
A MANUAL OF

HELP 3

as developed by

Tove Asmussen, Jorn Jensen, Seren Lauesen,

Per Mondrup, Charles Simonyi, and Jorgen Zachariassen

Edited by

Seren Lauesen

A/S REGNECENTRALEN . COPENHAGEN

1967

2

1.

8.
9e

. Entries to Help 3. oee

Contents

Introduction ... ssc cece

1-1 Design considerations
1.2 Proposal for a user philosophy
1.3 Backing stores
Principles of operation
Help 3 information eeeeee

3.1 External form. ...eeee

3.2 Internal form e e e e . e e

List of auxiliary programs ..
Common characteristics of auxilt §

5.1 Sum check, inhibition

5.2 Texts and sum code .
55 Current input medium
5.4 Length of areas ...
5e5 Area conflicts . . « «.«
Storage areas occupied by He 21 p 3

7.1 Core dumping
72 Specific entries ..
Alarm messages ...«.e-. oe.
Help 5 paper tapes sent to the Gier

Q
U
I
D

installations

10. Generating a Help 3 system . eoesee ee eee

10.1 Generating Main Help + aux. programs .. .
10.2 Slip names defining the system . «see.
10.5 Adding aux. programs to the system in the machine

11.

12.
13.
1h,

10.4 System punch and binary tapes
Conventions for programs called by
11.1 Detatls of program call...
11.2 Internal entries in Help 3 .
System track . . 2. 6 ee es eee

Primitive input program on track 0
Description of auxiliary programs
14.1 Algol
14,2 Binin 2. « se ee ew eee

14.3 Binout e e ° . ° e e e e e e

14.3.1 Format of binary tapes ..
14.3.2 Format of bin 0 tapes...
14,4 Check e e ° e s e e e e o e

14.5 Clear oes ee oe © oO 8

14.6 Compress . . 2 0 0 ee eo
14.7 Edit e e s e e e e e e e e eo

14.8 Exit e e e e e e e e @e e e e

14.9 List e e e e e e e . . e e e

14.10 Move «ee ee esc ecee oe

he Cutparam oeeeeeeee @

14.12 Pair e e e e e e e e e e ° es

14.13 Print 2. ee se eeeee

14.14 Res «se eo ee se eevee

14.15 Rung ow ow we ww ew wt 8

14.16 Seb «eo sceereccvcseese

14.17 Setsumn e e e se ° 2 e ea e e e

14.18 Slip e e e e e e e e e e e e

14.19 Start e e e e e e e e ° e e

Help 3

e
e
e
e
#
e
g
e
#
e
e
w
n
#
s
e
e
e
#
e
#
e
f
#
e

ef

©

©

@

@h
Uh

ch
Uc

hO
hl

Uc
Oh

UC
UC

cO
rm

hC
c

Oh
UC
lC
cF
hU
C

OF
lh

UC
Oh

lC

e
o
e
e
e
e
#
e
e
#

e@#

@©

@

@#

@
e
e
#
e
8
8

8
0
8
0

@
®
h
6
h
!
8
t
h
U
c
O
h
C
U
C
c
O
h
l
U
r
h
l
O

eo

e
e
e

e
e

e@
le
mh
mU
hO
rm
hU
Cc
 O

hU
CU
c

Fmh
UCU

Ccr
OOr

mhU
CUC

cOO
rmh

UCU
CcF

rmh
UCU

CcO
Orm

hUC
UCc

 O
rm

hU
CU

Cc
Fr

mh
Cl

Cc
Or

hU
CU

Cc
CO

rh
Uh

CU
ch

Oh
UC

Uc
PO

rm
hU

Cc
Oh

Ul
Cc

Fl
hU

C(
Cr

FOh

CUC
UlU

Oh
l

o
e

e
o
e
e
e
e
e
e
e
#
e
e
e
s
e
e
#
#
?
#

8

8
0
8
8

©

@

@

@

©

©

@

@

@

o
e
e
#
e
#
é
e
e
e
?
e
e
#
e
#
?
e
#
e
@
e

ee

#

@e

8

@

&®
m6
mh
Uh
Hh
Uc
hO
hU
ch

HH

PO
O
F

8H

8

8

e
h

e

oe
e
@
e
e
e
#
e
e
e
f

e
e

8
h

Hh
mh

Uc
hO

hU
cO

rh
Ul

Uc
OO

rh
UC

UC
Oh

lU
rh

Uh
Oh

Ul
Uc

rh
Oh

Ul
UC

cO
hl

Uc
hl

Uc
rh

mh
Ul

Ul
ch

lU
Cc

Oh
Uc

 F
U

e
e

e
y

e
e
e
e
e

e
e

@
©

©
e
e

eo
e
e

Fe
oe
e
e

h
l

h
l

h
l

hl
Uc
 h
l

U
c

hU

C
U
O

e
e
3
s
c
e
e
e
#
8
e
?
e

#

©

®#
e©
©

©

©

©

@

©

@©@

@

@

e
e

8

8

e
e
7
w
e
#
e

8
@

es
w
e

e
w
e

e
e

eH

e
e

eh
lc
 h
l

hh
lU
c
h
l

Oh
l

Oh
lU

lc
rh

Uc
r

OCh
Uc
h
l

U
O

o
e

eo
8

@
@

e
e

e
e

eo
e
e

e
e

eh
eh

h
l

hr
hl

Uc
Oh

Uc
r

hU
lU

lc

lh

Ul
Ur

hl
U

2

a
e
y

h
a
d
a

o
e

e
e

e
e

a

a

a
a

°
*
e
o

e
e

e
e
e
e
e
#

@#
ee

©
©

@
e
e

eH
Phe

hl

hl
hl

Oh
Uc

Ph
UC

UC
cO

hl
Ul

cr
hl

Uc
r

Ml
Oh
Uc
r

Om
hl
hc

OC
hU
lc

OC

OChUch

Och

Oh
Uc
rh
OC
Uh
c

OCU
chO

hUc
hOm

Uh
OUhUhhl

U
o
e
e
e
e
e
8
e
@
@
#

@
@

@

i
e

2

a
r

o
o

eo
8

@
e
e

emh
mhl

ctm
hUC

c
OmhUCUC

c
OC

Ohl

OC
HO

C
Hh

Oh
hUc

OCU
CcO

OCh
lUc

HO
hU
c

HOh
Uch

OCm
hUh

OC

Hh
HO
hU
hO
hl
Ul
ch
Uc
Oh
Uc
hC
mh
Uc
OO
rh
UC
ch
Ul
Ul
cr
Oh
lh
lU
lc
hU
lU
lc

lh
l

h
l

l
l

e
o
e
e
%
e
#
e
e
#
e
#
e
e
s
e
#
e
e
e
e
#
e
e
t
F
f

@
e

8
@

eo
08

8
@

e
e

e
e
e

em

oO
Fe

em

hUhc

O
P

FC
oh

hc
OO
mh
Uc
hO
CU
cO
OC
hU
cr
hC
Uc

OC
HO
mh
Uh
OC
Cc

OC
mh
Uh
 O
H
O

O
O
O

eh
ehh

ehlc

l
e

o
e
e
e
e
e
e
e
#
e
e
#
e
e
e

#8
©

@
@

b
a

S
e

2
a

a

a

D
A
A

O
A
W
U
G

F
E

15. Programs in paper tape form

1561 Cattap oe e# e@ e #@ #@ #8 @

15.2 Check bin . 2. 2. 2 ew we

15.3 Create new -> old...

15.4 Punch head kompud ...
15.5 P 1, include algol ...

Appendix A: The Cat system
1. Catalog e e ° eo e ° ° e e e e e

1.1 Format of an area word ..

1.2 Secondary word ... «se.
1.3 Names . 2 ee we we wee wee

1.4 Specifications ..-..e-e
1.5 Free, work and date... .

2. Search . * e e 6 * e e e e e e

3. Init medium ° e . a e e e e a e

3.1 Normal entry and exit... o
e

©
@

©
@

eo
we

e
e

3.2 Area descriptions set by init
3.3 Special entries . 1... 2 o «
3.4 Help’s current input medium .

4 cf Get word e e eo eo ° e e s e e e

4.1 Normal entry 2... 2 ee
4,2 Special entries... . se

Appendix B: Help 3 global names .

Index

a e e e

e e e e

e e e e

° e e e

ca e * e

e e e e

e e e e

e e e e

e e ° e

e e e cy

cy e e °

e es e e

e e eo e

e a e e

es e e e

° e e e

medium

e e e e

e e e e

e e e e

e e eo °

J ° e e

e e e °

o
e
e
e
e

e®
©

©

@

@

e
e

eo
e
e

o
e
e

ep
se

@

o
e

@

©

@

@

o
e
s

@
©

©
©

©
©

©
©

©
©

©
©

Contents

e e e e

e e e e

e co es e

e ° e e

e e e e

e e e °

e e e e

e e e e

e e e e

e e o e

e eo e e

e e s e

e e e e

. e * e

e ° tJ e

es e e e

e e e e

e ° °. e

e . e e

es e e .

e . ° e

e e e e

e e e of

e e e e

3

S
R
R
E
R
E
E

V
S
B
S
E
E
S
S
E

4

1.

1. Introduction,

INTRODUCTION.

1e1. Design considerations.

The Help 3 system is designed to help in debugging programs written in
Gler Algoi 4 or slip, and to enable an effective use of Gler in debug

runs and smaller routine runs.

The main points determining the design are:

1)

2)

3)

4)

5)

6)

The Help system should supply a strong frame for the existing
Gier Algol 4 compiler. This implies the introduction of a storage ca-
talog holding descriptions of data areas on drum and disc. In Help 3
this principle is extended to cover descriptions of peripheral units,
programs, and other areas on all kinds of backing stores.

Correction of paper tapes is time consuming and dangerous with
the existing hardware. In fact it is a bottleneck in debugging Gier
Algol 3 programs. One remedy for this is a correction program able to
use all kinds of areas for input and output. The slip and algol compi-
lers may then read the input directly from internal areas.

Safety in correcting is obtained by use of sum code which is
treated similarly in all programs.

The typical debug run consists of a correction run and an algol

translation. Thus in small machines it would be advantageous to re-

place slip with a correction program.
This explains why a simple Help lenguage is developed in Help 3.
All backing stores may be utilized for program texts and executa-

ble programs to keep the drum free for working purposes.
A dynamic allocation of areas on carrousel and magnetic tapes is

not important because the tapes are easily exchangeable and relatively
cheap . On the dise a dynamic area structure is introduced by means of
the free area from which reservations of named areas may take place.

The drum disc requires that the program on track 0 is changed to
store and select the group. A flexible condition for dumping of core
store into the core image is also introduced for the benefit of run-

ning algol programs.

It is found inconvenient to make old binary Help 1 tapes directly
compatible with Help 3 as they assume absolute storing on the drum and
thereby violate the area structure in Help 3.

1. Introduction 5

1.2. Proposal for a user philosophy.

1)

2)

It is possible to arrange complicated mms in a way that the ope-
rator only needs to insert a sequence of tapes in the reader and type
the message r < for each tape.

Keep corrected programs inside the machine as far as possible,
Qne method is to use the same program (on paper tape) for several test
runs and make a correction tape which is updated before each mm, This
updating may take place at a flexowriter. A mm consists then in rea-
ding the correction tape (call of the correction program should be
part of the tape). Next read the program tape and store the corrected
version in the free area or on a magnetic tape, etc. Finally insert
the data tape which may contain call of the algol translator and call
of the run program.

When the correction tape grows too big a new paper tape version
of the program can easily be generated.

Larger programs may be stored permanently on carrousel or magne~
tic tape if available. And it may still be a good philosophy to update
the correction list and not the program.

13. Backing stores,

Help 4 handles the following kinds of backing store (the kind num-
bers refers to the catalog content, see app. A):
Os

23

3:

Drum which physically may be a disc (called a drum disc). It is or-
ganized as a sequence of 40 word blocks. The drum disc is separated
into 3 drum areas each with a group number (960, 961 ...) attached.
Within Help 3 the tracks are numbered 0, 1 .ee 959, 960, 961 se.
Disc connected to the buffer and organized as blocks of fixed length
(Iengths 400 and 640 exists).
The word, disc, will always mean a buffer disc,
Carrousel organized as 64 reels of 16 blocks of 512 words.
Tape stations with magnetic tapes organized as files containing 400-
word blocks (detailed format in app. A).

If these backing stores are used for text input they are called in-
ternal media opposed to the external paper tape reader, etc. Disc, car-
rousel and tapes are called buffer media.

The named areas in Help 3 consist of a mmber of consecutive blocks
determined by the length (in blocks) and some first block information,

words, on the drum matching one block,

Throughout this manual the word track will denote a string of ho

6 2, Principles of operation,

2. PRINCIPLES OF OPERATION.

The Help 3 program is placed on the drum and may be called into action
either by HP-button interrupt or by various programmed entries, In out-
line the following then takes place:

1) The core store and all registers may (depending on core[1023]) be
dumped into the core image on the drum,

2) An input medium is selected and Help 3 information terminating
with the symbol < is read and converted to an internal form. The
following is an example of Help information:

r, edit, o free, 12 <
This information list contains 5 elements, the names r, edit,
free, the single letter o and the number 12. The unit from which
the information is read “is called Help’s current input mit. In
case of the entries hs 1 and hsf 1 “no reading will take place as
an internal information list is present already.

