
A MANUAL OF

GIER ALGOL

as developed by

Henning Christensen, Jorn Jensen, Peter Kraft, Paul Lindgreen,

Peter Naur, Knut-Sivert Skog and Peter Villemoes.

First edition

Edited by Peter Naur

REGNECENTRALEN, COPENHAGEN

1963

CONTENTS.

INTRODUCTION . 2. 6 ee ew we ew we ew we ew te we we ewe oe we wo wee

6. 8 ~ CHANNEL PUNCH TAPE CODE AND FLEXOWRITER KEYBOARD

7. THE RELATION BETWEEN GIER ALGOL AND ALGOL 60+.

7.13. Procedure declarations
7.14. General limitations . .

7-1. Basic symbols .. +. 2. «se ee ee ewe ew eo eo evo e reo eoe
7.2. Use of comment . 6 2 6 ee ee ew ew ew ee ew oe ee

7.3. The treatment of variables of types integer end real oe ee

7.4. Reserved identifiers... eee eee ee scene veeceve GY
7-5. Standard functions . . 2. 2. 2s. eee © e we we we eo we ww wo ew oe 10
7.6. Arithmetic expressions . . 6 1 6 6 ee ee ee wwe te wt ew wo WO
7.8. Integers as labels... 2 0 eo ee ee eee ee we ee ee «(10
7.9. For statements . 2... 1. 6 2 ee © oe se ww we wo ow te th we we ww 10

7.10. Procedure statements . . . « 6 © + © ee © wo oe wp we ew we wo oo *'10

7.11. Order of declarations+« +e ee ee ee eo we veo It

7-12. Own. 2. 2 6 we ww ee we ewe we te ewe wr we ww ww we we ew TM

8, STANDARD QUTPUT PROCEDURES .. 2... 2. 0 ee ee eo eee ee ee e 12

8.1. Control of typewriter and output punch.2-.e..12
-2. Identifiers and main characteristics 6 «6 «© « «© «« « ‘12
.3. Standard procedures: tryk, skrv ... ee ee ee ee ew we TE
-4, Standard procedures: tryktekst, skrvtekst + «ese ‘5

e e e . e cf ° ° 1

- Standard procedures: trykvr, skrwr, tryktab, skrvtab,
trykstop . 6. ce wt te et te ee te eee we ee eo «WG

- Standard procedures: trykende, trykslut, trykklar, tryksum. 19

8.2
8.3
8.4
oe: Standard procedures: trykml, skrvml, tryktom

8.7
8.8. Standard procedures: tryktegn, skrvtegn . 2... + 2 0 2 2 2 19

9. STANDARD INPUT PROCEDURES . . 1. 1. 2 ee we ee eo we we we we we we we ew we LO

9.1. Identifiers and main characteristics . . . 1. 2. 6 «© © «© © © 2 2

9.2. Universal input mechanisms . .. 2... « «© ee ee we ew ow ow oo OI
9.3. Terminators, information symbols, and blind symbols 22
9.4. Standard procedure: lms 1... 5. ee ee wee ee oe ee 22
9.5. Standard procedure: lwst .. 1... ee ee ee ee ew we ww we OF
9.6. Standard procedures: lesstreng, streng.... ++ eee + 6
9.7. Standard procedures: trykkopi, skrvkopi2-0+-+. 8
9.8, Standard procedures: tast, taststreng+-+-e+-+- 27
9.9. Standard procedures: lmastegn, tasttegn . . 2.1. +2 «eee e OT
9.10. Standard procedure: swttegn. .. 1. ee eo ew we eo se oe oo OT
9.11. Standard procedure: tegn 2. ee ee eevee es o
9.12. Standard procedure: lyn... ee eee eee eevee ee

4 CONTENTS.

10. STORING VARIABLES ON DRUM2..s-e ce eceece oe ew ew 6 OD
10.1. Introduction . 1... 1 ee se see ewe n ee wee we 29
10.2. Storage of variables2.2ecseeesevsecee 29
10.3. Storage of program .. 4.6.2. ee eee eevee veanc 30
10.4, Balancing the use of the core store. ee. ee eee 30
10.5. Standard procedures: til tromle, fra tromle. Standard vari-

able: tromleplads ... 1... ewe eee eee ener eee 32

11. CPERATING THE COMPILER... 1 ee eee eee ee ee we ww ew WH
11.1. Loading of compiler into GIER......-e ee eee eee BH
11.2, Manual jump to compiler. . 1... ee ee eee eevee 3b
11.3. Oversetter-klar-situation 2... 2 ee eee ween 35
11.4, Typed messages from compiler+eecceceese 37
V1.5. Klar-situation 2. 6 6 6 we ewe tt tw ee ee ee we BO
11.6, Choice of output units or stop run... eee ee ee es 38
11.7. Termination of execution of program.+s.ssseeee 39

Appendix 1. Pass information... ...e «sees eee eee ec ece « HO
Appendix 2, Pass output . 2... ee ee ee ee te te te tw ww ew we eH
Appendix 3. Selected times of executions.-e-+ecececee - 56
Appendix 4. Error messages . 2... 2.21 ee ee tee ew ew we we 58

Alphabetic index... 6 6. we eee ee te te te tt ww ww we OB

The ALGOL 60 Report.

Throughout the present Manual reference is made to the ALGOL 60 Re-
port or the Revised ALGOL 60 Report. The differences between these two
documents are slight and do not influence the numbering of sections. The
full references of these reports are as follows:
J. W. Backus, et. al., Report on the Algorithmic Language ALGOL 60 (ed.
P. Naur), Numerische Mathematik 2 (1960), pp. 106-1363 Acta Polytechnica
Scandinavica: Math. And Comp. Mach. Ser. no. 5 (1960); Comm. ACM 3 no. 5
(1960), pp. 299-314,
J. W. Backus, et. al., Revised Report on the Algorithmic Language ALGOL
60 (ed. P. Naur), Regnecentralen, Copenhagen (1962), Comm. ACM 6 no. 1
(1963), pp 1-173 Computer Journal 5 (1963), pp. 349-367; Numerische Ma-
thematik (in press).

INTRODUCTION. 5

INTRODUCTION.

The decision that an ALGOL compiler for the GIER should be written
was made in January 1962. The work was started almost immediately and in
August 1962 a preliminary version of the compiler could be distributed to
all GIER installations. This version was complete except for some stan-
dard input and output procedures. The first definitive version, which al-
so corrected a number of errors found through the extensive practical use
of the preliminary version, was distributed in February 1963.

Like its predecessor DASK ALGOL the GIER ALGOL language lies suffi-
ciently close to the ALGOL 60 reference language to make it practical to
use the ALGOL 60 Report directly as the basic manual. The exact specifi-
cations of GIER ALGOL are then defined through the set of corrections and
additions of the ALGOL 60 Report given in the present Manual. Because of
this intimate relation to the ALGOL 60 Report the numbering of sections
within the present Manual have been chosen to be a direct continuation of
the section numbers of the ALGOL 60 Report.

Since there is also a considerable interest in the differences be-
tween GIER ALGOL and DASK ALGOL the section numbering of the MANUAL OF
THE DASK ALGOL LANGUAGE have been retained through the major part of the
present Manual. Because of the greater generality of GIER ALGOL several
sections have become empty through this precaution. The more important
differences between the two Manuals touch the following sections: 6.5, 7,
8.1, 8.2, 8.3.1, 8.3.6, 8.4.1, 8.4.3, 8.8, 91, 90205-90206, 9.4.3.6,

94503, 9.8-9.12, 10, 11, appendix 1-5.

The Manual was typed by Kirsten Andersen.

6 6, 8-CHANNEL PUNCH TAPE CODE AND FLEXOWRITER KEYBOARD.

6.1. PRINTED SYMBOLS.

Lower Upper Code Lower Upper Code

case ease case case

a A 1 00 2. O, Ww W 1 0 .00,

b B 1 00 2.0, x x 1 OO .000,

e Cc ; 000 . 00, y Y 1 000.4 1

dad D 1, 00 .O , zZ Z 1 OO. OO,

e E 1 O00 .0 O, 2 & 1 000 .

f F » 000 .00 , @ g 1 © 00. 00,

gZ G + OO .000, 0 A 1 O . 1
h Ez 1, 00 0. ' 1 Vv 1 . 0,
i It , 0000. 0, 2 x ' ~O,

3 J 100.4 0 3 / ' Oo . 00,
k K 100.0, 4 = \ -0
1 L 1 0 - 00, 5 1 © .0 0,
m M , 00.0 , 6 \ 0 .00 ,
n N 1 0 .0 0, 7 1 000,

° 0 1 oO .00, 8 , O. '
p P 1 0 0 .000, 9) ' 00. 0,
q Q 1 0 00.4 ' 1 % 1 ©00. 00,

r R + 0 OO. O, . : 1 00 0. 00,

s Ss 1 0O 2.0, - + 1 0 .

t T 1 0 . 00, < > 1 00. 0,

u U 1 00.0 , _ | 1 0.00 ,
v v 1 © .0 0, The key for _| does not advance the carriage.

6.2. TYPOGRAPHICAL SYMBOLS.

LOWER CASE , 0000. 0 , UPPER CASE , 0000.0 , SPACE , oO.
CAR RET 10 . 1 TAB + 000.00 ,

6.3. CONTROL SYMBOLS.

STOP CODE , o. 00, TAPE FEED , 0000.000, PUNCH ADRES ,0 . 1
PUNCH OFF , 0 0.000, PUNCH ON 1, 0 0.0 , AUX CODE ' 0.0

PUNCH ADRES and AUX CODE insert their respective codes when depressed

simultaneously with any other key.

6.4, FLEXOWRITER KEYBOARD.

START STOP PUNCH AUX STOP TAPE
READ READ ADRES CODE CODE FEED

TAB PUNCH x / ; €—] €) a wv | PUNCH

-
u

wn

ON

~j

oO

oO
] Be 8
 OFF 2 3

LOWER A S D F G H J K L & & _ LOWER

CASE a s ad fH g h J k 12 6 ¢ CASE

UPPER Z xX* € V BN M y : + UPPER

CASE z xXx ¢e¢ Vv bn t . - CASE

6.5. NUMERICAL REPRESENTATIONS. 7

6.5 NUMERICAL REPRESENTATIONS.

In the following table the characters have been arranged according to

the numerical equivalent of the hole combination (after removal of the pa-

rity check hole). The first colum gives the decimal value of the charac-

ter, the second and third columns give the lower and upper case character,

respectively, and the fourth colum conteins a G in the cases where the

character is available only in GIER, but not on the flexowriter

LOWER UPPER LOWER UPPER

0 SPACE 32 - +

1 1 Vv 33 Jj J
2 2 x 34 k K

3 3 / 35 1 L

4 y = 36 m M

5 5 37 n N

6 6 { 38 0 0

7 7 39 p P

8 8 (ko q Q
9 9) ha r R

10 (NOT USED) ko (NOT USED)

11 STOP CODE 43 ¢g g

12 END CODE, 4b PUNCH ON
13 a A G k5 (NOT USED)

14 _ | 6 (NOT USED)
15 (NOT USED) 7 (NOT USED)

16 0 A 48 @ E

17 < > 4g a A

18 8 Ss 50 b B

19 t T 51 c C

20 u U 52 a D

21 v Vv 53 e E

22 w W Sh f F
23 x x 55 g G

au y Y 56 ho~ OF
25 2 Z 57 i I

26 (NOT USED) 58 LOWER CASE
27 ' 0. 59 . :

28 CLEAR CODE 60 UPPER CASE
29 RED RIBBON G 61 SUM CODE
30 TAB 62 BLACK RIBBON G

31 PUNCH OFF 63 TAPE FEED

64 CAR RET

g 7.1. BASIC SYMBOLS.

7. THE RELATION BETWEEN GI@R ALGOL AND ALGOL 60.

7.1. BASIC SYMBOLS.

7e1.1. Single character symbols.
7e1.1.1. Letters and digits. GIER ALGOL adds the letters

aig g
to the reference alphabet. The appearance of all letters and digits may
be seen from section 6.
71.1.2. Delimiters. As apparent from section 6 the following simple re-
ference language symbols are directly available in GIER ALGOL:
tox /SBOVA oe yits () GE]

7+1.2. Compound symbols.
Compound symbols must appear exactly as shown in this section, with-

out additional SPACE or CARRET symbols.
7ei.2.1. Underlined words. Underlined words are produced in GIER ALGOL by
depressing the underline (_) key immediately preceding each letter of the
word. The symbols are the following:

true false go_to if then else for do step until while comment begin end ee —— oe a rere eS Se ee ee a ee eo
Se a ee ee ee ee Se = ee Se ee

7.1.2.2. Compound symbols similar to reference language. The following
compound symbols, most of which are produced by combining the underline
(_) or stroke (13 with other characters, are similar to those of the re-
ference language:

¢ 2 + = te
71.2.5. Compound symbols differing from reference language. The follow-
ing compound symbols show a noticable deviation from the reference lan-
guage:
Reference language * —™ us ‘ ‘ + >

GIER ALGOL A -, 1 ¢ 4 i =>

7.2. USE OF comment.

Following the delimiter comment any sequence of characters speci-
fied in section 6.5 is admitted up to the first following semicolon (;).
Comments have no effect in GIER ALGOL.

7-3. THE TREATMENT OF VARTABLES OF TYPES integer AND real. ee a a a

Variables of types integer and real are represented by normal floa- oo oe oe oe el ee
ting point numbers in GIER. Therefore integers must be confined to the
range:

- 2729 = - 536 870 912 < integer < 536 870 911 = ateg - 1
while the range of non-zero real variables is:

2NX-512) = 7.458,-155 <abs(real) < 10341, 154 = 27512

e
e

a
i

If in the course of a calculation an expression, which according to the

rules of section 3.3.4 is of type integer, yields a result outside the

range for integers, the result will be represented by too few signifi-

cant figures and will therefore in general be inexact.

Round-off from type real to type integer is performed by means of

the built-in machine instructions for conversion from floating form to

fixed form and back again (tkf -29, nkf 39). This implies that real re-

sults in the range from 0 to 229 will yield correct integers on roun-

ding, while reals in the range from 229 to 2ts9 will be rounded to an

integer having too few significant figures. Real results larger than 239

will yield completely erroneous results if rounded.

The accuracy of a real number will correspond to 29 significant bi-

nary digits. Thus one unit in the last binary place will correspond to a

relative change of the number of between 2,-9 and YorDe

7.4. RESERVED IDENTIFIERS.

A reserved identifier is one which may be used in a program for a

standard purpose without having been declared in the program. If the

standard meaning is not needed in a program the identifier may freely be

declared to have other meanings.

The complete list of reserved identifiers arranged alphabetically is

as follows:

Identifier Reference Identifier Reference

abs 5.24 streng 9.6

arctan 3.204, 765 settegn 9.10
cos 3.204, 725 tast 9.8
entier 362.5, 765 taststreng 9.8
exp 3.2.4, 7.5, 11.7 tasttegn 9.9
fra tromle 10.5 tegn 9.11

in 3.2.4, 765, 11.7 til tromle 10.5

lyn 9.12 troml eplads 10.5

les 9.4 tryk 8.3
lesstreng 9.6 trykende 8.7
lest 9.5 trykklar 8.7
lest egn 9.9 trykkopi 9.7
sign 3204 trykml 8.5
sin 3.204, 765 trykslut 8.7
skrv 8.3 trykstop 8.6
skrvkopi 9.7 tryksum 8.7
skrvml 8.5 tryktab 8.6
skrvtab 8.6 tryktegn 8.8
skrvtegn 8.8 tryktekst 8.4
skrvtekst 8.4 tryktom 8.5
skrvvr 8.6 trykvr 8.6
sqrt 4 o2e 4 1 7 . 5

10 75. STANDARD FUNCTIONS.

