
Hermed fremsendes ELIZA version 4.02.

Dokumentation og faktura følger senere.

Filen ELIZA.DOK indeholder foreløbig dokumentation,

herunder installationsvejledning. Af hensyn til

eventuelle brugere uden maskinerfaring skal det her

nævnes at ELIZA.DOK bringes på skærmen således:

Anbring disketten i venstre drev. Skriv:

A: (efterfulgt af tryk på jged|-tasten)

og maskinen svarer med:

A>

fortsæt således:

A>TYPE ELIZA.DOK (og tryk på |elj)

ELIZA.DOK kommer på papir, hvis man før det oven-

stående holder CONTROL-tasten nede mens man trykker

på P-tasten.

God fornøjelse med ELIZA!

Qu
Knud Fjeldsted
Horsensvej 17
3000 Helsingør

teit 02-21 16°77

Venlig hilsen

PS: Programmet kan iøvrigt prøvekøres direkte fra

originaldisketten således:

A>ELIZA

men det anbefales at følge backup-anvisningen i ELIZA.DOK

DOK LISTEN TOT XCOM TIaAL. EL XX væv 5 d COX 24 m CDE

GENERELT OQ M PROGRAMMET

Dette er den første mikrodatamat-udgave af ELIZA, som i et og alt

opfører sig som det originale ELIZA-program.

ELIZA blev skrevet i 1965 af Joseph Weizenbaum, M.I.T. (Massachusetts

Institute of Technology). Programmet blev skrevet i MAC-SLIP, som er

et listeprogrammeringssprog i slægt med LISP.

Programmet vakte stor opstandelse og gav anledning til en del myte-

dannelser angående datamaters evner til at kommunikere på menneskelig

vis. Joseph Weizenbaum fejede en del af myterne af bordet ved detal-

jeret at redegøre for programmets virkemåde, i en artikel i tids-
skriftet Communications of the ACM [Vol. 9, #1, Jan. 1966; p. 36-451.

Denne artikel er vedlagt i kopi.

Det er næppe en overdrivelse at kalde ELIZA for det mest kendte og

mest omtalte EDB-program overhovedet. Det er det første program som

har udvist noget der lignede kunstig intelligens, og det blev ”start-

skuddet" til forskningsområdet "Artificial Intelligence" (=AI).

AI syanede hen som forskningsområde i begyndelsen af Y%0-erne; da man

var nået ud i en blindgyde, hvor det ikke rigtigt så ud til at man

kunne komme væsentligt videre hen i retning af noget der kunne bruges

til noget» hvilket nok både var årsag til og konsekvens af at

forsknings- midlerne reduceredes drastisk.

Denne udvikling vendte brat, da det amerikanske militær fattede inter-

esse for AI. De militere anvendelsesmuligheder ved AI fik Joseph

Weizenbaum til at "st& af", for i stedet at hellige sig en kritisk

analyse af forholdet mellem EDB og menneske; og mellem EDB og samfund»

I bogen Computer Power and Human Reason (1976) ggr Joseph Weizen-

baum allerede i forordet endnu engang cop med nogle af reaktionerne på

ELIZA. Bl.a. er han chockeret over at en amerikansk psykiater (prof.

Kenneth M.Colby) i ramme alvor forestiller sig en del af psykiaterens

arbejde overgivet til et EDB-program af typen ELIZA. Joseph Weizenbaum

bemærker, at det siger mere om psykiaterens (fattige) opfattelse af sit

fag end om datamaskinens muligheder. Weizenbaum skrev bl.a.:

I had thought it essential, as a prerequisite to the very possibility

that one person might help another learn to cope with his emotional

problems, that the helper himself participate in the other’s experience

of those problems and, in large part by way of his own empathic

recognition of them, himself come to understand them. ... That it was

possible for even one practicing psychiatrist to advocate that this

crucial component of the therapeutic process be entirely supplanted by

pure technique - that I had not imagined!

Ved en forelaesning i Kgbenhavn i maj 1984 gav Joseph Weizenbaum udtryk

for; at han var mere bekymret over at menneskene kommer til at ligne

datamaskiner end over det omvendte.

Efter læsning af ovenstående er du nu rustet til at få mindst mulig

fornøjelse af programmet ELIZA, så glem det hele for en stund! -og få

dig nogle under holdende og forhabentiig også forbavsende samtaler med

ELIZA!

Det foreliggende program er (funktionelt) en tro kopi af Weizenbaums

originale ELIZA-program, udstyret med det i hans artikel beskrevne

"script", som senere har faet navnet DOCTOR.

I denne mikrodatamatversion af programmet er DOCTOR-script’et inte-

_.greret i ELIZA-programmet, sa det er ikke muligt at editere i scriptet.

*
K
K
K

K
K

K
K

K
K

K
K

K
K
K

KR
K
K

K
K

OK

i
ok *

(

*

Hvis du følger disse "spilleregler" far du mest glede af programmet:

* XX XX XX Ke He HH HH HHH HHH FH HH HEH HH HH HH KH HH KH *

Det er vigtigt at udtrykke sig i hele sætninger over for ELIZA,
s& ELIZA har’ noget at ”gribe fat i".

Du må gerne komme med udtalelser som fylder flere sætninger, adskilt

fra hinanden med de sædvanlige punktuationstegn: >» ! ?

Bemerk, at det kun er i Weizenbaums originalversion af ELIZA; at

spørgsmåltegn ikke er tilladt.

Dine udtalelser må gerne fylde flere linjer - skriv bare løs; så

"folder" linjerne sig automatisk. Det har ingen betydning at denne

foldning deler ordene vilkårligt, de bliver delt korrekt ved en

senere DISPLAY eller PRINT. Afslut udtalelsen med et tryk på

RETUR-tasten.

Prøv at “tale” til ELIZA pa samme m&de som du ville tale til en

psykiater, så får du de bedste reaktioner.

Det er vigtigt at stave korrekt - ellers går ELIZA glip af meningen.

*
K
K

K
K

K
K

K
K

K
O
K

K
K

K
K

K
K

K
K
O
K

&

* xx XX kk eK HK He XX KK HK HK HH HK HK HK KH KH KH HF KH HF HH H HK HH H HF H H KH *

INS TALLERING AF ELIZA

Tag allerfgrst en kopi af den originale ELIZA-diskette, og gem den

originale ELIZA-diskette p& et sikkert sted. Den just fremstillede
kopi af originaldisketten kaldes herefter for ELIZA master—-disketten.

Anbring ELIZA master disketten i venstre drev og skriv A: efterfulgt

af et tryk på RETUR-tasten. På skærmen kommer nu tegnet A> som viser

at styresystemet er klar til at modtage en ordre.

PRINTENRRESER VAT I ON

Skal ELIZA kun bruges på enkeltbrugersystemer kan dette afsnit

overspringes. I flerbrugersystemer hvor en printer deles af flere

brugere, og hvor reservation af printeren administreres af styre-

systemet, skal ELIZA have oplysning om nummeret på den pågældende

printer for at kunne foretage den nødvendige printerreservation før

eventuelle udskrifter. Filen ELIZA.PRT skal da vere til stede; og den

skal indeholde et enkelt heltal, nemlig nummeret på den fælles printer.

ELIZA-disketten leveres med 4 filer: PRINTERO

PRINTER1

PRINTERE

PRINTER3

svarende til de fire printernumre 0, 1, 2@ & 3.

Hvis f.eks systemet har en fælles printer med nummeret &£ (det er

f.eks. tilfældet ved mange %4-bruger Piccoline-anlæg);,; foretages

følgende kopiering:

A>PIP ELIZA.PRT=PRINTERAG

HJÆLPES KÆRM

ELIZA-disketten indeholder filerne DANSK

ENGELSK

samt ELIZA.HLP

Disse filer indeholder hjælpetekster, som kommer frem på skærmen ved

tryk på tasten 7?” efterfulgt af tryk på RETUR-tasten. Ved leveringen

indeholder ELI2ZA.HLP engelske hjælpetekster, da det forekommer mest

naturligt at blive hjulpet på engelsek midt i en engelsk samtale. Hvis

du imidlertid alligevel ønsker danske hjælpetekster, foregår det ved

følgende kopiering:

A>PIP ELIZA.HLP = DANSK

og hvis du siden fortryder, kommer du tilbage således:

A>PIP ELIZA.HLP = ENGELSK

FREMSTILLING AF ARBE JDDSDISKETTE

Anbring en formatteret diskette i det højre drev. Det vil nok vare en

fordel hvis denne diskette er forsynet med styresystemet; så den kan

bruges til opstart af maskinen (følg fabrikantens vejledning). Du skal

nu kopiere samtlige ELIZA-filer over på den nye diskette:

A>PIP b:=a:ELIZA.+

Anbring derefter ELIZA master-disketten på et sikkert sted.

