

P|Cf¬Ql.§NE

 Programmer s Guide
Version 2.0

lnt. aduction
CPU

Configuration

Console Module

:�r:Y twuuug: - .
1:.

 ;.-3 =_V �_� "

 .5

.w1W;Tt. PEC¢3;IKE; E3759, operating system, CCP/M-86,
scatware, haravaxe.

uum . :2:r:.<a:u:

EIIIBQE This manual desez�bgg tug gct�gkg�al devices
useé in EZCCGLEKE. T�e aanuai �emtains in-
�mr�ation th t emahies an niwancea user to
implémzwt hos awn �zivers fa; E1CEO&INE peti-
-_-nl M rev: : -;�4'3_»L ..<§'.~ 5.:-J.-L. -

Thrcughcut J�

 l

;r-:!.--. re .« .,-.~ . .�:'¢_.... t v..<..,'-«,2.-~,& 92+.'. 34:4 e��.3.{Li.J.. ..r

.rnHa3 it is assumed that the
r with tie ASM35 or the

Rk��g� u&aembLcr, WLQE the Concwrrent CP/M
operating gyetem aa� with gtrig�exal device
�n�e����i�� ��ntcrmnpts e%c.§¢ �

«�he manual is intended to: mac in ccanectiou
 versd.-cm 3.! of tilt CCPIFI operating
$;§¢em and-version 2.3 of the X108.

§§w;¢~i§ is 3 registeteé trademark of Digital Research.
33;; $5 a registered traéemark of Intel corporation.

canny» © 1985 :'&.;:. �;'.e»-gnecenltalen at 1979
RC Computer A/S

Udulvll at A/3 Ho�occnlnion I! 1979. Kobenhavn
lhnuuddnmnnmuuumnouuwmwmuuunuumnu-
nemuuua ummmuumunoulclmouunur
m�mauvhl�r Nwemnunnmunnkmrhnunnd
cbmmanmnt lmounumbhnunmuuu �II -Ween.::......." . W -M

Table of Contents:

1� IntroductionOOIOIIIOOOOOIOOOOOIIOIUCOOOIIOOOOOOOIOIOOI 1
1.1 O O O O OOOOIOOOIOOOOOIIOO O I O O O 00000000 3

2! CPUO0OOOOOOOOOOIIOOOOOIOIOI00000000000000000000000000
2.1 Interrupt System................................. 11
2.2 Direct Memory Access............................. 12

2.2.1 DMA Channel Reservation.................... 12
2.2.2 DMA Request Line Setup..................... 13
2.2.3 DMA Interrupt Handling..................... 13

2'3 TimerSUOOOCOOOCOOIOOIOOOOUOUOOOOOOOOOOOCCOOOOOOOC

30 Configuration.�CCOOCOOOOIOOOOOCOOOOCCOOOCOOOOOOOCDOOO
3.1 Auto Configuration............................... 15
302 Mem°rYCOOOOIOOOOOOOIOOOOOOOOIOOOOIOI

4. Console Module....................................... 25
4.1 CRT controller................................... 25

4.1.1 82730 Command Block........................ 25
4.1.2 Character Format........................... 26
4.1.3 Palette.................................... 26
4.1.4 Graphics Mode.............................. 29

4.2 Direct Console Access............................ 30
4.2.1 XIOS Conout................................ 30
4.2.2 Direct Console Buffer Output............... 31
4.2.3 Display Buffer Manipulation................ 32
4.2.4 Get/Set Cursor Position.................... 34
4.2.5 Get/Set Attribute.......................... 34

4.3 Character Sets................................... 35
4.3.1 Altering the Character Set................. 36
4.3.2 Define Character Font

 Alternative Character Set!................ 37
4.3.3 Define Character Font...................... 38
4.3.4 Get Character Font.Definition.............. 38.

4.4 Console Control Characters....................... 40
4.4.1 Console Escape Sequences................... 40

4.5 Graphics Mode.................................... 55
4.5.1 Init Graphics.............................. 55
4.5.2 Exit Graphics.............................. 56
4.5.3 Exclusive Access to Pixel Memory........... 57
4.5.4 Pixel Address Calculation.................. 59

RC Computer

PICCOLINE Table of Contents

4.6 Window Handling..................................
 PointerS..OOOCIIOOO0.0IOOOOOIOOOOOOO
set Window Manager State...................

4.6.
I O

-huh-F-F-I3

 OO O

 O92O92O92O�92O�92

 CCO

 axons:-ww

50

1

Create a New Window........................
Set Cursor Tracking Mode and Viewpoint.....
Set Wrap Around Column.....................
Switch Between Full Screen and Window......

4.7 Keyboard Interface...............................
4.7.1 Keyboard Driver............................

408 InterfaceOOOOIOUOOOOOOOOOOOOOOOOOOOO0000900

CIOCROOOOCOOIIOOOOQOOOOI0000000000000000000
5.1 Real Time Clock Controller.......................
5.2 Reading and Writing Real Time Clock Registers....

SoundOOOO0.00000IOOOOOOOOCOOOOIIIOOOIOOOOOOOOOOIOCOCO

601ToneSOOOOOIOOOOOICOOOODOOIOIOOOOOOOOO

 602 N°j.seOOIIIOOOOIOOOOOOOOOOOOOOIOOOOOOI

100 Interface�OOIIO0O00000000OOIOOOOOOOOOIIOIOOOO
10.1 Standard Serial Communication Support.......... 99

Schemeoooooooooooooooooooo
10.2 Serial Communication Controller............... 100

10.2.1 Asynchronous Communication............. 101
i.SBX35loo0-ooooooooooooooo000

10.4 Sample Asynchronous Communication Program..... 105

11. Local Area Network..;.............................. 111
11.1 Fundamental Concepts.......................... 112
11.2 The Datalink Layer Service Interface.......... 113

11.2.1 RCLLC Services......................... 116
11.2.1.1 ACTIVATE.request.............. 117
11.2.1.2 ACTIVATE.confirm.............. 118
11.2.1.3 DEACTIVATE.request............ 119
11.2.1.4 DEACTIVATE.confirm............ 119
11.2.1.5 TEST.request.................. 120
11.2.1.6 TEST.confirm.................. 121
11.2.1.7 TEST.indication............... 121

11.2.2 Type 1 Service......................... 122
11.2.2.1 UDATA.request................. 122
11.2.2.2 UDATA.confirm................. 123
11.2.2.3 UDATA.indication.............. 123

11.2.3 Client Network Service................. 124
11.2.3.1 CONNECT.indication............ 125
11.2.3.2 DISCONNECT.indication......... 125
11.2.3.3 DISCONNECT.acknowledge........ 126
11.2.3.4 DISCONNECT_ACKNOWLEDGE.confirm 127
11.2.3.5 DATA.request................., 127
11.2.3.6 DATA.confirm.................. 128
11.2.3.7 DATA.indication............... 128

11.3 MAC Services.................................. 129
, 11.3.1 Controller Specific Information........ 130

11.4 RCLLC Datalink Layer Protocol................. 131
11.4.1 Type 1 Procedures...................... 132

11.4.1.1 Unacknowledged Data Transfer.. 132
11.4.1.2 Loop-back Test Procedure...... 132_
11.4.1.3 Station Identification

Exchange...................... 133
11.4.2 Procedures for Client Network Service.. 133
11.4.3 RCLLC Protocol Elements................ 138

11.4.3.1 UI Unnumbered Information!... 141
11.4.3.2 XID exchange IDentification!. 141
11.4.3.3 TEST.......................... 141
11.4.3.4 ACTIVE_SAP.................... 142
11.4.3.5 RESET......................... 142
11.4.3.6 RACK.......................... 143
11.4.3.7 DATA 143
11.4.3.8 ACK........................... 143

.___

 RC Computer

PICCOLINE �

12. iSBX Bus Specification.............................
120]. DeSCriptiOn----ooo-o--------.......

12.1.1 iSBX Multimodule System Elements.......
12.10101BoardSOOOOOOOOOUOOOOOIOOI
12.1.1.2 iSBX Multimodule Boards.......
iSBX Bus Interface..........
12.1.2.1 Control Lines.................
12.1.2.2 Address and Chip Select Lines.
12.1.2.3 Data Lines MDO-MD7!..........
12.1.2.4 Interrupt Lines

 MINTRO-MINTR1!...............
12.1.2.5 Option Lines OPTO. 0PT1!.....
12.1.2.6 Power Lines...................
iSBX Multimodule Command Operations....
12.1.3.1 I/0 READ......................
12.1.3.2 I/O WRITE.....................
12.1.3.3 Direct Memory Access DMA!....

12.1.4 RC759 Interface........................
12.1.4.1 Address Decoder...............
12.1.4.2 Status Signa1s................
12.1.4.3 Interrupt Signa1s.............

Electrical Specifications.....................
12.2.1 General Bus Considerations.............
12.2.2 Power Supply Specifications............
12.2.3 Environmental..........................
12.2.4 Timing.................................

B 12.4.5 DC Specifications......................
12.3 Mechanical Specifications.....................

12.3.1 iSBX Connector.........................
12.3.2 iSBX Multimodule Board Height

Requirement............................
12.3.3 iSBX Multimodule Board Outline.........
12.3.4 iSBX Multimodule Board User I/0

Connector Out1ines.....................

Example................................

 Serial I/O Communications Channel
Interface..............................
CPU Interface..........................

12.4.3 Interface Buffering....................
12.4.4 Clock Generation Circuitry.............
12.4.5 AC Specifications......................

12.1.2

12.1.3

12.2

12.4 Design

 12.4.1

12.4.2

13. Inter Computer File Transfer.......................
13.1 Requirements..................................
13.2 How FILEX Works...............................

13.2.1 FILEX Transactions.....................
13-2-2 Transmission protocol..................

RC Computer

Table of Contents

145

 147

 147

 148

 148
148

 149
150

 151

151

151

Table of Contents

Appendices:

A.

 B.

 C.
D.

 E.

 F.
G.

InterfaceOOOCOIOOOOO000000000000000
Peripheral Device I/O Addresses.....................
Interrupt Vector Assignment.........................

KeyStrokeSOC..OO.C.ICOOCCCOQOOCOOC
 CodeSO.I.O...IOOOOOCUCIOUCUCCCOCO.
Console Escape Sequences............................
ReferencesO00000000000000!OOOOOOOOOCOOOOOOOOOOO00000

Indexoooo0nocoo0coooooooooooooooooooooooooooo

PICCOLINE

183

 203

 205
207

 215
217
219

221

1. Introduction

The intention of this manual is to enable programmers to
use the PICCOLINE peripherals in their own ways.

The following peripherals, which are either part of the CPU
or devices connected to the CPU, are standard in a PICCO-
LINE system:

2 DMA channels integrated on CPU!

3 Timers integrated on CPU!

1 Interrupt controller integrated on CPU!

1 Intel 8259A programmable interrupt controller

CRT controller based on Intel 82730

Keyboard interface

Real time clock

Sound device

Non volatile memory NVM!

