A MANUAL OF
GIER ALGOL III

as developed by

Henning Christensen, Gunnar Ehrling, Jern Jensen, Peter Kraft,

Paul Lindgreen, Peter Naur, Knut-Sivert Skog and Peter Villemoes

Second edition of A Manual of GIER ALGOL
With a page of corrections and additions

Edited by Peter Naur

AS REGNECENTRALEN, COPENHAGEN

1965

Corrections and additions

Page 9, section T.5. Add a paragrsph:

The trenslator will assume that expressions of the form i where 1
and J are of type integer are also of type integer. This is not correct
if j is negative, ThIs may cause & non-integer value to be assigned to a
variable declared to be integer.

Page 12, 2nd line from below, add 4 letters to read:
writetext(4<Q,=,})

Page 13, line 13 from below, add {7) to read:
writechar(T)

Page 16, line 9 from below, move + one position to the left to read:
,+ 123,456 8,

Page 34, line 9 from below, change e to ¢ to read:
c70, ¢60, ...

Page 38, section 11.k.4, add a parsgraph:

The most serious defect of the checking is that the types of actual
parsmeters in most ceses are not checked against the specifications of
the corresponding formal parameters, neither during translation nor at
run time'

Page U, section 12.4.3, add the sentence:

The variable given as parameter to gier must be of type Boolean.
Page 49, section 12.6.3, add the sentence: -

During execution gierdrum will need an array 1in the core store big
enough to hold the code read in from tape. This may cause the capacity of
the core store to be exceeded,

Page S5, lin? ;8 from above, change to) to read:
rii
Page 57, lines 17 to 21, change +the identifiers skrvkopi, skrvaml,
skrvtegn, streng, sattegn, trykkopl, trykml, tryktegn, and tryktom,
to read:

writecopy, writechar, setchar, outcopy, outsp, outchar

Page 57, line 22 from above, add an extra line to read:
624 ,<i op>,
Page 57, 1line 26 from above, change the identifiers tiltromle and
fratromle, to read, respectively:

, to drum and from drum
Page 58, appendix 5, add the sentence:

The emergency output may be called during the execution of any pro-
gram by simuleting an arithmetic overflow by transferring the control of
the machine %o the instruction in location O by manuel action.

Page 61, line 16 from above, change c to e to read:
26+cb60+e96

Contents,

mnm.o..notgooqa

- - L Ld - L] L L] L] L - * L]

6. 8 - CHANNEL PUNCH TAPE CODE AND FLEXOWRITER KEYBOARD . . .

7. THE REIATION BETWEEN GIER ALGOL ARD ALGOL 60

T.1. Basic synbols . . « « 4+ «

T7.2. Use of gogment . « « « « &
7.5. The treatment of wvaxriables

7.4. Reserved identifiers , . .
7.5. Standard functions
7.6. Arithmetic expressions . .
7.8. Integers as 1labels
T.9. For statements . . . + « «
7.10. Procedure atatements . .
T7.11, Order of declarations . .
7-120m--|-.t-oot-
7.13. Procedure declarations .
7.1, General limitations . . .

8. STANDARD OUTPUT PROCEDURES . . .

[o=Fe-Ro-YooRooNacKo:Reoo
* L] L) L) . . L]

1
2
3
h
.2. Standard procedure: outsp
7
&

9. STANDARD INPUT PROCEDURES . . . »

9.1. Identifiers and main characteristics . .

N
.

+«2. Universal input mechanisms
. Standard procedure: input
. Standard procedure: inone
Standaxd procedure: kbon .

. Standard procedure: typein

\0\0\0\0\.0\0\0\0\0
\OOD-Q'O\U!-F'\.N

9.11. Standard procedure: char
t lyn .

10, STORING VARTABLES ON DRUM . . .
10.1, Introduetion+ .
10.2. Storsge of varisables . .
10.3. Storage of program . . .

10,4, Balancing the use of the core
10,5, Standaxd procedures: todrum, fromdrum. Standard variable

« Control of typewriter and output punch
« Jdentifiers and main characteristics .
+ Standayd procedures: output, write , .
. Standard procedures: outtext, writetext

. Standard procedures: outer, writeer . .

« Standard procedures: outclear, outsum .
+ Standaxrd procedures: ocutchar, writechar

« Standard procedures: outcopy, writecopy

. Standard procedures: inchar, typechar
setchar

- L] . - - . . - - L] * L] L]

L] - - . - - L] L L L] L] L]

of types igteger and real

L L] - L L] * L] - L] L] * L] L]
L) L * o . @ L2 LI 2 * »
* L] L L * - L L] - * L * -
. - L] - - L] L L - - L - L
-* L L] . L L - L] - L L] L]
- L] L] L] - . L] L] - L L] L] L4
. L L . * * - L] L . L -
L . L] * L L] L] L - - - . -
L] L] L - - L] L] L] - & L] L L J
L L L4 L] - L] L] L - L] L L] -
* L L] L L] . - - * - . - L
L . L L . L L

* @ & & & & &

* o * @ *r &+ &

L] L L L4 . -

L] L] - - o L] L] * L] L L] -
* L L] L . .

s & s e 5 @

e o o 8 &

- L) L] . L] - L] - L] L] L . L

e & & o »

* L L4 - L L4 * L]

. Terminators, information symbols, and blind syni:ols

. L] LB L L] . . L L] - L L]
. ¢ ¢ & & & & & & - . o
L] L] L L - - - . L] L - L L]
L] L] L - . L]

. @ * @ e & & @ . » - L] L
¢ & » B L L]

* - L] L] * L] * * . - L) -

L - L] L] L] L] L] L * . L] L] L]
L] L] * - L] L] -* L L] - * . L
- L2 L] - L] L] * L L] * & L L
L] - L] . L] - . - L] - . L] -
L] - * L] L] L] L] L] L] - - L] *
L] L] L] - L] L] L L] L] * & L] L]
! tore L] * L] L] L] L] L] -

¢ . o * & o L] [] @& o L) . & * e * e & L[L

L] L] »] [a a L] L[] L] L] L] .

. L L * []

L] L] . [] [] . @ L] L] L . [] * * L] L] L] L * @ . - L]

» & & & & 8 & 5 » 4 ¢ »

5 - * L

[e & & +* & @ L] L] L] o e & . o .« o o L] e &

2 & * & @& & & 3 s & 5 9 B

L L L] L] * L]

AXUMDIRCE . 4 & o « « ¢ ¢ ¢ @ o s o o + 0 ¢ s 0 a6 & 0

L] s e @ * @ @ . & *» & 9 . & 9 [I - * o L ® @

. [.) * s » . *« & o * e

4 Contents.

11. CPERATING THE COMPILER. . &+ o o « = s s
11.1. Tapes and storasge of the compiler
11.2. Manual jump to compiler
i1.3. Compiler-ready-situation
11.4. Typed messages from compiler . . .
11.5. Run-situation « &+ & & & &«
11.6. Choice of ocutput units or stop run

* o 2 2 ¥ o
s 8 s 2 2 @ =
» & &8 s & & = =
*® @ & ¢ » s e @
® ¥ * e ® *
s o & & ® & * @
s & & & e 8 8 @
e o & & & & * &
e * 2 & ° 2 v @
L] L] . . - L] . L]
L] - . . - L] L] .
e & 8 ¢ 8 & & =

A

A |

11.7. Termination of execution of program Lo
12. USING MACHINE CODE IN AIGOL PROGRAMS . + 4 « « o o = « o & o o » H
12.1. Standard procedure: DPACK « « « « o « o o o o o o o o o o + W
12.2. Standard procedure: SPLIL « v o o o o o o 2 o o 0 o o o o 43
12.3. The effect of Boolean OPerations « « « « o o « o o o o o o 44
12.4. Standard procedure: EIEr « o o + « = « o o o o o o s o o s Wb
12.5. Standard procedure: ZleIDrOC « o« o o o « « s « s o o « o+ o U5
12.6. Standard procedure: glerdrum . « « o o o« o ¢ « o o o o o « 49
Appendix 1. Pass information . ¢« o « « o « o a o o s o s ¢ o o o o = 50
Appendix 2. Pass outPUL « « « « o o o o+ o o o s ¢ o s ¢ s o s s ¢ s o 90
Appendix 3. Selected execution times . . + o + o o o s ¢ s s s s &« 22
Appendix 4. ErTor messages . . o« o o s o o o o s o s o s o o s o o s SW
Appendix 5. Emergency output of the St8cK « « « o« o s o s s o o o+ » » 58
Appendix 6. Binary output: DINOUL o« « « « o o o o s o o » « 0 s o o o Ob

Alphﬂ-beti c ind-ex e o » & & & e 5 & & S 6 @ ¢ & ® & " & e e o & s & 9 66

The AILGOL 60 Report.

Throughout the present Mamusl reference is made to the AILGOL 60 Re-
port or the Revised AIGOL 60 Report. The differences between these two
documents are slight and do not influence the mumbering of sections. The
full references of these reports are as follows:

J. W. Backus, et. al., Report on the Algorithmic language AIGOL 60 (ed.
P, Naur), Numerische Mathematik 2 (1960), pp. 106-136; Acta Polytechnica
Scandinavica: Math. And Comp. Mach. Ser. no. 5 (1960); Comma. ACM 3 no. 5
(1960), pp. 299-31k.

J. W. Baclkus, et. al., Revised Report on the Algorithmic language ALGOL
60 (ed. P. Naur), Regnecentralen, Copenhagen (1962), Comm. ACM 6 no. 1
(1963), pp 1-1T7; Computer Journal 5 (1963), pp. 349-367; Numerische Ma-
thematik 4 (1963), 420-L53, .

INTRODUCTION. S

INTRODUCTION.

The decision +that an ALGOL compiler for the GIER should be written
was made in Jamary 1962. The work was started almost immediately and in
August 1962 a preliminary version of the compiler could be distributed to
all GIER installastions. This version was complete except for some stan-
dard input and output procedures. The first definitive version, which al-
80 corrected a mumber of errors found through the extensive practical use
of the preliminary version, was distributed in February 1963.

Like its predecessor DASK AIGOL the GIER AIGQOL langnage lies suffi-
ciently close to the AILGOL 60 reference language to make it practical to
use the ALGOL 60 Report directly as the basic mamual. The exact specifi-
cations of GIER ALGQOL are then defined through the set of corrections and
additions of the ALGOL 60 Report given in the present Mamual. Because of
this intimate relation to the ALGOL 60 Report the mumbering of sections
within the present Marnual have been chosen to be a direct contimuation of
the section numbers of the AIGOL 60 Report.

The present second edition of the Manual describes the version of
the compiler known as GIER ALGOL III and distributed by February 1964.
The difference between this new version and the version described in the
first edition consists in the following: (a) The new version uses English
language throughout. (b) Some standard procedures have been removed. (c)
Several new standard procedures have been included, to give the user the
access to using machine language. (d) A system for producing an output of
the variables of the program as they exists at the time of an alarm si-
tuation during program execution has been added. (e) Passes 1 and 2 have
been completely rewritten. In this way the speed of pess 1 will match the
2000 characters/second tape reader developed at Regnecentralen. likewise,
‘the speed of pass 2 has been increased considerably. (f) The block entry
administration has been speeded up somewhat. (g) There is a choice of se-
veral ways of storing the compiler on the drum, and a version which reads
the translator from tape during translation is available.

The more importent of these differences may be studied by compering
the following sections of the first and second editions of the Manual:
8.2, 9.1, 9.6, 11.1, 11.3.11, 11.4k.5, 12, appendices 3, 5, and 6.

Those interested In the internal working of the system are referred
to: Peter Naur, The Design of the GIER ALGOL Compiler, BIT Vol. 3 (1963),
124-140 and 145-166.

The new edition of the Marual was typed by Kirsten Andersen, as was
the first edition.

6 6. B-CHANNEL PUNCH TAPE CODE AND FLEXOWRITER KEYBOARD.

6.1, PRINTED SYMBOLS.

Lower Upper Code Lower Upper Code
case case case case
a A , 00 . O, W W 7y 0 .00 ,
b B , 00 . 0, X X i 00 000,
c C , 000 . 00, ¥y Y 000, \
d D , 00 .0 z Z v 0 0. 0,
e E ¢ 000 .0 0, <] K \ 000 . '
f F , 000 .00 , B 4] , 0 00. 00,
g G ., 00 .000, 0 A 1 0 . '
h H y 00 O. Y 1 v 1 . 0,
i I , 0000. O, 2 x . . 0,
3 J , 00 . O, 3 / : o . 00,
k K , 00 .0, 4 = , .0,
1 L , O . 00, 5 , 0 .0 0,
m M y 00 0 6 , ¢ .00 ,
n N y O .0 0, 7 . + 000,
o 0 y O .00 , 8 , 0. ,
D P ; 0 0 .000, 9) . 00. O,
q Q ; O 0O0. . ' 10 ¢ 000, 00,
r R , 0O 0. O - . : , 00 0. 00,
s S y, 00 . 0 , - + O . '
L T v 0 . 00, < > ¢ 00 . 0O,
u U . 00 .0 , _ | . 0.00 ,
v \' v 6 .0 0o, The key for _| does not advance the carriage.

6.2. TYPOGRAPHICAL SYMBOLS.

IOWER CASE , ooco. o , UPPER CASE , oooo.0 , SPACE , 0 . '
CAR RET O . , TAB ¢ 000,00 ,

6.3. CONTROL SYMBOLS.
STOP CODE c. oo, TAPE FEED , ooo0o.000, PUNCH ADRES ,o0 . .
PUNCH CFF . o o.000, PUNCE ON v 0 0.0 , AUX CODE ' 0.0 ,
PUNCH ADRES and AUX CODE insert thelr respective codes when depressed
simultaneously with any other key.

6.4. FLEXOWRITER KEYBOARD.

START STOP PUNCH AUX STOP TAPE
READ READ ADRES CODE CODE FEED

B PUWCHE x / = 3 [] () A~ v | PUNCH
OFF 2 3 4 & 6 7 8 9 0 1 _ ON

Q W E R T Y 1] I 0 P > CAR
i o p < RET

LOWER A S D ¥ 66 H J K L £ ¢ LOWER
CASE a s d f & h k 1 @ ¢ CASE

UPPER Z X €C vV B N M : + UPPER

CASE Z X c v b n n 5 . - CASE

L~

6.5. NUMERICAL REPRESENTATIONS. 7

6.5. NUMSRICAL RPRESENTATIONS.

In the following teble the characters have been arranged sccording to
the numerical equivalent of the hole combination (after removal of the pa-
rity check hole). The first colum gives the decimal value of the charac-~
ter, the second and third columns give the lower and upper case character,
respectively, and the fourth colum contains a G in the cases where the
cheracter I1s available only in GIER, but not on the flexowriter

LOWER UPPER LOWER UPPER
0 SPACE 32 . +
1 1 v 33 3 J
2 2 x 3k k K
3 3 / 35 1 L
L b = %6 m M
5 5 : 37 n N
6 6 ﬂl 38 o 0
7 7 39 P P
2 8 (Lo qQ Q.
9 ¢) by T -

10 (NOT USED) 42 (NOT USED)
11 STOP CODE 43— @ ']
12 END CODE_ Ll PUNCH ON
13 8 A o 45 (NOT USED)
b - | Lo (NOT USED)
15 (FoT us®ED) 47 (NOT USED)
16 0 A 48 ® E

17 < > Lo a A

18 8 S 50 - b B
19 t T 51 c ¢
20 u U 52 a D
21 v v 53 e E
22 w W 54 f 3
23 x X 55 g G
2k v Y 56 h H
5 b Z 57 1 I
26 (NOT USED) 58 LOWER CASE
27 . o 59 . :
28 CLEAR CODE 60 UPPER CASE
29 RED RIBBON G . 61 SUM CODE
30 TAB 62 BLACK RIBBON G
x4 PUNCH OFF _ 63 TAPE FEED

6L CAR RET

8 T.1. BASIC SYMBOLS.

7. THR RELATION BETWEEN GI®R ALGOL AND ALGOL 60.
7.1, BASIC SYMBOLS.

T+1.1, Single character symbols.
7.1.1.1. Letters end diifts. GIFR ALGOL adds the letters

a kg
to the reference alphabet. The appearance of ell letters and digits may
be seen from section 6.
7.1.1.2. Delimiters. As apparent from section 6 the following simple re-
ference langusge symbols are directly aveileble in GI®R ALGOL:
tox/<=2va,epis ()]

Tele2. Compound symbols.

