
GIER ALGOL Translator Tote N a 124
General Pass Mechanism

3, May 1962.

THE TRANSLATION PROBLEM IN MACHINGS WITH A NON-HOMOGENEOUS STORE.

The translation of an ALGOL program consists basically in the sombi-
nation of two bodies of informay’ on, viz. the information supplied by the
AL 0 sourge program and that 6f the translation i prog am (the tvansla- —
tor). nloss—the machine. ree, pulfletent arke—fas% fomogereous store

ind s pth ate vision of ‘these bo-
dies econ QE

pee Was

dikte versions of i} in turn.
Clo ate on the comp]; > @ source prop

\ @&
;

> ; In a meghjefe which
(3 complete tyéa Blator and

ferable., dowever" if the f£
Bn or the nultipes ei

Ha process the order in whic refer eee. are made to the “various ee ie
ne translator is unknown, sihgé this order depends on the, sour¢e prow p;

. grén. merefore, in ¢-eequentied acces? we are forced 5 pe Pimulte- oh matte
Hae s neous a linear scan of the source program and - erences -to i nat?

all parts oX\the translator{In a multhecan process, oP the oxher he nd, Son
the part of the translator“used during a particular scan is Pi xe ‘en the chen. “

scan ae
through the partid ly Xranslated program. For\{hese reasgns ‘the
Go. Franslator #TTy cod. @ multiscan method.

It is interesging to note that.gn GIER this Choi¢e is entirely com- [eS /¢
patible. with a high om slation speed. In fact’, the/time for transferring
@ progran occupying 150 Brum tracks into-the core store and back again,
as it will be’necessary duking each pass, takes Anly abe + 6 seconds. tf

10 passes gfe necessary the Xotal drum trenafer time will ‘thus be “about 1
minute fof this rather large program. It mus¥ be expected that the actual

(‘ translgX¥ion process will require consideraply more time than this, and 4

ye gk only reference te a largé body of information is the purel# ives

nado
rOer

It

thus vhe simultaneous drum transfer faci}Jity in GIER will work to. our
fuly advantage. ae

foo a tn near

ern enc AN

<—__—_{nrmoum LANGUAGES.

T lsean otha multip~agy translator the choice of intermediate languages be-
@ comes of primg importance. The following conflicting factors have to be

considered: om the point of view of the individual scens (or translator
'passes') great flexibility and a great multitude of structures of vary-
ing length is desirable. From the point of view of the programs which —
have to perform the packing and unpacking of information’, which is neces-
sary during each scan, uniformity of structure is desirable. Uniformity

is also desirable for translator checking purposes. /w
In view of these considerations the following compromize fas pss - 4

dopted: All intermediate languages are expressed in terms of basic units r7
of information each of 10 bits. This unit is called a "byte'. Thus the
iuput to each pass and the output from it will always consist of a uni-
form string of bytes. Within each intermediate language any amount of

structure within this byte string may be employed in order to commmicate

nore intricate structures. Thus, for exemple, e mimber in the original

ALGOL program will in most of the intermediate languages be represented ‘
by 5 consecutive bytes, the first being a dgstinct ‘number mark' while / 2
the remaining four supply the actual value ‘of the number. However, from
the point of view of the general packing and unpacking program the. veri-
ous intermediate languages are undistinguishable, since they all consist
of just a uniform byte string.

By this method the programs which will perform the packing and un-
packing of the intermediate versions of the program dnd which will take
them from the drum and store them on the drum will be the same for all
passes. In addition since the output from each pass is always of the same
form the same test output program can be used for all passes and can be™ A
coupled % to the common a pass administration. Foiswill_pecbably—fectiitete

cures SCANS, Yih suthch BAMOVAL

In a multipass transletor it is highly advantageous to let some of
the seans be reverse scans, i.g% scans which start at the end of the pro- /é ce
grem and move towards the begin. First of all the problem of forward re- r e by,
ferences clearly is solved complet¢ in this manner. In addition it be-
comes easy to eliminate syntactically incorrect sections of the program |
during the translation. This is important because it is highly desirable
that sn error which has been detected does not prevent the translation
rocess from continuing to check the rest of the progrem./The way 6

