

GIER System LIBRARY Order no,

2.4 Sorting.

Srik Bugge

Aarhus Universitets Regnecenter

May 1068.

Sorting of Multidimensional Arrays by Reference.

ALGOL procedure.

ABSTRACT:

The procedure, {< sorter} , sorts the values of a twodimensional

array corresponding to a fixed second subscript value, building into

a onedimensional array a reference which is the corresponding values

of the first subscript. Versions handling multidimensional arrays

and methods for multiprecision numbers are mentioned.

CONTENTS:

1. Function.

. Time and Space requirements.

3. The Procedure.

4, Other Versions.

5. Note on Multiprecision.

1. Function:

If <type> array files(i:n,1:m) is the array to be sorted and

integer array ref{i:n] contains the numbers 1 through n in some order

then the call: .

sorter(files,iteml,ref,1,n);

will rearrange the numbers contained in ref so that files(ref(1],

itemi] < files[ref[2],itemt] <¢ files(ret(3],itemt] < etc.

Note that the values contained in files are not rearranged.

Note also that the sorting is conservative i.e. no changes of

order are made in case of equality. This means that if a sorting~

criterion (the set of numbers corresponding to a fixed value of the

second subscript) contains one or more ranges of equal numbers then

the order gained from the previous sorting(s) will remain inside such

ranges, a feature which permits the sorting of multiprecision numbers

and the use of several sortingcriteria in a hierarchic order.

The user may restrict the sorting to some part of the array if

the reference to this part has been placed in an unbroken range of

the reference array. This option is governed by the two last para-

510,

-—L=

meters of the call, thus

sorter(files,item2,ref, from, to) ;

will rearrange the numbers contained in ref| from] through ref/| to] only,

leaving the rest of ref unchanged. (For a method using this feature

for hierarchic sorting see note on multiprecision below).

The working principle of the procedure is: A secondary reference

array subscripted [from: to] is declared, adjacent numbers from ref are

ordered two by two and put into this sec. ref., then adjacent groups

of two are merged into ordered groups of four in ref which subsequently

merges into groups of eight in sec.ref. etc. the proces continuing until

the whole range of numbers is contained in one single ordered group.

If this group happens to end in sec, ref. it is finally copied onto

the corresponding part of ref.

2, Time and Space requirements:

The time taken to sort a reference containing N numbers is 2 sec.

and 22 sec. for N eyual to 100 and 800 respectively, or roughly:

t = 10 x N logN milliseconds

(using the Gier ALGOL IV compiler without subscript check).

ror an array ([1:n, 1:m] to be sorted is two onedimensional arrays

of length n required, and so the total space neccessary is n x (m+2).

It is seen that the extra space required is less dominant the larger

mis.

3. The Procedure:

The procedure heading is

procedure sorter(lager,nr,a, fra, til);

value nr,fra,til;

integer nr,fra,til;

interer array @}3 integer array lager;
conenesnatenattomacbieBerwcrerotien s ccoceomanstnntemondenontensres: io $

The meaning of the formal parameters is:

lager: the array to be sorted

nr: the value of the second subscript corresponding to the

sortingcriterion

ar the reference array

tra: the lower bound, and

til: the upper bound of the part of the reference array in question,

he subscript bounds of a need not to be the same as the bounds

of the first subscript of lager but each of the relevant values of the

first subscript must occur once and only once as values in a, The two

last parameters must be included between the bounds of a and satisfy

the condition: til > fra.

A full account of the procedure is found in the appendix, it con-

 ~ j=

sists of:

a) the declaration of lokal variables and of the sec. ref. array b

bh) an initialization of the transport direction from a_ to b

c) the major for statement which multiplies the group length, step,

by two and reverses the transport direction for each loop

d) an eventual copiing of b onto a,

The outer for statement is made up of two nearly identical parts,

one for each transport direction, consisting of a for statement which

advances the treatment through the whole range, inside which two smaller

loops perform the merging. Theese smaller loops are forced not to in-

clude segment transitions by the use of end comments ending by for (a

feature of Gier ALGOL IV) to save time rather than program space,

4, Other Versions:

The array, lager, is specified as integer, this must be altered

to real if the procedure is to handle real arrays. (If the procedure

is compiled by the Gier ALGOL IV compiler it cannot handle both integer

and real arrays. It can if lager is specified as real and the Gier

ALGOL III compiler is used, but in this case the operation times are

longer than stated ahove).

