
ALGOL BULLETIN SUPPLEMENT no. 5.
Supported by The Rask-

Zrsted Fond, Copenhagen

A MANUAL OF THE DASK ALGOL LANGUAGE.

A supplement to the ALGOL 60 report.

First edition, November 1960.

Regnecentralen, Copenhagen.

CONTENTS .

INTRODUCTION . 8s *® e e ee @ @® 8 @ © 8» © © © @ @ @ o ee # «@

6. 8 - CHANNEL PUNCH TAPE CODE AND FLEXOWRITER KEYBOARD

7. THE RELATION BETWEEN DASK ALGOL AND ALGOL 60
Basic symbols’... .. +s. ew ee ee

- Use of comment2006-
. Identifiers, numbers
- Reserved identifiers
- Alarms of standard functiens .
. Arithmetic expressions
Boolean expressions

- Integers as labels
. For statements +4 21 6»

an

°
.

ee
ee

©
@#

&®
@ .

e

.

.

e

° *
*

.
e

e

-_
©

e©
e@

©
e@

@
@

0

O
N
A
N

F
L
D

.

e

e

°

.

A
A
A
A
A
A
N
A
N
A
N
S

7.11. Order of declarationsesee«-.

7.12. Qwn « e e . ° 7 ° e e . » e e » ° o e a

7.13. Procedure declarationgsee

8 . STANDARD OUTPUT PROCEDURES . e ° e ° ° e e e e

8.1. Control of typewriter and output punch .
. Identifiers and main characteristics...

. Standard procedures: tryk, skrv

9. STANDARD INPUT PROCEDURES

. Standard procedures: trykkopi, skrvkopi

10. STORING BLOCKS AND VARIABLES ON THE MAGNETIC DRUM

2

3
4, Standard procedures: tryktekst, skrvtekst
2" Standard procedures: trykml, skrvml, tryktom..

7

oso

e@
e@®

©
@

809
@

@
-@

e

.

«

.

e

“10. Procedure statements and function designators

eo
e¢©

#8
@

@
©

@
@

@
w
e

oo
¢

©
@

@
@

&#©
©

©
&©&

&
«@

@
%

°

es

.

°

°

«

sees 5

ecoeoe 4

wie 6
ce ee «6

a
oe ee 7
oe ee 7
eoee 7
oe ee 8
oe es 8
oe ee 8
eee 8

~se. 8B
ee ee Y
eee Y

coe 9

se ee 10

. .
se

e
ee

RD

. Standard procedures: ttrykvr, skrvvr, tryktab, skrvtab,

trykstop e oe cl *. . s . e . e eo e ° e 7 . * . ° e ¢ oe * a . 46

. Standard procedures: trykende, trykslut, trykklar, tryksum 16

ee te ee ew ew AZ

10.1. Imtroduction . . 1... 1 ee ee we we ws
10.2. Machine characteristics and space requirements
10.3. Storing variables on drum6e-ee-
10.4. Storing blocks on drum... .. 2... 2. ee ee

11. MACHINE REPRESENTATION OF PROGRAMS AND PARAMETERS

12. OPERATING THE DASK ALGOL SYSTEM4..

. Standard procedure: lwmst . 1... 6 6 2 eo ew we ew we

. Standard procedures: lesstreng, stren~...

In

In

9.1. Identifiers and main characteristics2.+e. 17
9.2. Universal input mechanisms 2. 2 6 ee ee we

9.3. Terminators, information symbols, and blind symbols

9.4, Standard procedure: lms 2... eee ee ee eee
9.5
9.6

9.7

iy

~)

e
e

°
a

e

.
wd

ca
y

o
8

©
e@

«6

—m Ww

e

preparation

preparation

INTRODUCTION.

DASK ALGOL is a hardware representation of the ALGOL 60 language,
suitable for the machine DASK ef Regnecentralen, Copenhagen. Since DASK

ALGOL lies very close to the reference language it has been found practi-
cal to base the description of DASK ALGOL directly upon the ALGOL 60 re-
port as far as the basic characteristics are concerned. The exact speci-

fications of DASK ALGOL are then defined through the set of corrections
and extensions of the ALGOL 60 report given in the present Manual. Be-
cause of this intimate relation to the ALGOL 60 report the numbering of

sections within the present Manual has been chosen to be a direct conti-

nuation of the section numbers of the ALGOL 60 report.

The conventisns and methods used in DASK ALGOL were developed over
the peried February 1959 - August 1960. The great stimulus received at

the early stages of the work frem the general advisors of the ALCOR

group, Professors F. L. Bauer and K. Samelson and Mr. M. Paul, Mainz, is

gratefully acknowledged. Discussions with Professor A. von Wijngaarden,
Dr. E. W. Dijkstra and Mr. J. A. Zonneveld of the Mathematical Centre,

Amsterdam, have also been a great stimulus to the work.

The actual work was done by

J¢rn Jensen (SJ)
Toke Jensen TJ)
Per Mondrup PM)
Peter Naur PN)

The general conventiens are due to JJ, PM and PN. The actual coding was

done by JJ (bleck and parameter administration, standard input procedu-
res), TJ (input of the ALGOL program), and PM (arithmetics, standard
functions, stendard eutput procedures). Checking and debugging was done
by PN, who also worked out the present Manual.

The chapters 11 and 12 of the Manual are still in preparation at the

present moment.

6.5. NUMERICAL REPRESENTATIONS.

6.5. NUMERICAL REPRESENTATIONS.

In the following table the chdracters have been arranged according to

the numerical equivalent of the hole combination (after removal of the pa-

rity check hole). The first column gives the decimal valv3 of the charac-

ter, the second the sedecimal value, and the third and fourth columns give

the lower and upper case character, respectively.