ing this In the GIER ALGOL translator is as follows: During the ayntacti-
eal check of the program (pass 3) a Bpecial te ‘statement start' is
output at every point where an ALGOL ste: Eefient starts in the texts If a
syntactical error is found in ea statemerft a Special byte 'trouble' is
output and the rest of the symbols ofthe stateniégt up till the first
following semicolon (;) or end are-Skipped completé@ly. The following scan
is & backward scan. Every time pis scan finds the byte ‘trouble 4 will
skip all bytes back to the fipst ‘statement start' point\ In thfs way ~
the complete incorrect text,4s removed. At the same time vapfous pareme-
1uee-¥e onthe the state,of the translation are reset to“appeopriate va-

tatemen

lues “sq enable the trandlation to continue to translate the following
8 correctly.

ERROR SIGNALING
s

ss

The translator inotudes =n extensive checking of the formal correct-
ness of Zhe source program. ery time an error is found an error de-
seriptYon will be produced in ‘the oxtput from the translator. This will
include the location and kind of Ahe error. The location will be indice-
ted by the number of the line jh the-eriginal ALGOL test where it occurs.
In order to facilitate the idéntificatfon of lines the first pass of the
translation will produce a-copy of every 10th line of the program in its
output, with the line number inserted at the beginning of the line. The
kind of the error will“be described by an appropriate error message.

KO EE

(| stonace OF THE PARTIALLY TRANSLATED PROGRAM.
According to the description given above all passes use the same ge-

neral pass administration. As far as the individual pass programs are
concerned the general pass administration is a subroutine with two en-
tries, one for input and one for output. In fact these two entries are
almost completely independent since they use two indenpendent buffers in
their commmication with the drum. The general pass administration uses 4
sections of 40 words each in the core store. Two of these are used as
buffers for the input to the pass programs, the other two for the output
from the pass program. Normelly one of the input buffers holds the bytes
of that section of the program which is presently being processed by the
pass program while the other input buffer holds the next input drum
track. When all the bytes on the active buffer have been used the trans-
fer from drum of the next following drum track is initiated. At the same

time the pass program can proceed to process the input bytes waiting in
the other input buffer. A similar buffering technique is used on the out-
put side.

The bytes are packed into the GIER words with L pytes in a word.

Thus one drum track holds 160 bytes. The unpacking (on the input side)
and packing (on the output side) of the bytes into the words are perform-
ed by the general pass administration. This turns out to be a more time Le-
consuming process than the corresponding drum transférs. In fact the ave- /e
rage unpacking time per byte is about 220 microseconds, which means that

the unpacking of the 160 bytes on a track will take about 35 miZiseconds. ft If

This again means that except for collisions between drum transfers called

from the input and output side the time for drum transfers will be negli-
gible, owing to the parallel operation during drum transfers in GIER. The
time: for packing on the output side being about 260 microseconds per
byte, the total time for the administration of a pass becomes about 77

}6 mi iseconds per drum track plus the time wasted due to collisions of drum

tr sfers, about 5 mi\iseconds on the average. The processing time per . At om
j UL byte of course varies greatly, the minimum being about 60 m mLcroseconds earls tant

(direct copying from pnput to output)}- hile erm 2M of Che (j

re
and processing times are comparable and the total tim . %. Le

1S out 2 se Peer . Mie ve OF
tonvpe’, On the drum the tracks holding the partially tra pret are\r, Ua tre”

rl) Bech sed in a cyclic manner. PedBetly About half the drum Eh ye available cect Ob? OO
mane for this, while the rest of the drum 47 holdsthe translator and the) (70. finn 3

running system programs. Suppose that the available tracks are numbered rays out
from 1-to N. The first pass will then place its output in tracks no. 1 t4 te h,
M, say, where clearly M ¢ N. The second pass will take its input from Jo um She

tracks no. 1 2, ete. and will place its output in tracks Mtl’, MHZ, etc.
When output to track no. N. -has been made the administration will “continud
to output into track no. 1", 2, etc. which presumably have now been re-
leased by the input side administration. This process is continued —
smoothly from one pass to the next, except for the case that the direc- - -

since the cyclic use of the drum tracks may with equal ease take place in
either direction. Only in the programs which perform the packing and un-
packing a few changes are necessary.

