A MANUAL OF
GIER ALGOL

as developed by

Henning Christensen, Jarn Jensen, Peter Kraft, Paul Lindgreen,

Peter Naur, Knut-Sivert Skog and Peter Villemoes.

First edition

Edited by Peter Naur

REGNECENTRALEN, COPENHAGEN

1963

CONTENTS.
INT'RDDJCTIGN . - . L] - - . L] L3 L] - L] L d -* L] L] * - L] L] L] - L L] L] L] L L] -
6. 8 - CHANNEL PUNCH TAPE CODE AND FLEXOWRITER KEYBOARD .« « o o « o &

7. THE RELATION BETWEEN GIER ALGOL AND AIGOL 60 . & & « « « &

T.1. Basic SYymMbOLS o & o « o o 2 s o a 2 s s s s a o s o 2 o o o
T.2. Use of comment e s 5 » e s e st e e s s s s s o & * s e e
7.%. The treatment of variables of types integer end real « s s e
T.4. Reserved 1identifiers . ¢« ¢« v « ¢ o o o ¢ o ¢ o o = « o o o «
T.5. Standard functions « o« ¢ ¢ ¢ ¢ ¢ ¢« o o ¢ s o ¢ o s o o o ¢ o« 10
T7.6. Arithmetic expressions . « v+ « ¢ o « « o s o o« ¢ ¢ « o s » » 10
7.8. Integers 83 18DE1S + v « ¢ o « o o o o o ¢ s s o o e 0 o« o 10
T.9. For statements « ¢ v« o 4« &+ s o« o s o o o o« s o o s s ¢ a « s 10
T.10. Procedure statements . . ¢« ¢« 2 o + o « + s s s ¢« s s« s o o 10
T.11, Order of declarations . « « ¢« « ¢ v & e o o s « ¢ s o o« o o 11
712.0wn..........................-.11
715§—C3durede(:larationsn.onoo..ao-ooooooo]‘
T.14. General 1imitations . « « « « « o o o « o o o ¢ o ¢ o o o o 11
8. STANDARD QUTPUT PROCEDURES + & « + o o o o o v o o o o s « o s » » 12
8.1. Control of typewriter end cutput punch . . . « ¢« v « « & « o 12
8.2. Identifiers and main characteristics . . . + « ¢ + & ¢ « & » 12
8.3. Standard procedures: tryk, SKI'V .« + « « o o « o s o ¢ s o o 14
8.4, Standard procedures: tryktekst, skrvtekst ¢ o ¢ o o 17
8.5. Standard procedures: trykml, skrvml, tryktom 18
8.6. Standard procedures: trykvr, skrvvr, tryktab, skrvtab,
LIYKSTOP &+ &+ ¢ o o o o « o o + o o o s o ¢ o s o o s 0 0 4 » 18
8.7. Standard procedures: trykende, trykslut, trykklar, tryksum . 19
8.8. Standard procedures: tryktegn, SKrvtegn . . « « o « « « » « 19
9. STANDARD INPUT PROCEDURES . &+ ¢ « ¢ ¢ o ¢ v o o ¢ o o ¢« o 2 s o o « 20
9.1. Identifiers and main characteristics &« ¢ 4o ¢« o & » « 20
G.2. Universal input mechanisms .« . ¢ ¢« ¢« ¢ ¢« & ¢ o o s s s o o o« 21
9.3. Terminators, information symbols, and blind symbols 22
9.4, Standard procedure: 1MS . . ¢ . . « 4 . o s s 0 b s 0 . o s 22
9.5, Stendard procedure: 1St « « o « « « o o o o o o o o o o o o 2N
9.6. Standard procedures: lmsstreng, Streng . « « « « o « s « + + 25
9.7. Standard procedures: trykkopi, SKYVKOPL : « o o« o o o « o « 26
9.8. Standard procedures: tast, taststreng . . « « ¢ . . o o . o 27
9.9. Standard procedures: lmstegn, tasttegn . + « ¢ &« ¢ o« o « « o« 27
9.10. Standard procedure: ssttegn « « « « o o o « o o s ¢« o o & ¢ 27
G.11. Standard procedure: t8EN . « « « « ¢ « o ¢ o o 0o o o o o o 28
G9.12, Standard procedure: 1y . « o ¢ « o ¢ o o o o o o s o o o+ 28

b CONTENTS.

10. STORING VARIABLES (N DRUM « & 4 4 o o o o o o « o » . * e s s s . 29
10.7. Introduction v & & o v 4 4 4 v v v 4 o o o o o o o « o o 4 29
10.2. Storage of variables . v v v & v & 4 ¢ o o ¢ o o o o o o . 29
10.5, Storage of Program . o o o v o v 4 2 o o o o o o o o o o . 30
10.4. Balancing the use of the core StOre « « « o o « o o o o o . 30
10.5. Standard procedures: til tromle, fra tromle. Standard vari-

able: tromlePladB o« v o o ¢ o 4 6 e . e o o 8 o o s o o o o 32

11. OPERATING THE COMPILER . + 3k

11.1. Loading of compiler into GIER
11.2. Manual jump to compiler . . .
11.3. Overswmtter-klar-situetion . .
11.4. Typed messages from compiler

11.5. Klar-situation
11.6. Choice of output units or stop run

¢« ° e o s 8

& 5 & s e 8

4 ®» & & o =

¢ & ® & & 2 = @

*$ s+ 2 B & % e a

L4 » L] . . . - .

& @ » & * * s

* 8 & & 3 e 8 @

4 & & & & o & o

* ® e & & s & @
« s & 9 » & @
.

* & 2 & & s e »

* s &+ & & s 9 »

* * 2 2 & & & o

N

11.7. Termination of execution of program 39
Appendix 1 L[] Pass infomtiorl . L] . . - - L] - - . L] * L] Ll . L] - - L] - - l+0
Appendix 2. Pass GUBPUL & ¢ 4 v 4 4 4 4 4 6 4 b e e e e e e e e e
Appendix 3. Selected times of eXecution . « v v o ¢ v v o v v v v o o 56
Appendix 4. Error messages « v + v v v v v 0 0 b v 0 b b e e e e 58

Alph&betic index « o @ ® & + ¢ e = & ¢ e * 4 & e e e 2 e ¢ * + & s = 62

The ALGOL 60 Report.

Throughout +the present Manual reference is made to the ALGOL 60 Re-
port or +the Revised ALGOL 60 Report. The differences between these two
documents are slight and do not influence the numbering of gections. The
full references of these reports are as follows:

J. W. Backus, et. al., Report on the Algorithmic Language ALGOL 60 (ed.
P. Naur), Numerische Mathematik 2 (1960), pp. 106-136; Acta Polytechnica
Scandinavica: Math. And Comp. Mach. Ser. no. 5 (1960); Comm. ACM 3 no. 5
(1960), pp. 299-31k,

J. W. Backus, et. al., Revised Report on the Algorithmic Ianguage AILGOL
60 (ed. P. Naur), Regnecentralen, Copenhagen (1962), Comm. ACM 6 no. 1
(1963), pp 1-17; Computer Journal 5 {1963), pp. 349-36T; Numerische Me-
thematik (in press).

INTRODUCTION. 5

INTRODUCTION.

The decision that an ALGOL compller for the GIER should be written
wes mede in Jeanuary 1962. The work was started almost immediately and in
August 1962 a preliminery version of the compiler could be distributed to
all GIER instellations. This version was complete except for some sten-
dard input and output procedures. The first definitive version, which al-
so corrected a number of errors found through the extensive practicel use
of the preliminary version, was distributed in February 1963.

Like its predecessor DASK ALGOL the GIER ALGOL lenguege lies suffi-
cliently close to the ALGOL 60 reference language to meske it practical to
use the ALGOL 60 Report directly as the basic manual. The exmct apecifi-
cetions of GIER ALGOL are then defined through the set of corrections and
additions of the ALGOL 60 Report given in the present Manuel. Because of
this intimate relation to the ALGOL 60 Report the numbering of sections
within the present Menual have been chosen to be a direct continuation of
the section numbers of the ALGOL 60 Report.

Since there is &lso & considersble interest in the differences be-
tween GIER ALGOL and DASK ALGOL the section numbering of the MANUAL OF
THE DASK ALGOL LANGUAGE have been retained through the mejor part of the
present Manual. Because of the greater gemerality of GIER ALGOL severel
sections have become empty through this preceution. The more important
differences between the two Manuals touch the following sections: 6.5, 7,
8.1' 802. 8-3-1' 8:3-6' 8-&-1' 8.}4.3' 8-8' 9.1| 9.2.3"9-2-6| 9-""-3.6.
9.5.3. 9.8"'9-12' 10' 11' B.ppendix 1"5-

The Manual was typed by XKirsten Andersen.

6 6. B-CHANNEL PUNCH TAPE CODE AND FLEXOWRITER KEYBOARD,

6.1. PRINTED SYMBOLS.

Lower Upper Code Lower Upper Code
case case case case
a A ;) 00 .« 0, W W y, O .00 ,
b B , 00 . 0 , X X , 00 .000,
] Cc , 000 . 00, ¥ Y y 000, .
d D y 00 .0, z A ¢y ©0 0. O,
e E } 000 .0 0, » £ \ 000 ., '
f F , 000 ,00 ,] 7] , O 00. 00,
g G ;y 00 L.000, 0 A r O . .
h H , 00 O. ' 1 v ' « 0O,
i 1 , 0000. O, 2 x ' . 0
J J , 00 . 0O, 3 / \ o . 00,
k K , 00 .0, L = . .0
1 L y O . 00, 5 \ 0 .0 0,
m M , 00 .0 6 \ o .00 ,
n N) .0 0, 7 \ . 000,
o 0 , 0 .00 , 8 , 0. \
P P { 0 0 .000, 9) \ oo. O,
q Q , O 00, ' . © ©000. 00,
r R ¢ O 0. O, . : , 00 0. 00,
s S , 00 . 0 , - + y O .)
t T , O . 00, < > ¢ 00 . 0O
u U , 00 .0 , _ | . 0.00 ,
v v , 0 .0 o0, The key for _| does not advance the carriage.
6.2, TYPOGRAPHICAL SYMBOLS.
IOWER CASE , oooc. o , UPPER CASE , oocco.0 , SPACE o .
CAR RET , O . ¢ TAB 000,00 ,
6.3. CONTROL SYMBOLS.
STOP CODE o. oo, TAPE FEED , oooo.000, PUNCH ADRES ,o . 1
PUNCH OFF , o o.000, PUNCH ON y, 0 0.0 , AUX CODE , 0.0 ,

PUNCH ADRES end AUX CODE insert their respective codes when depressed
simultaneously with any other key.

6.4. FLEXOWRITER KEYBOARD.

START STOP PUNCH AUX STOP TAPE
READ READ ADRES CODE CODE FEED

TAB PUNCH x / = 3 [1 () A v | PUNCH
OFF 2 3 4 5 6 7 8 9 o0 1 ON

LOWER A S D F G H J K L £ ¢ LOWER
CASE a s d f g h J k 1 @ @ CASE

UPPER Z X € VvV B N M " : + UPPER

CASE A b'd c v b n m ' . - CASE

6.5. NUMERICAL REPRESENTATIONS. 7

6.5. NUMERICAL RFPRESENTATIONS.

In the following teble the characters have been erranged according to
the numericel equivelent of the hole combination (after removel of the pa-
rity check hole). The first colum gives the decimal value of the charac-
ter, the second and third columms give the lower end upper case character
respectively, and the fourth column conteins a G in the cases where the
charecter is available only in GIER but not on the flexowriter

LOWER UPPER LOWER UPPER
0 SPACE 32 - +
1 1 v 33 J J
2 2 % 3 k X
3 3 / 35 1 L
b 4 = 36 m M
5 5 37 n N
6 6 g %8 0 0
7 7 39 P P
8 8 (Lo a Q
9 9 b r R
10 (NOT USED) L2 {NOT UST™D)
11 STOP CODRE L3 @ o
12 END CODE, Lh PUNCH ON
13 8 A G Ly (NOT USED)
14 _ | k6 (NOT USED)
15 (NOT US¥D) L7 (NOT USED)
16 0 A L8 s £
17 < > Lo a A
18 8 s 50 b B
19 t T 51 o ¢
20 u U 52 a D
21 v ' 53 e E
22 w W 5l f F
23 x X 55 g G
ol y Y 56 h '~ H
25 2 z 57 i I
26 (NOT USED) 58 LOWER CASE
27 , 0 . 59 . :
28 CLEAR CODE 60 UPPER CASF
29 R¥D RIBBON G 61 SUM CODE
30 TAB 62 BLACK RIBBON G
31 PUNCH OFF 63 TAPE FEED

6l CAR RET

S T.1. BASIC SYMBOLS.

7. THE RELATION BETWREN GI®WR ALGOL AND ALGOL 60.
T+1. BASIC SYMBOLS.

Telelse Single character symbols.
Telels1ls Letters and digits. GITR ALGOL adds the letters

kg g
to the reference alphebet. The appearance of gll letters and digits may
be seen from section 6.
Telel.2. Delimiters. As apparent from section 6 the following simple re-
ference language symbols are directly available in GIRR ALGOL:
+—x/<=>\//\'-1n:;()[]

Tele2. Compound symbols.

Compound symbols must appear exactly as shown in this section, with-
out additional SPACE or CARRET symbols.
7T+142.1. Underlined words. Underlined words are produced in GIER ALGOL by
depressing the underline (_) key immediastely preceding esch letter of the
word. The symbols are the following:
true false go_to 1if then else for do step until while comment begin end

e e b e ot s - e o v g i i e e W ey
e o et St ——— —— o ——— - - T ——— —

0 to.
?:1.2.2. Compound symbols similar to reference languege. The following
compound symbols, most of which are produced by combining the underline
(_) or stroke (]S with other characters, are similar to those of the re-
ference langusage:

< 2 4 = oia

Tele2.3. Compound symbols differing from reference language. The follow-
ing compound symbols show & noticable deviation from the reference lan-

gusge:
Reference lengusge 1 = — D + >
GIER ALGOL A -, N ¢ i =>

T.2. USE OF comment.

Following the delimiter comment eny sequence of characters speci-

fied in section 6.5 1s admitted up to the first following semicolon (3).
Comments have no effect in GIER ALGOL.

7.3. THE TREATMENT OF VARTABLES OF TYPES integer AND real.

—— " - -

Variables of types integer end reel are represented by normsl floe-

o o g T s

ting point mmbers in GIER. Therefore integers must be confined to the
ranges;

- 2T29 = - 536 870 912 < integer < 536 870 911 = 2P2g - 1
while the range of non-zero real varisbles is:

2N-512) = 7.458,-155 < ebs(real) < 1.341,15k = 2512

—_— e _

v
- A

If in the course of a calculation an expression, which according to the
rules of section 3.3.4 is of type integer, ylelds a result outside the
range for integers, the result will be represented by too few signifi-
cant figures and will therefore in general be inexact.

Round-off from type reel to type integer is performed by means of
the built-in machine instructions for conversion from floating form to
fixed form and back again (tkf -29 nkf 39). This implies that real re-
sults in the range from 0 to 2129 will yield correct integers on roun-
ding, while reals in the range from 2?29 to 2T39 will be rounded to an
integer having too few significant figures. Real results larger then 2¢39
will yield completely erroneous results 1f rounded.

The accuracy of a resl number will correspond to 29 significant bi-
nary digits. Thus one unit in the last binary plece will correspond to &

relative change of the number of between 2,~9 and hw-9.

7.4. RESERVED IDENTIFIERS.

A reserved identifier is one which may be used in a program for a
standard purpose without having been declared in the progrem. If the
standard meening iz not needed in a program the identifier may freely dbe
declared to have other meenings.