Local parallel printer interface

Cassette tape interface

Connector to PICCOLINE Disk/Printer-Adaptor

Connector to micronet interface

iSBX-connector

The interconnection of these peripherals is shown on-
fig.1.1 page 2.

RC Computer -1-

PICCOLINE1. Introduction

8.u .ouuccoo .

Soon

- my
0 1:-�

�-9: �

.
.2
.73.: 3.50

$«W.-I�92�.�92.�.~.U..�92.��.�92�-�92§�§I.-9292�-_92.92..92��Iw.92�.�.-92I_I92�~-92.92
SB. 5
.2
nE.

-t..oE
atom uoEo:.uo...o<<

out? o:uoaEoU

.V�-..:-

.�..~��Q
...~.x���.�

�C§§C.C92§C§92

.o._uuam

x >N .u92 >2. >15...

�

2 92
>n. .250.

xzooccov

l
.oo...�xox O|.I�9292§§929292..l929292
Yoonxux

» ww

 ..2 .
E .su~..n~u~unu{_
Loan .5:

3

.2.

.133.

92

.023�

92

T

92»&o: 0.

 3

.o.uoccoU

92

.

ago? I

 .4�.��.�92
I

El 92
.

-3 V
A n
a
O.

W

ow; 0.92s~92929292
$

"

n q
O

...:..u

� :33. .32:2.su
�

92 .

Z5 .oeo.u.<<
2

� .r U

U ' ' U- | EL
�s

.02

08:9... .oco.£<<

VDD~E

PICCOLINE 1. Introduction

Besides these standard peripherals the PICCOLINE system may
be enhanced with

- A local area network controller based on the Intel
82586 ethernet controller

- A PICCOLINE Disk/Printer-Adaptor if PICCOLINE is
connected to disks resident inside the PICCOLINE
Disk/Printer-Controlunit DPC!!

- other controllers connected to the iSBX-connector. This
connector is supported in accordance to the iSBX bus
standard from INTEL. In this manual only the iSBX
serial multimodule board is described.

In this manual the software interface to the above mentio-
ned peripherals will be described.

1.1 XIOS Overview

The XIOS extended Input/Output System! is the lowest layer
of software in the PICCOLINE. «

The XIOS consists of a set of routines, each controlling a
specific hardware component, which together constitutes a
welldefined interface to the CCP/M operating system see
ref.3!

A XIOS routine is executed as part of the user programs as
a consequence of operating system calls. when a user pro-
gram has requested a service by means of an operating sys-
tem call, the program will be suspended i.e. the program
will not return from the X108 routine! until the requested
service can be fullfilled e.g. a sector on the floppy disk
has been read!.

RC Computer -3-

1. Introduction PICCOLINE

Table 1.1 is an overview of the available XIOS routines.

The routines with

Routine Name

IO_CONST

 IO_CONIN
IO_CONOUT

 IO_LISTST
IO_LIST

 IO_AUXIN

IO_AUXOUT

 IO_SWITCH

 IO_STATLINE

 IO_SELDSK
IO_READ

 IO_WRITE
I0_FLUSHBUF

 I0_POLL
Not used
Not used

WW_POINTER

PICCOLINE ' 1. Introduction

All the above mentioned XIOS routines have a common
convention concerning the contents of the registers when
the routines are entered. The convention is as follows:

Register AL contains the routine number

Register ES contains the paragraph address of the
calling process� User Data Area UDA!

Register DS contains the SYSDAT segment address

When the X108 routines are entered as a consequence of a
CCP/M operating system call, CCP/M manages the above
mentioned conventions. On the other hand, when the X108
routines are entered directly from a user program it is the
responsibility of this program to establish the register
contents before entering the routine.

Besides the common register contents. a XIOS routine may
require some parameters which for some of the routines are
transferred in a register and for other routines are
transferred on the stack. A detailed description may be
found in ref.3.

Example

This example shows how a program can initialize the ES and
DS register with the UDA and SYSDAT values and how the
standard XIOS routines are entered.

; Get Process Descriptor Address.
; The address segment is returned in ES and
; in Ex used later!
Mov CL,156
Int 224

; Initialize DS to SYSDAT segment using
; the fact that the process descriptor
; segment is the same as the SYSDAT segment
Push ES
Pop DS

: Initialize ES with UDA address. UDA address
; is taken from the process description word 10H
Mov ES,10HEBXA

; Now initialize all routine dependent parameters
; either register parameters or parameters on stack!.

RC Computer -5-

1. Introduction PICCOLINE

; Enter the routine Via the XIOS entry field in SYSDAT
Mov AX,routine_number
Callf DS:Dword Ptr .28h

As an extension to the standard XIOS routines some extra
routines have been implemented. Opposed to the standard
routines, which are entered through a far call via the XIOS
entry field in the SYSDAT area, these extra routines are
entered by executing a software interrupt on level 28h. A
detailed description of the extra routines may be found in
appendix A. In the remaining chapters the extra routines
will be denoted as �Int-28h functions�.

The synchronization between the interrupt service routines
for the different peripherals and the programs using the
peripherals is done by means of the CCP/M flag mechanism
 see refs.2,3!.

Table 1.2 shows how these flags are assigned on the PICCO-
LINE.

-6- RC Computer

PICCOLINE 1. Introduction

Flag number Use

0 Reserved by CCP/M

1 Tick

2 Second

3 Minute

4 Scroll synchronization

5 Key available flag

6-7 Reserved

8 Floppy disk

9 Scroll synchronization

10 Scroll synchronization

11 Floppy motor

12 Local parallel interface

13-18 Reserved

19 Error key flag

20-21 Reserved

22 Net transmitter

23 Net receiver

24 Window manager

25 DPC parallel printer

26463 Reserved for future use

64-127 Free

128-255 Reserved by DR Net

RC Computer

Table 1.2. Flag Assignments

1. Introduction PICCOLINE

In order to manage reservation of different resources, the
operating system maintains a number of queues. As queue
names must be unique, the names of these queues are
reserved by the operating system. A list of reserved queue
names may be found in table 1.3.

Number of Message
Name messages length Usage

Tmpo 1 112 See below
Tmpl 1 112 See below
Tmp2 1 112 See below
Tmp3 1 112 See below

VCMXQO 1 0 Virtual console 0
VOUTQO 16 2 - do -
VINQO 64 2 - do -

VCMXQ1 1 0 Virtual console 1
VOUTQI 16 2 - do -
VINQ1 64 2 - do -

VCMXQ2 1 0 Virtual console 2
VOUTQ2 16 2 - do -
VINQ2 64 2 - do -

VCMXQ3 1 0 Virtual console 3
VOUTQ3 16 2 - do -
VINQ3 64 2 - do -

Mxalt 1 0 Alt. charset reservation
XMIT_REQ 10 15 Net driver Net system only!
link_req 1 15 Net driver Net system only!
Mxdmal 1 0 DMA channel 0 reservation
MXdma2 1 0 DMA channel 1 reservation
Mxsound 1 0 Sound device reservation
MXLoad 1 0 Used during program load
Mxdisk 1 0 Disk system reservation
Mxcass 1 1 Cassette tape reservation

Table 1.3. Reserved Queue Names.

-8- RC Computer

PICCOLINE 1. Introduction

The Tmp queues Tmp0. Tmpl. Tmp2 and Tmp3! are primarily
intended for use in connection with the menu system to fa-
cilitate the loading of menu programs and the return to the
outermost menu level, but may also be used by ordinary pro-
grams.

The function of the Tmp queues is as follows:

when a Tmp succeeds in the attempt to attach to its default
console, the first step is to make a conditional queue read
on the relevant Tmp queue. If this read is successfull the
Tmp will use the data read as if it was a command line read
from the keyboard i.e. the same syntax as for command
lines is valid. including multible commands separated with
the sequence '//'!. If no data was read the Tmp makes a
�read console buffer� operating system call to get the
command line from the keyboard.

RC Computer -9-

1. Introduction PICCOLINE

'10� RC Computer

2. CPU

The PICCOLINE system is based on an Intel 80186 single chip
CPU with the following integrated peripherals:

- Programmable interrupt controller

- 2 Independent DMA channels

- 3 Programmable 16-bit timers

All the integrated peripherals are controlled via 16-bit
registers contained within an internal 256�byte control
block. The base address of this control block is OFFOOH.

The following three chapters give a description of how the-
se peripherals are used in the PICCOLINE.

2.1 Interrupt System

The peripherals which are able to interrupt the CPU are
connected to the internal interrupt controller via an
Intel 8259A Programmable Interrupt Controller which uses
the following I/0 addresses:

Initialization command word: 08
Operation command word: 28

The IR inputs to the Intel 8259A are connected as follows:

IRO: Floppy controller from DPC unit!

IRl: Keyboard interface

IR2: Parallel printer! interface from DPC unit!

IR3: » Real Time Clock I
IR4: CRT controller

IRS: V NET controller

IR6: Parallel printer! interface from CPU unit!

IR7: not used

The Intel 8259A is connected to the INTO and INTAO termi-
nals of the CPU.

RC Computer -11-

2 . CPU PICCOLINE

INTRO from the iSBX connector is connected to INTI on the
CPU vector type 13! and INTR1 to INT3 vector type 15!

The internal interrupt controller is initialized to cascade
mode and level triggered interrupts.

The Intel 8259A is initialized to buffer mode, master,.no
slaves connected, fully nested interrupts, specific end of
interrupt, level triggered and first vector 80H.

A list of interrupt vector assignments may be found in ap-
pendix C.

Details about the interrupt controllers may be found in the
Intel reference documentation.

2.2 Direct Memory Access

The two integrated DMA channels are able to transfer data
between memory and 1/0 space e.g. Memory to I/O! or within
the same space e.g. Memory to memory or I/0 to I/O!. Data
can be transferred either in bytes 8 bits! or in words �6
bits! to or from even or odd addresses.

DMA channel 0 is connected to the iSBX connector while DMA
channel 1 is used as floppy tranfer channel.

Detailed information about the DMA channels may be found in
the Intel reference documentation.

2.2.1 DMA Channel Reservation

As the two DMA channels are shared among different periphe-
ral devices, it is necessary to reserve a channel before
using it. The reservation of the channels are done by means
of two mutual exclusion queues, �MXdmaO' and 'MXdma1'. When
a program succeeds in reading one of these queues, it has
got the right to use the corresponding DMA channel. The DMA
channel is released by writing to the relevant mutual
exclusion queue.

-12- RC Computer

PICCOLINE 2 - CPU

2.2.2 DMA Request Line Setup

Each of the two DMA channels can handle DMA requests from
the following different sources:

DRQSEL DMAO source DMA1 source

0 0 iSBX DPC external floppy!
0 1 0 0
1 0 DPC external floppy! iSBX
1 1 1 0

when a program has succeeded in reserving a DMA channel, it
must set up a connection for the DMA request signal. be-
tween the peripheral device and the DMA controller. This is
done by writing a control byte to a parallel port located
at I/O address 74H. The format of the control byte is as
follows:

Bit 0 ENABLE CAS sette!
Bit 1 MOTOR OFF
Bit 2-3 DRQO-1
Bit 4-5 NVMAO-1 NVM bank!
Bit 6-7 must have the binary value 11.

