GIER ALGOL Translator T f o N, o 124

General Pass Mechanism
3., May 1962.

THE TRANSLATION PROBLEM IN MACHINES WITH A NON-HOMOGENEOUS STORE.

The trenslation of an ALGOL programeonsists basically in the gombi-
nation of two bodies of informej on viz. the information supplied by the
AL 5 souz:ﬁe program and that Of the transla.t ‘n program (the transla- -

tor) « Yatess—the ms.ehine a—£asf homogereous store
i~A o-hold bebk A viaion of these bo-
dies cm ’
}u,xe?wudﬂ' selves?) In 1
sl the source prog am

dite versions of idin turn.

me(ate on the compl :~ e Bource prog

- In e meghir® vhich
(7 complete tph la:bor end N
Jferable., owever if the f

3 or the multip £

'bicess the order in whic refe: enes are made to e various ig% 1

de translator is mxlmown siheé this-order depends on the, sourde pro- v

. gréfn. | kerefore, in g-sequentied Snecesd? we are forced §d° e Flmulte~ | '/, s fle
Hrcs neous a llgear scan of the soufce progrem and - jerences -to / D
all parts oXNthe translator]/In s multdecen process’, & ‘the gfher he nd, Yon
the part of the translatop/used during a serticular-scan 18 Pi%e an % S 1_’
scan o

through the pa.rti ly ¥ransleted program. Forthese reasgns thv

GOL frenslator JATY s{ & multiscan method.
It is interespimg to note that gn GIER this Okoife is entirely com- [eS8 /.

patible with & hjigh tr slation speed. In fa.ct the/Xime for transferring

& progren occupying 150 8rum tracks into the core store end back again

a8 1t will be¢’necessary duxring esch pass tekes Only e.b t 6 seconds. If

10 passes gfe necessary the Notal drum transf time will “thus be sbout 1

minute fgof this rather large Program. It must be expected that the actual

m only reference ¥Q & largd body of informatidy is the purels line
udev

i

|+

| (Y translg¥ion process will require considersply more time than ’chis and
~. thus he simltaneous drum tremsfer faci}fty in GIER will work to our /
ful)/ adventege. [——— o
&< 15' INTE TE .
< . - . ERMEDIATE LANGUAGES. _
" Istcam Tne multi{a'ﬁ translator the choice of intermediate langusges be-
e comes of primp importance. The following conflicting factors have to be

considered: om the point of view of the individusl scans (or trenslator
passes’) great flexibility and s great multitude of structures of vary-
ing length is desirsble. From the point of view of the programs which
have to perform the packing and unpacking of information which 18 neces-
sary during each scen, uniformity of structure is desira:ble. Uniformity

is also desirsble for "transistor checking purposes. /W
~ In view of these considerations the following compromize)‘as - /\4
dopted: All intermediate languages sre expressed in terms of basic units ’—7

of information each of 10 bits. This unit is called a 'byte'. Thus the
input to each pess and the output from it will always consist of & uni-
form string of bytes. Within each Intermediate language any amount of
gtructure within this byte string nay be employed in order to commmicate
more intricate structures. Thus, for example g number in the original

ALGOL program will in most of the intermediste langueges be represented
by 5 consecutive bytes’ the firat being & d¢stinet 'mumber mark' while
the remeining four aupply the actuasl value ‘0f the mmber. However from
the point of view of the general pecking and unpacking program the veri-
ous intermedimte langusges sare undistinguisha’ble since they all consist
of just a uniform byte string.

By this method the programs which will perform the packing and un-
packing of the intermediaste versions of the program énd which will take
them from the drum and store them on the drum will be the same for all
passes. In addition since the output from each pass is always of the same
form the ssme test output program cen be used for all passes and can be’