Compound symbols must appear exactly as shown in thls section, with-
out sdditional SPACE or CARRFT symbols.
7.1.2.1. Underlined words. Underlined words are produced in GI®R ALGOL by
depressing the underline (_) key immediately preceding each letter of the
word. The symbols are the following:
true false go_te 1f then else for do step until while comment begin end

—— o o

own Boolean integer real array switch procedure string label value

e e e e S Es e me e el e mem T b A e - e aw e . ————

Booleen and boolean may be used interchangeably. Also go_to, goto, eand

7:1:5.2. Compound symbols similar to reference language. The following
compound symbols, most of which are produced by combining the underline
(_) or stroke (f; with other characters, are similar to those of the re-
ference language:

< > 4 = &=

Tele2+3s Compound symbols differing from reference languaze., The follow-
ing compound symbols show a noticable deviation from the reference lan-

guage:
Reference language 0 — LJ £ * >
GIER ALGOL A -, N ¢ : =

Following the delimiter comment any sequence of characters speci-

fied in section 6.5 is admitted up to the first following semicolon (3).
Comments have no effect in GI®R ALGOL.

Variables of types integer and real are represented by normal floa-

ting point numbers in GIER. Therefore integers must be confined to the
range:

- 2729 = - 536 870 912 < integer € 536 870 S11 = 2129 - 1
while the range of non-zero real variables is:

2N-512) = 7.458,-155 <"abs(real) < 1.341,154 = 2%12

T7.5. THE TREATMENT OF VARIABLES OF TYPES integer AND real. 9

If in the course of a calculation an expression, which according to the
rules of section 3.3.4 is of +type integer, yields a result outside the
range for integers, the result will be represented by +too few signifi-
cant figures and will therefore in general be inexact.

Round-off from type real to type integer is performed by means of
the built-in machine instructions for conversion from fleating form to
fixed form and back again (tkf 229, nkf 39). This implies that real re-
sults in the range from O to 2129 will, yield gorrect integers on roun-
ding, while reals in the range from 2|29 to 2[39 will be rounded to,an
integer having too few significant figures. Real results larger than é‘\ 39
will yield completely erroneous results if rounded.

The integer divide operation (:) will sometimes give a result which
is incorrect by unity if the absolute velue of the term involved is grea-
ter than 268 L35 L55,

The accuracy of a reel number will correspond to 29 significent bi-
nary digits. Thus one unit in the last binary place will correspond to s
relative change of the number of between 24,-9 and Ly-9.

7.4. RESERVED IDENTIFIERS.

A reserved igdentifier is one which msy be used in & program for a
standard purpcose without having been declared in the program. If the
standard meening 1s not needed in a program the identifier may freely be
declared to have other meanings.

The complete list of reserved identifiers arranged alphabeticelly is
as follows:

Identifier Reference Identifier Reference
abs 3.0.4 outer 8.6
arctan 3.2.4, 7.5 output 8.3

char 9.1 outsp 8.5

cos 3.2.4, 7.5 outsum 8.7

drum place 10.5 outtext 8.4
entier 5.2.5, T.5 pack 12.1

exp 5.2.4, 7.5, 11.7 setrhar 9.10

from drum 10.5 sign 3.2.4
gler 12.4 sin 3.2.4, 7.5
glerdrum 12.6 split 12.2
glerproc 12.5 sqrt 3.2.4, 7.5
inchar 9.9 todrum 10.5
inone 9.5 typechar 9.9

input gk typein 9.8

kbon 9.6 write 8.3

in 3.2.4, 7.5, 11.7 writechar 8.8

lyn g9.12 writecopy 9.7
ocutchar 8.8 writecr 8.6
outclear 8.7 writetext 8.4
outcopy 9.7

10 7.5. STANDARD FUNCTIONS.

7.5« STANDARD FUNCTIONS.

T«5.1. Accuracy.

The algorithms “or calculating the standard functions arctan, cos,
exp, In, sin, and sdrt, incorporated in GIER ALGOL will all yield results
having an error less than that which corresponds to about 2 units in the
last place of the result or the argument, whichever glves the greater er-
roTe

TeH5e2. Alarms.

Certain misuses of the standaxrd functions will cause termination of
execution of program (see section 11.7). Note, however, that 1n(0) will
supply the result -9.35,49 and not call the alarm.

7.6+ ARITHMETIC EXPRESSIONS.

The treatment of arithmetic types and the accuracy of real arithme-
ties is described in section 7.3. Alerms are described in section 11. T.

7+7+ (This section has been deleted).

7.8. INTSGERS AS LABELS.

Integers cannot be used with the meaning of labels in GI®WR ALGOL.

7+9. FOR STATEMENTS.

In GIWR ALGOL & subscripted variable is permitted &s the controlled
variable in a for clause. The identity of the variable will be establish-
ed once at the beginmming of each activation of the for statement and
changes of the values of subscript expressions in the course of the exe-
cution of the controlled statement will have no influence on which vari-
gble is used as the controlled one.

7.10. PROCEDURE STATEMENTS.

7.10.1. Recursive procedures,
Recursive procedures will be processed fully in GIFR ALGOL.

7.10.2. Handling of types.
The types integer and real will be handled according to the pre-

scriptions of section 4.7.3 except in the case that a formal parameter,
which is specified t0 be real and to which assignments are mede, in the

call corresponds to an 1nteger declared varieble., This specisal case will

be treated incorrectly in GITR ALGOL.

7+10. PROCFDURE STATWMENTS. 11

Te10.3. Extended list of standard procedures.

All input and output functions are in GITR ALGOL expressed as calls
of standard procedures. These calls conform to the syntax of calls of de-
clared procedures (cf. section 4.7.1) and also should be regarded in all
other respects as regular procedure calls or function designators, as the
case may be, This specifically includes the activation of a standard pro-
cadure through its identifier appearing as an aectual parameter of a call
of a declared procedure.

7.11. ORD®R OF DRCLARATIONS.

In GIER ALGOL declarations wmay appear Iin any order in the block
head.

T.12., Own.,.

In GI®R ALGOL own can only be used with type declarations, not with
array declaretions.

7.13. PROCEDURE DECLARATIONS.

7el3%.1. Recursive procedures.
Recursive procedures will be processed fully in GIWR ALGOL.

7.1%3.2. Arrays called by value.
GIWH ALGOL cannot handle arravs called by value.

7.13.3. Specifications.
The speciflications for formal narameters must be complete 1i.e., each
narameter must occur just once in the specification part.

7.13.4. Labels called by value.
Labels cannot be called by valus in GIFR ALGOL (the Revised ALGOL 60
Report leaves the question unanswered).

7.14, GWNTRAL LIMITATIONS.

GIWR ALGOL imposes a numbar of limitations caused by the finite size
of the tables used during compilation. However, with one exception these
limitations shall not be mentioned further here, partly because only very
exceptional programs are likely to exceed the capacity, partly because a-
larm messages during compilation will indicate when they are violated
{see anpendix L4). The exception 3is the limitation that the number of
variables which are active simultaneously et any time during the execu-
tion of a program must be confined to about 700. This problem is discus-
sed in detail in section 1DJ.

12 8. STANDARD QUTPUT PROCEIURES.

8. STANDARD QOUTPUT PROCEDURES.

Dutput of text and results from a program will be controlled by
means of output procedures permanently available to the translator (i.e.
without explicit declarations). The output will be provided in the form
of 8-.channel punch tape or printed copy. The symbols and 8-channel code
given 1n section 6. 8-CHANNEL PUNCH TAPE CODE AND FLEXOWRITER KEYBOARD
will be used.

8.1. CONTROL OF TYPEWRITER AND OUTPUT PUNCH.

Half of the standard output procedures are available in two forms,
one controlling the output punch (identifier beginning with out), the
other controlling the on-line typewriter (identifier beginning with
write). By operator intervention it is however possible to make a free
choice of the output unit corresponding to the two sets of ocutput proce-
dure identifiers. See the section 11.6 CHOICE OF OUTPUT UNITS COR STOP
RUN.

8.2, IDENTIFIERS AND MAIN CHARACTERISTICS.

The identifiers and mein characteristics of the standard output pro-
cedures are the following:

Identifier Example, reference Effect
output write (¥+d,ddad,gA2) Outputs the values of an arbitrary
write section 8.3. number of arithmetic expressions

in a specified layout. Other out-
put operations mey elso be inser-
ted as parsmeters.

outtext write(4<Q,=,3) Outputs a specified string of sym-
writetext section 8.k, bols.

outsp
outer
writecr

outclear

outsum

outchar
writechar

outcopy
writecopy

It holds for all

8.2. IDENTIFIERS AND MAIN CHARACTERISTICS. 13

outsp(8-n)
section 8.5.

writecr
section 8.6.

outclear

section B.7.

outsum
gsection 8.7.

writechar
section 8.8.

outcopy (4</;3)
section 9.7.

Outputs & specified number of
SPACEs.

Outputs one CAR RET symbol.

Punches one CLEAR CODE symbol and
sets an internal sum of punched
symbols to zero.

Punches a STOP CODE, a SUM CCDE
and a code representing the sum of
the symbols punched since program
read in, last outclear or last
outsum.

Outputs the character correspon-
ding to the value of the parame-
ter.

Coples a section of the input tape
to the output, the section being
specified through a parameter.

standard autput procedures that each output oper=-

tion will cause an addition to an internal variable of a number which is

equivalent to the character.

This may be used for checking purposes by

meens of the mechanisms described in sections 8.7.2 and 9.2. It should be

noted, however,

that for the checking to work correctly the output tape

mist not include any character which has been produced by a write - ope-
ration (cf. section 8.1).

14 8.3. STANDARD PROCEDURES: output, write.

8.3. STANDARD PROCEIURES: ocutput, write.

8.3.1. Syntax,

<sign> :i= <empty>| - | + | +
<expohent layout> ::= ,<si | <exponent layout>d
<zeroes> ::= O |<zeroes>0 | <zeroes>,0

<positions> ::= d ! <positions>d | <positions>,d
<0-positions> ::= <positions>] <O—positions>0_| <0-positions>,0
<decimal layout> ::= <O-positions>|<0O-positions>.<zeroes>| -
<positions>.<D—positions>].<O-positions>
Qayout tail> ::= <decimal layout>|<decimal layout><exponent. laycut>
<ayout> ::= <sign><layout tail>|<sign>n<layout tail>|<sign> n'
<gsignon,<lsyout tail>
<general layout> ::= 4<layout>}|<formal parameter>|(<layout expression>)
<dayout expression> ::= <general layout>ﬁ
<if clause><generz]l layout> else <layout expression>
<out statement> ::= <output statement>l<outtext statement>|
<outsp statement>|<outcr statement>|<outclear statement)l
<ocutsum statement>|<outcopy statement>|<outchar statement>
<output parameter> ::= <arithmetic expression>|<out statement>
<output parameter list> ::= <output parameter>
<output parsmeter list><parsmeter delimiter><ocutput parameter>
<output statement> :i=
output(<layout expression><parsmeter delimiter><output parameter 1ist>) |
write(<layout expression><parameter delimiter><output parameter 1ist>)

8.%.2. Examples.

cutput (€ddd.00%, P, outer, outtext(d<i=}), w +s)
output (4 dy-ddd, epsilon/16)

output{4dd,dad>, @, outsp(5), output(4.dddd, q), W, t-3)
output{if >0 then f1 else 2, Sum)

output(m, p-q, s-t)

8.3%.3. Semantics.

A eall of the procedure ocutput or write causes the following treat-
ment of the parameters specified in the output parameter list:

Arithmetic expression: the value will be printed in the layout sup-
plied in the first parameter of the call.

Out statement: the call of the istatement will be executed.

8.3.4. The layout.

The layout expression will be evaluated once at the beginning of the
execution of the output or write statement. The evaluation will take
place in a way which is completely analogous to that of other expres-
stons (cf. section 3.3.3). The final value must always be of the form
<<dayout>3.

The symbols of the layout give a symbolic representation of the di-
gits, spaces and symbols as they will appear in the printed number. In-
deed, the finally printed number will have exactly the same number of
printed characters as is present in the layout (except in case of alarm
printing, see section 8.3.6). The various symbols of the layout have the
follovwing significance:

8.3. 3T:NDARD PROCEDURES: output, write. 15

8.3.4.1. Sign. The four possible symbols in the sign position signify the
following:

8.3.4.1.1. Empty. The number is supposed to be positive. No sign will be
rrinted. If a negative number is encountered, an alarm printing will take
place (see section 8.3.7).

8.3.k.1.2. . The sign will always be printed using SPACE for positive,
and - for negative numbers. It will, if possible, move to the right, ap-
pearing as the first or second symbol to the left of the first digit (a
layout GSPACE may appear in between) or immediately in front of the deci-
mal point,

8.3.4b.1.3, + . The sign will always be printed using + for positive and
- for negative numbers, It will, 1if possible, move to the right, as in
8.%.4.1.2 above.

B8.3.4.1.4, ~ . The sign will always be printed, using + for positive and
- for negative numbers. It will be printed as the first symbol of the
number, before any SPACE or digit.

8.3.4.2. Digits. Letters d and n rerresent digits. Letter n may only ap-
pear as the first symbol following the sign. The total number of letters
d and n gives the maximum number of printed significant digits (cf. sec-
tion 8.3.8).

If n is used in the first digit position, proper decimal fractions
will be printed with a 0 in front of the decimal point and the integer O
will be printed. If 4 is used these 0 digits will be repleced by SPACE.

8.3.4.3. Zeroes. Zeroes may appear at the end of a decimal layout. They
influence +the representation of the number in the following manner: If m
zeroes are present at the end of the decimal layout the exponent printed
will be exactly divisible by m+-1. For this to be possible at the same time
a8 the position of the decimal point within the complete layout is kept
fixed the significant digits of the number are allowed to move to the
right, vsing the positions of the symbols 0, depending on the magnitude
of the number. If no exponent layout is included the exponent O is under-
stood and the above rule holds unchanged.

8.35.4.4, Spaces. Spaces will be inserted in all positions where the symbol
, appears. The symbol 4 may within the layout be replaced by SPACE the ef-
Tect of SPACE being the same.

8.3.4.5. Decimal point. The decimal point will always be printed in a
fixed position within the layout. If decimals are printed it will appear
as . otherwise as SP/CE.

8.3.4.6. Scale factor. The scale factor will be printed in the same way as
in the language. The symbol , will appear immediately in front of the sign
of the exponent. If the scale factor is 1 the symbols , and following will
appear as SPACEs. UNote that it is not possible to print an exponent part
without a decimal part.

8.3.5. Round off.
£11 numbers will he correctly rounded to the number of significant
digits printed.

15 8.%. STANDARD PROCEIURES: output, write.

8.3.6. Limitations.

The totzl number of symbcls n and 4 in any decimal layout must be
< 15,
- The total number of symbols n, d, and 0, written to the left of the
decimal point must be < 15,

The total number of symbols d and O written to the right of the de-
cimel point in a decimal layout must be < 15.

The number of symbols d in any exponent layout must be < 7.

The symbols , and SPACE can only appear in such positions within the
layout that they are preceded by fewer than 20 symbcls of the kinds n, 4,
0, and point (.).

8.%.7. Alarm printing.

By alarm printing is meant that the printing will consume more posi-

tions on the paper than are present in the layout. Alarm printing will oec-
cur as follows:
8.3.7.1. Negative number printed with layout having empty sign position.
The correct - will be inserted, consuming one extra position.
8.%.7.2. Number too large for layout. Whenever the number to be printed is
too large for the layout given, an actual layout is used which will acco-
modate the number by inserting an exponent layout, or by increasing the
number of exponent digits.

8.3.8. Smll numbers.

Printing of small numbers will never give rise to alarm printing. In-
stead the number of printed significant digits will be smaller than the
meximum (section 8.3.h.2).

