

A MANUAL OF

GIER ALGOL Ill

as developed by

Henning Christensen, Gunnar Ehrling, Jorn Jensen, Peter Kraft,

Paul Lindgreen, Peter Naur, Knut-Sivert Skog and Peter Villemoes

Second edition of A Manual of GIER ALGOL

With a page of corrections and additions

Edited by Peter Naur

AJS REGNECENTRALEN, COPENHAGEN

1965

Corrections and additions

Page 9, section 7.3. Add a paragraph:

The translator will assume that expressions of the form iAj where i
and j are of type integer are also of type integer. This is not correct

if j is negative. This may cause a non-integer value to be assigned to a
variable declared to be integer.

Page 12, 2nd line from below, add 4 letters to read:
writetext(4<Q, =,})

Page 13, line 13 from below, add (7) to read:
writechar(7)

Page 16, line 9 from below, move + one position to the left to read:
a+ 123.456 8,

Page 34, line 9 from below, change e to c to read:
c70, C60, os

Page 38, section 11.4.4, add a paragraph:
The most serious defect of the checking is that the types of actual

parameters in most cases are not checked against the specifications of
the corresponding formal parameters, neither during translation nor at

run time.
Page 44, section 12.4.3, add the sentence:

The variable given as parameter to gier must be of type Boolean.

Page 49, section 12.6.3, add the sentence:
During execution gierdrum will need an array in the core store big

enough to hold the code read in from tape. This may cause the capacity of

the core store to be exceeded,

Page 55, lane ° from above, change to) to read:
rii

Page 57, lines 17 to 21, change the identifiers skrvkopi, skrvml,
skrvtegn, streng, settegn, trykkopl, trykml, tryktegn, and tryktom,

to read:

writecopy, writechar, setchar, outcopy, outsp, outchar

Page 57, line 22 from above, add an extra line to read:
62k <i op,
Page 57, line 26 from above, chenge the identifiers tiltromle and

fratromle, to read, respectively:
to drum and from drum

Page 58, appendix 5, add the sentence:
The emergency output may be called during the execution of any pro-

gram by simulating an arithmetic overflow by transferring the control of

the machine to the instruction in location 0 by manual action.
Page 61, line 16 from above, change c to e to read:

26+c60+e96

Contents.

INTRODUCTION e ° « * e e e e ° ° ° e J e ° e * e e ° e e . e e

6. 8 — CHANNEL PUNCH TAPE CODE AND FLEXOWRITER KEYBOARD .. .

7. THE RELATION BETWEEN GIER ALGOL AND ALGOL 60
Tel.
7.2.6

Basic symbols

Use of

7.3. The treatment of variables

Toh
7.5
7.6.
7.8
79 7
10.

Teil,

«4, Reserved identifiers .

-5. Standard functions ..
Arithmetic expressions

. Integers as labels ..

. For statements
Procedure statements
Order of declarations

7-12. Gyn. 2 2 ee ew wee

7.13. Procedure declarations

7.14. General limitations . .

8. STANDARD OUTPUT PROCEDURES
« Control of typewriter and output

Identifiers and main characteristics .
Standard procedures: cutput, write ..

» Standard procedures: outtext, writetext
Standard procedure: outsp

P
w
W
O
M
m
m
m
m
a

es
e

°
.

e
*

e 1

2

3
i

o5e

6
7
8

9. STANDARD INPUT PROCEDURES . . 2. 1 2 ee eo wo ee wee

Identifiers and main characteristics ..
Universal input mechanisms . . . 2. « « 2 ee

« Standard procedures:
« Standard procedures:

. Standard procedures:

punch . « 6 « 6 oo

outer, writecr .. +. se«ecse

outclear, outeum .. 2. se a

outchar, writechar-

oeew es eo @

ee e@ © © © © © © © © © © © © © we Hw

ose ee « ®@& © © © © © Be ew © ee

of types integer and real

eeeee@

Terminators, information symbols, and blind symbols
. Standard procedure

. Standard procedure

. Standard procedure:
Standard procedures:

« Standard procedure:

10, STORING VARIABLES ON DRUM
10.1. Introduction

10.2. Storage of variables
10.5. Storage of program
10.4, Balancing the use of the core

: inchar, typechar .
setcher . . 1. 6 «

ehar . 2. ce ec we we

lym . 2 ws ee eee

store ..

input

inone * « e . ° e °

kbon 2. 2 6 ee we wo

outcopy, writecopy
typein .. « « « »

o
e
s
e
e

©

©

©

6

@

o
e

©
©

@
@

©
8

e
e
r

e
e

e
e
t

©

©

©

©

@

6

e
o
e
e
e
e

©

©

@

€

eo
e
e
 eo
@

e
e
v
e
e

ef

2

@

@

@

@

©

@

@

e
e
e

©
eo

es
©

©
@

e
e

eo
@

©
©

eo
e
e

we
ew

He
B
O

a
©

e
e

@
8

&
©

e
e

HF
@

*s
@
e
 @

e
o
e
#
e
f

©
@

©
@

@
“
e
e

e
e
e

©
©

©
©

&
B
e

@
e
e
e

8
©

©
&

8B
©

He
8B
O
o

¢
e
6
e
e

ee

@

10.5. Standard procedures: todrum, fromirum. Standard variable:
drumplace ... es. ee eee ere were eee we eee

o
o

e
¢
@

@
©

©
@

@
o
o

e
e

@®
e@

@
©

@
@

©
©

&
@

e
e
e
r
e
e
t
k

rs
s
e

8

©

©

6

@

e
e
s
e
e
e
s

4 Contents.

11. CPERATING THE COMPILER. . . 1. 2 ee we
11.1. Tapes and storage of the compiler

11.2. Manual jump to compiler

11.3. Compiler-ready-situation«

11.4. Typed messages from compiler ...
11.5. Run-situation .. . 2. 2 6 ee « ©
11.6. Choice of output units or stop run oe

0©
©

©
w
o

er

o
e

©

©
@

we
8

e
e
e

©
w
w

wo
@

e
e

es
©

e
oe

@

0
ef

©
©

©
©

@

o
o

ew
©

©
@

@

o
o

©
@

e
e

ee
@

e
e
e

©
©

©
©

6

eo
2

ev
e
e

©
©

@

e
e

6
©

©
©

©
8

e
e
e

e
e
e

6
@

ws
ww

11.7. Termination of execution of program ko

12. USING MACHINE CODE IN ALGOL PROGRAMS ... ++ © © © e © eo wo yy

12.1. Standard procedure: pack... 2 eee eee eee er cee HM
12.2. Standard procedure: split . 2... eee eee cee eee 4

12.3. The effect of Boolean operations . 2... +221 eee ee 6 Ub

12.4. Standard procedure: gier .. 2. ee eee eee ee ee we
12.5. Standard procedure: gierproc . 2. ee ee ee ee ee ww FG
12.6. Standard procedure: gierdrum. . 661 ee ee ee ee ee AY

Appendix 1. Pass information .. 2... 0. ee eee ee ee eee ee 50
Appendix 2. Pass output... 2. 2.1 ee ee ee we ee we eee ew ew ew 90

Appendix 3. Selected execution times .. 2. ee ee ee ee ee ee 252

Appendix 4. Error messages 2. 2 eee ee eet et eee eee ee SH

Appendix 5. Emergency output of the stack... 1.202000 58
Appendix 6. Binary output: binout .. 6. 1 eee ee ee tee we we ew

Alphabetic index . 2.2 ee eet ee ew ee ee we ewww ee ee 66

The ALGOL 60 Report.

Throughout the present Manual reference is made to the ALGOL 60 Re-
port or the Revised ALGOL 60 Report. The differences between these two

documents are slight and do not influence the numbering of sections. The

full references of these reports are as follows:

J. W. Backus, et. al., Report on the Algorithmic Language ALGOL 60 (ed.
P. Naur), Numerische Mathemtik 2 (1960), pp. 106-136; Acta Polytechnica
Scandinavica: Math. And Comp. Mach. Ser. no. 5 (1960); Comm. ACM 3 no. 5
(1960), pp. 299-314.
J. W. Backus, et. al., Revised Report on the Algorithmic language ALGOL

60 (ed. P. Naur), Regnecentralen, Copenhagen (1962), Conm. ACM 6 no. 1
(1963), pp 1-173 Computer Journal 5 (1963), pp. 349-3673 Numerische Ma-
thematik 4 (1963), 420-453.

INTRODUCTION. 5

INTRODUCTION.

The decision that an ALGOL compiler for the GIER should be written
was made in Jamary 1962. The work was started almost immediately and in
August 1962 a preliminary version of the compiler could be distributed to

all GIER installations. This version was complete except for some stan-

dard input and output procedures. The first definitive version, which al-

so corrected a number of errors found through the extensive practical use
of the preliminary version, was distributed in February 1963.

Like its predecessor DASK AIGOL the GIER AIGOL language lies suffti-

ciently close to the ALGOL 60 reference language to make it practical to

use the ALGOL 60 Report directly as the basic manual. The exact specifi-
cations of GIER ALGOL are then defined through the set of corrections and
additions of the ALGOL 60 Report given in the present Manual. Because of

this intimate relation to the AIGOL 60 Report the numbering of sections

within the present Manual have been chosen to be a direct continuation of

the section numbers of the ALGOL 60 Report.
The present second edition of the Manual describes the version of

the compiler known as GIER AIGOL III and distributed by February 1964.
The difference between this new version and the version described in the
first edition consists in the following: (a) Tye new version uses Inglish
language throughout. (b) Some standard procedures have been removed. (c)
Several new standard procedures have been included, to give the user the
access to using machine language. (d) A system for producing an output of

the variables of the program as they exists at the time of an alarm si-

tuation during program execution has been added. (e) Passes 1 and 2 have

been completely rewritten. In this way the speed of pass 1 will match the

2000 characters/second tape reader developed at Regnecentralen. Likewise,
the speed of pass 2 has been increased considerably. (f) The block entry

administration has been speeded up somewhat. (g) There is a choice of se-
veral ways of storing the compiler on the drum, and 4 version which reads

the translator from tape during translation is available.

The more important of these differences my be studied by comparing
the following sections of the first and second editions of the Manual:
8.2, 9.1, 9.6, 11.1, 11.3.11, 11.4.5, 12, appendices 3, 5, and 6.

Those interested in the internal working of the system are referred
to: Peter Naur, The Design of the GIER ALGOL Compiler, BIT Vol. 3 (1963),
124-140 and 145-166.

The new edition of the Manual was typed by Kirsten Andersen, as was
the first edition.

6 6. 8-CHANNEL PUNCH TAPE CODE AND FLEXOWRITER KEYBOARD.

6.1. PRINTED SYMBOLS.

Lower Upper Code Lower Upper Code

case case case ease

a A 1 00 « QO w W 1 O 00 ,

b B 1 00 2.0, x xX 1 00 .000,
c Cc 1 000 . 00, y Y 1 000. 1

d D 1, 00 .O , Z Z 1 OO. 0,

e E 1 000 .0 0, x & 1 000 , '

f F 1 000 .00 , @ g , 0 00. 00,

g G 1 00 .000, 0 rN 1 O . '

h H 1 00 0. ' 1 Vv t . OY

i I 1 0000. 0, 2 x 1 oO,

j J 100. 0, 3 / 1 0 « 00,
k K 100.0, & = ; -O |
i L 1 0 « 00, 5 1 0 .0 0,

m M 100.0 , 6 \ 0 .00 ,
n N 1 0 20. Oy 7 1 «000,

} 0 , 0 .00, 8 ; O. '
p P 1 0 0 2.000, 9) ' 00. 0,
q Q » 0 00. 1 ' 10 1 000. 00,

r R 10 O. O,- . 3 + OO O. 00,

s Ss 1 OO 2.0, - + 10 . '

t T 1 O . 00, < > 1 OO. OO,

u U 1 00.0 , _ | : 0.00 ,
v v 1 © .0 0, The key for _| does not advance the carriage.

6.2. TYPOGRAPHICAL SYMBOLS.

LOWER CASE , 0000. 0 , UPPER CASE , 0000.0 , SPACE , Oo. ’

CAR RET 10 . , TAB + ©00.00 ,

6.3. CONTROL SYMBOLS.

STOP CODE , o. 00, TAPE FEED , oc000.000, PUNCH ADRES ,0 . 1

PUNCH OFF . 0o 0.000, PUNCH ON 1 0 0.0 , AUX CODE : 0.0 |,

PUNCH ADRES and AUX CODE insert their respective codes when depressed

simultaneously with any other key.

6.4. FLEXOWRITER KEYBOARD.

START STOP PUNCH AUX STOP TAPE

READ READ ADRES CODE CODE FEED

mB PUNCH x / = 3 [] () a v | PUNCH
OFF 2 3 5 6 8 9 O 1 ON

Q W E R T ¥ UL QO P D> CAR

q weort y uit oo p << RET

LOWER A S DB F G KE J K L & @ _ LOWER

CASE a s a f g h j k 1 a ¢ CASE

UPPER 2 * C V BN M y : + UPPER
CASE z x c v bon m ' . - CASE

=

6.5. NUMERICAL REPRESENTATIONS. 7

6.5. NUMSRICAL R°PRES=NTATIONS.

In the following table the characters have been arranged according to
the numerical equivalent of the hole combination (after removal of the pa-

rity check hole). The first colum gives the decimal value of the charac-

ter, the second and third columns give the lower and upper case character,
respectively, and the fourth column contains a G in the cases where the

character 1s available only in GIER, but not on the flexowriter

LOWER UPPER LOWER UPPER

0 SPACE 32 - +
1 1 Vv 33 j J
2 2 x 3h k K
5 3 / 35 1 L

& u = 36 m M

5 2 37 n N
6 6 { 38 ° 0
7 7 3g p P

& 8 (ho qa Q.
9 9) ht r RR

10 (NOT USED) ko (NOT USED)
11 STOP CODE Lage g g

12 END CODE, uh PUNCH ON
13 a A G ks (NOT USED)
1h _ | 46 (NOT USED)
15 (NoT USED) 47 (NOT USED)

16 0 A 48 8% EB
“17 < > hg a A
18 8 Ss. 50 - b B
19 t T 541 c Cc

20 u U 52 a D
21 v Vv 53 e E
22 w W 54 f P
23 x x 55 & G

24 y Y 56 h H
5 z Z 57 i I

26 (NOT USED) 58 LOWER CASE
27 ' 10 59 . 3

28 CLEAR CODE 60 UPPER CASE
29 RED RIBBON G . 61 SUM CODE
30 TAB 62 BLACK RIBBON G
31 PUNCH OFF 63 TAPE FEED

64 CAR RET

8 7-1. BASIC SYMBOLS.

7. THE RELATION BETWSEN GIER ALGOL AND ALGOL 60.

71. BASIC SYMBOLS.

7e1.1. Single character symbols.

7Teie1.1. Letters and digits. GIFR ALGOL adds the letters
aE Z

to the reference alphabet. The appearance of all letters and digits may

be seen from section 6.

Teleie2. Delimiters. As apparent from section 6 the following simple re-

ference language symbols are directly available in GI@R ALGOL:

tox /S=>VA,e wis () 70)

7.1.2. Compound symbols.
Compound symbols must appear exactly as shown in this section, with-

out additional SPAC® or CARRET symbols.

Tele2e1- Underlined words. Underlined words are produced in GI=R ALGOL by

depressing the underline (_) key immediately preceding each letter of the

word. The symbols are the following:

true false go_to if then else for do step until while comment begin end

own Boolean integer real array switch procedure string label value
wee Sele Hee SSSR SS ee sees Soe owe ~~ See See

O tO.