3) Help interpretes the internal list by means of a catalog which
holds information about the names. Starting with the first ele-
ment of the list the interpretation proceeds thus:
3.1) If the name describes an output unit then this mit is se-

lected and Help continues the Interpretation, —
3.2) TR the name describes an input unit (or an area holding

text) then the unit is selected as Help’s current input uit
and interpretation continues,

3.3) If the name describes a program then the remaining list is
moved to the parameter track and the program is called to
core and entered. The sense of the parameter list thus de-
pends on the program called.

3.4) If the list termination is met Help continues with step 2,
reading from current input unit.

3.5) If the element is not a legal name, then an alarm message is
given.

In the example above r turns out to be the paper tape reader, edit a
program. The result will be that edit is called with the parameters o
free, 12 < . According to the description of edit corrections will be
read from the current input unit, i.e. the paper tape reader,

As a second exemple consider the information line
free<

free designates an area on drum or disc and the current input unit will
be this area, Assume that it contains the text

l,algol, 10<
begin

¢ ¢ « Some algol program
end

run<—
Help will now select the lineprinter, 1, and call the algol translator
with 10< as parameter list. Algol will read and translate the algol pro-
gram on the current input wit and output every 10th line on the line
printer (because of 1 and 10<), After translation algol will return to
Help with current input unit pointing to the text run < in the free area,
Help will call the program, mm, which will start execution of the latest
translated algol program.

3. Help 3 information 7

3. HELP 3 INFORMATICN.

3.1. External form:

<Help 3 information> ::= <list> < |<list> < |<list> <text> < |
<list> <Help number> <

<list> ::= <empty>|<list> <separator>|<list> <single>|
<list> <text> <separator>|<list> <Help number> <separator>

<text> ::= <letter>|<text> <digit>|<text> <letter>|<text> .

<Help number> ::=* <digit>|<Help number> <digit>|<Help number> .

<single> ::= <underlined digit>|<underlined letter>|, |.

<separator> ::= ,|<CR>

<digit> ::= 0/1/2/3|4/5|6/7/8/9

<letter> ::= alb| ... [zla/g|-

The symbol & will always delete the current line and select the type-
writer as input mit.
The symbol <10> marks the end of a text string and will cause an alarm.
All symbols not mentioned above are blind. ‘Thus all upper case symbols
will be skipped.

Examples: r, <

81 13, print, b, 105, ra p 0.10.0.39 < < aE

3 e 2. Internal form.

The Help 3 information is transformed to an internal word by word
form easily described in Slip language:

<text> -> %t <text>; (O-marked words) spaces and blind symbols
‘are removed,

<number> -> bemarked word with point replaced by slash, e.g.
10.239 => 10//39 b

<single> -> qq <value of the underlined symbol>, (a-marked), e.g.
a -> aq 49,

< and < -> qqf,

The termination < will immediately (without interpretation) cause a
jump to the primitive input program on track 0. < can be used to reesta-
blish the system If the catalog 1s spoilt.

3 4, List of aux. programs

4, LIST GF AUXILIARY PROGRAMS,

Beyond the standard content described in appendix A the catalog will
contain some or all of the names in the list of auxiliary programs. These
names should be reserved for this purpose only.

The following list contains two lengths (in tracks) for each pro~
gram, The first corresponds to versions without buffer media the second
to versions with buffer media.

algol 4(4) Ex: algol, ins 10<
Calls the compiler gal (or another CompYler if specified) with Helps
current input medium as program source,

binin 2(2) Ex: binin, image <
Reads a binary tape from current input medium to the drum area given
as parameter,

binout 5(5) Ex: binout, image, n 10..1022 <
Punches the domains described in the parafieter list in the binary
form accepted by binin. Short domains may also be punched in a form
which can be read by track 0.

check 9(10) Ex: check, algol, ga 4, s1 13 <
Sum checks either all drum and disc areas in the catalog or only the
areas mentioned in the psrameter list, A catalog listing can be
printed meanwhile,

clear 6(6) Ex: clear, gal <
Removes the catalog item given as parameter. If the area is adjecent
to the free area then free will be extended,

compress (entry in check) Ex: compress, a <
Compresses all reserved areas to remove holes left by clear. Also
null items in the catalog are removed,

edit 15(18) Ex: edit, 1 tape 1, o free, 12<
Reads corrections from current input medium and corrects the text
given in the input area, storing the result in the output area,

exit 1(1) Ex: exit, h 715 <
Restores the core and register situation by means of the image and
jumps either to the instruction where interrupt took place or to the
address given as parameter.

ga 4 about 170(170) Called implicitly by means of algol. Con-
tains the Gier Algol 4 compiler.

hk, List of aux. programs 9

list (entry in check) Ex: list, r slip, sl 14<
Lists catalog items, either all or those mentioned in the parameter
list.

move 2(8) Ex: move, work, free <
Moves the area given as first parameter into the area given as se-
cond parameter.

outparam (entry in binout) Ex: outparam, binin, image <

Punches its parameter list as a normal Help information list. May be

used to punch head and tail on binary tapes.

pair (entry in print) Ex: pair, image, p , free, p 10..1023 <
Compares the two domains described in the parameter list and prints
all deviations in the specified form.

print 18(19) Ex: print, p, tape 1, r 1.0.10.399 <
Prints the domains given in the list in the specified form.

res (entry in clear) Ex: res, 26, s 0, sec.image <
Reserves a number of blocks from the Free area and sets the descrip-

tion of the reserved area into free. If no length is specified then
<booked> blocks will be reserved (see app. A).

run 1(1) Ex: run, sl 14 <
Checks if the drum area given as parameter contains a translated al-
gol program and executes it. If no parameter is given the program in

work will be tried (usually the latest translated program).

set (entry in clear) Ex: set, 3, 1, 0, 0, d0, tape 1 <
Inserts an item in the catalog. All kinds of not reserved items can

be set.

setsum (entry in check) Ex: setsum, tape 1, sec. image <

Inserts the check sum of the areas, given as parameters, in the ca-

talog.

slip 23(23) Ex: slip <
The symbolic language input program. Reads program text from current
input medium.

start 1(1) Ex: start, 2.6.67, image <
Inserts the number given as parameter into the date item in the ca-
talog. Drum areas in the parameter list will be filled with hsf 2

instructions,

10 5. Common characteristics

5» COMMON CHARACTERISTICS OF AUXILIARY PROGRAMS,

51. Sumcheck, inhibition.

When an auxiliary program (with sum bit present, see app. A, 1.1) is
called by means of Help 3 the sum of the instructions is compared with

the sum word in the catalog. Only if they agree is the program entered.
Long programs which are not transferred entirely by Help will make sum

check of their own tail (e.g. slip and ga 4).
Most auxiliary programs are executed with the core store inhibited

(for exceptions see run and compress). This means that a HP-button inter-
rupt will not change the core image, and all information about the aux.

program called will disappear,

5.2. Texts and sum code,

All programs handling texts use the following format for texts in

internal areas:

cell n: qq <end>.3+<char 6>.9+<char 5>.15+ ... <char 1>.39; marks 0
n+} : qq <end>.3+<char 12>.9+<char 11>.15+ ee. <char 7>.393

<end> is 15 except for the last word in the text string where <end> is 10
and unused characters are set to 10.

The programs edit, gal and slip treat clear code (28) and sum code
(61) in input in the same way: The character following sum code is check-
ed against the sum of the characters read after the last clear code or
sum code. Full details may be found in the manual of Gier Algol 4.

In the output string produced by edit, the sum is corrected corre-
sponding to the characters produced. This mechanism may for example be
utilized thus:

All programs should, when they are first punched, be provided with
one or more sum codes each followed by a space. If later corrections are
made with edit an easy check for perforator and tape reader faults is
obtained. The first time such a program is corrected a sum error will of
course appear, but at that point of debugging the program is wrong with
respect to many other things.

5.3. Current input medium.

Many auxiliary programs (e.g. ga 4 and slip) reads further informa-
tion from Helps current input medium and returns later to Help which con-
tinues reading from where the auxiliary program left. The programs edit
and run cannot preserve the current input medium and they will select the
typewriter when they return to Help.

The optatied format of Helps current input medium may be found in
App. A, 3.4.

5. Common characteristics 11

5.4. Length of areas.

The description of an area contains information about the first
block of the area and the length of the area, The length serves two dif-
ferent purposes:

1) If the entire area is to be moved or printed the length tells the nun-
ber of blocks involved, Apart from this the length is not used when an

area is used as input to a program.

2) If a program makes output to an area, the length is used to protect
neighbour areas. All auxiliary programs (except slip) perform this
check when needed,

Most areas have the same length in case 1 and 2, but exceptions exist:
work case 1: The primary description in the catalog is used when work

serves as input area.

case 2: The place allowed for output to work is found in a special

cell in the catalog. When the program has finished its output it
changes the primary description of work to point to the produced
output area. More details may be found in app. A, 1.5.

free case 1: The entire free area is used, but the description in the
catalog contains also the variable booked, which may determine the

number of blocks reserved in a call oF res.
case 2: The entire free area is allowed for output and the program
sets booked to the number of blocks produced, More details may be

found in app. A, 1.5.

magnetic tape areas case 1: The description in the catalog is used.
case 23 finite number of blocks is allowed for output indepen-
dent of the content of the catalog. When the output is finished an
EOF-mark is written and the length in the catalog is changed to the
number of blocks produced. Notice that only the programs edit and
move can make output to magnetic tapes.

5.5. Area conflicts,

Auxiliary programs handling two areas simultaneously (edit, move and
pair) will not accept that the areas are on the same magnetic tape or

carrousel, If it is tried an alarm is given.
Special care must be taken if a magnetic tape contains both auxilia-

ry programs and texts. Assume for example that a tape contains the pro-
grams edit, ga 4, and the text area, text. The call

text, edit<
will first position the tape to the beginning of text. Next the tape is

positioned to edit, which is called and starts reading from the tape but

from a wrong block because edit was called.
Qn the other hand

edit, i texi<
will work as wanted, While

algol<

begin copy text<

will work o.k, In pass T but cause the message ,pass sum, later because
the tape is moved to the text area,

12 6. Storage occupied by Help 3

6, STORAGE OCCUPIED BY HELP 3.

The following drum tracks are used whenever Help is called into action:

core

call

When

core

Help

Main help track 0 - 10 (0 - 12 in versions where buffer media
are treated).

Track 38 working track
Parameter track track 38 or another track.
Catalog at least two tracks. Place on drum depends on in-

stallation.

A task program is a program executed without the inhibit pattern in

[1023]. See section 7 for further explanation.
If a task program runs and Help is called (HP-button or programmed
the following parts of store are affected too;
core image 26 drum tracks, Place depends on installation.
Core 0 to 9 Qnly cell 10 to 1023 and registers will be restored

when the program, exit, 1s used to continue the
run. For a special possibility of restoring cell 0
and cell 7-9, see the description of exit.

Help is called during execution of non-task programs, the entire
store is spoilt by Help.

3 uses this part of the buffer store:
Text buffer cell 0 to 1542, Used when text reading from a buf-

fer medium takes place,
Program buffer cell 1543 to 3084. Used to call auxiliary programs

from buffer media.
Working area cell 1543 to 4095 is used as working area for some

programs (e.g. algol 4, slip, edit, move).

To this list mst of course be added the areas on backing store oc-
cuptied by the different auxiliary programs.

7. ENTRIES TO HELP 3,

In this section only the task entries will be described, The conventions
for the internal entries, used in auxiliary programs, may be found in
section 11.

7. Entries to Help 13

Tel. Core dumping.

Track O to 1 and, in case of programmed entry, core 0 to 6 take care of
the dumping of registers and core. In more detail ‘the following takes
place:

1)
*

2)
2a)

2b)

2c)

3)

py{o] is set to prevent further HP-button interrupts. Core 0 to
39 is unconditionally stored on track 38, and track 0 is read to
core 0 to 39. This is done by mode 5 (HP-button entry) or core 0

to 6,

The content of core[1023] is investigated:
Core [1023] = ann sx V t x MK, full inhibition. Help proceeds to
step 3. ~ ~
Core [1023] = ann sx , tl (x), half inhibition (full inhibition
with a-mark). The message —

image
is typed. If the operator types a space Help will continue like
full inhibition, If the operator types < the action is like:
Core [1023] + full or half inhibition. Core 40 to 1023, track 38
and all registers are stored in the core image. The exit address
is stored in the core image, cell 9 address part and marks. If
the exit address is 6, 7, 8 or 9, cell 9 will not be changed how-
ever, because the entry to Help took place during exit. Program-
med entries will also change address and increment parts of core

0 to 2.
Notice that initialisation of core 0 to 9 is done in the auxi-

liary program exit which takes care of restoring of registers and
core store.