8.3.9. Examples of printed numbers.
In order to indicate the exact number of characters printed, commas
are inserted immediately preceding and following each number.

Iayout
n,dd,dd.do,0 +d,ddd.ddd,d -ddd.d00y +d :ﬂd.ow—dd

Normal printing

, 0.00 1, , +.001 2, , 1.2354-3, , 412 gl
, 0.01 2, , +~.012 3, ,» 12.35 y-3, st 1.2 p-2,
3 0.12 3,) +-125 5; » 125-5 10‘3) ’+12 10"2’
, 1.23 5, s +1.234 6, , 1.235 ,¥ 1.2 5
) 12,34 6, s +12.345 7, s, 12.35) »+12 ’
, 1 23.45 7, , +123.u456 8, , 123.5 , bt 1.2 4 2,
b 12 5L“'57 b J+1 ?5)4"567 97] 1-23510"'5))*12 o 2:
,1 23 b5, , 12.35 p+3, 1.2 g b4,

, -.001 2, ., -1.2354-3, ,-12 b,

,-1 234,567 9, » =1.235p+3, »-12 p 2,

Alarm printing

, -0.00 1,

, V23 LU5.T p3, . 1 234,567 Gl

, 12345 Tp15, -1 234,567 91k, , 123.5 +15,

8.4. STANDARD PROCEIURES: outtext, writetext. 17

8.4. STANDARD PROCEDVRES: ocuttext, writetext.

8.4.1. Syntex.
<general string> ::= d<<proper string>} |<formal parsmeter>]
(<string expression>)
<string expression> ::= <general string>|
<if cleuse><general string> else <string expression>
<outtext parameter> ::= <string expression>|<out statement>
<outtext parameter list> ::= <outtext parameter>|
<outtext parameter list><parameter delimiter><cuttext parameter>
<outtext statement> ::= outtext(<outtext paremeter 1ist>)]|
writetext (<outtext parameter list>)

8.4.2. Examples.
outtext(¢<Resu1tlis$, a, 4<than expected>)
writetext(4<0,=,>)

8.4.3. Semantics.

The execution of an outtext statement causes the following treatment
of the parameters specified in the parameter list, taking them in order
from left to right:

String expression: an ocutput of the text resulting from an evalua-
tion of the expression is performed.

Out statement: the call of the statement will be executed.

8.4.3.1. The string quote,
Note thekdifference ?etween the string gquotes used here
< >
and those used in layout expressions {cf. section 8.3.1).

8.4.3.2. Treatment of SPACE and CAR RET.

All characters of the proper string; including SPACEs and CAR RETs
will be outputed. The symbol for space , will however be equivalent to
SPACE, i.e. it will be printed, not as it stands, but as a SPACE.

18 8.5, STANDARD PROCEDURE: outsp.

8.5. STANDARD PROCEIURE: outsp.

8.5.1. Syntax.
<outsp statement> ::= outsp(<arithmetic expression>)

8.5.2. Example.
outsp(n + m - 7)

8.5.3. Semantics.

The execution of an ocutsp statement causes the number of SPACE sym-
bols specified as actusl parameter to be outputed.

The value of the arithmetic expression will, if necessary, be roun-
ded to the nearest integer. If it assumes & non - positive value no sym-
bols will be outputed.

8.6. STANDARD PROCEDURES: outer, writecr.

8.6.1. Syntax.
<outer statement> ::= outcr!writecr

8.6.2. Semmntics.

An outer statement causes s CAR RET symbol to be outputed. Note that
this will cause the combined operation of return of carriage and line
feed to take place.

8.7. STANDARD PROCEIURES: outclear, outsum. 19

8.7. STANDARD PROCEIURES: ocutclear, outsum.

8.7.1. Syntax.
<outclear statement> ::= outclear
<outsum statement> ::= outsum

8.7.2. Semantics.

The two output procedures described here serve to insert characters
on the output tape with =a view to a later use of this output tape as in-
put tape to an ALGCL program,

The ocutclear statement punches the CLEAR CODE and sets the internal
sum of the punched characters to zero. This prepares for the use of the
checksum mechanism (cf. section 9.2.5).

The outsum statement punches a STOP CODE, s SUM CODE and a character
representing the value of the internsl sum of all punched characters and
sets this sum to zero. During input this combination will cause an auto-
matic sum check to take place (ef. section 9.2.5).

8.8. STANDARD PROCEDURES: outchar, writechar.

8.8.1. Syntex.
<outchar statement> ::= outchar(<srithmetic expression>)|
writechar(<arithmetic expression>)

8.8,2. Examples.

outchar(if upper cese then 60 else 58)
writechar(49)

writechar(symbol - case)

8.8.3. Semantics.

The exscution of an outchar statement causes the character corre-
sponding to the value of the actual paremeter to be outputed. The corre-
spondence between the integers snd the characters is given in the +table
of section 6.5. If the value of the actual parameter i1s not an integer it
will be rounded to the neareat integer. If 1t is larger than 127 the va-
iuve modulo 128 will be used,

The characters for UFPER CASE and IOWER CASE mist be outputed ex-
plicitiy vwhere needed. Where outchar statements are used side by side
with output or ocuttext statements it is important to note that these lat-
ter will assume the output unit to be in lower case when a call is made
and will also leave it in lower case when the csll is completed.

Note slso that the wse of cutchsr may produce a tape which will
cause the checksum mechanism (section 9.2.5) to fail, e.g. if outchar is
used to produce either of the control characters CLEAR CODE or SUM CODE.

20 9, STANDARD INPUT PROCEIURES

9. STANDARD INPUT PROCEIURES.

Input of information from 8-chamnel punch tape mry be carried cut at
any stage of an AIGOL program through calls of standard input procedures
permanently avallable to the translator.

In order to provide flexibility several different kinds of standard
input procedures are available. These differ both with respect to the in-
terpretation of the single symbols supplied on the Input tape and the in-
ternal effect of the input operation.

9.1. IDENTIFIERS AND MAIN CHARACTERISTICS.

The identifier and main characteristics of the standard input pro-
cedures are the following:

Identifier Example, reference Effect

input input(a, b, c) Reads numbers and assigns to vari-
section 9.4, ables or arrays.

incne pxinone real procedures inone snd typein

typein section 9.5, 9.8. have the next number appearing on

the 1input +tape or typed on the
typewriter as their wvalue.

kbon bool:= kbon This Boolean procedure supplies the
section 9.6. current value of the manuslly ope-
rated KB register.
outcopy outcopy(4</;3$) Cause & copying of the characters
writecopy section 9.7. on the input tape to the output
punch (outcopy) or the typewriter
(writecopy).
inchar n:= typechar These integer procedures supply the
typechar section 9.0. value of the next charascter which
appears on the tape or 1s typed.
setchar setchar (15) Inserts an input character shead of
section 9.10. the ones waiting in the input.
char p:= char Bupplies the value of the last chs-
section 9.11. racter read by any input procedure.
lyn Q= lyn + b4 Supplies the value of the next row

section 9.12 of holes on the input tepe.

9.2. UNIVERSAL INPUT MECHANISMS. 21

9.2. UNIVERSAL INPUT MECHANISMS.

Certain characters on the input tape will be handled in the same way
no matter which of the standard input procedures is controlling the input
operation. The universal mechanisms are the following:

3.2.1. Skipping between PUNCH OFF and PUNCE ON.
A1]1 charscters between PUNCH OFF and the first following PUNCH ON,

these two characters included, will be completely ignored during input.

9.2.2. Ignoring of BLANK TAPE, TAPE FEED, and ALL HOLES.
The characters

. BLANK TAPE
0000.000 TAPE FEED
00000.,000 ALL HOLES

will be ignored during input.

9.2.3. (This section has been deleted).

Se2.5. Input characters of wrons parity.

The machine stops when & row of an even number of holes is sensed in
the tape reader. In this situation it is sufficient to place the intended
svmbol in the R register since the ALGOL system never mekes any use of
the representation stored by the input instruction itself.

G,2+5., The checksum mechanism.

When the stendard input procedures reed tapes which have been pre-
pared by the standard output procedures the checksums included on this
tape in consequence of calls of +the outsum procedure will automatically
be verified. If the check symbol does not eheck with the corresponding
symbol as formed during previous read-in the machine will print

sum feils
and the machine will stop. If a character is typed on the typewrlter the
reading will continue. The internal variable which holds the current sum
of the symbols which have been reed in mey be reset to zero by the inclu-
sion of the CLEAR CODE on the tape. This is the symbol produced by the
outelear procedure (cf. section 8.7.2). On the flexowriter use:
AUX CODE with O

9.206. StOp produced by END CODE.

Whenever the END CODE appears the message

pause
will be typed and the machine will stop, weiting for a character +o be
typed on the typewriter. The END CUDE may be produced by an ALGOL program
by executing the statement outchar {12). On the flexowriter it is pro-
duced by depressing '
AUX CODE with SPACE.

9427+ The effect of UPPER CASE end LOWER CASE.

For printed syubols (cf. section 6.1) the meaning and effect of & gi-
ven hole combination depends on the most recent CASE symbol on the tape
(UPPER CASE or LOWER CASE).

For typographical and control symbols (cf. sections 6.2 and 6.3} the
effect is usually Iindependent of the case.

22 9.3. TERMINATORS, INFORMATION SYMBOLS, AND BLIND SYMBOLS.

9,3. TERMINATORS, INFORMATION SYMBOLS, AND BLIND SYMBOLS.

The effect of the input charascters which do not give rise to an ac-
tion of a universal input mechanism (cf. section 9.2) depends on the par-
ticular standard input procedure. In describing this effect it is conve-
nient to make use of the following concepts:

9.%5,1, Terminators. A terminator is a symbol on the input tape which in-
dicates to the input procedure that the reading of a plece of information
(e.g. a number) has been completed,

9.3.2. Information symbols. An information symbol is a symbol on the in-
put tape supplying positive information which is transferred to the run-
ning ALGOL program by the input procedure.

9.3.3. Blind symbols. A blind symbol is a symbol on the input tape which
is ignored by the input procedure,

A3 explained more concisely in the following sections we have for
the procedures input and inone:

Terminators: <letter> TAB PUNCH ON CAR RET STOP CODE all signs except
+ - . op

Information symbols: <digit> + - . g

Blind symbols: SPACE

Each input operastion will in general read three sections of the in-
rut tape:

1. Any mixture of terminators and blind symbols.
2. A legal sequence of information symbols mixed with blind symbols.
3. (ne terminsator.

9.4. STANDARD PROCEDURE: input.

9,4.1. Syntex. :
<input parameter> ::= <variable>f<array identifier>
Zinput parameter list> ::= <input parameter>|
<inpui parameter list><parameter delimiter><input parameter>
<input statement> ::= input(<input parsmeter 1list>)

9.4,2, Examples.
input(P)
input(AlL, jl, v, MATA)
input(k, B[1,k])

9.4,3, Semantics.

A call of the procedure input will cause the values of numbers sup-
plied on the input teape to be assigned to the variables a.nd/or arrays of
subscripted variables specified as parameters. The assignments will in
detail be executed as follows:

9.4, STANDARD PROCEDURE: input. 23

9.4.3.1. Order of assignment., The parsmeters will be taken in order from
left to right and the assignment will be completely finished for each pa-
rameter before the next 1s treated. Thus the statement input(k, B[1,k])
will first assign a value from the input tape to k and this value of k
will then define the particular component of B to which the next number
on the tape will be assigned,

9.4.3,2. Assignment to array, If an array identifier is supplied as pa-
remeter an assignment to all the components of the array will take place.
The order of assignment may be described as follows: Denoting the lower
and upper subscript bounds of the array declaration by 11, 12, ... 1n, ui
u2, ... un, the input operation is equivalent to

for il:= 11 ftep 1 until ul do

for 12:= 12 step 1 until u2 do

s s 0 s e

for in:= 1n step 1 until un do
A'[il, i2, ... , inJ:= input number
where i1, 12, ... in are internal varilables.

9.4.3.3. Input tepe syntsx. The characters appearing on the input tape
during the execution of input must conform to the following syntectic
rules:
{input terminator>::= v|x|/[=];
STCP CODE
{input information> ::= <{digit>
<input blind> ::= SPACE|_
{input prelude’ ::= <empty» |<input blind> |<input terminator> |
{input prelude’<input blind |<input prelude><input terminator>
{aigit sequence> ::= <digit> [<digit sequencer<digit> |
<digit sequence’<{input blind> |<input blind><digit seguence>
{input integer> ::= <(digit sequence |+<digit sequence’ [-<digit sequence>
{input fractiow ::= .<digit sequence
<{input exponent>::= wpiinput integer>
{input decimal>::= <digit sequence’ [<{input fraction> |
<{digit sequence’<input frectiory
<unsigned real’::= <{input decimal’ [<input exponent> |
<{input decimal><input exponent>
<input resl>::= <unsigned real> |[+<unsigned real> |-<unsigned real>
{input dittor::= -|<input dittor-|<input ditto’<input blind
{tape integer>::= {input prelude’<input integer><input t.erminator>|
{input prelude’<{input ditto’<input terminator>
<tape real>::= <input prelude><input resl><input terminator {
{input prelude><input ditto’<{input terminator>

IO ITIAIKD T, AR [PUNCH N : [cAR RET]
<Jl_et|-,tTr>
»lpi+i=

9.4.3.4. Bxamples of input tape for input.

Tape integers: Tepe reals:

17 283, Wi éa§§l_g9..2. <
is= +158. epsi= ..10.-1 '
s[25] pii= 3.141562 65,
function(~-12) St x = b,

p: -/ q: 1.384,-11,

2l 9.4. STANDARD PROCEDURE: input.

g.4.3.5. Sementics of input tape. Bach input assigmment will cause the
reading of one tape reml or tape integer. 1If these contain digits they
will be interpreted mccording +to the usual ALGOL prescriptions (cf. sec-
tions 2.5.3% snd 2.5.4), ignoring all input blinds and input terminators.
An input ditto, on the other hend, will ceause the input assignment to be
skipped for the particular variasble, thus leaving its vaelue unchanged.

G.lk,3.6. Error;/’ The standard procedure input checks that the syntactic
rules of sectior 9.4.3.3 are sstisfied. If an error is detected one of
the messages

correct input value, end in LC:
or

correct input value, end in UC:
will be typed. The operator is now expected to type one number, followed
by a terminator, 1o be used instead of the erromeous combination sppea-
ring on the tape. The terminator must be in upper or lower case as indi-
cated In the message since otherwlse the following text on the input tape
mgy be misinterpreted.

G.%. STANDARD PROCYDURE: inonea

9.5.1. Syntaxa.
<{inone function designatorr::= inone

Fe5.2. Examples,
wi= (inone + y)/q
Blinone, inone]:= inone

QaB%e3e Semmantics.

Inone is = real procedure having an empty fermal parameter perta
#wrery time it is caljed it will read the next tape real appesring on the
input tepe (cf. section ©,4,3.3). This informetion on the input tape will
define its value according to the rules of section 9.4.3.5, except that

+he effect of an input ditto is undefined.

025a3ele @xample of input tape for inone. A reassonsble input tspe for the
second exsmule of section 2.5.2 would be the following:

B3, 7]:= 3,247, '

Note that the correct execution of this input operation is dlirectly de-
pendent on the strict adherence +to the rules of sections h.2.5.1 -
k.2.3.3 for sssignment statements. '

9.6. STANDARD PROCEDURE: kb on. 25

946, STANDARD PROCEDURE: kb on.

G.6el. Syntex.
<kb on function designator”> ::= kb on

9.6‘20 Ebcamples.

if kb on E}_ﬁgg output({dadf, outer, Q)
if Xb on A1 7 20 then go_to finis
time is up:= kb on

94643, Semantics.

kb on is a Boolean procedure having an empty formel parameter pert.
The value of the function designator is given by the current state of the
menually controlled KB register of the machine; it is true when KB is on,
otherwise falsge.

~

9.7« STANDARD PROCEDURES: outcopy, writecopy.

Q.Tele Syntax.
{outcopy statement’>::= outcopy(<string expression’)!
writecopy(<string expression’)

9.7 o2s Eb(amples.

outcopy({<+/4)

writecopy(if &0 then w else y)
outcopy{ £s)

Q73 Semantics.