2. Compound symbols similar to reference language. The following

compound symbols, most of which are produced by combining the underline

(_) or stroke CH with other characters, are similar to those of the re-

ference language:

< > ¢ = 3s
7Tele2e3s Compound symbols differing from reference language. The follow-

ing compound symbols show a noticable deviation from the reference lan-

guage:
Reference language * om) wo fl + >

GIER ALGOL ho, 2 4 4 i =

Following the delimiter comment any sequence of characters speci-
fied in section 6.5 is admitted up to the first following semicolon (3).

Comments have no effect in GI™@R ALGOL.

7.3. THE TREATMENT OF VARTABLS OF TYPES integer AND real.

Variables of types integer and real are represented by normal floa-

ting point numbers in GIER. Therefore integers must be confined to the

range?
~ 2429 = - 536 870 912 < integer < 536 870 911 = 2%29 - 1

while the range of non-zero real variables is:
2N-512) = 7.458,-155 <aba(real) < 1.341,154 = 2of612

7.3. THE TREATMENT OF VARIABLES OF TYPES integer AND real. 9

If in the course of a calculation an expression, which according to the

rules of section 3.3.4 is of type integer, yields a result outside the
range for integers, the result wilI be represented by too few signifi-

cant figures and will therefore in general be inexact.
Round-off from type real to type integer is performed by means of

the built-in machine instructions for conversion from floating form to

fixed form and back again (tkf neo, nkf 39). This implies that reel re-
sults in the range from 0 to 2lag will, yield gorrect integers on roun-
ding, while reals in the range from 229 to 2/39 will be rounded to,an

integer having too few significant figures. Real results larger than of 39

will yield completely erroneous results if rounded.
The integer divide operation (:) will sometimes give a result which

is incorrect by unity if the absolute value of the term involved is grea-

ter than 268 435 455.
The accuracy of a real number will correspond to 29 significant bi-

nary digits. Thus one unit in the last binary place will correspond to a

relative change of the number of between 2-9 and 4y-9.

7.4. RESERVED IDENTIFIERS.

A reserved identifier is one which may be used in a program for a

standard purpose without having been declared in the program. If the
standard meaning is not needed in a program the identifier may freely be
declared to have other meanings.

The complete list of reserved identifiers arranged alphabetically is
as follows:

Identifier Reference Identifier Reference

abs 3.2.4 outer 8.6
arctan 3.2.4, 7.5 output 8.3
char 9.11 outsp 8.5
cos 3.2.4, 7.5 outsum 8.7
drum place 10.5 outtext 8.4
entier 53.2.5, 7.5 pack 12.1

exp 3.2.4, 7.5, 11-7 setchar 9.10
from drum 10.5 sign 3.2.4
gier 12.4 sin 3.2.4, 7.5
gierdrum 12.6 split 12.2
glerproc 12.5 sart 3.2.4, 7.5
inchar 9.9 todrum 10.5

inone 9.5 typechar 9.9
input 9.4 typein 9.8
kbon 9.6 write 8.3
in 3.2.4, 7.5, 11.7 writechar 8.8
lyn 9.12 writecopy 9.7

outchar 8.8 writecr 8.6
outclear 8.7 writetext 8.4
outcopy 9.7

10 7e5¢ STANDARD FUNCTIONS.

725 STANDARD FUNCTIONS.

7.5.1. Accuracy.
The algorithms “or calculating the standard functions arctan, cos,

exp, In, sin, and sqrt, incorporated in GIER ALGOL will all yield results
having an error less than that which corresponds to about 2 units in the
last place of the result or the argument, whichever gives the greater er-

rore

7.52. Alarms.
Certain misuses of the standard functions will cause termination of

execution of program (see section 11.7). Note, however, that i1n(0) will
supply the result -9.35,49 and not call the alarm.

7.6. ARITHMETIC EXPRESSIONS.

The treatment of arithmetic types and the accuracy of real arithme-
tics is described in section 7.3. Alarms are described in section 11.7.

77+ (This section has been deleted).

7.28. INTSGERS AS LABELS.

Integers cannot be used with the meaning of labels in GI®@R ALGOL.

729 FOR STATEMENTS.

In GI™R ALGOL a subscripted variable is permitted as the controlled

variable in a for clause. The identity of the variable will be establish-
ed once at the beginning of each activation of the for statement and

changes of the values of subscript expressions in the course of the exe—

eution of the controlled statement will have no influence on which vari-
able is used as the controlled one.

7.10. PROCEDURE STATEMENTS.

7.10.1. Recursive procedures.
Recursive procedures will be processed fully in GI@R ALGOL.

7.10.2. Handling of types.
The types integer and real will be handled according to the pre-

scriptions of section 4.7.3 except in the case that a formal parameter,
which is specified to be real and to which assignments are made, in the
call corresponds to an integer declared variable. This special case will

be treated incorrectly in GI=SR ALGOL.

7-10. PROCEDURE STATEMENTS. it

7.19.3. Extended list of standard procedures.

All input and output functions are in GISR ALGOL expressed as calls
of standard procedures. These calls conform to the syntax of calls of de-

clared procedures (cf. section 4.7.1) and also should be regarded in all
other respects as regular procedure calls or function designators, as the
ease may be. This specifically includes the activation of a standard pro-

eedure through its identifier appearing as an actual parameter of a call
of a declared procedure.

Tell. ORDER OF DECLARATIONS.

In GI=ER ALGOL declarations may appear in any order in the block

head.

7.12. Own.

In GIER ALGOL own can only be used vith type declarations, not with
array declarations.

7.13. PROCSDURE DECLARATIONS.

7.13.1. Recursive procedures.

Recursive procedures will be processed fully in GIFR ALGOL.

7.13.2. Arrays called by value.

GIER ALGOL cannot handle arrays called by value.

7,153.3. Specifications.

The specifications for formal parameters must be complete, i.e. each

parameter must occur just once in the specification part.

7.13.4. Labels called by value.

Lebels cannot be called by value in GIR ALGOL (the Revised ALGOL 60

Report leaves the question unanswered).

7.14. GENSRAL LIMITATIONS.

GISR ALGOL imposes a number of limitations caused by the finite size

of the tables used durine compilation. However, with one exception these

limitations shall not be mentioned further here, partly because only very
exceptional programs are likely to exceed the capacity, partly because a-
larm messages durins compilation will indicate when they are violated

(see appendix 4). The exception is the limitation that the number of
variables which are active simultaneously at any time during the execu-

tion of a program must be confined to about 700. This problem fs discus-
sed in detail in section 19.

12 8. STANDARD OUTPUT PROCEDURES.

8. STANDARD QUTPUT PROCEDURES.

Output of text and results froma program will be controlled by

means of output procedures permanently available to the translator (i.e.

without explicit declarations). The output will be provided in the form

of 8-channel punch tape or printed copy. The symbols and 8-channel code

given in section 6. 8-CHANNEL PUNCH TAPE CODE AND FLEXOWRITER KEYBOARD
will be used.

8.1. CONTROL OF TYPEWRITER AND OUTPUT PUNCH.

Half of the standard output procedures are available in two forms,

one controlling the output punch (identifier beginning with out), the

other controlling the on-line typewriter (identifier beginning with

write). By operator intervention it is however possible to make a free

choice of the output unit corresponding to the two sets of output proce-

dure identifiers. See the section 11.6 CHOICE OF OUTPUT UNITS OR STOP

RUN.

8.2. IDENTIFIERS AND MAIN CHARACTERISTICS.

The identifiers and main characteristics of the standard output pro-

cedures are the following:

Identifier Example, reference Effect

output write(t{+d,dda$,q42) Outputs the values of an arbitrary

write section 8.3. number of arithmetic expressions

in a specified layout. Other out-

put operations my also be inser-

ted as parameters.

outtext write(¢<Q,=,}) Outputs a specified string of sym-

writetext section 8.4. bols.

outsp

outer

writecr

outclear

outsum

outchar

writechar

outcopy

writecopy

It holds for all

8.2. IDENTIFIERS AND MAIN CHARACTERISTICS. 13

outsp (8-n)
section 8.5.

writecr
section 8.6.

outclear

section 8.7.

outsum

section 8.7.

writechar
section 8.8.

outcopy (¢</; +)
section 9.7.

Qutputs a specified number of

SPACEs.

Qutputs one CAR RET symbol.

Punches one CLEAR CODE symbol and

sets an internal sum of punched

symbols to zero.

Punches a STOP CODE, a SUM CODE
and a code representing the sum of

the symbols punched since program

read in, last outclear or last

outsum.

Outputs the character correspon-

ding to the value of the parame-

ter.

Copies a section of the input tape
to the output, the section being

specified through a parameter.

standard output procedures that each output opera-

tion will cause an addition to an internal variable of a number which is

equivalent to the character. This may be used for checking purposes by

means of the mechanisms described in sections 8.7.2 and 9.2. It should be

noted, however, that for the checking to work correctly the output tape

must not include any character which has been produced by a write - ope-

ration (cf. section 8.1).

14 8.3. STANDARD PROCEDURES: output, write.

8.3. STANDARD PROCEDURES: output, write.

8.3.1. Syntax.
<sign> ::= <empty>| - | + | +
<exponent layout> ::= »<signs>d|<exponent layout>d
<zeroes> ::= 0 |<zeroes>0 <zeroes>, 0

<positions> ::= a! <positions>d | <positions>,d
<0-positions> ::= <positions> | <0-positions>0 | <0-positions>,O

<decimal layout> ::= <0 -positions>|<0-positions>.<zeroes>| 7

<positions>.<0-positions>|.<0-positions>

layout tail> ::= <decimal layout>|<decimal layout><exponent layout>

<layout> ::= <sign><layout tails|<signon<layout tail>|<sign> n!
<sign>n,<layout tail>

<general layout> ::= {<layout>}|<formal parameter>|(<layout expression>)
<layout expression> ::= <general layout>

<if clause><general layout> else Clayout expression>

<out statement> ::= <output statement>|<outtext statement>|
<outsp statement>|<outer statement>|<outclear statement>|

<outsum statement>|<outcopy statement>|<outchar statement>
<output parameter> ::= <arithmetic expression>|<out statement>

<output parameter list> ::= <output parameter>

<output parameter list><parameter delimiter><output parameter>

<output statement> ::=

output(<layout expression><parameter delimiter><output parameter list>) |

write(<layout expression><parameter delimiter><output parameter list>)

8.3.2. Examples.
output (tadd.oof, P, outer, outtext(¢<v=$), w +s)
output({-dy-ddt, epsilon/16)
output(¢ad,ddd>, @, outsp(5), output(t.dddb, a), W, t-3)
output(if S>O then f1 else f2, Sum)

output(m, p-a, srt)

8.3.3. Semantics.
A call of the procedure output or write causes the following treat-

ment of the parameters specified in the output parameter list:

Arithmetic expression: the value will be printed in the layout sup-

plied in the first parameter of the call.

Qut statement: the call of the statement will be executed.

8.3.4, The layout.
The layout expression will be evaluated once at the beginning of the

execution of the output or write statement. The evaluation will take

place in a way which is completely analogous to that of other exprese

stons (cf. section 3.3.3). The final value mst always be of the form

<<layout>}.
The symbols of the layout give a symbolic representation of the dt-

gits, spaces and symbols as they will appear in the printed number. In-

deed, the finally printed number will have exactly the same number of

printed characters as is present in the layout (except in case of alarm

printing, see section 8.3.6). The various symbols of the layout have the
following significance:

8.3. STANDARD PROCEDURES: output, write. 15

8.3.4.1. Sign. The four possible symbols in the sign position signify the
following:

8.3.4.1.1. Empty. The number is supposed to be positive. No sign will be
yrinted. If a negative number is encountered, an alarm printing will take
place (see section 8.3.7).
8.3.4.1.2. - The sign will always be printed using SPACE for positive,

and - for negative numbers. It will, if possible, move to the right, ap-

pearing as the first or second symbol to the left of the first digit (a

layout SPACE may appear in between) or immediately in front of the deci-
mal point.

8.3.4.1.3. + . The sign will always be printed using + for positive and
- for negative numbers. It will, if possible, move to the right, as in
8.3.4.1.2 above.
8.3.4.1.4. + . The sign will always be printed, using + for positive and

- for negative numbers. It will be printed as the first symbol of the
number, before any SPACE or digit.

3.3.4.2. Digits. Letters d and n represent digits. Letter n may only ap-

pear as the first symbol following the sign. The total number of letters

d and n gives the maximum number of printed significant digits (cf. sec-
tion 8.3.8).

If nis used in the first digit position, proper decimal fractions

will be printed with a 0 in front of the decimal point and the integer 0

will be printed. If d is used these 0-digits will be replaced by SPACE.

8.3.4.3. Zeroes. Zeroes may appear at the end of a decimal layout. They
influence the representation of the number in the following manner: If m

zeroes are present at the end of the decimal layout the exponent printed

will be exactly divisible by m+i. For this to be possible at the same time
as the position of the decimal point within the complete layout is kept

fixed the significant digits of the number are allowed to move to the

right, using the positions of the symbols 0, depending on the mgnitude
of the number. If no exponent layout is included the exponent 0 is under-

stood and the above rule holds unchanged.

8.3.4.4. Spaces. Spaces will be inserted in all positions where the symbol
» appears. The symbol 2 may within the layout be replaced by SPACE the ef-

fect of SPACE being the same.

8.3.4.5. Decimal point. The deciml point will always be printed ina
fixed position within the layout. If decimals are printed it will appear

as . otherwise as SP/CE.

8.5.4.6, Scale factor. The scale factor will be printed in the same way as
in the language. The symbol y will appear immediately in front of the sign
of the exponent. If the scale factor is 1 the symbols y» and following will
appear as SPACHs. Note that it is not possible to print an exponent part

without a decimal part.

8.3.5. Round off.
‘11 numbers will be correctly rounded to the number of significant

digits printed.

16 8.3. STANDARD PROCEDURES: output, write.

-

8.3.5, Limitations.
The totel number of symbols n and d in any decimal layout mst be

< 15.
~ The total number of symbols n, d, and 0, written to the left of the

decimal point mst be < 15.

The total number of symbols d and © written to the right of the de-

cimal point in a decimal layout mst be < 15.

The number of symbols d in any exponent layout must be < 7.

The symbols , and SPACE can only appear in such positions within the
layout that they are preceded by fewer than 20 symbols of the kinds n, 4,

0, and point (.).

8.3.7. Alarm printing.
By alarm printing is meant that the printing will consume more posi-

tions on the paper than are present tn the layout. Alarm printing will oc-

cur as follows:
8.3.7.1. Negative number printed with layout having empty sign position.

The correct - will be inserted, consuming one extra position.
8.3.7.2. Number too large for layout. Whenever the number to be printed is

too large for the layout given, an actual layout is used which will acco-

modate the number by inserting an exponent layout, or by increasing the

number of exponent digits.

8.3.8. Small numbers.
Printing of small numbers will never give rise to alarm printing. In-

stead the number of printed significant digits will be smaller than the

maximum (section 8.3.4.2).

8.3.9. Examples of printed numbers.
In order to indicate the exact number of characters printed, comms

are inserted immediately preceding and following each number.

