
GIER—A DANISH COMPUTER OF MEDIUM SIZE

BY

C. GRAM, 0. HESTVIK, H. ISAKSSON, P. T. JACOBSEN, J. JENSEN, P. NAUR,
B. S. PETERSEN, anp B. SVEJGAARD

Reprinted from TEEE TRANSACTIONS

ON ELECTRONIC COMPUTERS

Volume EC-12, Number 5, December, 1963

PRINTED IN THE U.S.A.

GIER—A Danish Computer of Medium Size:

C. GRAM, O. HESTVIK}, H. ISAKSSON}, memper, mer, P. T. JACOBSENt, J. JENSENf,
P. NAUR}, B. S. PETERSEN}, AssocIATE MEMBER, IEEE, AND B. SVEJGAARD§

Summary—This paper gives a brief review of the design of the
machine GIER (42-bit words, 1-k core store, 12-k drum store, 50-
microsecond fixed point, 100-microsecond floating, add time) and its

programming systems. The principal subjects are: The order struc-
ture, the operating system, the ALGOL 60 system, an evaluation of
the order structure, the hardware organization, and the latest hard-

ware extensions, including a hybrid computer system.

I. INTRODUCTION

HE GIER is a computer originally developed as a

joint project of the Geodetic Institute and the

Danish Institute of Computing Machinery (Regne-

centralen), both of Copenhagen, with the purpose of

providing a tool for solving problems of geodesy. How-

ever, subsequent to the completion of the prototype in

late 1961 a production was taken up at Regnecentralen

and by October, 1963, a total of 15 GIERs were in use

in research and educational centers in Denmark, Nor-
way, Germany, and France.

The present report reviews the highlights of the

machine with regard to logical structure, software,

and hardware. Sections II to IV, by Gram and Svej-

gaard, describe the order structure and operating sys-

tem, stressing particularly the extensive address modi-

fication facilities, the handling of conditional instruc-

tions, and the use of marks attached to data. Section V,

by Naur, describes the design of the ALGOL 60 system

written for the machine, giving particular attention to

the solutions adopted for overcoming the inconveniences

of the two levels of store. In Section VI Jensen evaluates

the order structure from the point of view of the com-

piler writer, starting from the techniques actually

employed in the ALGOL compiler. Section VII, by

Isaksson, describes the realization of the structure in

hardware, in particular the general register transport

organization and the system of microprograms used in

executing the machine instructions. Finally in Section

VII, by Petersen, Jacobsen, and Hestvik, the latest

hardware extensions of the machine, including those for

controlling real-time processing, are discussed.

Il. SrructuRE oF GIER (FROM THE PROGRAMMER’S

PoINT OF VIEW)

A. Storage

GIER is a binary one-address computer with fixed

* Received September 9, 1963.
+ Danish Institute of Computing Machinery, Danish Academy

of Technical Sciences, Copenhagen, Denmark.
{ Engineering Research Foundation, Division of Automatic Con-

trol, Technical University of Norway, Trondheim, Norway.
§ University of Copenhagen, Copenhagen, Denmark. Consultant

to Danish Institute of Computing Machinery. Danish Academy of
Technical Sciences, Copenhagen, Denmark.

word length. The ferrite core store is rather small, with

only 1024 cells, but is backed up by a magnetic drum
store with 12,800 cells, and it is possible to extend the
store with a 4096-word buffer store for external units

and with a 25,600-word drum (see Section VIII).

Also, commmunication with the drum store may be very

fast if the possibility for simultaneous drum transfer and

calculation is exploited: A drum track of 40 words is

transferred in 20 msec of which about 19 msec can be

utilized for simultaneous calculations.

The word length is 42 bits and generally the cells are

used for storing full-word or half-word instructions, and

fixed-point or floating-point numbers, as shown in
Fig. 1 (next page).

B. Central Unit

The central unit contains a lot of registers a.o. for

handling the automatic address modifications, but for

the user only the registers listed in the diagram in Fig. 2
are of interest.

C. Peripheral Units

The standard equipment comprises an 8-channel

paper tape reader reading 1000 characters per second, an ©

8-channel paper tape punch punching 150 characters per

second, anda typewriter which is used for both input and
output.

The GIER computer.

Among the basic operations there is only one input

operation, reading one character at a time; correspond-

ingly there is only one output operation, printing or

punching one character at a time. The wanted periph-

eral unit (or units) is selected by a previous operation.

See also the list of operations, Fig. 3.

630 IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS December

01 39 40 41

Fixed-point number with 1 bit before and 39 bits after the point |

number T
7

Sign bit Flagbits

0 9 10 41 12 39 40 41

Floating-point | exponent | mantissa with 2 bits before and 28 bits after the point |

number T F t

Sign bit for Sign bit for Flagbits

the exponent the number

0 9 10 19 20 26 27 29 30 36 37 39 40 41

‘Two half-word addr. const. 1! addr. const. 2] oper. part 1 | addr. mod. i oper. part 2 addr. mod.2| 1 | |

instructions
7

Half-word mark |
Floating-point modif. &

0 9 10 19 20 26 27 29 30 32 33 39 40 41

One full-word addr. const. | count. const. oper. part | addr. modif. | oper. modif. indicator part | 0 | |

instruction

Full-word mark |
Floating-point modif.

Fig. 1—Utilization of a cell. The 42 bits are numbered from 0 to 41.

1

Number : |
Name of Bits Function

Accumulator R 41 Keeps the result of all 4 basic arithmetical fixed-point operations. The result is kept with 2 bits
before the point.

Shift and normalization takes place here.
Together with the multiplier register used as one long register for double precision multiplication

and division.
In floating-point mode the accumulator together with 10 bits of the multiplier register form the

floating-point accumulator.

Multiplier register M 40 Keeps the multiplier during fixed-point multiplication and the remainder after fixed-point division.

Index register p 10 The usual function of an index register.

Subroutine register s 10 Keeps the location of the last subroutine jump. ©

Indicator register 12 Keeps information about overflow, sign, zero-situation, and marking.

Track register 10 Keeps the address of the selected drum track.

Peripheral unit register 10 Keeps the numbers of the selected peripheral units.

Marking bits of accumulator 2 Keeps the marking bits of the latest used operand.

Overflow register 1 Keeps information about overflow for the latest arithmetical operation.

Fig. 2—The name, size, and function for the registers of interest to the programmer.

1963 Gram, et al.: GIER—Danish Computer 631

List oF OPERATIONS IN GIER

R is the accumulator. M is the multiplier register. (f) means that the operation can be floating-point modified.

Addition Jump

ar(f) add toR. h ’
an({f) add abs. value to R. hh tum to ht hall cord (or full ood).
ac a to cell. hs jump to subroutine. Store subroutine register. Set loca-
Subtracti tion of hs in subroutine register.
uolraciion hr return jump. Restore subroutine reg.

sr(f) subtract from R.
sn(f) subtract abs. value from R. a ;
sc subtract R from cell. Conditional operations

bs af address<count. const. then skip next instr. (address
Multiplication 7 f does not include count. const.) .

k(t Itinly M . t af address <count. const. then skip next instr.
mil (f) multiply M and cell and add to R ca af addr. of R #addr. of cell then skip next instr. m multiply. Result in long register.
mt multiply R by sign of cell. nc af addr. of R=addr. of cell then skip next instr.

cm af R=cell then skip next instr. Pattern of M is a mask.

Division
.

dk(f) divide R by cell. Pseudo operations

dl divide long reg. by cell. it use addr. as count. const. in next instr.
. nt use negative addr. as count. const. in next instr.

Shift is use addr. as s-value in next instr.
tk(f) shift in R. ns use neg. addr. as s value in next instr.

tl shift in long register.
ck cyclic shift in R. Drum transfer 1 © Samed :
nk(f) vyrrn: ali nift in long register vk select drum track.

wet : . s write on track. nl normalize in long register. Ik read from track. ‘

Boolean operations Peripheral unit functi

ab add Boolean. p uf punciions .
mb multiply Boolean. vy select peripheral unit(s). Pattern of count. const. isa mask,

sy write address as one character.
Register and address setting ly read one character to address part of R and cell.

pm cell to M.
pp address to index register. Auxiliary operations
ps address to subroutine register.
pi address to indicator. Pattern of counting const, is a mask, oa sto hange R and M.
pa set count. const. as addr. const. in cell, aa blind operation.

pe set count. const. as count. const. in cell. ud execute instruction in cell pointed out by the address.

Storing

gr(f) store R in cell.
gm store M in cell.
ga store addr. const. of R in cell.
gt store count. const. of R in cell. |

i store indicator in cell.
gk store track register and peripheral unit register in cell.

MObpIFICATIONS

Modification of basic operation

clear R before basic operation.
operate in floating-point mode (only 9 basic operations).
exchange R and M after basic operation.
skip next full word.
direct modification: address is taken as an operand. O

<
a
K
™
s

Indicator operations

store overflow, zero situation, sign, or flag bits in indicator.
af indicator condition fulfilled then skip basic operation.
af indicator condition not fulfilled then skip basic operation.
set flagbits in cell. gr

zn

Fig. 3—Operations and modifications of operations.

632

D. Storage of Numbers

GIER is built with two different modes of operation

in mind, namely fixed-point and floating-point mode.

Of the 42 bits of each cell the last two are used as

flagbits; this means that they do not take part in the

arithmetical operations but serve only administrative

purposes. The remaining 40 bits are used for storing a

number as follows:

A fixed-point number has 1 digit before and 39 digits

~ after the point. Since negative numbers are represented

by their 2-complements, the fixed-point range is the in-

terval —1<x<1, and the sign of the number is shown

by the first bit, this being 1 for negative numbers and 0

otherwise.

A floating-point number has a 10-bits exponent part,

thus allowing exponents from —512 to 511. The remain-

ing 30 bits constitute the mantissa which is normal-

ized to one of the intervals —2<x< —1 or 1<x<2. It

has thus 2 digits before and 28 digits after the point.

EK. Instructions

Each cell can contain one full-word instruction or two

half-word instructions. The structure of these two types

of instructions is described in the sequel.

Half-word instruction: A half-word instruction oc-

cupies 20 bits of a cell, either pos. 0-9 and 20-29 or pos.

10-19 and 30-39, and consists of an operaton part and

an address part. The flag bit in pos. 40 shows whether the

cell contains one full-word or two half-word instructions.

The flagbit in pos. 41 is used to distinguish fixed-point

and floating-point mode for the arithmetic operations.

(Thus always both of the two half-word instructions in

one cell operate in the same mode.)

