

A MANUAL OF

GIER ALGOL 4

developed by

Tove Asmussen, Jorn Jensen, Soren Lauesen, Paul Lindgreen,
Per Mondrup, Peter Naur, and Jorgen Zachariassen

Third edition of A Manual of GIER ALGOL

by

Peter Naur

A/S REGNECENTRALEN . COPENHAGEN

1967

i

CONTENTS

INTRODUCTION 2. 6 ww we cer we errr eevee renee vreesesrees 5

6, 8-CHANNEL PUNCH TAPE CODE AND FLEXOWRITER KEYBOARD ...eesee 6
6.1. Printing graphic characters 2. eee eee eee seeceene 6

6.2. Blank . eee eee seve erereserccevscvsecre 6

6436 Control characters . . «eee. ees ee eevee eee e 6

6.4. Flexowriter keyboard eoceeeeewn ees ee ew we wm wee e 6

6. 5e Numerical representation8 .« s«s«eeceseecvecvcvrceee 7

7. THE RELATION BETWEEN GIER ALGGL AND ALGOL 60 .. 2c eecveece 8
7.1. Character representation of programs-ssseccecee 8
Te 2. Use of comment osceerereeeoeee eee eee ewe eae tt

75. Arithmetic values and operations . ..seseeseeceeeee ll
Tel. Reserved identifiers .. oe ececee eee ee oe o eee e 12

Tede Stendard functions oeoeeeneeeseee es ee ee &e Oo oO 135

Tb Arithmetic expressions seep eC eo wm eee eh hl Ohl Ohl hUc hhc OhUh Oh OU 13

7-7. Boolean expressions, bit patterns, and strings 14
7.8. Integers as labels . 2. wwe eee eversrecesnseeeee 16

7e9. For statements . . . « « e oeoeveeeeeeeeve ee eevee 16

7.10. Procedure statements oee4evevsvee8 8 8 © © © 6 6 &@ @ @ 17

Tell. Order of declarations «2. eececeeerervecvnceeeece 17

Tel2. Qn ww wwe eee reser ern voesreee sre vevresece IT

7e15e Procedure declarations ...eeeccesrcerevveses ll
Teh, Case expressions 1... eee cccesrec revere esee 18

7.15. Case statements ... 2 cee reece ee eee ee see ew 18

T.16. General limitations ... oeoeeeeeeee eee es eo oe 19

8, EXTERNAL MEDIA AND MACHINE CONFIGURATIONS . . 2.0 ee ee ee eee 2
8.1. Stendard procedure select «ee eecececvevsesesnes

8.2, Stendard procedure system 2. eee ee cee reece nee al

9. STANDARD OUTPUT PROCEDURES . 2. eee ere eerecescccerenee 22

9.1. Identifiers and main characteristics oo eer eev ace es 22

9.2. Standard procedure: writechar . 2 «see ee eee ee ee 22

9.3. Standard procedure: writecr 1... seeeeeses ee eoe ee 2b

9.4. Standard procedure: writetext ..+«.s.eseeceecevece se 23

905- Layouts 2.2. 2. es eer ees sere ec eee see eeeee 2h

9.6. Standard procedure: write integer 2.2. eee eee eee ©
9.7. Standard procedure: write 2. ececsevecsecvsesnvnece 27

10, STANDARD INPUT PROCEDURES . 2. ee eccevecvrvecsceesneeee 30

10.1. Identifiers and main characteristics . . 2. ss 200 + «© « 30
10.2. Standard procedure: kbon «ee ee cesecrecveecvvsees WD

10.3. Input medium and character representation . . « « «eee 351
10.4, Standard procedures lyn. 2. ee ee cece eevee neveen OI

1056 Lower and upper case. . eee ec esc eon eevee ee Da

10.6. Blind characters ..e«ececcseeceseveeeveeeseve 32

10.7. Standard integer: char 2. «eee ececcecre sce evees DA

10.8. Exit conditions oeevevevee eeoeerec esc eeeo eee DD

10.9. Numeral recognition and overflow oe eee w eo wow ee DD

CONTENTS 3

10.10, Standard procedure: read integer
10.11. Standard procedure: Yead real « ee es ee eee sreoses 34

10.12. Standard procedure: read general eoeeresee ee 8 eso 36

10.13. Standard procedure: read string . 2. 00 ee ee eo oo MO

11. STORAGE ADMINISTRATION DURING PROGRAM EXECUTION . 2. 2s ee 6 o « 42
11.1. Gier storage units 2. eevee reeeeree env vnevevnecs ko

11.2. Storage of variables . so we eevee ceoseevveverve ko

11036 Storage of program « «© «© ee eee eee ee wr ewe eo 43

11.4. Loop storage control . 2. «es eceesec eevee eevee ne hh

11.5 Data storage on backing store... 0 ee eee ee ew wo HS
11.6. Backing store and catalogue . « seeese ec ees eene 46

11eTe Standard procedure: reserve «ee ee ce eevee seven 6

11.8. Standard procedures where «eee eee eee een eeeves 7

11.9. Standard procedure: cancel .« «se seese ces eeveeve 48

11.10, Standard procedures: put and get... ee ee ee eo oo MB
11.112 Advice on semi-permanent data. storage oeoererecer ween

11.12, Advanced user information 2... eee eee eee reece WD
11-13. Standard procedures: Tl and us oe « ew we we we eee eo ee 51

12. MACHINE CODE I’. GIER ALGOL 4 *eesvreeeeseeseeeene ee 6 @ 53

12.1. Overall possibilities . 2. ee ceseessecceeeevevces 53

1202. Syntax 2. eee ce eee severe rseseeerereee 53

12.3. Storage allocation and addressing of Algol quantities ... 54
12.4. Slip names .. 46sec eccee evo ennesrevrevvecens 55

12.5. Code specifications . «ee eee eee ec eevee ssc 55
12.6, Classes and structures of quantities ee ee ee e 56
12.7. Core code and standard procedure gier . 2. 6s ee ee eo 58
12.8, Machine code format . . « eeoneoeeeeewreweweeewe 59

136 COUPLING TO ENVIRONMENT oe © @ @ @ @ @ @ @ © © © & © © © © © & @ 61

13.1. Gler Algol systems 2. 2. eee eee eee eee eww eee 61

1302. Translation . 2. 2 eee sree eneesrvnee sve ceces 61

15.3. Pass information ...«ecececrcesssevveeveee o 66

1304. Pass output Ce 66

13056 Execution . 2... «ee cece ee eae eeeeee ene aee 67

1326. Operator control .. ee eee eee seervnevrereoree 68

14, PAPER TAPE FORM OF SYSTEM . «eee seers see eer veevves 69

4.1. Tape identification and check . «6 «ee ee eee eeee 69

14.2, Translator and library tapes 2. ee ee eee ew wo ew 2 10

14.3. Modified library ... se eeecececsevecveeenveves TD

Appendix 1. Execution times ...s.eeccesve ves eeveevseses T4

- 2, Execution termination 2... .2eceecrcsevevevecee 78

- 3e Messages from translator . «ee see se eee eee nes 80

- 4k, Environment description .« «e«essececreveeene 85

Alphabetic index eeesve8e ¢ 8 @# @ @ @e ®@ @ @ 8©@ @ 6 @m6mUhOHMUhOhUCUCOrmhUCUh HU Hh HU hOCmhUcMhOmhUCUcOrhUlUcOhlhUhOH 88

The Algol 60 Report,

Throughout the present Manual reference is made to the Algol 60 Re-
port or the Revised Algol 60 Report. The differences between these two

documents are slight and do not influence the numbering of sections, The

full references of these reports are as follows:

J. W. Backus, et. al., Report on the Algorithmic Language Algol 60 (ed.
P. Naur), Numerische Mathematik 2 (1960), pp. 106-1363; Acta Polytechnica
Scandinavica: Math. And Comp. Mach. Ser. no. 5 (1960) 3 Comm. ACM 3 no. 5

(1960), pp. 299-314.

J. W. Backus, et. al., Revised Report on the Algorithmic Langusge Algol

60 (ed. P. Naur), Regnecentralen, Copenhagen (1962); Comm. ACM 6 no, 1
(1963), pp 1-173 Computer Journal 5 (1963), pp. 349-367; Numerische Ma-
thematik 4 (1963), 420-453,

Other reports relevant to Gier Algol.

(1) P. Naur: The Design of the Gier Algol Compiler. BIT 3 (1963) 124-140
and 145.166; also in Annual Review in Automatic Programming 4 (ed. R.
Goodman), Pergamon Press 1964,
(2) Pe Naur: Checking of Operand Types in Algol Compilers, BIT 5 (1965)
151-1636

(3) J. Jensen: Generation of Machine Code in Algol Compilers. BIT 5

(1965) 235-245.
(4) P. Naur: The Performance of a System for Automatic Segmentation of

Programs Within an Algol Compiler (Gier Algol). Comm, ACM 8 (1965), 671
TT.

(5) P. Naur: Program Translation Viewed as a General Data Processing Pro-
blem. Comm, ACM 9 (1966), 176-179.

INTRODUCTION. ?

INTRODUCTICN.

The present book is the users’ manual of the Algol 60 compiler sy-
stem for the Gier computer known as Gier Algol 4, This system was deve-
loped during 1965 - 67 and is a further development and revision of the
system described in a Manual of Gier Algol III, distributed in 1964,

Like the previous versions, Gier Algol 4 is based directly on Algol
60, and the Revised Report on the Algorithmic Language Algol 60 mst be
regarded as the primary definition of the programming language, For this
reason the numbering of sections in the present manual continue those of
the Algol 60 Report.

The differences between the present new system and the previous ver-
sion are so numerous and extensive that the manual has had to be rewrite
ten in all of its parts, Very briefly the more important changes are: (1)
Integer variables are represented as 40-bit fixed point numbers, with a
corresponding gain in range and speed of operation, (2) Patterns of 40
bits may be manipulated freely and at high speed, by special operators.
(3) Case expressions and statements, first suggested by C.A.R. Hoare in
Algol Bulletin 18, 1964, are admitted. (4) The selection of input for in-
put and output has been made more flexible. (5) A means of ascertaining
the available machine configuration is included. (6) The standard output
procedures have been revised and a simple, fast procedure added to the
set. (7) The input procedures have been overhavled for greater speed and
flexibility. (8) It has been made possible to store elements of arrays in
the buffer store, thereby increasing the capacity for variables by a fac-
tor of about 6. (9) Subscription has been revised, for higher speed. (10)
Means for commmicating with semi-permanent data areas on a backing disk
storage unit are included. (11) Machine language may be written within a
program. (12) The check during translation has been extended to include
actual parameters, in most cases. (13) The source program may be formed
by combining texts from several places and media during translation. (11+)
Both the translator and the translated program may be stored on any of
several media.

In writing the present manual an attempt was made to follow the de-
finitions of IFIP-ICC Vocabulary of Information Processing, first English
language edition, 1966. This, in several cases, proved to be a definite
help.

The manual was typed by Kirsten Andersen, who also contributed ex-
cellent quality punching of the programs of the system itself. Her help
is gratefully acknowledged.

6 6, 8-CHANNEL PUNCH TAPE CODE AND FLEXOWRITER KEYBOARD.

6.1. PRINTING GRAPHIC CHARACTERS,

Lower Upper Code Lower Upper Code

case case ; case case
a A » C0 « Oy Ww W » O 4,

b B » C08 40, x x » OO ,000,

e C y G00 « 00, y YX » ©0006 ’

ad D » CO 20 yg z Z » O00 O,

e E » 000 .O 0; 2 & 3» O00 4 ,

f F » 000 ,00 , g go » 0 00, 00,
g G » OO 000, 0 A » Oe 3

h H » CO% , 1 Vv ? « 9;

i I » 0000. 0, 2 x ; 20,

j J 7008 3 / > 08 0,
k K 7 0040y 4 = ; Oo y
1 L 7 O 2 00, 5 3 » 0 209,

m M 799040 g 6 [>» 0 200,
n N 7 9 009 Oy 7] > 2000,
° 0 72 200, 8 (> Oe y
P P » 2 O 4000, 9) > O08 Oy
qa Q » 0005 , > » » 000, 00,

r R » 0 Of O; * 3 » OO O,% OO,

s S » O08 4 Oy - + » Oo . ,

t T » 2 « 00, < > » 09 « O,

u U » 00.0 , | ; 0.00 ,
Vv Vv » © 200, The key for _|doés not advance the carriage.

6.2. BLANK.

BLANK »9 Oe 45

6.3. CONTROL CHARACTERS,

LOWER CASE , 0000. 0 , UPPER CASE , 0000.0 ,
CAR RET 30 - , TAB » 000,00 ,
STOP CODE , 0. 00, TAPE FEED , 0000,000, PUNCH ADRES ,o . »

PUNCH OFF , 00.000, PUNCH ON ,0 0.0 , AUX CODE > 0.0 ,y

PUNCH ADRES and AUX CODE insert their respective codes when depressed

simultaneously with any other key.

6.4, FLEXOWRITER KEYBOARD.

START STOP PUNCH AUX STOP TAPE
READ READ ADRES CODE CODE FEED

TAB PUNCH x / = 3; [] () A Vv |. PUNCH
GF 2345678901 _ W

QWERTY U IG P > CAR
qawertyuiioop < RE

6.5. NUMERICAL REPRESENTATIONS, T

6.5. NUMERICAL REPRESENTATIONS.

In the following table the characters have been arranged according
to the numerical equivalent of the hole combination according to the rule
of section 10.3. The first colum gives the decimal value of the charac-
ter, the second and third colums give the lower and upper case charac-
ter, respectively, and the fourth column contains a G in the cases where
the character is available

LOWER UPPER

0 SPACE
1 1 Vv
2 2 x
3 3 /

4 h =
5 5 3
6 6 {
7 7]

8 8 (
9 9)

10 (NOT USED)
11 STOP CODE

12 END CODE
13 a R
14 |
15 (Nor USED)

16 0 A
17 < >
18 s Ss
19 t 7

20 u U

21 Vv Vv

22 w W

23 x x

ak y XY
25 z Z
26 (NOT USED)
27 > n

28 CLEAR CODE
29 RED RIBBON
30 TAB
31 PUNCH OFF

G

only in Gier, but not on the flexowriter.

LOWER UPPER

h
w
c
H
 t

Hy
Q
)
0
h
6
U
C
l
W
C
O
O
U
N

DB

(NOT USED,
g R

a
w

DW
O

V
O
B
Z
z
R

P
A
a
t

PUNCH ON
(Nor USED)
NOT USED)
(NOT USED)

e
o
v
p
 8s

H
m

Q
3
t
t
y

Q
I

>

&

P
o

R
H
O

Ez 5 5
8

UPPER CASE
SUM CODE

BLACK RIBBON G
TAPE FEED

CAR RET

8 7. THE RELATION BETWEEN GIER ALGOL AND ALGOL 60.

7. THE RELATION BETWEEN GIER ALGOL AND ALGOL 60.

7.1. CHARACTER REPRESENTATION OF PROGRAMS,

The basic symbols of Algol 60 are represented with the aid of the
character set given in section 6, Sequences of characters which do not
represent Algol symbols according to the rules below will produce an
alarm during translation.

There is a choice of input medium and the possibility to let the
program text consist of pieces taken from several media. This is further
explained in section 13.2.1.

Telele Single character symbols.
7elel.1. Letters and digits. Gier Algol adds the letters

akg g
to the reference alphabet. The appearance of all letters and digits may
be seen from section 6.
71.1.2. Delimiters. As apparent from section 6 the following simple re-
ference language symbols are directly aveilable in Gier Algol:

t+-X/<2>VA,e.n:3()0)

Tele2. Compound symbols.
Compound symbols must appear exactly as shown in this section, with-

out additional characters such as BLANK or CARRET.

Te1e2.1. Underlined words, Underlined words are produced in Gier Algol by
depressing the underline () key immediately preceding each letter of the
word, The symbols are the following:

true false go to if then else for do step wntil while comment begin end
own Boolean Integer real array Switch procedure string label value

Boolean and boolean may be used interchangeably. Also go to, goto, and
go to. — ——
T.1.2e2. Compound symbols similar to reference language. The following
compound symbols, most of which are produced by combining the underline
(_) or stroke a with other characters, are similar to those of the re-
ference language:
< > *# =. is
%.1e2e3~ Compound symbols differing from reference language. The follow-
ing compound symbols show a noticable deviation from the reference len-
guage:
Reference language * 7 ws “ ‘ > 2

Gier Algol A -; 2 ¢< + 2 =>

7014204, Extensions of Algol 60, Add the following:

7.1. CHARACTER REPRESENTATION OF PROGRAMS, 9

Basic symbol Reference Class

abs 7.6 arithmetic operator
entier 7.6 - -
round 7.6 - -
mod 7.6 - -
‘shift ToT pattern operator
case 7.14, 7.15 sequential operator
or 7.14, 7.15 - -
‘core 12.1 escape symbol
code 12.1 - -

message Tele7 separator

9.5 layout bracket
12... 40 TeT7 separator
Copy — 13.261 medium selector
Tints 13.261 - -

Te1.3. Other characters in input.
Te1e%3e1. CAR RET cannot be used between the characters of an identifier
or a number,

Tele%e2. The reaction of the translator to the input characters not al-
ready covered is given in the table below. ‘Three contexts are distingut-
shed: (1) Before first begin. (2) Within a string. (3) In eny other pro-
gram context. In addition the possible copying done as message (section
7167) and as prelude and line output (section 13.2.5) is indicated, The
reaction denoted char is an error reaction giving the text: character
(appendix 3).

Character Before begin | In string | In program | Message, pre-
— | lude, line

10 (not used) char char char | tqnored
11 STOP CODE ignored ignored ignored copied |
12 END CODE see section 7.1.5 ignored
13 aR letter | letter char eopied
15 fact used) char char char ignored
26 (not used) char | char char ignored
28 CLEAR CODE see section 7.1.4 copied
29 RED RIBBON cher ! char char Lenored
30 TAB ignored ignored ignored ignored
31 PUNCH OFF see section 7.1.6 copied
42 (not used) char | char | char ignored
4k, PUNCH ON see section 7.1.6 copied
45,46,47(not used) | char ! char | char ignored
61 SUM CODE see section Tel. copied
62 BLACK RIBBON char | char char fonored
63 TAPE FEED ignored : fgnored ignored ignored
65=126 char , cher char ignored
127 ignored : ignored ignored ignored
Parity error char or stop depending on machine ignored

10 7.1. CHARACTER REPRESENTATION OF PROGRAMS.

Te1e4. Character check sum
During input of the program to the translator, a check sum of all

characters ts formed. This may be used to check the currect transcription
and reading of characters. The check is performed every time the charac-

ter 61, SUM CODE, is encountered. This character causes the next follow-

ing character in the input to be compared with a check character, formed

as follows:

1) The input sum is put to zero each time CLEAR CODE is met in the
input, and at the end of the SUM CODE action.

2) Each character in the input causes the input sum to be increased:

input sum := input sum + 1 + character

3) To form the check character, use the value of the input sum which

excludes the SUM CODE itself and compute:

check character := (input sum + input sum : 32) mod 32 + 31

If the check character formed in this way differs from the one found in
the input, the error message

sum

is given.

Tele5. END CODE and pause,
In any context the END CODE character will cause the message

line <line number> pause

to be output on the operator typewriter, whereafter the machine will

stop. To continue the translation, the operator must type BLANK on the

typewriter.

7.1.6. PUNCH OFF and PUNCH ON.
With respect to the treatment of these characters the translator may

operate in two modes, selected when the translation is initiated, see
section 13.2.6. In one mode the two characters cause output on the
error output medium of the messages

line <line number> off

and
line <line number> on

respectively, and the program text following any PUNCH OFF character, up

to the first following PUNCH ON character, is ignored by the translator.
In the include-off-on mode PUNCH OFF and PUNCH ON are ignored.

Tele7Te Messages to the operator.
To enable the programmer to give guidance to the operator during

program translation, the following facility for output of messages is in-

cluded, Wherever the delimiter comment is permitted in the program it may

be replaced by message. During the first phase of the translation this
will cause the Tollowing characters, wp to the first semicolon, to be
output on the alarm message medium (cf, section 13.2.6). Otherwise the
action will be as though comment had been written.

7.1. CHARACTER REPRESENTATION OF PROGRAMS. 11

7.1.8. The end of a program.
The program extends from the first begin found in the input to the

end which syntactically matches that begin. No further characters are

input by the translator.

7.2. USE OF comment.

Following the delimiter comment not only any sequence of basic sym-
pols, but any sequence of characters specified in section 6.5 is admit-
ted up to the first following semicolon (3). For a special use of com-
ments following end, see section 11.4.