725. STANDARD FUNCTIONS.

7e5e1. Accuracy.
_ The algorithms for calculating the standard functions arctan, cos,

exp, in, sin, and sqrt, incorporated in GIER ALGOL will all yield results
having an error less than that which corresponds to about 2 units in the
last place of the result or the argument, whichever gives the greater er-
rors

7.52. Alarms.
Certain misuses of the standard functions will cause termination of

execution of program (see section 11.7). Note, however, that i1n(0) will
supply the result -9.35,49 and not call the alarm.

76. ARITHMETIC EXPRESSIONS.

The treatment of arithmetic types and the accuracy of real arithme-
ties is described in section 7.3. Alarms are described in section 11. Ts

7.7. (This section has been deleted).

7.8. INTSGERS AS LABELS.

Integers cannot be used with the meaning of labels in GI@R ALGOL.

7-9. FOR STATEMENTS.

In GIER ALGOL a subseripted varishle is permitted as the controlled
variable in a for clause. The identity of the variable will be establish-
ed once at the beginning of each activation of the for statement and
changes of the values of subscript expressions in the course of the exe
cution of the controlled statement will have no influence on which vari-
able is used as the controlled one.

710. PROCEDURE STATEMENTS.

7.10.1. Recursive procedures.
Recursive procedures will be processed fully in GIER ALGOL.

7.10.2. Handling of types.

The types integer and real will be handled according to the pre-

scriptions of section 4.7.3” except in the case that a formal parameter,
which is specified to be real and to which assignments are made, in the
call corresponds to an integer declared variable. This special case will ere ee

pe treated incorrectly in GIER ALGOL.

e
s

7.10. PROCEDURE STATEMENTS. 11

7.10.3. Extended list of standard procedures.

All input and output functions are in GIER ALGOL expressed as calls
of standard procedures. These calls conform to the syntax of calls of de-
clared procedures (cf. section 4.7.1) and also should be regarded in all

other respects as regular procedure calls or function designators, as the
case may be. This specifically includes the activation of a standard pro-
cedure through its identifier appearing as an actual parameter of a call
of a declared procedure.

7.11. ORDER OF DECLARATIONS.

In GIER ALGOL declarations may appear in any order in the block
head.

7.12. Own.

In GIER ALGOL own can only be used with type declarations, not with
array declarations.

7.13. PROCEDURE DECLARATIONS.

7.13.1. Recursive procedures.
Recursive procedures will be processed fully in GIER ALGOL.

7.13.2. Arrays called by value.
GIER ALGOL cannot handle arrays called by value.

7.13.3. Specifications.

The specifications for formal parameters must be complete, i.e. each
parameter must occur just once in the specification part.

7.13.4. Labels called by value.
Labels cannot be called by value in GIFR ALGOL (the Revised ALGOL 60

Report leaves the question unanswered).

7.14. GENERAL LIMITATIONS.

GIER ALGOL imposes a number of limitations caused by the finite size
of the tables used during compilation. However, with one exception these

limitations shall not be mentioned further here, partly because only very
exceptional programs are likely to exceed the capacity, partly because a-
larm messages during compilation will indicate when they are violated
(see appendix 4). The exception is the limitation that the number of
variables which are active simultaneously at any time during the execu-
tion of a program must be confined to about 700. This problem is discus-
sed in detail in section 10.

12 8. STANDARD OUTPUT PROCEDURES.

8. STANDARD OUTPUT PROCEDURES.

Output of text and results froma program will be controlled by
Means of output procedures permanently available to the translator (i.e.
without explicit declarations). The output will be provided in the form
of 8-channel punch tape or printed copy. The symbols and 8-channel code
given in section 6. 8 -CHANNEL PUNCH TAPE CODE AND FLEXOWRITER KEYBOARD
will be used.

8.1. CONTROL OF TYPEWRITER AND OUTPUT PUNCH.

Half of the standard output procedures are available in two forms,
one controlling the output punch (identifier beginning with tryk), the
other controlling the on-line typewriter (identifier beginning with
skrv). By operatcr intervention it is however possible to make a free
choice of the output unit corresponding to the two sets of output proce-
dure identifiers. See the section 11.6 CHOICE OF OUTPUT UNITS OR STOP
RUN.

8.2. IDENTIFIERS AND MAIN CHARACTERISTICS.

The identifiers and main characteristics of the standard output pro-
cedures are the following: ‘

Identifier Exemple, reference Effect

tryk tryk({+d,ddd},q2) Outputs the values of an arbitrary
skrv section 3.3, number of arithmetic expressions in

a specified layout. Other output

operations may also be inserted as
parameters,

tryktekst skrv({<Q = }) Outputs a specified string of sym-
skrvtekst section JE boils.

t
i

trykml
skrvml

tryktom

trykvr
skrvvr

tryktab
skrvtab

trykstop

trykende

trykslut

trykklar

tryksum

tryktegn
skrvtegn

trykkopi
skrvkopi

8.2. IDENTIFIERS AND MAIN CHARACTERISTICS. 13

trykm1(8-n)
section 8.5.

tryktom (100)
section 8.5.

skrvvr

section 8.6,

tryktab
section 8.6.

trykstop
section 8.6.

trykende
section 8.7.

trykslut

section 8.7.

trykklar
section 8.7.

tryksum

section 8.7.

skrvtegn (49)
section 8.8

trykkopi ({</s})
section 9.7.

Qutputs a specified number of

SPACEs.

Punches a specified number of TAPE

FEED symbols.

Outputs one CAR RET symbol.

Outputs one TAB symbol.

Punches one STOP CODE symbol.

Punches one END CODE symbol.

Punches one PUNCH ON symbol.

Punches one CLEAR CODE symbot and

sets internal sum of punched symbols

to zero.

Punches a STOP CODE, © SUM CODE and

a code representing the sum of the

symbols punched since program read~

in, last trykklar or last tryksum.

Outputs the character corresponding

to the value of the parameter.

Copies a section of the input tape to
the output, the section being speci-

fied through a parameter.

It holds for all standard output procedures that each output opera-

tion will cause an addition to an internal variable of a number which is

equivalent to the character. This may be used for checking purposes by

means of the mechanisms described in sections 8.7.2 and 9.2. It should be

noted, however, that for the checking to work correctly the output tape

must not include any character which has been produced by a skrv ~ ope-

ration (cf. section 8.1).

4 8.3. STANDARD PROCEDURES: tryk, skrv.

8.3. STANDARD PROCEDURES: tryk, skrv.

8.3.1. Syntax.

<sign> ::= <empty>| - | + | + \
<exponent layout> ::= »<si | <exponent layout>d
<zeroes> ::= 0 |<zeroes>0 | <zeroes>,0
<positions> ::= d | <positions>d | <positions>,d
<0-positions> ::-. <positions> | <0-positions>0 | <0-positions>,0 4
<decimal layout> ::= <0-positions>|<0-positions>.<zeroes>| ~ |

<positions>.<0-positions>| .<0-positions>
<layout tail> ::= <decimal layout>|<decimal leyout><exponent layout>
<layout> ::= <sign><layout tail>|<sign>n<layout tail>|<sign> n|

<sign>n,<layout tail>
<general layout> ::= {<layout>}|<formal parameter>|(<layout expression>)
<layout expressi-n> ::= <general layout>|

<if clause><general layout> else <layout expression>
<output statement> ::= <tryk statement>|<tryktekst statement>|

<trykml statement>|<tryktom statement>|<trykvr statement>|
<tryktab statement>|<trykstop statement>|<trykende statement>
<trykslut statement>|<trykklar statement>|<tryksum statement>
<trykkopi statement>/|<tryktegn statement>

<tryk parameter> ::= <arithmetic expression>|<output statement>
<tryk parameter list> ::= <tryk parameter>|

<tryk parameter list>,<tryk parameter>
<tryk statement> ::= tryk(<layout expression>,<tryk parameter list>) |

skrv(<layout expression>,<tryk parameter list>)

8.3.2. les,
tryk({ddd.oo}, P, trykvr, tryktekst ({<Q=}), w +s)
skrv ({~d,-dd}, epsilon/16)
tryk({da, dad} ,Q, trylml (5), tryk({.dda},q) ,W, t-3)
tryk(if s>0 then f1 else f2, Sum)
tryk(1, p-q, s+t)

8.3.3. Semantics.
A call of the procedure tryk or skrv causes the following treatment

of the parameters specified in the tryk parameter list: 4
Arithmetic expression: the value will be printed in the layout sup-

plied in the first parameter of the call.

Output statement: the call of the statement will be executed.

8.3.4. The layout.

The layout expression will be evaluated once at the beginning of the
execution of the tryk or skrv statement. The evaluation will take place
in a way which is completely analogous to that of other expressions (cf.
section 3.3.3). The final value must always be of the form <layout>}.

The symbols of the layout give a symbolic representation of the di-
gits, spaces and symbols as they will appear in the printed number. In-
deed, the finally printed number will have exactly the same number of
printed characters as is present in the layout (except in case of alarm
printing, see section 8.3.6). The various symbols of the layout have the
following significance:

8.3. STANDARD PROCEDURES: tryk, skrv. 15

8.3.4.1. Sign. The four possible symbols in the sign position signify the

following:

8,3.4.1.1. Empty. The number is supposed to be positive. No sign will be

printed. If a negative number is encountered, an alarm printing will take

place (see section 8.3.6).
8.3.4.1.2. - . The sign will always be printed using SPACE for positive,

and ~ for negative numbers. It will, if possible, move to the right, ap-
pearing as the first or second symbol to the left of the first digit (a

layout SPACE may appear in between) or immediately in front of the deci-

mal point.

8.3.4.1.3. + . The sign will always be printed using + for positive and

- for negative numbers. It will, if possible, move to the right, as in

8.3.4.1.2 above.
8.3.4.1.4. + . The sign will always be printed, using + for positive and
- for negative numbers. It will be printed as the first symbol of the

number, before any SPACE or digit.

8.4.4.2. Digits. Letters d and n represent digits. Letter n may only ap-

pear as the first symbol following the sign. The total number of letters

d and n gives the maximum number of printed significant digits (cf. sec-

tion 8.4.8).

If nis used in the first digit position, proper decimal fractions

will be printed with a O in front of the decimal point and the integer 0

will be printed. If d is used these O-digits will be replaced by SPACE.

8.3.4.3. Zeroes. Zeroes may appear at the end of a decimal layout. They

influence the representation of the number in the following manner: If m

zeroes are present at the end of the decimal layout the exponent printed

will be exactly divisible by m+1. For this to be possible at the same time

as the position of the decimal point within the complete layout is kept

fixed-the significant digits of the number are allowed to move to the

right, using the positions of the symbols 0, depending on the magnitude

of the number. If no exponent layout is included the exponent O is under-

stood and the above rule holds unchanged.

8.3.4.4. Spaces. Spaces will be inserted in all positions where the symbol

4 appears. The symbol , may within the layout be replaced by SPACE the ef-

fect of SPACE being the same.

8.3.4.5, Decimal point. The decimal point will always be printed in a fix-

ed position within the layout. If decimals are printed it will appear as

. otherwise as SPACE.

8.4.4.6. Scale factor. The scale factor will be printed in the same way as

in the language. The symbol , will appear immediately in front of the sign

of the exponent. If the scale factor is 1 the symbols , and following will

appear as SPACEs. Note that it is not possible. to print an exponent part

without a decimal part.

8.3.5. Round-off.
All numbers will be correctly rounded to the number of significant

digits printed. ~

16 8.3. STANDARD PROCEDURES: tryk, skrv.

8.3.6, Limitations. .
The total number of symbols n and d in any decimal layout must be

¢ 15.
The total number of symbols n, d,

decimal point must be < 15.
The total number of symbols d and O written to the right of the de-

cimal point in a decimal layout must be § 45.
The number of symbols d in any exponent layout must be < 7.
The symbols , and SPACE can only appear in such positions within the

layout that they are preceded by fewer than 20 symbols of the kinds n, 4,
0, and point (.).

and 0, written to the left of the

8.5.7. Alarm printing.
By alarm printing is meant that the printing will consume more posi-

tions on the paper than are present in the layout. Alarm printing will oc-
cur as follows:
8.3.7.1. Negative number printed with layout having empty sign position.
The correct - will be inserted, consuming one extra position.

8.3.7.2. Number too large for layout. Whenever the number to be printed is
too large for the layout given, an actual layout is used which will acco-
modate the number by inserting an exponent layout, or by increasing the
number of exponent digits.

8.3.8. Small numbers.
Printing of small numbers will never give rise to alarm printing. In-

stead the number of printed significant digits will be smaller than the
maximm (section 8.3.4.2).

8.3.9. Examples of printed numbers.
In order to indicate the exact number of characters printed, commas

are inserted immediately preceding and following each number.

Layout

n,dd,dd.do,0 +d, ddd.ddd,d -ddd.d00, +4 +dd.0,.-da

Normal printing

\ 0.00 1, ' +.001 2, 1 -1.2359-3, +120 gk,
' 0.01 2, ' +.012 3, 1 12.35 9-3) it 1462 9-2,
' 0.12 3, ' +.123 5, 1 123.5 a3 #120 495-2,
' 1.23 5, ' +1.2354 6, » 1.235 =, + 1.2 '
' 12.34 6 » +12.345 7, » 12.35 ' +12 '
1 4 23.45 7, » + 123.456 8, » 123.5 ; i+ 1.2 y 2,
» 12 34.57 | »t1 234.567 9, 1 1623 5,5+3, +12 4 2,
11:25:45.7, 1 12.35 gtd, i+ 1.2 9 4,

-.001 2, 1 71.235 5-3) 712 gts
jot 234.567 9, 1 1.235543 1-12 2,

Alarm printing
1 -0,.00 i,

-1.25-45.7 3, rol 234.567 pt

1 2 23.45 715, #1 234.567 9th, | 123.5 gtt5,

8.4. STANDARD PROCEDURES: tryktekst, skrvtekst. 17

8.4, STANDARD PROCEDURES: tryktekst, skrvtekst.

8.4.1. Syntax.
<general string> ::= ¢<<proper string>} |<formal parameter>|

<string expression>)
<string expression> ::= <general string>|

<if cleuse><general string> else <string expression>

<tryktekst parameter> ::= <string expression>|<output statement>
<tryktekst parameter list> ::= <tryktekst parameter>|

<tryktekst parameter list>,<tryktekst parameter>

<tryktekst statement> ::= tryktekst(<tryktekst parameter list>) |
skrvtekst(<skrvtekst parameter list>)

8.4.2. Examples.
tryktekst(+<Result is}, a, ¢<than expected)
skrvtekst(¢<Q,=, +)

8.4.3. Semantics.
The execution of a tryktekst statement causes the following treat-

ment of the parameters specified in the parameter list, taking them in

order from left to right:
String expression: an output of the text resulting from an evalua-

tion of the expression is performed.
Output statement: the call of the statement will be executed.

8.4.3.1. The string quote.
Note ene omens between the string quotes used here

<
and those used in layout expressions (cf. section 8.3.1).

8.4.3.2. Treatement of SPACE and CAR RET.
All characters of the proper string, including SPACEs and CAR RETs

will be outputed. The symbol for space , will however be equivalent to
SPACE, i.e. it will be printed, not as it stands, but as a SPACE.

18 8.5. STANDARD PROCEDURES: trykml, skrvml, tryktom.

