
~~

U
n

w
e
e
t

fe

two Godies of information, viz. the infermation mapplied by the Algol scuree pros

General Peas Meehanias

Gier Algol Translator ~i= PeAn- New, Ne 129
3. Kay 1962. | |

“THE TRANSLATION PROBLEQ IN MACHINSS wey ‘A HOS<HCECGENEOUS STORE,

The translation of en Algol prog-am consists basically in the cozbinetion of

and that of the translation program (the translator). Unless tha aaching bas e
ficiently large fast homogeneous stere to hold both of these bodies sdpalt
some division of these bodies becomes necessary. Tyo waye of making this divieto.
suggest themselves: In the one we attenrt to perform a purely sequential eeen thee.
the source program, taking a smell sectics at a tise. In the other we . divide tu:
translator inte several functional subunits end les theca operate on the conplete
source ‘Programs or the partially translated intermediate versions of it im tern.
This latter mcthod is then a miltisean process,

In a nachine which hes a sufficiently lerge fast store to held the ecuplote:
translator and its tables the sequential method is Clearly preferable. Hevsver, if
the fast store is not large enough to hold the transl&ter the miltigcen pweoesse is

" better. This is because in a ssquential process the order in which references are
made to the various parts of the trenslator is vwilnown, since this order depsnds
on the source program. ‘Therefore, in a sequential process we ars forced to” Sisul-
taneou ear Scan of the source program and aluost random roferences te all parts
of tho translator. In a multiscan process, en the other hand, the part ef the trana-
later used during a particular scan is fixed and the only reference to 2 large bedy
of information is the purely linear scan through the partially translated PROgTaR.
Por these reasons the Gior Algol Translater will use a miltiscan mothod.

It is interesting to note that on Gier this choice is eutirely compatible with
@ high translation speed. In fact, the tine for transferring s program occupying
150 drum tracks into the core store and back again, as 1¢ will be necessary during
each pass, takes only about 6 seconds. If 10 prsses ars nesescary the total drm
transfer time will thus be about 1 minute for thie rather large prosren. It must
be. expected that the actual translaticn process will require considerebly more ting
then this, and thus the simultaneous drum trensfer facility in Gier will work to
our full advantage.

TYTERHEDIATS LANGUAGES.

In a miltipass translator the choice of interucdiate languages bacomes of prime
importance. The following conflicting factors have to be considered: From the point
of view of the individual seans (or trenslator"passes") great flexibility and a great
multitude of structures of varying length te desirable. Fron the point of view of
The. : programs which have to perform the packing and vapacking of information, which
ia necessary during cach scan, uniformity of structure is desirable. Uniformity is
aleo desirable fer translator checking purposes.

In view of these considegations the follewing compromize has beon edepted: AlL
intermediate lengua ges are expressed in terms ef basic units of information each of
10 bits. This unit is celled a"byte", ©. Soe - Thus the.
input to each pass and the output from it will always consist of a unifors string
of bytes. Within each intermediate languege any amount of structure within this
byte string may be employed in order to commnicate more intricate structures.
Thus, for example, a number in the orizinal Alzol nrogram will in nost of the inter=
mediate languages be represented by 5 consecutéve bytes,the first being a

1

Gier Algei translater men
General Pass Mechanisn
de Hay 1962

“nuribor mark” while the remaining four supply the setual vahie of the nuziber. However, from the point sf view of ths general pasking and t@packhing program the
various intermediate languages are undistingsuiskable, singe they elk consist of just
e@ uniform byte string.

By this method the progress which will perform the packing end unpacking of the intermediate vorsioas of the Frogrem and which will teke then fran the drw: end store thea on the drum will bo the sane fer all pesses. Tq aiditiaa since © output from each pass is always of the sane fore — thes test eutpas peer: used for all passes and can be coupled to the common pass adataistre tic, will probably facilitate the checking ef the translater ereatiy.

REVERSE SCANS AND ERROR REMOVAL.

