18 REGNECENTRALEN

- SCANDINAVIAN INFORMATION PROCESSING SYSTEMS
SYSTEM GSL NO.: 550
LIBHAHY CLASS : 0.2.2
TYPE : Report
AUTHORS: Jgrn Jensen,
Sgren Lauesen,
Paul Lindgreen,
Boris Martynenko
D.B. Wagner (ed.)
EDITION: April 196¢ (E)
—
Pass actions, pass output, and storage organization in
the Gier Alzol L4 Compiler
ABSTRACT ¢
. This report gives details of two important aspects of the Gler Algol L
compller:
1. Actions of the various passes; specifically the details of their in-
terfaces,
2, Storage organization in the compiled program.
The report assumes that the reader 1s thoroughly familiar with Algol and
in particular Gier Algol 4, and that he has some acquaintance with the
operation of the compiler. It plunges immedistely into technical details.
'

LR N N N N

INFORNMATION DEPARTMNVENT sevecssoces essseossnscatssacsscoesdss
DK-2500 VALBY - BJERREGAARDSVEJ 5 - PHONE: (01)46 0888 . TELEX: 6464 rcinf dk - CABLES: INFOCENTRALEN

Contents

I. The TaSkS of the Passes e 5 o o & o

1. General pass administration (GPA)
2. Pass 1, micro-structure analysis
3. Pass 2, 1dentifier matching . .
4, Pass 3a, standard identifier matc
5. Pass 3b, local structure analysis

hing

6. Pass U, collection of declarations
7. Pass 5a, storage allocation for varisbles

8. Pass 5b, generation of standard identifier
9. Pass 6, type checking and conversion to Reverse Polish No

10, Pass 9, assembly of code stateme
11. Pass 7, generation of machine op
12. Pass 8a, drum rearrangement . .

13, Pass 8b, generation of final mac
14, Pass 8c, loading of running syst

IT. Storage Organization « o« ¢ ¢ o o

Te Storage of variables o« o o o o
Group I, formal locations ., . .
Group II, program points . « .
Group III, working locations and
Group 1V, arrays and core code .

2. Storage of constants « « « ¢ o &

ITI. Appendices

1. Details of storage formats . «

1. Block information . . .
2, Value of type procedure
3. Program point . + « + .
4, Description of array .
5. Formal location in stack
6‘
7.
8.

Constants « « o o o o o o

Return information . « &

1
Te
1
Te
1
Te
1
1 Block information « « « &

L) L 2 Ld L] *® L] * *

2. Details of pass output « o ¢ o &

. Pass
. Pass
. Pass
. Pass
Pass
Pass
. Machine language in output f
» Pass 7

. * L] . L)
* [] L] L] [)

[0)XW, BN g G I\ W)

DO PMPPND MDD

nts . e o
erations
hine code
em L] L] L]

. L L] L] L4

L] . L . L4
. . L] * .
L] L] L] L] L]

variables

L . L L .

- * L] L] * - * L]
e o @ ® o o o o
. L] L] . * L] * L]
L] L] * L] [] - L 2 L]

s ® 9

L] * - L

descripti

- - . L] . * L] L)

* e o o o @

s & o o & o

rom passes 1 to

* & o o o o

MNe o & o o o

* . [] L] L] L]

L]
ons

e o ® & ¢ o o o

. ® * L * L] L] L] - [* []

L) L] - L] * .

® & e o & e o o o o o e o

e @ @ & o

* [3 - L] * L] - .

1

ct e & 2 o ¢ o o o

pars
¢]
=]

e & o & o o o° » e o o o o * ® o o o e & ¢ & ¢ o o o

] * L] . » * * .

e @& o o o

-

FEEFEFEEFLGWROOD = =

OO DOON W

—
O

—_
-—

11

11
11
12
15
13

15
16
17

17
18
19
20
22
2k
25
26

2.9. Pass 8 L4 . L L L] L] L L] .

1
2,
3.
b,

3, Example

Segmentation « « « o o ¢ o
Operand addressing « « +
Independently generated half- or
Multiple generated instructions
Program points . .

Block entries « o o o o o o o o
Procedure ¢2llS o« o ¢ o o o o o
Case sdministration .« « ¢ o « o
Reference table o+ o o o ¢ o o «

of test output from Giler Algol k4

fullword instructions

e o o o
« e o o o o
* & & e o o
o »
L] L * - -]
* & o o e @
L L L . . L)
e o & ® o @
* L] * L] L] L]
. . L] [. L]
e o & o o @

27
27
27
28
29

31
32
52

7-
4

I, The Tasks of the Passes

The best introduction to the design philosophy and overall operation of
the compiler will be found in P. Naur, ’The Design of the GIER ALGOL
Compiler’, BIT 3 (1963), 124-1L0 and 145-166, Briefly, the compiler is
divided into ten parts: the nine ’passes’ and the ’General Pass Admini-
stration’. Pass 1 reads the source program and outputs to the backing
store a series of ’bytes’ which Pass 2 reads, Each of the following pas-
ses reads the output of the preceding pass and outputs a new sequence of
bytes to be read by the next until finaelly Pass 8 outputs to the backing-
store area ’work’ the finished object program. (For historical reasons
the pass named ’Pass 9’ falls between Passes 6 and 7.)

We describe below the various parts of the compiler in greater detail.
Appendix 2 gives the details of the interfaces between passes. Of course
for the most detailed possible information about the compiler see the
program listings, published by Regnecentralen as The Complete Annotated
Programs of Gier Algol L, 2 volumes, December 1967, GSL LG,

1. General Pass Administration (GPA). GPA is that part of the compiler
which 1s common to all passes; 1t takes care of input and output of
bytes, printing of error messages, and transition to the next pass,

The entry for output of a byte will, if wented, print the byte as an in-
teger. This check-out facility is a permanent part of the compiler. For
details see the GA 4 Manual, section 13..4.

The entry for error message printing can identify the current place in
the source program by printing the value of a common carriage return
counter in front of the message. The carriage return counter is updated
by all passes whenever they meet the carriasge return byte in the input.
Therefore this byte is carefully kept through all passes even when sur-
rou?ding bytes are removed because of errors (see pass 3b and pass U be-
low).

The first time GPA produces any printed output from a given pass it
prints the pass number.

GPA contains a table which describes the successive passes of the com-
piler, This table is used during transition to a new pass,

The input and output of bytes is buffered so that the time used for
drum transports during the execution of a pass 1s negligible,

2, Pass 1, Analysis and check of the hardware representation of the
source program (micro structure). Conversion to reference language which
is output as a stream of 10 bit bytes,

The input to pass 1 1s the source program tsken character by character
from the input medium. The input medium may be paper tape, typewriter,
magnetic tape, or a backing store area.

Besides the conversion to reference language, which also implies recogni-
tion of compound symbols, e.g. begin end if < # := , pass 1 performs se-
veral other tasks, -

Comments and blind characters, e.g. blanks, are skipped.

Strings are packed in an internal representation.

-2 -

Each n’th line of the source program may be printed.

Several non-Algol features related to the hardware representation are
handled: Change of input medium, optional skipping of input between
PUNCH OFF and PUNCH ON, check of character sum In the input, print-
ing of messages to the operator, pause for insertion of new paper
tape in the reader,

Pass 1 skips all input up to the first begin and terminates the proces-
sing when the corresponding end has been read.

3, Pass 2, Identifier matching.

Each identifier encountered in the input is searched for in an initial-
ly empty table in the core store, If not found the identifier is entered
in the table., In any case 1t is output as one byte representing the ser-
ial number of the identifier in the table. The value is between 1021 and
512,

This matching is performed regardless of block structure. The generated
table is kept in core for use by pass 3a after which it may be overwrit-
ten.

Pass 2 also assembles bit patterns, a non-Algol feature, and outputs
them as logical values.

i, Pass 3a, Standard identifier matching.

The identifier table generated by pass 2 1s searched for occurrences of
standard identifiers, i.e, identifiers declared outside the source prog-
ram,

Each occurrence gives rise to the output of two bytes: The serial number
of the identifier in the list of standard 1dentiflers followed by the
byte representing the identifier in the pass 2 output.

5. Pass 3b, Analysis and check of delimiter structure (logical struc-
Ture). Delimiters of multiple meaning are replaced by distinctive delim-
iters and extra delimiters may be added to facilitate the task for the
followlng passes,

A sub~part of the logic analyzes numbers and converts them to internal
machine representation which 1s then output as five byte constructions,
Also the procedure headings are treated by a sub-part of the logic which
checks for missing or double specifications and for not allowed value
specifications, Furthermore the specifications are output as part of the
1ist of formal parameters.

The main logic is performed by a finite state algorithm using a stack
for holding encountered opening bracket delimiters, e.g. if begin ([.

The algorithm scans the input up to and including the next delimiter and
sets the operand situation, i.e. the class of operand encountered during
the scan for the delimiter.

®

)

The delimiter and the current state determine, via a matrix, the new
state, and the specific delimiter meaning., This in turn determines the
further actions, e.g. byte output, stacking, unstacking. Also the oper-
and situstion is checked for consistency with the delimiter.

In case of error a message 1s given and current state is set to a value
which will insure skipping of the rest of the current construction, norme-
ally up to a semicolon or to an end.

6. Pass 4, (Backward scan): Collection of declarations at block begin.

Pass 4 stacks all declarations (labels are treated as declarations) and
unstacks and outputs the top section of the stack whenever a BEGIN BLOCK
byte is encountered in the input, However, to enable pass 5 to glve a
relevant line number in case of double declarations, the identifiers from
the declarations are also transmitted to the output.

Pass 4 also counts the locations needed at run time:
In the whole program for:
Display (= mex block depth).
Own variables,
In each block for:
Simple variables, arrsy descriptions, and dope vectors.
Local declarations, i,e. the dynamic descriptions of labels and
procedures,
In each procedure block furthermore for:
Formel parameters.
Dope vectors for formel arrays which in the procedure body ap-
pears with subscripts. (This enables the procedure entry to
move the whole actual dope vector to local cells and thereby
facilitate the subscription of the formal array.)
This last counting requires that all subscripted identifiers in a proced-
ure body are stacked together with the number of subscripts. This
stacked 1list is then confronted with the formal list from the procedure
heading and the number of subscripts is added to the array specifica-
tion. .