The complete list of reserved identifiers arranged alphabetically is
as follows:

Identifier Reference Identifier Reference
abs 3.2.4 streng 9.6
arctan 3.2.4, 7.5 smttegn 9.10
cos 3.2.4, 7.5 tast 9,8
entier 342.5, T+5 taststreng 9.8
exp 3.2.4, 7.5, 11.7 tasttegn 9.9
fra tromle 10.5 tegn 9.11
1n 3.2.4, 7.5, 11.7 til tromle 10.5
Iyn G.12 tromleplads 10.5
les 9.4 tryk 8.3
lmsstreng G.6 trykende 8.7
lmst 3.5 trykklar 8.7
l=stegn G.9 trykkopl 9.7
sign 3.2.4 trykml 8.5
sin 3.2.4, 7.5 trykslut 8.7
skrv 8.3 trykstop 8.6
skrvkopi 9.7 tryksum 8.7
skrvml 8.5 tryktab 8.6
skrvtab 8.6 tryktegn 8.8
skrvtegn 8.8 tryktekst 8.h
skrvtekst 8.4 tryktom 8.5
skrvvr 8.6 trykvr 8.6
sqrt 5-2-h. Ts5

10 T«5. STANDARD FUNCTIONS.

T«5« STANDARD FUNCTIONS.

Te5e1. Accuracy.

. The slgorithms for calculating the standard functions arctan, cos,
exp, 1n, sin, and sqrt, incorporated in GIER ALGOL will all yield results
having an error less than that which corresponds to about 2 units in the
last place of the result or the argument, whichever glives the greater er-

TrOTs

705.2‘ AlE.I‘mS.
Certain misuses of the standard functions will cause termination of

execution of program (see section 11.7). Note however, thet 1n{0) will
supply the result -9.35,49 and not call the alarm.

T+6. ARITHMETIC EXPRESSIONS.

The treatment of arithmetic types and the accuracy of real arithme-
tics is described in section 7.3. Alarms are described in section 11.7.

T+7+ (This section has been deleted).

7T.8. INTRGERS AS LABWLS.

Integers cannot be used with the meaning of lebels in GI¥R ALGOL.

7T+.9. FOR STATEMENTS.

In GIER ALGOL a subscripted varisble is permitted as the controlled
variable in a for clause., The identity of the variable will be establish-
ed once at the beginning of each activation of the for stetement and
changes of the values of subscript expressions in the course of the exe—
cution of the controlled statement will have no influence on which vari-
able is used as the controlled one.

7.10. PROCEDURE STATEMENTS.

T+10s1. Recursive procedures.
Recursive procedures will be processed fully in GIER ALGOL.

7.10 24 Handling of ty’peSo

The types integer and reaml will be handled according to the pre-
scriptions of section 4.7.3 except in the case that & formsl parameter,
which is specified tc be real and to which assignments are made, in the
call corresponds to an integer declared variable. This special case will

— e s Wl o

be treated incorrectly in GIER ALGOL.

. — -

— o e

7T.10. PROCEDURE STATEMENTS. 11

Tel0e3. Extended list of standard procedures.

All input and output functions are in GIXR ALGCL expressed as calls
of standard procedures. These calls conform to the syntax of calls of de-
clared procedures (cf. section 4.7.1) end also should be regarded in all
other respects as regular procedure calls or function designators, as the
case may be. This specifically includes the activation of a standsrd pro-
cedure through its identifier mppeering as an actusl parameter of a call
of a declared procedure.

7.11. ORDER OF DECLARATIONS.

In GIER ALGOL declarations may appear in any order 1in the block
head.

7.12, Own.
In GIER ALGOL own can only be used with type declarations, not with
array declarstions.

7+.13. PROCEDURE DECLARATIONS.

7.13.1. Recursive procedures.
Recuraive procedures will be processed fully in GIER ALGOL.

T.13.2. Arrays cslled by value.
GI®R ALGOL cannot handle arrays called by value.

Te13.3. Specifications.
The specifications for formal parameters must be complete i.e. each
parameter must occur Just once in the specification part.

7.13.k. Labels called by value.
Labels cannot be called by value in GI®R ALGOL {the Revised ALGOL 60
Report leaves the question unanswered).

7.14. GENERAL LIMITATIONS.

GIER ALGOL imposes a number of limitations caused by the finite size
of the tables used during compilation. HOwever with one exception these
limitations shall not be mentioned further here partly because only very
exceptionel programs are likely to exceed the capacity, partly because a-
larm messages durlng compilation will indicate when they are violated
(see appendix 4). The exception 1s the limitation that the number of
variables which are active simultaneously at any time during the execu-
tion of a program must be confined to ebout 700. This problem is discus-
sed In detall in section 10.

12 8. STANDARD QUTPUT PROCEDURES.

8. STANDARD OUTPUT PROCEDURES.

Qutput of text and results from a program will be controlled by
means of output procedures permanently available to the translator (i.e.
without explicit declarations). The output will be provided in the form
of 8-channel punch tape or printed copy. The symbols and S—channel code
given 1in sectiorn 6. 8-CHANNEL PUNCH TAPE CODE AND FLEXOWRITER KEYBOARD
will be used.

8.1. CONTROL OF TYPEWRITER AND QUTPUT PUNCH.

Half of the standard output procedures are available in two forms,
one controlling *ne output punch (identifier begimming with tryk), the
other controlling the on-line tvpewriter (identifier beginning with
skrv). By operatcr intervention it is however possible to meke a free
cholce of the output unit corresponding to the two sets of output proce-
dure identifiers. See the section 11.6 CHOICE CF OUTPUT UNITS OR STOP
RUN.

8.2, IDENTIFIERS AND MAIN CHARACTERISTICS.

The identifiers and main characteristics of the standard output pro-
cedures are the following: ’

Identifier Example, reference Effect
tryk tryk({+d ddd},q*Z) Outputs the values of an arbitrary
skrv section é.}. number of arithmetic expressions in

a specified layout. Other output
cperations may also be inserted as

parameters,
tryktekst skrv({(Q = }) Outputs a specified string of sym-
skrvtekst section .ﬁ. bols, '

t
i

|
;
|
!

trykml
skrvml

tryktom

trykvr
skrvvy

tryktab
skrvtab
trykstop
trykende

trykslut

trykklar

tryksum

tryktegn
skrvtegn

trykkopi
skrvkopi

8.2, IDENTIFIERS AND MAIN CHARACTERISTICS. 13

trykml(8-n)
section 8.5.

tryktom (100)
section 8.5.

skrvvr
section 8.6.

tryktab
section 8.6.

trykstop
section 8.6.

trykende
section 8.7.

trykslut
section 8.7.

trykklar
section 8.7.

tryksum
section 8.7.

skrvtegn (k9)
section 8.8

trykkopt (4</3})
section 9.7.

Qutputs & specified number of
SPACEs.

Punches & specified number of TAPE
FEED symbols.

Outputs one CAR RET symbol.

Qutputs one TAB symbol.

Punches one STOP CODE symbol.

Punches one END CODE symbol.

Punches one PUNCH ON symbol.

Punches one CLEAR CODE symbol and
sets internmal sum of punched symbols
to zero.

Punches a STOP CODE, a SUM CODE and
a code representing the sum of the
symbols punched since program read-
in, last trykklar or last tryksum.

Outputs +the character corresponding
to the value of the parameter.

Copies a section of the input tape to
the output, the section being speci-
fied through a parameter,

It holds for all standard output procedures that each output opera-
tion will cause an addition to an internal ' variable of a number which is

equivalent to the character.

This may be used for checking purposes by

mesns of the mechanisms described in sections 8.7.2 and 9.2. It should be

noted, however,

that for the checking to work correctly the output tape

must not include any character which has been produced by & skrv - ope-
ration (cf. section 8.1).

14 8.3. STANDARD PROCEDURES: tryk, skrv.

8.3. STANDARD PROCEDURES: tryk, skrv.

8.3.1. Syntax.
<sign> ::= <empty>| - | + | +
<exponent layout> ::= ,<si | <exponent layout>d

<zeroes> ::= 0 |<zeroes>0 | <zeroes>,0
<positions> ::= d | <positions>d | <positions>,d
<0-positions> ::- <positions> | <D-positions>0—| <0-positions>,0
<decimal layout> ::= <0-positions>|<0-positions>.<zeroes>| B
<positions>.<0-positions>|.<0-positions>
<layout tail> ::= <decimal layout>|<decimal layout><exponent layout>
<ayout> ::= <sign><layout tail>|<sign>n<layout tail>|<sign> n|
<sign>n,<layout tail>
<general layout> ::= ¢<layout>}|<formal parameter>|(<layout expression>)
<dayout expressi-m> ::= <general layout>|
<if clause><general layout> else <layout expression>
<output statement> ::= <tryk statement>|<tryktekst statement>|
<trykml statement>|<tryktom stetement>|<trykvr statement>|
<trykteb statement>|<trykstop statement>|<trykende statement>
<trykslut statement>|<trykklar statement>|<tryksum statement>
<trykkopi statement>|<tryktegn statement>
<tryk parameter> ::= <arithmetic expression>|<output statement>
<tryk parsmeter list> ::= <tryk parameter>|
<tryk parameter list>,<tryk parameter>
<tryk statement> ::= tryk(<layout expression>,<tryk parsmeter list>)|
skrv(<layout expression>,<tryk parameter 1ist>)

8.3.2. les,

tryk({dad.oo}, P, trykvr, tryktekst (4<Q=}), w +s)
skrv ({- -ddi,epsilon/16)

tryk({dd,daa},q, trykmi(5), tryk({.ada},q) ,W, t-3)

tryk(if s>0 then f1 else f2, Sum)
tryk(l, p-q, s+t)

8.3.3. Semantics.

A call of the procedure tryk or skrv causes the followlng treatment
of the parameters specified in the tryk parameter list:

Arithmetic expression: the value will be printed in the layout sup-
plied in the first parameter of the call.

Output statement: the call of the statement will be executed.

8.3.k., The layout.

The layout expression will be evaluated once at the beginning of the
execution of the tryk or skrv statement. The evaluation will take place
in a wey which is completely analogous to that of other expressions (cf.
section 3.3.3). The finel value must always be of the form {<layout>}.

The symbols of the layout give a symbolic representation of the di-
gits, spaces and symbols as they will appear in the printed number. In-
deed, the finally printed number will have exactly the same number of
printed characters as 1is present in the layout (except in case of alarm
printing, see section 8.3.6). The various symbols of the layout have the
following significance:

8.3, STANDARD PROCEDURES: tryk, skrv. 15

8,3.4,1, Sign. The four possible symbols in the sign position signify the
following:

8.35.4,1.1. Empty. The number is supposed to be positive. No sign will be
printed. If & negative number is encountered, an alarm printing will take
place (see section 8.3.6).

8.5,4,1.2. - . The sign will always be printed using SPACE for positive,
and - for negative numbers. It will, if possible, move to the right, ap-
pearing as the first or second symbol to the left of the first digit (a
layout SPACE may appear in between) or immediately in front of the deci-
mal point.

8.3.4,1.3. + . The sign will always be printed using + for positive and
- for negative numbers. It will, if possible, move ‘o the right, as in
8.3.4.1.2 abhove.

8.3.4.1.4k, + . The sign will always be printed, using + for positive and
- for negative numbers. It will be printed as the first symbol of the
nunber, before any SPACE or digit.

8.3.4,2, Digits. Letters d and n represent digits. Letter n may only ap-
pear as the first symbol following the sign. The total number of letters
d and n gives the maximum number of printed significant digits (cf. sec-
tion 8.%.8).

If n 18 used in the first digit position, proper decimal fractions
will be printed with a O in front of the decimal point and the integer O
will be printed. If d is used these O-digits will be replaced by SPACE.

8.3.4,3, Zeroes. Zeroes may appear at the end of a decimal layout. They
influence the representation of the number in the following manner: If m
zeroes are present at the end of the decimal layout the exponent printed
will be exactly divisible by m+l, For this to be possible at the same time
as the position of +the decimal point within the complete layout is kept
fixed -the significant digits of the number are allowed to move toc the
right, using the positions of the symbols 0O, depending on the magni tude
of the number. If no exponent layout is included the exponent O is under-
stood and the above rule holds unchanged.

8,%,4.4. Spaces. Spaces will be inserted in all positions where the symbol
L appears. The symbol , may within the layout be replaced by SPACE the ef-
fect of SPACE being the same.

8.3.4,5, Decimal point. The decimal point will always be printed in a fix-
ed position within the layout. If decimals are printed it will appear as
. otherwise as SPACE.

8.3.4.6, Scale factor. The scale factor will be printed in the same way as
in the language. The symbol ,, will appear immediately in front of the sign
of the exponent, If the scale factor is 1 the symbols . and following will
appear as SPACEs. Note that it is not possible to print an exponent part
without a decimal part.

8.3.5. Round-off.
All numbers will be correctly rounded to the number of significant
digits printed. T

16 8.3. STANDARD PROCEDURES: tryk, skrv.

- 8.3.6. Limitations, .

The total number of symbols n and d in any decimal layout must be
< 15.

The total number of symbols n, d, and 0, written to the left of the
decimal point must be < 15.

The total number of symbols d and O written to the right of the de-
cimal point in a decimal layout must be 15.

The number of symbols d in any exponent layout must be < 7.

The symbols , and SPACE can only appear in such positions within the
layout that they are preceded by fewer than 20 symbols of +the kinds n, 4,
0, and point (.).

8.3.7. Alarm printing.

By alarm printing is meant that the printing will consume more posi-
tions on the paper than are present in the layout. Alarm printing will oc-
cur as follows:
8.3.7.1. Negative number printed with layout having empty sign position.
The correct - will be inserted, consuming one extre position.
8.3.7.2. Number too large for layout. Whenever the number to be printed is
too large for the layout given, an actual layout is used which will acco-
modate the number by inserting an exponent layout, or by inereasing the
number of exponent digits.

8.3.8. Small numbers,

Printing of small numbers will never give rise to alarm printing. In-
stead the number of printed significant digits will be smaller +than the
maximm (section 8.3.4.2),

8.3.9. Examples of printed numbers.
In order to indicate the exact number of characters printed, commas
are inserted immediately preceding and following each number.

Layout
n,d44,d44.40,0 +d,4dd.444,d -ddd.doo,+d +dd.0-dd
Rormal printing
} 0.00 1, ' +.001 2, v 1,235,453, +12 by
' 0.01 2, ' +.012 3, v 12.35 43, i+ 1.2 -2,
' 0.12 3, ' +.12% 5, r 123.5 -3, r+l2 -2,
1 1'25 5I i +1°25)+ 6! 1 1'255 ¥ l+ 1'2 '
' 12.34 6 v 412,345 7, y 12,35 ' r+12 '
e 123,45 7, , + 123,456 8, v 123.5 \ i+ 1.2 9 2,
, 12 34,57 o+l 234,567 9, v 1,235,443, +12 0 4 2,
123 U577, v 12,35 43, i+ 1.2 0 by
| -.001 2, 1 —1.235,-3, =12 by
-1 234,567 9, v ~1.2354+3, =12 5 2,

Alamm printing

\ -0.00 1,

-1 23 45,7 .3, ;-1 234,567 9,4,

v 12345 7,05, 41 234,567 91k, | 123.5 L #15,

8.4, STANDARD PROCEDURES: tryktekst, skrvtekst. 17

8.4. STANDARD PROCEDURES: tryktekst, skrvtekst.

8.4.1. Syntax.
<general string> ::= {<<proper string>} |<formal parameter>|
<string expression>)
<string expression> ::= <general string>|
<if cleuse><general string> else <string expression>
<tryktekst parameter> ::= <string expression>|<output statement>
<tryktekst parameter list> ::= <tryktekst parameter>|
<tryktekst parameter list>,<tryktekst parameter>
<tryktekst statement> ::= tryktekst(<tryktekst parsmeter list>) |
skrvtekst (<skrvtekst parsmeter list>)

8.4.2. Examples.
tryktekst(¢<Result is}, a, 4<than expected})
skrvtekst($<q,=,3})

8.k.3, Semantics.

The execution of a tryktekst statement causes the following treat-
ment of the perameters specified in +the parameter list, +teking them in
order from left to right:

String expression: an output of the text resulting from an evilua-
tion of the expression is performed.