In a miltipass translater it ig highly adveatagecus to let seue ef the semas be reverse deans, i.¢. scans which start at the oad of the progran and neve tovards: the begin. First of all the problem ef forverd references clearly is golved conplote. in this menner. .. In addition it becomes easy to eliminate syntectically incorrect sections of the program during the translation. This is importent beemsze it is highly desirable that an error which has been detected dees net prevent the trens- lation process fren continuing to cheek the reat of the program. The way of doing this in the Gier Algol translator is as follows: During the syntactical cheek of the program (pess 3) a specie’ byte “statement start" 4s cutput at every point whera an Algol statement atarts in the text. If a syatecstical error is found in a atate~ went a special byte "trouble" is output and the rest of the symbols of the statement up till the first following semicolon (3) ox ead axe skipped couplotely. The foliowir Scan is a backward scan. Every time this seen finds the byte “trouble” it will skip all bytes back to the first "statensnt start” voint. In this way the ceaplete in correct text is removed. At the samo tine variqus parameters describing the stete- of the translation are reset to appropriate values to onable the translation to een= time to translate the following statement correctly.

ERROR SIGNALING.

The translator includes an extensive eheeking of the formal correctness of the Source program. Every time.an error is found en error description will be preduced 4n the cutput from the translator. This will include the location and kind of the error. The lecation will be indicatsd by the number of the line in the original Algol test where it occurs. In erdex to facilitate the identification of lines the first pase of the trenslatien will preduee a copy of every 10th Line of the progran in ita output, with the line nusber inserted at the beginning of the line. The kind of the error will be deserited by an appropriate error meagsace,

Gler Algol Translator ae, B

General Page ‘iechanion

3. May 1962

STORAGS OF THE PARSIALLY TRANSLATED PROGRAM.

According te the deveription given above 11 pesses use the sane GMeral pass
atninistration. As far aa the individual pass programs are concerned the general

" ~pass adninistration is a subroutine with two entries, me for innit and cae for cain
In fact these twe entries are almest completely independent since they use two in.
dependent buffers in their comumica‘:ion with the drm. The general pase admini.
stration uses 4 sections of 40 words each in the cere store. ‘two af those are 3
as buffers for the input to the pass proprems, the othor twe for ths eatpirs fre
the pass program. Hormelly one of the input tutfers holds the tryrtes of that eeeste
of the program which is prosently being processed by the pasa progran while the
other input buffer holds the ext input drum track. When ell tho byter: on the
active buffer have buen vsed the. . twansfer from dour
of the next following drum treck is initiated. At the seme tie the pass progres
can proceed to process the input bytes waiting in the other input buffer. A sdudlex
buffering technique is wed am. the output side.

| The bytes “packed inte the Cier words with 4 bytes in @ word. Tims cue drun
track holds 160 bytes. The unpacking (on the inpus side) and packing (on the output
side) of the bytes into the words aro performed by the general pass administration.
This turne out to be a more tine consuming process than tho corresponding drum trans:
fors. In fact the average unpacking idme por byte is shout 220 Bicroseconds, which
means that the unpacking of the 160 bytes on a track will teke about 35 milliseconds.
This again means that except fer collisions between drum transfers called from the
inpat and output side the time for drum transfers will be negligible, owing to the
Parallel operation during drum transfers in Gier. Ths tine for pecking on the out-
put side being about 260 microseconds per byte, the total tine for the admin
nistration of a pass becomes about T7 millicecends per drum track plus ths time
wasted due te collisions of drum transfers, about 5 milliseconds onthe averaks.
The processing tine por byte of course varies greatly, the minimum being about
80 microseconds (direct copying from ingit to output) while a normal figure of
pothaps 500 microseconds may be expected. If this holds the pass administration
end processing times are comparable end the total tine for 10 passes will be about
2 seconds per drum track.

On the drum the tracks holding the partially trenslated progven sro wed in a
cyclic manner. Probably asout half the drum will be avellable for this, vitle the
rest of the drum will hold the translator and the rumiing systen programs. Suppose
that the evailable tracks ere nusbered from 1 to N. The first pass will then place
its output in tracks no. 1 to H, say, where clearly 1 ¢N. The second pass will
take its input from tracks no. 1, 2, ete. end will place its output in tracks
firl, Mp2, otc. “hen outputs to track no. NH has been ma de the administration wlll
continue to.cutput into track no. 1, 2, ete. which presumably have now been released
by the input side administretion. This process is continued smoothly from ons pass
to tho next, except for the cace that the direction of scanning is reversed. This
does not cause difficulty hovever, since the cyclic use of the dzmun tracks may with oqual oasdtake place in either direation. only in the programs hich wacon the
packing and unpacking a few changes ave necessary.