Operation part: The basic operation part of the in-

struction (in the external language written as two

letters) occupies pos. 20-25 or pos. 30-35 allowing for 64

different combination of which only 61 are utilized so

far. One bit (pos. 26 or 36) is used for the indication of

clearing the accumulator before performance of the

operation.

Address part: The remaining bits (pos, 0-9 and 27—29

or pos. 10-19 and 37-39) contain the address part in-

cluding several possibilities for address modification. If

none of the modifications are used the address constant,

an integer between 0 and 1023 stored in pos. 0-9 or 10-

19, is the address of the instruction in the usual sense.

Pos. 28-29 or 38-39 are used to indicate one of the

following three modifications.

r modification: The final address is the sum mod 1024

of the address constant and the contents of the control

counter, 7.e., the address is calculated relative to the

location of the instruction.

p modification: The final address is the sum mod 1024

of the address constant and the contents of the index

register, 7.e., an index-modified address in the usual

sense. GIER has only one ordinary index register, but in

each cell pos. 0-9 may be used as an index register. (See

below under full-word instruction.)

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS

December

s modification: The final address is the sum mod 1024

of the address constant and the contents of the sub-

routine register. When a jump toa subroutine is per-

formed the address of the jump instruction is stored in

this register, and s-modified addresses are thus used in

subroutines for communication with the main program

especially for the return jump (and it is possible to use

an arbitrary number of levels of subroutines, see below).

If the subroutine register is not utilized this way it can

act like an ordinary index register.

The last bit (No. 27 or 37) indicates indirect address-

ing. This means that the final address is calculated from

the address part of that cell which the address of the in-

struction points out. Here the address of the instruction

means the address calculated as above included r, p, or

s modificaton. If the address part of the cell referred to

is also indirectly modified, this address is again referring

to a cell from which the final address is taken. There is

no limit on the number of links in such a chain of in-

direct addresses.

Indirect addressing is often useful when a stored

quantity is used many times. The address of the quan-

tity is calculated once, and all later references to that

quantity are made by means of indirect addressing.

Full-word instruction: A full-word instruction occupies

a whole cell and consists of an operation part, an address

part, a counting contant and an indicator part.

The flag bits in pos. 40-41 are used as above to dis-

tinguish between full-word and half-word instructions

and between fixed-point and floating-point operations.

Operation part: Besides pos. 20-26 which are utilized

exactly as for a half-word instruction the operation part

of a full-word instruction comprises pos. 30-32. The

contents of these bits indicate three independent modi-

fications of the operation:

1) Exchange modification which means that the con-

tents of the accumulator and the multiplier register are

exchanged after the performance of the basic operation.

This modification is often useful in connection with

multiplications (where the multiplier has to be placed

in the multiplier register) and when using the multiplier

register as a working location.

2) Skip modification which means that the cell after

the instruction is skipped and GIER continues with the

instruction (instructions) in the second cell after the cell

with the skip modified instruction. This device may be

utilized when a single cell in a program is wanted as a

working store, but is more important when used in

connection with conditional instructions because it is

very easy to make small local branchings in a program

without proper jump instructions.

3) Direct modification which for the arithmetical

operations means that the final address itself is used as

the operand instead of referring to the cell where the

operand is found. This modification is mainly used in

connection with the address calculations and address

administration of a program. Used in a storing operation

the direct modification means that the storing takes

©

1963

place in pos. 0-9 of the cell which contains the instruc-

tion, and hence it may change the address constant of

the instruction. (If the address of the storing instruc-

tion is indirect modified the storing takes place in that’

cell which contains the final address part, see above:

indirect addressing.)
The address part has the same structure and signifi-

cance as in a half-word instruction except for the influ-

ence of the counting constant.

The counting constant is an integer between 0 and 1023

and it is stored in pos. 10-19. In most of the operations

it has the following two effects: a) The final address is

the sum of the counting constant and the amount from

the address part (calculated as above). b) The address

constant of the instruction is increased with the counting

constant. This means that the address constant acts

nearly as an index register; each time the instruction is

performed the final address is automatically increased

with the same number, namely the counting constant.

If the address part of the instruction is indirectly

modified the counting constant is added to the address

constant of that instruction from which the final ad-

dress is calculated.
In a few administrative operations the counting con-

stant has a different effect. For details see reference

[1].
Indicator part: The indicator part of an instruction

may be thought of as a subsidiary operation or a

modification of the basic operation. There are three

types of indicator operations but in each instruction

there is only room for one indicator part. The three

types are the following:
1) An indicator-setting operation which can be used

in connection with any arithmetic operation—and in

certain cases other operations too—for storing informa-

tion in the indicator register. This indicator register con-

tains 12 bits of which two named KA and KB can be set

only from the control panel. The remaining bits are

used for storing certain information about the result

of arithmetical operations, namely, occurrence of over-

flow, the sign of the result, whether the result is zero or

not, or the flagbits of the operand. Each basic instruc-

tion can have only one indicator operation and can

store only one of the informations mentioned above.

2) A mark-storing operation which can be used in con-

nection with any of the normal storing operations for

setting the flagbits of a cell. (A normal storing operation

does not affect the flagbits of the cell.) The marking

thus set may depend on the contents of the indicator

register.

3) A conditionalizing operation which can be used in

connection with avy instruction to make it conditional.

By means of this type of indicator part, the performance

of any instruction can depend on the temporary state

of the accumulator or on the contents of the indicator

register. In the first case it may depend on the sign, the

overflow, the zero situation in the accumulator, or on

the flagbits of the last used operand. In the second

Gram, et al.: GIER—Danish Computer

633

case it may depend on the same sorts of information

stored in the indicator register at an earlier stage of the

program, or it may depend on the contents of the two

bits KA and KB. KA and KB are thus two operator-

controlled sense switches in the usual sense.

If an instruction has aconditionalizing indicator part,

GIER starts by examining the relevant condition. If it

is fulfilled, the instruction is performed; otherwise, the

instruction is skipped and GIER continues with the

following instruction.

II]. List ofr OPERATIONS

A. Comments to the List

Fig. 3 contains a list of all the basic operations, the

possible modifications, and the indicator operations.

The notaton used is that of the input language SLIP

(see Section IV-B). In Section III-C some examples of

programming are found, and here only a few comments

on some of the peculiarities will be made.

In fixed-point mode all arithmetical operations are

carried out with two bits before the point, and hence it

is possible to operate in the interval —2<t <2, but only

to store numbers between —1i and +1.

It is possible both to add and subtract directly in

storage (the operations ac and sc).

The multiplication operations mk, ml can perform

accumulating multiplication. For the operations ml, dl,

nl, tl, cl the accumulator R and the multiplier register

M act as one long register with two digits before and 78

digits after the point (the register is denoted RM).

The shift operations tk, tl can shift both right and

left. The normalization operations nk, nl, which nor-

mally shift to the left, may in case of overflow shift to

the right, thus facilitating the handling of results with

overflow.

The floating-point version of tk and nk are especially

designed for the conversion of numbers between fixed-

point and floating-point mode.

In the operation pi (store in indicator register) the

binary pattern of the counting constant in the instruction

acts as a mask which may keep some bits in the indicator

unaltered. This is very useful because the indicator often

is used as 10 independent 1-bit registers. The same

masking effect occurs for the vy operation, because in

the external unit register also, the bits may be used

independently for selecting different external units.

There is no conditional jump in the classical sense be-

cause each and every instruction can be conditional by

means of an indicator part.

Correct use of the jump instructions hs and hr makes

it easy to program with arbitrary many levels of sub-

routines: The hs jump to a subroutine stores the old con-

tents of the subroutine register and sets its own loca-

tion in the register; hence the instruction hr s+1 per-

forms a return jump to the instruction just after the hs

jump, and furthermore the subroutine register is re-

stored.

634

The five conditional operations share the following

branching feature: Used in a left half-word instruction

only the following right half-word can be skipped.

Used in a right half-word or in a full-word instruction

the following full-word can be skipped, whether the

contents of this are one or two instructions.

The pseudo operations it, nt, is, ns act always on the

immediately following instruction. They are rather

special operations and are a.o. used when packing a

program in a minimum of storage is wanted.

Drum transfer by the operations sk and Ik may go on

simultaneously with other operations but is always com-

pleted before a new vk, sk, or Ik instruction is per-

formed.

Each of the indicator operations must be supple-

mented with an indicator address showing the wanted

condition or the wanted part of the indicator register.

B. Operation Times

When speaking of operation times in GIER, two char-

acteristics must be taken into consideration: First, the

time spent on the address calculation depends on how

complicated the actual address part is, and secondly,

some of the basic operations take different time under

numerically different circumstances.

Therefore, the table in Fig. 4 gives mean operation

times for the basic operations, included the time (27

wsec) for the inevitable basic address calculation, this

comprising r-, s-, and p-modified addresses. The opera-

tion times for the remaining possible modifications are

found in the little table in Fig. 5 which also shows the

sequence of performance of the different parts of an

instruction.

C. Examples

Below, a few examples of computational techniques in

GIER are shown, and in Section VI-D some more ex-

amples of programming may be found.

Example 1: To show some of the features of the in-

dicator part we shall consider a little problem: A set of

numbers are stored in cell nos. 100, 101.--- Some

of them are A-marked and the last of them has a B

marking. We want to store the sum of all the A-marked

numbers in cell no. 500. In the notation of the

SLIP language (see the following section) a piece of a

program for this problem may look like this:

oper. addr. count. indic.
part part const. part

{1] grn 500 clear cell number 500
[2] arn 99 t1 IPC take cell number 100+i to

the accumulator; put the
flagbits in the indicator
register

{3} ac 500 LPA if there was an A marking,
then add the accumulator
to cell number 500 else go
on

[4] hv r—2 NPB 7# there was no B marking,
then jump back and take
the next number else go on

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS December

Time in psec
Operation

Fixed-point Floating-point

aq-ps-pp-vk 29 _

gr-gm-ga-gt-gp-gs-gi-gk
pm-pa-pt 36 36 (only gr)
bs-bt-xr
Ik-sk-hv-hh

it-nt-is-ns
pi-mb-hs-vy 33 _

ar-an-ac-sr-sn-sc
mt-ca-nc-hr 49 100

ab-cm 56 _
tk-tl-ck-cl-nk-nl 60 70
mk-ml 180 165
dk-dl 270 220

Fig. 4—Operation times for the basic operations, including
27 psec for the basic address calculation.