RARSEL &MED EL TSA-PROGRAMMET

Anbring ELIZA-disketten (arbejdskopien!) i venstre diskettedrev og

tast A efterfulgt af et tryk pa RETUR-tasten. Skriv nu ELIZA og tryk

igen p& RETUR-tasten. Herefter går resten af sig selv.

De følgende ord har en særlig betydning når de står alene:

display Hele den hidtil førte samtale vises på skærmen.

print Hele den hidtil førte samtale udskrives på printeren.

save Hele den hidtil førte samtale gemmes på disketten.

load En gammel samtale hentes op fra disketten.

clear Den hidtil førte samtale slettes; men visse ting huskes.

restart Alt glemmes og programmet starter forfra.

stop Programmet standser.

40 Linjedeling i skærmudskrifter sker inden for 40 tegn.

80 Linjedeling i skærmudskrifter sker inden for 80 tegn.

God fornøjelse med ELIZA !

Hvis du opdager fejl i programmets opførsel, bedes du indsende den

originale ELIZA-diskette sammen med en beskrivelse af fejlen. En

rettet udgave vil da blive dig tilsendt. Kommentarer om eventuelle

uklarheder i dokumentationen modtages gerne.

HC raa cl FF yoeldistec

Horsensvej 17, 3600 Helsingør. 02 - 21 16 77

ELIZA—A Computer Program

For the Study of Natural Language

Communication Between Man

Ånd Machine

JOSEPH WEIZENBAUM .

Massachusetts Institute of Technology,” Cambridge, Mass.

ELIZA is a program operating within the MAC time-sharing

system at MIT which makes certain kinds of natural language

_conversation between man and computer possible. Input sen-

. tences' are analyzed on the basis of decomposition rules which

cre triggered by key words appearing in the input text.

Responses are generaied by reassembly rules associated with

selected decomposition rules. The fundamenial technical prob-

lems with which ELIZA is concerned are: (1) the identification of

key words, (2) the discovery of minimal context, (3) the choice

of appropriate transformaticns, (4) generation of responses in

the absence of key words, and (5) the provision of an editing

capability. for ELIZA “scripts”. A discussion of some psychologi-

cal issues relevant to the ELIZA approach as well as of future

developments concludes the paper.

Introduction

It is said that to explain is to explain away. This maxim

is nowhere so well fulfilled as in the area of computer

programming, especially in what is called heuristic pro-

gramming and artificial intelligence. For in those realms
machines are made to behave in wondrous ways, often
sufficient to dazzle even the most experienced observer.
But once a particular program is unmasked, once its

inner workings are explained in language sufficiently plain

to induce understanding, its magic crumbles away; it

stands revealed as a mere collection of procedures, cach

quite comprchensibic. The observer says to himself “I
could have written that”, With that thought he moves the

program in question from the shelf marked “intelligent”,

to that reserved for curios, fit to be discussed only with
people less enlightened than he.

Work reported herein was supported (in part) by Project MAC,

an MIT research program sponsored by the Advanced Research
Projects Agency, Departinent of Defense, under Offiee af Naval

Reseurch Contract Number Nonr-4102(01).

* Department of Electrical. Engineering.

36 Communications of the ACM

 aft Kgl
5 Rey,

; Editor A. G. OETTINGER

The object of this paper is to cause just such a re-

evaluation of the program about to be “explained”. Few
programs ever needed it more.

ELIZA Program

ELIZA is a program which makes natural language
conversation with a computer possible. Its present imple-
mentation is on the MAC time-sharing system at MIT.
It is written in MAD-Suir [4] for the IBM 7094. Its name

was chosen to emphasize that it may be inerementally

improved by its users, since its language abilities may be

continually improved by a “teacher”. Like the Eliza of
Pygmalion fame, it can be made to appear even more

civilized, the relation ‘of ‘appearance to reality, however,

remaining in the domain of the playwright.
For the present purpose it is sufficient to characterize

the MIAC system as one which permits an individual to

operate a full scale computer from a remotely located type-

writer. The individual operator has the illusion that he is

the sole user of the computer complex, while in fact others

may be ‘‘time-sharing” the system with him. What is
important here is that the computer can read messages

typed on the typewriter and respond by writing on the

sume instrument. The time bctween the computer’s

receipt of a message and the appearance of its response is

2 function of the program controlling the dialogue and of
such MAC system parameters as the number of users
currently corresponding with the system. These latter
parameters generally contribute so little to the overall
response time that conversational interaction with the

computer need never involve truly intolerable delays.

Vhen in conversation with ELIZA, the user types in

some statement or set of statements in natural language

using normal punctuation and sentence structures. Only
the question mark may not be used, because it is inter-
preted as a line delete character by the MAC system. The

user’s statement is terminated by a double carriage return

which serves to turn control over to ELIZA. ELIZA then

analyzes the user’s statement and generates some response

which it types out. Control is then again with the user.

A typical conversation is the following:

Men are all alike.

IN WHAT WAY
They’re always bugging us about something or other.

CAN YOU THINK OF A SPECIFIC EXAMPLE

Well, my boyfriend made me come here.

YOUR BOYFRIEND MADE YOU COME HERE

He says I’m depressed much of the time.

I AM SORRY TO HEAN YOU ARE DEPRESSED

Volume 9 / Number lL / January. 1966

It’s true. Jam unhappy.

"DO YOU THINK COMING HERE WILL HELP YOU NOT TO

BE UNHAPPY
need some help, that much seems certain.

HAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP

Perhaps I could learn to get along with my mother.

TELL ME MORE ABOUT YOUR FAMILY

My mother takes care of me.
WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU

My father.
YOUR FATHER

You are like my father in some ways.
WHAT RESEMBLANCE DO YOU SEE

You are not very aggressive but I think vou don’t want me to

notice that.
WHAT MAKES YOU THINK I AM NOT VERY AGGRESSIVE

You don't argue with me.

WHY DO YOU THINK I DON’T ARGUE WITH YOU

You are afraid of me.
DOES IT PLEASE YOU TO BELIEVE I AM AFRAID OF YOU

My father is afraid of everybody.
WHAT ELSE COMES TO MIND WHEN YOU THINK OF

YOUR FATHER

Bullies.
DOES THAT HAVE ANYTHING TO DO WITH THE FACT

“THAT YOUR BOYFRIEND MADE YOU COME HERE

~The capitalized lines are the machine responses.
The gross procedure of the program is quite simple; the

text is read and inspected for the presence of a keyword.
If such a word is found, the sentence is transformed

according to a rule associated with the keyword, if not a

content-free remark or, under certain conditions, an earlier

transformation is retrieved. The text so computed or

retrieved is then printed out.

In detail, of course, the procedure sketched above is

considerably more complex. Keywords, for example, may

have a RANIX or precedence number. The procedure is
sensitive to such numbers in that it will abandon a key-

word already found in the left-to-right scan of the text in
favor of one having a higher rank. Also, the procedure

recognizes a comma or a period as a delimiter. Whenever
either one is encountered and a keyword has already been
found, all subsequent text is deleted from the input mes-
sage. 1f no key had yet been found the phrase or sentence
to the left of the delimiter (as well as the delimiter itself)

is deleted. As a result, only single phrases or sentences are
ever transformed.

Keywords and their associated transformation! rules

constitute the SCRIPT for a particular class of con-

versation. An important property of ELIZA is that a

script is data; i.e., it is not part of the program itself.
Hence, ELIZA is not restricted to a particular set of

recognition patterns or responses, indeed not even to any

specific language. ELIZA scripts exist (at this writing) in
Welsh and German as well as in English.

The fundamental technical problems with which ELIZA
must be preoccupied are the following:

(1) The identification of the ‘most important” keyword

1 The word “transformation” is used in its generi¢e sense rather
than that given it by Harris and Chomsky in linguistic contexts.