Layout

n,dd,dd.do,0 +d,ddd.ddd,d -ddd.d00y +d +dd.Oy-dd

Normal printing

; 0.00 1, , +.001 2, >» 14235y9-3, rt12 yh,
; 0.01 2, ; +.012 3, » 12.35 »-3, »+ 1.2 y-2,
; 0.12 3, , +.123 5, » 123.5 -3, ,+12 2,
; 1.23 5, > +4.234 6, > 1.235 , 3+ 1.2 ;
, 12.34 6, , +12.345 7, » 12.35 , »+12 ,
» 1 23.45 7, > +123.456 8, , 123.5 , r+ 1.2 » 2;
» 12 4.57 , >+1 234.567 9, >» 1.235943, +12) yp 2,
31 2345.7, » 12.635 +3, r+ 162 y 4,

; -.001 2, » -1-235y-3, 3-12 py
3-1 234.567 9, > 712235 +3, 3°12» 2,

Alarm printing

; -0.00 1,

» 1 2345.7 3, 5 1 234.567 Dol,
» 1 23.45 715, ,-1 234.567 914, » 123.5 ptt5,

8.4. STANDARD PROCEDURES: outtext, writetext. 17

8.4, STANDARD PROCEDURES: outtext, writetext.

8.4.1. Syntax.
<general string> ::= ¢<<proper string>} |<formal parameter>|

(<string expression>)
<string expression> ::= <general string>|

<if clause><general string> else <string expression>
<outtext parameter> ::= <string expression>|<out statement>

<outtext parameter list> ::= <outtext parameter>|
<outtext parameter list><parameter delimiter><outtext parameter>

<outtext statement> ::= outtext(<outtext parameter list>) |
writetext(<outtext parameter list>)

8.4.2, Examples.
outtext(¢<Result is}, a, t<than expected>)
writetext ({<Q,=,>)

8.4.3. Semantics.
The execution of an outtext statement causes the following treatment

of the parameters specified in the parameter list, taking them in order
from left to right:

String expression: an output of the text resulting from an evalua-

tion of the expression is performed.

Out statement: the call of the statement will be executed.

8.4.3.1. The string quote.
Note she oi fference between the string quotes used here

< >

and those used in layout expressions (cf. section 8.3.1).

8.4.3.2. Treatment of SPACE and CAR RET.
All characters of the proper string; including SPACEs and CAR RETs

will be outputed. The symbol for space , will however be equivalent to

SPACE, i.e. it Will be printed, not as it stands, but as a SPACE.

18 8.5. STANDARD PROCEDURE: outsp.

8.5. STANDARD PROCEDURE: outsp.

8.5.1. Syntax.
<outsp statement> ::= outsp(<arithmetic expression>)

8.5.2. Example.
outsp(n + m - 7)

8.5.3. Semantics.
The execution of an outsp statement causes the number of SPACE sym-

bols specified as actusl parameter to be outputed.
The value of the arithmetic expression will, if necessary, be roun-

ded to the nearest integer. If it assumes a non - positive value no sym-

bols will be outputed.

8.6. STANDARD PROCEDURES: outer, writecr.

8.6.1. Syntax.
<outer statement> ::= outcr!writecr

8.6.2. Semantics.
An outer statement causes a CAR RET symbol to be outputed. Note that

this will cause the combined operation of return of carriage and line

feed to take place.

8.7. STANDARD PROCEDURES: outclear, outsum. 19

8.7. STANDARD PROCEDURES: outclear, outsum.

8.7.1. Syntax.
<outclear statement> ::= outclear

<outsum statement> ::= outsum

8.7.2. Semantics.
The two output procedures described here serve to insert characters

on the output tape with a view to a later use of this output tape as in-

put tape to an AIGOL program.
The outclear statement punches the CLEAR CODE and sets the internal

sum of the punched characters to zero. This prepares for the use of the

checksum mechanism (cf. section 9.2.5).
The outsum statement punches a STOP CODE, a SUM CODE and a character

representing the value of the internal sum of all punched characters and
sets this sum to zero. During input this combination will cause an auto-

matic sum check to take place (cf. section 9.2.5).

8.8. STANDARD PROCEDURES: outchar, writechar.

8.8.1. Syntax.
<outchar statement> ::= outchar(<arithmetic expression>) |

writechar (<arithmetic expression>)

8.8.2. Examples.
outchar(if upper case then 60 else 58)
writechar(49)
writechar(symbol - case)

3.5.3. Semantics.
The execution of an outchar statement causes the character corre-

sponding to the value of the actual paremeter to be outputed. The corre-

spondence between the integers and the characters is given in the table

of section 6.5. If the value of the actual parameter is not an integer it
will be rounded to the nearest integer. If it is larger than 127 the va-

jue modulo 125 will be used.
The characters for UPPER CASE and LOWER CASE mst be outputted ex-

plicitiy where needed. Where outchar statements are used side by side
with output or outtext statements it is important to note that these lat-
tex will assume the output unit to be in lower case when a call is mde
and will also leave it in lower case when the call is completed.

Note also that the use of outchar may produce a tape which will
cause the checksum mechanism (section 9.2.5) to fatl, e.g. if oitchar is

used to produce either of the control characters CLEAR CODE or SUM CODE.

20 9. STANDARD INPUT PROCEDURES

9. STANDARD INPUT PROCEDURES.

Input of information from 8-channel punch tape may be carried out at
any stage of an ALGOL program through calls of standard input procedures

permanently available to the translator.
In order to provide flexibility several different kinds of standard

input procedures are available. These differ both with respect to the in-

terpretation of the single symbols supplied on the input tape and the in-

ternal effect of the input operation.

9.1. IDENTIFIERS AND MAIN CHARACTERISTICS.

The identifier and main characteristics of the standard input pro-

cedures are the following:

Identifier Example, reference Effect

input input(a, b, c) Reads numbers and assigns to vari-
section 9.4, ables or arrays.

itnone pxinone real procedures inone and typein

typein section 9.5, 9.8. fave the next number appearing on

the input tape or typed on the
typewriter as their value.

kbon bool:= kbon This Boolean procedure supplies the
section 9.6. current value of the manually ope-

rated KB register.

outcopy outcopy (¢</;4) Cause a copying of the characters
writecopy section 9.7. on the input tape to the output

punch (outcopy) or the typewriter
(writecopy).

inchar n:i= typechar These integer procedures supply the

typechar section 9.9. value of the next character which
appears on the tape or is typed.

setchar setchar (15) Inserts an input character ahead of

section 9.10. the ones waiting in the input.

char p:= char Supplies the value of the last cha-
section 9.11. racter read by any input procedure.

lyn q:=z lyn +h Supplies the value of the next row
section 9.12 of holes on the input tape.

9.2. UNIVERSAL INPUT MECHANISMS. 21

9.2. UNIVERSAL INPUT MECHANISMS.

Certain characters on the input tape will be handled in the same way

no matter which of the standard input procedures is controlling the input

operation. The universal mechanisms are the following:

9.2.1. Skipping between PUNCH OFF and PUNCH ON.
All characters between PUNCH OFF and the first following PUNCH ON,

these two characters included, will be completely ignored during input.

9.2.2. Ignoring of BLANK TAPE, TAPE FEED, and ALL HOLES.
The characters

. BLANK TAPE
0000.000 TAPE FEED

00000.000 ALL HOLES

will be ignored during input.

9.2.3. (This section has been deleted).

9.2.4, Input characters of wrong parity.
The machine stops when e row of an even number of holes is sensed in

the tape reader. In this situation it is sufficient to place the intended
symbol in the R register since the ALGOL system never makes any use of
the representation stored by the input instruction itself.

922.5. The checksum mechanism.
When the standard input procedures read tapes which have been pre-

pared by the standard output procedures the checksums included on this
tape in consequence of calls of the outsum procedure will automatically
be verified. If the check symbol does not é¢heck with the corresponding
symbol as formed during previous read-in the machine will print

sum fails
and the machine will stop. If a character is typed on the typewriter the
reading will continue. The internal variable which holds the current sum
of the symbols which have been read in may be reset to zero by the inclu-
sion of the CLEAR CODE on the tape. This is the symbol produced by the
outclear procedure (cf. section 8.7.2). On the flexowriter use:

AUX CODE with 0

90206. Stop produced by END CODE.
Whenever the END CODE appears the message

pause
will be typed and the machine will stop, waiting for a character to be
typed on the typewriter. The END CODE may be produced by an ALGOL program
by executing the statement outchar (12). On the flexowriter it is pro-
duced by depressing :

AUK CODE with SPACE.

Ge207+ The effect of UPPER CASE and LOWER CASE.
For printed symbole (cf. section 6.1) the meaning and effect of a gi-~

ven hole combination depends on the most recent CASE symbol on the tape
(UPPER CASE or LOWER CASE).

For typographical and control symbols (cf. sections 6.2 and 6.3) the
effect is usually independent of the case.

22 9.3. TERMINATORS, INFORMATION SYMBOLS, AND BLIND SYMBOLS.

9.3. TERMINATORS, INFORMATION SYMBOLS, AND BLIND SYMBOLS.

The effect of the input characters which do not give rise to an ac-

tion of a universal input mechanism (cf. section 9.2) depends on the par-

ticular standard input procedure. In describing this effect it is conve-

nient to make use of the following concepts:

9.3.1. Terminators. A terminator is a symbol on the input tape which in-

dicates to the input procedure that the reading of a piece of information

(e.g. a number) has been completed.
9.4.2. Information symbols. An information symbol is a symbol on the in-

put tape supplying positive information which is transferred to the run-

ning ALGOL program by the input procedure.

9.3.3. Blind symbols. A blind symbol is a symbol on the input tape which

is ignored by the input procedure.
As explained more concisely in the following sections we have for

the procedures input and inone:
Terminators: <letter> TAB PUNCH ON CAR RET STOP CODE all signs except

+=.

Information symbols: <digit> + - . »

Blind symbols: SPACE
Each input operation will in general read three sections of the in-

put tape:

1. Any mixture of terminators and blind symbols.
2. A legal sequence of information symbols mixed with blind symbols.

3. One terminator.

9.4. STANDARD PROCEDURE: input.

9.4.1. Syntax.
<input parameter> ::= <variable>|<array identifier>
<input parameter list> ::= <input parameter>|

<input parameter list><parameter delimiter><input parameter>

<input statement> ::= input(<input parameter list>)

9.4.2. Examples.
input(P)

input(Afi, J], V, MATA)
input(k, B[1,k])

9.4.3. Semantics.
A call of the procedure input will cause the values of numbers sup-

plied on the input tape to be assigned to the variables and/or arrays of
subscripted variables specified as parameters. The assignments will in

detail be executed as follows:

9.4. STANDARD PROCEDURE: input. 23

9.4.3.1. Order of assignment. The parameters will be taken in order from
left to right and the assignment will be completely finished for each pa-
rameter before the next is treated. Thus the statement input(k, B[1,k])
will first assign a value from the input tape to k and this value of k
will then define the particular component of B to which the next number
on the tape will be assigned,

9.4.3.2. Assignment to array. If an array identifier is supplied as pa-
rameter an assignment to all the components of the array will take place.
The order of assignment may be described as follows: Denoting the lower
and upper subscript bounds of the array declaration by 11, 12, ... In, ul
u2, «+. un, the infut operation is equivalent to

for il:= 11 Step 1 until ul do
for 12:= 12 step 1 until u2 do

eerveve

for in:= In step 1 until un do
Alit, 12, ... , inJ:= input number

where ii, 12, ... in are internal variables.

9-4.3.3. Input tape syntax. The characters appearing on the input tape

during the execution of input mst conform to the following syntactic
rules:

<input terminator? ::= v{x|/l=|;
STOP CODE

<input informatiom ::= <digit>
<input blin@® ::= SPACE|_
<input prelude’ ::= <empty> [<input blin@ [<input terminator? |

<input prelude?<input blin@ |<input prelude><input terminator?
<digit sequence ::= <digtt> |<digit sequence? <digit? |

<digit sequence?<input blind |<input bling <digit sequence
<input integer? ::= <digit sequence? |+<digit sequence |-<digit sequence
<input fractiom::= .<digit sequence
<input exponent? ::= cinput integer?
<input decimal>::= <digit sequence? [<input fraction? |

<digit sequence’<input fractiow
<unsigned realy::= <input decimaD {<input exponent |

<input decimaly<input exponent?
<input reab::= <unsigned real [+<unsigned reab |~<unsigned reabD
<input ditto>::= -|<input ditto>-|<input ditto><input blinw
<tape integer>::= <input prelude?<input integer? <input terminator |

<input prelude <input ditto<input terminator?
<tape reaD::= <input prelude <input reab<input terminator? |

<input prelude?<input ditto><input terminator?

CIICD ET Al<f |, [raplpurce on|: {car REer|
nahi

bolt in

9.4.3.4. Examples of input tape for input.
Tape integers: Tape reals:

17 283; we= 3,851_392 <
i= +138, epsi= -,-14,
s[25] piz:= 3.141592 65;
function(-12) Sat x= 4,
p: -/ q: 1.38b,-11,

24 9.4. STANDARD PROCEDURE: input.

9.4.3.5. Semantics of input tape. Each input assignment will cause the

reading of one tape real or tape integer. If these contain digits they

will be interpreted according to the usual ALGOL prescriptions (ef. sec-
tions 2.5.3 and 2.5.4), ignoring all input blinds and input terminators.
An input ditto, on the other hand, will cause the input assignment to be

skipped for the particular variable, thus leaving its value unchanged.

One sabe erry. The standard procedure input checks that the syntactic
rules of section 9.4.3.3 are satisfied. If an error is detected one of

the messages

correct input value, end in LC:
or

correct input value, end in UW:
will be typed. The operator is now exvected to type one number, followed
by @ terminator, to be used instead of the erroneous combination appea-

ring on the tape. The terminator must be in upper or lower case as indi-
cated in the message since otherwise the following text on the input tape

may be misinterpreted.

9.5. STANDARD PROCHDURE: inones

9e5ele Syntax.

<inone function designator?::= inone

9.502. Examples.
wis (inone + y)/q
Blinone, inone]:= inone

SO
 «Sede Semantics.

Inone is a real procedure having an empty formal parameter pert.

@rery time it is called it will read the next tape real appearing on the

input tepe (cf. section 0.4.3.3). This information on the input tape will
define its value according to the rules of section 9.4.3.5, except that

the effect of an input ditto is undefined.

0,5a3e1. Sxample of input tape for inone. A reasonable input tape for the

second example of section 9.5.2 would be the following:

B[3,7]:= 3.07,
Note that the correct execution of this input operation is directly de-

pendent onthe strict adherence to the rules of sections MiQe5ad -

4.2.3.3 for assignment statements. ,

9.6. STANDARD PROCEDURE: kb on. 25

9.6. STANDARD PROCEDURE: kb on.

9.6.1. Syntax.
<kb on function designator? ::= kb on

Fe be2e Examples.

if kb on then output(dadd}, outer, Q)
if kb on Ai > 20 then go to finis
time is up:= kb on

9.6.3. Semantics.

The value of the function designator is given by the current state of the
manually controlled KB register of the machine; it is true when KB is on,
otherwise false.

o

97+ STANDARD PROCEDURES: outcopy, writecopy.

Qe7ele Syntax.

<outcopy statement>::= outcopy(<string expressiorm)!
writecopy(<string expressior)

eT ete Examples.

outcopy({<+/4)
writecopy(if #0 then w else y)
outcopy(fs)

9.736 Semantics.

A call of an outcopy statement causes a copying of characters from
the input tape to the output. The section of the input tape to be copied

is defined by the value of the string expression supplied as parameter.
This value mist have the form

4< <proper string 4
where the proper string consists of one or two characters. If one charac-

ter is supplied the copying will take place from the actual position of
the input tape until the first occurrence of the character specified as
parameter. If two characters are supplied the copying will start from the
first character on the tape which is the same as the first of the two

eharacters supplied as parameters and will continue until the first oc-
currence of the second of these symbols on the tape. The characters indi-
cating the begin and end of the section of the input tape to be copied
will not themselves be copied.

The copying will include all legal characters except those associa-

ted with the universal input me@hanisms (cf. section 9.2) and superfluous
case shifts.