Sequence of performance Time in psec

1) Indicator condition checking
a) if condition not fulfilled 15
b) if condition fulfilled 0

2) Address calculation (the basic time of 27 psec
is included in Fig. 4)
a) if counting constant ~0, then add 9
b) if indirect address but no s modification,

then add for each link of the chain 12
c) if indirect address and s modification, then

add for each link of the chain 26
3) Basic operation see Fig, 4
4) Indicator setting, mark storing, V modifica-

tion 0
5) Exchange modification 4

Fig. 5—Sequence of performance of the different parts of an
instruction and the corresponding operation times.

After the performance of this program the address

part of instruction no. 2 is changed and contains the

address of the last number in the set.

Example 2—Scalar product: Let us take the very

frequently occurring process of forming the scalar prod-

uct of two vectors. Given the dimension of the vectors

we may carry out this process by the ordinary use of an

index register. But GIER allows a very convenient and

rapid calculation as follows.

Let the two vectors each be stored in consecutive

cells, starting in no. a+1 and b-+1, respectively, and

let the last element of each vector be A-marked. The

scalar product may then be calculated by three in-

structions

pm a tl take element from cell a+i to M
mk b tl multiply M by cell b-++i and add to R
hv . r—2 NA if no A mark then jump back else go

on

assuming that the accumulator is empty when starting.

No information concerning the dimension of the vectors

is necessary.

Example 3—Double precision arithmetic: The way in

which the arithmetic of the machine has been con-

structed permits a very easy handling of double preci-

sion numbers.

@

Be
e
e

1963 Gram, et al.: GIER—Danish Computer 635

A double precision number will occupy two cells

which are normally consecutive. If the contents of the

two cells are denoted al and a2, al being the most sig-

nificant part (the head) and a2 the least significant part

(the tail), the number in question has the value ai+

eXa2, where eis the number 2-*°, Due to the fact that the

machine is a binary machine representing negative

numbers by their 2-complement, the tail may always be

taken positive, a fact which leads to a convenient rep-

resentation. If, e.g.,a=al+eXa?2 is the negative num-

ber

prrotoolt ... 1110011 11001010... 011101

pos 0 pos 39 pos 78

then at is the negative number 1.11010011 - - - 110011

and a2 the positive number 0.11001010 - - - 011101.

A double precision number may be kept in the long

register RM. Operations involving the long register RM

are ml, dl, tl, nl, and cl, and are called long operations.

In these operations the position 0 of the M register does

not take part.

Let now b=bi+eXb2 be another double precision

number held in the two cells no. 100 and 101. Addition

of b to the number a in the RM register may be ex-

ecuted by the instructions

{1] gr 99 X store the head of a in a working location, cell no.
99, and interchange the contents of R and M

{2} ar 101, tl-39 add a2 and b2 and put the result in M by means
of a long shift. If the sum was >1, R now con-
tains a one in pos. 39, otherwise R contains
zero

(3] ar 100, ar 99 addal and bl to R thus forming the head of the
result

Changing the operation part into sr in the instruc-

tions ar 101 and ar 100, we get a double precision subtrac-

tion. Here the instructions in [2] will leave R with 0 in

all positions, if the result of the left half-word instruction

is positive, and otherwise with ones in all positions. The

tail of the double precision result is still positive.

The product of the two numbers is, except for a

maximum error of one unit in the 78th position,

aXb-=alX bi + (al X b2 + a2 X bl) Xe.

The accumulating properties of the short multiplication

(mk) and the long multiplication (ml) make possible the

following piece of program for the double precision

multiplication under the same initial conditions as be-

fore.

{1] gr 99, mkn 100 store the head of a, place the product a2 Xb1 in
R, rounded off to 39 bits

[2] pm 99, mk 101 takeal to M, multiply al by b2 and add it toR,
z.¢., form the sum al Xb2-+-a2Xb1 in R

multiply al by a2 (long multiplication) and add
the contents of R to the lower part of the
product thus forming a Xb in one sweep

{3] m1 100

It will be seen that ml in fact treats the contents of R

and M as integers having their unit positions in pos. 39

of R and M.

As it is to be expected, the double precision division

is somewhat more complicated.

Still assuming the same initial conditions we suppose

furthermore that a and b have been normalized. This

will give maximum accuracy. Let c=ai/bi to 39

positions. Then the quotient q is, except for a maximum

error of one unit in the 78th position,

a/b = qi te X q?2

=c+((alte xX a2) —cX (bi +e X b2))/bl.

The division may be performed by the following in-

structions:

{1] gr 99, gm 98 store a in two working locations
[2] dl 100, gr97 the quotient c=al/bi1 is stored in a working

location
[3] mtD-1 X reverse the sign of c and take it to M
[4] mkn 101, ar 98 form a2—cXb2 in R
{5] mt 100, ar 99 form al—cXbi+eX(a2—cXb2) in the long

register RM
[6] dl 100, ar97 form c+RM/bi in R. The remainder from the

division is found in M
[7] gr 99 X store ql and take the remainder to R
{8] dk 100 X the division always gives the least absolute re-

mainder having the same sign as the divisor.
Therefore [8] yields the positive tail q2 and
places it in M

{9] arn 99 take q1 to R so that RM now contains the quo-
tient

The foregoing programs may easily be written as closed

subroutines, but, except for the division, not much will

be gained.

IV. HELP AND SLIP

A. The Administrative System HELP

GIER is equipped with an administrative system

called HELP for facilitating testing and running of

programs. The system comprises an interrupt mecha-

nism, activated through the HELP button, a central

administration program monitored by typewriter in-

put, and a number of subroutines among which the in-

put program SLIP is the biggest and most important.

The others are subroutines for normal output, for con-

trol output, for initializing, for comparison of storage

sections, and for supervising a program during the run.

In this section we pass in review the main features of

the central administration and some of the subroutines,

while SLIP is treated in the next section.

HELP button and central administration: Since the

ferrite core memory is rather small the system is de-

signed so that it occupies only 10 cells of the ferrite core

store during the run of a program. On the other hand it

is obvious that during an interrupt the system must

have access to a much larger part of the core store and

yet be able to restore the total store before the running

is continued.

This is obtained by reserving the last 26 tracks of the

drum for an image of the ferrite core store during the in-

terrupt. Since the system itself occupies the first 58

tracks of the drum the avazlable store for the programmer

consists of 1014 cells of the core store and about 3 of the

320 drum tracks.

636

Of the reserved 58 tracks the first 32 are locked for

writing so that it is impossible during a normal run to

destroy the fundamental part of the HELP system.

At any stage of a run one can call for an interrupt by

pressing the HELP button which has the following

effect: The contents of the registers and the core store

are stored in the image on the last 26 drum tracks, and

control is transferred to the central administration

which then is waiting for typewriter input telling what

_ action is wanted. It is now possible to start any of the

HELP subroutines or to make corrections in the stored

program.

When the desired encroachment has been performed,

an end signal must be typed. Then the core store and the

registers are restored from the image and control is

transferred to the point of the program where it was

interrupted.

HELP subroutines: We shall divide the subroutines

roughly into three classes according to their use before,

during, and after a run:

1) Before a run is begun one may use a subroutine

for initializing the whole computer. After input of the

program this can be copied to an unused part of the

drum for later comparisons or for restoring the initial

situation if something goes wrong during the run.

2) During the run one may use subroutines super-

vising the program, 7.e., the jumps performed, or the

numerical behavior, for instance, by typing out all

changes of a chosen register or cell. One may invoke con-

trol output at every performance of a selected instruction

in a program loop. HELP also contains subroutines for

the normal output of text and numbers.

3) After the run subroutines may be used for control

output of any part of the store, for comparison between

the program before and after the run, and for output of

the corrected program in a compressed form suitable for
fast input.

If a user wants additional facilities it is easy to en-

large the HELP system to include new subroutines

either in addition to or instead of some of the standard

routines. If, on the other hand, the maximum available

storage is wanted, it is possible to confine the HELP

system to 26+39 drum tracks instead of 26+58 tracks

at the sacrifice of some of the subroutines. But the

26+39 tracks are necessary if the interrupt mecha-

nism, the central administration and the input rotuine

SLIP shall be intact.

B, The Input Routine SLIP

The coding language used on GIER is called the

SLIP language, 7.e., the language accepted by the input

routine SLIP (which means symbolic Janguage input

program). SLIP reads instructions, textstrings, and three

types of numbers namely fixed-point and floating-point

numbers and integers (which may be packed with at

most four integers in each cell). It is allowed to include

comments (for instance in square brackets) in the input

string, and they are skipped by SLIP.

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS December

SLIP is a subroutine in HELP and is always invoked

through the central administration of HELP; hence all

input which is meant to land in the ferrite core memory

in fact is put, by SLIP, into the tmage on the drum and

not till the end of the input process placed in the ferrite

core store.

An important feature of SLIP is that in instructions

symbolic addressing is allowed. This means that the

address constant and the counting constant of an in-

struction may be symbolic names whose values are de-

fined through the use of the names as labels elsewhere in

the program (only a rather restricted class of names is

available). With respect to the use and scope of such

names the SLIP language has a block structure very

much like that of ALGOL: 1) Names must be de-

clared in a block head before use and can only be used

within the block with the declaration, z.e., they are

local to that block. 2) If a name is declared in each of

several blocks inside each other, the name may have

different values on each block level.

Special regard is taken to make it easy to use sym-

bolic names together with the relative addressing.

During input an extensive syntactical check is per-

formed and whenever an error is found a message about

it is typed out. Then SLIP continues the reading,

skipping the erroneous instruction or number. This im-

plies that often all the syntactical errors are found in one
sweep, and it also implies that if there is only one or a

few benign errors in a program, these may be corrected

on the spot by means of HELP, and a test run can be

carried through in spite of the errors.

V. STRUCTURE OF THE ALGOL SystEmM

A. The Background and Aims

The final decision that an ALGOL compiler should be

written for GIER was made in January, 1962. This deci-

sion was based on a significant amount of previous local

experience. An ALGOL compiler for the machine DASK

had been developed during the years 1959 to 1961 and

during its actual use had proved to be a tremendous gain

in the utility of that machine. Since DASK is rather

similar to GIER as far as storage capacity and speed is

concerned the great value of having an ALGOL com-

piler on the GIER was therefore obvious.

At the same time, the success of DASK ALGOL with

its users had not made its designers blind to its short-

comings. In fact, already during the later phases of the

development of DASK ALGOL it had become increas-

ingly clear that it was poorly designed in many respects

and the systems programming group was quite keen to

have a new try, using the accumulated experience.

There was therefore a very happy match of supply and

demand.

The following paragraphs review the highlights of the

principles underlying the GIER ALGOL system. For a

much more detailed report, which also includes refer-

ences, see reference [3].