2.2.3 DMA Interrupt Handling

The two DMA channels are connnected to the internal 80186
interrupt controller. The interrupt level of DMA channel 0
and 1 is 10 and 11.

Example

DMAInterruptService:.

 ; save context

Push DX
Push AX

; Non specific end of interrupt
; to internal interrupt controller
Mov DX,0FF22H
Mov AX,8000H
Out DX,AX

RC Computer -13-

2. CPU PICCOLINE

; restore context
Pop AX
Pop DX
Iret

2.3 Timers

The three 16-bit timers are used for the following pur-
poses:

Timer 0 is used to generate serial output to the audio
cassette interface

Timer 1 is used to generate audio output the 'BELL'!

Timer 2 is reserved for future use

Detailed information about the timers may be found in the
Intel reference documentation.

-14- RC Computer

3. Configuration

The basic configuration of the PICCOLINE has two forms:

1. During the initialization after power up or any kind of
reset, the software investigates the hardware environ-
ment to determine the size of the main memory. the num-
ber of disks attached etc. This kind of configuration
is called the auto configuration.

2. During system initialization the operating system ini-
tializes the serial communication controller if any,
the cursor representation, the floppy motor timer etc.
This initialization is done on the basis of the
contents of the non volatile memory NVM!. The content
of the NVM is normally only modifiable by the KONFIG
program ref.5!.
If the file KDEF.SYS exist on the load device, the file
is read during system initialization and the content of
KDEF.SYS is written in the NVM.
The file KDEF.SYS is modified by the program OKONFIG.

3.1 Auto Configuration

The hardware configuration map is accessible for the pro-
grammer by means of the Int-28h function 4.

This function returns a pointer to the configuration map
 see appendix A!.

NOTE

The contents of the configuration map must not be
modified.

The configuration map has the following format:

T Byte offset explanation

0-3 This double word contains the main
memory size in bytes.

4-7 This double word contains the total
memory size in bytes including the
CRT pixel memory!.

8-11 Reserved.

RC Computer -15-

3. Configuration __._ ___ _PICC0LIH§

12 The value of this byte is OFFH if
the real time clock second source
is installed see 5.1!. Otherwise
the value is 0.

13 The value of this byte is OFFH in
case the local area net work con-
troller is installed. Otherwise the
value is 0.

14 The value of this byte is OFFH in
case any iSBX module is installed.
Otherwise the value is 0.

15 This byte is set to OFFH if the
Disk/Printer DPA! is installed.
Otherwise the value is 0. '

16-17 Reserved.

18 This byte specifies the type of
attached monitor:

OH 15.625 kHz colour
1H 15.625 kHz monochrome
2H 22 kHz colour
3H 22 kHz monochrome

19 This byte hold the number of floppy
drives connected to the system.

20-21 Reserved.

22 This byte contains the value of the
nationality code switch of the key-
board range 0-15!.

3.2 Non Volatile Memory

The function of the NVM is to keep various system parame-
ters during power down periods.

The NVM is made up of a 256 by 4 bit CMOS RAM with battery
backup.

The NVM is divided into 4 blocks_each containing 64 4-bits
nibbles. A block is selected by means of bit 4 and bit 5 in
the I/O port at address 74H. Please note that a block se-
lect operation must not affect the other bits in the I/O
port.

-16- RC Computer

PICCOLINE 3. Confi uration

After a block has been selected, the 64 nibbles in the
block are accessible on the even I/O addresses from 80H to
OFEH. when an IN or OUT instruction is executed with one of
these addresses, the four least significant bits of regis-
ter AL will be transferred to/from the NVM.

A copy of the NVM is accessible for the programmer by means
of Int-28h function 3:

Registers at entry:

AL 3

Registers at return:

ES NVM copy pointer segment
SI NVM copy pointer offset

The NVM layout is as follows seen as bytes!:

byte number description

0 Checksum see below!.

1-2 Type number.

3-4 0

5-6 Serial number.

7-12 Reserved.

13 Baud rate and mode for the
iSBX351/V24 channel. High nibble is
baudrate receive baudrate = trans-
mit baudrate!. The nibble coding
is:

0: 75 baud
1: 75 -
2: 110 -
3: 150 -
4: 300 -
5: 600 -
6: 1200 -
7:� 2400 -
8: 4800 -
9: 9600 �

RC Computer -17-

3. Configuration PICCOLINE

Low nibble designates channel

usage:

 0: virtual console
1: printer

14 Stop bit and parity.
Parity is coded in bit no 0 and 1:

0: no
1: odd
3: even

Stop bit is coded in bits no 2 and
3:

1: 1
2: 1.5
3: 2

15 Initial value of RTS. Bit no 1 is
coded as follows:

0: low
1: high

16 Reserved.

17 Number of bits pr. char. The bits
no 6 and 7 are encoded as follows:

0 5
1 6
2 7
3 8

18 4 most significant bits hold CRT
scroll mode. �=jmp mode; l=soft
scroll mode!.

19 4 most significant bits hold the
cursor height � to 10 video
lines!. 4 least significant bits
holds the cursor blink mode
�=solid; 1=blinking!.

-18- ' RC Computer

p1ccoL1NE 3. Configuration

20 Number of idle seconds before the
floppy motor stops �-255!. Must
not be less than 2. It is also the
time before the floppy disks is
released.

21 Reserved.

22 Default foreground colour. The bits
are encoded as follows:

Bit 0 blue beam on/off
Bit 1 yellow beam on/off
Bit 2 red beam on/off
Bit 3 high intensity on/off
Bit 4-7 0

23 The month of the last power on �H-
12H!.

24 Current year �8H-99H!.

25' Load device i.e. the device from
which the operating system is
loaded!. The value is the disc
drive letter �A� and �B� or the
letter 'N' which means load via the
local area network.
It is also possible to load from
prom on special PICCOLINES and in
this case the value is �P�.

26 Number of disk buffers ��255!.

27 Memory disk size:

0: 0 Kbytes
1: 64 Kbytes
2: 128 Kbytes
3: 192 Kbytes
4: 256 Kbytes

28 Hardcopy printer type:

0: All characters in the range 32
to 126 are printed without
conversion. All other characters
are converted to blanks.

1: All characters are printed
without conversion.

RC Computer -19-

3. Configuration PICCOLINE

29 DR Net node id �-254!.

30 DR Net default server id O-254!.

31 Autologon mask:

Bit 0=1: Virtual console 0 is
automatically logged on to
default server when the
system is started.

Bit 1=l: Same as above for console
1.

Bit 2:1: Same as above for console
2.

Bit 3:1: Same as above for console
3.

32-33 Reserved.

34-41 DR Net server password 8 ascii
characters!.

42 Reserved.

43-50 Name of file to load when load from
the local area network is used 8
ascii characters!.

51 Identification of the iSBX module:

0: Ingen
1: 351
2: 488

52 System disk number �-15!.

53 . CPU identification.
' FFH if PICCOLINE and OH if Partner.

54-127 Reserved.

Byte number 14, 15, 16 and 17, which hold the format of the
iSBX351/V24 channel, has the same format as Intel 8274 se-
rial controller write registers 4, 5, 1 and 3, which is
used in the Partner RS232C/V24 channel!

The checksumbyte is used to ensure data integrity in the
NVM. The checksum is calculated so that if the bytes in NVM
block 0, 1 and 2 not block 3! are added modulo 256! the
sum should be OAAH. The checksum must be maintained when
the NVM contents are changed.

-20- RC Computer

PICCOLINE 3. Configuration

Example

This example shows how to read and write in the NVM while
maintaining the checksum.

;procedure write_nvm b1ock.offset.va1ue!;
;entry : al: offset from block base to the desired byte
; ah: b1ock_number �,l,2 or 3!
3 cl: byte to be written

;exit : the nvm checksum OAAH! are maintained

;detroyed: none
checksum_block equ 0
checksum_o£fset equ 0
block_base equ 80H
nibble_msk equ '0FH

write_nvm:
push dx
push bx
push ox
push ax
call read_nvm
mov bl,al
mov -ah,checksum_b1ock
mov al,checksum_of£set
call read_nvm
mov bh,a1
pop ax
push ax
call address_b1ock

save registers

read the old value
save old value in bl

read the old checksum
save it in bh

save byte number
address the block to
be written

pop ax
mov dx,block_base
shl a1,1
shl al,1
xor ah,ah
add dx,ax address of first nible
pop cx retrieve value to be

written
push cx
mov al,cl
mov cl,4
shr al,cl strip least signifi-

cant nibble
out dx,al
pop cx
mov al,cl

�O �a so
he so he so
So 92o �U �o
�O So he No
he so to he

Q0 Q0 it We Q9 Q0 so he �o No �Q

RC Computer -21-

3. Configuration PICCOLINE

and

add

 out

sub
add

mov

 call

mov

 mov
mov

 shr

out

mov

 and

add

 out

POP

 POP

 ret

al,nibble_msk

dx,2

 dx,al

b1,cl

 bh.bl

ah,checksum_b1ock

 address_b1ock

dx,b1ock_base

 a1,bh
cl,4
al,c1

dx,al �Q �O No it �I V0 V. Q0 Q0 V:
V0 ho �Q V0 �o V0 V0 V9
V0 �O 92-strip most significant

nibble

checksum update new val
in cl old val in bl old
sum in bh
oldval-newval
sum:=sum

+ oldval-newval!

address the checksum
block

PICCOLINE 3. Configuration

in a1,dx get high nibble
add dx,2
xchg ah,a1
in a1,dx
mov cl,4
shl ah,cl

get low nibble

shift high nibble to
the correct byte
position

and al,nibb1e_msk clear high nibble in al

or al,ah transform nibbles to

V0

V0 V0 V0 V0 V0 V0 V0 ha he 5. �O
�o ho

bytes
pop cx
pop dx
ret

nvm_control_port equ 743
c1ear_msk equ OCFH

address_b1ock: select block number ah!
mov dx,nvm_control_port
in a1,dx
and al,clear_msk
mov c1,4
shl ah,cl
or al,ah
out dx,al
ret

it 5: V0 §Q V0 in
ho ho

RC Computer -23-

3. Configuration PICCOLINE

-24- ~ RC Computer

4. Console Module

The console module handles the virtual consoles and the
keyboard. The operating system accesses the console module
through the X108 conin and conout calls.

The operating system may also be bypassed and the console
module accessed directly, and for special purposes the
application program may access the hardware directly e.g.
by supplying its own interrupt routines.

This section contains a description of the software
interface to the console module and a brief description of
the associated hardware.

4.1 CRT controller

The CRT controller is. built around an Intel 82730 text
processor. For a complete description of this chip please
refer to the relevant Intel documentation.

This section contains information for programmers who want
to make special use of the PICCOLINE hardware including the
Intel 82730 text processor.