LOWER UPPER LOWER UPPER

0 00 SPACE 32 20 ~ +
1 O21 1 Vv 33 «21 J J
2 02 2 x 3h 822 k K
3 03 3 / 35 23 1 L

h ob 4 = 36 2h m M
5 05 5 3 347 25 n N
6 06 6 38 26 0 0

7 O7 7 39 27 Pp P

8 08 8 (ho 8.28 q Q
9 09 9) 4429 r R

10 OA (NOT USED) 42 2A (NOT USED)
11 OB STOP CODE 43s 2B g g

12 oc END CODE kh 2c PUNCH ON
13 OD (NOT USED 45 2D NOT USED)
14 OE . 46 25 NOT USED)
15 OF (NOT USED 47 9 OF NOT USED)

16 10 0 A 48 40 % E
17 «12 < > 4g 31 a A
18 12 8 S 50 «32 b B
19 «13 t T 51 33 Cc Cc

20 «14 u U 523k a D
214015 Vv Vv 53 35 e E
22 16 w W 54 36 f F
23 «#617 x Xx 55 37 & G

2h 8618 XY 56 638 h H

25 19 Zz Z 57 39 i I
26 «1A 58 3A LOWER CASE
27 1B ‘0 59 3B :

28 «ic CLEAR CODE 60 3C UPPER CASE
29 1D (NOT USED) 61 3D SUM CODE
30 15 TAB 62 3E (NOT USED)
34 1F PUNCH OFF 65 3F TAPE FEED

64 ho CAR RET

7. THE RELATION BETWEEN DASK ALGOL AND ALGOL 60. 6

7. THE RELATION BETWEEN DASK ALGOL AND ALGOL 60.

7.1. BASIC SYMBOLS.

7.1.1. Single character symbols.
7.1.1.1. Letters and digits. DASK ALGOL adds the letters

aE SY
to the reference alphabet. The appearance of all letters and digits may
be seen from section 6.
7.1.1.2. Delimiters. As apparent from section 6 the following simple re-
ference language symbols are directly available in DASK ALGOL:
+= x / C=2=>var.e-gis () 0)

7.1.2. Compound symbols.
7.1.2.1. Underlined words. Underlined words are produced in DASK ALGOL by
depressing the underline (_) key immediately ‘preceding: each letter of the

word. The symbols are the: following:
true false go to if then else for do step until while comment begin end

own boolean integer real array switch procedure string label value

Note: In DASK ALGOL boolean is spelled with small letter.
7.1.2.2. Compound symbols similar to reference language. The following
compound symbols, most of which are produced by combining the underline

(_) or stroke (|) with other characters, are similar to those of the re-

ference language:

¢ > *¢ =
7.1.2.3. Compound symbols differing from reference language. The follow-
ing compound symbols show a noticable deviation from the reference lan-~

guage:
Reference language + a o coy

DASK ALGOL ho =, 1 ¢{ }

7.1.3. Reference symbols omitted in DASK ALGOL.

The following symbols are not included: +5

7.2. USE OF comment.

Two special forms of ALGOL comments, viz. the forms

comment drum date
and

comment drum program
will be recognized by the DASK ALGOL translator and will influence the
storage allocation (cf. section 10). No other comments will be influenced

by this convention.

7-3. IDENTIFIERS, NUMBERS. 7

7.3. IDENTIFIERS, NUMBERS.

7.3.1. Identifiers may have any length, but characters following the

first 6 will be ignored by the translator.
7.3.2. Variables declared to be integer must lie in the range

~524288 < integer < 524287
7.3.5. The range of non-zero real variables is

2.94,-39 < abs(real) < 3.40,38

7.4, RESERVED IDENTIFIERS.

The complete list of reserved identifiers arranged alphabetically i

as follows:

Identifier Reference Identifiers Reference

abs 3.2.4 skrvvr 8.6

arctan 3.2.4 sqrt 3.2.4, 7.5

cos 3.2.4 streng 9.6

entier 3.2.5, 7.5 tryk 8.3

exp 3.2.4, 7.5 trykende 8.7

in 3.2.4, 7.5 trykklar 8.7
las 9.4 trykkopi 9.7
lesstreng 9.6 tryknl 8.5
last 9.5 trykslut 8.7

sign 3.2.4 trykstop 8.6
sin 5.2.4 tryksum 8.7

skrv 8.3 tryktab 8.6
skrvkopi 9.7 tryktekst 8.4

skrvm1 8.5 tryktom 8.5

skrvtab 8.6 trykvr 8.6
skrvtekst 8.4

7.5. ALARMS OF STANDARD FUNCTIONS.

Misuse of the standard functiens will cause alarms during the run of

the ALGOL program as follows:

Identifier Cause of alarm Typed indication

entier Argument exceeds the interval for spild entier

integers (cf. section 7.3.2)

exp The function value exceeds the spild exp

range for reals (cf. section 7.3.3)

ln The argument is non-positive spild In(-)

sqrt The argument is negative spild sqrt(-)

7.6. ARITHMETIC EXPRESSIONS. 8

7.6. ARITHMETIC EXPRESSIONS.

7.6.1. The operator + will not be accepted in the DASK ALGOL system.

7.6.2. Accuracy.
The accuracy of a real number will correspond to 31 Shey ficant bi-

nary digits, i.e. the relative accuracy is approximately 10

7.6.3. Alarms.
If the range of real numbers is exceeded or an undefined operation

is attempted self explanatory alarm indications will be typed by the ma-
chine as follows:

spild +, spild-, spild x, spild /, spild 4, spild /O,
spild -A ikke hel, spild O,-.

Subsequently error output of the values of all variables will be made on

the output punch (cf. section 12).

7.7. BOOLEAN EXPRESSIONS.

The operator > is not included in DASK ALGOL.

7.8. INTEGERS AS LABELS.
Integers cannot be used with the meaning of labels in DASK ALGOL.

7-9. FOR STATEMENTS.

In DASK ALGOL the controlled variable of a for clause must be a

simple variable, not a subscripted variable.

7.10. PROCEDURE STATEMENTS.

7.10.1. Recursive procedures.
Generally speaking DASK ALGOL cannot handle procedures which call

themselves recursively. This means that the actual parameters must not
refer to the procedure itself, neither directly nor indirectly.

An exception is, however, made in case of procedures, which have on-

ly one formal parameter called by value. This class includes the standard
functions, abs, arctan, cos, entier, exp, ln, sign, sin, sqrt. Because of

this exception it is permissible to write, e.g.,

exp(exp(x)).

7.10.2. Handling of types.
The types integer and real will be handled according to the pre-

seriptions of section 4.7.3: except in the case that a formal parameter,

which is specified to be real and to which assignments are made, in the
call corresponds to an integer declared variable. This special case will
be treated incorrectly in DASK ALGOL.

7.11. ORDER OF DECLARATIONS. 9

7.11. ORDER OF DECLARATIONS.

DASK ALGOL requires the declarations in each block head to be writ-

ten in the same order in which they appear in chapter 5, thus:

first: type declarations

second: array declarations

third: switch declarations

fourth: procedure declarations

For further rules concerning the writing of array declarations when it is

desired to. store arrays on the drum, see section 10.3.

7.12. Own.

In DASK ALGOL own can only be used with type declarations, not with

array declarations.

7.13. PROCEDURE DECLARATIONS.

7.13.1. Recursive procedures.
As already stated (cf. section 7.10.1) recursive procedures cannot

be handled. Thus within the procedure body no operationwhich directly or

indirectly may cause a call of the procedure itself may occur.