1963 Gram, et al.: GIER—Danish Computer 637

In designing GIER ALGOL we tried to develop a

practically effective programming system, based on the

generality of notation inherent in ALGOL 60. More par-

ticularly, the compiler should be fast and should in-

clude extensive error checking facilities, and the system

should to a large extent relieve the user of having to

think of the two stores, cores and drum. The language

should include a generous helping of ALGOL 60, avoid-

ing minor restrictions as far as possible. Thus there

should be no limit to the number of characters used to

identify the quantities, and the powerful procedure

facilities, including recursive uses, should be included.

Essentially, only one part of ALGOL 60, the so-called

own arrays, were excluded.

The background for these design goals was on the one

hand a belief in their value for the programmer, and on

the other hand the conviction that a design along these

lines, if pursued consistently, would entail no essential
compromises,

Our previous work had indicated conclusively that in

designing an ALGOL system it is essential to start by

solving the problems of the execution of the finally

translated program. The fact is that ALGOL 60 con-
tains certain basic elements, e.g., the block structure and

procedure calls, which require administrative action at

execution time not corresponding to actions which are

built into the present-day machines. In addition, ad-

ministrative actions must be included in a system which

will take care of the transfer of information between

the core and drum stores during program execution.

Actions of this nature are taken care of by what we call

the running system. The design of the total system

therefore comprises two major parts, the running sys-

tem and the translator, to be attacked in this order.

The next level of design of GIER ALGOL, whether

the running system or the translator, is based on

storage allocation considerations, dictated by the in-

homogeneity of the store of the machine. A poor design

in this respect leads to a slow and painful writing of the

system, to slow compilation, and to inconvenience for

the user, as experienced with DASK ALGOL.

B. Running Sysiem, Storage of Variables

The problem of storage allocation during program

execution has two parts: storage of variables and storage

of instructions. By January, 1962, it was abundantly

clear that the proper way to store the variables of an

ALGOL program is to use a part of the fast store as a

stack. By this method the block structure of the ALGOL

program can be used fully for economizing the demand

on storage and the generality of ALGOL 60 with re-

spect to arrays having dynamically changing sizes and

procedures calling each other and themselves in arbi-

tarary ways is handled without difficult.

As an illustration consider the following skeleton of a

program. (The dots, - : , indicate some statements

doing the useful work of the program.)

begin integer n;

for n:=5, 20 do

begin integer k; array A[—n:n];

for k:=6, 8 do

begin array B[0:n, 1:k];

end for k;

end for n;

end the program.

The meaning of this program with respect to the dy-

namic existence of variables is the following: In the
outermost level of blocks only the variable n exists. On

encountering the for statement we are supposed to

execute the controlled statement starting with

begin integer k;

and ending with

end for n;

twice, putting n equal to, first 5 and then 20. The con-

trolled statement in this case calls for the establishment

of a simple variable k and, more interesting, in an array

A having the first time 11 elements, A[—5], A[—4],

---+A[4], A[5] and the second time 41 elenients,
A[—20], A[—19], - - - A[19], A[20]. Now while these
two versions of the controlled statement are being exe-

cuted we are further supposed to execute the other for

statement, which again calls for two executions of its

controlled statement. This means that this inner state-

ment will be executed 4 times with the following number

of elements in the two arrays A and B:

n k Number of elements

inA in B
5 6 11 36
5 8 11 48

20 6 41 126
20 8 41 168

The problem of accomodating these arrays economi-

cally in a linear store might seem to be a rather nasty

problem. However ALGOL 60 is very helpful because

the establishment of arrays (and indeed the introduction

of variables) is always associated with the nested blocks.

Specifically, in the above illustration the array A will

never be established or deleted at a time when the

array B exists. This is the reason why a stack (or

push-down list) is such a convenient way of arranging

the storage of variables in ALGOL 60. In GIER ALGOL

the stack uses the locations from about location 825

and downwards towards smaller addresses. If we follow

the execution of the illustrative program step by step as

entries into and exits from the blocks are made we get

the following addresses of the variables. (The arrange-

ment is somewhat simplified in order not to burden the

reader with too much detail.)

638

After entry into program n:825

After ni =5 k:813, A:814-824, n3825

After k: =6 with n=5 B:777-812, k:813, A:814-824, n:825

After k: =8 with n=5 B:765-812, k:813, A:814-824, n:825

After inner for statement,
n=5 k:813, A:814-824, n:825

After n: =20 k:783, A: 784-824, n:825

After k: =6 with n=20 B:657-782, k:783, A:784—-824, n:825

After k: =8 with n=20 B:615—782, k:783, A: 784-824, n:825

After inner for statement, k

n=20 1783, A: 784-824, n:825
n:

After outer for statement 825

Two conclusions emerge from this discussion: 1) By

using a stack for variables the locations reserved for

them will form a tight sequence having a length which

varies during the execution of the program, but being

fixed in position at the one end. 2) The storage alloca-

tion will be dynamic, 7.e., the addresses of the variables

cannot be finally calculated until the program is ex-

ecuted.

In this form the system will only allow variables which

are stored in the cores. The system will not automati-

cally handle the storage of variables on the drum. Instead,

there are available built-in procedures for transferring

arrays of variables between the two stores. Thus, as far

as variables are concerned, the programmer may regard

the drum as an output/input medium. The conventions

of the standard procedures for performing the transfers

are such that the programmer is unable to refer to ab-

solute locations on the drum. This is desirable in order

to avoid a dependence between this use of the drum and

its use for storing the program and the compiler.

C. Running System, Storage of Program

The running system includes a fully automatic ad-

ministration of the transfers of program segments from

the drum to the cores. Generally speaking, this ad-

ministration tries to use all the available core store for

those sections of the program which currently seem to

be of most interest.

This is implemented as follows. Primarily the program

is stored on the drum. The translator has segmented it

into drum track sections, including a special instruction

at the end of each segment. The program of each seg-

ment has such a form that it may be executed correctly

from any position in the core store, without making

any assumptions as to the presence of other program

segments in the core store. In particular, jumps within

the instructions of the segment use r-modified addresses

(address relative to the current location of the instruc-

tion). On the other hand, jumps to points in the program

stored in other segments are represented by a jump toa

fixed administration routine in the running system and

an additional description of the destination comprising

the track number of the segment and a track relative

address.

In executing the program the running system acts asa

monitor. It has information on the current extent of the

stack and will therefore be able to divide the remaining

part of the core store into a certain number of program

segment places, at least 2 and at most 20. At all times

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS December

it keeps a table of the track number of the segment cur-

rently occupying each available segment place. When-

ever the program jumps from one segment to another

the monitor takes over, checks its table to see whether

the desired segment is present in the core store, and if so

jumps to the proper location within it. If the segment is

not present, the monitor will transfer it from the drum

to that segment place in the core store which for the

longest time has been left unused. For this purpose the

table of the available segment places contains a “cycle

number of last usage” in addition to the track number.

D. Running System, the Administration Program

It is clear from the above that the execution of a

translated ALGOL program requires the presence of

certain administrative routines in the core store (dy-

namic addressing, segment monitor, etc.). These use

about 200 words at the top of the store and in addition

one extra word adjacent to each available segment

place.

Some of the run time of a program will of course be

spent in the running system. It is of interest to note that

the significant part of this is related to the limitations

of the machine and the translator, and not to the gen-

erality of the language which the system will process.

In fact, in several realistic programs (realistic in the

sense that they perform numerically useful processes

such as inversion of matrices, while forgetting about

exotic features of ALGOL 60) the major bottlenecks, in

execution time, were 1) subscription of variables and

2) transfer of control between segments already present

in the core store. Both of these processes might be

made relatively insignificant if a few special instructions

were incorporated in the machine.

E. The Translator, Storage Problems

During translation the machine is dealing with three

different bodies of information: the program of the

translator itself, the text which is in the process of being

translated, and tables of descriptions of the objects of

the source text. If this information is to be handled

efficiently in a machine like GIER, it is essential that

random, or almost random, references to information

kept on the drum be avoided. This suggests the follow-

ing approach: First, in order to avoid jumping about

in the program of the translator the translation should

be divided into a sequence of separate processes, each so

simple that its logic can be held in the cores. Second,

the text should be processed by means of sequential

passes, scanning the source text or intermediate ver-

sions of it from one end to the other. These two first

points indicate that a multipass translator should be

used. Third, the translator should be constructed in

such a manner that all necessary tables can be held in

the core store while they are used. This in conjunction

with the demand on the division of the translator pro-

gram shows that during certain passes the cores should

1963

be free to hold large tables, while the logic of the pass
should be very simple.

A closer analysis of this approach shows that by using

about 10 translation passes all the above requirements

will be satisfied at the same time as the translation speed

will be very satisfactory. The final GIER ALGOL sys-

tem in fact uses 9 passes and produces about 30 final

machine instructions per second.

In the standard version of the compiler the translator

program occupies tracks 66 to 176, while tracks 39 to 65

hold the run-time routines (the running system, stand-

ard procedures, etc.). Tracks 0 to 38 are then free to

hold the HELP complex. The translator uses tracks 177

to 319 for holding the partially translated program.

Since these tracks are used in a cyclic manner they are

all available for the finally translated program.

One great advantage of the multipass method is that a

suitable alternation between forward and backward

passes is possible. This takes care of internal references

in a most convenient manner. Two out of the 9 passes
in GIER ALGOL are backward passes.

F. General Administration of Translator Passes

In a multipass translator the question of the inter-

mediate languages used to communicate the partially

translated text from one pass to the next becomes promi-

nent. In GIER ALGOL the solution adopted for this

was strongly influenced by considerations of the check-

out of the translator. Clearly, during check-out the out-

put produced by each pass must be made available for

inspection. Unless this is taken care of in a general man-

ner the print-out of this information may turn out to be

a significant source of trouble and inconvenience in
writing the translator.

For these reasons the following scheme was adopted:

All intermediate languages are expressed in terms of

uniform strings of 10-bit symbols called bytes. In other

words, the output from a pass will consist of a series of

integers in the range from 0 to 1023. The packing of

these symbols with 4 in a word and 40 words in a drum

track and the transfer of this output to the drum, and

the analogous actions on the input side, may then be

performed by a general pass administration which is the

same for all passes. For check-out purposes this general

administration is extended with a facility for printing

the decimal values of the symbols as they are received
for output from the pass.

By further testing the passes in strict order, starting

by pass 1, the test data used for checking the translator

logic will all be written in the ALGOL source language,

although of course the test programs must be written

specially for each pass to make sure that the logic of the

pass is adequately covered. This method proved to be

extremely effective and contributed greatly to the early

completion of the system. In fact, more than half of the
system was loaded into the machine for the first time

and checked out during the period August 2 to 24,

Gram, et al.: GIER—Danish Computer 639

1962, after which time the system could be distributed

to all GIER installations.