7.3. ARITHMETIC VALUES AND OPERATIONS,

Integers are held in fixed-point form, This gives the range:

2439 = -549 755 813 888 < integer < 549 755 813 867 = 2439 - 1
Reals are held as Floating-point numbers. This gives the range of

non-zero real values:
2-512) = 7.458y-155 < abs(real) < 1.3419154 = 24512

The precision of real values corresponds to 29 significant binary digits.
Thus one unit in the last binary place will correspond to a relative

change of the number of between 2y-9 and 4y-9.
As described below, the translator will sometimes insert an opera~

tion for converting arithmetic values from integer to real form, i.e. the
float operation. This conversion is done by the instruction nkf359. This
implies ‘that integers larger than 2429 in absolute value will have their
rightmost digits set to zero.

When the result of an operation exceeds the number range, the system
will sometimes call an alarm, This causes a print out of a message and a

termination of the execution of the program.
In the following explanations of the arithmetic operations, the

identifiers 1 and r stand for operands of types integer and real, respec-

tively. Mixed type indicates one integer and one real operand.
The action of all arithmetic operators is given in the following

table:

12 7-3. ARITHMETIC VALUES AND OPERATIONS.

Operand Machine instructions Reaction on range
types exceeded

Addition, subtraction + -
Integer Fixed point Incorrect result
Mixed Float the integer, then as real
Real Floating Spill alarm

Multiplication x
Integer Fixed point Mult alarm
Mixed Float the integer, then as real
Real Floating Spill alarm

Division /
Integer Float both, then as real
Mixed Float the integer, then as real
Real Floating Spill alarm

od. Integer divide, modulo
Integer Special fixed point routines Ineorrect result

Power A, yielding always a real result
ifMi- Float left operand, then as r A i
rat Successive floating point miltiplications See note below
ifnr Float left operand, then asrAr
rAr Calculated as 2 A (r x log,r) Spill alarm

The power operator with an integer exponent calls the spill alarm on
range exceeded, This happens already when the result of the operation

abs(left operand A (nearest greater power of two(abs(right operana))))
exceeds 2\512,

‘In the evaluation of expressions involving several operations any
necessary floating operations are done as late as possible consistent
with the evaluation rules of Algol 60, For example, in the expression
r+iXx i the mitiplication is done in integer form and only the result
of it is floated before the addition, If it is desired to operate on in-
tegers in real mode arithmetics, one of the operands mst be assigned to
@ real variables before the operation.

Roundeoff from type real to type integer is performed by means of
the machine instruction tkf -29, This implies that real results of abso-
lute value in the range from 0 to 2h29 will yield correct integers on
rounding, while reals with absolute value in the range from 2429 to 2439
will be rounded to an integer having too few significant figures. Real
results larger than 2439 or smaller than -2439 will yield completely er-
roneous results if rounded.

7.4. RESERVED IDENTIFIERS,

A reserved identifier is one which may be used in a program for a
standard purpose without having been declared in the program. If the
standard meaning is not needed in a program the identifier may freely be
declared to have other meanings.

The complete list of reserved identifiers arranged alphabetically is
as follows:

7.4. RESERVED IDENTIFIERS. 13

Identifier Reference Identifier Reference

abs 3.2.4 readinteger 10.10
arctan 3.24, 1.501 readreal 10.11
cancel 1129. read string 10.13
char 10.7 reserve 11.7
checksum 9 select 8.1
cos 3.204, 7.501 sign 3.2.4
entier 3.2.5 sin 3.2.4, 7.501
exp 3.2.4 sqrt 3.2.4, Te5el
get 11.10 system 8.2
gier 12.7 trackstransferred 11.3
il 11.13 us 11.135

kbon 10,2 where 11.8
In 3.2.4, 7.5 write 9.7

lyn 10.4 writechar 9.2
put 11.10 writecr 9.3
readgeneral 10.12 writeinteger 9.6

writetext 9.4
Te5e STANDARD FUNCTIONS.

T.5e1e Precision.
The algorithms for calculating the standard fumctions arctan, cos,

exp, In, sin, and sqrt, incorporated in Gier Algol will all yield results
having an error less than that which corresponds to about 2 wmits in the
last place of the result or the argument, whichever gives the greater ere
ror. As one consequence of this the functions sin and cos for absolute
values of the arguments larger than about »10 are worthless, their values

being usually 0 or 1.

Te 5.2. Alarms,

Certain misuses of the standard functions will cause termination of
execution of program (see Appendix 2). Note, however, that 1n(0) will
supply the result -9.35,49 and not call the alarm.

7.6. ARITHMETIC EXPRESSIONS.

The treatment of arithmetic types and the precision of real arithme-
tic are deseribed in section 7.3. Alarms are described in Appendix 2.

Several additional operators have been included. abs, entier, round,
integer, and real are monadic operators of high precedente, which may
precede any operand and one another in an arithmetic expression, thus for

example:

f t= abs r+ sin(real b) - (if -, real b < integer h then entier c else
Yound dfabs F)-- abs real m; ——

The precedence of these new operators being higher than that of any
other, this expression will be evaluated as if the following form had

meen written:
:= (abs-r) + sin(real b) - (if -,(real b) < (integer h) then (entier e)

else (round djf(abs f)) = (abs(real m))$
Their effect Is as follows:

14 7.6. ARITHMETIC EXPRESSIONS,

Gperator | Operand Result Effect
type type

abs integer integer Absolute value, like the standard pro-

— or real or real cedure abs, but without change of type
entier real integer Greatest integer not greater than the

value of the operand

round real integer Nearest integer

Integer Yeal or integer Integer represented internally by the

boolean same bits as the operand

or string

real integer Real represented in internal, floa-

— boolean ting, packed form by the same bits as
or string the operand

The operator mod (modulo) resembles : (integer divide) in that it is
dyadic, has the same precedence as :, and requires two integer operands.
The result is the remainder of the Integer division:

amodb is the same as a= (a:b) xb
provided that a and b produce no side-effects.

7.7. BOOLEAN EXPRESSIONS, BIT PATTERNS, AND STRINGS.

TeTele Boolean values.
Boolean variables serve both as single binary values and as patterns

of -40 bits, Used as bit patterns. and supplemented with the operators
integer, real, boolean, and string, they will allow arbitrary manipule-

Elons of parts of machine words.
The positions of a bit pattern are numbered fromO (left) to 39

(right). The truth value of a bit pattern is given by the value of the
pit in position 0 as follows:

0 corresponds to false
1 - - true

Literal bit patterns may be written directly in the Algol program in

three different ways:

1) true has bit value 1 and false has bit value 0, in all positions

0 to 39.
Note that boolean values computed by means of relational operators

generally-will not be represented by the bit patterns written in the pro-

gram as true and false.
2) Erbitrary patterns may be written in a notation which builds them

up from part patterns as follows. Each part pattern is written as one un-

derlined, unsigned integer, indicating the number of bits in the part

pattern, followed either by an unsigned integer, giving by its binary re-

presentation, the actual pattern, or by the letter m, denoting a part

pattern having digit 1 in all positions, According to the taste of the

reader the letter m may be thought of as a picture of several ones, or to

stand for the word many. Examples of part patterns:

7.7. BOOLEAN EXPRESSIONS, BIT PATTERNS, AND STRINGS. 15

Notation in program Pattern
hes 0101
8 33 100001

1T 1022 01111111110
5 m 11111

Parts patterns may be joined to one another by writing them next to
one another, The final 40 bit pattern is obtained by filling in extra 0-
bits to the right, as necessary. Example: the pattern written

45 6 3311 1022 5m
will look “as Follows (where to help the human reader the 40 bits have
been grouped by fives):

01011 00001 01111 11111 01111 10000 00000 00000
3) Bit patterns may be written as digit layouts, as used to control

certain output procedures (cf. section 9.5).
The logical operators, =, =>, V, A, and -, will operate on all 4o

bits of their operands in parallel, and may thus be used to manipulate
bit patterns, Examples of applications:

vA127
extracts from V the bits in positions 9, 10, and 11, setting the remain-
der of the pattern to 0.

wvy
packs the bits of w and y into one pattern,

As a further aid to the effective utilization of bit patterns an
operator, shift, has been added. shift is a dyadic operator of low prece-
dence, requiring as its first operand a boolean value, which is interpre-
ted as a bit pattern, and as its second operand an integer value, inter-
preted as a number of cyclic shifts of the pattern. The result of the
operation is of type boolean and is the bit pattern obtained from the
first operand by performing that number of cyclic shifts which is given
by the second operand, shifting left for a positive number, right for a
negative number. - Examples:

p=q shift j+k
By the low precedence of shift this is evaluated as

(p =q) shift (T+)
Suppose we have executed

Ww 3= 20 13 10 93
Then the result of ~~

w shift -5

can be written 25 13 109. The result of w shift -15 is 5 9 30 13. The
number of shifts” should be kept between -57T2 and 511, but There is no
check of this.

Te(e2. String values and expressions.
Within a string is admitted, not only any Sequence of basic symbols,

but any sequence of characters, with the exceptions mentioned in section
Tal 03020

In the internal representation the characters of strings are packed
into one or more machine words omitting the string quotes. Each character
uses 6 bit positions, corresponding to the value of the character given
in section 6.5, with the exceptions:

16 7.7. BOOLEAN EXPRESSIONS, BIT PATTERNS, AND STRINGS.

CAR RET is represented as 63
2 7 - - O, i.e. as BLANK

Characters for UPPER CASE and LOWER CASE are included as needed, but all
strings are understood to begin and end in lower case. The end of a
string is indicated by the character value 10. Strings having 6 or fewer
characters are packed into one word and appear in this way at run time.
Longer strings are stored on the backing store like program segments and

appear as words referring to the backing store.
Pattern representation of short string (6 or fewer characters) :

Bits O- 3 Pattern 1010, i.e. decimal value 10
- &.~ 9 Character no. 6

10 = 15 - ~ = 5

16 - 21 - - 4 Unused character positions are set
22 - 27 - - 3 to 001010, i.e. decimal value 10

28 - 43 - - 2

3h » 39 - - 1

The word referring to along string has zeroes in bit positions
0 - 9 and 20 = 29, The remaining positions supply the track number and
track relative address. However, since the track number is counted rela-
tive to a base number which is not directly available to the user, not

even using machine code, the pattern form will not be given.
For additional facilities related to strings, see section 9.4.4,
In addition to string values, more general string expressions may be

formed as a conditional or case expression and by using the operator

string. An le of a string expression is as follows:

at b then ¢<constant} else string (p-q)
string | expressions should be added to the class of expressions of Algol
0.

The internal bit pattern representation of values of types integer,
real, and string, may be obtained with the aid of the operator boolean,
which like the operators integer, real, and string, has high precedence,
and has as result a boolean value Which is the bit pattern used internal-
ly for representing the operand.

As a general rule, the operators integer, real, boolean, and string,
do not give rise to any action during Program execution. They merely sup-
press the type alarm action which would take place during translation if

they were omitted,

7.8. INTEGERS AS LABELS.

Integers cannot be used with the meaning of labels in Gier Algol.

7-9. FOR STATEMENTS.

The controlled variable must be simple.

7.10. PROCEDURE STATEMENTS, 17

710. PROCEDURE STATEMENTS,

7210.1. Recursive procedures,
Recursive procedures will be processed fully in Gier Algol.

7010.2, Handling of types.
Gier Algol 4 checks that the actual parameters of a procedure mat- ches the corresponding specifications whenever the identifier of the pro= cedure is not formal. In parameters called by name, strict type agreement is required, both for simple varlables, expressions, array and procedure identifiers, integer specification requiring an actual parameter of inte- ger type, real specifications one of real type, etc. In parameters called by value, integer specifications may correspond to real parameter and real specification to integer parameter,
In a call where the procedure identifier is formal, no check of the actual parameters is made. If the parameters do not match the formals as indicated above the result is unpredictable,

710.3. Standard procedures.
A number of special actions, including input and output of data, are expressed as calls of standard procedures, These calls conform to the Syntax of calls of declared procedures (cf. section 4.7.1) and should be

regarded in all respects as regular procedure calls or fimtion designa- tors, with the exception that identifiers of standard procedures with pa~ rameters may not be used as actual parameters,

7-11. ORDER OF DECLARATIONS,

In Gier Algol declarations may appear in any order in the block
head,

712. Own,

In Gier Algol own can only be used with type declarations, not with
array declarations,

713. PROCEDURE DECLARATIONS,

T1501 Recursive procedures,
Recursive procedures will be processed fully in Gier Algol,

7013-2. Arrays called by value.
Gier Algol cannot handle arrays called by value.

18 7.13. PROCEDURE DECLARATIONS.

Tel3036 Specifications.

The specifications of formal parameters must be complete, i.e. each

parameter must occur just once in the specification part.

7.1324. Labels called by value.
Labels cannot be called by value in Gler Algol (the Revised Algol 60

Report leaves the question unanswered) «

7e14%. CASE EXPRESSIONS.

Gier Algol 4 includes an extension, known as case expressions and

statements, which was first proposed by C. A. R. Hoare in the IFIP Wor-

king Group 2.1 on Algol. These constructions are a natural generalization

of conditional expressions and statements, for expressing a choice, not

only between two but among any number of possibilities.

Te14.1. Syntax.
<ease expression> ::= <case clause>(<expression list>)

<ease clause> ::2 case <arithmetic expression> of

<expression list> 7?= <expression>|<expression Tist>, <expression>

The complete case expression may be written whereever an expression of

the same type is admitted.

7.14.2. Examples.
case k of (a, b-c, 4, g)
case round q of (a/b, if c = a then w else t, case 8 of (p,a,y))

7.14.3. Semantics.

A case expression is evaluated as follows. First, evaluate the

arithmetic expression of the case clause. Next, select that expression of

the expression list which corresponds to the result of the first evalua-

tion, in the sense that the result 1 corresponds to the first expression,

the result 2 to the second, etc. Finally, evaluate the expression thus

selected to obtain the value of the complete case expression.

The arithmetic expression of the case clause mst be of type inte-

ger. If there exists no expression corresponding to its value, the execu-

tion will terminate with an alarm, The types of the individual expres-

sions of the expression list mst be compatible. The type of the complete

case expression is the same as that of the constituents if these are all

alike, and real if both types integer and real occur.

7.14.4, Limitation.
The expression list may contain at most 34 expressions.

Te15e CASE STATEMENTS.

Tel5ele Syntax.
<ease statement> ::* <case cleuse> begin <statement list> end

estatement list> ::« <statement>|<statement list>; <statement>

The complete case statement may be written whereever a statement is ad-

mitted.

7.15. CASE STATEMENTS. 19

Tel5e2s Examples.

case k of begin q := s3 m := t - y3 go to v end
case t - u of begin P(u); — oo
~~ ease v of begin t :™ y3 y := Wii™ ps u i= r end;

s:=rob —

end
Tel5 ede Semantics.

A case statement is executed as follows, First the arithmetic ex-
pression of the case clause is evaluated and thereby selects one of the
statements of the statement list. Next, this statement is executed, Un-
less this execution defines its successor explicitly, the execution ther:
continues with the statement following the complete case statement.

If there exists no statement corresponding to the value of the ex-
pression of the case clause, the execution terminates with an alarm,

7154, Limitation.
The statement list may contain at most 34 statements.

7.16, GENERAL LIMITATIONS,

Gier Algol imposes a number of limitations caused by the finite size
of the tables used during compilation. However, with one exception these
limitations shall not be mentioned further here, partly because only very
exceptional programs are likely to exceed the capacity, partly because a-
larm messages during compilation will indicate when they are violated
(see appendix 3). The exception is the limitation that the number of
variables which are active simultaneously at any time during the execu-
tion of a program must be confined to about 650. This problem is discus-

sed in detail in section 11.2.
In machines equipped with the additional buffer store unit, the ele-

ments of arrays may be stored there, and the capacity will be about 4ooo
subseripted and 650 simple variables,

se
g

+ P
PE

ton
cn

et
 s

ts
apa

m

20 8, EXTERNAL MEDIA AND MACHINE CONFIGURATIONS.

8, EXTERNAL MEDIA AND MACHINE CCNFIGURATIONS,

8.1. STANDARD PROCEDURE: select.

At run time the selection of the data input and output medium ts
controlled partly by select-statements in the Algol text, partly by a
mask which may only be controlled by actions outside the realm of the Al-
gol text, in a manner which will not be described further here.

The select-statements correspond to a standard procedure with the

following heading:
integer procedure select(u); integer u;3
The action of select is assoclated with a machine instruction held in the
run-time administration, of the following form:

vy ilast-select +t mask
where mask ts 896 unless it has been changed by an action outside the Al-

gol program. The action of select may be described as follows:
select := last select;
last select := u3
execute the vy instruction;

The execution of the vy instruction assigns the value of last select,

properly masked, to the by-register. There is no check that the value of

u is sensible.
Two consequences of this action may be noted, First, if the mask is

unchanged, a modification of the contents of the by-register by direct

operator action, using the push-buttons of the control panel of the ma-

chine, will remain active until the next following call of select, while

it is not influenced by input or output statements. Second, if the mask
is changed, such modifications of the contents of the by-register may be

made insensitive to calis of select.
The significance of the bits of the by-register depends on the peri-

pheral units attached to the machine and therefore differs somewhat from
one machine to the other. A common arrangement is as follows:

by=value Meaning

0 Input from paper tape reader with stop on pari-
ty errors

1 Input from typewriter

3 Input from paper tape reader, no stop on parity

errors

8 Output on line printer

16 Output on typewriter

32 Output on paper tape punch

It is possible to select one input medium and several output media

in one operation, by calling select with the sum of the corresponding by-

values, Thus, for example, in order to select input from paper tape rea-

der and output on typewriter and on punch, we mst call select(51).

8.1. STANDARD PROCEDURE: select. 21

At first entry into the Algol program, last select and the by-regi-
ster are normally set to 35: input from paper tape, output to punch.

In general, the by-values appropriate to the particular machine in
which the program is operating may be obtained through a call of system
(cf. 8.2). In this way it is possible to write programs which accomodate
themselves in the particular machine environment. In programs written on-
ly for one machine, absolute by-values may of course be used without dif-
ficulty.

8.2, STANDARD PROCEDURE: system.

8.2.1. Implied procedure heading
procedure system(A); <type> array A;

8.2.2. Semantics.
Each call of system transfers an array of 40 elements, describing

the characteristics of the surrounding machine, to the array given as pa-
rameter, The first version of the form of this description is given in
appendix 4, Because of the possibility of so far unforseen extensions of
machines, this description may not remain complete in the future. The
form has been chosen in such a way that it leaves a considerable capacity
open for future extensions, without thereby making it necessary to modify

the existing conventions.
The array given as parameter mist have precisely 40 elements, other-

wise an execution alarm is called.

22 9. STANDARD OUTPUT PROCEDURES.

9. STANDARD OUTPUT PROCEDURES,

The standard output procedures serve to transfer the results of pro-

grams to external media, Upon transfer, the results mst always exist in

the form of strings of characters. These characters and their correspon-

ding internal, integer values are given in section 6.
It is common to all standard output procedures that the medium to

which output is made is controlled by calls of standard procedure select

(section 8.1). Another common feature is that a check sum of the output
characters is formed. This check sum is accessible to the programmer

through a standard procedure of the following description:

integer procedure check sum(u) 3 integer u$

egin check sum := character sum} character sum := u end;

This check sum is of limited utility, however, since 1t may be checked
only if the external medium is read by means of standard procedure lyn,
but not by any other input procedure or by the translator (ef. 7.1.4).

9.1. IDENTIFIERS AND MAIN CHARACTERISTICS,

Identifier Example, reference Effect

writechar writechar(49) procedure writechar outputs the
section 9,2 Character corresponding ‘to the va-

lue-of the parameter.

writecr writecr procedure writecr outputs one

section 9.3 CAR RET character.
writetext writetext(¢<FI=}) procedure writetext outputs a

section 9.4 Bering of symbols.
writeinteger writeinteger(procedure write integer outputs a

+pad.dda}, n) Value given as an integer, but with
section 9.6 a decimal point inserted in a spe-

ecified: location.

write write(+-dd.da}, q) procedure write outputs the values
section 9.7 or an arbitrary number of arithme-

tic expressions in a specified di-

git layout.

9.2. STANDARD PROCEDURE: writechar.

9.2.1.‘ Implied procedure heading
procedure writechar(u); integer u;

9.2.2. Examples.
writechar(49)
writechar(symbol - case)

9.2. STANDARD PROCEDURE: writechar. 23

9.2036 Semantics.

Each call of writechar causes the character corresponding to the va-
lue of the actual parameter to be output. The correspondence between the
integers and the characters is given in section 6.5. If the value of the
actual parameter is negative or larger than 127, the effect is undefined.

The UPPER CASE and LOWER CASE characters mst be output explicitly
where needed, Where writechar is called side by side with calls of write-
text, writeinteger, or write, it is important to note that these latter
will assume the output to be in lower case when a call is made and will
also leave it in lower case when the call is completed.

