

8 REGNECENTRALEN

-_ SCANDINAVIAN INFORMATION PROCESSING SYSTEMS

SYSTEM GSL NO.: 550

LIBRARY CLASS : 0.2.2

TYPE : Report

AUTHORS: Jgrn Jensen,
Sgren Lauesen,
Paul Lindgreen,
Boris Martynenko

D.B. wagner (ed.)

EDITION: April 1969 (8)

=

Pass actions, pass output, and storage organization in

the Gier Algol 4 Compiler

ABSTRACT:

~ This report gives details of two important aspects of the Gier Algol 4

compiler:

1. Actions of the various passes; specifically the details of their in-

terfaces,

2, Storage organization in the compiled program.

The report assumes that the reader is thoroughly familiar with Algol and

in particular Gier Algol 4, and that he has some acquaintance with the

operation of the compiler. It plunges immediately into technical details.

fo

@$¢@6¢606 8 6 = INFORMATION DEPARTIVIENT ceess00ces e888 eH eeeeeeeeeBSeRees

OK-2500 VALBY - BJERREGAARDSVEJ 5 - PHONE: (01) 460888 - TELEX: 6464 rcinf dk - CABLES: INFOCENTRALEN

Contents

I. The Tasks of the Passes os © © © © © © © © «©

1.
2.
De
4,
5e
6.
Te
8.
9.
10.

General pass administration (GPA)
Pass 1, micro-structure analysis
Pass 2, identifier matching ..

Pass 3a, standard identifier mate
Pass 3b, local structure analysis

hing

Pass 4, collection of declarations
Pass 5a, storage allocation for variables

Pass 5b, generation of standard identifier
Pass 6, type checking and conversion to Reverse Polish No
Pass 9, assembly of code stateme mts ...

11. Pass 7, generation of machine operations
1e.

13.
14,

Pass 8a, drum rearrangement . .
Pass 8b, generation of final mac hine code

Pass 8c, loading of running system ...

IT. Storage Organization . 2. « « e«esecees

1. Storage of variables . 2. «ee ee eo we wo

2.

Group I, formal locations ...
Group II, program points
Group III, working locations and
Group IV, arrays and core code .

Storage of constants . .. «es.

III. Appendices “ee © @ © © © © @ @

1. Details of storage formats...

1. Block information...

2, Value of type procedure

3. Program point
4, Description of array .
Z° Formal location in stack

Te

8,

Constants . . 6 « e eee

Return information ...

1

1e

1

Te

1

le

1

1 Block information . .«e«. e
e

.
*

e
°

e
e

Details of pass output . . 6 « «

e e ® e e

e e ® e e

variables

e ° ° e e

° e ° e e

° ° e ° °

e e e e e

« e e e *

e e ° e e

e e ° e e

* e e e e

oe @ e@ @

e e e ° e ° of

e e a e e e e

e e ® e e e °

e ° e e e e e

e s e e e e .

e se e e e e e

oe oe ew ew

descriptions

e ° e e e e e

e ° e e e e e

e ° e e eo « e

° e e e e e e

ee ee we ee

° * ° a . e e

oe e e8 @ @ @¢ @

e ° e e . ° e

oe © © © @© @

7 e@© @¢ e© © @ «@

e 8 @ @ 8 @® @

ee e« ee # e# @# @

° J e e e e °

ee ee ee ee # # @

e e ° e e e eo

oo «© © © # # @

o e e ° ° e e

° e e e e e e

2.1 1 e e e * e e e e e e e e ° e e e > e a e e s

Cece Pass 2 ° e e e . e e * e e ° e e es e ° e e e e e e

2.36 Pass 3 * ° e e e e ° ° e e e ° e e e e e a e e e e

2.4. Pass 4 e « e e e e ° e e e e e e e ° e e * ° e * e

Oe Pass 5 Cr ee er ee ee |

2.6. Pass 6 e e ° e * e e e ° e e ° e ° e ° e e e e e e

2.7. Machine language in output from passes 1 to6...
2.8. Pass 7 e e Sd e e 6 e * ° e e e e e e e e e e cf e e

eo
e«

©
@

@
c
t
e

©
©

@
@®

#@
@

@
o
e
e

@e¢
@

e
e

*
e

e
°

2
e

9 c
e
e

©

©

©

©

©

@

f+
 O° 5

e
e

#8
8

©
@&

@
o
e

@
@

e@
oo

8
©

#©
@

ee
«©

e#

e@
@

@
@

@
°

e
e

°
e

°
°

eo
©

@
@

@

~

F
R
P
P

P
e

P
o
u
U
N
N

N
o

om
W
i
”
]
0
O

D
W

ww

—
 oO

—

_

11

11
11
12

13
13
15

16

17

17
18
19
20
22
2h
25
26

2096 Pass 8 e * e e e e e e e e e ° e e

Segmentation eee # © © © © @

Operand addressing « « « «6 « « «

Independently generated half- or
Multiple generated instructions

Program points ..
Block entrieS . « « « « « «© « «

Procedure calls . 2 6 » e e « «

Case administration . . ee e «

Reference table . 2. e« «ee «ee

of test output from Gier Algol 4

oo ee ee @ @ @ @® @ ®

ee 8 @ oo # @ eo #8 @ @

e * e e e e e e e e e

fullword instructions

* e ° ° e a e e ° e °

o e ° e e e ° e ° e e

. * ° e e a . e e e «

e e e e e « e a e ® e

e a . e ° e e e e e e

e e ° e e e e e ° e e

I. The Tasks of the Passes

The best introduction to the design philosophy and overall operation of
the compiler will be found in P. Naur, ’The Design of the GIER ALGOL
Compiler’, BIT 3 (1963), 124-140 and 145-166, Briefly, the compiler is
divided into ten parts: the nine ’passes’ and the ’General Pass Admini-
stration’, Pass 1 reads the source program and outputs to the backing
store a series of ’bytes’ which Pass 2 reads, Each of the following pas-
ses reads the output of the preceding pass and outputs a new sequence of

bytes to be read by the next until finally Pass 8 outputs to the backing-
store area ’work’ the finished object program. (For historical reasons
the pass named ’Pass 9’ falls between Passes 6 and 7.)

We describe below the various parts of the compiler in greater detail.

Appendix 2 gives the details of the interfaces between passes. Of course
for the most detailed possible information about the compiler see the
program listings, published by Regnecentralen as The Complete Annotated
Programs of Gier Algol 4, 2 volumes, December 1967, GSD GOu.

1. General Pass Administration (GPA). GPA is that part of the compiler
which 18 common to all passes; it takes care of input and output of

bytes, printing of error messages, and transition to the next pass,

The entry for output of a byte will, if wanted, print the byte as an in-
teger, This check-out facility is a permanent part of the compiler. For

details see the GA 4 Manual, section 13.4.

The entry for error message printing can identify the current place in

the source program by printing the value of a common carriage return

counter in front of the message. The carriage return counter is updated

by all passes whenever they meet the carriage return byte in the input.

Therefore this byte is carefully kept through all passes even when sur-
owe bytes are removed because of errors (see pass 3b and pass 4 be-

low).

The first time GPA produces any printed output from a given pass it

prints the pass number.

GPA contains a table which describes the successive passes of the com-
piler. This table is used during transition to a new pass.

The input and output of bytes is buffered so that the time used for
drum transports during the execution of a pass is negligible.

2. Pass 1. Analysis and check of the hardware representation of the
source program (micro structure). Conversion to reference language which

is output as a stream of 10 bit bytes,

The input to pass 1 is the source program taken character by character

from the input medium. The input medium may be paper tape, typewriter,
magnetic tape, or a backing store area,

Besides the conversion to reference language, which also implies recogni-
tion of compound symbols, e.g. begin end if < + :=, pass 1 performs se-
veral other tasks. ——

Comments and blind characters, e.g. blanks, are skipped.
Strings are packed in an internal representation.

=~ 2 ow

Each n’th line of the source program may be printed.
Several non-Algol features related to the hardware representation are

handled: Change of input medium, optional skipping of input between

PUNCH OFF and PUNCH ON, check of character sum in the input, print-
ing of messages to the operator, pause for insertion of new paper

tape in the reader.

Pass 1 skips all input up to the first begin and terminates the proces-

sing when the corresponding end has been read.

43, Pass 2, Identifier matching.

Each identifier encountered in the input is searched for in an initial-

ly empty table in the core store, If not found the identifier is entered
in the table. In any case it is output as one byte representing the ser-

ial number of the identifier in the table. The value is between 1021 and

512.

This matching is performed regardless of block structure. The generated
table is kept in core for use by pass 3a after which it may be overwrit-

ten.

Pass 2 also assembles bit patterns, a non-Algol feature, and outputs

them as logical values.

4, Pass 3a. Standard identifier matching.

The identifier table generated by pass 2 is searched for occurrences of

standard identifiers, i.e. identifiers declared outside the source prog-

ram,

Each occurrence gives rise to the output of two bytes: The serial number

of the identifier in the list of standard identifiers followed by the
byte representing the identifier in the pass 2 output.

5. Pass 3b. Analysis and check of delimiter structure (logical struc-
ture). Delimiters of multiple meaning are replaced by distinctive delim-
iters and extra delimiters may be added to facilitate the task for the

following passes,

A sub-part of the logic analyzes numbers and converts them to internal

machine representation which is then output as five byte constructions.
Also the procedure headings are treated by a sub-part of the logic which
checks for missing or double specifications and for not allowed value
specifications. Furthermore the specifications are output as part of the
list of formal parameters.

The main logic is performed by a finite state algorithm using a stack
for holding encountered opening bracket delimiters, e.g. if begin ((C.

The algorithm scans the input up to and including the next delimiter and
sets the operand situation, i.e. the class of operand encountered during
the scan for the delimiter.

@
@

The delimiter and the current state determine, via a matrix, the new
state, and the specific delimiter meaning. This in turn determines the
further actions, e.g. byte output, stacking, unstacking. Also the oper-

and situation is checked for consistency with the delimiter.

In case of error a message is given and current state is set to a value

which will insure skipping of the rest of the current construction, norm-

ally up to a semicolon or to an end.