Volume 9 / Number 1] / January, 1966

occurring in the input message.
(2) The identification of some minimal context within

which the chosen keyword appears; ¢.g., if the keyword is
“vow”, is it followed by the word “are” (in which case an

assertion is probably being made).
(3) The choice of an appropriate transformation rule

and, of course, the making of the transformation itself.

(4) The provision of mechanism that will permit
ELIZA to respond “intelligently” when the input text
contained no keywords.

(5) The provision of machinery that facilitates editing,

particularly extension, of the script on the script writing

level.

There are, of course, the usual constraints dictated by
the need to be economical in the use of computer time and

storage space.

The central issue is clearly one of text manipulation,

and at the heart of that issue is the concept of the frans-

formation rule which has been said to be associated with

certain keywords. The mechanisms subsumed under the

slogan “transformation rule” are a number of Surp fune-
tions which serve to (1) decompose a data string according
to certain criteria, hence to test the string as to whether it

satisfies these criteria or not, and (2) to reassemble a

decomposed string according to certain assembly specifica-
tions.

While this is not the place to discuss these functions in

all their detail (or even to reveal their full power and

generality), it is important to the understanding of the

operation of ELIZA to describe them in some detail.

Consider the sentence “I am very unhappy these days’.

Suppose a foreigner with only a limited knowledge of

English but with a very good ear heard that sentence

spoken but understood only the first two words “I am”.
Wishing to appear interested, perhaps even sympathetic,

he may reply “How long have you been very unhappy

these days?” What he must have done is to apply a kind
of template to the original sentence, one part of which

matched the two words “I am” and the remainder isoiated

the words “very unhappy these days”. He must also have
a reassembly kit specifically associated with that template,

one that specifies that any sentence of the form “I am

BLAH” can be transformed to “How long have you been

BLAH”, independently of the meaning of BLAH. A
somewhat more complicated example is given by the

sentence ‘It seems that vou hate me’. Here the foreigner

understands only the words “you” and “me”; ie., he
applies a template that decomposes the sentence into the

four parts:

(1) It seems that (2) you (3) hate (4) me

of which only the second and fourth parts are understood.
The reassembly rule might then be “What makes you

think I hate you”; ie., it might throw away the first

component, translate the two known words (‘‘you” to

“I? and “me” to “you’’) and tack on a stock phrase

(What makes you think) to the front of the reconstruction.

Communications of the ACM 37

SENE tay’ TL OTR LORE SC De

EET INT

A formal notation in which to represent the decomposition

template is:

(0 YOU 0 ME)

—_i the reassembly rule

(WHAT MAKES YOU THINK 13 YOU).

The “0” in the decomposition rule stands for “an in-

definite number of words’’ (analogous to the indefinite

dollar sign of Comrt) [6G] while the “3” in the reassembly

rule indicates that the third component of the subject

decomposition is to be inserted in its place.. The decom-

position rule

(0 YOU 1 ME)

would have worked just as well in this specific example. A
nonzero integer ‘‘n”? appearing in a decomposition rule

indicates that the component in question should consist
of exactly ‘‘n’? words. However, of the two rules shown,

only the first would have matched the sentence, “It seems
you hate and love me,” the second failing because there is
more than one word between “you” and ‘‘me”’.

 AW

Dz Rey Rz2°°*Pemz On Rat Raz eee

Pa mn By Ray Ryze Ray

Fig. 1. Keyword and rule list structure

In ELIZA the question of which decomposition rules to

apply to an input text is of course a crucial one. The input
sentence might have been, for example, “It seems that

you hate,” in which case the decomposition rule (0 YOU
0 ME) would have failed in that the word “MIE” would

not have been found at all, let alone in its assigned place.
Some other decomposition rule would then have to be

tried and, failing that, still another until a match could

be made oy a total failure reported. ELIZA must therefore
“ave a mechanism to sharply delimit the set of decom-

“position rules which are potentially applicable to a cur-

rently active input sentence. This is the keyword mecha-
nism.

An input sentence is scanned from left to right. Each

werd is looked up in a dictionary of keywords. If a word

is identified as a keyword, then (apart from the issue of

precedence of keywords) only decomposition rules con-
taining that keyword need to be tried. The trial sequence

can even be partially ordered. For example, the decom-

position rule (0 YOU 0) asscciated with the keyword

“YOU” (and decomposing an input sentence into (1) all

words in front of “YOU”, (2) the word “YOU”, and (3)
all words following ‘“YOU”) should be the last one tried

since it is bound to succeed.

Two problems now arise. One stems from the fact that

33 Communications of ihe ACM

almost none of the words in any given sentence are repre-
sented in the keyword dictionary. The other is that of
“associating” both decomposition and reassembly rules
with keywords. The first is serious in that the determina-

tion thai a word is not in a dictionary may well require

more computation (i.e., time) than the location of a word
which is represented. The attack on both problems begins
by placing both a keyword and its associated rules on a

list. The basic format of a typical key list is the following:

(K ((Di) (s,1) (es, 2) +++ (ea, ms)
(Dz) (Hea, 1) (Fee, 2) +++ (He, mz)

(Dn) (Raa) (Rac) «++ (Rn, md)
where K is the keyword, D, the 7th decomposition rule

associated with K and R;, ; the jth reassembly rule asso-
ciated with the 7th decomposition rule.

A common pictorial representation of such a structure
is the tree diagram shown in Figure 1. The top level of
this structure contains the keyword followed by the names
of lists; each one of which is again a list structure beginning
with a decomposition rule and followed by reassembly
rules. Since list structures of this type have no predeter-
mined dimensionality limitations, any number of decom-

position rules may be associated with a given keyword and
any number of reassembly rules with any specific decom-

position rule. Surp is rich in functions that sequence over

structures of this type efficiently. Hence programmin

problems are minimized.
An ELIZA script consists mainly of a set of list struc-

‘tures of the type shown. The actual keyword dictionary is

constructed when such a script is first read into the
hitherto empty program. The basic structural component
of the keyword dictionary is a vector KEY of (currently)

128 contiguous computer words. As a particular key list

structure is read the keyword [K. at its top is randomized

(hashed) by a procedure that produces (currently) a 7

bit integer ‘7. The word “always”, for example, yields
the integer 14. KEY(2), i.e., the.zth word of the vector

KEY, is then examined to determine whether it contains

2 list name. If it does not, then an empty list is creaied,

its name placed in NIEY(z), and the key list structure in
question placed on that list. If KEY(z) already contains a

list name, then the name of the key list structure is placed

on the bottom of the list named in KEY(7). The largest

dictionary so far attempted contains about 50 keywords.
No list named in any of the words of the KEY vector

contains more than two key list structures.

Every word encountered in the scan of an input text,

j.e., during the actual operations of ELIZA, is randomized

by the same hashing algorithm as was originally applied to

the incoming keywords, hence yields an integer which
points to the only possible list structure which could

potentially contain that word as a keyword. Even then,
only the tops of any key list structures that may be found

there need be interrogated to determine whether or net a

keyword has been found. By virtue of the various list

Volume 9 / Number 1 / January, 1966

SS IT ee eee:

sequencing operations that Suw makes available, the

actual identification of a keyword leaves as its principal

product a pointer to the list of decomposition (and hence

_ reassembly) rules associated with the identified keyword.

One result of this strategy is that often less time is required

to discover that a given word is not in the keyword dic-

tionary than to locate it if it is there. However, the location
of & keyword yields pointers to all information associated

with that word.

Some conversational protocols require that certain

transformations be made on certain words of the input text

independently of any contextual considerations. The first

conversation displayed in this paper, for example, requires

that first person pronouns be exchanged for second person
pronouns and vice versa throughout the input text. There

may be further transformations but these minimal sub-

stitutions are unconditional. Simple substitution rules

ought not to be elevated to the level of transformations,

nor should the words involved be forced to carry with them

all the structure required for the fully complex case.
Furthermore, unconditional substitutions of single words
for single words can be accomplished during the text scan

itself, not as a transformation of the entire text subsequent

to scanning. To facilitate the realization of these

desiderata, any word in the key dictionary, ie., at the

“top of a key list structure, may be followed by an equal

sign followed by whatever word is to be its substitute.
Tranformation rules may, but need not, follow. If none

do follow such a substitution rule, then the substitution is

made on the fly, j.e., during text scanning, but the word

in question is not identified as a keyword for subsequent
purposes. Of course, a word may be both subtituted for
and be a keyword as well. An example of a simple sub-

stitution is

(YOURSELF = MYSELF).