8.5. STANDARD PROCEDURES: trykml, skrvml, tryktom.

8.5.1. Syntax.
<trykml statement>::= trykml (<arithmetic expression>) 1

skrvml (<arithmetic expression
<tryktom statement>::= tryktom (<arithmetic expression>)

8.5.2. Examples.
trykml(n + m - 7)
tryktom (75)
skrvml (if p > 0 then 3 else 4)

8.5.3. Semantics.
The execution of a trykml statement causes the number of SPACE sym-

bols (mellemrun) specified as actual parameter to be outputed.
A call of the procedure tryktom causes the number of TAPE FEED sym—

bols specified as actual parameter to be outputed.
The value of the arithmetic expression will, if necessary, be roun-

ded to the nearest integer. If it assumes a non - positive value no sym
bols will be outputed.

8.6. STANDARD PROCEDURES: trykvr, skrvvr, tryktab, skrvtab,
trykstop.

8.6.1. Syntax.
<trykvr statement>: := trykvr | skrvvr
<tryktab statement>::= tryktab|skrvtab
<tryketop statement>:;:= trykstop

8.6.2, Semantics.
A trykvr statement causes a CAR REF symbol (vogn retur) +o be out-

puted. Note that this will cause the combined operation of retmamm of car-
riage and line feed to take place.

A trykteb statement causes output of a TAB symbol.
A trykstop statement causes the SIOP CODE to be punched. ‘

8.7. STANDARD PROCEDURES: trykende, trykslut, trykklar, tryksum. 19

8.7.1. Syntax.
<trykende statement>::= trykende

<trykslut statement>::= trykslut

<trykklar statement>::= trykklar

<tryksum statement>::= tryksum

8.7.2. Semantics. ;

The four output procedures destribed Mere all serve to insert cha-

racters on the output tape with a view to a later use of this output tape

as input tape to an ALGOL program.

The trykende statement punches the END CODE. Wien later the tape is

read into the machine this will cause a stop of the machine (ef. section

9.2.6).
The trykslut statement punches the PUNCH ON symbol. This is inten-

ded to be used as a non - printing terminator for les and lmst (cf. sec-

tions 9.4 and 9.5).
The trykklar statement punches the CLEAR CODE and sets the internal

sum of the punched characters to zero. This prepares for the use of the

checksum mechanism (cf. section 9.2.5).
The tryksum statement punches a STOP CODE, a SUM CODE and a charac-

ter representing the value of the internal sum of all punched characters

and sets this sum to zero. input this combination will caube an

automatic sum check to take place (cf. section 9.2.5).

8.8. STANDARD PROCEDURES: tryktegn, skrvtegn.

8.8.1. Syntax.
<tryktegn statement> ::= tryktegn (<arithmetic expression>) |

skrvtegn(<arithmetic expression>)

8.8.2. Examples.
tryktegn(if upper case then 60 else 58)
skrvtegn(— oo
skrvtegn(symbol - case)

8.8.35. Semantics.
The execution of a tryktegn statement causes the character corre-

sponding to the value of the actual perameter to be outputted. The corre-

spondence between the integers and the characters is given in the table

of section 6.5. If the value of the actual parameter is not an integer it

will be rounded to the nearest integer. If it is larger than 127 the va-

lue modulo 128 will be used.
The characters for UPPER CASE and LOWER CASE mst be outputted ex-

plicitly where needed. Where tryktegn statements are used side by side

with tryk or tryktekst statements it is important to note that these lat-

ter will assume the output unit to be in lower case when a call is made

and will also leave it in lower case when the call is completed.

20 9. STANDARD INPUT PROCEDURES

9. STANDARD INPUT PROCEDURES.

Input of information from 8-channel punch tape may be carried out at
any stage of an ALGOL program through calls of standard input procedures
permanently available to the translator,

In order to provide flexibility several different kinds of standard
input procedures are available. These differ both with respect to the in-
terpretation of the single s
ternal effect of the input o

ymbols supplied on the input tape and the in-
peration.

9.1. IDENTIFIERS AND MAIN CHARACTERISTICS.

The identifiers and main characteristics of the standard input pro-
cedures and the associated procedure streng are the following:

Identifier

les

last
tast

lesstreng
taststreng

streng

trykkopi
skrvkopi

lastegn
tasttegn

Example, reference

lms(a, b, c)
section 9.4,

p xX lest

section 9.5, 9.8.

lesstreng
section 9.6, 9.8.

streng(¢<P})
section 9.6.

trykkopt (¢</; 4)
section 9.7.

nis tasttegn
section 9.9.

seettegn (15)
section 9.10.

p:= tegn
section 9.11.

a:= lyn + 4
section 9.12.

Effect

Reads numbers and assigns to vari-
ables or arrays.

real procedures lest and tast have
the next number appearing on the in-
put tape or typed on the typewriter
as their value.

Read a string of symbols from tape
or typewriter to an internal variab-
le for later comparison by means of
the

boolean procedure streng.
The value of streng is true if the
string supplied as parameter agrees
with the string read by the last
call of lesstreng.

Cause a copying of the characters on
the input tape to the output punch
(trykkopi) or the typewriter (skrv-
kopi).

These integer procedures supply the
value 3 next character which
appears on the tape or is typed.

Inserts an input character ahead of
the ones waiting in the input.

Supplies the value of the last cha-
racter read by any input procedure.

Supplies the value of the next row
of holes on the input tape.

9.2. UNIVERSAL INPUT MECHANISMS. 21

9.2. UNIVERSAL INPUT MECHANISMS.

Certain characters on the input tape will be handled in the same way

no matter which of the standard input procedures is controlling the input

operation. The universal mechanisms are the following:

9.2.1. Skipping between PUNCH OFF and PUNCH ON.

All characters between PUNCH OFF and the first following PUNCH ON,

these two characters included, will be completely ignored during input.

9.2.2. Ignoring of BLANK TAPE, TAPE FEED, and ALL HOLES.

The characters

. BLANK TAPE
0000.000 TAPE FEED

00000.000 ALL HOLES

will be ignored during input.

9.2.3. (This section has been deleted).

9.2.4, Input characters of wrong parity.
The machine stops when a row of an even number of holes is sensed in

the tape reader. In this situation it is sufficient to place the intended
symbol in the R register since the ALGOL system never makes any uge of
the representation stored by the input instruction itself.

9.2.5. The checksum mechanism.
When the standard input procedures read tapes which have been pre-

pared by the standard output procedures the checksums included on this

tape in consequence of calls of the tryksum procedure will automatically

be verified. If the check symbol does not check with the corresponding

symbol as formed during previous read-in the machine will print
sumfejl

and the machine will stop. If a character is typed on the typewriter the

reading will continue. The internal variable which holds the current sum

of the symbols which have been read in may be reset to zero by the inclu-

sion of the CLEAR CODE on the tape. This is the symbol produced by the

trykklar procedure (cf. section 8.7.2). On the flexowriter use:
AUX CODE with 0

9.2.6. Stop produced by END CODE.
Whenever the END CODE appears the message

vent

will be typed and the machine will stop, waiting for a character to be

typed on the typewriter. The END CODE may be produced by an ALGOL program

by & call of the trykende procedure (cf. section 8.7.2). On the flexowri-
ter it is produced by depressing

AUX CODE with SPACE.

9.2.7. Phe effect of UPPER CASE and LOWER CASE. . :

For printed symbols (cf. section 6.1) the meaning and effect of a gi-

ven hole combination depends on the most recent CASE symbol on the tape

(UPPER CASE or LOWER CASE).
For typographical and control symbols (cf. sections 6.2 and 6.3) the

effect is usually independent of the case.

22 9.3. TERMINATORS, INFORMATION SYMBOLS, AND BLIND SYMBOLS.

9.5. TERMINATORS, INFORMATION SYMBOLS, AND BLIND SYMBOLS.

The effect of the input characters which do not give rise to an ac-
tion of a universal input mechanism (cf. section 9.2) depends on the par-
ticular standard input procedure. In describing this effect it is conve-
nient to make use of the following concepts:
9.53.1. Terminators. A terminator is a symbol on the input tape which in-
dicates to the input procedure that the reading of a piece of information
(e.g. a number) has been completed.
9.3.2. Information symbols. An information symbol is a symbol on the in-
put tape supplying positive information which is transferred to the run-
ning ALGOL program by the input procedure.
9.3.3. Blind symbols. A blind symbol is a symbol on the input. tape which
is ignored by the input procedure.

As explained more concisely in the following sections we have for
the procedures les and last:

Terminators: <letter> all signs except +-e, TAB PUNCH ON CAR RET
Information symbols: <digit> +--+
Blind symbols: SPACE _ STOP CODE
and for lasstreng:
Terminators: all signs TAB PUNCH ON CAR RET

Information symbols: <digit> <letter>
Blind symbol: SPACE _ STOP CODE

Each input operation will in general read three sections of the in-
put tape:
i. Any mixture of terminators and blind symbols.
2. A legal sequence of information symbols mixed with blind symbols.

3. One terminator.

9.4, STANDARD PROCEDURE: ls.

9.4.1. Syntax.
<lms parameter>::= <yariable>|<array identifier>
<lws parameter list>::= <les parameter>|

<les parameter list>,<les parameter>
<lms statement>::= lms(<les parameter list>)

9.4.2. Examples.
art

teste, BE ey)
7

9.4.3. Semantics.
A call of the procedure laws will cause the values of numbers sup-

plied on the input tape to be assigned to the variables and/ or arrays of
subscripted variables specified as parameters. The assignments will in
detail be executed as follows:

9.4, STANDARD PROCEDURE: les. 23

9.4.3.1. Order of assignment. The parameters will be taken in order from

left to right and the assignment will be completely finished for each pa-

rameter before the next is treated, Thus the statement lmes(k, B[1,k])

will first assign a value from the input tape to k and this value of k

will then define the particular component of B to which the next number

on the tape will be assigned.

9.4.3.2. Assignment to array. If an array identifier is supplied as pa-

rameter an assignment to all the components of the array will take place.

The order of assignment may be described as follows: Denoting the lower

and upper subscript bounds of the array declaration by 11, 12, ... In, ul

u2, .-. un, the input operation is equivalent to

for i1:= 11 step 1 until ul do

for i2:= 12 step 1 until u2 do

for in:= In step 1 until um do
Ali1, 12, .«+ y in]:= input number

where i1, 12, ... in are internal variables.

9.4.3.3. Input tape syntax. The characters appearing on the input tape

during the execution of las must conform to the following syntactic

rules:

lms terminator>::= vixl/lels (CIC laAl<b |raB|PUNCH ON|:|CAR RET|

Kletter>

{lms information>::= <digit>|.|ol+|-
<les blind>::= SPACE|_|STOP CoD
<ims prelude>::= <empty>|<les blind>|<les terminator>|

<les prelude><lxs blind> |<1es prelude><lx#s terminator?

<digit sequence>::= <digit>|<digit sequence><digit> |

<digit sequence><les plind> |<les blind@<digit sequence>

<input integer>::= <digit sequence> |+<digit sequence> |-<digit seqpence>

<input fraction>::= .<digit sequence?

<input exponent>::= ,<input integer>

<input decimal>::= <Gigit sequence>|<input fraction>|

<digit sequence><input fraction>

<unsigned real>::= <input decimal>|<input exponent>|

: <input decimal><input exponent>

<input real>::= <unsigned real>|+<unsigned real>|-<unsigned real>

<input ditto>::= -|<input ditto>-|<input ditto><les blind>
<tape integer>::= <les prelude><input integer><lzs terminator> |

<les prelude><input ditto><les terminator>

<tape real>::= <les prelude><input real><les terminator> |

<les prelude><input ditto><les terminator>

9.4.3.4. Examples of input tape for les.

Tape integers: Tape reals:

17 2833 wie 3.857_392 <
iz +138, z epsi= -,-14,

[25] pir= 3.141592 653 -

funktion(-12) Set x24, ~

p: -/ q: 1.384 ,-11,

ou 9.4. STANDARD PROCEDURE; lms.

9.4.5.5. Semantics of input tape. Depending on the type of the variable
each lms assignment will cause the reading of one tape real or tape inte-
ger. If these contain digits they will be interpreted according to the
usual ALGOL prescriptions (cf. sections 2.5.3 and 2.5.4), ignoring all
iss blinds and les terminators. An input ditto, on the other hand, will
cause the les assignment to be skipped for the particular variable, thus
leaving its value unchanged.

9.4.3.6. Errors. The standard procedure lw#s checks that the syntactic
rules of section 9.4.3.3 are satisfied. If an error is detected one of
the messages

talfejl. tast her, slut 1 LC:
or

talfejl. tast her, slut i UW:
will be typed. The operator is now expected to type one number, followed
by a terminator, to be used instead of the erroneous combination appea-
ring on the tape. The terminator must be in upper or lower case as indi-
cated in the message since otherwise the following text on the input tape
may be misinterpreted.

9.5. STANDARD PROCEDURE: lest.

9.5.1. Syntax.
<les function designator>::= lest

9.5.2. Examples.
wi= (lest + y)/q
B[lest, lest]:= lest

9.5.3. Semantics.
lmst is a real procedure having an empty formal parameter part. Eve-

ry time it 1s called it will read the next tape real appearing on the in-
put tape (cf. section 9.4.3.3). This information on the input tape will
define its value according to the rules of section 9.4.3.5, except that
the effect of an input ditto is undefined.

9.5.3.1. Example of input tape for lest. <A reasonable input tape for the
second example -of section 9.5.2 would be the following:
3B(3,7]:= 3.847,
Note that the correct execution of this input operation is directly de-
pendent on the strict adherence to the rules of sections 4.2.3.1 -
4.2.3.3 for assignment statements.

9.6. STANDARD PROCEDURES: lmsstreng, streng. 25

9.6. STANDARD PROCEDURES: lesstreng, streng.

9.6.1. Syntax.

<les streng statement>::= lesstreng—
<streng function designator>::= streng(<string expression>)

9.6.2. Examples.
lss stre

if streng({<a}) then go_te 7

9.6.3. Semantics.
The standard procedures lesstreng and streng serve to read identify-

ing information from the input tape and to compare this information with

information supplied by the program. The detailed operation is defined

below.

9.6.3.1. Input tape syntax. During execution of lesstreng the characters

on the input tape are treated according to the following syntax:

<lmsstreng terminator): := Viel Pel LELICD T bal< >| 1 | ol TAB| -|+| PUNCH ON |

<lesstreng information>::= <digit> |<letter>

<lesstreng blind>::= SPACE|_|STOP CODE
<lesstreng prelude>::= <empty> | <les streng blind |

<lesatreng terminator>|<lesstreng prelude><lmsstreng blind>|

<lssstreng prelude><lasstreng terminator>

<input string>::= <lesstreng information>|<input string><lesstreng blind |
<input string><lesstreng information>

<tape string>::= <lesstreng prelude><input string><lesstreng terminator>

9.6.3.2. The internal string. Each call of lmsstreng will read the first

following tape string from the input -tape and assign the five first in-

formation symbols of the input string, which is a part of it, to a unique

internal variable. If the input string has less than five information

symbols it will be extended with the appropriate number of unique dummy

characters.

9.6.3.3. Exemples of tape strings and internal strings.

Symbols on tape Internal string

b7. v7
(Meer A) Matri

x]3A and Bs AandB

true, true

26 9.6. STANDARD PROCEDURES: lwsstreng, streng.

9.6.3.4, Standard procedure streng. This is a boolean procedure, requi-
ring a string expression as parameter. It has the value true if all the
characters of the value of the string expression agree with the same num-
ber of - characters of the internal String, assigned by the previous lss-
streng, both strings taken in order from left to right, otherwise the va-
lue false. Note that the agreement of the two strings puts the following
restrictions on the string supplied as parameter to streng:
9.6.3.4.1, It cannot contain more characters than the number of informa-
tion symbols in the internal string (never more than 5).
9.6.3.4.2. It can only contain digits and letters.

