
GIER
SsYraqEeetTmRmM LIBRARY

SAMBA

~

Order No.: 475

Class: 2.0

Type: Report

Author: P, Lindgreen

Ed.: June 1967 (E)

System til Administration af MagnetBaand i Algol

§@@G@OOG cENTRALEN

A/S REGNECENTRALEN June 1967

PL/LK

SAMBA

(System til Administration af MagnetBand i Algol)

This manual describes a tape-oriented input/output system which

is fully integrated with the GIER ALGOL 4 compiler. The system

allows the user to express solutions to administrative data pro-

cessing problems involving record structures and file processing

entirely in ALGOL and supplies moreover a number of useful features

and facilities not available in other existing systems for GIER.

References:

1) The Buffer and the AMPEX TM-7 Tape Unit. GIER System Library No. 290

2) A Manual of GIER ALGOL 4, Regnecentralen 1967

Section

Dede

2.2.

Dede

Kel.

2,

6.1.

6.2,

6.35.

Talks

Teas

eeu lL

Ta2s2

(seed

7.2.4

(ods

74.

Appendix A:

Appendix Bs

Appendix Cs

Appendix D:

Appendix E:

CONTENTS

Background

Survey of the system

The SAMBA tape format

Tape labels and tape protection

Data files and file labels

Data blocks, block labels and records

Records and record declarations

The record concept

Record declarations

Internal tables and use of the buffer store

Deseription of the procedures

Survey

Legality

Detailed descriptions (6.3.1-6.3.20)

Treatment of errors, end-of-file and end-of-tape

Formal errors

Tape errors

Philosophy

Detection and recovery

Activation of the interrupt procedure

Exit from the interrupt procedure

End-of-file and end-of-tape

End-of-tape combined with tape errors

The SAMBA tape format (formal definition)

Error messages

Examples of the use of SAMBA

Standard values of tapestatus

The GIER ALGOL 4/SAMBA-compiler

Page

10

10

12

12

le

1

14

4

16

1]

AY

AL

kp

ho

45

45
46

9
51

1. Background

It has often been claimed that GIER cannot be used effectively for

administrative data ere eeeine (ADP), because of the small core store.

This may have been tio beeen until the first quarter of 1963, when the

buffer store and tape units were made available for the GIER user: but

from that time at least four service-centres entirely based on GIER-

systems have managed to prove the opposite.

However, the development of software systems to GIER has unfortunately

progressed in such a direction that the programming of ADP for GIER

is still unnecessarily laborious.

The successful GIER ALGOL III system which was developed during 1963

and released in February 1964 completely ignored the existence of the

buffer itself and the tape-units connected hereto, while on the other

hand it contained a neariy complete set of useful standard procedures

for the handling of input/output on paper tape.

In January 1967, a preliminary version of the GIER ALGOL IV system

was released. Compared to previous versions, this system seems to be

much more powerful and effective, primarily because of its use of the

buffer for storing arrays, but also because many operations may now be

done in a faster or more useful way.

However, tape units as an external medium are still looked upon as

'The Ugly Duckling’. Only two extremely primitive and for administra-

tive jobs probably practical useless standard procedures are delivered

with the system. They just activate ‘the two machine instructions IL

and US. This must be compared with the fact that so highly advanced

standard procedures as e.g. read general, put, get, write etc. are con-

sidered reasonable in the system.

The consequence of the above mentioned policy has been that nearly all

ADP-programs for GIER have been programmed in machine code based on

more or less restricted input/output systems. This has given the in-

stallations a great deal of problems with respect to the documentation

and maintenance of the programs and may generally be considered old-

fashioned compared to the present state of art concerning use of pro-

gramming languages.

Ww“)

In June 1965, the present writer proposed that the problems should

be solved by a set of standard procedures for handling data files

which were to be implemented under GIER ALGOL III. The proposal was

based on experience gained through three years!’ work with compiler

construction and from two major ADP-projects involving the use of a

very convenient I/0-system developed by Regnecentralen for the CDC

1604.

The proposal was based on the following philosophy:

1) The system should contain sufficient facilities to avoid use

of machine code.

2) The user should have possibility to declare a number of records

through a procedure call, which should connect an arbitrary

number of individual ALGOL-variables to one single identifier.

Moreover he should have possibility to get access to the records

’ of a file through simple procedure calls using the identifier

mentioned as only parameter describing the record.

3) Any tape error and the recognition of EOF or EOT should result

in activating a declared ALGOL-procedure, allowing the user to

take any action on the actual situation including means for com-

municating to the system, which action it should overtake upon

return from the user procedure.

Besides these principles, the system should contain convenient tape

protection facilities and an effective double buffer administration

where the buffer areas should be anonymous from the ALGOL program.

The proposal was rejected - primarily caused by opposition from the

so-called GIER-programming committee, which was at that time considered

the only authority in this field. Then nothing happened until August

1966 when it became obvious that the official GIER ALGOL IV system

would not support the users of tape units.

At that time the above mentioned proposal was revised and made compa-

tible with GIER ALGOL IV using the new features available, but without

changing the basic philosophy. A working group consisting of members

3s

from RC's service centres was formed, and after some discussions - which

took place in the period August-October 1966 - it was possible to design

the system which got the name SAMBA to such an extent that the programming

and final design could begin in November 1966.

Primarily the the disign, programming and debugging of the system have

been done by Kim Andersen and Inger Moller from Arhus and by Bjern Ording-

Thomsen, Flemming Sylvest Pedersen and the present writer from Copenhagen,

but also other persons - expecially members of the compiler group = have

supported the project in different ways primarily by proposals or by criti-
-

“yw? c i sm @
® i QO

oy"
In this connection, it has been of great importance for the result obtained

that quite different mespafigs about details of the system have been expres-

sed by persons either directly or indirectly involved in the project. In ma-

ny cases, this has postponed the finishing of the system but it may have

helped us to look upon the problems in a more general way and thereby to-

evaluate better solutions.

I want to express my warmest thanks to all persons who have contributed to

the accomplishment of the project one way or another.

A/S REGNECENTRALEN

June 1967

Paul Lindgreen

2. Survey of the system

Scope : SAMBA is a set of standard procedures to GIER

ALGOL 4 allowing the user to generate and get

access to data files on magnetic tape fin a-very-

 CoM Prert—a;nt Users TETHG a »

Flexibility : SAMBA provides the user with all the functions

and operations which are common to and a necessary

part of most programs dealing with magnetic tape

files, but the system is integrated with GIER

ALGOL 4 in a way which makes it very’ easy for the

user to modify, expand or combine many of the

functions.

Tape protection : No tape operation on a given tape is possible

within SAMBA until the first block on the tape

(normally a special tape label) has been checked.

The check is performed according to information

specified as parameters to a tape-test-procedure

and to rules which are introduced into the system

when the compiler tape is generated.

Data files : In SAMBA the user is allowed to operate with up

to 1023 data files (separated by filemarks) on

the same tape. Moreover SAMBA provides the user

with means to program a simple administration in

ALGOL for data files which may expand to more than

one tandresi.
i A

File labels : A data file on a SAMBA-generated tape is identified

by the contents of the first block, the so-called

file label. The file label contains the number of

the File and information to the system about maxi-

mum block size, mode etc. Besides this fixed part,

the user may provide or get access to an optional

number of words in which he may store any infor-

mation concerning the actual file.

Record-

declarations

Double buffer

administration

Checksum

Variable

record-length

eo

In SAMBA the user may declare a number of records

through special calls. A record may consist of

one or more ALGOL-variables - simple as well as

subscripted - in any order and of any type. The

record is identified by the name of an ALGOL

variable which contains a reference to an internal

table deseribing the structure of the record.

The records declared, which may be common to more

files,are read or written on specified tape units

via a double buffer administration using anonymous

buffer areas - one area for each open file. A file

is opened through a call of a special procedure

which looks up the current file on the tape, reser-

ves the necessary buffer area and processes the

information to or from the file label.

When an output file is opened, the user may specify

whether he wants a checksum of each record gene-

rated and whether he wants it to be stored in an

anonymous extra word of the record when it is out-

put. Information about the presence of this extra

word will be stored in the file label.

When such a file is opened as inputfile, the user
A.

may specify whether he wants the generated sum

checked on input of each record.

Independent of the presence of an extra checksum-

word, the user may get the computed checksum after

each record-operation as the contents of a standard

variable named sambasum. In this way the user is

able to generate and check a hash-total for each

When the extra record-word mentioned above is

present, the actual length of the record is

stored there, independent of a possible checksum.

This means that the user may operate with records

with variable length, and SAMBA contains the néces-

sary procedures herefor.

Error-check-

facilities

Reaction on

end of file

Optional tape

formats

In SAMBA every tape transport is checked in the

most thorough manner in order to detect any

possible errors. The introduction of the so-called

block-label - two extra words connected to each

data block in a file - makes this detection casy.

The block-label contains the nunber of the current

block inside the file and the length of the block.

When a tape error is detected, SAMBA automatically

tries to recover it by a simple reread or rewrite

operation. If the error is not removed hereby, a

user declared interrupt procedure - specified to

the system when the current file has been opened -

is called with the necessary information to allow

the user to take any legal ALGCL-action in this

situation.

Upon return, the user may communicate to the system

whether he wants the error to be ignored, whether

a new attempt to reread/rewrite should be activated,

or whether he wants the erroneous data skipped. if

no interrupt procedure is specified, the error will

normally be ignored.

Besides the treatment of tape errors described

above, the system is almost foolproof with respect

to incorrect use of the procedures. When such

errors are detected, the normal GIER ALGOL 4 error

procedure will be activated.

When a file mark is recognized on an input file,

the user declared error procedure mentioned above

is activated directly without any recovery attempt,

but with the information that the current ‘error:

is no error but EOF.

As it is Ss the description given so far,
hn ft + a . ‘

SAMBA #s—a—wesy safe and user-friendly system with

many facilities which are not normally available.