G. Translation Passes

The actions of the 9 translation passes are as follows:

Pass 1. Conversion of the hardware representation of symbols to a
string of reference language symbols of ALGOL 60.

Pass 2. Matching of the free identifiers.
Pass 3. Analysis and check of the delimiter structure of the text.
Pass 4. Collection of the declarations of the identifiers of the program

into tables.
Pass 5. Distribution of the descriptions of the kinds, types, and

storage, of quantities to all the places in the program text
where the identifiers occur.

Pass 6. Check of consistency of text with respect to kinds and types
of quantities.

Pass 7. Conversion of expressions into a sequence of machine opera-
tions.

Pass 8. Segmentation into drum track segments. Establishment of
internal jump references.

Pass 9. Sorting of the final segments on the drum.

VI. THE MACHINE CODE oF THE ALGOL ComPILER

A. Comments

One of principal decisions in the design of the ALGOL

compiler (see Section V-A) was that each pass should be

allowed ample room in the core store for all the program

and tables concerning it. This decision was partly in-

spired by our somewhat painful experiences from the

DASK ALGOL, trying to fit a too big lump of program

into a small core store.

This decision made the coding of the single passes a

comparatively straight forward job once the algorithms

were written. Even so it was clear that, to keep the

number of passes down and to avoid dividing a pass in

two when it logically ought to be one, it would be neces-

sary to pack the information and to use, if not clever,

then at least not too wasteful machine-coding tech-
niques.

The efficiency of the machine program is closely con-

nected with the representation of the information it has

to handle. In GIER, as in most computers, the address

is that unit of information which is most easily handled;

it was therefore decided to quantitize the information

between passes in bytes of 10 bits each, corresponding to

the length of the address part of an instruction. A

computer word can thus hold 4 bytes.

This scheme is strictly adhered to in the communica-

tion from pass to pass and is the preferred representation

in the internal tables too, although these are treated
more freely.

The following sections will discuss some of the opera-

tions involved in the compilation process and the GIER

instructions performing them.

B. Operations in the Compiler

With the above in mind, the kinds of operations per-
formed in the compiler may roughly be characterized as
follows:

1) Handling of Booleans and conditions. Setting of

Booleans, testing of Booleans and byte relations.

2) Subroutine calls.

640

3) Handling of bytes. Unpacking and packing com-

puterwords, simple computations on byte values, table

indexing and switching on byte values.

C. GIER Instructions and Their Use in the Compiler

1) The handling of Booleans and conditions. One of the

characteristics of compiler operations is that many of

the operations governed by a condition are very simple

and often can be performed by one or two machine in-

structions. In the GIER any instruction can be condi-

tioned. This means that such short conditional opera-

tions can be performed directly, instead of by use of

conditional jumps, and will therefore result in a fast and

compact machine code.

There are 3 ways in which an instruction can be condi-

tioned: 1) The use of the indicator part of the operation

can make the execution of the rest of the instruction

dependent on the status of the accumulator, the R

register; the tests which can be performed here are the

usual ones: test on sign, on overflow or on zero. Further-

more the status of the flagbits of the R register, 7.e., of

the last operand brought to the R register, may be

tested. 2) In the same manner the status of a pair of in-

dicator bits may be tested (see Sections IJ-E and ITI-A).

3) Finally the result of a test performed by one of the

special address compairing instructions may cause the

next instruction to be skipped. (See examples below of

the use of the instructions ca, nc, bs and bt.)

The above means that the indicator and the flagbits

of operands are very convenient for the storing of

Booleans, as the setting and sensing of these often can

be done as part of other instructions.

Another important feature is the V modification,

which causes an unconditional skipping of the next word.

This facilitates the coding of if... then . . . else condi-

tions.

The extent to which some of the above facilities are

used can be illustrated by the following counting of

different instruction types in one of the actual translator

passes (pass 8):

Number of conditionings by:

Indicator bits 37
Status of R register 12
Instructions ca and ne 3
Instructions bs and bt 11

Total: 63

Kinds of instructions conditioned:

Ordinary jumps 14
Subroutine calls and returns 20
Other operations 29

Total: 63

Instructions setting indicator bits or flagbits: 47

Total number of instructions in pass 8 is around 400.

In contrast to what might be expected, practically no

use is made of the general Boolean operations (A and

\/) operating on groups of Booleans. This is a con-

sequence of our general philosophy, that questions of the

type, “Do you belong to this or this or this...”

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS

December

category, should be avoided. Where the logic requires

such questions to be answered, the table description of

the item in question will instead hold one Boolean for

each such combined condition, thereby avoiding the

rather empty chain of reactions: “It’s not me, it’s my

colleague.”
2) Subroutine calls: Another counting in the same

pass showed 55 occurrences of subroutine calls.

The subroutines themselves are normally quite short

(5-20 words). The main part of the instructions are

common for two or more subroutines, which only differ

in the first couple of instructions.

In many computers the handling of such nearly alike

subroutines may be quite cumbersome and space con-

suming, because the reference back to the main pro-

gram is stored at the entry point to the subroutine and

therefore has to be moved to a common location in

case of more than one entry point.
The subroutine mechanism in the GIER (see Section

III-A) makes such use of subroutines easy, and it will

still provide for the call of subroutines within subrou-

tines because of the special feature which stores the

previous content of the subroutine register (the s regis- _

ter) in the call instruction before performing the jump.

3) The handling of bytes: The instruction list is

abundantly rich in instructions dealing with addresses.

In effect it may often be a problem to choose among the

multitude of possibilities. For unpacking and packing

the normal arithmetic operations, shift operations, and

operations for storing full words or address parts are

available.

As may be expected when handling bytes, the most

common number of shifts performed is 10. Again a

counting of instructions in pass 8 will show this:

Instructions performing 10 short right or left

shifts: 19.

Other shift instructions: 5.

Furthermore, the input-output mechanism of the cen-

tral administration is constantly shifting bytes by

multiples of 10. This may suggest that some fast in-

structions for these special shifts might be useful. (A

shift of 10 takes around 70 usec.)

Quite complex operations with bytes can be handled

without use of the arithmetic operations; some of the

possibilities are shown in the examples below.

D. Examples

The following examples will each consist of a small

piece of machine code, an equivalent algorithm, and in

some cases a comment, in three columns. For the func-

tion of the single operation codes see Section III-A.

Half-word instructions may appear two in a line sepa-

rated by comma, or they may stand by themselves.

Full-word instructions will be characterized by a t

separating the address part and counting part. é

1963 Gram, et al.: GIER—Danish Computer 641

1) Simple byte manipulations.
1 ga 100, gt 101 a

2 pa 100t 27 ai=27;

3 it (101) , pt 100 ci=al;

4 is (101), its+3 a:=al+3;
5 pa 100

6 pp (100) pi =a;
2) Table indexing. Table starts at location 1000.

: =address part of R; cl: =counting part of R;

The operand of the is instruction is used as value for s in
the next instruction

1 arn(100)t1000IPC a:=a+1000; R:=content [a]; Indicator bits PA In the same operation the contents of a computer word are
and PB: =flagbits [a];

3) Conditioning on byte values.

1 ca (100) , pt 101 if a=address part of R then c1: =0;

2 can p—27, it (100) al: =if p=27 then a else 0;
3 pai0i,

4 bs (100), it (101) a2: =if a>0 then al else 27;
5 pa 102 t 27

6 bs p+503, ppp+7 if p>—S503Ap<9 then p:=p+7;

4) Conditioning on status of R or indicator bits.

1 qqn (100)t 7 LT

brought to the R register and the flagbits of the word
are stored in the indicator for later tests

The letter n indicates a clearing of the R register

Addresses are treated with sign whereby addresses above
511 are taken as negative

if R is negative then begin R: =0; a: =a-+7 end;

2 arD (100)t 34 NPA if indicator bit PA=0 then begin a: =a-+34; ad-
dress part of R: =address part of R-+-a; end;

3 it (100)t 37 LPC
4 ptn 100t 77 else c: =77; R: =0;

5) Compound conditions and more complex operations.

To get as readable and uniform notation as possible,

we will assume that the address parts of cells 100, 101,

102 hold the bytes a, a1, a2, respectively, while the cor-

responding counting parts hold the bytes c, ci and c2.

The contents of the index register and the subroutine

register (which can be used as an ordinary index register)

will be denoted by p and s, respectively.

The above examples, which all are slightly modified

examples from the actual compiler, shows the powerful

instruction list in the GIER.

It may be claimed that some of the examples are on

the border of “trick coding” but why should the mecha-

nisms not be used when they are available. The main

problem in this connection is the documentation which

of course has to be kept fully up-to-date.

VII. SrructuRE oF GIER (FROM THE TECHNICIANS’

PoINT OF VIEW)

At the planning of the hardware of the GIER com-

puter it was realized that for several reasons the aim had

to be toward the greatest possible flexibility in the

structure. First, the order structure was not finally

fixed at the time when the construction of the machine

was started. Secondly, changes and expansions had to be

expected. Consequently, it was decided that the com-

if PA=1APB=1 then begina: =a+37;c: =a end

Compare with the example below

This shows the use of the is instruction for providing a
temporary extra index register

This is an example of one conditional instruction leading to
3 different actions

1 bss+502 t 506 if s>4As<10 then al: =a1+3
2 aqV (101) t 3
3 it (100) , pa 102 else a2: =a;

4 it (101), is (100) a:=a-tal;
5 bss+502 t 506 ofa>4Aa<10 then al: =al+3
6 qqV (101) t 3
7 it (100), pa 102 else a2: =a;

8 bsV (100)t57 NT if Ris negative then begin R: =0;a: =a+200;
9 hvn (100) t 200 IZA ZA:=1 go to instr[a] end;

10 gp 100, it (101) if a>57 then begin a: =p; a2: =a2+al end else
11 qq (102) t 1 a2:=a2+1;

munication between the registers should go on via-a

common busline system and that the microprograms

should be housed in a changeable fixed wired store.
The store size and type, 1024 words in a core store and

12,800 words in a drum, was mainly dictated from the

economy. To gain speed parallel structure was chosen,

and transfers to and from the drum should go on simul-

taneously with other operations. Furthermore, it was

decided to run the circuits in synchronous mode, except

for the drum, at a clock frequency of about 500 k-z.