A call of an outcopy statement causes a copying of charascters from
the input tepe to the output. The section of the input tepe to be copied
is defined by the value of the string expression supplied as parsmeter.
This value must have the form

4< <proper string>

whera the proper string consists of one or two characters. If one cherac-
ter is supplied the copying will take place from the sactuel position of
the input tape until the first occurrence of the character speciflied ns
parameter. If two characters are supplied the copylng will start from the
first character on the tape which ia the seme as the first of the two
characters supplied as paremeters and will continue until the first oc-
currence of the second of these symbols on the tape. The characters indi-~
cating the begin and end of the section of the input tape to be copied
will not themselves be copied.

The copying will include all legal characters except those associa~
ted with the universsl input medhanisms (cf. section $.2) and superfluous
case shifts.

26 G.7. STANDARD PROCEDURES: outcopy, writecopy.
/

9¢Te5+1s Example of call, input tape, and output.
The call

outcopy(4<[1)

Operating on the following input tape:

Heading:

Problem number:

will produce as output:
Problem number:

e b Y B e i e o

9.8+ STANDARD PROCEDURE: typein.

This procedure is entirely similer to procedure inone (section 9.5).
but expects the input characters to be typed on the typewriter.
»

9«9, STANDARD PROCEDURE: inchar, typechar.

9.,%9.1. Syntax.
<{inchar function designstor’ ::= inchar | typechar

909. 2e Examples.
if typechar = U9 then go_to e
gymbel := inchar

9-9.5‘ Semantics.

inchar end typechar are integer procedures having an empty formal
parameter part. Bach call of an inchar function designator will activate
the corresponding input unit (paper tape reader for inchar, typewriter
for typechar) and will return with the value of the next proper character
from the input medium as its velue. By proper character is here meant a
character which is not handled by the universal input mechanisms (section
9.2). The values of proper cheracters iri“lower case are given directly by
the teble in section 6.5. In upper case the value supplied by inchar and
typechar is increased by 128. Thus the letter p will appear as 39 while P
will be 167,

Note that typechar always assumes the typewriter to be in lower case
vhen the call is made. Charecters in upper case will therefore be trans~
mitted properly only 1f each of them is preceded by an expliclit shift to
upper cease.

9,10, STANDARD PROCEDURE: setchar
9.10.1. Syntax. -
{setchar statement> ::= setchar({<arithmetic expression’)

9.10.2+ Exsmples
setchar(160)
setchar(tegn)

9.10. STANDARD PROCEDURE: setchar. 27
/

9¢10+s3+ Semantics.

BEach cell of setcher assigns the value of the expression supplied as
actual parsmeter to an Internal buffer and at the seme time sets en in-
ternal Boolean variable which causes the value in the buffer tc be used
as the first oproper input character at the first following call of any
input procedure (input, inone, typein, inchar, typechar, outcopy, write-
copy) shead of the next symbol waiting in the input unit.

The values of the actual parameters supplied in calls of setchar
should only be such wvhich correspond to proper input characters, 1i.e.
such which may sppear as values of inchar.

9.11. STANDARD PROCEDURE: char.

9.11.1. Syntax.
{char function designator’ ::= char

9.11,2. Examples.
if char < 10 then outchar(char)
if char = 133 then go_to exit

9.11.3. Semantics.

Its value is the number co;-'f';;iaﬁding to the last proper charecter previ-
ously inputed by any standard input procedure (input, inone, typein, in-
char, typechar, outecopy, writecopy) or assigned by setchar. The value
corresponding to a proper character is to be understood 1n the seme sense
as for procedure inchar. Note that char does not activate eany input unit,
but only makes the last character supplied by any input unit aveilable.

5.12. STANDARD PROCEDURE: lymi.

9.12.1o Synta.x.
{lyn function designator’ ::= lyn

9.12.2. Example
symbol:= lyn

9.12¢3~ Semantics.

1lyn is an integer procedugé" having an empty parsmeter part supplying
+the value of a character from the paper tape reader, like inchar. Howe-
ver, the character whose value is provided by lyn is alwsys the next one
on the input +tape without any intervention from the universal input me~-
chanisms {section 9.2) or the buffer controlled by setchar (section
9.,10). Likewise the case and buffer state are unaffected by calls of lyn.
Thus by using lyn the programmer may interpret the Iinput symbols having
sorrect parity in any conceivable mamner.

28 10, STORING VARTAELES ON DRUM.

10. STORING VARIABLES ON DRWM.
10.1. INTRODUCTION.

AIGOL programs operating with up to sbout 700 variables similtane—
ously may be handled directly by the GIER ALGOL system. However, if pro-
grams declaring more than this number of varisbles simlteneously are run
in the system the run will be terminated before the final end hes been
reached (cf. section 11.7, alas and array). Whet has happened 1s that the
capacity of the directly available internal store of the mechine, the so-
called core store, has been exceeded.

This does not mean that problems involving a larger mumber of vari-
ables are outside the reach of the system since there is mvailable in the
machine a storage capacity on the so~called magnetic drum of more than 12
times that of the core store. What it does mean, however, 18 that the
user must include in his progrsm calls of the standard procedures to drum
and from drum which serve to transber varisbles from the core store to
the drum store and back again. From the point of view of the user the
megnetic drum mey in this context be regarded &s a new kind of Input-out-
put medium, enalogous to paper tape. The two standard procedures to drum
and from drum are then anslogous to the standard procedures output and
input.

However, the use of to drum end from drum should not be confined to
the cases where it is indispensable. In fact, execution speed considera-
tions will often make it desirable to keep the number of active variables
in the progrem consliderably lower than the admissible upper limit.

An intelligent =assessment of the fapgtors involved requires some
knowledge of the storage allocation system incorporated in GIER ALGOL.
This system 1s therefore explained in the following sections.

10.2. STORAGE OF VARIABLES.

The reservation of core storage space for a varisble is made at the
time of entry into the block in +the head of which the varieble is de-~
clared. Similarly reservations for a block are cancelled at the time of
the corresponding exit from the block. For this reason the spece reserved
for the verisbles will usually change from time to time during the execu-
tion of a program, being at every moment egual to the sum of the reserve-
tions made by those blocks and procedure bodies which are active.

The reservations made at a blogk entry include other quantities be-
sides varisbles. The total requirements may be derived from the declara-
tions (including the implicit ones for locel labels) of the block as fol-
lows:

10.2. STORAGE OF VARIABLES. 29

Number of locations required

Simple variables, local labels, One for each gquantity
local procedures, formal parameter
Array segment Number of array identifiers + 1 +

number of subscripts + total number
of variables.

Switch declaration 1 + mumber of switch elements

Working locations Depends on structure of program, u-
sually only & few.

Block, procedure body 2 if normel block, 3 if procedure,

k i{f type procedure.

10.3. STORAGE OF PROGRAM.

GIER ALGOL incorporetes a fully automatic system for handling the
transfers of program drum tracks to the core store during the execution
of the program, This system will at all times attempt to make the best
use of that part of the core store which is not currently reserved for
variables. This section of the core store will be divided into program
track places, each of 41 locations. The available places will be used for
those program tracks which are required as the program executlion deve-
lops. Whenever the program executlion calls for a transfer to another
track it is investigated whether the track is available in the core
store. If it is not it is transferred to that track place which for the
longest time has been left unused.

10.4. BALANCING THE USE OF THE CORE STORE.
\

The transfer of a drum treck to the core store requires 20 millise-
conds, In contrast the transfer of control to a track which is already
present in the core store takes between 0.7 and 1.6 millisecconds. It is
therefore clear that A PROGRAM HAVING A LARGER PART OF THE AVAILABLE CORE
STORE RESERVED BY VARIABLES WILL SPEND A LONGER TIME (N TRANSFERS OF PRO-
GRAM TRACKS TQ THE CORE STORE. The importance of this loss of speed for a
glven number of program track places depends very strongly on the loop
structure of the program. It is amall if most of the execution time of
the program is spent in a loop which may be held completely in the avai-
lable program track places.

To assist 1in estimating the number of program tracks involved in s

30 10.4. BAIANCING THE USE OF THE CORE STORE.

loop which includes calls of standard procedures the arrangement of
standard procedures on the tracks reserved for them is given below.

Standard Used by

procedure

track

0 write, output

1 write, ocutput

2 write, output

3 write, output, sqrt, outsp

L A with integer exponent, abs, entier, sign, writecr,

outer, outchar

S to drum, from drum, lyn, char

6 to drum, from drum

T cuttext, writetext

8 exp, writechar

9 outcopy, writecopy

10 input, typein, typechar, inone, inchar

11 input, typein, inone

12 outcopy, writecopy, input, typein, inone, typechar, in-
char

13 (alarms of input, special storage)

14 cos, sin, setchar

15 arctan

16 in, outeclear, outsum

17 split, pack

18 gier drum, gieX proc, gier, kb on

19 gier drum, gler proc, gler

These considerations indicate that in programs where the execution
speed is of any concern the number of active variables in the program
should be kept rather lower than the strict upper limit; a practical 1i-
mit might be 500 variables. This may be achieved by using the drum as an
additional store for variebles.

The increase of execution speed geined by using the drum for storage
of variables will be counteracted by the loss of time incurred each time
these variables are transferred to or from the drum by to drum or from
drum., This latter transfer time is usually of the order of 1 - 2 millise-
conds per variable per transfer. Whether these transfer times are of
overall significance depends on the time necessary for other processing
of the variasbles. An estimate of such processing times may be formed on
the basis of the figures given in appendix 3. It will be found that the
time of even a quite moderate amount of processing will overshadow the
average drum transfer time.

10.5. STANDARD PROCEIURES: to drum, from drum, n
STANDARD VARIABLES: drumplace.

10.5. STANDARD PROCEDURES: to drum, from drum.
STANDARD VARIABLE: drumplace.

10.5.1. Syntax.

<drum trensfer function designator> ::= to drum(<srray identifier>)|
from drum(<array identifier>)

<drumplace variable identifier> ::= drumplace

10.5.2. Examples.
Bplads := drumplace
Bshift := to drum(B)

drumplace := drumplace - Bshift
from drum(B)

10.5.3. Semantics.

The standard integer procedures to drum and from drum snd the asso-
clated standard integer variable drumplace administer the handling of
transfers of arrays of values to and from the drum memory of GIER. The
Procedure to drum will transfer the array of subscripted wvariables iden-
tified in the actual parameter to the drum and acts like an assignment of
values to the drum and likewise the procedure from drum will assign va-
lues previously transferred to the drum to the array identified in the
actual parameter. In either case the part of the drum involved in the
transfer 1s defined by the value of the integer variable drumplace which
enters into to drum and ¥rom drum as & non-local identifier. Thus in or-
der to retrieve a2 set of values previocusly transferred to the drum the
procedure from drum must be called with drumplace having the same value
as when the corresponding call of to drum was made. The same holds if it
is desired to assign new values to a previously used section of the drum.
In any case the array supplied s parameter in the drum transfer function
designator must be of the same type and have the same number of subscrip-
ted variables as the one used in the corresponding call of to drum. Howe-
ver, the two arrays need not have the same number of subscripts or the
same subscript bounds. If the arrays differ in these respects the corre-
spondence of elements is established by ordering the elements of each ar-
ray in the ssme manner as they would be if they were read from tape by
mesns of the standard procedure input (cf. section 9.%4.3.2).

Clearly the standard variable drumplace is the key to administering
values stored on the drum. In addition the programmer mey use the values
of the drum transfer function designators. These are closely related to
drumplace as apparent from the following 3 rules which define the beha-
vicur of the value of drumplace:

1. drumplace is Initialized by the compiler to a value which is the
one extreme of its permissible range of variation.

2. Every call of %o drum snd from drum will, as a side-effect,
change the value of drumplace in a direction away from the initial value
supplied by the compiler towards the other extreme of its permissible
range and by such an amount that the new value is the correct one to use
in transferring values to the next adjecent section of the drum.

5. The amount by which drumplace i1s changed through a call of to

32 10.5. STANDARD PROCEIURES: to drum, from drum.
STANDARD VARIABLES: drumplace

drum or from drum will be the same whenever arrays of the same type and
having the same number of subscripted wvariables are transferred. The
amount by which drumplece is changed is available as the value of the drum
transfer function designator. In other words:

new value of drumplace = old value + to drum(A)

new value of drumplace = old value + from drum{A).

However, nothing further about the devendence of +the change of drumplace
on the size and type of the array is defined generally (the precise mea-
ning of drumplace will change from one edition of the compiler to
another).

It will be understood from these rules that as long as no explicit
assignment is made to drumplesce only calls of to drum will be in order and
each of these will use 8 new section of the drum adjecent to the one used
in the last previous call of to drum. Before any call of from drum is made
the programmer mst make an explicit assignment to drumplace. The wvalues
assigned to drumplace can only be derived from its previous values possi-
bly modified by integral multiples of the smount by which is has changed.

The programmer has his full freedom to overwrite sections of the drum
which have previously been used as long as he mekes sure to use only ve-
lues of drumplace which lie within the range defined by its initial wvalue
and another extreme which marks the other end of the free section of the
drum, If drumplece steps outside this range an error reaction will occur
at run time and the message (cf. section 11.7)

drum alas

will by typed. The criterion for a set of values previocusly transferred by
to drum to be still intact on the drum may be formulated as follows: Each
section used on the drum by to drum will be defined by an interval of the
values of drumplace, namely that defined by the wvalue of drumplace Just
before to drum wes dalled and its wvalue just after the call was completed.
The values transferred will still be intact as long as no call of to drum
with an overlepping interval of drumplace has been performed.

10.5.4. The meaning of drumplace and the capacity of the drum.

The standard procedures included in GIER ALGOL III treat the drum
1ike a linear array, the location in relative address r on track t being
regarded as element number n = r + 4Oxt. Within this array +to drum and
from drum will start reserving locations starting at a high element number
and will successively use elements having lower numbers. The section of
the drum referred to in a call made with drumplace = dp will be the loca-
tions having numbers dp, dp-1, dp-2, etc. The section of the drum in-
volved is defined in section 11.1. This section also shows that by this
arrangement to drum will first use a free section of the drum and only la-
ter use the section holding the translator, and the data given will enable
the user to calculate the capacity of the drum in & given version of the
compiler and in a given program.

11. OPERATING THE COMPILER. 33

11. OPERATING THE COMPILER.
11.1. TAPES AND STCORAGE OF THE COMPILER.

The compiler will be distributed to the users in the form of & sepa-
rate tapes. These tapes will enable the various user groups to generate
their own ‘binary versions of the compiler, as the need arises. The op -
tions provided in this manner are briefly as follows:

1. The user may choose between a permanent compiler, i.e. one which
remains intact on the drum, except when overwritten by todrum (cf. sec-
tion 10.5.4), and a transient compiler, i.e. one which is read in from
tape plecewise between the translator passes. By using the transient com-
piler the user gains 78 tracks on the drum during translation.

2. The user may choose to place the compiler and system on the
tracks normaelly occupied by the HJEIP system and to have the HP button of
the machine return directly to the ALGOL system, or he may wish to keep
the HJEIP system in the machine. By leaving out the HJELP system the user
gains 38 tracks on the drum.

3. The user may protect certain parts of the drum from being used by
the compiler. Also the compiler may directly be adapted to machines ha-
ving more than %20 drum tracks.

In order to use the options the user will need the following infor-
mation about the way the compller is stored and the limits of the various
alarms: During the loading of the compiler into the machine the code is
placed on thesdrum, beginning at the track given by the initial value of
¢70. When the complete code has been read it is moved as a solid block of
information to begin at the track given by the initial value of ¢60. The
number of drum tracks needed to hold the compiler, N, and the part of
these used for the run time system, S, are as follows:

S=length of system N=length of compiler
HP -button entry to ALGOL Permanent Transient
o 39 145 67
Yes ' L1 147 69

During loading the drum must hold the HJEIP system and the core image in
addition to the compiler. Therefore the initial value of c7C should be
chosen to be greater than 38. However, the final placement may overwrite
any other part of the drum, with the restriction that if HP-button antry
is desired the compiler must be placed from treck 1. The HE-button entry
is controlled by the initial wvalue of e95. If this is 0 the entry is
omitted, if it is 1 the two apnropriate tracks are included.