6. Pass 4, (Backward scan): Collection of declarations at block begin,

Pass 4 stacks all declarations (labels are treated as declarations) and
unstacks and outputs the top section of the stack whenever a BEGIN BLOCK
byte is encountered in the input. However, to enable pass 5 to give a

relevant line number in case of double declarations, the identifiers from
the declarations are also transmitted to the output.

Pass 4 also counts the locations needed at run time:
In the whole program for:

Display (= max block depth).
Own variables.

In each block for:
Simple variables, array descriptions, and dope vectors.
Local declarations, i.e. the dynamic descriptions of labels and
procedures,

In each procedure block furthermore for:
Formal parameters.

Dope vectors for formal arrays which in the procedure body ap-
pears with subscripts. (This enables the procedure entry to

move the whole actual dope vector to local cells and thereby

facilitate the subscription of the formal array.)
This last counting requires that all subscripted identifiers in a proced-
ure body are stacked together with the number of subscripts. This
stacked list is then confronted with the forma] list from the procedure
heading and the number of subscripts is added to the array specifica-
tion.

Further pass 4 tasks:
Insertion of the bytes BYPASS LABEL and GOTO BYPASS LABEL which will
enable pass 8 to generate jumps around procedure bodies,

Insertion of the byte WHILE LABEL in front of while elements in for-
lists, Insertion of the byte PREPARE ASSIGN just after the last t=
in assignment statements,
Skipping of the rest of erroneous constructions found by pass 3b. As
the last task, after having processed the first BEGIN BLOCK pass 4
initializes the pass 5 declaration table using the byte pairs gener-
ated in pass 3a; see pass 5.

7. Pass 5a. Storage allocation of variables. Distribution of identifier
descriptions.

A table of identifier descriptions is built up, based on the declar-
ations collected at block begin. This table is checked for double declar-
ations by help of the identifiers left at the original place where the
declaration occurred. All other occurrences of identifiers are in the
output from pass 5 replaced by the description from the table.

~4he

The normal description will consist of three bytes:
< kind-type > < relative address > < block number >.

However, for a standard identifier only one byte is output. This byte re-
fers to a table of descriptions which is built up by pass 5b, see below.

8, Pass 5b. Generation of standard identifier description table. Output
or List of Standard procedure code sections to be included.

A table containing the descriptions of those standard identifiers which

actually have been used is built up in the top of core. This table will
be used by pass 6 whenever a standard identifier is encountered in the

input.

Finally pass 5b outputs a list of bytes specifying the standard procedure
code segments to be included in the object program. This list is used by

pass 8a,

9. Pass 6. Type checking (Global structure). Conversion to Reverse Polish
Notation.

Based on a priority table for operators all expressions are converted to

Reverse Polish Form. In parallel to this all kinds and types of operands
are checked by means of a pseudo evaluation of the expressions. This pro-
cess will also insert explicit type conversions when needed and will de-
liver the final type of more complicated expressions.

10. Pass 9 (between passes 6 and 7): This pass is an assembler, It inter-
prevs the text of code statements as machine code written in a subset of
the SLIP assembly Tanguage. From here on each piece of user-specified ma-
chine code is taken as an indivisible sequence of machine words.

11. Pass 7. Generation of machine operations. Assignment of working loca-

tons ®

By a simulation of the run time processes, with respect to where and how

the operands are stored, pass 7 generates the machine code necessary to
perform these processes, i.e. it determines the use of the machine regi-
sters and allocates run time working locations. However, as the internal
references (jumps) can not be addressed yet, the output from pass 7 is
still in the form of a byte stream.

12. Pass 8a. (Backward scan). Rearrangement of the pass 7 output on the

drum. Loading of the standard procedure code sections specified in the

list from pass 5b.

13. Pass 8b. Generation of final machine code including addressing of all
Internal rererences, Segmentation into backing store tracks.

14, Pass 8c. Loading of running system, i.e. the fixed set of administrat- @
Tve"routines needed at run time.

- 5 -

Result of compilation: A self-contained object program stored on consecute-
{ve tracks on the drum, It is relocatable as a whole on the backing store.

II. Storage Organization

A compiled program, while it is running, makes use of three kinds of stor-
age: the backing store (drum or disk), a core store of 1024 words, and
possibly a ’buffer store’ of 4096 words.

The backing store holds the entire compiled program (parts of which will

also be found in core), the text of most string constants used in the
program, and any files the program may explicitly make use of. (See A
Manual of Gier Algol 4, section 11, for details of use of the backing
store through explicit calls to standard procedures.)

Core store holds all the variables of the program (possibly excepting ar-
Trays), the running system, and some ’segments’ of the program. For details
of the program segmentation scheme see Naur, ’Features of the Gier Algol 4
System’ Regnecentralen, November 1967).

Buffer store, if available, holds all the array elements of the program.

Figures 1 and 2 show the organization of core store and backing store

during program execution.

Figure 1: Core Store During Program Execution

0 Some variables for Running system and Help system

e238 Program segments

Le ee me eee ee

Stack

Display

Own variables

Running system

ed7

1023

Normally e37 = 1022, e38 = 15,

-6- e

Figure 2: Backing Store During Program Execution

Help 3 basic

Help files

Running system

Program code The object
program produced

Standard procedures by the compiler
Storage of Variables

Variables are in general kept in core as long as they are active, with
the single exception that array elements are kept in the buffer store
if one is available.

Storage for own variables is assigned by the compiler, and can be seen on

the above diagram of core store, figure 1.

Storage for any other variable is assigned during execution at entry to
the corresponding block and released at exit from the block. These ’loc-
al’ variables are organized in a stack which grows and shrinks during
execution of the program and competes with program segments for storage.

The stack is not permitted to grow so large that there is room in core
for less than four program segments.

Each incarnation of each block in the program has a single section in the
stack. (Wherever the word ’block’? appears in this paper we Include any
procedure body, whether or not it is a block in the usual sense of a be~ ¢
gin ... end structure.) The block’s stack section contains:

I In the case of procedure blocks, the formal locations for the proced-

ure.

II The program points of the block.

III The working locations and variables of the block.

IV Storage for arrays and for core code.

The numbering above corresponds to the common terminology of the ’groups’
in a stack section, The diagram of figure 3 shows a stack section. We
will go into the groups in some detail.

The ’display’ is a list of pointers to stack sections. It is used for the
purpose of allowing references within one block to variables in embracing

blocks, e

Figure 3: A Single Stack Section

Items arranged ’in
order of declara-
tion’ go this way.

peregister points

here while

control is in

the corresponding

block.

A Toward lower Addresses

in Core Store

Next stack

section

(deeper nesting)

Array storage

and

core code

t
Local Simple Variables

and Descriptions

of arrays
(arranged in order of
declaration)

Program Points

(arranged in order of
declaration)

Value of a Type Procedure

Block Information

Formal Location 1

eee

Formal Location n

Return Information

Actual Parameter Constant m

eee

Actual Parameter Constant 1
 Previous Stack Section

- |
|
:

Group IV

Group III

Group II

Group I

Toward Higher Addresses

' in Core Store

-8.

Group I: The formal locations of a procedure block.

The machine code which the compiler produces for a procedure call works as
follows:

1. Allocate storage for group I of the procedure block’s section of the

stack and create the ’block information’ for that section.

2. Place into this stack section the return information and the formal
words for the actual parameters of the call. The precise format of
the return information and formal words is given in appendices 1.5 and
1.7. Suffice to say now that bits in the word may indicate among other

things

a. variable or constant

b. program point

ec. *thunk’ - described below,

4. In addition place any constants referred to by these formal words into

the stack section.

4, Set the p-register (which always indicates the current stack section)
to point to the newly-created block information and transfer control
to the procedure.

The procedure can now extend this stack section as necessary for its own
storage, do its thing, and eventually return to its caller through the re-
turn information given. (At which time the p-register must of course be
reset to point to the proper stack section.)

The ’thunk’ is a device used to handle Algol’s call-by-name convention,
Its name has an obscure origin in the complex mind of Mr. Peter Z. Ing-
erman, If an actual parameter in a procedure call is an expression, and

the corresponding formal parameter is ’by name’ (that is, not declared
value), then the expression must be re-evaluated every time the formal

parameter is referred to in the procedure body.

A ’thunk’ is a plece of code, organized somewhat like a procedure, which
when invoked evaluates an actual parameter expression and places the ad-
dress of the value in a standard location.

When the compiler compiles a call to a procedure it compiles a thunk for

every actual parameter which is not a simple variable or constant. Then

during execution, when the call is made, the call places a pointer to

this thunk in the corresponding ’formal location’ of the called proced-
ure’s stack section. Then a reference to the corresponding formal param-
eter consists of an invocation of the thunk.

In the case that the corresponding formal parameter is ’by value’ rather
than ’?by name’, thunks are not necessary but are used anyway. The actual
parameter is evaluated immediately after entry to the procedure block and
the value is stored in place of the formal word. Then access to this val-

ue is rather simple in the rest of the procedure.

Group II: The program points,

All labels and procedure entries are treated as local variables in the

compiled code. Switches are treated as procedures, so they too must be
considered here,

For each label and procedure entry in a block, a word is set aside in the
stack section for the block and this word is initialized at block entry.
(The format of the program point words is given in appendix 1.3.)

This convention means the compiler need not worry about the two basically
different kinds of program point: Those available directly and those

available by actual-formal correspondence, The formal location for a lab-
el or procedure formal parameter points to the program-point for it in”
the corresponding block.

Also generally included in Group II is the location set aside for the
returned value of a type procedure. After the return from a type proced-
ure as described above under Group I, the caller reaches up into the now-
abandoned stack section of the procedure and picks up the returned value.

After this has been done the contents of that stack section can be destr-
oyed.

Group III: The working locations of the block.

Included in this group are all the simple variables of the program, and
also descriptive information for arrays.

The descriptive information for an array is kept separate from the stor-
age for the actual elements of the array for two reasons:

1. The storage for the array’s elements must in the general case be allo-

cated only after its limits are computed. Furthermore it may be that
this storage is to be allocated in the buffer store and not in the

stack, The descriptive information can keep a record of where this

storage is allocated.

2. Because of efficiency considerations, descriptive information for ar-
Yay parameters of a procedure is copied into the stack section for the
procedure at block entry.