9.6.3.5. Example. The following table shows the value of streng for va-
rious input strings and parameters:

Parameter:
Input string A Alg ALGOL

ALGOL 60 true false true
A true false false
Ble false false false
Algol true true false
Algorithm true true false

9.7. STANDARD PROCEDURES: trykkopi, skrvkopi.

9.7.1. Syntax,
<trykkopi statement>::= trykkopi(<string expression>) |

skrvkopi(<string expression))

9.7.2. Examples.
trviecot (44/4)

skrvkopi(if s>0 then w else y)
trykkopi(fs)

9.7.3. Semantics.
A call of a trykkopi statement causes a copying of characters from

the input tape to the output. The section of the input tape to be copied
is defined by the value of the string expression supplied as parameter.
This value must have the form

{< <proper string> }
where the proper string consists of one or two characters. If one charac-
ter is supplied the copying will take place from the actual position of
the input tape until the first occurrence of the character specified as
parameter. If two characters are supplied the copying will start from the
first character on the tape which is the same as the first of the two
characters supplied as parameters and will continue until the first oc-
currence of the second of these symbols on the tape. The characters indi-
eating the begin and end of the section of the input tape to be copied
will not themselves be copied.

The copying will include all legal. characters except those associa-

~

9.7« STANDARD PROCEDURES: trykkopi, skrvkopi. 27

ted with the universal input mechanisms (cf. section 9.2) and superfluous

ease shifts.

Qe7e3e1. Example of call, input tape, and output.

The call

trykkopi({<[]4)
operating on the following input tape:

Heading: [
Problem number:]

ee ee ee te

9.8. STANDARD PROCEDURES: tast, taststreng.

These procedures are entirely similar to procedures lmst and les-

streng (sections 9.5 and 9.6) but expect the input characters to be typ-

ed on the typewriter.

9.9. STANDARD PROCEDURES: lestegn, tasttegn.

9.9e1. Syntax.

<lsstegn function designator> ::= lestegn | tasttegn

9.9.2. Examples.

if tasttegn = 49 then go_to a
symbol := lestegn

parameter part. Each call of a lestegn function designator will activate

the corresponding input unit (paper tape reader for lestegn, typewriter

for tasttegn) and will return with the value of the next proper character

from the input medium as its value. By proper character is here meant a

character which is not handled by the universal input mechanisms (section

9.2). The values of proper characters in lower case are given directly by

the table in section 6.5. In upper case the value supplied by lestegn and

tastteen is increased by 128. Thus the letter p will appesr as 39 while P

will be 167.

9.10. STANDARD PROCEDURE: sasttegn.

9.10.1. Syntax.

<emttegn statement? ::= sw#ttegn(<arithmetic expression)

9.10.2. Examples.
sesttegn(160)
sstteen(tegn)

28 9.10. STANDARD PROCEDURE: settegn.

9.10.3. Semantics.

Bach call of swttegn assigns the value of the expression supplied as actual parameter to an internal buffer and at the same time sets an in- ternal Boolean variable which causes the value in the buffer to be used as the first proper input character at the first following call of any
input procedure (lms, lest, tast, lesstreng, taststreng, lestegn, tast- tegn, trykkopi, skrvkopi) ahead of the next symbol waiting in the input
unit.

The values of the actual parameters supplied in calls of sattegn
should only be such which correspond to proper input characters, i.e. such which may appear as values of lsstegn.

9.11. STANDARD PROCEDURE: tegn.

9.11.1. Syntax.
<tegn function designator ::= teen

9.11.2. Examples.

if tegn < 10 then tryktegn(tegn)
if tegn = 133 then go_to exit

9.11.3. Semantics.
tegn is an integer procedure having an empty formal parameter part.

Its value is the number corresponding to the last proper character previ-
ously inputted by any standard input , Procedure (les, lest, tast, les-
streng, taststreng, lestegn , tasttegn trykkopi , skrvkopi) or assigned by
settegn. The value corresponding to a proper character is to be under-
stood in the same sense as for procedure lestegn. Note that tegn does not
activate any input unit, but only makes the last character supplied by a-
ny input unit available.

9212. STANDARD PROCEDURE: lyn.

9.12601. Syntex.

<lyn function designator> ::= lyn

9.12.2. Example,
symbol:= lyn

9.12.5. Semantics.
lyn is an integer procedure having an empty parameter part supplying

the value of a character from the paper tape reader, like lestegn. How-
ever, the character whose value is provided by lyn fs always the next one
on the input tape without any intervention from the universal input me- chanisms (section 9.2)-'or the buffer controlled by sa#ttegn (section
9.10). Likewise the case and buffer state are unaffected by calls of lyn.
Thus by using lyn the programmer may interpret the input symbols having
correct parity in any conceivable manner.

10. STORING VARIABLES ON DRUM. 29

10. STORING VARIABLES ON DRUM.

10.1. INTRODUCTION.

ALGOL programs operating with up to about 700 variables simultane-
ously may be handled directly by the GIER ALGOL system. However, if pro-
grams declaring more than this number of variables simultaneously are run

in the system the run will be terminated before the final end has been
reached (cf. section 11.7, ak and array). What has happened {fs that the
capacity of the directly available internal store of the machine, the so-
called core store, has been exceeded.

This does not mean that problems involving a larger number of vari-
ables are outside the reach of the system since there is available in the
machine a storage capacity on the so-called magnetic drum of more than 12
times that of the core store. What it does mean, however, is that the u-
ser mst include in his program calls of the standard procedures til

tromle (Danish for: to drum) and fra tromle (Danish for: from drum) which
serve to transfer variables from the core store to the drum store and
back again. From the point of view of the user the magnetic drum may in
this context be regarded as a new kind of input-output medium, analogous
to paper tape. The two standard procedures til tromle and fra tromle are

then analogous to the standard procedures tryk and les.
However, the use of til tromle and fra tromle should not be confined

to the cases where it is indispensable. In fact, execution speed conside-
rations will often make it desirable to keep the number of active vartiab-
les in the program considerably lower than the admissible upper limit.

An intelligent assessment of the factors involved requires some
knowledge of the storage allocation system incorporated in GIER ALGOL.
This system is therefore explained in the following sections.

10.2. STORAGE OF VARIABLES.

The reservation of core storage space for a variable is made at the
time of entry into the block in the head of which the variable is declar-
ed. Similarly reservations for a block are cancelled at the time of the
corresponding exit from the block. For this reason the space reserved for
the variables will usually change from time to time during the execution
of a program, being at every moment equal to the sum of the reservations
made by those blocks and procedure bodies which are active.

The reservations made at a block entry include other quantities be-
sides variables. The total requirements may be derived from the declara-
tions (including the implicit ones for local labels) of the block as fol-
lows:

30 10.2. STORAGE OF VARIABLES.

Number of locations required
Simple variables, local labels, Qne for each quantity
local procedures, formal parameter
Array segment Number of array identifiers + 1 +

number of subscripts + total number
of variables.

Switch declaration 1 + mumber of switch elements
Working locations Depends on structure of program, u-

aually only a few.
Block, procedure body 2 if normal block, 3 1f procedure,

4 if type procedure.

10.3. STORAGE OF PROGRAM.

GIER ALGOL incorporates a fully automatic system for handling the
transfers of program drum tracks to the core store during the execution
of the program. This system will at all times attempt to make the best
use of that part of the core store which is not currently reserved for
variables. This section of the core store will be divided into program
track places, each of 41 locations. The available places will be used for
those program tracks which are required as the program execution deve-
lops. Whenever the program execution calls for a transfer to another
track it is investigated whether the track is available in the core
store. If it is not it is transferred to that track place which for the
longest time has been left unused.

10.4. BALANCING THE USE OF THE CORE STORE.

The transfer of a drum track to the core store requires 20 mtllise-
conds. In contrast the transfer of control to a track which is already
present in the core store takes between 0.7 and 1.6 milliseconds. It is
therefore clear that A PROGRAM HAVING A LARGER PART OF THE AVAILABLE CORE
STORE RESERVED BY VARIABLES WILL SPEND A LONGER TIME ON TRANSFERS OF PRO-
GRAM TRACKS TO THE CORE STORE. The importance of this loss of speed for a
given number of program track places depends very strongly on the loop
structure of the program. It is small if most of the execution time of
the program is spent in a loop which may be held completely in the avai-
lable program track places.

To assist in estimating the number of program tracks involved in a

10.4. BALANCING THE USE. OF THE CORE STORE. 31

loop which includes calls of standard procedures the arrangement of

standard procedures on the tracks reserved for them is given below.

Standard Used by

procedure
track

0 skrv, tryk
1 skrv, tryk
2 skrv, tryk

3 skrv, tryk, tryktom, trykml, skrvml, skrvvr, skrvtab

4 A with integer exponent, abs, entier, sign, swttegn,
tegn, trykvr, tryktab, trykstop, trykslut, tryken-

de, lyn

5 streng, trykklar, tryksum

6 tryktekst, skrvtekst

7 til tromle, fra tromle

8 trykkopi, skrvkopi

9 lesstreng, taststreng, sqrt

10 les, tast, lest, tasttegn, lestegn

1 les, tast, lest
12 trykkopi, skrvkopi, lesstreng, ‘taststreng, les, tast,

lest, tasttegn, lestegn

13 (alarms of input, special storage)
14 cos, sin
15 arctan
16 ln, skrvtegn
17 exp, tryktegn
18 til tromle, fra tromle (tromle data A only)

These considerations indicate that in programs where the execution

speed is of any concern the number of active variables in the program

should be kept rather lower than the strict upper limit; a practical li-

mit might be 500 variables. This may be achieved by using the drum as an

additional store for variables.

‘The increase of execution speed gained by using the drum for storage

of variables will be counteracted by the loss of time incurred each time

these variables are transferred to or from the drum by til tromle or fra

tromle. This latter transfer time is usually of the order of 1 - 2 milli-

seconds per variable per transfer. Whether these transfer times are of

overall significance depends on the time necessary for other processing

of the variables. An estimate of such processing times may be formed on

the basis of the figures given in appendix 3. It will be found that the

time of even a quite moderate amount of processing will overshadow the a-

verage drum transfer time.

32 10.5. STANDARD PROCEDURES: til tromle, fra tromle.
STANDARD VARIABLE: tromleplads.

10.5. STANDARD PROCEDURES: til tromle, fra tromle.
STANDARD VARIABLE: tromleplads.

10.5.1. Syntax.

<drum transfer function designator> ::= til tromle(<array identifier>) |
fra tromle(<array identifier>)

<tromleplads variable identifier> ::= tromleplads

10.5.2. Examples.

Bplads := tromleplads
Bshift := til tromle(B)
tromleplads := tromleplads - Bshift

fra tromle(B)

10.5.3. Semantics.
The standard integer procedures til tromle and fra tromle and the

associated standard integer Variable tromleplads administer the handling
of transfers of arrays Of values to and from the drum memory of GIER. The
procedure til tromle will transfer the array of subscripted variables
identified in the actual parameter to the drum and acts like an assign-
ment of values to the drum and likewise the procedure fra tromle will as-
sign values previously transferred to the drum to the array identified in
the actual parameter. In either case the part of the drum involved in the
transfer is defined by the value of the integer variable tromleplads
which enters into til tromle and fra tromle as a non-local identifier.
Thus in order to retrieve a set of values previously transferred to the
drum the procedure fra tromle mst be called with tromleplads having the
same value as when the corresponding call of til tromle was made. The
same holds if it is desired to assign new values to a previously used
section of the drum. In any case the array supplied as parameter in the
drum transfer function designator mst be of the same type and have the
same number of subscripted variables as the one used in the corresponding
call of til tromle. However, the two arrays need not have the same number
of subscripts or the same subscript bounds. If the arrays differ in these
respects the correspondence of elements is established by ordering the e-
lements of each array in the same manner as they would be if they were
nead i“ tape by means of the standard procedure lms (cf. section
9.4.3.2).

Clearly the standard variable tromleplads is the key to administe-
ring values stored on the drum. In addition the programmer may use the
values of the drum transfer function designators. These are closely rela-
ted to tromleplads as apparent from the following 3 rules which define
the behaviour of the value of tromleplads:

1. tromleplads is initialized by the compiler to a value which is
the one extreme of its permissible range of variation.

2. Every call of til tromle and fra tromle will, as a side-effect,
change the value of tromleplads in a direction away from the initial va-
lue supplied by the compiler ‘towards the other extreme of its permissib-
le range and by such an amount that the new value is the correct one to
use in transferring values to the next adjecent section of the drum.

3. The amount by which tromleplads is changed through a call of til

t
a
n
,

a

—

10.5. STANDARD PROCEDURES: til tromle, fra tromle. 33
STANDARD VARIABLE: tromleplads.

tromle or fra tromle will be the same whenever arrays of the same type

and having the same number of subscripted variables are transferred. The

amount by which tromleplads is changed is available as the value of the

drum transfer function designator. In other words:
new value of tromleplads = old value + til tromle(A)
new value of tromleplads = old value + fra tromle(A).

However, nothing further about the dependence of the change of tromle-

plads on the size and type of the array is defined generally (the precise

nother} of tromleplads will change from one edition of the compiler to a-

nother).

It will be understood from these rules that as long as no explicit

assignment is made to tromleplads only calls of til tromle will be in or-

der and each of these will use a new section of the drum adjecent to the

one used in the last previous call of til tromle. Before any call of fra

tromle is made the programmer mist make an explicit assignment to tromle-

plads. The values assigned to tromleplads can only be derived from its

previous values possibly modified by integral mitiples of the amount by

which is has changed.

The programmer has his full freedom to overwrite sections of the

drum which have previously been used as long as ‘he makes sure to use only

values of tromleplads which lie within the range defined by its initial

value and another extreme which marks the other end of the free section

of the drum. If tromleplads steps outside this range an error reaction

will occur at run time and the message (cf. section 11.7)
tromle ak

will be typed. The criterion for a set of values previously transferred

by til tromle to be still intact on the drum may be formlated as fol-

lows: Each section used on the drum by til tromle will be defined by an

interval of the values of tromleplads, namely that defined by the value

of tromleplads just before til tromle was called and its value just after

the call was completed. The values transferred will still be intact as

long as no call of til tromle with an overlapping interval of tromleplads

has been performed.

10.5.4, Tromledata A.
The version of til tromle and fra tromle included in the compiler

tape will pack the values tightly on the drum (tromiedata A). When this

version is used the capacity of the drum is 10 200 values reduced by ho

times the number of drum tracks used by the translated program (this lat-

ter may be derived from the pass information, see appendix 1). The last

4 Lho of these values will be placed on a part of the drum which holds

the compiler. Only if these are left unused will it be possible to com-

pile programs without loading the compiler into the machine anew.

10.5.5. Tromledata B.
By a simple correction process an alternative version of til tromle

and fra tromle may be included in the compiler (cf. section 11.1). This

alternative version (tromledata B) will in each call use a full number of

drum tracks of 40 words each. Consequently arrays of from 1 to 40 variab-

les will require 1 drum track, arrays of from 41 to 80 values will re-

quire 2 drum tracks, etc. The capacity of the part of the drum available

for program and variables is 255 tracks. Of these 111 tracks are also

used by the compiler. If these are used for data further compiletion will

require a reloading of the compiler.

34 11. OPERATING THE COMPILER.