Neither “yourself” nor “myself” are keywords in the
particular script from which this example was chosen.

The fact that keywords can have ranks or precedences
has already been mentioned. The need of a ranking mecha-

nism may be established by an example. Suppose ra input

sentence is ”I know everybody laughed at me.” Å script

may tag the word “I” as well as the word “everybody”
as a keyword. Without differential ranking, “I” occurring
first would determine the transformation to be applied.
A typical TES pONINE might be “You say you know everybody

laughed at you.’”? But the important message in the input
sentence begins with the word “everybody”. It is very

often true that when a person speaks in terms of universals

such as “everybody”, “always” and “nobody” he is really

referring to some quite specific event or person. By giving

“everybody” a higher rank than “I”, the response “Who

in particular are you thinking of” may be generated.
The specific mechanism employed in ranking is that the

rank of every keyword encountered (absence of rank

implics rank equals 0) is compared with the rank of the

highest ranked keyword already seen. If the rank of the”

Volume 9 / Number] / January, 1966

new word is higher than that of any previously encoun-
tered word, the pointer to the transformation rules
associated with the new word jis placed on top of a list

called the keystack, otherwise it is placed on the botiom

of the keystack. When the text scan terminates, the key-

stack has at its top a pointer associated with the highest
ranked keyword encountered in the scan. The remuining
pointers in the stack may not be monotonically ordered

with respect to the ranks of the words from which they
were derived, but they are nearly so—in any event they

are in a useful and interesting order. Figure 2 is a simpli-

Empty

OW eet
FU eit wore End of text YES:

moe Curren) Keystock Delete Wondall
empty mh succeeding words

[icemtest. | teat,

i

Is or saw oll
keyword gq words

fies text.

YES

is prececence NO
ef key? P -

Me

P+ Precedence Pioce panier to key Piace pomter tokey

of key ‘on ton of on bottom of
keystock keystocke

J

Fic. 2. Basic flow diagram of keyword detection

fied flow diagram of keyword detection. The rank of a
keyword must, of course, also be associated with the

keyword. Therefore it must appear on the keyword list

structure. It may be found, if at all, just in front of the

list of transformation rules associated with the keyword.

As an example consider the word “MY” in a particular
script. Its keyword list may be as follows:

(LY = YOUR 5 (transformation rules)).

Such a list would mean that whenever the word “AIY” is

encountered in any text, it would be replaced by the word
“YOUR”. Its rank would be 5.

Upon completion of a given text scan, the keystack is

either empty or contains pointers derived from the key-

words found in the text. Each of such pointers is actually a
sequence reader—a Surp mechanism which facilitates

scanning of lists—pointing into its particular key list in
such a way that one sequencing operation to the right

(SEQLR) will sequence it to the first set of transformation

rules associated with its keyword, i.e., to the list

((Di) (Ry) (Rae)... (Ry, Rm4))-

The top of that list, of course, is a list which serves a

decomposition rule for the subject text. The top of the

keystack contains the first pointer to be activated.
The decomposition rule D; associated with the keyword

K, ie., {(Di), A}, is now tried. It may fail however. For
example, suppose the input text was:

You are very helpful.

Communications of the ACM 3¢

 ese

The keyword, say, is "you”, and 1(D)), you] is

° (OT remind vou of 0).

(Reeall that the “you” in the original sentence has already

bee replaced by “1? in the text now analyzed.) This
dewanposition rule obviously fails to match the input
sentence. Should }(D,), A} fail to find a match, then
(Ds), AK} is tricd. Should that too fail, {(D;), A} is

attempted, and so on. Of course, the set of transformation
rules can be guaranteed to terminate with a decomposition

rule which must match. The decomposition rule

(0 K 0)

will match any text in which the word K appears while

(0)

will match any text whatever. However, there are other

ways to leave a particular set of transformation rules, as

will be shown below. For the present, suppose that some

particular decomposition rule (D,) has matched the input

text. (D;), of course, was found on a list of the form

((D:)(R,, DCR, 2) 9% (R;, mm

Ser oncing the reader which is presently pointing at

(Dy will reirieve the reassembly rule (2,1) which may

then be applied to the decomposed input text to yield the

output message.
Consider again the input text

You are very helpful

in which “you” is the only key word. The sentence is

transformed during scanning to

I are very helpful

{(D,), you} is “(0 I remind your of 0)” and fails to match
as already discussed. However, |(D2), you} is “(0 I are 0)”

and obviously matches the text, decomposing it into the
constituents

(1) empty (2) I (3) are (4) very helpful.

(Rs, 1), you} is

(What makes you think I am 4)

Hence it produces the output text

What makes you think Iam very helpful.

Having produced it, the integer 1 is put in front of (Rs, 1)

so that the transformation rule list in question now appears

as

((D) (Rs, 1)(Re, 2) +++ (Rs, ma):
Next time {(.), A} matches an input text, the reassembly

rule (R2, 2) will be applied and the integer 2 will replace
the 1. After (Re, m.) has been exercised, (Re,1) will again

be invoked. Thus, after the system has been in use for a

time, every decomposition rule which has matched some

input text has associated with it an integer which corre-
sponds to the last reassembly rule used in connection with

40 Communications of the ACM

that decomposition rule. This mechanism insures that the
complete set of reassembly rules associnted with a given

decomposition rule is cycled through before any repetitions

occur.
The system described so far is essentially one which

selects «a decomposition rule for the highest ranking key-
word found in an input text, attempts to match that text

according to that decomposition rule and, failing to make

a match, selects the next reassembly rule associated with
the matching devomposition rule and applies it to generate

an output text. It is, in other words, a system which, for

the highest ranking keyword of a text, selects a specific

decomposition and reassembly rule to be used in forming

the output message.

Were the system to remain that simple, then keywords

that required identical sets of transformation rules would
each require that a copy of these transformation rules be

associated with them. This would be logically sound but
would complicate the task of script writing and would also
make unnecessary storage demands. There are therefore

special types of decomposition and assembly rules char-

acterized by the appearance of “=” at the top of the

rule list. The word following the equal sign indicates which
new set of transformation rules is to be applied. For ex-

ample, the keyword “what” may have associated with it
a transformation rule set of the form

((0) (Why do you ask) (Is that an important question) .. .)

which would apply equally well to the keywords “how”

and “when”. The entire keyword list for “how may
therefore be

(How (= What))

The keywords “how”, “what” and “when” may thus be

made to form an equivalence class with respect to the
transformation rules which are to apply to them.

In the above example the rule ‘(=what)” is in the

place of a decomposition rule, although it causes no
decomposition of the relevant text. It may also appear,
however, in the place of a reassembly rule. For example,
the keyword “am”? may have among others the following

transformation rule set associated with it:

((0 are vou 0) (Do you believe you are 4)... (=what) ...)

(It is here assumed that “are”? has been substituted for

“am” and “you” for “I” in the initial text scan.) Then,

the input text

Am I sick

would elicit either

Do you believe vou are sick

or .

Why do you ask

depending on how many times the general form had

already occurred,

Under still other conditions it may be desirable to

Volume 9 / Number 1 / January, 1966

SELF ee Se aC Te NS = a 2

perform a preliminary transformation on the input text
before subjecting it to the decompositions and reassemblics

which finally yield the output text. For example, the

keyword ‘“you’re” should lead to the transformation rules

associated with “you” but should first be replaced by a

word pair. The dictionary entry for “you’re” is therefore:

(you're = I’m ((0 I’m 0) (PRE (1 AM 3) (=YOU)))})

which has the following effect:
(1) Wherever “youw’re” is found in the input text, it is

replaced by “Vm.

(2) If “you’re” is actually selected as the regnant

keyword, then the input text is decomposed into three

constituent parts, namely, all text in front of the first

oceurrence of “I’m”, the word “I’m” itself, and all text
following the first occurrence of “?m”.