See appendix 1.4 for the details of array descriptive information.

Group IV: Array elements and core code,

See A Manual of Gier Algol 4, section 12.7, for a discussion of core
code. At entry to a block, all the pieces of core code declared in that
block are copied into the stack section corresponding to the block. Then
within the block they can be invoked through calls to the standard proc-
edure gier,

At block entry the limits of arrays are evaluated, the storage is allocat-
ed for them, and appropriate information is inserted into the array de-
scriptions mentioned in Group III. The storage allocated for arrays at
this time will be in buffer store if it is available and in Group IV if
not.

Storage allocated for arrays in the buffer store is assigned starting
from the highest locations in the buffer and working downward,

-10-

A final use of the stack: Thunk returns. The call to a thunk is as fol-
lows:

1. Allocate one more word in the stack.

2. Place return information into this word.

3. Transfer to the body of the thunk.

After the thunk has done its evaluation, it returns by:

4, Release the topmost word of the stack.

5 Return control through this word.

It is necessary to use the stack for thunk returns because of two contin-
gencies: The thunk may involve a call to a procedure; and it may involve
a@ call to another thunk.

Storage of Constants

Each ’segment’ of a program will contain a sequence of instructions plus
all the ordinary constants which these instructions use. In most compil-
ers it is worthwhile to group all the constants used in the program and
eliminate duplications; but in Gier Algol 4, because of the segmentation
scheme, such a grouping would decrease efficiency rather than increase it,
No grouping of constants, therefore, is done except within individual
segments,

The integer constants 0 and 1, and also any other constants with the same
machine representation, are treated specially. The constant zero need ne-
ver be kept in storage as instructions can do without it. The constant one
is located in the running system and when needed is picked up there.

It is convenient to require that all actual parameters be continuously in
core store. Therefore constant actual parameters are placed in the stack
as described above in the discussion of Group I.

Strings are a little bit awkward because a string is the only kind of va-
Tue that does not fit in a single word. Therefore the actual text of most
strings (those longer than 6 characters) is kept on the backing store
during program execution. See appendix 1.6 for a precise description of
the format of strings in the machine; but here it suffices to say that
when a ’string’ is mentioned in connection with Gier Algol 4 implementat-
ion, the word usually means a single-word description of the string giv-
ing its location on the backing store,

A final form of constant is the layout. It is considered Boolean and its
representation in storage is described in A Manual of Gier Algol 4, sec-
tion 9.5.3.

- 11 ~-

Appendix 1: Detaiis of storage formats

It will be noticed that many of these storage formats contain peculiar
numerical constants in parts of various words. Generally such a constant
turns a data word into an instruction or special indirect word; this

makes various code optimizations possible, See appendix 2.9 for the ways
in which the program store takes advantage of these storage formats.

1.1. Block information

0 9 10 19 20 29 30 39 ho 44

srl: | <stack reference>jdisplay address-1 896 960 140
for the surroun-’
ding block

0 9 10 11 12 2k 25 26 27 39°

sr+1:] <last used> in O JO }<last used in O}O7 <number of loca-

the stack for buffer in sur- tions used in

block rounding block> buffer in this

block>

<stack reference> for the outermost block = 1,

<last used in buffer in surrounding block> at the beginning = 4096
<number of locations used in buffer in this block> before reservations
in buffer = 0.

A procedure body is always considered to be a block. The surrowmd-
ing block for a procedure is the block in which it is declared,

1.2. Value of type procedure

Until a value is assigned to a type procedure the contents of the
location set aside for the procedure value is as follows:

0 9 10 19 20 29 30 39 bo 41

<stack reference> 0 0 0 1], 0

~ 12 «

1.3. Program point

(labels, switches, procedures)

0 9 10 19 20 29 40 39 «4o hy

Label K<sr> of the [relative 0 track number] {0
block where jaddress in 1 41

this label |track

is local

switch ditto ditto ho ditto 1 {10

» no type | <sr> ditto ok ditto 1 41

6
Sf
rd § | integer |ditto ditto 488 ditto 1 40 C

2 8 df
ro @ |real jditto ditto 488 ditto 141
5
5,

Boolean |ditto ditto 8 ditto 110

no type {ditto ditto ak ditto 141

S n

a oe integer |ditto ditto 16 ditto 140

B
8 i real ditto ditto 16 ditto 141
O,

Boolean jditto ditto ek ditto 140 e

In the word for a label, bits 40-41 are 10 if the target is left-hand in-
struction in a word, and 11 if the target is the right-hand instruction.

~13-

1.4, Description of array

0 9 10 19 20 29 30 39 bo 44

arrays 0 0 address of corner
in core

o
a store

=

> arrays ci7 1 ditto
% in buf-
i

<< fer

bits 4o-h1: integer 00
real 07

Boolean 10

The ’corner’ of an array is a hypothetical element with all subscripts
zero (e.g. alphalO, 0, 0, ..e]).

The array word is followed by full-word integers giving lower bound 1,
upper bound 1, lower bound 2, etc. These ’bound words’ appear regardless
of whether index checking was specified in the compilation,

1.5. Formal location

0 9 10 19 20 29 30 39 ho Uy

integer 30 absolute 520 0 0 {0
address

0

5 real 230 ditto 520 0 O71
$9

<
19 Boolean 30 ditto 520 8 0 10

string : e30 ditto 520 8 O f1

- 14.

0 9 10 19 20 29 30 39 ho Ay
U2

: oO

integer e30 absolute 512 0 O;OIZ ad
address qs

9) » 4
vo Y

rs real ©30 ditto 512 0 O11 |§ 7
@ oOo wv
od le, a,

°

f Boolean e30 ditto 512 8 0/0 ly a
o a

é 3 3
string x} 30 ditto 520 8 O71 14 :

38
un

vo wv

label ¢30 ditto 512 8 ofits?
de
OW

3
integer |stack re- {relative 480 track 1iofa @

ference address number
for block in track

So containing
a3 the ex-
‘df pression
a @
ar | real ditto ditto 480 ditto 1}
w

Boolean |ditto ditto 0 ditto 1jo} &
n

integer |ditto ditto 488 ditto 140 3

“Hh

a a
§ real ditto ditto 488 ditto tP1] y
‘4 p
a S

$ 3 & | Boolean |ditto ditto 8 ditto 1/0] 45 @

5 Vv

i tb
g string {ditto ditto 8 ditto 1], 1] 9
5 A;

label |ditto ditto 0 ditto 1] 1

x) The address of a string is: for a short string, the address of a word
containing the string; for a long string, the address of a drum point
description (see Appendix 1.6, below).

xx) Where a formal is declared value, the formal location is also used to
store the value computed at biock entry.

-15-

0 9 10 19 20 29 30 39 ho 44

array address of|dope address 0 <number of |0]0

ray word-1{-addr of array subscripts
word=2 + 1>

integer | stack re- |relative ad- 16 track 140
a ference dress in number

foe | for block {track
oo where

oY declared
on

uf
So | real ditto ditto 16 ditto 141
Oo @
Oo...

4
og @ | Boolean | ditto ditto ok ditto 1/0

ds
as
9 P |no type | ditto ditto ou ditto 141
ec

a

switch | ditto ditto T@) ditto 170

1.6. Constants

0 39

g jtrue J1 11. ee ee ee ee ee ee ee ee ee ee TTT

oO

Q ffalse[0O0. . eee eee eee eee eee eee 2 000

mo

01234 9 10 15 16 21 22 27 28 33 34 39

short {1]0/1]O|charace |charac- charac- charac- charace charac-

2 ter no.|ter no. [ter no. | ter no. | ter no. | ter no.
iy 6 5 3 2 1

Ka
long 0 relative address 0 track number

0 9 10 19 20 29 30 39

One word of a long string on the backing store:

01234 9 10 15 16 21 22 27 28 33 34 39

mot last}]1]111 |i] charac- charace |charac- charac- charac- charac-

ter ter ter ter ter ter

last 14041 JOjno. 6 no. 5 no. 4 no. 3 no, 2 no. 1

Integer and real constants take their ’natural’ machine representations.

- 16 -

1.7. Return information

9 10 19 20 29 30 39 ho 44

for procedures | stack refe- | <track rel. ho track number |1 | 1
rence for address> 1 70
return

point

for thunks ditto ditto 880 ditto 1]0

1.8. Block information

0 9 10 19 20 29 30 39 ho hy

sr: |sr for surroun-| display add- 896 960 110 e
ding block dress - 1

0 9 10 11 12 2h 25 26 27 39

sxr+1:/last used in Oj] 0 | last used in /O | O | number of loca-

core store

buffer in sur-

rounding block

tions used in

buffer in this

block

<sr for the surrounding block> for the outermost block = 1
<last used in buffer in surrounding block> in the beginning = 4096
<number of locations used in buffer in this block> before reservations in
buffer = 0.

-17-

Appendix 2: Details of pass output

2.1. Pass 1

The three colums give: (1) the output byte value, (2) the meaning,
and (3) the pass where the value is processed.

la e 37 I 2 93 begin 3 267 x 3

2b 2 38 J 2 98 for 3 268 / 3
3c 2 39 K 2 106 if 3 269 A 3
hae ho L 2 109 own 3 270 : 3
5e 2 hi M 2 116 integer 3 271 < 3
6f 2 HON 2 123 real 3 e72< 3
Tg 2 430 2 130 boolean 3 273 = 3
8h 2 ui P 2 137 procedure 3 27k > 3
9i 2 45 Q 2 144 array 3 275 5 3
103 2 46 R 2 149 switch 3 276 + 3
11k 2 47 S 2 155 string 3 277 A 3
121 2 48T 2 155 label 3 278 V 3
13m 2 4g U 2 157 value 3 279 = 3
wn 2 50 V 2 167 3 3 280 => 3
150 2 51 W 2 172 end 3 281 mod 3
1p 2 52 X 2 176 else 3 282 shift 3
17q4 2 53 Y 2 184 (3 287)<let>: (3
18 r 2 suz 2 19h : or ,*) 3 291) 3
19s 2 55 EB 2 196 step 3 <code>
20+ 2 56% 2 198 until 3 1008-begcode 3
21u 2 570 2,3 200 while 3 1009 end pass 2
22 v 2 581 2,3 202] 3 1010 CAR RET 2
23w 2 59 2 2,3 210 [3 <4 bytes>
2hx 2 60 3 2,3 220, or :*) 3 101l-short str 2
2 y 2 61 4% 2,3 228 := 3 1012-long str 2
22 2 625 2,3 231 then 3 1013-layout 2
272 2 63 6 2,3 243 do 3 1014 0 2
2g 2 647 2,3 2k5 abs 3 1015 T 2
29 A 2 65 8 2,3 249 code 3 1016 2 2
70 B 2 669 2,3 251 core 3 1017 3 2
31 C0 2 67 . 3 256 case 3 1018 & 2
32D 2 68 » 3 258 of 3 1019 3 2
33 E 2 72 + 3 260 round 3 1020 B 2
34 F 2 76 - 3 262 entier 3 1021 7 2
35G 2 82 -, 3 265 true 3 1022 8 2
36H 2 86 go to3 266 false 3 1023 5 2

*) Between 249 code and the first following 1008 begcode.