26 9.7~- STANDARD PROCEDURES: outcopy, writecopy.

”

9.723.1. Example of call, input tape, and output.
The call

outcopy({<[]})
Operating on the following input tape:

Heading: [
Problem number: }
will produce as output:

Problem number:

9.8. STANDARD PROCEDURE: typein.

This procedure is entirely similar to procedure inone (section 9.5),
put expects the input characters to be typed on the typewriter.

’

9.9. STANDARD PROCEDURE: inchar, typechar.

929.1. Syntax.
<inchar function designator? ::= inchar | typechar

9902s Examples.

if typechar = 49 then go_to a
symbol := inchar

90943 Semantics.

parameter part. Each call of an inchar function designator will activate

the corresponding input unit (paper tape reader for inchar, typewriter

for typechar) and will return with the value of the next proper character
from the input medium as its value. By proper character is here meant a

character which is not handled by the universal input mechanisms (section

9.2). The values of proper characters in lower case are given directly by
the table in section 6.5. In upper case the value supplied by inchar and

typechar is increased by 128. Thus the letter p will appear as 39 while P

will be 167.
Note that typechar always assumes the typewriter to be in lower case

when the call is made. Characters in upper case will therefore be trans-~

mitted properly only if each of them is preceded by an explicit shift to

upper case.

9.10. STANDARD PROCEDURE: setchar

9.10.1. Syntax. ~
<setchar statement? ::= setchar(<arithmetic expression)

9 10.2. Examples

setchar(160)
setchar(tegn)

9.10. STANDARD PROCEDURE: setchar. 27
a

921003. Semantics.

Bach call of setchar assigns the value of the expression supplied as
actual parameter to an internal buffer and at the same time sets an in-
ternal Boolean variable which causes the value in the buffer to be used

as the first proper input character at the first following call of any

input procedure (input, inone, typein, inchar, typechar, outcopy, write-
copy) ahead of the next symbol waiting in the input unit.

The values of the actual parameters supplied in calls of setchar
should only be such which correspond to proper input characters, i.e.
such which may appear as values of inchar.

911. STANDARD PROCEDURE: chare

9211.1. Syntax.

<char function designator? ::= char

9.11.2. Examples.
if char < 10 then outchar(char)

if char = 133 then go_to exit

9.11.3. Semantics.

Its value is the number corresponding to the last proper character previ-
ously inputed by any standard input procedure (input, inone, typein, in-

char, typechar, outcopy, writecopy) or assigned by setchar. The value
corresponding to a proper character is to be understood in the same sense

as for procedure inchar. Note that char does not activate any input unit,
but only makes the last character supplied by any input unit available.

9.12. STANDARD PROCEDURE: lyn.

Geil2eie Syntax.

<lyn function designator ::= lyn

9.12.2. Example

symbol:= lyn

9.12.3. Semantics.
lyn is an integer procedure having an empty parameter part supplying

sne value of a character from the paper tape reader, like inchar. Howe-
ver, the character whose value is provided by lyn is always the next one
on the input tape without any intervention from the universal input me~-

ehanisms (section 9.2) or the buffer controlled by setchar (section
9.10). Likewise the case and buffer state are unaffected by calls of lyn.
Thus by using lyn the programmer may interpret the input symbols having

eerrect parity in any conceivable manner.

28 10. STORING VARIABLES ON DRUM.

10. STORING VARIABLES ON DRUM.

10.1. INTRODUCTION.

ALGOL programs operating with up to about 700 variables simultane-
ously may be handled directly by the GIER ALGOL system. However, if pro-

grams declaring more than this number of variables sinmltaneously are run

in the system the run will be terminated before the final end has been
reached (cf. section 11.7, alas and array). What has happened is that the
eapacity of the directly available internal store of the machine, the so~

called core store, has been exceeded.
This does not mean that problems involving a larger number of vari-

ables are outside the reach of the system since there is available in the
machine a storage capacity on the so-called magnetic drum of more than 12

times that of the core store. What it does mean, however, is that the
user must include in his program calls of the standard procedures to drum
and from drum which serve to transber variables from the core store to

the drum store and back again. From the point of view of the user the

magnetic drum may in this context be regarded as a new kind of input-—out-
put medium, analogous to paper tape. The two standard procedures to drum

and from drum are then analogous to the standard procedures output and
input.

However, the use of to drum and from drum should not be confined to

the cases where it is indispensable. In fact, execution speed considera~
tions will often make it desirable to keep the number of active variables
in the program considerably lower than the admissible upper limit.

An intelligent assessment of the factors involved requires some

knowledge of the storage allocation system incorporated in GIER ALGOL.
This system is therefore explained in the following sections.

10.2. STORAGE OF VARIABLES.

The reservation of core storage space for a variable is made at the

time of entry into the block in the head of which the variable is de-
clared. Similarly reservations for a block are cancelled at the time of

the corresponding exit from the block. For this reason the space reserved
for the variables will usually change from time to time during the execu-

tion of a program, being at every moment equal to the sum of the reserva-
tions made by those blocks and procedure bodies which are active.

The reservations made at a block entry include other quantities be-
sides variables. The total requirements may be derived from the declara-—

tions (including the implicit ones for local labels) of the block as fol-
lows:

10.2. STORAGE OF VARIABLES. 29

Number of locations required
Simple variables, local labels, Qne for each quantity

local procedures, formal parameter
Array segment Number of array identifiers + 1 +

number of subscripts + total number
of variables.

Switch declaration 1 + mumber of switch elements

Working locations Depends on structure of program, u-
svally only a few.

Block, procedure body 2 if normal block, 3 if procedure,

4 if type procedure.

10.3. STORAGE OF PROGRAM.

GIER ALGOL incorporates a fully automatic system for handling the
transfers of program drum tracks to the core store during the execution
of the program. This system will at all times attempt to make the best

use of that part of the core store which is not currently reserved for
variables. This section of the core store will be divided into program

track places, each of 41 locations. The available places will be used for
those program tracks which are required as the program execution deve-
lops. Whenever the program execution calls for a transfer to another

track it is investigated whether the track is available in the core

store. If it is not it is transferred to that track place which for the
longest time has been left unused.

10.4, BALANCING THE USE OF THE CORE STORE.

\
The transfer of a drum track to the core store requires 20 millise-

conds. In contrast the transfer of control to a track which is already

present in the core store takes between 0.7 and 1.6 milliseconds. It is

therefore clear that A PROGRAM HAVING A LARGER PART OF THE AVAILABLE CORE

STORE RESERVED BY VARIABLES WILL SPEND A LONGER TIME ON TRANSFERS OF PRO-
GRAM TRACKS TO THE CORE STORE. The importance of this loss of speed for a
given number of program track places depends very strongly on the loop
structure of the program. It is small if most of the execution time of

the program is spent in a loop which may be held completely in the avat-

lable program track places.
To assist in estimating the number of program tracks involved in a

30 10.4, BALANCING THE USE OF THE CORE STORE.

loop which includes calls of standard procedures the arrangement of

standard procedures on the tracks reserved for them is given below.

Standard Used by

procedure
track

0 write, output

1 write, output
2 write, output
3 write, output, sqrt, outsp

4 A with integer exponent, abs, entier, sign, writecr,
outer, outchar

5 to drum, from drum, lyn, char

6 to drum, from drum
7 outtext, writetext
8 exp, writechar

9 outcopy, writecopy
10 input, typein, typechar, inone, inchear

11 input, typein, inone

12 outcopy, writecopy, input, typein, inone, typechar, in-

char

13 (alarms of input, special storage)
14 cos, sin, setchar
15 arctan
16 ln, outclear, outsum
17 split, pack
18 gier drum, gieX& proc, gier, kb on
19 gier drum, gier proc, gier

These considerations indicate that in programs where the execution

speed is of any concern the number of active variables in the program

should be kept rather lower than the strict upper limit; a practical li-

mit might be 500 variables. This may be achieved by using the drum as an

additional store for variables.

The increase of execution speed gained by using the drum for storage

of variables will be counteracted by the loss of time incurred each time

these variables are transferred to or from the drum by to drum or from

drum. This latter transfer time is usually of the order of 1 - 2 millise-

conds per variable per transfer. Whether these transfer times are of

overall significance depends on the time necessary for other processing

of the variables. An estimate of such processing times may be formed on

the basis of the figures given in appendix 3. It will be found that the

time of even a quite moderate amount of processing will overshadow the

average drum transfer time.

10.5. STANDARD PROCEDURES: to drum, from drum. 31

STANDARD VARIABLES: drumplace.

10.5. STANDARD PROCEDURES: to drum, from drum.
STANDARD VARIABLE: drumplace.

10.5.1. Syntax.
<drum transfer function designator> ::= to drum(<array identifier>) |

from drum(<array identifier>)
<drumplace variable identifier> ::= drumplace

10.5.2. Examples.

Bplads := drumplace
Bshift := to drum(B)
drumplace := drumplace - Bshift
from drum(B)

10.5.3. Semantics.

The standard integer procedures to drum and from drum and the asso-

ciated standard integer varlable drumplace administer the handling of
transfers of arrays of values to and from the drum memory of GIER. The
procedure to drum will transfer the array of subscripted variables iden-
tified in the actual parameter to the drum and acts like an assignment of
values to the drum and likewise the procedure from drum will assign va-
lues previously transferred to the drum to the array identified in the
actual parameter. In either case the part of the drum involved in the
transfer is defined by the value of the integer variable drumplace which
enters into to drum and from drum as a non-local identifier. Thus in or-
der to retrieve a set of values previously transferred to the drum the
procedure from drum mst be called with drumplece having the same value
as when the corresponding call of to drum was made. The same holds if it
is desired to assign new values to a previously used section of the drum.
In any case the array supplied as parameter in the drum transfer function
designator mist be of the same type and have the same number of subdscrip-
ted variables as the one used in the corresponding call of to drum. Howe-
ver, the two arrays need not have the same number of subscripts or the
same subscript bounds. If the arrays differ in these respects the corre-
spondence of elements is established by ordering the elements of each ar-
ray in the same mnner as they would be if they were read from tape by
means of the standard procedure input (cf. section 9.4.3.2).

Clearly the standard variable drumplace is the key to administering
values stored on the drum. In addition the programmer may use the values
of the drum transfer function designators. These are closely related to
drumplace as apparent from the following 43 rules which define the beha-
viour of the value of drumplace:

1. drumplace is initialized by the compiler to a value which is the
one extreme of its permissible range of variation.

2. Every call of to drum and from drum will, as a side-effect,
change the value of drumplace in a direction away from the initial value
supplied by the compiler towards the other extreme of its permissible
range and by such an amount that the new value is the correct one to use
in transferring values to the next adjecent section of the drum.

3. The amount by which drumplace is changed through a call of to

Be 10.5. STANDARD PROCEDURES: to drum, from drum.
STANDARD VARIABLES: drumplace

drum or from drum will be the same whenever arrays of the same type and

having the same number of subscripted variables are transferred. The

amount by which drumplace is changed is available as the value of the drum

transfer function designator. In other words:
new value of drumplace = old value + to drum(A)
new value of drumplace = old value + from drum(A).

However, nothing further about the dependence of the change of drumplace
on the size and type of the array is defined generally (the precise mea-
ning of drumplace will change from one edition of the compiler to

another).
It will be understood from these rules that as long as no explicit

assignment is made to drumplace only calls of to drum will be in order and

each of these will use a new section of the drum adjecent to the one used

in the last previous call of to drum. Before any call of from drum is mde
the programmer must make an explicit assignment to drumplace. The values

assigned to drumplace can only be derived from its previous values possi-
bly modified by integral mitiples of the amount by which is has changed.

The programmer has his full freedom to overwrite sections of the drum

which have previously been used as long as he makes sure to use only ve-

lues of drumplace which lie within the range defined by its initial value

and another extreme which marks the other end of the free section of the
drum. If drumplace steps outside this range an error reaction will occur

at run time and the message (cf. section 11.7)
drum alas

will by typed. The criterion for a set of values previously transferred by
to drum to be still intact on the drum may be formulated as follows: Each

section used on the drum by to drum will be defined by an interval of the
values of drumplace, namely that defined by the value of drumplace just
before to drum was Called and its value just after the call was completed.

The values transferred will still be intact as long as no call of to drum

with an overlapping interval of drumplace has been performed.

10.5.4. The meaning of drumplace and the capacity of the drum.
The standard procedures included in GIER ALGOL III trest the drum

like a linear array, the location in relative address r on track t being

regarded as element number n= r+ 4Oxt. Within this array to drum and
from drum will start reserving locations starting at a high element number

and will successively use elements having lower numbers. The section of

the drum referred to in a call made with drumplace = dp will be the loca-
tions having numbers dp, dp-1, dp-2, etc. The section of the drum in-

volved is defined in section 11.1. This section also shows that by this
arrangement to drum will first use a free section of the drum and only la-

ter use the section holding the translator, and the data given will enable

the user to calculate the capacity of the drum in a given version of the

compiler and in a given program.

11. GPERATING THE COMPILER. 33

11. OPERATING THE COMPILER.

11.1. TAPES AND STORAGE OF THE COMPILER.

The compiler will be distributed to the users in the form of 5 sepa-
rate tapes. These tapes will enable the various user groups to generate
their own ‘binary versions of the compiler, as the need arises. The op.
tions provided in this manner are briefly as follows:

1. The user may choose between a permanent compiler, i.e. one which
remains intact on the drum, except when overwritten by todrum (cf. sec-
tion 10.5.4), anda transient compiler, i.e. one which is read in from
tape piecewise between the translator passes. By using the transient com-
piler the user gains 78 tracks on the drum during translation.

2. The user may choose to place the compiler and system on the
tracks normally occupied by the HJALP system and to have the HP button of
the machine return directly to the ALGOL system, or he may wish to keep
the HJALP system in the machine. By leaving out the HJALP system the user
gains 38 tracks on the drum.

3. The user may protect certain parts of the drum from being used by
the compiler. Also the compiler may directly be adapted to machines ha-
ving more than 320 drum tracks.

In order to use the options the user will need the following infor-
mation about the way the compiler is stored and the limits of the various
alarms: During the loading of the compiler into the machine the code is
placed on thesdrum, beginning at the track given by the initial value of
c70. When the complete code has been read it is moved as a solid block of
information to begin at the track given by the initial value of c60. The
number of drum tracks needed to hold the compiler, WN, and the part of
these used for the run time system, 5S, are as follows:

S=length of system N=length of compiler
HP -button entry to ALGOL Permanent Transient
No 39 1s 57
Yes Wy 147 69
During loading the drum mst hold the HJAIP system and the core image in
addition to the compiler. Therefore the initial value of c70 should be
chosen to be greater than 38. However, the final placement may overwrite
any other part of the drum, with the restriction that if HP-button entry
is desired the compiler mst be placed from treck 1. The HE-button entry
is controlled by the initial value of e965. If this is 0 the entry is
omitted, if it is 1 the two appropriate tracks are included.

Additional options permit the user to reserve o drum area which is
not used by the translator, but which may be referred to by means of to-
drum and fromdrum (section 10.5), and another area which is not used by
the translator and is inaccessible to todrum, but which may be referred
to by fromdrum. Finally the highest track number which may be used
either during translation or at run time may be specified by the user.
These facilities are controlled by the values assigned to the symbolic

3h 11.1. TAPES AND STORAGE OF THE COMPILER.

names e86, e20, and e97. The significance of the parameters c60, e86,
ec0, e97, and the values of S and N, for the storage of the compiler and

the translated program on the drum tracks may be derived from the follow-
ing picture of the drum. In this picture the low track numbers are shown
to the left. The actual tracks corresponding to a number of specific

track numbers are indicated in the form of a pair of colons, pointing to
the beginning and end of the track. The parameter P is the number of

tracks required by the translated program. This may be derived from the

pass information (appendix 1).