9.3. STANDARD PROCEDURE: writecr.

9e5e1- Implied procedure declaration
procedure writecr; writechar(64) ;

9 a2. Example

writecr 3

9.3.3. Semantics
The effect of the call is fully explained in section 9.3.1.

9.4, STANDARD PROCEDURE: writetext.

94.1. Implied procedure heading
procedure writetext(u); string u;

9.4.2, Examples
writetext({<alpha = });
writetext(formal string) }
writetext(string 4 10 6 10 6: 35 6 38 6 55 6 35 6 49) 5
writetext(If q then +<Yes} @lse F<noHJj

9.4.3. Semantics
Each call of writetext causes output of the characters of the proper

string resulting from the evaluation of the actual parameter, String va-
lues and expressions are described in section 7.7.2.

9.4.4, Variable strings.
Short strings may be manipulated as bit patterns in the form given

in section 7.7.2. When used as parameter to writetext the pattern must
be converted to string type with the aid of the operator string, see sec-
tion 7.7.

In order to allow also manipulation of long strings, the action of
procedure writetext is as follows: Whenever the procedure finds the cha-
racter value 15 in the string word, this is taken as a signal that a new
string word should be obtained through a repeated call of the actual pa-
rameter. To make use of this action, the programmer must write the actual
parameter so that a series of calls of it will deliver the successive
parts of the string to be output. Each part of the string mst have the
format of a short string, as given in section 7.7.2, except that bits

ek 9.4. STANDARD PROCEDURE: writetext.

O ~ 3 mst have the pattern 1111, i.e. decimal value 15. The output ter-
minates when the character value pattern 1010, i.e. decimal value 10, is
found,

As an illustration the following block causes the string packed in
character form into the successive elements of Boolean array TEXT[0:q] to
be output.

begin integer p;
eger procedure p step;

egin p step := p3 p = p+ 1 end;
Pp 33 0;
write text(string TEXT[p step])
ends;

The pacKing of characters into TEXT mst conform to the following general
pattern:

Bits 0-3 kung 10-15 16-21 22-27 28-33 34-39

TEXT[O] 15 no.6 no.5 no,4 no. no.2 no.
TExt[1] 15 no.12 no.11 no.10 no. no.8 no.7

TEXT[m] 10 Last characters, use 10 as filler

If by mistake the leading bits are neither 10 nor 15, the procedure
will output the corresponding character and exit.

925 LAYOUTS,

The standard procedures writeinteger and write, described in sec-
tions 9.6 and 9. T, \use bit patterns to control the form of the character
string representation of numbers, The bit patterns are values of type
Boolean, as discussed in section 7.7. For use with the output procedures
these values are usually most conveniently written in the form of lay-
outs, as described below.

95014 Syntax
<sign> ::5 <empty>| - [+ +
<exponent oor 233 te Sa|<exponent layout>d
<zeroes> 3:33 0 |<zeroes>0 | mesa | 0
<positions> ::= d | <positions>d | <Positions>, a
<O-positions> ::= <positions> | <O-positions>0| <O-positions>,0
<p-positions> ::= P[<positions> | pepeedtions> |p, <positions>
<p-0-positions> ::= <p~positions>|<p-0-positicns>0 |<p-0-positions>, | 0
<decimal layout> ::= <p-0-positions>|<p-0-positions>. <zeroes>|

<p~positions>.<D-positions>| -<O-positions>
<layout tail> ::= <decimal Jayout>|<decimal layout><exponent layout>
<layout st: t= <sign><Layout teib|,- <layout string>
<layout> ::= layout string>}
In this syntax BLANK and 2 may be used interchangeably.

9.5. LAYOUTS. 25

9.5.2. Examples
ad, a

= add00.0, Onda}

+p}
p22 pd d0,0+
222.°

9.5e3« Pattern representation of layouts

The ho-bit pattern representation of a layout may be derived from

the following rules:

Bits O =- 19 Representation of BLANKs: First, a 1 for each leading BLANK

of layout. Second, one 0. The following positions correspond

to the following character positions of the decimal layout

with the sign and BLANKs omitted. The pattern has 1 if the

corresponding layout position is followed by BLANK, other-

wise 0.

20 - 23 bd = number of significant digits, i.e. p and d}

ah. 2Th= - - digits before the point 4

28 - 29 fn = sign of number part (no sign =0, - 31, + #2, + = 3) 7
40 - 33 4 = number of digits after the point 7

3h p, 0 if not present, 1 if present 1
35 - 37 3 = number of digits in exponent 2

38 ~ 39 fe = sign of exponent (coded as fn) 7

In the following example, BLANKs in the bit pattern have no signifi-

cance other than to help the reader:

h
reo

b a s
rd cr ml

Layout string: yy tpdd, ddO.00, Oy-dd

Pattern: T0001 000001" 00000000 0101 0110 10 0011 1 010 01
db h fM ap s fe

9.5.4, Limitations.
Qniy such layout strings which may be represented by bit patterns,

as shown in section 9.5.3, are acceptable to the translator, Consequent-

ly, the following limitations mst be observed:

Within the decimal layout: The total number of symbols p and d mst

be < 153 the total-number of symbols p, d, and 0, written to the left of

the point mst be < 153; the total number of symbols 4 and 0 written to

the right of the point mst be < 153; the sum of the number of leading

BLANKs end the number of character positions from the first non-BLANK to

the rightmost character position preceding a BLANK, not counting BLANKs,

mist be < 19.
The number of symbols d in the exponent layout mst be <7.

 Reese

|
|

26 9.6. STANDARD PROCEDURE: write integer.

9.6. STANDARD PROCEDURE: write integer.

9.631. Implied procedure heading
procedure write integer(LAYOUT, EXPRESSION) ;
value LAYOUT; Boolean LAYOUT; integer EXPRESSICN;

9.6.2, Examples
writeinteger({-ddd.dda}, q-- t)
write integer(q A (v shift 16), K[i])

9.6.3. Semantics
Each call of write integer causes output of the value of the exprese

sion given as second parameter in a form controlled by the first parame-
ter. In order to achieve high speed, only some of the features of the
layout string (or, equivalently, the bit pattern) have an effect on the
form of output thus:

1) Exponent layouts have no effect and should be omitted,
2) Zeroes should not be used,
3) Following the leading BLANKs the layout string should continue

with either p or - and no p. Thus the signs + and + cannot be
used, 7

The layout should be regarded as a picture of the final output character
string, which will have one position for each position written in the
layout string. The digits of the value of the EXPRESSION will be placed
in the p and d positions, aligned such that mits will be placed in the
rightmost position of the layout string. BLANKs and point will be inser-
ted where they occur in the layout string. If the layout string contains
- (minus) the first position to the left of the first digit printed will
be printed as - if the value of the EXPRESSION is negative, otherwise as
BLANK, The treatment of leading zeroes of the numeral, i.e. of the digit
positions to the left of the first digit which is different from zero, is
controlled by the presence of p and point in the layout string. If p is
present, the leftmost zeroes are always output as zeroes, If p is not
present, leftmost zeroes until, but not including, the first position to
the left of the point are output as BLANK, while any following zeroes are
output as zero.

9.6.4, Alarm printing
By alarm printing is meant that the value of the EXPRESSION cannot

be accomodated in the form described by the layout string. If the value
is too large the output will correspond to a layout obtained by adding
the sufficient number of des to the left of the point or first d of the
layout string.

9.6.5. Limitations and other possibilities
The procedure will never output a numeral of more than 12 charac-

ters. If the layout has more than 12 p-s and d-s, the effect will be as
though some of the d-s had not been present.

If the layout does not satisfy the above mentioned limitations some
output will be produced, in a form which will not be deseribed in full
here. We only mention that if a negative number is output with a layout
without a minus sign, the output has the wrong sign.

9.6, STANDARD PROCEDURE: write integer. 27

9.6.6. Examples of layouts and output
In order to indicate the exact output, commas are inserted immedia-

tely preceding and following each numeral.

Number +pdd, dda} tans Oa aa}
0 000-000, , --000.00% 00,
1 000 001, 2 000.00 O1,
23456 *023 456, > 002.34 56,
3354Nn5 55 9333 44h555,, 333.4e 4555,

Number #44 aaah om -ddd,dap $,,,-dd.da}
QO 50007 00, , 0.00,
1 ; > .000 01, , 0. 01,
-23h > 23h" 2 -.002 3h, > “2. 3h,

97+ STANDARD PROCEDURE: write.

9.7e1. Implied procedure heading
procedure write(LAYOUT, EXPR1, EXPR2, ...)3
value LAYOUT, EXPRi, EXPR2, .. 3
Boolean LAYOUT; real EXPR1, EXPR2, «ee. 3
The call may have any number of expressions as parameters.

9.7.2. Examples.
write(<ddd.00}, P)
write(¢,,,-dy-dat, eps, delta, q/16)
write(layO A (m shift 16) A (m shift 12), p - a)

9 eT ede Semantics

Each call of write causes output of ‘the numerals representing the
values of the second and following parameters, in a form defined by the
value of LAYOUT. In what follows this form is described in terms of the
layout string. If the LAYOUT is given as a pattern, the form of output is
defined through the correspondence between a layout and a pattern given

in section 9.5.
The layout string gives a symbolic representation of digits, blanks,

and special characters of the numeral produced as output. Indeed, except
for alarm printing, the numeral will have exactly the same number of cha-
racters as is present in the layout. The symbols of the layout have the
following significance:

9e7e3e14 Sign. The four possible signs signify:
Empty. ‘The number is supposed to be positive. No sign will be oute

put. A negative number causes alarm printing (section 9.7.4).
- (minus). A sign will be output, using BLANK for positive, and -

for negative numbers, It will appear as the first or second character to
the left of the first digit or the decimal point, with at most a layout

BLANK in between.
+ (plus). A sign will be output, us + for positive, and - for ne-

gative numbers, placed as explained for - (minus).
+ (plus minus). Using + for positive and - for negative numbers, the

sign Will be output as the first character following leading BLANKs.

28 9.7. STANDARD PROCEDURE: write.

907.302. Digits. Letters d and p represent digits. Letter p may only ap-

pear as the first character following the sign, The total number of let-

ters d and p gives the maximum number of significant digits in the nume-

ral, Small numbers will appear with less than this number of significant

digits. If p is used all leading zeroes of the numeral will be output as

0. Otherwise such leading zeroes will be printed as O only in the units’

position and in positions to the right of the decimal point, while in po-

sitions to the left of the units’ they will be output as BLANK.

9.70303. Zeroes. Zeroes may appear at the end of a decimal layout. They

influence the representation of the number in the following manner. Ifm

zeroes are present at the end of the decimal layout, the exponent output

will be exactly divisible by mt1,4, For this to be possible at the same

time as the position of the decimél point within the complete numeral is

kept fixed, the significant digits are allowed to move to the right,

using the zero-positions, to an extent depending on the magnitude of the

number, If no exponent layout is included the exponent 0 is understood

and the rule holds unchanged.

9.70304. BLANKs. BLANK will appear in the numeral in all positions where

the layout string has the character BLANK or 2°

9.70305. Decimal point. The decimal point will always be printed in a

fixed position within the numeral. If the numeral includes digits to the

right of the point, it will appear as . otherwise as BLANK,

9.70306. Seale factor, An exponent layout will give rise to output of a

scale factor in the numeral. The character » will appear immediately be-

fore ‘the exponent sign. If the scale factor is unity, the whole scale

factor will be replaced by BLANKs, Note that the layout string cannot

contain an exponent layout without a decimal layout.

9.70307. Round off. Before output, all mmbers will be correctly rounded

off to the number of significant digits given in the numeral.

9.74. Alarm printing.

By alarm printing is meant that the numeral will have more positions

than the layout string. Alarm printing will occur as follows:

9.T7ete1. Negative number output with layout having empty sign. The cor-

rect - will be inserted, using one extra position.

9.7e4e2. Number too large for layout. In this case the layout actually

used is derived from the one given as parameter by inserting an exponent

layout, or by increasing the number of exponent digits.

9.7.5 Examples of layouts and output

In order to indicate the exact output, commas are inserted imme-

diately preceding and following -each numeral.

9.7. STANDARD PROCEDURE: write.

€ pddd ddof + +d ddd.ad} { +d ddd.ddd a} pad ddd}

» © 000 000, » + 0,00, > +0.000 0, ,000 000,
» © 000 000, » + 0.00, > 40,001 2, ,000 000,
> Oo opo 000, » + 0.12, > +0.123 5, ,000 000,
» © O00 001, > + 1.23, > +1,234 6, ,000 001,
» 09 000 012, > + 12.35, ’ +12,345 7, ,000 012,
» © 000 123, > + 123,46, » + 123.456 8, 3000 125,
>» 0 001 235, > +1 234.57, > +1 234.567 9, ,001 235,
>» 1 2354 570p3, , +1 234.5796, , +1 254.567 9n6, ,123 U57y4,
» 70012 546, 3 , -1 254.57y1, » 1 234.567 Onl, ,-012 3h6,

fnddd.d0Oyptat ¢ddd.d0000,ddd$ ftpdd.ddy-d} f+daddoo,tat

0.000 , > 0.00000 ; ,+000,00 , > Oo ,
1-255n-3, ? 123.5 rd, atl 23.46y-5, at 1235-6,

123.5 3, » 0.1235 , 9712316 y=3, »+123500y-6,
12235, > 16235 > 24123. 46y=2, ot 1235y-3,

12.35 > > 12.35 > 9+123.46y=1, pt 12350y-3,
123.5 > 7123.5 ; 2t125.46 , 7+123500y-3,
162353, » 0.01235 45, 9+123.46y 1, >+ 1235) =,
12235y19, » 0.1235 10, >+123.46n 7, pt 1235p+6,

-12.35 wt, 5 0012355, 123 ey, 2 »- 12350,
12.35 ytl5, 2 12.35 wl5> #123.Nby thy 34+ 12350p+12, we

e
e

e
e

e
e

U
O

30 10. STANDARD INPUT PROCEDURES.

10. STANDARD INPUT PROCEDURES,

For input of data from external media, the system provides six dif-
ferent procedures. One of them, kbon, inputs a single bit, another, lyn,
reads one single character. Three others, read integer, read real, and
read general, are numeral-reading procedures, i.e. they include conver-
sion of numerals, i.e. character strings containing digits and other spe-
cial characters and representing numbers, to the internal representation
of numbers. The last of the six, read string, reads the input as a string
of characters. The set of numeral-reading procedures and read string we

shall refer to as the bulk reading procedures.

10.1. IDENTIFIERS AND MAIN CHARACTERISTICS.

Identifier Example, reference Effect

kbon if kbon then Boolean procedure kbon supplies the
Béction TO.2 Current value of the manually ope-

rated KB register.

lyn k :3 lyn integer procedure lyn reads the
Section 10.4 ext character trom the input medi-

um
char char := 32 integer char, a standard variable,

Section 10.7 Will be used as the first input
character at every call of read in-
teger, read real, read general, and
read string. At completion of the
call of either of these procedures
it contains the last character in-

put from the medium,
read integer p := read integer integer procedure read integer has

Section 10.10 The next Integer numeral appearing
on the input medium as its value.

read real r 33 read real real procedure read real has the
Section 10.11 next real numeral appearing on the

input medium as its value,
read general read general(A,b,n) integer procedure read general in-

Section 10.12 puts a series of numerals and deli-
miters and assigns their value to
successive elements of an array.

read string read string(B,q,n) integer procedure read string in-
Section 10.13 puts a string of characters and

packs it into successive elements
of an array.

10.2. STANDARD PROCEDURE: kbon.

10.2.1. Implied procedure heading
Boolean procedure kbon};

10.2, STANDARD PROCEDURE: kbon. 31

10.2.2, Example
if kbon then go to PRINT

10.2.3. Semantics
The value of kbon is given by the current state of the manually con-

trolled KB register of the machine; it is true when KB is on, otherwise
false.

10.3. INPUT MEDIUM AND CHARACTER REPRESENTATION,

The input medium activated by the procedures lyn, read integer, read
real, read general, and read string, is controlled with the aid of the
standard procedure select (section 8.1).

These same five standard procedures commnicate characters, Inter.
nally, characters are represented by integers, The representation of
printing characters received from external media is given in section 6.5.
More generally, the integer representation of a hole combination may be
obtained by first adding the integers corresponding to those hole posi-
tions which are punched, according to the following picture:

Paper tape positions Representation

00 KX «eee eee 64
00 X «+e e-- = 32
C0O0OX «exes --e 16

0° OX nme em ew ww parity hole, see below
O0O0X «eee won

ee @ © © © © © © we smali guide hole, always punched

90000 X ep eew een ee iT

oo°0 X we we ee eee 2
00 XK «mee nnn 1

To this sum mst be added 512 if the hole pattern has even parity, i.e.
if it has an even number of holes, The representations of the five pat-
terns given as examples are: 4, 6, 639, 127, and 24. Qn some machines the
value of ALL HOLES comes out as 127, however (see appendix 4),

10.4, STANDARD PROCEDURE: lyn.

10.4.1. Implied procedure heading
integer procedure lyn;

10.4.2, Examples
symbol := lyn
w t= table[lyn + case]

32 10.4, STANDARD PROCEDURE: lyn.

10.4.3, Semantics
Each call of lyn causes the next character in the external medium to

be read and yields the internal representation of the character as Yre-

sult. <A call of lyn has no influence on the value of char, as described

in section 10.7.

10.5. LOWER AND UPPER CASE.

Before it is used by one of the numeral-reading procedures, a cha-

racter is often combined with the last LOWER CASE or UPPER CASE character

encountered ih the input string, to form a character-with-case. This is

obvious in the case of printing characters which appear differently in

the two cases, as shown in section 6.5. Where it is not obvious we shall

in the following indicate the treatment of case explicitly.

10.6. BLIND CHARACTERS.

The numeral-reading procedures completely ignore the following cha-

racters whenever they appear in the input, irrespective of the case:

Name Internal representation Hole pattern
BLANK 0 » Ge sy
TAPE FEED 63 7 0000,000,
ALL HOLES 127 or 639 700000,000,
DUMMY 127 y00O 0,000,

The same holds for read string, except that it does not ignore BLANK.

10.7» STANDARD INTEGER: char.

The standard integer char serves to make the last character read in

any call of one of the bulk reading procedures available to the user.

Thus, any of these procedures will assign the value corresponding to the

last character read from the external medium to it. In addition, every

call of one of these procedures will use the value of char as the first

character read in, before any characters supplied from the external me-

dium. ‘Thus, if the value of char is not otherwise changed, the last cha~

racter read by one of these procedures will be read once more by the next

bulk reading procedure called.
Apart from this coupling to the bulk reading procedures, char may be

regarded as a simple variable of type integer. Thus it may be assigned

to, as for example:
char := 49

and its current value may be used in expressions.

The value of char assigned by a bulk reading procedure includes the

case as follows:
value of: char = representation-of character +

(if lower case then 0 else 128)
The value of char used as the first character of input is obtained from

the actual value by replacing the first 30 bits of its binary representa-

10.7. STANDARD INTEGER: char. 33

ion by zeros. Before every execution of a program, char is initialized

to 0.
The case indication contained in the value of char when used by a

pulk reading procedure, will act like a case character read from the in-
put medium, It is therefore possible that the following characters from
the input medium will not be read in their original case context. Qn the
other hand, this feature will enable the user to take input from alter-
nate media, without any risk that the case situation of any of them is
lost. For this purpose the user must record the value of char before eve-
ry selection of another medium and assign that value to char when the
original medium is selected the next time, Another use of the feature is
to keep the correct case when alternating between input by means of lyn

and the bulk reading procedures.

10.8, EXIT CONDITIONS.

The bulk reading procedures will accept any character string from
the input medium, without ever calling an alarm. Uniess the input medium
is exhausted, the procedures will return from the call with information
about the character string read and about the conditions causing the

exit. .

10.9. NUMERAL RECOGNITION AND OVERFLOW,

The three numeral-reading procedures all conform to the following
common rules about the recognition of a mmeral in the input string:

1) Blind characters are ignored completely in all contexts.
2) To be recognized as a numeral, a section of the input string mst

contain at least one digit.

3) Of the characters preceding the first digit, either none, one,

two, or three, will be regarded as part of the numeral, depending on the

particular procedure and the context.
kk) The numeral usually comprises a sequence of digits and other cha-

racters, according to syntactic rules given for each procedure, It is
usually terminated by a non-digit in the input, which acts as terminator
of the numeral. The further action taken on the terminator depends on the

procedure,
5) Exceptional termination of a numeral occurs whenever the sequence

of characters starting with leading digit, after removal of at most one
decimal point, forms an integer numeral in excess of

2439 - 1 = 549 755 813 887
In this case the last incoming digit is said to cause overflow. The reac-
tion of the procedures is to remove that last digit from the numeral and

to treat the digit as the terminator.