ccupled to the common pass administra‘bion. /'Ihis_xﬁl-pcobably—f:ae-ﬂ-i-tm

212 3 - 4 o ARt -

MREV’ERSE scaNs, W o eanuas

In a multipass translgtor it is highly advantageous to let some of
the scans be reverse scans, i.y{ scens which start at the end of the pro-
gram and move towards the begin. First of ell the problem of forward re-
ferences clearly is solved completé in this manner. In sddition it be-
comes easy to eliminate syntactically incorrect sections of the progrem .
during the translation. This is importent beceuse it is highly desirable
that sn error which has been detected does not prevent the translation
rocess from continuing to check the rest of the progrem.
ing this In the GIER ALGOL transletor is as follows: During the synteacti-
cal check of the progrem (pass 3) a Bpegisl ¥yte 'statement start' 1is
output st every point where &n ALGOL sta Eeflent staerts in fhe texts If a
syntacticel error is found in e statemert a Special byte 'trouble' is
output and the rest of the symbols of the statement up till the first
following semicolon (3;) or end are 8kipped completdly. The following)scen
is & backward scan. Every time $¥s scen Tinds the bybte 'trouble' 4% will
skip all bytes back to the fipsét 'statement start' point\ In thls way -
the complete incorrect text s removed. At the same time vapfous parsme-
ters describing the statg ©f the transletion are reset to apPwopriste va-
i

lues™5qQ ensble the trapdlation to continue to traenslate” the follqwing
8 ~correctly.

ERROR SIGNALING

~
.

The translator inc\hwn extensive checking of the formal correct-
nese of the source program. ery time sn error is found an error de-~

he odtput from the translator. This will
inelude the location and kind of fthe error. The location will be indice~
ted by the number of the line A the™qriginel ALGOL test where it occurs.
In order to facilitate the idéntificatidn of lines the first pess of the
trenslation will produce g-copy of every i1 th line of the progrsm in its
output, with the line nyaber inserted at the'beginning of the line. The
kind of the error will be described by an sppropriate error messsge.

seript¥on will be produced in

e

1

/2

_ -

Q,@mmem OF THE PARTIALLY TRANSLATED PROGRAM.

According to the description given sbove all pssses use the same ge-
neral pass administration. As far as the individual pass programs are
concerned the general pass administration is a subroutine with two en-
tries one for input snd one for output. In fact these two entries are
almost completely independent since they use two indenpendent buffers in
their commmication with the drum. The genersl pass administration uses 4
sections of 40 words each in the core store. Two of these are used as
buffers for the input to the pass programs, the other two for the output
from the pass progrsm. Normelly one of the input buffers holds the bytes
of that section of the progrsm which is presently being processed by the
pass program while the other input buffer holds the next input drum
track. When all the bytes on the active buffer heve been used the trans-
fer from drum of the next following drum track is initiasted. At the same
time the pass progream caen proceed to process the input bytes weiting in
the other input buffer. A similaer buffering technique is used on the out-
put side.

The bytes are packed into the GIER words with 4 bytes in a word.
Thus one drum track holds 160 bytes. The unpacking (on the input side)
and packing (on the output side) of the bytes into the words are perform-

ed by the general pass edministration. This turns out to be a more timd_ Le-
consuming process than the corresponding drum transfgrs. In fesct the ave- /e
rege unpacking time per byte is sbout 220 microseconds which mesns that '

the unpacking of the 160 bytes on & track will teke about 35 miYiseconds. Z [Z

This sgain means that except for collisions between drum transfers celled
from the input and output side the time for drum transfers will be negli-
gible owing to the parsllel operation during drum trensfers in GIER. The
time: for packing on the output side being sbout 260 microseconds per
byte the total time for the administration of a pass becomes sbout 77
(L ml iseconds per drum track plus the time wasted due to collisions of drum

! tr sfers gbout 5 mi}iseconds on the aversage. The processing time per

3 QL byte of course veries greaetly, the minimum 'being a‘bout 80 microseconds
(direct copying from input to outpu'b)] hile ermat—Fizm

113 out 2 se gAML
el On the drum the tracks holdi the partially £ré graf are oo et Ca O "
sed in a cyclic manner. BrdgBelily About half the drum xdﬂm aveilable
for this while the rest of the drum w$4T holds the translator and the
running system programs. Suppose that the avallable tracks are numbered
from 1--to N. The first pass will then place its output in tracks no. 1 14
M" sa,y, where clearly M < N. The second pass will teke its input from
tracks no. 1 2 ete. and will place its output in tracks M+l M+2 etec.
When output to track no. N. -has been made the administration will continud
to output into track no. 1 2, ete. which presumsbly heve now been re-
leased by the input side administration. This process is continued
smoothly from one pass to the next except for the case that the direc-

gince the cyclic use of the drum trackes mey with equal ease teke place in
either direction. Only in the progrems which perform the packing and un-
pecking & few changes are necessary.

YOI

MACHINE ARRANGEMENT OF THE GENERAL PASS ADMINISTRATION.