Further pass L tasks:
Insertion of the bytes BYPASS LABEL and GOTO BYPASS LABEL which will
ensble pass 8 to generate jumps around procedure bodles,
Insertion of the byte WHILE LABEL in front of while elements in for-
lists, Insertion of the byte PREPARE ASSIGN just alter the last I=
in assignment statements,
Skipping of the rest of erroneous constructions found by pass 3b. As
the last task, after having processed the first BEGIN BLOCK pass U4
initializes the pass 5 declaration table using the byte palrs gener=-
ated In pass 3a; see pass 5,

7. Pass 5a, Storage allocation of verisbles., Distribution of identifier

descriptions.

A table of identifier descriptions is built up, based on the declar-
ations collected at block begin, This table is checked for double declar-
ations by help of the identifiers left at the original place where the
declaration occurred. All other occurrences of identifiers are in the
output from pass 5 replaced by the description from the table.

-4 .

The normal description will conslst of three bytes:

< kind-type > < relative address > < block number >.
However, for a standard identifier only one byte is output. This byte re-
fers to a table of descriptions which is built up by pass 5b, see below.

8. Pass 5b, Generation of standard identifier description teble, Output
or 118t of standard procedure code sections to be included.

A table containing the descriptions of those standard identifiers which
actually have been used is built up in the top of core. This table will
be used by pass 6 whenever a standard identifier is encountered in the
input.

Finally pass 5b outputs a list of bytes specifying the standard procedure
code segments to be included in the object program. This list is used by
pass 8a,

9. Pass 6. Type checking (Global structure). Conversion to Reverse Polish
otation,

Based on a priority table for operators all expressions are converted to
Reverse Polish Form., In parallel to this 81l kinds and types of operands
are checked by means of a pseudo evaluation of the expressions, This pro-
cess will also insert explicit type conversions when needed end will de-
liver the final type of more complicated expressions,

10. Pass 9 (between passes 6 and 7): This pass is an assembler, It inter-
prets the text of code statements as machine code written in a subset of
the SLIP assembly langusge. From here on each piece of user-specified ma-
chine code is taken as an indivisible sequence of machine words.,

11, Pass 7. Generation of machine operations. Assignment of working loca=-

Tom)

By a simulation of the run time processes, with respect to where and how
the operands are stored, pass 7 generates the machine code necessary to
perform these processes, i.e., it determines the use of the machine regi-
sters and allocates run time working locations. However, as the internal
references (jumps) can not be addressed yet, the output from pass 7 is
still in the form of a byte stream.

12, Pass 8a, (Backward scan). Rearrangement of the pass 7 output on the
drum. Loading of the standard procedure code sections specified in the
list from pass 5b.

13, Pass 8b. Generation of final machine code including addressing of all
Internal references, Segmentation into backing store tracks.,

14, Pass 8c, Loading of running system, i.e. the fixed set of administrat- 'i
Tve routines needed at run time.

-5 -

Result of compllation: A self-contained object program stored on consecut-
Tve tracks on the drum, It is relocatable as a whole on the backing store.

II., Storage Organization

A complled progrem, while it is running, msekes use of three kinds of stor-
age: the backing store (drum or disk), & core store of 102k words, and
possibly a ’buffer store’ of 4096 words.

The backing store holds the entire compiled program (parts of which will
also be found in core), the text of most string constants used in the
program, and any files the program may explicitly meke use of, {See A
Manual of Gier Algol 4, section 11, for details of use of the backing
store through explicit calls to standard procedures.)

Core store holds all the varisbles of the program (possibly excepting ar-

Tays), the running system, and some ’segments’ of the program., For details
of the program segmentation scheme see Naur, ’Features of the Gier Algol k4
System’ Regnecentralen, November 1967).

Buffer store, if avallable, holds all the array elements of the program.

Flzures 1 and 2 show the organization of core store and backing store
during program execution.

Figure 1: Core Store Durin§ Program Execution

0 Some variables for Running system and Help system
e38 Program segments
........ - . - - - — . e e - = -
Stack
Display

Own varisbles

Running system

e37

1023

Normelly e37 = 1022, e38 = 15,

-6 -

Figure 2: Backing Store During Program Execution

Help 3 basic

Help files

Running system

Program code The object
program produced
Standard procedures by the compiller

Storage of Variables

Variables are in general kept in core as long as they are active, with
the single exception that array elements are kept in the buffer store
if one 1s available.

Storage for own variables is assigned by the compiler, and can be seen on
the above diagram of core store, figure 1.

Storage for any other variable is assigned during execution at entry to
the corresponding block and released at exit from the block. These ’loc-
al’ variables are organized in a stack which grows and shrinks during
execution of the program and competes with program segments for storage.
The stack is not permitted to grow so large that there is room in core
for less than four program segments,

Each incarnation of each block in the program has a single section in the
stack, (Wherever the word ’block’ appears in this paper we Include any
procedure body, whether or not it 1s a block in the usual sense of a be-
gin ... end structure.) The block’s stack section contains:

I In the case of procedure blocks, the formal locations for the proced-
ure.

ITI The program points of the block,

III The workiqg locations and variables of the block,

IV Storage for arrays and for core code,

The numbering above corresponds to the common terminology of the ’groups’
in a stack section, The diagram of figure 3> shows a stack section. We
will go Into the groups in some detail.

The ?display’ 1s a list of pointers to stack sections, It is used for the
purpose of allowing references within one block to variables in embracing
blocks,

Flgure 3: A Single Stack Section

Items arranged ’in
order of declara-
tion’ go this way.

p-register points
here while
control 1is in

the corresponding
block.

T Toward lower Addresses
in Core Store

Next stack
section
(deeper nesting)

Array storage
and

core code

!

Local Simple Varisbles
and Descriptions

of arrays
(arranged in order of
declaration)

Program Points

(arrenged in order of
declaration)

Value of a Type Procedure

Block Informetion

Formal Location 1

26

Formal location n

Return Information

Actual Pasrameter Constant m

LN

Actual Parameter Constant 1

Previous Stack Section

-
|
?
|

Group IV

Group III

Group II

Group I

Toward Higher Addresses

i in Core Store

-8 -

Group I: The formal locations of a procedure block,

The machine code which the compiler produces for a procedure call works as
follows:

1. Allocate storage for group I of the procedure block’s section of the
stack and create the ’block information’ for that section.

2., Place into this stack section the return information asnd the formal
words for the actual parsmeters of the call, The precise format ol
The return information and formal words is given in appendices 1.5 and
1¢7. Suffice to say now that bits in the word may indicate among other
things

a, variable or constant
b. program point
¢, ’thunk’ - described below,

3. In addition place any constants referred to by these formal words into
the stack section.

4, Set the p-register (which always indicates the current stack section)
to point to the newly-created block information and transfer control
to the procedure.

The procedure can now extend this stack section as necessary for its own
storage, do its thing, and eventually return to its caller through the re-
turn information given. (At which time the p-register must of course be
reset to point to the proper stack section.}

The ’thunk’ 1s a device used to handle Algol’s call-by-name convention,
Its name has an obscure origin in the complex mind of Mr., Peter Z. Ing-
erman, If an actual parameter in a procedure call is an expression, and
the corresponding formal parameter is ’by name’ (that is, not declared
value), then the expression must be re-evaluated every time the formal
Parameter is referred to in the procedure body.

A ’thunk’ is a plece of code, organized somewhat like a procedure, which
when invoked evaluates an actual parameter expression and places the ad-
dress of the value in a standard location,

When the compiler compiles a call to a procedure 1t compiles a thunk for
every actual parameter which is not a simple varlable or constant, Then
during execution, when the call is made, the call places a pointer to
this thunk in the corresponding ’formal location’ of the called proced-
ure’s stack section, Then a reference to the corresponding formsl param-
eter consists of an invocation of the thunk.

In the case that the corresponding formsl parsmeter is ’by value’ rather

than ’by name’, thunks are not necessary but are used anyway. The actual

parameter is evaluated immediately after entry to the procedure block and
the value is stored in place of the formal word. Then access to this val-
ue is rather simple In the rest of the procedure.

Group II: The program points,

All labels and procedure entries are treated as local varisbles in the
complled code, Switches are treated as procedures, so they too must be
consldered here,

For each label and procedure entry in a block, a word is set aside in the
stack section for the block and this word i1s initialized at block entry.
(The format of the program point words is given in appendix 1.3.)

This convention means the compller need not worry about the two basically
different kinds of program point: Those avalilable directly and those

available by actual-formal correspondence. The formal location for a lgb-
el or procedure formal parameter points to the program-point for it in

The corresponding block.

Also generally included iIn Group II is the location set aside for the
returned value of a type procedure, After the return from a type proced-
ure as described above under Group I, the caller reaches up into the now=-
abandoned stack section of the procedure and picks up the returned value.
After this has been done the contents of that stack section can be destr-
oyed.

Group III: The working locations of the block.

Included in this group are all the simple variasbles of the program, and
also descriptive information for arrays.

The descriptive information for an array is kept separate from the stor-
age for the actual elements of the array for two reasons:

1. The storage for the array’s elements must In the general case be allo-
cated only after its limits are computed. Furthermore it may be that
this storage is to be allocated in the buffer store and not in the
stack., The descriptive information can keep a record of where this
storage 1is allocated,

2. Because of efficlency considerations, descriptive information for ar-
ray parameters of a procedure is copled into the stack section for the
procedure at block entry,

See appendix 1.4 for the details of array descriptive information.