(3) The reassembly rule beginning with the code

“PRE” jis encountered and the decomposed text re-
assembled such that the words ‘I AM” appear in front

of the third constituent determined by the earlier de-

composition.

(4) Control is transferred, so to speak, to the trans-

formation rules associated with the keyword “you”,

where further decompositions ete. are attempted.

It is to be noted that the set

(PRE (I AM 3) (=YOU))

is logically in the place of a reassembly rule and may

therefore be one of many reassembly rules associated with

the given decomposition.

Another form of reassembly rule is

(NEWKEY)

which serves the case in which attempts to match on the
currently regnant keyword are to be given up and the
entire decomposition and reassembly process is to start
again on the basis of the keyword to be found in the
keystack. Whenever this rule is invoked, the top of the
kevstack is “popped up” once, ic., the new regnant key-
word recovered and removed from the keystack, and the

entire process reinitiated as if the initial text sean had just
terminated. This mechanism makes it possible to, in cifeet,

test on key phrases as opposed to single key words.

A serious problem which remains to be discussed is the

reaction of the system in case no keywords remain to

serve as transformation triggers. This can arise either in
case the keystack is empty when NEWIKEY is invoked or
when the input text contained no keywords initially.

The simplest mechanism supplied is in the form of the

special reserved keyword “NONE” which must be part of
any seript. The seript writer must associate the universally

matching decomposition rule (0) with it and follow this by
as many content-free remarks in the form of transforma-

tion rules as he pleases. (Examples are: “Please go on”,

“That’s very interesting” and “I see’.

There is, however, another mechanism which causes the

system to respond more spectacularly in the abscenee of a

key. The word “MEMORY” is another reserved pscudo-

keyword. The key list structure associated with it differs

> Volume 9 / Number 1 / January, 1966

OE EE a ee Ben ae Bea OTE

from the ordinary one in some respects. An example

illuminates this point.

Consider the following structure:

(MEMORY MY

(@Q YOUR 0 = LETS DISCUSS FURTHER WHY YOUR 3)
(0 YOUR 0 = EARLIER YOU SAID YOUR 3)

The word “MY” (which must be an ordinary keyword
as well) has been selected to serve a special function.

Whenever it is the highest ranking keyword of 2 text one

of the transformations on the MEMORY list is randomly
selected, and a copy of the text is transformed accordingly.
This transformation is stored on a first-in-first-cut stack
for later use. The ordinary processes already described are
then carried out. When a text without keywords is en-

countered later and a certain counting mechanism is in a
particular state and the stack in question is not empty,

then the transformed text is printed out as the reply. It
is, of course, also deleted from the stack of such trans-

formations.

The current version of ELIZA requires that one keyword

be associated with MEMORY and that exactly four

transformations accompany that word in that context. (An
application of a transformation rule of the form

(LEFT HAND SIDE = RIGHT HAND SIDE)

is equivalent to the successive application of the two forms

(LEFT HAND SIDE), (RIGHT HAND SIDE).)

Three more details will complete the formal description
of the ELIZA program.

The transformation rule mechanism of Surp is such that
it permits tagging of words in a text and their subsequent
recovery on the basis of one of their tags. The keyword

“MOTHER” in ELIZA, for example, may be identified
as anoun and as a member of the class “family” as follows:

(MOTHER DLIST (/NOUN FAMILY)).

Such tagging in no way interferes with other information

(e.g., rank or transformation rules) which may be asso-
ciated with the given tag word. A decomposition rule may

contain a matching constituent of the form (/TAGI

TAG2 +--+) which will match and isolate a word in the

subject text having any one of the mentioned tags. If, for

example, “MOTHER” is tagged as indicated and the

input text

“CONSIDER MY AGED MOTHER AS WELL AS ME”

subjected to the decomposition rule

(0 YOUR 0 (/FAMILY) 0)

(remembering that “ALY” has been replaced by “YOUR”),

then the decomposition would be

(1) CONSIDER (2) YOUR 3) AGED

(6) AS WELL AS ME.

(4) MOTHER

Another flexibility inherent in the Sire text manipula-

tion mechanism underlying ELIZA is tha or-ing of

matching criteria is permitted in decomposition rules.
The above input text would have been decomposed

Communications of the ACM 43

 emnerne

precisely as 5 stated above by the decomposition rule:

0 YOUR O («FATHER MOTHER) 0)

wh by virtue of the presence of “*”? in the sublist

structure seen above, would have isolated cither the word

“FATHER” or “MOTHER” (in that order) in the input
text, whichever occurred first after the first appearance of

the word “YOUR”.
Finally, the seript writer must begin his seript with a

list, i.¢., a message enclosed in parentheses, which contains
the statement he wishes ELIZA to type when the system

is first Joaded. This list may be empty.

Editing of an ELIZA script is achieved via appe:l {o a
contextual editing program (IED) which is part of the
MAC library. This program is called whenever the mput
text to ELIZA consists of the single word “EDIT”.

ELIZA then puts itself in a so-called dormant state and
presents the then stored script for editing. Detailed
dcseription of ED is out of place here. Suffice it to say that

changes, additions and deletions of the script may be made
with considerable efficiency and on the basis of entirely
contextual cues, i.e., without resort to line numbers or

ant ther artificial devices. When editing is completed,

EDs given the command to FILE the revised script. The
new script is then stored on the disk and read into ELIZA.
ELIZA then types the word “START” to signal that the
conversation may resume under control of the new script.

An important consequence of the editing facility built
into ELIZA is that a given ELIZA script need not start

out to be a large, full-blown scenario. On the contrary, it

should begin as a quite modest set of keywords and
transformation rules and permitted to be grown and
molded as experience with it builds up. This appears to
be the best way to use a truly interactive man-machine
facility—i.e., not as a device for rapidly debugging a code
representing a fully thought out solution to a problem, but
rather as an aid for the exploration of problem solving
strategies.

Discussion

At this writing, the only serious ELIZA scripts which

ex are some which cause ELIZA to respond roughly as

would certain psychotherapists (Rogerians). ELIZA
performs best when its human correspondent is initially
instructed to ‘talk’ to it, via the typewriter of course,

just as one would to a psychiatrist. This mode of con-

versation was chosen because the psychiatric interview

is one of the few examples of categorized dyadic natural

language communication in which one of the participating

pair is free to assume the pose of knowing almost nothing
of the real world. If, for example, one were to tell a psy-

chiatrist “I went for a long boat ride” and he responded
“Tell me about boats’, one would not assume that he knew
nothing about boats, but that he had some purpose in so

directing the subsequent conversation. It is important to

note that this assumption is one made by the speaker.

Whether it is realistic or not is an allogether separate

question. In any case, it has a crucial psychological utility

42 Communications of the ACM

in that it serves the speaker to maintain his sense of being
heard and understood. The speaker further defends his
impression (which even in real life may be illusory) by
attributing to his conversational partner all sorts of back-
ground knowledge, insights and reasoning ability. But again,

these are the speaker's contribution to the conversation,
They manifest themselves inferentially in the dulerpretations
he makes of the offered responses. From the purely technical
programming point of view then, the psychiatric interview

form of an ELIZA script has the advantage that it climi-

nates the necd of storing explicit information about the
real world.

The human speaker will, as has been suid, contribute

much to clothe LLIZA’S responses in vestments of
plausibility. But he will not defend his illusion (that he is

being understood) against all odds. In human conversation
a speaker will make certain (perhaps generous) axsump-
tions about his conversational partner. As long as’ it
remains possible to interpret the latter’s responses con-

sistently with those assumptions, the speaker’s image of
his partner remains unchanged, in particular, undamaged.

Responses which are difficult to so interpret may well

result in an enhancement of the image of the partner, in

additional rationalizations which then make more com-

pleated interpretations of his responses reasonable.
When, however, such rationalizations become too massive

and even self-contradictory, the entire image may crumble
and be replaced by another (‘‘He is not, after all, as smart

as I thought he was”). When the conversational partner

is & machine (the distinetion betwcen machine and program

is here not useful) then the idea of credibility may well be
substituted for that of plausibil/ty in the above.
With ELIZA as the basic vehicle, experiments may be

set up in which the subjects find it credible to believe that ©

the responses which appear on his typewriter are gener-

ated by a human sitting at a similar instrument in another

room. How must the script be written in order to maintain
the credibility of this idea over a long period of time?