Track number 0 c60 c60+S c60+N c60+N+e86 e20-P e20 e97

Compiler
Meximum program : 2

Normal program : :

Qpen to fromdrum

Qpen to todrum without
drum alas

Open to todrum without
gone 2 :

The normal version of the compiler is defined by the SLIP definitions:

da ¢70=39, c60=39, e96=0, e86=0, e20=319, e97=319
This leaves the HJAIP program on tracks 1 to 38, but does not admit the

use of HJAIP while an MGOL program is running because the core image is
used by the ALGOL program. A version which starts in track 1 and includes

HP-bdutton entry into the compiler would require the following redefini-
tions:

ad c60=1, e96=1
~ The five tapes of the compiler sre the following:

Compiler part 1.

Part 2 of the permanent compiler.

Part 2 of the transient compiler.
Part 43 of the transient compiler (passes 2 to 8).

Paper tape procedure binout, see appendix 6.

The loading of a compiler into the machine requires the following
steps: Insert tape A in reader and read by means of SLIP; start by typing

1. After reading the tape for a few seconds the machine stops, waiting

for input from typewriter. If the normal version of the compiler is de-
sired (see definition above), type 1. Otherwise redefine some or all of
e70, c60, e96, e86, e20, and e97, before typing 1. When the complete tape
A is read, select tape B or C, as required, and start reading by typing

i. If all is well the machine reads the tape and stops with the message

algol

(cf. section 11.3). Otherwise there is a fault and the loading mst be
attempted anew.

The compiler is now ready to accept ALGOL programs, as described

below. If the transient version is used the machine will stop after the
reading of the ALGOL program tape with the message:

w
y
o
w
>

11.1. TAPES AND STORAGE OF THE COMPILER. 35

2. from reader

Tape D must now be inserted in the reader and the machine must be restar-

ted by typing a SPACE. The completion of each pass will again give rise

to the from-reader-message, but with no further stops.

The use of the tapes A, Band C, is not convenient for daily use.

For producing complete compilers in binary form the user groups are ad-

vised to make use of the paper tape procedure binout, tape E. This proce-

dure also provides for the production of binary output of the translated

program, as described in appendix 6. See also section 12. As an example a
normal complete translator in binary form will be produced by the program

begin gierproc (t<pinoutd, 5) end;

11.2. MANUAL JUMP TO COMPILER.

The COMP ILER-READY-SITUATION may be called at any time during trans-
lation of ALGOL programs by transferring control to instruction.1 in the

core store.

If the HJAIP system is in the machine the same effect will follow if

the HP button is pressed and the control words

halgol

e
are typed. ~ :

If the compiler in the machine includes direct entry from the HP-
button, pressing this button will cause one of four reactions:

Message , Significance of reaction

FEJL Sum check error on tracks 1 - 31
SUM ALGOL - - other compiler tracks.
KC ALGOL The marmally controlled KA and KB registers are

both L. The machine is now ready to read binary
tape using the basic reading program of track

0.
algol (KA) (KB) The machine is in the COMPILER-READY-SITUATION.

11.3. COMP ILER-READY-SITUATION.

The compiler is ready to accept ALGOL programs whenever one of the

messages
algol

algol KA.
algol KB.

or algol KC.
has been put out on the typewriter. In this situation the machine is wai-
ting for symbols to be typed on the control typewriter. This leaves cer-

tain operational choices to the operator, as described below. The second

part of the message reminds the operator of the state of the KA and KB

registers in an obvious way.

36 11.3. COMPILER-READY-SITUATION.

11.3.1. Start compiling.
Typing of a SPACE (or any character other than p, w, t, 0, 1, n, or

i) will start the compiler translating the program with output and other
compiling features defined by the other characters typed previousiy. If
SPACE is typed immediately following the algol-message and also KA and KB
are O the compiler will produce no typed or punched output, input will be
taken from the paper tape reader, and program sections between PUNCH OFF
and the first following PUNCH ON will be ignored. ‘Thus programs will be
compiled at the highest possible speed. The compiler produces about 38
final machine instructions per second, except in the case of very short
programs where the basic time of |: seconds becomes prominent. Other com-
piling modes may be specified by typing any sequence of the letters Ps Wy
t, o, 1, n, andi, prior to the final SPACE, and by setting KA and KB at
this or a later time, as described below.

11.3.2. Compilation output.
Typing of p and w selects the output unit operating during compiia-

tion, p standing for punch and w for typewriter. If both pandw are
typed the output will appear on both punch and typewriter. Whenever an
output unit is specified the normal compiler output is always produced.
This includes:

11.3.3. Prelude to program:
All characters on the input tape up to and including the first ap-

pearance of begin are copied to the output. —-

11.3.4. Epilogue of program:
All characters on the input tape following the final end up to and

including the first following ; (semfcolon) are copied to the output.

Additional compilation output may be specified as follows (note that
this presupposes a choice of output unit by typing of p or w):

11.3.5. Line output.
Typing of 1 causes every 10th line of the source ALGOL program to be

copied to the output with its line number attached.

11.3.6. Pass information.
Typing of 1 causes output of the so-called pass information. This is

described in appendix 1.

11.3.7. Pass output.
if KB is set to L the intermediate output from passes 1, 2, 3, 4, 5,

6, 7, and 8 will be output. ‘The form of this output is described in ap-
pendix 2. KB may be changed at any time during compilation and pass out-
put will be produced accordingly. The output from pass 8 (the final m-
chine code) requires a special output program to be read in from tape.
When KB is L when pass 8 is completed the message

9. from reader
is given. If the tape is not available, set KB to 0 and type a SPACE to
complete the translation.

11.3. COMPILER-READY-SITUATION. 3T

11.3.8. Program between PUNCH OFF and PUNCH ON.
If o is typed the text between PUNCH OFF and PUNCH ON is included in

the program.

11.3.9. Input from typewriter.
If t 1s typed the compiler takes its input from the typewriter.
Input from typewriter may also be called following the pause~message

(section 11.4.1).
When input is taken from the typewriter a line of text will be pro-

cessed at a time and the user has the possibility of deleting the line
which is being typed. Also shift to input from tape may be specified.

This is achieved as follows:
11.3.9.1. A line which is terminated with the CAR RET character will be

included in the program.
11.3.9.2. Whenever 4 consecutive case shifts are typed (i.e. LC, UC, IL,
uC or UC, LC, UC, LC) the compiler types the message

<

(in red). If now the operator types y the compiler will complete the red

message to read
<yes

and the compiler will contime to take its input from tape, including the

line which has just been typed. If the operator types n the compiler will

complete the red message as follows:

<o

and be ready for another line to by typed instead of the previous one,

which will be ignored.

11.3.10. stop between translation passes.
If KA is set to L the machine will stop after each of the passes 1 -

8. The compiler is restarted by typing any character on the typewriter.

11.3.11. Error message medium.
Error messages (cf. section 11.4.4) are normally typed out. How-

ever, if nis typed they will only be produced on the medium selected as

specified in section 11.3.2, and may thus be suppressed altogether.

11.4, TYPED MESSAGES FROM COMPILER.

Irrespective of the choice of output from the compiler certain mes-

sages will be typed on the typewriter. These are

11.4.1. Pause message.
The message

pause
is typed and the mchine stops when the END CODE is encountered on the

input tape during pass 1.

38 11.4, TYPED MESSAGES FROM COMPILER.

If in this situation the letter t is typed the further input will be
taken from the typewriter (cf. section 11.3.9). Any other character will
restart the input from tape. Note that the last case shift character read

from the tape will be restored correctly after shift to input from type-
writer and return to input from tape.

11.4.2. Off and on messages.
Whenever the text between a PUNCH OFF and the first following PUNCH

ON is ignored these two control symbols produce messages during pass 1 as
follows:

line <line number> off and line <line number> on.

11.4.3. Run-message.

The message

run
indicates that the system is in the RUN-SITUATION with the program ready

to be executed (cf. section 11.5).

11.4.4. Error messages.
The first 6 translation passes perform a thorough checking of the

formal correctness of the program. Every error found will be reported by
a suitable message typed in red. An error message consists of the text

line
followed by the number of the line where the error occurs and a short

text characterizing the error. The line number ts obtained by counting

the CARRET symbols in the source program, line 0 being the one where the

first begin appears. Line numbers may be obtained with the help of line
output (cf. section 11.3.5).

When the translator has detected an error in the program the trans-

lation is discontinued after completion of pass 6 and the system returns

to the COMPILER-READY-SITUATION. This means that every program is taken

through the complete error detecting part of the translating process and
that all errors of a program often will be detected in a single transla-
tion run.

Error messages are also produced when certain tables which are crea-

ted by the compiler exceed the space allotted to them. In this case the
COMP TLER-READY-SITUATION will follow immediately.

Detailed explanations of the possible error messages and their mea-
ning may be found in appendix 4.

11.4.5. Sum checking of program.
Translation pass 1 treats the characters CLEAR CODE and SUM CODE in

exactly the same manner as do the universal input mechanisms (section
9.2.5). ALGOL program tapes which have been produced as output from ALGOL
programs may therefore profitably include check sums. A failure of the

check during input of the program will be reported in the usual manner
(appendix 4).

11.5. RUN-SITUATION. 39

11.5. RUN-SITUATION.

On completion of compilation and when a new execution of a program

is called following a termination of execution the message

run
is typed and the mchine will stop waiting for a character to be typed.

If a SPACE is typed a normal run will take place. Other characters typed

in this situation allow a choice of the units used for output, as ex-

plained in the following section.

11.6. CHOICE OF OUTPUT UNITS OR STOP RUN.

The running system allows a free choice of the output units associa-

ted with the standard output procedures (cf. section 8.1) or of a termt-

nation of the run. This choice mst be made in the RUN-SITUATION and my

be repeated at any time during the run of the program. The choice is con-

trolled by means of the control typewriter as follows:

Symbol Clue Meaning

typed

b both All output will both be typed on the type-

writer and punched on tape

w writer All output will be typed. Nothing will be

punched

p perforator Nothing will be typed. All output will be

punched.

Any symbol other write-output goes to typewriter, out-out-

than b, w, p, or e. put to punch.

e exit Stop run. The run will terminate with an

end-message.

When a new CHOICE OF QUTPUT UNITS OR STOP RUN is desired during the

execution of a program the contents of the indicator register KA should

be changed. This will cause a jump to new CHOICE OF OUTPUT UNIT OR STOP

RUN to be made at the first following opportunity (usually within a few

seconds). When the choice has been made the execution of the program is

immediately contimed unless e has been typed.
An alternative way of finishing a run is to simlate an arithmetic

overflow by transferring control to instruction 0 of the core store.

ho 11.7. TERMINATION OF EXECUTION OF PROGRAM.

11.7. TERMINATION OF EXECUTION OF PROGRAM.

All regular runs of AIGOL programs terminate with a message. The
possible terminating messages and their meaning are as follows:

end The program has passed through the final end of the program.
alas The demand on storage space exceeds the capacity of the ma-

chine. This will be caused by having too many variables of any

kind (simple or subscripted, labels, for statements, etc.) in
action similtaneously. See sections 10.2. and 12.5.6.

array The program tries to declare an array too large for the m-

chine or one with a negative number of elements.

exp The built-in procedure for calculating exp has been called

with an argument which would cause the result to exceed the
range of real variables (cf. section 7.3). This may also be

caused by the operation A with a real exponent.

gier One of the procedures gierproc section 12.5.6) or gterdrum
(section 12.6.3) reads a tape with a wrong identification or
the sum on the tape does not check.

index A reference toa subscripted variable having subscripts out-
side the bounds of the corresponding declaration is made. The

test for this situation is made only on the final address, not
on the individual subscripts. Therefore the alarm will not al-

ways be made when the bounds are transgressed.

in The built-in procedure for calculating 1n has been called with
a negative argument. This my also be caused by calling the

operation (with an exponent of real type and a negative radi-
cand.

param A standard procedure has been called with an improper number

of arguments (cf. section 12.1).
spill Arithmetic operation produces result outside the range of real

variables (cf. section 7.3). The operation A with integer ex-
ponent is first calculated with the absolute value of the ex-
ponent as exponent and may therefore cause spill even if the
final result is 0.

sart The built-in procedure for calculating sqrt has been called
with a negative argument.

drum alas (One of the standard procedures to drum or from drum is called

with a value of drumplace outside of the permitted range (ca-

pacity of drum is exceeded, cf. section 10.5.3).
Following a terminating message the machine stops waiting for a con-

trol letter to be typed on the typewriter. If

r

is typed the system returns to the RUN-SITUATION, ready for a new execu-
tion of the program (cf. section 11.5). Any of the characters b, w, p
will cause an EMERGENCY OUTPUT OF THE STACK to be performed, as described
in appendix 5. The typing of any other character will return the system

to the COMPILER-READY-SITUATION (cf. section 11.3) ready for a new com-
pilation, except for the case that the section of the drum which holds

the compiler has been used for variables by the program just terminated
(cf. section 10.5). If this ts the case the message

gone

is typed. It is then necessary to perform a new loading of the compiler

into the machine (cf. section 11.1).

12. USING MACHINE CODE IN ALGOL PROGRAMS. Wy

12. USING MACHINE CODE IN ALGOL PROGRAMS,

The GIER AIGOL facilities described up to this point limit the uti-
lization of the machine in the following ways:

1. Variables are confined to floating point numbers (integer, or
real) or the sign bit of words (Boolean).

2. The machine instructions used to represent the actions of the
program are confined to a subset of the complete repertoire and mst con-
form to the segmentation rules imposed by the automatic system for hand-
ling transfers from drum (cf. section 10.3).

3. Only those peripheral units for which standard procedures have
been written can be used, and only in the manner defined by the actions
of these standard procedures.

The standard procedures described in the present chapter are de-
Signed to overcome all of these limitations. ‘This is achieved by giving
the user access to every bit of the stores of the machine and to execu-
ting virtually any sequence of machine instructions. In order to use this
possibility the user must therefore be completely familiar with the m-
chine coding for GIER (see Chr. Andersen and Chr. Gram: A Manual of GIER
Programming, Regnecentralen, 1963). In using these facilities the pro-
grammer should be aware that the extensive checking actions performed by
the system are suspended and that the result of mistakes or misunderstan-
dings on the part of the programmer are entirely unpredictable. On the
other hand, if used intelligently by an experienced programmer the proce-
dures will probably remove the remaining obstacles to the use of GIER AL-
GOL for all programming on the machine while still keeping most of the
advantages of the powerful language.

12.1. STANDARD PROCEDURE: pack.

12.1.1. Syntax.
<pack triple> ::= <arithmetic expression><paremeter delimiter>

<arithmetic expression><parameter delimiter><arithmitic expression>
<pack parameter list> ::= <variable><parameter delimiter><pack triple>!

<pack parameter list><parameter delimiter><pack triple>
<pack function designator> ::= pack(<pack parameter list>)

ho 12.1. STANDARD PROCEDURE: pack.

12.1.2. Examples.
pack(Bool)from bit: (4) to bit: (22) the value: (1)
pack(b) from: (3) to:(9) this: (33) and from: (34) to: (41) this: (q+t)
poo:= pak(boo2, 22, 22+1, s, 23+1, 39, w)

12.1.3. Semantics.
This Boolean procedure serves to assign an arbitrary bit pattern to

any or all of the YS hits of a GIER machine word. The word into which the

pattern is packed mst be given as a variable of type Boolean in the

first actual parameter. The following parameters are grouped in triples

of the form:
first bit, last bit, pattern to be inserted.