Groug_IV: Array elements and core code,

See A Manual of Gler Algol 4, section 12.7, for a discussion of core
code., At entry to a block, all the pleces of core code declared in that
block are copled into the stack section corresponding to the block. Then
within the block they can be invoked through calls to the standard proc-
edure gler,

At block entry the limits of arrays are evaluated, the storage 1s sllocat-
ed for them, and appropriate information is inserted into the array de-
scriptions mentioned in Group III. The storasge allocated for arrays at
this time will be in buffer store if it is available and in Group IV if
not,

Storage allocated for arrays in the buffer store 1s assigned starting
from the highest locations in the buffer and working downward,

- 10 =

A final use of the stack: Thunk returns. The call to a thunk is as fol-
lows:

1. Allocate one more word in the stack,

2, Place return information into this word.

34 Transfer to the body of the thunk,
After the thunk has done its evaluation, it returns by:

4, Release the topmost word of the stack.

5 Return control through this word.,
It 1s necessary to use the stack for thunk returns because of two contin-
gencies: The thunk may involve a call to a procedure; and it may involve

a call to another thunk.

Storsge of Constants

Each ’segment’ of a program will contain a sequence of instructions plus
all the ordinary constants which these instructions use. In most compil-
ers 1t is worthwhile to group all the constants used in the program and
eliminate duplications; but in Gier Algol U4, because of the segmentation
scheme, such a grouping would decrease efficiency rather then increase 1t.
No grouping of constants, therefore, 1is done except within individual
segments,

The integer constants O and 1, and also any other constants with the same

machine representation, are treated specially. The constant zero need ne-

ver be kept in storage as instructions can do without it. The constant one
is located in the running system and when needed is picked up there.

It 1s convenient to require that all actual parameters be continuously in
core store, Therefore constant actual parsmeters are placed in the stack
as described above in the discussion of Group I.

Strings are a little bit awkward because a string is the only kind of va-
Tue that does not fit in a single word. Therefore the sctual text of most
strings (those longer than 6 characters) is kept on the backing store
during program execution. See appendix 1.6 for a precise description of
the format of strings in the machine; but here it suffices to say that
when a ’string’ i1s mentioned in connection with Gier Algol 4 implementat-
lon, the word usually means a single-word description of the string giv-
ing its location on the backing store,

A final form of constant is the layout. It is considered Boolean and its
representation in storage is described in A Manual of Gier Algol k4, sec-
tion 9.5.3.

- 11 =

Appendix 1: Details of storage formats

It will be noticed that many of these storage formats contain pecullar
numericasl constants in perts of varlous words. Generally such a constant
turns a date word into an instruction or special indirect word; this
makes various code optimizations possible, See appendix 2.9 for the ways
in which the program store takes advantage of these storage formats.

Te1. Block information

0 9 10 19 20 29 30 30 Lo b
sr1: | <stack reference>|display address-1 896 960 110
for the surroun-
ding block
' 0 9 10 11 12 2k 25 26 27 39
sr+1:] <last used> in 0]O I<last used in 0 }] O} <number of loca-
the stack for buffer in sur- tions used in
block rounding block> buffer in this
block>
<stack reference> for the outermost block = 1,
<last used in buffer in surrounding block> at the beginning = 4096
<number of locations used in buffer in this block> before reservations

in buffer = 0.
A procedure body is always considered to be a block, The surround-
Ing block for a procedure is the block in which it is declared.

1.2, Value of type procedure

Until a value is assigned to a type procedure the contents of the

Q location set aside for the procedure value is as follows:
0 9 10 19 20 29 30 39 Lo W
<stack reference> 0 0 0 110

-12 -

1e3. Program point

(1abels, switches, procedures)

0 9 10 19 20 29 30 39 Lo
| abel l<sr> of the |relative 0 track numberji |O
block where Jaddress in 1 11
this label |track
is local
switch ditto ditto 4o ditto 1 lo
" no type| <sr> ditto 2k ditto 111
5
Kol]
P
7 8 |integer |ditto ditto 488 ditto 1 |0
v 2
5 > ,
S8 |real |ditto ditto L88 ditto 1 h
S
8,
Boolean [ditto ditto 8 ditto 1]0
no type |ditto ditto 24 ditto 1 |1
g n
28
8% integer |ditto ditto 16 ditto 1|0
§ 8, | real ditto ditto 16 ditto 1 |1
o
Boolean |ditto ditto 24 ditto 1 {0

In the word for a label, bits 40-41 are 10 if the #arget is left-hand in-
struction in e word, and 11 if the target 1s the right-hand instruction.

- 13 -

1.4, Description of array

0 9 10 19 20 29 30 39 4o
arrays 0 0 address of corner
in core
o
8 store
5
e arrays e17 1 ditto
4 in buf-
I
< fer

bits 40-41: integer 00
real 01
Boolean 10

The ’corner’ of an array is a hypothetical element with all subscripts
zero (e.g. alphal0, 0, 0, ...]).

The array word is followed by full-word integers giving lower bound 1,
upper bound 1, lower bound 2, etc. These ’bound words’ appear regardless
of whether index checking was specified in the compilation,

1.5 Formal location

0 9 10 19 20 29 30 39 Lo L1
integer c¢30 absolute 520 0 0 |0
address

0
g real e30 ditto 520 0 o

)

&
® S | Boolean 30 ditto 520 8 0 |o
string x# ¢30 ditto 520 8 0 {1

- 14 -

0 9 10 29 30 39 Lo W1
L2)
. 0]
integer e30 absolute 512 0 ojoisd
address 59
0 + a
[H]]
~ real ¢30 ditto 512 0 o118~
% [S 2 3)
o o ra‘
o
g Boolean e30 ditto 512 8 010 |a ﬁ
[0)])]
& 13
E string X} ¢30 ditto 520 8 o114 o
S 8
12}
U Q
label 30 ditto 512 8 o1 ™
—~ —
[o 3]
124
integer |stack re- |relative 480 track 1jo ‘
ference address number
for block in track
T o containing
a3 the ex-
s pression
a o
57 | real ditto ditto 480 ditto 111
0
Boolean [ditto ditto 0 ditto 1{o] &
5]
integer [ditto ditto 188 aitto 110 §
)
0 S
= real ditto ditto L88 ditto LN IR I
o +
) (s
: 3
& | Boolean {ditto ditto 8 ditto 1{o] & ()
3 5
Q
by B
B string [ditto ditto 8 ditto 1]
5 (sh
label ditto ditto o) ditto 11

X) The address of a string is: for a short string, the address of a word
containing the string; for a long string, the address of a drum point
description (see Appendix 1.6, below).

Xx) Where s formal is declared value, the formal location is also used to
store the value computed at block entry.

- 15 -

0 9 10 19 20 29 30 39 Lo L1
array address of{dope address 0 <number of |0 |0
ray word-1|-addr of array subscripts
word=-2 + 1>
integer | stack re- |relative ad- 16 track 110
3 ference dress in number
g o for block jtrack
E-S where
w declared
[N 3]
58
S & | real ditto ditto 16 ditto 111
0 v ‘
o .
B 8
o § |Boolean | ditto ditto ol ditto 1]0
8 5
o &
S ¥ |no type | ditto ditto ol ditto 111
o
=
switch | ditto ditto Lo ditto 110
1.6. Constants
0 39
5tr'ue111................_.....111
(]
r§falseOOO.....................OOO
o8]
012534 9 10 15 16 21 22 27 28 33 34 39
short |1]0]1|0}|charac=|charac- charac- charac- charac- charac-
L ter no, |ter no., |ter no. | ter no. | ter no. | ter no.
5 6 5 L 3 2 1
fa
long 0 relative address 0 track number
0 9 10 19 20 29 30 39
One word of a long string on the backing store:
012534 9 10 15 16 21 22 27 28 33 3l 39
mot last|1]11]1{i]|charac~- charac- |charac- charac- charac- charsac-
ter ter ter ter ter ter
last 11011 |0jno. 6 no. 5 no. U4 no. 3 no, 2 no, 1
Integer and real constants take thelr ’natural’ machine representations.

-16 -

1.7+ Return information
0 9 10 19 20 29 30 39 4o
for procedures | stack refe- | <track rel. 4o track number |1 |1
rence for address> 1
return
point
for thunks ditto ditto 880 ditto 1]0
1.8. Block information
0 910 19 20 29 30 39 Lo
sr: |sr for surroun-| display add- 896 960 110 ‘\
ding block dress = 1
0 9 10 11 12 2l 25 26 27 39
sr+1:|last used in 0] 0| last used in ' 0 { O | number of loca-
core store buffer in sur- tions used in
rounding block | buffer in this
: block
<sr for the surrounding block> for the outermost block = 1
<last used in buffer in surrounding block> in the beginning = L4096
<number of locations used in buffer in this block> before reservations in
buffer = 0,

- 17 -

Appendix 2: Detaills 2£ pass output

2.1, Pass 1

The three columns give: (1) the output byte value, (2) the meaning,
and (3) the pass where the value is processed.

1a 2 3 I 2 93 begln 3 267 X 3
2b 2 38J 2 98 for 3 268 / 3
3¢ 2 39K 2 106 if 3 269 A 3
Lbq 2 o1 2 109 own 3 270 : 3
5e 2 LM 2 116 integer 3 271 < 3
6 f 2 bo N 2 123 real 3 272 < 3
Tg 2 43 0 2 130 boolean 3 273 = 3
8h 2 W p 2 137 procedure 3 274 > 3
91 2 bs @ 2 144 array 3 275 > 3
10§ 2 W R 2 149 switch 3 o276 # 3
11k 2 b7 s 2 153 string 3 277 A 3
121 2 BT 2 155 label 3 278 v 3
13m 2 Wu 2 157 value 3 279 = 3
ibn 2 50V 2 167 3 3 280 => 3
150 2 51 W 2 172 end 3 281 mod 3
16p 2 52 X 2 176 else 3 282 shift 3
17 q 2 53 Y 2 184 (3 287)<det>:(3
18r 2 sh Z 2 194 : or ,¥) 3 291) 3
19 s 2 55 E 2 196 step 3 <code>
20t 2 56 g 2 198 until 3 1008-begcode 3
21 u 2 5T 0 2,3 200 while 3 1009 end pass 2
2 v 2 581 2,3 202] 3 1010 CAR RET 2
23 w 2 50 2 2,3 210 [3 <l bytes>
oh x 2 60 3 2,3 220 , or %) 3 1011-short str 2
25y 2 61 b 2,3 228 := 3 1012-1long str 2
2%z 2 62 5 2,3 231 then 3 1013-1ayout 2
272 2 63 6 2,3 243 do 3 1014 0 2
Bg 2 6h 7 2,3 2L5 abs 3 1015 T 2
29 A 2 658 2,3 249 code 3 1016 2 2
0B 2 66 9 2,3 251 core 3 1017 3 2
31¢C 2 67 . 3 256 case 3 1018 & 2
32D 2 68 » 3 258 of 3 1019 T 2
33 E 2 72 + 3 260 round 3 1020 & 2
3.7 2 76 - 3 262 entier 3 1021 7 2
3G 2 82 -, 3 265 true 3 1022 B 2
3 H 2 86 go to3 266 false 3 1023 § 2
X) Between 249 code and the first following 1008 begcode.