A. Information Transfer System

In Fig. 6 is shown all the transfer lines in the machine.
As mentioned all information transfer between the

registers is going on via a common busline system con-

sisting of 42 wires. (The word length is 42 bits.) Com-

munication with the core store is parallel 42 bits at a

time, while the drum is only accessible serially bit by

bit, via the 42-bits buffer register T1. When a full-word

is shifted through T1 to or from the drum the next word

is passed to or from the core store via the buslines inter-

laced with normal operations. Transfers are released a

whole track (40 words) at a time. Input and output

from and to external units is transferred via the registers
bl and bs one character at a time.

642 IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS December

pond +18V #12V
Bbits

bl

Busline
system Paper tape punchand pos. 0-9 42K

Register Teader. Incutput type- 5 001 Register der no pu ype by
Register writer, lineprinter -12V -15V (

langthand position ebits pos. 3-9 T '

pos. 00-41 =_ '

Ecquipment in expanded sy I

I 00141
. 0- Max. d6magn.tape 560

pos. 0-38 stations inclusive - I a a
assembly registers l

: |

pos. 0-41 ab babes + =300pF — OABSY
F 4096 words !

core store . 5
pos.00-39 _ and: control I pos. 10-19 TK28C

H : I pos. 0-3 220
shift? 1pos. Punched card reader I

I 7 2K

pos, 00-39 Adder Process control unit I pos.0-

I +12V +12V
MD

! pos.0-9 Sm JL aM
Datachannel | G pos.00-39 \ Ss

pos. 0-41 J pos. 0-9 »

1024 words 3

Z2bit core store pos. 0-9 > its
a

pos.00-41
Zero reg. co.

10bits adress-selectors

pos.0-41

12.800 or 38.400 - [] * LX
words drum store

pos. 0-9
Adder

Fig. 6—Communication channels in GIER.

B. Busline System

Every register element consists of a flip-flop which

via an input gate can receive information from the

buswire according to its position. Likewise information

from the flip-flop can be put on the wire via an output

gate. Simultaneously sending to, and receiving from, a

group of buswires results in a transfer of information

from the sending register to the receiving register. The

effect of simultaneous sending from more registers de-

pends on the circuits, and will form either the logical

sum or the logical product of the contents of the sending

registers upon the buslines. In GIER the circuits are

chosen so that the logical product is formed.

Connection from the operator’s panel to the registers is

extremely easy to realize due to the busline system. To

indicate and/or to set the contents of a register while

the machine is not running, this register must send and

receive simultaneously so that its contents are not

changed. Indicators on the buswires will now-show the

bit value, and the register contents can be changed by

pressing the set or reset buttons which force the wire to

a voltage corresponding to 1 and 0, respectively.

The circuits connecting the flip-flops to the buswires
are shown in Fig. 7.

 m

o
 a
v

I
N
L

+5V Gs
~15V LL

Gm

Fig. 7—Register elements with input and output gates.

In the neutral position, all send gates are maintained

at —3 v and all receive gates at +5 v. The buswire is

then at +1.5 v. When sending, a G, pulse will open the

send gate so that if a 0 is sent, the readout transistor

will force the buswire to —1.5 v. In the receiving regis-

ter element, the read-in transistor, which is symmetrical,

will act as an emitter-follower with the collector on the

buswire and the emitter coupled to the base at the flip-

flop. Thus this is set to 0 and the symmetrical transistor

does not saturate. If a one is sent the voltage of the

wire is +1.5 v, and the symmetrical transistor now

acts as a grounded emitter with the emitter on the wire

and the collector to the base of the flip-flop, which is

thus set to 1. The transistor in this case is driven into

saturation and at the end of the gate pulse the stored

charge is driven out through the collector and emitter,

thus also aiming at setting the flip-flop to 1. The line
will remain at a voltage level corresponding to 1, and is
not allowed to change until the transistor is out of

saturation. The length of the pulses activating the gates

is 1 psec.

w

1963

ue

ee

:
©

Le

-

]
|
|

End view of the computer showing the microprogram unit.

C. Microprogram Unit

The microprograms are stored in a fixed wired store

(reference [5]) built by means of cores of magnetically
soft ferrite coupled as current transformers. This type

of store is fast and also very cheap. Each store corre-

sponds to a certain microfunction, the secondary wind-

ing of the cores being coupled to amplifiers (3-stage
amplifiers) which send pulses to the gates, when one of

the single turn primary windings is excited by a current.

The length of the output pulses is determined directly as

the length of the current pulse in the primary winding.

Each wire in the store corresponds to a certain time

step in a certain microprogram, and passes through the

Gram, et al.: GIER—-Danish Computer

643

cores representing all the microfunctions that are to be

performed in the present step. (In every step is also

specified, as a special microoperation, the step number

following in the next cycle.) In total there are about

600 wires.

The selection of the wires is done by means of a simple

transistor-diode logic performing voltage coincidence

between 1 out of 24 timing flip-flops and 1 out of 68

microprograms. (There is one microprogram per opera-

tion, 2 for the address modifications, one for floating-

point arithmetic, and one for introducing interrupts

from the HP switch.) Conditions are introduced in the

microprograms by steering the current through one out

of several possible wires.

This technique involves a noise problem, arising when

a jump is performed from one micropgrogram to another

or when a condition inside the actual microprogram

changes, because these situations introduce voltage

swings upon groups of wires and this again causes

capacitive currents through the wires which may acti-

vate the ampliers. In order not to lower the upper

frequency limit of the amplifiers for the cores, and thus

increase the access time to the store, you have to con-

trol the stray capacities between the wires. This is done

simply by limiting the number of wires, passing through

the same core(s), which may change at the same time,

and by controlling the rise and fall times of the voltage

swings. As mentioned the cores are coupled as current

transformers, so that any wire may pass through as

many cores as wanted.

Out of 185 possible microoperations 181 are used (in

the expanded GIER system) in the following manner:

Simple transfers between registers and buslines, and set

and/or reset of one or more flip-flops of a register: 106

microoperations (one amplifier can activate 10 gates as

a maximum). Shift 1 or 10 positions left or right: 19

microoperations. Set or reset of flip-flops used as switches

in the microprograms including the timing flip-flops for

the fixed store: 34 microoperations. And the last group

counting, synchronizing, start store cycles, timing of

logic circuits (for instance all functions concerning the

indicator logic is performed by means of one single

microperation) : 22 microoperations.

The conditions used in the microprograms are func-

tions of one or more variables. In all, 51 different func-

tions are used, of which 21 are functions of one variable,

18 are functions of a 2 variables, and 12 are functions of

3 or more variables.

As mentioned the fixed wired microprogram store is

built as a plug-in unit, being connected to the rest of the

machine by means of 20 plugs each with 34 poles. The

coupling between the circuits performing the logic

functions used as conditions in the microprograms and

the drivers for the fixed wired store is pluggable as

well. Till now only one set of wiring schemes for the

microprogram unit has been developed.

644

D. The Adder

The adder consists of three parts: A complementer, a

sumdigit circuit, and a carry circuit. The two first are

built conventionally, while the latter uses the transistor
in a special way.!

The principle of the carry circuit is seen on Fig. 8. A

carry is always formed when both H and MD are 1. A

carry should be transmitted from the next lower posi-

tion to the next higher position, when H and MD are

different. If both are zero, a carry should not be trans-

mitted, if they are both one it need not be transmitted,

as a carry is generated directly. As seen from Fig. 8, a

positive voltage on the terminal Mj, corresponding to a

carry from next lower position, will be transmitted when

the function MD XH+MD XH is 1, 1.e., negative. The
carry will then be transmitted, and it is important that

this does not happen when MD=H, because a carry

generated in the right transistor would then not only be

transmitted to the next higher position but also to the

next lower, as the left transistor also conducts in re-

verse direction. The carry delay in the described circuit is

essentially 0. The function MD XH+MD XH is formed
in all positions simultaneously while the pulse SA is

positive, so that no carries are generated at all. In the

positions where a subsequent carry should be trans-

mitted, the base of the left transistor is charged by a

base current flowing from the —7.5-v clamp through

collector and emitter to the base and through the base

resistor to —13.5 v. When the transistor bases are

charged, the pulse SA becomes negative and the carries

are generated. Carries will now be transmitted without

delay, as a transistor with the base charged with holes

will act as a closed contact as long as the current does

not exceed a value corresponding to the base charge.

The time spent for a full 41-bits addition is 2 psec

from the moment where the last addend is placed in its
register.

~135V ~78V

56K al 43K Y

x 4 4

Mj MD@H H MD SA My

Fig. 8—Carry circuit in the adder.

1 jmilar circuits have been developed by others. See references [2]
and [4].

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS December

E. Circuit Design Principles

The circuit technique as a whole is based upon in-

dividual design, and all circuits are designed to cover

the worst case. Complementary circuits are used to

some extent. The register elements are built around a

conventional flip-flop with transistors driven into

saturation. In a few cases an antisaturation circuit has

been used. The logical circuits are of the transistor-

diode type. The most frequent used transistors are two

alloyed junction types with alpha cutoff frequencies of

5 and 9 Mc. Approximately 450 printed circuit cards

are used in the standard GIER. The power supply con-

sists of 10 regulated voltages with a power consumption
of 500 watts.

VII. THE GIER SystEM

Originally the GIER was constructed as a purely

scientific computer system but there soon arose need for

a GIER system oriented towards data processing

applications and also process control applications. The

two first units developed for these purposes are the high-

speed printer and the punched card reader. Both of these

are built around available mechanical equipment. The

ANelex 4-1000 SD printer and the Bull D-3 sorter act as
additional one character output/input units. Other units

of the GIER system connect via a data channel for

transfer of words between the ferrite core store of 1024

words and the block transfer units. The general arrange-

ment of the GIER system is shown in Fig. 6.

A. High-Speed Printer

The mechanical unit is an ANelex 1000-line-per-

minute printer to which has been added a two-line

corner-turning buffer arranged so that the program sees

the printer as it sees the typewriter or the paper tape

punch and is operated by the same instructions. The

printer is equipped with a two-line buffer so that one

line can be filled while another is being printed.

B. Punched Card Reader

The reader is built around the mechanical part of a

sorting machine Bull D3. It has two reading stations

and 15 sorting magazines. It reads with a nominal speed

of 750 cards per minute, but the speed will probably be

increased to 1000 cards per minute. The reader is able

to read holes as well as pencil marks on the same card.