To access the CRT controller, palette and pixel memory
directly it is required that

1. The process is executing in the foreground

2. The console is locked console switching inhibited!

3. The CRT controller environment is restored before
program termination

4.1.1 82730 Comand Block

Communication between the 82730 and the CPU takes place
through a command block placed in main memory. The address
of the command block is returned by an Int-28h function
accessed with the following register contents:

Registers on entry:

AL = 21

Registers on return:

ES
SI

segment register of the command block
offset register of the command block

II II

RC Computer -25-

4. Console module PICCOLINE

4.1.2 Character Format

The 82730 fetches characters from main memory and outputs
these to the CRT controller. The characters have the
following format in alphanumeric mode:

bit 0-9 character address
bit 10-14 palette select
bit 15 0

and in graphics mode:

bit 0-9 pixel block address
bit 10-13 palette select
bit 14 0 high resolution graphics

1
bit 15 0

medium resolution graphics

If bit 15 is a 1, the 82730 interprets the character as a
character stream command.

In both alphanumeric and graphics mode bit 0-9 of the
character addresses a pixel block in the 32k pixel memory
located at address D000:0000H

In alphanumeric mode the pixel blocks function as character
generators. One pixel on the screen corresponds to one bit
in the pixel memory. The width of the character may vary
from 7 to 15 pixels depending on the contents of the pixel
memory see 4.3!. The height of one character row is 10
videolines in the standard configuration.

In graphics mode the pixel blocks are normally organized so
that the 32k pixel memory makes up a complete bitmap of the
screen. One pixel on the screen corresponds to one bit in
the pixel memory in high resolution graphics mode, and to
two bits in medium resolution. The pixel blocks are 16
pixels high by 16 pixels wide in high resolution and 8 by
16 pixels in medium resolution corresponding to 16 words of
memory.
The total resolution is 560 by 250 pixels in alphanumeric
mode, 560 by 256 pixels in high resolution graphics mode
and 280 by 256 pixels in medium resolution graphics mode.

4.1.3 Palette

The output from the pixel memory is used to select one of
two alphanumeric and high resolution graphics mode! or one
of four medium resolution graphics mode! colours from a
palette.

-26- RC Computer

PICCOLINE 4. Console module

The palette has room for 32 bytes each containing two 4-bit
nibbles, which are interpreted as follows:

bit 3: I, if set the intensity is increased
bit 2: R, if set the red beam is turned on
bit 1: G, if set the green beam is turned on
bit 0: B, if set the blue beam is turned on

If a monochrome monitor is connected, only bit 2 is used.
The intensity bit, bit 3, has no effect.

The palette is written with an OUT instruction to I/O
address 180H to IBEH even addresses!. In the following
table the relation between palette cells and I/O addresses
is shown:

I/0 address
dec hex colour pair

384 180 1 0
386 182 3 2
388 184 5 4

346 lBE 63 62

The following tables show the relation between the value of
the palette selector and the palette cells selected:

Alphanumeric mode:

Palette Pixel Pixel
Selector = 1 = O

0 1 0
1 3 2
2 5 4

31 63 62

RC Computer -27-

4. Console module PICCOLINE

High resolution graphics:

Palette Pixel Pixel
Selector = 1 = O

O 1 0
1 3 2
2 5 4

13 31 30

Medium resolution graphics:

Palette Pixel pair
Selector 11 10 01 00

0 33 32 1 0
1 35 34 3 2
2 37 36 5 4

13 63 62 31 30

Examples:

Alphanumeric mode:

character = 0100000O10000000B

bit 0-9 character number = 128
address D000:1000H in the pixel memory.

bit 10-14 palette selector = 16:
select the colour nibbles 32 and 33 at I/O
address 180H + 32.

-28� RC Computer

PICCOLINE 4. Console module

Graphics mode:

character = 0011010000000000B

bit 0-9 pixel block number = 0
address D000:0000H in the pixel memory.

bit 10-13 palette selector = 13:
select colour nibbles 26 and 27 at I/O
address 180H + 26.

bit 14 resolution select = 0
select high resolution graphics.

Graphics mode:

character = O100100000O10000B

bit 0-9 pixel block number = 16
address DO00:O200H in the pixel memory.

bit 10-13 palette selector = 2:
select colour nibbles 4, 5, 36 and 37 at 1/0
addresses 1803 + 4 and 1808 + 36.

bit 14 resolution select = 1
select medium resolution graphics.

4.1.4 Graphics Mode

Graphics mode is selected by outputting the value OCH to
1/0 address 76H. Alphanumeric mode is selected by output-
ting ODE.

For normal bitmapped graphics, the graphics mode offered by-
the X108 is preferred, as this handles all initialization
and supports console switching.

RC Computer -29-

4. Console Module PICCOLINE

4.2 Direct Console Access

The display is normally accessed through the CCP/M
Operating System console handling functions ref.2!. In
cases where speed has a high priority, the operating system
may be bypassed in different ways:

1. Through XIOS Conout entry

2. Through Int�28h function 35

3. Direct manipulation of the display buffer

WARNING!

when the X108 console driver is accessed directly, the
protection offered by the operating system is bypassed,
so be sure only to write to consoles that have been
attached to the process through a previous operating
system call.

4.2.1 XIOS Conout

The XIOS console driver can be accessed directly through a
CALLF to the address XIOS_ENTRY found in the SYSDAT area
 ref.2! with the following register contents:

AX = 2 Console output function!
DS = SYSDAT segment ref.2!
ES = UDA segment ref.2!
CL = Character to output
DL = Virtual console number

Example

The following subroutine prints a specified number of
characters on a process's default console. It is assumed
that DS = SS.�O V0 �O V0 �O

�c �Q

entry exit
BX pointer to string undefined
CX length of string undefined

print_string:
push bp ; save old stack frame
push cx ; save length of string
push bx ; save pointer to string
mov cl,153 ;
int 224 ; get default console

-30- RC Computer

PICCOLINE 4. Console Module

mov def_con.al ; save default console
mov cl,156 3
int 224 ; get PD address

; Now use the fact that the PD segment is the same as
; the SYSDAT segment

push es :
pop ds ; SYSDAT segment to DS
mov es,10HEbxA ; UDA segment to ES
pop bx ; get pointer to string
pop cx ; get length of string

char_loop:
push cx save count
push bx save position
mov cl,ss:£bxA get char from position
mov dl,ss:def_con get default console
mov ax,2 conout function
callf ds:dword ptr .28H callf xios_entry

no 90 Q0 Q0
Q0 Q0 V0
V0 V0 V0
in �O 92o '10

pop bx get position
pop cx get count
inc bx increment position
loop char_loop
mov ax,ss
mov ds,ax get old DS
pop bp get old stackframe
ret

def_con db 0 ; default console number

4.2.2 Direct Console Buffer Output

Int-28h function 35 is provided to quickly update large
portions of the display. This function stores character
strings in the display buffer with the current attribute.
If the console is shown in a window, this is automatically
updated.

No control character or escape sequence interpretation is
done by this routine.

The routine is called with the following register contents:

AL = 35 function number!
DX = character position DH = row, DL = column!
CX = number of characters in the string
SI = string address offset
DS = string address segment

RC Computer -31-

4. Console Module PICCOLINE

Example:

; Print the string "RC PICCOLINE" at position 8,20!:

push DS 5 Save US
push CS ; get segment of string
pop DS
mov SI,offset string_l ; and offset
mov CX,lenght string_l ; get string length
mov DH,8 ; row number
mov DL,20 ; column number
mov AL,35
int 28h
pop DS ; restore DS
ret

string_l db �RC PICCOLINE'

4.2.3 Display Buffer Manipulation

In some cases it is desirable to manipulate the display
buffer directly. For example to dump the screen contents to
a file or a printer. It may also be used to modify the
screen, e.g. for horizontal scrolling or scrolling part of
the screen. Printing to the display buffer is easily done
using the Int-28h function 35 see 4.2.2!._

To give a programmer the possibility to manipulate the
display, the console driver offers a function that gives
access to a table of address offsets to the display line
buffers.

Each virtual console is internally represented as 24 �5!
display line buffers each describing one character line of
the display. A character line consists of one 16 bit word
for each of the 80 character positions of the line. Each 16
bit word consists of.a character value low byte! and a set
of attribute bits high byte!. Do not use the information
in the attribute bytes as the interpretation of these is
version dependent.

The address of the table is obtained by means of an Int�28h
function with the following register contents:

Registers on entry:

AX = 21

-32- RC Computer

p1ccoL1nE 4. Console Module

Registers on return:

ES = segment of the table
BX = offset of the table
DX = the segment that should be used together with a

single table entry contents to give the full
address of one line buffer.

Example

The following routine return a pointer to a specified
display line buffer.
At call CX contains the line number �-24!.
At return ES:SI contains a pointer to the specified
display line buffer.�O

�O �o
in V0

get_line_pointer:
push cx ; save line number
mov ax,21 ; function number
int 28h :

pop cx restore line number
shl cx,1 each table entry is two bytes
add bx,cx bx contains offset to display

line table
now si contains offset to
specified display line buffer
now es contains segment of
specified display line buffer

mov si,es:£bxA

mov es,dx

ret

Q0 Q0 V0 in to in
50 No
he

The screen is automatically updated if the console is in
the foreground or when the console is switched to the
foreground. If, however, the console is displayed in a
window on the screen, the window is not updated when the
display buffer is modified.

Instead the window 'must be updated using an Int-28h
function with the following register contents:

AL = 39

As there are no means to know whether the console is
displayed in a window or not, this routine must always be
called. if the display buffer is modified.

RC Computer -33-

4. Console Module PICCOLINE

4.2.4 Get/Set Cursor Position

Another useful console driver function returns the current
cursor position.

The cursor position is obtained by means of an Int-28h
function with the following register contents:

Registers on entry:

AL = 22

Registers on return:

BH line position of cursor �-24!
BL coloumn position of cursor �-79!

The cursor position may be changed with an Int-28h function
with the following register contents:

AL = 36
BH = line �-23 if 24 line mode, 0-24 if 25 line mode!
BL = coloumn �-79!

4.2.5 Get/Set Attribute

The current attribute byte is returned by the following
Int-28h function:

AL 37

At return register AH contains the attribute byte.

The current attribute byte may be changed by the following
Int-28h function:

AL

 AH 38

attribute byte

These functions are useful in connection with direct
manipulation of the display buffer.

WARNING!

The coding of the attribute byte may be subject to
changes in future releases.

-34- RC Computer

PICCOLINE 4. Console Module

4.3 Character Sets

when the display operates in text mode, the character
definitions are placed in the 32 Kbytes pixel memory
located at address D0O0:0000H.

The pixel memory has room for 1024 character definitions.
As the X108 handles 8-bit characters. the characters are
divided into 4 different character sets:

0 - 255 Lower Standard Character Set

256 - 511 Upper Standard Character Set

512 - 767 Lower Alternative Character Set

768 -1024 Upper Alternative Character Set

The character sets are selected by escape sequences see
4.4.1!:

ESC-P Select Alternative Character Set

ESC-Q Select Standard Character Set

ESC-g Select upper 256 characters

ESC-h Select lower 256 characters

The default assignment of the alternative character set is
as for the standard character set see App. D!. This is
convenient when only a few changes from the standard cha-
racter set are wanted.

