layout, or by increasing the number of exponent digits.

9.7.5. Examples of layouts and output
In order +to indicate the exact output, commas are inserted imme-

diately preceding and following.each numeral.,

9.7. STANDARD PROCEDURE: write.

¢ pddd aao} ¢ +d ddd.aab ¢ +d add.ddd &b $pdd ddq}
, 0 000 000, , + 0,00, , +0,000 0, ,000 000,
, 0 000 000, , + 0,00, , +0,001 2, ,000 000,
, O 8@8 000, , + 0.2, , +0,123 5, ,000 000,
, 0 0DO 001, , + 1.23, , +1.,234 6, ,000 001,
s 0 000 012, , + 12.35, ’ +12,345 7, ,000 012,
, 0 000 123, , + 123,h6, , + 123,56 8, ,000 123,
, 0 001 235, , +1 234,57, , +1 234,567 9, ,001 235,
s 1 23h 57OD5: s H 25h.57n6; ’ +1 25&0567 9n6: 1125 h57n4:
, =0012 346, , -1 234,5T41, , =1 234,567 9p1, ,-012 346,

$~ddd.do0g+d} 4ddd.d0000pdddd +pdd.ddg-dd $+dddaoo,rad

0.000 , , 0.00000 , ,+000.,00 , , o ,
1-255D'5; 1123'5 n-5, J+123‘h6D-5, :+ 1235”'6:
125.5 D-B} 2 001235 > ,+] 23.""611"3, ,+123500n-6,
1.235 p) s 1.255 ’ :*1230“5m'2: st '1235n'3,
12,35 , , 12,35 , ,+123.46y-1, ,+ 123503,
123,5 » ,123.5 » , 123,46, ,+1235005=3,

1.2350+3, , 0.01235 45, ,+123.46, 1, ,+ 1235 ,
142354+9, , 041235 410, ,+123, 46y T, St 123546,
=12.35 y+3, , =0.1235 45, ,=123.46, 2 ,= 12350
12.35 y+15, , 12.35 015, ,+123.46y 1&; ,t 12350p+12,

A" T T T I R " I)

30 10, STANDARD INPUT PROCEDURES.

10. STANDARD INFPUT PROCEDURES.

For input of data from external media,
One of them, kbon, inputs a single bit, another, lyn,
Three others,
read general, are numeral-reading procedures,

ferent procedures,
reads one single character.

the system provides six dif-

read integer, read real, and
i.e. they include conver-

sion of mmersls, i.e. character strings contasining digits end other spe-

¢cial characters and representing numhers,

to the internal representetion

of nunbers. The last of the six, read string, reads the input as a string

of characters,

The set of numeral-reading procedures and read string we

shall refer to as the bulk reading procedures,

10.1, IDENTIFIERS AND MAIN CHARACTERISTICS,

Identifier Example, reference

kbon if kbon then
Bection 10.2

lyn k := 1lyn
Section 10,4

char char := 32
Section 10,7

read integer p := read integer
Section 10,10

read real r := read real
Section 10.11%

read general read general(A,b,n)
Section 10.12

read string read string(B,q,n)

Section 10,13

10.2. STANDARD PROCEDURE: kbon.

104241 Tmplied procedure heading
Boolean procedure kbonj;

Effect

Boolean procedure kbon supplies the
current value of the manually ope-
rated KB register.

integer procedure 1lyn reads the

next character Irom the input medi-
um

integer char, a standard varilsble,
WIIT be used as the first input
character at every call of read in-
teger, read real, read general, and
read string. At completion of the
call of either of these procedures
it contains the last character in-
put from the medium,

integer procedure read integer has
The next integer numeral appearing
on the input medlum as its value,
real procedure read real has the
next real numeral appearing on the
input medium as its value,

integer procedure read general in=-
Puts & serles of numerals and deli-
miters and assigns their value to
successive elements of sn array.
integer procedure read string in-
Puts a string of characters and
packs 1t into successive elements
of an arrsy.

10.2. STANDARD PROCEINRE: kbon. N

10.2.2, Example
if kbon then go to PRINT

10+245+ Semantics

The value of kbon is given by the current state of the manually con-
trolled KB register of the machine; it is true when KB is on, otherwise
false.

10,53, INPUT MEDIUM AND CHARACTER REPRESENTATI(N.

The input medium activated by the procedures lyn, read integer, read
real, read general, and read string, is controlled with the sid of the
standard procedure select (section 8,.1).

These same five standard procedures commmnicate charscters, Inter-
nally, characters are represented by integers, The representation of
printing characters received from external medla is glven in section 6,5,
More generally, the integer representation of a hole combinetion may be
obtained by first adding the integers corresponding to those hole posi-
tions which are punched, according to the following picture:

Paper tape positions Representation

C O X & coweem 6L
00 X - ---e- - o- 32
OO0 00X = =ccea- 16
00 00X =& ®coeeoa parity hole, see below
OO0 X == o=wea=
s 2 6 6 s+ 5 s s & 8 small gulde hole, always punched
D000 X = = =e-=aa= L
000 X =« c«=ae=-ca. 2
o0 X o e - e -ma 1

To this sum must be added 512 if the hole pattern has even parity, i,e,
if it has an even number of holes. The representations of the five pat-
terns given as examples are: 4, 6, 639, 127, and 2%. On some machines the
value of ALL HOLES comes out as 127, however (see appendix U4},

10.4, STANDARD PROCEDURE: lyn.

10.4.1, Implied procedure heading
integer Egocedure lyn;

10.4.2, Examples
symbol = 1lyn
w = table[1lyn + case]

32 10.4, STANDARD PROCEDURE: lyn.

10.4.3, Semantics

Each call of lyn causes the next character in the external medium to
be read and yields the internal representation of the character as re-
sult. A call of lyn has no influence on the value of char, as described
in section 10.7.

10.5. LOWER AND UPPER CASE.

Before it is used by one of the nmumerasl-reading procedures, a cha-
racter is often combined with the last LOWER CASE or UPPER CASE character
encountered in the input string, to form a character-with-case. This is
obvious in the case of printing characters which appear dlfferently in
the two cases, as shown in section 6,5. Where it 1s not obvious we shall
in the following indicate the treatment of case explicitly.

10,6, BLIND CHARACTERS.

The numeral-reading procedures completely ignore the following che-
racters whenever they sppear in the input, irrespective of the case:

Name Internal representation Hole pattern
BLANK 0 s O«
TAPE FEED 63 , 0000,000,
ALJ, HOLES 127 or 639 ,00000,000,
oMY 127 , 000 0,000,

The same holds for read string, except that it does not ignore BLANK,

10.7. STANDARD INTEGER: char.

The standard integer char serves to make the last character read in
any call of one of the bulk reading procedures available to the wuser.
Thus, any of these procedures will assign the value corresponding to the
last charascter read from the external medium to it. In addition, every
call of one of these procedures will use the value of char as the first
character read in, before any characters supplied from the external me-
dium, Thus, if the value of char is not otherwise changed, the last cha~
racter read by one of these procedures will be read once more by the next
bulk reading procedure called.

Apart from this coupling to the bulk reading procedures, char may be
regarded as a simple variable of type integer. Thus it may be assigned
to, as for example:

char := 49
and its current value may be used in expressions.

The value of char assigned by & bulk reading procedure includes the
case as follows:

value of char = representation-of character +

(if lower case then O else 128)
The value of char used as the first character of input is obtained from
the actual value by replacing the first 30 bits of its binary representa=-

10.7. STANDARD INTEGER: char. 33

ion by zeros. Before every execution of a program, char is initlalized
to Q.

The case indication contained in the vaiue of char when used by a
bulk reading procedure, will act like a case character read from the in-
put medium. It is therefore possible that the following characters from
the input medium will not be read in their original case context. 0On the
other hand, +this feature will enable the wuser to take input from alter-
nate media, without any risk +that the case situation of any of them is
lost, For this purpose the user must record the value of char before eve-
ry selection of another medium and assign that value to char when the
original medium is selected the next time. Another use of the feature is
to keep the correct case vwhen alternating between input by means of lyn
and the bulk reading procedures.

10.8. EXIT CONDITIONS.

The bulk reading procedures will accept any character string from
the input medium, without ever calling en alarm, Unless the input medium
is exhansted, the procedures will return from the call with information
sbout the character string read and sbout the conditions csusing the
exit., .

10.9, NUMERAL RECOGNITION AND CVERFLOW,

The +three numeral-reading procedures all conform to the following
common rules about the recognition of a numeral in the input string:

1) Blind characters asre ignored completely in all contexts,

2) To be recognized as a numeral, a section of the input string must
contain at least one digit.

3) Of the characters preceding the first digit, either none, one,
two, or three, will be regarded as part of the numeral, depending on the
particuler procedure and the context.

4) The numeral usually comprises a sequence of digits and other cha-
racters, according to syntactic rules given for each procedure, It is
usually terminated by a non-digit in the input, which acts as terminator
of the numeral, The further action taken on the terminator depends on the
procedure,

5) Exceptional termination of a mumeral occurs whenever the sequence
of characters starting with leading digit, after removal of at most one
decimal point, forms an integer numeral in excess of

2A39 - 1 = 549 755 813 887
In this case the last incoming diglt is said to cause overflow, The reac-
tion of the procedures is to remove that last digit from the numeral and
to treat the digit as the terminator.

10,10, STANDARD PROCEDURE: read integer.

10:10.1, Implied proceduré heading
integer procedure read integer;

34 10.10. STANDARD PROCEDURE: read integer.

10,10.2, Examples
P := reed integer;
s := gq[read integer + 4];

10.10.3. Semantics

This procedure is accomodated on a single program segment and will
read at very high speed, Each time it is called it will start reading
from the external medium, according to the rules given in sections 10.3,
10.5, 10.6, 10,8, and 10.9 and yleld the number corresponding to the next
following numeral in the input as result. The syntax and interpretation
of the numeral in the input 1s as follows:

1) If the first character preceding the first digit of the numersl
is minus (internal representation 32) the number is negative, otherwise
it is positive.

2) Excepting overflow, the numersl includes the following digits, up
to the first following non-diglt, which is the terminetor. The numeral is
interpreted as an ordinary decimal integer.

As an example, the results of reading +the following input string:
pop - s 27, -43-888+555- 333,497 222 333 Lk 868 333;
by means of several calls of read integer, with no intervening assign.
ments to char, are as follows:

Velue of read Integer char
First call 27 27
Second call =43 32
Third call -888 160
Fourth ecall 555 32
Fifth call =333 59
Sixth call kg 222 333 Lk 8
Seventh call 888 333 133

10.11, STANDARD PROCEIURE: read real.

10411414 Implied procedure heading
real grocedure read real;

10e11.2, Example
r := read real/33;

10411,3. Semantics

Of the three numeral-reading procedures, only read real will recog-
nize exponents as parts of numersls. It requires two program segments and
is slower in operation than read integer., It operates like read integer,
but the syntax and interpretation of the numeral in the input is as fol-
lows: -
1) The first part of the numersl will contain a digit, which is in-
terpreted according to rule 2 below, The reading continues as long as the
characters encountered do not conflict with the syntax of the left end of
a number in the sense of Algol 60. In general, the numersl will thus heve
digits in the integral, the fractional, and the exponent part, correspon-
ding to before the decimal point, after the decimal point, end after the

exponent ten,
Where the resulting numersal is

10.11. STANDARD PROCEDURE: read real.

and is

35

interpreted according tc the rules of Algol 60,

an incomplete,

left end of an Algol 60

number as for example 2.a, or Ty-q, the value ylelded by read real corre-
sponds to the numeral obtained by inserting a zero at the right end, thus
in the two examples:
the numeral interpreted by read real are glven below,

2) The interpretation of the first digit of the numeral depends on

the preceding one, two, or three, characters, as follows:

Third

preceding

not minus

anything
anything
anything
anything
anything
anything

Second

Preceding

©
B

not minus

not minus
not y

anything

2.0a and Tp-0q.

First
preceding

+ Or =-
+ Or -

»

f o o =

not - or . or p

First digit belongs in:

exponent of
exponent of
exponent of
exponent of

negative
positive
negative
positive

fractional of negative
frectional of positive
integral of negative
Integral of positive

Examples of numerals in input and

nunber
number
number
nmanber
number
number
nunber
nunbex

3) The digits before the exponent may camse the usual overflow reac-
tion of section 10.9.

L) If the absolute value of the exponent 1s less than 511, but the
resulting number 1s outside of the renge of reals, the program execution
is terminated with a spill.alarm.

5) If the absolute value of the exponent 1s greater than 511 the
procedure will yield a wrong result or call the spill-alarm, depending on
the numersal.

These rules are illustrated by the results of reading the following
input string:

34.56401 3=Ty+1y+82 . 9vg=2w=p25=. 5%
12-3 i54- .+ 02483 +1 40 p.8+b. 2, 3
n-+m-.4dem-m1 n-fn-E-n- Tm

by means of several calls of read real., The results and corresponding va-
lues of char are:

Numeral char Numeral char
3k ,56,01 133 =345 160
“Tptl 2 002 160
8 25 Spt1 59
e 21 o2 59
=2 22) 155
-y 18 -k 52
=5 19 ~pl 155
12 32 =2 32

-p-1 36

36 10,12, STANDARD PROCEDURE: read general,

10.12, STANDARD PROCEDURE: read general.

10.12,1. Implied procedure heading

integer procedure read general(R, SKIP AND EXIT, ELEMENT);
Valte SKIP AND EXIT; <type> array R;

TooTean SKIP AND EXIT; integer ELEMENT;

10.,12,2, Example
w 1= read general(I, 30727327 64 317533, a)

10.12.3+ Semantics

The purpose of this procedure is to provide fast input of complica-
ted data formats by making 1t possible for the procedure to read a fairly
long strech of characters without the need to make a new procedure call
every few characters, at the same time as it assigns all of the informs-
tion of the input string to the elements of an array in the form of a
mixture of numbers and characters.

These needs can only be satisfied by a rather complicated procedure.
It is believed, however, that the procedure will be useful for a wide
range of needs, from simple input of arrays to input of flexible charac-
ter strings for general data processing.

The action of the procedure may be described briefly as follows: .In
a normal cell the procedure will read a series of numerals and the cha-
recters appearing between them, The numerals will be converted tc inter-
nal representation and assigned to elements of an array. The intervening
characters will be treated as follows: Apart from blind characters every
character which immediastely follows a numerel, but is not part of i%,
will act as a terminator of that numeral. Furthermore all such charac-
ters, whether they act as terminators or not, will be processed as fol-
lows: Two particular characters, specified by the user, will be skipped.
Two other characters, also specified by the user, will cause exit from
the procedure. All other characters will be recorded in between the num=-
bers in the array.