The sorter is equipped with two sets of brushes BS1

and BS2 (Fig. 9). To read the pencil marks a special
circuit is needed, so BS1 is reserved for this purpose,

while holes are read with BS2. The information is trans-

ferred row by row to the card image buffer, CIB, which

is a cornerturning ferrite core buffer. In the intervals

between cards the information is read columnwise to a

flip-flop register CIF, and simultaneously the corre-

sponding columns of the criterion buffer CRB are read to

the flip-flop register CRF. CRB holds the information

1963

of a card and is regenerated while CIB is left reset. The
information from CIF and CRF now goes to a set of
logic circuits which deliver additional information to go
with the information of CIF to the output buffer OUB
and control the sorting process in the sorter.
OUB receives the information columnwise and trans-

fers information columnwise to the computer on re-
quest.

Bs2 BS1

80 27

cis 2 otcir}2 PLUG LOGIC
BOARD .CUITS

12

CRB 12 CRE 12

12 2

ous Mt OUF M4 14

TOGIER
ALPHABET * ‘ON —
VERTER

Fig. 9—Communication channels inside the card reader. The digits
indicate the number of bits transferred via the path.

C. Buffer Store and Tape Control

The buffer store is a 4096-words ferrite core store,
which is equipped with 5 input/output channels, one
of which is assigned to the transfer of information to and
from the central unit. The four other channels are each
assigned to a magnetic tape unit. The buffer will work
simultaneously with all five channels according to fixed
priorities and can thus be regarded as a subsystem for
tape control.

The GIER operations are IL for transfer in the
direction towards GIER itself (either from tape to
buffer or from buffer to central unit), and US for trans-
fer the other way. The address of the transfer instruction
is the number of the data channel (i.e., the wanted
unit). Furthermore a parameter word must be placed
in the accumulator containing

Beginning address of block in buffer,

Block length in buffer,

Beginning address in the chosen unit,

Block length in the chosen unit.

A block transfer between the chosen unit and buffer
takes approximately 12 usec per word and does not
allow the unit to perform other tasks. A block transfer
between buffer and tapes is initiated by the central unit,
but is controlled by the buffer, so that the central unit
can continue the program.

Each tape unit has a two word flip-flop assembly /dis-

assembly register and control circuits specific to its

Gram, et al.: GIER—Danish Computer 645

characteristics. So far we have employed two different
tape units: the Facit ECM 64 (Caroussel), and the Con-
trol Data Corporation 606 tape transport. The ECM 64
is a random access device with 64 spools of tape each
holding 8192 words in blocks of 512 words, arranged ona
disk so that any spool may be selected within two sec-
onds. The CDC 606 is providing normal tape storage on
IBM-compatible tape.

D. Circuit Techniques in the GIER System

While the circuits in the central unit are rather
specialized, it has been attempted to use a series of
standard circuit blocks in the units of the GIER sys-
tem. The majority of the circuits are built around a flip-
flop, an and gate and two types of inverter cards. This

circuit technique is quite conventional and should not be
described here.

Of the special circuits used, a single one might be of
interest, the circuit for reading information from the
brushes of the punched card machine, especially the
marks. There seems to be a general tendency to use
photoelectric reading, but our experience has shown that
satisfactory results can be obtained with brushes with a
special “amplifier” circuit.

The pencil marks normally cover 3 brushes, of which
the two outside brushes are connected to a positive
voltage. The center brush is connected to one plate of a
capacitor. At the time a mark can be expected to pass,
the capacitor has no charge. During the passage of a
mark, a current will pass through the mark between
the two brushes and charge the capacitor. At the end of

the passage the capacitor is discharged into one side of a

normal transistor flip-flop, which is thus set if a mark
was present. This kind of amplifier is very sensitive, as
the charge necessary to set a flip-flop is only about 3 nc

(3X10° coulombs), corresponding to a current of 1

ua for 3 msec. In the actual design the capacitor con-

sists of a coaxial cable, which is necessary anyway to
prevent interference between the brushes.

E. Interrupt Unit

As mentioned above the standard GIER is equipped

with an interrupt function, initiated by means of the
HP switch, especially intended for the operator, so that
all manipulations necessary for operating the machine is
done by means of this switch and the input typewriter.
This HP switch furnishes a pure interrupt feature in-

clusive masking possibility, but still only from one
interrupt channel.

The expanded GIER system has 12 further interrupt
channels with an associated masking register. Interrupt
calls stopped by the mask are stored in a 12-bits flip-
flop register, 1 bit per channel, and will be processed
when the mask is opened.

When an interrupt call passes the mask it will cause a
jump from the running program to a subroutine which
will take care of the interrupt. (If an interrupt occurs

646

while the machine is not running it may start GIER un-

der some conditions.) During the execution of an

interrupt a special flop-flop is set, which will block all

further interrupt calls whatever the contents of the

masking register are. This flip-flop is reset automatically

when the operation pc, place in masking register, is

executed, or rather during execution of the instruction

immediately after a pc instruction. This feature makes

possible interrupt-response programs without the fea-

ture of processing interrupts in more than one level. (It

should be mentioned that interrupts are not executed

until the current instruction has been completed.

When the response routine is finished the machine

makes a return jump to the main program, which will

continue as if nothing had happened. Concurrent inter-

rupt calls will be processed in a fixed built-in order. The

mentioned buffer register for the interrupt channels is

not accessible to the programmer except for the possi-

bility of clearing it.

The interrupt system is used for synchronization be-

tween GIER and the magnetic tape stations via the

4096 words core store, or real-time processes coupled to

GIER via the real-time unit.

F. Real-Time Input-Output Unit (RT Unit)

The RT unit is designed to provide a means of com-

munication between GIER and real-time physical

processes, such as analog computers and industrial in-

strumentation systems. The unit comprises a number of

both digital and analog input-output channels. The

RT unit may be expanded at will to cover most con-

ceivable applications. In the following, references will

be made to Fig. 10 which is a block diagram of an actual

RT unit. In addition to serve as a linkage system inter-

connecting GIER and an analog computer, this par-

ticular installation will be used for several research

activities in the field of real-time computer control.

All operations pertaining to the data transfers are

completely controlled by the computer program on a one

word at a time basis. The RT unit communicates with

the GIER central processing unit by means of the data

channel. Data transfers are released by the read/write

instructions IL and US. The transfers are always di-

rected to and from the GIER accumulator register. The

RT unit is usually operated in connection with the

GIER program interrupt feature for real-time program

syncronization.

As shown in Fig. 10, all analog channels and some of

the digital ones are made available on a panel equipped

with several removable patchboards. Furthermore, all

digital channels are terminated on multipin connectors

(not shown in figure). As a rule, the RT unit is supple-

mented with some optional equipment, such as program

controllable (via the RT unit) pulse generators to make

interrupt signals and dc amplifiers for signal matching

purposes.

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS

PATCH BOARD

3 3
c c

OUTPUT CHANNELS £ £ INPUT CHANNELS

g 2
oO 9

9,
1

T

MULTIPLEXER {"{ (

4
fo- 9] A

— 35
iT

% 20,49]
3

: tO
a7 |

am ro
38 [o 9]

39
a 40

Bho | 41
[o-_-9]

U 2 le 42 [o- 9

[o- 9) :
43 TT ca

23 LT fe

Lo- ~__-S] CONTROL REGISTER
(321

The Control R
[o-_-9] CONTROL REGISTER esisters are = 3 operating as combined

yt L@ output-input channels

[0-9] CONTROL REGISTER
| fe

Fig. 10—Block diagram of a typical real-time unit.

Digital channels: Both digital input and output chan-

nels are equipped with transistor flip-flop buffer regis-

ters for temporary information storage between read/

write operations. The buffer registers are available in

different lengths up to 42 bits. However, 10 and 20 bits

are usual word sizes, communicating with the accumu-

lator bit positions 0-9 and 0-19, respectively. The RT

unit channel number is specified by the address part of

the IL/US instructions.
The registers referred to as Control Registers in Fig.

10 are recurrently used in subroutines for functional

control purposes, such as controlling the operation

modes of an analog computer. For the programmer’s con-

venience, these registers have been designed to operate

as combined input/output channels. As an additional

programming feature data may be loaded into the con-

trol registers using part of the accumulator as a mask

register.

December

eo

1963

“Analog channels: The analog-to-digital (A/D) and
digital-to-analog (D/A) conversion equipment utilizes
a 10-bits straight binary code for digital signal rep-
resentation. Negative numbers are expressed as 2’s com-
plements conforming to the usual GIER number in-
terpretation. The choice of word length is partly due to
the GIER instruction word format. Considering the
corresponding analog signal accuracy, the quantization
step equals 0.1 per cent of the signal range which is
adequate for most applications.

Sampling of one of the analog input channels is ac-
complished by letting GIER perform an IL instruction
with reference to the particular multiplexer input. The
multiplexer gate (Fig. 10) specified by the resultant
address of the IL instruction is activated, and the input
voltage converted to digital form by the A/D converter
and stored in the ADB register. Eventually, the con-
tent of ADB arrives in the accumulator. If the input
signal exceeds the nominal signal range, the overflow
indicator of the GIER accumulator is set.

The analog input signal range is + 10 v, and the input

impedance is 5 kilo-ohms. The actual A/D-conversion
time is 50 wsec, and the IL-instruction execution time is
100 psec.

The analog outputs are generated by D/A converters

driven by 10-bits output buffer registers. The buffer
register holds the analog output between subsequent
write operations—being performed by means of US in-
structions as explained above—thus, the analog output
signal will be a staircase waveform. The no-load D/A-
converter output range is +5 v and the internal
resistance is 2.5 Kilo-ohms. When new information is
loaded into the D/A-converter buffer register, the ana-

log output will settle at the new value within 2 ysec.
Usually, the analog outputs are applied to the physical
process via operational amplifiers for power amplifica-
tion and signal matching.

As shown in Fig. 10, two D/A converters can be con-
nected to a single 20-bit digital output channel. It is
then possible to change the two analog outputs simul-
taneously, which is an important feature in some ap-
plications, for instance when producing x-y oscillo-
scope displays.

G. The D/A Converter

Fig. 11 shows the principle of the D/A converter that
is used in the analog output channels of the RT unit.
The change-over switches of Fig. 11 are controlled by
the binary positions BO to B9 of a buffer register, con-
necting the binary weighted precision resistors either to
ground or to the reference power supply buses. Thus, the
converter output resistance is constant and equals r/2.
Interpreting the contents c of the buffer register by a
straight binary code with negative numbers expressed as
2’s complement (—1<c<1), we get the converter
equivalent circuit shown in Fig. 11.

Gram, et al.: GIER—Danish Computer 647

 Equivalent circuit:

Fig. 11—Principle of D/A converter.

Eout

(mv)

4

i 1 Precision
11 resistor

Fig. 12—-Complementary emitter-follower switch and characteristics.