When the underline attribute is set, the upper 256 charac-
ters of the character set are addressed. So normally the
two halves of the character set are identical.

The underline attribute however may be disabled giving a~
full 512 character alternative character set. This is also
true for the standard character set, but other processes
may be using the underline attribute, which requires the
two halves of the character set to be identical.

If the console is locked console switching inhibited! and
the standard character set restored before termination, all
1024 characters may be altered.

RC Computer -35-

4. Console Module PICCOLINE

The following escape sequences disables and enables the
underline attribute:

ESC-<246> Disable underline attribute

ESC-<247> Enable underline attribute

4.3.1 Altering the Character Set

A character definition block consists of 16 words �6 bit
memory location!, each defining a single video rasterline
of the character.

The width of a character is variable from 7 to 15 pixels
and is controlled by the contents of the definition for
each videoline. The character width is defined by the posi-
tion of the first zero bit followed by all one's.

Example:

A character 7 bit wide is defined by the following bits:

xxxxxxx01111l1l1B

WARNING!

 When variable character width is used, it is the

responsibility of the programmer to fill the entire line
with characters e.g. by means of variable length space
characters!.

The standard character width is 7 pixels. The height of one
character row is 10 videolines.

When the display operates in graphics mode about 25 Kbytes
of the pixel memory is used as bitmap. Consequently the
character definitions must be saved each time a process
running in graphics mode takes over the display.

This means that the definition may be in one of two places,
so the character set cannot be altered simply by modifying
the pixel memory. Instead a set of functions is offered in
the XIOS.

The functions which are accessed through software interrupt
28h are described in the following.

-36- RC Computer

PICCOLINE 4. Console Module

As the character sets are common to all consoles. it should
be insured that only one process is using the alternative
character set. This is done by reading the mutual exclusion
queue 'MXalt'. The alternative character set is released by
a write to the queue.

4.3.2 Define Character Font Alternative Character Set!

This function defines a character in the alternative cha-
racter set. The character is defined in both the lower and
upper underlined! character sets.

The function is executed with the following register con-
tents:

AL = 20
CL = character value �-255!
DX = address offset of character definition block
DS = address segment of character definition block

Example

This routine defines the character number 255 in the
alternative character set.in V: V0 V0
define_alternative_char:

 mov dx,offset char_def

mov c1,255
mov ax.20
int 28h
ret

character definition
character ident
define char. function
call xios function

No

it �e 92o
V0

char_def dw 000O00O011111111B Character definition.
dw O101110011111111B
dw 0l10000011111111B
dw 0100110011111111B
dw O101000011111111B
dw 0101000011111111B
dw 01010000111111l1B
dw 0100110011111111B
dw 000000001111l111B
dw 0000O000111111l1B

The character is 7 bit
wide As the tail is
011111111!.

�O �O �O �O §O

RC Computer -37-

4. Console Module PICCOLINE

4.3.3 Define Character Font

This function defines a character in the standard or
alternative character set.
The function is executed with the following register
contents:

AL = 52
CX = character value �-1023!
DX = address offset of character definition block
DS = address segment of character definition block

4.3.4 Get Character Font Definition

This function returns a character definition in the stan-
dard or alternative character set.

The function is executed with the following register con-
tents:

AL = 51
CX = character value �-1023!
DX = address offset of character definition block
DS = address segment of character definition block

Example

; This routine changes the standard character set to
3 US-ASCII

us_ascii:

 mov cx,9 ; no. of characters

mov si,offset char_table ; get table address
char_loop:

push cx
push si
lodsw ; load an ASCII value
mov dx,offset char_buffer
xchg cl,ah
push ax
push dx
mov al,51
int 28h ; get the definition
pop dx
pop ax
xchg cl,al
mov al,52
int 28h ; define the font
pop si

-38- RC Computer

PICCOLINE 4. Console Module

pop cx
add si,2
loop char_loop ; next character
ret

the following is a table of characters to alter
; and the corresponding character definitions in
3 the standard character set.

char_tab1e:
db '§',17
db 'l',18
db- '¢',19
db 'A',20
db 'U',21
db 'a',23
db 'a',24
db 'a',25
db '�',26

char_buffer:

 rw 16 ; room for one definition

 RC Computer -39-

4. Console module PICCOLINE

4.4 Console Control Characters

The XIOS console driver recognizes the following characters
as control characters:

Character Value Meaning
 decimal!

NULL 00 Ignored

BELL 07 Acoustic signal

BS 08 Backspace - Cursor left, if the
cursor is at column 0, it is moved
to the last position on the
previous line.

LP 10 Line feed - Cursor down one row. If
the cursor is at the bottom line,
the screen is scrolled up one row.

CR 13 Carriage return - move cursor to
column 0.

ESC 27 initiate escape sequence see
4.4.1!

4.4.1 Console Escape Sequences

Escape sequences are used to control the cursor, change co-
lours, programming function keys and various other purpo-
ses. An ASCII escape character dec 27! triggers escape se-
quence processsing. The character immediately following the
escape character indicates which function is to be per-
formed. More characters may follow, depending on the func-
tion.

The escape codes and their functions are summarized in
Appendix F.

ESC A - Cursor Up

Moves the cursor up one line. If the cursor is already on
the top line, this sequence has no effect.

-40- RC Computer

PICCOLINE 4. Console module

ESC B - Cursor Down

Moves cursor down one line. If the cursor is already at the
bottom line, this sequence has no effect.

ESC C - Cursor Forward

Moves the cursor one position to the right. If the cursor
is on the rightmost position on the screen. this sequence
has no effect.

ESC D - Cursor Backward

Moves the cursor one position to the left. This is a non-
destructive move because the characters that the cursor
moves over are not erased. If the cursor is in column 0,
this sequence has no effect.

ESC E - Clear Screen

Moves the cursor to column 0, row 0 top-left corner on the
screen! and clears the whole screen filled with blanks!.

ESC H - Home Cursor

Mves cursor to colum 0, row 0; The screen is not cleared.

ESC I - Reverse Index

Moves the cursor up one line. If the cursor is on the top
line, a scroll down is performed and a blank line is inser-
ted at the top of the screen.

ESC J - Erase to End of Screen
Clears from cursor including cursor position! to the end
of the screen.

ESC K - Erase to end of line

Clears the line, the cursor is on from the cursor position
to the end of the line.

RC Computer -41-

4. Console module PICCOLINE

ESC L - Insert Line

Inserts a blank line by scrolling the line that the cursor
is on and all following lines down one line. The cursor is
moved to the beginning of the new line.

ESC M - Delete Line

Moves the cursor to the beginning of the line and deletes
the line that the cursor is on by moving all the following
lines up one line. A blank line is added at the bottom of
the screen.

ESC N � Delete Character

Deletes the character at the cursor position and moves the
rest of the line one character position to the left. A
blank character is inserted at the end of the line.

ESC O - Insert Character

Inserts a blank character at the cursor position and moves
the rest of the line one character position to the right.

ESC P - Select Alternative Character Set

Selects the user definable character set.

ESC Q - Select Standard Character Set

Selects the standard PICCOLINE character set.

ESC Y - Position Cursor

Moves the cursor to the row and column specified by the two
characters that follow the "Y". The first character speci-
fies the row, the second specifies the column. Rows are
numbered from O to 23 in 24 line mode! or 0 to 24 in 25
line mode!. Columns are numbered from 0 to 79.

The value 32 ZOH! is added to the row and column numbers.

-42- RC Computer

PICCOLINE I 4. Console module

Example:

To position the cursor in position �3,79!. the sequence is

ESC Y 7 o dec: 27 89 55 111
hex: 1B 59 37 6F

ESC b - Set Foreground Colour

The foreground colour displays the character. The colour is
specified by a colour selection character, that follows the
"b". Only the four least significant bits of the character
are used, with the individual bits having the following
significance:

Colour Monitor Monochrome Monitor

0 Blue
1 Green
2 Red
3 High Intensity 2-3 Intensity

Examples of colour select characters:

Colour Monitor Monochrome monitor

0 - Black 0 - Black
1 - Blue
2 - Green
3 - Cyan Blue + Green!
4 - Red 4 - Normal Intensity
.5 - Magenta Red + Blue!
6 - Yellow Red + Green!
7 - White Red + Green + Blue!
8 - Grey 8 - Low Intensity
9 - High intensity Blue

- High intensity Green
- High intensity Cyan
- High intensity Red ' < - High Intensity
- High intensity Magenta
A High intensity Yellow

- High intensity White

00

'92!V II A�-

 I

NOTE

The monochrome monitor of PICCOLINE is not able to show
more than one intensity, � the high intensity. Normal and
low intensity are therefore shown as high intensity too.
But if the background colour is chosen to have higher

4. Console module PICCOLINE

intensity than the foreground colour, the foreground is
shown as black and the background in high intensity. If
the foreground and background have the same intensity
they are impossible to distinguish.

At any time 16 combinations of background and foreground
colours can be displayed simultaneously. Any escape se-
quence that would result in more than 16 colour
combinations will be ignored.

ESC c - Set Background Colour

This function sets the background colour. The colour is
specified by a colour selection character that follows the
"c". The colour selection character is interpreted in the
same way as described under ESC-b Set Foreground Colour!.

NOTE

At any time 16 combinations of background and foreground
colours can be displayed simultaneously. Any escape se-
quence that would result in more than 16 colour
combinations will be ignored.

ESC d - Erase Beginning of Screen

Clears the screen from the home position �,0! to the cur-
sor position, including the character that the cursor is
on.

ESC e � Enable Cursor

This sequence causes the cursor to be visible on the
screen .

ESC f - Disable Cursor

This sequence causes the cursor to be invisible. The cursor
may still be moved on the screen.

-44- RC Computer

PICCOLINE 4. Console module

ESC g - Enter Underline Mode

Following the invocation of this sequence, characters are
displayed underlined if the underline attribute is enabled
 see ESC-<247>!.

This sequence also selects the upper 256 characters of the
character set.

ESC h 4 Exit Underline Mode

Exits underline mode.

This sequence also selects the. lower 256 characters of the
character set.

ESC i - Enter Non-Displayed Mode

This sequence causes characters to be displayed as blanks.

ESC j - Save Cursor Position

This sequence saves the current cursor position. The cursor
can be restored to the saved position with ESC-k.

ESC k - Restore Cursor Position

This sequence restores the cursor to a previously saved po-
sition. If this sequence is used without a previously saved
cursor position, then the cursor will be moved to the home
position �,0!.

ESC l - Erase Line

Clears the entire line that the cursor is on.

ESC m - Enable Cursor

Included to be compatible with some CP/M-86 implementa-
tions. Use ESC-e under CCP/M-86.

RC Computer -45-

4. Console module PICCOLINE

ESC n - Disable Cursor

Included to be compatible with some CP/M-86 implementa-
tions. Use ESC-f under CCP/M-86.