ALGOL descriptions of the general pass edministrations é.re fdund be~
low. The following notes show the storage of the translator on the drum
and the use of the core store during translation.

Drum: 320 tracks (40 words each)
SLIP
address

0-31 SLIP (symbolic input program)
32~ Rhmning system
101k Forwerd pass see core store
201k Backward pess 16 - 55 -
301k testprint print, new line,
entry to messsge (1 track total)
hoth endpass (1 track)
501k message (output progrem, 1 track)
601k texts for message (1 track)
70ihb- Pass n
- Pass n-1
- Pass 1
- Partially trenslated
ALGOL program
(tracknumbers FIRST to LAST)

Trenslator pass
programs

IAST+1 Tsble of strings, formed
-319 during pess 1

Core store: 1024 words
Absolute
address

0-15 Reserved for SLIP

16-54 Drum end packing administration
of partially trensleted progrenm
(forward or backward).

55 Base in = e13
56-95 Input buffer 1
96 Buffer stop Also used for

97-136 Input buffer 2 texts by messsge

137 Bese out
138-177 Output buffer 1
178 Buffer stop’
179-218 Output buffer 2
219 Buffer stop -
30-259 testprint print new line entry
to message, unlversal tranalator
parsmeters
261~ Translator pess progrems
end their tsbles
999 .

960~-999 Also used for endpass
1000 Reserved for SLIP
—1023

Also used for
messsge

Teking the tracks of the drum in order this gives a generel survey

of the meaning of the verious parts:

SLIP is the input program used for reading the trasnslstor into the
machine. When the translator is completed this will of course become un-
nescessary and the complete translator be shifted forward on the drum.

The running system is the set of administrative progrems and sten-
dard procedures usged by the running ALGOL grogram when the translation
is completed. See GIER ALGOL Running System.

Forwerd pass and backward pass are the programs performing the pe-
cking unpacking and drum transfers described asbove in the section on
STORAGE OF THE PARTTALLY TRANSLATED PROGHAM. One of these tracks will be
placed from 16 to 54 in the cores. Two seperste progrems have been writ-
ten in order to meke sure that this central process runs at the highest
possible speed. The pass program sppropriate to each separate pass is

transferred to the cores by endpass.

The track holding the progrems testprint print new line and entry
to message in addition to certain universsl translator parametera is
pemanently held in the core store 220-259. Entry to message is used for
trensferring the message printing program from drum. The message program
will be placed in that one of the two output buffers which is not cur-
rently being used fér collecting output. This output buffer will always
have been transferred to drum before it is overwritten by messsge and
therefore need not be saved. On exit messsge will only have to meke sure
that the output buffer is left with the correct marks on a&ll words.

The next track holds the progrem endpess which is used to perform
the transition from one pass to the next. When used this progrem is
transferred to 960-999 in the core store. Endpass does the following:

1) The last output buffer is filled up with dummy bytes until it is
transferred to the drum. 2) Information ebout the pass which has just
been completed is printed. This will slways include the number of used
trecks. 3) According to a table held by endpass itself the direction of
scan is reversed if necessary, the apprcpriate pass program (forwerd or
backwerd) is transferred to 16-5k in the cores, and the program for the
pass itself is trensferred to locations 261 end following.

The message progrem is a text printing progrem. As described sbove
it will be placed in one of the two output buffers when it is needed. It
sterts by transferring a track of text informstion from the following
track to thet one of the two input buffers which hes last been transfer-
red from the drum and which has therefore not yet been processed. At the
end of its work the messsge program must restore the input track which
was overwritten by the text track.

The next section of the drum holds the translation progrems proper.
This is followed by the working section of the drum (see the section on
STORAGE OF THE PARTTALLY TRANSLATED PROGRAM above).

The very top end of the drum is used for holding & table of strings
in the ALGOL program. This is formed during the very first pass and will
reserved as much of the working section of the drum as it needs. This is
possible during pass 1 because the cyclic use of the working tracks has
not yet had the chance of moving to the top of store (unless the progrem
18 too big for the machine).

ALGOL PROGRAMS FOR THE PASS ADMINISTRATIONS.