Hardware

maintenance

facilities

7.

The price for this is so strong demands to the

tape format that tapes generated with the standard

facilities in SAMBA are semplieteciy incompatible

with all other systems.

This is of course no restriction as long as the

programmes do not require any communication with

other computers, but under certain circumstances

this may be the case.

in order to make this communication possible

without sabotaging SAMBA's own tape security, a

set of simple procedures are provided, allowing

the user to generate, read and check tapes with

any format, but on the other hand requiring that

he programs the necessary administration himself.

The detection of a tape error - which cannot be

removed after the build-in automatic recover

action - causes SAMBA to count up by one an inter-

nal counter corresponding to the current unit. All

counters are initialized to zero before the run of

a given program, but it is up to the surrounding

system - which uses the GIER ALGOL 4 system as a

subroutine - to take the proper action on the in-

formation available in these counters.

Oe

2: ihe SAMBA-tape format

The field of datamatics which is covered by the SAMBA-system may

be described as: Handling of information organized in data files

on magnetic tapes. The process on the information will in most

cases be rather simple, but will involve a great amount of uniform

structured data (records).

With such problems it is of great importance that the tape-handling

system is reliable in order to avoid that unrecognized errors cause

the data to be wrong. This has been obtained in SAMBA by means of a

very effective error handling system described in section 7 and

through the introduction of the special SAMBA tape format.

A SAMBA tape is formed by a tape label (cf. 3.1.) followed by a file

mark and up to 1022 data files (cf. 3.2.).

 3.1. Tape labels and tape protection

A basic assumption in the design of SAMBA has been the existence

of an external administrative system on each installation which

defines and maintains the rules for use of magnetic tapes and which

's able to secure that a special tape label is always written on a

tape before it is made available for the user of SAMBA.

The purpose of the tape label is to make it possible for the programmer

through the use of SAMBA:

a) to make sure that the correct tapes are mounted when the program

is running,

b) to give a reasonable protection of the information on tapes in-

volved in a project.

A tape label in SAMBA consists of three groups of information:

Field O: Four characters which classify the tape.

Field 1: Four decimal characters which form the number of the tape

and identify it in the external administrative system.

Field 2: A pattern consisting of 40 bits which form a further iden-

tification of the tape and which are normally known only

by the specific user.

\O

Tape-classes

Three tape-classes are distinguised by SAMBA:

If the classification field (field 0) contains the characters GIER

it defines the tape to be one with the standard SAMBA-format (cf.

appendix A).

if the classification field contains the characters RCAR, the tape

is defined as a working tape with no definite format. In this case

the contents of field 2 will be irrelevant since a working tape will

normally be common to more users.

In all other cases the tape is considered to be used for communica-

tion to systems with other tape formats, and activation of the normal

SAMBA procedures will have no meaning. In these cases the more primi-

tive procedures for block transports should be used (see description

of procedures blockin, blockout and status).

Tape identification

Before any operation in SAMBA on a given tape is allowed to take place,

a special tape-label-checking procedure must be called (see description

of procedure tapetest). In order to make tape processing legal and

thereby possible, information supplied as parameters to this procedure

should match the tape-identifying fields (1 and 2) in the tape label

according to the information in the classification field and to rules

which are defined in a table available for the procedure.

Definition of the rules for checking

The table entry to be used depends primarily on the class of the tape

and moreover on the results of the identification process. The contents

of the table (and thereby the rules) are defined in the standard ver-

sion of the SAMBA-system as described in appendix D. However, since

some installations may have a policy for what should be allowed in

certain cases which differ from that expressed in the standard version,

a formal procedure for ordering a SAMBA-system with specified rules

has been established. This procedure is described in appendix E.

10.

2.2. Data files and file labels

A data file (or just file) is defined as the information between

any two file marks on the tape. It is formed by a file-label-biock

and a number of data-blocks.

The file label consists of a fixed system-part and an optional user-

part. The fixed part contains the number of the current file (firet

file after the tape label has number one), information about maximum

block size inside the file, whether the records were generated with

an extra checksumword and whether they were written with 4 or 7 cha-

racters pr. word. This information is used by the system when an

input-file is opened to reserve the necessary buffer area and to

secure that the correct read-block-~instructions are used etc. (see

description of the procedures openin and openout).

The optional part of the file label - which may consist of up to 8

words - is available for the user for any purpose. It may be used

for further identification of the file, for storing special protection

information, e.g. retention cycle, and for accumulated data, 6.8. a

hash-total, for the previous file on the same tape.

The last mentioned use is possible, because the last data file on

a tape will always be followed by a dummy file only containing a

file label block. The dummy file label is generated in the procedure

close, which must be called as a termination of the process on the

eurrent file.

Tapes which are used by the system for the first time should have

the dummy file label generated together with the tape-label in a

previous special process. This dummy label is moreover used by the

system to secure that references are only made to files really exist-

ing on the tape (cf. description of procedure getfile, 6.3.2.).

2:2:._Data blocks, block labels and records

The data blocks of a file consist - like any other information on

the tape - of a number of characters, but are considered by the

rz system a number of GIER-words ecither 4 or 7 characters each, as spe-

ecified to the system when an output-file is opened. The two first

words of a block - the so-called block-label - are generated and used

dake

by the system as an identification of the block. They contain the

number of the block inside the current file and the length of the

block (including the two words of the block-label).

The remaining words of the block form the records, i.e. the logical

units of information which the user must specify to the system in

the input/output statements through which he transfers the information

between the files and the variables of the program or vice versa (see

the description of procedures inrec, outrec, invar and outvar).

The system will increase the number of words in a record by one, if

the user specifies this when an output-file is opened. In the extra

word, the length and - if required - the checksum of the current re-

cord are stored. When such a file is opened as input-file later on,

the user may specify whether he wants the generated sum checked during

the input-operation.

4.__Records and record-declarations c

4.1. The record concept

A data file may be defined as a sequence of logical information

units - records - which may differ both with respect to format

and contents. In practice, however, the number of different record-

formats considered in a given process is very limited, and very

often a certain record-format may happen to be common to more files.

When data files are processed by a program running on a computer

with word-structure, the elements of a record will normally be

equivalent to words - independent of whether the information stored

in the record are numbers or text. When the program is an ALGOL-

program, this means that the elements are ALGOL-variables.

It would now be very convenient if the elements of a record were

allowed to be of any kind, i.e. simple as well as subscripted

variables, and to be of any type, since all kinds of actions on

the elements, i.e. all kinds of ALGOL-statements using the variables

may be of interest in a given process. On the other hand when a re-

cord is transferred from the program to a file or vice-versa, it is

convenient to look upon it as a simple entity, both with respect to

the logic of the program and to the number of individual statements

or parameters in procedure calls.

However, ALGOL 60 contains no means to specify links between indivi-

dual variables or to declare more advanced structures than arrays.

Arrays of course could be used, but only resulting in unnecessary

laborious programming and too slow processing.

4.2. Record declarations

In SAMBA the facility of declaring a rccord is provided by means of

a standard procedure, which connects an unlimited number of simple

and subscripted variables to one single variable, which identifies

the record in the input/output statements (see description of pro-

cedure record).

It is possible to have one or more elements of a record to be part

of another record or to use the same record both for input and out-

put on the same time. These features are very useful, e.g. in pro-

cesses concerning the updating of files.

2:.Internal tables and use of the buffer store ,O

{O

I

The number of tape-units available for the system is normally 4,

but this number may be changed when ths translator-tape including

the SAMBA-system is generated (cf. appendix E).

The various parameters describing the current use and status of the

tape units are stored in a corresponding number of tables - known

as the file tables - each occupying 8 words in the buffer store

from address 1 onwards.

When a file is opened by call of the procedures openin or openout,

a data-buffer-area with length = 2 x maxblocklength + 3 x) is re-

served from the current first free word in the lower part of the

buffer. (This current first free will at any time also be used as

lower-buf-lim in the array declaration routine of ALGOL).

The reservation of a buffer-store-area will further take place when-

ever a record is declared by a call of the procedure record. In

this area, the necessary information will be stored to make the

transfers between the data-buffer and the elements of the record as

fast as possible (see description of procedure record). The length

of the area is strongly dependent on the structure of the record.

When a file is closed by call of the procedure close, the corre-

sponding data-buffer-area is released. This is also the case with

the table defining a given record, when the record is redefined (see

description of the procedure record). In both cases, the areas follo-

wing the released area are moved so that the occupied area used by

SAMBA at any time is as compact as possible. The corresponding tables

or record identifiers and the current first free pointer are then

updated according to the rearrangement of the areas.

In order to help the user utilize the available buffer store area

in the best way, any procedure changing it will have as its value

the number of remaining free words in the buffer.

x) The three extra words are used as an extension of the file table.

Word 1 contains a link to the file table and the length of the re-

served area. This information is used by the procedure close. Word 2

contains a specification of the so-called interrupt procedure as de-

scribed in section 7. Word 3 contains the current tape number (from

field 1 in the tape label).

Es

6. Deseription of the procedures

6.1. Survey

The procedures which form the SAMBA-system may be divided into

two groups:

a: Proper SAMBA procedures.

b: Procedures for basic tape operations.

Proper SAMBA procedures

tapetest Used to check the label of a tape mounted on a given

(6.3.1) unit (cf. section 2). Must be called before the acti-

vation of any other procedure which operates on the

tape.

getfile Looks up a certain file on a specified unit and deli-

(6.3.2) vers the contents of the file label.

openin The same as for getfile, but will moreover reserve a

(6.35.3) sufficient buffer-area and initialize the file-table

for the unit so that the record input procedures inrec

and invar may be used.

openout The same as for getfile, but will moreover reserve a

(6.3.4) specified buffer-area and initialize the file-table for

the unit so that the record output procedures outrec

and outvar may be used.

record Used as a means to declare a record area and identify

(6.3.5) it by a simple variable, which is used in connection

with the procedures inrec and outrec.

inrec Transfers a record from an open input file to a declared

(6.3.6) area.

outrec Transfers a record from a declared area to an open

(6.3.7) output file.

invar Transfers a record from an open input file to an array

(6.3.8) and delivers the actual length of the record.

outvar

(6.3.9)

setproc

(6.3.16)

research

(6.3.11)

close

(6.3.12)

torec

(6.3.13)

fromrec

(6.3.14)

f
H

Ul

Transfers a specified number of words from an array

as a record to an open output file.