Gier Algol Trenslator

General Pass Mechanism

HACHING ARRANGEMENT OF THE GENERAL, PASS ADFENISTRATION.

_ | Algol deseriptions of the general pass administrations ars found belle. The
following netes show the storage of the transistor on the drum and the use of tre
core store during translation.

Drum: 320 tracks (40 words each) Core store: 1024 words

SLIP. Absolute
address address

O-51 SLIP (symbolic input program O-G Reserved for SLIP
32- ? Running system 16- Drum and pecking sit ron
1ei4 ' Forward pass | see core store of partially trans 1e! DEE
2el4. Backward pass {t6 = 55 at (forward or beskvard).
3e14 Ss testprint, print, ae line, , F494 Base in = 013”

entry to message (1 track total) 5é- Input buffer I<, iso -used Fen 4e14 endpass (1 track) 96 * suffer stop >) so used fer 5e14- message (output program,1 track) 9f-130 Input buffer 2 ra NUGECE BY SRORLES 6e14 texts for message (1 track) = a 7 Bass out
Tel4-? Pass » - B17 Output buffer ee {Also used ton Pm? Pass nel / -. | 172. Buffer stop aananen | tee | franelator ress _“V$- 219, Output burfer 2 CBEs0R8 2s? Pass l Programs au Buffer stop
?—? Partially translated 2. 293, testprint, print, new line, satry

Algol progran to message, universal transleter (tracknumbers FIRST to LAS?) peranstors
 26l= = Translator pass prosrans LAST+1 Table of strings, formed . and their tables

-~ 319 during pass 1 999
mc 960-999 Also used for endpass

24000 Reserved for SLIP
~ 1023

Taking the tracks of the drum in oxder,
moaning of the various parts: ,

this gives a general survey of the

SLIP is the input progran used for reading the translator into the machine. dhen the translator is completed this will of course become unnecessary and the cam plete translator be shifted forvard on the drum.
The running system is the set of administrative programs and standard Peose= _ dures used by the running Algol program, when the translation is compléted. See Glor Algol Running System.
Forward pass and backward pass are the programs performing the packing, un= packing and drum transfers described above in the section on STORAGE OF THE PANPTALLY TRANSLATED PROGRAH. One of these tracks will be placed from 10 to in the cores, Two goparate programs have been written in order to make sure that this central yro- cess runs at the highest possible speed. The . :- PaSS program appropriate te ezch soparate pass is transferred to the cores by endpass.

Gier Algol Translator Deo

General Pass Mechanism

The track holding the programs testprint, print, new line, and entry to mesa-

sage, in addition to certain universal translator parametors, is permanently held

in the core store 220-259. Entry to message is used for transferring the messago

printing program from drum. The message program will be placed ia that one of the

two output buffers which is not currently being used for collecting output.
This output buffer will always have besa

transferred to drum before At is overwritten by message and therefore necd not be

saved. On exit message will only have to make sure that the output buffer is left

with the correct marks on all words.

The next track holds the program endpass which is used to perform the tranzi-
tion from one pass to the next. When used this program is transferred to ee in.
the core store. Endpass does the following: 1) The last output buffer is filled uy
with dummy bytes until it is transferred to the drum. 2) Information about the ; Sate
which has just been completed is printed. This will always Include the nuuber or

used tracks. 3) According to a table held by endpass itself the direstion of scan

is reversed if necessary, the appropriate pass program (forward or backwazd) is trai

ferred to 16-54 in the cores, and the program for the pass itself is transferred to.
locations 261 and following. .

' The message program is a text printing program. As described above it will be

placed in one of the two output buffers when it is needed. It starts by trensferrizg
a track of text information from the following track to that one of the two input

buffers which has last been t#ansferred from the drum and which hae therefere not
yet been processed. At the end of its work the message program mist restore the

‘input treck which was overwritten by the text track,
The next section of the drum holds the translation programs proper. This is

followed by the working section of the drum (see the section on STORAGE OF THE PAR&

TIALLY TRANSLATED PROGRAM above).
The very top end of the drum is used for holding a table of strings in the Algo

program. This is formed during the very first pass and will reserveg as much of ths
working section of the drum as it needs. This is possible during pass 1 because the

cyclic use of the working tracks has not yet had the chance of moving to the top of
store (unless the program is too big for the machine).