The following ALGOL descriptions follow the machine codes suffi- -
ciently closely to be of help in desiphering these. It should be noted,
first of all, thet the input and output procedures are highly 'sneaky' -
since they use and change a number of nonlocal verisbles. These variables
are:

integer output word address, output byte number’, mumber of uged tracks,
number of avallable tracks, output track, last track, imput word
address, byte address, input track;

boolean in'testmode;

Integer array BYTE BUFFERE1:5];

integer array WORD BUFFER[0:16L],

The WORD BUFFER is the section in the core store from 55 to 219 (pege 4).
The five words placed in between and at the ‘ends of the buffers proper
are used to control the counting through their marks in GIER. The marks
placed on the words in the WORD BUFFER s&re as follows:

Marks Use of buffer

WORD BUFFER O 3
1-4t0 0 Input 1
'S} 2
42-81 0 Input 2
82 3
83-122 0 Output 1
123 2
124-163 0O Output 2
164 3

In addition to the non-locel varisbles a number of non-local procediires
- are used. Hopefully ‘those of them which are not declered mey be under-

;;;;;;;

e s 0 0 S o e o Wl o e i S U e ot T P oy o s0on

. the packing and drum trensfers of the output from each pess in-

€ o turn. The algoﬁthm‘ given works only for & forward pass. The one

for backwerd passes is so similar that it will not be reproduced.
For further notes, see the section on STORAGE OF THE PARTTALLY
+ TRANSLATED PROGRAN on page 3 - -
begin switch packing:= pack first, pack second, pack third, pack fourths
if in testmode then testprint(byte); -
output byte number:= output byte number + 1;
go_to pecking[output byte mumber];
pack first: output word address:= output word eddress + 1;
WORD ‘BUFFER[output word eddress]:= byte;
go_to output done; ’
peck second: WORD BUFFER|output word asddress]:= '
*** WORD BUFF'ER,_:output word address]xz’ho + bytes
go_to output done; '
pack third: WORD BUFFER|output word address|:=
©+ WORD BUFF'EREoutput word aadress]xz'ho + byte;
go_to output dones

A

peck fourth: WORD BUFFEREoutput word address} =
WORD BUFFER[output word address]«2M10 + byte;
output byte number := Oy
1f marks of(WORD BUFFER output word address) > 0 tl_len
begin number of used tracks:= number of uged tracks + 1
if nunber of used trecks > number ofv aveidable tra.cks
then alarm({<program overflow>, ‘'stop');
byte:= WORD BUFFER[output word address]s
output track:= output track + (if output track = lasttrack
then 1 - available tracks
else 1); -
TRANSFER TO DRUM(output track)from:(output word sddress - 40):
if ‘merks = 3 then output word address:= output word address - 81;

T g o i

end;

output donej
end output s

‘‘‘‘‘

- 1 T

unpacking used for input to all passes except the first whieh reads the
peper tepe. In the machine code this is coded as an open subroutine of
the following 2 long orders:
ARS (el) t + 1 or PMX (el) t + 1
IR HS e2 1A HS o2 ILA;
begin byte address:= byte eddress + 1
:= BYTE BUFFER[byte eddress];
if R = 'nonsensebyte' then UNPACK BYTES
inpu‘b‘= R
end input-

procedure UNPACK -BYTES; gg:_r_nggg’g This is celled every time &n input word
must “be unpacked, i.e. once for every U bytes input by input;
begin integer markso
input word address.= input word address + 1y
merks:= merks of(WORD BUFFER[inmput word eddress]);
if marks » O then
begin input track:= input track +) C
(if input track = lest track then 1-available trecks else 1)
TRANSFER FROM DRUM(input treck)toi{input word eddress - 50);
if marks = 3 then input word address := input word sddress - 81;
nmumber of used tracksi= number of used trecks - 1
ends
word WORD BUFFER[input word address];
= BYTE BUFFER[1]:= first part(word);
BYTE BUFFER[2]:= second part(word);
BYTE BUFFER|[3]:= third pert(word)
BYTE BUFFER[4]:= fourth part(word§ '
commient BYTE BUFFER[S] permenently holds the vaelue 'nonsensebyte';
byte address := 1
end UNPACK BYTES;

o r

procedure TRANSFER TO DRUM(track mmber) from:(buffer location); codes
prodedure TRANSFER FROM DRUM(track mimber) to:(buffer location); code

coment These procedures transfer the L0 words of a treck to or from the
[0 words held in the WORD BUFFER from WORD BUFFER[buffer location] and

onwardss
The following procedures use some further qon—local peremeters:

integer rest of line, pass mmber, CReounter, information 1’, information 2|
z pass mmber;
booleen first print in pass, no running, this is last;

e o St e Wl et
B . [

o s o o
. <0

e s e "

begin rest of line:= rest of line - 13
' if rest of line = O then new line;
skrv({dadaf, n, skrvmi{2));