Additional options permit the user to reserve a drum area which is
not used by the translator, but which may be referred to by means of to-
drum and fromdrum (section 10.5), and another area which is not used by
the translator and is inaccessible to todrum, but which may be referred
to by fromdrum, Finally the highest track number which may be used
elther during translation or at run time may be specified by the user.
These facilities are controlled by the values assigned to the symbolic

34 11.1. TAPES AND STORAGE OF THE COMPILER.

nemes e86, e20, and e97. The significance of the parameters c60, e86,
e20, €97, and the values of S and N, for the storage of the compiler and
the translated program on the drum tracks may be derived from the follow-
ing picture of the drum. In this picture the low track mumbers are shown
to the left. The actual +tracks corresponding to a number of specific
track numbers are indicated in the form of a pair of colons, pointing to
the beginning and end of the track. The parameter P 1is the number of
tracks required by the translated program. This may be derived from the
pass information (appendix 1).

Track number 0 c60 c60+S cbO+N cb60+N+e86 e20-P e20 e97
Compiler : :
Maximum program : :

Normal progrem : :

(pen to fromdrum :

Open to todrum without
drum alas

Open to todrum without
gone : :

The normal version of the compiler is defined by the SLIP definitions:
4 ¢T70=39, cb0=39, e96=0, e86=0, e20=319, e97=319
This leaves the HJELP program on tracks 1 to 38, but does not admit the
use of HJEIP while an MGQOL program is running because the core image is
used by the AIGOL program. A version which starts in track 1 and includes
HP-button entry into the compiler would require the following redefini-
tions:
d cb0=1, e96=1
- The five tapes of the compiler are the following:
A: Compiler part 1.

: Part 2 of the permsnent compiler.
Part 2 of the transient compiler.
Part 3 of the transient compiler (passes 2 to 8).
Paper tape procedure binout, see appendix 6.

The loading of a compiler into +the machine requires the following
steps: Insert tape A in reader and read by means of SLIP; start by typing
1. After reading the tape for a few seconds the machine stops, waiting
for input from typewriter. If the normal version of the compiler is de-
sired (see definition above), type 1. Otherwise redefine some or all of
e70, cb60, eyb, €86, e20, and e97, before typing 1. When the complete tape
A is read, select tape B or C, as required, and start reading by typing
1. If all is well the machine reads the tape and stops with the message

algoel
(cf. section 11.3). Otherwise there 1is a fault and the loading must be
attempted anew.
The compiler 1is now ready to accept ALGOL programs, =as described
below. If the transient version is used the machine will stop after the
reading of the ALGOL program tape with the message:

mgay

11.1. TAPES AND STORAGE OF THE COMPILER. 5

2. from reader
Tape D must now be inserted in the reader and the mechine must be restar-
ted by typing a SPACE. The completion of each pass will again give rise
to the from- reader-message, but with no further stops.
The use of the tapes A, B and C, is not convenient for daily use.
For producing complete compilers in binary form the user groups are ad-
vised to make use of the paper tape procedure binout, tape E. This proce-
dure also provides for the production of binary output of the translated
program, as described in appendix 6. See also section 12. As an example a
normal complete translator in binary form will be produced by the program
begin glerproc(4<binoutd, 5) end;

11.2. MANUAL JUMP TO COMPILER.

The COMPILER-READY-SITUATION mey be called at any time during trans-
lation of AILGOL progrems by transferring control to instruction.1 in the
core store.

If the HJEIP system is in the machine the same effect will follow if
the HP button 1s pressed and the control words

halgol
e
are typed. - :

If the compiler in the machine includes direct entry from the HP-

button, pressing this button will cause one of four reactions:

Message ’ Significence of reection
FEJL Sum check error on tracks 1 - 31
SUM ALGGL - - other compiler tracks.
KC ALGOL The manually controlled KA and KB registers are

both L. The machine is now ready to read binary
tape using the basic resding program of track
O.

algol (X~) (KB) The machine is in the COMPILER-READY-SITUATICN.

11.3. COMPILER-READY-SITUATION.

The compiler is ready to accept ALGOL programs whenever one of the

messages

algol

algol KA.

algol KB.
or algol KC.
has been put ocut on the typewriter. In this situation the machine is wai-
ting for symbols to be typed on the control typewriter. This leaves cer-
tain operational choices to the operator, as described below. The second
part of +the message reminds the operator of the state of the KA and KB
registers in an obvious way.

36 11.3. COMPILER-READY-SITUATION.

11.3.1. Start compiling.

Typing of a SPACE (or any character other than P, w, t, 0o, 1, n, or
1) will start the compiler translating the program with output end other
compiling features defined by the other characters typed previousiy. If
SPACE is typed immediately following the algol-message and also KA and KB
are O the compiler will produce no typed or punched output, input will be
taken from the psper tape reader, and progrem sections between PUNCH OFF
and the first following PUNCH ON will be ignored. Thus programs will be
compiled at the highest possible speed. The compiler produces about 38
final machine instructions per second, except in the case of very short
programs where the basic time of ' seconds becomes prominent. QOther com-
riling modes may be specified by typing any sequence of the letters p, w,
t, o, 1, n, and 1, prior to the final SPACE, and by setting KA and KB at
this or a later time, as described below.

11.3.2. Compilation output.

Typing of p and w selects the output unit operating during compila-
tion, p standing for punch and w for typewriter. If both p and v are
typed the output will appear on both punch and typewriter. Whenever an
output unit is specified the normal compiler cutput 1s always produced.
This includes:

11.3.3. Prelude to program:
All characters on the input tape up to and including the first ap-
rearance of begin are copied to the output,
—

11.3.4. Epilogue of program:
All charscters on the input tape following the <final _egl_ up to and
including the first following ; (semicolon) are copled to the output.

Additional compilation output may be specified as follows (note that
this presupposes a chofce of output unit by typing of p or w):

11.3.5. Line output.
Typing of 1 causes every 10th line of the source AIGOL progrem to be
copied to the output with its line number attached.

11.3.6. Pass information.
Typing of 1 causes ocutput of the so-called pass informetion. This is
described in appendix 1,

11.3.7. Pass ocutput,

If KB 1s set to L the intermediate output from passes 1, 2, 3, 4, 5,
6, 7, and 8 will be ocutput. The form of this output is described in ap-
pendix 2. KB may be changed at any time during compilation and pass out-
put will be produced accordingly. The output from pass 8 (the finel ma-
chine code) requires = special output program to be read in from tape.
When KB 1s L when pass 8 is completed the message

9. from reader

is given. If the tape is not available, set KB to 0 and type a SPACE to
camplete the translation.

11.3. COMPILER-READY-SITUATION. 37

11.3.8. Program between PUNCH OFF and PUNCH ON.
If o is typed the text between PUNCH OFF and PUNCH ON is included in
the program.

11.3.9. Input from typewriter.

If t 1s typed the compiler takes its input from the typewriter.

Input from typewriter may also be called following the pause-message
(section 11.4.1).

When input is taken from the typewriter a line of text will be pro-
cessed at a time and the user has the possibility of deleting the line
which is being typed. Also shift to input from tape may be specified.
This is achieved as follows:
11.3.9.1. A line which is terminated with the CAR RET character will be
included in the program,
11.3.9.2. Whenever 4 consecutive case shifts are typed (i1.e. LC, UC, LG,
UC or UC, IC, UC, IC) the compiler types the message

<
(in red). If now the operator types y the compiler will complete the red
message to read

<yes
and the compller will contime to take its input from tape, including the
line which has Just been typed. If the operator types n the compiler will
complete the red message as follows:

<no
and be ready for another line to by typed instead of the previous one,
which will be ignored.

11.3.10. S’tcp between translation passes.
If KA is set to L the mechine will stop after each of the passes 1 -
8. The compiler is restarted by typing any charscter on the typewriter.

11.3.11. BError message medium.

Error messages (cf. section 11.4.4) are normally typed cut. How-
ever, 1f n is typed they will only be produced on the medium selected as
specified in section 11.3.2, snd may thus be suppressed altogether.

11.4. TYPED MESSAGES FROM COMPILER.

Irrespective of the choice of output from the compiler certain mes-
sages will be typed on the typewriter. These are

11.4.1. Pause message.
The message
pause
is typed and the mechine stops when the END CODE is encountered on the
input tape during pass 1.

38 11.4. TYPED MESSAGES FROM COMPILER.

If in this situation the letter t is typed the further input will be
taken from the typewriter (cf. section 11.3.9). Any other character will
restart the input from tape. Nole that the last case shift chaeracter read
from the tape will he restored correctly after shift to input from type-
writer and return to input from tape.

11.4.2. Off and on messages.
Whenever the text between & PUNCH OFF and the first following PUNCH
ON is ignored these two control symbols produce messages during pass 1 as
follows:
line <1ine number> off and line <line number> on.

11.4.3. Run-message.
The message
run
indicates +that the system is in the RUN-SITUATION with the program ready
tc be executed (cf. section 11.5).

11.4.4, Error messages.

The first 6 translation pesses perform =& thorough checking of the
formal correctness of the program. Every error found will be reported by
a suitable message typed in red. An error message consists of the text

line
followed by the number of the line where +the error occurs and a short
text characterizing the error. The line number is obtained by counting
the CARRET symbols in the source program, line O being the one where the
Tirst begin appears, Line numbers may be obtained with the help of line
ocutput (cf. section 11.3%.5).

When the translator has detected an error in the program the trans-
lation 1s discontinued after completion of pass 6 and the system returns
to the COMPILER-READY-SITUATION. This means that every program 1s taken
through the complete error detecting part of the translating process and
that all errors of a program often will be detected in a single transla-
tion run.

Error messages are also produced when certain tables which are crea-
ted by +the compiler exceed the space allotted to them. In this case the
COMPTLER-READY-SITUATION will follow immediately.

Detailed explanations of the possible error messages and their mea-
ning may be found in appendix U,

11.4.5. Sum checking of program,

Translation pass 1 treats the characters CLEAR CODE and SUM CODE in
exactly the ssme manner as do the universal input mechanisms (section
9.2.5). ALGOL program tapes which have been produced as output from ALGOL
programs may therefeore profitsbly include check sums. A failure of the
check during input of the program will be reported in the usual manner
(appendix 4).

11.5. RUN-SITUATION. 39

11.5. RUN-SITUATTON.

On completion of compilation and when & new execution of a program
is called following a termination of execution the message
un
is typed and the machine will stop waiting for a character to be typed.
If a SPACE {s typed a normel run will tske place. Other characters typed
in this situetion allow a cholce of +the units used for cutput, as ex-
plained in the following section.

11.6. CHOICE OF QUTPUT UNITS COR STCP RUN.

The running system allows a free choice of the ocutput units associa-
ted with the standard output procedures (cf. section 8.1) or of a termi-
nation of the run. This cholice must be made in the RUN-SITUATION and may
be repeated at any time during the run of the program. The choice is con-
trolled by means of the control typewriter as follows:

Symbol Clue Meaning
typed
b both All output will both be typed on the type-
writer and punched on tape
w writer A1l output will be typed. Nothing will be
punched
P perforator Nothing will be typed. All output will be
punched.
Any symbol cther write-output goes to typewriter, out-out-
than b, w, p, or e. put to punch.
e exit Stop run. The run will terminate with an

end-message.

When a new CHOICE OF (UTPUT UNITS OR STCP RUN is desired during the
execution of a program the contents of the indicator register KA should
be changed. This will cause & jump to new CHOICE OF OUTPUT UNIT OR STOP
RUN to be made at the first following opportunity (usually within a few
seconds). When the choice has been made the execution of the program is
immediately contimued unless e has been typed.

An alternative way of finishing & run is to simulate an arithmetic
overflow by transferring control to instruction O of the core store.

Lo 11.7. TERMINATION OF EXECUTION OF PROGRAM.

11.7. TERMINATION OF EXECUTION OF PROGRAM.

All regular runs of ALGQOL programs terminate with a message., The
possible terminating messages and their meaning are as follows:

end The progrem has passed through the final end of the program.
alas The demend on storage space exceeds the capacity of the ma-

chine. This will be caused by having too meny variables of any
kind (simple or subscripted, labels, for statements, etc.) iIn
action simltaneocusly. See sections 10.2., and 12.5.6.

array The program tries to declare an array too large for the ma-
chine or one with a negative number of elements.
exp The bullt-in procedure for calculating exp has heen called

with an argument which would cause the result to exceed the
range of real variables (cf, section 7.3). This may also be
caused by the operation A with a real exponent.

gler One of the procedures gierproc (section 12.5.6) or gilerdrum
(section 12.6.3) reads a tape with a wrong identification or
the sum on the tape does not check.

index A reference +to a subscripted variable having subscripts oat-
side the bounds of the corresponding declarstion is mede, The
test for this situation is made only on the final address, not
on the individual subscripts. Therefore the alarm will not al-
ways be made when the bounds are transgressed.

In The built-in procedure for calculating ln has been called with
a negative argument. This may also be caused by calling the
operation A with an exponent of real type and a negative radi-

cand.

param A standard procedure hes been called with an improper number
of arguments (cf. section 12.1).

spill Arithmetic operation produces result outside the range of real

variables (cf. section 7.3). The operation A with integer ex-
ponent is first calculated with the absolute value of the ex-
ponent as exponent and may therefore cause spill even if the
final result is O.
sart The built-in procedure for calculating sqrt has been called
with a negative argument.
drum alas Une of the standard procedures to drum or from drum is called
with & value of drumplace outside of the permitted range (ca-
pecity of drum 1s exceeded, cf. section 10.5.3).
Following a terminating message the machine stops waiting for a con-
trol letter to be typed on the typewriter. If
r
is typed the system returns to the RUN-SITUATION, ready for & new execu-
tion of the program (cf. section 11.5). Any of the characters b, w, p
will cause an EMERGENCY (UTPUT OF THE STACK to be performed, as described
in appendix 5. The typing of ahy other character will return the system
to the COMPILER-READY-SITUATION (cf. section 11.3) ready for a new com-
pilation, except for the case that the section of the drum which holds
the compiler has been used for variables by the program just terminated
(cf. section 10.5). If this is the case the message
gone
is typed. It is then necessary to perform a new loading of the compiler
into the machine (cf. section 11.1).

12. USING MACHINE CODE IN ALGOL PROGRAMS. 4

12. USING MACHINE CODE IN ALGOL PROGRAMS,

The GIER AILGOL facilities described up to this point limit the uti-
lization of the machine in the following ways:

1. Variables are confined to floating point numbers (integer, or
reel) or the sign bit of words (Boolean).

2. The machine instructions used +to represent the actions of the
program are confined to a subset of the complete repertoire and mist con-
form to the segmentation rules imposed by the automatic aystem for hand-
ling transfers from drum (cf. section 10.3).

3. Only those peripheral units for which standard procedures have
been written can be used, and only in the menner defined by the actions
of these standard procedures.

The standard procedures described in the present chapter are de-
signed to overcome all of these limitations. This is achieved by giving
the user access to every bit of the stores of the machine and to execu-
ting virtually any sequence of machine instructions. In order to use this
possibility the user mst therefore be completely familisr with the ma-
chine coding for GIER (see Chr. Andersen and Chr. Gram: A Mamual of GIER
Programming, Regnecentralen, 1963). In using these facilities the pro-
grammer should be aware that the extensive checking actions performed by
the system are suspended and that the result of mistakes or misunderstan-
dings on the part of the programmer are entirely unpredictable. On the
other hand, if used intelligently by an experienced programmer the proce-
dures will probably remove the remaining obstacles to the use of GIER AL-
GOIL. for all programming on the machine while still keeping most of the
advantages of the powerful langusge.

12.1. STANDARD PROCEDURE: pack.

12.1.1. Syntsx.

<pack triple> ::= <arithmetic expression><parameter delimiter>
<arithmetic expression><parameter delimiter><mrithmitic expression>

<pack parameter list> ::= <variable><parameter delimiter><pack triple>|
<pack parameter list><parameter delimiter><pack triple>

<peck function designator> ::= pack(<pack parameter 1list>)

b2 12.1. STANDARD PROCEIURE: pack.