ESC o - Erase Beginning of Line

Clears the start of the line to the cursor position, inclu-
ding the cursor position.

ESC p - Enter Reverse Video Mode

Following the invocation of this sequence, the foreground
and background colours are reversed. If display is already
in reverse video mode, this sequence has no effect.

In reverse video mode, setting foreground colour will
effectively set the background colour.

NOTE

At any time 16 combinations of background and foreground
colours can be displayed simultaneously. Any escape se-
quence that would result in more than 16 colour
combinations will be ignored.

ESC q - Exit Reverse Video Mode

Exits the reverse video mode.

ESC r - Enter Intensify Mode

Following the invocation of this sequence, characters are
displayed in high intensity.

In reverse video mode the background will be intensified.

NOTE

 At any time 16 combinations of background and foreground

colours can be displayed simultaneously. Any escape se-
quence that would result in more than 16 colour
combinations will be ignored.

-46- RC Computer

PICCOLINE 4. Console module

ESC s - Enter Blink Mode

Causes characters to be displayed blinking.

ESC t - Exit Blink Mode

Causes characters to be displayed not blinking.

ESC u - Exit Intensify Mode

Causes characters to be displayed in normal intensity.

ESC v - Wrap at End of Line

Causes the cursor to move to the beginning of the next line
if a character is written in the rightmost position of the
line. If at the bottom line, the screen is scrolled up one
line.

ESC w - Discard at End of Line

Following the invocation of this sequence, if a character
is written in the rightmost position of the line, the cur-
sor remains in the same position. The following characters
overprint.

ESC x � Exit Non-Displayed Mode

This sequence causes characters to be displayed normally.

ESC z - Reset Attributes

This sequence turns off the attributes blinking, underline,
high intensity, non-displayed mode to the off condition.
The background colour is set to black and the foreground to
the default colour. Also, cursor is enabled, standard
character set is selected, wrap at end of line enabled,
function keys are expanded normally, and the status line is
enabled �4 line mode!.

RC Computer -47-

4. Console module PICCOLINE

ESC 0 - Status Line Off �5 Line Mode!

This sequence turns off the status line, thereby leaving
all 25 lines for the application.

ESC 1 - Status Line On �4 Line Mode!

This sequence displays the status line at the bottom of the
screen, thereby leaving 24 lines for the application.

ESC 2 - Save Current Attributes

Saves the values of the attributes blinking, underline and
reverse video, foreground and background colour and
character set selection.

ESC 3 - Restore Attributes

Restores the previously saved values of the attributes
blinking, underline and reverse video, foreground and
background colour and character set selection.

ESC 6 - Function Key Expansion Off

Causes the programmable function keys to return their key
identifiers ref. ESC�:! with the high order bit set in-
stead of the assigned strings.

ESC 7 - Function Key Expansion On

Enables normal function key expansion, so that the program-
mable function keys return their assigned strings.

ESC : - Program Function Keys

This sequence programs the programmable function keys. The
table below lists the keys that are programmable.

The format of this escape sequence is:

ESC : <key�id> <string> NULL

<key-id! is a key identifier that specifies the key to be
programmed see table page 50!. <string> is an arbitrary

-48- RC Computer

PICCOLINE 4. Console module

string of characters; for the F1-F12 keys used alone,
strings can be up to 20 characters long. For the remaining
function keys, strings can be up to 4 characters. NULL is a
character with value 0. that terminates the string.

with the function key expansion disabled by ESC-6, the
function keys return the hexadecimal value of the function
key identifier with the high order bit set. ESC-7 restores
the normal expansion of function keys.

RC Computer -49-

4. Console module PICCOLINE

The key identifiers are shown in table 4.1.

Identifier Function Key Identifier Function Key

; F1 a alt�F1
< F2 b alt�F2
= F3 c alt-F3
> F4 d alt-F4
? F5 e alt-F5
E F6 f alt-F6
A F7 9 alt-F7
B F8 h alt-F8
C F9 i alt-F9
D F10 j alt�Fl0
E F11 k shift-F1
F F12 l shift-F2
G Home m shift-F3
H Up Arrow n shift-F4
I A1 0 shift-F5
J A2 p shift-F6
K Left Arrow q shift-F7
L Return keypad! r shift-F8
M Right Arrow s shift-F9
N A3 t shift-F10
0 A4 u ctrl-F1
P Down Arrow v ctrl-F2
Q Tab keypad! w ctrl-F3
R Insert x ctrl-F4
S Delete y ctrl�F5
T Print 2 ctrl-F6
U shift-A1 2 ctrl-F7
V shift-A2 a ctr1�F8
W_ shift-A3 a ctrl-F9
X shift�A4 � ctrl-F10
Y alt-F11
Z alt-F12
E shift-F11
¢ shift�F12
A ctrl-F11
U ctrl-F12

Table 4.1. Function Key Identifiers

-50- RC Computer

PICCOLINE 4. Console module

Example:

The following sequence gives function key E2 the value
"PICCOLINE�:

ESC : < PICCOLINE NULL

Dec: 27 58 60 80 73 67 67 79 76 73 78 69 00
Hex: 1B 3A 3C 50 49 43 43 4F 4c 49 4E 45 00

The contents of the function keys will remain valid until
the program that defined the keys, is terminated. After the
program has terminated the function keys will regain their
default values. The default values are common to all the
virtual consoles. To change the default assignment use the
FUNCTION program.

ESC < - Scroll Window Up

scrolls a window consisting of a number of consecutive
lines one row up. A blank row is inserted at the bottom of
the window.

The format of the sequence is:

ESC < row-start row�end

Rows are numbered from 0 to 23 in 24 line mode! or O to 24
 in 25 line mode!. The value 32 �0H! is added to the row
numbers. '

Example:

The following sequence scrolls row 4 to row 11 one line up:

ESC < s + ' dec: 27 60 36 43>
 hex: 1B 3C 24 2B!

ESC > � Scroll Window Down

Scrolls a window consisting of a number of consecutive
lines one row down. A blank row is inserted at the top of
the window.

The format of the sequence is:

ESC > row-start row-end

RC Computer -51-

4. Console module PICCOLINE

Rows are numbered from 0 to 23 in 24 line mode! or 0 to 24
 in 25 line mode!. The value 32 �0H! is added to the row
numbers.

Example:

The following sequence scrolls row 4 to row 11 one line
down:

ESC > $ + dec: 27 62 32 48!
 hex: 1B 3E 20 30!

ESC �41! - Set Blinking Cursor

<241> denotes one character with the decimal value 241.
Selects a blinking cursor.

ESC �42! - Set Non-Blinking Cursor

<242> denotes one character with the decimal value 242.
Selects a non-blinking cursor.

ESC <243> - Set Cursor Representation

<243> denotes one character with the decimal value 243.

Defines the shape of the cursor. The character following
ESC-243 specifies the start and end videoline numbers of
the cursor. The four least significant bits specifiy the
start videoline and the four most significant bit specifiy
the end videoline.

The videolines of a row are numbered 0-9. The number
specified for the end videoline is 1 greater than the
videoline number of the bottom videoline of the cursor.

Examples:

The following sequence selects a block cursor occupying
videolines 0-9!:

dec: 27 243 160 hex: 1B F3 A0

The following sequence selects a double underline cursor
 occupying videolines 8-9!:

dec: 27 243 168 hex: 1B F3 A8

-52- RC Computer

PICCOLINE 4. Console module

ESC �44! - Set Soft Scroll

�44! denotes one character with the decimal value 244.
Selects soft scroll mode.

ESC �45! - Set Line Scroll

�45! denotes one character with the decimal value 245.
Selects line scroll mode.

ESC �46! - Disable Underline Attribute

�46! denotes one character with the decimal value 246.
Following the invocation of this escape sequence, the un-
derline attribute is disabled.

As the upper 256 characters of the character sets are
addressed when the underline attribute is on, the lower and
upper 256 characters must be identical in normal uses of
the underline attribute. Disabling underline makes it
possible to use all 512 characters of the character set.

The escape sequences ESC-g and ESC-h are used to select the
upper and lower 256 characters respectively.

ESC �47! - Enable Underline Attribute

�47! denotes one character with the decimal value 247.
Following the invocation of this escape sequence, the un-
derline attribute is enabled.

The escape sequences ESC-g and ESC-h are used to enter and
exit underline mode.

ESC �53! - Save Function Keys

�53! denotes one character with decimal value 253.
Saves the current value af the programmable function keys.

NOTE

Only one set af values can be stored.

RC Computer -53-

4. Console module PICCOLINE

ESC <2S4> � Restore Function Keys

�54! denotes one character with decimal value 254.
Restores the saved value of the programmable function keys
 see ESC 253!.

-54- RC Computer

PICCOLINE 4. Console module

4.5 Graphics Mode

A function is offered in the X103 to put a console into
graphics mode.

When this function is used, the console module handles
transitions between alphanumeric and graphics mode when a
console is switched from foreground to background and vice
versa. At the same time the console module saves or resto-
res the graphic image on the screen. It also supports con-
sole output in graphics mode.

In graphics mode the bitmap for the display occupies the
32k pixel memory. The character definitions therefore have
to be saved in a save-buffer elsewhere in memory. The
graphics save-buffer must be provided by the application
program.

When a console is switched in or out, the console module
swaps the contents of the pixel memory and the save-buffer.
The application program must provide a variable in which
the console module places a pointer to the segment that
currently contains the graphic image.

To avoid swapping the segments while the graphics segment
is being updated, a semaphore is used to ensure exclusive
access to the graphics segment.

NOTE

In a PICCOLINE 1-console system i.e. no background
consoles! the save buffer will allways contain the
character definitions. In order to save memory space only
the lower standard character set is saved in the save-
buffer. Therefore in this case the save�buffer need only
be of size 8k. This also means that only the lower
standard character set may be used in graphics mode.

4.5.1 Init Graphics

Graphics mode is entered by an Int-28h function called with
the following register contents: *

AL = 0 function number!
AB = graphics mode � = high resolution!

� = medium resolution!
CX = address offset of graphics control block
DX = address segment of graphics control block

RC Computer -55-

4. Console module PICCOLINE

The graphics control block has the following format:

gcb:

 gcb_mx db 0 ; mutual exclusion semaphore
gcb_seg dw seg buffer; segment of savebuffer

The gcb_seg field must contain the address segment of a 32k
save buffer 8k in case of a l-console system!.

when the gcb_mx field is set to 255 FFH!, the console will
not be switched in or out, thus avoiding buffer swapping
when the graphics segment is being updated. As the PIN
process may be waiting for this semaphore, it should not be
set for a longer period.

Example

 this routine puts the console in graphics mode.
; it is assumed that the ES register points at the
; extra segment.

init_graphics:
mov gcb_seg,es ; initialize the buffer segment
mov al,0 ; function code for init graphics
mov ah,l ; high resolution
mov cx,cs:offset gcb ; get offset and segment
mov dx,cs ; of the control block
int 28h ; do the call
ret

gcb rb 0 ; graphics control block
gcb_mx db 0

1gcb_seg rw

eseg
buffer rb 8000h ; make room for save buffer

; 2000h in case of 1-console system

4.5.2 Exit Graphics

Alphanumeric mode is entered by an Int-28h function called
with the following register content

AL = 1

p1ccoL1NE 4. Console module

4.5.3 Exclusive Access to Pixel Memory

Exclusive access to the graphics image can be ensured in a
number of ways.