Specifies an ALGOL-procedure to be activated by the

system in case of tape errors or EOF/EO?.

Looks up a certain record inside an open file.

Releases the buffer area reserved by openin or openout

and transfers information to or from the following file

label.

Moves information from a specified part of an array

to a declared record.

Moves the information in a declared record to a speci-

fied part of an array.

Procedures for basic tape operations

blockin

(6.5.15)

blockout

(6.3.16)

status

(6.3.17)

rewind

(6.5.18)

unload

(6.3.19)

drive

(6.3.20)

x)

Transfers a data block from a tape unit to an array.

Transfers a data block from an array to a tape unit.

Provides information about the result of the last acti-

vated call of blockin or blockout.

Drives a specified tape to load point.

The same as for rewind, but will set the tape unit to

local control and wind off the tape =

Supplies the remaining basic tape operations such as

skip file, backspace etc.

This may depend on the tape unit.

6.2. Legality

The procedures mentioned above are standard procedures to the SAMBA

version of GIER ALGOL 4, which means that they may be called from all

over an ALGOL-program without any declaration. However, the SAMBA-system

itself gives some restrictions on their use.

The legality of a given procedure on a given unit is mainly controlled

by the so-called tapestatus and filestatus, which are in fact represented

as a number of booleans stored in the filetables described in section 5.

Tapestatus expresses the result of a previous call of the procedure tape-

test with respect to which procedures may act on a given tape.

Four independent bocleans are used to carry out this control:

Allowed for openin

Allowed for openout

Allowed for blockin

Allowed for blockout.

Filestatus expresses a state for each unit which controls the legality of

a given procedure after it has been checked against tapestatus. The pos-

sible three values of filestatus are:

O: Closed

ls Open for output (i.e. allowed for outree and outvar)

2: Open for input (i.e. allowed for inrec and invar).

x
Filestatus is changed only by the procedures openin, openout and close

Each description - as it appears in the following - will contain a specifi-

cation of the values of tapestatus and filestatus which are necessary to

make the use of the procedure legal.

if nevertheless a procedure which is illegal is used in a given situation,

the run of the program will be terminated with a standard GIER ALGOL 4

error message, because it indicates a formal error in the program (cf.

section 7 and appendix B).

x) in fact there is one more value saying: Neither open nor closed. This

value is set internal by the double buffer administration to indicate that

a file mark has been read or an end-of-tape mark has been sensed, but a

call of close (which is necessary in such a case) has not yet been activated

(ef. section 7.3.).

Legality

Function

Tapestatus: Irrelevant

Filestatus: Closed

The tape on the unit specified as first parameter is rewound

to load point and the first block, which is assumed to be a

tape label, is read.

The integer value specified as second parameter is converted

to a four digit decimal number with zero represented by the

character value 12 (octal) which is compared with the tape

number field in the tape label (cf. section 3.1.).

The value of the boolean third parameter interpreted as a bit

pattern is compared to the third field of the tape label.

The result of these two comparisons is used to evaluate the

value of the procedure and the so-called tapestatus which

defines the procedures which are allowed to be used as long

as the current tape is mounted. The rules for this evaluation

are described below.

The integer value of the fourth parameter is compared with the

integer value composed by the two bits of the statusword which

specifies write-protection-ring present on the tape and high/

low-density on the tape unit.

If - and only if - the two values are not matching, the follow-

ing message to the operator is given on the typewriter:

unit <unit> rd <tapeuse>

where <unit> and <tapeuse> are the values of the first and

fourth parameters respectively, and where rd is an abbrevia-

tion of ring and density.

The meaning of the relevant values for tapeuse is:

0 remove ring set low density

i remove ring set high density

2 ring wanted set low density

3 ring wanted set high density.

Having printed the message, GIER will stop and wait for a

reaction from the operator. When the START-button on the

main panel is pushed, a re-entry in tapetest will take place

Value

Tapestatus

and all actions and tests mentioned above will be repeated.

If the tapeuse-test shows ok, the last parameter is con-

sidered. If its value is zero or negative, the procedure

returns with no further action. If the parameter is greater

than zero, the current tape will be rewound to load point.

(The latter action will normally only have meaning, if the

tape has a format which differs from the SAMBA-format.)

The value of tapetest may be described by the following

statements which express the basic logic of tapetest:

rewind (unit);

réad block uneven parity and indicate tapeerror;

field O

field l:= next 4 characters of block;

field 2:= next 40 bits of block;

class:= if field O = { GIER } then 1

else if field 0 = { RCAR } then 2 else 3;
oki:= if field 1 = identi then O else 1;

oke:= if field 2 = ident2 then O else 2;

value:= case class of ok] + ok2, ok1, 4 + ok1 + ok2;

s= first 4 characters of block;

Hi {

It

tapetest:= if tape error then - value else value;

Expressed in another way:

If the value is zero or four, the tape has been recognized

according to the specified identification.

If the value is greater than or equal to 4, the tape has no

standard SAMBA label.

If it differs from 0 or 4, either ident] or ident2 or both

were not matching their respective fields in the label.

If the value is negative, it indicates a tape error which

may have caused a possible non-coincidence.

If the tape is recognized as a working tape (field 1 = RCAR),

the comparison with field 2 is suppressed, and the value of

ident2 will therefore be irrelevant to tapetest.

As mentioned in section 3.1., the rules,for which procedures

are allowed to be used in connection with a given result of

tapetest,are stored in an internal table. The entry in this

table is dependent on the class of the tape, on the result

of the identification process and on the last parameter. The

rules defined for the standard version of SAMBA are described

in appendix D.

6.3.2

integer procedure getfile (unit, fileno, labelarray);

Legality Tapestatus: Allowed for openin or openout

Filestatus: Closed

Function The tape on the unit specified by the first parameter is

scanned until the label of the file with number specified

as second parameter has been read zy,

The contents of the user accessible part of the file label

(see section 3) are transferred to the first (max. 8) words

of the array specified as third parameter.

Value The value of getfile indicates to the user the result of the

call in the following way:

getfile > 0 => The file wanted has been found, and the value

is the number of free words in the buffer store.

getfile < 0 => The file wanted has not been found, and the

position on the tape is undefined. (This may be caused by

irrecoverable tape errors when reading the file labels, by

wrong tape format, or if another tape has been mounted on the

unit without a call of tapetest in an attempt to compromise

the tape security.)

Hilestatus Unchanged.

x) The search for the file is performed in the following way:

count:= 0; curfile:= value of current file from internal filetable;

A: if fileno < curfile then

begin skipfile backward (unit); curfile:= curfile -1; goto A end;

B: skipfile forward (unit); curfile:= curfile +1; read file label;

if curfile 4 fileno in label then

begin count:= count +1;

else begin rewind (unit); curfile:= 0; end

end ;

if fileno > curfile then goto By;

6:33

20.

integer procedure openin (unit, fileno, labelarray, check);

Legality

Function

Value

Filestatus

Tapestatus: Allowed for openin

Filestatus: Closed

The tape on the unit specified as first parameter is scanned

until the label of the file with number specified as second

parameter has been read. (This is done by internal use of

the procedure getfile.)

The information in the first part of the file label about

maximum blocklength of the file (cf. section 3.2.) is used

for reservation of the necessary double buffer area in the

buffer store.

The file table corresponding to the current unit is initia-

lized according hereto and to the information about mode

also contained in the first part of the file label. The ini-

tialization of the table will further be controlled by the

value of the last parameter, which specifies whether a check-

sum must be computed during each input operation.

The possible values are:

eheck

check

O => no checksum i
Mt 1 => checksum computed.

The contents of the second part of the file label are trans-

ferred to the first (max. 8) words of the array specified

as third parameter.
Finally, before return the reading of the first data block

will be activated.

The value of openin indicates to the user the result of the

call in the following way:

openin > O => The file wanted has been opened for input. The

value is the number of free words in the buffer store.

openin < O => The file wanted has not been found, and the po-

sition on the tape is undefined (cf. value of getfile).

openin > 0 : Open for input

openin < 0 : Closed.

Zl.

integer procedure openout (unit, fileno, labelarray, area, mode);

Legality

Function

Tapestatus: Allowed for openout

Filestatus: Closed

The tape on the unit specified as first parameter is scanned

and positioned just before the label of the file with number

as specified as the second parameter. (This is done by inter-

nal use of the procedure getfile.)

A double buffer area is reserved in the free part of the

buffer store, and the filetable corresponding to the current

unit is initialized according hereto. The reservation is based

upon the value of the fourth parameter, which specifies the

number of words which may be used by the system as data area

for the file. This value may never be less than 11 (cf. section

5) %),
The initialization of the table will further be controlled by

the value of the last parameter, which specifies whether the

records will be written on the tape with 4 or 7 characters pr.

word, whether a checksum will be computed during each output

operation, and whether an additional checkword will be gene-

rated on each record to contain the current record length and

a checksum if specified.

The possible values of mode and their meanings are:

mode char/word checkword checksum

0 7 no no

1 no yes

2 7 yes no

2 7 yes yes

4 4 no no

5 4 no yes

6 4 yes no

7 4 yes yes.

The filenumber and information derived from the parameters

area and mode together with the first (max. 8) words of the

array specified as third parameter are now written on the

current tape as a file-label-block (cf. section 3.2.).

x) Maximum blocklength will be computed to: (area - 3) 32.