<code> ::= <any number of bytes between O and 511>

<1024 - number of CAR RET within the machine code>

The code of the machine language representation is given in
appendix 2,7,
Qutput byte value 1009 end pass will appear at the very end of the output
from pass 1 in the following context:
eee 172 1009 0 :
<b bytes> ::= <short text>|<text on drum>|<iayout>
<text on drum> ::= O <track relaetive> 0O <track number>

O <layout> ::= <layout bits O - 9><layout bits 10 - 19>
<layout bits 20 - 20><l1ayout bits 30 - 39>

- 18 -

2.2, Pass 2

The three columns give: (1) the output byte value, (2)

o
N
+8 ¢ WO MOV FWN = O

77 CARRET

78 <U bytes> short str
79 <4 bytes> long str
80 <4 bytes> Boolean 1lit
82 -,

86 go to

93 begin

98 for

106 1if

109 own

116 integer

123 real

130 boolean

137
144
149
153
155
157
167
172
176
184
194
196
198
200
202
210
220
228
231
243
2hs
249
251
256
258
260
262

procedure
array
switch
string
label
value

F
end

?lse

: or ,%)
step
until
while
]

[

, Or @
=
then
do

abs
code
core
case
of
round
entier

")

X) Between 249 code and the first following 264 begin code.

<code> ::= <any number of bytes between 0 and 511>
<1024 - number of CAR RET within the machine code>
The code of the machine language representation is glven in aeppendix 2.7.

the meaning

<code>
26h-beg code
265 true
266 false
267 X

268 /

269 A

270

271 <

272 <

273 =
274 >

275 >

276 *

277 A

278 Vv

279 =

280 =

281 mod

282 shift
283 end pass
287)<let>:(
291)

512-1021
Identifiers

Output byte value 283 end pass will appear at the very end of the output
from pass 2 in the following context:

eee 172 283 0O

<4 bytes> is explained in appendix 2.1.

2.3, Pass 3

- 19 -

The output from pass 3 is scanned in the reverse direction by pass U,
This must be remembered when interpreting the structure.
The first part of the output has the structure:

0 <standard identifier pair list><identifier limit> 20

with

<standard identifier pair> ::= <standard identifier no><identifier>
The remaining bytes are coded as follows:

0 CAR RET
 1f literal
 U4 1literal string
<il> 5f decl simple

8 decl label
<il> 9f decl own

<il> 12f
15
16
17

- 18

- 19

- 20
21

22

23

2L

25

26
<code>

- 27

28

29

30
31
32
33
3k
35
36
37
38
39
Lo
4
Yo

L3f
L&
L

Lgse
51

52f
55

¢o 6600060E

<il> ::=

1= <bits

decl array
end clean
end block
end bounds

~ <no, of parameters>

end proc no type
end type proc
begin

H

do

then statement
else statement

of statement
end case statement

code end

core

core code end
end spec

end call

] one

] more

call parameter
comma. 1

comms, 2

bound colon
begin call
begin function
left bracket
trouble

decl parproc no
decl par proc
decl switch
decl proc no par
decl proc no par
decl undef proc
spec simple
spec string

<I>|<i1><i>

<i>
<i>
<i>
<i>
<i>
<i>
<>
<>

56
51f
60f
63
6Lt
67
68
69

137
138

139

<code> 1is explained in appendlx 2,7.
f indicates that three consecutive byte values describe types: +0 = integer,
+1 = real, +2 = Boolean,

spec lebel
spec value
spec array
spec proc¢ no
spec proc
spec switch
spec undef
spec general
simple for element
:= for

step element
while element
while

end assign

first:=

‘proc;

ifex

ifst

thenex
elseex
delete call
end else ex
end else st
end then st
end go to
for

step

until

end do

end single do
mod

e~ X ¥ +

shift

first bound
not first bound
of switch

154 code

155 end switch

156 and

157 or

158 imply

159 =

160 T

161)

162 simple for do

163 step element do

164 while element do

165 case st

166 case expr

167 of expr

168 end case expr

169 case comma

170 case semicolon

171

Lg2

Lo3

4ol

Los

496

Lo7

500 -,

501 entier

504 pos

505 neg

506 abs

507 round

508 opint

509 opreal

510 opbool

511 opstring

512=-1021
identifiers

999 begin code

®

o]

o
’_.l
0

e

o]

-“+VIV 1A A

1022 internsal identifier

: 0 = 9><bits 10 - 19><bits 20 - 29><bits 30 - 39>
$¢= <identifier, i.e. byte 1n range from 512 to 1021>

- 20 -
2.4, Pass L

0 CARRET
<base w><base var>
begin block

2 end pass
<no of actuals>
- 3 begin func
<reverse code>
- 4 begin code

5 end core code
<i> 6 decl switch
<i> T decl label
<i> 8 decl proc err

9 formal label

10 formal general

11 formal unspec

12 core store

13 formal switch

14 end bounds

15 end head

16 end decl

17 end block
<no,of parasmeters>
- 18 end proc
- 19 end type proc
<spec list> X
- 20 specifications™)
<i> 21 label colon
<no of actuals>
- 22 begin call
<no of subscripts>
- 23

2k end bound head
<i> 28f begin bounds
<base w><base var>
- = 35 begin switch
- - 36 begin par proc
- - 37f beg par proc type
- - 40 beg no par proc
- - 41f beg no par proc type
<i> bLf decl no par proc
<i> 47 decl no par proc
<i> 48f decl par proci)
<i> 51 decl par proc”)
<i> 52f decl simple
<i> 56f decl own
<no of subscripts>
- 60f decl array
- 6Lf take array
<i> 68f teke value
<i> 72f formal proc

75 formal proc

- - 1

<i>
<i>
<i>
<>

76
79
8of
Bt
87
128
129
130
131
132
133
134
135
136
137
138

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

f and g indicate that three consecutive
f: +0O=integer, +1=real, +2=Boolean. g: +O=Boolean, +1=real, +2=integer
 ::= <bits 30-39><bits 20-29><bits 10-19><bits 0-9>

formal simple
formal string
anon. array
literal
literal string
proc;

1f expression
if statement
then expr
else expr
delete call
end else expr
end else stat
end then stat
end go to

for

step

until

end do

end single do
mod

Stee~X 1 +

shift

first bound
not first bound
of switech
code

end switch
and

or

imply

T

)

simple for do
step elem do
while elem do
case stat
case expr

of expr

end case expr
case comma
case semicolon
end loop

do

then stat

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
Loo

else stat

of stat

end case stat
end call

] one

] more

call param
comma 1

comma, 2
bound colon
simple for

:= form

step element
while element
while

end assign

firste=
while label
prep assign

¢

go to bypasslabel

bypasslabel

ko3 <
holy =

Lgs

hos ~

Lo7
500
501
50k
505
506
507
508
509
510
511
512
i
Spec
1006
1007
1008
1009¢g
1012
1013g
1016¢g
1019
1020
1021¢g

*

not =,
entier
positive
negative
abs
round
op.integer
Oop.real
op.boolean
op.string
- 1022
dentifiersx
ifications™)
general
undecl
switch
proc type
proc no type
array
value
label
string
name

byte values describe types:

x) The declaration of a procedure with parameters or a switch (treated
as a procedure having one integer value parameter) appears in the block

head as:

<ldentifier><decl par proc><spec list> 20

F

-21 -

<base w> ::= 1024 - number of locations used for local variables

- number of locations used for program points

<bsse var> ::= 1024 - number of locations used for local program

points

<spec 1list> ::= <specification, 1l.e. byte between 1006 and 1023> |

<spec list><specification>

The last bytes appearing in the output refer to the outermost block
and the entire program and are:

Te
2.
Se
b,

<base w> of outermost block

<base var> of outermost block

identifier limit = smallest identifier byte - 1

standard identifier having lowest standard ldentifier number in output
from pass 3.