Core [1023] is set to full inhibition to prevent destroying of
the core image in case of HP-button interrupt. by[0] is cleared
to release HP-button. Main help is sum checked and sum error cau-
ses the message

SUM
(see section 8). Otherwise Help executes the special action cor-
responding to the entry.

7.2. Specific entries.

HP-button. The following message appears:
<run> <date> <e> <exit address>

The integer <run> is increased by one each time HP-button or
hsf 2 entry takes place. <exit address> describes the next in-
struction to be executed when the program was interrupted. <e> is
the letter e if the core store was dumped and the <exit address>
can be used to continue the run. <e> is blank otherwise.

<run> is printed on Help’s alarm unit (typewriter), the other
informations on the normal output medium (typewriter or line

printer).
The typewriter is selected as Help’s current input medium and

reading starts.

14 #7. Entries to Help

Programmed entries:

hsf 2 or an equivalent jump to cell 2. Nearly as HP-button but a p is
printed in front of run, The exit address corresponds to the re-
turn hr si. The stored s register has the content which would be

obtained in this way.

hs 2 or an equivalent jump to cell 2. Help starts reading from the in-
put medium described in cell -6 to -2, the detailed formats of
this may be found in appendix A, 3.4. Exit and stored s as for
hsf 2.

hsf 1 or an equivalent jump to cell 1. Help will interprete the list:

hsf i <

This name may describe a patch program or any other suitable
area. Exit and stored s as for hsf 2.

hs ‘J or an equivalent jump to cell 1 causes a programmed call of an
eux. program. The entry sets the boolean hs 1 which is cleared in
all other entries and after alarm. When an ordinary auxili
program returns control to Help (one of the internal entries)
this boolean is investigated. If it is set the exit program is
called; otherwise help continues reading,

The hs 1 entry interpretes the information list stored in in-
ternal form in cell s+2 and on. It is assumed that the core store
has been dumped as the list is fetched from the image. The list
may not contain more than 40 words including the end mark.

If the called program reads from current input medium the de-
scription in cell -6 to ~2 will be used as for hs 2 entry. Exit
address and stored s as for hsf 2.

Example: Programmed call of: print, p 100..110 < hs 1 3 hs 1 entry
hv a 3 Help returns to this instruction
tprint F} 3 O-marked name

qq 39, 3 p, a-marked single
qaf 100.19+110.29 3 F-marked number
qaf, 3 <, Ccemarked end mark

overflow or any other jump to cell 0. The message
overflow <e> <exit address>

is printed on the alarm mit. The typewriter is selected as cur-
rent input medium and Help starts reading.
The <exit address> is given as Raddr corresponding to a floating

arithmetic overflow.

8, ALARM MESSAGES,

The following is a list of all alarm messages appearing in Help 3
and the auxiliary programs mentioned in section 4 (except messages from
the Gier Algol 4 translator). Unless something else is explained the mes-
sage is printed in red, the typewriter is selected as current input me-
dium and control is given to Help which starts reading.

i

If no

8, Alarm messages 15

specific auxiliary program is mentioned in the explanation,

the alarm is called general, otherwise it is a special alarm and details

may be found in the description of the program.

<number><number> Error message from Slip which continues reading.

annul

catalog

char

fanit

full

image

kind

label

length

name

no clear

not present

overflow

overlap

param

parity

sum (red)
sum (black)
SUM

syntax

tapesum

termination

undef

units

value

Current line of information annulled by the symbol a.
Appears in Help and edit.
Sum fails in the catalog. Appears in Help and several

auxiliary programs.

Alarm character read. Appears in edit.
Parity error on buffer medium even after k rereadings.

Appears in Help and several auxiliary programs.
An information list is too long, a number too big or an

area too short. Appears in Help, binin, edit, move, res

and set.
(olack) Half inhibit present when Help is called (see
Tel}e
An area word has a not allowed kind, Appears in Help and

several auxiliary programs.

A magnetic tape has a wrong label. Appears in Help and

several auxiliary programs,
The area length is outside the allowed range. Appears in

res and set.
A name conflicts with the catalog. Appears in clear,

res, set, check, list and compress.
The item must not be cleared. Appears in clear.
The area contains no algol program. Appears in mn.
Help is called by a jump to cell 0 (see 7.2).
Conflict between input and output area. Appears in move

and edit.
Improper sequence of parameters. Appears in Help and

several auxiliary programs,

Parity error on paper tape. Appears in binin, check bin

and edit, Edit continues reading after the error.
Sum fails in calling an auxiliary program.
Area sum fails. Appears in check and setsun.

Main help is destroyed. If the paper tape containing

Main help is inserted in the reader and a space is typed

the system will be reestablished and Help continues as

if no SUM had been printed.
Syntactical error in Help information, Appears only in

Help.

Sum fails in a text string. Appears in binin, check bin

and edit. Edit continues reading after the error.
Unterminated correction. Appears in edit.
A name is not found in the catalog. Appears in Help and

several auxiliary programs.
It is tried to compare two areas on the same magnetic

tape or carrousel. Appears in pair.
Information outside allowed range. Appears in res and

sete

16 9. Help 3 paper tapes

9. HELP 3 PAPER TAPES SENT TO THE GIER INSTALLATIONS,

The basic paper tape form of the Help 3 system is a set of slip tapes
which may be read by the slip program in some Help 3 system, These slip
tapes allow a number of different versions to be generated as explained
in section 10. The slip tapes are:

Main help
init help Used to initialise the loaded system
P 1 May be read in when the algol merger has worked and

will then move the compiler and include it in Help 3
(see 15.5)

algol

binin
binout + outparam
check + compress + list + setsum
clear + res + set
edit
exit
move
print + pair
run
slip
start

In order to read these tapes a basic 1 drum version with buffer me-
@ia and all auxiliary programs is supplied. The final system or parts of
it may be punched in binary form by means of the program, system punch.

These programs are punched in bin 0 form which may be read by the 3
cell input program on track 0. ee

Tapes in bin 0 form:
basic track 0 } the basic 1 drum version
basic Help 3
system punch (see 10.4).
check bin Proof-reads binary tapes without changing the

backing stores (see 15.2).
cattap Writes ¢<cattap} labels on tapes (see 15.1).

A few tapes are supplied to facilitate the transition from Help 1 to
Help 3:

head bin 0 This tape used as head of a bin O tape enables it to
be read by Help 1. May for instance be used to read
track 0 of Help 5 by means of Help 1.

Punch head kompud
This slip program can pumch 3 different head kompud
tapes which enable a kompud tape from Help 1 to be
read by track 0 of Help 3 (see 15.4).

Create new -> old
This slip program punches track 0 of Help 1 in bin 0
form (see 15.3).

10. Generating Help 3 17

10. GENERATING A HELP 3 SYSTEM.

10,1. Generating Main help + aux, programs.

In order to generate a Help 3 system suitable for the particular machine
the following procedure may be used:
1) Put some Help 3 system including slip in Gier and push HP-button.
2) Insert Main help in the reader and type rx. When reading stops after
the message

redefine
the slip names mentioned in 10.2 may be redefined before you type 1 to
continue reading, All the slip tapes will terminate with printing the
name of the tape.

3) Insert init help in the reader and type 1.
4) Select the auxiliary programs wanted and” load then one by one. Pre-
ceding every auxiliary program the following slip names may be redefined:

d35 = 0, 1, 2 or 3. Describes the medium to which the auxiliary pro-
gram will be moved after loading.

a36 = 0 or 1. If 436 = 1 ‘then the program will be a reserved area
which may be given back to free by means of clear.

dal determines the drum track to which the program will be loaded.
In special situations it may be useful to increase dl.

Bach program is loaded to the drum and a primitive catalog item is loaded
to the core image. Other primitive catalog items may be loaded like auxi-

liary programs.

5) After loading the last auxiliary program, you release track 0 and
other protected tracks and type

e 10

Init help will now compute the check sums and move the system to its fi-
nal place thus:

Main help is moved to track 0 and on (displaced d8 tracks).
All primitive catalog items are checked for proper kind if they are
reserved, Only program items are treated further.
Reserved programs (435 =0© or 1) are moved to first free block and
on. The free area is adjusted accordingly.

Other drum programs (435 = 0) are displaced 48 tracks like Main help
(always to group 0). In this case dl may be useful to avoid moving
programs to track 38, etc.
Other dise programs (435 = 1) are moved to block 0 and on.
Carrousel programs (435 = 2) are moved to reel 0, block O and on.
Blocks are grouped 3 per transport. Qnly one reel may be loaded.
Tape pro (a35 = 3) are moved to the magnetic tape on station
a5h. oA <cattap} label is put on the tape and the last program is

terminated with EOF-mark.

Each program will after moving occupate a number of full blocks, Unused
words in the last of these blocks are filled with zeroes.

18 10, Generating Help 3

Init help will finally move the catalog to the drum and call the

generated Help 3 system with a hsf 2 entry.
During loading of the slip tapes various error messages may be gi-

ven, Here we only mention the alarm
version

showing that a too old version of Main help is used.
During the execution of init help the following alarm messages may

appear:

cat length The primitive catalog is longer than the tracks al-

lowed for the final catalog. Execution continues.
fault Parity error in writing tape label. Label writing is

repeated when you type a space (another tape should be
mounted).

format <program name>

Wrong format loaded to primitive catalog. Execution
proceeds from the next catalog item.

kind <program name>
Not allowed kind in primitive catalog, Execution pro-
ceeds from the next catalog item.

move trouble <program name>
-It is tried to move a program to higher track numbers
‘or to use more than one carroussel reel. Execution

proceeds from the next catalog item.

program call <program name>

The program cannot be called by Help 3 as too many
words would be transferred to core.

10.2, Slip names defining the system.

A full list of the global slip names used in Help 3 is shown in app. B.
Here is given a more detailed explanation of the names which may be rede-
fined in the beginning of loading.

Name init.value Meaning
al 100 The system will be loaded to this track and on before

moving takes place,
d3 0 a3 = 0 means that the drum will contain the free area,

43 = 1 that it will be on buffer disc. ,
ah 0 } 1024 x d52 + al is used as the number of blocks on the

a52 0 puffer disc. Only significant if d3 = 1.
a5 39 } 1024 x a46 + d5 is used as the first free block, This

ahé 0 may be changed by init help.
ag 0 First track of final help. Should only be changed for

debugging purpose.
alt 38 Parameter track.
a6 294 First track of core image.
aiT 3 by-value for stendard paper tape reader.
a18 512 by-value for HP-button inhibit.
a19 960 Track group for core image,
a2 3h First track of catalog (catalog always in group 960).
d22 1 No. of 320-track drums. Drum disc has d22 = 30,

na

10. Generating Help 3 19

d23 k No. of catalog tracks.

d3e2 1 d32 = 0 designates that a special work area is used.

If 432 = 1 the free area is used for working.

a33 0 \ First track and number of tracks in the special work

a34 0 area (in group 419). Only significant if d32 = 0.

a35 0 Running kind of aux. programs (see 10.1)
a36 0 Aux. programs reserved (see 10.1).
aly 1 ahi = 1 designates that code for treating buffer media

will be included. d41 = 0 otherwise.

ahs 17 Help 3 alarm output unit + typewriter input. Is used

for all alarm messages and HP-entry run number,

ayy 17 Standard output unit + typewriter input. Is used for

normal output from aux. programs and most of HP-entry

message.

ahé 0 See ade

aso 960 Image group during loading. May be redefined according
to d19 in the Help 3 system used for loading.

a52 0 See ah,
a53 400 Block length on the buffer disc.
a54 1 Tape station to which tape programs will be moved.

10.35 Adding aux. programs to the system in the machine.

The slip tapes containing the aux. programs may be used for adding

programs to the Help 3 system in the machine, This requires the presence

of:
slip, exit, res + set, move and setsum,

The tapes are loaded in the following way:

1) Read Main Help by typing r and redefine all names to the values used

when the Help system was created, Only di (first track loaded) may be

changed.

2) Select the auxiliary programs to be added and load them one by one.

! Definitions of 435 and 436 may appear exactly as in 10.1.

'é If a36=0 (not reserved) the tapes will stop with the message

base, <progrem name>
Now a few b-marked slip numbers should be typed in, to define the first

block of the moved program:
d3590, type: <first block>b

1 <umitob <first block>b

2 <grouped>b <reel>d <first block>b

3 <unit>b <file>bd <first block>b
Continue reading of the program tape.

3) Type e10 after the last aux. program. Each program has loaded a pro-

grammed call of res or set, a call of move, anda call of setsum into

the core image. When these are executed the programs are included in the

system.
This way of loading is espacially useful when new aux. programs are

debugged or when the old ones are changed, Even the programs slip and |

setsum may be changed thus: when res or set is called, an alarm message

ce

20 10. Generating Help 3

appears. Now clear the program from the catalog, set (manually) the new
description and exit,

New versions of exit, res + set, and move can only be inserted in this
way if the length and specifications are unchanged. Res or set will not
be called at all.