7.13.2. Arrays called by value.
DASK ALGOL cannot handle arrays called by value.

8. STANDARD OUTPUT PROCEDURES. 10

8. STANDARD OUTPUT PROCEDURES.

Output of text and results from a pregram will be controlled. by
means of output procedures permanently available to the translator (i.e.
without explicit declarations). The output will be provided in the form
of 8-channel punch tape or printed copy. The symbols and 8-channel cede

given in sectien 6. 8~CHANNEL PUNCH TAPE CODE AND FLEXOWRITER KEYBOARD
will be used.

8.1. CONTROL OF TYPEWRITER AND OUTPUT PUNCH.

Half ef the standard eutput procedures are available in two forms,
me controlling the output punch (identifier beginning with tryk), the
other controlling the on-line typewriter (identifier beginning with

skrv). However, the actual output produced by the machine also depends en

the position of a 5 ~ way selector on the control panel of the machine

having positions marked 0, S + P, P, S, +. The following table tells
whether cutput will be produced on the typewriter or the punch or both
for all combinations of output procedure identifier and position of se-

lector:

Typewriter Punch

Selector tryk skrv tryk skrv

0 no yes yes no
S +P yes yes yes no

P no no yes yes

S yes yes no no

+ no no no no

8.2. IDENTIFIERS AND MAIN CHARACTERISTICS.

The identifiers and main characteristics of the standard output pro-

cedures are the following:

Identifier Example , reference Effect

tryk tryk({+4 aaa}, a42) outputs the values of an arbitrary
skrv sectien 3.3. number ef arithmetic expressiens in

a specified layout. Other output

operations may also be inserted as

parameters.

tryktekst skrv({<@,= 3) Outputs a specified string of sym-
skrvtekst sectien i bols.

trykml

skrvml

tryktom

trykvr

skrvvr

tryktab

skrvtab

trykstop

trykende

trykslut

trykklar

tryksum

trykkopl

skrvkopi

8.2. IDENTIFIERS AND MAIN CHARACTERISTICS. 11

trykml (8-n)
section 8.5.

tryktom (100)
section 8.5.

skrvvr

section 8.6.

tryktab
section 8.6.

trykstop

section 8.6,

trykende

section 8.7.

trykslut

section 8.7.

trykklar

section 8.7.

tryksum
section 8.7.

trykkopi ({</3})
section 9.7.

Outputs a specified number of
SPACEs.

Punches a specified number of TAPE

FEED symbols. ,

Outputs one CAR RET symbol.

Outputs one TAB symbol.

Punches ene STOP COPE symbol.

Punches one END CODE symbol.

Punches ene PUNCH ON symbol.

Punches one CLEAR CODE symbol and

sets internal sum of punched symbols

to zero.

Punches a STOP CODE, a SUM CODE and
a cede representing the sum of the

symbols punched since program read-
in, last trykklar or last tryksun.

Copies a section »f the input tape to

the output, the section being speci-

fied through a parameter.

It holds for all standard output procedures that each eutput opera-
tion will cause an addition tse an internal variable »f a number which is

equivalent to the character. This may be used fer checking purposes by

means af the mechanisms described in sections 8.7.2 and 9.2. It should be
noted, however, that for the checking to work correctly the output tape

must not include any character which has been produced by a skrv - ope-

ration (cf. section 8.1).

8.3.STANDARD PROCEDURES: tryk, skrv. 12

8.3. STANDARD PROCEDURES: tryk, skrv.

8.3.1. Syntax.
<signm> ::= <empty>| - | + | +
<exponent layout> eto | ee | <exponent layout>d
<zeroes> ::= O |<zeroes>0 | <zeroes> 0
<positions> ::= d |<positions>d | <positiens>,d
<0O-positions> ::= <positions> | <0-positions>0 | <O-positions>,0
<decimal layout> ::= <0-positions>|<O-positions>.<zeroes> |

<positiens>.<O-positions> | .<0-positions>
<layout tail> ::= <decimal layeut>|<decimal layput><exponent layout>
<layout> ::= <sign><layout tail>|<sign>n<layout tail |

<sigmn,<layout tail
<formal layout>::= <formal parameter> |

<if clause><formal parameter> else <fermal layout>
<layout expression>::= {<layout>}|<fermal layout>
<tryk parameter>::= <arithmetic expression> |<tryk statement> |

<tryktekst statement>|<trykml statement>|<tryktom statement>|
<trykvr statement>|<tryktab statement>|<trykstop statement> |
<trykende statement>|<trykslut statement>|<trykkler statement>|
<tryksum statement>|<trykkopi statement>

<tryk parameter list>::= <tryk parameter> |
<tryk parameter list>,<tryk parameter>

<tryk statement>::= wyet ctayout expression> ,<tryk parameter list>) |
skrv(<layout expression ,<tryk parameter list>)

8.3.2. Les.

tryk({dad.00}, P, trykvr, tryktekst ({<Q=}), w +s)
skrv ({-d,-dd}, epsilon/16)
tryk({dad, dad} ,Q| trykml(5), tryk({.ddd}, a) ,W,t-3)
tryk(if s>0 then fl else f2, Sum)
tryk(1, p-q, s+t)

8.3.3. Semantics.
A call of the procedure tryk or skrv causes the following treatment

of the parameters specified in the tryk parameter list:

Arithmetic expression: the value will be printed in the layout sup-

plied in the first parameter of the call.

Output statement: the call of the statement will be executed.

8.3.4. The layout.
The layout expression will be evaluated ence at the beginning of the

execution of the tryk or skrv statement. The evaluation will take place

in a way which is campletely analogous to that of other expressicns (ef.

section 3.3.3). The final value must always t# of the ferm {<lyout>}.

The symbols of the layout give a symbolic ‘gepresentation of the di-

gits, spaces and symbols as they will appear in the printed number. In-

deed, the finally printed number will have exactly the same number of

printed characters as is present in the layout (except in case of alarm

printing, see section 8.3.6). The various symbols of the layout have the

following significance:

8.3. STANBARD PROCEDURES: tryk, skrv. 13

8.3.4.1. Sign. The four possible symbols in the sign position signify the

following:
8.3.4.1.1. Empty. The number is supposed to be positive. No sign will be
printed. If a negative number is encountered, an alarm printing will take
place (see section 8.3.6).
8.3.4.1.2. - . The sign will always be printed using SPACE for positive,
and - for negative numbers. It will, if possible, move to the right, ap-

pearing as the first or second symbol to the left of the first digit (a

layout SPACE may appear in between) or immediately in front of the deci-
mal point.
8.3.4.1.3. + . The sign will always be printed using + for positive and

for negative numbers. It will, if possible, move to the right, as in

.3.4.1.2 above.
3.4.1.4. + . The sign will always be printed, using + for positive and
for negative numbers. It will be printed as the first symbol of the

number, before any SPACE or digit.

|
M
o
m

8.3.4.2. Digits. Letters d and n represent digits. Letter n may only ap-
pear as the first symbol following the sign. The total number of letters
d and n gives the maximum number of printed significant digits (cf. sec-
tion 8.3.8).