1021 - maximum block number - number of owns

2 + number of owns

0

- 22 -

2.5, Pass 5

128
129
130
131
132
133
134
135
136
137
138
129
140
149
142
143
144
145
146
147

proc;

ifex

ifst

thenex
elseex
delete call
end else ex
end else st
end then st
end go to
for

step

until

end do

end single do
mod

+

X

/

148

149
150
151
152
153
15k
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

A

shift

first bound
not first bound
of switch
code

end switch
and

or

imply

T

)

simple for do
step element do
while element do
case st

case expr

of expr

end case expr
case comma

case semicolon
end loop

do

then st

else st

of st

end case st

end call

] one

] more

180 call param

181 comma 1

182 comma 2

183 bound colon

184 simple for

185 := for

186 step element

187 while element

188 while

189 end assign

190 :=

191 first:=

192 while label

193 prep ass

194 goto bypasslabel

195 bypasslabel

196 CAR RET
<working base>

197 - begin block
<proc.type><working base>
198 - - begin proc
<no of subscripts>
<dope rel>
199 - - take array
200f take value
203 end bounds
204 end block

<no of formals>

205 - end proc no type
206 = end proc type
207 label colon
<no,of actuals>
208 - begin call
<no.of subscripts>
209 - [
<the code><-no.of CR>
210 = = begln code
211 end come code
212 core code
<track list> O
213 - - end pass
<no, of actuals>
214 - begin func
<rel,adr.coef><no,arr.>

<array type>
215 === begln bounds

-
<block address>

412 - formal general

416 - undeclared

420 - label

Loy . switch

428 - formal label

k32 - formal switch

436f- no par proc

439 - no par proc no type

LLOof- par proc

443 - par proc no type
int,real,bool,not

Yhlf- simple

LuY8f- array
<dope relative><-no of subs.>

452~ -dope description ‘Q‘
<block address>

Ys56f- formal procedure

459 - formal proc.no type

460f- formal simple

463 -~ formal string

46Uf- anonymous array
<l bytes>

468f- literal

471 - literal string
Specifications

L72f spec simple

475 spec string

476 spec label

477f spec value

LBOf spec array

483 spec proc no type

L8U4f spec proc

487 spec switch _

LB8 spec unspec .\

489 spec general

bg2 <

Loz <

Lol =

Los >

ko6 >

Lo7

500 not -,

501 entier

504 pos

505 neg

506 abs

507 round

508 opint

509 opresal

510 opbool

511 opstring
512-1023 stdproc

- 23 -

First byte in output
1021 - maximum block number - number of owns.

Array declarations
idl
iaz

idn
const
length
coeff
rel adr of length
no of arrays
array type : integer, 2: real, 3: boolean
. proc type O: no type, 1: integer, 2: real, 3: boolean
with par 1023: boolean, 1022: real, 1021: integer, 1020: no type
1019: switch
<block address> ::= <rel adr><block no>

Specifications appear following each parameter procedure identifier in
the reverse order of the original formal parameter.

Byte 213, end pass, is followed by:

1. 1 + number of standard procedure tracks used.

2, 1021 ~ maximum block number - number of owns,

i. A 1ist of the standard procedure tracks needed.
.OC

f indicates that three consecutive byte values describe types: +0 = inte-
ger, +1 = real, +2 = Boolean.

- 24 -

2.6, Pass 6

0 begin call

1 end call
<type><working base>
2 -~ = begin proc
<no.of formals>

3 - end proc

TR end type proc

<working base>

5 = begin block
6 end block
T go to bypasslabel
8 label decl
9 while label
10 if
11 else st
12 end else st
13 for
14 := for
15/527 simple for
16/528 simple for do
17/529 while
18 while element
19 while element do
20/532 step
21/533 until
22/534 step element
23/535 step element do
ol end do
25 first subscript
26 not first subscript
27 not last subscript
28 last subscript

/541 round top

float top
float next top

32/54h abs

/545 entier
T
35/547 negative
36 proc;

<type of expr>
37/549- else Rt expr
38 - else addr expr
39/551- end else Rt expr
Lo - end else addr ex
b1 then
L2 prepare assign

43/555
L go to
bs/557 +

L6/558 -

47 integer multiply
/560 real multiply
/r61/

50 :

51 mod

52 1 integer
/565 real

sk/566 < then

55/567 < then

56/568 = then

57/569 > then

58/570 > then

59/571 % then

co/s72 <

51/573 <

£2/5Th =

€3/5715 >

6h/576 S

65/577 #

66 A and

67 V or

€8 =
<obl.rel><bl.no>

£9 - - label
<bl.rel,><bl.no>

<sl,rel.dope>
<-no of subsc>

T0 === array

Tl - - simple

T2 - = formal

73 - - procedure
<tr.no><tr.rel.>

74 - - std. proc
<l bytes>

75 = constant

76 end switch call

77 end single do
<type>

78/590 - param comma
<bl.rel.of dope>
<no, of arrays>
<array type>

79 = = begin bounds

80 first bound

81 not first bound

g2 end bounds

83 take real value

84 take int value
<no,of subs.><array rel>

85 - - teke array

86 bypasslabel
<stack ref 0 + 2
<no.of table bytes>
<std,.track tab.bytes>

87 --- end pass

88 outchar

89 lyn

90 kbon

91 shift

g2 select

93 opreal

oL opintrestr

95 gler

96 CAR RET

97 case

98 begin case ‘“
<type>

99/611~ caseparam

100 casest
<total type>

101/612 end case

102 5 end address case

103 end stat case
<no of groups>
<5-bytes groups>

104 - - code

105 begin switch case
106 take nonsense
107 std 2 call

108 array param
109/621 move value

110 move address

111 move short
112/624k first value

112 first addressf
114 first short

115 new track

116 address

150 core

151 code

152 begin code

- 25 -

2.7. Machine language in output from passes 1 - 6

The representation of machine language is copled without change
through passes 2 to 6, using the code given below, Because pass 4 scans
its input in reverse order, the bytes will appear in the output from that
pass in the reverse order.

1K 28 - 55 g

2L 29 + 56 h

3 M 30 , 57 1

LN 31 58

50 32 <illegal> <b text bytes>
6P 33 k 59 - not last
7 Q 34 1 text word
8 R 35 m 60 - last text
9 S 36 n word

10T 37 o 61 m

11U 38 p 62 T

12V 39 q 63 TAR RET

13 W W r 6L 0

1 X b s 65 1

15 Y ho ¢ 66 2

16 2 43 u ‘ 67 3

17 A Wy v 68 L

18 B hs w 69 5

19 C 46 x 70 6

20 D L1y T

21 E 48 2z 72 8

22 F 4o g 7 9

23 G 50 b T

2k H 51 ¢ 75 =

25 I 52 d 76 blind CAR RET
26 J 53 e 77 e

27 . 54 £ 87T

<l text bytes> ::= <bits L to 12<bits 13 to 21>
<bits 22 to 30><bits 31 to 39>

<code> ::= <g sequence of the above byte structures except 77>
77 <1024 - number of CAR RET within the machine language code>

<reverse code> ::= <code written in the reverse order>

- 26 -

2.8, Pass 7

<blockrel>
- 0 addr local
- 1 var local
- 2 var abs
<blockrel><~-blockno>
3 var block
4 (ua)
<UVrel>
- 5 UV
<trackno><trackrel>
6 std proc call
<blockrel><-blockno>
7T begin call
<bits 30=39>...,<0-9>
--== 8 constant
<trackno><trackrel>
9 std 2 call
10 begin block
<proc type>
- 11 begin proc

12 begln case

13 begin sw case
<no of 1its>
- 14 end call
<case type>
- 15 527 end case
<appetite><-blockno>

- - 16 end proc
- =17 end typeproc
- -18 end block

<param inf><kind><type>
=== 19 531 call param
-== 20 532 case param
21 if/for
22 534 hop NT
23 535 hop LT
24 536 hop NZ
25 537 hop LZ
26 5328 bypass abs
27 539 bypass NT
28 540 bypass LT
29 541 do abs
30 542 goto bypass
31 543 bypasslabel

<type>

- 32 shh else

- 33 545 end else
<opand>

- 34 enddo

-~ 35 end single do

- 36 548 take forlabel
37 549 formal assign
38 550 take real val
39 551 teke int val

-
<no of indic><doperel> <opand>
--40 552 move array - 92 604 grmm M
lyq writecr - g3 min X IZA
Lo goto computed - o 606 acn MA
43 select 1 - 95 mb X
L select 2 - 96 reserve array
h5 tk 1 - 97 609 var to UA
L6 Tm- - 98 goto local
iThed kbon - 9% index upper
L8 hs mult X NZA - 100 index lower
49 561 mt -1 D NT - 101 613 move formal
50 11 0 - 102 614 take formal
51 563 mt -1 D LT - 103 615 contr. formal
52 us 0 - 104 616 take assign
53 565 mt neg \
54 sr eps <address constant> ¢
55 srf half - 106 ck
56 m UV - 108 outchar const
5T pm UA
58 arn UA <no of formals>
59 ga UA - 109 ps p
60 outchar var 110 label declar
61 ck (addr) 111 623 Areal
62 tk 30 112 carret
63 575 ck -10 113 625 Aint
6L int to address <5 byte words><no words>
65 ab 0 DX ==tk code
66 ar eps LT
67 Xr 115 newtrack
68 580 tkf -29 116 end pess
69 nkf 39
<opand>
- 70 582 pm
- 71 585 gm ¢
- 72 584 mkf <ppand>:
- 73 585 dkf - 121 633 arnt
- Tk 586 qq - 122 634 art
- 75 587 mt - 123 635 srt
- 76 588 snn - 124 636 grt
- 77 589 ann - 125 637 srnt
- 78 mb - 126 638 annt
- 79 ab - 127 639 grt M
- 80 592 grn - 128 640 grt V 1A
- 81 din
- 82 ann X <type>:
- 83 dln X <kind>: 1019 label proc
- 8l sr LT 2 subscr 1020 no type
- 85 597 hs 3 statement 1021 integer
- 86 598 pm D L4 UA-expr 1022 real
- 8759 arn D 5 expr 1023 boolean
- 88 600 ar D 6 stdproc 0 no type
- 89 gr MA 7 descr 1 integer
- 90 gr MB 8 constant 2 resl
- 91 603 gm M 9 simple 3 boolean ®
10 array 4 string
5 label

- 27 -

2.9, Pass 8

Remarks on the notation:
The word ’program’ willl refer to the generated machine code,

The signs ¥ and & on instructions indicates that they are generated only
in the buffer-mode or core-mode respectively.

Entry points in running system (RS) are referred to by their Slip-names
i.e. cO0, cl, c2, etc, For details of the running system see Asmussen,
et al, ’Gier Algol 4 Library Procedures’ Regnecentralen Sept. 1967, Order

no. 70,

The indications -~>[ref] and [refl<-- mean that the actusl instruction
appears in the program immediately before or after (respectively) the in-
struction referred to in the brackets,

2.9.1. Segmentation

The output from pass 8 - the final machine code - is generated into seg-
ments of 4O GIER words corresponding to a backing store track. The tracks
will be referred to by a relative negative number using the term
<trackno>, The range of <trackno> depends on the number of standard proc-
edure tracks used and on the size of the program.