12.1.2. Examples.

pack(Bool) from bit: (L) to bit: (22) the value: (1)

pack(b) from:(3) to:(9) thnis:(33) and from:(34) to: (k1) this:(q+t)
boo:= pak({boo2, 22, 22+i, s, 23+i, 39, w)

12.1.3. Semanties.

This Roolean procedure serves to assign an erbitrary bit pattern to
any or all of the 42 bits of a GIER machine word. The word into which the
pattern is packed must be given as a variable of type Boolean in the
first actual paremeter. The following parameters are grouped in triples
of the form:

first bit, last bit, pattern to be inserted.

The two first parameters of a triple refer to the bit numbers of the fi-
nel pettern, the bits being numbered from O, the leftmost, most signifi-
cant, bit, to 41, the rightmost, least significant, bit. Each triple will
cause the bits from first bit to last bit, both included, to be replaced
by the rattern to be inserted. This latter must be specified in the form
of the corresponding positive integer, in the following sense: The pat-
tern, congisting of binary zeroes and ones, is obtained by expressing the
integer in the binary representation and placing the units digit in the
position given by last bit. If last bit - first bit > 28 +the leftmost
bits will always be put to zero since no positive Iinteger in GIER ALGOL
has more than 29 bits. It follows from these rules that to make sense the
values of the parameters of a triple mst satisfy the following rela-
tions:

0 < first bit < last bit < 1

0 < pattern to be inserted < 2A(last bit - first bit)

Before Use by pack the value of each of the three arithmetic expressions
of & triple will if necessary be rounded tc the nearest integer.

uring the execution of pack the triples are teken in order from
left to right snd for each triple the resulting change of the pattern
will be made. Those bit positions of the given variable which do not lie
within the sections defined by the triples will remein unaffected by the
call.

The value of the function designator consists of the bits 0 to 39 of
the resulting pattern (bits U40 and 41 are the marks which do not take
part in riormal assignments and transfers).,

I the number of parameters of a pack function designator is not of
the form 1+3xk, where k=1, 2, ... , then the execution of the program
is terminated with the message:

parem
{(zf. section 11.7).

12.2. STANDARD PROCEIURE: split. 43

12.2. STANDARD PROCEDURE: split.

12.2.1. Syntex.
<split triple> ::= <arithmetic expreasion><parameter delimiter>
<arithmetic expression><parameter delimiter><variable>
<aplit parameter list> ::=
<Boolean expression><psrameter delimlter><split triple>|
<split parameter list><parameter delimiter><split triple>
<split function designator> ::= split(<split paremeter list>)

12.2.2. Examples.

split(Bool} from bit: (L) to bit:(9) into: (k) and from:(22)
to:(33) into: (1{6])

q:= Spli't(W['T], 2, J‘": m, 33, !"'1) 3)

12.2.5. Semantics.

This integer procedure serves to split the bit pattern given as the
value of the first paremeter into en arbitrary number of shorter pat-
terns, which are obtained as corresponding positive integers while the
given pattern is left unchanged. The numbering of bit positions and the
correspondence between blt patterns and integers is the same as the one
described in section 12.1.3. above.

If the first parameter, a Boolean expression defining the given pat-
tern, is a variable, then a total of 42 positions, numbered from O to U1,
may be employed. If it is given as a compound expression, then only the
positions 0 to 39 sre defined.

Each triple of parameters of the form:

first bit, last bit, variable
will assign the Integer corresponding to the part of the given pattern
held between first bit and last blt, both included, to the variable given
as the third parameter of the triple. This variable must of type integer
or real. The assignment process will proceed from left to right through
the 1ist of triples. The value of the split function designator is the
same as that assigned to the last parameter. From these rules, and from
the fact that positive Integers in GIER ALGOL will have at most 29 bits,
we can derive the following restrictions on sensible triples:

0 < first bit < last bit < W1

last bit - first bit < 29~

An improper number of actual parameters in a call of split will
cause the execution of the program to be terminated, Jjust as in the case
of pack.

dy 12,3, THE EFFECT OF BOOLEAN (PERATIONS,

12.3, THE EFFECT OF BOCLEAN (OPERATICNS.

Within the AIGOL text proper a Boolean varlable is represented by
pit 0 of the machine word holding the variable, +the value O representing
true while the value 1 represents false. However, the machine operations
used to execute the Boolean operators work on the bdits O to 39 of the
words. Consequently the Boolean operations:

- A \% = =

may be used to perform parallel operations on the bit patterns generated
by means of pack.
Where only the moving, combination, and masking of bit patterns in fixed
bit positions within words of 4O bits are required this way of operating
mey replace the much more time consuming handling provided by the proce-
dures split and pack.

12.4. STANDARD PROCEIURE: gier.

12.4.1. Syntax.
<gier function designator> ::= gier(<variable>)

12.4.2. Example.
gier(a{22])
az= gier(b[2])

12.4.3, Sementics.

This standard, real type, function transfers the control to the left
hand or full-word machine instruction located in the variable given es
parameter. This instruction must be the first one of a GIER machine code
program previously placed iIn the variable given as parameter and any
other relevant locations. Normally these locations will form a one-dimen-
sional array. In this case the normal sequencing of the machine will call
an execution of the instructions in successive variables of the array,
btut the user may of course make use of all the facilities of the GIER or-
der code for looping, Jumping, etc., &8 long as the following rules are
ohserved:

12,4, STANDARD PROCEDURE: gler. hs

12.4.%.1. Return. The conirol is returned to the AIGOL text on performing
the machine instruction hr s+1. When this happens the machine registers s
and p mst have the same contents as when the last entry from the ALGOL
administration into +the machine code was made, In addition, the wvalue
produced by the function designator, if used in the ALGOL text, mast have
been placed in RF.

12.4.3%.2. Changes of contents of locations. Generally speaking the pro-
grammer must regard a1l mechine locations in the cores or on the drum
which do not hold the values of wariables of the ALGOL program to be re-
served for internal purposes, These contents must therefore be left un-
changed by the machine instructions activated through calls of gler.
12.4.3.3. Addressing. Since the programmer has no way of knowing where
the machine code will be placed in the core store all references to loca-
tions within the code itself must employ r-modified addresses.

12.5. STANDARD PROCETURE: gierproc.

12.5.1. Syntax.
<eieroroc function designators> ::=
glerproc (<variable>parameter delimiter><actual parameter 1ist>) |
glerproc (d<proper string>i<parameter delimiter>
<sctual parameter 1ist>)|
gier proc(<mmber><parameter delimiter><actual parameter list>)

12

zie

5.2, xamoles.
reroa{alozl, s, 4, u)

; gierpron{si2], 1)
aterproc{d<aikompb, p, q,)

e —

12.5.3. Semantics.

This standard, real type, function extends the facilities provided
by standard function gier by (1) admitting the machine instructions acti-
vated to refer to the guantities of the ALGOL program given as actual pa-
rameters and by (2) providing a mechanism whereby a machine coded program
can he remd into the machine from tape and executed once.

46 12.5. STANDARD PROCEIURE: gierproc.

12.5.4, Referring to parameters.

The standard function gierproc may be called with any number of pa-
rameters. The first of these must supply the information about the first
machine instruction to be executed. References to the remaining psrame-
ters from within the machine coded program are made by means of descrip-
tions of the parsmeters which have been placed in the so-called formal
locations. These are addressed relative to the p-register as follows:
Address Contents

p-1 Bits O to 9: The number of parameters of the call. Bits 10 to
39: all zero. Marks: undefined.

p+> Description of the 1st parameter of the call

p+h - - - 2nd - - - -

etc.

The meaning of the description of an actual perameter depends on the na-
ture of this parameter, as follows:
Simple variable, label.
Bits 0 - 9: The absolulte address of the location holding the vari-
able or label. A label has the same form as the description of an
expression (see belcw).
Bits 10 - 39 and the marks: all zeroc.
Numbers, logical values, strings, layouts,
Bits O - 39: The value of the construction. For the detailed struc-
ture of strings and layouts, see appendix 2.
Marks: b (= 01).
Array identifiers.
Bits O - 9: The absolute address of the dope vector. If this is de-
noted g and the array declaration is: array A[l1:ul, 12:u2, ... ,
lp:upl, and we define ci=ui-1li+1 +then the dope wvector consists of
the following:
c-2: (((.. (11xe2 + 12)xe3 +« 13)x ... Ixep + 1p
q-1: The length of the array = clIXe2xedxX ... Xcp

a: c2
q+1: c3
q+p-2: cp

The constants in g-2 and g-1 are integers with the units placed in
position 39, all the other coefficients (if there are any) are re-
presented as floating point numbers.

Bits 10 - 19: The absolute address of the last element - 1 (= the
absolute address of the first element - the length).

Bits 20 - 39 and the marks: ell zeroes.

12.5. STANDARD PROCEIURE: glerproc. L7

Switch identifiers.

Bits O - 9: The absolute address of the last switch element descrip-

tion + 1.

Bits 10 - 29: All zeroes.

Bits 30 - 39: The number of switch elements + 1.

Marks: b (= 01).

Expressions, procedure identifiers.

Bits O - 9: The value of the stack reference corresponding to the

youngest incarnation of the lexicographically enclosing block.

Bits 10 - 19: The track relative address of the entry point.

Bits 20 - 29: All zeroes.

Bits 30 - 39: The track number of the entry point.

Marks: Entry to a left instruction: a (= 10), to a right instruc-

tion: ¢ (= 11).

References to ALGOL text from mechine coded programs should always
be written as activations of actual persmeter expressions, i.e. labels
and procedure identifiers should not be used as actual parameters of
gierproc function designators. Such references require that the contents
of the registers s and p are the same as when the last entry or return
from the ALGOL administretion into the machine coded program took place.
The reference to the expression whose description 18 stored in the ad-
dress p+expr {this will be actual parameter no. expr-2) mst be written
as follows:

pm p+expr, hs s-1
Upon return from this reference the address of a location which holds the
value of the actual parameter expression activated will be found in the
so-called universsl address. The address where the universal address is
found is stored in the location s-2. This letter locatlon contains the
indirect addressing mark. The value of the actual parameter expression
can therefore be referred to using the address (s-2). The address of the
value, which is of interest in the case of a subscripted variable, can be
found by using suitable address operations (e.g. it(s-2) or arn{s-2)D).
It should be noted that the value of register s may not be the same be-
fore and after the reference to an expression. It is always the latest
value supplied by the administration which should be used in further re-
ferences and in the return instruction. Note also that this way of refer-
ring to actual parameters is correct for any expression, Including con-
stants and simple variables. After a reference to a simple or subscripted
veriable, the universal address contains the address of the variable
itself.

12.5.5. Activation of code in array.

If the first parameter of a call of gierproc is & variable the con-
trol of the machine will be transferred to the location where this vari-
able is stored in the same mammer as in the case of standard procedure
gier. In this case all the rules of section 12.4.3 hold, except that the
contents of the register s to be used on return is the latest value re-
ceived from the sdministration, which mey differ from the value at entry
1{f references to actual parameter expressions have been made.

L8 12.5. STANDARD PROCEIURE: glerproc.

12.5.6. Activation of code from tape.

If the first parameter of a call of gierproc is a string or a number
the machine program to be executed mst he supplied from the input tepe.
This machine program will then be executed once and subsequently over-
written by other information. The input tape should be of that form which
is produced by the kompud program of the HJEIP system, with the first in-
formation 3¢, +to suppress the normal first information on the tape and
the second information bc, +to suppress the normal treatment of instruc-
tion hsf2 (this facility is not described in the HJEIP manual). The ma-
chine code punched by kompud mist in the first word contain an identifi-
cation consisting of a string of 6 or fewer characters packed in the man-
ner described in appendix 2, output from pass 1, or a number. The follow-
ing word must be the point of entry into the machine coded program.

Example of input to SLIP:

i=10

f

T

m
Pm pt , hs s-1
arn (s-2) D

ar r2, gr (p5)
hr 31

hv

h kompud

Ze

Yo

10//15

e
If this code is called as follows

gierproc (777: A[i]: b)
it will place in b an Iinstruction jun@ing to the waristle A[1]. This
means that a Jump to the machine code placed in A[i], Ali+1}, ... , may
be performed by the very fast operation

gier(b)
instead of the much slower giler(A[1]).

When glerproc is called to activate a machine program from tape it
will start by declaring an arrsy to hold the machine coded program. If
this array causes the storsge capaclty to be exceeded, the execution of
the program will be terminated with an alas-message (cf. section 11.7).
(Otherwise the machine will start reading the tape and check the sum cha-
racter at the end of the tape. Also it is checked that the string or num-
ber supplied in the first parameter of the call matches the identifying
string or number appearing on the 1input tape except in the case that the
first parameter in the call is the number O (zero). If either of these
checks fails the message:

Radr:= address of the subacr. var.
b:= jump; (the marks are irrelevant)

e we ‘vr wo

gler
is typed and the machine will be ready to read another tape when a SPACE
is typed on the typewriter.
The general rules for writing the machine code are the ones given in
section 12.4.% with the addition mentioned in section 12.5.5.

12.6. STANDARD PROCEIURE: gierdrum. Lo

12.6. STANDARD PROCEDURE: gierdrum.

12.6.1. Syntax.

<glerdrum function designator> ::=
glerdrum{4<<proper string>j<persmeter delimiter><variable>)|
gierdrum{<humber><paremeter delimiter><variable>)

12.6.2. Examples,
gierdrum(4<addb, lmngde[2])
g:= glerdrum{4<mlt}) length: (miltlsngde)

12.6.%. Semantics.

This integer type function designator serves to read a machine coded
program or data from tape and place it on the drum, It therefore combines
some of the actions of standard procedures glerproc and to drum, more
particularly as follows: Like gierproc it requires the first perameter to
be a string or a number which matches the contents of the first word of
the program produced in binary form by the kompud progrem of HJEIP, ex-
cept when the parameter is O, However, instead of Jjumping to the follow-
ing instruction of this program gierdrum will transfer it to the drum,
including +the identifying word. This transfer is entirely anslogous to
the transfer of an arrsy to drum by means of to drum, 1.e. the place om
the drum +to which the array is transferred is defined by the current va-
Jue of drumplace and when the call is completed the wvalue of drumplace
has been changed by an amount which i{s available as the value of the
function designator.

The second parsmeter of s call of gierdrum must be 2 vaeriable of
type integer or real. To this wvariable gilerdrum will assign the number of
machine words contained in the array transferred to the drum. This 1s the
number of words produced 1in binary form by kompud and should be used to
define the size of the array used to hold the machine instructions or
data when they are transferred by fromdrum.

The procedure gierdrum includes the same checks on the size, identi-
ty, and control sum, of the machine coded program supplied from the tape
as does glerproc,

50 Appendix 1. PASS INFORMATION,

The pass information is obtained as an optional output during trens-
lation (cf. section 11.3.6). It consists of the Tfollowing: At the end of
pass 1, Jjust before the epilogue (cf. section 11.3.4):

1. line <number of the last line of the ALGOL program> end
Following each pass: two or three integers. The first of these, A, always
gives the number of drum tracks used to hold the intermediate output from
the pass, The remaining have the following meaning:

Pass 1. The figures refer to the storage of long texts on the drum:

B. The number of excess words used on the last track,
C. The number of full tracks used.
Pass 2. B, The number of different identifiers In +the program, apart
from standard identifiers.
C. The number of words used for storing long identifiers.

. The number of blocks in the program.

B. The maximum depth in the stack used for collecting the decla-

rations Dbelonging to each block at the begin of the block and

for reerrasnging procedure calls.

C. The maximum level of nesting of blocks.

Pass 5. B. The number of occurrences of identifiers in the program apart
from standerd identifiers and the place where the identifier is
declared.

C. The number of redeclarations of identifiers.

Pass 6. The meximm number of words used in the (B) operstor stack, (C)
operand stack.

Pass 7. Mex. depth in stack of operand descriptions.

Pass 8, B, Relative address, C. Track number, of program start.

The number of tracks of the program, P, is the sum of pass 1C and pass &a,

Pags
Pags

£
.

Appendix 2. PASS UTPUT.

