2.4 Sorting.

Erik Burge
Aarhus Universitets Regnecenter
May 1068.

> Sorting of Multidimensional Arrays by Reference.
> ALGOL procedure.

ABSTRACT:

The procedure, $\nless<$ sorter \rangle, sorts the values of a twodimensional array corresponding to a fixed second subscript value, building into a onedimensional array a reference which is the corresponding values of the first subscript. Versions handling multidimensional arrays and methods for multiprecision numbers are mentioned.

CONTENTS:

1. Function.
2. Time and Space requirements.
3. The Procedure.
4. Other Versions.
5. Note on Multiprecision.

1. Function:

If <type〉 array files $[1: n, 1: m]$ is the array to be sorted and integer array ref[1:n] contains the numbers; through n in some order then the call:

$$
\text { sorter }(\text { files,item } 1, \text { ref, } 1, n)
$$

will rearrange the numbers contained in ref so that files[ref[1], item 1$] \leq$ files $[\operatorname{ref}[2]$, item 1$] \leq f i l e s[r e f[3]$,item 1$] \leq$ etc.

Note that the values contained in files are not rearranged.
Note also that the sorting is conservative i.e. no changes of order are made in case of equality. This means that if a sortingcriterion (the set of numbers corresponding to a fixed value of the second subscript) contains one or more ranges of equal numbers then the order gained from the previous sorting(s) will remain inside such ranges, a feature which permits the sorting of multiprecision numbers and the use of several sortingcriteria in a hierarchic order.

The user may restrict the sorting to some part of the array if the reference to this part has been placed in an unhroken range of the reference array. This option is governed by the two last para-
meters of the call, thus
sorter (files, item2, ref, from, to) ;
will rearrange the numbers contained in ref[from] through ref[to] only, leaving the rest of ref unchanged. (For a method using this feature for hierarchic sorting see note on multiprecision below).

The working principle of the procedure is: A secondary reference array subscripted [from:to] is declared, adjacent numbers from ref are ordered two by two and put into this sec. ref., then adjacent groups of two are merged into ordered groups of four in ref which subsequently merges into groups of eight in sec.ref. etc. the proces continuing until the whole range of numbers is contained in one single ordered group. If this group happens to end in sec. ref. it is finally copied onto the corresponding part of ref.
2. Time and Space requirements:

The time taken to sort a reference containing N numbers is 2 sec. and 22 sec. for N equal to 100 and 800 respectively, or roughly:

$$
t=10 \times N \log N \quad \text { milliseconds }
$$

(using the Gier ALGOL IV compiler without subscript check).
ror an array $[1: n, 1: m]$ to be sorted is two onedimensional arrays of length n required, and so the total space neccessary is $n \times(m+2)$. It is seen that the extra space required is iless dominant the larger m is.
3. The Procedure:

The procedure heading is
brocedure sorter(lager, nr, a, fra, til);
value nr,fra, til;
interer nr ,fra,til;
integer array $a ; \quad$ integer array lager;
The meaning of the formal parameters is:
lager: the array to be sorted
nr: the value of the second subscript corresponding to the sortingcriterion
a: the reference array
ira: the lower bound, and
til: the upper bound of the part of the reference array in question.
The subscript bounds of a need not to be the same as the bounds of the first subscript of lager but each of the relevant values of the first subscript must occur once and only once as values in a. The two last parameters must be included between the bounds of a and satisfy the condition: til \geq fra.

A full account of the procedure is found in the appendix, it con-
sists of:
a) the declaration of lokal variables and of the sec. ref. array b
b) an initialization of the transport direction from a to b
c) the major for statement which multirilies the group length, step, by two and reverses the transport direction for each loop
d) an eventual copiing of b onto a.

The outer for statement is made up of two nearly identical parts, one for each transport direction, consisting of a for statement which advances the treatment through the whole range, inside which two smaller loops perform the merging. Theese smaller loops are forced not to include segment transitions by the usc of end comments ending by for (a feature of Gier $A L G O L I V)$ to save time rather than program space.

4. Other Versions:

The array, lager, is specified as integer, this must be altered to real if the procedure is to handle real arrays. (If the procedure is compiled by the Gier ALGOL IV compiler it cannot handle both integer and real arrays. It can if lager is specified as real and the Gier ALGOL III compiler is used, but in this case the operation times are longer than stated ahove).

The dimensionality of lager and the different role of the subscripts are determined by the two occurrences of the if clause:

$$
\text { if lager }[n 1, n r] \leq \operatorname{lager}[n 2, n r] \text { then } \cdot .
$$

only. Alterations of the number of subscripts must be accompagnied by corresponding alterations of the formal parameters if the procedure is to be kept void of global variables.