The two first parameters of a triple refer to the bit numbers of the fi-
nal pattern, the bits being numbered from 0, the leftmost, most signifi-

cant, bit, to 41, the rightmost, least significant, bit. Bach triple will

cause the bits from first bit to last bit, both included, to be replaced
by the rattern to be inserted. This latter mst be specified in the form
of the corresponding positive integer, in the following sense: The pat-
tern, consisting of binary zeroes and ones, is obtained by expressing the

integer in the binary representation and placing the units digit in the
position given by last bit. If last bit - first bit > 28 the leftmost

bits will always be put to zero since no positive integer in GIER ALGOL

has more than 29 bits. It follows from these rules that to make sense the

values of the parameters of a triple mst satisfy the following rele-

tions:

0 < first bit < last bit < 41
Oo < pattern tobe inserted < 2A(last bit - first bit)

Before Use by pack the value of each of the three arithmetic expressions
of a triple will if necessary be rounded to the nearest integer.

During the execution of pack the triples are taken in order from

left to right and for each triple the resulting change of the pattern
will be made. Those bit positions of the given variable which do not lie

within the sections defined by the triples will remain unaffected by the

call.
The value of the function designator consists of the bits 0 to 39 of

the resulting pattern (bits 40 and 41 are the marks which do not take
part, in normal assignments and transfers).

if the number of parameters of a pack function designator is not of

the form 1+3xk, where k= 1, 2, ... , ‘then the execution of the program

is terminated with the message:
param

(cf. section 11.7).

12.2. STANDARD PROCEDURE: split. 43

12.2. STANDARD PROCEDURE: split.

12.2.1. Syntax.
<split triple> ::= <arithmetic expression><parameter delimiter>

<arithmetic expression><parameter delimiter><variable>

<split parameter list> ::=

<Boolean expression><parameter delimiter><split triple>|

<split parameter list><parameter delimiter><split triple>
<split function designator> ::= split(<split parameter list>)

12.2.2. Examples.

split(Bool) from bit:(4) to bit: (9) inta:(k) and from: (22)
to: (33) into: (1[6])

Qs split(w[7], 2, 4, m, 33, MM, s)

12.2.3. Semantics.
This integer procedure serves to split the bit pattern given as the

value of the first’ parameter into an arbitrary number of shorter pat-
terns, which are obtained as corresponding positive integers while the

given pattern is left unchanged. The numbering of bit positions and the
correspondence between bit patterns and integers is the same as the one

described in section 12.1.3. above.
If the first parameter, a Boolean expression defining the given pat-

tern, is a variable, then a total of 42 positions, numbered from 0 to 41,
may be employed. If it is given as a compound expression, then only the

positions 0 to 39 are defined.
Each triple of parameters of the form:

first bit, last bit, variable
will assign the integer corresponding to the part of the given pattern
held between first bit and last bit, both included, to the varfable given

as the third parameter of the triple. This variable mst of type integer

or real. The assignment process will proceed from left to right through
the list of triples. The value of the split function designator is the
same as that assigned to the last parameter. From these rules, and from

the fact that positive integers in GIER ALGOL will have at most 29 bits,

we can derive the following restrictions on sensible triples:

0 < first bit < last bit < 41
last bit - first bit < 297
An improper number of actual parameters ina call of split will

cause the execution of the program to be terminated, just as in the case

of pack.

iby 12.3. THE EFFECT OF BOOLEAN OPERATIONS.

12.3. THE EFFECT OF BOOLEAN OPERATIONS.

Within the ALGOL text proper a Boolean variable is represented by

pit O of the machine word holding the variable, the value 0 representing
true while the value 1 represents false. However, the machine operations
used to execute the Boolean operators work on the bits 0 to 39 of the

words. Consequently the Boolean operations:

“y A Vv => =
may be used to perform parallel operations on the bit patterns generated

by means of pack.

Where only the moving, combination, and masking of bit patterns in fixed

bit positions within words of 40 bits are required this way of operating
may replace the much more time consuming handling provided by the proce-

dures split and pack.

12.4. STANDARD PROCEDURE: gier.

12.4.1. Syntax.
<gier function designator> ::= gier(<variable>)

12.4.2. Example.
gier(al2e])
a:= gter(b[2])

12.4.3. Semantics.
This standard, real type, function transfers the control to the left

hand or full-word machine instruction located in the variable given as

parameter. This instruction must be the first one of a GIER machine code
program previously placed in the variable given as parameter and any

other relevant locations. Normally these locations will form a one-dimen-
sional array. In this case the normal sequencing of the machine will call

an execution of the instructions in successive variables of the array,
put the user may of course make use of all the facilities of the GIER or-

der code for looping, jumping, etc., as long as the following rules are

observed:

12.4. STANDARD PROCEDURE: gier. 45

12.4.3.1. Return. The control is returned to the ALGOL text on performing
the machine instruction hr s+1. When this happens the machine registers §

and p mist have the same contents as when the last entry from the ALGOL
administration into the machine code was mde. In addition, the value
produced by the function designator, if used in the ALGOL text, mst have

been placed in RF.

12.4.3.2. Changes of contents of locations. Generally speaking the pro-
grammer must regard all machine locations in the cores or on the drum

which do not hold the values of variables of the ALGOL program to be re-
served for internal purposes. These contents mst therefore be left un-

changed by the machine instructions activated through calls of gier.

2.4.3.3. Addressing. Since the progremmer has no way of knowing where

the machine code will be placed in the core store all references to loca-
tions within the code itself mist employ r-modified addresses.

12.5. STANDARD PROCEDURE: gierproc.

12.5.1. Syntax.

<elerproc function designator> ::=

gierproc(<variable><parameter delimiter><actual parameter list>) |
gierproc (¢<<proper strina>}<parameter delimiter>

<actual parameter list>) |
gier proc(<number><parameter delimiter><actual parameter list>)

12.5.2. Rxamoles.

sierproc{afe4], 3, t, u)
wie gieroroc({s{2]}, +)

zierprocidx<sikonps, p, a, r)

12.5.3. Semantics.

This standard, real type, function extends the facilities provided

by standard function gler by (1) admitting the machine instructions acti-
vated to refer to the quantities of the ALGOL program given as actual pa-

rameters and by (2) providing a mechanism whereby a machine coded program

can be reed into the machine from tape and executed once.

46 12.5. STANDARD PROCEDURE: gierproc.

12.5.4. Referring to parameters.
The standard function gierproc may be called with any number of pa-

rameters. The first of these mst supply the information about the first

machine instruction to be executed. References to the remaining parame-
ters from within the machine coded program are made by means of descrip-

tions of the parameters which have been placed in the so-called formal

locations. These are addressed relative to the p-register as follows:
Address Contents

p-1 Bits 0 to 9: The number of parameters of the call. Bits 10 to

39: all zero. Marks: undefined.

p+3 Description of the 1st parameter of the call
prt - - - @nd - - - -
ete.

The meaning of the description of an actual parameter depends on the na-
ture of this parameter, as follows:

Simple variable, label.

Bits 0 - 9: The absolute address of the location holding the vari-

able or label. A label has the same formas the description of an
expression (see belcw).
Bits 10 - 39 and the marks: all zero.

Numbers, logical values, strings, layouts.

Bits O ~ 39: The value of the construction. For the detailed struc-

ture of strings and layouts, see appendix 2.

Marks: b (= 01).

Array identifiers.

Bits 0 - 9: The absolute address of the dope vector. If this is de-

noted q and the array declaration is: array A[ll:ut, 12:u2, ... ,
lp:up], and we define ci=ui-li+1 then the dope vector consists of

the following:

c-B: (((.. (11ixe2 + 12)xe3 + 13)x 2...)xep + Ip
q-1: The length of the array = ¢lxcexc3xK ... Xcp
q: ec2
qt: e3

Q+tp-2: ep

The constants in q-2 and q-1 are integers with the units placed in

position 39, all the other coefficients (if there are any) are re-
presented as floating point numbers.

Bits 10-19: The absolute address of the last element - 1 (= the
absolute address of the first element. - the length).

Bits 20 - 39 and the marks: all zeroes.

12.5. STANDARD PROCEDURE: gierproc. 47

Switch identifiers.

Bits 0 - 9: The absolute address of the last switch element descrip-

tion + 1.
Bits 10 - 29: All zeroes.
Bits 30 - 39: The number of switch elements + 1.

Marks: b (= 01).
Expressions, procedure identifiers.

Bits 0 - 9: The value of the stack reference corresponding to the

youngest incarnation of the lexicographically enclosing block.

Bits 10 - 19: The track relative address of the entry point.

Bits 20 - 29: All zeroes.

Bits 30 - 39: The track number of the entry point.

Marks: Entry to a left instruction: a (= 10), toa right instruc-
tion: c (= 11).
References to ALGOL text from machine coded programs should always

be written as activations of actual parameter expressions, i.e. labels

and procedure identifiers should not be used as actual parameters of

gierproc function designators. Such references require that the contents

of the registers s and p are the same as when the last entry or return

from the ALGOL administration into the machine coded program took place.

The reference to the expression whose description is stored in the ad-

dress ptexpr (this will be actual parameter no. expr-2) must be written

as follows:

pm ptexpr, hs s-1

Upon return from this reference the address of a location which holds the

value of the actual parameter expression activated will be found in the

so-called universal address. The address where the universal address is

found is stored in the location s-2, This latter location contains the

indirect addressing mark. The value of the actual parameter expression

can therefore be referred to using the address (s-2). The address of the

value, which is of interest in the case of a subscripted variable, can be

found by using suitable address operations (e.g. it(s-2) or arn(s-2)D).
It should be noted that the value of register s may not be the same be-

fore and after the reference to an expression. It is always the latest

value supplied by the administration which should be used in further re-

ferences and in the return instruction. Note also that this way of refer-

ring to actual parameters is correct for any expression, including con-

stants and simple variables. After a reference to a simple or subscripted

variable, the universal address contains the address of the variable

itself.

12.5.5. Activation of code in array.

If the first parameter of a call of gierproc is a variable the con-

trol of the machine will be transferred to the location where this vari-

able is stored in the same manner as in the case of standard procedure.

gier. In this case all the rules of section 12.4.3 hold, except that the

contents of the register s to be used on return is the latest value re-

ceived from the administration, which my differ from the value at entry

if references to actual parameter expressions have been made.

48 12.5. STANDARD PROCEDURE: gferproc.

12.5.6. Activation of code from tape.
If the first parameter of a call of gierproc is a string or a number

the machine program to be executed mst be supplied from the input tape.
This machine program will then be executed once and subsequently over-

written by other information. The input tape should be of that form which

is produced by the kompud program of the HJAIP system, with the first in-

formation 3c, to suppress the normal first information on the tape and

the second information 4c, to suppress the normal treatment of instruc-
tion hsf@ (this facility is not described in the HJZIP manual). The m-
chine code punched by kompud mst in the first word contain an identifi-

cation consisting of a string of 6 or fewer characters packed in the man-

ner described in appendix 2, output from pass 1, or a number. The follow-
ing word mst be the point of entry into the machine coded program.

Example of input to SLIP:

i= 10

f

117
m

Dm pl , hs s-1
arn (s-2) D

ar r2, ger (p5)
hr si
hv

h kompud

3c
be
10/ /15

e
If this code is called as follows

gierproc (777, A[i], b)
it will place in ban instruction jumping to the variable A[i]. This
means thet a jump to the machine code placed in A[i], A{it+1l]}, ... , may
be performed by the very fast operation

gier(p)
instead of the much slower gier(A[1]).

When gierproc is called to activate a machine program from tape it

will start by declaring an array to hold the machine coded program If

this array causes the storage capacity to be exceeded, the execution of

the program will be terminated with an alas-message (cf. section 11.7).
Otherwise the machine will start reading the tape and check the sum cha-
racter at the end of the tape. Also it is checked that the string or nun-

ber supplied in the first parameter of the call matches the identifying
string or number appearing on the input tape except in the case that the

first parameter in the call is the number 0 (zero). If either of these
checks fails the message:

Radr:= address of the subscr. var.
bi= jump; (the marks are trrelevant)

wo
o

we

we

we

gier
is typed and the machine will be ready to read another tape when a SPACE
is typed on the typewriter.

The general rules for writing the machine code are the ones given in

section 12.4.3 with the addition mentioned in section 12.5.5.

12.6. STANDARD PROCEDURE: gierdrun. hg

12.6, STANDARD PROCEDURE: gierdrum.

12.6.1. Syntax.
<gierdrum function designator> ::=

gierdrum({<<proper string>}<parameter delimiter><variable>) |
gierdrum(<number><paremeter delimiter><variable>)

12.6.2. Examples.
gierdrum({<add>, lsngde[2])
q:= gierdrum(¢<mit}) length: (miltlengde)

12.6.3. Semantics.
This integer type function designator serves to read a machine coded

program or data from tape and place it on the drum. It therefore combines
some of the actions of standard procedures gierproc and to drum, more

particularly as follows: Like gierproc it requires the first parameter to

be a string or a number which matches the contents of the first word of

the program produced in binary form by the kompud program of HJAIP, ex-
cept when the parameter is 0. However, instead of jumping to the follow-

ing instruction of this program gierdrum will transfer it to the drun,

including the identifying word. This transfer is entirely analogous to

the transfer of an array to drum by means of to drum, i.e. the place on
the drum to which the array is transferred is defined by the current va-
lue of drumplace and when the call is completed the value of drumplace

has been changed by an amount which is available as the value of the

function designator.
The second parameter of a call of gierdrum mst be @ variable of

type integer or real. To this variable gierdrum will assign the number of

machine words contained in the array transferred to the drum. This is the
number of words produced in binary form by kompud and should be used to
define the size of the array used to hold the machine instructions or

data when they are transferred by fromdrun.

The procedure gierdrum includes the same checks on the size, identi-

ty, and control sum, of the machine coded program supplied from the tape

as does gterproc.

50 Appendix 1. PASS INFORMATION.

The pass information is obtained as an optional output during trans-
lation (cf. section 11.3.6). It consists of the following: At the end of
pass 1, just before the epilogue (cf. section 11.3.4):

J. line <number of the last line of the ALGOL program> end

Following each pass: two or three integers. The first of these, A, always
gives the number of drum tracks used to hold the intermediate output from
the pass. The remaining have the following meaning:

Pass 1. The figures refer to the storage of long texts on the drum:

B. The number of excess words used on the last track.
C. The number of full tracks used.

Pass 2. B. The number of different identifiers in the program, apart
from standard identifiers.

C. The number of words used for storing long identifiers.

The number of blocks in the program.
B. The maximim depth in the stack used for collecting the decla-

rations belonging to each block at the begin of the block and

for rearranging procedure calls. —
C. The maximum level of nesting of biocks.

Pass 5. 3B. The number of occurrences of identifiers in the program apart

from standard identifiers and the place where the identifier is
declared.

C. The number of redeclarations of identifiers.

Pass 6. The maximum number of words used in the (B) operator stack, (C)
operand stack.

Pass 7. Max. depth in stack of operand descriptions.

Pass 8 3B. Relative address, C. Track number, of program start.
The number of tracks of the program, P, is the sum of pass 1C and pass &.

Pass

Pass

°
i
N

.

Appendix 2. PASS QUTPUT.

If desired the compiler will produce printed output of the internal
output produced by each pass (cf. section 11.3.7). This facility may be

used as the last resort in pinning down troubles in using the compiler,

whether these are due to programming errors or faulty machine operaticn.
In any case the interpretation of the output requires some insight in the

internal working of the translator. For this reason, and since the de-

scription of the output given in appendix 2 of the first edition of the

present manual is still valid, except for a few inessential changes, we

reprint only the description of the packing of layouts and strings. This
description is of considerable interest In connection with the factlity

for)Bonereting arbitrary machine words provided by pack (cf. section
12.1).