Output statement: the call of the statement will be executed.

8.4.3.1. The string quote.
Note the{difference between the string quotes used here
<
and those used in layout expressions (cf. section 8.3.1).

8.4,35,2, Treatement of SPACE and CAR RET.

All characters of the proper string, including SPACEs and CAR RETs
will be outputed. The symbol for space ; will however be equivalent to
SPACE, i.e. 1t will be printed, not as it stands, but as a SPACE.

18 8.5. STANDARD PROCEDURES: trykml, skrvml, tryktom.

8.5. STANDARD PROCEDURES : trykml, skrvml, tryktom.

8.5.1. Syntax,
{trylml statement)::= trykml (<arithmetic expression))

‘ skrvml (<arithmetic expression>
{tryktom statement>::= tryktom (<arithmetic expression))

8.5.2. Examples.
trykml(n + m - 7)
tryktom (75)
skrml (1 p > O then 3 else 4)

8.5.3. Semantics,

The execution of a trykml statement camuses the number of SPACE sym-
bols (mellemrum) specified as actual parmmeter to be outputed.

A call of the procedure tryktom causes the number of TAPE FEED sym-
bols specified as actual parameter to be outputed.

The value of the arithmetic expression will, 1if necessary, be roun-
ded to the nearest integer. If it assumes a non - positive value no sym-
bols will be outputed.

8.6, STANDARD PROCEDURES: trykvr, skrvwr, trykteb, skrvtab,
trykstop.

8.6.1. Syntax.

<trykvr statement)::= trykvr|skrvvr
{tryktab statement)::= tryktab|skrvtab
{trykstop statement)::= trykstop

8.6.2, Semantics,

A trykvr statement causes a CAR RET symbol (vogn retur) to be out-
puted. Note that this will cause the combined operation of »eturm of car-
riage and line feed to take place.

A trykteb statement causes output of a TAB symbol.

A trykstop statement causes the STOP CODE to be punched.

8.7. STANDARD PROCEIURES: trykende, trykslut, trykklar, tryksum. 19

8.7.1. Syntax.

{trykende statement)::= trykende
{trykslut statement>::= trykslut
{trykklar statement)>::= trykklar
{tryksum statement>::= tryksum

8.7.2, Semantics.)

The four output procedures destribed Mere all serve to imsert cha-
racters on the output tape with a view to a later use of this output tape
as input tape to an ALGOL program.

The trykende statement punches the END CODE. WHen later the tape is
read into the machine <this will cause a stop of the machine (cf. section
3.2.6).

The trykslut statement punches the PUNCH ON symbol. This is inten-
ded to be used as a non - printing terminator for lms and lmst (cf. sec-
tions 9.4 and 9.5).

The trykklar statement punches the CLEAR CODE and sets the internal
sum of the punched characters to zero. This preperes for the use of the
checksum mechenism (cf. section 9.2.5).

The tryksum stetement punches a STOP CODE, a SUM CODE and a charac-
ter representing the value of the intermal sum of all pmmched characters
and sets +this sum to zero. input this cambination will caube an
automatic sum check to take place (cf. section 9.2.5).

8.8. STANDARD PROCEIURES: tryktegn, skrvtegn.

8.8.1. Syntax.
<tryktegn statement> ::m tryktegn(<arithmetic expression>)]
skrvtegn{<arithmetic expression>)

8.8.2. Examples.

tryktegn(if upper case then 60 else 58)
skrvtegn(59)
skrvtegn(symbol - case)

8.8.3. Semantics.

The execution of a tryktegn statement c¢aunses the character corre-
sponding to the value of the actual peremeter to be outputted. The corre-
spondence between the integers and the characters is given in the table
of section 6.5. If the value of the actual parameter is not an integer it
will be rounded to the nearest integer. If it is larger than 127 the va-
lue modulo 128 will be used.

The characters for UPPER CASE and LOWER CASE must be outputted ex-
plicitly where needed. Where tryktegn statements are used side by side
with tryk or tryktekst statements it is important to note that these lat-
ter will assume the output unit to be in lower case vwhen a call is made
and will also leave it in lower case when the call is completed.

20 9. STANDARD INPUT PROCEDURES

9. STANDARD INPUT PROCEDURES,

Input of Information from 8-channel punch tape may be carried out at
any stage of an ALGOL program through calls of standard input procedures
bermanently available to the translator.

In order to provide flexibility several different kinds of standard
input procedures are available, These differ both with respect to the in-
terpretation of the single symbols supplied on the input tape and the in-
ternsl effect of the input operation.

9.1. IDENTIFIERS AND MAIN CHARACTERISTICS.

The identifiers and main characteristics of the stendard input pro-
cedures and the associated procedure streng are the following:

Identifier Example, reference Effect

1lms lws(a, b, c) Reads rnumbers and assigns to vari-
section 9.4, ables or arrays.

lest P X lmst real procedures lmst and tast have

tast section 9.5, 9.8. The nexT number appearing on the 1in-

put tape or typed on the typewriter
a8 their value.

lmastreng lmsstreng Read a string of symbols from tape
taststreng section 9.6, 9.8. or typewriter to an internal varisb-
le for later comparison by means of
the
streng streng(4<P}) boolean procedure streng.
section 9.6, The value of streng is true if the

string supplied as parameter agrees
with the string read by the last
call of lmsstreng.

trykkopi trykkopi (4</;}) Cause a copying of the characters on

skrvkopi section 9.7. the input tape to the output punch
(trykkopi) or the typewriter (skrv-
kopi).

lmstegn ni= tasttegn These integer procedures supply the

tasttegn section 9.9. value of <he next character which
appears on the tape or 1s typed.

settegn settegn (15) Inserts an input character shead of

‘ section 9.10. the ones waiting in the input.
tean pi= tegn Supplies the value of the last cha-
section 9.11, racter read by any input procedure.
lyn Qi= lyn + & Supplies the value of the next row

section 9.12, of holes on the input tape.

9.2. UNIVERSAL INPUT MECHANISMS. 21

9.2. UNIVERSAL INPUT MECHANISMS.

Certain characters on the input tape will be handled in the same way
no matter which of the standard input procedures 1is controlling the input
operation. The universal mechanisms are the following:

9.2.1. Skipping between PUNCH OFF and PUNCH ON.

All characters between PUNCH OFF and the first following PUNCH ON,
these two characters included, will be completely ignored during input.
9.2.2. Ignoring of BLANK TAPE, TAPE FEED, and ALL HOLES.

The characters

. BLANK TAPE
0000 ,.000 TAPE FEED
00000.000 ALL HOLES

will be ignored during input.
9.2.3. (This section has been deleted).

9,2.4, Input characters of wrong parity.

The machine stops when a row of an even number of holes is sensed in
the tape reader. In this situation it is sufficient to place the intended
symbol 1in the R register since the ALGOL system never mekes any uge of
the representation stored by the input instruction itself.

9.2+5. The checksum mechanism,

When the standerd input procedures read tapes which have been pre-
pared by the standard output procedures the checksums included on this
tape in consequence of calls of the tryksum procedure will eutomatically
be verified. If the check symbol does not check with the corresponding
symbol as formed during previous read-in the machine will print

sumfejl
and the machine will stop. If a character is typed on the typewriter the
reading will continue. The internal variable which holds the current sum
of the symbols which have been read in mey be reset to zero by the inclu-
sion of the CLEAR CODE on the tepe. This is the symbol produced by the
trykklar procedure {cf. section 8.7.2). On the flexowriter use:
AUX CODE with O

9.2.6. Stop produced by END CODE.

Whenever the END CODE appeers the messsge

vent
will be typed and the machine will stop, waliting for a character to be
typed on the typewriter. The END CODE may be produced by an ALGOL progrem:
by a call of the trykende procedure (cf. section 8,7.2). On the flexowri-
ter 1t is produced by depressing ,
AUX CODE with SPACE.

9.2.7. The effect of UPPER CASE and LOWER CASE. ' :
Por printed symbols (cf. section 6.1) the meaning and effect of a gi-
ven hole combination depends on the most recent CASE symbol on the tape
(UPPER CASE or LOWER CASE).
For typogrephical and control symbols (cf. sections 6.2 and 6.3) the
effect is usually independent of the case.

22 9.3. TERMINATORS, INFORMATION SYMBOLS, AND BLIND SYMBOLS.

9.3. TERMINATORS, INFORMATION SYMBOLS, AND BLIND SYMBOLS.

The effect of the input characters which do not give rise to an ac-
tion of a universal input mechanism (cf. section 9.2) depends on the par-
ticular standard input procedure. In describing this effect it is conve-
nient to make use of the followlng concepts:

9.5.1. Terminators. A terminator is a symbol on the input tape which in-
dicates to the input procedure that the reading of a plece of information
(e.g. 2 number) has been completed,

9.%2.2. Information symbols. An information symbol is a symbol on the in-
put tape supplying positive information which is transferred to the run-
ning ALGOL program by the input procedure.

9.3.3. Blind symbols. A blind symbol is a symbol on the input tape which
is ignored by the input procedure.

As explained more concisely in the following sections we have for
the procedures lms and lsst:

Terminators: <{letter> all signs except +-.,, TAB PUNCH ON CAR RET
Information symbols: <{digit> +=s0
Blind symbols: SPACE _ STOP CODE
and for lmsstreng:
Terminators: all signs TAB PUNCH ON CAR RET
Information symbols: <digit> <{letter)>
Blind symbol: SPACE _ STOP CODE
Each input operation will in general read three sections of the in-~

put tape:

1. Any mixture of terminators and blind symbols.

2. A legal sequence of information symbols mixed with blind symbols.
3. One terminator.

9.4, STANDARD PROCEDURE: 1ms.

9.k,1. sSyntax.
{lms parameter)::= <yariable)|<array identifier>
<{ims parameter list)::= {lms parameter)l
<{lms parameter list>,{lms parsmeter>
<{lms statement)::= lms(<lms parsmeter list))

9.4.2. Examples.

lms(PE
ot ca T S

/

9.4.3. Semantics.

A call of the procedure 1lms will cause the velues of numbers sup-
pPlied on the input tape to be assigned to the variables and/or arrays of
subscripted variables specified as parameters. The sssignments will in
detail be executed as follows:

9.4, STANDARD PROCEDURE: la®s. e>

g.4.3.1. Order of assignment. The parameters will be taken in order from
left to right and the assignment will be completely finished for each pe-
remeter before the next 1s treated. Thus the statement 1ms(k, B[1,k])
will first assign a value from the input tape to k and this value of k
will then define the particular component of B to which the next number
on the tape will be assigned.

9.4,3.2. Assignment to array. If an array identifier is supplied as pa-
remeter an assignment to all the components of the array will take place.
The order of assignment may be described as follows: Denoting the lower
and upper subscript bounds of the array declaration by 11, 12, ... 1ln, ul
u2, ... un, the input operation is equivalent to

for 11:= 11 step 1 until ul do

for i2:= 12 step 1 until u2 do

for in:= 1ln step 1 until un do
Ali1, 12, ..., in]:= input number
where i1, 12, ... in are internal variables.

9.4.3.3., Input tape syntax. The characters eppearing on the input tape
during the execution of lms must conform to the following syntactic
rules:
{lms terminator>::= v|x|/|=|;|[|]|(|)|IIA|<|>|.lTABIPUNCH oN|:|cAR RET|
Lletter)
{lms information>::= <digit>].|
<lme blind>::= SPACE|_|STOP CODA
{1ms preludey::= Cempty> | <{lms blind>|<lms terminator>|
{lms prelude><lms blind)l(lms prelude>{lms terminator>
(digit sequence>::= <digit>|<digit sequence><digit> |
<{digit sequence><{l®s blind)l(st blind)><{digit sequence>
<{input integer>::= <diglt sequence>|+<digit sequence>|-<digit sequence>
{input fraction>::= .<digit sequence
{input exponent)>::= .<{input integer?
<{input decimal>::= <gigit sequence)l(input fraction>|
{digit sequenced<input fraction,
{unsigned reald>::= <{input decimal>|<input exponent)l
' <{input decimal><input exponent>
{input real)>::= <{unsigned real>|+<unsigned real)l-(unsigned real)
{input ditto>::= -|<input ditto>-|<input ditto>{lss blind>
{tepe integer)::= <lms prelude><input integer><l=ss terminator> |
{lms preluded><{input ditto><{lms terminator>
(tape real)::= <{lms prelude><{input real><{1l=s terminator>|
{1ms preluded><input ditto>{lms terminator,

|+~

9,4,3.4, Examples of input tape for lms.

Tape integers: Tape reals:

17 2833 ' wim 3,857 592 <

i = +138, z epsi= - -14%,

s{25] pl:m 3,141592 653 -
funktion(-12) Setx = L4, -~ .

p: ~f q: 1.384,-11,

24 9.4, STANDARD PROCEDURE: lms.

9.4.3.5. Semantics of input tape. Depending on the type of the variable
each 1ms assignment will cause the reading of one tape real or tape inte-
ger. If these contain digits they will be interpreted according to the
usual ALGOL prescriptions (cf. sections 2.5.3 and 2.5.4), ignoring all
lms blinds and lms terminators. An input ditto, on the other hand, will
cause the lms assignment to be skipped for the particular variable, thus
leaving its value unchanged.

9.4.3.6. Errors. The standard procedure 1ms checks that the syntactic
rules of section 9.4.3.3 are satisfied. If an error is detected one of
the messages

talfejl. test her, slut i LC:
oxr

talfejl. tast her K slut i UC:
will be typed. The operator is now expected to type one number, followed
by a terminator, to be used instead of the erroneous combination appea-
ring on the tape. The terminator must be in upper or lower case as indi-
cated in the message since otherwise the following text on the input tape
may be misinterpreted.

9.5. STANDARD PROCEDURE: lmst.

905-10 Synta.X.
{lms function designator)>::= lmst

9.5.2. Examples.
wi= (1lmst + y)/q
B[1lmst, lmest]:= lmst

g.5.5. Semsntics.

lest is a real procedure having an empty formal perameter part, Eve-
ry time it is called it will read the next tape real appearing on the in-
put tape (cf. section 9.4.3.3). This information on the input tape will
define its value according to the rules of section 9.4.3,5, except that
the effect of an input ditto is undefined.

9.5.3.1. Example of input tape for lmst. A reasonable input tape for the
second example -of section 9.5.2 would be the following:

B[3,7]):= 3.847,

Note that the correct execution of this input operation is directly de-
pendent on the strict adherence to the rules of sections L,2.3.1 -
4.2.3.3 for essignment statements.

9.6. STANDARD PROCEDURES: lmsstreng, streng. 25

9.6. STANDARD PROCEDURES: lmsstreng, streng.

9.6.1. Syntax.
{lms streng statement)::= lmsstreng

<streng function designator>:i= streng(<string expression>)

9,6.2. Examples,
1lms stre

17 streng({<A}) then go_to T

9.6.3. Semantics. _

The standard procedures lmsstreng and streng serve to reed ldentify-
ing information from the input tape and to compare this information with
information supplied by the program. The detailed operstion is defined
below.

9.6.3.1. Input tape syntax. During execution of lmsstreng the characters
on the input tape are treated according to the following syntax:

{1lmsstreng terminator>::= v|x|/|-|; | [llél‘(l)ll |A|<|>| ' |n|'l‘AB]-I+IPUNCH 0H|

<lmsstreng informationd::= <digit)|<letter>

{lmsstreng blind>::= SPACE|_|STOP CODE

{lmsstreng prelude)::= <empty>|<hes streng blind>|
(imsstreng terminator)|{lmsstreng prelude><lmsstreng blind>|
{lmsstreng prelude>{lmsstreng terminator>

{input string>::= <{lssstreng information>|<input string><lssstreng blind) |
<{input string><{lmsstreng information)

(tape string>:i= {lmsstreng prelude>{input string><lssstreng terminator>

9.6.3.2. The internel string. Each call of lssstreng will reed the first
following tape string from the input-tape and assign the five first in-
formation symbols of the input string, which is a pert of 1t, to a unique
internsl varisble. If the input string hes less than five information
symbols it will be extended with the appropriate number of unique dummy
characters.

g.6.3.3. Exemples of tape sirings and internal strings.