11. OPERATING THE COMPILER.

11.1. LOADING OF COMPILER INTO GIER.

The compiler tape consists of a short special input program written

in SLIP language, followed by the compiler proper in binary form (HJALP

language). The compiler will be read into the machine by SLIP (start by
typing 1). If the SLIP version which stops on transfer to the program is

used the machine will stop after input of the tnput program and will have

to be restarted by pushing START.

The input is checked by summation. If the check fails the message

SUMFEJL

(in red) will be typed. In this case a new loading of the compiler will

have to be attempted.

A succesful loading of the compiler takes about 75 seconds and is

completed when the message

oversatter klar

is typed, The further action to be taken is described in the section on

the OVERSETTER-KLAR-SITUATION below.

A version of the compiler which includes Tromledata B (cf. section

10.5.5) may be produced by reading a short correction tape on top of ,the

compiler.

The compiler occupies the tracks 39-175. It places the compiled pro-

gram in the tracks 319, 318, as far as necessary. During program

execution the compiler tracks 39-64 are used in addition to the compiled

program.

11.2. MANUAL JUMP TO COMPILER.

The OVERSETTER-KLAR-SITUATION may be called at any time during

translation of ALGOL programs by transferring control to instruction 1 in

the core store.

If the core store has been used for other purposes, but the compiler

is known to be intact on the drum the OVERSETTER-KLAR-SITUATION is called

by transferring track 70 to 960 and transferring control to it. On ma-

chines equived with the optional HJELP-button the same effect will follow

if this button is pressed and the control words
halgol

e
are typed

11.3. OVERSETTER-KLAR-SITUATION. 35

11.3. OVERS&TTER-KLAR-SITUATION.

The compiler is ready to accept ALGOL programs whenever the message
oversatter klar

has been typed. In this situation the machine is waiting for symbols to
be typed on the control typewriter. This leaves certain operational choi-
ces to the operator, as described in the following.

11.3.1. Start compiling.
Typing of a SPACE (or any character other than p, s, t, 0, 1, or i)

will start the compiler translating the program with output and other
compiling features defined by the other characters typed previously. If
SPACE is typed immediately following the oversatter-klar-message and also
KA and KB are 0 the compiler will produce no typed or punched output, in-
put will be taken from the paper tape reader, and program sections be-
tween PUNCH OFF and the first following PUNCH ON will be ignored. Thus
programs will be compiled at the highest possible speed. The compiler
produces about 30 final machine instructions per second, except in the
case of very short programs where the basic time of 4 seconds becomes
prominent. Other compiling modes may be specified by typing any sequence
of the letters p, s, t, o, 1, andi, prior to the final SPACE, and by
setting KA and KB at this or a later time, as described below.

11.5.2. Compilation outmt.
Typing of p and s selects the output unit operating during conmpila-

tion, p standing for punch (perforator) ands for typewriter (skrivema-
skine). If both p ands are typed the output will appear on both punch
and typewriter. Whenever an output unit is specified the normal compiler
output is always produced. This includes:

11.3.3. Prelude to program:
All characters on the input tape up to and including the first ap-

pearance of be (assumed to form the first characters of the first begin
of the program) and the following gin are copied to the output.

11.3.4. Epilogue of program:
All characters on the input tape following the final end up to and

including the first following ; (semicolon) are copied to the output.

Additional compilation output may be specified as follows (note that
this presupposes a choice of output unit by typing of p or s):

11.3.5. Line output.
Typing of 1 causes every 10th line of the source ALGOL program to be

copied to the output with its line number attached.

36 11.3. OVERSETTER-KLAR-SITUATION.

11.3.6. Pass information.
Typing of i causes output of the so-called pass information. This is

described in appendix 1.

11.3.7. Pass output.

If KB is set to L the intermediate output from passes 1, 2, 3, 4, 5,
6, 7, and 9 will be output. The form of this output is described in ap-

pendix 2. KB may be changed at any time during compilation and pass out-
put will be produced accordingly.

11.3.8. Program between PUNCH OFF and PUNCH ON.
If o is typed the text between PUNCH OFF and PUNCH ON is included in

the program.

11.3.9. Input from typewriter.

If t is typed the compiler takes its input from the typewriter.
Input from typewriter may also be called following the vent-message

(section 11.4.1).
When input is taken from the typewriter a line of text will be pro-

cessed at a time and the user has the possibility of deleting the line
which is being typed. Also shift to input from tape may be specified.
This is achieved as follows:

11.3.9.1. A line which is terminated with the CAR RET character will be
included in the program.

11.3.9.2. Whenever 4 consecutive case shifts are typed (f.e. LC, UC, IL,
UC or UC, LC, UC, LC) the compiler types the message

3
(in red). If now the operator types 1 the compiler will complete the red
message to read

sles
(les is Danish for: read) and the compiler will continue to take its in-
put from tape, including the line which has just been typed. If the ope-
rator types r the compiler will complete the red message as follows:

sret
(ret is Danish for: correct) and be ready for another line to by typed
instead of the previous one, which will be ignored.

11.3.10. Stop between translation passes.
If KA is set to L the machine will stop after each of the passes 1 -

8. The compiler is restarted by typing any character on the typewriter.

11.4. TYPED MESSAGES FROM COMPILER. aT

11.4, TYPED MESSAGES FROM COMPILER.

Irrespective of the choice of output from the compiler certain mes-

sages will be typed on the typewriter. These are

11.4.1. Vent message.
The message:

vent

(Danish for: wait) is typed and the machine stops when the END CODE is

encountered on the input tape during pass 1.

If in this situation the letter t is typed the further input will be

taken from the typewriter (cf. section 11.3.9). Any other character will

restart the input from tape. Note that the last case shift character read

from the tape will be restored correctly after shift to input from type-

writer and return to input from tape.

11.4.2. Off and on messages.
Whenever the text between a PUNCH OFF and the first following PUNCH

CN is ignored these two control symbols produce messages during pass 1 as

follows:
linie <line number> off

and
linie <line mumber> on.

11.4.3. klar-message.
The message

klar

(Danish for: ready) indicates that the system is in the KLAR-SITUATION

with the program ready to be executed (cf. section 11.5).

11.4.4. Error messages.
The first 6 translation passes perform a thorough checking of the

formal correctness of the program. Every error found will be reported by

a suitable message typed in red. An error message consists of the text

fejl i linie

(Danish for: error in line) followed by the number of the line where the

error occurs and a short text characterizing the error. The line number

is obtained by counting the CARRET symbols in the source program, line 0

being the one where the first begin appears. Line numbers may be obtained

with the help of line output (cf. Section 11.3.5).
When the translator has detected an error in the program the trans-

lation is discontinued after completion of pass 6 and the system returns

to the OVERGSETTER-KLAR-SITUATION. This means that every program is taken

through the complete error detecting part of the translating process and

that all errors of a program often will be detected in a single transla-

tion run.
Error messages are also produced when certain tables which are crea-

ted by the compiler exceed the space allotted to them. In this case the

OVERSATTER-KLAR-SITUATION will follow immediately.

Detailed explanations of the possible error messages and their mea-

ning may be found in appendix 4.

38 11.5. KLAR-SITUATION.

11.5. KLAR-SITUATION.

Qn completion of compilation and when a new execution of a program
is called following a termination of execution the message

klar
is typed and the machine will stop waiting for a character to be typed.
If a SPACE is typed a normal run will take place. Other characters typed
in this situation allow a choice of the units used for output, as ex-
plained in the following section.

11.6. CHOICE OF QUIPUT UNITS OR STOP RUN.

The running system allows a free choice of the output units associa-
ted with the standard output procedures (cf. section 8.1) or of a termt-
nation of the run. This choice mst be made in the KLAR-SITUATION and may
be repeated at any time during the run of the program. The choice is con-
trolled by means of the control typewriter as follows:
Symbol Danish clue Meaning
typed’ *

a alt til alle All output will both be typed on the type-
writer and punched on tape

8 skrivemaskine All output will be typed. Nothing will be
punched,

p perforator Nothing will be typed. All output will be
punched.

Any symbol other skrv-output goes to type writer, tryk-out-
than a, 8, p, or u. put to punch.

u ud Stop run. The run will terminate with a
slut-message.

When a new CHOICE OF GUIPUT UNITS OR STOP RUN is desired during the
execution of a program the contents of the indicator register KA should
be changed. This will cause a jump to new CHOICE OF OUTPUT UNIT OR STCP
RUN to be made at the first following opportunity (usually within a few
seconds). When the choice has been made the execution of the program is
immediately continued unless u has been typed.

or

11.7. TERMINATION OF EXECUTION OF PROGRAM. 39

11.7. TERMINATION OF EXECUTION OF PROGRAM.

All regular runs of ALGOL programs terminate with a message. The

possible terminating messages and their meaning are as follows:

slut The program has passed through the final end of the program.

(Slut is Danish for: end).
ak The demand on storage space exceeds the capacity of the m-

chine. This will be caused by having too many variables of any
kind (simple or subscripted, labels, for statements, etc.) in
action similtaneously. See section 10.2 (Ak is Danish for: a-
las).

array The program tries to declare an array too large for the ma-
chine or one with a negative number of elements.

exp The built-in procedure for calculating exp has been called
with an argument which would cause the result to exceed the

range of real variables (cf. section 7.3). This may also be
caused by the operation A with a real exponent.

index A reference to a subscripted verfable having subscripts out-
side the bounds of the corresponding declaration is made.

in The built-in procedure for calculating In has been called with

a negative argument. This may also be caused by calling the o-
peration A with-an exponent of real type and a negative radi-
cand.

spild Arithmetic operation produces result outside the range of real
variables (cf. section 7.3). The operation A with integer ex-
ponent is first calculated with the absolute value of the ex-
ponent as exponent and may therefore cause spild even if the
final result is 0.

sqrt The built-in procedure for calculating sqrt has been called
with a negative argument.

tromle ak Qne of the standard procedures til tromle or fra tromle is
called with a value of tromleplads outside of the permitted
range (capacity of drum is exceeded, cf. section 10.5.3).

Following a terminating message the machine stops waiting for a con-
trol letter to be typed on the typewriter. If

k
is typed the system returns to the KLAR-SITUATION, ready for a new execu-
tion of the program (cf. section 11.5). Any other character will return
the system to the OVERS&TTER-KLAR-SITUATION (cf. section 11.3) ready for
a new compilation, except for the case that the section of the drum which
holds the compiler has been used for variables by the program just termi-
nated (cf. section 10.5). If this is the case the message

vak
(Danish for: gone) is typed. It is then necessary to perform a new loa-

ding of the compiler into the machine (cf. section 11.1).

ho Appendix 1. PASS INFORMATION.

Appendix 1.

PASS INFORMATION.

The pass information is obtained as an optional output during trans-

lation (cf. section 11.3.6). It consists of the following:

At the end of pass 1, just before the epilogue (cf. section 11.3.4):

1. linie <number of the last line of the ALGOL program> end

Following each pass: two or three integers. The first of these al-

ways gives the number of drum tracks used to hold the intermediate output

from the pass. The remaining have the following meaning:

Pass 1. Number of drum tracks reserved for long text strings.

Pass 2. a. 979 - the number of different identifiers in the program a-

part from standard identifiers (minimum 512).
b. 364 + number of words used for long identifiers.

Pass 3. The number of blocks in the program. (Max 1023).
Pass 4. a, The maximum depth in the stack used for collecting the decla-

rations belonging to each block at the begin of the block and

for rearranging procedure calls, rounded up to the nearest ml-
tiple of 10. (Max 512).
b. The maximum level of blocks.

Pass 5. a. The number of reveclarations of identifiers.

b. The number of occurrences of identifiers in the program apart
from standard identifiers and the place where the identifier is

declared.
Pass 6. a. The maximum of the number of words used in the operator

stack. (Max. 50).
(The om of the number of words used in the operand stack.
Max. 70).

Pass 7. Maximum number of words used in the stack of operand descrip-
tions. (Max. 55).

Pass 8, 291 - the sum of maximum number of words used in the two program
point stacks.

The number of drum tracks used by the finally translated program is
the sum of the number of tracks reserved for long text strings (pass 1)
and the number of output tracks from pass 8. These tracks are placed from
track 319 and downwards as far as necessary.

Appendix 2. PASS OUTPUT. Ky

Appendix 2.

PASS OUTPUT.

If desired the compiler will produce printed output of the internal

output produced by each pass (cf. section 11.3.7). The following pages

give the code for the basic structures of each output.

The output from the passes 1 to 7 has the form of a uniform sequence

of integers in the range from 0 to 1023 printed with 10 in each line. De-
pending on the context these integers represent specific delimiters or

are attached as parameters to adjecent integers to form structures of up

to 6 integers. The syntax of these structures is specified fully. Some of
the peculiarities of the order in which delimiters and parameters will

appear in the output are caused by the fact that passes 4 and 8 proceed
in the reverse direction. This causes the output from passes 3, 4, and 7
to be scanned by the following passes in the reverse direction of that in

which it is produced and in which it appears in the printed output. The

structures are everywhere described in the order in which they appear as

output.

Pass 8 produces the final machine code. This is available as output

from pass 9. The specifications given include only those instructions
which refer to the fixed administration and which are therefore not com-

prehensible to those familiar with the GIER machine code.

As a further aid to the understanding of the pass output the purpose

and function of each pass shall be given briefly as follows:
Pass 1. Conversion to reference language. Strings and layouts are as-

sembled.

Pass 2. Identifier matching. Each distinct identifier will be associated

with an integer from 512-1022.

Pass 3. Analysis and check of delimiter syntax. Delimiters of miltiple

. meaning are replaced by distinctive characters. Extra delimiters

are inserted to facilitate the later scanning.
Pass 4, Collection of declarations and specifications at the begin of

each block. Rearrangement of procedure calls.
Pass 5. Distribution of declarations and specifications. Each identifier

is replaced by its full description. Storage allocation of vari-
ables.

Pass 6. Conversion of expressions to Reverse Polish notation (see e.g.

Computer Journal Vol 5, no. 3, 210). Type checking.
Pass 7. Generation of machine instructions for expressions. Allocation

of working variables.

Pass 8, Final addressing of program. Segmentation into drum tracks. Pro-
duction of final machine code. .

Pass 9. Rearrangement of the program tracks on the drum.

he Appendix 2. PASS QUTPUT: PASS 1.

Output Pass Output Pass Output Pass

unit Meaning where unit Meaning where unit Meaning where

used used used

la 2 4iM 2 131 3
2b 2 4ON 2 135 oh 3
3c 2 43 0 2 137 string 3
had 2 4h P 2 139 label 3
Se 2 45 Q 2 141 value 3
6f 2 46 R 2 1513 3
Tg 2 47 S 2 156 end 3
8h 2 48 7 2 160 else 3
91 2 hou 2 165 3

10 3 2 50 V 2 167 then 3
11k 2 51 W 2 169 do 3
121 2 52x 2 174 7 3
13m 2 53 YX 2 176 step 3
Wen 2 54 Z 2 178 until 3
150 2 55 £ 2 180 while 3
16 p 2 56 @ 2 182 JT 3

i774 2 57 0 2,3 190 [3
i8r 2 58 1 2,3 200 , 3
19 s 2 59 2 2,3 207 := 3
20 t 2 60 3 2,3 211) 3
21 u 2 61 & 2,3 225 true 3
22 Vv 2 62 5 2,3 226 false 3
23 w 2 63 6 2,3 227 X 3
ou x 2 64 7 2,3 228 / 3
25 y 2 65 8 2,3 229 A 3
26 2 2 66 9 2,3 230: 3
27 @ 2 67. 3 231 < 3
28 ¢ 2 68 » 3 232 < 3
29 A 2 72 + 3 233 = 3
30 B 2 76 - 3 234 > 3
31 ¢ 2 85 -, 3 235 > 3
32 D a 87 go to 3% 236 + 3
33 E 2 91 begin 3 237 A 3
34 F 2 93 Tor 3 238 V 3
35 G 2 100 Tf 3 239 = 3
36 H 2 102 own 3 240 => 3
37 I 2 107 integer 3 1021 end pass 2
38 J 2 112 real 3 1022 <i bytes>
39 K 2 117 boolean 3 lit string 2
ho L 2 124 procedure 3 1023 TAR RET 2

<4 bytes> ::= <text on drum>|<short text>|<layout>
<text on drum ::= 0 <track relative> O <track number>

<layout> ::= <layout bits 0-9><layout bits 10-19><layout bits 20-29>
<layout bits 30-39>

Output unit 1021 (end pass) will appear in the following context:

linie <line number of last line> end
156 <epilogue>; 1021 0
<number of output tracks><number of tracks for strings>

Appendix 2. PASS OUTPUT. 43

PACKING OF LAYOUTS AND STRINGS.