Filestatus

Be «

The value of openout indicates to the user the result of

the call in the following way:

openout > O => The file wanted has been opened for output.

The value is the number of free words in the buffer store.

openout < 0 => The file wanted could not be found (cf. value

of getfile), or it was impossible to write a new file label.

The position on the tape is undefined.

Openout > O : Open for output

Openout < O : Closed.

6.3.5

29.

integer procedure record (name, element!, element2,, elementn);

Legality

Function

Redeclaration

Tapestatus: Irrelevant

Filestatus: Irrelevant

The procedure acts as a pseudo declaration of a structure

of ALGOL-variables known as a record (cf. section 4).

The record will be identified by the boolean variable spe-

ecified as first parameter. This variable must be reserved

for this purpose only, since the procedure will store in it

a reference to an internal table describing the structure

of the record.

The elements of the record are described in the remaining

parameters to the procedure. These elements may be either

simple variables, subscripted variables or array identifiers

and may be of any type. There are no restrictions to the

number of elements in a call as well.

The procedure will build up an internal table in the buffer

store (cf. section 5) in which descriptions of the elements

of the record are stored. These descriptions have a format

which is convenient for the transfers of information to and

from the elements (see description of procedures inrec, out-

rec, torec and fromrec).

The procedure will recognize it if two or more consecutive

elements have consecutive addresses in the store and in this

ease generate a common description of this group of elements,

which again means that the transfers will be faster.

One word in the table will be reserved for each description

of a simple variable or group of consecutive simple variables,

and two words will be necessary for each four consecutive

array words x)

If the procedure is called with a variable as first parameter,

which has already been used as record-identifier in a previous

eall, the already existing record description table will be

released, and a new one corresponding to the new call will be

built up.

x) The user is advised to consider the possibilities for changing this value

as described in appendix E.

Value

Warning

a4.

If - in this case - the procedure is called with the first

parameter as the only one, the effect will be a release of

the table only.

The value of the procedure expresses the number of free words

in the buffer store after the return.

Since the declaration of a record through a call of this pro-

cedure is no real declaration, the translator will have no

possibility to check whether the variable specified as first

parameter is used as reference to the record in a place of

the ALGOL-program which is outside the scope of one or more

of the elements.

The user is therefore advised always to declare the variables

which form the elements of a record, either global to or in

the same block as that in which the identifier of the record

is declared.

NM

UI

boolean procedure inrec (unit, name);

Legality

Value

Tapestatus: Allowed for openin

Filestatus: Open for input

The procedure will transfer information from the file opened

on the unit specified as first parameter to the elements of

a record identified by the boolean variable specified as

second parameter. If specified in the open call (through the

check-parameter), an arithmetical sum of all the elements of

the record (interpreted as integers independent of type) is

generated during the transport.

This sum will be stored in the standard variable sambasum

and will moreover be checked against a corresponding sum,

if such a sum was generated, and stored in an extra word of

the record itself, when it was output (cf. description of

the procedures outree and outvar). The extra word - if present

- will not be available for the user, but the length contained

in it will be checked against the length of the record speci-

fied to the procedure.

The transfer from the file will take place via a double

buffer administration. This means that the records are taken

from two alternating block-buffers, into which the data blocks

of the file are read in turn. The status of this unpacking as

well as the current blocknumber ete. are stored in the in-

ternal file table which was initialized in the open call.

The first block transport will be activated in the open call,

and a transport will always be checked before the records of

the block are used. Tape errors are treated as described in

section 7.

The value of the procedure will normally describe the location

of the current record inside the file expressed by the current

blocknumber and the relative address of the first element o1

the record inside the block.

Warning

26.

This information is packed in the word representing the

value so that the blocknumber occupies the leftmost 20

bits and the blockrelative the rightmost 20 bits.

primarily thought to be used, if the current record must

be looked up again later on in the process (see description

of procedure research).

The value may, however, be equal to 40 O, i.e. all bits are

zero, if no special error procedure has been specified in

eases where a file mark is sensed (cf. section 7).

In this situation, no record has been transferred (no one is

available), and a possible following attempt to call inrec

again on the same unit, before the current file has been closed

and a new one opened,will cause the run to be terminated with

a normal error message (cf. appendix B).

See warning in description of procedure record (6.3.5).

}

6.3.7

boolean procedure outrec (unit, name);

Legality

Function

Value

Tapestatus: Allowed for openout

Filestatus: Open for output

The procedure will transfer information from the elements

of a record identified by the boolean variable specified

as second parameter to the file opened on the unit specified

as first parameter. ;

If specified so in the open call (through the mode~parameter),

information about the length of the current record will be

assigned to the record as an extra so-called checkword pre-

ceding the words representing the record elements (cf. sec-

tion 3.3.).

If specified so in the open call, an arithmetical sum of all

the elements of the record (interpreted as integers indepen-

dent of type) is generated during the transport.

This sum is stored in the standard variable sambasum and will

moreover be packed in a compressed form together with the

record length in the above mentioned extra checkword, if it

is present.

The transfer to the file will take place via a double buffer

administration. This means that the records are packed in

two alternating block-buffers which will be written on the

tape when they are filled up. The status of this packing as

well as information about the current blocknumber etc. are

stored in the internal file table, which was initialized in

the open call.

Before a block transport is activated, the previous transport

will be tested. Tape errors are treated as described in sec-

tion 7.

The value of the procefure will normally describe the loca-

tion of the current record inside the file expressed by the

current blocknumber and the relative address of the first

Warning

28.

element of the record inside the block. This informa-

tion is packed in the word representing the value so

that the blocknumber occupies the leftmost 20 bits and

the blockrelative the rightmost 20 bits.

The value may be stored in any boolean variable and is

primarily thought to be used if the current record must

be looked up again later on in the process (see description

of procedure research).

The value may, however, be equal to 40 O, i.e. all bits

are zero, if the EOT-mark was sensed during a writeblock

operation and no special error-procedure was specified

(ef. section 7).

If the procedure returns with the value 40 O, no record

has been transferred, and a possible following attempt to

output a record on the current file will cause that the

run will be terminated with a normal error-message (cf.

appendix B).

See warning in description of procedure record (6.3.5).

6.3.8

29.

boolean procedure invar (unit, dataarray, length);

Legality

Function

Value

x)

Tapestatus: Allowed for openin

Filestatus: Open for input

The procedure will transfer a record from the file opened

on the unit specified as first parameter to the elements

of the array specified as second parameter.

The number of words to be transferred will either be derived

from the extra checksum/length-word generated during output

(mode = 2, 3, 6, 7 in procedure openout), or it must be spe-

cified in the integer third parameter if no extra word is

available in the records (mode = 0, 1, 4, 5) x)

if the length is greater than the length of the specified

array, only as many words are transferred as may fit into

the array.

Upon return, the third parameter will in any case contain the

real length of the record * > and a following call of invar

(or inrec) will give access to the next record of the file.

The procedure will use the same double buffer administration

as the procedure inrec and may ~- if convenient - be used

together with this procedure.

The rules for computing the checksum are exactly as described

for inrec.

Tape errors and end-of-file are treated as described in sec-

CLOL. “7.

The value of the procedure is exactly as described for proce-

dure inrec.

Length is here defined as the number of words in the record except

the extra length- and checksumword.

6.3.9

boolean procedure outvar (unit, dataarray, length);

Legality

Value

Tapestatus: Allowed for openout

Filestatus: Open for output

The procedure will transfer a number of words as specificd

in the third parameter from the array specified as second

parameter as a record to an open output file on the unit

specified as first parameter.

If specified so in the open call (through the mode parameter)

information about the length of the record is assigned to

the record in an extra word.

The rules for computing and storing a checksum are exactly

as described for procedure outrec.

The procedure will use the same double buffer administration

as outrece and may be used together with this procedure when

a file is generated.

Tape errors and end-of-tape are treated as described in sec-

tion 7.

The value of the procedure is exactly as described for pro-

eedure outrec.

procedure setproc (unit, interruptprocedure);

Legality

Funetion

Warning

Tapestatus: Allowed for openin or openout

Filestatus: Open for input or open for output

The procedure will supply the system with a reference to

the procedure specified as second parameter. This procedure

will be used as interrupt procedure (as described in section

7) for the file opened on the unit specified as first para-

meter.

If setproc is called more than once during the period a given

file is open, the earlier specified interrupt procedure will

be substituted by the new one.

The demands to the declaration of the interrupt procedure

are described in section 7.2.3.

Cf. the warning in section 7.2.3.

6.35.11

integer procedure research (unit, filepoint);

Legality

Function

Value

Tapestatus: Allowed for openin or allowed for openout

Filestatus: Open for input or open for output

The procedure will look up a certain point (record)

inside the file opened on the unit specified as first

parameter. The point, which is supplied as second parameter,

must have the same format as the value of one of the re-

cord-input-output procedures inrec, outrec, invar or out-

var, i.e.

<blocknumber> .19 + <blockrelative> .39

The effect of the look-up-process will depend on whether

the file is open for input or output:

Input
The tape is positioned and the pointers in the file table

adjusted so that a following activation of one of the pro-

cedures inrec or invar will have as value the same file

point as is specified as parameter to the call of research,

i.e. it will give access to the same record as the call did,

which supplied the file point originally.

Output
If the filepoint is specified beyond that of the last record

output on the file, the effect is undefined. If it describes

a record at a point before the last record, the tape will be

positioned and the pointers in the file table adjusted so

that a following activation of one of the procedures outrec

or outvar will have as value the same file point as is spe-

ecified as parameter to the call of research.

The value of the procedure indicates to the user the result

of the look-up-process in the following ways:

Research = 0 => The look-up was successfully with the effect

as described above.

Research + O => The specified point could not be found, or

tape-errors have occurred when the ultimate block was read

into the double buffer area.