How can the performance of ELIZA be systematically

degraded in order to achieve controlled and predictable
thresholds of credibility in the subject? What, in all this,

is the role of the initial instruction to the subject? On the

other hand, suppose the subject is told he is communicating
with a machine. What is he Jed to believe about the
machine as a result of his conversational experience with

it? Some subjects‘have been very hard to convince that

ELIZA (with its present script) is not human. This is a

striking form of Turing’s test. What experimental design

would make it more nearly rigorous and airtight?

The whole issue of the eredibility (to humans) of

machine output demands investigation. Important de-

cisions inereasingly tend to be made in response to com-
puter output. The ultimately responsible human inter-

is, not unlike the

faced with the

preter of “What the machine says”

correspondent with IELIZA, constantly

need to make credibility judgments. ELIZA shows, if

nothing else, how casy it is to create and maintain the

hence perhaps of judgment illusion of understanding,

Yolume 9 / Number 1 / January, 1966

 EET

FEE SE RT

n

deserving of credibility. A certain danger lurks there.
The idea that the present ELIZA script contains ne

information about the real world is not entirely true. Ivor

example, the transformation rules which cause the input

Everybody hates me

to be transformed to

Can you think of anyone in particular

and other such are based on quite specific hypotheses about
the world. The whole script constitutes, in a loose way, a
modei of certain aspects of the world. The act of writing a
script is a kind of programming act and has all the advan-
tages of programming, most particularly that it clearly
shows where the programmer’s understanding and com-
mand of his subject leaves off.

A large part of whatever clegance may be credited to
ELIZA lies in the fact that ELIZA maintains the illusion
of understanding with so little machinery. But there are
bounds on the extendability of ELIZA’s “understanding”
power, which are a function of the ELIZA program itself

and not a function of any script it may be given. The
crucial test of understanding, as every teacher should

know, is not the subject’s ability to continue a conversa-

tion, but to draw valid conclusions from what he is being
told. In order for a computer program to be able to do

that, it must at least have the capacity to store selected
parts of its inputs. E].IZA throws away each of its inputs,

except for those few transformed by means of the

MEMORY machinery. Of course, the problem is more
than one of storage. A great part of it is, in fact, subsumed

under the word “sclected” used just above. ELIZA in its
use so far has had as one of its principal objectives the
concealment of its lack of understanding. But to encourage
its conversational partner to offer inputs from which it
can select remedial information, it must reveal its mis-

understanding. A switch of objectives from the conceal-

ment to the revelation of misunderstanding is seen as a

precondition to making an ELIZA-like program the basis

for an effective natural language man-machine com-

municzuion system.

One goal for an augmented ELIZA program is thus a
system which already has access to a store of information

about some aspects of the real world and which, by means

of conversational interaction with people, can reveal both

what it knows, i.e., behave as an information retrieval

system, and where its knowledge ends and needs to be
augmented. Hopefully the augmentation of its knowledge
will also be a direct consequence of its conversational

experience. It is precisely the prospect that such a program
will converse with many people and learn something from

each of them, which leads to the hope that it will prove an
interesting and even useful conversational pariner.

One way to state a sHg¢htly different intermediate goal is

to say that ELIZA should be given the power to slowly

build a model of the subject conversing with it. If the

subject mentions that he is not married, for example, and

later speaks of his wife, then ELIZA should be able to

Volume 9 / Number 1 / January, 1966

make the tentative inference that he is either a widower
or divorced. Of course, he could simply be confused. In

the long run, ELIZA should be able to build up a belief
structure (to use Abelscn’s phrase) of the subject and on

that basis detect the subject’s rationalizations, contra-

dictions, cic. Conversations with such an ELIZA would

often turn into arguments. Important. steps in the realiza-

tion of these goals have already been taken. Most notable
among these is Abelson’s and Carroll’s work on simulation

of belief structures [1].

The script that has formed the basis for most of this
discussion happens to be one with an overwhelmingly
psychological orientation. The reason for this has already
been discussed. There is a danger, however, that the
example will run away with what it is supposed to illus-

trate. It is useful to remember that the ELIZA program

itself is merely a translating processor in the technical

programming sense. Gorn [2] in a paper on language
systems says:

Given a language which already possesses semantic content, then

a translating processor, even if it operates only syntactically,
generates corresponding expressions of another language to which

we can attribute as ‘““meanings”’ (possibly multiple—the translator
may not be one to one) the “semantic intents” of the generating
source expressions; whether we find the result consistent or useful

or both is, of course, another problem. It is quite possible that by

this method the same syntactic object language can be usefully

assigned multiple meanings for each expression...

It is striking to note how well his words ft ELIZA. The
“given language” is English as is the “other language”,

expressions of which are generated. In principle, the given
language could as well be the kind of English in whie}
‘word problems” in algebra are given to high school
students and the other language, a machine code allowing
a particular computer to “solve” the stated problems.
(See Bobrow’s program STUDENT [3].)

The intent of the above remarks is to further rob ELIZA

of the aura of magic to which its application to psycho-
logical subject matter has to some extent contributed.

Seen in the coldest possible light, ELIZA is a translating

processor in Gorn’s sense; however, it 1s one which has

been especially. constructed to work well with natural

language text.

REFERENCES

l. ÅBELSON, R. P., AND CARROLL, J. D. Computer simulation

of individual belief systems. Amer. Behav. Sci. 9 (May 1965),

24-30.
. Gorn, S. Semiotic relationships in ambiguously. stratified

language systems. Paper presented at Int. Colloq. Algebraic
Linguistics and Automatic Theory, Hebrew U. of Jerusalem,

Aug. 1964.

3. Bonrow, D. G. Natural language input for a computer prob-

lem solving system. Doctoral thesis, Math. Dept., MIT.

Cambridge, Mass., 1904,
. WEIZENBAUM, J. Symmetric list processor. Comm. ACM 6,

(Sept. 1963), 524-544.
5. Rogers, C. Client Centered Therapy: Current Practice, Impli-

cations and Theory. Houghton Mifliin, Boston, 1951.

6G. Yxeve, J. COMIT Programming Manual. MIT Press, Cam-

bridge, Mass., 1961.

to

we

Communications of the ACM 43

APPENDIX. An ELIZA Seript

RO yOu DO, PLEASE TELL ME YOUR PRORLEM)

STAR

(SORRY ((0) (PLEASE DON'T APOLIGIZE)

(APOLOGIES ARE NOT NECESSARY) (WHAT FEELINGS

OC YOU HAVE WHEN YOU APOLOGIZE) (I'VE TOLD YOU

THAT APOLOGIES ARE NOT REQUIRED)))

(DONT = DON'T)

(CANT = CAN'T)

(WONT = WON'T)

(REMEMBER 5

((0 YCU REMEMBER 0) (DO YOU OFTEN THINK OF 4)

(DOES THINKING OF & BRING ANYTHING ELSE TO MIND)

(WHAT ELSE DC YOU REMEMBER)

(WHY DD YOU REMEMBER & JUST NOW)

CHHAT IN THE PRESENT SITUATION REMINDS YOU OF &)

(WHAT IS THE CONNECTION BETWEEN ME AND &))

((0 DO 1 REMEMBER ©) (DID YOU THINK I WOULD FORGET 5S)

(WHY DO YOU THINK | SHOULD RECALL 5 NOW)

(WHAT ABOUT S) (“WHAT) (YOU MENTIONED 5))

((0) (NEWKEY)))

(UF 3 (C(O IF G) (DO YOU THINK ITS LIKELY THAT 3) (NO YOU WISH THAT 3)

(WHAT DO YOU THINK ABOUT 3) (REALLY, 2 3)))

(WHAT DO YOU THINK ABOUT 3) (REALLY, 2 3)))

(DREAMT & ((0 YOU DREAMT 0)

(REALLY, &) (HAVE YOU EVER FANTASIEO & WHILE YOU WERE AWAKE)

(HA OU DREAMT & BEFORE) (*DREAM) (NEWKFY)))

(DROetO = OREAMT & (=DREAMT))

(DREAM 3 ((0) (WHAT DOES THAT DREAM SUGGEST TO YOU)

(DO YOU DREAM OFTEN) (WHAT PERSONS APPEAR 1h YOUR DREAMS)

(DON'T YOU BELIEVE THAT DREAM KAS SOMETHING 10 NO WITH

YOUR PROBLEM) (NEWKEY)))

(DREAMS = DREAM 3 (=DREAM))

(HOW (=WHAT))

(WHEN (=WHAT))

CALIKE 10 (=0i1T))

(SAME 10 (=DIT))

(CERTAINLY (#YES))

(FEEL OLIST(/BELIEF))

(THINK DLIST(/BELIEF))

(BELIEVE OLIST(/BELIEF))

(WISH DLIST(/BELIEF))

(MEMORY MY (0 YOUR O © LETS DISCUSS FURTHER WHY YOUR 3)

(0 youR 0 = EARLIER YOU SAIN YOUR 3) .