1. Use the CHSET utility program to stop program
execution while the console is in the background
 Suspend= On!. This is probably the easiest
solution.

2. Inhibit console switching by setting the no-switch
bit in the console control block.

3. Disable interrupts while updating the image. Should
only be used for very short updates.

4. Use the mutual exclusion semaphore located in the
graphics control block. A pointer to the graphics
control block is rendered to the X108 in the init
graphics call.

Example

; this routine sets the no-switch bit in the console
; control block. The keep flag is set in the process
3 descriptor so we cannot be terminated before the
; no-switch bit has been cleared.

os equ 224
sys_ccb equ word ptr 54h
p_f1ag equ word ptr 6
pf_keep equ 2
ccb_size equ 2ch
ccb_state equ word ptr 14
cf_noswitch equ 8

lock_console:
mov cl,156 ; get process descriptor
int os
mov sysdat,es
mov pd_addr,bx ; set the keep flag
or es:p_flagEbxA.pf_keep

; now get the ccb address
mov cl,153 ; get console no.
int os
cbw
mov cx,ccb_size
mul cx
add ax,es:sys_ccb
mov ccb_addr,ax

RC Computer -57-

4. Console module PICCOLINE

xchg ax,bx ; set the noswitch flag
or es:ccb_state£bxA,cf_noswitch
ret

unlock_console:

 mov es,sysdat

mov bx,ccb_addr ; clear noswitch bit
and es:ccb_state£bxA,not cf_noswitch
mov bx,pd_addr ; and turn off keep flag
and es:p_flagEbxA,not pf_keep
ret

sysdat rw
pd_addr rw
ccb_addr rw 1

Ii-�I-"

Example

this routine demonstrates the use of the mutual exclusion

semaphore.

 it is assumed that an init graphics call has been made
and the gcb_seg field initialised.

V0 59 V0 V0
c1ear_graphics:

 call get_mx ; get the semaphore

mov es,gcb_seg
mov di,0
mov ax,0 ; fill with zero's
mov cx,4000h ; 16k words
rep stosw '
call free_mx ; release the semaphore
ret

get_mx:
mov al,0ffh
xchg al.gcb_mx
or al,al ; is it free?
jz got_mx ; yes � we have it
push ax ; no � delay one tick
push bx ; save what has to be saved
mov cl,14l
mov dx,1 ; one tick delay
int 224
pop bx
pop ax ; restore saved registers
jmps get_mx ; and try again

got_mx:
ret

PICCOLINE 4. Console module

free_mx:

 mov gcb_mx,O

ret

gcb_mx db I-�Cgcb_seg rw

4.5.4 Pixel Address Calculation

The following example shows how the offset in the pixel
memory and the bit number is calculated given an X-Y coor-
dinate. The origin is assumed to be in the lower left hand
corner 0

Example

 entry: BX = X-coordinate

Dx = Y-coordinate

exit: DI = offset of word containing pixel
BX = bit mask

Algoritm used:

word_address

 pixel address X div 16! * 16*16 + Y

X mod 16So in
Q0
V0

V0 in in he he

 II II
y_max equ 255 .
color egu false ; set to true if assembling to

medium resolution

4. Console module

if not color
shl bx,1

endif
mov bx,bit_masksEbxA
ret

if not color
bit_masks

else
bit_masks

endif

-50-

l000000000O00O0OB

 OIOOOOOOOOOOOOOOB

 OOIOOOOOOOOOOOOOB

 OOOIOOOOOOOOOOOOB

 OOOOIOOOOOOOOOOOB
OOOOOIOOOOOOOOOOB

 OOOOOOIOOOOOOOOOB

PICCOLINE 4. Console module

4.6 Window Handling

The Concurrent CP/M Windows are handled by a number of XIOS
routines. The routines are called through the normal XIOS
entry point.

Some of the routines are used only by the standard window
manager, the rest may be of interest to the application
programmer. They are described in the following sections.

NOTE

In a PICCOLINE 1-console system it makes no sense to use
windows. Therefore. in order to save memory space, the
routines are removed. A call of XIOS function number 19
results in an error message in the status line, whereas
call of the other functions has no effect.

4.6.1 Return Pointers

This funtion return pointers to two different data
structures.

A pointer to the window manager data block is returned by
the following call:

entry: a1 = 16
d1 = OFFH

exit: ax = window data block pointer

The window data block has the following format:

list of console numbers from thepriority rb nvcns
6 back window to the front window

state rb 1 ; window manager state
; 0 = not resident
; 1 = resident but not active

1 ; 2 = resident and active
nvc db nvcns ; number of virtual consoles

I

If register DL is a virtual console number the call is
similar to Int-28h function 21 see 4.2.3!.

entry: a1 = 16
dl = virtual console number

exit: ax = vc structure pointer
dx = screen segment
es = vc structure segment

RC Computer -61-

4. Console module PICCOLINE

The call returns a pointer to a control structure of the
following format:

rw 26 , display line table see 4.2.3!
rw 1 ; extra line used when scrolling
rb 1 ; virtual console number
rb 1 ; internal XIOS semaphore
rb 1 ; left column of window
rb 1 ; top row of window
rb 1 ; rigth column of window
rb 1 ; bottom row of window
rw 1 ; last top-left corner
rw 1 ; last bottom-right corner
rb 1 ; actual no. of columns
rb 1 ; actual no. of rows
rb 1 ; window view point, column
rb 1_ ; window view point, row

4.6.2 Set Window Manager State

This call is used to tell the XIOS the state of the window
manager and to change which window is on top console
switch!.

entry: a1 = 19
cl = state
0 => manager not resident
1 => resident but not active
2 => resident and active
3 => leave state unchanged

d1 = vc number to switch to top
if dl = OFFH, then no switch

exit: none

4.6.3 Create a New Window

This call is used to create a new window for a virtual
console. The positions of the windows top-left and bottom-
right corners on the screen are passed as parameters.

entry: al = 20
d1 = virtual console number
ex = top left row,column!
bx = bottom right row,column!

-62- RC Computer

PICCOLINE 4. Console module

4.6.4 Set Cursor Tracking Mode and Viewpoint

This call sets the tracking mode and viewpoint. The
tracking mode determines whether the window is fixed or
follows the cursor. The viewpoint determines which part of
the virtual console is visible in the window.

entry: a1 = 21
d1 = vc number
dh = cursor tracking mode

0 => window is fixed on vc image
1 => window tracks scrolling

cx = row,column of top-left viewpoint

exit: none

4.6.5 Set Wrap Around Column

This call sets the column in which the cursor automatically
wraps around if wrap around is enabled.

entry: a1 = 22
dl = vc number
cl = wrap column number

exit: none

4.6.6 Switch Between Full Screen and Window

This call toggles the window between full screen and not
full.

entry: a1 = 23
d1 = vc number

exit: none

RC Computer -63-

4. Console module PICCOLINE

4.7 Keyboard Interface

The keyboard is connected to the system via a special
serial port with I/O address 32 �0H!. when a character is
received, an interrupt is generated, and no further
characters will arrive before the character is read.

The interrupt is connected to level 1 of the external
interrupt controller 8259A interrupt level 21H, interrupt
vector address 84H!.

When a key is pressed, an 8-bit position code is received
and when the key is released, the keyboard sends the same
code with the high order bit set. The position codes are
shown in Appendix E.

4.7.1 Keyboard Driver

In normal applications the X108 keyboard driver handles all
input from the keyboard. The driver converts the position
codes into ASCII values and handles special keys Ctrl,
Alt, Shift, Shift Lock and programmable function keys!.

The RC739 keyboard includes 98 keys of which 26 are
programmable. The values returned by the keyboard driver
when a key or combination of keys is pressed. are shown in
appendix D.

when a programmable function key is pressed, the driver
returns the programmed string of characters. The function
keys are programmed by the escape sequence ESC-: see
4.4.1!.

The following key combinations invoke special actions in
the driver and no value is returned to the application:

Ctrl+Print hardcopy of display
 in character mode!

Ctrl+Al enter setup mode
Ctrl+A2 no action
Ctrl+A3 wake up window manager

 if installed!
Ctrl+A4 full screen key

-64- RC Computer

PICCOLINE 4. Console module

4.8 Mouse Interface

The optical mouse is supported by an Int-28h function. This
function is called with the following register contents:

30
mouse function numberAL

 CL

Three mouse functions numbers are provided:

CL = 1 : Initialize mouse
CL = 2 Deinitialize mouse
CL = 3 Return mouse status

when function 3 return mouse status! is called, the mouse
status is returned in the following registers:

Registers on returnzi

AL = 0: nothing happened

AL = 1: button press

register AH contains a button code:

AH = 20H: left button
AH = 21H: middle button
AH = 22H: right button

AL = 2: coordinate information

registers BX and CX contain the change in
coordinates since the last call of mouse status.

delta x
delta y

BX

 CX

RC Computer -65-

4.

-55-

Console module PICCOLINE

RC Computer

5. Real Time Clock

The PICCOLINE standard configuration includes a real time
clock controller RTC! with battery backup.

The RTC time and date information is read during power up
and is used to initialize the time and date fields found in
the SYSDAT area see ref.2!.

After power up the RTC generates an interrupt each second
and this interrupt is used to update the above mentioned
SYSDAT fields.

If a program disables interrupts for more than one second,
it will cause a loss of one or more interrupts from the
RTC. As a consequence, the time and date fields will not be
updated correctly but the real time clock itself still
holds the correct time and date!.

5.1 Real Time Clock Controller

RTC controllers from two different manufacturers are used
in the PICCOLINE. To distinguish between the two types
refer to the KONFIG area byte �RTC second source� see
3.1!. If this byte is 0 the real time clock is a National
Semiconductor chip: MM58167. If the byte has the value OFFH
the real time clock is an RCA chip: CDP1879.
The two real time clock controllers differs in programming
and in facilities. A detailed description may be found in
the documentation from the manufacturers.

5.2 Reading and Writing Real Time Clock Registers

Although the two RTC controllers are different, they are
interfaced in a way, that makes it possible to read and
write their control registers using the same software rou-
tines. The content of the RTC control registers are coded
in BCD-code, which means that a number is stored with the
the first ciffer in the four MSB and the last ciffer in the
four LSB. For example the number 35 is stored as:

bit no 7 6 5 4 3 2 1 0
0 0 1 1 0 1 0 1

where bit 0-3 contain the ciffer 5 and bit 4-7 contain the
ciffer 3.

RC Computer -67-

5. Real time clock PICCOLINE

The RTC registers are numbered as follow:

RTC control register

sec 2
min 3
hour 4

The following example shows two routines which can be used
to read and write the RTC control registers.