If n is used in the first digit position, proper decimal fractions
will be printed with a 0 in front of the decimal point. If d is used this
QO will be omitted.

8.3.4.3. Zeroes. Zeroes may appear at the end of a decimal layout. They
influence the representation of the number in the following manner: If m
zeroes are present at. the end of the decimal layout the exponent printed

will be exactly divisible by m1. For this to be possible at the same time
as the positien of the decimal point within the complete layout is kept

fixed the significant digits of the number are allowed to move to the
right, using the positions of the symbols 0, depending on the magnitude ©

of the number. If no exponent layout is included the exponent O is under-
stood and the above rule holds unchanged.

8.3.4.4. Spaces. Spaces will be inserted in all positions where the symbol
4 Sppears. The symbol , may within the layout be replaced by SPACE the ef-

fect of SPACE being the same.

8.3.4.5. Decimal point. The decimal point will always be printed in a fix-

ed position within the layout. If decimals are printed it will appear as
. otherwise as SPACE.

8.3.4.6. Scale factor. The scale factor will be printed in the same way as

in the language. The symbol ,, will appear immediately in front of the sign
of the exponent. If the scale factor is 1 the symbols , 40 and following will

appear as SPACHs. Note that it is not possible to print an exponent part
without a decimal part.

8.3.5. Round-off.

All numbers will be correctly rounded to the number of significant
digits printed.

8.3. STANDARD PROCEDURES: tryk, skrv. 44

8.3.6. Limitations.
The total number of symbols n and d in any decimal layout must be

¢ 15.
The total number of symbols n, 4, and 0, written to the left of the

decimal point must be < 15.
The tntal number of symbols d and O'written to the right of the de-

cimal point in a decimal layout must be <¢ 15.
The number of symbols d in any exponent layout must be <¢ 7.

' The total number of the symbols , and SPACE and . in any layout must
be <¢ 7.

8.3.7. Alarm printing.
By alarm printing is meant that the printing will consume more posi-

tions on the paper than are present in the layout. Alarm printing will oc-
cur as follows:

8.3.7.1. Negative number printed with layout having empty sign position.

The correct - will be inserted, consuming one extra position.
8.3.7.2. Number too large for layout. Whenever the number to be printed is
too large for the layout given, an actual layout is used which will acco-
modate the number by inserting an exponent layout, or by increasing the

number of exponent digits.

8.5.8. Small numbers.
Printing of small numbers will never give rise to alarm printing. In-

stead the number of printed significant digits will be smaller than the
maximum (section 8.3.4.2).

8.3.9. Examples of printed numbers.
In order to indicate the exact number of characters printed. commas

are inserted immediately preceding and following each number.

Layout ‘

n,dd,dd.d0,0 +a, ddd.ddd, a -ddd .d00,,+4 +dd.0,-da

Normal printing

1 0.00 1, 1 +.001 2, ' 4. 255, om ,+12 wnt

; 0.01 2. ; +.012 3, 1 12.35 9-3, it 162 92,
' 0.12 3, ' +123 51 t 123. 5 07! +12 4072!

' 1.23 5, \ +1.234 6, ' 1. 235" ' i+ 1.2" \

' 12.34 6, » +12.345 7, » 12.35 \ +12 ;
1 2 23.45 7, | + 123.456 8, , 123.5 ; i+ 1.2 9 2,

, 1234.57 , +1 234.567 9, 1 1.25 553 +12 0 2
11:25:45.7, , 1 12.35 td, it i. 2 40 Yh,

-.001 2, , oot. 2555) 03 ,-12 ot
1 234.567 9, 1 ood. 235 1-12 2,

Alarm Peso e

-0.00 1
“1 25 45.7 oO ,-1 234.567 40 4,

' 1 23.45 Tip 1 +1 234.567 oth. 1 123.5 tld,

8.4, STANDARD PROCEDURES: tryktekst, skrvtekst. 15

8.4, STANDARD PROCEDURES: tryktekst, skrvtekst.

8.4.1. Syntax.
<tryktekst parameter>::= {<<proper string>}|<formal parameter>
<tryktekst parameter list>::= <tryktekst parameter> |

<tryktekst parameter list>,<tryktekst parameter>
<tryktekst statement>::= trvicbeko tt corvitenet parameter list>) |

skrvtekst(<skrvtekst parameter list>)

8.4.2. Examples.
tryktekst {icneaui is}, a, {<than expected})
skrvtekst({<Q,=,})

8.4.3. Semantics.
- The execution of a tryktekst statement causes the strings of charac-

ters referred to in the parameters to be outputed, taking the parameters
in order from left to right. The characters outputed are given directly
in the form of a proper string if the parameter has the form

{< <proper string>
Otherwise the formal parameter must refer to an actual parameter having
this form, and the formal prameter must call by name (cf. section
4.7.3.2).

8.4.5.1. The string quote.
Note the difference between the string quotes used here

t< }
and those used in layout expressions (cf. section 8.3.1).

. 8.4.3.2. Treatement of SPACE and CAR RET.
All characters of the proper string, including SPACEs and CAR RETs

will be outputed. The symbol for space , will however be equivalent to
SPACE, i.e. it will be printed, not as it stands, but as a SPACE.

8.5. STANDARD PROCEDURES: trykml, skrvml, tryktom.

8.5.1. Syntax.
<trykml statement>::= trykml (<arithmetic expression>) |

skrvml (<arithmetic expression>
<tryktom statement>::= tryktom (<arithmetic expression>)

8.5.2. Examples.
trykml(n + m - 7)

tryktom (75) :
skrvml (if p > 0 then 3 else 4)

8.5. STANDARD PROCEDURES: trykml, skrvml, tryktom. 16

8.5.3. Semantics.
The execution of a trykml statement causes the number of SPACE sym-

bols (mellemrum) specified as actual parameter to be outputed.

A call of the procedure tryktom causes the number of TAPE FEED sym-
bols specified as actual parameter to be outputed.

The value of the arithmetic expression will, if ne cessary, be roun-
ded to the nearest integer. If it assumes a non - positive value no sym-
bols will be outputed.

8.6. STANDARD PROCEDURES: trykvr, skrvvr, tryktab, skrvtab, trykstop.

8.6.1. Syntax.
<trykvr statement>::= trykvr|skrwvr
<tryktab statement>::= tryktab|skrvtab
<trykstop statement>::= trykstop

8.6.2. Semantics.
A trykvr statement causes a CAR RET symbol (vogn retur) to be out~

puted. Note that this will cause the combined operation of return of car-
riage and line feed to take place.