Layouts. These are packed in one word as follows:

Bits 0-19 A 1 in position p indicates that character number p in the

layout (not counting SPACEs) is followed by SPACE.
- 20 - 23 b = mmber of significant digits
- bh -27h= - «= digits before the point
- 28- 29 fn = sign of number part (no sign = 0, - = 1, + = 2, + = 3)
- 30 - 33 d = number of digits after the point
- 34 n, Oif non, 1 ifn
- 35 - 37 s = number of digits in exponent
- 38 - 39 fe = sign of exponent (code as for fn)

Other strings. These are packed character by character. One charac-

ter uses 6 bits. The numerical value of the character is the one given in

section 6.5 of the Manual with the exception of CAR RET which is repre-

sented by 63. Characters for UPPER CASE and LOWER CASE are included as
needed, but all strings are understood to begin and end in lower case.
The end of a string is indicated by the character value 10. The strings
having 6 or fewer characters are packed in one word and carried through

the translation process like numbers. Longer strings are stored on the
drum during pass 1 and are represented during translation and at run time

by a word referring to the drum.
Packing of short strings (6 or fewer characters):

Bits O- 3 The constant 10
- 4 -~ 9 Character no. 6 -
- 10-15 - - 5 |
- 16- 21 - - && Unused character positions are
- 22-27 ~ - 3 set to 10
- 28 - 33 - - 2 |
- 34 - 39 - 1 -

The word referring to a long string has the following structure:
Bits O- 9 The constant 0

- 10 ~ 19 track relative address, tr

- 20 - 29 The constant 0

- 30 - 39 track number, tn
On the drum the characters are stored in consecutive words on track

tn in relative addresses tr, tr+1, tr+2, ... ete. The word following the
one having relative address 39 on track tn is word 0 on track tn-1.

Within each word the characters are packed in the following order:

Bits O- 5 Character no. 7

- 6-11 - - 6
- 12-17 - - 5
- 18 - 23 - - &4&
- a - 29 - - 3
- 30-35 - = 2
- 36-51 - - 1 (dit 40 is mark a, bit 41 is mark b)

Output Pass Output
unit Meaning where unit Meaning

used

57 0 3 174 :
58 1 3 176 step
59 2 3 178 until
60 3 3 180 while
614 3 182 T
625 3 190 [
63 6 3 200 ,
64 7 3 207 :=
65 8 3 211)
oS) 3 225 true
67 3 226 False
68 » 3 227 xX
72+ 3 228 /

76 - 3 229 A
77 CARRET 3 230 :

78h bytes>lit string 3 231 <
85 “> 3 232 <

87 go to 3 233 =
91 begin 3 234 >
93 for 3 235 >

100 Tf 3 236 +
102 owm 3 237 A
107 Integer 3 238 V
112 real 3 239 =
117 Boolean 3 2h0 =>
124 procedure 3 241 end pass
131 array 3 512-979 Free
135 switch 3 identifiers
137 string 3 980 lyn
139 Tabel 3 981 tromleplads
141 value 3 982 taststreng
151 3 3 983 lastegn
156 end 3 984 tasttegn
160 else 3 985 settegn
165 { 3 986 tegn
167 then 3 987 tast
169 do 3 988 til tromle

Output unit 241 (end pass) will be followed by:

Appendix 2. PASS OUTPUT: PASS 2.

989 fra tromle

Pass

where

used

Output

unit

990
991
992
993
994
995
996
997
998
999

1000

1001

1002

1003

1004
1005

1006

{007

1008

1009

4010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

A
D
A
N
D
N
A
N
A
A
A
W

A
V
I

R
E

I
O
E

O
E

G
T

O
T

Or

Gt

ot

O
H

Or

Ot

l
d

i
O
r

O
b

O
l

O
t

Ol

t
l

Ot

e
d

Meaning

tryktegn
skrvtegn

trykvr

tryktom
tryktekst
tryktab
tryksum
trykstop
trykslut
trykml
trykkopi

trykklar
trykende
tryk
streng

sqrt

skrvvr

skrvtekst

skrvtab

skrvml

skrvkopi

skrv

sin

sign

lest
lesstreng
aes
in

exp
entier

cos
arctan
abs

1) Smallest output value used for identifiers - 1, (= min identifier)
2) 0.

<4 bytes> is defined in the output from pass 1.
aly eo ee 949 0

Pass

where

eS an a ror
]

A
D
N
A
D
A
K
A
A
N
A
A
N
A
N
A
A
A
N
A
N
A
H
A
A
A
N
A
A
H
A
A
A
R
A
A
A
H
R
A
D
A
K
R
A
A
A
K
R
A
A

Appendix 2. PASS OUTPUT: PASS 3. ks

Output values 0-168 and 512-1022 are processed in pass 4, the remaining
in pass 6.

Output Meaning Output Meaning Qutput Meaning
unit unit unit

0 CAR RET 76 spec string 211 end go to
<4 bytes>4 lit string 80 Value 212 For
<number> 5 Jit integer 84 Formal 213 step
<number> 6 Tit real 88 switch list 214 until
<log val>7 Tit bool 92 end call 215 end ao
16 switch param 96 end clean 216 pos
20 tall param 100 en oc 217 neg
eh beg call 104 end proc 218 =
28 deg func 108 bounds — 219 -
32 decl switch 112 Bound colon 220 xX
37 deci array intg 116 begin 221 /
38 deci array real 120 3 222:
39 decl array bool 124 do 223 K
ho deci proc 128 TMenst poh <
41 decl proce intg 132 elsest 225 <
42 decl proc real 136 Trouble 226 2
43 decl proce bool 140 t= for 227 >
45 decl simple intg 144 simple for 228 >
46 deci simple real 148 Step elem 229 6
47 decl simple bool 152 While elem 230 A
48 decl label 156 While 231 V
53 decl own intg 160 end assign 232 =>
54 decl own real 164 t= 233 =
55 decl own bool 168 first := aa, T
56 spec switch 235 [
61 Spec array intg 200 bound comma 236]
62 spec array real 201 subscr comma 237 ~«—*)
63 Spec array bool 202 proc 5 238 -,
64 Spec proc 203 ifex 239 simple for do
65 spec proc intg 204 Tfst eho step element do
66 Spec proc real 205 thenex 241 While elem do
67 spec proc bool 206 elseex 512- Free Identi-
69 Spec simple intg 207 delete call 979 fiers
7O spec simple real 208 end elseex 980- Std. identifiers
71 spec simple bool 209 end elsest 1022 See output from
72 spec label 210 end thenst pass 2

<k bytes> ::= <text on drum|<byte><byte><byte><byte>
<text on drum> ::= 0 <track relative> O <track number>
<number> ::= <bits 0-9><bits 10-19><bits 20-29><bits 30-39>
<logical value> ::= <true>|<false>
<true> rr= 0 226 0 0
<false>: := 1023 512 0 O

Following the normal output two output units appear:
1. Smallest output unit used for identifiers - 1, (= min identifier)
2. 0 -

46 Appendix 2. PASS OUTPUT: PASS 4.

Pass 4 is a reverse pass. Consequently the output bytes appearing
first will refer to the last part of the program et vice versa.

Where 3 output byte values are given together they refer to the
types integer, real, Boolean, in this order.

Output Meaning Output Meaning Output Meaning
unit unit unit

O CAR RET 185 expression 236]
<constant> 186 end call 237)

- & lit string 187 Begin expr 238 -,
- 5, 0, 7 1it 200 Bound comma. 239 simle for and do

<base points> 201 subscr comma comma. 240 step element do
- 16 begin block 202 proc 3; 241 while elem and do
~ 20 begin procedure 203 ifex ake end Loc

<line identifier> 204 Ifst 243 bypass label
- 24 proc value 205 Thenex au go to bypass label
-~ 28 end pass 206 elseex es Tabel colon

<line identifier><no.of elem 207 delete call 246 Bound colon
- - 32 decl switch 208 end elseex 247 end bounds
“identiffer L[ist><no.of subse> 209 end elsest 248 end expression
~ - 37,38,39 declare array 210 end thenst 249 end design expr.
<line identiffer><no.of param> 211 end Zo to 250 Then statement
- ~ 4o declare procedure 212 For 251 else statement
--4, cl type proc 213 step 252 T= for

csdentition list> 214 until 253 step element
45 46,47 decl simple 215 end do 254 First:=

- 48 declare label 216 pos 255 While
- 53,55, clare ow 217 neg 256 While element
- 56 specify switch 218 + 257 prepare assign
- 61,628,603 specify array 219 - 258 simple for
- 64 specify procedure 220 x 259 end assign
- 65,606,607 spec type proc 221 / 260 do
- 69,70,71 spec simple 222 : 261 while label
- 72 specify labe 223 K 262 Ts
- 76 specify string 204 < 512- Free iden-
- 80 value ~ 225 < 979 tifiers
- & Formal 226 = 980- Standard iden-

88 switch list 227 > 1022 tifiers as
<identi?iersano [Of parameters> 2268 > from pass 2
- - 92 begin call 229 +

96 begin Local 230 A
<no.of ident.><adr. of coef> 231 V
- -100 bounds 232 =>

104 end block 233 =
<identiffer>” oa (

~ 108 end procedure 235 [

ka

Appendix 2. PASS QUTPUT: PASS 4. k7

<constant> ::= <bits 30-39><bits 20-29><bits 10-19><bits 0-9>
<base points> ::= <base address for variables><base address for working>

<base address for working> ::= 1024 - number of locations used for

local variables - number of locations used for local program points

<base address for variables> ::= 1024 - number of locations used
for local program points

<identifier> ::= <byte value in range from 512 to 1022>

<line identifier> ::= <line number><identifier>
<identifier list> ::= <line identifier>|

<identifier list><line identifier>

The last bytes appearing in the output refer to the outermost block

and the entire program and are as follows:
1.2. <base points>

3. 1021 - maximum block number ~- number of owns

4, 2+ number of owns
5. smallest output unit used for identifiers - 1

6. 0

STORAGE ALLOCATION OF QUANTITIES IN THE STACK.

The storage arrangement of variables and similar quantities is
formed during passes 4 and 5. Each ALGOL block forms an independent ar-
rangement and the storage allocation results in the attachment of a block
number and a block relative address to each quantity. The block number
counts the level of nesting of blocks, the outermost block of the program
being block number 0. The block relative addresses reflect the order in
which the locations are placed within the section of the stack reserved
when the block is activated at run time. With a view to the manner in
which the locations will be reserved during program execution 3 groups of
quantities are distinguished. Within each group locations are assigned to
the quantities of the program in the order in which these quantities ap-
pear in the given ALGOL text. The 3 groups and the storage requirements
of each item within them are as follows:

Group 1: Locations which have been initialized before the entry into
the local declaration. This group exists only for procedure body blocks
and is at run time reserved and initialized by the procedure call. Reser-
vations: return information (1 location at relative address = 2), follo-
wed by Orme yrocations (1 for each formal parameter at relative addres-
ses 3, 4, ...).

Group 2: Locations which are initialized by the local declaration.
Qne location is used for each program point (entry to labelled point or
procedure body). A switch declaration will use one location for the
switch identifier followed by one location for each switch element. The
body of a type procedure will need one location for the procedure value,
at relative address -1 (= 1023). The block information will need 2 loca-
tions, always at relative addresses 0 and 1. All other locations within
the group have negative relative addresses, the first of these being the
so-called base address for variables. .

Continued on page 49

48

150 <const>
151,152,153 <const>
154,155,156 0 <block adr>

Appendix 2. PASS OUTPUT: PASS 5.

literal string
literal integer, real, Boolean

157 <no.of elements><block adr> switch
158,159,160 <no.of subscripts><block adr.> array, integer, real, Boolean
161, 162,163,164 <no.of param.><block adr.> proc, no %

O <block adr.> simple integer, real,
0 <block adr.> label
O <block adr.> formal array, integer, real, Boolean
0 <block adr.> formal proc, no type, int, real, Bool
O <block adr.> formal simple, Int, real, Bool
0 <block adr.> Fo; ~~ 20.

0 <block adr.> Formal switch
0 <block adr.> Tormal string

own integer, real, poolean

pe, int, real, Bool
olean

182,183,184 <no.of param><block adr.> procedure call or assign,
nteger, re

165,166, 167
168
169,170,171
172, 173,174,175
176,177,178
179
180
181

185 expression
186 end ¢
187 begin expression
188 0 O O Undeclare
200 bound comma

201 Subscr comma

202 proc 3

203 ifex

204 TFst
205 thenex

206 elseex
207 delete call

208 end elseex
209 end elsest

210 end thenst

211 end go to
212 For

213 step
214 tmti1
215 end do
216 pos
217 neg
218 +
219 -
220 x
221 /
222 :
223 K
eo <
225 <
226 =
227 >
228 >
229

230 A

231 V
232 =>

233 =
2A T
235 [
236]

237)
238 -,
239 simple for and do

eho step element and do
241 while elem and do
242 end local
243 bypasslabel
2h. goto bypasslabel
aks colon
246 Bound colon
247 end bounds
248 end ex
2h9o en S
250 then st

251 else st

252 t= for

255 step elem
254 Tirst:=
255 while
256 while element
257 prepare assign
258 simple for
259 end assign

» Boolean

260 do
261 While label
262 T=
263 <number of elements>

local switch
264 <number of parameters>

local procedure

265 local label
266 Diind
267 end pass
268 CAR RET
269 <working base>

begin block

270 <working base>
begin procedure

271 <identifiers
end procedure

272 <relative addr = 2>
take value unrounded

273 <relative addr - o>

take value rounded

274 begin Local
275 <no.of actuals>

<identifier>

begin call

276 end block
277 <rel.addr.of coeff>

<no.of arrays>

bounds

980-1022 Std. identifiers

La

Appendix 2. PASS QUIPUT: PASS 5. kg

<constant> ::= <bits 0-9><bits 10-19><bits 20-29><bits 30-39>
<block adr.> ::= <block relative address><block number>
<identifier> ::= <standard procedure identifier byte |<identifier description

starting with byte in range from 154 to 184 (see above)>
First byte in output = 1021 - max. block mmber - number of owns
Second byte in output = working base for outermost block.

Continued from page 47.

Group 3: Locations reserved, but not initialized, by the local de-
claration. Simple variables use one location each, irrespective of their
type. An array segment uses one location for each array identifier fol-
lowed by (1 + number of subscripts) locations for storage mapping coeffi-
cients. The relative addresses of the locations of this group are even
more negative than those of group 2, the first being the so-called base
address for working. Working locations created during pass 7 also belong
to this group. They are placed at (base address for working - 1), (base
address for working - 2), etc.