6.3.12

integer procedure close (unit, labelarray);

Legality Tapestatus: Allowed for openin or openout

Filestatus: Open for input or open for output

Funetion The function depends on whether the file has been opened

for input or for output:

input

The filelabel following the file to be closed is read from

the tapeunit specified as firs If close is

called before the EOF-reaction (see section 7 and descrip-

tion of inrec), this will be preceded by a search forward

until the file mark has been read.

The words of the user accessible part of the label (see

section 3) are transferred to the first (max. 8) words

ter. Finally, the

of the array specified as second pararn

buffer area ~ which was reserved by the corresponding open

eall - is released (cf. section 5).

Output
The last activated block transport is checked, and a possible

not completed last block of the file is written on the unit

specified as first parameter and checked. If any tape-errors

occur during these operations, the normal error recovery

mechanism (as described in section 7) will be activated.

After the output-buffer has been emptied, a file mark and

a dummy file label ~- which indicates the last Pile on the

tape - are written on the tape. The file label will have

the normal format (cf. section 3.2.) and will include the

first (max. 8) words of the array specified as second pai

meter. Finally, the reserved buffer area will be released.

Value The value of close indicates to the user the result of the

call in the following way:

close > 0 => The file has been closed, and the value is the

number of free words in the buffer store.

close = 0 = The file was already closed, and the call has

been dummy.

close < 0 => The file has been closed, but it has been im-

possible to read or write the following file label.

Filestatus Closed.

2:

integer procedure torec (name, fromarray, index);

Legality

Function

Value

Warning

Tapestatus: Irrelevant

Filestatus: Irrelevant

The procedure will transfer a number of words from the array

specified as second parameter to the elements of a record a

identified by the boolean variable specified as first para-

meter. The integer third parameter specifies the number of

xx)

(index = 1 specifies the first element of the array). In this

the first element inside the array to be transferred

way it is possible to move elements from an array independent

of its structure.

The value of the procedure is the number of words transferred.

See warning in description of procedure record (6.3.5).

x) Cf. section 4.

xx) Interpreted as having one dimension only.

6.3.1

I
 OV

integer procedure fromrec (name, toarray, index) ;

Legality

Function

Value

Warning

Tapestatus: Irrelevant

Filestatus: Irrelevant

The procedure will transfer information from the elements

of a record ~’ identified by the boolean variable specified

as first parameter to a corresponding number of elements in

the array specified as second parameter. The integer third

parameter specifies the number of the first element in the

array to receive information (index = 1 specifies the

first element of the array). In this way it is possible to

move information to an array independent of its structure.

The value of the procedure is the number of words transferred.

See warning in description of procedure record (6.3.5).

x) of, section 4.
xx)

Interpreted as having one dimension only.

ON

is NO
t

te

ei
 | KS

integer procedure blockin (unit, dataarray, mode):

Legality

Punetion

Value

Note:

x) of, ref,

Tapestatus: Allowed for blockin

Filestatus: Closed

parameter to the array specified as third parameter is acti-

vated. The reading will be performed according to the value

of the second parameter in the following way:

mode

0: 7 characters/word, even parity

Los Ff - > uneven parity

2:4 @ x) » even parity

3:24 - » uneven parity.

The procedure will return as soon as the transport is acti-

vated, and no checking will take place. If the block happens

to be longer than the array, the remaining words of the block

will not be transferred to the buffer.

The value of blockin will normally be zero, but if the current

tape is positioned at load point, a test is activated if 1%

is the correct tape, i.e. the tape that was mounted at the

time of the last call of tapetest.

If this test shows any difference, the value of tapetest will

be either -1 or 1, the negative value indicating that tape

errors - occurring when reading the tape label - may have

caused the difference.

No tape operations will have been activated, if the procedure

returns with a non-zero-value.

1, page 2.

6.316

integer procedure blockout (unit, length, dataarray, mode):

Legality

Function

Value

x)

Tapestatus: Allowed for blockout

Filestatus: Closed

The writing of a block from the array specified as third

parameter to the tapeunit specified as first parameter and

with length as specified in the second parameter is activated.

The writing will be performed according to the value of the

fourth parameter in the following way:

mode

Oor4t: 7 characters/word, even parity

Ll or 5: ¢ - > uneven parity

2or6: 4 = x) > even parity

3Zor7: 4 = >» uneven parity.

The values 4-7 imply a writing after erasure of about 12 cm

tape. The values O-3 imply a normal writing. The procedure

will return as soon as the transport is activated, and no

checking will take place.

The value of the procedure is exactly as described for proce-

dure blockin.

Cf. ref. 1, page 2.

29.

integer procedure status (unit, length);

Legality

Function

Value

6.3.18

procedure

Legality

Function

procedure

Legality

Function

Tapestatus: Allowed for blockin or for blockout

Filestatus: Closed

The status word of the last activated blocktransport on the

tape unit specified as first parameter is processed so that

the actual length of the block transferred will be available

in the integer variable specified as second parameter.

The value of the procedure is the first four bits (interpreted

as an integer) of the above mentioned status word.

The meaning of these bits is defined in ref. 1, page 3.

rewind (unit);

Tapestatus: Irrelevant

Filestatus: Closed

The tape on the unit specified as parameter is rewound to

loadpoint. The procedure will return as soon as the operation

is activated.

unload (unit);

Tapestatus: Irrelevant

Filestatus: Closed

The tape on the unit specified as parameter is rewound to

loadpoint, and the unit is set to local control.

The procedure will return as soon as the operation is acti-

vated.

40,

boolean procedure drive (unit, mode);

hegality

=

Value

Tapestatus: Allowed for blockin or blockout

Filestatus: Closed

The procedure will activate a tape operation on the unit

specified as first parameter according to the value of the

second parameter and return immediately.

mode = 0

The operation is equivalent to the sense busy instruction.

mode = 1 or mode = -1l

The procedure activates a skip block forward or a skip block

backward, respectively.

mode = 2 or mode = -2

The procedure activates a skip file forward or a skip file

backward, respectively.

The value will always be false except when mode = O and the

unit is busy. In this case the value is true.

(._Treatment of errors, end-of-file and end-of-tape

(1. Formal errors

It is a wellknown fact that it is nearly impossible in practice to make

programs correct at the first time. Before a program can be used for

routine runs, a number of errors must be removed from it.

These errors may be either formal errors - i.e. incorrect use of the ele-

ments of the programming language - or real programming errors which cause

the program to react in another way than it was intended to. The discussion

of programming errors will, however, be beyond the scope of this manual.

Formal errors in connection with SAMBA may be classified as;

a: Static formal errors.

bs Dynamic formal errors.

Static formal errors are present whenever a SAMBA procedure is used in an

illegal way with respect to kind and type in a statement, when it is sup-

plied with a wrong number of parameters, or when these parameters are of

wrong kind or type. Such errors are all catched during the translation and

are treated like normal translation errors by the GIER ALGOL 4 compiler.

Dynamic formal errors occur when a SAMBA vrocedure is called in a situation

where its activation is illegal with respect to tapestatus or filestatus

as deseribed in section 6.2. Moreover whenever a wrong value is supplied

as parameter, e.g. by specifying the opening of a non-existing file on a

given unit. These errors will normally be recognized during the run of the

program, Since they are caused by use - or more correct by misuse - of the

system. It will cause the run to be terminated by an error message. The

format of this message will by the same as other running errors recognized

by GIER ALGOL 4 (since they are treated by the same procedure in the running

system). A complete list of the error messages activated by SAMBA and their

possible cause is given in appendix B.

4a,

= fo

KH

9 t.

lo

te
 > 3 8 n

When all formal errors as well as programming errors have been removed

(or at least seem to have been removed), a user dealing with magnetic

tapes and with hardware for handling magnetic tapes will still have to

live with the so-called tape errors.

This fact has been paid much attention to during the design of SAMBA,

and it has therefore been possible to make the detection and handling

of tape errors fully integrated with all other functions of the system.

However, the consequence of tape errors both to the system and to the

user is very much dependent on the level in the use of the system on

which the error appears.

Tape errors recognized when tape labels or file labels are processed will

normally be rather fatal for the following process. When a procedure -

which is dependent on the information contained in these labels - cannot

remove an error by an internal recovery mechanique, this is announced for

the user by a negative value of the procedure (see description of the pro-

cedures tapetest, getfile, openin, openout and close).

When tape errors occur during input or output of records, the situation is

normally quite another. The remaining part of this section will deal with

these problems only.

(2.1 Philosophy

Before the handling of tape errors in the record processing part of SAMBA

is described in detail, a few words must be said about the basic philo-

sophy which lays behind the implementation.

The following points are in no way intended to give the full set of reasons

why the actual solution has been chosen, but it may help the user to under-

stand it, and thereby make it easier to take up the idea if the system is

going to be used in future programs.

Nearly all programs dealing with great amounts of uniform structured data

(file processing) must accept errors of one kind or another in these data,

like for instance punch errors or control digit errors in raw input, il-

legal transactions to an existing or non-existing master record in an

43,

updating process and so on. It is a very primitive program which will

stop running when such errors are encountered, and in practice it is

just inaeceptable to give up the process. It may very often even be a

main task of a program to recognize all errors and to document them for

later correction, all in parallel to processing the correct data.

While this principle - the process must go on - is commonly accepted when

the talk is about the above mentioned kind of errors, most users seem to

be nearly paralysed when they have to take action upon tape errors. Often

common practice is here simply to run the whole program or set of programs

once more from the very beginning or even run it with an earlier generation

of the files involved in order to get rid of a simple tape error.

This ineffective practice, however, is very often caused by use of bad or

primitive tape systems, of which many even cannot detect all errors, not

to mention that they do not allow the user to react in a reasonable way

on them.

The appearance of a tape error should be considered a normal event, and

a_tape handling system should allow the user to treat a tape error by an

action from the program like treatment of any other data error and in an

easy way make it possible to document what is wrong and to continue the

process with a clear and simple logic.