Exit from the procedure will take place either (1) when one of the
exit characters is found, or (2) when +the array is full, Information
about the exit situation is available at the return from the procedure
call.

In terms of the notation of section 10.12.1 the detailed conventions
are as follows:

R is the array into which numbers and characters are read. Each num~
ber and each character occupies one element of R. The representations are
as Tollows:

Number intc real array: as a real number,
Number into integer or boolean arrasy: as an integer number.
Character: Bit pattern having two integer parts:
Bits 10 to 19: Character with case, as the value of char
- 28 - 39: Pointer to the next following element holding a che-
racter, or 0 if there are no more.

SKTP AND EXIT is a bit pattern defining four particular characters,

dencted as follows:

10.12. STANDARD PROCEDURE: read general, 37

Position Character
1 - 9 SKIP 1
11 - 19 SKIP 2
21 - 29 EXIT 1
31 - 39 EXIT 2

The 9 bits describing a character consist of a group of 2 bits and one of
7 bits, The leading 2-bit group of each character description indicates
the case to be assoclated with the character, as follows:

2-bit value Case of character

Lower

Upper

Lower or upper

None existing, i.e. ignore description

W= O

The 7-bit group, if interpreted as a binary integer, gives the internal
representation of the character, as defined in section 10.3.

The effect of the SKIP AND EXIT parameter is as follows: None of the
characters described by the parameter will ever be read into elements of
the array R. The two SKIP characters will simply be skipped, while the
two EXIT characters will cause exit from the procedure. All of the four
characters will, however, act as normal terminators of numerals.

The effect of setting one of the SKIP AND EXIT characters to be one
of the charscters: <digit>|.|-|+ depends in a complicated mammer on the
clrcumstances and should be avolded.

FLEMENT at the call of the procedure mmst be O or point to the last
used element of array R. The procedure will start assigning a number or a
character to the element at this starting value +1. At exit from the pro=-
cedure, ELEMENT will point to ithe last element to which the procedure has
assigned, The values of ELEMENT correspond to a simple numbering of the
elements of R from 1 and upwards, independent of the dimensions or sub=-
seript bounds of the array.

Upon exit the situation is described by the values of char and ELE-
MENT, and by the value of the function designator:

Value of Situation at exit
read general Characters are char is an Arrey is
stored EXIT char. full
-1 No | No yes, or ELEMENT is < O
0 Nos Yes Maybe
>0 Yes, value Maybe Maybe
points to the
first

Note particularly that if the exit is caused by EXIT 1 or EXIT 2,
the exit character is found in char and may cause another exit imediate«
ly at the first following call.

Further details of the conventions are as follows:

38 10.12, STANDARD PROCEDURE: read general,

10.12,4, Numbering of array elements,

The elements of R are pointed to in three ways: (1) by values of
read general, (2) by bits 28 to 39 of character words, and (3) by values
of ELEMENT, These pointers all refer to a numbering of the elements from
1 and up, irrespective of the subscript bounds and dimensions of the ar-
rays. The number of each element in the general case of an array
A[L1:U1, 12:U2, ... Ln:Un] 1s defined as that number which would be as-
signed to the element by the following process:

number = 1;
for 11 := L1 step 1 until Ul do
Tor 12 := 12 sTep 1 until U2 do

———— ——
. L] L L4 *

for in := Ln step 1 until Un do

T vegin A[TT, 12,7.., inT := number;
number := number + 1
end

——

10.12.5. Numeral of type integer

When the type of the array R is integer or Boolean, the numerals re=
cognized in the input are the same as those recognized by the procedure
read integer (cf. section 10,10).

10.12,6. Numeral of type real

In the case of real array R, & numersl in the input consists of a
signed, decimal number, but without exponent. The numeral must contain at
least one digit, The first dlglt is interpreted as follows:

Characters preceding first digit Interpretation of first digit
Second First

not minus . Fractional of positive
- . Fractional of negstive

anything - Integral of negative

anything not , or - Integral of positive

Following a fractional first digit the reading continues until the first
non-digit 1s found. Following an integral first digit the reading conti-
nues until the first non-digit is found. If this is a decimal point, the
reading continues in the fractional mode, otherwise the numeral is termi-
nated, In either mode, the digit causing overflow will be treated as a
terminator,

10.12,7. Speclal treatment of point, plus and minus
Where +the charscters point, plus and minus do not form a part of a
numeral, they act as terminastors and are stored in the array R like other
characters, with the additional special rule that the two character pairs
+. and -+ are treated as distinct characters having values derived by ad-
ding 256 to the values, corresponding to + and -, -i.e.
+, corresponds to k16

- - - 288

10.12. STANDARD PROCEDURE: read general. 39

10.12.8. Character test sequence

The behaviour of the procedure in singular cases, such as setting a
SKIP or sn EXIT character to be a blind character, depends on the arran-~
gement of the sequence of tests applied to each character taken from the
input. Questions of this sort may be answered on the basis of the follow-
ing character test sequence.

Test Class of Action

number character

1 Part of numeral Number conversion; go to next character;
2 SKIP 1 or 2 Terminator; go-to next character;

) EXIT 1 or 2 Terminator; go to exit action

4 Upper or Lower case Record'. ¢cgse; go Lo next character

5 Blind go to nedt character

6 All others Terminator; Store character in array;

go to next character

The zction of the procedure Terminstor used in this description mast be
empty when there is no numeral waiting to be termineted. Again the action
of Number conversion includes the termination of a numeral by point,
pilus, or minus, as described above.

As one useful conclusion which may be drswn from this sequence, 1t
msy be mentioned that the normally blind BLANK will be active as SKIP or
EXIT character,

10.12.9, Illustrations
'Let us choose:

SKIP 1)
SKIP 2 a and A
EXIT 1 not used
EXIT 2 F

and let us read Into
real array Q[22:27]

As the first example, let the program be as follows:

ELEMENT := 03
rg := read general(Q, 2012722114-9_5_51021 '_7_5"*, ELEMENT)
gnd further let the input string be:

22,0, 23.2, 24,3, 25 a A 26, 27,
then the situation after the call will be:
ELEMENT = 6, rg = -1, char = 27, the elements of Q = 22,0, 23.2, 2,3,
25,0, 26,0, 27.0.

Second example:
Program: ELEMENT := 3;
rg = read general(Q 307273274 33703 17 54 ELEMENT)
Input string: - - - - - - =
23., « 30AF
After call: ELEMENT = 5, rg = O, char = 182 (=F). The elements of Q are
unaltered, except for Q[25] = 23,0 and Q[26] = 0.38.

40 10.12. STANDARD PROCEDURE: read general.

Third example:
Program as in the first example.
Input string:

2, «T -« AT -, 3 BD
The situation after exit:

Variable Value Comment

ELEMENT 6 Ql27], the last element read into
rg 3 Q{24], the first character

char 180 D

Q[22] 2,0 1

Ql23]) 0.7 2

Qlak] 288, U 3 Charascter -. and ref, to Q[25]
Qf251] sk, 6 L - f - - -=@l27]
Q[26) -0.3 5

Ql27]) 178, © 6 Character B, the last one

10.13. STANDARD PROCEDURE: read string.

1041351, - Implied procedure heading.

integer procedure read string(S; START AND EXIT, ELEMENT);
Yalae START AND EXIT; <type> array S;

Toolean START AND EXIT; integer ELEMENT;

10.13:2; Exsmple,
if booleen read string(A,10 384 10 17 10 384 10 j45,n) then Q

10.13-50 Semantics.

The procedure reads a sequence of characters and records them as one
string into an array. All characters in the input are skipped until one
of two particular characters, specified by the user, is found. Twe other
characters, also specified by the user, will cause exit from the proce-
dure. Except for one speclal situation the procedure will start by assu~
ming the input to be in lower case.

The detailed conventions are as follows:

START AND EXIT is & bit pettern defining +he four particular characters
mentioned above. The four characters, denoted START 1, START 2, EXIT 1
and EXIT 2 are packed in the same marmer as in the parameter

SKTP AND EXIT in the procedure read genersl (cf. section 10.12,3). Apart
from two situstions sll the characters in the input are skipped until a
character, defined by START 1 or START 2 is found. The two exceptions
are:

1. The 2-bit groups of START 1 and START 2, defining the case to be
sssoclated with the characters, have both the value 3.

2, The value of the parsmeter ELEMENT is on entry equal to the num~
ber of elements of the array S, The procedure will, set ELEMENT to zero
and assume the input to be 1in opposite case of that assoclated with the
standard varisble char.

The following characters in the input ere treated as follows:

1. Bach character is tested sgainst EXIT 1 and EXIT 2,

2. TAPEFEED and ALL HOLES are ignored.

10.13, STANDARD PROCEDURE: read string. I

3. The internal value of CARRET is changed to 63, whereas characters
having the value > 64 will be treated modulo 6k.

L, The characters will be packed into successive elements of the ar-
ray S, each element containing 6 characters (cf. section T.T7.2).

5. The characters UPPER CASE and LOWER CASE appear as in the input,
except that superfluous case shifts are removed.

Exit from the procedure will teke place either when one of the cha~
racters EXIT 1 and EXIT 2 is found or when the array is full. If one of
the exit characters is found the actions are:

1« If the last case packed is an UPPER CASE, a LOWER CASE is packed
as the next character. If this is impossible because the array is full,
exit 1s done with the function designator having the wvaliue -1,

2, Bits 0-3 and the remaining 6~bit groups in the current element of
the array are filled with characters having the value 10, and exit takes
place with the function designator having the value 0.

If an exit character is not foumd before the array is full the func-
tion designator 1is set to -1, At exit from the procedure, ELEMENT will
point to the last element of the array S to which the procedure has as-
signed. The numbering of array elements is as for the standard procedure
read general (cf, section 10.12.4),

10.13.4, Illustration.
The following statements put a text terminated by END CODE on the
backing store.
Place:=ni=char:=0; r:=-1;
for placet=place+l while place<free size Ar=-1 do
“Pegin ri=read striﬁérﬁzég 384710 268,n); put(A,Tree ares, end;

place

b2 11, STORAGE AIMINISTRATION DURING PROGRAM EXECUTICN

11. STCRAGE ADMINISTRATION DURING PROGRAM EXECUTION

In the present chapter we shall discuss the handling of the non-ho-
mogeneous store of Gier, as this takes place during the execution of Gier
Algol programs, and the way this may be controlled by the progreammer, The
discussion is complicated by the fact that several different Gier confi-
gurstlions exist,

11.1. GIER STORAGE UNITS,

The storage units under consideration are:

1, The core store, or working store, of 1024 words,

2, The drum, or drums, consisting of 1, 2, or 3 drums having each a
capacity of 320 tracks, each of 40 words,

3., The buffer store, of LO96 words.

4, The disk file, This may either replace the drum and then has 9600
blocks of 40 words, or it may commmicate only with the buffer store, ha~
ving then 1200 blocks of 400 words,

5. Magnetic tape units, commnicating with the buffer store in
blocks of up to 4096 words,

6, Caroussel unit, commmicating with the buffer store in blocks of
512 words,

The machine always has the core store and a drum or a disk file re-
placing it, All other storage units are optional.

Information about the machine configuration actually at hand may be
obtained by a call of system (cf. section 8.2 and appendix U).

11+2. STORAGE OF VARIABLES,

Gler Algol 4 includes +the option to have the elements of arrays
stored either in the core store or in the buffer store, 1f this is aval-
lable, Other variables of the Algol program and certain administrative
paremeters will be stored in the core store. The reservation of core and
buffer storage for a variasble is made at the time of entry into the block
in the head of which the variable is declsred. Similarly reservations for
a bloeck are cancelled at the time of the corresponding exit from the
block, For this reason the space reserved for the variables will usually
change from time to time during the execution of a program, being at eve-
ry moment equal to ‘the sum of the reservations made by those blocks and
procedure bodles which are active,

The reservations mede at a block entry may be derived from the de-
clerations (including the implicit ones for local labels) of +the block,
as follows:

11.2. STORAGE (OF VARIABLES, L3

Number of locstions reserved

Simple variables, local labels, One in core store for each
local switches, local procedures

Array segment In core store: number of array identi-
fiers + 1 + number of subscripts. In
core or buffer store: total number of
variables

Working location Depends on structure of progrsm, usual-
1y only a few in core store

Block, procedure body In core store: 2 if normal block, 3 if
procedure, 4 if type procedure

Formal parameter In core store: 2 if the corresponding
actual is a constant, otherwise 1,

The total number of core store locations avallsble for reservations
is about 650, the rest being used for program. For reasons glven below it
usually is unwise to reserve that many locations in the core store, The.
full capacity of the buffer store, 4096 words, may be used for array ele-
ments, wunless part of it is reserved for systems added to the basic Gier

Algol &,

1143, STORAGE OF PROGRAM,

During program execution, the translated Algol program is permanente
ly stored on the drum in the form of program segments, each of one track.
The part of the program being executed 1s also present in the core store.
The transfer of program segments from the drum to the core store is
handled by a fully automatic administration., A detallled description of
this administretion is found in P, Naur: The performance of a System for
Automatic Segmentation of Programs Within an Algol Compiler (Gier Algol),
Comm, ACM 8 (1965), 671 - 677. In this system en attempt is made to al-
ways make the best use of that part of the core store which is not cur=-
rently reserved for varisbles, This section of the core store will be
divided into program track places, each of 41 locations. The available
places will be used for those program tracks wvhich are required as the
program eXecution develops. Whenever the program execution calls for a
transfer to another track it is investigated whether the track is avai-
lable in the core store, If it 1s not, it is transferred to that track
place which for the longeat time has been left unused., Consequently the
program segments comprising a loop which 1is short enough to be held in
the available core store will only be transferred from the drum when the
loop is entered, and not during subsequent repetitions.

The transfer of a drum track to the core store requires 20 millise-
conds, and a corresponding transfer from the disk file between 17 and 75
milliseconds. In contrast the transfer of control to a track which is ale-
ready present in the core store takes between 0.7 and 1.6 milliseconds.
It is therefore clear that the program execution tlime may become highly

|

Ly 11.3. STORAGE OF THE PROGRAM.

dependent on whether the more active loops of the program may be held in
their entirely in +the core store or not. But this again depends on how
mich storage 1s reserved for veriasbles, We can therefore state the two
rules for the programmer who wishes to achieve high speed of execution:

1, MAKE THE TEXT OF THE MOST ACTIVE LOOPS SHORT

2, AVOID OVERLOADING THE CORE STORE WITH VARIABLES
As a crude guide, keep the number of reserved locations below 500, This
may be achieved by using the backing store for data.