Example of relative addresses of a block.

real procedure P(f1, f2); real f1, £2;
begin switen si= Li, LQ; ~~
“~~ array a, bliin];

real yr;
procedure Q3 3

le:

Li:

ends

Relative

address

-++. Working locations -
1011 (pass 7)

base address for working: 1012 a

1013 b | Group 3
1014 coeff. 1
1015. = 2 |
1016 xr -

base address for variables: 1017 s -
1018 element 1 |
1019 - 2

1020 Q |
1021 I2 Group 2
1022 11 |
1023 value of P

QO block information |
1 - - -
2 return - -

2 fl | Group 1
fe -

50

Expressions are written in reverse Polish notation.

Appendix 2. PASS QUTPUT: PASS 6.

Output values
81-90 are used for perameters in procedure calls and local declarations.

O begin local 38
] end loc 39

<no of parameters + 1> ho
2 - begin call 4
<working base> he

3 - begin procedure 43
<no of fo 3> Ly

4 - end procedure 4s
5 ~ end type procedure 46
<working bage> 47

6 - begin block 48
7 end bloc kg
8 go to bypasslabel 50
9 label declaration 51

10 While label “~~ 52
11 begin expression 53
12 i 54
13 else statement - 55
14 end else statement 56
15 for 57
16 T= for 58
17 simple for 59
18 simple for and do 60
19 while 61
20 while element 62
21 While element and do 63
22 =o step 64
23 until 65
a4 step element 66
25 step element and do 67
26 end do 68
27 «end subscripts 69
28 subscript comma 70

29 end switc signator 71

30 roun 72
31 abs

<track rel><track no> 13-
32- -std.proc. 1 array par 74-
33 + entier 75-
3a=y 76-
35 negative TT-
36 en expression 78-
37 end R expression 19-

First symbols in output:

end address expr 80 address
proc; <no. of elements>
else RF expression 81 - local switch
else R expression <no of parameters>

else address expr 82 - local procedure
end else RF expr. 83 Tocal label
end else R expr 84 procedure value
end else expr 85 expression as param
then <block rel><bl no>
prepare assign 86- -simple or label
not use 87- -ow parameter
{= 88. -described in stack
Zo to <track rel><track no>
+ 89- -std.proc.parameter
- <constant>
x 90 - constant parameter
/ <track rel><track no>

91- -std.proc, no param
K integer 92- -std.proc. 1 par

re 93- -std.proc. 1 R par
< then 94 prepare function call
< then <constant>
= then 95 - constant
> then <block rel><bl.no>
> then 96- -end proc call
4 then <track rel><track no>
< 97- -end standard call
< <rel.adr.coef><no ident>
= 98- -bounds
> 99 bound comma
> 100 end bounds
+ <plock rel - 2>
A 101 - take value rounded
v 102 - take value unrounded
= 103 end pass

<block rel><bl.no> 104 bypass Label
-arra’ 105 take nonsense
“staple variable 106 trykende
-own 107 ~=trykslut
-switch 108 = trykstop
-Tabel 109 tryktab
~formal 110) trykvr
-procedure 111 lyn

1. Initial stack reference = 1021 - max. block number - no. of owns
2. Working base for outermost block = 102} - number of words needed for

program points etc. - number of words used for variables.

Appendix 2. PASS OUTPUT: PASS 7. 51

CGPERAND ADDRESSES IN THE OUTPUT FROM PASS 7.

In the output from pass 7 references to variables in the stack (i.e.

operand addresses) have been finally differentiated into the following

classes:

1. Variables in the outermost block of program. The block number,

which is 0, is omitted from the output. The final machine instructions,

formed in pass 8, use absolute addresses.
2, Variables in the currently local block. Again the block number is

unnecessary. The final machine addresses are p-relative; at run time the

p-register always holds the stack reference of the currently local block.

3. Variables in intermediate blocks. These require both the block

number and the relative address. In the final machine program s-reletive

addresses are used and the appropriate stack references are placed in the

s-register by means of explicit ps-instructions referring to the DISPLAY.

These ps-instructions are inserted as needed during pass 8,

In addition to the above three classes the following operands appear

explicitly in the output from pass 7:

4, UA, the Universal Address. This is used for subscripted variables

and variables called by name. The basic administrations for referring to

these two kinds of entities place the absolute machine address of the re-
event location in UA (the THUNK idea, see Ingerman, Comm. ACM. Jan.1961,
Do)-

5. UV, the universal value. Upon completion of a call of a type pro-
cedure the value of the function designator ts found in UV.

52

<alit>
<block relative>
<block relative>

<block relative>

<st.ad>

10 if R<O then R:=-R
11 Rr= -R
12 procedure value
13 end UV expr
14 R:= round (RF)
15 end RF exp

16 end R expr
17 end address expr
18 Ri= -, R
19 R:= R - epsilon

20 if R40 then R:= -1
21 RF:= store[UA]
22 RF:= RF - 0.5

23 RF:= float(R)
a4 goto non loc. in s
25: goto computed
26 goto local in s
27 Ms= UA
28 UA:= 8
<op> 29 RF:=abs(<op>)
<op> 30 RF:= -<op>
<op> 31 RF:=RF + <op>
<op> 32 RF:= RFx<op>
<op> 33 R:= R A <op>
<op> 34 R:= RV <op>
<op> 35 R:= R = <op>
<op> 36 RF:=RF- <op>
<op> 37 RF:= RF/<op>
<op> 38 R:=-abs(<op>)
<op> 39 R:= abs (<op>)
<op> 40 RF:= <op>
<op> 41 R:= <op>
<op> 42 <op>:= RF
<op> 43 <op>:= R
<op> 44 <op>:= 0
<op> 45 M:= <op>
<op> 46 <op>:= M
<op> 47 s:= <op>

1 constant

2 absolute address (block 0)
3 p relative (in local block)
4 (p)-rel. (ind., local block)
5 s-relative (block relative)
6 (UA) (ind., univ. address)
7 UV (univ. value)

<op> 48 gmf VLA
<op> 49 acn MA
<op> 50 <op>:=RF marked

<op> 51 <op>:= O marked
<op> 52 <op>:= M marked
<op> 53 s:= adr(<op>)
<op> 54 mit 1st subscr
<op> 55 call formal

56 integer divide
57 - -
58} -

<op> 59 index call

<op> 60 switch call
61 cS4:= RF
62 c68:= RF
63 cS4s=a M
64 c68:= M
65 M:= store[UA]
66 not input

<char> 67 punch <char>
<rel> 68 working:= R
<rel> 69 working:= RF
<rel> 70 working:= M
<subse>71 mit next subse

<rel> 72 end do
<rel> 73 end single do

74 Radr:= input

75 ROO:= RO

<elem> 76 local switch
<lit> 77 const parameter
<-ap> 78 beg call
<tr.p> 79 end call std.
<tr.p> 80 std.proc.par
<st.ad>81 simple as par
<st.ad>82 simple bl. 0 pag
<st.ad>83 desc. in stack
<st.ad>8i described in

stack bl. 0

Appendix 2. PASS OUTPUT: PASS 7.

<st.ad>85 endproccall
86 RF:= Radr

<tr.p> 87 std.proc no par
<tr.p> 88 std.proc 1 par
<tr.p> 89 std.func 1R
<-ap> 90 endproc

<-ap> 91 end type proc
<-ap> 92 end block

<bl.no>93 begin local

94 end else
95 bypass label

96 label declar.
97 begin expr

98 begin proc
99 do

100 if

101 for

102 for label

103 call ln

104 else
105 then

106 if Foo
107 if R<o
108 Tf R=2o
109 If R+0
110 do NT
111 do abs

112 if R<O then goto

113 Boto bypasslabel
114 bypassabs
115 prog point par

116 (internal)
117 (internal)
118 endlocal
119 return inf

120 take for Label

121 RF:= nonsense

122 call exp

123 end pass
124 complete array
125 take last used

126 R:= array ref
127 <op>:= array id

128 reserve space
129 si= p + <ap>

then goto

then goto
then goto

then goto

K<rel>

<op>

Kop>

Kop>
Kap> 130 callMinteger

‘

}

b

Appendix 2. PASS QUTPUT: PASS 7. <op> ::= <operand description, see byte values 1 to 7 above>
<literal (lit)> ::= <bits 30-39><bits 20-29><bits 10-19><bits 0-9>

<stack address (st.ad)> ::= <block relative><block mumber>
<character (char)> ::= <value of character, see section 6.5>
<rel> ::= <relative in local block>
<subse> ::= <subscript number - i>

<elem> ::= <number of switch elements>

<-appetite (-ap)> ::= <1024 - number of locations reserved in stack>
<appetite (ap)> ::= <number of locations reserved in stack>
<track point (tr.p)> ::= <track relative><track number>
<block number (bl.no)> ::= <block number>

QUTPUT FROM PASS 8: FINAL MACHINE CODE.

Adressing.

Pass 8 generates the final machine program and places it in correct
relative locations on the drum tracks. Pass 9 only rearranges the com-

plete tracks on the drum. The final machine program is available as out-
put from pass 9 and will be printed as normal program text. Each track
will be headed with the track number. The first few locations on a track
usually are occupied by literal constants needed by the program stored on
the track. These will be referenced by r-relative addresses from the pro-
gram. Other operands are-addressed as in the output from pass 7. Jumps

within the same track use r-relative addressing. All other program refe-
rences specify the track relative address and the track number. The pro-
gram starts in some unspecified location on the first track printed.

The following explanations only deal ‘with those program parts which

refer to the running system (the fixed administration placed in the cores
from 835-1023). It should be noted that the absolute addresses given are
subject to change if the running system is changed in any way in new edi-
tions of the compiler.

Parameters in local declarations and procedure calls.

The local declaration and the procedure call both serve to reserve

and initialize locations in the stack. In the machine code they are re-
presented by a call of the administration followed by one cr more words

which serve as parameters. The administration will take the parameters
one by one and usually generate the contents of a location in the stack
from the information given in the parameter. The parameters appear in the
machine code in the reverse order of that in which they appear in the
original ALGOL program.

¥

54 Appendix 2. PASS QUTPUT: PASS 9.

Absolute addresses in a program having the maximum block nesting n and p
own variables.

eoee Variables in

-193-n-p outermost block

-192-n-p Block information of

-191-n-p outermost block

~190-n-p own no. 1

~191-n own no. p

-190-n internal reservation

-189-n DISPLAY [n]

-190 DISPLAY [1]
-189 cl oprsPray [0]
-188 c33mc35. (1) mt c33: change sign. (2) ¢35 contains 0.5 floating,

used for entier: srf ¢c35, and: : srf ¢35 V NT; arf ¢35;
-187 c34. epsilon. sr c34 is used In certain relations.
-186 c37. UV, the universal value. .
-185 cho. Floating 1.0 and true.
-184 cht. - -1.0 and false.
-183 c43. Nonsense, the value of output procedures.
-182 clh6. last used in the stack. (1) arn cl6, ck 10: form array identi-

fier. (2) ps (clh6): used for take value (when values are taken the
formals are addressed relatively to last used).

~173 c68. Working location. Used for the exponent when calling Ainteger.
-172 c69. tromleplads.
-116 ¢2, hs ¢2, qq track relative + track number.29: transfer control.
-114 ¢3. hv(f) c3: go to local label referenced in the 8-register.
-113 che. hs che, aq track relative + track number.29: transfer in pa-

rameter list (see about parameters below).
-112 c21. hv c21, qq track relative + track number.29: (1) Call standard

procedure. (2) End local declaration.
- 98 c5. (1) hs c>, aq DISPLAY ref - appetite.29: begin local declara-

tion. (2) hsf c5, aq - appetite.29: begin procedure call.
- 79 c26. pm array identifier, hs c26: index call, places the address of

the subscripted variable in UA.
- 72 036. UA, the universal address.
- 71 c20. hhf ¢c20, qaqf number of elements: switch in local declaration.
~ 60 c54. Working location. Used for the radicand when calling Ainteger.
~ 56 250. qq p-relative addr. of length, hs c50: reserve space for array.
~ 44 c55. hh c55: termination of execution.
- 42 c38. pm switch identifier, hs c38: take value of switch designator.
- 34 c22. pm formal identifier, hs c22: take formal, address to UA.
- 30 c9. hsn c9, aq track relative + track number.29: call standard

procedure with no parameters.
- 20c10. hs cl0, qq track relative + track number.29: call standard

procedure with 1 RF parameter.
- 19 cll. hs cll, qq track relative + track number.29: call standard

procedure with 1 R parameter.

 °

Appendix 2. PASS OUTPUT: PASS 9. 55

- 18 c7. hn(f) c7: end type procedure.
~ 16 c6. hh(f) c6: end procedure.
- 14.¢18. arn(c36), hs c18: go to computed label.
- 13.¢16. hh(f) ¢16: go to non-local label.
- 10 c13. hv(f) ¢13: end RF expression.

9 c1h. hv(f) c14: end R expression.
- 8012. hv(f) c12: end UV expression.

7 c15. hv(f) c15: end address expression.
4 c8: , hs(f) c8: end block.

Parameter formats used only in local declarations.

hs-98 [=c5], aq DISPLAY ref. -<ap>.29: begin local declaration
hhf-71 [=c20], aqf no. of elements: local switch

Parameter formats used only in procedure calls.

hsf-98 [=c5], aqf - appetite.29: begin call
ps (DISPLAY ref), pm s<block rel.>: described in stack: array,

switch, procedure identifier,
formal name

qq DISPLAY ref, pm <absolute address>: described in stack block 0
ps (DISPLAY ref), psn s <block relative>: cathy ares procedure (end

call).

Parameter formats used both in local declarations and procedure calls.

Any f~-marked full word: constant, in local decl. used
only for the procedure value

aq O ,q4q <track rel>+<track no>.29: program point, left
qaf O ,aqf<track rel><track no>.29: program point, right. Used in

local declaration for: la-
bels, procedures, expressions

as switch elements. In proce-

dure call: expressions, std.
proc. identifiers, return in-
formation

psf (DISPLAY ref), psf s <block rel>: simple var., label. In local
decl.: switch elements.

aqf DISPLAY ref, psf <absolute adr>: simple var., label, in block
0

hs-113 [=c42], qq<track rel>+<track no>.29: track completed
hv-112 [=c21], qq<track rel>+<track no>.29: continue in program, left
hvf-112 [=c21], aq<track rel>+<track no>.29: - - - 4, right

local decl: end local, Proc.
call: call standard proce-
dure.

56 Appendix 3. SELECTED EXECUTION TIMES.

The execution time of a program in GIER ALGOL depends not only on
its individual algorithmic constituents, but also on the loop structure
and the number of variables declared at the time when each part of the
program is executed (cf. section 10.4). The times given below are based
on actual timings at the machine and include an average track administra-
tion time such as it may be expected in loops which may be accomodated
completely in the core store. Substantially longer execution times will
result under the following circumstances: a) Frequent transfers of pro-
gram tracks from drum are necessary (cf. section 10.4); b) A major part
of the execution time of the program is spent in a loop with a cycle time
of the order of 2 millisecond or less and this loop happens to have been
placed across a program track transition by the compiler. A program suf-
fering from the latter of these calamities may be cured by insertion of a
suitable amount of neutral program (r:=# r or the like) before the final
end.