<code> ::= <any number of bytes between O and 511>
<1024 - number of CAR RET within the machine code>
The code of the machine language representation is given in

appendix 2.7.
Qutput byte value 1009 end pass will appear at the very end of the output
from pass 1 in the following context:
eee 172 1009 0
<4 bytes> ::= <short text>|<text on drum|<layout>
<text on drum ::= 0 <track relative> O <track number>

© <layout> ::= <layout bits 0 - 9><layout bits 10 - 19>
<layout bits 20 - 29><layout bits 30 - 39>

- 18 -

Cece Pass 2

The three columns give: (1) the output byte value, (2) the meaning

57 0 137 procedure <code>
58 1 144 array 264-beg code
59 2 149 switch 265 true
60 3 153 string 266 false
61 4 155 label 267 x
62 5 157 value 268 /
63 6 167 3 269 A
64 7 172 end 270 :
65 8 176 else e71 <
66 9 184 (272 <
67. 194 : or ,*) 273 =
68 » 196 step 27h >
72 + 198 until 275 >
76 = 200 while 276 +
77 CARRET 202 |] 277 A
78 <4 bytes> short str 210 [278 V
79 <4 bytes> long str 220 , or :*) 279 =
80 <4. bytes> Boolean lit 228 := 280 =>
82 -, 231 then 281 mod
86 go to 243 do 282 shift
93 begin 245 abs 283 end pass
98 for 29 code 287)<let>:(

106 if 251 core 291)
109 own 256 case
116 integer 258 of 512-1021
123 real 260 round Identifiers
130 boolean 262 entier

*) Between 249 code and the first following 264 begin code.

<code> ::= <any number of bytes between O and 511>
<1024 - number of CAR RET within the machine code> ¢

The code of the machine language representation is given in appendix 2.7.

Output byte value 283 end pass will appear at the very end of the output
from pass 2 in the following context:
ees 172 283 O

<4 bytes> is explained in appendix 2.1.

2.3. Pass 3

~ 19 -

The output from pass 3 is scanned in the reverse direction by pass 4.
This must be remembered when interpreting the structure.

The first part of the output has the structure:
O <standard identifier pair list><identifier limit> 20
with

<standard identifier pair> ::= <standard identifier no><identifier>
The remaining bytes are coded as follows:

QO CAR RET
<i> 1f literal
<4> 4 literal string
<il> 5f decl simple

8 decl label
<il> 9f decl own

<ib 12f

15
16
17

- 18
- 19
- 20

21

22

25
2k

25
26

<code>
- 27

28

50

Ce

GO
EC
EE
EE

<ilb 3:=

3= <bits

decl array

end clean

end biock

end bounds

_ <no. of parameters>
end proc no type

end type proc

begin

3
do

then statement

else statement

of statement

end case statement

code end

core
core code end

end spec

end call

] one
] more
call parameter

comma 1

comma 2

bound colon

begin call
begin function
left bracket

trouble

decl parproc no
decl par proc
decl switch

decl proc no par
decl proc no par
decl undef proc
spec simple
spec string

<i>|<il><i>

<i>
<i>
<i>
<i>
<i>
<i>
<b
<b

56
57f
60f
63
buf
67
68

69
70

71
72

149

152
153

<code> is explained in appendix 2.7.
f indicates that three consecutive byte values describe types: +O = integer,
+1 = real, +2 = Boolean,

spec label

spec value

Spec array
spec proc no
spec proc
spec switch

spec undef

Spec general

simple for element
:= for

step element

while element

while

end assign

first:=

‘proc;
ifex

ifst

thenex

elseex

delete call

end else ex

end else st

end then st

end go to

for

step

until

end do

end single do

mod

>
J
e
-
m
x
K

br
+

shift

first bound

not first bound

of switch

154 code
155 end switch

156 and
157 or

158 imply
159 =
160 T
161)
162 simple for do
163 step element do
164 while element do
165 case st
166 case expr
167 of expr
168 end case expr
169 case comma
170 case semicolon
171 end loop

=

sO

WwW

4
+
E
V
I
V

WE
A

A

500 -,
501 entier

504 pos
505 neg
506 abs
507 round

508 opint
509 opreal

510 opbool

511 opstring

512-1021
identifiers

999 begin code

1022 internal identifier

0 = 9><bits 10 - 19><bits 20 - 29><bits 30 - 39>
= <identifler, i.e. byte in range from 512 to 1021>

-20-

2.4. Pass 4

QO CARRET
<base w><base var>

-~- 1 begin biock
2 end pass

<no of actuals>

- 3 begin func
<reverse code>

- 4 begin code
5 end core code

<i> 6 decl switch
<i> 7 decl label

<i> 8 decl proc err
9 formal label

10 formal general
11 formal unspec

12 core store
13 formal switch
14 end bounds
15 end head

16 end decl
17 end block

<no,of parameters>

- 18 end proce
- 19 end type proc

<spec list> x

- 20 specifications’)
<i> 21 label colon
<no of actuals>
- 22 begin call
<no of subscripts>

- 23
2k end bound head

<i> 28f begin bounds
<base w><base var>

~ - 35 begin switch

- - 36 begin par proc
- - 57f beg par proc type

- - 40 beg no par proc
- - 41f beg no par proc type
<i> Luf decl no par proc
<i> 47 decl no par proc
<i> 48f decl par proc”)
<i> 51 decl par proc”)
<i> 5ef decl simple
<i> 56f decl own
<no of subscripts>
- 60f decl array
-~ 64f take array
<i> 68f take value
<i> 7ef formal proc

75 formal proc

<i>

<i>

<i>

<4>
<i>

76f
79
80f
Bur
87

128
129
130
131
132
133
134
135
136
137
138
139
rho
141
142
143
144
145
146
147
148
149
150
151
152
153
154

155
156

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

f and g indicate that three consecutive
f: +0=integer, +1=real, +2=Boolean. g: +0=Boolean, +1=real, +2=integer
<> ::= <bits 30-39><bits 20-29><bits 10-19><bits 0-9>

formal simple

formal string

anon. array

literal

literal string
proce;

if expression

if statement

then expr

else expr

delete call

end else expr

end else stat

end then stat

end go to

for

step

until

end do

end single do

mod
D
>
p
e
e
™
e
i
x
m

or
+

shift

first bound

not first bound

of switch

code

end switch

and

or

imply

t

)
simple for do

step elem do

while elem do

case stat

case expr

of expr

end case expr

case comma

case semicolon

end loop
do

then stat

174 else stat
175 of stat
176 end case stat
177 end call
178 J one
179] more
180 call param
181 comma 1
182 comma 2
183 bound colon
184 simple for
185 := form
186 step element
187 while element
188 while
189 end assign
190 :=

191 first:=

192 while label

195 prep assign °
194 go to bypasslabel
195 bypasslabel
492
4o3 <
ok =

45
496 ~
oT +
500 not -,
501 entier
504 positive
505 negative

506 abs
507 round
508 op.integer
509 op.real
510 op.boolean

511 op.string
512 - 1022

identifiers
Specifications’)

1006 general
1007 undecl
1008 switch
1009g proc type
1012 proce no type
1015g@ array
1016g value
1019 label
1020 «string
1021g name

byte values describe types:

*) The declaration of a procedure with parameters or a switch (treated
aS a procedure having one integer value parameter) appears in the block
head as:

<identifier><decl par proc><spec list> 20

¢

- 21 -

<base w> ::= 1024 - number of locations used for local variables

- number of locations used for program points

<base var> ::= 1024 - number of locations used for local program

points

<spec list> ::= <specification, i.e. byte between 1006 and 1023>|
<spec list><specification>

The last bytes appearing in the output refer to the outermost block

and the entire program and are:
1. <base w> of outermost block

2, <base var> of outermost block

3, identifier limit = smallest identifier byte - 1

kh, standard identifier having lowest standard identifier number in output

from pass 3.
5. 1021 - maximum block number - number of owns

6, 2 + number of owns

7. 0

= 22 -

2.5. Pass 5

128

129
130
131
132
133
134
135
136
137
138

139
140
144
142
143
144
145
146
147

proce;

ifex

ifst

thenex

elseex

delete call

end else ex

end else st

end then st

end go to

for

step

until

end do

end single do

mod.
+

x

/
148 ;
149
150
151
152
153
154
155
156

157
158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

K
shift

first bound

not first bound

of switch

code

end switch

and

or

imply

t

)
simple for do
step element do

while element do

case st

case expr

of expr

end case expr

case comma

ease semicolon

end loop

do

then st

else st

of st

end case st

end call

] one
] more

180 call param
181 comma 1
182 comma 2
183 bound colon
184 simple for
185 := for
186 step element
187 while element
188 while
189 end assign
190 :=

191 first:=

192 while label

193 prep ass
194 goto bypasslabel
195 bypasslabel
196 CAR RET

<working base>
197 - begin block

<proc,. type><working base>

198 - - begin proc
<no of subscripts>

<dope rel>
199 - - take array

20o0r take value

203 end bounds
204 end block

<no of formals>

205 = end proc no type

206 - end proc type
207 label colon

<no,of actuals>

208 - begin call
<no.of subscripts>

209 - [
<the code><-no.of CR>

210 - = begin code

211 end come code

2ie2 eore code

<track list> 0

215 - - end pass
<no, of actuals>

21k - begin func
<rel,adr.coef><no,arr.>

<array type>
215 --- begin bounds

oe

<block address>

4i2 - formal general
416 - undeclared
420 - label

hoy . switch

428 . formal label
43e - formal switch
436f- no par proc
439 = no par proc no type
Luof- par proc
444 . par proc no type

int, real, bool, not
kuuf. simple
4u8f- array

<dope relative><-no of subs.>

452. -dope description °C
<block address>

456f- formal procedure
459 - formal proc.no type
460f- formal simple
464 - formal string
464f- anonymous array

<i. pytes>
L68f- literal
471 - literal string

Specifications

472f spec simple
475 spec string
476 spec label
477f£ spec value
L80f spec array
483 spec proc no type
L8h4f spec proc
487 spec switch —
488 spec unspec ¢
489 spec general
hg2 <
493 <
ugh =
495 >
496 5

ho7 +
500 not -,
501 entier

504 pos

505 neg
506 abs
507 round

508 opint
509 opreal
510 opbool
511 opstring
512-1023 stdproc

- 23 -

First byte in output
1021 = maximum block number - number of owns.