In estimating the length of program loops the segments used in calw
1lng standard procedures must be included, To enable this +to be done,
here is the 1ist of the contents of the tracks of the basic standard pro=-
cedure library. Where & standard procedure is listed more than once, it
uses more than one track.

Standard procedure

library track Procedures

5 read integer, read real
6 read real

7T -8 read string

9 - 11 read general

12 write integer

13 - 15 write

16 write, writetext

17 cos, sin, sqrt

18 arctan, sign

19 ln, system

20 exp, checksum

21 put, get

22 vhere

23 where, reserve, cancel
ol reserve, cancel

25 reserve

26 i1, us

As g further aid to programmers who wish to make sure that only &
small part of the execution time is spent on transfers of segments from
the drum, the system includes a standerd

integer tracks transferred;
at every drum trensfer of a program segment this is increased by unity.
The initial value at program entry is zero.

11.4, LOOP STORAGE CONTROL.

To enable the programmer to avoid that short, frequently executed
loops are placed across a segment limit by the translator, thereby giving
rise to a large number of segment transitions with a resulting increase
of execution time, the system allows the programmer to indicate that par-
ticular loops should be placed exclusively on one segment, The loops to
be treated in this way must be written as for statements with a for
clause containing either just one for list element, or two elements of
the form

11.4. LOOP STCORAGE CONTRCL. 45

<arithmetlic expression> , <aritlmetlc expression> while

<Boolean expression>

The statement following the for clause mst be enclosed in the begin-end
palr. To assure storage on only one segment, +the programmer mist write
for as the last symbol of the comment following the end. According to Al-
2ol 60 this will be part of the comment, but it will influence the sto-

roge in Gier Algol L.

The use of this facility will sometimes cause that part of a segment

is left unused by the translator,

and so will increase the total size of

the translated program. For this reason 1t should only be used on such
short loops which contribute significantly to the execution time,

Example:
for 1 ¢= 1 step 1 until N do

begin Sum := sum + A[TIA2 end for;

IT The symbol for is found Tollowing end in any other context, it
will give rise to an alarm during translation,

11.5. DATA STORAGE ON BACKING STCRE.

Use of the drum, the disk file, or other auxiliary stores, for sto-
rage of dsta, requires that the user includes explicit calls of certein
standard procedures. Here are the identifiers and main characteristics of

these procedures,

Identifier Example, reference

reserve reserve($<j i3, 8)
section 11.7

where q:=vwhere($<jj3h}, W)
section 11,8

cancel s:=cancel($<jj34})
section 11.9

put vi=put(A, W, t)
section 11.10

get pi=get(A, W, t)
section 11.10

11 b:=11(B, 130, false)
section 11.13

us " us(Q, 7,)

section 11.13

Effect

integer procedure reserve makes &
Teservation ol an area and enters
a corresponding name and descrip-
tion in the catalogue.

integer procedure vhere searches
The catalogue Ior a given name
and yields the description of the
corresponding aresa,

integer procedure cancel removes
a glven name from the catalogue
end releases the corresponding
area.,

integer procedure put trensfers
The data he an array, A4, to
the tracks of an area W indicated
by an Integer t,

integer procedure get transfers
The data held In the tracks of an
ares, W, indicated by t, to an
array A,

Boolean procedure il calls for an
execution of the machine instruc-
tion 11, _

procedure us calls for an execu-
TIon of the machine instruction
us,

k& 11.6. BACKING STCRE AND CATALOGUE,

11+6. BACKING STORE AND CATALOGUE.

The machines ere equipped with a backing store organized as a number
of blocks thus:
either (1) a drum which physically may be & disk, block length 40 words,
corresponding to one traek,

or (2) a disk connected to the buffer, In existing machines the block
length is 400 words, but in the future even larger blocks may
be possible,

This equipment gives room for an indefinite number of separate, na~-
med backing areas:

1) The free area, name: {<free}.

2) Reserved, named areas which originally have been part of the
free area,

3) Other named backing areas,

These areess are described in the catalog which always 1s placed on
the drum, The catalog may also contain descriptions referring to other
kinds of store (magnetic tape, caroussel, etc.), but the procedures put
snd get are only designed to handle backing areas.

The catalogue and the contents of the named areas may keep data in-
definitely for days or weeks unless overflow of storage capacity or ms-
chine malfunction breaks in. From within an Algol program the user may
commmicate freely with any backing areas of which he knows the name, he
may cancel the reservation of named areas, and he may reserve and name
eny nmmber of new areas, During a run of one program the named areas stay
in the same locations, but between two runs the use of the store may pos-
sibly have been reorgsnized and the catalogue changed accordingly. Be-
tween one run and the other the user may therefore only identify an area
by its neme, but within the same run an area description may be used,
In order to commmicate with an area containing data stored away at an
earlier run, a program must therefore start with a call of a standard
procedure, where, which provides the current aree description vhen sup-
plied with a name. In the actual trensfers of data between the area and
the varisbles of the program the ares description is used, These trans-
fers use the procedures put and get., New, named aress, which are esta-
blished by means of a call of procedure reserve, are always taken at the
beginning of the free area 4<free}, which is reduced correspondingly.
Sueh reserved areas may be returned to the system dy calls of a proce-
dure, caneel., This will not reorganize the store, however, but only can-
cel the catalogue entry.

A name of an area is a string.

11.7. STANDARD PROCETURE: reserve,

1167.1. Implied procedure heading.
integer procedure reserve(NAME, BLOCKS); value BLOCKS;
‘Eringm' integer BLOCKS;

1107.2. Emplﬁ
ection := reserve({<pn23},)

11.7. STANDARD PROCEDURE: reserve. b7

114Te3e Semantics

Each call of reserve will attenpt 1o reserve an area of BLOCKS
blocks and to enter NAME and the description of the area in the cata~
logue. If succesful, the area thus reserved is the #r_gg_%of the free
ares, having so far hed the name {<free}, At the Sams Lime Ethe free srea
is reduced accordingly. Thus, if a deseription of f<free} had previously
been cbtained by a call

vhere({<free}, FREE)

this previous value of FREE will describe an area vhich contaeins the new-
1y reserved area as the first part of it. To obtain the correct, new de-
scription of the free area, the progrsm mst contain a new call of where,
On the other hand, several areas having different names may be reserved
in direet succession, without any intervening calls of procedure where,
Indeed, the program need not make any direct reference to the free area
at =211,

If the reservation is indeed made, the value of reserve will come
out as 0, If the value comes out different from 0, the reservation has
not been made, for the reason given in the following table:

Value of reserve Meaning

The reservation has been made

NAME is not an allowed name

NAME is already in the catalogue

The catalogue is full

BLOCKS < 0 or too large to be sccomodated
The catalogue has been destroyed

VI EFOINN =0

11.7.4, Varigble string &s name,

Procedure reserve will call the NAME in the way that procedure
vritetext calls its parameter, s0 the facilities of seection RN may be
used,

11,8, STANDARD PROCEDURE: where,

11.8,1, Implied procedure heading,
integer procedure where(NAME, AREA); string NAME; integer AREA;

11.8.2, Exsmple
check := vhere({<pn23}, pn23)

11.8.3. Semantics

Eech call of procedure where csuses a sesrch of the catalogue for an
item having the given NAME, If the item is found, the corresponding de-
scription of its current storage is assigned to AREA, If the item refers
t0 a backing area the value assigned to AREA 1s suitable to be used in
ealls of procedures put and get. A3 a special case, the call

where?*‘dree:}, W)

Places the description of the free ares in We

The value delivered as result of the call indicates the success of
the search, as follows:

L8 11.8. STANDARD PROCEIURE: where.
Value of where Meaning
0 A backing aree deseription has been sssigned to AREA
1 NAME is not found in catalogue, AREA is unchanged
2 Another deseription has hbeen assigned to AREA
3 The catalogue has been destroyed, AREA is unchanged

11.8.4, Varisble string as name,
The rule of 11.7.4 also holds for where,

11,9, STANDARD PROCEDURE: cancel,

11:9.7, Implied procedure heading
integer procedure cancel(NAME); string NAME;

1192, Example
q 3= cancel(4<m55})

11¢9e5s Semantics

Each call of cancel causes an attempt to find NAME in the eatalogue
and to cancel the corresponding reservation of an area, In this process
the free area 1s extended to include any umused area which is made to lie
adjecent to the current free area,

The success of the call is indicated by the resulting value:

Value of cancel Meaning
0 NAME is found and cancelled
1 NAME was not found in the catalogue
2 NAME indicates an item In the catalogue which mmst
not be cancelled,
3 The catalogue is destroyed.

11.9.8, Variable string as name,
The rule of 11.7.4 also holds for cancel.

11,10, STANDARD PROCEDURES: put AND get,

11410.1, Implied procedure headings
integer procedure put(A, AREA, PLACE); value AREA, PLACE;
teger AREA, PLACE; <type> srray A3
integer procedure get(A, AREA, PLATE]; wvalue AREA, PLACE;
Integer AREA, PLACE; <type> array X3~

11.10.2, Examples
y := put(B, POPULATI(ON, 8)
z 3= get(age, POPULATION, 32)

11,10, STANDARD PROCEDURES: put AND get. Lo

11.10.3, Semantics

These procedures perform transfers of data between the varisbles of
the program, indicated by meens of the array identifier A, and the part
of AREA Indicated by PLACE. Procedure put transfers from the arrsy to the
area leaving the array unchanged, procedure get in the opposite direc-
tion, changing the array, but otherwise the conventions are similar, The
precise effect of put and get depends on the block length of the backing
store,

The wvalue of AREA must have been obtained by a call of procedure
where. PLACE must be a positive integer, indicating the first bdlock which
is involved in the transfer, the blocks within the area being numbered 1,
2, 3, ees Thus we must have

1 < PLACE < number of blocks in area
and the transfers will generally involve all the elements of the array A
and the blocks within the area having numbers PLACE, PLACE + 1, ... Other
details are as follows:

1) The elements of arrays of dimemsion 2 or higher are treated as a
linesr sequence, as explained in section 10.12.k.

2) Irrespective of the block length, the array A must have at least
4O elements.

3) As many complete blocks in the aree are used as are necessary to
hold the full array, i.e.

number of blocks =
(nmumber of elements + block length - 1) : block length
The dsta transferred to the backing store from an earray of a given size
by a call of put, can be got back by a call of get with the same AREA and
PLACE sand an array of the same size,

i) The exact arrangement of the elements on the blocks is generally
unspecified. However, if the number of elements of the array is an inte-
gral muitiple of the block length, the elements are mapped directly on
the blocks., In this case it is possible to transfer the same data alter-
natively in terms of arrays of different sizes,

11.10.4, Alarm conditions

The following error conditions will terminate the progrsm exescution
with an alearm:

Procedure put is called with AREA not describing s backing area,

The axray is too large to be accomodated in the area, starting at
PLACE,

The array has less than 40 elements,

11,10.5, Hardware failure

In 4OO-word block machines the hardware gives indications of certain
failures of transfers in the form of a so-called status word, These are
handled as follows: Following the transfer of each track, <the procedures
check for a failure indication. If a fallure is indicated the procedures
exit immediately, even if only part of the track tranafers have been
made, In any case the result of the procedures is the last status word,
or in case of UO-word block machines, zero, If a hardware failure has oc-
curred the status word is negative, otherwise positive,

50 11.11. ADVICE ON SEMI-PERMANENT DATA STORAGE.

11,11, ADVICE (N SEMI-PERMANENT DATA STORAGE,

In programming the use of semi-permanent date storsge on the backing
store i1t should always be kept in mind that although some attempt has
been made to prevent that simple mistakes will cause data to be destroyed
unintentionally, the protection of date is far from complete, Programs
meking use of these facilities should therefore include safety measures,
such as the following:

1) Always keep a reasonably simple way open to restore the data left
in the backing store. Often these consist of an initial set of data,
which has subsequently been changed in a number of updating processes., In
this situation i1t is vitel that the initial set and all the subsequent
changes are kept in such & form that the complete sequence of modifica-
tions can readily be repeated. Also it is advisable to produce coples of
the data In 1ts modified form on an external medium from time to time,

2) Start the program right away with calls of procedure where to all
the arems used within the program, to mske sure immediately that they are
all present, Also make some independent check that the contents of each
single track is correct. As the minimm, make a summation check of one
word of each track,

3) To avoid the double use of nemes of arees, make sure to follow
the conventions adopted for +this purpose at each installation. A POS=
sible form of such conventions is to compose the name of the initials of
the user, two or three letters, and a whole mmber between 100 and 999,
each particular user starting generally at 100 and working up: 101 s 102,
oo With the possibility to start at 500, Bay, if two users have the same
initials,

11.12, ADVANCED USER INFORMATION,

The conventions of the procedures put and get imply a certain amomnt
of checking against mistakes and are all that are needed by the normal
user, The following additional information is given for the benefit of
advenced users vho are able to avoid the possible 11l consequences of by-
passing these checks and who need more flexible commnication with
backing stores.

The value of AREA, as supplied by a call of procedure vhere, 1s
exactly the first word of the catalog item., In case of a backing area the
format is:

Bits 0~ 2 O in case of drum, 1 in case of disc

Bits 3- 7 Specifies the further use of the area, see below,

Bite 8-23 Number of blocks in ares,

Bits 24-39 First block of area,

The value of AREA 1is tested as follows: get and put: alarm if not
drum or dise; put: alarm 1f bit 3 = 1 or bit 5 = 0; cancel: ylelds the
value 2 1f bit 3 = 1 or bit 5 = 0; where: ylelds the value 2 if bita 0-2
¥ actual backing store; reserve sets the following bit pattern in bits
5-T: 00100 and backing store value in bits 0-2 and inserts a dumy sum
vord in the catalog item.

For detailed formats of the catalog see the description of the Cat
system,

11.13. STANDARD PROCEDURES: i1 AND us., 51

11+135. STANDARD PROCEDURES: 11 AND us.

11.1341. Implied procedure headings.
Boolesn procedure 11(A, FUNCTICN, PARAMETER); value FUNCTION, PARAMETER;
<type> array A; Iinteger FUNCTI(N; Boolean FPARAMETER;
procedure us{XK, FUNCTICN, PARAMETER); value FONCTICN, PARAMETERj;
arrey A; integer FUNCTION; Boolean PARAME]?ER,

11.15.,2, Examples
g , 130, 20 120-20 1)
us{Q, 7, ((Blolean Tepool X 16 + block) shift 10) V 4o 2) shift 20)

11.13.3. Semantics.

Each call of 11 or us causes execution of the machine instruction
having the same operation code as the identifier of the procedure. These
instructions call transfers of data between the buffer store of the ma-
chine and any attached magnetic tape drivers, caroussel units, or disk
file units. To understand the action of these procedures the user mst
refer to the description of these units and their attachment to Gler, gi-
ven in A Menual of Gler Programming Vol, III and later reports.