A word on a track 1s referred to by a relative address ranging from
0-39 using the term <trackrel>.

Each track consists of three parts:

1) A number of words from <trackrel> = O and onwards containing literal
constants (see ref, a7) or special jump instructions (see section 5)
referred to from ‘

2) the proper machine code which is located after possible constants un-
t11 and including <trackrel> = 38,

3) In <trackrel> = 39 an exit-to-next-track instruction (ref. j7-8) or
in case of the last track of the program an exit-program instruction

(317
2.9.2. Operand addressing

Machine instructions referring to runtime locations of operands will be
referred to here by the term <op> in the address part.

<op> covers the following possible ways of addressing.

ref,: address part meaning dir.byte
[a1] (p<blockrel>) : address in local block 0
[a2] p<blockrel> : variable in local block 1
[a3] <abs addr> : variable in outermost block 2
[alt] s<blockrel> : varisble in intermediate block 3
[as] (c30) : address in UA L
[a6] c17 : uv 5
[a7] _ r<rel eddr> : constant operand on actuel track 8
where:

<blockrel> = value generated In pass 7 for the corresponding variable
<gbsaddr> = cO+<blockrel>
<reladdr> = <trackrel of word referred to>

- <trackrel of current instruction>

- 28 -

The value of the p-register will at run time always be equal to the
stackreference of the current block, while the s-register 1s set by the
instruction [a8] below, which is generated in an undefined place on the
current track before the variable-reference [alt] but after the last:

a) program point (see below)

b) reference to a variable in another intermediate block

¢) place where s is destroyed (eg. through an entry in RS)
[a8] ps(<displ ref>)
where:
<displ ref> ::= cO-<blockno>

2.9,3, Independently generated half- or full-word instructions

The following instructions are generated independent of the surrounding
input structure, direct on a corresponding directing byte. For instruc-
tions 11-29 and f£1-8 this is performed in connection with following ope-
rand-bytes, for instructions c1-25 without,

The instructions f1-8 may appear in the program with an f-mark if <op>
represents a real operand. This is indicated to pass 8 through the bytes

ranging from 533-541.,

A nunber of further instructions which could be classified as belonging
to this section are described in section 5.

ref, instruction meaning / used in caused by

dir. byte
i1 m <op> at= b, array declarations 70
i2 gm <> -, - T
i3 mkf <> - X T2
1k akf <-> / T3
is aqg <-> assign to formal variable h
i6 mt <> i, mod, step var until 75
i7 snn <-> op ¥0 76
i8 ann <-> op =0 77
i9 mb <> A 78
i10 ab <> A% T9
in grn <-> op:= 03 80
i12 dln <-> : 81
113 ann <-> X T, mod 82
itk dln <> X mod 83
115 sr <> LT mod 8l
116 hs <> e¥er(op) 85
117 pn <> D parameter to fast std.proc 86
118 arn <> D - 87
i19 ar <-> D - 88
120 gr <-> MA declare boolean array 89
i21 gr <=> MB declare real array 90
102 gn <-> M initialize step element [i1l<-- 91
i23 grn <-> M - e - 92
iok mln <-> X IZA -->[18] 93
i25 acn <-> MA step (first time) oL
126 mb

<> X = 95

ref,

i27
ie8
129

1
f2
3
£l
£5
6

7
£8

¢l
c2
)
chk
c5
cb
c7
c8
c9
c10
ctl
el2
c13
cih
cl15
c16
c17
c18
c19
c20
c21
c22
c23
c2l
c25

instruction

gm p<blockrel> MA

em p< - > MC
ck <10 bit const>

arn <op>

ar <=>

sr <=2

gr <=>

srn <>

ann <>

gr <> M
gr <-> V 1A
tk 1

mt-1 D NT
mb=1 D LT
il

us

mt chl

sr cln

srf cl3

pn cl17

pa ¢330

arn c30

ga ¢30

ck (c33)

tk 30

ck =10

ga ¢33

ab DX
ar clbi LT
Xr

tkf -29

nkf 39

mf c55 , ga c55
tln 9 , ud c55

ps p + 2 + nform
ag (¢35) t nconst

nform = number of formals
nconst = number of constant formals

meaning / used in

set jumpword to forlabel left
right

shift <constant>

atop, Op-2, 8XOP, «es

opta

a-op

op:=

=y OP

abs op

TnTtialize step, decl int.array
step (not first time)

<boolean expr> then
a$b B
a=b>o

Al1], buffer version

-, -
expr > a, a < expr

<, =,>

entier

var:= A[1], buffer version

for formal var:=

Tormel var parameter to fast std.

Ali], as actual parameter
shift var

ETTT, no check, core version
A[1], check; shift var

shift var [c15)--
-’:
i, 3 ...
round real
float integer
select -=>[c23)
- [co2])<m-
prepare exlt proc -=>[jik-15]

adjust last used after call

2.9.k4, Multiple generated instructions

- 29 -

caused by
dir. byte

36
36
106

121,533
122,534
123,535
12k, 536
125,537
126,538
127,529
128 s5ko

109
1k

Each of the following instruction-groups 1s generated on a single directing

byte with possible operands,

nm1
m2
m>

srn cl

agn NKB
arnf (c30) V LB
abn (c30) , nkf-39
arn §c50) Vv B
arnf (c30) , tkf-29

kbon
take real value

take Integer value

b7
38
39

- 30 -

Ref,

m5

m7

instruction

ck=10 s
pt 6“9-5)
ga ¢35 R
pa ¢330 R
gr ci17

pu (c17) t
gm (c30) t
udn c17

bt (e33) t
hv r-b

ps <op>
hv c2

it <op>
pa ¢30

arn <op> V
rt Cl"9'5 ’

sr <op> V
pt cho-5 ,

srmm = <op> ,
arn ¢35 R
ck 10

ne 1+<no of ind>

hs e27

it p-3+<array rel>

tk 10
M
1 IRC
1 MRC
NZ
-1

LT
hs c27

NT
hs ¢27

hs c20
hv 82

¢
®
®

meaning / used in caused by

dir. byte
move array description 4o
goto local 98
variable to UA o7
index upper, check mode 99
index lower, check mode 100
reserve array (core mode) 96

2.9;5. PrqgramAPoints, jumps and exits to RS

Program points are entries in the program which are referred to from
explicit caused by labels or procedure declar-

e

ose necessary in conditional statements

other places, They may be
ations, or implicit such as

or expressions, in the administration of for-statements or erray declar-
ations, and in evaluation of expressions as parameters.

A reference to a program point is stored in a comma-marked-instruction in
the following way:
aq <trackrel>.19 + <trackno>.39 + <right>.11

where <right> = 1 (instruction f-marked) indicates that the program point
is in the right-half-part of the word referenced and <right> = O indic-
ates left-part.

References to implicit program points on the same track e.g. jumps in

jf-then-else-statements may be carried out by means of relative address-

Thg. (cf. ref. j2-6)

Conditional jumps (ref. j3-6) to program points on other tracks are per-

formed via a constant word containing an unconditional track jump (ref. J1)

<end track inf> :i= qq <track rel>,19 + <linecount mod 1024>,39 + <rigth>.l1

- 3 -

ref. instruction meening / used in caused by
dir. byte
b hs ¢2 , <program point> unconditional track jump eg.26,29,30,32
32 nv/hh r <reladdr> - local jump eg.26,29,30,32
33 hv/bh < - > conditional - - 22,27
Jb hv/hhr< - > - - - 23,28
35 hv/hbhr< - > - - - ok
jé6 hv/hhr< - > - - - 25
37 hs ¢t , <end track inf> exit to next track 2normal mode)
38 hs e3 , < - > - - - - (param. -)
Jo hs ¢26, <program point> - = fast st.proc 9
310 hwm c18 - from param. expr 19
J1 hvwn c¢i19 - - - - 19
j12 hv ¢18 x - = subscr, param. expr 19
J13 hv ¢c19 o - - - - - 19
RAL! hv c21 - - type proc 17
315 hh c22 -no - - 16
316 hs ¢9 - - block 18
317 hhn ¢29 , <last line> - « program
318 hs c1b X NzZA - to mltiply [124]<-= 48
J19 aq (c¢33), hs c39 - = outchar variable 60
jeo ud ¢37, hs c37 - = next in (1yn) -->[c15] L6
j21 nen (¢30), hs cl13 - = goto computed L2
jee qqa 64 , hs ¢39 - = write cr k1
je3 qq <10 bit const>, hs ¢39 - = outchar constant 108
jo+ hs ck , <program point> - - A integer/real 111,113
jes is (c38), hv/hh s<rel addr> - = block code on same track 10
job hh (c38), - - - - 1n seme word 10
ja7 arn <op>, hs c20 % - - reserve arrsy (buffer m.) 96
je8 ud <op>, hs ¢28 - = move formal 101
Joo ud <op>, hs c8 - - take formsl 102
330 ud <op>, hs 25 = = controlled formal 103
I ud <op>, hs c24 - - assign to formal subscr, ol
j32 hs p<blockrel> goto for laebel word in stack 3kL,35

333 hv/hh s<reladdr>

2.9.6. Block entries

A block is generated with the

[b1] qq <stack appetite>, hs
[b2] hv e , hh
[b3] <block parameters>
[bh] <egoto block code>

<block parsmeters> are refere
in the program in the opposit
ible parameter formats are de

Tor label word when jump is local

followlng format:

c7 10

<displ ref> 16,17,18
11,110

10

nces to explicite program points., They appear
e order of that in the Algol text. The poss-
scribed under reference pl-11 and J8.

<goto block code> is treated by RS as a parsmeter, but with one of the

formats j1, J25 or j26.