Notice that programs cannot be inserted in the middle of magnetic

tapes.

10.4 System punch and binary tapes.

Part or all of any Help 3 system in the machine may be punched in
track 0 form by means of system punch which is loaded by r<,

System punch asks a list of questions each to be answered by y (for
yes) or n (for no).

Question: Action if y is typed:

track 0 Track 0 is punched. Tear off the paper tape,
main help Main help is punched. The tape must not be torn off until

the catalog question has been asked,
<area name> The entire area is punched. Only drum and disc areas

appear, System punch generates a modified catalog in the
working area. It will include all catalog items except re-
served not punched, The reserved areas punched will be

loaded tight together as if compress had worked. Free is
set accordingly.

catalog The modified catalog 1s punched, The date cell is skipped
in loading to prevent unnecessary calls of start.

System tapes created in this way will be loaded to absolute addresses
as they assume an empty machine.

Binary tape versions of programs to be added to the system may be
punched by means of list, outparam and binout. For example a tape con-
taining slip may look like:

res, 23,pis147.12,716.158, slip, 20.760.0.3<
binin, slip<
@ <the binary slip progran>
t<

10.4.1 Swop tapes.

At a small 1 drum Gier the full system cannot be present in the ma-
chine. Often the users shift between Algol runs (clear, edit, algol, run,
gat necessary) and slip runs (clear, edit, slip, print, etc. necessary).

In this case the following paper tapes would be conventent:
1) main help + start + exit + clear + edit, but without catalog.
2) algol, run, gat and a catalog containing descriptions of 1 + 2.
3) slip + print + binout, ete. anda catalog containing descriptions of

1+ 3.
These 5 swop tapes may be read independently of each other and tape 1

need only be loaded seldom.

11. Program call 21

11. CONVENTIONS FOR PROGRAMS CALLED BY HELP 3,

Any area with the program bit set may be called by means of Help 3.

Thus one way of introducing a new aux. program is to read it by means of
slip, set a suitable area description, move the program to that area and

perhaps set the sum of the area.

11.1 Details of program call.

The program is called in this way:
1) Core 0 to 9 is initialised (core image is not changed)
2) If a specification word is present (i.e. follows the program name in
the catalog), it determines the transfer. Else the program is transferred
according to the specification

aq <blocks>.9 + 40d13.19 + 40d13.293; in case of drum
aq 10.9 + 40d13.19 + 40d13.29; in case of buffer medium

3) The specification consists of the 4 parts described in app. A, 1.4.
First the specified tracks are skipped and their sum is computed. Next
the specified tracks are read to core and their sum is added to the sum
of the skipped tracks.
4) If the sum bit is present, it is checked that sum computed + sum in
catalog = 0.
5) If the program is a task program (<inhibit>-=0), then core[1023] is
Cleared. A jump to the entry is performed,

If the specification is improper the call program may be destroyed and
peculiar things will happen. Res and set will however check that the last
cell transferred is outside the call program (last core for program call

is approx. 890).
Long programs must check the sum of the tracks not transferred by

Help. This sum should be 0 to match the conventions for check which sums
the entire area. The area word describing the program area is upon entry
still in cell 2c of Help. If the program was called from a buffer medium
then get word (entry in -26) is ready for transferring next word from the
program area.

The parameter list may be found on the parameter track starting in
cell 1. Cell O of the track contains the switch hs 1. The contents of the
parameter track is present in the core store starting in cell d15, unless
these cells are destroyed in the cali.

The program may return to Help 3 by means of an external entry (hsf 2,
etc.) or by a jump to core[-9] which is the return as an ordinary aux.
rogram. In the last case core[-9] to [-7] must be intact and core[-6] to

fe2i must describe the current input medium.
hs 1 is used after return to core[-9] thus:

address part = 0, read from current input medium
= 1, call exit<
= 2, interprete the internal information list on the para-

meter track.

22 11. Program call

11.2 Internal entries in Help 3.

Depending on the length of the transferred program, more or less of
main Help is left in the core store, The following is a list of some rou-
tines in Help which has proved to be of use in the aux. programs.

Each routine is described by the entry name, the slip address, the
required intact parts of Help in core store, and a short explanation of
the routine.

SIMPLE PRINT, 428 cell 580 to 700
Called by hs d28, Prints Raddr as a positive integer.

INIT MEDIUM, ¢28 cell 580 to 700
Place of first track of init medium as used in Help. Second track is
in hoc28 (see app. A, 3).

FULL ALARM, c61 cell 700 to -1
Prints the text ¢<full} and makes an alarm return to Help.

PARAM ALARM, c58 cell 750 to -1
Prints the text <param} and makes an alarm returm to Help.

KIND ALARM, ¢c57 cell 750 to -1
Prints the text ¢<kind} and makes an alarm return to Help.

GET PARAM, ¢c52 cell 750 to <1
Called by pp <address of param> -2, hs c52
Increases p to point to <address of next param> -2. Returns with:

hv 813 and the parameter in R, in case of a help number.

hh si; and the parameter in R, in case of a single number.

hv s23 in case of end of the parameter list.

hh s23 and the area word in R in case of a name, If the name is not
found in the catalog or the catalog is improper no return is made
but an alarm is called. Notice that search is called and that d14

to 39d14 is destroyed.
READ INTERNAL, ¢c27 cell 850 to -1

If current input unit is an internal medium then hs c27 will yield in
Raddr the next char from the medium. The return is:

ga si, hr s3
If the medium is drum the latest track selected by search mst be the
medium drum track.

Cells di4 to 39414 mmst contain the track given in core[-2]. Ifa
buffer medium fails an alarm is called.

ADJUST SPECIAL, ¢74 cell 850 to -1
Takes care of a possible adjustment of free and work as described in
app. A, 1.5. The latest call of search mst have transferred the first
catalog track to di4, ff, R = last block written + 1, M = first block
written, indicator = bits 0 to 9 of the area word.

The routine returns to Help 3 (hv -9) after its work.
ALARM PRINT, ¢2h cell 920 to -1

Is called by qq <text address>, hs c24 or by
hs c2h
aq <text address>

Selects the alarm unit, writes CR, red ribbon, the text. Selects type-
writer input and calls Help which starts reading.

SEARCH, ¢ to c21 cell ~86 to -47
Contains the search track (see app. A, 2).

11. Program call 23

cell -H46 to -36 TEXTPRINT, ¢c23
Called like alarm print but prints only the text on the unit in the
by-register. Returns with hr 31.

GET WORD, c71 cell -30 to -10

A modified version of get word (see app. A, 4.2).
INITIALISE HELP, -9 cell -9 to -1

Return to Help from aux. program. Help will usually be entered corre-
sponding to an ordinary return from aux. program,

Any other entry may be obtained by

ps <entry wanted> -ch1, hh -9

12. SYSTEM TRACK,

The environment description required by the Gier Algol 4 standard
procedure ,system, consists of one drum track described in the catalog

under the name ¢<system}.
The track may be generated by means of slip and set in the catalog as

an ordinary drum area.

ak

13, Primitive input

#0 oz 13. PRIMITIVE INPUT PROGRAM ON TRACK 0.

vA BH

ges! The primitive input program may be called into action in
ES sia one of the following ways:
pia

S328 1) Help 3 reads the termination <
2) Main Help is destroyed when entry is attempted. This causes

9 the message SUM after which a space will start primitive in-

put.
— The sum is checked in two stages, First the sum of track 1

gm is checked, If it is’o.k, track 1 checks the remaining part of
a Main Help. The paper tapes containing Main Help returns to the
a point where the sum error was detected or to typewriter input
aR in case 1.
Sok 3) If Main Help is destroyed but the sum is still o.k. there
282 is a probability that primitive input may be started by a
mM manual jump to cell 0. In other words, cell O on track O con-
Law tains an entry jump to primitive input.

wu t+ o4 4) The primitive input program may be inserted manually in the

aN core store as described in 13.1.
Noa t

ao o Primitive input assumes that the first part of the paper
a ado tape contains a bootstrap program (e.g. as punched by binout,
QT O-form) working like this:
Ota ~

Original 2 instr. read 2+6 instr. read
g aft 81 tl -6, cad tl -6, ca 0 tl -6, ca O
Ty Os ly ru, hs r-1 ly rh, hs r-1 ly r4, hs r-1
fff stl gms3t-1M gms7t-1M — ds(rhJ Io

we s+2 hv s tl 12 V
Tee! s+3 hv <513-length> MR
~ftf sth pio +t lg
Ta std gr 2510-length> t 1 MPC
yet | 8t6 hv s IKC
<7 2) st+7 sk [dumped] This word mst not be changed

8 ee @

i = The last version of the program can read instructions with

| -_- | marks, It will terminate reading and jump to the loaded pro-
gis = gram when an instruction is stored in cell 512,

fe

jece
Woe se 13.1 Manual set in of primitive input.

$35, 1) Set 0 in the by-register.
ol; sn 2) Insert the bit pattern, shown in the margin, into cell 0 to
7 cd . 2. -
‘e-s| 3) Reset and start with ri = 0,

WE tt

ole 2

od

Algol 25

14, DESCRIPTION OF AUXILIARY PROGRAMS,

The descriptions attempt to conform to the following scheme:
1) The Syntax of the call, written in Backus notation, but on a higher
level than section 3. Rather, the syntax describes the internal form of
the call.
2) Outline of the program.
3) Semantics of the parameters. The name of the parameter is written as
head followed by the semantics of each possible value of that parameter, 4) Further remarks on the program, return conditions, etc,
5) Special alarms and messages. The general alarms are only described in section 8,
6) A few examples, usually demonstrating the special facilities.

Unless something else is mentioned the aux. programs are executed with inhibited core store.

14.1 Algol.

Call ::= algol, <spec list> <
<spec list> ::= <empty>|<spec> <spee list>
<spec> ::= <name of sy-medium>|<name of compiler>| s|1|4|n|<number>

Algol calis some Gier Algol 4 compiler in a way that it will read from
current input unit and after a successful compilation return to Help as
an ordinary aux, program.

<spec>:
<empty> An empty <spec list> will start the compiler with the

name ga 4, Compilation will include text between P,CFF
and P.ON. Index check of subscripted variables is gen-
erated, and no information is output during transla-
tion.

<name of sy-medium>

The medium is used as normal out unit, i.e. for pos.
sible output of source program, pass information, and
pass output (the output produced with KB on), If no
Ssy-medium appears in the list the selected Help output
unit is used. If none is selected, normal out will be
the standard output unit,

<name of compiler> The name must describe a ly-medium (a transient compi-
ler) or a program area. If no compiler is mentioned,
the name ga 4 will be used,

8 (skip between P.CFF and P.CN)
~ The program text between P.OFF and P.ON is skipped. It

is included if no s appears in the list,
i (information wanted)
~ Pass information is printed on normal out unit, a (dise mode)

The drum disc is used in a mode which may give fewer
head movements during translation of large progrems,.
Experimental facility.

26 Algol

(no index check)
No bound check of subscripted varisbles is generated.

<number> Every <number>th line of the source program is copied
to normal out unit. If no <number> appears or <number>
is 0, no line output will be made.

ip

If the current input unit is typewriter, without explicitly having
been specified as such, the source program mediwn will be reader, and
after translation the current input unit will again be typewriter.

If an error has occurred Help will always continue reading from type-
writer,

In all other cases the compiler will read from current input unit and
return with the last used source program medium as current input unit.
The place of the translated program is set in work. The algol compiler
will use work-as-output (see app. A, 1.5) for working area during trans-
lation,

Error output appears on Help’s selected output unit and alarm output
appears on Help’s alarm unit.

Algol uses the parameter track for storing return information during
compilation.

Transient compiler.

If a ly-medium is specified as compiler name, a transient compiler is
read, It will use the te first tracks (approx) of the working area for
storing part of the translator.

This means that the source program cannot be stored in free, anda
special area must be set to hold the result of internal corrections per-

formed by means of edit.

Examples: The typed call:
~~ algol, n <
will read and compile the program in the reader without index check. Af-
ter compilation Help will wait for typewriter input.
The call:

tape, algol <
starts compiling the program in the area, tape. Help continues reading
from tape where the translator left (unless errors occurred or copy has
been used).

The second example in section 2 will go wrong if free is used for
working area, because the text ,run<, is spoilt during translation.
Notice that the program still may be executed by typing run< after the
alarm from Help.

Binin 27

14,2 Binin.

Call ::= binin, <name> < |binin, b <number> <

Reads a binary tape to part of the drum area given as parameter:

binin, <name> < The <name> mist describe a drum area.
binin, b <help number> < ‘The <help number> will be used as an area

word, It mst still describe a drum area,

Binin reads from Help’s current input medium (which must be a ly-
medium) and searches for the symbol a, heading the binary segments, before
any other information is interpreted.

All destination labels will be relative to the first word of the para-
meter area and the reading will stop when a label > 66 is met. Then the
sum and number of characters are checked and binin returns to Help as an

ordinary aux.program.
Notice that bin 0 tapes cannot be read by binin.