Symbols on tape Internal string
b7. b7
{Matrix A) Matri
x]J1A and Bs AandB

trie, true

26 9.6. STANDARD PROCEDURES: lssstreng, streng.

9.6.3.4, Standard procedure streng. This is a boolean procedure, requi-
ring a string expression as parameter. It has the value true 1if all the
characters of the value of the string expression agree with the same num-
ber of - characters of the internal string, assigned by the previous lms-
streng, both strings taken in order from left to right, otherwise the va-
lue false. Note that the agreement of the two strings puts the following
restrictions on the string supplied as parameter to streng:

9.6,3.4,1, It cannot contain more characters than the number of informs-
tion symbols in the internal string (never more than 5).

9.6.3.4,2, It can only contain digits and letters.

9.6.3.5. Example., The following table shows the value of streng for va-
rious input strings and parameters:

Parameter:
Input string A Alg ALGOL
ALGOL 60 true false true
A true false false
Blg false false false
Algol true true false
Algorithm true true false

9.7. STANDARD PROCEDURES: trykkopl, skrvkopi.

9.7.1. Syntax,
<trykkopi statement>::= trykkopi(<string expression>)|
skrvkopi(<string expression))

9.7.2. Examples.
trykkopié{<+/})

skrvkopi(if s>0 then w else y)
trykkopi(fs)

9.7.3. Semantics.

A call of a trykkopl statement causes a copying of characters from
the input tape to the output. The section of the input tape to be copied
is defined by the value of the string expression aupplied as parameter.
This value must have the form

{< <proper string> }

where the proper string consists of one or two characters. If one charac-
ter is supplied the copying will take place from the actual position of
the input tape until the first occurrence of the character specified am
parameter. If two characters are supplied the copying will start from the
first character on the tape which is the same as the first of the two
characters supplied as parameters and will continue until the first oe-
currence of the second of these symbols on the tape. The charecters indi-
cating the begin and end of the section of the input tape to be copied
will not themselves be copied.

The copying will include gll legal chsracters except those associa-

~

9.7. STANDARD PROCWDURES: trykkopl, skrvkopi. 27

ted with the universasl input mechanisms (cf. section 9.2) end superfluous
case shifts.

0.7+35.1. Bxemple of call, input tape, and output.
The call

trykkopi ({<[14)

operating on the following input tape:

Heading: [-

Problem number: |

o oy T —— ot S o

9.8. STANDARD PROCEDURES: tast, taststreng.

These procedures are entirely similar to procedures lmst and lms-
streng (sections 9.5 and 9,6) but expect the input characters to be typ-
ed on the typewriter.

9.9. STANDARD PROCEDURES: lmstegn, tasttegn.

G.9.1. Syntax,.
{1mstegn function designator) ::= lmstegn | tasttegn

9.9.2. Exemples. ‘
if testtegn = 49 then go to a
symbol := lmstegn

s o oo W e o e o s s o e o o —

parameter part. FEach call of a lmstegn function designator will activate
the corresponding input unit (paper tape reeder for lmstegn, typewriter
for tasttegn) and will return with the velue of the next proper character
from the input medium es its value. By proper character is here meant a
character which is not handled by the universal input mechanisms (section
9.2). The values of proper characters in lower case are given directly by
the table in section 6.5. In upper case the value supplied by lmstegn and
tasttegn 18 Increased by 128. Thus the letter p will appear as 39 while P
will be 167,

9.10. STANDARD PROCEDURE: sssttegn.

9.10.1. Syntax.
{swttegn statement> ::= swttegn(<arithmetic expression>)

9.10.2. Examples.
swttegn(160)

st tegn(tegn)

28 9.10. STANDARD PROCEDURE: settegn.

9.10030 Semantics.

Each cell of smttegn assigns the value of the expression supplied as
actual parameter to an internal buffer and at the same time sets an in-~
ternal Boolean variable which causes the value in the buffer to be used
as the first proper input character at the first following call of any
input procedure (1ms, Ilmst, tast, lemsstreng, taststreng, lwstegn, tast-
tegn, trykkopi, skrvkopi) ahead of the next symbol walting in the input
unit.

The velues of the actuasl paresmeters supplied 1in calls of smttegn
should only be such which correspond to proper input characters, 1i.e.
such which may appear as values of lmstegn.

9«11, STANDARD PROCEDURE: tegn.

9.11.1. Syntax.
<tegn function designator> ::= tegn

9011.2- mampleS¢
if tegn < 10 then tryktegn(tezn)
if tegn = 133 then go_to exit

9.11.5+ Semantics.

tegn is an integer procedure having an empty formel paremeter part,
Its value is the number corresponding to the last proper character previ-
ously Inputted by any stendard input .procedure (1lms, lmst, tast, lms-
streng, taststreng, lewstegn, tasttegn, trykkopi, skrvkopi) or assigned by
swttegn. The value corresponding to a proper character is to be under-
stood in the same sense as for procedure lmstegn. Note that tegn does not
activate any input unit, but only mekes the last charscter supplied by a-

ny input unit available,

9.12. STANDARD PROCEDURE: lyn.

9.12|1. Synte.x.
<{lyn function designator> ::= iyn

9.12.2. Example.
symbol:= lyn

Ge12.3s Semantics.

1yn is an integer procedure having en empty parameter part supplying
the value of a character from the peper tape reader, like l®stegn. How-
ever, the character whose value is provided by lyn is always the next one
on the input tape without any intervention from the universal input me-
chanisms (section 9.2} 'or the buffer controlled by ssttegn {section
9.10). Likewise the case and buffer stete are unaffected by calls of lyn.
Thus by using 1lyn the programmer may interpret the input symbols having
correct parity in any conceivable manner.

10. STORING VARIABLES ON DRUM.

10. STORING VARIAELES ON DRUM.,

10.1. INTRODUCTION.

AIGOL programs operating with up to sbout 700 variasbles simultane-
ously may be handled directly by the GIER AILGOL system. However, if pro-
grams declaring more than this number of wvariables simultanecusly are run
in the system the run will be terminated before the final end has been
reached (cf. section 11.7, ek and array). What has happened 1s that the
capacity of the directly available internal store of the machine, the so-
caelled core store, has been exceeded.

This does not mean that problems involving a larger number of vari-
ables are cutside the reach of the system since there is available in the
machine a storage capacity on the so-called magnetic drum of more than 12
times that of the core store. What it does mean, however, is that the u-
ser must include in his progrem calls of the standard procedures til
tromle (Denish for: to drum) and fra tromle (Danish for: from drum) which
serve to transfer varisbles from the core store to the drum store and
back again. From the point of view of the user the magnetic drum may in
this context be regarded as a new kind of input-output medium, analogous
to paper tape. The two standard procedures til tromle and fra tromle are
then analogous to the standard procedures tryk and lms.

However, the use of til tromle and fra tromle should not be confined
to the cases where it is indispensable. In fact, execution speed conside-
rations will often make it desirable to keep the number of active variab-
les in the program considerably lower than the admissible upper limit.

An intelligent assessment of the factors involved requires some
knowledge of the storage allocation system incorporated in GIER ALGOL.
This system is therefore explained in the following sections.

10.2. STORAGE OF VARTABLES.

The reservation of core storage space for a varisble is made at the
time of entry into the block in the head of which the variable is declar-
ed. Similarly reservations for a block are cancelled at +the time of the
corresponding exit from the block. For this reason the space reserved for
the variables will ususlly change from time to time during the execution
of a program, bhelng at every moment equal to the sum of the reservations
made by those blocks and procedure bodies which are active.

The reservations made at a block entry include other gquantities be-
sldes variables. The total requirements mey be derived from the declare-
tions (including the implicit ones for local lsbels) of the block as fol-
lows:

30 10.2. STORAGE OF VARIABLES.

Number of locations required

Simple variables, local labels, One for each quantity
local procedures, formal parameter
Array segment Number of array identifiers + 1 +

number of subscripts + total number
of variables.

Switch declaration 1 + number of switch elements

Working locations Depends on structure of program, u-
sually only a few.

Block, procedure body 2 1f normal block, 3 if procedure,

L if type procedure.

10.3. STORAGE OF PROGRAM.

GIER ALGOL incorporates a fully automatic system for handling the
transfers of program drum tracks to the core store during the execution
of the program. This system will at all times attempt to meke the best
use of that part of the core store which is not currently reserved for
variables. This section of the core store will be divided into program
track places, each of 41 locations. The avallable places will be used for
those program tracks which are required as the pProgram execution deve-
lops. Whenever the program execution calls for a transfer to another
track it 1is investigated whether the track is available in the core
store. If it 1s not it is transferred to that track place which for the
longest time has been left unused.

10.4. BALANCING THE USE OF THE CCORE STCRE.

The transfer of a drum treck to the core store requires 20 millise-
conds. In contrast the transfer of control to a track which is already
Present in the core store takes between 0.7 and 1.6 milliseconds. It is
therefore clear that A PROGRAM HAVING A IARGER PART OF THE AVAILARLE CORE
STORE RESERVED BY VARIABLES WILL SPEND A LONGER TIME ON TRANSFERS OF PRO-
GRAM TRACKS TO THE CORE STURE. The importance of this loss of speed for a
given number of program track places depends very strongly on the loop
structure of the program. It is small if most of the execution time of
the program is spent in a loop which may be held completely in the avai-
lable program track places.

To assist in estimating the number of program tracks involved in s

10.4. BALANCING THE USE OF THE CORE STORE. 3

loop which includes calls of standard procedures the arrangement of
standerd procedures on the tracks reserved for them is given below,

Standard Used by

procedure

track

0 skrv, tryk

1 skrv, tryk

2 skrv, tryk

3 skrv, tryk, tryktom, trykml, skrvml, skrvvr, skrvtab

L A with integer exponent, ebs, entier, sign, smttegn,

tegn, trykvr, tryktab, trykstop, trykslut, tryken-
de, lyn

5 streng, trykkler, tryksum

6 tryktekst, skrvtekst

T +il tromle, fra tromle

8 trykkopi, skrvkopi

9 lmsstreng, taststreng, sqrt

10 1ss, tast, lmst, tasttegn, lmetegn

1 1ms, tast, lmst

12 trykkopi, skrvkopi, lmsstreng, taststreng, lss, tast,
lmst, tastiegn, lmstegn

13 (2larms of input, special storage)

1k cos, sin

15 arctan

16 1n, skrvtegn

17 exp, tryktegn

18 til tromle, fra tromle (tromle data A only)

These considerations indicate that in programs where the execution
speed is of any concern the number of active variables in the program
should be kept rather lower than the strict upper limit; a practical 1i-
mit might be 500 variables. This may be achieved by using the drum as an
additional store for variables.

The increase of execution speed gained by using the drum for storage
of variables will be counteracted by the loss of time incurred each time
these veriables are transferred to or from the drum by til tromle or fra
tromle. This latter transfer time is usually of the order of 1 - 2 milli-
seconds per variable per +transfer. Whether these transfer times are of
overall significance depends on the time necessary for other processing
of the veriables. An estimate of such processing times mey be formed on
the basis of the figures given in sppendix 3. It will be found that the
time of even a quite moderate smount of processing will overshadow the a-
verage drum transfer time.

32 10.5. STANDARD PROCEIURES: til tromle, fra tromle.
STANDARD VARIABLE: tromleplads.

10.5. STANDARD PROCEIURES: til tromle, fra tromle.
STANDARD VARTABLE: tromleplads.

10.5.1. Syntax.

<drum transfer function designator> ::= til tromle(<arrsy identifier>) |
fra tromle(<array identifier>)

<tromleplads variable identifier> ::= tromleplads

10.5.2. Examples.

Bplads := tromleplads

Bshift := til tromle(B)

tromleplads := tromlepleds - Bshift
fra tromle(B)

10.5.3. Semantics.

The standard integer procedures til +tromle and fra tromle =and the
associated standard Integer veriable tromleplads administer the handling
of transfers of arrays of values to and from the drum memory of GIER. The
procedure t1l tromle will transfer the array of subscripted variables
1dentified in the actual parameter to the drum and acts 1like an assign-
ment of values to the drum and likewise the procedure fra trom)le will as-
sign values previocusly trensferred to the drum to the array identified in
the actual parameter. In either case the part of the drum involved in the
transfer 1s defined by the value of the integer variasble tromleplads
which enters into til tromle and fra tromle as a non-local identifier.
Thus in order to retrieve a set of values previously transferred to the
drum the procedure fra tromle must be called with tromleplads having the
same velue as when the corresponding call of til tromle was made. The
same holds if it 1s desired to assign new values tc a previocusly used
section of the drum. In any case the array supplied as parameter in the
drum transfer function designator mist be of the same type and have the
same mumber of subscripted variables as the one used in the corresponding
call of til tromle. However, the two arrays need not have the same number
of subscripts or the ssme subscript bounds, If the arrays differ in these
respects the correspondence of elements is established by ordering the e-
lements of each array in the same manner as they would be if they were
reﬁd fr;»m tape by means of the standard procedure lms (cf. section
9.4.3.2).

Clearly +the standard variable tromleplads is the key to administe-
ring values stored on the drum. In addition the programmer may use the
values of the drum transfer function designators. These are closely rela-
ted to tromleplads as apperent from the following 3 rules which define
the behaviour of the value of tromleplads:

1. tromleplads is initialized by the compiler to & value which is
the one extreme of its permissible range of variation.

2. Every call of til tromle and fra tromle will, as a side-effect,
change the value of tromleplads in a direction awey from the initial va-
lue supplied by the compiler towards the other extreme of its permissib-
le range and by such an amount that the new value is the correct one to
use in transferring values to the next adjecent section of the drum.

5. The amount by which tromleplads is chenged through a call of til

o,

v—_—

hamemn B

10.5. STANDARD PROCEIURES: til tromle, fra tromle. 33
STANDARD VARIABLE: tromleplads.

tromle or fra +tromle will be the same whenever arrays of the same type
and having the same number of subscripted verisbles are transferred. The
amount by which tromleplads is changed is available as the value of the
drum transfer function designator. In other words:

new value of tromlepleds = old value + til tromle(A)

new value of tromleplads = old value + fra tromle(A).

However, nothing further about the dependence of the change of tromle-
plads on the size and type of the array is defined generally (the precise
mea.nin§ of tromleplads will change from one edition of the compiler to a-
nother).

It will be understood from these rules that as long as no explicit
assignment is made to tromleplads only calls of til tromle will be in or-
der end each of these will use a new section of the drum adjecent to the
one used in the last previous call of til tromle. Before any call of fra
tromle is made the programmer mist make an explicit assignment to tromle-
plaeds. The values assigned to tromleplads can only be derived from its
previous values possibly modified by integral mltiples of the amount by
which is has changed.

The programmer has his full freedom to overwrite sections of the
drum which have previously been used as long as he makes sure to use only
velues of tromleplads which lie within the range defined by its initigl
value and snother extreme which marks the other end of the free section
of the drum. If tromleplads steps outside this range an error reaction
will occur at run time end the message (cf. section 11.7)

tromle ak

will be typed. The criterion for a set of values previcusly transferred
by til tromle to be still intact on the drum may be formlated as fol-
lows: Each section used on the drum by til tromle will be defined by an
interval of the values of tromleplads, namely that defined by the value
of tromleplads just before til tromle wes called end its value just after
the call was completed. The values transferred will still be intact as
long as no cell of til tromle with an overlapping interval of tromleplads
has been performed.

10.5.4. Tromledata A.

The version of til tromle and fre tromle included in the compiler
tape will pack +the values tightly on the drum (tromledata A). When this
version is used the capacity of the drum is 10 200 values reduced by 4o
times the number of drum tracks used by the transleted progrem (this lat-
ter may be derived from the pass information, see appendix 1). The last
4 4o of these values will be placed on & part of the drum which holds
the compiler. Only if these are left urmsed will it be possible to com-
pile progrems without loading the compiler into the machine anew.