Algorithmic entity Example Execution

time, milli-
seconds

Audition a+b 0.12
Multiplication axb 0.18
Division a { b 0.21
Square aAe2 0.18
Cube a t 3 0.4
Power, integer exponent ant

abs (exponent) = 1 3.8
10 565

100 8
1 000 10

10 000 12
400 000 14

1 000 000 16
Power, real exponent a A r 12
Subscripted variable

1 subscript A{t] 0.9
2 subscripts B{i, 3] 1.2
3 - cli, j, k] 1.5

Step-until element, constant step
and simple upper limit, each loop step 1 until n 0.6

Block with simple variables begin real a3 end 2.0
Block with array declaration begin array alT:10]3; end 3.6
Reference to formal parameter ~—
called by name. Actual parameter is

simple 0.4
expression 3.2
array identifier 0.0
switch identifier 0.0
procedure identifier 0.0

Call

Appendix 3. SELECTED EXECUTION TIMES.

of declared procedure

having an empty procedure body

Call

No parameter

1 parameter

2 parameters
3 ~-

of standard procedure
abs

arctan

cos
exp
ln

sign
sin

sqrt

P;
Q(a);
R(a, b)3

S(a, b, c)s

abs (x)
arctan(x)
cos (x)
exp (x)
1n(x)
sign(x)
sin(x)
sqrt (x)

A
W
A
I
T

N
T

O
N

O
N

©

A
W

P
O
P

O
V
W

U
I
I

a
MW

O
N

A
W
O
N
—

58 Appendix 4. ERROR MESSAGES: PASS 1.

For the general description, refer to section 11.4.4,
The pass number is typed as an integer from 1 to 8 followed by a

point (.) at the beginning of the first error message belonging to the
pass.

The line referred to in an error message will normally be the line
in which the error occurs, but there are exceptions to this rule: a) A
construction appearing near the beginning or ending of a line may have
its line number changed by one unit. b) One of the error messages from
pass 5 may supply a quite misleading line mumber (see below). c) Error
messages from passes 7 and 8 will always refer to line 0.

PASSES 1 - 8,
for stort program program too big

This indicates that the capacity of the drum has been exceeded by
the demands of the program text. Remedy: Use a version of the compi-
ler which leaves more space on the drum, if such a version is avai-
lable.

PASS 1.
forbudt tegn forbidden sign

A character to which no meaning is assigned appears on the input
tape.

fejl 1 sammensat symbol error in compound symbol
A string a characters which represents some of the first characters
of a compound symbol (cf. section 7.1.2), but not the following
ones, appears in the input.

fejl 1 parameter delimiter error in parameter delimiter
The construction)<letter string> is not followed by :(

ukorrekt brug af comment incorrect use of comment
The delimiter comment is not preceded by begin or 3

udefineret layout undefined layout
The compound symbol £ is followed neither by < nor by a layout (cf.
section 8.3.1)

PASS 2.
for mange identifikatorer too many identifiers

The program uses too many different or long identifiers. Remedy: Use
the block structure to reduce the number of different identifiers.

PASS 3.
delimiter mangler delimiter missing

Two operands (i.e. identifiers, numbers, logical values, strings, or
compound expressions within parentheses) follow each other. Examp-~-
les:
7.3 sin(5) 4 true r.77 rt<string}

r
a

Appendix 4, ERROR MESSAGES: PASS 3.

ikke tilladt operand inadmissible operand

a) An operand appears in a wrong context. Examples:

T:= begin true;
>) An operand is missing. Example:

ais [i]

forkert delimiter wrong delimiter

a) The delimiter structure is impossible. Examples:
begin r/i:= if go to if

b) Binary operator does not follow operand. Example:
i:= xr;

operand mangler operand missing
Operand is missing at end of construction. Example:

ri= x/;

forkert afsluttet konstruktion wrong completion of construction

Parentheses, brackets, or bracket-like structures do not match.
Examples:

r[i) begin r:= a +b, p(i, x3

talfejl number error
A construction which in its first symbols conforms to the syntax for
numbers is not terminated correctly, or a number is too big for the
capacity of the machine. Examples:

20.3 17-n-3 Tw 170

stack overlgb stack overflow

The nesting of begin’s, parentheses, etc. exceeds the capacity of
the compiler.

PASS 4,
stack overlgb stack overflow

The stack formed during the reverse pass 4 exceeds the available ca-

pacity. This stack is used to transfer the information about the

type and kind of each identifier and of each switch element from the
place where it is declared (for labels, where it labels a statement)

to the begin of the block in which it is local, and the information
about each actual parameter to the left parenthesis of the call.

PASS 5.

dobbelt declaration double declaration
The same identifier is declared twice in the same block or appears

twice in the same formal parameter list. Note that labels are consi-
dered to be declared as explained in section 4.1.3.

dobbelt specific. double specification

The same identifier is specified twice in the same procedure decle-
ration heading.

60 Appendix 4. ERROR MESSAGES: PASS 5.

manglende declaration missing declaration
An identifier is used at a place where it is not declared. The line
number associated with this error message will be misleading in the
following two cases: a) The identifier is an actual parameter. The
line number will point to the line in which the left parenthesis of
the call appears. b) The identifier is a switch element. The line
number will point to the line which contains the begin of the block
in which the switch is declared.

manglende specific. missing specification
The specification of a formal parameter is missing.

manglende formal missing formal
An identifier is specified, but does not appear in the formal para-
meter list.

forbudt value specific. inadmissible value spec.
A formal parameter which according to the specification given cannot
be called by value appears in a value part.

stak overlgb stack overflow
The list of the identifiers which are redeclared simultaneously ex-
ceeds the capacity of the compiler.

PASS 6,
array subscript fejl 705 subscript error

The number of subscripts given in a subscripted variable does not
match the corresponding array declaration.

procedure parameter fejl procedure parameter error
An additional integer in the message distinguishes two variants of
this error:
796: An identifier preceding immediately a left parenthesis, (, does
not conform to the procedure call implied in the construction by be-
ing of wrong kind or having a wrong number of parameters.
846: A procedure identifier appears in a context not consistent with
its declaration.

forkert type <error number> wrong type
The number associated with this error message indicates from where
in pass 6 the error program has been called. Note that these numbers
depend on the way in which pass 6 is stored and may change slightly
if pass 6 is modified in any way (this may happen if mistakes are
found and corrected). A more detailed description of the error asso-
ciated with each integer is given in the table below. In this table
the description

<i op> ::= <inadmissible operand>
indicates an operand which has wrong type or kind in the given con-
text. Note that expressions are regarded as operands. The examples
assume the following declarations:

 Po

Appendix 4. ERROR MESSAGES: PASS 6. 61

integer i; real r; Boolean b; array ai[1:10], aele:4, 4:6);
switch s:= L, 123; procedure p03; procedure p1 (f); real f;

error Error constructions Examples

number
578 +<i op>|-<i op>|x<i op>|/<i op>|A<i op> +8 /L
584 :<i op> a
587 <Boolean operand>:= <i op> bis r
592 < <i op>l< <i op>|= <i op>| =b

> <i op>|5 <i op>|+ <1 op>
595 AK <i op>|V <i op>|= <i op>|-,<i op> Vv (i - 2)
598 <i op><binary operator><i op> ival bes
601 <real operand>:= <i op> ri= Ss
606 <integer operand>:= <i op> i:= p
618 abs(<i op>) Jarctan(<i op>) |cos(<i op>) | cos (a2) In(r = 1)

entier(<i op>) |exp(<i op>) |1n(<i op>) |
sign(<i op>){sin(<i op>) |skrvkopi(<t op>) |
skrvml (<i op>) | skrvtegn(<i cps) eure (< op>) |
streng(<i op>) |settegn(<i op>)
trykkopi(<i op>) |trykml(<i op>) |
tryktegn(<i op>) |tryktom(<i op>)

632 go to <i op>|switch sw:= <i op>, go to b

635 3<1 op>; 3 P 5
642 <i op><binary operator> b= rr (i - 2)v
648 <i op>[il
651 til tromle(<i op>)|fra tromle(<i op>) til tromle(r)
659 then <i op> then s
679 <i op> else <i op> 2-r else b

<i op> else if... then <i op>

688 t= <i oppi= ri= bis bV bd
691 <i op> step!<i op> untill|for . . . <i op>,| i = r step

. for... <i op> do ~—
698 <i op>] a po]
715 <i op>:= po:=
726 <i op> then|while <i op> do if r then
729 for <i Op>:= SS” — for al:=
733 Tnadmissible subscript ally ailiar]
736 <i op> : (in array declaration) array q{b:1];

PASS 7.

talfejl number error

An arithmetic expression having only numbers as operands results in

a value outside the range of the machine. Examples: ‘

1/0 Ti 35X9 «29135

PASS 8
stak overlgb stack overflow .

The two stacks of program points used during pass 8 exceed the capa-

city of the compiler. Remedy: reduce the number of labels and of ne-
sted for and conditional statements used simltaneously.

62

Absolute addresses, 51

5
Accuracy of real

numbers, 9

Accuracy of standard
functions, 10

Address, 47ff, 51
ak message, 39

Alerm printing, 16
Alarms, 10
ALL HOLES in input, 21
arctan, 10
Arithmetic expressions,

10
array message, 39
Arrays called

by value, 11

array subscript fejl,
60

Basic symbols, 8
BLANK TAPE in input, 21
Blind symbols, 22
Block information, 54
Block number, 47ff
Block relative address,

ret
Blocks, 40
Call by value, 11
Case in output, 19

Case symbols, 6, 21
Check of output, 13, 19
Checksum, 21
Choice of output units,

38
comment, 8
Compilation output, 35
Compound symbols, 8
Constants, 53
Control symbols, 6
Core store, 29
cos, 10

DASK ALGOL, 5
<decimal layout>,

14, 16
Declarations, 11
delimiter mangler, 58

ALPHABETIC INDEX.

Delimiters, 8
Digits, 8

Display, 51, 54
dobbelt declaration, 59
dobbelt specific., 59

Drum track transfer

time, 30
END CODE in input, 21
Epilogue of program, 35

Error messages, 37,
sorr

Errors during input, 24
Execution times, 56
exp, 10

exp message, 39
fejl i linie, 37
fejl i parameter

delimiter, 58
fejl i sammensat

symbol, 58
Flexowriter, 6
Floating point numbers,

forbudt tegn, 58
forbudt value

specific., 60
forkert afsluttet

konstruktion, 59

forkert delimiter, 59

forkert type, 60
Formal locations, 47ff
Formal parameters, 10
for mange identifika-

torer, 58
For statements, 10

for stort program, 58
fra tromle, 32
Hole combinations, 6
Identifiers, 4o
ikke tilladt operand,

59
index message, 39

Information symbols, 22
Input errors, 24
Input prom typewriter,

3

Input procedures, 20

Input string, 25
Input tape syntax,

23, 25
integer, 8
Internal output, 41
Internal string, 25

Jump to compiler, 34
Klar message, 37, 38
Klar situation, 38
Labels, 10
labels called

by value, 11

Last used, 54
<layout>, 14, 16
Layout, 4e, 43
<layout expression>, 14
letters, 8
Level of blocks, 40
Limitations, 11, 33
Line number, 35
Line output, 35

ln, 10
ln message, 39
Loading of compiler, 34
Local declaration,

47ff, 53, 55
Lower case, 6, 21
lyn, 28
les, 22

lesstreng, 25

lest, ob
lestegn, 27

Magnetic drum, 29 |

mangiende declaration, |

0

manglende formal, 60 |
manglende specific., 60
Manual jump to

compiler, 34
Messages from compiler,

37
Nonsense, 54
off message, 37
on message, 37
operand mangler, 59

Output case, 19

Output procedure, 12
<output statement>, 14
meer units selection,

Oversatter-klar-
situation, 35

own, 11, 54
Packing of strings, 43
Parity check hole, 7
Parity error, 21
Passes, 41
Pass information,

36, 40
Pass number, 58
Pass output, 36, 4ifr
p-relative addresses,

51
Prelude to program, 35

Printed symbols, 6
Procedure call, 53
Procedure declarations,

11
procedure parameter

feji, 60
Procedure statements,

10
Proper character, 27

Punch control, 12
PUNCH OFF and ON,

21, 35, 36
Punch tape code, 6
Range of variables, 9

real, 8
Recursive procedures,

10
Relative address, 47ff
Reserved identifiers, 9
Return information,

7£r
Revised ALGOL 60

Report, 4
Round-off, 9
r-relative addresses,

53

ALPHABETIC INDEX.

<sign>, 14
Significant digits, 9
sin, 10

skrv, 14
skrvkopi, 26
skrvml, 18
skrvtab, 18
skrvtegn, 19

skrvtekst, 17
skrvwvr, 18
slut message, 39

Specifications, 11

Speed, 56
spild message, 39
sqrt, 10

sqrt message, 39
s-relative addresses,

51
Stack, 51
stack overlgb, 59ff
Standard functions, 10
Standard procedures,

V1, 31
Stop between passes, 36
Storage allocation,

eorr, 47Prr
Storage of compiler, 34
Storage of program, 40
Storage of standard

procedures, 31

streng, 25, 26
<string expression>, 17

String quote, 17

Strings, 40
settegn, 27
talfejl, 59, 61
Tape code, 6
TAPE FEED in input, 21
Tape integer, 23
Tape real, 23
Tape string, 25
tast, 27
taststreng, 27

tasttegn, 27
tegn, 28

63

Termination of
execution, 39

Terminators, 22
Text on drum, 43

Text strings, 40, 43
til tromle, 32
Transfer time of

drum track, 30
tromle ak message, 39
Tromledata A and B, 33
tromleplads, 32, 54
tryk, 14
trykende, 19
trykklar, 19

trykkopi, 26
trykml, 18
trykslut, 19
trykstop, 18
tryksum, 19
tryktab, 18

tryktegn, 19
tryktekst, 17
tryktom, 18
trykvr, 18
Typed messeges from

compiler, 37
Types, 8
Typewriter control, 12
Typographical

symbols, 6
udefineret layout, 58
ukorrekt brug af

comment, 58
Underlined word

symbols, 8
Universal address,

51, 54
Universal input

mechanisms, 21

Universal value, 51, 54
Upper case, 6, 21
value, call by, 11
Variables on drum, 29ff
vent message, 37
vek message, 39

	A Manual of Gier Algol
	Contents
	Introduction
	8-Channel punch tape code and flexowriter keyboard
	The relation between Gier Algol and Algol 60
	Basic symbols
	Use of comment
	The treatment of variables of types integer and real
	Reserved identifiers
	Standard functions
	Arithmetic expressions
	Integers as labels
	For statements
	Procedure statements
	Order of declarations
	Own
	Procedure declarations
	General limitations

	Standard output procedures
	Control of typewriter and output punch
	Identifiers and main characteristics
	Standard procedures: tryk, skrv
	Standard procedures: tryktekst, skrvtekst
	Standard procedures: trykml, skrvml, tryktom
	Standard procedures: trykvr, skrvvr, tryktab, skrvtab, trykstop
	Standard procedures: trykende, trykslut, trykklar, tryksum
	Standard procedures: tryktegn, skrvtegn

	Standard input procedures
	Identifiers and main characteristics
	Universal input mechanisms
	Terminators, information symbols, and blind symbols
	Standard procedure: læs
	Standard procedure: læst
	Standard procedures: læsstreng, streng
	Standard procedures: trykkopi, skrvkopi
	Standard procedures: tast, taststreng
	Standard procedures: læstegn, tasttegn
	Standard procedure: sættegn
	Standard procedure: tegn
	Standard procedure: lyn

	Storing variables on drum
	Introduction
	Storage of variables
	Storage of program
	Balancing the use of the core store
	Standard procedures: til tromle, fra tromle. Standard variable: tromleplads

	Operating the compiler
	Loading of compiler into GIER
	Manual jump to compiler
	Oversætter-klar-situation
	Typed messages from compiler
	Klar-situation
	Choice of output units or stop run
	Termination of execution of program

	Pass information
	Pass output
	Selected times of execution
	Error messages
	Alphabetic index