7.2.2 Detection and recovery

Parity and blocklength errors

The input-output of records in SAMBA is treated by a double buffer admini-

stration which will activate the necessary block transports and check them

according to the information derived from the statusword of the tape unit

and from the second word of the blocklabel (cf. ref. 1 and section 3.3.).

Hereby it is possible to detect all parity and blocklength errors.

When an error of this kind is recognized, the system will automatically

try to recover it by backspacing the current block and try the read/write

x)

the system will give up and leave it to the user to take the proper action

operation once more . This will be repeated up to three times before

as described below (section 7.2.3).

x) In this case the write operation will start with erasure of about 12 cm

tape in order to try to get free of a possible bad spot on the tape.

Uy,

Each time a reread/rewrite operation is activated on a given unit in the

recovery process, @ special counter assigned for the unit is counted up

by one. These counters are initialized to zero in the init-run-process

of GIER ALGOL 4, but their contents will survive the return to the (HELP-)

program which activated the run and may be used or collected for mainte-

nance purpose.

The counters are located in consecutive words in the core store so that

the counter for unit 1 has the address c17+8, where cl7 is the SLIP-address

of UW (cf. ref. 2).

Blocknumber errors

If no parity error or blocklength error is encountered, or if they have

been removed by the recovery, the double buffer administration will con-

tinue with a test on proper block sequence. This is done by means of the

plocknumber stored in the first word of the blocklabel (cf. section 3.3.)

which is compared to an internal block counter stored in the filetable

and counted by one each time a new block is read or written.

If a block read in from a tape is found to be out of sequence, this can

either be due to a patiy error which may have destroyed the blocknumber

in the blocklabel, or it may indicate that the tape has not been generated

in a correct way (i.e. by using the proper SAMBA-procedures). In any case,

it has no meaning for the system to try to recover this special error, and

it is up to the user to decide what to do, as described below (section T2s3)s

Checksum errors

When an input block has been read without any error of the kinds mentioned

above (or when an erroneous block has been accepted as described below),

the records of the block will be used one by one by the procedures inrec

or invar. If these records were provided with a checksum when they were

output and if it was specified in the call of openin, each record will be

tested against its checksum (ef. description of procedures inrec and invar).

Tf a checksum error is found, no recovery will take place, and the system

will immediately leave it to the user to decide the action.

7:2.3 Activation of the interrupt procedure

When a tape error has been recognized by the system and a possible recovery

has turned out to be fruitiess, the system will give up. SAMBA will now

activate a user declared ALGOL-procedure, which serves as a kind of inter-

rupt action and must be specified to the system by means of the procedure

setproe after the current file has been opened (see section 6.3.10).

Tf no such procedure has been specified, the error will be ignored as de-

seribed in 7.2.4.

The interrupt procedure must be declared with a head as shown in the follow-

ing example:

procedure error (unit, type, area, length);

value unit, length; integer unit, type, length; array area;

When the procedure is activated by SAMBA, the parameters will contain the

following information about the actual situation:

wnt : supplies the value of the current unit

type: specifies the kind of error by the following values:

Le checksumerror |

2 = parity error “

3 = blocklength error

4 = blocksequence error

area: deseribes the erroneous field as if the system had

declared a single dimension array with element No. 1

in the first word of the field. If type = 1, area will

cover an erroneous record including the checksumword.

If type > 1, area will cover an erroneous block in-

eluding the two block-label-words (ef. section 3,3.)

x . ie : 7
) If a parity error - which occurs when a block is read - cannot be removed

system, the interrupt procedure will not be activated before a possible

checksum error occurs. In this way, errors - which have only destroyed the

parity bits, but not the real data - will not be indicated for the user.

Note: This is only valid for parity errors.

46,

length: specifies the length of the above described array

area, i.e. the length of the bad record or block.

These parameters will contain enough information to make it possible

inside the error procedure to document the error in a convenient way.

If more advanced actions are wanted, it may be necessary to make use

of information in variables which are global to the interrupt procedure,

i.e. variables which are declared and updated in the main program.

The call of the interrupt procedure is performed in a fully ALGOL correct

manner, which means that the user is allowed to make use of all normal

ALGOL possibilities inside the procedure, including call of SAMBA proce-

dures which may be relevant if the user has programmed a more advanced

recovery procedure (e.g. by means of research), or if one or more files

must be closed or opened (cf. section 7.3.).

Warning The user must pay attention to the fact that no test is per-

formed whether or not the ALGOL-rules concerning scope are

sacrified. If a record input/output-procedure (in some strange

programs) is called at a blocklevel outside the scope of a

specified interrupt-procedure, the program will go completely

off its tracks if the system activates the interrupt procedure.

Moreover, the user is warned against any seriously intended

attempts to activate the record input/output procedures on

a given unit recursively. The effect of such calls (which may

happen again to activate the interrupt procedure etc.) may

easily turn out to be completely undefined.

7.2.4 Exit from the interrupt procedure

After proper treatment of the error, control may be given back to SAMBA

by leaving the interrupt procedure through the end.

However, before returning, the user must specify to the system how it is

going to proceed. This is done by means of the second parameter ~- type -

)
which may be changed or not _ . The exact reaction of the system hereupon

x) In order to make the changing have an effect, this parameter must of

course not be value specified.

oa

+o
]

will depend both on the original value of type and on the error having

been caused by an input or output operation. There are three possibili-

ties to specify a reaction:

a) Type is unchanged
The main effect is that the error is ignored and - by the way - is equiva-

lent to the situation that no interrupt procedure is specified. To ignore

the error, simply means that the system will continue the process with

)
the bad area accepted oe . However, before returning to the program, the

contents of the boolean standard variable sambaerror will be changed to

eontain the following information:

<D.0 + <unit>.5 + <type>.9 + <blocknumber>.29 + <blockrelative> .39

This standard variable is initialized to 40 0 when the run is started and

will only be changed by the system in situations as described above.

b) Type = 0
This is equivalent to asking the system to try once more. The action here

will primarily depend on the original error type:

If it was a checksumerror, the system will return to the entry of the

record input procedure and try to get the same record onee more. This will

have no meaning for the user, since the system will just redetect the check-

sumerror, activate the interrupt procedure again and thereby probably go

into an infinite loop.

If originally the error was of type 2, 3 or 4, the system will reactivate

the internal recovery process with the consequenses as described in section

[+202

ce) Type < 0
This is accepted as an instruction to the system to skip the bad area. If

the error is caused by an output operation, the unit will be backspaced

over the bad area.

x) If the error was a blocksequence error, the contents of the blocknumber

word of the blocklabel in the wrong block will be accepted as the current

blocknumber.

48,

If the error is a checksumerror, the system will continue with the next

record in the file and leave the bad one untransferred.

If the error is a reading error or a blocksequence error, the bad block

will be left untouched. Instead, the internal blocknumber is counted up

by one, and the next block is read in and checked as described in sec-

tion 7.2.2.

7.5. End-of-file and end-of-tape

As described above, each blocktransport will be checked in different

ways by the double buffer administration. This includes a test on the

two bits in the status word which indicates end-of-file read (EOF) and

end-of-tape sensed (EOT) x)

EOF in SAMBA indicates that no more records is available on a given file.

This must be communicated to the user so that he can take the proper action

which will normally include a call of the procedure close in order to

release the occupied buffer area and make the tape-unit available for

possible further processing of other files.

EOT indicates (independent of system) that the tape is very near to its

end (probably only a few meter remains). If it is sensed during output

of a block, SAMBA must also communicate this to the user, since the system

does not include an automatic administration for multi-tape processing.

The user himself has to program such an administration, which must include

a call of close for the current output file and a re-opening of it on

another tape. (A proposal for the logic of a multi-tape-administration

using SAMBA is given in appendix C).

Since both situations in most programs with a clear and straightforward

logic must be irrelevant to the detailed record processing, SAMBA will

treat them as a kind of pseudo tape errors, which means that they will

cause the interrupt procedure to be activated.

This gives the user the same freedom to take any proper action as for

ordinary tape errors but will not include means for specifying alternate

actions by the system upon return to it, since only one action is con-

sidered relevant.

When the interrupt procedure is activated, the first parameter will spe-

cify the value of the unit as before while the second parameter will be

equal to 5 in case of EOF and equal to 6 in case of ECT. The last two

parameters are irrelevant.

x) Cf. ref. 1, page 3.

50.

Before the interrupt procedure is activated, the internal representation

of filestatus (cf. section 6.2.) is changed in order to make any further

input/output operation illegal on the current file. However, the user

himself has to call the procedure close before the occupied buffer area

can be released and the tape unit made available for possible processing

of other files. This call of close may conveniently be performed inside

the interrupt procedure.

Upon return from the interrupt procedure, the system will return directly

to the main program with the value of the record-input-output-procedure

equal to 40 0. This makes it possible for the user to take care of the

situation from the main program, if this is found convenient or if no

interrupt procedure is specified.

In any case, the effect of the call, which caused the EOF/EOT situation

to be detected, will be equivalent to a dummy call (apart from the effects

mentioned above). This means that the elements of the specified record

(for inrec) or array (for invar) have not been changed and that the speci-

fied record (for outrec) or part of an array (for outvar) have not been

output.

Ds

7.4. End-of-tape combined with tape errors

Tf EOT is sensed after a write block operation together with an error

of type 2 or 3, the system will just store the information about the

EFOT and activate the automatic recovery process. If the error can be

removed now, the system will just recognize it as a normal EOT-situa-

tion.

Tf on the other hand, the error cannot be removed by the recovery pro-

cess, a special situation has arisen. This is announced to the user by

a call of the interrupt procedure with type = 7. The other parameters

contain information as described in section 7.2.3. However, since EOT

has been sensed, the user will have no possibility to specify alternative

reactions upon return to the system.