10.10. STANDARD PROCEDURE: read integer.

10.1041. Implied proceduré heading
integer procedure read integer;

34 10.10, STANDARD PROCEDURE: read integer.

10.10.2, Examples
p :3 read integer;

s := q[read integer + 4];

10.10.3. Semantics
This procedure is accomodated on a single program segment and will

read at very high speed. Each time it is called it will start reading
from the external medium, according to the rules given in sections 10.3,
10.5, 10.6, 10.8, and 10.9 and yield the number corresponding to the next
following numeral in the input as result. The syntax and interpretation
of the numeral in the input is as follows:

1) If the first character preceding the first digit of the numeral
is minus (internal representation 32) the number is negative, otherwise

it is positive.
2) Excepting overflow, the numeral includes the following digits, up

to the first following non-digit, which is the terminator, The numeral is
interpreted as an ordinary decimal integer.

As an example, the results of reading ‘the following input string:

pop = § 27, -43-888+555- 333.497 222 333 Wb 888 3333
by means of several calls of read integer, with no intervening assign-

ments to char, are as follows:

Value of read integer char

First call 2T 2T
Second call a4 32
Third call -888 160
Fourth call 555 32
Fifth call =333 59
Sixth call O7 222 333 hh 8
Seventh call 888 333 133

10.11. STANDARD PROCEDURE: read real.

10.1141. -Implied procedure heading
real procedure read real;

10.11.22, Example
r 2:3 read real/33;

10.11.43. Semantics
Of the three numeral-reading procedures, only read real will recog-

nize exponents as parts of numerals. It requires two program segments and

is slower in operation than read integer. It operates like read integer,

but the syntax and interpretation of the numeral in the input is as fol-
lows: .

1) The first part of the numeral will contain a digit, which is in-
terpreted according to rule 2 below. The reading continues as long as the

characters encountered do not conflict with the syntax of the left end of

a number in the sense of Algol 60. In general, the numeral will thus have

digits in the integral, the fractional, and the exponent part, correspon-

ding to before the decimal point, after the decimal point, and after the

10.11. STANDARD PROCEDURE: read real.

exponent ten, and is

Where the resulting numeral is

35

interpreted according to the rules of Algol 60.
an incomplete, left end of an Algol 60

number as for example 2.a, or 7y-q, the value ylelded by read real corre-
sponds to the numeral obtained by inserting a zero at the right end, thus
in the two examples: 2,.0a and 7y-Oq.
the numeral interpreted by read real are given below.

2) The interpretation of the first digit of the numeral depends on
the preceding one, two, or three, characters, as follows:

Examples of numerals in input and

Third Second First First digit belongs in:
preceding preceding preceding

- b + or - exponent of negative number
not minus » + or - exponent of positive number
anything - » exponent of negative number
anything not minus » exponent of positive number
anything - ° fractional of negative number
anything not minus ° fractional of positive number
anything not » - integral of negative number
anything anything not - or. or y integral of positive number

3) The digits before the exponent may cause the usual overflow reac«
tion of section 10.9.

4) If the absolute value of the exponent is less than 511, but the
resulting number is outside of the range of reals, the program execution
is terminated with a spill-alarm.

5) If the absolute value of the exponent is greater than 511 the
procedure will yield a wrong result or call the spill-alarm, depending on
the numeral.

These rules are illustrated by the results of reading the following
input string:

3456901 3-7 yt lyt8z .9vp-2w=p2s-.5t
12=3 USte + yO2tesyt1 ° ope Btd 26 Dy yc

wrtinetden=n] p-fp-2-y- 1m

by means of several calls of read real. The results and corresponding va-
lues of char are:

Numeral char Numeral char

34.56y01 133 -3.45 160
“Tyt1 ah 02 160
8 25 Syt 59
9 21 22 59
p*2 22 03 155
- ye 1 8 =e 4 52

ned 19 -yl 155
12 32 po2 32

=p] 36

26 10.12. STANDARD PROCEDURE: read general.

10.12. STANDARD PROCEDURE: read general.

10412.1. Implied: procedure heading

integer procedure read general(R, SKIP AND EXIT, ELEMENT) $

Value OKIP AND EXIT; <type> array R;
Boolean SKIP AND EXIT; integer ELEMENT;

10.12.2. Example
w t= read general(I, 3072732 2764317535; a)

10.12.34 Semantics
The purpose of this procedure is to provide fast input of complica-

ted data formats by making it possible for the procedure to read a fairly

long strech of characters without the need to make a new procedure call

every few characters, at the same time as it assigns all of the informa-

tion of the input string to the elements of an array in the form of a

mixture of numbers and characters.

These needs can only be satisfied by a rather complicated procedure.

It is believed, however, that the procedure will be useful for a wide

range of needs, from simple input of arrays to input of flexible charac-

ter strings for general data processing.

The action of the procedure may be described briefly as follows: ,In

@ normal call the procedure will read a series of numerals and the cha-

racters appearing between them. The numerals will be converted to inter-

nal representation and assigned to elements of an array. The intervening

characters will be treated as follows: Apart from blind characters every

character which immediately follows a numeral, but is not part of it,

will act as a terminator of that numeral, Furthermore all such charac-

ters, whether they act as terminators or not, will be processed as fol-

lows: Two particular characters, specified by the user, will be skipped.

Two other characters, also specified by the user, will cause exit from

the procedure. All other characters will be recorded in between the num-

pers in the array.
Exit from the procedure will take place either (1) when one of the

exit characters is found, or (2) when the array is full. ‘Information

about the exit situation is available at the return from the procedure

eall.
In terms of the notation of section 10.12.1 the detailed conventions

are as follows:

R is the array into which numbers and characters are read. Each num-

ber and each character occupies one element of R. The representations are

as follows:
Number into real array: as a real number.

Number into integer or boolean array: as an integer number.

Character: Bit pattern having two integer parts:

Bits 10 to 19: Character with case, as the value of char

- 28 - 39: Pointer to the next following element holding a cha-

racter, or 0 if there are no more.

SKIP AND EXIT is a bit pattern defining four particular characters,

denoted as follows:

10.12. STANDARD PROCEDURE: read general. 37

Position Character

1- 9 SKIP 1
11 = 19 SKIP 2

21 - & EXIT 1

31 = 39 EXIT 2

The 9 bits describing a character consist of a group of 2 bits and one of

7 bits. The leading 2-bit group of each character description indicates

the case to be associated with the character, as follows:

2-bit value Case of character

Lower

Upper
Lower or upper

None existing, i.e. ignore description

w
n

Oo

The 7-bit group, if interpreted as a binary integer, gives the internal

representation of the character, as defined in section 10.3.

The effect of the SKIP AND EXIT parameter is as follows: None of the

characters described by the parameter will ever be read into elements of

the array R. The two SKIP characters will simply be skipped, while the

two EXTT characters will cause exit from the procedure. All of the four

characters will, however, act as normal terminators of numerals.

The effect of setting one of the SKIP AND EXIT characters to be one

of the characters: <digit>|.|-|+ depends in a complicated manner on the

circumstances and should be avoided.

ELEMENT at the call of the procedure mmst be 0 or point to the last

used element of array R. The procedure will start assigning a number or a

character to the element at this starting value +1. At exit from the pro-

cedure, ELEMENT will point to ithe last element to which the procedure has

assigned, The values of ELEMENT correspond to a simple numbering of the

elements of R from 1 and upwards, independent of the dimensions or sub-

seript bounds of the array.

Upon exit the situation is described by the values of char and ELE-

MENT, and by the value of the function designator:

Value of Situation at exit

read general Characters are char is an Array is

stored EXIT char. full

-1 No . No yes, or ELEMENT is <0

0 Nor Yes Maybe

>0 Yes, value Maybe Maybe

points to the

first

Note particularly that if the exit is caused by EXIT 1 or EXIT 2,

the exit character is found in char and may cause another exit inmediate-

ly at the first following call.

Further details of the conventions are as follows:

38 10.12. STANDARD PROCEDURE: read general.

10.12.44. Numbering of array elements.
The elements of R are pointed to in three ways: (1) by values of

read general, (2) by bits 28 to 39 of character words, and (3) by values
of ELEMENT, These pointers all refer to a numbering of the elements from
1 and up, irrespective of the subscript bounds and dimensions of the ar-
ray. The number of each element in the general case of an array
A[L1:U1, L2:U2, ... IntUn] is defined as that number which Would be as-
signed to the element by the following process:

number := 13

for 11 := L1 step 1 until U1 do
for 12 := L2 step 1 until ve do

for in := Ln step 1 until Un do
~~ pegin ALIT, 12, V0.0, in] := number;

number := number + 1

end

10.12.5. Numeral of type integer
When the type of the array R is integer or Boolean, the numerals re-

cogized in the input are the same aS those recognized by the procedure
read integer (cf. section 10.10).

10.12.6. Numeral of type real
In the case of real array R, a numeral in the input consists of a

signed, decimal number, but without exponent. The numeral must contain at
least one digit. The first digit is interpreted as follows:

Characters preceding first digit Interpretation of first digit
Second First

not minus . Fractional of positive
- . Fractional of negative

enything - Integral of negative
anything not . or = Integral of positive

Following a fractional first digit the reading continues wntil the first
non-digit is found, Following an integral first digit the reading conti-
nues until the first non-digit is found. If this is a decimal point, the
reading continues in the fractional mode, otherwise the numeral is termi-
nated. In either mode, the digit causing overflow will be treated as a

terminator.

10.12.7. Special treatment of point, plus and minus
Where the characters point, plus and minus do not form a part of a

numeral, they act as terminators and are stored in the array R like other
characters, with the additional special rule that the two character pairs
+, and -, are treated as distinct characters having values derived by ad-
ding 256 to the values, corresponding to + and -, ‘i.e.

+, corresponds to 416
-. - - 288

10.12. STANDARD PROCEDURE: read general. 39

10.12.8. Character test sequence
The behaviour of the procedure in singular cases, such as setting a

SKIP or an EXIT character to be a blind character, depends on the arran-
gement of the sequence of tests applied to each character taken from the
input. Questions of this sort may be answered on the basis of the follow-

ing character test sequence.

Test Class of Action
number character
1 Part of numeral Number conversion; go to next character;
2 SKIP 1 or 2 Terminator; go-to next character}
3 EXIT 1 or 2 Terminators go-to exit action
u Upper or Lower case Record ¢ e@3; go to next character
5 Blind go to next character
6 All others Terminator; Store character in array3

go to next character

The action of the procedure Terminator used in this description mst be
empty when there is no numeral waiting to be terminated. Again the action
of Number conversion includes the termination of a numeral by point,
plus, or minus, as described above.

As one useful conclusion which may be drawn from this sequence, it
may be mentioned that the normally blind BLANK will be active as SKIP or

EXIT character.

10.12.9. Illustrations
Let us choose:

SKIP 1 ’
SKIP 2 aand A
EXIT 1 not used

EXIT 2 F

and let us read into
real array Q[22:27]

As the first example, [et the program be as follows:
ELEMENT := 03

rg t= read general(Q, 307 273 27493370317 54, ELEMENT)
and further let the input string be:

22.0, 23.2, 24.3, 25a A 26, 27,
then the situation after the call will be:
ELEMENT = 6, rg = -1, char = 27, the elements of Q = 22.0, 23.2, 24.3,
25.0, 26.0, 27.0.

Second example:
Program: ELEMENT := 33
rg := read general(Q 307 2732749337031 7 54, ELEMENT)
Input string: ~ 7 mm

23., «30AF
After call: ELEMENT = 5, rg = 0, char = 182 (=F). The elements of Q are

unaltered, except for Q[25] = 23.0 and Q[26] = 0.38,

ho 10.12. STANDARD PROCEDURE: read general.

Third example:
Program as in the first example.
Input string:

2, ef -» AL =. 3 BD

The situation after exit:

Variable Value Comment

ELEMENT 6 Q[27], the last element read into

rE 3 Q{2hj, the first character

char 180 D

Qf22] 2.0 1
ales) 0.7 2
afek] 288, 4 3 Character -. and ref. to Q[25]
af25] 54, 6 4 - f- - - 27]
Ql26] -0.3 5
ate7] 178, 0 6 Character B, the last one

10.13. STANDARD PROCEDURE: read string.

10.13.12: Implied: procedure heading.

integer procedure read string(S, START AND EXIT, ELEMENT) 3

Value START AND EXIT; <type> array S3
Boolean START AND EXIT; integer ELEMENT;

10.15.2. Example.
if boolean read string(A,10 384 10 17 10 364 10 145,n) then Q

10.13.3. Semantics.
The procedure reads a sequence of characters and records them as one

string into an array. All characters in the input are skipped until one

of two particular characters, specified by the user, is found, Two other

characters, also specified by the user, will cause exit from the proce-

dure. Except for one special situation the procedure will start by assu-

ming the input to be in lower case.

The detailed conventions are as follows:

START AND EXIT is a bit pattern defining the four particular characters

mentioned above. The four characters, denoted START 1, START 2, EXIT 1

and EXIT 2 are packed in the same manner as in the parameter

SKIP AND EXIT in the procedure read general (cf. section 10.12.3). Apart

from two situations all the characters in the input are skipped until a

character, defined by START 1 or START 2 is found. The two exceptions

are:
1. The 2-bit groups of START 1 and START 2, defining the case to be

associated with the characters, have both the value 3.

2, The value of the parameter ELEMENT is on entry equal to the num

ber of elements of the array S. The procedure will. set ELEMENT to zero

and assume the input to be in opposite case of that associated with the

standard variable char.
The following characters in the input are treated as follows:

1. Each character is tested against EXIT 1 and EXIT 2,

2, TAPEFEED and ALL HOLES are ignored.

10.13. STANDARD PROCEDURE: read string. My

3. The internal value of CARRET is changed to 63, whereas characters
having the value > 64 will be treated modulo 64.

., The characters will be packed into successive elements of the ar-
ray S, each element containing 6 characters (cf. section 7.7.2).

5. The characters UPPER CASE and LOWER CASE appear as in the input,
except that superfluous case shifts are removed,

Exit from the procedure will take place either when one of the cha-
racters EXIT 1 and EXIT 2 is found or when the array is full. If one of
the exit characters is found the actions are:

1. If the last case packed is an UPPER CASE, a LOWER CASE is packed
as the next character. If this is impossible because the array is full,
exit is done with the function designator having the value -1.

2, Bits 0-3 and the remaining 6-bit groups in the current element of
the array are filled with characters having the value 10, and exit takes
place with the function designator having the value 0.

If an exit character is not found before the array is full the func-
tion designator is set to -1, At exit from the procedure, ELEMENT will
point to the last element of the array S to which the procedure has as-
signed, The numbering of array elements is as for the standard procedure
read general (cf. section 10.12.4).

10.13.4. Illustration.
The following statements put a text terminated by END CODE on the

backing store,
placet=n:=char:=03 r:=-13

for place:=place+1 while place<free size Ar=-1 do
“begin r:=read string(A, 30 384710 268,n); put(A,Tree area, ends

place

he 11. STORAGE ADMINISTRATION DURING PROGRAM EXECUTION

11. STORAGE ADMINISTRATICN DURING PROGRAM EXECUTION

In the present chapter we shall discuss the handling of the non-ho-
mogeneous store of Gier, as this takes place during the execution of Gler
Algol programs, and the way this may be controlled by the programmer. The
discussion is complicated by the fact that several different Gier confi-

gurations exist.

11.1. GIER STORAGE UNITS,

The storage units under consideration are:

1. The core store, or working store, of 1024 words.
2. The drum, or drums, consisting of 1, 2, or 3 drums having each a

capacity of 320 tracks, each of 40 words.
3. The buffer store, of 4096 words.
4, The disk file. This may either replace the drum and then has 9600

blocks of 40 words, or it may commmicate only with the buffer store, ha-

ving then 1200 blocks of 400 words.
5. Magnetic tape units, commmicating with the buffer store in

blocks of up to 4096 words.
6. Caroussel unit, communicating with the buffer store in blocks of

512 words,
The machine always has the core store and a drum or a disk file re-

placing it, All other storage units are optional.
Information about the machine configuration actually at hand may be

obtained by a call of system (cf. section 8.2 and appendix 4).

11.2. STORAGE OF VARIABLES,

Gier Algol 4 includes ‘the option to have the elements of arrays
stored either in the core store or in the buffer store, if this is avat-
lable, Other variables of the Algol program and certain administrative
parameters will be stored in the core store, The reservation of core and
puffer storage for a variable is made at the time of entry into the block
in the head of which the variable is declared. Similarly reservations for
a block are cancelled at the time of the corresponding exit from the
block, For this reason the space reserved for the variables will usually
change from time to time during the execution of a program, being at eve-
ry moment equal to ‘the sum of the reservations made by ‘those blocks and

procedure bodies which are active.
The reservations made at a block entry may be derived from the de-

clarations (including the implicit ones for local labels) of the block,
as follows:

11.2. STORAGE OF VARIABLES. 43

Number of locations reserved

Simple variables, local labels, One in core store for each
local switches, local procedures

Array segment In core store: number of array identi-
fiers + 1+ number of subscripts. In
core or buffer store: total number of
variables

Working location Depends on structure of program, usual-

ly only a few in core store

Block, procedure body In core store: 2 if normal block, 3 if
procedure, 4 if type procedure

Formal parameter In core store: 2 if the corresponding

actual is a constant, otherwise 1.

The total number of core store locations available for reservations
is about 650, the rest being used for program, For reasons given below it
usually is unwise to reserve that many locations in the core store, The.
full capacity of the buffer store, 4096 words, may be used for array ele-
ments, wumless part of it is reserved for systems added to the basic Gier
Algol 4,

11.3. STORAGE OF PROGRAM.

During program execution, the translated Algol program is permanent-
ly stored on the drum in the form of program segments, each of one track.
The part of the program being executed is also present in the core store,
The transfer of program segments from the drum to the core store is
handled by a fully automatic administration. A detailled description of
this administration is found in P, Naur: The performance of a System for
Automatic Segmentation of Programs Within an Algol Compiler (Gier Algol) >
Comm, ACM 8 (1965), 671 - 677. In this system an attempt is made to al-
ways make the best use of that part of the core store which is not cur-
rently reserved for variables. This section of the core store will be
divided into program track places, each of 41 locations, The available
places will be used for those program tracks which are required as the
program execution develops. Whenever the program execution calls for a
transfer to another track it is investigated whether the track is avai-
lable in the core store, If it is not, it is transferred to that track
place which for the longest time has been left unused. Consequently the
program segments comprising a loop which is short enough to be held in
the available core store will only be transferred from the drum when the
loop is entered, and not during subsequent repetitions.

The transfer of a drum track to the core store requires 20 millise-
conds, and a corresponding transfer from the disk file between 17 and 75
milliseconds, In contrast the transfer of control to a track which is al-
ready present in the core store takes between 0.7 and 1.6 milliseconds.
It is therefore clear that the program execution time may become highly

|

Ah 11.3. STORAGE GF THE PROGRAM.

dependent on whether the more active loops of the program may be held in

their entirely in the core store or not. But this again depends on how

mich storage is reserved for variables. We can therefore state the two

rules for the programmer who wishes to achieve high speed of execution:

1. MAKE THE TEXT OF THE MOST ACTIVE LOGPS SHORT

2, AVOLD OVERLOADING THE CORE STORE WITH VARIABLES

As a crude guide, keep the number of reserved locations below 500. This

may be achieved by using the backing store for data.

In estimating the length of program loops the segments used in cal-

ling standard procedures mst be included, To enable this to be done,

here is the list of the contents of the tracks of the basic standard pro-

cedure library. Where a standard procedure is listed more than once, it

uses more than one track.

Standard procedure

library track Procedures

5 read integer, read real

6 read real
7-8 read string

9-11 read general

12 write integer

13 = 15 write

16 write, writetext

17 cos, sin, sqrt

18 aretan, sign
19 ln, system

20 exp, checksum

21 put, get

22 where

23 where, reserve, cancel

2h reserve, cancel
25 reserve

26 il, us

As a further aid to programmers who wish to make sure that only a

small part of the execution time is spent on transfers of segments from

the drum, the system includes a standard

integer tracks transferred;

at every Grum trensfer of a program segment this is increased by unity.

The initial value at program entry is zero.

11.4, LOOP STORAGE CONTROL.