The switches of the D/A converter are realized by the
complementary emitter-follower circuit shown in Fig.
12. An important feature of the circuit is the fact that
the errors caused by leakage currents in the “off” transis-
tors are completely negligible. Both transistors are GE
units of symmetrical structure, exhibiting excellent low-
level characteristics as saturated switches. The spread

of the transistor characteristics is quite small so that no
selection of transistors is necessary.

648

H. The A/D Converter

The multiplexer and the A/D converter are designed

as an integrated unit (Fig. 13). When GIER enters an

IL instruction with reference to one of the analog input

terminals, the particular multiplexer switch is closed,

conversion is initiated and the result appears in the

ADB register.

The A/D conversion process is controlled by the

logical circuitry that adjusts the ADB register for

MULTIPLEXER

R

ae 401 D/A- CONVERTER +0

Analog I tae
inputs t

'
1 COMPARATOR ADB-REGISTER(ObI

rad
oH

Losic
oT} ~*~

Seomp

pre ‘J

b

T°
DRIFT- COMPENSATION

Fig. 13—Schematic block diagram of multiplexer and A/D converter.

current balance at the comparator input. The total

conversion time is 50 psec (5 usec per bit).

The comparator is realized by a fast dc amplifier

operating as an operational amplifier with a nonlinear

feedback network (actually consisting of several low-

storage, low-capacity GE diodes), as indicated in Fig. 13.

The amplifier output is picked up by a fast pulse-

forming amplifier that generates the logical output.

The zero drift problem is taken care of by a separate

drift-compensating circuit. Due to the nonlinear feed-

back network—reducing the closed-loop gain at high

input currents— the amplifier cannot be overdriven and

is able to handle the great range of input currents it is

subjected to during the signal conversion without loss of

recovery speed. The operational amplifier action main-

tains the input terminal close to ground potential

throughout the converting process, t.e., the input im-

pedance is very low. As a consequence, the circuit is

quite insensitive to capactive loading at the comparator

input. The actual circuit will tolerate a capacitive

loading in excess of 1 nF without appreciable deteriora-

tion of transient response. This fact allows for the con-

nection of a great number of multiplexer switches di-

rectly to the comparator input terminal.

The drift compensation scheme and the multiplexer

design will now be described in some detail. The most

important drift phenomena are temperature-dependent

voltage and current drift of the comparator amplifier and

temperature-dependent leakage currents of the multi-

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS

December

plexer switches. The drift effects are exactly cancelled by

the current Imp, produced by the drift-compensating

feedback loop (Fig. 13). The combined gain of the feed-

back amplifier and the pulse-forming amplifier is very

high and negative. The capacitor C ensures closed-loop

stability. Switches a and b—which are operated syn-

chronously—are closed and the outer feedback loop

activated in between the A/D conversions. Simultane-

ously the ADB register is zero-set. Switch a isa transistor

of the same type and conducting with the same base

current as the transistors used in the multiplexer

switches, thus simulating a multiplexer input connected

to zero. The loop will settle at a valué of Icomp that

balances the comparator so that the logical output

operates just on the transition between the two logical

output levels. When GIER is executing an IL instruc-

tion, switches a and b open and the capacitor C—now

operating as a hold circuit—maintains Icomp constant

during the A/D conversion.

I, The Multiplexer

Considering the design of precision multiplexers

equipped with transistor switches, the main difficulty is

to supply the base current to keep the switch “closed”

without interfering with the signal current to be trans-

mitted. Usually some kind of transformer-coupled drive

circuit is employed. In the GIER multiplexer a quite

different approach is applied.

The nominal multiplexer input signal range is +10 v

and the input current is +2 ma (input resistance 5 kilo- —

ohms). Fig. 14 shows the multiplexer switch in the
“open” position: The series switch 2N 2280 is in cutoff

and the parallel switch BCZ11 is saturated. The

parallel switch (not shown in Fig. 13) maintains a

constant multiplexer input impedance. The 1-uf con-

denser voltage is about 9 v. The switch is put into opera-

Vy =+5 63) \

I
|

|
|

Si HS 1101 Si 1
l

R’

3-4m
1,8k

2N2280

In 1 ,
Sk

To arator 0,05% yeoene
 HS1101

Common
multiplexer bus V9=-5 645)

Fig. 14—Multiplexer switch. The switch is shown in the “off” posi-
tion. Values in brackets indicate voltage levels to drive the switch
‘on.”

1963

tion by changing the driving voltages V1 from +5 to
—3vand V2 from —5 to +1.5 v. Transistors BCZ11
and diodes HS1101 are cut off and the 1 uf capacitor
supplies 2-ma base current to the switch transistor
2N 2280, connecting the multiplexer input resistor to the
A/D converter. The saturated 2N 2280 is now floating
freely during the A/D conversion, virtually discon-
nected from the drive circuit (except for negligible
leakage currents flowing in the BCZ11 and the HS
1101’s, all of which are Si units).

The 2N 2280, which is an Si unit especially designed
for low-level switching applications, is conducting in the
inverted connection. Resistor R’ (Fig. 14) is adjusted so
that the effective multiplexer input resistance is 5 kilo-
ohms, the 2N 2280 saturation resistance of 7 ohms in-
cluded. The voltage offset of the multiplexer switches is
balanced by the single 2N 2280-switch (a) of the drift-
compensating circuit. The capacitive loading of the
comparator input due to each multiplexer switch is
about 5 pf.

J. Applications of the Real-Time Unit

Fig. 10 shows a simplified block diagram of an in-
stallation running at the Technical University of
Norway, Division of Automatic Control.

One of the main research programs at this institution
is to study the application of, digital computers in
process control. Much of the work in this field can
profitably be done in the laboratory with the process
simulated on an analog computer (which is included in
the computer installation). Fig. 15 shows how the
different parts work together. Inputs to the process are
the controllable input signals and measurable as well as
nonmeasurable disturbances. On the basis of the process’
outputs and the measurable disturbances, the input
variables are calculated according to a certain control
law or strategy. With the digital equipment just in-
stalled it is the purpose, among other things, to develop
and investigate dynamically optimal control strategies.

(strategy)

putt t tt ce cr cer rrr rH rH ee 1 Analog computer '
lor process D
1 1 u PROCESS Y ' xX
' 1
| ee

| :
1 RT-unit
i

com. !
! ! ____l i
| GIER 1
i ! Control law 1 1
('

D—nonmeasurable disturbances
U—measurable disturbances
X—controllable inputs
Y—outputs

Fig. 15—On-line digital computer control.

Gram, et al.: GIER—Danish Computer 649

The realization of these strategies often involves com-
plicated mathematical and logical computations, that
makes it necessary to make use of a digital computer.

The time scale in which the analog computer can be
run is limited, and sampling periods of 50 msec to 1 sec
will be quite common. This puts strict requirements on
the input/output equipment and the efficiency with
which the computations in GIER go on. The sampling
periods can be defined by periodical interrupt signals.
A typical interrupt-answer will in this connection be: 1)
Read via the RT unit the values of the process’ outputs

_and the measurable disturbances. 2) Calculate on the
basis of these the controllable inputs according to a
specified strategy. 3) Convert these input values to
analog signals and apply them on the process’ input
terminals.

The different modes of the analog computer (pot.
set, IC operate) are controlled by a control register. In
order not to occupy special D/A-output channels for
setting initial conditions before each run, all the analog
output channels from the RT unit can be switched in two
groups by relays between two sets of terminals. These
relays are controlled by two bits in a control register.

The automatic read-out system of the analog com-
puter is easily controlled from a control register. Analog
x-y recorders are connected via the RT unit. The x and
y terminals are connected to analog output channels,
while control signals, such as operate, stand by, pen up/
down are controlled from some bits in a control register.
All printing and recording is made as efficient as
possible by means of the interrupt system. For example,
the printing on typewriter will occupy GIER for about
3 per cent of the time used by the typewriter. In order to
make the connection between the analog and digital
equipment as flexible as possible, all the input and out-
put channels are coupled to a patchboard as mentioned
before. In addition to this the amplifier outputs, the IC
terminals of the integrators and different control signals
(for instance operation modes, automatic read-out sys-
tem) from the analog computer are available on this
patchboard. It is located in a special interconnecting
unit. This unit also contains three floating digital poten-
tiometers which are very useful when working with ex-
perimental optimizing control systems and model ad-
justment. Three control registers of 10 bits are used to
realize these potentiometers. By means of relays preci-
sion resistors are coupled from one side to the other of
“the slider.” Two pulse-delay generators and 20 opera-
tional amplifiers are also placed in the interconnecting
unit. The pulse-delay generators are fully controlled
from GIER and among other things they are making
periodical interrupt signals for defining the sampling
periods. The amplifiers are used for matching the analog
signal levels between the RT unit and the analog com-
puter or process. (The analog computer signal range is
+100 v.)

In addition to the laboratory activity, work will be

650

done in the process industry. GIER together with the

RT unit and interconnecting unit will then temporarily

be installed in the actual factory. Preliminary investi-

gations will be made for a possibly greater and more

specialized process computer control system. Besides

being used for control purposes, the computer ad-

vantageously can take over a great deal of the super-

visory functions in the process, and the data handling

and reduction problems. On the basis of the elementary

~ process data the computer is able to calculate and read

out data that both really tell something and are up to

date. This is almost impossible with analog equipment,

but is usually of great importance.

In addition to the project of studying applications of

digital computers in process control, there will be great

activity in the field of numerically controlled machine

tools, using GIER for simulating different types of

control-unit schemes.

IEEE TRANSACTIONS. ON ELECTRONIC COMPUTERS December

ACKNOWLEDGMENT

It is a pleasure for the authors to acknowledge the

indispensable help received from the many persons who

have contributed to the development of GIER, es-

pecially T. Krarup from the Geodetic Institute who to-

gether with B. Svejgaard designed the list of operations

and the microprograms.

REFERENCES

[1] C. Andersen and C. Gram, “Manual for GIER Programming I
and II,” Danish Inst. of Computing Machinery, Copenhagen,
Denmark; 1962 and 1963 (in Danish, English trans. in press).

[2] Edwards, “Parallel addition in digital computers,” Proc. TEE,
vol. 106B, pp. 464-466; 1959.

[3] P. Naur, “The design of the GIER ALGOL compiler: Part I,”
BIT, vol. 3, pp. 124-140 and 145-166; 1963.

[4] F. Salter, “High-speed transistorized_adder for a digital com-
puter,” IRE Trans. oN ELECTRONIC CoMPUTERS, vol. EC-9, pp.
461-464; December, 1960. .

[5] Wier, “A high-speed permanent storage device,” IRE TRANs.
on ELectrronic CompuTErs, vol. EC-4, pp. 16-20; March, 1955,