The system will return to the main program with the value of the record-~

output-procedure equal to 40 O and with the standard variable sambaerror

set according to the situation. Besides this, the internal representation

of filestatus has been changed in order to avoid more output on the current

file.

A-1

Appendix A:

SAMBA tape format

The format and contents of a standard SAMBA tape may be described by

the following Baccus notation scheme:

<SAMBA tape> ::= <SAMBA label><FYD><data files><end label>

<SAMBA label> ::= GIER <tapeno><tape patterm

<tape no> ::= <four decimal digits>

<tape patterrm> ::= <40 bits>

<FMD ::= <file mark as defined in ref. 1, page

<data files> ::= <empty> |<datafile>|<datafiles><datafile>

<data file> ::= <file label><data blocks><FND>

<file labeLD ::= <systempart><userpart>

<system part> ::= <mode.9 + area.25 + filenumber. 39><labellength.19>

<user part> ::= <max eight 7-character words>

<data blocks> ::= <empty> | <data block> |<data blocks><data block>

<data block> ::= <block label><records>

<blocklabel> ::= <blockno.19><blocklength.19>

<records> :3= <record> |<records><recor@

<reeord> ::= <checksumword><data words>

<checksumword> 32:= <empty> | <recordlength. 9><recordsum>

<recordsum> ::= <empty> | <compressed sum of recordwords. 39>

<data words> ::= <GIER word>|<data words><GIER word>

<GIER word> ::= <4 or 7 characters in uneven parity>

<end label> ::= <file label>

B-1

Appendix B:

Error messages

As mentioned in section 7.1, dynamic formal errors will cause the run
to be terminated with an error message. This message will be generated
by the standard error routine in the running system of GIER ALGOL 4.
However, the format has been changed slightly to specify the value of
the unit-parameter in the last activated call of a SAMBA procedure
before the error was recognized. The format of the error message will
therefore be (cf. ref. 2, appendix 2):

<text><unit><line 1>-<line 2>,<rel. track

The possible texts and the situation causing them are:

error 14 A SAMBA procedure which is illegal with respect to the
current value of tapetest has been activated (cf. section
6.2.).

error 15 A procedure which requires the corresponding file to be

open has been activated, when filestatus indicates a

close situation.

error 16 A procedure which requires a close situation has been

activated, when filestatus indicates a file to be open.

error 17 A parameter to a SAMBA procedure has a value, which

exceeds the legal range.

error 18 An attempt to look up a file which number is greater than
the number of relevant files on the specified tape.

error 19 The size of one record to be output is greater than the

specified maximum block size for the file, or the total

size of the records required to be input does not match

the size of the block to which they belong.

buffer A SAMBA procedure requires more area in the buffer than

is available, or an array has been declared which is greater

than the remaining free area in the buffer. NOTE: This error

message will replace the message array from the normal version

of GIER ALGOL 4.

C-1

Appendix C

This appendix contains a program and two procedures programmed in GIER

ALGOL 4, which illustrate some of the features of SAMBA and how the

system may be used.

The first example describes a possible solution of a simple file updating

problem involving one master file with fixed length records and one trans-

action file with variable length records.

The second example shows the declaration of a possible interrupt procedure,

‘ibes in principle how a simple system for

‘ay be programmed.

: examples 2 and 3 are in fact very primitive

jufficient for practical purpose. However, by

procedures, e.g. by assuming that more infor-

nd from the main program by means of global

¢ ‘ough introduction of adequate conventions for

i srt of the file labels, it should be possible

; xv system, which may be common to and convenient

obtained hereby would be standardization of

ir reactions.

dS

\

‘(LGOL 4 will make it easy for a user to incor-

. named area on drum, disk or from a system tape

Co
rr
p-
rd
bb

415)

C-2

Example 1

This example is in no way intended to describe the solution of a real
ADP-problem, but it contains most of the elements which are common in
normal file updating problems and describes how easy SAMBA fits the
logic of the solution.

Consider a trade company which has the necessary information about its
customers stored as records on a master file. In a merge process, this
master file is updated by means of information from another file con-
sisting of so-called transaction-records, which have been generated in
& previous input and sorting process.

\

Transaction unit | f unit ‘ Old master
file 1 J 2 / file

Updating
process

‘al

[mnie New master file

3 \

A record on ‘the master file contains the following information:

Word No. Contents Corresponding ALGOL-variable

A number representing the customer: integer m

2s A number representing the day the
customer was introduced to the system: integer start date

5 A number representing the day of the
last processed transaction to the
master record: integer last date

4, The amount of the last transaction to
the master record: integer last amount

5. The total amount which the customer
owes to the trade firm: integer total amount

6-10. Five words containing a text representing
the name and address of the customer: boolean array NAME [1:5]

The records on the master file will be processed with checksum.

C~3

A record on the transaction file may have three different formats but
the two first words will always contain:

at

type

type

ui
it

A number representing the customer: integer t

A number indicating the type of trans-
action as described in the following: integer type

>: The transaction introduces a new customer to the system.
The remaining words of the transaction record are in such
a case:

A number representing the transaction

days integer date

A number representing a possible
amount to be registered: integer amount

Five words containing a text representing
the name and address of the customer: (no explicit area)

: The transaction announces a change in the amount owed. In this
ease the transaction will only consist of the words 1-4 de-
scribed above.

; The transaction announces that a customer may be removed from
the system if the total amount is equal to zero. In this case
only the two first words mentioned above will form the trans-
action,

The transaction will contain no extra word for checksum.

The records of the two files are both ordered with ascending numbers in
word 1, and the transactions are moreover ordered with respect to type
so that type-l-records appear before type-2- and type-3-records with
the same number.

Both files are written in high density mode on the tape.

The main logic of the process is described in the following scheme:

t < m t =m t>m

type = generate a new master illegal transaction transfer master
record (master already present) | to output

type = illegal transaction change master transfer master
(no master to update) to output

type = illegal transaction delete master and transfer master
(no master to delete) input new master to output

i
as

and input new “transaction and input new

master

The action in the interrupt procedure upon EOF on one of the two input files
is just to set the respective number of the record to a certain value greater
than the greatest possible number in the system. Here 1000000 has been chosen.

READ TRANSACT:

READ MASTER:

 i input (transact)

NEXT TRANSACT:

input (master) (<7 output (master)

 Y

 input(transact)

l
generate new ©

master

backspace master

aN

TEST MERGE CASE:

 illegal transact

 update master

 IN

 2
©

FINISH

C-5

Updating program (example 1)

begin integer m, start date, last date, last amount, total amount,

t, type, date, amount, tapeno, unit, value;

boolean array NAME [1:5];
integer array TRANSACT [1:9], LABEL [1:8];
boolean ident2, master, transact, masterpoint;

procedure tapetesterror (unit, tapeno, value); integer unit, tapeno, value;
begin comment action upon error in tape identification process end ;

procedure opencloseerror (unit, OPEN); integer unit; boolean OPEN;
begin comment action upon open/close errors end;

procedure interrupt (unit, type, area, length); ANnCeRer ssssuas ete;
begin comment see example 2 for possible procedure body end;

TART: select (17); writetext ({<tape identification in reader +); lyn;
select (16); comment now follows tape identification process:

begin tapeno:= readinteger; ident2:= boolean readintegers;
value:= tapetest (unit, tapeno, ident2, if unit + 3 then 1 else 3,0);
if value + 0 then tapetesterror (unit, tapeno, value)

end;

OPENTRANSACTION:
comment first file on unit 1 without checksum;
if openin (1,1,LABEL,0) < O then opencloseerror (1,true);
comment here may follow a possible processing of the contents of LABEL;

OPENOLDMASTER :

comment first file on unit 2, with checksumcontrol during input;
if openin (2,1,LABEL,1) < 0 then opencloseerror (2, true);
comment here a possible processing of the contents of LABEL may follow;

OPENNEWMASTER :
comment first file on unit 3, reserve 1000 words for double buffer,

generate checksum and store in each record during output:
comment here the array LABEL may be initialized to contain user

information for the file label;

if openout (3,1,LABEL,1000,3) < 0 then opencloseerror (3,true);

setproc (1,interrupt); setproc (2,interrupt); setproc (3,interrupt);

DECLARE RECORDS:

record (master, m, start date, last date, last amount, total amount, NAME);

record (transact, t, type, date, amount);
record (newname, NAME);

READ TRANSACT: invar (1,TRANSACT,value); torec(transact,TRANSACT, 1):
comment now the variables t, type and maybe date and amount will

contain relevant information about the transaction. The contents
of TRANSACT [5:9] will only be moved when a new master must be
generated. If EOF was read, t will be equal to 1000000 due to
action in the interrupt procedure:

C-6

READ MASTER: masterpoint:= inrec (2,master)
comment now the current master has been read and moved to the

variables: m, start date, last date, last amount, total amount
and NAMB. If EOF was read, m will be equal to 1000000 due to
action in the interrupt procedure:

TEST MERGE CASE:

if t > m then

begin outree (3,master); goto READ MASTER end;

if t = 0 then

begin if t = 1000000 then goto FINISH;
comment EOF has been read on both input files;
goto case type of ILLEGAL, UPDATE, READ TRANSACT;

end;

comment code for t < m follows here;

if type = 1 then

begin « comment introduce new master;

research (2,masterpoint);
comment now a following inrec-operation on unit 2 will give the

current master once more, and the master record may be used
for the new one;

s= bs

startdates= lastdate:= date;

lastamount:= totalamount:= amount;

torec (newname,TRANSACT,5);
comment this call moves the name-text from the transaction area

to the array NAME of the master record. Now the generation of
the new master has been accomplished;

ILLEGAL:

begin comment action upon an illegal transaction end;

NEXT TRANSACT: ‘ '

invar (1,TRANSACT,value); torec(transact,TRANSACT, 1);
comment see — mder READ TRANSACT :

goto TEST MERGE CASE;

UPDATE:

comment actions when t = m and type = 2;
last date:= date;
last amount:= amount;
total amount:= total amount + amount;
goto NEXT TRANSACT;

FINISH:

comment action when EOF has been read on both input files;
close (1,LABEL); close (2,LABEL):; unload (1); unload (2);
comment not necessary since no more process will take place.