10.5.5. Tromledata B.

By a simple correction process an alternative version of t1l tromle
and fra tromle may be included in the compiler (cf. section 11.1). This
alternative version (tromledate B) will in each call use a full number of
drum tracks of 40 words each. Consequently arrays of from 1 to 40 variab-
les will require 1 drum track, arrays of from 41 to 80 values will re-
quire 2 drum tracks, etc. The capacity of the part of the drum available
for program end variables is 255 tracks. Of these 111 tracks are also
used by the compiler. If these are used for data further compilation will
require a reloading of the compiler.

34 11. CPERATING THE COMPILER.

11. OPERATING THE COMPILER.

11.1. LOADING OF COMPILER INTO GIER.

The compiler tape consists of a short special input program written
in SLIP languege, followed by the compiler proper in Dbinary form (HIELP
langusge). The compiler will be read into the machine by SLIP (start by
typing 1). If the SLIP version which stops on transfer to the progrem is
used the machine will stop after input of the input program and will have
to be restarted by pushing START.

The input is checked by summation. If the check fails the message

SUMFEJL
(in red) will be typed. In this case a new loading of the compiler will
have to be attempted,

A succesful loading of the compiler takes about 75 seconds and is
completed when the message

overswtter klar
is typed. The further action to be taken is described in the section on
the OVERSETTER-KIAR-SITUATION below.

A version of the compiler which includes Tromledata B (cf. section
10.5.5) may be produced by reading a short correction tape on top of the
compiler.

The compiler occupies the tracks 39-175. It places the compiled pro-
gram in the tracks 319, 318, as far as necessary. During program
execution the compiler tracks 39-64 are used 1in addition to the compiled
program,

11.2. MANUAL JUMP TO COMPILER.

The OVERSETTER-KLAR-SITUATION mey be called at any time during
translstion of ALGOL programs by transferring control to instruction 1 in
the core store.

If the core store has been used for other purposes, but the compiler
is known to be intact on the drum the OVERSETTER-KLAR-SITUATION is called
by transferring track 70 to 960 and transferring control to it. On ma-
chines equived with the optional HJEIP-button the seme effect will follow
if this button is pressed and the control words

halgol
e

are typed

11.3. OVERSETTER-KTLAR-SITUATION. 35

11.3. OVERSETTER-KIAR-SITUATION.

The compiler is ready to accept ALGOL programs whenever the message
overswtter klar
hes been typed. In this situation the machine is waiting for symbols to
be typed on the control typewriter. This leaves certain operational choi-
ces to the operator, as described in the following.

11.3.1. Start compiling.

Typing of & SPACE (or any character other than p, 8, t, o, 1, or i)
will start the compiler +translating the program with output and other
compiling features defined by the other characters typed previously. If
SPACE is typed immediately following the overswmtter-klar-message and also
KA and KB are O the compiler will produce no typed or punched output, in-
put will be taken from the paper tape reader, and program sections be-
tween PUNCH OFF and the first following PUNCH ON will be ignored. Thus
Programs will be compiled at the highest possible speed. The compiler
produces about 30 final machine instructions per second, except in the
case of very short programs where the basic time of U seconds becomes
prominent. Other compiling modes may be specified by typing any sequence
of the letters p, 8, t, o, 1, and 1, prior to the final SPACE, and by
setting KA and KB at this or a later time, as described below.

11.3.2. Compilation output.

Typing of p and s selects the output unit operating during compila-
tion, p standing for punch (perforator) and s for typewriter (skrivema-
skine). If both p and s are typed the output will appear on both punch
and typewriter. Whenever an output unit is specified the normal compiler
output is always produced. This includes:

11.3.3. Prelude to program:

All characters on the input tape up to and including the first ap-
pearance of be (assumed to form the first characters of the first begin
of the program) and the following gin are copied to the output.

11.3.4. Epilogue of program:
All characters on the input tape following the final end up to and
including the first following ; (semicolon) are copied to the output.

Additionsl compilation output may be specified as followe (note that
this presupposes & choice of output unit by typing of p or s):

11.3.5. Line output.

Typing of 1 ceuses every 10th line of the source ALGOL program to be
copied to the output with its line number attached.

36 11.5. OVERSETTER-KLAR-SITUATION.

11.3.6. Pass information.
Typing of 1 causes output of the so-called pass information. This is
described in appendix 1.

11.3.7. Pass output.

If KB is set to L the Intermediate output from passes 1, 2, 3, L4, 5,
6, 7, and 9 will be output. The form of this cautput is described in ap-
pendix 2. KB may be changed at any time during compilation and pass out-
put will be produced accordingly.

11.3.8. Program between PUNCH OFF and PUNCH QON.
If o 1s typed the text between PUNCH COFF and PUNCH ON is included in

the program.

11.3.9. Input from typewriter.

If t is typed the compiler takes its input from the typewriter.

Input from typewriter may also be called following the vent-message
(section 11.4.1).

When input is taken from the typewriter a line of text will be pro-
cessed at & time and the user has the possibility of deleting the line
which is being typed. Also shift to input from tape mesy be specified.
This is achieved as follows:
11.3.9.1. A line which is terminated with the CAR RET character will be
included in the program.
11.3.9.2. Whenever 4 consecutive case shifts are typed ({.e. LC, UC, IC,
UC or UC, LC, UC, IC) the compiler types the message

8

(in red). If now the operator types 1 the compiler will complete the red
message to read

8lms
(1ms is Danish for: read) and the compiler will contimue +to take its in-
put from tape, including the line which has just been typed. If the ope-
rator types r the compiler will complete the red message as follows:

sret
(ret is Danish for: correct) and be ready for snocther line to by typed
instead of the previous one, which will be ignored.

11.3.10. Stop between transletion passes.
If KA is set to L the machine will stop after each of the passes 1 -
8. The compiler is restarted by typing any character on the typewriter.

11.4%. TYPED MESSAGES FROM COMPILER. 37

11.4, TYPED MESSAGES FROM COMPILER.

Irrespective of the cholce of output from the compiler certain mes-
sages will be typed on the typewriter. These are

11.4.1. Vent message.
The message:
vent
(Denish for: wait) is typed and the machine stops when the END CODE is
encountered on the input tape during pass 1.

If in this situation the letter t is typed the further input will be
taken from the typewriter (cf. section 11.3.9). Any other character will
restart the input from tape. Note that the last case shift character read
from the tape will be restored correctly after shift to input from type-
writer and return to input from tape.

11.4.2. Off and on messages.
Whenever the text between a PUNCH OFF and the first following PUNCH
ON is ignored these two control symbols produce messeges during pess 1 as
follows:
linie <line number> off
and
linie <line number> on.

11.4.3. klar-message.
The message
kKlar
(Danish for: ready) indicates that the system is in the KILAR-SITUATI(ON
with the program ready to be executed (cf. section 11.5).

11.4k.4. Error messages.

The first 6 translation passes perform a thorough checking of the
formal correctness of the program. Every error found will be reported by
a suitable message typed in red. An error message consists of the text

feJl 1 linie
(Danish for: error in line) followed by the number of the line where the
error occurs and a short text charascterizing the error. The line number
is obtained by counting the CARRET symbols in the source program, line O
being the one where the first begin appears. Line numbers may be obtained
with the help of line output (cf. section 11.3.5).

When the translator has detected an error in the program the trans-
lation is discontinued after completion of pass 6 and the system returns
to the OVERSETTER-KIAR-SITUATION. This means that every program is taken
through the complete error detecting part of the translating process and
that all errors of a program often will be detected in a single transle-
tion run.

Error messages are also produced when certain tables which are crea-
ted by the compiler exceed the space allotted to them. 1In this case the
OVERSETTER-KIAR-SITUATION will follow immediately.

Detailed explanations of the possible error messages and thelir mea-
ning may be found in appendix 4.

38 11.5. KLAR-SITUATION.

11.5. KLAR-SITUATION.

On completion of compilation and when a new execution of a program
is called following a termination of execution the message
Klar
is typed and the machine will stop walting for a character to be typed.
If a SPACE is typed a normal run will take place. Other characters typed
in this situation allow a choice of the units used for output, as ex-
plained in the following section.

11.6. CHOICE OF QUTPUT UNITS OR STCOP RUN.

The running system sllows a free choice of the output units associa-
ted with the standard output procedures (cf. section 8.1) or of a termi-
nation of the run. This choice mst be made in the KLAR-SITUATION and may
be repeated at any time during the run of the program. The choice 1s con-
trolled by means of the control typewriter as follows:

Symbol Danish clue Meaning
typed’
a alt til alle All output will both be typed on the type-
writer and punched on tape
8 skrivemaskine All output will be typed. Nothing will be
punched.
P perforator Nothing will be typed. All output will be
punched.
Any symbol other skrv-output goes to type writer, tryk-out-
then a, s, p, or u. put to punch.
u ud Stop run., The run will +terminate with a

slut-message.

When a new CHOICE OF (QUTPUT UNITS OR STCOP RUN is desired during the
execution of & program the contents of the indicator register KA should
be changed. This will cause a jump to new CHOICE OF OUTPUT UNIT OR STCP
RIN to be made at the first following opportunity (usually within a few
seconds). When the choice has been made the execution of the program is
immediately continued unless u has heen typed.

11.7. TERMINATION OF EXECUTION OF PROGRAM, 39

11.7. TERMINATION COF EXECUTION OF PROGRAM.

All regular runs of ALGOL programs terminate with = message. The
possible terminating messages and their meaning are as follows:

slut The program has passed through the final end of the program.
(Slut is Danish for: end). D
ak The demand on storage space exceeds the capacity of the ma-

chine. This will be caused by having too many wvariables of any
kind (simple or subscripted, labels, for statements, etec.) in
action simltaneously. See section 10.2 (Ak is Danish for: a-

las).

array The program tries to declare an array too large for the ma-
chine or one with a negative number of elements.

exp The built-in procedure for calculating exp has been called

with an argument which would cause +the result to exceed the
range of real variables {cf. section 7.3). This may also be
caused by The operation A with a real exponent.

index A reference to a subscripted variable having subscripts out-
side the bounds of the corresponding declaration is made.
in The bullt-in procedure for calculating ln has been called with

a negative argument. This mey also be caused by calling the o-
peration.A with-an exponent of real type and a negative radi-
cand.
spild Arithmetic operation produces result outside the range of real
veriables (cf. section 7.3). The operation A with integer ex-
ponent is first calculated with the absolute value of the ex-
ponent as exponent and may therefore cause spild even if the
Tinal result is O.
sqrt The btullt-in procedure for calculating sqrt has been cslled
with a negative argument.
tromle sk (ne of the standard procedures til tromle or fra tromle 1is
called with a value of tromleplads outside of the permitted
range (capacity of drum is exceeded, cf. section 10.5.3).
Following a terminating message the machine stops waiting for a con-
trol letter to be typed on the typewriter. If
k
is typed the system returns to the KLAR-SITUATION, ready for a new execu-
tion of the program (cf. section 11.5). Any other character will return
the system to the OVERSATTER-KLAR-SITUATION (cf. section 11.3) ready for
a new compilation, except for the case that the section of the drum which
holds the campiler has been used for variasbles by the program just termi-
nated (cf. section 10.5). If this is the case the message
ok
(Danish for: gone) is typed. It is then necessary to perform a new loa-
ding of the compiler into the machine (cf. section 11.1).

Lo Appendix 1. PASS INFORMATION.

Appendix 1.
PASS INFORMATION.

The pass information is obtained as an optional output during trans-
lation (ef. section 11.3.6). It consists of the following:
At the end of pass 1, just before the epilogue (cf. section 11.3.U4):

1. linie <number of the last line of the ALGUL program> end

Following each pass: +two or three integers. The first of these al-
ways gives the number of drum tracks used to hold the intermediste output
from the pass. The remaining have the following meaning:

Pass 1. Number of drum tracks reserved for long text strings.

Pass 2. a. 979 - the number of different identifiers in the program a-
part from standard identifiers (minimum 512).
b. 364 + number of words used for long identifiers.

Pass 3. The number of blocks in the program. (Mex 1023).

Pass 4, a. The meximum depth in the stack used for collecting the decla-
rations belonging to each block at the begin of the block and
for rearranging procedure calls, rounded up to the nearest mml-
tiple of 10. (Mex 512).
b. The maximim level of blocks.

Pass 5. a. The number of re.eclarstions of identifiers.
b. The number of occurrences of identifiers in the program apart
from standard identifiers and the place where the identifier is
declared.

Pass 6. a. The maximm of the number of words used in the operator
stack. (Mex. 50).
b. The maximum of the number of words used in the operand stack.,
(Max. 70).

Pass 7. Maximum number of words used in the stack of operasnd descrip-
tions. (Mex. 55).

Pass 8, 291 - the sum of maximm number of words used in the two program
point stacks.

The number of drum tracks used by the finally translated program is

the sum of the number of tracks reserved for long text strings (pass 1)

and the number of output tracks from pass 8. These tracks are placed from

track 319 and downwards as far as necessary.

Appendix 2. PASS QUTPUT, K

Appendix 2.
PASS UTPUT.

If desired the compiler will produce printed cutput of the internal
output produced by each pass (ecf. section 11.3.7). The following pages
give the code for the basic structures of each output.

The output from the passes 1 to 7 has the form of a uniform sequence
of integers in the range from O to 1023 printed with 10 in each line. De-
pending on the context these integers represent specific delimiters or
are attached as parameters to adjecent integers to form structures of up
to 6 integers. The syntax of these structures is specified fully. Some of
the peculiarities of the order in which delimiters and parameters will
appesr in the output are caused by the fact <that passes 4 and 8 proceed
in the reverse direction. This causes the output from passes 3, 4, and 7
to be scanned by the following passes in the reverse direction of that in
which it is produced and 1n which it appears in the printed output. The
structures are everywhere described in the order in which they appear as
output.

Pass 8 produces the final machine code. This is available as output
from pass 9. The specifications given include only those instructions
which refer to the fixed administration and which are therefore not com-
prehensible to those familiar with the GIER machine code.

As a further aid to the understanding of the pass output the purpose
and function of each pass shall be given briefly as follows:

Pass 1, Conversion to reference language. Strings and layouts are as-
sembled.

Pass 2. Identifier matching. Each distinct identifier will be associsted
with an integer from 512-1022.

Pass 3. Analysis and check of delimiter syntax. Delimiters of multiple
meaning are replaced by distinctlive characters. Extra delimiters
are inserted to facilitate the later scanning.

Pass 4. Collection of declarations and specifications at the begin of
each block. Rearrangement of procedure calls. -

Pass 5. Distribution of declarations and specifications. Each identifier
is replaced by its full description., Storage allocation of vari-
ables,

Pass 6. Conversion of expressions to Reverse Polish notation (see e.g.
Computer Journal Vol 5, no. 3, 210). Type checking.

Pass 7. Generation of machine instructions for expressions. Allocation
of working variables.

Pass 8, Final addressing of program. Segmentation into drum tracks. Pro-
duction of final machine code.

Pass 9. Rearrangement of the program tracks on the drum,

Lo

Appendix 2, PASS QUTPUT: PASS 1.