A tryktab statement causes output of a TAB symbol.
A trykstop statement causes the STOP CODE to be punched.

8.7. STANDARD PROCEDURES: trykende, trykslut, trykklar, tryksum.

8.7.1. Syntax.
<trykende statement>::= trykende

<trykslut statement>::= trykslut
<trykklar statement>::= trykklar
<tryksum statement>::= tryksum

8.7.2. Semantics.
The four output procedures described here all serve to insert cha-

racters on the output tape with a view to a later use of this output tape
as input tape to an ALGOL program.

The trykende statement punches the END CODE. When later the tape is
read into the machine this will cause a stop of the machine (cf. section
9.2.6).

The trykslut statement punches the PUNCH ON symbol. This is inten-
ded to be used as a non - printing terminator for les and lmst (cf. sec-
tions 9.4 and 9.5).

The trykklar statement punches the CLEAR CODE and sets the internal
sum of the punched characters to zero. This prepares for the use of the
checksum mechanism (cf. section 9.2.5).

The tryksum statement punches a STOP CODE, a SUM CODE and a charac-
ter representing the value of the internal sum of all punched characters
and sets this sum to zero. During input this combination will cause an
automatic sum check to take place (cf. section 9.2.5).

9. STANDARD INPUT PROCEDURES 17

9. STANDARD INPUT PROCEDURES.

Input of information from 8-channel punch tape may be carried out at

any stage of an ALGOL program through calls of standard input procedures —~
permanently available to the translator.

In order to provide flexibility several different kinds of standard
input procedures are available. These differ both with respect to the in-
terpretation of the single symbols supplied on the input tape and the in-
ternal effect of the input operation.

9.1. IDENTIFIERS AND MAIN CHARACTERISTICS.

The identifiers and main characteristics of the standard input pro-
cedures and the associated procedure streng are the following:

Identifier Example, reference Effect

les les(a, b, c) Reads numbers and assigns to vari-

section 9.4. ables or arrays.

last px lest real procedure lest has the next

section 9.5. number on the input tape as its va-

lue.

lssstreng lzsstreng Reads a string of symbols to an in-
section 9.6. ternal variable for later comparison

by means of the

streng streng({<P}) boolean procedure streng. |
section 9.6. The value of streng is true if the

string supplied as paremeter agrees
with the string read by the last

call of lesstreng.

trykkopi trykkopi({</;}) Cause a copying of the characters on
skrvkopi section 9.7. the input tape to be output punch

(trykkopi) or the typewriter (skrv-
kopi).

9.2. UNIVERSAL INPUT MECHANISMS.

Certain characters on the input tape will be handled in the same way
no matter which of the standard input procedures is controlling the input

operation. The universal mechanisms are the following:

9.2.1. Skipping between PUNCH OFF and PUNCH ON.
All characters between PUNCH OFF and the first following PUNCH ON,

these two characters included, will be completely ignored during input.

9.2. UNIVERSAL INPUT MECHANISMS. 18

9.2.2. Ignoring of BLANK TAPE, TAPE FEED, and ALL HOLES.

The characters

. BLANK TAPE
0000.000 TAPE FEED

00000.000 ALL HOLES
will be ignored during input.

9.2.3. Standard error reaction.
Various kinds of errors may be detected during input (cf. sections

9.2.4, 9.4.3.6, 9.5.3). In each of these cases an error type indication
will immidiately be typed on the output typewriter and then the machine
will execute the following standard error reaction: The following cha-
racters on the input tape will be copied to the output punch. When two
lines have been copied the machine control is returned to the translator
system (cf. section 12).

9.2.4. Error combinations.
Outside the sections of the tape between PUNCH OFF and PUNCH ON

(cf. section 9.2.1) the reading of a hole combination with wrong parity,
or of any NOT USED code (including 63 symbolswith decimal values from
65 to 127, not listed in section 6.5) will cause typing of

les fejl
and the machine will do the standard error reaction (cf. section 9.2.3).

9.2.5. The checksum mechanisn.

When the standard input procedures read tapes which have been pre-
pared by the standard output procedures the checksums included on this
tape in consequence of calls of the tryksum procedure will automatically
be verified. If the check symbol does not check with the corresponding

symbol as formed during previous read-in the machine will print

les fejl sum
and the machine will stop. If the START key is pressed the reading will
continue. The internal variable which holds the current sum of the sym-
bols which have been read in may be reset to zero by the inclusion of the
CLEAR CODE on the tape. This is the symbol produced by the trykklar pro-
cedure (cf. section 8.7.2). @n the flexowriter use:

AUX CODE with 0

9.2.6. Stop produced by END CODE.
The reading will stop whenever the END CODE symbol appears. If the

START key is pressed the reading will continue. The END CODE may be pro-
duced by an ALGOL program by a call of the trykende procedure (cf. sec-
tion 8.7.2). On the flexowriter it is produced by depressing

AUX CODE with SPACE.

9.2.7. The effect of UPPER CASE and LOWER CASE.
For printed symbols (cf. section 6.1) the meaning and effect of a

iven hole combination depends on the most recent CASE symbol on the tape
UPPER CASE or LOWER CASE).

For typographical and control symbols (cf. sections 6.2 and 6.3) the
effect is usually independent of the case.

9.3. TERMINATORS, INFORMATION SYMBOLS, AND BLIND SYMBOLS. 19

9.5. TERMINATORS, INFORMATION SYMBOLS, AND BLIND SYMBOLS.

The effect of the input characters which do not give rise to an ac—
tion of a universal input mechanism (cf. section 9.2) depends on the par-
ticular standard input procedure. In describing this effect it is conve-
nient to make use of the following concepts:
9.5.1. Terminators. A terminator is a symbol on the input tape which in-
dicates to the input procedure that the reading of a piece of information
(e.g. a number) has been completed.
9.5.2. Information symbols. An information symbol is a symbol on the in-
put tape supplying positive information which is transferred to the run-
ning ALGOL progrem by the input procedure.
9.5.3. Blind symbols. A blind symbol is a symbol on the input tape which
is ignored by the input procedure.

As explained more concisely in the following sections we have for
the procedures les and lest:
Terminators: <letter> all signs except +-+4 TAB PUNCH ON CAR RET
Information symbols: <digit> +-.,
Blind symbols: SPACE _ STOP CODE
and for lssstreng:
Terminators: all signs TAB PUNCH ON CAR RET
Information symbols; <digit> <letter>
Blind symbol: SPACE _ STOP CODE

Each input operation will in general read three sections of the in-
put tape:

i. Any mixture of terminators and blind symbols.
2. A legal sequence of information symbols mixed with blind symbols.
3. One terminator.