3k,35

- 32 -

2.9.7. Procedure calls

The formst of a procedure call is the following

[pc1] qq <stack appetite>, hs c7 6,7
[pe2] am ' , <program point> ; return information 14
[pe3] <call parameters> 19
[pelt] isf <displref> , Dps s <blockrel> ; exit call 7

<call paremeters> are described under reference p6-17, p21-28 and 38

ref. clt may be replaced by J1 if the call refers to a slow standard
procedure,

2.9.8. Case administration

The formaet of the case-administration code is the following:

[es1] qq <no of parem> , hs c¢15; [f5]<-- [c15)<-- 12,13
<case error action> 12,13
<goto end case> 12,13
<case parameters> 20(+12)

<case error action> is either if the case administration appears as the
body of a label procedure (switch)

[es2] pa 30 ;3 indicate dummy switch action
else
[es3] pt ck9-k , hs c27 3 exit to case error

<goto end case> is an unconditional jump (31-2)

<case parameters> are described under reference pb-11, p18-20, p22 or may
be a jump to evaluation of a case parameter expression local on the track:

[esk] it (e16) , hv/hh <reladdr>

- 33 .

g

PP P

M MMM X

I e R R s R B B

X

D4 DG D4 DG DG DA DG P pd P

‘ueaed ou - - -

(401 TAS)

usaTo0q

- - 89X
JBeA *J0osqns JI9593UT

- ussTO0q
- TB3I
qUBA.SU0D I8T59UT
SNTBA 3UBASUOD

pxomureaBd puooes ¢ -
paomuered 4sITF :ALBIIB

ToqeT
oTdurrs 94BOTI uou
o1dwrs 3BOTJ

WOB}S UT PO]LIOSap
TeqeT

- Sutass

- uBaToo0q

- Teax
oamsﬂmhmmopsﬁ

Jutags
T=q8t
ueaTo0q
- - - - - Teax
I859qUT
*o0xd 1o *adxs adfq ou
TogBT
uBaTo0q
- - - TBaI
sxojewesed U3z Ia *ooxad xsTojut

ToqBT

Sutueaw

X S9TJIIUS ¥OOTQ UT Posn

IT80 *ooad utr pasn

‘WpB 95BO UL PISM

A -
LN < -

<Taxxoe}s>s 31 ¢

< - > sd ged

< - > Jsd led
<yutodusx3oad> sd ged
>uwt ¢ (0Lo) usd Ged
> X (otd) ugsd ted

(ot9) usd ¢ed
<SWIBW ou JFULYAUE> Zed

2lo Ay ‘(<gox Tdsip>) Jsd

HC*<PUT JO*OUW>+6| *<[aaadop>+6°<[31LBITE> bb 1ed
gIN <Taayoora> X (< - >) ST Ocd
< - > N GO >) ST 61d
< - > N COR >) ST gld
<Taayoorg>sumd ¢ (< - >) ISt Lid
aeN < - > x (K - >) Fsd gld
gbN <TaayootTe> X (< - >) Jusd gid

<LTOINDOTA>S U 4T N CO >) sd fid
EIN <T3Io0oTx> X (K = > Jsd cid
<TaIyooTR>s 37 ¢ A&wﬁ%ﬁuvw sd cld
< - > ¢ ugbb Ld

< - > ¢ 3bb old

< - > ¢ ubb ed

< - > ¢ ugsd gd

< - > ¢ usd Jd

< - > ¢ ugbz od

< - > ¢ wre ad

< - > ¢ ubz d

< - > ¢ 3bz ¢d

< - > d bz 2d
<qutodueasoxd> ¢ bb 1d

UOTRONIYSUT Jax

2TQB] 20UdIdFsY °*6°6°C2

- 3k -
Agpendix 3: EXAMPLE OF TEST OUTPUT FROM GIER ALGOL 4

Below follows a small ALGOL program and the test output from the compila~
tion, The first three lines from pass 1 are given exactly as they have
been printed by the compiler; after this follows the whole test output
with comments inserted below each line of bytes,

Demonstration of factorial

beglin

Tnteger procedure fact (n); value nj integer n;

TocTi= iT 1 < one then one else n X fEEE'%E:bne);

integer n, one;

one:= 1; writecr;

for n:= one step one until 10 do write (¢dddaddar, fact(n));

= =

begin

T777935 1010 116 137 6 1 3 20 184 1k
291 16T 157 1 167 116 ik 167 1010 6

1 3 20 228 106 i 272 15 14 5

Demonstration of factorial
begin

9% 1010 116 137 6 1 3 20 184 1k

begin CR integer proc f a c t (n

291 167 157 i 167 116 1 167 1010 6

) ; value n ; integer n ; CR f

1 3 20 228 106 i 272 15 1L 5

a c t = iz n < o] n e

231 15 14 s 176 1 267 6 1 3
f c

then o n e else n X a8
20 184 14 76 15 14 5 291 167 1010
t (n -) n e) 3 CR
116 14 220 15 14 5 167 1010 15 14
integer n , o] n e 3 CR o] n
5 228 58 167 23 18 9 20 5 3
e t= 1 H w T i t e c
18 167 1010 98 14+ 228 15 14 5 196
r ; CR Egs n = o] n e step
15 1k 5 198 58 57 243 23 18 9
(o} n e until 1 0 22 w r i
20 5 184 1013 0 0 L4716 0 220 6
t e (< litersl <dddddaddt > f
1 3 20 18k4 ik 291 291 167 1010 172
a c t (n)) 3 CR end
1009 o}

endpass fill

- 35 =

2, 93 77T 116 137 1021 18F 1020 291 167 157
begin CR integer proc fact (n) ;5 value
1020 167 116 1020 167 T7T 1021 228 106 1020
n 3 integer n H CR fact = _i_£ n
272 1019 231 1019 176 1020 267 1021 184 1020
< one then one else n X fact (n
76 1019 291 167 77 116 1020 220 1019 167
- one) H CR integer n s one ;
77 1019 228 58 167 1018 167 77 98 1020
CR one = 1 3 writeer CR _f_’_o_r_-_ n
228 1019 196 1019 198 58 57 243 1017 18k
:= one step one until 1 0 do write (
80 0 0 U766 0 220 1021 184 1020 291
< literal <dddddddal > , fact | n)
291 167 77 172 283 0
) : CR end endpass fill . . .
3 0 6 1017 31 1018 1016 20 0 0 1021
endpass 6.std.=write 31.std.=writecr free id. begin CR CR fact
43 1020 ST 30 1021 T7 129 1020 Lo3 1019
declare n spec.int. end.sp. fact 1= ifex n < one
131 1019 132 1020 146 1021 39 1020 1Ls 1019
thenex one elseex n X fact beg.func, n - one
31 134 75 1 19 0 1020 1019 5 0
endcall endelseex endass. <1, endtypeproc> CR n one declare CR
1019 7 0 0 0 1 1 75 21 1018
one = < constant = 1 > endass, 3 writeer
128 21 0 138 1020 T1 1019 139 1019 140
proc; H CR for n :=for one step one until
0 0 0 10 1 163 22 1017 38 0
< constant = 10 > stepdo do write beg.call <
0 476 0 3 3k 1021 39 1020 31 31
constant = €ddddddar > call, fact beg.func n endcall endcall
133 142 21 0 16 0
deletecall enddo H CR endblock fill . . .

- 36 -

b, 2 17 0 1k2 133 177 177 1020 1 3
endpass endblock CR enddo deletecall endcall endcall n <1, beg.func.>
1021 180 0 L76 0 0 86 2 22 1017
fact , < constant = 4dddddddd > <2, beg.call.> write
172 163 10 0 0 0 84 1ho 1019 139

do stepdo < constant = 10 > until one step
1019 185 1020 138 0 128 1018 189 1 0
one :=for n for CR proc; writecr endass, <
0 0 8L 193 101 1019 0 15 1019 1020
constant = 1 > prepsass, = one CR endhead one n
0 195 1 19 189 134 177 1019 145 1020
CR bypas lab. < (1) > endass, endelseex endcall one - n
1 3 1021 146 1020 132 1019 131 1019 493
<1, begfunc> fact X n elseex one thenex one <
1020 129 193 101 1021 15 16 1020 68 1021
n ifex prepass. = fact endhead enddecl. n value fact
195 1023 1023 37 1021 0 0 16 1021 48
bypass lab. < (2) > fact CR CR enddecl fact decl
1018 20 1020 1019 52 1021 1023 1016 1017 1020
int.val., spec. n one deel.int. < (3)
2 0
> fill « « &

Notes: Read the output from pass 4 backwards
(1): Number of parameters, end type proc.
(2): Base working locations, base variables, begin integ. proc. with params.
(3): These 6 bytes are: , ~
base working locations outermost block
base variables - -
free identifier
standard identifier having lowest std. ident. no. in output pass 3
1021 - maximum block number - number of owns = relative stackref, O :
2 + number of owns,

5. 1020 197 1021 196
sr0 <beg.block, basew> CR
2 1023 200 Lk
n > value <
2 1023 493 Ll
n > 5 <
132 Ll 2 1023
elseex < n >
1 Ll 2 1023
, 1> < n >
189 206 1 195
endass. <endtypepr, 1> byp.lab,
192 468 0 0
prepass, < constant = 1
138 Ll 1021 0
for < n >
1022 0 140 468
one > until <
1018 208 2 470
write <begeall, 2 > <
1023 0 77 214

fact, integ. val.

133 142 196 20k

deletecall enddo

9 0
10, 9> fi11 .. .