If desired the compiler will produce printed output of the internal
output produced by each pass (cf. section 11.3.7). This facility may be
used as the last resort in pimning down troubles in using the compiler,
vhether these are due to programming errors or faulty machine operatiocn,
In any case the interpretation of the output requires some insight in the
internal working of the translator. For this reason, and since the de-
scription of the output glven in appendix 2 of the first edition of the
present manual is still valid, except for a few inessential changes, we
reprint oniy the description of the packing of layouts and strings. This
description is of considerable interest in connection with the facility
for)generating arbitrary machine words provided by pack {cf. section
12.1).

Appendix 2. PASS OQUTPUT. 51

PACKING OF LAYOUTS AND STRINGS.

Layoges. These are packed in one word as follows:
Bits O - 16 A 1 in position p indicates that character number p in the
layout (not counting SPACEs) is followed by SPACE.

- 20 - 23 b = mumber of significant digits

- 24 -2Th= - - digits before the point

- 28 . 29 fn = sign of number part (no sign =0, - =1, + = 2, + = 3)
- 30 - 3% @ = mumber of digits asfter the point

- 3h n, Oifnon, 1 if n

- 35 - 37 8 = number of digits in exponent

- 38 . 39 fe = sign of exponent (code as for fn)

Other strings. These are packed character by character. One charac-
ter uses O bits. The numerical value of the character 1s the one given in
section 6.5 of the Mamual with the exception of CAR RET which 1s repre-
sented by 63. Characters for UPPER CASE and LOWER CASE are included as
needed, but sll strings are understood to begin and end in lower case.
The end of s string is indicated by the character value i0. The strings
having 6 or fewer characters are packed in one word and carried through
the translation process like numbers. Longer strings are stored on the
drum during pass 1 and are represented during translation and at run time
by a word referring to the drum.

Packing of short strings (6 or fewer characters):

Bits 0 ~ 3 The constant 10
- 4 - 9 Character no. 6 -

- 10 -15 - - 5

- 16 - 21 - - b Urmised character positions are
- 22. 27 - -3 set to 10

A

- 34 -39 - - 1 -

The word referring to a long string has the following structure:
Bits 0 -« 9 The constant O
- 10 - 19 track relative address, tr
- 20 - 29 The constant O
- 30 - 39 track number, tn

On the drum the characters are stored in consecutive words on track
tn in relative addresses tr, tr+l, tr+2, ... etc. The word following the
one having relative address 39 on track tn is word 0 on track tn-1.
Within each word the characters are packed in the following order:
Bits 0O - 5 Character no. 7

- 6 - 11 - - 6
- 12 -17 - - 5
- 18- 2% - - L
- 24 -29 - - 3
- 3% - 35 - - 2
- 36 - I - - 1 (bit 40 18 mark a, bit 41 is mark b)

52 Appendix 3. SELBCTED EXECUTION TIMES.

The execution time of & program in GIER ALGOL depends not only on
its individual slgorithmic constituents, but alsc on the loop structure
and the number of wvariables declared et the time when each part of the
progrem is executed (cf. section 10.4). The times given below are based
on actual timings at the machine and include an average track administra-
tion +time such as it may be expected in loops which mey be accomodated
completely in the core store. Substantially longer execution times will
result under the following circumstances: a) Frequent transfers of pro-
grem tracks from drum &re necessary (cf. section 10.4); b) A major part
of the execution time of the program is spent in & loop with a cycle time
of the order of 2 milllisecond or less and this loop happens to have been
DPlaced across @ program track transition by the compiler. A program suf-
fering from the latter of these calamities may be cured by insertion of s
suitable amount of neutral program (r:= r or the like) before the final
end.

Algorithmic entity Example Execution
time, milli-
seconds

Addition a+b 0.12

Multiplication & xb 0.18

Division a/b 0.21

Squere a A2 0.18

Cube a A’ 0.k

Power, integer exponent a Al

abs (exponent) = 1 3.8
10 5.5

100 8

1 000 10

10 00O 12

100 000 14

1 000 000 16

Power, real exponent aAr 12

If clause with simple relation if a>b then 0.3

Subsceripted variable

1 subsecript Afi] 0.9
2 subscripts Bli, 3] 1.2
3 - cli, 4 k] 1.5

Step-until element, constant step

and single upper limit, each loops giep 1 yntil n 0.6

Block with simple variables bezin real e; end 1.4

Block with arrey declaration begin srpay a[1:10]; end 3.0

Reference to formal parameter

called by name, Actual parameter is

simple 0.4
expression 3.2
array identifier 0.0
switch identifier 0.0
procedure identifier 0.0

Appendix 3. SELECTED EXECUTION TIMES.

Assignment statement

a:= 0
a:=b

Go to statement

Simple, within current block
To switch designator

Cell of declared procedure
heving an empty procedure body

Call

No persmeter
1 parameter
2 paremeters
3 -

of standard procedure
abs

arctan

cos

entier

exp

1n

sign

sin

sqrt

kbon

split or pack, 1 triple

5 triples: split{b,0,3,k,8,11,m,

eose oft]

Py

Q{a);
R(a, b);
S(a, b, c);

abs(x)
arctan(x)
cos(x)
entier(x)
exp(x)
In(x)
sign(x)
sin(x)
sqrt(x)
b:= kbon
pack(b,20,25,k)

16,19,n,24,27,p,32,35,q)

L] - * * L] - . .
-

O\ oum\x\n\nSDO\O\C> (€, 36, ¢ g W]
IR ONNETFOONE NI ®

N
P

53

54 Appendix 4., ERROR MESSAGES: PASS 1.

For the general description, refer to section 11.4.4,

The pass number is typed as an integer from 1 to 8 followed by a
point (.) at the beginning of the first error message belonging to the
™Ress,

The line referred +to in an error message will normally be the line
in which the error occurs, but there are exceptions to this rule: a) A
construction sppearing near the beginning or ending of a line may have
its line number changed by one unit. b) One of the error messages from
ress 5 may supply a quite misleading line number (see below). c¢) Error
messages from passes 7 and 8 will always refer to line 0.

PASSES 1 - 8.
program too big
This indicates that the capacity of the drum has been exceeded by
the demands of the program text. Remedy: Use a version of the compi-
ler vhich leaves more space on the drum, if such a version is avai-
lsble (cf. section 11.1).

PASS 1.
character
A charecter to which no meaning is asssigned appears on the input
tape.
compound

A string of charscters which represents some of the first characters
of a compound symbol (cf, section 7.1.2), but not the following
ones, appears in the input.

)<improper>.
The construction)<{letter string> is not followed by :(

comment
The delimiter comment is not preceded by begin or j

string
The compound symbol ¢ is followed neither by < nor by & layout (cf.
section 8.3.1)

sum
The character following a SUM CODE on the input tape does not match
thehco:;'responding value formed from the previous input (ef. section
11.,4.5).

PASS 2.
too many identifiers
The program uses too many different or long identifiers. Remedy: Use
the block structure to reduce the number of different identifiers.

PASS 3.
- delimiter
Two operands (i,e. identifiers, numbers, logical values, strings, or
compound expressions within parentheses) follow each other. FExamp-
les:

7.3 sin(5) L true r.77 r{<string}

Appendix b4. ERROR MESSAGES: PASS 3. 55

operand
a) An operand appears in & wrong context. Examples:
Ti= begln trues
b) An operand is missing. Example:
a= [1]
delimiter
a) The delimiter structure is impossible. Examples:
begin r/i:= if g0 to i for
b) Binary operator does not follow operand. Example:
1:= xxj
- operand
Operand is missing at end of construction. Example:
ri= 1/}
termination
Parentheses, brackets, or bracket-like structures do not match.
Examples:
r[i] begin r:= a + b, p(i, r3
number

A construction which in its first symbols conforms to the syntax for
nurbers 1s not terminated correctly, or & number is too big for the
capacity of the machine. Fxamples:

20.3 17473 Tl70

stack
The nesting of begin's parentheses, etc. exceeds the capacity of
the compiler.

PASS L.
stack .
The stack formed during the reverse pass U exceeds the available ca-
pecity. This stack 1is used to +transfer the information about the
type and kind of each identifier and of each switch element from the
place where it is declared (for labels, where it labels & statement)
to the hegin of the block in which it is local, and the information
about each actual parameter to the left parenthesis of the call.

PASS 5.
+ declar.
The same identifier 18 declared twice in the same block or appears
twice in the same formal parameter list, Note that labels are consi-
dered to be declared as explained in section 4.1.3.

+ specif.
The same identifier is specified +twice in the same procedure decla-
ration heading.

56 Appendix 4. ERROR MESSAGES: PASS 5.

- declar.

An identifier is used at a place where it is not declared. The line
nunber associated with this error message will be misleading in the
following two cases: &) The identifier i1s an actual parameter. The
line number will point to the line in which the lef't parenthesis of
the call appears. b} The identifier is a switch element. The line
number will point to the line which contains the begin of the block
in which the switeh is declared.

- specific.
The specification of a formal parameter is missing.

- formal
An identifier is specified, bDut doez not eppear in the formel para-
meter list.

value

A formal parameter which according to the specification given cannot
be called by value appears in a wvalue part,

stack

The 1ist of the identifiers which are redeclared simultaneously ex-
ceeds the capacity of the compiler.

PASS 6.
subscript 704
The number of subscripts given in & subscripted wvariable does not
match the corresponding arrsy declaration.

proc. call or ident.
An additional integer in the message dJdistinguishes two variants of
this error:
7/0: An identifier preceding immediately a left parenthesis, (, does
not conform to the procedure call implied in the construction by be-
ing of wrong kind or having a wrong number of perameters.
840: A procedure identifier appears in a context not consistent with
its declaration.

type <error number>
The number associated with this error message indicates from where
in pass 6 the error program has been called. A more detailed de-
scription of the error associated with each integer is given in the
table below. In this table the description
<i op> :!:= <Inadmissible operand>

indicates an operand which has wrong +type or kind in the given con-
text. Note that expressions are regarded as operands. The examples
assume the following declaretions:

Appendix 4. ERROR MESSAGES: PASS 6. 57

integer 1; real r; Boolean b; array a1{1:10], a2[2:4, 4:6];
gwWitch s:= L. L2; procedure rO;3 progedure pi(f); real f3

Error Error constructions Exsmples

number

576 +<1 op>| =<1 op>ix<i op>|/<i op>|4<L op> +8 /L

582 i1 op> ir

585 {Booleen operand>:= <i op> b= r

530 < <1 op>i <L op>j= <i op>) = b
2 <1 op>|> <1 op>|4 <L op>

563 A <1 op>|v <1 op>|= <i op>l-.<i op.> v (1 -2)

596 <i op><binary operator><i op> iwval b=3s

530S {real operand>:= <i op> Ti= 8

60k <{integer operand)>:= <{i op> i:= p

616 abs(<1 op>) |arctan(<i op>) |cos(<i op>1| cos(a2) In(r = 1)
entier(<i op>) |exp(<i opd>) |1n(<Ki op>)

sign(<i op>) |sin(<i op>) |skrvkopi(<i op>) |
skrvml(<i op>) |skrvtegn(<i op)ﬁsqr‘c((i op>) |
streng(<i op>) |smttegn(<i opd)

trykkopl(<i op>) |trykml(<i op>) |

tryktegn(<i op>) |tryktom(<i op>)

630 go. to <i op>|switch sw:= <i op>, g tob
633 3<i op>; 3 T3
60 <i op><binary operator> b= ra (i -2)v
646 <i op>[i
649 til tromle(<i op>)|fra tromle(<i op>) t11 tromle(r)
657 then <i op> then s
677 <i op> else <i op> 2 -relsed

<i op> else if . . . then <i op>
686 = <1 op):= ri= b:=b vb
690 <i op> gtepl<i op> untillfor . . . <i op>, | i = r step

for . . . <i op> dg
697 <i op>] 0]
71k <i op>:= PO:=
725 <i op> then|while <i op> dg if r then
728 for <i op>:= for al:=
732 Inadmissible subscript EﬁL] alfi=r]
735 <i op> : (in aryay declaration) array a{b:1];

PASS 7.

number

An arithmetic expression having only numbers as operands results in
a value cutside the range of the machine. Examples:
1/0 7,35%9.2,,135

PASS 8
stack
The two stacks of progrem points used during pass 8 exceed the capa-
city of the compiler. Remedy: reduce the number of labels and of ne-
sted for and conditional statements used simultaneously.

58 Appendix 5. EMERGENCY OUTPUT OF THE STACK.

Appendix 5. EMERGENCY OUTPUT OF THE STACK.

During execution of an ALGOL program the currently active variables
(¢f. section 10.2) are held in a stack in the core store. The system in-
cludes & program which will produce the contents of this stack in a form
which indicates the meaning of the varisbles within the structure of the
active blocks. It should be noted that in some rare cases the interpreta-
tion of the contents is not unique so that sometimes a false picture will
be given. This is mentioned in some particular cases below. The cutput
my be obtained whenever a terminating message (section 11.7) has been
typed out. The entry into the output program and the choice of ocutput me-
dium depends on the letter typed in this situation, as follows:
Letter Effect

b Emergency output on both typewriter and punch
P - - - punch
w - - typewriter

During the output of the stack a new cholice of output medium can be made
by changing the contents of the register KA. This will stop the machine
when the currently printed number has been completed. Either of the three
above letters will change to their respective media. Typing the letter e
will terminate the output with an end-message. Any other character will
cause the output to continue on the same medium. After completion of the
emergency output the machine returns to the termination sitvation with an
end-message.

A5.1. VAIUES IN THE OUTPUT.

The representations given below only hold for variables +to which a
value has been assigned. Before assignment numerical variables may appear
as logical wvalues.

Numerical values (integer or real) will be printed in one of the
following two layouts -

-ndddddddd - .dddy-ddd
depending on whether the value is integral or not.

logical wvelues take several forms, depending on their previous hi-
story:

Representation of

true false
Value directly writtten in ALGOL program 1 -1

Value formed by expression, either + -
or a numerical value, x, with abs (x)>1 abs (x }<1

vere v mmm s s e e sin

r ST EN T

TR

Appendix 5. EMERGENCY QUTPUT OF THE STACK. 59

A5.2., PROGRAM POINTS.

The following kinds of program points are specified in the output:

1) Named points, 1.e. entries to procedure bodies and points sup-
plied with labels.

2) Return points, i.e. points at which the execution will be conti-
mied when a procedure call or an activation of an actual-parame-
ter-expression is completed.

The output of a program point refers to the storage of the program
on the drum and supplies a track number (2-3 digits) followed by a track-
relative address (0-39). Formally:

<point> !:= <track rmmber><track relative address>

The order of the program points on the drum is the same as the order
of the same points in the original ALGOL text.

AS5.3, OWN VARIABLES.
The output starts with the message
stack
followed by the values of the own variables of the program, if such are
declared, These appear blockwise +taking the block-begins of the program
in the backward order. Within each block the own variables appear in the
order in which they are declared.

A5.4. LEVEL STRUCTURE.

The following output gives +the values and progrem points of the ac-
tive parts of the program, arranged in an order which mey be explained as
follows: Imagine that all the copying implied in the definition of the
procedure call ({section %.7.3) were actually performed on the program,
then the currently active part of the program would form a nested struc-
ture of blocks, procedure bodies, and actual-parameter-expressions. The
output supplies the values and program points belonging to each of these
levels in turn, starting with the ocutermost block.

The output given for each level starts with an appropriate heading.
The possible level heedings and the associated output of wvalues and
points are as follows:)

A5.5. LEVEL HEADING: block

A block may be an ordinary program block or the body of a procedure.
Every procedure body activated will sppear as a block (cf. section
5.4.3). The output in general has 3 parts:

(1) For the bodies of type procedures: the value assigned to the
procedure identifier. If no value has yet been assigned: O (zero).

(2) Following the heading

points

appear +the program points of all named polints (entries to procedure bo-
dies and 1labelled points) which are local to the block, in the order in

60 Appendix 5. EMERGENCY UTPUT OF THE STACK.

which they appear in the program. These may be useful in loealizing pro-
cedure calls and activations of actual-parameter-expressions, through
the return points of these latter.