If any information is to be stored in the dummy file label

following the new master, the contents must be stored in the

array LABEL now;

if close (3,LABEL) < O then opencloseerror (3,false); unload (3);

select (17); writetext ({< FINISH >)
end example 1;

C-7

integer procedure interrupt (unit, type, area, length);
integer unit, type, length; integer array area;

begin integer medium, J;
medium:= select (if type > 4 then logmedium else errormedium),
writecr;

writetext ({<unit}); writeinteger ({dd>, unit); writechar (0);
writetext (case type of ({<sumerror ; <parityerror},

<blocklengtherror}, {blocknoerror}, {<EOF read} ,
<EOr sensed} , {<EOL sensed}));

af type < 5 then
ERROR: begin for j:= 1 step 1 until length do

begin writecr; writeinteger ({dadd}, §);
writeinteger ({ddddddddddd}, area [§])

end;
type:= ~]

comment specify 'skip bad area upon return! ;

end type < 5

begin if type.= 5 then
EOF: - begin integer infinite:

comment only single reel input files considered;
infinite:= number greater then greatest criterium value;
if unit = 1 then criterium 1:= infinite

else criterium 2:= infinite

end
EOT: begin comment separate action on error + EOT not relevant

here since all bad blocks will be skipped:

next reel (unit);
comment see possible declaration in example 3

end, EOL
end type 25;

select (medium)
end interrupt procedure;

c~8

Example 3:

The following procedure which may be used both for input and output
files will assume basic information about the relevant files stored
in an integer array FILE [1:maxunit, 1:4]; the contents of each row
is?

column: contents:

if output then O else 1
reel sequence number

if output then area else irrelevant
if output then mode else check F

U

>

procedure next reel (unit); integer unit;

begin integer ident], value; boolean ident2, output;
output:= FILE funit, 1] = 0;
if output then prepare EOL label;

if close (unit, LABEL) < O then opencloseerror (unit, false); x)
if -. output then process information from EOT label;
FILE [unit, 2]:= FILE [unit, 2] + 13; unload (unit);
writetext ({<mount reel sequence No.})3
writeinteger ({ada} , PILE [wit, 2]);
writetext ({<on unit}); writeinteger ({ad}, unit);
get tape ident (unit, ident!, ident2);
comment this call will supply the information necessary to identify

the next reels

value:= tapetest (unit, identi, ident2, if output then 3 else 1, 0);
if value + O then tapetesterror (umit, identi, value); x)

if. output then
begin prepare start label;

if openout (unit, 1, LABEL, FILE [unit, 3], FILE [uit, 4]) < o
_. then opencloseerror (unit, true) x)

end

begin

if openin (unit, 1, LABEL, FILE [unit, 4])< o
~~ then opencloseerror (unit, true); x)
process information from start label

end

end procedure next reel;

x) see comments in example 1.

Appendix D:

Standard values of tapestatus

The rules in the standard version of the SAMBA compiler which governs

the result of a call of tapetest are based upon the following philo-

sophy:

a) Output on a given tape is only allowed if it has been possible to

identify the tapelabel fully.

b) If the relevant fields of a tapelabel cannot be identified, but

a tape error has been recognized, input from the tape will be

allowed.

ec) If the tape is recognized as a SAMBA tape - i.e. field 1 contains

the characters GIER - only the proper SAMBA input/output procedures

will be allowed.

d) If the tape is recognized as a working tape, both the proper SAMBA
procedures and the basic tape procedures will be allowed.

e) If the tape is recognized as non-standard tape, only basic tape

procedures will be allowed,

f) No proper SAMBA procedures will be allowed, if the rewind parameter

to tapetest is one.

The table below shows the exact values of tapestatus in the relevant

cases as implemented in the standard version. If some installation should

want to change the values (and thereby the rules), the procedure described
in appendix E should be followed.

A '+t in the left columns means yes to the condition, while '-! means no.

A 'one! in the four right columns means that the procedure will be allowed

- a 'zero! that it will not be allowed.

D-2

ident 1 ident 2 rewind tape- value of in/out block tape

in/out tapetest rec error ok ok class

o
o
o
o
0
o
c
o

o
O
o
c
o
o
o
o

O
o
O
o
O
0
O
0
C
0
C

0

C
o
O
o
O
C
c
O
o
O
O
C
R
n
O

e
e

e
e

oe

© © © oO 4 ob

o
o
0
o
0
o
0
o
0
c
o

O
O
C
a
O
0
O

00

O
O
C
O
H
A
S

O
n
t

O
O
H

A
O

eel
eet ae

oe
O
o
o
o

i
+

t
t
t

+
t

fo o
b
o
e

-

b
o
b

+

P
o
P

d
b

fe
me

t
e
b
e

ee

est

gier

O
0
0

O
F

A
r
e

OA
O
A

A
A

et
A

O
O
O

C
F

AHOO

O
n

C
O
n
H

O
O

ok
ot

od
op rear

O
O
O
O

C
O
C
O
C
O
O
C
O
O
O
A
A

A
e

A
t
a

st
A
R

a
s
t
a

t
e
a

e
s

O
O
O
O

e
C
c
o
O
o
o
e
o
c
o
o
o

o
o
o

O
A

C
O
O
F
O
O
O
H
O
O
O
H
O
O

5

i
e
e

a
i

i
a

ee
ee

ee

cs
i
e
e

oe

bob
t
h

t
t

t
t

t
t

tt

oO &

c a
 @ + n

Appendix E:

Generation of a GIER ALGOL 4/SAMBA compiler

The generation of the SAMBA version of the GIER ALGOL 4 compiler will

follow exactly the same rules as specified in ref. 2, section 14.2

with the following additions:

During loading of the T1,Li-tape, GIER will stop with the message:

redefine wanted loading parameters.

In this situation the name e40 must be set equal to the number of tape

units available on the installation. When the loading is restarted, the

SAMBA-version of the compiler will be generated.

After loading the T7,L3-tape, the following message will occur:

load SAMBA-tape.

Now the tape marked ‘SAMBA!’ must be loaded. During this GIER will stop

with the message:

redefine SAMBA system.

Now loading may be restarted directly or some internal loading parameters

may be changed as described below.

The SAMBA-tape is just a simple extention of the normal library tape, and

it will therefore terminate with the message T7,L5. Hereafter the loading

process will proceed as for any other compiler.

Special SAMBA-compilers

Since many of the standard procedures of SAMBA will use part of the code

of each other (often in a very complicated manner), it has been convenient
to treat the procedures as one single procedure with many entries. The

consequence of this, however, is that all the SAMBA-procedures will be

included in the translated program, even if only one procedure is used.

In some situations, however, it may be of interest only to use part of the

system and have a compiler which only includes the necessary code. This

has been taken into account so that it is possible to generate three special

versions of the SAMBA-compiler which contain SAMBA-procedures as shown in

the following scheme:

E-2

Name of procedures No. of tracks occupied Version: A B Cc

tapetest

openin/openout/getfile

close

record

=
U

=
F
P

inrec/outrec

ok
 invar/outvar

torec/fromrec 1

research 2

x
KX

KX
MR

MR
MK

KM
KM

&M

—
 rewind/unload

blockin/blockout

drive/status

x

) setproc/blockchange ~ 5

1
XX

release x

The respective versions will be generated automatically, if the following

definitions of SLIP-names are performed:

Version A: Following message 'redefine SAMBA-system! : bS1 = 1

Version B: - - "redefine SAMBA-system! : bj2 = 1

Version C: - - 'redefine wanted loading parameters!:e0 = -1

Note that version C may be used even when no tape units are available.

It should be mentioned that the system contains facilities to generate

more specialized versions than those specified above. Requests for in-
structions to follow in such a case should be directed to GIER SYSTEM
LUBRARY.

Changes of rules for evaluation of tape status

As mentioned in the description of procedure tapetest, the rules for

evaluating tapestatus are stored in a table available for tapetest.

This table may be changed from the standard contents shown in appendix

D during the loading of the SAMBA tape.

Following the message 'redefine SAMBA system!, the SLIP-name ie30 must be

set equal to one. This will cause GIER to stop with the following message

when the procedure tapetest is loaded:

read tapetest redefinition tape.

x)

xx)

Used internally for double buffer and tape error administration.

Used internally for administration of available buffer store area.

E~3

Now a new table can be read in. This table must have been generated
in a previous process by the program 'Generate SAMBA tapetest-table!
which is available through GIER SYSTEM LIBRARY. The system will check
that a correct tape is used, otherwise the message ‘SAMBA alas! will
be typed out, and the reading will stop with no possibility to restart.

When the redefinition tape has been read in, the loading process must
proceed with the remaining part of the SAMBA tape as described above.

xtension of the record transfer area

As mentioned in the description of procedure record, transfers to and

from elements of a declared record will take place in groups of conse-

cutively stored words.

However, when words are transferred from one part of the buffer store

to another, which is the case for elements of arrays, the transfer must

be performed via a working area in the running system part of the core

store. In the standard version of the SAMBA-compiler, this working area

consists of four words. This relatively small size may cause the record

tables (cf. section 5) describing records with many array elements to

occupy too much buffer space and to slow down the transfer process un-

necessarily much.

However, it is possible to generate special versions of the SAMBA-compiler

with a greater working area. If this is wanted, the SLIP name e69 must

be redefined to the new size of the working area. This must be done after

the message

redefine wanted loading parameters

has been printed out. Only the following restrictions should be considered:

4 S 69 S io

Note that the redefinition of e69 may cause the number of available track-

places to be decreased accordingly (cf. ref. 2 section 11.3).