The action of an il or wus instruction depends partly on the effec-
tive address of the instruction, partly on the parameter placed in the
R-register. The effective address must be given as the value of FUNCTION.
The parameter placed in R before the activation of the il or us instruc-
tion is formed by adding the buffer address of the last word preceding
the array A In the rightmost position of the word given as PARAMETER.
This meens that bits 28 - 39 of PARAMETER indicates the first element ta-
king pexrt in the transfer by its element number, numbering the elements
within the array as 1, 2, ... as in section 10.12.4,

Before execution of the 11 or us instruction certain parts of PARA-
METER and FUNCTION are checked to be mutuslly compatible and +to involve
only the elements of A. This check depends on the last U4 bits of FUNC-
TION, as follows:

1) Magnetic tape operation, i.e. the last four bits of FUNCTION re-
present a number between 1 and 6. The block size should be given in posi-
tions 8 -~ 19 of PARAMETER., It 1s checked that +this block size does not
extend beyond the array A, that bits 0 = T and 20 - 27 of PARAMETER are
zero, and that FUNCTION 1s positive and less than 512,

2) Caroussel operation, i.e. the last four bits of FUNCTIN repre-
sent 7. PARAMETER must supply:

bits 0 -« 5 Spool number

- 6 - 9 Block number

- 10 = 15 Zeroes (checked)

- 16 = 19 Number of blocks of 512 words

- 20 - 27 Zeroes (checked)

- 28 - 39 First element taking part in transfer

It is checked that the number of blocks cen be held in the array, ster-
ting at the first element, and further that FUNCTION is positive and less
then 512 snd has zero in bina.ry positions 32, 64, and 128,

3) Disk file operation, 1.e, the last four bits of FUNCTION are be-
tween 8 and 15. PARAMETER must supply:

o

52 11+15. STANDARD PRCCEDURES: il AND us,

bits O Zero
- 1 ~ 9 Block size, checked to be at most L0OO
-~ 10 = 21 Track number
- 22 - 27 Zeroes {checked)
28 - 39 First element teking part in transfer

It is checked that the block can be held in the array, starting at the
first element, and that FUNCTION is positive, 1is less than 512, and has
zero in binary positions 32, 64, and 128,

Failure of any of these checks causes an alarm +termination of the
program execution.

12. MACHINE CODE IN GIER ALGAQL L, 53

12, MACHINE CODE IN GIER ALGOL k4,
12,1, OVERALL POSSIBILITIES.

There are three ways to include machine code in a Gler Algol 4 pro-
gram, Machine code mgy be written as a statement, starting with the sym-
bol code. Such code will be executed from +the place smong the Algol
statements where it is written. Because of the automatic segmentation of
programs it must not contaln more than *9 words.

Secondly, machine code may be written es the bvody of a procedure,
starting with the symbol code. This admits the special possibility to
omit the specification of Tormals. In the call of the procedure the cor-
responding actual parameter of such an unspecified formal may he any-
thing. Again only 39 words are admitted,

As the third possibility, machine code may be written as a new kind
of declaration, starting with the symbols core code. Whenever the program
enters the block in the head of which this code 18 written, the code is
copied from 1its locations on the segments to locations 1in the stack in
the core store. In order to execute it, the user must call the standard
procedure gler(p), where p must be a simple boolean varisble, given
as the first parameter of the code. (nce the code has been transferred to
the stack it may be accessed rapidly any number of times, The translator
will handle core code pleces of up tco 119 words. At run time the core
code pleces will require locations in the core store, like simple varisb-
les, If there is insufficient cepacity, the normal store overflow reesc=
tion will take place,

12.2, SYNTAX,

<code statement> ::= <code head><code specifications>

<machine-code> e
<code head> ::= code <identifier list>;
<code declaration> ::= <core code head><code specifications>

<machine code> - e-
<core code head> ::= core code <ldentifier list>;
vhere the detailled Torma® of code specifications and machine code are
explained helow,

The syntex may be 1llustrated by the following example, which in the

right hand column is provided with an Indication of the structure.

code A, B; Code head, with 1list of parameters
2, i ; Code
1, b6, Li 3 specifications

is (b2), arn s a2
ck 0 , nkrel

el: srmm Dt -1
ck 10, gr al
e

Machine code

-e

T

sl 12.2. SYNTAX.

With some restrictions, described in section 12,8, the code specifica-
tions and machine code conform to the syntax of Slip. In particular, the
comment conventions of Slip apply.
The code specifications supply information about the storage, kind,
d type of the parameters. They only serve as a check of the characteri-
sties of the parsmeters given in the code head, while there is no check
that the parameters described in the code head and specifications are
used correctly in the machine code., The check of the agreement of head
and speciifications 1s intended as a help to the exchange of machine code
pleces. In publication such pieces will only include specifications and
mechine code. In a particular application the user must add the code
head, The translator will check that ‘this is consistent with the code
specifications. These make more detailled distinctions of parameters than
does a'normal Algol text and the user of the code may thereby place
striect 1imits on what constitues a correct parameter in each parameter
position, Thls limits the generality of the machine code piece, but it
allows the code to be written in a more efficient manmer,

12.5+ STORAGE ALIOCATION AND ADDRESSING OF ALGOL QUANTITIES.

The storage allocation of quantities and programs within Gier Algol
is dynamic, 1.e, the final address where an instruction or variable is
stored is not determined until the actual execution of the program. More-
over, even during one execution of a program the address of a quantity
will not necessarily remain the same from one phase of the program to the
other. For this reason addressing of quantities within the machine code
itself, such as jumps and references to working varisbles, should always
employ r-relative addresses,

From within the machine code it 1is possible to refer to those quan-
tities of the surrounding Algol program which are listed as parameters in
the code head. In the following we describe first the methods of address
calculation and second the meaning of the words accessed at run time.

12.3.1. s=relative addressing,

In general the final machine address of a'quantity of the Algol pro-
gram 1s found by an algorithm which depends on the block in which the
quantity is declared or introduced as formsl, The result of the transla-
tion is that each quantity is deseribed by two numbers, the DISPLAY REFE-
RENCE indicating the block and the BLOCK RELATIVE address. The final, ab-
solute address is calculated at run time by the following algorithms

Absolute address:= STORE[DISPLAY REFERENCE] + BLOCK RELATIVE.

In machine instructions this may conveniently be realized, e.g. as fol=
lows:

is (DISPLAY REFERENCE)

op s+BLOCK RELATIVE
where op is some operation code, This general addressing method will be
referred to as s-relative addressing. Note particularly that this is per-
fectly general and may be used in all cases, while the use of p-rela-
tive and sbsolute addressing,. described below, depend on the particular
program structure. A piece of machine oprogram planned to be used gene-
rally should therefore employ s-relative addressing for all quantities.

12.5. STORAGE ALLOCATION AND ADDRESSING OF AIGOL QUANTITIES, 55

12.3.2, p-relative addressing
In order to make programs shorter and faster, the value of STORE
{DISPLAY REFERENCE] corresponding to the currently local block is kept in
the p-register., Consequently 1t is possible +to address quantities de-
clared in that block by p-relative addressing:
op p+BLOCK RELATIVE

12.5.3. Absolute addressing
During one execution of g program the addresses of quantities in the
outermost block are fixed, and may be calculated during translstion,

12,4, SLIP NAMES,

Within the machine code the references to Parameters mast be written
as S1ip names. Each parameter may have an a=-name, a b-name, end s d-name
assoclated with it, the set (al, b1, d1) belonging to the first parsme-
ter, the set (22, b2, d2) to the second parameter, etc, The values of any
relevant names are supplied automatically by the translator. In case of
s-relative addressing of an array ldentifiér the meaning of the names is
as follows:
a~name BLOCK RELATIVE address of identifier word
b-name DISPLAY REFERENCE
d-name BLOCK RELATIVE address of dope vector
More explanations of the meaning of the Slip names are given below,

12.5. CODE SPECIFICATIONS,

The code specifications must have one line for each parameter in the
order in which these are given in the code head, The specification of a
barameter mist have the following structure:
<¢ode parameter specification> ::= <addressing> , <kind and type>|

<code perameter specification> s <kind and type>
<addressing> ::1= 1[2|3 |k
<kind and type> ::= <unsigned integer>
In addition, the code parameter specification may include comments accor-
ding to the usual Slip conventions,

The meaning of the four possible values of the addressing indication
and of the associated Slip names are as follows:

Addressing Meaning 1 b d
1 S-relative Rel.addr, Display ref. Rel.array address
2 Absolute Abs,.addr., Undefined Absolute array addr.
3 P-relative Rel.addr., Display ref. Rel. arrgy address
L Stend.proc. Track no. Track rel.addr. Undefined

@
:
!
]
'

-

56 12.5. CODE SPECIFICATICNS.

The addressing indication has two effects: (1) The translator checks that
the parameter given in +the code heading 1s indeed declared in the block
level implied by the addressing (addressing U, standard procedure, may be
thought of as corresponding to quantities declared in a block outside the
complete program). (2) The values assigned to the Slip names are selected
according to the addressing, as shown in the table.

The indlcations of kind and type given in a specification serve ex-
clusively as a check of the parameter given in the code head, A specifi-
cation may have sny number of kind and type indications, but mist bDe
written on one line only.

As described below, each kind and type of Algol quantity belongs to
a certain ‘class, with a corresponding number. The translator checks that
the number corresponding to each code parameter is given as one of the
kind~-and-type numbers of the corresponding specification.

12.6, CLASSES AND STRUCTURES OF QUANTITIES,

Tn the following is given, for each class of quantity distinguished
in code specifications: (1) The neme of the class, (2) Class numbers to
be used in code specifications, (3) A definition of the class, where it
does not coincide with one recognized in Algol 60, snd (4) the meaning of
the word sddressed through the associated a, b, and 4 Slip addresses. The
following notation 1s used:

sT

Stack reference, 1.e. the current base address of a section of the
stack.
c17

The location in the running system which holds the universal value,
uv,
e30

The location in the rumning system which holds <the universal ad=-
dress, UA.
absaddr

The absolute address of a quantity.
drumpoint

Bits 10-19: track relative address
30.39: track mmber
The track numbers run from some starting number up to 1023, The relative
address goes from -0 to 39.

Genersl formal, 12, A formal for which no specification is given,
This T5 acceptable when the procedure body is a code statement., The a, b
address points to a word describing the actual parsmeter, as follows:

12,6, CLASSES AND STRUCTURES OF QUANTITIES. 51

Further use, kind
and type number

Constants
integer pan ¢30 [UA] £ <abs addr> €0
real pan c30 [UA] t <abs addr> f 61
Boolean pan ¢30 [UA] t <abs addr> 2 62
string pen ¢30 [UA] t <abs addr> Z £ 63
Simple variables "
integer pa ¢30 [UA] t <abs addr> 60
real pe ¢30 [UA] t <abs mddr> ¢ 61
Boolean pa ¢30 [UA] t <abs addr> 2 62
string pan ¢30 [UA} t <abs sddr> Z £ 63
label pa c30 [UA] t <abs addr> Z £ 28
Subseripted variable
integer ps <sr> , <drum point> 60
real ps <sr> , <drum point> T 61
Boclean qq <sr> , <drum point> 62
Other expression, inclusive type procedure without parameters
integer psn <sr> , <drum point> 36, 60
real psn <sr> , <drum point> f 37, 61
Boolean qan <sr> , <drum point> 38, 62
string aqn <sr> , <drum point> f 63
label Qa <sr> , <drum point> f 28

Array identifier
qq <address of array word = 1>.,9
+ <dope address - address of srray word - 2,19
+ <number of subscripts + 1>.39 64, 65, 66
For further explanstion, see direct array, below.
Switeh and procedure identifier, other than expression

integer zq <sr> , <drum point> "

real zq <sr> , <drum point> f b1
Boolean zqn <sr> , <drum point> L2

no type zan <sr> , <drum point> f 39, L3
switch arn <sr> » <drum point> 2L, 32

label, 20, The a,b address points to a word as follows:
aq(£)<sr>,<drum point>
where sr points to the block in which the lsbel is local. The f mark in-
dicates that the point is a right half word,

switch, 2k, The a,b address points a word of the format given above
for a general formal of type switch,

Formal lsbel, 28, The a,b address points to a word of the format gi-
ven above for a general formal, simple verisble, or other expression,

Formal switch, 32, As switch, given above.

Type procedure without parsmeters, integer 36, real 37, Boolean 38,
As general Tormal, other expression.

Procedure without type and parameters, 39, As general formal, switch
and proceduTre ldentifler, other than expression, no type.

Procedure with parameters, integer 40, real U1, Boolean 42, no type
k3, BAS general Tormal, switch end procedure identifier, other then ex~
pression.

Direct variable, integer Ui, real 45, Boolean 46, A simple variable
or a Tormal veriable called by value, The a,b address gives the location
holding ‘the wvalue.

58 12.6. CLASSES AND STRUCTURES OF QUANTITIES.

Direct array, integer 48, real 49, Boolean 50, A non-formel array
identIfTer, or & formal array identifier which has appeared somewhere in
the Algol text followed by a subscript list., The a,b address points to
the so=called array word:

Array word:
Bits 0 to 39 depend on the translator version:
a) Arrays in buffer store:

aq ¢17.9 + 1.19 + (address of element 0,0, ... ,0).39
b) Arrays in core store:

aq (address of element 0,0, ... ,0).39
The address of element 0,0 ... , O will not necessarily 1ie within the
range of possible machine addresses, since these subscripts may not lie
within the subscript bounds,

The marks indicate the type: O = integer, b = real, a = Boolean,

The d,b address points to the dope-veetor, which consists of several
words, If the array declaration is: array A[l1:uil, 12:u2, ... , 1p:upl,
and we define ci = ui - 11 + 1, then thé dope vector consists of:
dope address - 1: constant term = (((..(11Xc2+12)%c3+13) ...)Xep+lp
in position 39
dope address: length = ciXe2Xe3 ... Xep in position 39
dope address + 1: ¢2 in position 39
dope address+p-1: ¢p in position 39

Neme varisble, integer 60, real 61, Boolean 62, A formal simple va=
riable, called by name., Depending on the corresponding actual parsmeter,
the a,b address will point to one of the words given for general for=-
mals, constants, simple variables, subscripted varisbles, or other ex-
pression.