9.4, STANDARD PROCEDURE: les.

9.4.1. Syntax.
<les parameter>::= <variable>|<array identifier>
<les parameter list>::= <les parameter>|

<les parameter list>,<les parameter>
<les statement>::= les(<les parameter list>)

9.4.2. Examples.
lsas(P)
les(A[i,j], V, MATA)
les(k, B[1,k])

9.4.3. Semantics.
A call of the procedure les will cause the values of numbers sup-

plied on the input tape to be assigned to the variables and/or arrays of
subscripted variables specified as parameters. The assignments will in
detail be executed as follows:

9.4. STANDARD PROCEDURE: las. 20

9.4.3.1. Order of assignment. The parameters will be taken in order from
left to right and the assigament will be completely finished for each pa-
rameter before the next is treated. Thus the statement les(k, B[1,k])
will first assign a value from the input tape to k and this value of k
will then define the particular component of B to which the next number
on the tape will be assigned.

9.4.3.2. Assignment to array. If an array identifier is supplied as pa-
rameter an assignment to all the components of the array will take place.
The order of assignment may be described as follows: Denoting the lewer
and upper subscript bounds of the array declaration by 11, 12, ... 1m, ul
u2, ...'wn, the input eperation is equivalent to

for 11:= 11 step 1 until ui do
for i2:= 12 step 1 until u2 do

eeeveoas

for in:= ln step 1 until un do
“Alii, 12, ... , in]:= input number

where 11, 12, ... in are internal variables.

9.4.3.3. Input tape syntax. The characters appearing en the input tape
during the execution of les must conform to the following syntactic rules:

<les terminator>::= v|x{/{={;{{| JiC1) || lal<l>], [zap|puncn on|:|car RET|
<letter>

<les information>::= <digit>|.|,,.|+|-
<lms blind>::= SPACE|_|SToP CODE
<les prelude>::= <empty>|<les blind>|<1les terminator> |

<les prelude><las blind>|<les prelude><lms terminator>
<digit sequence>::= <digit>|<digit sequence><digit> |

<digit sequence><les blind>|<les blind><digit sequence>
<input integer>::= <digit sequence>|+<digit sequence>|-<digit sequence>
<input fraction>::= .<digit sequence>
<input exponent>::= ,<input integer>
<input decimal>::= git sequence>|<input fraction |

<digit sequence><input fraction
<unsigned real>::= <input decimal>|<input exponent> |

<input decimal><input exponent>
<input real>::= <unsigned real>|+<unsigned real>|-<unsigned real>
<input ditto>::= -|<input ditto>-|<input ditte><les blin®
<tape integer>::= <les prelude><input integer><las terminator> |

<les prelude><input ditto><les terminator>
<tape real>::= <les prelude><input real><les terminator> |

<las prelude><input ditto><les terminator>

9.4.3.4. Examples of input tape for les.
Tape as errs wape ee7 ac
17 283; wie 35.857 p= <
i = +138, eps:= --14,
s[25] pi:= 5.141592 653
funktion(-12) Set x = 4,
p: -/ q: 1.384,,-11,

9.4. STANDARD PROCEDURE: les. 21

9.4.3.5. Semantics of input tape. Depending on the type of the variable
each les assignment will cause the reading of one tape real or tape inte-
ger. If these contain digits they will be interpreted according to the
usual ALGOL prescriptions (cf. sections 2.5.3 and 2.5.4), ignoring all
les blinds and lx#s terminators. An input ditto, on the other hand, will
cause the les assignment to be skipped for the particular variable, thus
leaving its value unchanged.

9.4.3.6. Errors. The standard procedure les checks that the syntactic
rules of section 9.4.3.3 are satisfied. In particular, while assigning to
a variable of type integer the symbols . and 49 Must not occur. Errors of
this kind will cause typing of the error indication

lws fejl
and the standard error reaction will take place (cf. section 9.2.3). In
addition a protest is made against numbers whose absolute value is grea-.
ter than 3.438. In this case the error indication

les spild
is typed before the standard error reaction is made.

9.5. STANDARD PROCEDURE: last.

9.5.1. Syntax.

<les function designator>::= lest

9.5.2. Examples.
wis (lest + y)/a
B[lest, lest]:= last

9.5.5. Semantics. == ce

last is a real procedure having an empty formal parameter part. Eve-
ry time it is called it will read the next tape real appearing on the in-
put tape (cf. section 9.4.3.3). This information on the input tape will
define its value according to the rules of section 9.4.3.5, except that
lest will treat an input ditto as a syntactic error (cf. section
9.4.3.6).

9.5.3.1. Example of input tape for lest. A reasonable input tape for the
second example of section 9.5.2 would be the following:

B[3,7]:= 3.847,
Note that the correct execution of this input operation is directly de-
pendent on the strict adherence to the rules of sections 4.2.3.1 -
4.2.3.3 for assignment statements.

9.6. STANDARD PROCEDURES; lesstreng, streng. 22

9.6. STANDARD PROCEDURES: lesstreng, streng.

9.6.1. Syntax.
<les streng statement>::= lesstreng
<formal string>::= <formal parameter> |

<if clause><formal parameter> else <formal string>
<string expression>::= {<<proper string>}|<formal string>
<streng function designator>::= streng(<string expression>)

9.6.2. Examples.
las streng
if streng({<A}) then goto T

9.6.3. Semantics.
The standard procedures lesstreng and streng serve to read identify-

ing information from the input tape and to compare this information with

information supplied by the program. The detailed operation is defined

below.

9.6.3.1. Input tape syntax. During execution of lesstreng the characters

on the input tape are treated according to the following syntax:

<lasstreng terminator>::= v|x{/l=ls([/ JIC) I Al<{>[. [,)/TaBl-l+|PuncH on|
.|: {CAR RET

<lesstreng information>::= <digit>|<letter>
<lssstreng blind>::= SPACE|_|STOP CODE
<lmsstreng prelude>::= <empty>|<les streng blind|

<lesstreng terminator>|<lmsstreng prelude><lesstreng blind>|
<lasstreng prelude><lesstreng terminator>

<input string>::= <lesstreng information> |<input string><lesstreng blind |

<input string><lmsstreng information>
<tape string>::= <lesstreng prelude><input string><lesstreng terminator>

9.6.3.2. The internal string. Each call of lesstreng will read the first

following tape string from the input tape and assign the five first in-

formation symbols of the input string, which is a part of it, to a unique

internal variable. If the input string has less than five information

symbols it will be extended with the appropriate number of unique dummy

characters.