Output Pass Output Pass Output Pass
unit Meanhing where unit Meaning where unit Meaning where
used used used
1 a 2 L1 M 2 131 3
2 b 2 L2 N 2 135 8 3
3¢ 2 43 0 2 137 string 3
4 4 2 W p 2 139 Tabel 3
S e 2 s q 2 141 value 3
6 f 2 4L6 R 2 151 3 3
78 2 L7 s 2 156 end 3
8 h 2 48 T 2 160 else 3
91 2 bo U 2 165 T 3
10 3 2 50 V 2 167 then 3
1k 2 51 W 2 169 do 3
121 2 52 X 2 174 T 3
13m 2 55 Y 2 176 step)
it n 2 54 Z 2 178 until 3
15 o 2 55 £ 2 180 while 3
16 p 2 56 @ 2 182 T 3
17 q 2 570 2,3 190 [3
18 r 2 58 1 2,3 200 , 3
19 s 2 59 2 2,3 207 := 3
20 t 2 60 3 2,3 211) 3
21 u 2 61 L 2,3 225 true >
o2 v 2 62 5 2,3 226 False 3
23 w 2 63 6 2,3 227 X 3
o x 2 64 T 2,3 228 [/ 3
25 y 2 65 8 2,3 229 A 3
26 z 2 66 9 2,3 230 : 3
27 » 2 67 . 3 231 < 3
28 ¢ 2 68 » 3 232 < 3
29 A 2 72 + 3 233 = 3
30 B 2 76 - 3 234 > 3
31 C 2 8 -, 3 235 > 3
32 D 2 87 go to 3 236 + 3
33 B 2 91 begin 3 23T A 3
3 F 2 93 Tor 3 238 v 3
35 G 2 100 IT 3 239 = 3
3 H 2 102 own 3 240 => 3
37 1 2 107 Integer 3 1021 end pass 2
38 g 2 112 real 3 1022 F bytes>
39 K 2 117 boolean 3 1it string 2
Lo L 2 124+ procedure 3 1023 2
<4 bytes> ::= <text on drum>|<short text>|<layout>
<text on drum> ::i= O <track relative> 0 <track number>
<layout> ::= <layout bits 0-9><layocut bits 10-19><layout bits 20-29>

Output unit 1021 (end pass) will appear in the following context:

<layout bits 30-39>

linie <line number of last line> end
156 <epilogue>; 1021 O -
<mumber of output tracks><mumber of tracks for strings>

Appendix 2. PASS (UTPUT.

PACKING OF LAYOUTS AND STRINGS.

Layouts. These are packed in one word as follows:
Bits 0 - 19 A 1 in position p indicates that character number p in the
layout (not counting SPACEs) is followed by SPACE.

- 20 - 23 b = mumber of significant digits

- 2k - 2Th= - - digits before the point

- 28 - 29 fn = sign of number part (no sign = 0, - =1, + = 2, + = 3)

- 30 - 33 4 = number of digits after the point

- 3 n, 0Oifnon, 1 if n

- 35 - 37 s = number of digits in exponent

- 38 - 39 fe = sign of exponent {code as for fn)

Other strings. These are packed character by character. One charac-
ter uses b bvits. The numerical value of the character is the one given in
section 6.5 of the Mamual with the exception of CAR RET which is repre-
sented by 63. Characters for UPPER CASE and LOWER CASE sre included as
needed, but all strings are understood to begin and end in lower case.
The end of a string is indicated by the character value 10. The strings
having 6 or fewer characters are packed in one word and carried through
the translation process like numbers., Longer strings are stored on the
drum during pass 1 and are represented during translation and at run time
by a word referring to the drum.

Packing of short strings (6 or fewer characters):

Bits O - 3 The constant 10
- It - 9 Charscter no. 6 -

- 10-15 - - 5|

- 16 - 21 - - 4 Unused character positions are
- 22 - 27 - - 3 set to 10

- 28-33 - - 2]

- 3 -39 - 1 -

The word referring to a long string has the following structure:
Bite O - 9 The constant O
- 10 « 19 track relative address, tr
- 20 - 29 The constant O
- 30 - 39 track number, tn
On the drum the characters are stored in consecutive words on track
tn in relative addresses tr, tr+l, tr+2, ... etc. The word following the
one having relative address 39 on treck +tn is word O on track tn-1.
Within each word the characters are packed in the following order:
Bits O - 5 Character no. 7

- 6 - 11 - - 6
- 12 -17 - -5
- 18- 23 - - k4
- 2k - 29 - - 3
- 30 - 35 - - 2
- 36 - In - - 1 (bit 40 is mark a, bit 41 is mark b)

L Appendix 2. PASS QUTPUT: PASS 2.

Cutput Pass Output Pags Output Pass
unit Meaning where unit Meaning where unit Meaning where
used used used
57 0 3 174 ¢ 3 990 tryktegn 6
58 1 3 176 step 3 991 skrvtegn 6
59 2 3 178 util 3 992 trykvr 6
60 3 3 180 while 3 993 tryktom 6
61 L4 3 18T 3 994 tryktekst 6
62 5 3 190 [3 995 tryktab 6
63 6 3 200 , 3 996 tryksum 6
64 7 3 207 := 3 997 trykstop 6
65 8 3 211) 3 998 trykslut 6
66 9 3 225 true 3 999 trykml 6
67 3 226 Talse 3 1000 trykkopi 6
68 4 3 227 X 3 1001 trykklar 6
T2 + 3 228 / 3 1002 trykende 6
76 - 3 229 A 3 1003 tryk 6
77 CARRET 3 230 : 3 1004 streng 6
78<h bytes>lit string 3 231 < 3 1005 sqrt 6
85, 3 232 < 3 1006 skrvvr 6
87 go to 3 233 = 3 1007 skrvtekst 6
91 begin 3 234 > 3 1008 skrvteb 6
93 Tor 3 235 S 3 1009 skrvml 6
100 I 3 236 % 3 1010 skrvkopi 6
102 own 3 237 A 3 1011 skrv 6
107 Integer 3 238 v 3 1012 sin 6
112 real 3 239 = 3 1013 sign 6
117 boolean 3 240 = 3 1014 lmst 6
124 procedire 3 241 end pass 3 1015 lmsstreng 6
131 aerray 3 512-979 Free 1016 lsms 6
135 switch 3 identifiers 5 1017 1n 6
137 string 3 980 1yn 6 1018 exp 6
139 Tebel 3 981 tromleplads 5 1019 entier 6
141 value 3 982 taststreng 6 1020 cos 6
151 3 3 983 lmstegn 6 1021 arctan 6
156 end 3 o84 tasttegn 6 1022 abs 6
160 else 3 985 smttegn 6
165 T 3 986 tegn 6
167 then 3 987 tast 6
169 do 3 988 t1l1 tromle 6
- 989 fre tromle 6

Output unit 241 (end pass) will be followed by:
1; Smallest output value used for identifiers - 1, (= min identifier)
2) 0.

........ 241 gu9 o
<4 bytes> is defined in the output from pass 1.

Appendix 2. PASS QUTPUT: PASS 3. 45

Qutput velues 0-168 and 512-1022 are processed in pass 4, the remaining
in pass 6.

Output Meaning Output Meaning Output Meaning

unit unit unit

0 CAR RET 76 spec string 211 end go to
<4 bytes>t 11t string 80 value 212 Tor
<number> 5 IIt integer 8+ Tormal 213 step
<mumber> 6 IiT real 88 switch 1list 214 until
<log val>7 Iit bool 92 end call 215 ‘end do

16 switch param 96 ‘end clean 216 7pos

20 call parem 100 end block 217 neg

24 beg call 104 end proc 218 ¥

28 beg func 108 bounds 219 -

32 decl switch 112 bound colon 220 X

37 decl array intg 116 begin e21 /

38 decl array real 120 ; 222

39 decl array bool 124 do 223 X
Lo Jecl proc 128 <Thenst oo <
41 Jecl proc intg 132 elsest 205 <
42 decl proc real 136 Trouble 226 =
43 decl proc bool 140 7= for 227 >
L5 decl simple intg 144 simple for 228 =
L6 Jecl simple real 148 Step elem 229 4
L7 decl simple bool 152 while elem 230 A
48 decl label 156 while 231 V

5% decl own intg 160 end assign 232 =>

sk Jecl own real 164 = 233 =

55 decl own DooL 168 first := oz T

56 spec switch 235 |

61 spec array intg 200 bound comma 236]
62 spec array real 201 subscr comma 237)
63 spec array bOOL 202 proc ; 238 -,
64 spec proc 203 1fex 239 simple for do
65 spec proc intg ook Ifst 240 step element do
66 spec proc real 205 thenex 21 while elem do
67 spec proc bool 206 elseex 512- Free identi-
69 spec simple intg 207 delete call 979 fiers

70 spec simple real 208 end elseex 980~ Std.identifiers
71 spec simple bool 209 end elsest 1022 See output from
72 spec label 210 end thenst pass 2
< bytes> :i= <text on drum>|<bytex<byte><byte><byte>
<text on drum> ::= 0 <track relative> 0 <track mumber>
<umber> ::= <bits 0-9><bits 10-19><bits 20-29><bits 30-39>
<logical value> ::= <true>|<false>
<true> i:= 0 256 0 0

<false>::= 1023 512 0 0

Following the normal output two output units sppear:
1. Smallest output unit used for identifiers - 1, (= min identifier)
2. ¢ -

U6 Appendix 2. PASS OUTPUT: PASS k.

Pass 4 is e reverse pass. Consequently the output bytes appesring
first will refer to the last part of the program et vice verse.

Where 3> output byte values are given together they refer to the
types integer, real, Boolean, in this order.

Output Meaning Output Meaning Qutput Meaning
unit unit unit
0 CAR RET 185 expression 236]
<constant> 186 end cell. 237)
- b 1it string 187 begln expr 238 -,
- 5, 6, 7 Iit 200 bound comme 239 simle for and do
<base points> 201 subscr comma 240 step element do
- 16 begin block 202 proc ; 241 while elem and do
- 20 begin procedure 203 fex 242 end local
<line identifier> ook ITst 243 bypess label
- 24 proec velue 205 Thenex 24 go to bypess label
- 28 end pass 206 elseex 2us Tabel colon
<line identifier><no.of elem> 207 delete call 246 bound colon
- - 32 decl switch 208 end elseex 247 end bounds
ddentiffer I1st><no.of subsc> 209 end elsest 248 end expression
- - 37,38,39 declare array 210 end Thenst 249 end design expr.
<line identiffer>no.of peram> 211 end go to 250 Then statement
- - L0 declare procedure 212 For 251 else statement
- - 41,552,553 decl type proc 213 step 252 T= for
<id.entifier 1Ist> 214 until 253 step element
L5,46,47 decl simple 215 end do osh Flrat:=
- 48 declare label 216 pos 255 while
- 53,540,585 declare own 217 neg 256 while element
- 56 specify switch 218 ¥ 257 prepere assign
- 61,652,563 specify array 219 - 258 simple for
- 64 specify procedure 220 x 259 end assign
- 65,55,07 specify type proc 221 / 260 do
- 69,70,71 specify simple 222 : 261 while label
- T2 specify label 223 K 262 =
- 76 specify string ook < $12- Free iden-
- 80 value 228 < 979 tifiers
- 84 Formael 226 = 980- Stamdard iden-
88 switch list 227 > 1022 tifiers as
<1denti'ﬂer .of parsmeters> 228 > from pass 2
- - 92 begin call 220 4
96 begin local 230 A
<no.of Ident.><adr. of coef> 25 v
- =100 bounds 232 =>
104 end block 233 =
<identifier> a3k {

- 108 end procedure 235 [

La

Appendix 2. PASS QUTPUT: PASS k. Iy

<constant> ::i= <bits 30-39><bits 20-29><bits 10-19><bits 0-9>
<base points> ::= <base address for variables><base address for working>
<base address for working> ::= 1024 - number of locations used for
local variables - number of locations used for local program points
<vase address for variables> ::= 1024 - number of locations used
for local program points
<ddentifier> ::= <byte value in range from 512 to 1022>
<line identifier> ::= <line number><identifier>
<identifier list> ::= <line identifier>|
<identifier iist><1ine identifier>

The last bytes appearing in the output refer to the outermost block
and the entire program and are as follows:
1.2. <base points>
3. 1021 - meximum block mumber - number of owns
k., 2 + number of owns
5. smallest output unit used for identifiers - 1
6. 0

STORAGE ALLOCATION OF QUANTITIES IN THE STACK.

The storage arrangement of variables and similar quantities is
formed during pesses 4 and 5. Each ALGOL block forms an independent ar-
rangement and the storage allocation results in the attachment of a block
mumber and a block relative address to each quantity. The block rumber
counts the level of nesting of blocks, the outermost block of the program
being block number O. The block relative addresses reflect the order in
which the locations are placed within the section of the stack reserved
when the block 1is activated at run time. With a view to the marmer in
which the locations will be reserved during program execution 3 groups of
quantities are distinguished. Within each group locations are assigned to
the quantities of the program in the order in which these quantities ap-
pear in the given ALGOL text. The 3 groups and the storage requirements
of each item within them are as follows:

Group 1: Locations which have been initialized before the entry into
the local declaration. This group exists only for procedure body blocks
and is at run time reserved and initialized by the procedure call. Reser-
vations: return information (1 location at relative address = 2), follo-
wed by ﬁormal)locations (1 for each formal parameter at relative addres-
ses 3, 4, ...).

Group 2: Locations which are initislized by the local declaration.
One location is used for each program point (entry to labelled point or
procedure body). A switch declaration will use one location for the
switch identifier followed by one location for each switch element. The
body of & type procedure will need one location for the procedure velue,
at relative address -1 (= 1023). The block information will need 2 loca-
tions, always at relative addresses O and 1. All other locations within
the group have negative relative addresses, the first of these being the
s80-called base address for variables. :

Continued on page 49

L8

150 <const>

151,152,153 <const>
154,155,156 0 <block adr>

Appendix 2. PASS (QUTPUT: PASS 5.

literal string

literal integer, real, Boolean

own integer, real, Boolean

157 <no.of elements><block adr> switen

158,159,160 <no.of subscripts><block edr
161,162,163, 164 <no.of param,

165,166,167
168

169,170,171
172,173,174,175
176,177,178

179

180

181

«> array, integer, real, Boolean

><block adr.> proc, nc t:

e

, int, real, EBool

0 <block adr.> simple integer, real,

0 <block adr.> Iabel

olean

0 <block adr.> formal array, integer, real, Boolean

0 <block adr.> formal proc, no type, int, real, Bool

0 <block adr.> formal simple, int, real, Bool
0 <block adr.> Tormal label
0 <block adr.> Formel switch

0 <block adr.> formal string

182,183,184 <no.of param><block 8dr.> procedure call or assign,
Integer, real, Boolean

185 expression
186 end ¢
187 begin expression

188 0 0 0 undeclared

200 bound comma

201 Subscr comma

202 proc ;

203 Ifex

ook Ifst

205 Thenex

206 elseex

207 delete call
208 end elseex
209 end elsest
210 end thenst
211 end go to
212 For

213 step

214 mImtil

215 end do

216 pos

217 neg

218 v

219 -

220 X

e21 /

222

223 A

o224 <

225 <

226 =

227 >

228 S

229

230 A

231 Vv

232 a>

233 =

2+ T

235 [

236 1]

237)

238 -y

259 simple for and do
240 step element and do

e elem and do
242 end Tocal

243 bypesslabel

2l goto bypasslabel
2ls colon

246 bound colon

2h7 end bounds

28 end ex

249 en]

250 Then st

251 else st

252 1= for

255 step elem

25k Tirsti=

255 while

256 while element
257 prepare assign
258 simple for
259 end assign

241 WhiT

260 do

261 while label

262 =

263 <number of elements>
local switch

264 <number of parameters>
local procedure

265 local lebel

266 blind

267 end pass

268 CAR RET

269 <working base>
begin block

270 <working base>
begin procedure

271 <Identifier>
end procedure

272 <relatlve addr - 2>
take value unrounded

275 <relative addr - 2>
take wvalue rounded

274 begin locel

275 <no.of actuals>

<identifier>

begin call

276 end block

277 <rel.eddr.of coeff>

<no.of arrays>

bounds

980-1022 Btd.identifiers

| —

Appendix 2. PASS (UTPUT: PASS 5. Lo

<constant> ::= <bits 0-9><bits 10-19><bits 20-29><bits 30-39>
<block adr.> ::= <block relative address><block number>

<ldentifier> ::= <standard procedure identifier byte|<identif1er description

starting with byte in range from 154 to 184 (see above)>
First byte in ocutput = 1021 - max. block rumber - number of owns
Second byte in output = working base for outermost block.

Continued from page 47.