Array declarations
idi
id2

idn
const
length

coeff
rel adr of length
no of arrays
array type : integer, 2: real, 3: boolean

. proe type O: no type, 1: integer, 2: real, 3: boolean
with par 1023: boolean, 1022: real, 1021: integer, 1020: no type
1019: switch

<block address> ::= <rel adr><block no>

Specifications appear following each parameter procedure identifier in

the reverse order of the original formal parameter.

Byte 213, end pass, is followed by:
1. 1+ number of standard procedure tracks used.
2. 1021 =~ maximum block number - number of owns.

2: A list of the standard procedure tracks needed.

« O.

f indicates that three consecutive byte values describe types: +0 = inte-
ger, +1 = real, +2 = Boolean.

-~ oh .

2.5. Pass 6

0 begin call
1 end call
<type><working base>
2@-- begin proc
<no.of formals>

3 - end proc

y end type proc
<working base>

5 begin block

6 end block
1 go to bypasslabel
8 label decl
9 while label

10 if
11 else st

12 end else st

13 for
14 := for
15/527 simple for
16/528 simple for do
17/529 while
18 while element
19 while element do

20/532 step
21/533 until
22/534 step element
23/535 step element do
au end do
25 first subscript

26 not first subscript
27 not last subscript
28 last subscript

/541 round top
float top

float next top

32/544 abs
/545 entier
sh,
35/547 negative

36 proc;

<type of expr>

37/549- else Rt expr
38 - else addr expr

39/551- end else Rt expr
Te) - end else addr ex
4y then
ho prepare assign

43/555 t=
Ly go to

45/557 +

46/558 -
U7 integer multiply

/560 real multiply

/r61 /
50 :

51 mod
52 t integer

/565 real
54/566 < then
55/567 < then
56/568 = then
57/569 > then
58/570 > then
59/571 + then
60/572 <
51/573 <
62/574 =

63/575 >
64/576 5
65/577 #
66 A and
57 Vor
68 =
<bl,relS<bi.no>

69 - = label
<bl.rel,><bl.no>
<sl,rel.dope>

<-no of subse>

70 on array

Tle-- simple

72 -- formal
73 -- procedure

<tr,no><tr.rel.>

74 -- std. proc
<i bytes>

75 = constant
76 end switch call
77 end single do

<type>
78/590 - param comma

<bl.rel.of dope>
<no. of arrays>
<array type>

19 -- begin bounds

80 first bound
81 not first bound
82 end bounds
83 take real value
84 take int value

<no.of subs.><array rel>

85 - - take array

86 bypasslabel
<stack ref 0 + &
<no.of table bytes>
<std.track tab.bytes>

87 --- end pass
88 outchar
89 lyn
90 kbon

91 shift

92 select

93 opreal

9k opintrestr

95 gier
96 CAR RET

97 case
98 begin case ¢

<type>

99/611- caseparam
100 casest

<total type>
101/612 end case
102 5 end address case
103 end stat case

<no of groups>

<Sebytes groups>

104 - - code
105 begin switch case
106 take nonsense
107 std 2 call

108 array param
109/621 move value
110 move address

111 move short

112/624 first value
113 first address@
114 first short
115 new track

116 address

150 core

151 code

152 begin code

- 25 -

2.7. Machine language in output from passes 1 - 6

The representation of machine language is copled without change

through passes 2 to 6, using the code given below, Because pass 4 scans

its input in reverse order, the bytes will appear in the output from that

pass in the reverse order.

1K 28 - 55 2

2L 29 + 56 h

3M 30 , 57 i
Low 31 (58 j
50 32 <illegal> <i text bytes>

6 P 33k 59 - not last

TQ 34 1 text word

8R 35 m 60 = last text

958 36 n word

10 T 37 0 61 m

11 :U 38 p 62 F

12V 39 q 63 TAR RET

13 W hor 64 O

1h Xx his 65 1
15 ¥ he + 66 2

16 Z 43eu 67 3
17 A kh oy 68 &

18 B Low 69 5

19 C h6 x 70 6
20 D 7 y 71 7
215 8 z 72 8

22 F og a 73 9
23G 50 b 7h :

eau H 51.¢ 75 =
25 1 524 76 blind CAR RET

26 J 53 e TT e

27. suf 78 7

<4 text bytes> ::= <bits 4 to 12<bits 13 to 21>
<bits 22 to 30><bits 31 to 39>

<code> ::= <a sequence of the above byte structures except 77>

77 <1024 ~ number of CAR RET within the machine language code>

<reverse code> ::= <code written in the reverse order>

- 26 -
o~

2.8. Pass 7

<blockrel> <no of indic><doperel> <opand>

- 0 addr local --4O 552 move array - 92 604 gr M

- 1 var local hy writecr - 93 mln X IZA

- 2 var abs he goto computed - 94 606 acn MA

<blockrel><-blockno> 43 select 1 -~ 95 mb X

-~ - 3 var block uy select 2 - 96 reserve array

4 (UA) ks tk 1 - 97 609 var to UA

<“UVrel> 6 Tyn - 98 goto local

- 5 UV 7 kbon - 99 index upper

<trackno><trackrel> 48 hs mult X NZA - 100 index lower

- - 6 std proce call 49 561 mt -1 D NT - 101 613 move formal

<blockrel><-blockno> 50 110 - 102 614 take formal
- - 7 begin call 51 563 mt -1 DLT - 103 615 contr. formal

<bits 30-39>...<0-9> 52 us 0 - 104 616 take assign
---- 8 constant 53 565 mt neg
<trackno><trackrel> 54 sr eps <address constant> ¢
- - 9 std 2 call 55 srf half - 106 ck

10 begin block 56 pm UV - 108 outchar const
<proe type> 57 pm UA
-~ 11 begin proc 58 arn UA <no of formals>

12 begin case 59 ga UA - 109 ps Dp

13 begin sw case 60 outchar var 110 label declar

<no of lits> 61 ck (addr) 111 623 Areal
- 14 end call 62 tk 30 112 carret

<case type> 63 575 ck -10 113 625 Aint
- 15 527 end case 64 int to address <5 byte words><no words>

<appetite><-blockno> 65 ab O DX ann 14 code
- - 16 end proc 66 ar eps LT
--17 end typeproc 67 xr 115 newtrack

- - 18 end block 68 580 tkf -29 116 end pass
<param inf><kind><type> 69 nkf 39
--- 19 551 call param <opand>

-~- 20 532 case param - 70 582 mm
21 if/for - 71 583 gm
22 534 hop NT - 72 584 mkf <opand>: ¢

23 535 hop LT - 73 585 dakf - 121 633 arnt |
24 536 hop NZ - 74 586 aq - 122 634 art |

25 537 hop LZ - 75 587 mt - 123 635 srt)
26 538 bypass abs - 76 588 snn - 124 636 ert
27 539 bypass NT - 77 589 ann = 125 637 srnt
28 540 bypass LT - 78 mb - 126 638 annt
29 541 do abs - 79 ab - 127 639 grt M
30 542 goto bypass - 80 592 grn - 128 640 grt V LA
31 543 bypasslabel - 81 din

<type> - 82 ann X <type>:
- 32 544 else - 83 din X <kind>: 1019 label proc

- 33 545 end else - 84 sr LT 2 subser 1020 no type

<opand> - 85 597 hs 3 statement 1021 integer
- 34 enddo - 86 598 pm D- 4& UA-expr 1022 real
- 35 end single do - 87 599 amD 5 expr 1023 boolean
- 36 548 take forlabel - 88 600 ar D_ 6 stdproc O no type

37 549 formal assign - 89 gr MA 7 descr 1 integer
38 550 take real val - 90 gr MB 8 constant 2real
39 551 take int val - 91 603 gmM 9 simple 3 boolean @

10 array 4 string
5 label

4

~ 27 -

2.9. Pass 8

Remarks on the notation:

The word ’program’ will refer to the generated machine code.

The signs * and © on instructions indicates that they are generated only
in the buffer-mode or core-mode respectively.

Entry points in running system (RS) are referred to by their Slip-names
i.e. cO, cl, c2, etc. For details of the running system see Asmussen,
et al, ’Gier Algol 4 Library Procedures’ Regnecentralen Sept. 1967, Order

no. 470.

The indications -->[ref] and [ref]<-- mean that the actual instruction
appears in the program immediately before or after (respectively) the in-
struction referred to in the brackets,

2.91. Segmentation

The output from pass 8 - the final machine code - is generated into seg-
ments of 40 GIER words corresponding to a backing store track. The tracks
will be referred to by a relative negative number using the term
<trackno>, The range of <trackno> depends on the number of standard proc-
edure tracks used and on the size of the program.

A word on a track is referred to by a relative address ranging from

0-39 using the term <trackrel>,.