>

MACHINE ARRANGEMENT OF THE GENERAL PASS ADMINISTRATION.

ALGOL descriptions of the general pass administrations are fdund be~
low. The following notes show the storage of the translator on the drum
and the use of the core store during translation.

Drum: 320 tracks (40 words each)
SLIP
address

0-31 SLIP (symbolic input program)
32~ Running system
1014 Forward pass see core store
2014 Backward pass 16-- 55 ;
3014 = testprint, print, new line,

entry to message "(4 track total)
howk endpass (1 track)
5014 message (output program, 4 track)
601h texts for message (1 track)
70i4h- Pass n

- Pass n-1

- Pass i
- Partially trenslated

ALGOL program
(tracknumbers FIRST to LAST)

Translator pass
programs

LAST+1 Teble of strings, formed
-319 during pass 1

Core store: 1024 words
Absolute

address

0-15 Reserved for SLIP
16-54 Drum and packing administration

of partially transleted program
(forward or backward).

55 Base in = e13
56-95 Input buffer 1
96 Buffer stop Also used for

97-136 Input buffer 2 texts by message

137 Base out
138-177 Output buffer 1
178 Buffer stop -
179-218 Output buffer 2
219 Buffer stop -
30-259 testprint, print, new Line. entry

to message, universal translator
parameters

261- Translator pass programs
end their tables

999 :
960-999 Also used for endpass
1000 Reserved for SLIP
~1025

Also used for

message

Taking the tracks of the drum in order, this gives a general survey
of the meaning of the various parts:

SLIP is the input program used for reading the translator into the
machine. When the translator ia completed this will of course become un-
nescessary and the complete translator be shifted forward on the drum.

The running system is the set of administrative programs and stan~
dard procedures used by the running ALGOL program, when the translation
is completed. See GIER ALGOL Running System.

Forward pass and backward pass are the programs performing the pe-
cking, unpacking and drum transfers deseribed above in the section on
STORAGE OF THE PARTIALLY TRANSLATED PROGRAM. One of these tracks will be
placed from 16 to 54 in the cores. Two seperate programs have been writ-
ten in order to make sure that this central process runs at the highest
possible speed. The pase program appropriate to each separate pass is
transferred to the cores by endpass.

The track holding the programs testprint print, new Line, and entry

to message, in addition to certain universal translator parameters, is
permanently held in the core store 220-259. Entry to message is used for
trensferring the message printing program from drum. The message program
will be placed in that one of the two output buffers which is not cur-
rently being used for collecting output. This output buffer will always
have been transferred to drum before it is overwritten by message and
therefore need not be saved. On exit message will only have to make sure
that the output buffer is left with the correct marks on all words.

The next track holds the program endpass which is used to perform
the transition from one pass to the next. When used this program is
transferred to 960-999 in the core store. Endpass does the following:
1) The last output buffer is filled up with dummy bytes until it is
transferred to the drum. 2) Information about the pass which has just
been completed is printed. This will always include the number of used
tracks. 3) According to a table held by endpass itself the direction of
sean is reversed if necessary, the appropriate pass program (forward or
backward) is transferred to 16-54 in the cores, and the program for the
pass itself is transferred to locations 261 and following.

The message program is a text printing program. As described above
it will be placed in one of the two output buffers when it is needed. It
starts by transferring a track of text information from the following —
track to that one of the two input buffers which has last been transfer-
red from the drum and which has therefore not yet been processed. At the
end of its work the message program must restore the input track which
was overwritten by the text track.

The next section of the drum holds the translation programs proper.
This is followed by the working section of the drum (see the section on
STORAGE OF THE PARTIALLY TRANSLATED PROGRAM above).

The very top end of the drum is used for holding a table of strings
in the ALGOL program. This is formed during the very first pass and will
reserved as much of the working section of the drum as it needs. This is
possible during pass 1 because the cyclic use of the working tracks has
not yet had the chance of moving to the top of store (unless the program
its too big for the machine).

ALGOL PROGRAMS FOR THE PASS ADMINISTRATIONS.