To enable the programmer to avoid that short, frequently executed

loops are placed across a segment limit by the translator, thereby giving

rise to a large number of segment transitions with a resulting increase

of execution time, the system allows the programmer to indicate that par-

ticular loops should be placed exclusively on one segment. The loops to

be treated in this way mst be written as for statements with a for

clause containing either just one for list element, or two elements of

the form

11.4, LOOP STORAGE CONTROL. ks

<arithmetic expression> , <sarithmetic expression> while
<Boolean expression>

The statement following the for clause mst be enclosed in the begin-~end
pair. To assure storage on only one segment, the programmer must write
for as the last symbol of the comment following the end. According to Al-
gol 60 this will be part of the comment, but it will influence the sto-
rage in Gier Algol 4.

The use of this facility will sometimes cause that part of a segment

is left wmused by the translator, and so will increase the total size of
the translated program. For this reason it should only be used on such
short loops which contribute significantly to the execution time.

Example:
for 1-:= 1 step 1 until N do

begin Sum := Sum + A[TTA2 end fors
Tf The symbol for is found following end in any other context, it

wlll give rise to an alarm during translation.

11.5. DATA STORAGE ON BACKING STORE,

Use of the drum, the disk file, or other auxiliary stores, for sto-
rage of data, requires that the user includes explicit calls of certain

standard procedures. Here are the identifiers and main characteristics of

these procedures,

Identifier Example, reference

reserve reserve({<jj34}, 8)
section 11.7

where q:=where(¢<jj344, W)
section 11.8

cancel s:=scancel(+<jj34>)
section 11.9

put vi=put(A, W, t)
section 11.10

get pisget(A, W, %)
section 11.10

il bssi1(B, 130, false)
section 11.13

us " us(Q, 7, w)
section 11.13

Effect

integer procedure reserve makes a
Yeservation of an area and enters
a corresponding name and descrip-

tion in the catalogue.
integer procedure where searches

the catalogue ror a given name
and ylelds the description of the
corresponding area.
integer procedure cancel removes
a given name from the catelogue
and releases the corresponding

area.
integer procedure put transfers
the data he an array, A, to
the tracks of an area W indicated

by an integer t.
integer procedure get transfers
The date held In the tracks of an
area, W, indicated by t, to an

array Ae

Boolean procedure i1 calls for an
execution of the machine instruc-
tion il,
procedure us calls for an execu-
tion of the machine instruction

US.

h6 11.6. BACKING STORE AND CATALOGUE.

11.6, BACKING STORE AND CATALOGUE.

The machines are equipped with a backing store organized as a number
of blocks thus:

either (1) a drum which physically may be a disk, block length 40 words,
corresponding to one track,

or (2) a disk connected to the buffer. In existing machines the block
length is oo words, but in the future even larger blocks may

be possible.
This equipment gives room for an indefinite number of separate, na-

med backing areas:
1) The free area, name: {<free}.
2) Reserved, named areas which originally have been part of the

free area.

3) Other named backing areas.
These areas are described in the catalog which always is placed on

the drum, The catalog may also contain descriptions referring to other

kinds of store (magnetic tape, caroussel, etc.), but the procedures put
and get are only designed to handle backing areas.

The catalogue and the contents of the named areas may keep data in--

definitely for days or weeks unless overflow of storage capacity or ma-

chine malfunction breaks in, From within an Algol program the user may

commmicate freely with any backing area of which he knows the name, he

may cancel the reservation of named areas, and he may reserve end name

any nwuber of new areas. During a run of one program the named areas stay

in the same locations, but between two rums the use of the store may pos-

sibly have. been reorganized and the catalogue changed accordingly. Be-

tween one run and the other the user may therefore only identify an area

by its name, but within the same run an area description may be used.

In order to communicate with an area containing data stored away at an

earlier rm, a program mst therefore start with a call of a standard

procedure, where, which provides the current area description when sup-

plied with a name. In the actual trensfers of data between the area and

the variables of the program the area description is used. These trens~

fers use the procedures put and get. New, named areas, which are esta-

blished by means of a call of procedure reserve, are always taken at the
beginning of the free area ¢<free}, which is reduced correspondingly.
Such reserved areas may be returned to the system by calls of a proce-

dure, cancel, This will not reorganize the store, however, but only can-

cel the catalogue entry.
A neme of an area is a string.

117+ STANDARD PROCEDURE: reserve.

1167ele Implied procedure heading.
integer procedure reserve(NAME, BLOCKS); value BLOCKS;

string NAME; integer BLOCKS;

11eTe@e Example

action := reserve(¢<pn23}, w)

11.7. STANDARD PROCEDURE: reserve, 47

11eTede Semantics

Bach call of reserve will attempt to reserve an area of BLOCKS blocks and to enter NAME and the description of the area in the cate- logue. If succesful, the area thus reserved is the sett pee of the free area, having so far had the name ¢<free}, At the dame time the free area is reduced accordingly, Thus, if a description of f<free} had previously been obtained by a call
where(¢<free}, FREE)

this previous value of FREE will describe an area which contains the new- ly reserved area as the first part of it. To obtain the correct, new de- scription of the free area, the program mst contain a new call of where, On the other hand, several areas having different names may be reserved in direet succession, without any intervening calls of procedure where. Indeed, the program need not make any direct reference to the free area
at all.

If the reservation is indeed made, the value of reserve will come out as 0. If the value comes out different from O, the reservation has not been made, for the reason given in the following table:

Value of reserve Meaning
The reservation has been made
NAME is not an allowed name
NAME is already in the catalogue
The catalogue is full
BLOCKS < 0 or too large to be accomodated
The catalogue has been destroyed MI

F
u
 —-

oO

11.7.4. Variable string as name.
Procedure reserve will call the NAME in the way that procedure writetext calls its Parameter, so the facilities of section 904.4 may be used,

11.8, STANDARD PROCEDURE: where.

11.5.1. Implied procedure heading,
integer procedure where(NAME, AREA); string NAME; integer AREA;

11.8.2. Example
check :* where(¢<pn23}, pn23)

11.8.3. Semantics
Each call of procedure where causes a search of the catalogue for an item having the given NAME, If the item is found, the corresponding de} seription of its current Storage is assigned to AREA, If the item refers

to a backing area the value asSigned to AREA is suitable to be used in ealls of procedures put and get. As a special case, the call
vhere(¢<free}. W)

places the description of the free area, in W.
The value delivered as result of the call indicates the success of the search, as follows:

48 11.8. STANDARD PROCEDURE: where.

Value of where Meaning
0 A backing area. description has been assigned to AREA
1 NAME is not found in catalogue, AREA is unchanged
2 Another description has been assigned to AREA
3 The catalogue has been destroyed, AREA is unchanged

11.8.4, Variable string as name.
The rule of 11.7.4 also holds for where.

11-9. STANDARD PROCEDURE: cancel.

11.921. Implied procedure heading
integer procedure cancel(NAME); string NAME;

11.9.2. Example

q 3= cancel(¢<pn554)

1129235. Semantics

Bach call of cancel causes an attempt to find NAME in the catalogue
and to cancel the corresponding reservation of an area. In this process
the free area is extended to include any wmsed area which is made to lie
adjecent to the current free area.

The success of the call is indicated by the resulting value:

Value of cancel Meaning
0 NAME is found and cancelled
1 NAME was not found in the catalogue
2 NAME indicates an item in the catalogue which mst

not be cancelled.
3 The catalogue is destroyed.

11.9.4, Variable string as name,
The rule of 11.7.4 also holds for cancel.

11.10. STANDARD PROCEDURES: put AND get.

11610.1. Implied procedure headings
integer procedure put(A, AREA, PLACE); value AREA, PLACE;
—~integer AREA, PLACE; <type> array A;
integer procedure get(A, AREA, PLACE); value AREA, PLACE;

integer AREA, PLACE; <type> array Az”

11.10.2. Examples

y = pot(B, POPULATICN, 8)
Zz :@ get(age, POPULATION, 32)

11.10. STANDARD PROCEDURES: put AND get. er)

11.10.35. Semantics

These procedures perform transfers of data between the variables of
the program, indicated by means of the array identifier A, and the part
of AREA indicated by PLACE. Procedure put transfers from the array to the
area leaving the array unchanged, procedure get in the opposite direc-
tion, changing the array, but otherwise the conventions are similar. ‘The
precise effect of put and get depends on the block length of the backing
store.

The value of AREA must have been obtained by a call of procedure
where. PLACE must be a positive integer, indicating the first block which
is involved in the transfer, the blocks within the area being numbered 1,
2, 3, ese Thus we mst have

| < PLACE < number of blocks in area
and the transfers will generally involve all the elements of the array A
and the blocks within the area having numbers PLACE, PLACE + 1, ... Other
details are as follows:

1) The elements of arrays of dimension 2 or higher are treated as a
linear sequence, as explained in section 10.12.4.

2) Irrespective of the block length, ‘the array A mst have at least
ho elements.

3) As many complete blocks in the area are used as are necessary to
hold the full array, i.e.

number of blocks =

(number of elements + block length - 1) : block length
The deta transferred to the backing store from an array of a given size
by a call of put, can be got back by a call of get with the same AREA and
PLACE end an array of the same size.

hk) The exact arrangement of the elements on the blocks is generally
unspecified, However, if the number of elements of the array is an inte-
gral mitiple of the block length, ‘the elements are mapped directly on
the blocks. In this case it is possible to transfer the same data alter-
natively in terms of arrays of different sizes,

11.10.4, Alarm conditions
The following error conditions will terminate the program execution

with an alarm:

Procedure put is called with AREA not describing a backing area.
The array is too large to be accomodated in the area, starting at

PLACE.

The array has less than 40 elements,

11.10.5. Hardware failure

In 400-word block machines the hardware gives indications of certain
failures of transfers in the form of a so-called status word. These are
handled as follows: Following the transfer of each track, the procedures
check for a failure indication. If a fatlure is indicated the procedures
exit immediately, even if only part of the track transfers have been
made. In any case the result of the procedures is the last status word,
or in case of 40-word block machines, zero. If a hardware failure has oce
curred the status word is negative, otherwise positive,

50 11.11. ADVICE ON SEMI-PERMANENT DATA STORAGE.

11.11. ADVICE GN SEMI-PERMANENT DATA STORAGE.

In programming the use of semi-permanent date storage on the backing
store it should always be kept in mind that although some attempt has
been made to prevent that simple mistakes will cause data to be destroyed
unintentionally, the protection of data is far from complete. Programs
making use of these facilities should ‘therefore include safety measures,
such as the following:

1) Always keep a reasonably simple way open to restore the data left
in the backing store. Often these consist of an initial set of data,
which has subsequently been changed in a number of updating processes. In
this situation it is vital that the initial set and all the subsequent
changes are kept in such a form that the complete sequence of modifica-
tions can readily be repeated. Also it is advisable to produce copies of
the data in its modified form on an external medium from time to time,

2) Start the program right away with calis of procedure where to all
the areas used within the program, to make sure immediately that they are
all present. Also make some independent check that the contents of each
single track is correct. As the minimum, make a summation check of one
word of each track.

3) fo avoid the double use of names of areas, make sure to follow
the conventions adopted for this purpose at each installation. A pose
sible form of such conventions is to compose the name of the initials of
the user, two or three letters, and s whole number between 100 and 999,
each particular user starting generally at 100 and working up: 101 » 102,
oe With the possibility to start at 500, say, if two users have the same
initials.

11.12, ADVANCED USER INFORMATION,

The conventions of the procedures put and get imply a certain amount
of checking against mistakes and are all that are needed by the normal
user. The following additional information is given for the benefit of
advanced users who are able to avoid the possible i111 consequences of by-
passing these checks and who need more flexible commnication with
packing stores.

The value of AREA, as supplied by a call of procedure where, is
exactly the first word of the catalog item, In case of a backing area the
format is:

Bits O- 2 0 in case of drum, 1 in case of disc
Bits 3- 7 Specifies the further use of the area, see below,
Bits 8-23 Number of blocks in area.
Bits 24-39 First block of area.

The value of AREA is tested as follows: get and put: alarm if not
drum or disc; put: alarm if bit 3 = 1 or bit 5 = 0; cancel: yields the
value 2 if bit 3 = 1 or bit 5 = 03 where: yields the value 2 if bits 0-2
* actual backing store; reserve sets the following bit pattern in bits
3-73 00100 and backing store value in bits 0-2 and inserts a dummy sum
word in the catalog item.

For detailed formats of the catalog see the description of the Cat
system,

11.13. STANDARD PROCEDURES: i1 AND us. 51

11.13. STANDARD PROCEDURES: i1 AND us.

11.1361. Implied procedure headings.
Boolean procedure i1(A, FUNCTION, PARAMETER); value FUNCTION, PARAMETER;

ype> array A; integer FUNCTION; Boolean PARAMETER;
procedure ust, FUNCTION, PARAMETER); value FONCTION, PARAMETER;

array A; integer FUNCTION; Boolean PARAMETER;

11.13.2. Examples

sue 130, 20 120-20 1)
us(Q, 7, ((Boolean (spool x 16 + block) shift 10) V 40 2) shift 20)

11.13.35. Semantics.
Each call of il or us causes execution of the machine instruction

having the same operation code as the identifier of the procedure. These
instructions call transfers of data between the buffer store of the ma-
chine and any attached magnetic tape drivers, caroussel units, or disk
file units. To understand the action of these procedures the user mst
refer to the description of these units and their attachment to Gier, gi-
ven in A Manual of Gler Programming Vol. III and later reports,

The action of an il or us instruction depends partly on the effec-
tive address of the instruction, partly on the parameter placed in the
Reregister, The effective address mst be given as the value of FUNCTION.
The parameter placed in R before the activation of the il or us instruce
tion is formed by adding the buffer address of the last word preceding
the array Ain the rightmost position of the word given as PARAMETER,
This means that bits 28 - 39 of PARAMETER indicates the first element te-
king part in the transfer by its element number, numbering the elements
within the array as 1, 2, ... as in section 10.12.h,

Before execution of the 11 or us instruction certain parts of PARA-
METER and FUNCTION are checked to be mrtually compatible and to involve
only the elements of A. This check depends on the last 4 bits of PUNC-
TION, as follows:

1) Magnetic tape operation, i.e. the lest four bits of FUNCTION re-
present a number between 1 and 6. The block size should be given in posi-
tions 8 ~- 19 of PARAMETER, It is checked that this block size does not
extend beyond the array A, that bits 0 - 7 and 20 - 27 of PARAMETER are
zero, and that FUNCTICN is positive and less than 512.

2) Caroussel operation, i.e. the last four bits of FUNCTION repre-
sent 7. PARAMETER must supply:

bits 0O- 5 Spool number
- 6 - 9 Block number

- 10-+ 15 Zeroes (checked)
- 16-19 Number of blocks of 512 words
= 20 = 27 Zeroes (checked)
- 28. 39 First element taking part in transfer

It is checked that the number of blocks can be held in the array, stare
ting at the first element, and further that FUNCTION is positive and less
than 512 and has zero in binary positions 32, 64, and 128,

3) Disk file operation, i.e. the last four pits of FUNCTION are be-
tween 8 and 15. PARAMETER must supply:

52 11.13. STANDARD PROCEDURES: il AND us.

bits 0 Zero
- 1~- 9 Block size, checked to be at most 400
- 10 - 21 Track number
- 22-27 Zeroes (checked)
- 28. 39 First element taking part in transfer

It is checked that the block can be held in the array, starting at the
first element, and that FUNCTICN is positive, is less than 512, and has
zero in binary positions 32, 64, and 128,

Failure of any of these checks causes an alarm termination of the
program execution.

12. MACHINE CODE IN GIER ALGOL 4, 53

12. MACHINE CODE IN GIER ALGOL 4,

12.1. OVERALL POSSIBILITIES.

There are three ways to include machine code in a Gier Algol 4 pro-
gram. Machine code may be written as a statement, starting with the sym-
bol codee Such code will be executed from the place among the Algol
statements where it is written. Because of the automatic segmentation of
programs it must not contain more than 39 words.

Secondly, machine code may be written as the body of a procedure,
starting with the symbol code. This admits the special possibility to
omit the specification of Formals, In the call of the procedure the cor-
responding actual parameter of such an unspecified formal may be any-
thing. Again only 39 words are admitted.

As the third possibility, machine code maybe written as a new kind
of declaration, starting with the symbols core code. Whenever the program
enters the block in the head of which this ¢odé IS written, the code is
copied from its locations on the segments to locations in the stack in
the core store. In order to execute it, the user must call the standard
procedure gier(p), where p mst be a simple boolean variable, given
as the first parameter of the code. Once the code has been transferred to
the stack it may be accessed rapidly any number of times, The translator
will handle core code pieces of up to 119 words. At run time the core
code pleces will require locations in the core store, like simple variab-
les, If there is insufficient capacity, the normal store overflow reace
tion will take place.

12.2, SYNTAX,

<code statement> ::= <code head><code specifications>
<machine code> e

<code head> ::= code <identifier list>;
<code declaration> ::= <core code head><code specifications>

<machine code> e-
<core code head> ::= core code <identifier list>;
where the detailled format of code specifications and machine code are
explained below.

The syntax may be illustrated by the following example, which in the
right hand column is provided with an indication of the structure.

code A, B; Code head, with list of parameters

2, 4b F Code
1, 46, 44 3 specifications

is (b2), arn s a2
ck O , nk rel

el: sm Dt -1
ek 10, gr al
e

Machine code we

po

54 12.2, SYNTAX,

With some restrictions, described in section 12.8, the code specifica-
tions and machine code conform to the syntax of Slip. In particular, the
comment conventions of Slip apply.

The code specifications supply information about the storage, kind,
d type of the parameters. They only serve as a check of the characteri-

stics of the parameters given in the code head, while there is no check
that the parameters described in the code head and specifications are
used correctly in the machine code. ‘The check of the agreement. of head
and specifications is intended as a help to the exchange of machine code
pieces. In publication such pieces will only include specifications and
machine code. Ina particular application the user mst add the code
head, The translator will check that this is consistent with the code
specifications. These make more detailled distinctions of parameters than
does anormal Algol text and the user of the code may thereby place
strict limits on what constitues a correct parameter in each parameter
position, This limits the generality of the machine code piece, but it
allows the code to be written in a more efficient manner.

12.3. STORAGE ALLOCATION AND ADDRESSING OF ALGOL QUANTITIES.

The storage allocation of quantities and programs within Gier Algol
is dynamic, i.e. the final address where an instruction or variable is
stored is not determined until the actual execntion of the program. More-
over, even during one execution of a program the address of a quantity
will not necessarily remain the same from one phase of the program to ‘the
other. For this reason addressing of quantities within the machine code
itself, such as jumps and references to working variables, should always

employ rerelative addresses,
From within the machine code it is possible to refer to those quan-

tities of the surrounding Algol program which are listed as parameters in
the code head. In the following we describe first the methods of address
calculation and second the meaning of the words accessed at run time.

12.3.1. S-relative addressing.
In general the final machine address of a'quantity of the Algol pro-

gram is found by an algorithm which depends on the block in which the
quantity is declared or introduced as formal, The result of the transla-
tion is that each quantity is described by two numbers, the DISPLAY REFE-
RENCE indicating the block and the BLOCK RELATIVE address. The final, ab-
solute address is calculated at run time by the following algorithm:

Absolute address:= STORE[DISPLAY REFERENCE] + BLOCK RELATIVE,
In machine instructions this may conveniently be realized, e.g. as fol-
lows:

is (DISPLAY REFERENCE)
Oop s+BLOCK RELATIVE

where op is some operation code,. This general addressing method will be
referred to as s-relative addressing. Note particularly that this is per-
fectly general and may be used in all cases, while the use of p-rela-
tive and absolute addressing,. described below, depend on the particular
program structure. A piece of machine program planned to be used gene-
rally should therefore employ s-relative addressing for all quantities.

CC SSSTEST=—'TCES=—C ea,

12.5. STORAGE ALLOCATION AND ADDRESSING OF AIGOL QUANTITIES, 55

- 12.5.2. perelative addressing
In order to make programs shorter and faster, the value of STORE {DISPLAY REFERENCE] corresponding to the currently local block is kept in the p-register, Consequently it is possible to address quantities de- clared in that block by p-relative addressing:

op ptBLOCK RELATIVE

12.5.3. Absolute addressing
During one execution of a program the addresses of quantities in the outermost block are fixed, and may be calculated during translation,

12.4, SLIP NAMES,

Within the machine code the references to parameters must be written i as Slip names, Each parameter may have an aename, a bename, and a d-name associated with it, the set (al, bi, a1) belonging to the first parame- ter, the set (22, b2, d2) to the second parameter, etc. The values of any relevant names are supplied automatically by the translator, In case of Se-relative addressing of an array identifiér the meaning of the names is as follows:
aename BLOCK RELATIVE address of identifier word
bename DISPLAY REFERENCE
dename BLOCK RELATIVE address of dope vector
More explanations of the meaning of the Slip names are given below.