Special alarms.
Tull" "T¥"is tried to store outside the parameter area.
parity Parity error on the paper tape.

tapesum Sum or character check fails.

Examples: see binout.

28 = Binout

14.3 Binout.

Cal 23 binout, <domain> eee <domain> <

<domain> ::= <base> <form <interval>

<base> ::= <empty>|<area name>|b <help number>
<form> ::= n/O ~
<interval> 7:= <empty>|

<first block>.<first cell>.<last block>.<last cell>

Punches the domains given in the parameter list thus:
<form:

n In normal binary form,
3 In bin O form suitable for reading by track 0. A maximum of
~ 480 words may be punched in this form. (mly the first domain

may be of O-form. Notice that track 0 will read the words to
the core store so that the lest word will go to cell 512.

<base>:

<empty> The preceding base will be used. If no base precedes, then the

core image is used.
<area name> Part or all of the area will be punched,
b <help number> The <help nunber> is used as an area word.

<interval:

<empty> The entire area described in the base is punched

<help number> Only the cells from <first block> x block length + <first

cell> to <last block> x block length + <last cell> are punch-
ed. The cell numbers are relative to the base.

Binout punches on the selected output unit. If none is selected the unit
32 (perforator) will be used. Binout returns to Help as an ordinary aux.

program.

14.3.1 Format of binary tapes.

The n-domains specified in one call of binout are punched as one binary
tape with the format:

<100 spaces> a <label> <segment> <label> <segment> ...

<label: Meaning of <segment>:

char.< 64 Normal segment: <segment> consists of <lsbel> words from the
punched area, each punched as 6 characters:
qq <char 6>.6 + <char 5>.13 + ... <char 1>.41

64 Repeat label: <segment> consists of an integer, i, punched as
3 characters:
i = qq <char 3>.25 + <char 2>.32 + <char 1>.39
The latest punched word is repeated i times more in the area.

Binout 29

65 Destination label: <segment> consists of an integer, 1, like
repeat Label. The following words are printed from the address
(relative to base):
i: 102k x 4o + 4 mod 1024

66 End label: <segment> consists of an integer, i, like repeat
Tabel. I contains check information thus:
i: 1024 is the number of characters punched from first label

~ to 66 of the end label.
1 mod 1024 is the sum modulo 1024 of the characters from first
~ label to 66 of the end label.

Each domain will thus be punched as one destination label followed by a
number of normal segments and repeat labels. The last domain will be fol-
lowed by an end label.

14.3.2 Format of bin O tapes.

A OQ-domain is punched in the format:

< < 60 characters bootstrap program> <words> <check>

The first two characters of the bootstrap program yields the number of
words in <words> thus:

number of words.9 = qq <char 2>.6 + <char 1>.12
Each word in <words> is punched as 7 characters:

qq <char 7>.4 + char 6>.10 + ... <char 1>.393 marks are <char>.45
<check> consists of the symbol 64 and an integer, i, as in end label for
a binary tape. 1 contains the number of characters and their sum, from
the first bootstrap character and to 64 of <check>.

Examples: binout, n <
This call punches The entire core image, The resulting tape may be

read to the core image in any Gier thus:
r, binin, image<

The call: r, binin, b 2..150< will read the same tape to track 150
and on, ~

The call: r, binin, b 150 < gives a fullealarm because the length
of the area is shorter than the tape content.

Assume that the core image cell 10 to 100 contains a program working
like binin called thus:

Tr, binin, b 20..0<

It is then possible to pufich a tape to be loaded by track 0 to absolutely
addressed parts of the drum, for example will

binout, 0 10.2100, b 0, n 150.50175039 <
create a tape to be loaded to tracK 150 cell 5 and on.

30. Check

14.4 Check,

Call::= check, <form> <name list> <
23= <empty>lalnir

<name list>::= <enpty>]<name> <name list>

Performs sum check on areas described in the catalog and prints the cata-
log items if wanted,

<form:

<empty> The items are not printed.

a All information in the item is printed in a way resembling the
7 parameters to res or set. The notation r and x is used for the

reserved bit and the special bit. 7 ~
n (names only). Only kind and names in the item are printed,
r (Fes or set form). Prints in a form which may be used as Help 3
~ information (a call of res or set intended to re-establish the

catalog item). Prints on the selected output unit. If none is
selected the unit 32 (perforator) is used.

<name list>:
<empty> The entire catalog is printed according to <form>. Areas on

drum or disc with sum bit present are sum checked.
<names> The items in the list are sum checked if the sum bit is present

and printed according to <form.

The selected output unit is used for printing. If none is selected the
standard output unit is used, except for the form Le

No-alarm return,
~~Check returns to Help as an ordinary aux. program except if x is se-
lected as output unit. The return will then take place as described for
res3; in case of a programmed call with the register contents:

R = area word of last processed item in <name list>.
M = specification word, or 0 if none is present.
indicator =

IZA, name found.
LZB, sum o.k. or sum not computed.
LRB, sum computed,

bits 3 to 7, bits from the area word (with reserve bit set to O in
case of any special item).

Special messages.

name Name in list not found in catalog,
sum (in black) Sum of area fails. Check proceeds,

Clear 31

14.5 Clear.

Call ::= clear, <name>|clear, <name>, <help number>

Clear removes the entire item, containing <name>, from the catalog, if
the following conditions all are fulfilled:
1) <name> is found in the catalog
2) The area is neither free nor work (i.e. has no special-bit)
3) The area is reserved or has kind + QO or <help number> is specified

with a value matching the area word in catalog.

If the area is reserved and adjecent to first free block then the
area and adjecent not used areas are given back to free and booked is
set to zero.

Clear will change the item to a null item except if it was the last
item in the catalog.

No-alarm return.
ear returns to Help as an ordinary aux. program, except if x is se-

lected as output unit. The return will then take place as described for
res, and with the following values in case of a programmed call:

Raddr = 0 o.k., item removed
1 name not found
2 clear not allowed

Special alarms.
name Name not found in the catalog
no clear Condition 2 or 3 above violated

Example: The calls:
GOL<

begin

end

Clear, galx
run<

will translate the algol program, remove the translator item from the
catalog, and run the translated program.

If gal is reserved and adjacent to free (as will be the case at small
installations) » the area allowed for program data is in this way increa-
sed by approx, 170 tracks.

32 Compress, edit

14.6 Compress (entry in check).

Call::= compress, <form> <
For the syntax of <form>, see the description of check.

Removes all null items from the catalog and displaces all reserved
areas to remove holes left by clear. Meanwhile all items are printed ac-
cording to <form>, as described for check. The items appear as they are
left by compress (except free, which is adjusted later).

When compress has finished, the number of words used in the catalog

and the final size of free are printed.

It is important that compress is not interrupted during its work, To
protect against mistakes the by-inhibition is set, and half inhibition is
set in the core store,

Return. Compress returns as an ordinary aux. program. If x is selected
as output unit and compress is called by a program the stored R register

in the image will be set to
aq <words used in cat>.235 + <free size>.39

before the normal return takes place.

14.7 Edit.

Call ::= edit, <input area> <output area> <space tracks> <changes> <

<input area> ::= <empty>|i <name>
<output area> ::= <empty>[o <name>
<space tracks> ::= <empty>]<number>
<changes> ::= <empty>|1 <char> <type> <changes>
<char> ::= <single>|<number>
<type> ::= c/s|blale|x<char>|n

Edit reads a list of corrections from current input medium, scans the
text in <input area>, corrects it and puts the result in <output area>.
Then the typewriter is selected as current input medium and control is
given back to Help which will start reading.

<input area>:

<empty> The paper tape reader will be used for input.

i <name> The <name> mist describe a ly-medium or a text area,

<output area>:
<empty> The perforator will be used for output.
© <name> The <name> mist describe a sy-medium or a text area,

<space tracks>:

<number> <number> tracks filled with spaces will be output to

<output area> preceding the corrected text,

Edit 53

<changes>:

<empty> The standard character table will be used to interpre-

te the symbols in the correction list and <input area>

thus:

UC and LC have the conventional meaning. <10> will un-
conditionally terminate the input.
Skipped characters: TAPE FEED and ALL HOLES.

Blind characters: SPACE, END CODE, CR, BLACK R., RED

Ry, P.orr and F.ON will not be used in string match-

ing.

Alarm characters: unused characters (45, 46, etc.)
Wil give an alarm if met.
End marks: STOP CODE will terminate the input when the

Tast correction has been inserted. Before that point

it will be treated as a blind ch ter.
Replaced characters: The symbol 4 in the input will be

Teplaced by OTOP CODE and treated thus. 4 in correc-

tions from typewriter is treated in a special way, see

later.
Normal symbols: All other symbols will be treated as

normal, case dependent symbols.

i <char> <type> The character table will be changed to treat <char> in

7 another way. <char> may be designated either by the
character underlined or by its decimal value.

<type>:

c The character will be treated as case free, i.e. it

~ will be used in string matching but with same value in
upper and lower case.

s Treated as a skipped character
B - - a tlind -
a - - an alarm -
e€ - ~ an end mark
Y <char> The character will be replaced by <char> and treated

~ thus. Notice that this may cause endless loops like:

113, r11,111,7r 13
n Treated as a normal Symbol.

The effect of TAPE FEED, UC, LC and <10> cannot be changed.

In output on external media superfluous case shifts are removed and

SPACE and CR take the case of the preceding symbol.

14.7.1 Correction list.

<correction list> ::= <end mark>|<correction> <correction list>
<correction> ::= <copy to> . <insert> . <skip to> s

<end mark> is an end mark character, e.g. STOP CODE, The 3 strings in

<correction> may be empty and the corresponding action will then be emp-

ty. The correction:
~abdC.e

will thus immedlately insert a b C without skipping anything. The correc-

tions are executed one by one during the scan of the input text. Edit

inserts case shifts in the output as needed.

3h CEait

Notice that only TAPE FEED’s may separate (underlining) and .
(point). The string: UC LC . will thus not be recognized as string
termination but is treated as the two characters and...

Edit stores the corrections in the top end of The working area,
If both corrections and text are read from the paper tape reader the

program will wait for a space to be typed after reading the corrections.

14.7.2 Typed corrections to edit.

If the typewriter is used as input unit for corrections then 4 case
shifts will cause edit to type <. It is then possible to type:

<number>. designating a lower case symbol with the value <number>.
<number>: designating an upper case symbol 6

a from typewriter is always treated thus: before a correction starts 4
will terminate the correction list, Inside a correction @ annuls the cur-
rent line.

14.7.3 Messages and alarm situations.

Edit types the number of corrections read (in red) when correcting
starts. If the corrections or the text for some reason do not terminate
as expected the RESET and then the START button should be pushed. This
will work as an unconditional end mark for the corrections or the text.
The number of executed corrections are typed when edit terminates.

Special alarms:

char Alarm character read. Edit skips the character and con-
tinues,

full The length of <copy to> or <skip to> exceeds 400 charac-
ters or the corrections exceeds the working area.

overlap The output text exceeds the space allowed for it, or the

output overtakes the input (input and output area identi-

cal), or the input and output area are on the same magne-

tic tape.

termination Unterminated correction.

Examples: A program on paper tape containing many STOP CODE’s may be
read to the free area thus:

gdit, o free, il1,b<
a

The paper tape reading mst be terminated by means of RESET and START and
then booked will be set to the number of blocks written,

Assume that the text in free contains

table[ALFA]
which should be corrected to

table[aifa + 1]
This may be done by the call:

edit, i free, o free, L1,b<
gebiels alfa +1. FAY ~

The .copying wilt terminate on the <10> previously inserted as end of the
program text,

Exit, list 35

14,8 Exit.

Call ::= exit < |exit, <number> < |exit, h <number> <

The exit program re-establishes the core store and all registers by means
of the core image. Then a jump is performed depending on the call of
exit:

exit< Jumps to the exit address set when the image was created.
exit, <number> < Jumps to the left instruction in cell <number>.
exit, h <number> < Jumps to the right instruction in cell <number>,

Before the core store is re-established cell 0 to 9 of the image may be
initialised, This can take place in two ways:
1) If cell 8 of the image contains

vy 1 % 511
and cell 9 contains (x are arbitrary numbers):

aq x , hv (rx) or qafx , hh (rx)
then only cell 1 to 6 will be set as below.
2) In all other cases will cell 0 to 9 be set to:

[basic dump program]
0: it -1 » it -1 3 overflow entry:
Ts it oO » pt 1 3 hs 1 and hsf 1 entries:
2: pa 1 + 960 3 drum dise version: gg 1, gk 2
3: gk 2 » vy d18+d433 drum dise version: vy arbrals, vk 960
hs vk 38 > sk O 3 store cell 0 to 39, get track 0 of Help;
5: vk O > ik Oo 3 both entry and exit takes place in cell 6.
6: vk[group] , vk[track] ; reestablish group and track
7: aq N 3 used by patch programs, etc.
8: vy 0 t -d18 -1 3 release HP-inhibit.
9: aqlexit addr), hv(r) 3; or : qaf, hh(r)

Example: It is sometimes useful in debugging to stop immediately before
the exit jump. This may be achieved thus:

slip < 3 call slip

i=7 3
2Q 3 insert stop

vy 1% 511 3 prevent initialisation of cell 7
e 3 exit

The exit program can only be placed on drum and a message will be given
g Lo other media are a ed,

14,9 List (entry in check).