The following .ALGOL descriptions follow the machine codes suffi- ~
ciently closely to be of help in desiphering these. It should be noted,
first of all, that the input and output procedures are highly ‘sneaky' ~
since they use and change a number of nonlocal veriables. These variables
are:

integer output word address, output byte number, number of uged tracks,
number of available tracks, output track, last track, input word
address, byte address, input track;

poolean in‘testmode;
integer array BYTE purrmnforizt
integer array WORD BUFFER[O: 161],

The WORD BUFFER is the section in the core store from 55 to 219 (page 4).
The five words placed in between and at the ends of the buffers proper
sre used to control the counting through their marks in GIER. The marks
placed on the words in the WORD BUFFER are as follows:

Marks Use of buffer
WORD BUFFER O 3

1-40 0 Input 1
44. 2
42—84 0 Input 2
82 3
83-122 0 Output 4
125 2

124-163 0 Output 2
164 3

In addition to the non-local variables a number of non-local procediires
-are used. Hopefully those of them which are not declared may be under-

pease

a inate: i ne a SA as ‘0 noe ove atl oma ee are net Maer OS fr le sen

‘ the packing and drum transfers of the output from each pass in”
<a turn. The aledithn given works only for eae forward pass. The one

for backward passes is so similar that it will not be reproduced.
For further notes, see the section on STORAGE OF THE PARTIALLY

_ ' TRANSLATED PROGRAN on page 3; oe -
begin switch packing:= pack first, pack second, pack third, pack fourth;

if in testmode then testprint(byte); ~
output byte number:= output byte number + 1;
go_to packing[output byte number],

pack first: output word address:= output word address + 1;
WORD BUFFER[output word address|:= byte;
go_to output done; "

pack second: WORD BUFFER] output word address|:=
‘++ WORD SUPE word eeroee| ono + byte;

go_to output done; ,
pack third: WORD BUFFER] output word address|:=

“++ WORD SUF FEntoutoce word eee NO + byte;
go to output done;

A

pack fourth: WORD orrenfoutet word agerese): t=
WORD BUFFER[output word address}x2{10 + bytes

output byte number := 0;
if marks of(WORD BUFFER output word address) > 0 then

begin number of used tracks:= number of used tracks + 1;
if number of used tracks > number of available tracks

then alarm({<program overflow, 'stop')s
byte:= WORD BUFFER[output word address];
output track:= output track + (if output track = lasttrack

then 1 - available tracks
else 1); °

TRANSFER TO DRUM(output track)from:(output word address - 40);
if‘marks = 3 then output word address:= output word address - "815

sono twat om a ae

end;
output dones
end outputs $

ba hee

(oom Wa se Gt oe ie inc ay pon enyrere er)

unpacking used for input to all passes except the first which reads the
paper tape. In the machine code this is coded as an open subroutine of
the following 2 long orders:

ARS (el) t+ 1 or PMX (el) t +1
ch HS e2 LA HS e2 LA;
begin byte address:= byte address + 1;

t= BYTE BUFFER[byte address];
if R = 'nonsensebyte' then UNPACK BYTES s
input:= R

end Anput;

procedure UNPACK -BYTES; comment This is called every time an input word
must be unpacked, i.e. once for every 4 bytes input by input;
begin integer marks;

input word address:= input word address + 1; —
marks:= marks of(WORD BUFFER[input word eddress]);
if marks > O then

begin input track:= input track + | ‘ co
(if input track = last track then 1-available tracks else +4);

TRANSFER FROM‘DRUM(input treck)to?(input word address ~ 40),
if marks = 3 then input word address := input word address - 81;
number of used tracks?= number of used tracks - 1

end s

word?= WORD BUFFER[input word address];
= BYTE BUFFER[1]:= first part(word);

BYTE BUFFER[2]:= second part(word);
BYTE BUFFER(3|:= third part(word)
BYTE BUFFER[4|:= fourth part(word’s
commient BYTE BUFFER(S] permanently holds the value 'nonsensebyte';
byte address := 1

end UNPACK BYTES;

& we

procedure TRANSFER TO DRUM(track number) from:(buffér location); code;
prodedure TRANSFER FROM DRUM(track mittber) to:(buffer location); code
conment These procedures transfer the 40 words of a track to or from the
fO words held in the WORD BUFFER from WORD BUFFER[buffer location] and
onwards $