Group 3: Locations reserved, but not initialized, by the local de-
claration. Simple veriables use one location each, irrespective of their
type. An array segment uses one location for esch array identifier fol-
lowed by (1 + number of subscripts) locations for storage mapping coeffi-
cients. The relative addresses of the locations of this group are even
more negative than those of group 2, the first being the so-called base
address for working. ' Working locations created during pass 7 also belong
to this group. They are placed at (base address for working - 1), (base
address for working - 2), ete.

Example of relative addresses of a block.

real procedure P(f1, £2); real f1, £2;
begin switch s:= L1, 12;

array a, b[i:nl;

real r;

procedure Q3 ;

12:
L1:
end;
Relative
address
«+s« Working locations -

1011 (pass 7)
base address for working: 1012 a

1013 b | Group 3
1014 coeff. 1

1015 - 2 ;

1016 r -

base address for variables: 1017 s -
1018 element 1 |
1019 - 2
1020 Q |
1021 I2 Group 2
1022 L1 |
1023 wvalue of P
block information |
return - -
£1 | Group 1
2 -

Funnn—-=0

50

Expressions are written in reverse Polish notation.

Appendix 2. PASS QUTPUT: PASS 6.

Output values

81-90 are used for Perameters in procedure cells and locsl declarstions.

0 begin local
i en oc
<no of parsmeters + 1>
2 - begin call
<working base>
3 - begin procedure
<no of fo s>
4 - end procedure
5 . end'%iéé Procedure
<working bese>
6 - begin block
7 end bloc
8 go to bypassiabel
9 TIabel declaration

10 while label
11 begin expression
12 if
13 ‘else statement -
14 ‘end else stetement
15 for
16 = for
17 simple for
18 ‘simple for and do
19 while
20 while element
21 while element and do
22 step
23 until
2k ‘step element
25 step element and do
26 end do
27 end subsgcripts
28 subscript comma
20 end switch designator
30 Tound o
n abs
<track rel><track no>
32- -std.proc. 1 array par
33 entier
ey
35 negative
36 en expression
37 end R expression

First symbols in output:

52
53
54
55
56
57
58
59
60
61
62
63
N
65
66
67
68
69
70
1
T2

73-
Th-
75-
76-
77-
78-
79-

<b

end address expr 80 address

proc; <no. of elements>
else RF expression 81 - local switch

else R expression <no of parsmeters>
else address expr 82 - local procedure

end else R expr 83 Tocal lebel

end else R expr Procedure wvalue

end else addr expr 85 expression as param
then ~ . <block rel><bl no>
Prepare assign 86- -simple or label

not use 87- -own paremeter

im 88- -described in steck
g0 to <track rel><track no>
E— 89- -std.proc.paremeter
- <constant>

X 90 - constant parameter
/ <track rel><track no>
: 91- -std.proc. no param
A integer 92- -std.proc. 1 RF par
N e 93- -std.proc. 1 R per
< then 9% prepare function call
< then <constant>

= Then 95 - constant

> then <block rel><bl.no>

S then 96- -end proc call

4 then <track rel>track no>
< 97- -end standard call

< <rel.adr.coef><no ident>
= 98- -bounds

> 99 bound comms

> 100 end bounds

$ <bIock rel - 2>

A 101 - take value rounded
A" 102 - take value unrounded
= 105 end pass

ITock rel><bl.no> 104 bypass label
-arrs; 105 take nonsense
-simp%e verieble 106 trykende
-own 107 trykslut
-switch 108 trykstop
-Tabel 109 tryktab
-formel 110 trykvr
-procedure RN 1yn

1. Initial stack reference = 1021 - mex. block number - no. of owns
2. Working base for outermost block = 1024 - number of words needed for
program points etc. - number of words used for varisbles,

Appendix 2, PASS QUTPUT: PASS T. o)

(PERAND ADDRESSES IN THE QUTPUT FROM PASS T.

In the output from pass 7 references to variables in the stack (i.e.
operand addresses) have been finally differentiated into the following
classes:

1. Variables in the outermost block of program, The block number,
which is 0, is omitted from the output. The final mechine instructionms,
formed in pass 8, use absolute addresses.

2, Variables in the currently local block. Again the block number is
unnecessary. The final machine addresses are p-relative; at run time the
p-register always holds the stack reference of the currently local block.

%, Varisbles in intermediate blocks. These require both the block
rnumber and the relative address. In the final machine program s-reletive
addresses are used and the sppropriate stack references are placed in the
s-register by means of explicit ps-instructions referring to the DISPLAY.
These ps-instructions are inserted as needed during pass 8.

In addition to the above three classes the following operands appear
explicitly in the output from pass T:

4, UA, the Universal Address. This is used for subscripted variables
and variasbles called by name. The basic administrations for referring to
these two kinds of entities place the absolute machine address of the re-
legant location in UA (the THUNK idea, see Ingerman, Comm. ACM. Jan.1961,
22).

5. UV, the universal value. Upon completion of a call of a type pro-
cedure the value of the function designator is found in UV.

52

<1it>

<block relative>
<block relative>
<block relative>
<st.ad>

10 if RKC then R:=-R
11 Ri= -R
12 procedure value

13 end UV expr

14 R:= round(RF)

15 end RF exp

16 end R expr

17 end address expr
18 R:= -, R

19 R:= R - epsilon

20 if R$0 then Ri= -1
21 RF:= storelUA]

22 RF:= RF - 0.5

23 RF:= float(R)

2L goto non loc. in s
25 goto computed

26 goto local in s

27 M:= UA

28 UAza 8

<op> 29 RF:=abs(<op>)
<op> 30 RF:= -<op>
<op> 31 RF:=RF + <op>
<op> 32 RF:= RFx<op>
<op> 33 Ri= R A <op>
<op> 34 R:= R V <op>
<op> 35 R:= R = <op>
<op> 36 RF:=RF - <op>
<op> 37 R¥:= RF/<op>
<op> 38 R:=-abs(<op>)
<op> 39 Ri:= abs(<op>)
<op> 40 RF:= <op>
<op> 41 R:= <op>
<op> 42 <op>:= RF
<op> 43 <op>:= R
<op> b4 <op>:= 0
<op> 45 M:= <op>
<op> U6 <op>:i= M
<op> 47 s:= <op>

1 constant

2 absolute address (block 0)

3 p relative (in local block)
4 (p)-rel. (ind., local block)
5 s-relative (block relative)
6 (UA) (ind., univ. address)

7 UV (univ. value)

<op> 48 grmf V1A

<op> 49 scn Ma

<op> 50 <op>:=RF marked
<op> 51 <op>:= 0 marked
<op> 52 <op>:= M marked
<op> 53 s:i= adr(<op>)
<op> 54 mult tst subser
<op> 55 call formal

56 integer divi

57 - -

58 - -
<op> 59 index call
<op> 60 switch call

61 cSh:= RF

62 cb8:= RF

63 cS54:= M

64 c68:a M

65 M:= store[UA]

66 not input

<char> 67 punch <char>
<rel> 68 working:= R
<rel> 69 working:= RF
<rel> T0 working:= M
<subse>T7! mult next subse
<rel> T2 end do
<rel> T3 end single do

T4 Radr:= input

75 ROO:= RO
<elem> 76 local switch
<1it> 77 const parameter
<-ap> T8 beg call
<tr.p> 79 end call std.
<tr.p> 80 std.proc.par
<st.ad>81 simple as par
<st.ad>82 simple bl. O pax
<st.ad>83 desc. in stack
<st.ad>84 described in

stack bl. O

Appendix 2. PASS (UTPUT: PASS T.

<st.ad>85 endproccall

86 RF:= Radr
<tr.p> 87 std.proc no par
<tr.p> 88 std.proc 1 par
<tr.p> 89 std.func 1R
<-ap> 90 endproc

<-ap> 91 end type proc
<-ap> 92 end block
<bl.nc>93 begin local

94 end else

95 bypass label
96 label declar.
97 begin expr

98 vegin proc

99 do

100 if

101 for

102 for label

103 call 1n

104 else
105 then
106 if R0
107 IF R<O
108 IF R=0
109 IF R40
110 do NT
111 30 abs
112 1if R<O then goto
113 goto bypessiabel
114 bypessabs

115 prog point par
116 (internal)

117 (internal)

118 endlocal

119 return inf

120 take for labhel
121 RF:= nonsense
122 call exp

123 end pass

124 complete erray
125 take last used
126 R:= array ref
127 <op>:= array id
128 reserve space
129 s:= p + <ap>

then goto
then goto
then goto
then goto

<rel>

op>
kop>
kop>
<ap>

130 callAinteger

Appendix 2. PASS QUTPUT: PASS T. 53

<op> ::= <operand description, see byte values 1 to 7 above>
<literal (1it)> ::= <bits 30-39><bits 20-29><bits 10-19><bits 0-5>
<stack address (st.ad)> ::= <block relative><block mumber>
<character (char)> ::m <value of character, see section 6.5>
<rel> ::= <relative in local block>

<subse> 1= <subscript number - 1>

<elem> ::= <number of switch elements>

<-appetite (-ap)> ::= <1024 - number of locations reserved in stack>
<appetite (ap)> ::= <mumber of locations reserved in stack>

<track point (tr.p)> ::= <track relative><track number>

<block number (bl.no)> ::= <block number>

QUTPUT FROM PASS 8: FINAL MACHINE CODE.
Adressing.

Pass 8 generates the finasl machine program and places it in correct
relative locations on the drum tracks. Pass 9 only resrranges the com-
plete tracks on the drum. The finsl machine progrem is available as out-
put from pass § and will be printed as normal program text. BEach track
will be headed with the track mumber. The first few locations on a track
usually are occupied by literal constants needed by the program stored on
the *track. These will be referenced by r-relative addresses from the pro-
gram. Other operands are-addressed as in the output from pass 7. Jumps
within the same track use r-relative addressing. All other program refe-
rences specify the track relative address and the track number. The pro-
gram starts in some unspecified location on the first track printed.

The following explanations only deal “with those program parts which
refer to the running system (the fixed administration placed in the cores
from 835-1023). It should be noted that the absolute addresses given are
subject to change if the running system is chenged in any way in new edi-
tions of the compiler.

Parameters in local declarations and procedure calls.

The local declaration and the procedure call both serve to reserve
and initialize locations in the stack. In the machine code they are re-
presented by a call of the administration followed by one or more words
which serve as parameters, The administration will take the parameters
one by one and usually generate the contents of a location in the stack
from the informetion given in the parameter. The parameters sppear in the
machine code in the reverse order of that in which they appear in the
originel ALGOL program.

L

54 Appendix 2, PASS OUTPUT: PASS 9.

Absolute addresses in a program having the maximum block nesting n and p
own variables.

es e Variables in
-193-n~p outermost block
-192-n-p Block information of
-191-n-p outermost block
-190-n-p own no. 1

-191-n own no. p

-190-n internsl reservation

-189-n DISPIAY [n]

-190 DISPL:Y [1]

-189 ¢t DISPLAY [0]

-188 c33=c35. (i) mt ¢33: change sign. (2) ¢35 contains 0.5 floating,
used for entier: srf ¢35, and : : srf ¢35 V NT; arf c35;

-187 c34. epsilon. sr c34 is used In certein relations.

-186 ¢37. UV, the universal value. .

-185 cl0. Floating 1.0 snd true.

-18% cl1. - -1.0 and Telse.

-183 cl3. Nonsense, the value of output procedures.

-182 cl6. 1last used in the stack. (1) arn clb, ck 10: form array identi-
fier. (2) ps (ch6): used for take value (when vslues are teken the
formals are addressed relatively to last used).

-173 ¢68, Working locaetion. Used for the exponent when calling Adnteger.

-172 ¢69. tromleplads.

-116 c2. hs ¢2, qq track relative + track number.29: transfer control.

-1k 3. hv(f) c3: go to local label referenced in the s-register.

-113 ck2, hs ch2, qg track relative + track number.29: transfer in re-
rameter list (see about parameters below).

=112 c21. hv c21, qq track relative + track number.29: (1) Call stendsrd
procedure. (2) End local declaration.

- 98 ¢5. (1) hs c5, qq DISPLAY ref - eppetite.29: begin local declara-
tion. (2) hsf c5, qg - appetite.29: begin procedure cell.

- 79 c26. pm array identifier, hs c26: index call, places the address of
the subscripted variable in UA.

- T2 ¢36. UA, the universal address.

- T1 c20. hhf ¢20, qqf number of elements: switch in local declarstion.

- 60 cS5h. Working location. Used for the radicand when calling Ainteger.

- 56 ¢50. qq p-relative addr. of length, hs c50: reserve space for array.

- it e55. hh ¢55: termination of execution.

- 42 ¢38, pm switch identifier, hs c38: teke value of switch designator.

- 34 c22. pm formal identifier, hs c22: take formel, address to UA.

- 30 9. hsn 9, qgq track relative + track nmumber.29: call standard
procedure with no parameters.

- 20 ¢10. hs ¢10, qq track relative + track number.29: call standard
Procedure with 1 RF parameter.

- 19 cl11. hs e11, qq track relative + track number.29: call standard
procedure with 1 R parameter.

ooy

Appendix 2. PASS QUTPUT: PASS 9. 55

- 18 ¢7. hh(f) c7: end type procedure.

- 16 c6. hh(f) c6: end procedure.

- 14 ¢18. arn(c36), hs c18: go to computed label.
- 13 ¢16. hh(f) c16: go to non-local label.

- 10 ¢13. hv(f) c13: end RF expression.

~ 9 cth. nv{f) cil: end R expression.

8 c12. hv{f) c12: end UV expression.

7 c15. hv(f) c15: end address expression.

L e8: , nhs(f) ¢8: end block.

Parameter formats used only in local declarations.

hs-98 [=c5], aq DISPLAY ref. -<ap>.29: begin local declaration
hhf-71 [=c20], qqf no. of elements: local switch

Parameter formats used only in procedure calls.

hsf-98 [=c5], qqf - appetite.29: begin call
ps (DISPLAY ref), pm s<block rel.>: described in stack: array,
< switch, procedure identifier,
g formal name
qq DISPLAY ref, pm <absolute address>: described in stack block O
ps (DISPIAY ref), psn s <block relative>: call)declared procedure (end
call).

Parameter formats used both in local declarations and procedure calls.

Any f-marked full word: constant, in locel decl. used
only for the procedure value

aq O ,qq <track rel>+<track no>.29: program point, left

Qqf 0 ,qqf<track rel>+<track no>.29: program point, right, Used in

local declaration for: la-
bels, procedures, expressions
as switch elements, In proce-
dure call: expressions, std.
proc. identifiers, return in-

formation
» psf (DISPLAY ref), psf s <block rel>: simple var., label. In local
decl,: switch elements.
qqf DISPLAY ref, psf <absolute adr>: simple var., label, in block
0

hs-113 [=clk2], qg<track rel>+<track no>.29: track completed

hv-112 [=c21], qq<track rel>+<track no>.29: continue in program, left
hvf-112 [=e21], qg<track rel>+<track no>.29: - - - , right
local decl: end local, Proc.
call: call standard proce-
dure,

56 Appendix 3. SELECTED EXECUTION TIMES.

The execution time of a program in GIER ALGOL depends not only on
its individual algorithmic constituents, but also on the loop structure
and the number of variables declared at the time when each part of the
program is executed (cf. section 10.4). The times given below sre based
on actual timings at the machine and include an average track administra-
tion +time such as it may be expected in loops which may be accomodated
completely in the core store. Substantially longer execution times will
result under the following circumstances: a) Frequent transfers of pro-
gram tracks from drum are necessary (cf. section 10.4); b) A major part
of the execution time of the program is spent in & locp with a cycle time
of the order of 2 millisecond or less and this loop happens to have been
Placed across a program track transition by the compiler. A program suf-
fering from the latter of these calamities mey be cured by insertion of s
suitable amount of neutral program (r:= r or the like) before the final
end,

Algorithmic entity Exanple Execution
time, milli-
seconds

Acdition a+b .12

Multiplication axb 0.18

Division a i) 0.21

Square a A2 0.18

Cube 8 i 3 0.l

Pover, integer exponent aAni

abs (exponent) = 1 3,8
10 245
100 8
1 000 10
10 000 12
100 000 14
1 000 000 16
Power, real exponent a A r 12
Subscripted variable
1 subscript Al1] 0.9
2 subscripts B{1, J] 1.2
p] - cli, J, k] 1.5
Step-until element, constant step
and simple upper limit, each loop step 1 until n 0.6

Block with simple variables begin real a; end 2.0

Block with array declaration begin array a[1:10]; end 3.6

Reference to formal parameter —

called by name. Actual parameter 1is

simple 0.4
expression 3.2
array identifier C.0
switch identifier 0.0
procedure identifier 0.0

Appendix 3. SELECTED EXECUTICON TIMES. 57

Call of declared procedure
having an empty procedure body

No parameter P; L7
1 parameter Q(a); 5.3

¢ 2 parameters R(a, b); 2.7
3 - S(a, b, c); 6.3

Call of standard procedure

, abs abs (x) 0.17

" arctan arctan(x) 6.6
cos cos(x) 6.0
exp exp(x) 5.8
1n 1n(x) 5.6
sign sign(x) 3.2
sin sin(x) 5.8
sqrt sqrt(x) 6.2 |

58 Appendix 4. ERROR MESSAGES: PASS 1.

For the general description, refer to section 11.4.4.