Formal string, 63, Depending on the corresponding actual parameter,
as given for general formel, constent, simple variasble, or other expres-
sion,

Indirect array, integer 64, real 65, Boolean 66. A formal array
identITTer which has novhere appeared followed by a subscript 1ist. The
a,b address points to a word as given for general formal, array identi-
fier,

Standard procedure 68, The a, b names correspond to addressing 4,
section 12,5. They point to the entry point of the standard procedure.
The track number is relative to a base address which is not directly
avallable to the user,

12.T. CORE CODE AND STANDARD PROCEDURE gier,

The first parameter of any piece of core code must have the descripe
tion:
3, k6
indicating p-relative addressing and direct Boolean varisble. When at
block entry the core code plece is transferred to the working store, a
deseription of the entry iInto the core code is also assigned to this va=
rigble. In order to activate the core code, standard procedure gier
should be called with this variable as parameter, The parameter of proce-
dure gier should only be variables which have occurred in this special
. way, Stendard procedure gier has the following implied procedure heading:

12.7. CORE CODE AND STANDARD PROCEDURE giler. 59

integer procedure gier(u); Boolean uj

Activations of core code from within blocks or procedures called at
the level of the code itself should only be done with greet care. It must
constantly be kept in mind that eny activation of a block or procedure
will change the current values of the p-reglster and the display and
therefore will influence the proper addressing of Algol quantities.

12.,8. MACHINE CODE FORMAT.

The machine code which may be written within the Algol progrem is a
proper subset of Slip, i,e. it conforms to Slip conventions, but does not
provide all of the facilities of Slip, In the following 1list we give the
constructions which are not admitted.

Slip facilities not admitted in machine code:

Construction Explangtion

No inner bhlocks

Only limited redefinition of i, see below
No dummy information

No call of HELP

No change of medium

Unnecessary since r is not admitted

No automatic relative addressing

No direct exit from the code

No label table administration

No trensition to binary code

abel No special marking of right half ingtructions
No exponent

No integer groups, no / between instructions
No conditions

(a3
5
A5 HAAINIRISIHIBIH BRI ol o

m in address No sutomatic relative addressing
k No references to track numbers
terminator Numbers mmst be terminated by one a, b, ¢, or <empty>
nunber-line Only one number per line
definition line Only one d@finition per line
i The serial address can only be increased

Violation of these rules will cause sn alarm during translation,

With respect to labels the machine code must be written such that it
would be correct Slip 1f it had been preceded by the following two block
heads:

b e127

<definition of c-names, see below>

b a127, b127, 4127, e127
There is, however, no check that names beyond these are not used.

Certain of the c-names are defined when the machine code 1is Pro=-
cessed and glve access to the Running System, i.e. the run-time Algol
program administration. For a full understanding of the possible uses of
these names, a knowledge of the details of this administration is neces-
sary. Here we give only the names and a corresponding key word.,

|

60

¢0
¢i
c2
c3
ch
cb
e7
c8
c9

12,8, MACHINE CODE FCORMAT.

display O

next track

go to track

next param track

call std. proc

call rel track
Prepare block or call
expresslon as formal
exit block

e13 go to computed
¢17 UV = universal wvalue

¢18 end UV,R,RF expression

¢19 end addr expression
c20 reserve array

c2lh assign to formal subsec.
c26

go to point In R

c27 error

ly.

¢30 UA = yniversal address
¢33 address, working location
¢35 last used

c3T next in

¢339 next out

ch2 qq 1.39

et gq -1 © 256, 0.5 floating
ch9 base track table

¢53 qq 0 t 256 = 1.0 floating
c54 char, section 10.7

c55 vy last select t mask, section 8.1
¢57 qg appetite t -1

c58 qg 10,39

cb1 tracks transferred

cb3 get place

cblt catalog

cb65 current place

The value of a c-name defined in one piece of code survives to all
the following pieces of code within the same program.

Return to the execution of Algol statements must be done by means of
the following, or an equivalent, instruction:

hv value of s at entry + 1,

When the return is made, the register p must have the same contents as at
entry, while all other machine registers may have been changed arbitrari-
In case of core code, the value of the execution, i.e. the value of
the call of giler, must have been placed in the R-register,

?—\

13, COUPLING TO ENVIRCINMENT, 61

13. COUPLING TO ENVIRONMENT,
15.1. GIER ALGOL SYSTEMS.

In order to be able to accomodate the translator and running system
in any of a number of machine configurations, the Gier Algol 4 system is
written as several programs which may bYe combined snd used in seversl
wayse To be direbtly useful it 1s necessary that these are handled by a
certain, although modest, smount of additional programming. It is antici-
pated that different installations will have different needs, and will

* develop their own Gier Algol Bystems accordingly, The detailled user con-
ventions of these systems will have to be obtained from separate documen-
tation, The present section only describes the basic conventions, to be
used in developing such user oriented systems, Any system will have to

" distinguish between translation and execution of Algol programs. These
two problems are discussed separately below,

The descriptions refer to the following kinds of store:

Drum, which physically may be a disk,

Buffer medium, i.e, a storage accessed via the buffer, Physically it may
be a disk, a carroussel, or a megnetic tape,

Paper tape

Type writer input

15.2. TRANSLATION.,

The translation consists of a combination of several ecollections of
data and storage areas, as described in the following sections,

15.2414 Algol program text.

The Algol program text must be supplied from paper tape, from type- it
vriter input, from the drum, from & buffer medium, or from & combinstion !
of these, In the case of raper tape or typewriter the characters are sup-
plied directly one by one, In the case of the drum or a buffer medium the 1
charscters must be packed into the words in the manner described in sec- ‘
tlons 7.7.2 and 9.b.b. The text mist start in the first word of s block ,'
and mst continue in the following words of that block and on following
blocks in an obvious manner, .

The starting medium must be glven as cne of the translator initiali-
zatlion parameters of section 13.2,5. The change from one medivm to ano-
ther requires the cetalogue system Cat to be opresent in the machine snd
the relevant media to be present in the catalogue. The selection of ano-
ther medium is made whenever the text currently being translated contains
e copy call:

<copy call> :i= copy <copy source>< |

with ’
<copy source> ::= <any sequence of characters not containing s ;

< character, i,e, character value 17> J

62 13.2. TRANSLATION.

A copy call may be written between any two symbols of the Algol program,
It will cause the continued input to be teken from the medium or area de-
scribed in the catalogue item having the name derived from copy source by
removing all BLANKs,

The names of the tape reader and typewriter are:

Catslogue name
Tape reader r
Typewriter t

If & plece of program text i1s +to be used as sn insertion into ano=-

ther text by copying during translation it must terminate with the symbol
finis

This will cause & return to the text from which the plece was called by
copy, at the character immediately following the copy call.

A text called by a copy call may call further copying, up to a limit
of six levels, If more levels are called, the translator will call an
alarm,

15.2.2, Gler Algol 4 transiator.

During translation the translator including a standard procedure 1li-
brary mst be avallable on the translator mediwm which may be the drum, s
buffer medium, or paper tape, Including the normel library of about 1000
word the trenslator w1l occupy about 6800 words,

A translator stored on paper tepe will be taken into the machine in
short sections which will be done with successively, This is known as the
transient mode of operation.

134243, Working area,
An area of working storage must be aveilable on the drum, This srea
will also recelve the translated program as described 1n section 13.2.7.

13.2.4, Translation-finished action.

Machine instructions defining the action to be tsken when the trans-
lation is finished must be stored on a track of the drum, starting at a
left Instruction at a given relative address of the track, For the situa-
tion at entry to this action, see section 13.2.7.

134245, Translation parameters.

When the translator is called, the core store must contain a set of
pearameters defining the storage of the sbove data collections and certain
varlents of the +translation process, These parameters must be stored in
consecutive machine locations, starting in address 3+e4, where ed is a
velue associated with the translator and usually set to 15, The location
formet and meaning of the parameters sre given below, In this desecription
the concept of track number is generally defined as

960 X group number + track number within group.

In configurations without & disk fiie the group number is O,
3eli: qq 1line interval.39

As an aid during detection of programming errors, the translstor msy
be Instructed to produce an output of every line interval-th 1line of the
progrem text,

13.2., TRANSLATION, 63

This parameter is only relevant when the boolean lineprint wanted is
set to true; see parameter 10elt,

heli: qq number of tracks in working area.39; see section 13.2.3.
5eli: qq first track of working area,39; see seection 13.2.3.

6eli: qq catalogue look-up track.9 + init medium track.19;

The catalog lockeup program is needed whenever a <copy call> occurs in
the Algol program text. The program for init medium is needed whenever a
buffer medium 1s used as input medium,

When present these programs must be stored in track group 0, The absence
of one or both programs is indicated by the corresponding tracknumber be=-

ing zeroc,

Tel: qq initial input medium;
The contents of Telt mist be given as follows:
Typewriter or paper tape reader: qq -1.2 + by-value suitable for
medium.19
Ares on drum or buffer medium: The format is as the first word of a
text area (see description of the Cat system) with mmber of
blocks replaced by nmumber of characters to be skipped, A ainmple
area on drum may thus be given by:

aq <no of skipped characters>.23 + <first track>.’9

Provided no direct references to the catalogue are made, the trans-
lator may be called even when there is no catalogue present,

8elt: qq translation finished track.39 + relative address.9
See section 13.2.h4,

Selt: qq normal out.b + error out.16 + type ocut.26 +

type 1n.29 + alarm out.36 + secondary reader.39
This parameter must supply a set of values of the by-register (medivm se-
lection) for control of input and output media during translation. The
uses of each of these media are given below,

Mediuwm Uses of medium
normal out Prelude, 1i.,e, copying of the program text, up to the
first begin

line output, see 3elt above
Pass information, see section 13.3
Pass output, see section 13.k4,

error cut Messages sbout program errors which do not 1media‘bely
terminate the translation

type out Messages to the operator, requiring action immediately

type in Operator action

alarm out Messages about program conditions vhich terminate the

translation immedlately, and message output, see
section 7T.1.7
secondary reader Transient input of tremslator

64 15.2. TRANSLATI(N,

10el: qq skip input between PUNCH OFF and PUNCH ON (see section T.1.6).2+
pass information wanted (see section 13.3) .k +
line print wanted.s +
disk mode,b +
execution time check of subscript bounds wanted.7
Each of the five Boolean parameters to be placed in positioms 2, k&, 5, 6,
and 7, mast be represented as 1 for Yes and 0 for No.

Diskmode refers to & translator mode which may reduce the mmber of
head movements during translation of large programs on a drum disk. When
diskmode 138 true the requirements to the size of the working area will be
greater then for discmode false.,

11el = 14eli Parameters which describe the translator medium ss follows.
Drum:
11el: qgq first track.39
12et - 1hels: irrelevent.
Paper tape:
Tlel = 1hek: irrelevant
Buffer medium: 4 words describing how to treansport a block from the medi-
um to the buffer,
1lel: Increment to current block parsmeter to get next block.
12e4: Current block parameter; 1i.e. the parameter used in R during
the most recent transport of a block.
13eli: qq block length in words,39
14elis qq 11 check, unit;
The 1l-sddresses used for statusword transport and block
transport respectively.

13.2.6. Call of translator.

With the preparations described in the preceding sections completed,
the translator is celled to action by transferring its first n words from
the translator medium to locations 184el and following of the ecore store
and transferring the control to its first instruction.

The wvslue of n depends on the translator medium and is given in
bite O to 9 of the first word of the +tremslator; it is about LOO-L4LO
words,

The binary sum of the n words, ineluding marks added as mark A.8 +
merk B.9 1s zero,

If the translator medium is paper tape <the translator comes in two
parts (section 14.2). The first of these must be read before, the second
after the Algol program text.

During 1its work, the translator will maeke free use of the core
store, of the working area, and if a buffer medium is involved, of the
buffer store,

The translation is done in 9 separate pesses. In each pass the text
produced by the previous pass is taken from the working store and a
transformed version of it sent back to the working store., In addition
certain other actions are taken at various stages. Depending on the Algol
program text the translator will issue messages, as described in appendix
3« Briefly, the translation proceeds as follows.

15.2. TRANSLATI(N, 65

Pass 1. The Algol program is converted to a string of symbols,
roughly corresponding to +the basic symbols of Algol 60, and transferred
to the working area, '

Pass 2, Identifiers are replaced by internal symbols. A teble of
identifiers is built up in the core store, while the program is trans-
fexrred back to the working aresa,

Pass 3. Phase 3.1, With the identifier table still in the core store
the standsrd identifiers are taken from the first part of the library. A
1list of the Internal symbols for the standard identifiers is added at the
end of the output from pess 2,

Phese 3.2, The program is checked for short span syntactic errors
and converted to a form more sulted for the subsequent processing.

Pass 4, In a backward pass the declarations of identifiers and cer-
tain details of their use in the program are collected im a list at the
begin of each block,

Pass 5, Phase 5.1. The description of the kind, type, and addressing
of each 1dentifier is distributed to each place in the program where the
identifier is used,

Phase 5.2, The descriptions of those standard identifiers which are
actually used in the program are taken from the second section of the li-
brary and collected in a table in the core store, for use by pass 6,

Pass 6. The expressions and statements are checked for the consi-
stent wuse of operands and operators., At the same time expressions are
converted to reverse Polish form.

Pass 9., Machine code in the source text 1s converted +to intemsl
form, If the program does not include machine code this pass 1s omitted,

Pass 7, Expressions are converted to final machine instruction form,

Pass 8, Phase 8.1, The program text is rearranged in the working
store,

Phese 8.2, The standard procedures used in the program are taken
from the library.

Phase 8.3, The progream is arranged in segments on the tracks and
provided with Internal references.

Phase 8,4, The running system segments are added to the program,

The pass numbers are used to identifly the source of messages output
during translation. In fact, preceding the first message of any kind is-
sued from any pass the pass number followed by point will bde output.

In addition +to the parameters given in section 13,2.5 the current
values of the manually operated KA and KB registers of the machine in-
fluence the translation, as follows,

KA: stop before each translation paess or phase,

KB: produce pass output, as described in section 13.kh.

The values of KA and KB may be changed arbitrarily during translation,

13+2.7. Translation completed,

At the completion of its task the translator will transfer the
translation-finished track to location 224el and transfer the control to
the location in it Indicated as a reletive address in the translation pa-
rameter Bel, If the trenslator has detected illegal conditions or program

66 13.2. TRANSLATICN.,

errors, the contents of R will be 0, In this case the translation 1s not
continued beyond pass 9, Otherwise R will contain the locatlon of the re-
sulting translated program in the form:

qq number of tracks.23 + first track.39
These tracks will lie within the working sarea specified for the transla-
tion, i.e. they will always consist of tracks of 40 words.