The dimensionality of lager and the different role of the sub-—

scripts are determined by the two occurrences of the if clause:

if lager [ni1,nr] < lager (n2, nx] then. ..

only. Alterations of the number of subscripts must be accompagnied

by corresponding alterations of the formal parameters if the procedure

is to be kept void of global variables.

The procedure uses about 3 tracks of program space, this can he

cut down by about 50 %, with a subsequent doubling of the operating

time, if the direction governing clause:

ifiathen. . .else . - +

is placed inside the following for statement anywhere the two halves\

of the procedure are different, Time saving has been the author's < “Oy
es

major concern while writing the present version. Na

5. Note on Multiprecision: °

If integer array numhers {1:n, 1:2] is taken as an onedimensional

array of doubleprecision numbers they can he sorted either thus:

sorter(numbers,2,ref,1,n)3

sorter(numbers,1,ref,1,n); ~

due to the conservative nature of the sorting, or thus:

sorter(numbers,1,ref,1,n);

toz:= 1;

for from:= to while from< n do

~4t~

begin

xia numbers[ref(from},1|j tor= to + 1;

if x= numbers [ref [to] , 1] then

bewin |

for to:= to + 1 while (if to ¢ n then x = numbers [ref [to] ,1]

else false) do;
sorter(numbers,2,ref,from,to - 1)

end

end;

The outer for statement scans the whole reference for ranges of equality

of the more significant part which, if they contain more than just one

member, are then sorted according to the less significant part.

fhe inner, empty, for statement explores the lengths of such ranges.

The former method is the simpler but the latter is likely to ve

the faster in most cases. Both methods are easily extended to hierar-.

chic sorting of higher degrees.

APPS NbDIX:

nrocedure sorter(lager nr,a,fra, til);
wolue nr fra til;
inteser nr fra til
inteser array a; integer array lager;
oe fin

inteser 1,11,12,sli,sl2 nl n2,step, diff;
intezer array pifra! till; ° boolean i a;

i a:= true;

for step:= 1,2xstep while step < til - fra +1 do
begin

1:= fra 1;
if ia then
beein
for 11:5 1+i while 1 < til do
cegin
‘sli:= 1+ step} 12:= sll +13; s12:= sll + step;
if sll > til then sl1:= s12:= til else
if sl2 > til then s12:= til; diff:= s12 - s11;
for 1:= 1+1 while 11 ¢ sll “12 ¢ 812 do

cee

soveercnbenbonsene

ni?= alli]; n2i= al.12s
lager|n2 wor] then begin pl1]:= nt; 11:= 11+1 end it lagerinijnr] <

else begin bl1]:= n2; 12:5 "12+ end

end for 1:= then 3
if 11 < sll then begin

for 1:= 1 step . until s12 do begin bl1]:= alt cite] end for end
cise for 1:= 1 step 1 until sl12 do begin bl1]:= al1] end for;
1:= sl2 :
end for 11:5
end if ia else
bogin comment det samme med a og b byttet om;

2a BED
for 11:= 1+1 while 1 < til do
begin

sl1:= 1+ step; 12:= sll +1; s12:= sll + step;
if sll > til then sl1:= sl2:= til else
if sl2 > til then $12:= til} diff:= sl2 - s11}
For 1:= 141 while 11 < sll * 12 < sl2 do

Serin

ni?= bL11]5 = laa ls
if lager|n1, nr, im lager|n2 nr] ‘then begin alij:= nl; 11:= 1141 end
else begin al1]:= n2; 12:='12+1 end end
end for 1:= for 35
if iP ul < sll ‘then b egin

For 1!= 1 step 1 until sl2 do begin al1]:= ofa nsitt end for end
else for 1:= 1 step 1 until sl2 do begin al1]:= vii end for;
L:= sl2
end for 11:=
end if - wt ay

ia: - a a

end for’ step? =;

if -,ia then begin

for i:= fra step 1 until til do ali]:= vl1] end
end procedure 80; sorter;