Call ::=3 list, <form <name list <
For the syntax of <forn> and <name list> see check.

List works exactly like check, except for the sum check, which is
never performed.

36 Move, outparam

14.10 Move,

Call ::= move, <base> <base> <tracks> <

<base> ::= <area name>|b <help number>
<tracks> ::= <empty>|<number>

The program moves the words in the area given as first base to part of
the areaggiven as second base.
<base>:

<area name> The description in the catalog is used.

b <help number> The <help number> is used as an area word.

<tracks>:
<empty> All the words in the first area will be moved.
<number> <number> tracks (of 40 words) will be moved.

It will be checked that the moved words do not extend farther than the
second area,

A full number of blocks in the second area will be changed. Not used
words in the last block. will be filled with zeroes,

Special alarms;

full Second area too short,
overlap It is tried to move from a magnetic tape or carrousel

to the same tape or carrousel. Or it is tried to move
from. a disc area to an overlapping area.

Examples:
“~—“"move, work, free <
will move the words stored in work (not the entire work area, see 5.4) to
the beginning of the free area and set booked to show the number of
blocks written.

move, free, tape, 6 <
will move 6 X 40 words from free to one block in the tape area, tape, and
f£i11 the last 4 x ho words in the block with zeroes. Then an ECF-mark is
written and the length 1 is inserted in the catalog description of tape.

14.11 Outparam(entry in binout).

Call :: outparam, <arbitrary parameter list> <

Outparam punches the parameter list in a form suttable for reading by
Help 5. The list is punched on the selected output unit. If none is se-
lected the unit 32 (perforator) will be used.
Outparam returns to Help as an ordinary aux. program.

Example: The call binin, image < may be punched as head of a binary
tape thus:

outparam, binin, image <

Pair 37

14,12 Pair (entry in print).

Call ::= pair, <pair list> <
<pair list> ::= <empty>|<pair> <patir list>
<pair> ::= <domain> <domain>

For the syntax of <domain> see the description of print.

Pair compares the two domains described in <pair> and prints the de-
viations in the <form> contained in the second <domain>. The length of
the compared areas is also taken from the second <domaim,

Pair prints on the selected output uit. If none is selected the
standard output unit is used.
The next <pair> is treated in the same way, and so on wntil the end of
the list.

Pair returns to Help as an ordinary aux. program.

The layouts - , i, and w have no effect in pair, Apart from this the
rules of print fold as if the second <domain> was printed.

Special alarms:

units Tt Is tried to compare two areas on the same magnetic tape or
carrousel,.

Exemple: pair, p 10s, 81 15, Pp 10..1023 <

This call compares the core image with the area s1 15. The comparison is
extended from cell 10 to 1023 and deviations are printed in program form,

38s Print

14.13 Print.

Call ::= print, <domain lisi> <
<domain list> ::= <empty>|<domain> <domain list>
<domain> ::= <base> <layout> <form <interval>|c

<base> ::= <empty>|<area name>|b <help number>|5 |<base> <base>
<layout> ::= <empty>|m <list of help numbers>|1™<number>|w <number>|

-|<layout> <layout> ~ ~
<form ::= plI|rlflelt

T:3 <enpty> <interval>
pn |ix|xx|fx
<help number>|a|c|<help number> <number>

Print prints the contents of the storage sections given in the <domain
list> on the selected output unit. If none is selected the standard out-
put unit is used, Print returns to Help as an ordinary aux. program.

<base>:

<area, name>
b <help number>

b

<empty>

<layout>:

Part of the corresponding area is printed.
The <help number> is treated as an area word descri-
bing the area to be printed.
Part of the buffer store is printed.
The latest <base> is used. If nome has occurred part
of the core image is printed.

m <list of help numbers>
The numbers are treated as a list of 10-bit bytes each
specifying a number of bits within a word thus:
byte = 0 blind specification.
1<byte<lo the following ’byte’ bits are printed
~ as an integer.
101<byte<1h0 the following ’byte-100’ bits are

~ ~ skipped.

The bits are specified from left to right in the cell.
m has only significance in connection with g-form.

“Kt most <number> positions are printed on one line.
This deletes the effect of any preceding w-layout and

vice versa. ~
<number> words are printed on each line.

No cell number is printed in the beginning of the

lines,
The latest m, 1, wand - layouts are used. Print
starts paremeter scanning with printing of cell nun-
bers active and as if the following layout list had

been present:

m 10.10.10.10, w 1

Print 39

<form:

Is
 program form. Notice that w-layout also works in this

case,
integer form corresponding to the algol layout
¢-dddddd} or +-ddddyat
real form corresponding to tod. dddy-dadt
fractional form (unit in position 0) corresponding to
tod. dddy-daa}
group form corresponding to the latest m-layout.
text form assuming a Help 3 text format.
program form without effective address value for r-
marked instructions,
integer form with extra accuracy, corresponding to
¢-ddd, ddd, ddd, dda}
real “form with extra accuracy, corresponding to
¢-d.ddd, ddd, dddy-adaa+
fractional Torm with extra accuracy, corresponding to
f-d.ddd, ddd, dddy-daa}

li
e

f
H

[ke

[Bt
 c

to
Ie

1s

<intervalb:
<empty> the entire area is printed,
<help number> if the area is core image or buffer store the number

is treated as <first cell> .. <last cell>, else the
number is treated as
<first block>.<first cell>.<last block>.<last cell>
The words in the area from relative cell
’<first block> X block length + first cell’ to cell
*<last bloek> x block 1 + last cell’ are printed.
the arithmetic registers (R and M) are printed.

(or <domain> = ¢)
~ all the control registers are printed in a special way

independent of the form and layout,
<help number> <number>

<help number> works as above and <number> is used as
the starting value of the printed ruming address. If
<number> is not specified the rumning address starts
with <first celil>.

J
o
l

Each <domain> is printed as a head stating the used base and a list of
lines containing the words. Each line starts with two numbers (unless -
has appeared), the first is the ruming address the second the relative
address within the block,

Example: 1, print, p 10..20 a en =

tape, m 4,132.4, w 10, & 10.399 <

This call prints on the line printer the instructions 10 to 20 in the
core image, the control registers, R, M, and RF, the first 11 blocks of
the area, tape, with 10 words a line and only the first and last 4 bits
of each word printed.

os Res

14,14 Res (entry in clear).

Call ::= res, <length> <bits> <entries> <

<length> ::= <number>|<empty>
<bits> ::= p|i]s <nelp number>|d <help number>|<empty>|

<pIts> <bits> ~
<entries> ::= <name>|<name> <help number>|<entries> <entries>

Res reserves a part of free starting with first free block and inserts a
descriptibn of the reserved area in the catalog. Free is updated accor-
dingly.

<length>:

<number> <number> tracks are reserved.
<empty> <booked> tracks are reserved (see app. A, 1.5).

.

<bits>:
p sets the program bit in the area word.
T - - inhibit - - = = -
8 <help number> - - sum - = = = - and inserts

<help number> as a secondary word,
a <help number> inserts <help number> as a secondary word,

<entries>:
<name> <name> is inserted in the catalog item. It is checked

that <name> is not already in the catalog.
If p appears it is checked that the program may be
called by Help 3 (see 11.1).

<name> <help number>

<name> is treated as above and <help number> is inser-
ted as a specification word, If p appears it is
checked that the specification allows the program to
be called by Help 3 (see 11.1 and app A, 14).

Booked is always cleared by res. The return to Help is as an ordinary
aux. program except when the output unit x is selected.

No-alarm return.
Ty x is selected, res will return as an ordinary aux, program, even if
one of the special alarm terminations should have oecurred. If res is
called from a program (hs 1 #0), one of the following values is set in
Raddr (i.e. in the stored R in core image) before return:
Raddr = 0 o.k., the item is inserted

error in param value
name already in catalog
catalog filled
length < O or too large F
U
P

In case 1 to 4 an error message will appear on the selected output unit

(another than x may be effective because x has the mask -1). Notice that
the general alarms (e.g. param) still uses the alarm return.

Ron 4

Special alarms.

Pull éatalog filled
length area length outside allowed range, or free too small.
name <name> already in catalog.
value information outside allowed range.

14,15 Run. ;

Call ::= run< | run, <name> <

Rm starts execution of a translated Gier Algol 4 program. The execution
terminates with a hsf 2 entry to Help.

run< The program described in work is executed (usually the latest
translated program).

rum, <name> <
<name> must describe a drum area containing the translated
algol program to be executed.

Run checks cell 2 on the first track of the area to see if it contains
an algol program.

If part of the algol program is placed in the core image the execution
takes place with half inhibit in core[1023] to allow the operator to
choose between dump of the core store (type < after ¢<image}) or rerun of
the program (type space after ¢<image}). In other cases the core store is
not inhibited.

As the algol program changes cell 0 (spill action), rum will set
vy 1% 511 in cell 8, This prevents initialisation of cell 0, if the HP-
button is used during run. Cell 8 is set back again when the mm is com-
pleted in the normal way.

If the executed program is part of free the execution is performed
with a smaller free area to prevent destroying the program itself.

Special alarm.
not present The area contains no algol program.

42 Set, setsum

14.16 Set (entry in clear).

Call ::= set, 0, <length> <first block> <bits> <entries>|
set, 1, <length> <disc wmit> <first block> <bits> <entries>|
set, 2, <length> <grouped> <reel> <first block> <bits>

<entries>|
set, 3, <length> <tape wnit> <file> <first block> <bits>
<entries>|
set, <kind 4 to 7T> <rest of area word> <entries>

For the format of <bits> and <entries>, see res. All remaining syntax
elements are help numbers.

Set inserts a catalog item describing a non-reserved area. The first pa-
rameter is the kind of the area.

<length>: Set checks as far as possible that the area is inside
the capacity of the backing store concerned. In case
of tape (kind 3) a maximm of 8000 blocks are allowed
and <file> and <first block> mst fit into the area
word format (see app. A, 141).

<first block>: First block of the area, See remarks on <length>.
<bits> and <entries> are treated as in res,
<dise unit>: unit number, between 8 and 15.
<grouped>: number of blocks per transport, 1, 2 or 3.
<reel>: first reel of the area, between 0 and 63,
<tape unit>: the station mmber, between 1 and 6,

<file>: file number between 0 and 31.
<rest of area word>:

the last 32 bits of the number are inserted in the

area word,

Set returns to Help in the same way as res, and with the same values in
Raddr if x is selected.

14.17 Setsum (entry in check).

Call ::= setsum, <form>, <names> <
<names> ::= <name>|<name> <names>

The sum bits are set and the complementary sums of the areas in <names>
are computed and set in the catalog items, The items are printed accor-
ding to <form> as described for check, Return and no-alarm return takes
place as for check.

Special messages,
name Name not found in catalog.
sum (in black) No secondary word in the catalog, Setsum proceeds.

Slip 43

14,18 Slip.

Call 7:= slip < |slip, <group>.<first track>.<first cell>.<start> <

Only deviations from ’A Manual of Gier Programming II’ will be described.
The syntactical elements defined there will be used below.

Slip starts reading from current input medium and may assemble instruc-
tions into the 3 drum area given by <group>:

Calli:

Slip< Slip starts loading as if the following block head had been
read:
fselect group <d19>]
b k= <di6> , i=0 3 a16 and 419 are names in Help
T=10

iB
is

slip, <group>.<first track>.<first cell>.<start> <
Slip starts loading thus:
[select group <group>]
b k=<first track>, i=<first cell>
T=<start>
n
m

Slip may only load to one group of the drum disc in each call.

List of new syntactical elements:

< <pre-def, address>

lo
lA

is syntactically a new <definition line>
Slip tests <pre-def address> (by means of a bs-instruction).
If 0 <<pre-def address> then the following text is read in
normal way, else slip goes into skip mode during which only xX
and > are treated. —
may appear everywhere outside comments in read mode and is al-
ways treated in skip mode,
Slip shifts mode from reading to skip mode or vice versa.
has the same syntactical position as xX ,. Slip starts reading in
normal way. The slip condition:

<dl-3
text 1
x

text 2
>

has some similarity to an algol construction:
if 0 < dl - 3 then load (text 1) else load (text 2);

But notice that slip conditions cannot be nested and that x and

> will be interpreted even in comments and texts in skip mode,
Not used, i.e. works as s
has the usual significance. If e causes an exit from slip the
auxiliary program, exit, will bé called with suitable parame-
ters.

4 Slip

g is a new <control code>.