The following procedures use some further non-local parameters:

integer rest of line, pass number, CReounter’, information 1’, information 2
- pass number;

boolean first print in pass, no running, this is last;

eset oer Sak ene WEE tte Up
. . aa

(cae a a a se Na
: sod

So neh ae at a “

begin rest of line:= rest of Line - 1;
if rest of line = 0 then new line;
akrv({dada}, n, skrvmi(2));

Athen

begin rest of linet=.0;
skrv(qddaa}", n', skrvml(2));

end prints :

procedure new lines
begin skrvvr; skrvvr; co

if first print in pass then ners
begin first print in pass:= false;

skrv({a}', pass number);
skrvtekst({<.4);

end
elge skrvml(3);
reat of line:= 10

end new line; ra

‘wy

© rocedure ‘message(n, kind); value n, kinds integer nj, kind, | \
‘Pw noe toms a fe iy Se *

begin boolean give up; ~ s - B
switch action:= hopeless, serious: error, error, line number, no line riumber;
TRANSFER FROM DRUM('messege track') to:(if input word address > 441 then 1

| . else 42);
new line;
go_to action kind;

hopeless: give upt= true;
serious error: no running:= true;

red outputs
error? printtext(d<error});
line number: printtext(¢<line});

print(CReounter) ;
no line number: printtext(n); comment printtext is a procedure which prints

that text In the text list which hes the number given as paraméter; ©
TRANSFER FROM DRUM(treck in) to:(if input word address > 41 then 1 else 42);
black. output; pe

wait: if drum transfer in progress then go to waits

If give up then stop
end messages nnn nne EEE

_ =

end pass:
output(0);
working boolean:= in testmode;
in tesatmode:= false; , °

L: output(0)s output(0); comment This fills the remainder of the ‘output, /
track until it has been transferred to a@rum. output jumps to ‘exit -
from pass' when 8 drum transfer has been completed and 'this is last’
is trues 7 tr
this is lastt= true; go_to Ls

exit from pass: new line;
print(used tracks); «°°
if information 1 t © then print (information 1);
if information 2 + 0 then print (information 2);
pass number:= pass number + 1;
in testmode:= working boolean;
if in testmode then waits:
firet print in passa:= true
marks:= marks of(passinformatonfpags number]);
i=-pass information[pass number]; =

comment The table ‘pass information' tells whether the direction of
scan should be reversed (marks > 2). Also four addresses are given
telling where to ‘find the new pass program on the drum and where to
enter into it;
if marks ? 1 then exchenge (input track, output track);
TRANSFER FROM DRUM input track) to: (1)s

begin integer track’ store, first track”, exits
track:= part 1(R);
first track:= pert 2(R);
store:= part 3(R);
exit:= pert h(R) m ee
TRANSFER FROM DRUM(if‘marks = 0 v marks = 2 then forward track

else backward track) to:(pass mechaniam);
more: track:= track - 1; store:= store - 40;

TRANSFER FROM DRUM(track) ‘to:(store);
if track > first ‘track ‘then ‘go ‘to more;

L: if input = 0 then go_to “Ls “comment ’ This ‘eliminates the filler zeroes;
byte address: = “pyte address - 1; comment In this way the last byte

ce will be repeateds
go_to instruction[exit];

ends
mine 9

SYMBOLIC NAMES FOR THE WHOLE TRANSLATOR (e-NAMES).

intry points and paremeters held as addresses in instructions:

el byte address ,
e2 inaddress (input word address and entry to UNPACK BYTRS)
a output
ek (see below)
e5 entry to message
e6 = testprint
e7 newline and print
e8 newline .
e9 = sprint

210
eli :
e12 outaddress (output word address)

General parameters for translator (are stored at the end of the track
holding print etc. and are initialized to the values indicated when rea-
ding that track from drum). elt mst be defined right at beginning of loa-

an
 "

ding.

holds initial value

et CReounter QQ 0 ti
164 number of used tracks QQ 0
2et information 1 for output of QQ 0
3ek information 2 statistics QQ OO
hel last track - 1 QQ 420-1
Sel available tracks - 1 QQ 620 - e19
6e4 input track QQ 419
Tet owtput track =~ | QQ ei9
8e4 no running (>0 = false) QQ 1
9et pass number Qo 1

10e4 first track + 1 QQ elf + 1

on