Gier Algol Translator =E=
General Pass Mechanism
10. May 1962

ALGOL PROGRAMS FOR THE PASS ADMINISTRATIONS. -

The following Algol descriptions follow the machine codes sufficiently closely to be of help in deciphering these. It should be noted, first of all, that the input and output procedures are highly “sneaky" since they use and change a number of non= local variables. These variables are:

integer output word address, output byte number, number of used tracka, number of available tracks, output track, last track, input word address, byte address, input track;
boolean in testmode;
integer array BYTE BUFFER(1:5];

dnteger array WORD BUFFER[0:164] ;
The WORD BUFFER is the section in the core store from 55 to 219 (page 4). The five words placed in between and at the ends of the buffers proper are used to control the counting through their maris in Gisr. The marks placed on the words in the WORD BUFFER are as follows:

Maris Use of buffer
WORD BUFFER 0

1-40
41
‘42-81
82
83-122
123
124~163
164

Input 1

Input 2

Output 1

Output 2

M
O
N
M
O
U

C
h

O
U

In addition to the non-local variables a number of non-local procedures are used. Hopefully those of them which are not declared may be understood fron their identifier

Procedure output(byte); value byte; integer byte; comment This performs the packing ‘ and drum transfers of the output from each pass in turn. The algorithm given works only for a forward pass. ‘The one for backward passes is so similar that it will not be reproduced. For further notes, see the section on STORAGE OF THE PAR- TIALLY TRANSLATED PROGRAM on page 3; ,
begin switch packing := pack first, pack second, pack third, pack fourth; df in testmode then testprint(byte);

output byte number := output byte mumber + 1;
£0_t9 packing {output byte number];

pack first: output word address := output word addreas + 1; WORD BUFFER output word address] t= byte;
go to output done;

pack second: WORD BUFFER joutput word address! sa
WORD BUFFER joutput word address] * 2T1O + byte; £9. to output. done;

pack third: WORD BUFFERJoutput word address] :=
WORD BUFFER foutput word addresa|x 2710 + byte;

£9 to output done;

Gier Algol Translator To

General Pass Mechanism

10. Hay 1962

pack fourth: WORD BUFFER [output word address! t=
WORD BUFFER foutpat word address |< 2710 + byte;

output byte number s=

Af marke of (WORD BUFFER atput word addresa) > 0 then
begin number of used tracks := number of used tracks + 1;

Af number of used tracks > number of available trac:

then, alara(<<pregram overflow>, "stop!);
byte := WORD BUFFER [output word address |;

output track s= output track + (if output track = lasttrack
then 1 ~ available tracks |

else 1);
TRANSFER TO DRUM(output track)from:(output word address = 40);
if marks = 3 then output word address := output word address - 81;

go to. _ if this is last then exit from pass else pack first

| gad;
output done:

end, output 5

integer procedure input; comment This performs the drum transfers gad unpacking

used for input to all passes es except the first which reads the paper tape. In the

. machine code this is coded as an oper subroutine of the following 2 long orders:

ARS (el) t+1 or PHK (el) tel
e2 LA HS @2 LA;

begin byte address gas e address + 1;
R t= BYTE BUFFER[byte address|;
af R = “nonsensebyte" then UNPACK BYTES;
input saz R

ord input;

procedure UNPACK BYTES; comment This is called every time an input word mst be

pupae i.e. once for every 4 bytes input by input;

begin integer marks;
input word address := input word address + 1;
marke t= marks of(WORD BUFFER [input word address!);
if marke > O then

begin input ¢: track t= input track +
(if input track =: last track then l-available tracks else 1);

TRANSFER FROM DRUM(input track)to ding. ‘input word address - 40);
if marke = 3 then input word address := input word address ~ 81;
number of used 1d tracks t= number of used tracks - 1

ends
word := WORD BUFFER[input word addrese] ;

t= BYTE BUFFER] := first part(word);
BYTE BUFFER [2] z= second part(word);
BYTE BUFFER]3] := third part(word);
BYTE BUFFER[4] := fourth part (word);
comment BYTE BUFFER{5] permanently holds the value "nonsensebyte";
byte ad address t= 1

end UNPACK BYTES;

Vaol siOL tPatisauue “Oe :

General Pass Mechanism
12. May 1962

procedure TRANSFER TO DRUM(track number)from: (buffer location); code;
procedure TRANSFER FROM DRUM(track number)to: (buffer location); code;
comment These procedures transfer the 40 words of a track to or from the 40 words
held in the JORD BUFFER from WORD BUFFER[buffer location] and onwards;