12.5. CODE SPECIFICATIONS,

order in which these are given in the code head, The specification of a parameter must have the following structure: | <code parameter specification> ::= <addressing> , <kind and type>| |
<code parameter specification> » «kind and type>

<addressing> ::= 1/2[3]4 | <kind and type> ::= <unsigned integer> | In addition, the code parameter specification may include comments accor- | ding to the usual Slip conventions,
The meaning of the four possible values of the addressing indication and of the associated Slip names are as follows:

The code specifications mst have one line for each parameter in the |

Addressing Meaning a b a :

1 S-relative Rel.addr, Display ref. Rel.array address : 2 Absolute Abs,addr, Undefined Absolute array addr. | 3 Perelative Rel.addr. Display ref, Rel. array address i 4 Stend.proc. Track no. Track rel.addr. Undefined ;

 [

56 12.5. CODE SPECIFICATIONS,

The addressing indication has two effects: (1) The translator checks that

the parameter given in the code heading is indeed declared in the block

level implied by the addressing (addressing 4, standard procedure, may be

thought of as corresponding to quantities declared in a block outside the

complete program). (2) The values assigned to the Slip names are selected

according to the addressing, as shown in the table.

The indications of kind and type given in a specification serve ex-

clusively as a check of the parameter given in the code head. A specifi-

cation may have any number of kind and type indications, but mist be

written on one line only.

As described below, each kind and type of Algol quantity belongs to

a certain ‘class, with a corresponding number. The translator checks that

the number corresponding to each code parameter is given as one of the

kind-and-type numbers of the corresponding specification.

12.6, CLASSES AND STRUCTURES OF QUANTITIES,

In the following is given, for each class of quantity distinguished

in code specifications: (1) The name of the class, (2) Class numbers to

be used in code specifications, (3) A definition of the class, where it

does not coincide with one recognized in Algol 60, and (4) the meaning of

the word addressed through the associated a, b, and d Slip addresses. The

following notation is used:

sr
Stack reference, i.e. the current base address of a section of the

stack.

e117
The location in the ruming system which holds the universal value,

UV.
e350

The location in the running system which holds the universal ad-=

dress, UA.

absaddr
The absolute address of a quantity.

drumpoint
Bits 10-19: track relative address

40-39: track number
The track numbers run from some starting number up to 1023. The relative

address: goes-from:0 to 39.

General formal, 12. A formal for which no specification is given.

This Ys acceptable when the procedure body is a code statement. The a, b

address points to a word describing the actual parameter, as follows:

12.6. CLASSES AND STRUCTURES OF QUANTITIES, 57

Further use, kind
and type number

Constants

integer pan ¢c30 [UA] + <abs adam 60
real pan c30 [UA] t <abs addx> ff 61
Boolean pan ¢30 [UA] t <abs addr> Z 62
string pan ¢30 [UA] t <abs addr> Zf 63

Simple variables .
integer pa 030 [UA] t <abs addr> 60
real pa ¢c30 [UA] t <abs addr> ff 61
Boolean pa ¢30 [UA] t <abs addr> Z 62
string pan ¢c30 [UA] t <abs addr> Zf 64
label pa c30 [UA] t <abs addr> Zf 28

Subscripted variable
integer ps <sr> >» <drum point> 60
real ps <sr> » <drm point> f 61

Boolean qq <sr> » <drum point> 62
Other expression, inclusive type procedure without parameters

integer psn <sr> , <drum point> 36, 60
real psn <sr> » <drum point> f 3T, 61
Boolean gan <sr> » <drwn point> 38, 62
string qqn <sr> » <drum point> f 63
label aq <sr> » <drum point> f 28

Array identifier

aq <address of array word - 1>.9
+ <dope address - address of array word - 2>.19
+ <number of subscripts + 1>.39 64, 65, 66

For further explanation, see direct array, below.
Switch and procedure identifier, other than expression

integer zq <sr> >» <drum point> ” ho
real zq <sr> » <drum point> f hy
Boolean zqn <sr> » <drum point> ho
no type zan <sr> >» <drum point> f 39, 43
switch arn <sr> » <drum point> 24, 32

label, 20, The a,b address points to a word as follows:
aa(f)<sr>,<drum point>

where sr points to the block in which the label is local. The f mark in-
dicates that the point is a right half word.

switch, 24, The a,b address points a word of the format given above
for a general formal of type switch.

Formal label, 28, The a,b address points to a word of the format gi-
ven above for 4 general formal, simple variable, or other expression.

Formal switch, 32. As switch, given above.
Type procedure without parameters, integer 36, real 37, Boolean 38.

As general Tormal, other expression.
Procedure without type and parameters, 39. As general formal, switch

and procedure Identifier, other than expression, no type.
Procedure with parameters, integer 40, real 41, Boolean 42, no type

43, As general formal, switch and procedure identifier, other than ex-
pression,

Direct variable, integer 44, real 45, Boolean 46. A simple variable
or a Tormal variable called by value. The a,b address gives the location
holding the value.

58 12.6. CLASSES AND STRUCTURES OF QUANTITIES,

Direct array, integer 48, real 49, Boolean 50. A non-formal array
identifier, or a formal array identifier which has appeared somewhere in
the Algol text followed by a subscript list. ‘The a,b address points to
the so-called array word:
Array word:
Bits 0 to 39 depend on the translator version:
a) Arrays in buffer store:

qq c17.9 + 1.19 + (address of element 0,0, ... ,0).39
b) Arrays in core store:

aq (address of element 0,0, ... ,0).39
The address of element 0,0 ... , O will not necessarily iie within the
range of possible machine addresses, since these subscripts may not lie
within the subscript bounds.
The marks indicate the type: 0 = integer, b = real, a = Boolean,

The d,b address points to the dope veetor, which consists of several
words, If the array declaration is: array A[ll:ul, 12:u2, ... , lp:up],
and we define ci = ui - li + 1, then the dope vector consists of:
dope address - 1: constant term = (((..(11Xc2+12)xc3+13) ...)xeptlp
in position 39
dope address: length = c1lxc2xc3 ... Xep in position 39
dope address + 1: c2 in position 39

dope addresstp-1: ep in position 39
Name variable, integer 60, real 61, Boolean 62, A formal simple va-

viable, called by name. Depending on the corresponding actual parameter,
the a,b address will point to one of the words given for general for-
mals, constants, simple variables, subsecripted variables, or other ex-
pression.

Formal string, 63, Depending on the corresponding actual parameter,
as given Tor general formal, constant, simple variable, or other expres-
sion,

indirect array, integer 64, real 65, Boolean 66. A formal array
identifier which has nowhere appeared followed by a subscript list. The
a,b address points to a word as given for general formal, array identi-
fier,

Standard procedure 68, The a, b names correspond to addressing },
section 12.5. They point to the entry point of the standard procedure.
The track number is relative toa base address which is not directly
available to the user.

12.7. CORE CODE AND STANDARD PROCEDURE gier.

The first parameter of any piece of core code mst have the descrip-
tion:

3, 46
indicating p-relative addressing and direct Boolean variable. When at
block entry the core code plece is transferred to the working store, a
description of the entry into the core code is also assigned to this va-~
riable. In order to activate the core code, standard procedure gier
should be called with this variable as parameter. The parameter of proce-
dure gier should only be variables which have occurred in this special

. way, Standard procedure gier has the following implied procedure heading:

12.7. CORE CODE AND STANDARD PROCEDURE gier. 59

integer procedure gier(u); Boolean u;3

Activations of core code from within blocks or procedures called at
the level of the code itself should only be done with great care. It mst
constantly be kept in mind that any activation of a block or procedure
will change the current values of the peregister and the display and
therefore will influence the proper addressing of Algol quantities.

12,8. MACHINE CODE FORMAT.

The machine code which may be written within the Algol program is a
proper subset of Slip, i.e. it conforms to Slip conventions, but does not
provide all of the facilities of Slip. In the following list we give the
constructions which are not admitted.

Slip facilities not admitted in machine code:

Construction Explanation

No inner blocks
Only limited redefinition of i, see below
No dummy information
No call of HELP
No change of medium

Unnecessary since r is not admitted
No automatic relative addressing
No direct exit from the code
No label table administration

No transition to binary code
abel No special marking of right half instructions

No exponent

No integer groups, no / between instructions
No conditions

m in address No automatic relative addressing

Bb 5
A
S

L
A
I
S
T
X
I
S
I
S
I
S
I
H

S1
0}
 a
lo

k No references to track numbers
terminator Numbers mist be terminated by one a, b, ¢, or <empty>
number-line Only one number per line
definition line OQnly one definition per line

i The serial address can only be increased
Violation of these rules will cause an alarm during translation.

With respect to labels the machine code mst be written such that it
would be correct Slip if it had been preceded by the following two block
heads:

b c127

<definition of c-names, see below>
b al27, b127, di27, e127

There is, however, no check that names beyond these are not used,
Certain of the c-names are defined when the machine code is proe

cessed and give access to the Running System, i.e. the run-time Algol
program administration. For a full understanding of the possible uses of
these names, a knowledge of the details of this administration is neces-
sary. Here we give only the names and a corresponding key word.

60

c0

ei

c2

c3
ch
c6

et
c8
c9

12.8, MACHINE CODE FORMAT.

display 0
next track
go to track

next param track
eall std. proc
call rel track
prepare block or call
expression as formal
exit block

c13 go to computed
ci? UV = universal value
e18 end UV}R,RF expression
c19 end addr expression
c20 reserve array
c2h assign to formal subse.
e26 go to point in R
c27 error

ly.

c30 UA = wmniversal address
e335 address, working location
e355 last used
c37 next in

c39 next out
ch2 aq 1.39
chk qq -1 t 256, 0.5 floating
ch9 base track table
53 aq O t 256 = 1.0 floating
e54 char, section 10.7
e55 vy last select t mask, section 8.1
e57 qq appetite t -1

e58 qq 10.39
c61 tracks transferred
c63 get place
c64 catalog
c65 current place

The value of a c-name defined in one piece of code survives to all
the following pieces of code within the same program.

Return to the execution of Algol statements must be done by means of
the following, or an equivalent, instruction:

hv value of s at entry + 1.
When the return is made, the register p mist have the same contents as at
entry, while all other machine registers may have been changed arbitrari-

In case of core code, the value of the execution, i.e. the value of
the call of gler, mst have been placed in the R-register.

OO NS E_S7*’'""=- a aaa

13. COUPLING TO ENVIRONMENT, 61

13. COUPLING TO ENVIRONMENT,

13-1. GIER ALGOL SYSTEMS,

In order to be able to accomodate the translator and running system in any of a number of machine configurations, the Gier Algol 4 system is written as several programs which may be combined and used in several ways, To be direttly useful it is necessary that these are handled by a certain, although modest, amount of additional programming. It is antici. pated that different installations will have different needs, and will ° develop their own Gier Algol systems accordingly, The detailled user con- ventions of these systems will have to be obtained from separate documen- tation, The present section only describes the basic conventions, to be used in developing such user ortented systems. Any system will have to . distinguish between translation and execution of Algol programs. These two problems are discussed separately below.
The descriptions refer to the following kinds of store:

Drum, which physically May be a disk,
Buffer medium, i.e. a storage accessed via the buffer, Physically it may be a disk, a carroussel, or a magnetic tape.
Paper tape
Type writer input

13.2. TRANSLATION,

The translation consists of a combination of several collections of data and storage areas, as described in the following sections,

13.2.1. Algol program text.
The Algol program text mst be supplied from paper tape, from type- ii writer input, from the drum, from a buffer medium, or from a combination | of these. In the case of paper tape or typewriter the characters are sup- plied directly one by one. In the case of the drum or a buffer medium the characters must be packed into the words in the manner described in sece tions 7.7.2 and 9.4.4, The text mst start in the first word of a block | and must continue in the following words of that block and on following : blocks in an obvious manner.
The starting medium must be given as one of the translator initiali- zation parameters of section 13.2.5. The change from one medium to ano= ther requires the catalogue system Cat to be present in the machine and the relevant media to be present in the catalogue. The selection of ano- ther medium is made whenever the text currently being translated contains @ copy call:

<copy call> ::= copy <copy source< | with
<copy source> ::= <any sequence of characters not containing a

< character, i.e. character value 17> |

62 15.2. TRANSLATION,

A copy call may be written between any two symbols of the Algol program.
It will cause the continued input to be taken from the medium or area de-
scribed in the catalogue item having the name derived from copy source by
removing all BLANKs,

The names of the tape reader and typewriter are:

Catalogue name
Tape reader r
Typewriter t

If a piece of program text is to be used as an insertion into ano-
ther text by copying during translation it must terminate with the symbol

finis
This will causea return to the text from which the plece was called by
copy, at the character immediately following the copy call.

A text called by a copy call may call further copying, up to a limit
of six levels, If more levels are called, the translator will call an
alarm,

13.2.2. Gler Algol 4 translator,
During translation the translator including a standard procedure li-

brary mast be available on the translator medium which may be the drum, a
buffer medium, or paper tape. Including the normal library of about 1000
word the translator will occupy about 6800 words,

A translator stored on paper tape will be taken into the machine in
short sections which will be done with successively, This is known as the
transient mode of operation,

13.2.3. Working area.
An area of working storage must be available on the drum, This area

will also receive the translated program as described in section 13.2.7.

13.2.4, Translation-finished action,
Machine instructions defining the action to be taken when the trans-

lation is finished mst be stored on a track of the drum, starting at a
left instruction at a given relative address of the track. For the situa-
tion at entry to this action, see section 13.2.7.

13.2.5. Translation parameters,
When the translator is called, the core store mst contain a set of

parameters defining the storage of the above data collections and certain
varlants of the translation process, These parameters must be stored in
consecutive machine locations, starting in address 3+e4, where e+ is a
value associated with the translator and usually set to 15. The location
format and meaning of the parameters are given below, In this description
the concept of track number is generally defined as

960 X group number + track number within group.
In configurations without a disk file the group number is 0.
3e4: qq line interval.39

As an aid during detection of programming errors, the translator may
be instructed to produce an output of every line interval-th line of the
program text.

13.2. TRANSLATION. 63

This parameter is only relevant when the boolean lineprint wanted is
set to true; see parameter 10e4,

heh: qq number of tracks in working area.39; see section 13.2.3.

5e4: qq first track of working area.393 see section 13.2.3.

6e4: qq catalogue look-up track.9 + indt medium track.19;
The catalog ilookeup program is needed whenever a <copy call> occurs in
the Algol program text. The program for init medium is needed whenever a
buffer medium is used as input medium,
When present these programs mst be stored in track group 0. The absence
of one or both programs is indicated by the corresponding trackmumber be-
ing zero,

7e4: aq initial input medium;
The contents of Teh mst be given as follows:

Typewriter or paper tape reader: qq -1.2 + by-value suitable for
medium. 19

Area on drum or buffer medium: The format is as the first word of a
text area (see description of the Cat system) with number of
blocks replaced by number of characters to be skipped, A simple
area on drum may thus be given by:

aq <no of skipped characters>.23 + <first track>.39

Provided no direct references to the catalogue are made, the trans-
lator may be called even when there is no catalogue present.

8ek: qq translation finished track.39 + relative address.9
See section 13.2.4,

9e4: qq normal out.6 + error out.16 + type out.26 +
type in.29 + alarm out.36 + secondary reader.39

This parameter must supply a set of values of the by-register (medium se-
lection) for control of input and output media during transletion. The
uses of each of these media are given below,

Medium Uses of medium
normal. out Prelude, i.e. copying of the program text, up to the

first begin
line output, see 3el above
Pass information, see section 13.3
Pass output, see section 13.4,

error out Messages about program errors which do not inmediately
terminate the translation

type out Messages to the operator, requiring action immedtately
type in Operator action
elarm out Messages about program conditions which terminate the

translation immediately, and message output, see
section 7.1.7

secondary reader Transient input of translator

64 13.2. TRANSLATION,

10e4: qq skip input between PUNCH OFF and PUNCH ON (see section 7.1.6) .2+
pass information wanted (see section 13.3).4 +
line print wanted.5 +
disk mode.6 +
execution time check of subscript bounds wanted.7

Each of the five Boolean parameters to be placed in positions 2, 4, 5, 6,
and 7, must be represented as 1 for Yes and 0 for No.

Diskmode refers to a translator mode which may reduce the number of
head movements during translation of large programs on a drum disk, When
diskmode is true the requirements to the size of the working area will be
greater than for disemode false.

itel = ihe Parameters which describe the translator medium as follows.
Drum:

1te4: qq first track.39
12e4 - thel: irrelevant.

Paper tape:

iie4 - ihel: irrelevant
Buffer medium: 4 words describing how to trensport a block from the medi-

um to the buffer.
Tie: Increment to current block parameter to get next block.
12e4: Current block parameter; i.e. the parameter used in R during

the most recent transport of a block.
13e4: aq block length in words.39
theh: qq 11 check, unit;

The il-addresses used for stetusword transport and block
transport respectively,

13.2.6, Call of translator.
With the preparations described in the preceding sections completed,

the translator is called to action by transferring its first n words from
the translator medium to locations 184eh and following of the core store
and transferring the control to its first instruction.

The value of n depends on the translator medium and is given in
bits 0 to 9 of the first word of the translator; it is about 400-440
words.

The binary sum of the n words, including marks added as mark A,8 +
mark B.9 is zero.

If the translator medium is paper tape the translator comes in two
parts (section 14.2). The first of these mst be read before, the second
after the Algol program text.

During its work, the trensletor will make free use of the core
store, of the working area, and if a buffer medium is involved, of the
buffer store,

The translation is done in 9 separate passes. In each pass the text
produced by the previous pass is taken from the working store and a
transformed version of it sent back to the working store. In addition
certain other actions are taken at various stages. Depending on the Algol
program text the translator will issue messages, as described in appendix
3. Briefly, the translation proceeds as follows,

13,2. TRANSLATION. 65

Pass 1, The Algol program is converted toa string of symbols,
roughly corresponding to the basic symbols of Algol 60, and transferred
to the working area.

Pass 2, Identifiers are replaced by internal symbols. A table of
identifiers is built up in the core store, while the program is trans-
ferred back to the working area,

Pass 3. Phase 3.1. With the identifier table still in the core store
the standard identifiers are taken from the first part of the library. A
list of the internal symbols for the standard identifiers is added at the
end of the output from pass 2.

Phase 3.2. The program is checked for short span syntactic errors
and converted to a form more suited for the subsequent processing.

Pass 4, In a backward pass the declerations of identifiers and cer-
tain details of their use in the progrem are collected in a list at the
begin of each block.

Pass 5. Phase 5.1. The description of the kind, type, and addressing
of each identifier is distributed to each place in the program where the
identifier is used,

Phase 5.2. The descriptions of those standard identifiers which are
actually used in the program are taken from the second section of the li-
brary and collected in a table in the core store, for use by pass 6,

Pass 6. The expressions and statements are checked for the consi-
stent use of operands and operators. At the same time expressions are
converted to reverse Polish form.

Pass 9. Machine code in the source text is converted to internal
form, If the program does not include machine code this pass is omitted,

Pass 7. Expressions are converted to final machine instruction form,
Pass 8, Phase 8.1, The program text is rearranged in the working

store.

Phase 8.2. The standard procedures used in the program are taken
from the library.

Phase 8,3, The program is arranged in segments on the tracks and
provided with internal references.

Phase 8.4, The running system segments are added to the program.

The pass numbers are used to identify the source of messages output
during translation. In fact, preceding the first message of any kind is-

sued from any pass the pass number followed by point will be output.
in addition to the parameters given in section 13.2.5 the current

vaiues of the manually operated KA and KB registers of the machine in-
fluence the translation, as follows.

KA: stop before each translation pass or phase.
KB: produce pass output, as described in section 13.4.

The values of KA and KB may be changed arbitrarily during translation.

1302.7. Translation completed,
At the completion of its task the translator will transfer the

translation-finished track to location 224e4 and transfer the control to
the location in it indicated as a relative address in the translation pa-
rameter Sek. If the translator has detected illegal conditions or program

66 13.2. TRANSLATION.

errors, the contents of R will be 0. Im this case the translation is not
continued beyond pass 9. Otherwise R will contain the location of the re-
sulting translated program in the form:

qq number of tracks.23 + first track.39
These tracks will lie within the working ares specified for the transla-
tion, i.e. they will always consist of tracks of 40 words.

13.34 PASS INFORMATION.

Depending on the setting of the translation parameter in 10e4, an
output of information about the program being translated is produced on
the normal output medium specified in Jel, The output which may ths be
selected consists of a few integers for each pass, printed in one line
when the pass is completed. The first integer, A, in all passes gives the
number of tracks produced as output by the pass. The remaining integers
have the following meaning (if a parameter is 0 nothing is printed):
Pass 1. The figures refer to the storage of long strings in the working

area:
B. 1024 - the number of tracks or part of tracks used.
C. The number of words used on the last string track,

Pass 2, B, The number of different identifiers in the program.
C. The number of words used for storing long identifiers.