13.5. PASS INFORMATI(N,

Depending on the setting of the +tramslation paremeter in 10el, an
output of information about +the program being translated is produced on
the normal output medium specified in Qelt, The output which may thus be
selected consists of a few integers for each pass, printed in one line
when the pass is completed. The first integer, A, in all passes gives the
mmber of +tracks produced as output by the pass. The remaining integers
have the following meaning (if a paremeter is O nothing 1s printed):
Pass 1. The figures refer to the storage of long strings in the working

area:
B. 1024 - the number of tracks or part of tracks used,
C. The number of words used on the last string track,
Pass 2, B. The number of different identifiers in the program,
C. The number of words used for storing long identifiers,
Pass 5, Bs The number of blocks in the program,
Pass 4, B, The maximum depth in the stack used for collecting the decla~-
rations,
Ce The maxdmum level of nesting of blocks.
Pass 5, B, The number of occurrences of identifiers in statements and ex-
pressions integer divided by 10,
C. The number of redeclarations of identifiers.
Pass 6, B, The maximum number words used in the operator stack, or 5 if
that number is less than 5,
C, The maximm number of words used in the operand stack,
Pass 9, B, The meximum code size.
Pass 7. B. The meximm number of words used in the operand stack,
Pass 8, A, The mumber of tracks representing the active program.
B, The total number of tracks, including A, running system, stan-
dard procedures and strings.
Ce The group mmber of the first track of the final program
D. The track = - - - - - - - -

13.4. PASS QUTPUT.

While KB is on the translator will produce the so-called pass output
on the normal output medium specified in the parameter in Jelt (see sec-
tion 13,2,5), The pass output is the output produced internally by each
pass, representing a modified form of the Algel program. The print out
may be used as the last resort in pinning down troubles in using the come
piler, vwhether these are due to programming errors or faulty machine ope-
ration, The interpretation of the pass output requires some insight in
the internal working of the translator amd will be given in separate do-
cumentation,

13.5. EXECUTICN., 67

13.5. EXECUTION,

The text of the translated program, Jlocated at the end of trensla-
tion as described in section 13.2.7, 18 self contained and may freely be
moved about in the machine as long as it 1s kept a2 one complete whole,
For execution the text must be available on & series of consecutive 40-
word +tracks of a drum or a disk file replacing the drum, The execution
requires the following preparations:

13.5.14 Execution message medium,
The medium to be used for output of messeges from the rumming system
mst be placed in the by-register,

130502. Execution end track.

A track of instructions defining the action to be taken when the
execution 1s completed must be present on a UO-word track., The situation
existing when this action is called is given In section 13,.5.5,

13+5.3. Execution parameters,

The following parameters must be set in the core store, locations
259el to 26kelks,
259ek: qq Pirst buffer location.39 ;
Together with the next parameter, +this defines +the fa.rt. of the buffer
store, 1if any, vhich may be used for array elements (see section 11.2),
260elt qq first buffer location beyond the aveilable part.39;
If the translator version used during <trenslation places arrays in the
core store this parsmeter must be O, Otherwise it must be unity larger
then the last buffer address available for the program,
261el: qq tracks occupied in top of the free area.39;
262el: qq catalogue look-up track;
The catalogue look-up program mst be stored in track group 0, 1f it 1s
present, Otherwise this parsmeter must be O,
263eli: gq execution end track (section 13,5,2),39;
26keli: qq first track of translated program,39;

If the translated program is Placed in the top end of the free area
this parsmeter should be 4the number of tracks in the program. Otherwise
1t should be 0,

13.5.4, Call of execution.

When the above preparations are made, +the execution is called b
transferring the first track of the translated program to location 26
and following and transferring the econtrol to its first left instruetion,
The transleted program will use the core store locations 0, 1023, and
from €38 to, but not including, e3T, vwhere €38 and e37 are associated
with a translator, see section 14, What other storage is used depends on
the action of the particular Algol program,

68 13.6., OPERATOR CONTRCL.

13.6, OPERATOR CONTROL,

As described sbove the system is ready to be incorporated into a va-
riety of surrounding driver progrems. These will define the menner in
which the various translstion parsmeters are supplied from the user and
the form of the operator control. Since it 1s expected that different in-
stallations will have different needs, s uniformity in these matters will
not be attempted here. As a guide to the development of such driver pro-
grams one particular, simple one will be described in = separate publice~
tion of the Gier System Library.

;’—_—'—:h

14, PAPER TAPE FORM QF SYSTEM, 69

14, PAPER TAPE FORM OF SYSTEM,

14,1, TAPE IDENTIFICATION AND CHECK.,

In order to provide a safe way of making and identifying corrections
. to the system as they sre required after the initial distribution, each
tape of the system includes a version number, A particular version number
18 only used for one of the tapes of the aset, Consequently a particular
set of tapes 1s fully identified by the greatest version mumber of
. tape of the set, During reading of the tapes Dby mesns of Slip 1t ia
checked that the greatest version mmber 1s consistent with the version
numbers of all other tapes of the set,
Each tape of the System contains at the very begimning an identify.
ing text of & form shown in the following example:
(4,67 '.[']7, L3 Gier Algol &
71

Here L3 identifies the part of the system included, while T in the aecond
line is the version number, It is recommended that all coptes of tapes
are marked clearly with precisely the text glven within brackets, as for

example:

4.4.¢7 77, L3 Gier Ayt

Local verients of the system should be 1dentified by additions to the
version number consisting of / and any desired additional characters,
like 7/ Ku23,

T0 14,2, TRANSLATOR AND LIBRARY TAPES,

14,2, TRANSLATOR AND LIBRARY TAPES.

The part numbers end contents of the tapes belonging to the system
are as follows:

Part Contents
1,11 General pass administration, rumning system

T2 Pass 1, 2, 3.1,

T3 - 3.2, L4, 5,1, 5.2

Th - 6,9

TS - T, 8.1, 8.2, 8,3, 8.4

76,12 Library processor, part 1

T7,L3 Standard procedure library
T6,Lk Library processor, part 2

T9,15,M1 Merger

P Process translator

The tapes are used either =as a complete set or in certain selec-
tions, The set of tapes to be selected for any particular use 1s designa-
ted by one of the letters T, L, or M, and must be read into the machine
in the order given by the following figure, The tepe P1 may be read in
wvhenever a finished translator 1is present on the drum. It contains va=-
rious routines for output of the tramslator or parts of it.

The variations in the way the +tapes are used arise because of the
necessity that the information about the library of standard procedures,
which initlally is collected in the standard procedure library tepe, is
divided Into several parts which must subsequently be merged into the
text of the translator.

The result of the reading of a set of tapes is that certain parts
of the system are placed in a known section of the drum, the subsequent
use of i1t being left to the program on tepe Pl or to the individusl
user. In particular the paper tape version of the translator (the tran-
sient translator) may be produced by tape Pil.

The parameters defining the version of the system produced in a pare
ticular use of the tapes must be given st certain stages of the Slip-rea-
ding process, as indicated in the following amnotated perts of the Slip
texts of the tapes,

14.2, TRANSLATOR AND LIBRARY TAPES, T

[7.6.67. T1] , L1 Gler Algol &
1

b ¢100, €100 ; Outermost block

.
>

[Definition of loading parameters
Possible values , meaning])

e14=90 3 Depending on available drum, first track for reading by slip.

ei=15s 10 < et <17 , first core used by tranala'bor.
e20=1022 ; 1015ek < e20 < 1022, last = -
e38=15 3 10 € 38 2 200 , first core used by translu.ted program,
e37=21022 ; 800 < e37 < 1022 last = - -
3 = = Note below: e37 = 1e57.
e27®0 3 O, arrays in core, e18 and elO must also be 0.
3 1, - - buffer,
elth=0 ;3 0, translator medium is drum,
s 1, - - a buffer medium,
e18«0 ;s O, backing store is drum,
3 Loo, - - = disc with block length Loo.
H 6"'-0, - 6“0.
el0=0 3 0, no tape sta.tions , record handl:mg procednres not included.
;n<15, n = - are -
] 3 Now any or all of the above perame‘bers may be redefined,

9, L5, M1, first part of tape

b 1=15, a30, b20, ¢20, €20 ;

delh =i 3

T if el % 15 then set eb

T if eny of the following three parameters is not set, read in

T the necessary parameters

Tel: qg £irst track of system,’ ; set by tape TS

lels qq first track of library.39 ; set by tape Lk

2elss qq first track of working area.39 ; set by tape Lk to be the first
f:'eue track following the library. 27 vorking tracks are needed]

disel+3

first core location used during trenslation

4

The ‘tapes may be used in four different ways, as follows,

A, Separate library.
Reading the tapes L1 to Lk will place the library on the drum, in e

form which may be used in a later merging with a translator. At the end
of the process the tracks occupled are given in the core store locations
le4 and 2el4, as described above in the note on the first part of T9,LS5,
M,

B, Total system from tapes.

Reading the complete set of tapes T1 to T9 will read a translator
end a library and merge them to form a final system. The final system
will be stored on the drum, starting in the first word of the track de-
fined be elld, The storage of the parts of the system is described in a

72 14,2, TRANSLATOR AND LIBRARY TAPES,

table within the system itself, accessible through the first words of
the system, These first words, considered in what follows to be Placed
in relative address 0 of the system, has the contents:
0: Qq n , XXxx
1: qq relative address of segment table.9 + el,19 +
627020 + eh‘h.a“ f,

where n has already be described in section 15.2.6 and the segment table
Pointed to has one word for each separate segment of the system. These
words have one of four formsts, as follows:
Format O3 used only to describe the General Pass Administration, GP:

qq check.9 + words.19 + version mmber.29
Format 1, describing a new pass:

qq first core,9 + words.19 + pass no,24 + pass bits.29 + entry.
Formet 2, describing the' next part of the current pass:

qq first core.9 + words.19 + 1,20 + entry.’ f
Format 3, describing a library segment:

qq vords,.19 £,
The parsmeters entering into these formats are: check: & check used ine-
ternally; words: the mmber of words in the segment; first core: the
first address in the core store in which the sSegment must be placed when
useds 8 no: the pass number; pass bits: (if change direction then 1
else 0).29 + (1f backward pass then 1 else 0).25; entry: the address in
The core store of first entry, The words of the segment table are ar-
ranged as follows:

Segment table
Relztive address within table Segment described Formst

0 General. pass adm, 0
1 Pass 1 2
2 Pass 2 1
3 Pass 501 1
b Std. identifiers 3
5 Pass 3,2 2
6 Pass 4 1
T Pasa 5.1 1
8 Pass 5.2 2
9 Library descriptions 2
10 Pass 6 1
11 Pass 9 1
12 Pass 7 1
13 Pass 8,1 1
14 Library programs 3
15 Pass 8.2 2
16 Pass 8,3 2

If the tape P1 is used to produce a transient translstor the complete sy-
stem 1s output on peper tape in two parts, the first containing the Gene-
ral Pass Administration end Pass 1, the second the rest of the segment%
Each segment is punched as a mmber of spaces followed by the symbol a
followed by 6 characters for each word in the segment thus:

qq char 6,6 + char 5,13 + ... + char 1.41

~

14,2, TRANSLATOR AND LIBRARY TAPES. 75

Between the output of the two parts the program stops, waiting for the
operstor to include suitable amounts of blank tape between the parts. It
i3 restarted by typing BLANK,

C. Alter 1ibrary from tapes.

A complete system, stored on the drum in precisely the form 1t was
originally formed, but placed in any gonvenient place on the drum, may be
combined with a new library, in the form of a set of tapes L1, «.. , 15.
The result of this process must slways sgree with the earlier version of
the system with respect to the various parameters,

D. Alter 1librery from drum.

This process is similar to C, except that the 1ibrary mast be provi-
ded in the form of a set of words stored on the drum, as produced by an
application of process A, The reading omly includes iepe M1, Merger,

A survey of the uses of the tapes in the four cases end of the rele-
vant possibilities of redefining the parameters is given in the following
table, where letter X indicates that the possibility is relevant to the
tape use in question.

A B
Place complete system on the drum
Place separate library on the drum
Cell Slip
Start reading T1,L1, possibly redefine storage
snd mode parameters X
Continue Slip resding of tapes T2 to T5
Continue Slip reading of tape 76, 12, possibly
redefine first track of library
Continue S1ip reading of tapes TT,L3 and T6,Lh
Read program for further administration, written
by user X
Read T9,L5,M1, possibly redefine ek
Set eontents of el X
Set contents of 1e4 and 2el

g
My MM P

ta R o]

LT L ¢
MK U

>

”~
]
Rl

14,3, MODIFIED LIBRARY.

The paper tape L3> contains all information sbout the library of
standard procedures and variables, Standard procedures may be added to
the system or removed from it by modifying this tape. Since this will be
of interest only to a few specialists, the description of the convention
is given in a separate publication of the Gler System Library.

T~

Th Appendix 1, EXECUTION TIMES,

Appendix 1, EXECUTION TIMES,

Owing to the automatic administration of program segments (see sec-
tion 11.3.) the execution time of an algorithmic constituent depends on
the program lcop structure and the number of variables declared at the
time of execution. The times given below include an average segment admi-
nistration time, such as it may be expected in loops which may be accomo=-
dated completely in the core store, Substantially longer execution times
will result under the following circumstences: a) Frequent transfers of
program tracks from drum sre necessary. b) A major part of the execution
time 1is spent in a loop with a cycle time of the order of 2 miliiseconds
or less and this loop happens to have been placed across a program seg-
ment transition by the compiler., The first of these calamities may only
be remedied by using less core store for variables. It is unlikely to
happen 1f arrays are stored in the buffer store., The second calamity may
be cured by using the loop storage control described in section 11.k.

In any case the times given should be used only as a rough guide,
Also, the difference between the +times given here and those given for
Gier Algol III do not always indicate a significent change of the system,

Except for some cases of expressions involving constants, each addi-
tion to the text of the program will add to the execution time, The exe-
cution time of an expressions may be found as the sum of the time taken
to refer to each operand snd the time of the operators, All times are ex-
pressed in milliseconds,

Operand reference times
Constant (see also below) 0.03

Simple variable, or formal called by value; the varisble is
declared

in outermost block of program 0.00
in loeal block 0.00
in intermediate block 0.04
Subscripted variable Arrays In core store in buffer store
Subscript check Yes No Yes No

1 subscript, Al] 0.7 0.k 0.6 0.3

2 subseripts, B[,] 1a1 0.8 1.0 0.7

3 subseripts, C[, ,] 1.5 1.2 1ok 1.1

Forma] parameter called by neme, specified integer, real or Boolean:
the corresponding actual parameter ia:

constant 0.1

simple, the formal is used in expression 0.1

- - - - = as left part 063

other expression 362
Operators

To teke care of conversions between integer and real types in opera~-
tions with mixed types the operators round and float are generated inter-
nally as needed (cf, section 7.3). The examples are correct only if the
operands are such which do not require execution time in themselves,

Appendix 1. EXECUTION TIMES.