The following procedures use some further non-local parameters:

integer rest of line, pass number, CRcounter, information 1, information 2, pass numbe
boolean first print in pass, no running, . this is last;

procedure testprint(n); value n; integer n;
begin rest of line := rest of line = 1;

if rest of line = 0 then new line;
skrv(ddddd}, n, skrvml(2));

ond testprint;—

procedure print(n); value n; integer n;
begin rest of line := 0;

 gkrv(fddda}, n, skrvml(2));

end prints

procedure new line;

begin skrvvrs; skrvvr;
(if first print in pass then

begin first print in pass := false;
skrv({d>, pass nunber);
skrvtekst({<.,$);

ood
else skrvmi(3);
rest of line := 10

end new line;

procedure message(n, kind); value n, kind; integer n, kind;
begin boolean give up;

Switch action := hopeless, serious error, error, line number, no line number;
TRANSFER FROM DRUM("message track")to:(if input word address > 41 then 1

else 42);

new line;

fo to action kind ;

hopeless: give up := true;
Serious error: no running t= trus;

red output;
error: printtext(‘error');
line number: printtext(‘‘tine');

print(CReounter);
no line number: printtext(n); comment printtext is a procedure ubhich prints

that text in the text list which has the number given as parameter;
TRANSFER FROM DRUM(track in)to:(if input word address > 41 then 1 else 42);
black output; .

wait: if drum transfer in progress then go to wait;

Af give up then stop
Sud message;

Gier Algol Translator Que

General Pass Mechanism

12. May 1962

end pass:

output(0);

working boolean := in tesatmode;
in testmode := falss;

outpat(0); output(0); comment This fills the remainder of the output track
until it has beon transferred to drum. output jumps to “exit from pass"

when a drum transfer has been completed and "this is last" is true;
this is last := tru3; go to Ls;

exit from pags: new line;

print(used tracks);
if information 1 + 0 then print (information 1);
if information 2 * 0 then print (information 2);
pess number t= pass number + 13

in testmode t= working boclean;
iff in testmode then wait;
first print in pass i= true;
marks i= marks of(passin‘ormatica[pass number);
R t= pass information |pass number];
comment The table “pass information" tells. whether the direction of sean shoulk
be reversed (marisa > 2). Also four addresses are given telling where to find
the new pass progran on the drum and where to enter into it;

if marks > 1 then exchange (input track, output track);
TRANSFER FROM DRUM(input track)to:(1);

begin integer track, store, first treck, exit;

end;

track := part 1(R);

first track := pa rt 2(R);
store := part 3(R);
exit s= part 4(R);
TRANSFER FROM DRUM(if marks = 0 Vv marks = 2 then forward track else backward

track)to:(pass mechanism);
track := track ~ 1; store := store = 40;

TRANSFER FROM DRUM(track)to:(stove);
if track > first track then go to more;
Af input = 0 then go to 4; comment This eliminates the filler zeroes;
byte address := byte addvese - 1; comment In this way the last byte will

be repeated;

g0 to instruction jexit];

Gler Algol Translator ~iCs
General Pass Mechanisn
12. May 1962

SYMBOLIC NAMES FOR THE WHOLE TRANSLATOR (e-WANES).

Entry points and paremetera held as addresses in instructions:

e1 byte address
e2 inaddress (input word address and entry to UNPACK STeES)
83 output
e4 (see below)
‘a5 entry to message
e6 testprint
e7 newline and print
eS newline

e9 = print
e10

ell
el2 outaddress (output word address)

General parameters for translator (are stored at the end of the track holding
print etc. and are initialized to the values indicated when reading that track fron drum). e4 must be defined right at beginning of loading.

holds initial value

e4 CRoounter aa 0 ti
le4 number of used tracks Q2 0
2e4 information 1 for output of QQ 0
3e4 information 2 statistics QQ 0
4e4 last track =] QQ 820 =)
5e4 available tracks - 1] Q9 @20 - elf
6e4 input track QQ e19 -
Te4 output track QQ e19
8e4 no running (>0 = false) QQ 1 » PS 42) 0 | Sol. dent fer
9e4 pass number QQ 1

l0e¢ first track + 1 — QQ 01941