(3) The local variables of the block. The first few variables in the
output normally are internal working wvarisbles introduced by the transla-
tor. These are followed by the local simple and subscripted variables in
the order in which they are declared in the block head. Each sequence of
simple variables is headed by the message

variables
vhereas each array is headed by the message

array
followed by a 1line giving the structure of the array in the form of a
sequence of integers indicating the number of values taken by the 1st,
2nd, ... , n th, subscript.

The values of +the subscripted variables are given in a linear se-
quence, as in the input (section 9.4.3.2), printed with 5 in a line. Pos-
sible misinterpretation: the structure will include tco many subscripts
if in the block head the array declaration is followed immediately by an
integer-valued variable which is an exact divisor of the number of values
taken by the first subscript.

A5.6. LEVEL HEADING: proc. call.

This will be followed by an output of a wvalue for each actual para-
meter in the order in which they appesr in the call. This value will be
the correct one for parameters called by value, while the wvalue printed
for other parameters is meaningless. Following this output the message:

return
announces the output of the return point, i.e. the program point immedia-
tely following the procedure statement.

Every procedure call level will be followed either by a block level,
giving the local walues of the procedure body, or by a value call, refer-
ring to the evaluation of an actual-parameter-expression called by value.

Standard procedures are peculiar in several ways: (1) The parameter
of the procedures abs, arctan, cos, entier, exp, gier, 1ln, outchar, out-
copy, outsp,setchar, sign, sin, sqrt, writechar, and writecopy, is eva-
luated before the procedure is called. (2) The procedures input, output,
write, ocuttext, and writetext, remove their parameters from the stack as
they are processed. The number of parameters shown in +the output may
therefore be too small. (3) Standard procedure identifiers used as actual
parameters will confuse the analysis of the procedure call. However,
since the rest of the stack is not affected the details need not be given

Appendix 5. EMERGENCY OF THE STACK. 61

here. (4) nly the following standard procedures enter a block when acti-
vated: todrum, fromdrum, split, pack, gierproc, gierdrum.

A5.7. LEVEL HEADINGS: neme call AND value call.

These headings are followed by one return point. In a name call this
indicates the point immediately following the formal identifier. In a va-
lue call it points to a place near the entry to the procedure body. Value
calls are completed before the procedure body block is entered.

Calls of parameters from standard procedures will appear as value
calls, The return point given identifies the standard procedure as shown
in the following table, which refers to the storage parameters discussed
in section 11.1:

Track Relative address Value call activated by
19+c60 6 output, write: layout
18 - -t other parameter
26+c60+c96 9 outtext, writetext
29+c60+e96 27 input
36+c60+2xe5b 8 pack, split: 1st parameter
- 13 - - : first bit
. 16 - - ¢ last bit
- 20 - - : pattern
3T+c60+2xe96 9 glerdrum, gierproc: 1st parameter
- 15 glerproc, parameter called from machine code
~ 23 glerdrum: 2nd parameter

AS5.8. CONDITIONS AT THE IAST LEVEL.

When the emergency 1s caused by an overflow of +the stack (alas or
array) the last level shown in the output will normally represent an in-
complete state. However, the lower levels will not be affected.

Overflow (spill) may be caused by the A operation having an exponent
of integer type. In this case the last level in the output will show a
procedure call with one parameter = the value of the exponent.

62 Appendix 5. EMERGENCY QUTPUT OF THE STACK.

A5.9. EXAMPIE OF EMERGENCY CUTPUT.

The following program shows most of the feature of the emergency
output.
begin real r; Boolean t, f, bf, bt;
real array A[3:4; 1:5); integer 1,J;
real procedure P(a, b, cJ; value a, b; real a, b; array c;

begin P:= c[3,4] := a; end P;
M: for 1 := 3,4 do for J := 1 step 1 untfl 3 do A[1,3]:= 10xt + J;
t:= true; f:= false; r:= 0.5; bT:i= r=0; bbL:= T=bf;

begin -

real procedure G(f); real f;

begin own real ownl In Q, own2 in Q; integer k in Q;

K: ownl in Q:= 3.33; own?2 in Q:= 7.89; kX in O:= 55;
Qi= I}
T: end Q;

own Integer own in block; integer s, w, uj

own in block:= 888; s:= 15; ui= 3 wi= 0

P(u+s, Q(s/w), A);
L: end block;
N: T
end;
The program initielizes some of the variables of the outer block, enters
the inner block and initislizes its variables, calls the procedure P,
which evaluates its first parameter. While evaluating the second it calls
the procedure Q by way of the actual parsmeter-expression. Within @ some
variebles are set and then ancther actual-parameter-expression is called
by the reference to f. This brings the program into spill. In the emer-
gency output which follows the meaning of the data given is shown by
notes within parentheses.

stack
333 1 {own 1 in Q)
.78y 1 (own 2 in 0)
888 (own in block)
block (outer block)
points

317 26 (entry to P)
318 9 (label M)
319 %8 (label N)

e e A

variables

-.596y 2
.500p O

]

-1

.500p O

+

array

N

31
k1

variables
I
L
block
points
318 38
319 37
variables
15
0
T
proc. call
22

return
ne 37
value call
nT N
proe. call
return
319 37
block
9]
points
319 13
319 18
variables
55
name call
19 17
stack end
end

Lprendix 5. EMERGENCY OQUTPUT OF THE STACK.

(internal wvariable)

{(real r)

(Boolean t)

(- 1)

(- bf)

(- bt)

(»)

X 5
3D 33
Lo L3

(integer 1)
(- 3
(inner block)

(entry to Q)
(1label L)

(integer s;
(S W)
(P(

u+s,

Qfs/w),
AU

(call of O(s/w))

(o
s /%))

(body of @)
(No value yet assigned to Q)

(1abel k)
(- 1

(k in Q)
(£, i.e. s/w)

.626y
625y

63

626y 2
4054 -55

6l tppendix 6. BINARY OUTPUT: binout.

Tape E of the set of compiler tapes (cf. section 11.1) supplies a
program for producing an output on tape of the various parts of the com-
piler or other sections of the drum in a binary form, suitable for later
fast readback into the machine. The program is given in the form of a pa-
per tape procedure as produced by the kompud program of HJEIP, to be used
with gierproc or gierdrum (cf. sections 12.5.6 and 12.6).

A6,1. ACTIVATION.

If executed directly from tape the program must be put in action by
a statement of the form
glerproc($<binoutd, <variant><drum region 1ist>)
where variant is an expression having one of the values 0, 1, 2, 3, or 5,
and
<drum region list> ::= <empty>1,<dr11mplace value>,<length>|

<drum region list>,<drumplace value>,<length>
If the progrem is first placed on the drum by gierdrum and later put in
action after transfer to an array, only calls of gierproc having 5 as the
value of the second parameter (variant) are in order, because only this
variant does not require copying from tape E after the activation.

Binout requires about 166 locations during execution.

A6.2. VARIANTS.

The value of the second parameter of the call of gilerproc specifies
one out of 5 variants of the program. The following table gives a brief
summary of the varisnts. More details are given in the following sec-
tions.

Variant Special output region Re-input progream Exit after re-input

0 None Track O or SLIP run

1 The translated program Track 0 or SLIP run

2 System + transl.prog. Track O or SLIP run

3 None gierproec,gierdrum Program
5 Complete compiler Track O or SLIP algol

A6.3, QUTPUT REGIONS.

The output will include +the special region which belongs to the va-
riant in addition +to that which i3 specified in the drum region list of
the call of glerproc. The translated program includes the P tracks pro-
duced by the translator (appendix 1). The system includes the run-time
administration, the emergency output program (appendix 5), and the stan-
dard procedures; its length is given as S in section 11.1. This section
also gives the length of the complete compiler, N.

The drum region list defines regions of the drum in terms of the va-
iue of drumplace and the length of the array associated with the call of
todrum which was used to transfer the wvaslues to each region. FEach of
these parameters may be supplied as an arithmetic expression.

Appendix 6. BINARY OUTPUT: binout. 65

A6.4, RE-INPUT OF THE BINARY TAPE.

The output of variants 0, 1, 2, and 5, starts with a special input
program, which is copied by binout from the last part of tspe E to the
output. This output can be read back to the drum as follows: Set Kt and
XB to L. Press the HP-button. Depending on the message now typed, start
reading as follows:

Message To start input, type as follows
hp-knap 1

FEJL SPACE

KC AILGOL SPACE

This process will change some of the contents of the core store {approx.
the first 40O locations), and also the part of the drum used as core
image by HIELP.

The output of variant 3 can only be used with gierproc and glerdrum.

A6.5. EXIT AFTER RE-INFUT.

After re-input of the output of veriants 0, 1, and 2, the mechine
transfers track 6c¢60 to location O in the core store snd jumps to loca-
tion 36. If this +track holds the code of the ALGOL system the machine
will enter the RUN-SITUATION (section 11.5). The cutput of variant > will
contime with the activetion of the code of the binary tape (gierproc) or
with the AIGOL program where gierdrum was called. The output of variant 5
enters the COMPTLER-READY-SITUATION (section 11.3).

A6.6. ALARMS.

During = call of binout the following conditions will cause termina-
tion of the execution of the program (param): (a) The number of parame-
ters in the call of gierproc is odd. (b) A drum region with a negative
length 1s specified. (c) A speciried region exceeds the boundaries of the
drum.

This re-input 1s checked by means of sums., Failure of a check will
produce the error message

sum
In +this case the re-input can be attempted again, by repositioning the
tape in the reader and typing e SPACE on the typewriter.

66

Accuracy of real
numbers, 9

Accuracy of standard
functions, 10

Alarm printing, 16

Alarms, 10, bo

alas message, 40

algol messsge, 35

ALL HOLES in input, 21,
10

arctan, 10

arithmetic expressions,
10

array message, 40

Arrays called
by value, 11

Basic symbols, 8

Binary output, 64

binout, 64

BILANK TAPE in iInput, 21

Blind symbols, 22

Blocks, S0

Boolean operations, b

Call by value, 13

Capacity of drum, 32

Case in output, 19

Case symbols, 6, 21

char, 27

character message, 54

Check of output, 13, 19

Check sum, 21, 38

Choice of ocutput units,
39

comment, 8

comment message, 5S4

Compilation output, 36

Compiler-ready-
situation, 35

compound message, 5S4

Compound symbols, 8

AIPHAEETIC INDEX.

Control symbols, 6

Core store, 28

cos, 10

<decimsl layout>, 14,16

Declarations, 11

declar. message, 55,56

delimiter message,Sit,55

Delimiters, 8

Digits, 8

drum ales message, 40

drum place, 31ff

Drum track transfer
time, 29

Emergency output, 58

END CODE, T, 21, 37

end message, LO

Epilogue of program, 36

Brror messages, 37, 38,
Shef

Errors during input, 24

Execution times, 52

exp, 10

exp message, 40

Flexowriter, 6

Floatgng point numbers,

formal message, 56
Formal parameters, 10
For statements, 10
from drum, 31

from reader message, 35
gler, Lk

gierdrum, 49

gier message, 40,48,49
glerproc, 45

gone message, 4O

Hole combinations, 6
HP-button, 33, 65
Identifiers, 50
improper message, Sh

inchar, 26

index message, 40

Information symbols, 22

inone, 24

input, 22

Input errors, 24

Input from typewriter,
37

Input procedures, 20

Input' tape syntax, 23

integer, 8

Tnteger divide, 9

Jump to compiler, 34

KA register, 37, 39

kb on, 25

KB register, 25, 36

Iabels, 10, 11

<desyout>, 14, 16

layout, 5t

<sayout expression>, 14

Letters, 8

Level of blocks, 50

Limitations, 11, 34

line message, 38

Line number, 38

Line output, 36

In, 10

1n message, 40

loading of compiler, 33

Lower case, 5, 21

lyn, 27

Machine code, 41

Magnetic drum, 28

Mamuel jump to
compiler, 35

Messages from compiler,
37

number message, 55, 57

off message, 38

on message,

operand message, 55

outchar, 19

outclear, 19

outcopy, 25

outer, 18

output, 14

Cutput case, 19

Qutput procedure, 12

Cutput units selection,
29

outsp, 18

<out statement>, 14

outsum, 19

outtext, 17

own, 11

pack, 41

Packing of strings, 51

param message, 40

Parity check hole, 7

Parity error, 21

Pass information, 36,50

Pass number, 54

Pass output, 36, 50

pause message, 21, 37

Permanent campiler, 33

Prelude to progrem, 36

Printed symbols, 6

proc.call or ident.
nessage, 56

Procedure declarations,
11

Procedure statements,
10

progrem too big
message, 54

Proper character, 26

Punch control, 12

PUNCH COFF and ON,
21, 37, 38

Punch tape code, 6

AIPHABETIC INDEX.

Range of wvariables, 9

real, 8

Recursive procedures,
10

Reserved identifiers, G

Revised AIGOL 60
Report, UL

Round-off, 9

run message, 38

Run -situation, 39

set char, 26

<sign>, 14

Significant digits, 9

ain, 10

Specifications, 11

Specif. message, 55, 56

Speed, 36, 52

spill message, 4O

split, U3

sqrt, 10

sqrt message, U0

stack, 50, 58

Stack message, 55ff

Stendard functions, 10

Standard procedures,
11, 3

Stop between passes, 37

Storage allocation, 28ff

Storage of compiler, 33
Storage of program, 29
Storage of standard
procedures, 30
<stiring expression>, 17
string message, 54
String quote, 17
Strings, 50
subscript message, 56
Sum checking, 21, 38
sum fails message, 21
sum message, S

67

Tape code, 6
TAPE FEED in input, 21
Tape integer, 23
Tape real, 23
termination message, 55
Termination of
execution, 40
Terminators, 22
Text on drum, 50
Text strings, 50ff
todrum, 31
too meny identifiers
message, 5u4
Trensfer time of drum
track, 29
Transient compiler, 33
typechar, 26
Typed messages from
compiler, 37
type in, 26
type message, 56
Types, 8
Typewriter control, 12
Typewriter input, 26,37
Typogrephical
symbols, 6
Underlined word
symbols, 8
Universal address, 47
Universal input
mechanisms, 21
Upper case, 6, 21
value, call by, 11
value message, 56
Variables on drum, 28ff
write, ik
writechar, 19
writecopy, 25
writecr, 18
writetext, 17

	A manual of Gier Algol III
	Corrections and additions
	Contents
	Introduction
	8-Channel punch tape code and flexowriter keyboard
	The relation between Gier Algol and Algol 60
	Basic symbols
	Use of comment
	The treatment of variables of types integer and real
	Reserved identifiers
	Standard functions
	Arithmetic expressions
	Integers as labels
	For statements
	Procedure statements
	Order of declarations
	Own
	Procedure declarations
	General limitations

	Standard output procedures
	Control of typewriter and output punch
	Identifiers and main characteristics
	Standard procedures: output, write
	Standard procedures: outtext, writetext
	Standard procedure: outsp
	Standard procedures: outcr, writecr
	Standard procedures: outclear, outsum
	Standard procedures: outchar, writechar

	Standard input procedures
	Identifiers and main characteristics
	Universal input mechanisms
	Terminators, information symbols, and blind symbols
	Standard procedure: input
	Standard procedure: inone
	Standard procedure: kbon
	Standard procedures: outcopy, writecopy
	Standard procedure: typein
	Standard procedures: inchar, typechar
	Standard procedure: setchar
	Standard procedure: char
	Standard procedure: lyn

	Storing variables on drum
	Introduction
	Storage of variables
	Storage of program
	Balancing the use of the core store
	Standard procedures: todrum, fromdrum. Standard variable: drumplace

	Operating the compiler
	Tapes and storage of the compiler
	Manual jump to compiler
	Compiler-ready-situation
	Typed messages from compiler
	Run-situation
	Choice of output units or stop run
	Termination of execution of program

	Using machine code in Algol programs
	Standard procedure: pack
	Standard procedure: split
	The effect of Boolean operations
	Standard procedure: gier
	Standard procedure: gierproc
	Standard procedure: gierdrum

	Pass information
	Pass output
	Selected execution times
	Error messages
	Emergency output of the stack
	Binary output: binout
	Alphabetic index