Appendix 2. PASS OUTPUT. 51

PACKING OF LAYOUTS AND STRINGS.

Layotss. These are packed in one word as follows:
Bits “0 - 19 A 1 in position p indicates that character number p in the

layout (not counting SPACEs) is followed by SPACE.
- 20 - 23 b = number of significant digits
- eh-eTh= - - digits before the point
- 28 - 29 fn = sign of number part (no sign = 0, - = 1, + = 2, + = 3)
- 30 - 33 d = mumber of digits after the point

- 4 n, Oif non, 1 ifn
- 35 - 37 s = number of digits in exponent
- 38 - 439 fe = sign of exponent (code as for fn)

Other strings. These are packed character by character. One charac-

ter uses 6 bits. The numerical value of the character is the one given in
section 6.5 of the Mammal with the exception of CAR RET which is repre-
sented by 63. Characters for UPPER CASE and LOWER CASE are included as
needed, but all strings are understood to begin and end in lower case.
The end of a string is indicated by the character value 10. The strings

having 6 or fewer characters are packed in one word and carried through
the translation process like numbers. Longer strings are stored on the

drum during pass 1 and are represented during translation and at run time

by a word referring to the drum.
Packing of short strings (6 or fewer characters):

Bits O- 3 The constant 10
- k - 9 Character no. 6 -
~ 10-15 - - 5 |
- 6- 21 - - & Unused character positions are
-~ 22-~ 27 - = 3 set to 10
- 281330 |
- 3 - 39 - - 1-

The word referring to a long string has the following structure:

Bits O- 9 The constant 0

- 10 - 19 track relative address, tr

- 20 - 29 The constant 0
~ 30 - 39 track mumber, tn

On the drum the characters are stored in consecutive words on track

tn in relative addresses tr, tr+1, tr+2, ... etc. The word following the

one having relative address 39 on track tn is word 0 on track tn-1.

Within each word the characters are packed in the following order:

Bits O- 5 Character no. 7
- 6-11 - -~ 6
- 12-17 - - 5
- 18-23 - - 4&
- a - 29 - - 3
- 30-35 - - 2
- 36-41 - - 1 (bit 40 1s mark a, bit 41 is mark bd)

52 Appendix 3. SELECTED EXECUTION TIMES.

The execution time of a program in GIER ALGOL depends not only on

its individual algorithmic constituents, but also on the loop structure

and the number of variables declared at the time when each part of the
program is executed (cf. section 10.4). The times given below are based
on actual timings at the machine and include an average track administre-

tion time such as it may be expected in loops which may be accomodated

completely in the core store. Substantially longer execution times will

result under the following circumstances: a) Frequent transfers of pro-
gram tracks from drum are necessary (cf. section 10.4); b) A mjor part
of the execution time of the program is spent in a loop with a cycle time
of the order of 2 millisecond or less and this loop happens to have been

placed across a program track transition by the compiler. A program suf-

fering from the latter of these calamities may be cured by insertion of a
suitable amount of neutral program (r:= r or the like) before the final
end.

Algorithmic entity Example Execution

time, milli-
seconds

Addition a+b 0.12

Multiplication axb 0.18
Division afo 0.21
Square aA2 0.18
Cube aA 3 0.4
Power, integer exponent adal

abs (exponent) = 1 3.8
10 5.5

100 8
i 000 10

10 000 12
100 000 14

1 000 000 16
Power, real exponent adr 12
If clause with simple relation if a>b then 0.3
Subscripted variable

1 subscript Afi] 0.9
2 subscripts Bli, 3] 1.2

3 - efi, J, k] 1.5
Step-until element, constant step

and single upper limit, each loops step 1 yntil n 0.6
Block with simple variables hegin real a; end 1.4
Block with array declaration pegin array e[1:10]; end 3.0
Reference to formal parameter

called by name. Actual parameter is

simple 0.4
expression 5.2
array identifier 0.0

switch identifier 0.0

procedure identifier 0.0

Appendix 3. SELECTED EXECUTION TIMES.

Assignment statement

as= 0
a:= b

Go to statement
Simple, within current block
To switch designator

Call of declared procedure
having an empty procedure body

No parameter

1 parameter
2 parameters
4 -

Call of standard procedure
abs

arctan

cos
entier

exp
in

sign
sin
sqrt

kbon
split or pack, 1 triple

5 triples: split(b,0,3,k,8,11,m,

&o_te AA:
go_to s{i]

Ps
ates
R(a, b)3
S(a, db, c)s

abs(x)
arctan(x)
cos(x)
entier (x)
exp(x)
In(x)
sign(x)
sin(x)
sqrt(x)
b:= kbon

pack(b, 20, 25,k)

16, 19, n, 24,27, p, 32,35.)

~j

G
R

O
M
A
D
F
E
O
A
E

M
A
I
O
 3

h
5
5

0
6
6
0
5
5
3
5
6
3
9

2k.

53

54 Appendix 4, ERROR MESSAGES: PASS 1.

For the general description, refer to section 11.4.4.

The pass number is typed as an integer from 1 to 8 followed by a@
point (.} at the beginning of the first error message belonging to the

pass.

The line referred to in an error message will normally be the line
in which the error occurs, but there are exceptions to this rule: a) A

construction appearing near the beginning or ending of a line may have
its line number changed by one unit. b) One of the error messages from

pass 45 may supply a quite misleading line number (see below). c) Error

messages from passes 7 and 8 will always refer to line 0.

PASSES 1 - 8.
program too big

This indicates that the capacity of the drum has been exceeded by

the demands of the program text. Remedy: Use a version of the compi-
ler which leaves more space on the drum, if such a version is avai-
lable (cf. section 11.1).

PASS 1.
character

A character to which no meaning is asssigned appears on the input
tape.

compound

A string of characters which represents some of the first characters

of a compound symbol (cf. section 7.1.2), but not the following
ones, appears in the input.

)<improper>.
The construction)<letter string> is not followed by :(

comment

The delimiter comment is not preceded by begin or ;
string

The compound symbol ¢ is followed neither by < nor by a layout (ef.
section 8.3.1)

sum

The character following a SUM CODE on the input tape does not match
ibis) ne value formed from the previous input (cf. section
11.4.5).

PASS 2.
too many identifiers

The program uses too many different or long identifiers. Remedy: Use
the block structure to reduce the number of different identifiers.

PASS 3.
- delimiter

Two operands (i.e. identifiers, numbers, logical values, strings, or
compound expressions within parentheses) follow each other. Examp-
les:

7.3 sin(5) 4 true v.77 r{<etring}

Appendix 4, ERROR MESSAGES: PASS 3. 55

operand

a) An operand appears in a wrong context. Examples:

Ti= begin truss
b) An operand is missing. Example:

a:= [i]

delimiter

a) The delimiter structure is impossible. Examples:

begin r/i:= if goto Lf fox
b) Binary operator does not follow operand. Example:

Ls= x73

~ operand

Operand is missing at end of construction. Example:

ris r/3

termination

Parentheses, brackets, or bracket-like structures do not match.

Examples:
r[1] begin ri= a+ bd, pli, rs

number
A construction which in its first symbols conforms to the syntax for

numbers is not terminated correctly, or a number is too big for the

capacity of the machine. Examples:
20.3 1793 Ty1'70

stack

The nesting of begin's parentheses, etc. exceeds the capacity of

the compiler.

PASS 4.
stack .

The stack formed during the reverse pass 4 exceeds the available ca-
pacity. This stack is used to transfer the information about the
type and kind of each identifier and of each switch element from the

place where it is declared (for labels, where it labels a statement)
to the begin of the block in which it is local, and the informetion
about each actual parameter to the left parenthesis of the call.

PASS 5.
+ declar.

The same identifier is declared twice in the same block or appears

twice in the same formal parameter list. Note that labels are consi-
dered to be declared as explained in section 4.1.3.

+ specif.
The same identifier is specified twice in the same procedure decla-

ration heading.

56 Appendix 4, ERROR MESSAGES: PASS 5.

- declar.
An identifier is used at a place where it is not declared. The line

number associated with this error message will be misleading in the
following two cases: a) The identifier is an actual parameter. The
line number will point to the line in which the left parenthesis of

the call appears. b) The identifier is a switch element. The line

number will point to the line which contains the begin of the block
in which the switch is declared.

- specific.
The specification of a formal parameter is missing.

~ formal

An identifier is specified, but does not appear in the formal para-

meter list.

value
A formal parameter which according to the specification given cannot

be called by value appears in & value part.

stack

The list of the identifiers which are redeclared simultaneously ex-
ceeds the capacity of the compiler.

PASS 6,
subseript 70u

The number of subscripts given in a subscripted variable does not

match the corresponding array declaration.

proc. call or ident.

An additional integer in the message distinguishes two variants of

this error:
730: An identifier preceding immediately a left parenthesis, (, does

not conform to the procedure call implied in the construction by be-

ing of wrong kind or having a wrong number of parameters.
840: A procedure identifier appears in a context not consistent with

its declaration.

type <error number>
The number associated with this error message indicates from where
in pass 6 the error program has been called. A more detailed de-
scription of the error associated with each integer is given in the

table below. In this table the description

<i op> ::= <inadmissible operand>
indicates an operand which has wrong type or kind in the given con-

text. Note that expressions are regarded as operands. The examples

assume the following declarations:

Appendix 4, ERROR MESSAGES: PASS 6, 57

integer i; real r; Boolean b; array a1[1:10], a2[2:4, 4:6]

switch s:= L, 12; procedure p03; procedure pi(f); real fs
Error

number

576
582

585
590

593
596
599
604
616

630

633
640
646
649
657
677

686
690

697
714
725
728
732
735

number

Error constructions

+<i op>|-<i op>|x<i op>|/<i op>|4<1 op>
gsi op>

<Boolean operand>:= <i

€ <i opis <i op>j=m <i
2 <i op>|> <i op>|4
A SL opiv <i op>|= <i
<i op><binary operator><i op>
<real operand>:= <i op>
<integer operand>:= <i op>
abs(<i op>) |arctan(<i op>)
entier(<i op>) [exp(<i op
sign(<i op>)|sin(<i op>) |skrvko
skrvml(<i op>) |skrvtegn(<i op>
streng(<i op>) |settegn(<i op>)
trykkopi(<i op>)|trykml(<i op>) |
tryktegn(<i op>) |tryktom(<i op>)
go_to <i op>|switch sw:= <i op),
3<i op;
<L op><binary operator>

<i opof
til tromle(<i op>)|fra tromle(<i op>)
then <i op>

<i op> else <i op>
<i op else if... then <1 op>
a <i op>:=
<i op> atep|<i op> untillfor - . . Si op, |
for... <i op dg

<i op>]
<i op>:=
<i op> then|while <i op> dg
for <i op>:=
Tnadmissible subscript
<i op> : (in array declaration)

op> | -,<i op

cos(<i op>
in(<i op>)

i(<i op>) |
sqrt(<i op>) |

Examples

+8 /L
iv
= Yr

ab

v (i - 2)
ival bes

ris 8
is= p
cos(a2) in(r = 1)

go _to b

303
be rm (i - 2)v
i

til tromle(r)

then s
2-7 else b

rie b:= bvVbD

i= r gtep

po]
po:=
ut x then

ro . aifiar]
sree alo: 1];

An arithmetic expression having only numbers as operands results in

@ value outside the renge of the machine. Examples:
lo

stack

T1p3D*9 2249135

The two stacks of program points used during pass 8 exceed the capa-

city of the compiler. Remedy: reduce the number of labels and of ne-

sted for and conditional statements used simultaneously.

58 Appendix 5. EMERGENCY GUTPUT OF THE STACK.

Appendix 5. EMERGENCY OUTPUT OF THE STACK.

During execution of an ALGOL program the currently active variables

(cf. section 10.2) are held in a stack in the core store. The system in-

cludes a program which will produce the contents of this stack in a form
which indicates the meaning of the variables within the structure of the

active blocks. It should be noted that in some rare cases the interpreta-

tion of the contents is not unique so that sometimes a false picture will

be given. This is mentioned in some particular cases below. The output

may be obtained whenever a terminating message (section 11.7) has been
typed out. The entry into the output program and the choice of output me-

dium depends on the letter typed in this situation, as follows:

letter Effect

b Emergency output on both typewriter and punch
P - - - punch

w - - typewriter

During the output of the stack a new choice of output medium can be made

by changing the contents of the register KA. This will stop the machine
when the currently printed number has been completed. Either of the three

above letters will change to their respective media. Typing the letter e

will terminate the output with an end-message. Any other character will

cause the output to continue on the same medium. After completion of the
emergency output the machine returns to the termination situation with an

end-message.

A5.1. VAIWES IN THE OUTPUT.

The representations given below only hold for variables to which a
value has been assigned. Before assignment numerical variables my appear

as logical values.

Numerical values (integer or real) will be printed in one of the
following two layouts ~

-ndddddddd - -dddy -ddd

depending on whether the value is integral or not.

Logical values take several forms, depending on their previous hi-

story:

Representation of

true false

Value directly writtten in ALGOL program 7} -1
Value formed by expression, either +

or & numerical value, x, with abs (x)>1 abs (x)<1

|

|

Appendix 5. EMERGENCY OUTPUT OF THE STACK. 59

45.2. PROGRAM POINTS.
The following kinds of program points are specified in the output:

1) Named points, i.e. entries to procedure bodies and points sup-

pitied with labels.
2) Return points, i.e. points at which the execution will be contt-

mued when a procedure call or an activation of an actual-parame-

ter-expression is completed.
The output of a program point refers to the storage of the program

on the drum and supplies a track number (2-3 digits) followed by a track-
relative address (0-39). Formally:

<point> ::= <track number><track relative address>
The order of the program points on the drum is the same as the order

of the same points in the original AIGOL text.

A5.3. OWN VARIABLES.

The output starts with the message
stack

followed by the values of the own variables of the program, if such are

declared. These appear blockwise taking the block-begins of the program

in the backward order. Within each block the own variables appear in the

order in which they are declared.

A5.4, LEVEL STRUCTURE.
The following output gives the values and program points of the ac-

tive parts of the program, arranged in an order which my be explained as
follows: Imagine that all the copying implied in the definition of the

procedure call (section 4.7.3) were actually performed on the program,

then the currently active part of the program would form a nested struc-

ture of blocks, procedure bodies, and actual-parameter-expressions. The
output supplies the values and program points belonging to each of these

levels in turn, starting with the outermost block.
The output given for each level starts with an appropriate heading.

The possible level headings and the associated output of values and

points are as follows: .

A5.5. LEVEL HEADING: block
A block may be an ordinary program block or the body of a procedure.

Every procedure body activated will appear as a block (cf. section

5.4.3). The output in general has 3 parts:
(1) For the bodies of type procedures: the value assigned to the

procedure identifier. If no value has yet been assigned: 0 (zero).
(2) Following the heading

points

appear the program points of all named points (entries to procedure bo-

dies and labelled points) which are local to the block, in the order in

60 Appendix 5. EMERGENCY OUTPUT OF THE STACK.

which they appear in the program. These may be useful in localizing pro-

cedure calls and activations of actual-parameter-expressions, through

the return points of these latter.