9.6.3.3. Examples of tape strings and internal strings.

Symbols on tape Internal string

bi. b7
(ert A) Matri
x]:A and Bs; AandB

true , true

9.6. STANDARD PROCEDURES: lesstreng, streng. . 23

9.6.3.4. Standard procedure streng. This. is a boolean procedure, requi-
ring a string expression as parameter. It has the value true if all the
characters of the value of the string expression agree with the same num-
ber of characters of the internal string, assigned by the previous les-
streng; both strings taken in order from left to right, otherwise the va-
lue false. Note that the agreement of the two strings puts the following
restrictions on the string supplied as parameter to streng:
9.6.3.4.1. It cannot contain more characters than the number of informa-

tion symbols in the internal string (never more than 5).
9.6.3.4.2, It can only contain digits and letters.

9.6.3.5. Example. The following table shows the value of streng for va-

rious input strings and parameters:

Parameter:

Input string A Alg ALGOL

ALGOL 60 true false true
A true: false false

Blg false false false
Algol -' true true false

wae eee eee ae

Algorithm true true false

9.7. STANDARD PROCEDURES: trykkopi, skrvkopi. 24

9.7. STANDARD PROCEDURES: trykkopi, skrvkopi.

9.7.1. Syntax.
<trykkopi statement>::= trykkopi(\string expression>) |

skrvkopi(<string expression>)

9.7.2. Examples.

trykkopi({<+/}) —
skrvkopi(if s>0 then w else y)
trykkopi(fs)

9.7.5. Semantics.
A call of a trykkopi statement causes a copying of characters from

the input tape to the output. The section of the input tape to be copied

is defined by the value of the string expression supplied as parameter.
This value must have the form

{< <proper string> }
where the proper string consists of one or two characters. If one charac-
ter is supplied the copying will take place from the actual position of

the input tape until the first occurrence of the character specified as

parameter. If two characters are supplied the copying will start from the
first character on the tape which is the same as the first of the two
characters supplied as parameters and will continue until the first oc-

currence of the second of these symbols on the tape. The characters indi-
cating the begin and end of the section of the input tape to be copied

‘will not themselves be copied.
The copying will include all legal characters except those associa-

ted with the universal input mechanisms (cf. section 9.2) and superfluous
case shifts.

9.7.5.1. Example of call, input tape, and output.

The call

trykkopi ({<[T})
operating on the following input tape:

Heading: f°:
Problem number:]
will produce as output:

Problem number:

10. STORING BLOCKS AND VARIABLES ON THE MAGNETIC DRUM. 25

10. STORING BLOCKS AND VARIABLES ON THE MAGNETIC DRUM.

10.1. INTRODUCTION.

ALGOL programs involving only a few hundred arithmetic operations
and/or varlables may be handled direcly by the DASK ALGOL translator and
system. However, if problems exceeding a certain size are presented, the
translator or the system will refuse to accept the problem (cf. sections
10.4.3 and 12). What has happened is that the capacity of the directly a~
vailable internal store of the machine, the so-called core store, has
been exceeded.

This does not mean that the larger problems cannot be handled, since
there is available in the machine a storage capacity on the so-called
magnetic drums of 8 times that of the core store. What it does mean, how-
ever, is firstly that the user must supply extra information to the ALGOL
translator system telling the system to place certain blocks or variables
on the drum and secondly that time will be spent transferringinformation
between the drum and the cores making the program less efficient. Now the
loss of efficiency of an ALGOL program which uses the drum may depend ve-
ry greatly on the manner in which the different parts of it are distribu-
ted between the core and the drum stores. Since this distribution is per-
formed on the basis of information given by the user, it means that in
order to make efficient use of the facilities for storing blocks and va-
rlables the user must know something about how an ALGOL program will be
stored and how the machine will handle it.

Preoccupation with this kind of consideration admittedly lies very
far from the spirit of the universal language ALGOL, and it is clear that
the ideal ALGOL translator system would handle the storage problem auto-
matically. However, it is believed that the extra burden placed on the u-
ser, who must use the DASK ALGOL drum mechanisms will prove in practise
to be rather modest.

10.2. MACHINE CHARACTERISTCS AND SPACE REQUIREMENTS.

With a view to the descriptions of the following sections the pre-
sent section will give some information of the characteristics of DASK
and of the length of the translated program.

10.2.1. The core store. .
For the machine to be able to execute an ALGOL statement directly

all the individual instructions and all the variables must be present in
the core store. The capacity of the core store is divided into 2048 half
cells, of which 64 are permanently reserved by the ALGOL system. The re-
maining 1984 half cells may be used for instructions or variables.

10.2. MACHINE CHARACTERISTICS AND SPACE REQUIREMENTS. 26

10.2.2. The drum store.
The drum store forms a reservoir of information for the core store.

The total capacity is 8 times that of the core store, i. e. 16384 half

cells. While the instructions and the variables of the core store are di-

rectly accessible, the information in the drum store must be transferred

to the core store before it can be used. This transfer can only be done

in lumps of 64 half cells at a time, so-called tracks, and is a compara-
tively slow process since the machine may perform about 12 arithmetic o-

perations on real numbers in the time taken to transfer one track.

10.2.5. Storage requirements of ALGOL programs.
The exact storage requirements of an ALGOL program are given in de-

tail in section 11. For a rough estimate the following rules may be used:
Declared variables, whether simple or subscripted, occupy one half

cell each if they are of type integer or bolean, and two half cells each

if of type real. Each formal parameter of a procedure occupies two half
cells.

To make an estimate of the storage occupied by the instructions make
a count of the symbols of the program (omitting type declarations and

procedure headings) as follows:
Each occurrence of a number or an identifier counts as one.

Each occurrence of a delimiter, except for comma (,), semicolon (;)

and parentheses () counts as one.
To obtain the number of half cells occupied by instructions multiply

the count by a factor of from 1.2 to 1.5.
The total storage requirement will be that of the variables plus

that of the instructions.

10.3. STORING VARIABLES ON DRUM.

10.3.1. Syntax.

<drum array declaration>: :=
comment drum data [<bound pair list>];<array declaration>|
<drum array declaration>;<array declaration>

10.3.2. Examples.
comment drum data [1:p, 7:s-1];
array P, Q[i:p, 7T:s-1, 3:8, viw]s

integer array I, K[1:p, 7:8-1, 2:7]

comment drum data [2:7];
boolean array Boo 1, Boo 2[2:7, 1:n, 1:q]

10.3.3. Semantics.
A drum array declaration declares one or several identifiers to re-

present arrays, in exactly the manner explained in section 5.2, but. in

addition, specifies one or more of the subscripts of these arrays to re-

fer to the drum. This means the following:

10.3. STORING VARIABLES ON DRUM. 27

10.3.3.1. The arrays declared in a drum array declaration will in the
normal way define the meaning of corresponding subscripted variables.
Thus the fact that the arrays are stored on drum is visible only in the
declaration.