Each track consists of three parts:

1) A number of words from <trackrel> = 0 and onwards containing literal
constants (see ref. a7) or special jump instructions (see section 5)
referred to from

2) the proper machine code which is located after possible constants un-

til and including <trackrel> = 38.
3) In <trackrel> = 39 an exit-to-next-track instruction (ref. j7-8) or

in case of the last track of the program an exit-program instruction

(517).

2.9.2. Operand addressing

Machine instructions referring to runtime locations of operands will be
referred to here by the term <op> in the address part.

<op> covers the following possible ways of addressing.

ref,: address part meaning dir.byte

[ai] (p<blockrel>) : address in local block 0
[a2] p<blockrel> : variable in local block 1
[a3] <abs addr> 2 variable in outermost block 2
fal] s<blockrel> : variable in intermediate block 3
[a5] (c30) : address in UA 4
[a6] C17 : UV 5
(a7] _ rel addr> : constant operand on actual track 8

where:

<blockrel> = value generated in pass 7 for the corresponding variable
<absaddr> = c0+blockrel>
<reladdr> = <trackrel of word referred to>

- <trackrel of current instruction>

- 2.

The value of the p-register will at run time always be equal to the
stackreference of the current block, while the s-register is set by the
instruction [a8] below, which is generated in an undefined place on the
current track before the variable-reference [at] but after the last:

a) program point (see below)
bv) reference to a variable in another intermediate block
ec) place where s is destroyed (eg. through an entry in RS)

[28] ps(<displ ref>)
where:

<displ ref> ::= cO-<blockno>

2.9.3. Independently generated half- or full-word instructions

The following instructions are generated independent of the surrounding

input structure, direct on a corresponding directing byte. For instruc-
tions 11-29 and f1-8 this is performed in connection with following ope-

rand-bytes, for instructions c1-25 without.

The instructions fi-8 may appear in the program with an f-mark if <op>
represents a real operand. This is indicated to pass 8 through the bytes

ranging from 533-541.

A number of further instructions which could be classified as belonging

to this section are described in section 5.

ref. instruction meaning / used in caused by
dir. byte

il pm <op> a:= b, array declarations 70
i2 em <-> - y - 71
i3 mkP <-> ° x Te

id akf <-> / 73
is aq <=> assign to formal variable 74
16 mt <-> :, mod, step var until 75
i7 smn <-> op F?o-™ 76
18 ann <-> op = 0 TT
i9 mb <=> A 78

110 ab <-> Vv 79

i11 gm <-> op:= O03 80
i12 din <-> : 81
113 ann <-> X J, mod 82
ik din <-> xX mod 83
115 sr <-> LT mod. 8h
i16 hs <-> gier(op) 85
117 pm <-> OD parameter to fast std.proc 86
118 am <»> D - 87
119 ar <—> D - 88
120 gr <-> MA declare boolean array 89
121 gr <=> MB declare real array 90

1220 gm <> M initialize step element [i1]<-- 91
423 gm <=> M - _— 92
i2k min <-> xX IZA -->[j18] 93
125 acn <-> MA step (first time) 9k
126 mb <-> X = 95

- 29 -

ref, instruction meaning / used in caused by
dir. byte

127 em p<blockrel> MA set jumpword to forlabel left 36
128 om p< - > MC - - - - right 36
129 eck <10 bit const> shift <constant> 106

f1 am <op> atop, Op-a, aXOP, «see 121,533
fe ar <-> opta 122,534
f3 sr <=> a-op 123,535
fu gr <-> op:= 124, 536
£5 sim <-> -, op 125,537
£6 ann <-> abs op 126,538
£7 sr <e> M Ynftialize step, decl int.array 127,539
£8 er <=> VLA step (not first time) 128 5ho

cl tk 1 <boolean expr> then 4s
2 mt-1 D WNT a ¢b — ho
e3 mt-1 D LT a=b 50
ch il Afi], buffer version 51
e5 us -y - 52

c6 mt chk expr > a, a < expr 53
CT sr ch <,=,> 5h
c8 srf ch3 entier ~ 5
e9 pm cl7 var:= A[i], buffer version 56
e10 pm ¢c30 for formal var:= 57

e11 arn ¢30 formal var parameter to fast std. 58
e12 ga ¢30 A[i], as actual parameter 59
e13 ck (c33) shift var 61
c14 tk 30 ATIT, no check, core version 62
e15 ek -10 A[i1], check; shift var 63
e16 ga 033 shift var [c15]<-- 64
C17 ab DX “> = 65
c18 ar cht Lr : 66
e19 xr ALi, J we. 67
e20 tkf -29 round real 68
C21 nkf 349 float integer 69
c22 pof c55 , ga cds select -->[c23] 43
e23 tin 9 , ud ¢c55 - [c22]<.. ky
c2k ps p+ 2 + nform prepare exit proc -->[j14-15] 109
e25 aq (c35) t+ neonst adjust last used after call 14
nform = number of formals

neonst = number of constant formals

2.9.4, Multiple generated instructions

Each of the following instruction-groups is generated on a single directing
byte with possible operands,

m1 srn cl kbon 47
qqn NKB

m2 arf (c30) V LB take real value 38
abn (c30) , nkf-39

m3 arn t230} VNB take integer value 39
arf (¢30) , tkf-29

- 30 -

Ref.

m5

m7

instruction

ck-10 ’

pt chge5 ,
ga 033 ;
pa ¢30 ’
gr cit

pm (c17) +t
em (c30) +
udn cl7T

bt (c33) +t
hv rok

ps <op>

hv ce

it <op>

pa ¢30

arm <op> V

pt ch9-5 ’

sr <op> V

pt cho-5 ,

sm <op>,

arn ¢c35 ;

ck 10

nec it+<no of ind>

hs cey

it p-3+<array rel>
tk 10
M

1 IRC
1 MRC
NZ

- 1

LT

hs ce7y

NT
hs c27

hs c20

hv s2

6

®

e

meaning / used in caused by
dir. byte

move array description ho

goto local 98

variable to UA OT

index upper, check mode 99

index lower, check mode 100

reserve array (core mode) 96

2.9.5. Program points, jumps and exits to RS

Program points are entries in the program which are referred to from

explicit caused by labels or procedure declar- emicls ose necessary in conditional statements
other places, They may be
ations, or implicit such as

or expressions, in the administration of for-statements or array declar-

ations, and in evaluation of expressions as parameters.

A reference to a program point is stored in a comma-marked-instruction in

the following way:
aq <trackrel>.19 + <trackno>.39 + <right>.41

where <right> = 1 (instruction f-marked) indicates that the program point

is in the right-half-part of the word referenced and <right> = 0 indic-

ates left-part.

References to implicit program points on the same track e.g. jumps in

if-then-else-statements may be carried out by means of relative address-

Ing. (ef. ref. j2-6)

Conditional jumps (ref. j3-6) to program points on other tracks are per-

formed via a constant word containing an unconditional track jump (ref. jl)

<end track inf> ::= qq <track rel>.19 + <linecount mod 1024>.39 + <rigth>.41

-31-

ref. instruction meaning / used in caused by
dir. byte

jl hs c2 , <program point> unconditional track jump eg.26,29, 30,32
32 hv/hh r <reladdr> - local jump eg.26,29, 30, 32
53 hv/hh < - > conditional - - 22,27
ju hv/hhr< - > - - - 23,28
55 hv/hhr< - > - - - oh
56 hv/nhr< - > - - - 25
JT hs cit =, <end track inf> exit to next track {nomal mode)

458 hs c3 , < - > - - - «- (param -)
59 hs c26, £<program point> - -« fast st.proc 9

410 hvn c18 - from param. expr 19
311 hvn ci9 - - - - 19

jl2 hv ci8 * - = subser. param. expr 19

j13 hv ci9 - = - - - 19

14 hv c2i - + type proc 17

§15 hh c22 - -no - = 16

516 hs 9 - - block 18
j1T hhn ¢c29 , <last line> - - program

j18 hs clu X NZA - to mitiply [iakj<-- 48

j19 aq (c33), hs 39 - « outchar variable 60
j20 ud ¢c37, hs ¢37 - «next in (lyn) -->[c15] 46

g21 nen (c30), hs cl3 ~ «= goto computed ho
jee qq 64, hs 0¢39 - - write cr hy
j23 qq <10 bit const>, hs ¢39 - - outchar constant 108
jek hs ch , <program point> - -A integer/real 111,113
j25 is (c38), hv/hh s<rel addr> - «= block code on same track 10
526 hh (c38), - - = - in same word 10
527 arm <op>, hs c20 x - = reserve array (buffer m.) 96
jes ud <op>, hs c¢28 - = move formal 101
jeg ud <op>, hs 8 - - take formal 102

330 ud <op>, hs c25 = - controlled formal 103

j31 ud <op>, hs cah - = assign to formal subscr. 104

j32 hs p<blockrel> goto for label word in stack 3,35

533 hv/hh s<reladdr> for label word when jump is local 34,55

2.9.6. Block entries

A block is generated with the following format:

[v1] aq <stack appetite>, hs c7 10

[v2] hv cil , hh <displ ref> 16,17, 18
[b3] <block parameters> 11,110
[b4] <goto block code> 10

<block parameters> are references to explicite program points. They appear

in the program in the opposite order of that in the Algol text. The poss-
ible parameter formats are described under reference pi-11 and j8.

<goto block code> is treated by RS as a parameter, but with one of the

formats jl, j25 or j26.

- 32 -

2.9.7. Procedure calls

The format of a procedure call is the following

[pei] qq <stack appetite>, hs c7 6,7

[pc2] arn , , <program point> ; return information 14

[pe3] <call parameters> 19

{pe4] isf <displref> » ps s <blockrel> 3; exit call 7

<call parameters> are described under reference po-17, p21-28 and j8

ref. cli may be replaced by j1 if the call refers to a slow standard

procedure.