Identifiers in output from pass 5:

kind-type
fact éas proc): UL4O=int.proc.w.par.
n in block): Llilh=simple int.
one: Lll -
fact gas val.): Lk -
n in fact): Luk -

1020
1018

writecr:
write:

> < begfunc., 1>

- 37 -

196 198 1021 1023 195 Lhs
CR <beg.proc, int., basew> byp.lab. <
1023 1023 191 193 129 Ll
fact > := prepass, ifex <
1022 0] 13 Lpdgdy 1022 0
one > thenex < one >
146 440 1023 0 b7 21k
X < fact, integ.val. > <begfunc.
1bs Lhh 1022 0 177 134
- < one > endcall endelseex
196 196 Luh 1022 0 191
CR CR < one > =
0 1 189 1020 128 196
> endass, writecr proc; CR
185 Ll 1022 0 139 Ll
i=for < one > step <
0 0 0 10 163 172
constant = 10 > stepdo do
0 0 476 0 180 L4ho
constant = 4ddddddd} > call, <
1 Lhy 1021 0 177 177
< n > endcall endcall
215 5 1020 12 11 10

CR endblock < endpass, 5,

sr0, include std.tracks 12, 11

rel. addr. block specs
-} 0 int.V‘al.
-3 0
-2 0
-1 1
2 1

- 38 -

6. 1020 5 1021 96 96 2 1021 1023 86 T1
sr0 <beg.block,basew> CR CR <beg.proc., int, basew> Dbyp.lab, <
2 1023 8L T1 1023 1023 116 10 T 2
n > value < fact > address if < n
1023 71 1022 0 55 T 1022 0 37 1
> < one > Sthen < one > < else int.>
T1 2 1023 7> 1023 0 0 T1 2 1023
< n > < fact > begeall < n >
T 1022 0 L6 78 1 1 L7 39 1
< one > - < parsm, , int,> endcall Xint. <endelse, int.>
Lo 43 b 1 86 96 96 71 1022 0
prepass, :+= <endtypepr., 1> byp.lab. CR CR < one >
ﬁ
116 75 0 0 0 1 L2 43 106 3t
address < constant = 1 > prepass. t= writecr proc;
96 13 T 1021 0 14 71 1022 0 20
CR for < n > =for < one > step
T1 1022 0 21 T5 0 0 0 10 23
< one > until < constant = 10 > stepdo
h 1020 0 0 5 0 0 476 0 78
< write > begeall < constant = 4dddddddd > <parsm
) 73 1023 0 0 T1 1021 o} 78 1
s bool.,> < fact > Dbegecall < n > <param, int.>
1 78 1 1 36 T7 96 6 87 5
endcall <param, int.> endcall proc; enddo CR endblock <endpass, sr0
1020 12 1 10 9 0 (
, include std. tracks 12, 11, 10, 9 > £111 .. .
Tdentifiers in output from pass 6:
fact éas proe): proc., reladdr.,, block
fact (as var),
n, one : simple, - -
writecr : 106
write : std.proc, trackno., reladdr.

7. 116 10 112 112 1021 11 31 2 1 102
endpass begblock CR CR <int., begproc> byp.lab. < n formal>
2 1 70 39 2 1 124 21 1022 2
< n M:=> intval, < n :=R> if < one
121 2 1 123 23 1022 2 121 1 32
R:=> < n R- > goif- < one Ri=> <int. else>
2 1 T0 1022 1 T1 1023 0 7 2
< n M:=> < wi = < fact begeall> <
1 121 1022 2 123 0 5 124 0 5
n R:= < one R~ > < uv +=R> < uv
1 19 0 ik 0 5 70 1022 1 93
int, param> <0 lits, endcall>< UV M:=> < wi int.
L8 1 33 1023 1 124 1 109 1020 1023
mlt> < int, endelse> < fact Ri=> < 1 formal, appetite, block
17 31 112 112 0 0 0 0 8 70
endproc> byp.lab, CR CR < constant = 1 M:=>
1022 2 T1 Ly 112 21 1022 2 70 1021
< one :=M> writecr CR for < one M:=> <n:i=
2 91 1020 1 36 31 1022 2 121 1021
M; first:= true> < we forlab,.> byp.lab. < one Ri=> <
2 122 1021 2 128 1021 2 oL 10 0
n R+> <if- ,first then n:=R> <else first:= false> <
0 0 8 121 1021 2 123 1022 2 75
constant = 10 Ri=> < n R-> < n xsig(>
28 31 1020 0 6 0 476 0 0 8
goenddo- byp.lab, < write std.cal> < constant = 4ddddddd}
3 19 1023 0 T 1021 0 9 1 19
bool, param> < fact begecall> < n simple int param>
0 14 0 5 1 19 1 1h 1020 1
< 1its, endeall> < UV int param> <1 lit endcall> < w2
35 112 1018 0 18 1020 12 11 10 9
enddo> CR <appetite block endblock> < srO include std. tracks 12, 11, 10
0
s 9> £111 . «

Variables in output from pass

n (in fact): relative 2,
one: - =2,
Wi - -2
fact (proc): - =1,
uv: - 0,
fact (val.): - =1,

n (in block): - =3,

Te

local block
outermost block
loecal block
block O

UV cells

local block
outermost block

-39 -

- 4o -

IV, Index

In the following, page references for especilally important descriptive or
definitional information are underlined.

actual paresmeter (argument to 2 procedure) : 7,8

administrative routines: see Running System

array: 5:6:7:_9_325:28
as formal parameter: 3,15
bounds (or 1limits): 9
description in stack section at run time: 3,7,9,13
specification in pass U4t output: 3 -

backing store (drum or disk): 1,4,5,6,10,27

BEGIN BLOCK byte in Pass 3 output: 3

bit-pattern (Boolean constant): 2

block: 3,6

block entry: 6,31

block information (in storage during progream execution): 7,8,11,16

<block mummber> in identifier description in Pass 5 output: 3,72-23

bound words in arrsy dope vector: 13

bracket delimiters (bracket-like delimiters): 2

buffer mode (compiler mode in which arrays are placed in the buffer
store): 27

buffer store (suxiliary fast storage in GIER): 5,9

’by value’ and ’by name’, formal parameters: 8,27

BYPASS LABEL byte in Pass U4 output: 3

carriage return counter (used by all passes to give line nunbers for
error messages): 1

case statement: 32

“haracter sum (check-sum of the Algol source progrem): 1

class of operand: 2

code: see machine language

compound symbol (symbol composed of two or more characters, €.g. #,
begin, =>): 1

constant: 10,15,27

constant actual parameter: 7,8,10,13

core-mode (compiler mode in which arrays are placed in the core store): 27

declaration: 3 ‘

delimiter: 2

display (1list of stack references used at execution time for interblock
references): 3,5,6

disk: see backing store

dope vector: see array description

double declaration (multiple declaration) error: 3

drum: see backing store

drum polnt description for a long string: 14

error in source program: 122,3,32

finite state algorithm: 2

formel array: see array as formel parameter

formal paremeter: 3,8,28
see also arrsy as formal parameter

- 41 -

formal variable: see formal parameter
formal location or Tormal word (in the stack section for a procedure
block; gives addresses of actual parameters): 6,7,8,13
General Pass Administration (The part of the compiler which is common to
all passes): 1
gler (standard procedure): 9,28
GOTO BYPASS LABEL byte in Pass 4 output: 3
GPA: see General Pass Administration
Groups of cells in a stack section:
Group I (the formal locations of a procedure block): 6,7,8,9,10
Group II (program points): 6,7,9 -
Group III fthe working locations of a block): 6,7,9
Group IV (array elements and core code): 6,7,9 -
identifier: 3 -
descriptions in Pass 5 output: 3,22,23
input medium, change of: 1
input-output in compiler: 1
<kind-type> in identifier description in Pass 5 output: 3,22,25
label: 3,9,12
see also program point
layout (in Algol source program): 10
line number in error message: 3
local variable: 3,6,7,9,12
long and short strings: 6,14
machine language in Algol source program: L,6,7,9,25
magnetic tape: 1
non-Algol features in GIER Algol U: 1,2
object program: L
operator priority: 4
operand situation (in Pass 2, for an operator, an indication of the kind
of expression which precedes it): 2
own variable: 3,5,6
P-register (an active register in GIER): 7,8,27
paper tape: 1 -
Pass 1 (analysis and check of micro-structure): 1,17,34
Pass 2 (identifier matching): 2,18,35 =
Pass 3: 19,35
Pass 3a (standard identifier matching): 2,3
Pass 3b (analysis and check of logical sTructure): 2,3
Pass 4 (collection of declarations within each block)® 3,20,36
Pass 5: 3,22-23,37 =
Pass 5a (storage location for variables): 3
Pass 5b (generation of standard identifier description table): 3,4
Pass 6 (type checking and conversion to Reverse Polish Notation):-ﬁ,eh,BB
Pass 7 (generation of machine operations): 4,26,27,39
Pass 8: 3,27 =
Pass 8a (rearrangement of pass 7 output): U
Pass 8b égeneration of final machine code): b
Pass 8¢ (loading of running system): 4
Pass 9 (assembly of machine code included in source program; executed
between Passes 6 and T): b
pass output (interfaces between passes): 17-34
PREPARE ASSIGN byte in Pass 4 output: 3

- b2 -

procedure: 2,3,8,23

body, Jjump around: >

call: 8,32

entry: 3,9
progrem point: 6,7,9,12,30
PUNCHE ON and PUNCH OFF characters on punched tape: 1
references to variables in embracing blocks: 6
<relative sddress> in identifier description in Pass 5 output: 3,22=23
return information for procedures and thunks: 7,8,10,16 -
Running System: 5,6,27
segmentation of object program: 5,6,10, 27
short and long strings: 6,14
simple varisble (i.e. non-subscripted variable): 3,8,9,12
SLIP (the GIER assembler): see machine language
SLIP-nemes in the compiler:™ 27
stack section during object program execution: 6,7,8,9
stacking of bracket-like delimiters i1n Pass 3b: 2
standard identifiers: 2,3,4,5,6
storage management, run time: 6,8,9,10
storage needed at run time: 3
string: 5,6,10,13,14
subseripts: 3, 30,31
switch: 9,12,15,20
¥ables in the compiler:

descriptions of passes (GPA): 1

jdentifier descriptions (Pass 5a): 3

names (Pass 2): 2

operator priorities (Pass 6): L

standard identifier descriptions (Pass 5b): 4
thunk: 8,10
type checking: L
type procedure (i.e. function): 9
typewriter: 1
UA (Universal Address, in Running System): 30
value: 2,8,1k
vaTue of a type procedure (i.e. of a function): 7,9,11
WHILE LABEL byte in Pass U4 output: 3 -
working locations: 6,9