The pass number is typed as an integer from 1 to 8 followed by a
point (.) at the beginning of the first error message belonging to the
pass.

The line referred to in an error message will normelly be the line
in which the error occurs, but there are exceptions to this rule: a) A
construction appearing near the beginning or ending of a line may have
its line number changed by one unit. b) One of the error messeges from
Pass 5 may supply a quite misleading line mumber (see below). ¢) Error
messages from passes 7 and 8 will always refer to line O.

PASSES 1 - 8.
for stort program Program too big
This indicates that the capacity of the drum has been exceeded by
the demands of the program text. Remedy: Use s version of the compi-
ler which leaves more space on the drum, if such a version is avei-

lable.
PASS 1,
Torbudt tegn forbidden sign
A character to which no meaning is assigned appears on the input
tape.
fejl 1 sammensat symbol error in compound symbol

A string a characters which represents some of the first characters
of & compound symbol (cf. section 7.1.2), but not the following
ones, appears in the input.

feJl i parameter delimiter error in parameter delimiter
The construction)<letter string> is not followed by :{

ukorrekt brug af comment incorrect use of comment
The delimiter comment is not preceded by begin or ;

udefineret layout undefined layout
The compound symbol k is followed neither by < nor by a layout (cf.
section 8.3.1)
PASS 2.
for mange identifikatorer too many identifiers
The program uses too many different or long identifiers. Remedy: Use
the block structure to reduce the number of different identifiers.

PASS 3.
delimiter mangler delimiter missing
Two operands (i.e. identifiers, numbers, logical values, strings, or
compound expressions within parentheses) follow each other. Examp-
les:
7.3 sin(5) 4 true r.77 ré<string}

—_———— e

Appendix 4. ERROR MESSAGES: PASS 3.

ikke tilladt operand inadmissible operand
a) An operand appears in a wrong context. Examples:

Ti= begin true;
b) An operand is missing. Example:

a:= [1]
forkert delimiter wrong delimiter
a) The delimiter structure is impossible. Examples:
begin r/i:= if go to if for
b) BInary operator does not follow operand. Example:
i:= Xr;
operand mangler operand missing
Operand is missing at end of construction. Example:
ri=r/;
forkert afsluttet konstruktion wrong completion of construction
Parentheses, brackets, or bracket-like structures do not match.
Examples:
r{i) begin r:= a + b, p(i, r;
talfejl number error

A construction which in its first symbols conforms to the syntax for
numbers is not terminated correctly, or a number is too big for the
capacity of the machine. Examples:

20.; 1Ten-3 To1T0

stack overlgb stack coverflow
The nesting of begin’s, parentheses, etc. exceeds the capacity of
the compiler.

PASS k4.
stack overlgb stack overflow
The stack formed during the reverse pass 4 exceeds the available ca-
pacity. This stack is used to transfer the information about the
type and kind of each identifier and of each switch element from the
place where it i1s declared (for labels, where it labels a statement)
to the begin of the block in which i1t is local, and the information
about each actual parameter %o the left parenthesis of the call,

PASS 5.
dobbelt declarstion double declaration
The same identifier 1is declared twice in the same block or appesrs
twice in the same formal parameter list. Note that labels are consi-
dered to be declared as explained in section 4.1.3.

dobbelt specific, double specification
The same identifier is specified twice in the same procedure decla-
ration heading.

60 Appendix 4., ERROR MESSAGES: PASS 5.

manglende declaration missing declarastion

An identifier is used at a place where it is not declared. The line
number associated with this error message will be misleading Iin the
following two cases: a) The identifier is an actual parameter. The
line number will point to the 1line in which the left parenthesis of
the call appears. b) The identifier is a switch element. The line
number will point to the line which contains the begin of the block
in which the switch is declared.

menglende specific. missing specification
The specification of a formal parsmeter is missing.

manglende formal missing formal
An identifier is specified, but does not appear in the formal para-
meter list.

forbudt value specific. inadmissible value spec.
A formal parameter which according to the specification given cannot
be called by value appears in a value part.

stak overlgb stack overflow
The list of the identifiers which are redeclared similtaneously ex-
ceeds the capacity of the compiler.

PASS 6.
array subscript fejl 705 subscript error
The number of subscripts given in a subscripted varisble does not
match the corresponding array declaration.

procedure parameter fejl procedure parameter error
An additional integer in the message distinguishes two variants of
this error:
796: An identifier preceding immediately a left parenthesis, (, does
not conform to the procedure call implied in the construction by be-
ing of wrong kind or having a wrong number cf parameters.
846: A procedure identifier apprears in a context not consistent with
its declaration,

forkert type <error number> wrong type
The number associated with this error message indicates from where
in pass 6 the error program has been called. Note that these numbers
depend on the wey in which pass 6 is stored and may change slightly
if pass 6 is modified in any way (this may happen if mistakes are
found and corrected). A more detalled deseription of the error asso-
clated with each integer is given In the table below. In this table
the description
<i op> ::= <inadmissible operand>

indicates an operand which has wrong type or kind in the given con-
text. Note that expressions are regarded as operands. The examples
assume the following declarations:

Appendix 4. ERROR MESSAGES: PASS 6. 61

integer ij real r; Boolean b; array al(1:10], a2{2:k, k:6];
switch s:= L, 12; procedure p0;; procedure pl (f); real f;

Error Error constructions Examples
| number
| 578 +<i op>|-<i op>|x<i op>]/<i op>|A<i op> +s /L
584 1<i op> ir
587 <Boolean operand>:= <i op> bi=r
592 < <1 op>|< <i op>|= <i op>] =b
> <1 op>|> <i op>|4 <1 op>
595 A <i op>|V <i op>|= <1 op>|-,<i op> v (i-2)
508 <i op><binary operator><i op> iV al b=s
601 <real ocperand>:= <i op> ri= 8
606 <integer operand>:= <i op> f:= p
618 abs (<1 op>) |arctan(<i op>) |cos(<i op>) | cos{a2) In(r = 1)
entler(<i op>) |exp(<i op>) |ln{<i op>) |
sign(<i op>)|sin(<i op>)|skrvkopi(<i op>) |
skrvml (<1 op>)|skrvtegn(<i op>iqurt(<i op>) |
streng{<i op>) |ssttegn(<i op>)
trykkopi (<i op>) [trykml(<i op>)|
tryktegn(<i op>) |tryktom(<i op>)
632 go to <i op>|switch swi= <i op>, g0 %0 b
635 3<d op>; 3T
642 <i op><binary operator> b= A (1-2)V
648 <i op>[if
651 til tromle{<i op>)|fra tromle(<i op>) t11 tromle(r)
659 then <i op> then s
679 <i op> else <i op> 2 -relsed
<i op> else if . . . then <4 op>
688 1= <i op>i= ri=bi=b VDb
691 <i op> step!<i op> until|for . . . <i op>,| 1 = r step
: for . . . <i op> do -
698 3 op>] - PO}
715 <i op>:i= pOtm
726 <i op> then|while <i op> do if r then
729 for <i op>:i= - for aTi=
733 Tnadmissible subscript allL] al[i=r]
736 <i op> : (in array declaration) array qlv:1];
PASS T.
talfejl number error

An arithmetic

expression having only numbers as operands resu;ts in

a value outside the range of the machine. Examples:

1/0

stak overldb

Tu25%X929155

PASS 8
stack overflow

The two stacks of program points used during pass 8 exceed the capa-
city of the compiler. Remedy: reduce the number of labels and of ne-
sted for and conditional statements used simltanecusly.

62

Absoluﬁe addresses, 51

5

Accuracy of real
numbers, 9

Accuracy of standard
functions, 10

Address, L7ff, 51

ak message, 39

Alarm printing, 16

Alarms, 10
ALL HOLES in input, 21
arctan, 10
Arithmetic expressions,
10
array message, 59
Arrays called
by value, .1

arrasy subscript fejl,
60

Basic symbols, 8
BLANK TAPE in input, 21
Blind symbols, 22
Block information, 5S4
Block number, W47ff
Block relative address,
Lree
Blocks, 40
Call by value, 11
Case in output, 19
Case symbols, 6, 21
Check of output, 13, 19
Checksum, 21
Choice of output units,
38
comment, 8
Compilation ocutput, 35
Compound symbols, 8
Constants, 53
Control symbols, 6
Core store, 29
cos, 10
DASK AIGOL, 5
<decimal layout>,
b, 16
Declarations, 11
delimiter mangler, 58

ALPHABETIC INDEX,

Delimiters, 8

Digits, 8

Display, 51, 54

dobbelt declaration, 59

dobbelt specific., 59

Drum track transfer
time, 30

END CUDE in input, 21

Epilogue of program, 3%5

Error messages, 37,
58ff

Errors during input, 24

Execution times, 56

exp, 10

exp messege, 39

fedl i linie, 37

fejl i paremeter
delimiter, 58

fejl i sammensat
symbol, 58

Flexowriter, 6

Floatingapoint numbers,

forbudt tegn, 58
forhudt value
specific., 60
forkert afsluttet
konstruktion, 59
forkert delimiter, 59
forkert type, 60
Formal locations, 4Tff
Formal parameters, 10
for mange identifika-
torer, 58
For statements, 10
for stort progrem, 58
fra tromle, 32
Hole combinations, 6
Identifiers, L0
ikke tilladt operand,
59
index message, 39
Information symbols, 22
Input errors, 24
Input grom typewriter,
3

Input procedures, 20
Input string, 25
Input tepe syntax,
23, 25
integer, 8
Internal output, 41
Internal string, 25
Jump to compiler, 34
Klar message, 37, 38
Klar situation, 38
Labels, 10
Iabels called
by vealue, 11
last used, 5S4
<ayout>, 14, 16
Layout, L2, 43
<layout expression>, 14
Letters, 8
Level of blocks, 40O
Limitations, 11, 33
Line number, 35
Line output, 35
In, 10
1n message, 39
Loading of compiler, 34
Local declaration,
Lree, 53, 55
Lower case, 6, 21
lyn, 28
lms, 22
lmsstreng, 25
lmst, 24
lmstegn, 27
Magnetic drum, 29
manglgnde declaration,
0
manglende formal, 60
manglende specific., 60
Merual jump to
compiler, 34
Messages from compiler,
37
Nonsense, Sk
off message, 37
on message, 37
operand mengler, 59

Output case, 19

Output procedure, 12

<output statement>, 14

D;tpu;a units selection,

Oversstter-klar-
situation, 35

own, 11, Sk

Packing of strings, U3

Parity check hole, 7

Parity error, 21

Pesses, 41

Pass information,
36, ko

Pass number, 58

Pass output, 36, Li1ff

p-relative addreases,
91

Prelude to program, 35

Printed symbols, 6

Procedure call, 53

Procedure declarations,
11

procedure parameter
fejl, 60

Procedure statements,
10

Proper character, 27

Punch control, 12

PUNCH CFF and (N,
21, 35, 36

Punch tape code, 6

Range of variables, 9

real, 8

Recursive procedures,
10

Relative address, L7ff

Reserved identifiers, 9

Return information,
L7ef

Revised ALGOL 60
Report, L

Round-off, 9

r-relative addresses,
53

AIPHABETIC INDEX.

<sign>, 14
Significant digits, &
sin, 10

skrv, 14
skrvkopi, 26
skrvml, 18
skrvtab, 18
skrvtegn, 19
skrvtekst, 17
skrvvr, 18

slut message, 39

Specifications, 11
Speed, 56
spild message, 39
sgrt, 10

sqrt measage, 39

s-relative addresasea,
51

Stack, 51

stack overlgb, 59ff

Standard functions, 10

Standard procedures,
11, N

Stap between passes, 36

Storage allocation,
o9Pr, Wee

Storage of compiler, 34

Storage of program, 4O

Storage of standard
procedures, 31

streng, 25, 26

<string expression>, 17

String quote, 17

Strings, 4O

smttegn, 27

talfejl, 59, 61

Tape code, 6

TAPE FEED in input, 21

Tape integer, 23

Tape real, 23

Tape string, 25

tast, 27

taststreng, 27

tasttegn, 27

tegn, 28

63

Termination of
execution, 39
Terminators, 22
Text on drum, 43
Text strings, 40, 43
til tromle, 32
Transfer time of
drum track, 30
tromle ak message, 39
Tromledata A and B, 33
tromleplads, 32, Sb
tryk, 14
trykende, 19
trykklar, 19
trykkopi, 26
trykml, 18
trykslut, ¥
trykstop, 18
tryksum, 19
tryktab, 18
tryktegn, 19
tryktekst, 17
tryktam, 18
trykvr, 18
Typed messages from
caapiler, 37
Types, 8
Typewriter control, 12
Typographical
symbols, 6
udefineret layout, 58
ukorrekt brug af
comment, 58
Underlined word
symbols, 8
Universal address,
51, 5
Universal input
mechanisms, 21
Universal value, 51, Sk
Upper case, 6, 21
value, call by, 11
Variables on drum, 29ff
vent message, 37
vk message, 39

	A Manual of Gier Algol
	Contents
	Introduction
	8-Channel punch tape code and flexowriter keyboard
	The relation between Gier Algol and Algol 60
	Basic symbols
	Use of comment
	The treatment of variables of types integer and real
	Reserved identifiers
	Standard functions
	Arithmetic expressions
	Integers as labels
	For statements
	Procedure statements
	Order of declarations
	Own
	Procedure declarations
	General limitations

	Standard output procedures
	Control of typewriter and output punch
	Identifiers and main characteristics
	Standard procedures: tryk, skrv
	Standard procedures: tryktekst, skrvtekst
	Standard procedures: trykml, skrvml, tryktom
	Standard procedures: trykvr, skrvvr, tryktab, skrvtab, trykstop
	Standard procedures: trykende, trykslut, trykklar, tryksum
	Standard procedures: tryktegn, skrvtegn

	Standard input procedures
	Identifiers and main characteristics
	Universal input mechanisms
	Terminators, information symbols, and blind symbols
	Standard procedure: læs
	Standard procedure: læst
	Standard procedures: læsstreng, streng
	Standard procedures: trykkopi, skrvkopi
	Standard procedures: tast, taststreng
	Standard procedures: læstegn, tasttegn
	Standard procedure: sættegn
	Standard procedure: tegn
	Standard procedure: lyn

	Storing variables on drum
	Introduction
	Storage of variables
	Storage of program
	Balancing the use of the core store
	Standard procedures: til tromle, fra tromle. Standard variable: tromleplads

	Operating the compiler
	Loading of compiler into GIER
	Manual jump to compiler
	Oversætter-klar-situation
	Typed messages from compiler
	Klar-situation
	Choice of output units or stop run
	Termination of execution of program

	Pass information
	Pass output
	Selected times of execution
	Error messages
	Alphabetic index