10.3.3.2. The number of subscripts referring to the drum and the bounds

for these subscripts are given in the initial drum data comment. All fol-
lowing array declarations must have identicaly the same bound pairs in
their first subscript positions. The bound pairs in any remaining sub-

script positions will refer to the core store.
10.3.5.53. All arrays declared in one drum array declaration are referred
to as a drum array group. The array declarations belonging to one drum
array groups are all those which follow the initial drum data comment un-
til the first following drum date comment, switch declaration, procedure
declaration or statement. Thus the rules for the writing of declarations

(cf. section 7.11) must be extended to read:
Array declarations must be written in the following order: First all

declarations for not-drum arrays (in any order), then drum array declara-
tions.

10.3.3.4. As far as the storing is concermed a drum array group is trea-

ted as one large (generally not rectangular) array. The complete set of
components of this array is stored on the drum while in the core store
only a sub array corresponding to one set of values of the subscripts re-

ferring to the drum is stored. Since this sub array occupies only a frac-
tion of the total storage of the drum arrays a considerable saving of

core store may be achieved.

10.3.4. Illustration.
The scheme for storing drum arrays may be further explained by a simp-

le example: ‘let the declaration read

comment, drum data[1:3]s
integer array I, K[1:3, 4:5];
array R[1:3, 7:8, 9:10]
The components of these arrays will be stored on the drum in the follow-
ing order:

T(1,4], [1,5], K[4.4], K[1,5], R[1.7,9], R[1,7,10], R[1,8,9], R[1,8, 10],
Ty2,4), 112.5], KL2.4], K[2,5], RL2,7,9], RL2,7,10], R[2,8,9], Ri2,8,10
T1345, 113.5), KIB.4], K13.5], RU3.7,9], R(3.7,10], R[3,8,9], RL3,8,10
In the core store only one of these sections will be available at any one
time, for instance the one having the first subscript equal to 3:
1[3.4], 15.5), KB.4], k(5.5], 85.7.9], R(3,7,10], R(3,8,9], R[3,8,10]
As already stated (section 10.3.3.1 above) the components of drum arrays

will be used exactly like any other subscripted variables. However, it is
clear that since any reference to a component having its drum subscripts
different from those last referred to will cause several transfers of
tracks to and from the drum, the process may become very time consuming.

Thus the following statement:
R[2,7,10]:= 1[4,5] + K[5,4]
will cause at least four, and perhaps six, track transfers to take place.:

The rule for the ALGOL programmer to follow in order to avoid this is:
Frequent references to altered values of the drum subscripts of ar-

rays within one drum array group should be avoided.

10.4. STORING BLOCKS ON DRUM. 28

10.4. STORING BLOCKS ON DRUM.

10.4.1. The drum program comment.
Any block, whether a statement in the program or the body of a pro-

cedure declaration, may be specified to be stored on the drum. This is a-
chieved by adding: the symbols:

immediately following the begin of the block. In order to enable the AL~
GOL programmer to exploit this facility some information of the manner in
which an ALGOL program is stored in the core store will be given below.

10.4.2. Storage of instructions and variables.

At any one stage of the run of a program one end of the core store,
the low end, will be occupied by instructions, constants, simple vari-
ables, and formal variables while the high end of the store, the so-called
stack will contain the components of all those arrays, which are defined
at this stage, and any intermediate results of expressions in the process

of being evaluated.

10.4.2.1. Low end storage. Within the low end the order of storing of the
various blocks is as follows:

First segment: all such parts of the program which do not belong to
any drum block, including constants, but not including the storage for
Simple variables of ordinary blocks of the program.

Second segment: instructions and simple variables of all drum proce-
dure bodies, which will all share a certain section of the core store.
Thus this segment may at any one time store only one drum procedure body.

Third segment: the simple variables of ordinary blocks of the pro-

gram, sharing space with the instructions and simple variables of all
drum blocks of the program. This segment will thus at any one time con-
tain either the simple variables of an ordinary block or one complete
drum block.

If drum blocks are written within drum blocks the outer drum block
will be stored in three segments in exactly the same manner as the com-
plete program, forming, so to speak, a microcosmos of its own.

Note particularly that since all drum procedures which are declared
in the same block head share the same place in the core store NO TWO DRUM
PROCEDURES WHICH ARE DECLARED IN THE SAME BLOCK HEAD MUST EVER CALL EACH
OTHER, NEITHER DIRECTLY OR INDIRECTLY.
10.4.2.2. Stack storage. The storing in the stack (the high end of the
core store) is arranged strictly according to the dynamic order in which
the various blocks have been entered. Thus each time an entry into a

block is made the components of arrays declared in the block head will be
placed in order downwards from the last reserved cell of the stack. A-

gain, every time an exit from a block is made the part of the stack used
by this block is released and may thus be used by any other block.

10.4. STORING BLOCKS ON DRUM. 29

10.4.3. Dynamic storage control.
Since arrays of arbitrary size may be declared in any block head it

is necessary to keep a continuous check on the extent of the parts of the
store used by the low and high end sections, if disastrous overlaps be~

tween instructions and variables are to be avoided. This is performed as

follows: When a block is entered the amount of low end storage which must

be reserved while this block is working is calculated and compared with

the current limit of the stack. Again, every time a new item is added to
the stack a similar control is made. If the control detects that the two
parts of the store are about to overlap the error indication

ferritlager sprangt

will be typed and the machine will immediately proceed to output informa-
tion about the block causing the error.

. Similarly, since any declaration of a drum array may use an arbitra-
ry amount of the drum storage, a check on the occupation of the drum will
be made every time a drum array is declared. An overlap will cause typing

of the error indication

tromlelager sprengt
to be followed by output as above.

10.4.4, Preservation of ordinary drum blocks.
The first time a drum block is entered it will automatically be

transferred to the core store. At the same time the administrative system

makes a note that this particular block is now available.
When a new entry is made into the same block the system will omit

the transfer from drum if it is certain that the part of the store occu-

pied by the block has not been disturbed since the last exit. The condi-

tions for this are 1) that no entry into (or exits from) any ordinary ~

block has been made, and 2) that the stack has not made use of the rele-

vant part of the store in the meantime. Note, however, that calls of pro-

cedures may well be executed, without disturbing an available drum block.

10.4.5. Preservation of procedure drum blocks.
The system for avoiding unneccessary transfers from the drum store

in case of procedure drum blocks is similar to that of ordinary drum
blocks, but rather less economical. The rules are: That procedure drum
block into which an entry has last been made will be available without a

repeated transfer provided 1) the stack has not in the meantime made use

of the relevant part of the store and 2) no exit from the block, from
which the drum procedure was first called, has been made.