The procedure uses ahout 3 tracks of program space, this can be cut down by about 50%, with a subsequent doubling of the operating time, if the direction governing clause:

$$
\text { if i a then } \cdot \text { • else } \cdot \text { • }
$$

is placed inside the following for statement anywhere the two halves of the procedure are different. Time saving has been the author's major concern while writing the present version.
5. Note on Multiprecision:

If integer array numbers $[1: n, 1: 2]$ is taken as an onedimensional array of doubleprecision numbers they can be sorted either thus:

$$
\begin{aligned}
& \text { sorter(numbers, } 2, \text { ref }, 1, n) ; \\
& \text { sorter (numbers, } 1, \text { ref }, 1, n) ;
\end{aligned}
$$

due to the conservative nature of the sorting, or thus:
sorter(numbers, 1, ref, $1, n$);
to: $=1$;
for from: $=$ to while from $<\mathrm{n}$ do
herin
$x:=$ numbers[ref[from],1]; \quad to $:=$ to $+1 ;$
if $x=$ numbers $[\operatorname{ref}[t 0], 1]$ then
berin
for to $:=$ to +1 while (if to $\leq n$ then $x=$ numbers [ref[to], 1$]$
else false) do;
sorter(numbers, 2 , ref, from, to - 1)
end
end;
The outer for statement scans the whole reference for ranges of equality of the more significant part which, if they contain more than just one member, are then sorted according to the less significant part. The inner, empty, for statement explores the lengths of such ranges.

The former method is the simpler but the latter is likely to we the faster in most cases. Both methods are easily extended to hierar-. chic sorting of higher degrees.

MinNIX:
mrocedure sorter'(lager, nr, a, fra, til);
mine nr,fra, til;
integer nr, fra, til;
intecer array a; Integer array lager;
berin
interer $1,11,12, s 11$, sl2 $n 1, n 2$, step, diff;
interer array b[fra:til]; boolean 1 a ;
i $a:=$ true;
for step: $=1,2 \times$ step while step $<$ til - fra +1 do
besin
I:= fra -1;
if i a then
cesin
for $11:=1+1$ while $1<$ til do
berin
$=1+$ step $; \quad 12:=$ sl1 $+1 ; \quad$ sl2: $=$ sl1 + step;
if sl1 > til then sl1:= sl2: $=$ til else
sl2 $>$ til then $\mathrm{sl2}:=\mathrm{til}$; diff: $=$ sl2 - sl1;
For $1:=1+1$ while $11 \leq \operatorname{sl1} \wedge 12 \leq \operatorname{sl2}$ do
berin
n1: $=a[11] ; \quad n 2:=a[12] ;$
if lager $[n 1, n r] \leq$ lager $[n 2, n r]$ then begin $b[1]:=n 1 ; 11:=11+1$ end
else begin $b[1]:=n 2 ; 12:=12+1$ end
end for $1:=$ for ;
if $11 \leq$ sll then begin
for $1:=1$ step 1 until sl2 do begin $b[1]:=a(1$-diff $]$ end for end else for $1:=1$ step 1 until sl2 do begin $b[1]:=a[1]$ end for; 1:= sl2
end for 11:=
end if i a else
berin comment det samme med a og b byttet om;
Sor $11:=1+1$ while $1<t i l$ do
bezin
s11: $=1+$ step; $12:=$ sl1 $+1 ; \quad$ sl2: $=$ sl1 + step;
if sl1 $>$ til then sl1: $=$ sl2: $=$ til else
if $s 12>$ til then sl2: = til; diff:= sl2 - sll;
For 1:= 1+1 while $11 \leq \operatorname{sl1} \wedge 12 \leq \sin$ do
$\frac{\text { begin }}{\mathrm{n} 1:=\mathrm{b}[11] ; \quad n 2:=b[12] ; ~}$
if lager $[n 1, n r] \leq$ lager $[n 2, n r]$ then begin $a[1]:=n 1 ; 11:=11+1$ end
else begin á[1]:=n2; 12: $=12+1$ end
end for $1:=$ for ;
if $11 \leq$ sll then begin
Cor $1:=1$ step 1 until s 12 do begin $a[1]:=b[1-d i f f]$ end for end else for $1:=1$ step 1 until $s 12$ do begin $a[1]:=b[1]$ end for;
$1:=\mathrm{s} 12$
end for 11:=
end if -i $a ;$
i a: = - i a
end for step: $=$;
if-i a then begin
Por $1:=\frac{\operatorname{fra} \operatorname{sten} 1 \text { until }}{}$ til do $a[1]:=b[1]$ end end procedure sorter;