Monadic operators, i.e. operators having one operand

Negative, Integer -1
Negative, real -T
round round r
TIcat generated internally

®bs, integer abs 1
abs, real abs r
entier entier r

Infeger, real, Boolean, string opereting on real
same, operating on Intveger, Boolean, or siring
Not -, b

Dyedic operators, i.e. operators having two opereands

Plus or minus, integer i-1

- - - , real re-r
Multiplication, integer ixi

- s Teal rxr

Division r/r
Integer divide i:1
Modulo 1 mod 1
Power, integer exponent, square r

- - - ’ cube 1' 3

- - - ,exp.sirTAl

- - - , = 10TAtl

- - - , =100TrAti

- , real exponent apaArY
Relational operators a=1r
And. pAq
Or pVvVa
Imply P=q
Equivalent P=a
Shift, variable amount b shift 1

- , copstant - b sEIIT 22
Assigrnment statement ai=dH
Go to statement

Simple, within current block go to Aj Al

To switch designator g0 to sii]
Call of declared procedure having an empty procedure

body (procedure statement or function designator)

No parameters P;

1 parameter Q(a) 5

2 parsmeters R(a,b)

3 parsmeters s(a,b,e)
If clause if b then

Case clsnse: The time of one selection 1S greater
when there are more complicated elements
For clmmse, each loop
Block with simple variables begin real a3 end
- - arrey declar. begin srray a[1:10]); end

©coo0o0oc0O0
Frhuhiooli=
AR

L]
Qv

*

L]
NFODDOO =\

OOOOO0.00\-Q\RUOO

W=00 O OOV
L N) ¢ & & o 0
nN=l1& 0 OOV O

]
[
.
\S |

76 Appendix 1, EXECUTION TIMES,

Translator evaluation of expressions involving constants

Operations involving only constant operands are performed during
transletion and thus do not contribute to the execution time in the fol-
lowing cases:

+ snd - as monadic operators, or when giving a reel result

X when giving & real result

/ s round, sutomatic conversiocms from integer to real type and viee
verss, integer, real, Boolean, and string, in all cases,

e t—

The result of an operation performed during translation is again
treated as a constant and may cause further operations to be performed
during tramslation. Examples:

Al-2 + 6/2]} 1s reduced to A[1] during trenslation

real := integer 30 1 is reduced to real := 1024,0

P = 3.4 TT5.5 Is not reduced becsuse the first operation contains p,
=34 = 5,6 + p 18 reduced to -9.0 + P

2 X 3,141592 1s reduced to 6.283184

4 + 8 1is not reduced because the result is of integer type.

Standard procedures of Algol 60

abs(x) 0.17 In(x) bk

arctan(x) 5.3 81ian(x) 1.7

cos(x) b,s sin(x) 4,8

entiex(x) 0.kt sqrt(x) k9

exp(x) b b

Standard procedures of Gier Algol

checksum 1.9 select 0.4 ;
gler 0.1 system 25 ?
kbon 0. 1 1 L

The following times refer to input from the RC 2000 paper tape reader,
which eompletes the input of a character in 0.5 milliseconds, If a slower
device is used the times may have t0 be increased., The times are ex-
pressed in terms of the number of characters read in, N. This must in-
clude every single character taken from the input medium, counting e.g.
BLANK, UPPER CASE, and LOWER CASE.

N=) N=3 N=10 N=100

iyn, assuming no waiting for reader 0.22
read general

integer array 10.6 + 0,72 X K 13 18 83

resl array 10.6 + 0,83 X N 13 19 ok
read integer 2.7 + 0.63 XN 5 9
read Teal b9 + 1,43 x N 9 19
read string 11 + 0,95 XN L 20 106

Appendix 1. EXECUTION TIMES, 7

The following times refer to output to the line printer, which in this
context accepts the characters as fast as they are produced, If a slover
device is used the times may have to be increased. The mmber of charsc-
ters produced as output is denoted N,

Nw N=10
write 6 +2,6XN 3
writechar, assuming no waiting for device, | 0.5
vritecr, - - - - - 0.22
wvriteinteger 34 1,6 XN 19
writetext 6+ 1, TXN 23

The following times refer to a machine with backing storage on drum. The
catalogue is 100 items large

csncel k0o to TOO
reserve 300
where 200

get, put 6 + 21 X number of tracks transferred

78 Appendix 2, EXECUTION TERMINATICN,

Appendix 2, EXECUTION TERMINATION,

Any termination of a program execution which does not pass through
the final end of the program will give a message on the output medium gl~
ven as described in section 13.5.1, This message 1s typed in red and has
the form:
<text> <line 1> - <line 2>, <relative track number>
The text is one of those explained below, Line 1 and line 2 are line num-
bers referring to the original Algol program text, the initial begin be-
ing in line 0 and relative track mumber gives the plece in the transiated
program vwhich give rise to the termination, The relstive track mumber is
1023 for the last track of the program, The possible texts and the situa~
tion cansing the execution termination are as follows:

array
In array declaration the number of elements 1s negative or too large

for capacity. In machines without buffer store the capacity for ar-
rays in the buffer is zero.

case
The wvalue of the expression of g case clause is not positive or
greater than the number of expressions or statements governed by the
clause,

error 11
In calling put or get the array has less than 4O elements or reaches
outside of the baCking store ma, cfo 11.10.“’0

error 12
Standard procedure il or us is called with incompatible parameters,

error 13
In calling system the array given as parsmeter does not have 40 ele-
ments,

exp
Stendard procedure exp 1s called with an argument greater then 35k,
causing the range of reals to be exceeded,

formal
Assignment to formal name corresponding to an expression which is
not just a variable is attempted.

index
A reference to subscripted varisble having subscripts outside the
bounds of the corresponding decleration is made, The test for this
situstion 1s made only on the final address, not on the individual
subseripts. Therefore the alarm will not alweys be made when the
bounds are transgressed, Also the test may be suppressed when the
transiator is called, see section 13,2.6 parameter 10ek,

Stendard procedure 1n is called with a negative armument, Argument O
does not call the alarm, ef. section 7.5.2.

Appendix 2, EXECUTION TERMINATION. 19

malt
In mitiplication of two integers the range is exceeded, c¢f, section
Te3e

spill
In arithmetic operation or during input the range of mmbers is ex-
ceeded, cf, sections 7.5 and 10.,11.3,

sqrt
Standard procedure sqrt is called with a negative argument,

stack
The capacity of the core store i1s exceeded by declarations, cf. sec-
tion 11.2.

80 Appendix 3, MESSAGES FROM TRANSLATCR.

Appendix 3, MESSAGES FROM TRANSLATCR.

Most of the messages lssued by +the translator report logical flaws
in the text supplied by the programmer, and great pains have been teken
in the design of the system to mske the error detection as complete as
possivle. There are, however, a few classes of such errors vhich are
known to pass undetected, These are: (1) Use of local quantities in erray
bound expressions, cf, section 5.2.4.2, Such errors will lead to a use of
bounds of unknown megnitude, Often this will be detected immedlately at
block entry by the array exceeding the capacity of the machine, In msny
other cases the error will be detected as s bounds-exceeded error when
the elements are used. (2) In s procedure call of a formal procedure the
actual parameters do not match the corresponding formals with respect to
kind and type or the numbers are different, This may cause completely un-
predictable reasctions at execution time, (3) The test of the subscripts
against the array bounds is made on the final address only, if at ail
(cf, appendix 2, index), (i) Overflow in arithmetic operations on inte-
gers is not normally detected, cf. section T.3. (5) The second operand of
shift goes outside the range -512 to 511, Eech of the last three classes
of errors will ceuse wrong results, but the control of the program will
remain intact. (6) Machine code written by the programmer may csuse any
unpredicteable reaction.

Unless otherwise noted below all messages are sassoclated with a
translation pass and a line, The pass number is output prior to the first
message from each pess as explained in section 13.2.7. Each mesasage is
typed in red and has the form:

line <]line number> <message text>
where the line number refers to the Algol program text, the initial begin
being in line O, The possible message texts and their meaning in each
pass are given below, An underlining is not part ,the text but indicates
that the translation is terminated immediately. ‘

BEFORE PASS 1 %

ready
First part of a translator on paper tape has been read and 1s ready
for the Algol text., Type a BLANK to start the translation.
No pass or line number,

ALL PASSES

program too big
Mhe working aree provided for the translation according to 13.2,4

and 13.2,6 is insufficient for the Algol program text.
pess sum
The built in checksum for the next pass or phase does not agree,
pass medium
sport error during loading of the next pass on phase,

Appendix 3. MESSAGES FROM TRANSLATCR, 81

PASS 1

character
The Algol text contains an illegal character, see section T.1.3.2.
off
Cheracter PUNCH OFF leads to skip of text, section T.1.6.
on
Chsracter PUNCH ON ends skip of text, section 7.1.6.
comment
The delimiter corment or message is not preceded by begin or ;
)<improper> Il -
The construction)<letter string> 1s not followed by :(
code length
T The IImits on code length exceeded, cf, section 12,1,
£ in string
The symbol ¢ is met inside a string, This is not an error, but is
likely to be unintended,
compound
The input hes a string of which some of the first, bdbut not the fol-
lowing, characters represent some of the first characters of a com-
pound symbol, cf., section T.1.2.
type in
A copy call requests the continued Algol text from the typewriter,
cf, section 13.2.1.
pause
END CODE 1s found in the Algol text, cf. section T.1.5.
copy
The lookup program is missing or the init medium program is missing
or the copy source does not point to an item in the catalog contai-
ning a string of characters, cf, section 13.2.7.

copy medium
port error during a copy from a buffer medium
copy overlap
next track of the Algol text on the drum 1s destroyed by the
tranalator,
sum
Faiiure of the input check sum, cf. section T.1.k,
string

The compound symbol 4 is followed neither by < nor by a layout, cf.
section 9.5.

stack

T Too meny copy levels are called, ef., section 13.2.1.

passes
Second part of the translator on paper tape must be readied for in-
put. Type a BLANK to staxrt it.
No pass or line number,

82 Appendix 3, MESSAGES FROM TRANSLATCR.

PASS 2

identifier overflow
The program uses too many or long identifiers, Remedy: use the block
structure to reduce the number of different identifiers, The maximnm
capacity 1s S11 short identifiers.

patiern
A bit pattern has a wrong structure or the word or part pattern ca~
paclity is exceeded, cf. section T.T.1.

PASS 3

Zero
The selector of the floating point zero treatment is Iin the wrong
position. Reset selector and type BLANK.

std proe format
The information found in the 1librery does not conform to the proper
1ibrary format

double std proc
The 1ibrary contains the same identifier twice.

-delimi ter
Two operands, 1,e, identifiers, numbers, logical values, strings, or
compound expressions within parentheses, follow each other,

operand
An operand appears in a wrong context or is missing.

deliniter
The delimiter structure is impossible,

~operand
Operand is missing at end of construction

termination
Parentheses, brackets, or bracket-like structures do not match,

head
Erroneous structure or identifier mstch in procedure heading, Only
one head message is given for one heading, This gives the line num-
ber of the first symbol of the procedure body.

const,

Error of structure assoclated with one of the constent operands,
i.e., mmber, pattern, layout, string, true, or false,

stack
The nesting of begin.s, parentheses, etc, exceeds the capacity of
the translator,

Appendix 3. MESSAGES FR(M TRANSLATCR.

begin ends

PASS &

The nesting of begin-end pairs exceeds capacity,

indices

The number of subscripts of an array exceeds capacity.

stack

83

he capacity of the stack for collecting the descriptions of eimil-

taneously declared identifiers is exceeded.
structure to avold the

undeclared

PASS 5

An 1identifier 1s not declared

+ decl,

in identifier is declared +two or more times in the same block,
message appears at each place of declaration,

stack

Remedy:

Use the block
similtaneous existence of many quantities,

The

‘Me capacity of the stack recording redeclarations of identifiers

is exceeded,
std, ¢S,

e mmber of standard procedures used by the program is too large

for capacity

call

PASS 6

A procedure call has an incorrect number of parameters

subscripts

A subscripted variable has an incorreet mumber of subscripts

type <clue>

Error of type or kind of operand with respect to the operator con=-
text, The clue gives further informstion sbout the error, by identl-
fying the context of the error according to the following table:
128 <error> j or <error> end or <error> else

131 if <error> then
132 Then <error> else
134k else <error>

137 g to <error>

139 <error> step

140 step <error> wntil
143 FError> mod
144 <error> ¥

145 <error> -

146 <error> X

147 <error> /

T 15T <errox> vV
158 <error> =>

159 <error> =

161 <error> ¥

162 <error> do

163 until <e¥ror> do
164 While <error> do
167 case <error> of
168 ;<Zerror>)
169 <error> ,

175 if <erroxr> then

183 <error> }

184 <error> ,

185 for <error> :=
186 until <error> ,
187 wvbile <error> ,
188 Zarror> vhile
189 := <error>
190 = <error> :=
191 <error> =

208 <error> (

209 <error> [

84 Appendix 3, MESSAGES FRCM TRANSLATOR,

148 <error> : 175 case <error> of 214 <arror> (
149 <error> A 177 <efror>) h92 <error> <
150 <error> shift 178 <error>] k93 <error> <
151 <error> ; or J 179 <error> } Lok <error> =
152 <error> , or) 180 <error> , Los <error> >
155 <arror> ; 181 <error> , 496 <error> S
156 <error> A | 182 <error> , 497 <error> #
stack

T The capacity of the stacks recording operands and operators being
translated is exceeded.

PASS 9
nmmber
Error associated with numeral in machine code,
syntax

The machine code does not conform to the restricted Slip syntax.
addr,
Exrror associated with Siip name or sddress,
¢ode head
Error in code head
code size
Code exceeds the admissible number of words
mdef, <S1lip name>
The Slip name given is not defined.

sog
e translation ie terminsted because of errors,

PASS 7

spilll
T Range of mumbers exceeded in arithmetic expression containing con-
stant operands,

stack
The capacity of the stack recording operands being translated is ex~
ceeded,
PASS 8
stack

The capacity of the stack of internal program references is excee.
ded,

ease too big
case clause governs <too many expressions or statements, or a
switch declaration has more than 34 designational expressions.