2.9.8. Case administration

The format of the case-administration code is the following:

[es1] qq <no of param> =, hscl53; [f5]<-- [c15]<-- 12,13

<case error action> 12,13

<goto end case> 12,13

<case parameters> 20(+12)

<ease error action> is either if the case administration appears as the

body of a label procedure (switch)

{es2] pa 30 3 indicate dummy switch action

else

[es3] pt ch9-4 , hs c27 3 exit to case error

<goto end case> is an unconditional jump (j1-2)

<case parameters> are described under reference po-11, p18-20, p22 or may

be a jump to evaluation of a case parameter expression local on the track:

[est] it (c16) , hv/hh <reladdr>

c

X
-

-
u
e
e
T
o
o
g

<
-

>
sd

ged

‘
xX

-
-

Teet
<

-
>

Jsd
Lea

1
xX

Tea
*
T
o
s
q
n
s

1
3
8
5
5
4
U
T

<
j
u
T
o
d
u
r
e
z
z
0
1
d
>

sd
ged

x
-

 UBETOOG
<

-
>emr

£
(010)

usd
Sed

x
-

Teer
CARN

<
-

>
X

(OL2)
ugsd

qed
X

4ue1.SUu0d
L
3
8
9

U
T

<
T
a
q
y
o
e
i
s
>
s

yr
Ss

(O12)
usd

€ed

xX
Xx

onTeaA
yuUeYZsuUOD

<
s
y
r
e
u
l

ou
Z
u
r
y
z
A
u
e
>

zed

Xx
p
i
o
m
m
e
r
e
d

p
u
o
d
s
s

3:
-

alo
AY

*
(
<
g
o
a

T
d
s
t
p
>
)

gsd

xX
p
i
o
m
m
e
r
e
d

y
s
a
t
y

:
A
B
L
r
e

6E°*<puyt
J
o
*
o
u
s
+
6
l

*
<
T
a
r
a
d
o
p
>
+
6
°
<
T
a
r
k
e
i
t
e
>

bb
Led

X
TeqeT

GIN
<TeayooTq>

x
(<

-
>)

ST
oed

xX
aTduts

yeoTy
uou

<
-

>
‘
(
K
K

-
>)

ST
61d

xX
eTduts

7eoTT
<

-
>

‘(<<
-

>)
ST

gid

x
yoeys

UT
peqttosep

<Teryootgq>sumd
=

§
(
<
=

>)
gst

Lid

X
TeqeT

GON
<

>
x

(«
-°-

>)
gsd

gid
x

-
S
u
t
z
4
s

GON
<
T
e
t
y
o
o
l
q
>

x
(<

-
>)

gusd
gid

Xx
-

u
e
e
T
o
o
g

<
T
e
L
Y
O
O
T
G
Q
>
s

U
YT

s
(<

-
>)

sd
tid

x
-

Tear
GLN

<TetyooTg>
Xx

(<
-

>
asd

eid
X

eTdmts
1088

4uT
<
T
e
r
y
o
o
t
a
q
o
s

a
p
f

tS
sea

y
d
e
r
p
s
\

sd
zid

xX
X

X
-

=
s
e

-
BUTIYS

<
-

>
‘

uybb
Lid

Xx
X

X
-

se
2

-
Teqet

<
-

>
‘
—

gbb
old

X
x

x
-

=
-

-
-

weejpoog
<

-
>

*
—ubb

6a

x
xX

X
-

5
t
t
e

Teer
<

-
>

*
ugsd

gd
xX

X
X

‘
w
e
r
e
d

ou
-

-
-

ZeSoazuryt
<

~
>

‘
usd

id

xX
x

xX
*ooad

to
*adxe

adfy
ou

<
-

>
‘

ugbz
gd

x
(497 TAS)

-
-

°
T2a8T

<
-

>
‘$f

ure
cd

X
-

-
-

wuBeToog
<

-
>

‘
 ubz

+d

Xx
-

-
-

Teer
<

-
>

‘
 gxbz

ed
Xx

s
i
e
y
o
m
e
r
e
d

U
V
I
M

*
9
0
A
d

1e8eqUutT
<

-
>

‘
bz

ed

X
Teqet

<
j
u
T
o
d
m
u
e
r
z
0
1
d
>

‘
bb

Ld

S
u
p
u
B
a
w
t

U
O
T
Z
O
N
I
Z
S
U
T

gar

X
septzque

Y
o
o
T
q

ut
p
e
s

xX
TTeo

°ooad
ut

pesy

x
“ape

essed
UT

Pesf)

aTqQey.
s
o
u
e
r
t
a
y
e
y

°
6
°
6
°
?

- 3h -

Appendix 33

Below follows a small ALGOL program an

tion, The first three lines from pass

been printed by the compiler; after this fo

EXAMPLE OF TEST OUTPUT FROM GIER ALGOL 4

with comments inserted below each line of bytes.

Demonstration of factorial

begin
Tnteger procedure fact (n); value n} anteger n3

fact:= if7 n < one then one else n X fac

integer n, one;
one:= 13 writecr;

for n:= one step one until 10 do write

end
begin

T. 93 1010
291 167

1 3

Demonstration

begin

° 93 1010

begin CR

2901 +167
) ;

1 3
a c

251 15

then oO

20 «184

+

116 14
integer n

5 228
e ¢=

18 167
r 3

15 14
oO n

20 5
t e

1 3
a c

1009 0
endpass

116 »=137 6
157 4 36167
20 228 106

of factorial

116 137 6
integer proc f

157 14 167
value n 3

20 228 106
t 7= if

14 5 176
n e else

14 76 15
n - °

220 15 14
’ oO n

58 167 23
1 3 Ww

1010 98 14
CR for n

5 198 58
e until 1

184 10130
(< literal

20~=—s«184 14
t (n

1 3
116 14
14 272

1 3
a ¢

116 14
integer n

14 272

n
14 267
n x

14 5
n e

5 167
e 3

18 9
r i

228 15
7a Oo

57 2h3

0 ge
Oo 476

¢adddddad}

291 = 291
))

n-one) $

20 «=—«7184
167 1010.
15 14

20.— («184

t (

167 1010
; CR

15 14
° n

6 1
f a

291 +167
) 3

1010 15
CR °

20 5
t e

14 5
n e

23 18
w r

O 220

> 3

167 1010
3 CR

a the test output from the compila-

1 are given exactly as they have

llows the whole test output

(tadadddat, fact(n)) ;

wi

h
o
n

8S
o
u

1T2

end

- 35 =

2. 93 77 116 137 1021 184 1020 291 167 157
begin CR integer proc fact n) 3 value

1020 167 116 1020 167 77 1021 228 106 1020

n 3 integer n 3 CR fact ed if n

272. 1019 231 1019 176 1020 267 1021 184 1020

< one then one else n x fact (n

7 1019 291 167 77 116 1020 220 1019 167

- one) 3 CR integer n ; one 3

77 1019 228 58 167 1018 167 77 98 1020
CR one 323 1 3 writecr 3; CR for n

228 1019 196 1019 198 58 57 243 1017 184
:= one step one until 1 0) do write (

80 0 Oo 476 0 220 1021 184 1020 291

< literal ¢ddaddda} > , fact (n)

291 167 77 172 283 0
) 3 CR end endpass fill...

de 0 6 1017 31 1018 1016 20 0 0 1021

endpass 6.std.=write 31.std.=writecr free id. begin CR CR fact

43 1020 57 30 1021 TT 129 1020 493 1019

declare n spec.int. end.sp. fact = ifex n < one

131 1019 132 1020 146 1021 39 1020 145 1019

thenex one elseex n x fact beg.func. n - one

31 134 75 1 19 0 1020 1019 5 0

endecall endelseex endass. <i, endtypeproc> CR n one declare CR

1019 77 0 0 0 1 1 75 21 1018

one = < constant = 1 > endass. 3 writecr

128 21 0 138 1020 71 1019 139 1019 140

proc; 3 CR for n :=for one step one until

0 0 0 10 1 163 22 1017 38 0

< constant = 10 > stepdo do write beg.call <

0 476 0 3 34 1021 39 1020 31 31

constant = ¢ddddddd+} > call, fact beg.func n endcall endcall

133 142 21 0 16 0
deletecall enddo 3 CR endblock fill...

- 36 -

4, 2 17 0 142 133 177 177 1020 1 3
endpass endblock CR enddo deletecall endcall endeall n <1, beg.func.>

1021 180 0 476 fe) 0 86 2 22 1017
fact > < constant = ¢ddddddadt > <2, beg.call.> write

172 163 10 0 0 0 8h. 140 1019 139
do stepdo < constant = 10 > until one step

1019 185 1020 138 0 128 1018 189 1 0
one :=for n for CR proc; writecr endass, <

0 0 8h 193 101 1019 0 15 1019 1020
constant = 1] > prepass. 22 one CR endhead one n

0 195 1 19 189 134 177 1019 145 1020
CR bypas lab. < (1) > endass. endelseex endcall one - n

1 3 1021 146 1020 132 1019 131 1019 493
<1, begfunc> fact x n elseex one thenex one <

1020 129 193 101 1021 15 16 1020 68 1021
n ifex prepass. 7= fact endhead enddecl. n value fact

195 1023 1023 37 1021 0 0 16 1021 48
bypass lab. < (2) > fact CR CR enddecl fact decl

1018 20 1020 1019 52 1021 1023 1016 1017 1020

int.val. spec. n one decl.int. < (3)

2 0
> fill...

Notes: Read the output from pass 4 backwards
(1): Number of parameters, end type proc.
(2): Base working locations, base variables, begin integ. proc. with params.
(4): These 6 bytes are: o

pase working locations outermost block
base variables - -

free identifier
standard identifier having lowest std. ident. no. in output pass 3
1021 - maximum block number - number of owns = relative stackref. 0
2 + number of owns,

- 37 -

5. 1020 197 1021 196 196 198 1021 1023 195 kis
srO <beg.block, basew> CR CR <beg.proc, int., basew> byp.lab. <

2 1023 200 hh 1023 1023 191 193 129 LLY
n > value < fact > := prepass, ifex <

2 1023 493 Kay 1022 0 131 Llh, 1022 0
n > < < one > thenex < one >

132 huh 2 1023 146 kuo 1023 0 477 214
elseex < n > x < fact, integ.val. > <begfunc,.