7 The current input medium will be the latest used internal medi-
um. If none is present a 10-error appears.

h is a new <control code>,. Causes a return to Help 3 which conti-
7 nues reading from the current input medium. Slip forgets all

about the loaded program.

i <arbitrary string without CR> CR
is a new <lLine>.
The text string will be printed on the typewriter during loa-
ding.

3 is a new <symbolic address> like i and k.
j is the current relative address on the track to which slip
loads. 0 < j < 40

<character list>.—
is a new <constant line>.
<character list>::= <empty>|<integer> <term.> <character list>|
t <arbitrary string not including 3>3 <character list>|
T <arbitrary string not including 3>3 <character list>
Sterm.> ::2 ,|<Line end>

The <character list> is packed into one text string:
<integer> is packed as the symbol with this value. t.. .3 is
packed as the string starting in LC. TT... 3 is packed as the
string starting in UC. ~

p <arbitrary string without ’<’? ><
” is a new <control code>.

The string between p and < is assembled as a text and is looked
up in the catalog. “The resulting description mst be a text

area and the area will be selected as current input unit. No-
tice that space, etc., should not appear in the string.

<sum code> <character>
may appear everywhere. <character> is checked in the same way
as Gier Algol 4 and edit performs sum check, Apart from this

the construction is blind.
t <arbitrary string withouts;>3

7 The stored format of the text is changed to conform to Gler Al-
gol 4 and Help 4. Superfluous case shifts are removed but
space, CR, etc. are regarded as case dependent symbols.

w <pre-def, address>, <preedef, address>
~ is a new <definition.

The two addresses are put in the catalog in the area word for
work, The first is inserted as <blocks written>; to the second
is added the group information and it is inserted as <first
written>.
Not used, i.e. works as s,
Not used, i.e, works as 5.

in

P
a
i
x

Slip, start 45

New error messages from slip.

9 <serial address>
Too many labels or blocks. May appear at p which uses 40 words
of the label table. Typewriter is selected as input unit.

10 <serial address>
Illegal use of p or g. Typewriter is selected as input unit.

<bit pattern> sum ~ ~
The <character> following <sum code> does not match the charac-
ter read, <bit pattern> shows the corresponding correct <cha-
racter>. Slip continues reading.

Example: The following slip program will load the integers 1, 2, 3 ...
Into cell a1 to 300 of the core store.

b dl 3

T=0 3 load the following text into core image
t d=d+1

~ imd+d1-1

<i-300, pimage<
>13 3 end of text,

ised 3
eee 3 Some ordinary slip program.
di: 3 The integers will be loaded from here and on.
ad=0,pimage< ; Read the text in image. It will repeat reading itself
e — 3 until cell 300 is reached,

14.19 Start,

Call ::= start, <param list> <
<param list> ::= ty>|<paran> <param list>
<param> ::= <number>/|<area name>

Start clears cell 1023 (inhibit) and clears the address part of cell 8 in
the core image so that the next call of exit will initialise cell 0 to 9.
Depending on the parameter list the following takes place:
<paran>:
<number> The 10 first bits of <number> are inserted as rum num-

ber , the remaining bits as date,
<area name> The area must be a drum area, It will be filled with

hsf 2 instructions.

Start returns to Help as an ordinary aux. program,

Example: start, 9.6.67, image <
This call sets the date to 9.6.67 and fills image with hsf 2,

46 15. Programs in paper tape form

15 PROGRAMS IN PAPER TAPE FORM,

The following programs mst be read in each time they are needed.

15.1 cattap,

Read by ror<. Prints the message fscatts and waits for a digit
followed by comma to be typed, Writes a <cattap}> label and an EOF-mark
on the corresponding tape station, After that it is ready for a new sta-
tion number to be typed.

If a parity error occurred during writing ‘the message ¢<fault} is
given.

1502 Check bin.

Read by r< or <. Prints the message ¢<check bin} and waits for a
space. It will then read and check the first binary section of the tape
in the reader (both bin 0 tapes and normal binary tapes may be checked).

If the tape was o.k, the program returns to the start situation,
Otherwise an alarm is given. If reading stops (because of a parity error)
or the reader is emptied, the program may be restarted by pushing RESET
and START,

153 Create new -> old.

Read by Slip in the old Help 1 version. Watts for a space to be typed
and will then punch the current track 0 in bin O form. Returns then to
the start situation.

The punched tape enables the transition from Help 3 to Help 1.

15.4 Punch head kompud.

May be read by 1 in Help 1 or r< (and slip) in Help 3. After a moment
the tape stops. It is now possible to redefine d = <mmber of drums> be-
fore 1 is typed. d = 1 from the beginning.

After loading the program punches the head kompud tape corresponding
to the d-value, Then it waits for a symbol to be typed,

If c is typed, the program starts copying from reader to punch
(usually a kompud tape is copied). Else a hsf 2 is performed,

Programs in paper tape form 47

1565 P 1, include algol.

The aux. programs slip, exit, and (if a permanent translator is want-

ed) res + set, move and setsum mst be present when P 1 is used. Further
the drum mst contain a Gier Algol 4 translator (not necessarily a drum
version).

P 1 is loaded by wx. During loading a number of further information
must be typed in, to define the actual place of the translator, the place
to which it should be moved, and the name of the final area (usually the

name tga; should be typed).
Each piece of information to be typed is explained by a message. In

most cases the information resembles what is required when programs are
added to the system (see 10.3).

If the kind (435) is defined to sy-medium (6) the two paper tapes of a
transient compiler are punched. This requires however that the translator

on the drum is a drum version.

Alarm messages from P 1.

pass sum Translator not present (only tested in case of a
transient compiler).

translator medium Translator version does not match the final place

typed in,
wrong kind ad#0,1, 2, 3 0r6,

48s Catalog

APPENDIX A: THE CAT SYSTEM,

The Cat system consists of the catalog tracks and the tracks necessary

for basic handling of the catalog. The Algol translator requires only the

presence of some Cat system to make full use of the catalog facilities,
but usually Cat will be part of the Help 3 system. The four constituents
of Cat are then placed on the drum thus (the Slip names are defined in
Help 3):

1) Catalog tracks d21 to d21 + 423.1
2) Search track c64 ~ 1
3) Init medium tracks c63 and 1c63
hk) Get word track c64

Either the drum or the disc (unit 8) is chosen to be the free store in

which reservations of areas can take place. Free kind is 0 If the free
store is drum, 1 otherwise,

1. CATALOG,

The catalog holds descriptions of peripheral units and named areas on the
various backing stores. Named constants may also be placed in the cata-
log. The last word on each catalog track is a c»-marked check word satis-

fying
sum of words on track + sum of marks on track.9 + ¢.9 = 0

where c is the catalog track number, 1, 2, 3 eee
The string of catalog words, omitting the check words, consists of a

sequence of catalog items, the first of which have standard names:

Items in catalog: describes:
free the free area in the free store

work @ working area on the drum
date the current date and mm number
image the core image on the drum
r the standard paper tape reader
t the typewriter input mit
p the perforator output mit

1 the lineprinter
w the typewriter output unit
x no-alarm output unit, used in check, etc.
<optional items> peripheral units, areas and constants
<Ob> a bemarked zero terminates the catalog

fn item has the format:

1) An area word, a-marked
2) A secondary word, a-marked. This word may be omitted.
3) A Name Of arbitrary length, the last word b-marked, the other words

O-marked,

4) A specification word, O-marked. May be omitted,
5)eeAn aroitrary number of names like 3) and specification words like 4)

may follow at this place,
Null items, consisting entirely of zeroes, may be present in the catalog
as results of clear actions,

Catalog go

1.1 Format of an area word:

qq <kind>.2 + <special>.3 + <program>.4 + <reserved>.5 + <inhibit>.6
+ <sum>.7 + <various>.39,

The content of <variocus> depends on the value of <kind> which describes
the kind of storage medium concerned,

<kind> corresponding format of <various>
O drum area, <blocks>,23 + <first block>.39
7 dise area <blocks>.23 + <unit>.27 + <first block>.39
“~~ <unitS is dise file number, usually 8.
2 carroussel <blocks>,23 + 7.27 + <grouped>.29 + <reel>.35 + <block>.39

<reel> and <block> deseribes the first block in the area,
<grouped> is the number of 512=word blocks to be transferred by one
11 or us instruction when transport from or to the area takes place,
<special> and <reserved> will always be 0.

3 tape area <blocks>.2) + <unit>.27 + <file>.32 + <block>,.39
<un is the tape station number, 1 < mit <6, <file> and <block>
determines the first block of the area thus:”

load point ECF - file 0 - EGF - file 1 -
uf I [[I L I
label block 0 block 1... blockO bilocki ...

All blocks, except the label, are assumed to be 400 words. The first
word of the label block must contain the text ¢<cattap} in order to
be accepted by init medium. <special> and <reserved> will always be
Oe

4 constant <arbitrary bits>.39
Ss 3 - 7 in the area word will be 0.

6 sy-medium <by>.19 + <mask>,.29
7 ly-medium <by>.19 + <mask>,.29

y> and <mask> will be used to execute vy <by> + <mask>. bits 3 - 7
in the area word will be 0 when <kind> = 6 or 7,

<special> is 1 in case of the items free and work, 0 otherwise.
<program> is 1 in case of an executable program, If <program> is 0

the item is a text area,
<reserved> is 1 if the area orTginally has been a part of the free

area. Then it may again be included in free by means of
a cancellation and a clean up of the backing store. If
special = 1, see 1.5.

<inhibit> is only significant if <program is 1. <inhibit> = 1 in-
dicates a program to be executed with inhibited core
store. <inhibit> =0 corresponds to a task program. If
special = 1, see 1.5.

<sun> is 1 if the secondary word contains the negative sum of
all the words in the area (including marks.9).

1.2. Secondary word,

Usally the secondary word will contain the checksum of the area, but, in
c.z2 of free, work, and date, the content is different. See 1.5.

50 §=Catalog

1.3. Names.

The names in the catalog must have the form of a Slip text without any
spaces, case shifts, or ’invisible’ symbols. Furthermore the last word
of the name must be b-marked.

1.4. Specifications.

In text areas a specification word is normally not used, but when a pro-
gram area with specification is called by means of Help 3, the specifica-

tion will be interpreted as follows:

qq <tracks read to core>.9 + <entry address>.19
+ <core address for first track>.29
+ <tracks skipped in start of area>.39

1.5. Free, work and date,

Format of free item:

aq <free kind>.2 + 1.3 + 1.6
+ <various corresponding to free kind>.39,

aq <no of catalog tracks>.7 + <booked>.25 + <min first free>.39,
tfree;

<booked> is the number of blocks transferred to free in the latest call
of an auxiliary program with free specified as output area, If all reser-
ved areas were cancelled the first free block would be <min first free>.

The area word of work describes the drum area produced in the latest call

of an auxiliary program with work specified as output area. There are two

possible forms of the work item:
Work in free:

aq 0.2 + 1.3 + 1.5 + <blocks written>.23 + <first written>.39,
twork};

Work not in free:
aq 0.2 + 1.3 + <blocks written>.235 + <first written>.39,
qq <max work blocks for output>.23 + <first block for output>.39,
twork3

The working area necessary for the Algol translator and a few other pro-

grams is called work-as-output. In some machines it may be the free area,
in other machines the area described in the secondary word of work. If
work is explicitly specified as output area (e.g. edit, o work <) then
work-as-output will be used. The description of work-as-output is always
on the first track of the catalog, cell als.

Format of date:

aq 4.2 + <day, month and year as 3 ten-bit groups>.39,
aq <run number>.9,

tdate 3

Search 51

2. SEARCH,

The Search routine searches for a name in the catalog and yields the
area word, the secondary word, and the specification word (if present).

Several other entries on the track are useful for selecting a track, cor-
recting a sum, etc,

The search track is present in cell - 86 ff when an auxiliary program
is entered. In other cases it may be read from drum to an arbitrary
place, The routine will use the cells d14 to 39a14 for work.

All the addresses in the following assumes that the track is placed in
-86 ff. The exit is always performed with hr 813 R, M, ZA and PC spoiled.

Entry conditions

pp <first word of name> - 1
hs cl

[The name should

not be ¢<free}]

pp <first word of name> -~ 1
pm 2c18 DX IZA
hs c2 .
[the name may be ¢<free}]

Raddr + 0
ZA 3:= 0
hs ¢c2

pam <general trackno>
hs ¢c3

ZA:= O

hs 8

marks:= 11

hs c16

Exit conditions

1. R>0 catalog error
2R<0 name not found
3. R=0

cell c free area word
- le secondary free word
= 2 area word of named

item
- 3e secondary word (if

present).
cell c15 points to the item word

after the name. This word and its
marks is also in M, marks.

1. R #0 as above
2.R 20 cell 2c, 3c, c15 and M

as above.

The first track of the eatalog will
be selected and read to dik. ch will
contain the selected track number, c5
the selected group

The track is selected, cl and ¢5 con-
tain track no. and group.

The sum word of the track in al4 is
corrected. (c5) and (ch) are selec-
ted,

ch and c5 are adjusted to point to
the next track. This track is further
selected,

Change of catalog and work place.