Appendix 4., ENVIRCONMENT DESCRIPTI(N. 85

Appendix L, ENVIRONMENT DESCRIPTICON

The environment description is available to the Algol program
through the procedure system (section 8,2) and has the form of an array
of 40 Boolean elements, In the following explanation of the format of the
%{escﬁﬁtion it is assumed to have been +transferred to a Boolean array

1:401,

The description consists of a number of separate parameters, packed
into the elements of the array. It holds generally that the parameter
velue O 1s not used to indicate positive information, but is reserved to
{ndieate thet the parsmeter in question is not used in the version of de-
scription at hand. The other extreme of the range of a parameter is simi-
larly reserved for the unlikely case that the capacity originally as=-
signed to a parameter is later found to be insufficient. When this value
18 found it indicates that further informgtion sbout the parsmeter value
may be found elsewhere in the description,

The description consists of two elements, D[1] and D{2], 1in fixed
format, describing the central machine, and additional words each de~
seribing a part of the peripheral units, The fixed format description
eonsists of the following:

Bits in
D1} Values and their meaning

0- 3 Primary backing store, tracks of 40 words. (1): 1 drum, 320
tracks; (2): 2 drums, 640 tracks; (3): 3 drums, 960 tracks;
(k): aisk file, 9600 tracks, group selection and gg-instruction
active,

4. 6 Buffer store. (1): None; (2): 4096 words, 1l and ue instruec-
tions active.)

7 - 9 Sense busy instruction. (1): Nome; (2): 1l 256+channel active,

10 - 12 HP button and by-register., (1): No HP button, by has positions
2 to 93 (2): HP button, dinhibition by by-position 3, by bhas
pos. 2 to 93 (3): HP button, inhibition by by-position O, by
has pos. O to 9; (4): HP button tied to interrupt system.

13 = 14 by-posttion 3 to 6 assignment buttons, i.e, manual control of
output medium.' (1) Not aveilable, (2) Availgble,

15 = 17 Output of 8-bit character by sy-instruction. (1) Not possible.
(2) Achieved by adding 128 in by-register.

18 - % snd D[2] are reserved for later extensions. In present version

they must all be O.

The following words describe each peripheral unit, using one word
for easch, The words are ordered in magnitude, The format of each word de-
pends on the value of the first 10 bits, but mostly conform to the fol-
lowing arrsngement:

Bits 0 - 9 Identity of unit

10 = 19 Associated value of by, to be used in select

20 = 37 Other description as given below

38 = 39 (1): The unit is permanently coupled to the machine.

(2): The use of the unit depends on the setting by the
operator of a manual switch, other than the by-posi-
tion assignment buttons.

86 Appendix 4. ENVIRONMENT DESCRIPTICN.

Paper tape readers, identity 1 to 20,

(1): Facit; (2): RC 2000, If the by-value is given as O or k4, the reader
cen only be used with this value and will stop on reading a character of
even perity. If the by-value is given as 3 or T, either that vdlue may be
used, with no stop on even parity, or that value minus 3 may be used to
cause stop on even parity.

Peper tape punches, identity 21 to LO.

(21): Facit. The by-value is given, For en additional possibility, note
D[1] bit positions 15 - 17.

Line printers, identity 41 to 60,

(l1): Series 4, 1 line buffer; (42): Series 4, 2 line buffers; (L43): Se-
ries 5, Bits 10 - 19 give the assoclated by-velue. In machines equipped
with by-position 3 to 6 assignment buttons, i.e. having D[1] bits 13 - 1k
equal 2, ‘thls by-value assumes that the bduttons along the diagonsl are
depressed, Bits 38 - 39 indicetes the coupling to the machine, as de-
sceribed above, Bits 20 - 37 describe some of the details of the charscter
set as follows:

Bits 20 - 22 = 1 indicate that the character set may be thought of as de-
fined from a basic set, given in the following table, with certain vari-
ations defined by the following bits, as given in the table of varigw
tions.,

Basic character set, bits 20 - 22 = 1

A blank position indicates that nothing is defined about the character in
that position, An integer > 20, or a peir of integers, like 23-24, refer
to +the specification of variations in the following bit positions, as
fully explained below,

Iower Upper Lover Upper Lower Upper Lower Upper
0 BLANK 16 0 28 32 - + U8 23.24 E
1 1 25 17 < > 33 23.24 J hg 23.24 A
2 2 X 18 23.24 S 34 23-24 K 50 2324 B
3 3 f 19 23-24 T 35 23.24 L 51 23-24 C
y 4 o= 20 23.24 U 36 23.24 M 52 23.24 D
5 5 3 21 23.24 Vv 37 2324 N 53 23-24 E
6 6 { 22 23-24 W 38 23.24 O sh 23.24 F
T 7] 23 23.24 X % 2324 P 55 23.24 G
8 8 (24 23.24 Y 4o 23-2h Q 56 23«24 H
9 9) 25 23.24 Z k1 23.24 R 57 2324 I
10 26 42 3 58 LOWER CASE
11 27 P » b3 23.24 ¢ 59 . :
12 26 28 lily 32 60 UPPER CASE
13 23-2h R 29 hs 33 61
L 27 30 29-30 b6 S| 62
15 % & 31 47 63

' 64 CARRET

Appendix 4, ENVIRONMENT DESCRIPTICN. 8T

Varistions on basic character set, valid when bits 20 - 22 = 13 Bits
2% . 2hks (1) The character in lower case is the same as in upper case.
(2) The character is the corresponding lower case one,

Bits(s) | Character value described | Bits = 1 Bits = 2
Lower Upper

25 1 1V

26 12 23.24 U

27 b :

28 16 0 A

20=%0 30 SET POSITION TAB
b)Y k2 FORMFEED

32 Lk * ’

33 ks PAPERTHROW

For each of the parameters in positions 25 to 33 the value O indicates
some other effect of the character value,
Bits 34 = 35: Effect of character values 65 to 80:
{0) Other than as (1) or (2).
1) 65-79: Paper throw controlled by format control tape. 80: prine
ting without paper motion.
(2) 65-79: Paper throw controlled by format control tape. 80: prin-
ting with double line feed.
With bits 20 - 22 not equal to 1 nothing ls specified here about the cha~
racter set. The values 2, 3, ..o , T Bay be used later to specify other
specific character sets,

Plotters, identity 61 to 80.
(61): Calcomp. The type number is given in bits 20 to 30. (62) Moseley
Model 2D 3M.

Card readers, identity 81 to 100,
(81): Modified Bull D3, (82): CDC 9200,

Tape drivers, identity 101 to 120,
(101): Ampex T™ 7. (102): CDC 606.

Caroussel, identity 121 to 140,
(121): Facit ECM 6k

Disk file, identity. 141 to 160.
(141) : Anelex model 80, replacing drum., (142): Anelex model 80, transfer-
ring to buffer store. (il43): CDC 933,

abs, 13
Ebsolute addressing, 55
Addition, 12

Addressing, 54

eddr,-message, Sl

Alerm printing, 26, 28

Alarms of standard
functions, 13

arctan, 13

Ares, description, 50

Arithmetic expressions,
"

array-message, T8

Arrays called by value,
17

Backing store, 46

Basic symbole, 8

begin~ends-
messege, 83

Bit patterns, 14

BLANK, 6

Blind characters, 32

Blocks of storage, 46

Boolean-operator, 16

Boolean operations, 15

Boolean values, 14

Bulk reading procedure,
30

Cell by value, 17

Call-message, 83

cancel, 48

Capacity of storasge
units, 42

case, 9

Case expressions, 18

Case in output, 23

case-message, 78

Case statements, 18 f

cas&-;too-big-message,

Catalogue, 46

char, 32

Character check sum,
10

character-message, 81

Character
representations, 7

Check of actusl
parameters, 17

ALPHABETIC INIEX,

Check of output, 22
checksum, 22
CLEAR CODE, 10
code, 53
code-head-message, 8k
code~length-message, 81
code-size-message, 8k
code specifications, 55
comment, 11
coment-message, 81
compound-message, 81
Compound symbols, 8
const,~message, 82
Control characters, 6
copy, 61
copy-medium-message, 81
copy-message, 81
copg-overlap-message,
1
core, 53
Core code, 58
Core store, 42
cos, 13
Declarations, order of,
17
decl,-message, 83
delimiter-message, 82
Delimiters, 8
Digits, 8
Division, 12
double~-std-proc.=
message, 82
Drum treck transfer
time, U43
END CODE, 10
End of program, 11
entier, 13
ronment, 61, 85
error-11, 12,
13-messages, T8
Execution, 67
Execution times, 43, T4
exp, 13
exp-message, T8
Extgnsions of Algol 60,

false, representation,
14
finis, 62

Flexowriter, 6

Floating point numbers,
11

Float operation, 12

formal-message, 78

Formel parameters, 18

For statements, 16

free, 46

get, 48

gier, 53, 58

Graphic characters, 6

head-message, 82

Hole combinations, 6,
31

identifier-overflow-
message, 82

11, 51

improper-message, 81

index-message, T8

indices-message, 83

Input errors, 9

Input medium selection,
20

Input procedures, 30

in-string-message, 81

Integer divide, 12

integer-operator, 13
ger representation,
1

KA register, 65

kb on, 30

KB register, 65

Keyboard, 6

Labels, 16, 18

Layout, 24

Layout bracket, 9

Letters, 8

Library, 71, 73

Limitations, 19

Line mmber, 78, 80

Line output, 62

in, 13

In-message, 78

Logical operators, 15

Long strings, 23

Loth storage control,

lyn, 31
Machine code, 53

Magnetic drum, 61

message, 92, 10

Messages from
translator, 80

mod, 12, 14
Modulo, 12

Multiplicetion, 12
mlt-message, T9
number-message,
Numeral, 30
Numeral-reading
procedure, 30
of, 9
off-message, 10, 81
on-message, 10, 81
operand-message, 82
Operator control, 68
Output case, 23
Output medium
selection, 20
Qutput procedure, 22
own, 17
Packing of strings, 16,
23
Paper tape form, 69
Parity check hole, 31
passes-message, 81
Pass information, 66
pess-medium-message, 80
Pass number, 65
Pass output, 66
pass-sum-message, S0
pattern-message, 82
Patterns, 14
pause-message, 10, 81
Power opersator, 12
Precision of reals, 11
Precision of standard
function, 13
p~relative addressing,
25
Prelude to program, 63
Printing graphic
characters, 6
Procedure declarations,
17
Procedure statements,
17

ALPHABETIC INDEX,

program-tooc=-big-
message, 80
PUNCH OFF and ON, 10
Punch tape code, 6
put, u48
Range of variables, 11
read general, 36
read integer, 33
read resl, 34
read string, 4O
resdy-message, 80
real-operator, 13
Real representation, 11
Recursive procedures,
L
Representations of
characters, 7
reserve, U6
Reserved identifiers,
12
Revised Algol 60
Report, 4
Round-off, 12, 28
round-operator, 13
Belect, 20
shift-operator, 15
STenIficant digits, 11
sin, 13
S1lip names, 55
sorry-messsge, 84
Specifications, 18
spill-message, 79, 84
sgrt, 13
sqrt-message, T9
S-relative addressing

stack-message, 79, 81,
82, 83, 84
Standard functions, 13
Standard procedures, 17
std-proc-format=
messsge, 82
std.procs.-messege, 83
Stop between passes, 65
Storage allocation, 5k
Storage of program, L43
Storage of standard
procedures, b4

89

Stoiage of variables,

2

Storage units, 42

String expressions, 16

string-message, 81

string-operator, 16

5trIng quote, 8

Strings, 15 f

subscripts-message, 83

Subtraction, 12

Sum checking, 10

SUM CODE, 10

sum-message, 10, 81

syntax-message,

system, 21, 85

Tape code, 6

termination-message, 82

Termination of
execution, 78

Text on drum, 16

tracks transferred, ULk

Transfer of drum track,
b3

Transient compiler, 62

Translation, 61

true; representation,

type-in-message, 81

type-message, 83

undeclared-measage, 83

undef . -message,

Underlined word
symbols, 8

Universal address, 60

Universal value, 60

us, 51

Value, call by, 17

Variables on backing
store, U5

where, 47

vrite, 27

writechar, 22

writeer, 23

write integer, 26

writetext, 23

zero-message, 52

	A Manual of Gier Algol 4
	Contents
	Introduction
	8-Channel punch tape code and flexowriter keyboard
	Printing graphic characters
	Blank
	Control characters
	Flexowriter keyboard
	Numerical representations

	The relation between Gier Algol and Algol 60
	Character representation of programs
	Use of comment
	Arithmetic values and operations
	Reserved identifiers
	Standard functions
	Arithmetic expressions
	Boolean expressions, bit patterns, and strings
	Integers as labels
	For statements
	Procedure statements
	Order of declarations
	Own
	Procedure declarations
	Case expressions
	Case statements
	General limitations

	External media and machine configurations
	Standard procedure select
	Standard procedure system

	Standard output procedures
	Identifiers and main characteristics
	Standard procedure: writechar
	Standard procedure: writecr
	Standard procedure: writetext
	Layouts
	Standard procedure: write integer
	Standard procedure: write

	Standard input procedures
	Identifiers and main characteristics
	Standard procedure: kbon
	Input medium and character representation
	Standard procedure: lyn
	Lower and upper case
	Blind characters
	Standard integer: char
	Exit conditions
	Numeral recognition and overflow
	Standard procedure: read integer
	Standard procedure: read real
	Standard procedure: read general
	Standard procedure: read string

	Storage administration during program execution
	Gier storage units
	Storage of variables
	Storage of program
	Loop storage control
	Data storage on backing store
	Backing store and catalogue
	Standard procedure: reserve
	Standard procedure: where
	Standard procedure: cancel
	Standard procedures: put and get
	Advice on semi-permanent data storage
	Advanced user information
	Standard procedures: il and us

	Machine code in Gier Algol 4
	Overall possibilities
	Syntax
	Storage allocation and addressing of Algol quantities
	Slip names
	Code specifications
	Classes and structures of quantities
	Core code and standard procedure gier
	Machine code format

	Coupling to environment
	Gier Algol systems
	Translation
	Pass information
	Pass output
	Execution
	Operator control

	Paper tape form of system
	Tape identification and check
	Translator and library tapes
	Modified library

	Execution times
	Execution termination
	Messages from translator
	Environment description
	Alphabetic index