(OG YOUR 0 = BUT YOUR 3)

(OQ YOUR 0 = OOES THAT HAVE ANYTHING TO NO WITH THE FACT THAT YOUR 3))

(NONE ((0) (1 AM NOT SURE I UNDERSTAND YOU FULLY)

(PLEASE GO ON)

(WKAT DOES THAT SUGGEST TO YOu)

(D0 YOU FEEL STRONGLY AROUT DISCUSSING SUCH THINGS)))

(PERHAPS ((0) (YOU DON'T SEEM QUITF CERTAIN)

(rr HE UNCERTAIN TONE)

(CAn-y+ YOU BE MORE POSITIVE)

(YOU AREN'T SURE) (DON'T YOU KNOW)))

(MAYBE (=PERHAPS))

(HAME 15 (00) (1 AM NOT INTERESTED IN NAMES)

(H'VE TOLD YOU BEFORE, I DON'T CARE AROUT NAMES -

PLEASE CONTINUE)) 7

PLEASE CONTINUE)))

(DEUTSCH (=XFREMD))

(FRANCAIS (=XFREMD))

(ITALIANO (=XFREMD))

CESPANOL (=XFREMD))

(XFREMD ((0) (1 AM SORRY, | SPEAK ONLY FENGLISH)))

(HELLO ((0) (HOW DO YOU DO. PLEASE STATE YOUR PRORLFM)))

(COMPUTER 50 ((0) (DO COMPUTERS WORRY YOU)

(WHY DO YOU MENTION COMPUTERS) (WHAT DO YOU THINK MACHINES

HAVE TO DC WITH YOUR PROBLEM) (DON'T YOU THINK COMPUTERS CAN

HELP PEOPLE) (WHAT ABOUT MACHINES WORRIES YOU) (WHAT

DO YOU THINK ABOUT MACHINES)))

GSACHINE 50 (=COMPUTER))

(MACHINES 50 (=COMPUTER))

(COMPUTERS 50 (=COMPUTER))

AM = ARE ((0 ARE YOU 0) (DO YOU BELIEVE, YOU ARE 4)

44 Communications of the ACM

(WOULD YOU WANT TO BE &) (YOU WISH I WOULD TELL YOU YOU ARE 4)

(WHAT WOULD IT MEAN IF YOU WERE 4) (=WKAT))

((0) (WHY PO YOU SAY 'AM') (1 DON'T UNDERSTANN THAT)))

(ARE ((0 ARE 1 0)

(WHY ARE YOU INTERESTED IN WHETHER | AM & OR NOT)

(WOULD YOU PREFER IF | WEREN'T 4) (PERHAPS I AM & IN YOUR

FANTASIES) (DO YOU SOMETIMES THINK | AM 4&) (#WHAT))

((0 ARE 0) (DID YOU THINK THEY MIGHT NOT RF 3)

(MOULD YOU LIKE IT IF THEY WERE NOT 3) (WHAT IF THEY WFRE NOT 3)

(POSSIBLY THEY ARE 3)))

(YOUR = MY ((0 MY 0) (WHY ARE YOU CONCERNEN OVER MY 3)

(WHAT ABOUT YOUR OWN 3) (ARE YOU WORRIEM AROUT SOMEONE ELSES 3)

(REALLY, MY 3)))

(WAS 2 ((0 WAS YOU ©)

(WHAT IF YOU WERE &) (DO YOU THINK YOU WERE &)

(WERE YOU &) (WHAT WOULD IT MFAK IF YOU WERE 4)

(WHAT DOES ' & ' SUGGEST TO YOU) (*WHAT))

(C(O YOU WAS 0)

(WERE YOU REALLY) (WHY CO YOU TELL ME YOU WERE & NOW)

(WERE YOU REALLY) (WHY DO YOU TELL ME YOU WERE & NOW)

(PERHAPS | ALREADY KNEW YCU WERE 4))

(CO WAS 1 0) (WOULD YOU LIKE TO RELIEVE I WAS 4)

(WHAT SUGGESTS THAT ! WAS &)

(WHAT DO YOU THINK) (PERHAPS | WAS 4)

(WHAT IF | HAD BEEN &))

(C(O) (NERKEY)))

(WERE = WAS (=WAS))

(ME = you)

(YOU'RE = 1'M ((O 1'M C) CPRE (1 ARE 3) (=YOU))))

(i'm x YOU'RE ((0 YOU'RE 0) (PRE (YOU ARE 3) (=1))))

(MYSELF » YOURSELF)

(YOURSELF = MYSELF)

(MOTHER DLIST(/NOUN FAMILY))

(MOM = MOTHER DLIST(/ FAMILY))

(DAD = FATHER DLIST(/ FAMILY))

(FATHER ULIST(/NOUK FAMILY))

(SISTER DLISTC/FAMILY))

(BROTHER DLISTC/FAMILY))

(WIFE DLISTC/FAMILY))

(CHILOREN DLIST(/FAMILY))

(1 = YOU

((0 YOU (= WANT NEED) 0) (WHAT HOULD IT MEAN TO YOU IF YOU GOT 4)

(WHY DO YOU WANT &) (SUPPOSE YCU GOT & SMOX) (WHAT

IF YOU NEVER GOT &} (WHAT WOULD GETTING & MEAN TO

YOU) (WHAT DOES WANTING 4 KAYE TO DO WITH THIS NISCUSSION))

((0 YOU ARE © (eSAD UNHAPPY DEPRESSEM SICK) 0)

(1 AM SORRY TO HEAP YOU ARE 5) (DO YOU THINK COMING HERE

WILL HELP YOU NOT TO SE S) (1 'm SURE ITS NOT PLEASANT TO

BE 5) (CAH YOU EXPLAIN WHAT MANE YOU 5))
(CO YOU ARE O (*HAPPY ELATED GLAN BETTER) 0)

(HOW HAVE | HELPED YOU TO BE 5)

(HAS YOUR TREATMENT MADE YOU S) (WHAT MAKES YOU S JUST

NOW) (CAN YOU EXPLAIN WHY YOU ARE SUDDENLY 5))

((&@ YOU WAS 0) (#WAS))

(C(O YOU WAS 0) (=WAS))

(C(O YOU (/BELIEF) YOU 0) (00 YOU REALLY THINK SO) (BUT YOU ARE

NOT SURE YOU 5S) (DO YOU REALLY DOUBT You 5))

((0 YOU 0 (/BELIEF) 0 I 0) (#YOU))

((0 YOU ARE 0)

(IS IT BECAUSE YOU ARE 4 THAT YOU CAME TN ME)

(HOW LONG HAVE YOU BEEN 4)

(DO YOU BELIEVE IT NORMAL TO BE 4)

(DO YOU ENJOY BEING &))

((O YOU (* CAN'T CANNOT) 0) (HOW 00 YOU KNOW YOU CAN'T 4)

(HAVE YOU TRIED)

(PERHAPS YOU COULD 4 KOH)

(DO YOU REALLY WANT TO BE ABLE TO &))

((0 YOU DON'T O)(DON'T YOU REALLY &)(WHY DON'T YOU 4)

(DO YOU WISH TO BE ASLE TO &) (MOES THAT TROUBLE YOU))

((0 YOU FEEL 0) (TELL ME MORE ABSUT SUCH FEELINGS)

{80 YOU OFTEN FEEL 4)

(BO YOU ENVOY FEELING &)

(OF WHAT DOES FEELING & REMIND YOU))

((0 YOU 0 1 0) (PERHAPS IN YOUR FANTASY WE 3 EACH OTHER)