1 Wy 2 1023 145 kh 1022 0 177 134
51> < n > - < one > endcall endelseex

189 206 1 195 196 196 uy 1022 0 191
endass. <endtypepr, 1> byp.lab. CR CR < one > =

193 468 0 0 0 1 189 1020 128 196
prepass. < constant = 1 > endass. writecr proc; CR

138 Luk 1021 0 185 Luh 1022 0 139 hhh
for < n > :=for < one > step <

1022 0 140 468 0 0 0 10 163 172
one > until < constant = 10 > stepdo do

1018 208 2 470 0 0 476 0 180 Lo
write <begeall, 2> < constant = ¢adddddd} > call, <

1023 0 LTT 214 1 uh 1021 O 177 177
fact, integ. val. > < begfunc., 1> < n > endcall endcall

133 1he 196 204 213 5 1020 12 11 10
deletecall enddo CR endblock < endpass, 5, sr0, include std.tracks ie, 11

9 0
10,9> fill...

Identifiers in output from pass 5:

kind-type rel. addr. block specs
fact {es proc): 4ko=int.proc.w.par. -1 0 int.val.
n in block): 44k=simple int. -3 0
one: yy - ~2 0
fact tes val.): bby - -1 1
n in fact): 44h - 2 1

writecr: 1020
write: 1018

- 36 -

6. 1020 5 1021 96 96 2 1021 1023 86 71

srO <beg.block,basew> CR CR <beg.proc., int, basew> byp.lab. <

2 1023 84 71 1023 1023 116 10 71 2

n > value < fact > address if < n

1023 71 1022 0 55 71 1022 0 37 1

> < one > <then < one > < else int.>

71 2 1023 13 1023 0 0 71 2 1023

< n > < fact > begeall < n >

71 1022 0 46 78 1 1 47 39 1

< one > - <param, , int.> endcall xint. <endelse, int.>

ho 43 4 1 86 96 96 71 1022 0

prepass. := <endtypepr., 1> byp.lab. CR CR < one >
fe

116 75 0 0 0 1 ho 43 106 3b

address < constant = 1 > prepass. := writecr proc3

96 13 71 1021 0 14 71 1022 0 20

CR for < n > :=for < one > step

TI 1022 0 21 15 0 0 0 10 23

< one > until < constant = 10 > stepdo

an 1020 0 0 15 0 0 476 0 78

< write > begeall < constant = ¢{ddddddd} > <param

3 73 1023 0 0 71 1021 0 78 1

» bool,> < fact > begeall < n > <param, int.>

1 78 1 1 36 77 96 6 87 5
endcall <param, int.> endcall proc; enddo CR endblock <endpass, sro

1020 12 ir 10 9 0 ec
» include std, tracks 12, 11, 10, 9 > fill...

Identifiers in output from pass 6:

fact tes proc): proc., reladdr., block
fact (as var),
n, one : simple, - -
writecr : 106
write : std.proc, trackno., reladdr.

- 39 -

7 116 10 112 112 1021 11 31 2 1 102

endpass begblock CR CR <int., begproc> byp.lab. < n formal>

2 1 70 39 2 1 124 21 1022 2

< n M:=> intval. < n :=R> if < one

121 2 1 123 24 1022 2 121 1 32

R3=> < n R- > goif- < one R3=> <int. else>

2 1 70 1022 1 71 1023 0 7 2

< n Ms=> < wi s=M> O< fact begeall> <

1 121 1022 2 123 0 5 124 oO 5

n Rix < one Re > < UV :=R> < UV

1 19 0 14 0 5 70 1022 1 93

int. param> <O lits. endcall>< UV M:=> < wi int.

48 1 33 1023 1 1724 1 109 1020 1023

malt> < int. endelse> < fact R:=> <1 formal, appetite, block

17 31 112 112 0 0 0 0 8 70

endproc> byp.lab. CR CR < constant = 1 M:=>

1022 2 71 hy 112 21 1022 2 70 1021

< one :=M> writecr CR for < one M:=> <n:=

2 91 1020 1 36 31 1022 2 121 1021

M; first:= true> < we forlab.> bypelab. < one Ris <

2 122 1021 2 128 1021 2 94 10 0

n R+> <if-,first then n:3R> <else first:= false> <

0 0 8 121 1021 2 123 1022 2 75

constant = 10 Ri=> < n Re> < n xsig(>

28 31 1020 0 6 0 476 0 0 8

goenddo- byp.lab. < write std.cal> < constant = ¢dddaddd}

3 19 1023 0 7 1021 0 9 1 19

bool. param> < fact begeall> < n simple int param>

0 14 0 5 1 19 1 14 1020 1

<O lits. endeall> < UV int param <1 lit endeall> < we

35 112 1018 0 18 1020 12 11 10 9

enddo> CR <appetite block endblock> < srO include std, tracks 12, 11, 10

5 0
, o> fill...

Variables in output from pass 7:

n (in fact): relative 2, local block

ones - 2, outermost block

wis - 2 local block

fact (proc): - «1, block O
UV: - O, UV cells

fact (val.): - «1, local block
n (in block): - «3, outermost block

~ ho -

TV. Index

In the following, page references for especially important descriptive or

definitional information are underlined.

actual parameter (argument to a procedure): 7,8

administrative routines: see Running System

array: 5965759523528
as formal parameter: 3,15
pounds (or limits): 9
description in stack section at run time: 3,7,9,13

specification in pass 4 output: 3 —

backing store (drum or disk): 1,4,5,6,10,27

BEGIN BLOCK byte in Pass 3 output: 3”

pit-pattern (Boolean constant): 2
block: 3,6
block entry: 6,31
block information (in storage during program execution): 7,8,11,16

block number> in identifier description in Pass 5 output: 3, Do-O>

bound words in array dope vector: 13

bracket delimiters (bracket-like delimiters): 2

puffer mode (compiler mode in which arrays are placed in the buffer

store): 27
buffer store (auxiliary fast storage in GIER): 5,9

*by value’ and ’by name’, formal parameters: 8,27

BYPASS LABEL byte in Pass 4 output: 3

carriage return counter (used by all passes to give line numbers for

error messages): 1
case statement: 32

Character sum (check-sum of the Algol source program): 1

class of operand: 2

code: see machine language

compound symbol (symbol composed of two or more characters, €+8- #,

begin, =>): 1
constant: 10,15,27

constant actual parameter: 7,8,10,13

core-mode (compiler mode in which arrays are placed in the core store): 27

declaration: 3 ‘

delimiter: 2

display (list of stack references used at execution time for interblock

references): 3,5,6
disk: see backing store

dope vector: see array description

double declaration (multiple declaration) error: 3

drum: see backing store

drum point description for a long string: 14

error in source program: 1,2,5,32

finite state algorithm: 2

formal array: see array as formal parameter

formal parameter: 3,8,28
see also array as formal parameter

~ hy.

formal variable: see formal parameter

formal location or formal word (in the stack section for a procedure

block; gives addresses of actual parameters): 6,7,8,13

General Pass Administration (The part of the compiler Which is common to

all passes): 1
gier (standard procedure): 9,28
GOTO BYPASS LABEL byte in Pass 4 output: 3
GPA: see General Pass Administration
Groups of cells in a stack section:

Group I (the formal locations of a procedure block): 6,7,%,9,10
Group II (program points): 6,7,9 -

Group III tine working locations of a block): 6,7,9

Group IV (array elements and core code): 6,7,9 -
identifier: 3 ~

descriptions in Pass 5 output: 3,22,2%3

input medium, change of: 1
input-output in compiler: 1

<kind-type> in identifier description in Pass 5 output: 43,22,25

label: 3,9,12
see also program point

layout’ (in Algol source program): 10
line number in error message: 35
local variable: 3,6,7,9,12
long and short strings: 6,14
machine language in Algol source program: 4,6,7,9,25

magnetic tape: 1

non-Algol features in GIER Algol 4: 1,2
object program: 4
operator priority: 4
operand situation (in Pass 2, for an operator, an indication of the kind

of expression which precedes it): 2
own variable: 3,5,6
pe-register (an active register in GIER): 7,8,27
paper tape: 1 7
Pass 1 (analysis and check of micro-structure): 1,17,34

Pass 2 (identifier matching): 2,18,35 ~
Pass 3:3 19,35

Pass 3a (standard identifier matching): 2,3
Pass 3b (analysis and check of logical structure): 2,3

Pass 4 (collection of declarations within each block)? 3,20, 36
Pass 5: 3,22~23,37 =

Pass 5a (storage location for variables): 3
Pass 5b (generation of standard identifier description table): 3,4

Pass 6 (type checking and conversion to Reverse Polish Notation) :“b, 2, 38
Pass 7 (generation of machine operations): 4,26,27,39
Pass 8: 3,27 =

Pass 8a (rearrangement of pass 7 output): 4
Pass 8b {generation of final machine code): 4
Pass 8c (loading of running system): 4

Pass 9 (assembly of machine code included in source program; executed

between Passes 6 and 7): 4
pass output (interfaces between passes): 17-34
PREPARE ASSIGN byte in Pass 4 output: 3

-~42-

procedure: 2,3,8,23
body, jump around: 3
call: 8,32
entry: 3,9

program point: 6,7,9,12, 30
PUNCH ON and PUNCH OF characters on punched tape: 1

references to variables in embracing blocks: 6

<relative address> in identifier description in Pass 5 output: 3s 22~25

return information for procedures and thunks: 7,8,10,16

Running System: 5,6,27
segmentation of object program: 50,10, 27

short and long strings: 6,14
simple variable (i.e. non-subscripted variable): 3,8,9,12

SLIP (the GIER assembler): see machine language

SLIP-names in the compiler:”27

stack section during object program execution: 6,7,8,9

stacking of bracket-like delimiters in Pass 3b: 2

standard identifiers: 2,3,4,5,6
storage management, run time: 6,8,9,10
storage needed at run time: 3
string: 5,6,10,13,14
subscripts: %, 30,31
switch: 9,12, 15,20
Fables in the compiler:

descriptions of passes (GPA): 1
identifier descriptions (Pass 5a): 3
names (Pass 2): 2
operator priorities (Pass 6): 4
standard identifier descriptions (Pass 5b): 4

thunk: 8,10
type checking: 4
type procedure (i.e. function): 9
typewriter: 1
UA (Universal Address, in Running System): 30
value: 2,8, 14
Value of a type procedure (i.e. of a function): 7,9,11

WHILE LABEL byte in Pass 4 output: 3 —
working locations: 6,9