Pass 3, B. The number of blocks in the progran,
Pass 4, B, The maximm depth in the stack used for collecting the decla-

rations,

C. The maximum level of nesting of blocks.
Pass 5, B. The number of occurrences of identifiers in statements and exe

pressions integer divided by 10.
CG, The number of redeclarations of identifiers.

Pass 6, B. The maximum number words used in the operator stack, or 5 if
that number is less than 5,

C. The maxim number of words used in the operand stack.
Pass 9, B. The maximum code size.
Pass 7. B. The maximum number of words used in the operend stack.
Pass 8, A, The number of tracks representing the active program.

B, The total number of tracks, including A, rmning system, stan-
dard procedures and strings.

€. The group number of the first track of the final program
D. The track ~~ -~ « - “- «=

13.4. PASS OUTPUT.

While KB is on the translator will produce the so-called pass output
on the normal output medium specified in the parameter in 9e4 (see sec-
tion 13.2.5). The pass output is the output produced internally by each
pass, representing a modified form of the Algol program. The print out
may ‘be used as the last resort in pinning down troubles in using the com-
piler, whether these are due to progranming errors or faulty machine ope-
ration. The interpretation of the pass output requires some insight in
the internal working of the translator and will be given in separate do-
cumentation,.

13.5. EXECUTION. 67

1325 EXECUTION,

The text of the translated program, located at the end of transla- tion as described in section 13.2.7, 1s self contained and may freely be moved about in the machine as long as it is kept ag one complete whole, For execution the text must be available on a series of consecutive 40. word tracks of a drum or a disk file replacing the drum, The execution requires the following preparations:

130501. Execution message medium,
The medium to be used for output of messages from the running system must be placed in the by-register,

13.5.2. Execution end track.
A track of instructions defining the action to be taken when the execution 1s completed mist be present on a 4O-word track, The situation existing when this action is called is given in section 13.5.5.

1305034 Execution parameters,
The following parameters mst be set in the core store, locations

259e4 to 6heb,

259e4: aq first buffer location. 39 3
Together with the next parameter, this defines the of the buffer store, if any, which may be used for array elements toce section 11.2). 260e4: aq first buffer location beyond the available part.39;
If the translator version used during translation places arrays in the core store this parameter must be 0. Otherwise it mst be wnity larger than the last buffer address available for the program.
261e4: aq tracks occupied in top of the free area. 39;
262el: qq catalogue look-up track;
The catalogue look-up program mst be stored in track group 0, if it is present. Otherwise this parameter mst be 0,
263e4: qq execution end track (section 13.5.2) .393
264eh: qq first track of translated program, 393

If the translated program is placed in the top end of the free area this parameter showld be the number of tracks in the program. Otherwise it should be 0.

13054, Call of execution,
When the above preparations are made, the execution is called b trensferring the first track of the translated program to location 26:

and following and transferring the control to its first left instruction,
The translated program will use the core store locations 0, 1023, and from e38 to, but not including, e7, where e38 and e37 are associated with a translator, see section 14, What other Storage is used depends on the action of the particular Algol program.

pe
68 13.6, OPERATOR CONTROL.

13.6. OPERATOR CONTROL.

As described above the system is ready to be incorporated into a va-

riety of surrounding driver programs. These will define the manner in

which the various translation parameters are supplied from the user and

the form of the operator control. Since it is expected that different in-

stallations will have different needs, a uniformity in these matters will

not be attempted here. As a guide to the development of such driver pro-

grams one particular, simple one will be described in a separate publica-

tion of the Gier System Library.

 a asseaaninannnnnmnillllliimmansns

14, PAPER TAPE FORM OF SYSTEM, 69

14, PAPER TAPE FORM OF SYSTEM,

14.1. TAPE IDENTIFICATION AND CHECK,

In order to Provide a safe way of making and identifying corrections
» to the system as they are required after the initial distribution, each tape of the system includes a version number. A particular version number is only used for one of the tapes of the set. Consequently a particular set of tapes is fully identified by the greatest version number of
> tape of the set, During reading of the tapes by means of Slip it is checked that the greatest version number is consistent with the version numbers of all other tapes of the set,

Each tape of the System contains at the very beginning an identify. ing text of a form shown in the following example: (4.4.67 m1 L3 Gier Algol &
T Here 13 identifies the part of the system included, while 7 in the second line is the version number, It is recommended that all copies of tapes are marked clearly with precisely the text given within brackets, as for example:

L467 TT, 13 Crer Algol}

Local variants of the system should be identified by additions to the version number consisting of / and any desired additional characters, like 1/KU23,

7O 14.2, TRANSLATOR AND LIBRARY TAPES,

14.2, TRANSLATOR AND LIBRARY TAPES,

The part numbers and contents of the tapes belonging to the system
are as follows:

Part Contents
T1,11 General pass administration, rumning system
T2 Pass i, 2, Bel,

TS - 302, h, 5.1, 5.2

Th - 6,9
TS - 7, 8.1, 8.2, 8.3, 8.4
76,12 Library processor, part 1
T7,15 Stendard procedure library
16, Lh idbrary processor, part 2
T9,L5,M1 Merger
Pi Process translator

The tapes are used either as a complete set or in certain selec-
tions, The set of tapes to be selected for any particular use is designa-
ted by one of the letters T, L, or M, and must be read into the machine
in the order given by the following figure. The tape Pl may be read in
whenever a finished translator is present on the drum, It contains va-
rious routines for output of the translator or parts of it.

The variations in the way the tapes are used arise because of the
necessity that the information about the library of standard procedures,
which initially is collected in the standard procedure library tape, is
divided into several parts which must subsequently be merged into the
text of the translator.

The result of the reading of a set of tapes is that certain parts
of the system are placed in a known section of the drum, the subsequent
use of it being left to the program on tepe Pi or to the individual
user. In particular the paper tape version of the translator (the tran-
sient translator) may be produced by tape Pl.

The parameters defining the version of the system produced in a pare
ticular use of the tapes mst be given at certain stages of the Slip-rea-
ding process, as indicated in the following annotated perts of the Slip
texts of the tapes.

14.2, TRANSLATOR AND LIBRARY TAPES, 71

[7.6.67. Tl, Ll Gier Algol 4
1

b c100, e100 3 Outermost block
.
a

[Definition of loading parameters
Possible values » meaning]

el4a90 3 Depending on available drum, first track for reading by slip.
ehm15 10 <ek <17 , first core used by translator.
22071022 3 1015e4 < e20 < 1022, last - -
es8315 3 10 < e38 < 200 , first core used by translated Progra,
e37=1022 3 800 < e37 < 1022, last - -

3 ~ ™ Note below: e37 = 1637.

e270 3 0, arrays in core, e18 and e40 mst also be 0.
3 ly - - buffer.

elian 3 0, translator medium is drum.
3 1, - - a buffer medium.

e180 3 «(O;, packing store is drum
3 400, - - - dise with block length 400.
3 6ho, - - = - - - - 640.

elO=0 3 0, no tape stations, record handling procedures not included.
gn<15, no - are -

> 8 Now any or all of the above parameters may be redefined.

T, L5, Mi, first part of tape
b i=15, a30, b20, c20, e20 3;

eh ai 3 first core location used during translation
IT if eb #15 then set el
I if any of the following three parameters is not set, read in
I the necessary parameters
Tel: aq first track of system.39 ; set by tape T5
lek: qq first track of library.39 ; set by tape L+
2ek: aq first track of working area.39 3 set by tape Li to be the first

free track following the library. br working tracks are needed)
di weh + 3

aa

The tapes may be used in four different ways, as follows,

A. Separate library.
Reading the tapes L1 to Li will place the library on the drum, in a

form which may be used in a later merging with a translator. At the end

of the process the tracks occupied are given in the core store locations

tet end 2e4, as described above in the note on the first part of 19,L5,
Ml.

B. Total system from tapes.
Reading the complete set of tapes T1 to T9 will read a translator

and a library and merge them to form a final system, The final system

will be stored on the drum, starting in the first word of the track de-

fined be e14,. The storage of the parts of the system is described in a

72 14,2, TRANSLATOR AND LIBRARY TAPES,

table within the system itself, accessible through the first words of
the system, These first words, considered in what follows to be placed
in relative address 0 of the system, has the contents:

Os qqn,x*x«
Ts aq relative address of segment table.9 + e4.19 +

e27.20 + ekh 21 f,

where n has already be described in section 13.2.6 and the segment table
pointed to has one word for each Separate segment of the system. These
words have one of four formats, as follows:
Format 03 used only to deseribe the General Pass Administration, GP:

aq check.9 + words.19 + version number.29
Format 1, describing a new pass:

qq first core.9 + words.19 + pass no,24 + pass bits.29 + entry.39
Format 2, describing the! next part of the current pass:

qq first core.9 + words.19 + 1.20 + entry.39 f
Format 3, describing a library segment:

aq words.19 f,
The parameters entering into these formats are: check: a check used in
ternally; words: the mumber of words in the segment; first core: the
first address in the core store in which the Segment mist be placed when
useds 8 no: the pass numbers; pass bits: (if change direction then 1
else 0).29 + (if backward pass then 1 else 0).283 entry: the address "in
the-core store of first entry. The words of the segment table are ar-
ranged as follows:

Segment table

Relative address within table Segment described Format
0 General pass adm. 0
1 Pass 1 2
2 Pass 2 1
3 Pass 3.1 1
h Std. identifiers 3
5 Pass 3.2 2
6 Pass 4 1
T Pass 5.1 1
8 Pass 5.2 2
9 Library descriptions 2

10 Pass 6 1
11 Pass 9 1
12 Pass 7 1
13 Pass 8,1 1
14 Library programs 3
15 Pass 8,2 2
16 Pass 8,3 2

If the tape P1 is used to produce a transient translator the complete sy-
stem is output on paper tape in two parts, the first containing the Gene-
ral Pass Administration and Pass 1, the second the rest of the segments,
Each segment is punched as a number of spaces followed by the symbol a
followed by 6 characters for each word in the segment thus:

qq char 6.6 + char 5.13 + ee. + char 1.441

3°

s
e
a
r
s

14.2, TRANSLATOR AND LIBRARY TAPES. 13

Between the output of the two parts the program stops, waiting for the

operator to include suitable amounts of blank tape between the parts. It

is restarted by typing BLANK.

C, Alter library from tapes.
A complete system, stored on the drum in precisely the form it was

originally formed, but placed in any convenient place on the drum, may be

combined with a new library, in the form of a set of tapes Li, oo. 5 L5.

The result of this process mist always agree with the earlier version of

the system with respect to the various parameters.

D. Alter library from drum.

This process is similar to C, except that the library must be provi-

ded in the form of a set of words stored on the drum, as produced by an

application of process A. The reading only includes tape M1, Merger.

A survey of the uses of the tapes in the four cases end of the rele-

vant possibilities of redefining the parameters is given in the following

table, where letter X indicates that the possibility is relevant to the

tape use in question.

A B

Place complete system on the drum

Place separate library on the drum

Call Slip
Start reading T1,Li1, possibly redefine storage

end mode parameters x

Continue Slip reading of tapes Te to T5

Continue Slip reading of tape T6, 12, possibly
redefine first track of library

Continue Slip reading of tapes 17,13 and 16,14

Read program for further administration, written

by user xX

Read 19,L5,M1, possibly redefine el
Set contents of eb x

Set contents of 1¢4 and 2e4

Fa

M
P

OS

os

PS

~~

MM

R
a

Ss

Ps
 P
S

~ >

ms
 P

S
PS

14.3. MODIFIED LIBRARY.

fhe paper tape 13 contains ail information about the library of

standard procedures and variables. Standard procedures may be added to

the system or removed from it by modifying this tape. Since this will be

of interest only to a few specialists, the description of the convention

is given in a separate publication of the Gier System Library.
m~\

74 Appendix 1. EXECUTICN TIMES,

Appendix 1. EXECUTION TIMES,

Owing to the automatic administration of program segments (see sec-
tion 11.3.) the execution time of am algorithmic constituent depends on
the program loop structure and the number of variables declared at the
time of execution. The times given below include an average segment admi-
nistration time, such as it may be expected in loops which may be accomo-
dated completely in the core store. Substantially longer execution times
will result under the following circumstences: a) Frequent transfers of
program tracks from drum are necessary. b) A major part of the execution
time is spent in a loop with a cycle time of the order of 2 milliseconds
or less and this loop happens to have been placed across a program seg-
ment transition by the compiler. The first of these calamities may only
be remedied by using less core store for variables. It is unlikely to
happen if arrays are stored in the buffer store, The second calamity may
be cured by using the loop storage control described in section 11.4,

In any case the times given should be used only as a rough guide.
Also, the difference between the times given here and those given for
Gier Algol III do not always indicate a significant change of the system,

Except for some cases of expressions involving constants, each addi-~
tion to the text of the program will add to the execution time, The exe-
cution time of an expressions may be found as the sum of the time taken
to refer to each operand and the time of the operators, All times are ex-
pressed in milliseconds.

Operand reference times

Constant (see also below) 0.03
Simple variable, or formal called by values the variable is
declared

in outermost block of program 0.00
in local block 0.00
in intermediate block 0.04

Subseripted variable Arrays in core store in buffer store
Subscript check Yes No Yes No

1 subscript, A[] | 0.7 0.4 0.6 0.3
2 subscripts, BL ,] 1.1 0.8 1.0 0.7
3 subscripts, CL , ,] 1.5 1.2 1.4 1.1

Formal parameter called by name, specified integer, real or Boolean:
the corresponding actual parameter is:

constant 0.1
Simple, the formal is used in expression 0.1

~ - - - = as left part O03
other expression 3.2

Operators

To take care of conversions between integer and real types in opera-
tions with mixed types the operators round and float are generated inter-
nally as needed (cf. section 7.3). The exemples are correct only if the
operands are such which do not require execution time in themselves.

Appendix 1. EXECUTION TIMES.

Monadic operators, i.e. operators having one operand

Negative, integer el

Negative, real -r

round round r

Float generated internally
abs, integer abs i

‘abs, real ‘abs r

envier entier r
Integer, real, Boolean, string operating on real

game, operating on inveger, Boolean, or string

Not -, b

Dyadic operators, i.e. operators having two operands

Plus or minus, integer i-f

- - , real rer

Multiplication, integer ixi

- » real rxr

Division r/r
Integer divide isi

Modnlo i mod i
Power, integer exponent, square r

- - - , cube ras
- - - , expsi rAl

- - - , - 0WrAal

- - - , = 100 rAi

- , real exponent aAT

Relational operators az=r

And pAgd

Or pvq

Imply ps4
Equivalent p#q

Shift, variable amount bo shift £

- , constent - b shift 22

Assignment statement ated

Go to statement

Simple, within current block go to A3 A:

To switch designator go to s[i]

Call of declared procedure having an empty procedure

pody (procedure statement or fimction designator)

No parameters P;

1 parameter Q(a) 3
2 parameters R(a,b)
3 parameters S(a,b,¢)

If cleanse if b then

Case clause: The time of one selection 18 greater

when there are more complicated elements

For clause, each loop
Block with simple variables begin real aj end

- «- array declar. begin array alT:10]; end

o
o
o
°
o

e
@
6
¢
6
h
6
U
m
t
m
U
m
C
U
m
h
m
U
C
U
O
H
D
U
C
O
O

F
E

f
v

fp
wo

“
w
u

e
2

V
F
H
O
N
O
O
-
 MN

D
O
D
O

O
O
O

D
A
M
Y
W
S
O
S

eo

ee

¢
@

w
=
0
0

o
n
a
n

N
A
F

DO
W
A
N

A
—

t Oo e v
l

76 Appendix 1. EXECUTICN TIMES.

Translator evaluation of expressions involving constants

Operations involving only constant operands are performed during
translation and thus do not contribute to the execution time in the fol-
lowing eases:

+ and = as monadic operators, or when giving a real result
xX when giving a real result
/ , round, automatic conversions from integer to real type and vice

versa, integer, real, Boolean, and string, in all cases.

The result of an operation performed during translation is again
treated as a constant and may cause further operations to be performed
during translation. Examples:
A[-2 + 6/2] is reduced to Al1] during translation
real := integer 30 1 is reduced to real := 1024.0
p ~ 3.4 = 5.6 Is not reduced because the first operation contains p.
-3.4 - 5.6 + p is reduced to -9.0 + p
2 x 3.141592 is reduced to 6.283184
4 + 8 is not reduced because the result is of integer type.

Standard procedures of Algol 60

abs(x) 0.17 1n(x) 44
arctan(x) 5.3 sign(x) 167
cos(x) 4.5 sin(x) 4,8
entier(x) 0.4 sqrt(x) 4g
exp(x) 4 4

Standard procedures of Gier Algol

checksum 1.9 select 0.4
gier 0.1 system 25
kbon 0.11

The following times refer to input from the RC 2000 paper tape reader,
which completes the input of a character in 0.5 milliseconds. If a slower
device is used the times may have to be increased, The times are ex-
pressed in terms of the number of characters read in, N. This mst in-
clude every single character taken from the input medium, counting e.g.
BLANK, UPPER CASE, and LOWER CASE,

N=] N=3 N=10 N=100

dyn, assuming no waiting for reader 0.22
read general

integer array 10.6 + 0.72 x N 13 18 83
real array 10.6 + 0.83 x N 13 19 94

read integer 2.7 + 0.63 XN 5 9
read real 4.9 + 1.43 XN 9 19
read string 11+ 0.95 XN 14 20 106

Appendix 1. EXECUTION TIMES. 71

The following times refer to output to the line printer, which in this

context accepts the characters as fast as they are produced. If a slower

device is used the times may have to be increased. The number of charac-

ters produced as output is denoted N.

N=1 N10

write 6+2.6xN 32

writechar, assuming no waiting for device, 0.5
writecr, - - - - - 0,22
writeinteger 5+1.6XN 19
writetext 6+1.7XN 23

The following times refer to a machine with backing storage on drum, The

catalogue is 100 items large

cancel OO to 700
reserve 300

where 200

get, put 6 + 21 x number of tracks transferred

78 Appendix 2. EXECUTION TERMINATION,

Appendix 2, EXECUTION TERMINATION,

Any termination of a program execution which does not pass through
the final end of the program will give a message on the output medium gi-
ven as described in section 13.5.1. This message is typed in red and has
the form:
<text> <line 1> - <line 2, <relative track number>
The text is one of those explained below. Line 1 and line 2 are line mm-
bers referring to the original Algol program text, the initial begin be-
ing in line 0 and relative track number gives the place in the translated
program which give rise to the termination. The relative track number is
1025 for the last track of the program, The possible texts and the situa-
tion causing the execution termination are as follows:

array
In array declaration the number of elements is negative or too large
for capacity. In machines without buffer store the capacity for ar«
rays in the buffer is zero.

case
The value of the expression of a case clause is not positive or
greater than the number of expressions or statements governed by the
clause.

error 11
In calling put or get the array has less than 40 elements or reaches
owtside of the backing store area, ef. 11.10.4,

error 12
Standard procedure il or us ie called with incompatible parameters.

error 13
In calling system the array given as parameter does not have 40 ele-
ments.

exp
Stendard procedure exp is called with an argument greater than 554,
causing the range of reals to be exceeded,

formal
Assignment to formal name corresponding to an expression which is
not just a variable is attempted.

index
A reference to subscripted variable having subscripts outside the
bounds of the corresponding declaration is made, ‘The test for this
situation 1s made only on the final address, not on the individual
subscripts. Therefore the alarm will not always be made when the
bounds are transgressed, Also the teat may be suppressed when the
translator is called, see section 13.2.6 parameter 10e4,

Standard procedure ln is called with a negative argument. Argument 0
does not call the alarm, cf. section 7.5.2.

Appendix 2, EXECUTION TERMINATION. 79

mult
In miitiplication of two integers the range is exceeded, cf, section

Teds
spill

In arithmetic operation or during input the range of numbers is ex-
ceeded, cf. sections 7.3 and 10.1123.

sqrt
Standard procedure sqrt is called with a negative argument.

stack
The capacity of the core store is exceeded by declarations, cf. sec-
tion 11.2.

80 Appendix 3. MESSAGES FROM TRANSLATOR.

Appendix 3. MESSAGES FROM TRANSLATOR,

Most of the messages issued by the translator report logical flaws
in the text supplied by the programmer, and great pains have been teken
in the design of the system to make the error detection as complete as
possible, There are, however, a few classes of such errors which are
known to pass undetected. These are: (1) Use of local quantities in array
bound expressions, cf. section 5.2.4.2, Such errors will lead to a use of
bounds of unknown magnitude, Often this will be detected immediately at
block entry by the array exceeding the capacity of the machine, In many
other cases the error will be detected as a bounds-exceeded error when
the elements are used. (2) In a procedure call of a formal procedure the
actual parameters do not match the corresponding formals with respect to

kind and type or the numbers are different. This may cause completely un-
predictable reactions at execution time, (43) The test of the subscripts
against the array bounds is made on the final address only, if at ail

(cf. appendix 2, index). (4) Overflow in arithmetic operations on inte-
gers is not normally detected, cf. section 7.3. (5) The second operand of
shift goes outside the range -512 to 511. Each of the last three classes
or errors will cause wrong results, but the control of the program will
remain intact. (6) Machine code written by the programmer may cause any
unpredictable reaction.