(DO YOU WISH TO 3 ME)

(YOU SEEM TO NEED TO 3 ME)

(DU YOU 3 ANYONE ELSE))

Volume 9 / Number 1 / January, 1966

KB

((0) (YOU SAY 1)

(CAN YOU ELABORATE ON THAT) (NO YOU SAY 1 FOR SOME SPECIAL REASON) |

(THAT'S QUITE INTERESTING)))

CYOU = § ((0 1 REMIND YOU OF 0) (*DIT))

((0 I ARE 0) (WHAT MAKES YOU THINK | AM &)

(DOES IT PLEASE YOU TO BELIEVE I AM &)

(DO YOU SOMETIMES WISH YOU WERF 4)

(PERHAPS YOU WOULD LIKE TO RE 4))

((9 1 0 YOU) (WHY DO YOU THINK I 3 You)

(yOu LIKE TO THINK I 2 YOU = DON'T You)

(WHAT MAKES YOU THINK I 3 You)
(REALLY, 1 3 YOU) (NO YOU WISH TO AFLIFVE 1 3 you)
CREALLY, 1 3 YOU) (DO YOU WISH TO RELIFYF 1 3 YOU)

(SUPPOSE I DID 3 YOU - WHAT WOULD THAT MEAN) -

COOES SOMEONE ELSE BELIEVE 1 3 Youd)

(CO § 0) (WE WERE DISCUSSING YOU - NOT ME)

(OH, I 3) (YOU'RE NOT REALLY TALKING AROUT MF = ARE you)
(WHAT ARE YOUR FEELINGS NOW)))

CYES ((0) (YOU SEEM QUITE POSITIVE) (YOU ARE SURE)

CT SEE) (1 UNDERSTAND)))

CNO (C0) (ARE YOU SAYING "NO! JUST TO RE NEGATIVE)

(YOU ARE BEING A BIT NEGATIVE) (WHY KOT) (HHY 'NO')))

(MY = YOUR 2 ((0 YOUR 0 (/FAMILY) 0)

(TELL ME MORE ABOUT YOUR FAMILY) (WHO ELSE IN YOUR FAMILY

5) (YOUR &} (WHAT ELSE COMES TO MIND WHEN YOU THINK OF
YOUR 43)"

CO YOUR 0) (YOUR 3) (WHY DO YOU SAY YOUR 3) (NOES THAT

SUGGEST ANYTHING ELSE WHICH BELONGS TO YOU) (IS IT

IMPORTANT TC YOU THAT 2 3)))

(CAN (C(O CAN £ 0) (YOU BELIEVE I CAN 4 DON'T YOU) (=WHAT)
CyOU WANT ME TO BE ABLE TO &) (PERHAPS YOU WOULN LIKF TO BE
ABLE TO & YOURSELF)) ((0 CAN YOU 0) (WHETHER OR NOT YOU CAN &
DEPENDS ON YOU MORE THAN ON ME) (NO YOU WANT TO BE ARLE TO &)
(PERHAPS YOU DON'T WANT TO &) (=WHAT)))

CAHAT (C0) (KHY DG YOU ASK) (DOES THAT QUESTION INTEREST YOU)
(WHAT 1S IT YOU REALLY WANT TO KNOW)

CARE SUCH QUESTIONS MUCH OK YOUR MIND)

(HHAT ANSWER WOULD PLEASE YOU MOST)

CHHAT DO YOU THINK) (WHAT COMES TO YOUR MIMM WHEN YOU ASK THAT) -
(HAVE YOU ASKED SUCH QUESTION REFORE)

CHAVE YOU ASKED ANYONE ELSE)))

(BECAUSE ((0) (IS THAT THE REAL RFASON) (NON'T ANY OTHER REASONS
COME TO MIND) (DOES THAT REASON SEEM TO EXPLAIR ANYTHING ELSE)

(WHAT OTHER REASONS MIGHT THERE 8F)))

(WHY ((0 WHY DON'T 1 0) (NO YOU BELIEVE I NON'T 5) (PERHAPS I
WILL 5 IN GOOD TIME) (SHOULD YOU 5 YOURSELF) (YOU WANT ME TO S)
(WHAT)) ”
(=WHAT))

(CO WHY CAN'T YOU 9) (MO YOU THINK YOU SHOULD RE ARLF TO 5)

(DO YOU WANT TO RE ABLE TO S) (MO YOU BELIFVE THIS WILL HELP YOU

TO 5) (HAVE YOU ANY IDEA WHY YOU CAN'T 5) (=WHAT))

(= WHAT))

CEVERYONE 2 ((0 (* EVERYONE EVERYRODY NOBODY NOONF) 0)

(REALLY, 2) (SURELY NOT 2) (CAN YOU THINK OF

ANYONE IN PARTICULAR) (WHO, FOR EXAMPLE) (YOU ARE THINKING OF

A VERY SPECIAL PERSON)

(HHO, MAY | ASK) (SOMEONE SPECIAL PERHAPS)

(YOU HAVE A PARTICULAR PERSON IN MINA, DON'T YOU) (WHO NO YOU

THINK YOU'RE TALKING A80UT)))

(EVERYBODY 2 (= EVERYONE))

(NOBODY 2 (=EVERYONE))

(NOONE 2 (*EVERYONE))

CALWAYS 1 (€0) (CAN YOU THINK GF A SPECIFIC EXAMPLE) (WHEN)

(WHAT INCIDENT ARE YOU THINKING OF) (REALLY, ALWAYS)))
CLIKE 10 (C0 (#AH IS ARE WAS) © LIKE 0) (=01T))

(C03 (NEWKEY)))

(DIT (CO) CIN WHAT WAY) (WHAT RESEMBLANCE DO YOU SFF)

(WHAT DOES THAT SIMILARITY SUGGEST TO YOU)

(WHAT OTHER CONNECTIONS DO YOU SEE)

(HHAT DO YOU SUPPOSE THAT RESEMBLANCE MEANS)

(WHAT IS THE CONNECTIOK, DO YOU SUPPOSE)

(COULD THERE REALLY BE SOME CONNECTION)

(HOW)))

dr]

RECEIVED NEPTEMBER, 1965

Volume 9 / Number 1 / January, 1966

SELES ISR POISE BRE LE EN IEEE NIE UE

LETTERS—continued from p. 35

The technique consists of translating the code for the letter

“O” to the code for the numeral 0 whenever it is encountered in the
input character string. If the string consists only of items such as

numbers and names and it is necessary to sort alphabetically ot

names, the occurrence of an alphabetic character within a name

field is used to eause the code for zero to be retranslated to the

code for the letter “O" by a rescun of the characters in the name
field.

If no sorting is required, the retranslation can be avoided, pro-
vided that delimiters such as FORMAT or GO TO are spelled
with zero within the recognizer seginent of a translator. It is also
necessary to redefine identifier as

(identifier) ::= (letter) | (identifier) letter) | (identifier) (digit) |
(0) (identifier)

where it is understood that the letter “O” is removed from the
standard definition of Jetter as in AuGor GO. The redefinition per-
mits the inclusion of identifiers such as OD) or OOPS but prevents

the use of an identifier consisting only of the repeated mark O.

This technique requires consisteney of use and might result in

chaos in a warehousing operation in which the letter “OQ” is used
in parts labels with check digits.

L. Rickard Turner

NASA Lewis Research Cente:
Cleveland, Ohio

Comments on a Problem in Concurrent

Programining Control

Dear Editor:

I would like to comment on Mr. Dijkstra’s solution [Solution

of a problem in concurrent programming control. Comm ACW 8

(Sept. 1965), 569] to a messy problem that is hardly academic. We
are using it now on a multiple computer complex.

When there are only two computers, the algorithm may be
simplified to the following:

Boolean array b(0; 1) integer hk, 7, j,

comment This is the program for computer i, which may be
either 0 or 1, computer 7 #7 is the other one, 1 or 0;

CO: b (i) := false;
Cl: if k #7 then begin
C2: if not b(j) then go to C2;

else k := 7; go to Cl end;

else critical section;

bli) := true;

remainder of program;

go to C0;

end

Mr. Dijkstra has come up with a clever solution to a really

practical problem.

Harnis Hyman

Maunitype

New York, New York

Cn

Communieations of the ACM 45

a TSS