(3) The local variables of the block. The first few variables in the
output normally are internal working variables introduced by the transla-

tor. These are followed by the local simple and subscripted variables in
the order in which they are declared in the block head. Each sequence of

simple variables is headed by the message

variables

whereas each array is headed by the message

urray
followed by a line giving the structure of the array in the form of a

sequence of integers indicating the number of values taken by the Ist,

end, ... , n th, subscript.
The values of the subscripted variables are given in a linear se-

quence, as in the input (section 9.4.3.2), printed with 5 in a line. Pos-
sible misinterpretation: the structure will include too many subscripts

if in the block head the array declaration is followed immediately by an

integer-valued variable which is an exact divisor of the number of values

taken by the first subscript.

A5.6. LEVEL HEADING: proc. call.
This will be followed by an output of a value for each actual para-

meter in the order in which they appear in the call. This value will be
the correct one for parameters called by value, while the value printed

for other parameters is meaningless. Following this output the message:

return

announces the output of the return point, i.e. the program point immedia-

tely following the procedure statement.

Every procedure call level will be followed either by a block level,

giving the local values of the procedure body, or by a value call, refer-

ring to the evaluation of an actual-parameter-expression called by value.

Standard procedures are peculiar in several ways: (1) The parameter
of the procedures abs, arctan, cos, entier, exp, gier, 1n, outchar, out-

copy, outsp,setchar, sign, sin, sqrt, writechar, and writecopy, is eva-

luated before the procedure is called. (2) The procedures input, output,

write, outtext, and writetext, remove their parameters from the stack as

they are processed. The number of parameters shown in the output may

therefore be too small. (3) Standard procedure identifiers used as actual
parameters will confuse the analysis of the procedure call. However,

since the rest of the stack is not affected the details need not be given

Appendix 5. EMERGENCY OF THE STACK. 61

here. (4) Qnly the following standard procedures enter a block when acti-
vated: todrum, fromdrum, split, pack, gierproc, gierdrum.

A5.7. LEVEL HEADINGS: name call AND value call.

These headings are followed by one return point. In a name call this

indicates the point immediately following the forml identifier. In a va-

lue call it points to a place near the entry to the procedure body. Value

calls are completed before the procedure body block is entered.

Calls of parameters from standard procedures will appear as value

calls. The returm point given identifies the standard procedure as shown

in the following table, which refers to the storage parameters discussed

in section 11.1:
Track Relative address Value call activated by

19+c60 6 output, write: layout
18 - - ¢: other parameter

26+¢c60+¢c96 9 outtext, writetext
29+c60+e96 2T input
36+c60+2xe96 8 pack, split: 1st parameter

- 13 - - : first bit

- 16 - - + last bit
- 20 - - : pattern

37+c60+2xe96 9 gierdrum, gierproc: 1st parameter

- 15 glerproc, parameter called from machine code

- 23 gierdrum: end parameter

A5.8. CONDITIONS AT THE LAST LEVEL.
When the emergency is caused by an overflow of the stack (alas or

array) the last level shown in the output will normally represent an in-

complete state. However, the lower levels will not be affected.

Overflow (spill) may be caused by the A operation having an exponent

of integer type. In this case the last level in the output will show a

procedure call with one parameter = the value of the exponent.

62 Appendix 5. EMERGENCY OUTPUT OF THE STACK.

A5.9. EXAMPLE OF EMERGENCY OUTPUT.

The following program shows most of the feature of the emergency
output.

begin real r; Boolean t, f, bf, bt;

real array A[3:4, 1:5]; integer 1, J3
real procedure P(a, b, c)3 value a, bs real a, by array c3

‘begin P:= c[3,4] := a; end P3
M: for I := 3,4 do for j := T step 1 until 3 do A[i,j]:= 10x + j3
ti= true; f:= false; r:= 0.5; Bfi= r=03 bt:= F=br;

begin ~
real procedure G(f); real f;

begin own real own) in Q, own? in 43 integer k in Q;3

K: ownl in Q:= 5.333 own? in Q:= 7.89; k in O:= 55;
Q:= f;

T: end Q3

own integer own in block; integer s, w, u3
own in block:= 888; s:= 153 u:= 73 w:= 03
P(uts, Q(s/w), A)3

L: end block;
N: 7
end;

The program initializes some of the variables of the outer block, enters

the inner block and initializes its variables, calls the procedure P,
which evaluates its first parameter. While evaluating the second it calls

the procedure Q by way of the actual parameter-expression. Within @ some

variables are set and then another actual-parameter-expression is called

by the reference to f. This brings the program into spill. In the emer-
gency output which follows the meaning of the data given is shown by
notes within parentheses.

stack

+3339 1 (ow 1 in Q)
-7T80y 1° (ow 2 in 0)

888 (ow in block)

block (outer block)
points

317 26 (entry to P)
318 9 (label M)
319 38 (label N)

variables

- -596y

«500%

500y

$+
O4

t2
70

:1
08

”n

array
2

31
hy

variables
y

y

block

points

318 38
319 357

variables

15
0

7
proc. call

22

return

319 37
value call

3171
proc. call

return

319 437
block

0
points

319 13
319 18

vartables

55
name call

319 (17
stack end

end

£ppendix 5. EMERGENCY OUTPUT OF THE STACK.

(internal variable)

- a)
(real r)
(Boolean +)

("= f)
(-~ vf)
(= vt)
(A)
x 5

32 33 -626y
ho 43 625

(integer i)
(~~ 3)
(inner block)

(entry to Q)
(label L)

(integer s)

("=~ w)
(- x)
(P(

uts,
Q(s/w),

A

))

{call of O(s/w))

(a(
s/w))

(body of ©)
(No value yet assigned to Q)

(label k)

(- 7)

(k in Q)
(f, i.e. s/w)

63

626) 2
- 24054 -55

64 Appendix 6. BINARY QUTPUT: binout.

Tape E of the set of compiler tapes (cf. section 11.1) supplies a
program for producing an output on tape of the various parts of the com-

piler or other sections of the drum in a binary form, suitable for later
fast readback into the machine. The program is given in the form of a pa-
per tape procedure as produced by the kompud program of HJ&IP, to be used

with glerproc or gierdrum (cf. sections 12.5.6 and 12.6).

A6.1. ACTIVATION.
If executed directly from tape the program mst be put in action by

a statement of the form

gierproc(¢<binout}, <variant><drum region list>)
where variant is an expression having one of the values 0, 1, 2, 3, or 5,
and

<drum region list> ::= <empty>|,<drumplace value>,<length>|
<drum region list>,<drumplace value>,<length>

If the progrem is first placed on the drum by gierdrum and later put in

action after transfer to an array, only calls of gierproc having 3 as the

value of the second parameter (variant) are in order, because only this
variant does not require copying from tape E after the activation.

Binout requires about 166 locations during execution.

A6.2. VARIANTS.
The value of the second parameter of the call of gierproc specifies

one out of 5 variants of the program. The following table gives a brief

summary of the variants. More details are given in the following sec-
tions.

Variant Special output region Re-input program Exit after re-input

0 None Track O or SLIP run

1 The translated program Track 0 or SLIP run

2 System + transl.prog. | Track O or SLIP run
3 None gierproc,gierdrum Program
5 Complete compiler Track O or SLIP algol

A6.3. QUIPUT REGIONS.
The output will include the special region which belongs to the va-

riant in addition to that which is specified in the drum region list of

the call of gierproc. The translated program includes the P tracks pro-

duced by the translator (appendix 1). The system includes the run-time
administration, the emergency output program (appendix 5), and the stan-

dard procedures; its length is given as S in section 11.1. This section

also gives the length of the complete compiler, N.
The drum region list defines regions of the drum in terms of the va-

due of drumplace and the length of the array associated with the call of
todrum which was used to transfer the values to each region. Each of

these parameters my be supplied as an arithmetic expression.

Appendix 6. BINARY QUIPUT: binout. 65

A6.4, RE--INPUT OF THE BINARY TAPE.
The output of variants 0, 1, 2, and 5, starts with a special input

program, which ts copied by binout from the last part of tepe E to the

output. This output can be read back to the drum as follows: Set KA and

KB to L. Press the HP-button. Depending on the message now typed, start

reading as follows:
Message To start input, type as follows

hp-knap 1

FEJL SPACE
KC ALGOL SPACE

This process will change some of the contents of the core store (approx.

the first 400 locations), and also the part of the drum used as core

image by HJALP.

The output of variant 3 can only be used with glerproc and gierdrum.

A6.5. EXIT AFTER RE- INPUT.

After re-input of the output of variants 0, 1, and 2, the machine

transfers track 6c60 to location 0 in the core store and jumps to loca-

tion 36. If this track holds the code of the ALGOL system the machine

will enter the RUN-SITUATION (section 11.5). The output of variant 3 will

contime with the activation of the code of the binary tape (gierproc) or

with the AIGOL program where gierdrum was called. The output of variant 5

enters the COMPILER-READY-SITUATION (section 11.3).

A6.6. ALARMS.
During a call of binout the following conditions will cause termina-

tion of the execution of the program (param): (a) The number of parame-

ters in the call of gterproe is odd. (b) A drum region witha negative

length is specified. (c) A specified region exceeds the boundaries of the

drum.
This re-input is checked by means of sums. Failure of a check will

produce the error message
sum

In this case the re-input can be attempted again, by repositioning the

tape in the reader and typing a SPACE on the typewriter.

66

Accuracy of real

numbers, 9
Accuracy of standard

functions, 10

Alarm printing, 16
Alarms, 10, 4o
alas message, 40
algol message, 35

ALL HOLES in input, 21,

10

arctan, 10
arithmetic expressions,

10
array message, 40
Arrays called

by value, 11

Basic symbols, 8
Binary output, 64
binout, 64
BLANK TAPE in input, 21

Blind symbols, 22

Blocks, 50

Boolean operations, 44
Call by value, 11
Capacity of drum, 32

Case in output, 19

Case symbols, 6, 21
char, 27
character message, 54
Check of output, 13, 19
Check sum, 21, 38
Choice of cutput units,

39
comment, 8
comment message, 54
Compilation output, 36
Compiler-ready-

situation, 35

compound message, 54
Compound symbols, 8

AIPHABETIC INDEX.

Control symbols, 6
Core store, 28
cos, 10
<decimal layout>, 14,16
Declarations, 11

declar. message, 55,56
delimiter message, 54,55
Delimiters, 8
Digits, 8
drum alas message, 40
drum place, 31ff

Drum track transfer

time, 29
Emergency output, 58
END CODE, 7, 21, 37
end message, 40
Epilogue of program, 36
Error messages, 37, 38,

Sher
Errors during input, 24
Execution times, 52

exp, 10
exp message, 0
Flexowriter, 6
Floating point numbers,

formal message, 56
Formal parameters, 10

For statements, 10

from drum, 31

from reader message, 455
gier, 44
gierdrum, 49
gier message, 40,48,49
gierproc, 45
gone message, 4o
Hole combinations, 6
HP-button, 33, 65
Identifiers, 50
improper message, 54

inchar, 26
index message, 40
Information symbols, 22

inone, 24
input, 22
Input errors, 24
Input from typewriter,

37
Input procedures, 20

Input‘ tape syntax, 23
integer, 8
Tnteger divide, 9

Jump to compiler, 34
KA register, 37, 39

kb on, 25

KB register, 25, 36
Labels, 10, 11
<layout>, 14, 16
layout, 51
<layout expression>, 14
Letters, 8
Level of blocks, 50

Limitations, 11, 34
line message, 38
Line number, 38
Line output, 36
in, 10
ln message, 40
Loading of compiler, 33
Lower case, 6, 21
lyn, 27
Machine code, 41
Magnetic drum, 28
Manuel jump to

compiler, 55

Messages from compiler,

37
number message, 55, 57
off message, 38
on message, 38

operand message, 55
outchar, 19
outclear, 19

outcopy, 25
outer, 18
output, 14
Qutput case, 19

Qutput procedure, 12

Output units selection,

39
outsp, 18
<out statement>, 14
outsum, 19

outtext, 17

own, 11

Pack, 41
Packing of strings, 51
param message, 40
Parity check hole, 7

Parity error, 21

Pass information, 36,50
Pass number, 54
Pass output, 36, 50
pause message, 21, 37

Permanent compiler, 33
Prelude to program, 36
Printed symbols, 6
proc.call or ident.

message, 56
Procedure declarations,

13
Procedure statements,

10
program too big

message, 54
Proper character, 26
Punch control, 12
PUNCH OFF and ON,

21, 37, 38
Punch tape code, 6

ALPHABETIC INDEX.

Range of variables, 9
real, 8
Recursive procedures,

10
Reserved identifiers, 9

Revised ALGOL 60
Report, 4

Round-off, 9

run message, 38
Run situation, 39

set char, 26
<sign>, 14
Significant digits, 9
sin, 10
Specifications, 11
Specif. message, 55, 56

Speed, 36, 52
spill message, 40
split, 43
sqrt, 10

sqrt message, 40
stack, 50, 58
Stack message, 55ff

Stendard functions, 10

Standard procedures,

11, 30
Stop between passes, 37

Storage allocation, 28ff
Storage of compiler, 33
Storage of program, 29
Storage of standard

procedures, 30

<string expression>, 17
string message, 54
String quote, 17
Strings, 50

subscript message, 56
Sum checking, 21, 38
sum fails message, 21
sum message, 54

67

Tape code, 6
TAPE FEED in input, 21

Tape integer, 23
Tape real, 23
termination message, 55

Termination of

execution, 40
Terminators, 22

Text on drum, 50
Text strings, 50ff

todrum, 31
too many identifiers

message, 54
Transfer time of drum

track, 29

Transient compiler, 33

typechar, 26
Typed messages from

compiler, 37
type in, 26
type message, 56
Types, 8
Typewriter control, 12

Typewriter input, 26,37
Typographical

symbols, 6
Underlined word

symbols, 8
Universal address, 47
Universal input

mechanisms, 21

Upper case, 6, 21
value, call by, 11
value message, 56
Variables on drum, 26ff
write, 14
writechar, 19

writecopy, 25

writecr, 18
writetext, 17

	A manual of Gier Algol III
	Corrections and additions
	Contents
	Introduction
	8-Channel punch tape code and flexowriter keyboard
	The relation between Gier Algol and Algol 60
	Basic symbols
	Use of comment
	The treatment of variables of types integer and real
	Reserved identifiers
	Standard functions
	Arithmetic expressions
	Integers as labels
	For statements
	Procedure statements
	Order of declarations
	Own
	Procedure declarations
	General limitations

	Standard output procedures
	Control of typewriter and output punch
	Identifiers and main characteristics
	Standard procedures: output, write
	Standard procedures: outtext, writetext
	Standard procedure: outsp
	Standard procedures: outcr, writecr
	Standard procedures: outclear, outsum
	Standard procedures: outchar, writechar

	Standard input procedures
	Identifiers and main characteristics
	Universal input mechanisms
	Terminators, information symbols, and blind symbols
	Standard procedure: input
	Standard procedure: inone
	Standard procedure: kbon
	Standard procedures: outcopy, writecopy
	Standard procedure: typein
	Standard procedures: inchar, typechar
	Standard procedure: setchar
	Standard procedure: char
	Standard procedure: lyn

	Storing variables on drum
	Introduction
	Storage of variables
	Storage of program
	Balancing the use of the core store
	Standard procedures: todrum, fromdrum. Standard variable: drumplace

	Operating the compiler
	Tapes and storage of the compiler
	Manual jump to compiler
	Compiler-ready-situation
	Typed messages from compiler
	Run-situation
	Choice of output units or stop run
	Termination of execution of program

	Using machine code in Algol programs
	Standard procedure: pack
	Standard procedure: split
	The effect of Boolean operations
	Standard procedure: gier
	Standard procedure: gierproc
	Standard procedure: gierdrum

	Pass information
	Pass output
	Selected execution times
	Error messages
	Emergency output of the stack
	Binary output: binout
	Alphabetic index