The routine may work on other catalogs (placed on drum), if the general
track no. in cl2 is changed to the first track of the catalog. The track
place 414 may be changed by correcting the address in cell c7.

52 Init medium

3. INIT MEDIUM.

The routine Init medium requires an area word as input parameter and ini-
tialises a few cells (the area description) useful for handling the words
in the area. If the area Ys on magnetic tape then the tape will be posi-

tioned to the start of the area.

3.1. Normal entry and exit,

Normally the routine is entered thus:
transfer first track of Init medium to core (every time).
am <area word> 3 or the equivalent.
aq <place for second track> 3 this address always in s-1,

hs <cell O of first track> 3 or the equivalent,

The normal exit will take place with hrn s13 only R, M spoilt.

An error exit can occur if a magnetic tape has not the label
¢<cattap}. The exit conditions are: hh s1; R #0 and M, s and p spoilt.

3.2. Area descriptions set by Init medium.

The description will be placed in core from <core part> - 2 to <core
part> + 2 and in case of buffer media further from <buffer part> + 1. to
<buffer part> + 6 in the buffer store.

The normal entry corresponds to <core part> = -4, <buffer part> = 0.

Description in core depends on kind:
cell kind=7 kind=0 kind= 1, 2, 3
<core part>-2 not changed not changed aq<core part>.9+1.19

+<buf>. 39
- -1 not changed qq ai4-1, aaf 0
- +0 not changed not changed not changed
- +1 not changed qa 1, xx ag 1, xx
- +2 vy<by>t<mask> qq<first block>.39, qaf<get word track>.39

The result is unpredictable if kind is 4, 5 or 6,
<buf> is <buffer part> + <transport length> + 7, where <transport length>
means the number of words transferred by one il x or us x instruction,

Description in buffer in case of buffer medium
cell kind=1 kind=2 kind=3
<buffer part>+1 area word area word area word

- +2 qq 1.21 qa<grouped>.9 aq 0
- +3 current block current block eurrent biock

- +4 aq 453.39 aa<grouped>.30 aq 400.39
- +5 ggcunit>+i6,il<mit> qq 7+16,11 7 qa<unit>

+160, il<unit>
- +6 qq 1.39 qa<grouped>.39 qa 1.39

Current block is:
kind=1 qq 453.9+<first block-1>,.21+<buffer part+7>.39
kind=2 qq <reel>.5+<block>.9-<grouped>.9+<grouped>.19+<buffer part+7>.39

kind=3 qq 400.19+<buffer part+7>.39
Area word is the original area word minus the word in <buffer part> + 6,

Init medium 53

The Help 3 routines Read internal and Get word update the area descrip-
tion as suggested by the following description:

<core part>-2 transfer top of block to core (buffer only)
-1 current word address (drm only)

- <left in block> - 1 (buffer only)
+O current word

+1 character count: -4 if first character of the word is
fetched, 1 if the last character is fetched,

+2 current track number (drum only). Fixed otherwise.

<buffer p> +1 area word describing the block from which the latest word
was fetched.

+2 block increment. Added to current block to read next
block.

+4 current block, The instructions:
arm <buffer part+3> , i1 <mit>

were used to read the current block
+4 transport length. Fixed
+5 qq <check transport> , il <umit>. Fixed
+6 area increment, used to update area word. Fixed.

3.3. Special entries.

If the address part of cell 3 of init medium is cleared before entry the
area description will be stored according to

<core part> =c - 1, <buffer part> = 1543.
In case of a tape area, the label must be equal to the content of cell
c80-c28 of init medium. This cell usually contains +<cattap}, but it may
be changed before entry.

Init medium may be entered at cell 2, if the second track already is
in core store,

Check of magnetic tape label can be avoided by clearing of cell
c81-40c28 on the second track before entry, but the label file will still
be skipped.

The area description may be stored somewhere else by placing <core

part> in p, <buffer part> in c80-1c28 on first track and entering cell 4
of Init medium. The address part of cell 3 of init medium must be cleared

ahead. The p-register will be spoilt upon return.

3.4, Help’s current input medium.

The selection of current input medium is obtained by a normal call of
init medium, If the input medium is not explicitly selected (e.g. after
an alarm message) the description in core is:

cell -2(=<core part>+2) : vyn 1 t 1016

54. Get word

h, GET WORD,

This routine transfers one word from a buffer medium selected by Init me-

dium.

4.1, Normal entry.

The get word track is fetched from the drum, and if a buffer area de-
scription is present in the normal place the routine may then be called

several times thus:

hs <eell 20 on track>
The normal exit is performed by hrn s1 with the next word from the medium
both in M and cell <core part>.

An error exit can oceur if a block fails (parity error) even after 4

rereadings, The return is: hh s1 with R = status word.
In each call the area description is updated,

4.2. Special entries.

The routine may handle area descriptions placed elsewhere if the follow-
ing cells are changed:

cell 18 on track := qq 6.19 + <buffer part+1>.393
cell 19 address := <core part>3
cell 21 address := <core part> ~ 13
cell 23 address := <core part> - 23

cell 24 address := <core part>;

When an auxiliary program is called by means of Help 3, a Get word rou-
tine initialised according to <core part> = c-1 and <buffer part> = 1543

is present in the core store. Its entry is in cell -26,
ev
e
e
e
s

APPENDIX B:

n
u
n
p
a
p
a

R
U
D
E

o
n
b
n

a

HELP 4 GLOBAL NAMES,

s-marked names may be changed in the start
d-marked names may be changed during loading of aux. programs

dad work name

a1 first track loaded
a2 load init code

a3 free kind
ah disc blocks mod 1024
a5 first free block mod

1024 _—

a6 sum cell help
a7 balance track 1

a8 intermediate first help
a9 first track final help

a10 [FB-294, SLIP]
ail parameter track
di2 first core help
a3 first core param track
dik first core texttrack

and catalog track
d15 length text print
ad16 image track 0
ai7 reader (0 or 3)
a18 by inhibit
ai9 image group
a20 [first SLIP in core]
d21 first catalog track
d22 no of 320 track drums
d235 no of catalog tracks
dak

eee print entries

a3
a32 work in free

d33 first work track

(group 419)
work tracks

a35 aux kind
aux reserved

d37 last relative help track
(relative to 49)

d38 last core for program
eall

d39 aux only
ako print entry
ahi buffermedia treated
dha image track 0 during

loading
a43 help alarm unit,

including typewr input
aky standard output unit

including typewr input
als work as output area,

relative on track
ah6 first free biock:1024
ah7 return to init help
ah8 load primitive catalog
ako first of 80 work cells

in init help

8 d50 image group during
lo

d51 date word, relative
on track

8 452 discblocks:1024
8 453 block length, disc
8s a54 lib station

a55 version number

e search results

¢1 search entry
e2 get free
ce} «select track in M
eh track selected
e5 group selected

e6 search mode
ec7 read track and sum
c8 sum track
eo summit
c10 (search)
c11 960
c12 catalog start
e135 test end
c14 cont search
cl5 last searched

c16 select next track
marks 11)
search)
search)
search)

c20 (search)
e21 (search)
c22+2 selected output
e235 text print entry
e2h alarmprint entry
c25 primitive input entry
c26 annull print entry
c27 read internal entry
e28 init medium entry
c29 put state

30

m9
cho entry hsf 2
chi entry hp-button
ch2 entry overflow
ch} char , ly D
chk read look-up entry
ch5 entry set typewr
ch6 entry hs 2,

select medium
ch] interprete
ch8 program call
clo entry hef 1

e17
c18
eg

{SLIP names]

Global names 55

c50 entry hs 1
e517 return from anx

program
e52 get param entry
e535 read and check help
c54 core dumped
e55 finish track 1
c56 finish track 1
c57 kind alarm
c58 param alarm
e59 part of exit
c60 not found alarm
c61 full alarm
c62 = chs - 1
c63 init medium track
c64 get word track
c65 get state
c66 modify get word
céyT - +
c68 ~ - -

c69 = 2018
c70 fault alarm
c71 get word entry
ce72 exit from text print
e753 get status
c7T4 adjust spectal
c75 modify get word

e76 modify get word
c7TT sum alarm
e786 sum, variable in init

help
sum track, procedure
in init help ‘
label in init medium
clear label check
buffer part, init med.

e79

c80
c81
282

e =1

el toverflow;
e2 Tull;
e3 syntax;
ek Tannull;
e5 Tparan;
e6 Tundef;
e7 catalog;
e8 kind;
e9 label;
e10 Vyf 1, aq 1016
ell+1 thsf1;

e12+1 Texit;
e135 tfault;
eth Vy 1 t 511
e15 std. entry constant
e16 teum;

56 Alphabetic index

a, 7
Alarms, general, 15, 25
alarms, special, 15, 25
area description, 52, 54
area length, 11 7
area word, ig, 52
backing stores, 5
bin 0 form, 16, 28, 29, 46
binary tape, 27, 28,36, 46
block, 5 —
booked, 11, 31, 40, 50
bootstrap, 24, 29
puffer media, 5
carrousel, 5, 49
tase shirts, 7, 33
catalog, 6, 12, 48
cattap, 46 —
check bin, 46
compiler, 25, 47
constants, 48, lo
core image, 5, T2, 13, 35
corrections, 5, 32

create new -> old, 46
current input medium, 6, 10, 53
date, 13, 45, 48, 50 ~

sc, 5»
domain, 28, 37, 38
drum, 5, 49
dump, 5, 13, 35, 41, 45
entries to Help 3, 13
exit address, 13
external media, 5
file, 49 “
Tree, 3T, 32, 36, 40, 41, 50
free kind, 48 —
generating Help 3, 17
get word, ~
group number, 5
half inhibition, 13, 32, 41
Read bin 0, 16 ~
head kompud, 46
help 3 information, 6, 7
help number, 7 7
hp-button, 137
hs 1 (switch], 14, 21
hs 1, hsf 2, hsf 1, hs 2, 14
image, 48 —
Include algol, 47
inhibit bit, 21, 40, 49
inhibition, 10, 13, 25, 45
init help, 16, 17
init medium, 52
internal entries, 22
internal form of parameters, 7

internal media, 5
item, 48, 51 7
1-iten, U8
Tabel, 46, 49, 52
ly-medium, 49

main help, T2, 16, 17, 19
move system, 17
name, 50
no-alarm, 30, 31, 40, 4e
normal out, 25 ~~
null item, 37; 32, 48
overflow, 14 —_

p-item, ig

2

parameter list, 6
parameter track, 6, 12, 21, 26
primitive catalog, 17
primitive input, 7, 13, 24
program bit, ho, 49 7
programmed call, To
programmed entries, 14
r-item, —
redefine, 18
registers, 13, 35, 39
reserved areas, 32,
return to help, 21

search, 51

Secondary word, 40, 48
selected output, 6 ~~
single, 7 ~
souree program, 26
special bit, 49

‘O
o

specification word, 21, 40; 48, 50
sum bit, 21, 30, 40, 4e, 4g
sum check, 10, 21, 30 ~~
sum code, 10
swop tapes, 20
sy-medium,
system punch, 20
system track, 23
t-item, 48
tape, 5, 11, 49
tape label, 46, 49
task program, 12, 21, 49
text format, 10—
track, 5 ~~
track-38: 12, 13
translated progr, 26, 41
transient compiler, 25, 26, 47
version, 18
weiten, 4”
work, 36, 41, 44, 50
work-as-output, 26, 50
x-item, 30, 31, 32, 4, 48

—_’

	A Manual of Help 3
	Contents
	Introduction
	Design considerations
	Proposal for a user philosophy
	Backing stores

	Principles of operation
	Help 3 information
	External form
	Internal form

	List of auxiliary programs
	Common characteristics of auxiliary programs
	Sum check, inhibition
	Texts and sum code
	Current input medium
	Length of areas
	Area conflicts

	Storage areas occupied by Help 3
	Entries to Help 3
	Core dumping
	Specific entries

	Alarm messages
	Help 3 paper tapes sent to the Gier installations
	Generating a Help 3 system
	Generating Main Help + aux. programs
	Slip names defining the system
	Adding aux. programs to the system in the machine
	System punch and binary tapes

	Conventions for programs called by Help 3
	Details of program call
	Internal entries in Help 3

	System track
	Primitive input program on track 0
	Description of auxiliary programs
	Algol
	Binin
	Binout
	Format of binary tapes
	Format of bin 0 tapes

	Check
	Clear
	Compress
	Edit
	Exit
	List
	Move
	Outparam
	Pair
	Print
	Res
	Run
	Set
	Setsum
	Slip
	Start

	Programs in paper tape form
	Cattap
	Check bin
	Create new -> old
	Punch head kompud
	P 1, include algol

	The Cat system
	Catalog
	Format of an area word
	Secondary word
	Names
	Specifications
	Free, work and date

	Search
	Init medium
	Normal entry and exit
	Area descriptions set by init medium
	Special entries
	Help's current input medium

	Get word
	Normal entry
	Special entries

	Help 3 global names
	Index