.....

e 1000 1t By s S

begin rest of line:=-Oj
- skrv(4adaal, o, skrvmi(2));

end print; |

procedure new line;
begin skrvvr; skrvvr; o
if first print in pess then e
begin first print in pass:= falses
skrv(4af, pess mmber);
skrvtekst({<." 3);
end
elge skrvml(3);
rest of line:= 10 /
end new line; S

rocedure ‘messsge(n, kind); value n, kind; integer n, kind, ‘ | \

AN

v o o

T et Tt i s et P .

begin boolean give up; - . K K N
switch action:= hopeless, serious error, érror, line number, no line number;
TRANSFER FROM DRUM('messsge track') to:(if input word eddress > 41 then 1

| ’ else L2);

new line;
go_to action kindj

hopeless: give up:= true;

serious error: no running:= true;
red outputs

error: printtext({<error});

line number: printtext({<line});
print(CReounter);

no line number: printtext(n); comment printtext is & procedure which prints
thet text in the text 1list which hes the number given as parameter;
TRANSFER FROM DRUM(track in) to:(if imput word address > 41 then 1 else 42);
black output; I

walt: 1f drum transfer in progress then go to wait;

if give up then stop
end message; .
_ o p=

end pass?
output(0);
working boolean:= in testmode;
in teastmode:= falses ')

L: output(o) output(OS- comment This fills the remainder of the output]
track until 1t has been trensferred to drum. output jumps to 'exit -
from pass' when & drum transfer has been completed and 'this is last!’
is truey -
this is 1ast:=.§ggg; go_to L

exit from pass: new line;
print(used tracks); -
1f informetion 1 i O then print (information 1);
iIf informetion 2 % O then print (informstion 2);
pass nmumber:= pess mmber + 1
in testmode:= working booleans
if in testmode then wailty-
first print in pass:= ‘crue;
marks:= marks of(yassinfomtiongpass number]) 3
¢= pass information[pess mumber]s =
comment The teble 'pass information' tells whether the direction of
scen should be reversed (msrks > 2). Also four addresses are given
telling where to find the new pass program on the drum and vhere to
enter into it;
if marks 7 1 ‘bhen exchenge (input track output track);
TRANSFER FROM DRUM(input track) to: (1)

begin integer tra.ck store first 'brack exity
tracki= part 1(R);
first treck:= par‘b 2(R);
store:= part 3(R);
exit:= part 2+(R)~ x e
TRANSFER FROM DRUM(1f 'merks = O v marks = 2 then forward track
sise backward track) to:(pess mechenism);
more: track:= track - 1; store:= store - 40;
TRANSFER FROM DRUM(track)’ to:{store);
if treck 7 first track then go'to mores
L: If input = O then go_to "Iy comment ‘This'eliminates the filler zeroes;
byte address: = byte address - 13 comment In this way the last byte
“““ will be repeated;
go_to instruction[exit]s
ends

= 9

SYMBOLIC NAME‘.‘S FOR THE WHOLE TRANSLATOR (e-NAMES).
Entry points and parameters held es addressés in instructions:

el byte address '

e2 inaddress (input word address and entry to UNPACK BYTES)
e3 output

ei (Bee below)

e5 entry to messsge

e6 testprint

¢] newline and print

e8 nevwline .

e9 print

210

ell)

612 outaddress (output word address)

General parameters for translator (are stored at the end of the track

holding print etc. and are initialized to the velues indicated when rea-
ding that track from drum). el must be defined right at begimming of loa-

—~
N

ding.

holds ' initial value
elt CReounter QQ 0 t1
16t number of used tracks QQ 0

2elt information 1 for output of QQ O
3elt informetion 2 statistics Q O

heli last track - 1 QQ €20 -1
S5elt aveilsble tracks - 1 QQ 620 - e19
6eli input track QQ e19

Telk output track - QQ e19

8elt no rumning (>0 = §§_.'_L_§§) Q 1

9elt pass number QQ 1

10elt first treck + 1 QQ e19 + 1

~