Unless otherwise noted below all messages are associated with a

translation pass and a line. The pass number is output prior to the first

message from each pass as explained in section 13.2.7. Each message is

typed in red and has the form:
line <line number> <message text>

where the line number refers to the Algol program text, the initial begin

being in line 0. The possible message texts and their meaning in each
pass are given below, An underlining is not part,the text but indicates

that the translation is terminated inmedtately. |

BEFORE PASS 1 ch

ready
First part of a translator on paper tape has been read and ia ready
for the Algol text. Type a BLANK to start the translation.
No pass or line number.

ALL PASSES

program too big

@ working area provided for the translation according to 13.2.4

end 13.2.6 is insufficient for the Algol program text.
pass sum

The built in checksum for the next pass or phase does not agree.

pass medium
————"rensport error during loading of the next pass on phase.

Appendix 3. MESSAGES FROM TRANSLATOR, 81

PASS 1

character
The Algol text contains an illegal character, see section 7.1+3.2.

off
Character PUNCH OFF leads to skip of text, section 7.1.6.

on
Character PUNCH ON ends skip of text, section 7.1.6.

comment
The delimiter comment or message is not preceded by begin or 3;

)<improper> ~—
The construction)<letter string> is not followed by :(

code length
the Limits on code length exceeded, ef, section 12.1.

¢€ in string
The symbol ¢ is met inside a string. This is not an error, but is
likely to be unintended.

compound
The input has a string of which some of the first, but not the fol-
lowing, characters represent some of the first characters of a com

pound symbol, ef. section 7.1.2.
type in

A copy call requests the continued Algol text from the typewriter,

ef. section 13.2.1.

pause
END CODE is found in the Algol text, cf. section 7.1.5.

copy
The lookup program is missing or the init medium program is missing

or the copy source does not point to an item in the catalog contai-

ning a string of characters, cf, section 13.2.1.

copy mediun
Transport error during a copy from a buffer medium

copy overlap
The next track of the Algol text on the drum is destroyed by the

translator.
sun

Failure of the input check sum, cf, section 7.1.4.
string

fhe compound symbol ¢ is followed neither by < nor by a layout, cf.

section 9.5.
stack

Yoo many copy levels are called, ef. section 13.2.1.

passes
Second part of the translator on paper tape must be readied for in-

put. Type a BLANK to start it.
No pass or line number.

82 Appendix 3, MESSAGES FROM TRANSLATOR.

PASS 2

identifier overflow
e program uses too many or long identifiers, Remedy: use the block

structure to reduce the number of different identifiers. The maximm
capacity is 511 short identifiers.

pattern
A bit pattern has a wrong structure or the word or part pattern ca-

pacity is exceeded, cf. section 7.7.1.

PASS 3

zero
The selector of the floating point zero treatment is in the wrong
position. Reset selector and type BLANK.

std proce format
The information found in the library does not conform to the proper
library format

double std proc
The library contains the same identifier twice.

-delimiter
Two operands, i.e. identifiers, numbers, logical values, strings, or

compound expressions within parentheses, follow each other.
operend

An operand appears in a wrong context or is missing.
delimiter

The delimiter structure is impossible.
-~operand

Operand is missing at end of construction
termination

Parentheses, brackets, or bracket-like structures do not match.
head

Erroneous structure or identifier match in procedure heading. Only
one head message is given for one heading, This gives the line num
ber of the first symbol of the procedure body.

const.

Error of structure associated with one of the constant operands,

1.e¢. mmber, pattern, layout, string, true, or false. stack
The nesting of begin-s, parentheses, etc, exceeds the capacity of

the translator,

Appendix 3. MESSAGES FROM TRANSLATOR. 83

begin ends

PASS 4

The nesting of begin-end pairs exceeds capacity.

indices
The number of subscripts of an array exceeds capacity.

stack
The capacity of the stack for collecting the descriptions of simi-

taneously declared identifiers is exceeded. Remedy: Use the block

structure to avoid the simultaneous existence of many quantities.

undeclared

PASS 5

fn identifier is not declared

+ deci.

An identifier is declared two or more times in the same block, The

message appears at each place of declaration.

stack

The capacity of the stack recording redeclarations of identifiers

is exceeded.
ees

@ musber of standard procedures used by the program is too large

for eapacity

call

PASS 6

A procedure call has an incorrect number of parameters

subscripts
A subscripted variable has an incorrect number of subscripts

type <clue>
Error of type or kind of operand with respect to the operator con#

text, The clue gives further information shout the error, by identi-

fying the context of the error

128 <error> 3; or <error> end or <error> else

131 if <error> then

132 Then <error> else
134 else <error>
137 go to <error>
159 <error> step
1h0 step <error> until
143 <error> mod
144 <error> +
145 <errox> -
146 <error> Xx
147 <error> /

TST <error> Vv
158 <error> =>
159 <error> =
161 <error> J
162 <error> do
163 until <error> do
164 While <error> do
167 tase <error> of
168 5<error>) ~~
169 <error> ,
173 at <error> then

according to the following table:

183 <error> 3
184 <error> ,
185 for <error> :=
186 wntil <error> ,
187 while <error> ,
188 <error> while
189 := <errcr>
190 := <error> :=
191 <error> :=
208 <error> (
209 <error> [

Appendix 3. MESSAGES FROM TRANSLATOR,

148 <error> :
149 <error> K
150 <error> shift
151 <error> or]
152 <error> , or]
155 <error> ;
56 <error> A

175 case <error> of

177 <error>)
178 <error>]
179 <error>]
180 <error> ,
181 <error> ,
182 <error> ,

The capacity of the stacks recording
translated is exceeded,

Error associated with numeral in machine code.
Error associated with Slip name or address,

code head
Error in code head

code size
Code exceeds the admissible number of words

undef. <Slip name>
The Slip name given is not defined,

214 <error> (
492 <error> <
4O3 <error> <
hokh <error> #
405 <error> >
496 <error> 5
497 <error>

operands and operators being

The machine code does not conform to the restricted Slip syntax.

sorry
e translation is terminated because of errors,

of numbers exceeded in arithmetic e
stant operands,

ease too big

case clause governs too many expressions
switch declaration has more than 34 designatio

xpression containing con-

"Whe capacity of the stack recording operands being translated is ex-

The capacity of the stack of internal program references is excee~
ded,

or statements,
mal expressions,

Appendix 4, ENVIRONMENT DESCRIPTION. 85

Appendix 4, ENVIRONMENT DESCRIPTION

The environment description is available to the Algol program

through the procedure system (section 8,2) and has the form of an array

of 40 Boolean elements. In the following explanation of the format of the

wlohe it is assumed to have been transferred to a Boolean array

1: e

The description consists of a number of separate parameters, packed

into the elements of the array. It holds generally that the parameter

value 0 is not used to indicate positive information, but is reserved to

indicate that the parameter in question is not used in the version of de~

scription at hand. The other extreme of the range of a parameter is simi~

larly reserved for the unlikely case that the capacity originally as-

signed to a parameter is later found to be insufficient. When this value

is found it indicates that further information about the parameter value

may be found elsewhere in the description,

The description consists of two elements, D[1] and D[2], in fixed

format, describing the central machine, and additional words each de-

seribing a part of the peripheral units. The fixed format description

consists of the following:

Bits in

D1] Values and their meaning

O- 3 Primary backing store, tracks of 40 words, (1): 1 drum, 320

tracks; (2): 2 drums, 640 tracks; (3): 3 drums, 960 tracks;

(4): disk file, 9600 tracks, group selection and gg-instruction

active.

4 - 6 Buffer store. (1): None; (2): 4096 words, 11 and us instruc-

tions active. °

7 - 9 Sense busy instruction, (1): Nones (2): 11 256+channel active.

10 - 12 HP button and by-register. (1): No HP button, by has positions

2 to 93 (2): HP button, inhibition by by-position 3, by has

pos. 2 to 93 (3): HP button, inhibition by by-position 0, by

has pos. 0 to 93 (4): HP button tied to interrupt system.

13-14 by-pesttion 3 to 6 assignment buttons, i.e. manual control of

output medium.’ (1) Not available, (2) Available.
15 = 17 Output of 8-bit character by sy-instruction. (1) Not possible.

(2) Achieved by adding 128 in by-register.

18 - 39 end D[2] are reserved for later extensions. In present version

they mst all be 0.

The following words describe each peripheral unit, using one word

for each, The words are ordered in magnitude, The format of each word deo

pends on the value of the first 10 bits, but mostly conform to the fole

lowing arrangement:

Bits O0- 9 Identity of unit

10 = 19 Associated value of by, to be used in select

20 -« 37. Other description as given below

38 - 39 (1): The unit is permanently coupled to the machine.

(2): The use of the unit depends on the setting by the

operator of a manual switch, other than the by-posi=

tion assignment buttons.

86 Appendix 4, ENVIRONMENT DESCRIPTION.

Paper tape readers, identity 1 to 20.

(1): Facits (2): RC 2000. If the by-value is given as O or 4, the reader
can only be used with this value and will stop on reading a character of
even parity. If the by-value is given as 3 or 7, either that value may be
used, with no stop on even parity, or that value minus 5 may be used to

cause stop on even parity.

Paper tape punches, identity 21 to ko.

(21): Facit, The by-value is given. For an additional possibility, note

D[1] bit positions 15 - 17.

Line printers, identity 41 to 60,

(41): Series 4, 1 line buffers; (42): Series 4, 2 line buffers; (43): Se~
ries 5. Bits 10 - 19 give the associated by-value. in machines equipped
with by-position 3 to 6 assignment buttons, i.e. having D[1] bits 13 - 14
equal 2, ‘this by-value assumes that the buttons along the diagonal are
depressed, Bits 38 ~- 39 indicates the coupling to the machine, as de-
scribed above, Bits 20 - 37 describe some of the details of the character
set as follows:
Bits 20 = 22 2 1 indicate that the character set may be thought of as de-
fined from a basic set, given in the following table, with certain vari-
ations defined by the following bits, as given in the table of varia~
tions.

Basic character set, bits 20 + 22 = 1

A blank position indicates that nothing is defined about the character in
that position, An integer > 20, or a pair of integers, like 23-24, refer
to the specification of variations in the following bit positions, as
fully explained below.

Lower Upper Lower Upper Lower Upper Lower Upper
0 BLANK 16 o «(388 32 - + 48 23-24 £
1 1 25 17 < > 33 2342 J 4Q 23-24 A
2 2 x 18 23-24 § 3h 23.2) K 50 23-24 B

53 3 f 19 23-24 T 35 23-24 L 51 23-24 C
4 h = 20 232k U 36 23-24 M 52 23-24 D
5 5 3 21 23424 V 37 23-24 N 53 23-24 E
6 6 (22 23.24 W 38 23-24 0 5h 2520) F

7 7] 23 2382k X 39 23-04 P 55 23-24 G
8 8 (2h 2322h Y ho 25e2k Q 56 2382k H
9 9) 25 23-24 Z hy 23-24 R 57 23924 T

10 26 ho 31 58 LOWER CASE
11 27 3 y 45 23502k F 59 . 3
12 26 28 ky 32 60 UPPER CASE
13 23eah ZF 29 4s 33 61
14 27 30 29-30 h6 62
15 % & 31 47 63

' 64 CARRET

Appendix 4, ENVIRONMENT DESCRIPTION. 87

Variations on basic character set, valid when bits 20 - 22 = 13 Bits

23 ~ 24: (1) The character in lower case is the same as in wpper case.

(2) The character is the corresponding lower case one.

Bits(s) | Character value described | Bits = 1 Bits = 2
Lower Upper

25 1 1 VY
26 12 23-2h U

27 14 |
28 16 a A

29-30 30 SET POSITION TAB

31 ho FORMPEED

32 yy x ,

For each of the parameters in positions 25 to 33 the value 0 indicates

some other effect of the character value.

Bits 34 =. 35: Effect of character values 65 to 80:
{0} Other than as (1) or (2).

1) 65-79: Paper throw controlled by format control tape. 80: prin-

ting without paper motion.

(2) 65-79: Paper throw controlled by format control tape. 80: prin-

ting with double line feed.

With bits 20 - 22 not equal to 1 nothing is specified here about the cha-

racter set. The values 2, 3, wo. , 7 may be used later to specify other

specific character sets.

Plotters, identity 61 to 80.
(61): Calcomp. The type number is given in bits 20 to 40. (62) Moseley

Model 2D 3M.

Card readers, identity 81 to 100.
(81): Modified Bull D3. (82): CDC 9200.

Tape drivers, identity 101 to 120.

(101): Ampex TM 7. (102): CDC 606.

Caroussel, identity 121 to 140.
(121): Faeit ECM 64

Disk file, identity. 141 to 160.
(141): Anelex model 80, replacing drum, (142): Anelex model 60, transfer-

ring to buffer store. (143): CDC 9433.

abs, 13

Absolute addressing, 55
Addition, 12
Addressing, 54
addr.-message, 8h
Alarm printing, 26, 28
Alarms of standard

functions, 15
arctan, 13
Area description, 50
Arithmetic expressions,

11
array-message, 78
Arrays called by value,

17
Backing store, 46
Basic symbols, 8
begin-ends-

message, 83
Bit patterns, 14
BLANK, 6
Blind characters, 32
Blocks of storage, 46
Boolean-operator, 16
Boolean operations, 15
Boolean values, 14
Bulk reading procedure,

30
Call by value, 17
Call-message, 83
cancel, 48
Capacity of storage

units, 42
case, 9

Case expressions, 18
Case in output, 23
case-message, 78
Case statements, 18 f
oe EO ete message,

Catalogue, 46
char, 32
Character check sum,

10

character-message, 81
Character

representations, 7
Check of actual

parameters, 17

ALPHABETIC INDEX,

Check of output, 22
checksum, 22
CLEAR CODE, 10
code, 53
codé-head-message, 84
code+length-message, 81
code-size-message, 84
code specifications, 55
comment, 11
Ccomment-message, 81
compound-message, 81
Compound symbols, 8
const.-message, 82
Control characters, 6
copy, 61
Copy-medium-message, 81
copy=message, 81
Copy" over lap-message,

1
core, 53
Core code, 58
Core store, 42
cos, 13
Declarations, order of,

17
decl.-message, 83
delimiter-message, 82
Delimiters, 8
Digits, 8
Division, 12
double-std-proc,«

message, 82
Drum track transfer

time, 43
END CODE, 10
End of program, 11
entier, 13
Environment, 61, 85
error-11, 12,

l3Zemessages, 78
Execution, 67
Execution times, 43, 74
exp, 13
exp-message, 78
Rxtensions of Algol 60,

false, representation,
1

finis, 62

Flexowriter, 6
Floating point numbers,

11

Float operation, 12
formal-message, 78
Formal parameters, 18
For statements, 16
free, 46
get, 48
gier, 53, 58
Graphic characters, 6
head-message, 82
Hole combinations, 6,

31
identifier-overflow~

message, 82
ti, 51

improper-message, 81
index-message, 78
indices-message, 83
Input errors, 9

Input medium selection,

20
Input procedures, 30
in-string-message, 81
Integer divide, 12
integer-operator, 13

ger representation,
11

KA register, 65
kb on, 30
KB register, 65
Keyboard, 6
Labels, 16, 18
Layout, 24
Layout bracket, 9
Letters, 8
Library, 71, 73
Limitations, 19
Line number, 78, 80
Line output, 62
in, 13
ln-message, 78
Logical operators, 15
Long strings, 23

T00P storage control,

lyn, 31
Machine code, 53

Magnetic drum, 61
message, 9, 10
Messages from

translator, 80
mod, 12, 14
Nodulo, 12
Multiplication, 12

mult-message, 79
number-message, 84
Numeral, 30
Numeral-reading

procedure, 30

of, 9
off-message, 10, 81
on-message, 10, 81
operand-message, 82
Operator control, 68
Output case, 235
Output medium

selection, 20
Output procedure, 22
own, 17
Packing of strings, 16,

23
Paper tape form, 69
Parity check hole, 31
passes-message, 81
Pass information, 66
pass-medium-message, 80
Pass number, 65
Pass output, 66
pass-sum-message, 80
pattern-message, 82
Patterns, 14
pause-message, 10, 81
Power operator, 12
Precision of reals, 11
Precision of standard

function, 13
p-relative addressing,

95
Prelude to program, 63
Printing graphic

characters, 6
Procedure declarations,

17
Procedure statements,

7

ALPHABETIC INDEX,

program-too-big-
message, 80

PUNCH OFF and ON, 10
Punch tape code, 6
put, 48
Range of variables, 11
read general, 36
read integer, 33
read real, 34
read string, 40
ready-message, 80
real-operator, 135
Real representation, 11
Recursive procedures,

17
Representations of

characters, 7
reserve, 46
Reserved identifiers,

12
Revised Algol 60

Report, 4
Round-off, 12, 28
round-operator, 13
Select, 20
shift-operator, 15
S{mificant digits, 11
sin, 13
Slip names, 55

sorry-message, 8h
Specifications, 18
splll-message, 79, 84
sqrt, 13
sqrt-message, 79
nee addressing

stack-message, 79, 81,
82, 83, 84

Standard functions, 13
Standard procedures, 17
std-proc-format-

message, 82
std.procs,-message, 83
Stop between passes, 65
Storage allocation, 54
Storage of program, 43
Storage of standard

procedures, 44

89

Storage of variables,
2

Storage units, 42
String expressions, 16
string-message, 81
string-operator, 16
Btring quote, 8
Strings, 15 f
subscripts-message, 93
Subtraction, 12
Sum checking, 10
SUM CODE, 10
sum-message, 10, 81
syntax-message,
system, 21, 85
Tape code, 6
termination-message, 82
Termination of

execution, 78
Text on drum, 16
tracks transferred, 44
Transfer of drum track,

3
Transient compiler, 62
Translation, 61
sues representation,

type-in-message, 81
type-message, 83
undeclared-message, 83
undef.-message, 84
Underlined word

symbols, 8
Universal address, 60
Universal value, 60
us, 51
Value, call by, 17
Variables on backing

store, 45
where, 47
write, 27

writechar, 22
writecr, 23
write integer, 26
writetext, 23
zero-message, 82

	A Manual of Gier Algol 4
	Contents
	Introduction
	8-Channel punch tape code and flexowriter keyboard
	Printing graphic characters
	Blank
	Control characters
	Flexowriter keyboard
	Numerical representations

	The relation between Gier Algol and Algol 60
	Character representation of programs
	Use of comment
	Arithmetic values and operations
	Reserved identifiers
	Standard functions
	Arithmetic expressions
	Boolean expressions, bit patterns, and strings
	Integers as labels
	For statements
	Procedure statements
	Order of declarations
	Own
	Procedure declarations
	Case expressions
	Case statements
	General limitations

	External media and machine configurations
	Standard procedure select
	Standard procedure system

	Standard output procedures
	Identifiers and main characteristics
	Standard procedure: writechar
	Standard procedure: writecr
	Standard procedure: writetext
	Layouts
	Standard procedure: write integer
	Standard procedure: write

	Standard input procedures
	Identifiers and main characteristics
	Standard procedure: kbon
	Input medium and character representation
	Standard procedure: lyn
	Lower and upper case
	Blind characters
	Standard integer: char
	Exit conditions
	Numeral recognition and overflow
	Standard procedure: read integer
	Standard procedure: read real
	Standard procedure: read general
	Standard procedure: read string

	Storage administration during program execution
	Gier storage units
	Storage of variables
	Storage of program
	Loop storage control
	Data storage on backing store
	Backing store and catalogue
	Standard procedure: reserve
	Standard procedure: where
	Standard procedure: cancel
	Standard procedures: put and get
	Advice on semi-permanent data storage
	Advanced user information
	Standard procedures: il and us

	Machine code in Gier Algol 4
	Overall possibilities
	Syntax
	Storage allocation and addressing of Algol quantities
	Slip names
	Code specifications
	Classes and structures of quantities
	Core code and standard procedure gier
	Machine code format

	Coupling to environment
	Gier Algol systems
	Translation
	Pass information
	Pass output
	Execution
	Operator control

	Paper tape form of system
	Tape identification and check
	Translator and library tapes
	Modified library

	Execution times
	Execution termination
	Messages from translator
	Environment description
	Alphabetic index