Example

Registers at entry:
AL = RTC register

Registers at exit
AL = contents of RTC register

V0

V0 V0 V0
�O No

rtc_adr equ 5CH
read_adr_set_up equ 80H
supply_read_pulse equ OAOH
remove_read_pulse equ 9FH

ReadRTC:

; read register address setup
Mov DX,rtc_adr
Or AL,read_adr_set_up
Out DX.AL

; generate read pulse
Or AL,supp1y_read_pulse
Out DX.AL

; Wait at least 1 micro sec
Nop
Nop
Nop
Nop

; read from register
Xchg AH.AL
In AL,DX
Xchg AH,AL

'58� RC Computer

PICCOLINE 5. Real time clock

: remove read pulse
And AL,remove_read_pulse
Out DX,AL
Xchg AH.AL
Ret

WriteRTC:

Registers at entry:
; AL = RTC register
; AB = value

write_adr_set_up equ IFH
supply_write_pu1se equ 40H
remove_write_pulse equ 1FH

; write register address setup
Mov DX,rtc_adr .
And AL,write_adr_set_up
Out DX,AL

; write value to register
Sub DX,2
Xchg AH,AL
Out DX,AL
Xchg AH,AL
Add DX,2

; generate write pulse
Or AL,supply_write_pulse
Out DX,AL

; wait at least 1 micro sec

Nop

 Nop
Nop
Nop

; remove write pulse
And AL,remove_write_pulse
Out DX,AL
Ret

RC Computer -69-

5. Real time clock PICCOLINE

-70- RC Computer

6. Sound

The sound device produces sound via the loudspeaker located
in the CPU unit some CRT units have a loudspeaker!.

The sound device contains four signal sources: three inde-
pendent generators of single-frequency tones and one gene-
rator of noise. In addition, each source has its own atte-
nuator with a 28-dB attenuation range. The output signal
from the four attenuators are summed together as a single
amplified output.

The sound device contains 8 registers that control the va-
rious noise and tone outputs:

R0 R1 R2 Control register

0 0 0 tone 1 frequency
0 0 1 tone 1 attenuation
0 1 0 tone 2 frequency
0 1 1 tone 2 attenuation
1 0 0 tone 3 frequency
1 O 1 tone 3 attenuation
1 1 0 noise control
1 1 1 noise attenuation

R0, R1 and R2 denote bit positions in the control bytes
sent to the sound device as described below.

Noise and attenuation parameters are sent to the sound de-
vice as 1-byte values, while frequence updates require 2
bytes. To differentiate between the first and second byte
of any data transfer, all first-byte or single-byte trans-
fers have the most significant bit equal to a logic 1. The
second byte always has the MSB equal to logic 0.

Because the CCP/M operating system does not support such
exotic devices as sound generators, this device is accessed
through Int-28h function 12:

12

 sound device control byteAX

 DL

To prevent more than one program from using the sound devi-
ce at the same time, the programs should reserve the device
before using it. This is done with the help of a mutual ex-
clusion queue of the name 'MXsound'. The device is reserved
when a queue read from Mxsound succeeds. �

6 . Sound PICCOLINE

Example

; This piece of code reserves the sound device by reading
; the mutual exclusion queue 'MXsound .

mov cl,135
mov dx,offset qpb_sound
int 224
mov cl,l37
mov dx,offset qpb_sound
int 224

queue open function
queue parameter block

queue read function
queue parameter blockIt in

V9 V0
50 �I

; the process will not proceed before the sound device is
reserved.

qpb_sound dw 0,0,0,0
db 'MXsound '

After use, the program should release the device as fol-
lows:

; This piece of code releases the sound device by writing
; to the mutual exclusion queue 'MXsound '.

mov c1,139 ; queue write function
mov dx,offset qpb_sound ; queu parameter block
int 224 3

6.1 Programming Tones

Each of the three tone generators cover a range of five
octaves: from two octaves below middle C to three octaves
above it.

Setting a frequency of 440 Hz for tone generator 1 is done
as follows.

First find I

clock rate/�2 * f!
2 MHZ/�2 * 440!

I

I

 I 142.045

Since 'I' must be an. integer quantity set it to 142. The
actual frequency will be 440.14 Hz.

-72- RC Computer

PICCOLINE 6. Sound

Next, convert �I� to a 10-bit binary value:

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9
0 0 1 0 0 0 1 1 1 0

The frequency data for tone generator 1 must be transferred
as a 2-byte quantity. The formats of the 2 frequency con-
trol bytes are as follows:

byte 1: 1 R0 R1 R2 F6 F7 F8 F9
byte 2: 0 x F0 F1 F2 F3 F4 F5 x = don't care!

To address tone register 1 R0, R1 and R2 must be 000.
Therefore, to set tone generator 1 at 440 Hz, the first
control byte becomes

1 0 0 O 1 1 1 O

and the second byte becomes

0 0 0 0 1 0 0 0

Once these values have been transferred, tone generator 1
is loaded, but the attenuator has not been set to enable
any output. Changing the attenuator setting requires only a
single byte of data:

1 R0 R1 R2 A0 A1 A2 A3

R0, R1 and R2 address the register as mentioned before,
while A0 - A3 determine the attenuation as follows.

A0 A1 A2 A3 Attenuation weight

0 0 O 0 0 dB
0 0 0 1 2 dB
0 0 1 0 4 dB
0 O 1 1 6 dB
0 1 0 0 8 dB
0 1 0 1 10 dB
0_ 1 1 0 12 dB
0 1 1 1 14 dB
1 0 0 0 16 dB
1 O 0 1 18 dB
1 0 1 O 20 dB
1 0 1 1 22 dB
1 1 0 O 24 dB
1 1 0 1 26 dB
1 1 1 0 28 dB
1 1 1 1 off

RC Computer -73-

6. Sound PICCOLINE

A 0 dB setting turns the volume on full. The resulting for-
matted control byte is

l 0 0 1 0 0 0 0

Example

; The following subroutine simulates the
; ringing of bells.

chime:

 call silence

mov dl,l40
call wsg tone 1 = 679 Hz
mov dl,5
call wsg
mov dl,17D
call wsg tone 2 = 694 Hz
mov dl,5
call wsg
mov t,�1

cloopl: strike chime 12 times
cmp t,12
jz cloop_exit
inc t
mov va,144

cloop2: step attenuation
inc va
cmp va,160
jz cloopl
mov dl,va

he �Q

�o no No ho V9 V0
V0 V0

V9 V0 V0 V0

V0 V0 in 50 V0 so No '~o
V0 ho No ho
V0 �0

call wsg
mov dl,va
add dl,32
call wsg
mov cx,OAO00H

cloop3:

 loop cloop3 step delay

jmp cloop2

cloop_exit:

 ret ;
silence: shut off:

mov d1,9FH
call wsg
mov dl,0BFH
call wsg
mov dl,0DFH
call wsg
mov dl,0FFH

tone generator 1

tone generator 2

tone generator 3

�Q

�o V0 V0 V0 no in
V0

noise generator

PICCOLINE 6. Sound

wsg: ; write to sound
mov ax,12 ; device
int 28H 3
ret

t db 0
Va db 0

6.2 Programming Noise

The noise generator produces pseudorandom noise by means of
a shift register. The rate at which the register shifts
determines whether the noise contains a majority of high-
frequency or low-frequency components.

To change the output of the noise source, change the noise-
control and noise-attenuation registers. Both use single-
byte commands with the following format.

1 R0 R1 R2 x PB NFO NF1

The PB bit controls the feedback in the noise-generator
shift register. If the FB bit is a logical 1, the result is
white noise. If the FB bit is a logical 0, the feedback is
disabled, and a lower-frequence periodic noise is produced.

Two bits, NFO and NF1, control the clock frequency fed to
the noise-generator shift register. Four options are avail-
able:

Three options select fixed rates, the fourth selects the
output from tone generator 3 as the noise generator shift
register clock.

NFO NF1 Shift rate
0 O clock rate/512
0 1 clock rate/1024
1 0 clock rate/2048
1 1 tone generator 3 output

where clock rate = 2 MHz

Example

; The following subroutine generates an
; explosion sound

RC Computer -75-

6. Sound PICCOLINE

explosion:

 call silence

mov dl,0E4H set high pitchedV0 in �O �Ocall wsg white noise
mov va,0EFH

elooplz

 inc va ; step attenuation

jz eloop_exit ;
mov dl,va ;
call wsg ;
mov cx,0FFFFH ; step delay

eloop2:

 loop eloop2 ;

jmp eloopl ;

eloop_exit:

 ret ;
silence: ; shut off:

mov dl,9FH ; tone generator 1
call wsg ;
mov dl,0BFH ; tone generator 2
call wsg ;
mov dl,0DFH ; tone generator 3
call wsg ;
mov dl,0FFH noise generator

wsg: ; write to sound
mov ax,l2 ; device
int 28H ;
ret ;

va db 0

7. Cassette Tape

The PICCOLINE standard configuration includes a cassette
tape interface. The interface control is implemented in
software by using Timer 0 of the 80186 to control the data
of the cassette recorder.
This chapter describes the interface to the cassette tape.
The plug definition of the interface can be found in ref.5
 appendix D!.

7.1 Cassette Tape Control

The cassette tape control is implemented in software in the
following way.
Timer 0 output from the 80186 is used to control the output
data to the cassette recorder. The method used in the
existing driver is to set Timer 0 to the period of the
desired data bit. The timer is set to a period of
approximately 1 millisecond for an one bit and 0.5
millisecond for a zero bit. The timer then outputs a square
wave with the period given by the count register see fig.
7.1!. When more data bits are written the period of the
timer is changed on the fly.

A detailed description of how to �program Timer 0 can be
found in the Intel documentation of the 80186 CPU.

0.25 millisec

l :0 bit
I 0.5 millisec

I :1bit
1m�1hwc

Fig.7.1 Square wave of data bits.

______��������������________________;_____________________

 RC Computer -77-

7. Cassette Tape PICCOLINE

Cassette input data is read on the I/0-address 70H �12!
bit 0. A one bit read corresponds to a high pulse of the
data bit and a 0 bit read to a low pulse see fig.7.1!. By
continously reading the pulse value it is possible to
determine the period of the square wave and thereby to
determine the value of the data bit. Timer 0 is used for
measuring the pulse width of the square wave.

Note

Since both reading from and writing to the cassette tape
is very time dependent it may be necessary to turn off
all interrupts while reading or writing.

The casssette drive motor is controlled on/off! by I/O-
address 76H �18!, see fig.7.2.
Cassette input and output are enabled or disabled by I/O-
address 76H �18!. This can be very usefull for instance
while accelerating or descelerating the cassette drive mo-
tor.

I/0 address Output Operation
hex dec value

76 118 2 Motor on
76 118 3 Motor off
76 118 1 Enable cassette
76 118 0 Disable cassette

Fig.7.2 Cassette Control.

7.2 Cassette Tape Driver

Because the CCP/M operating system does not support a
cassette tape this device is accessed through Int-28h
function calls.

Before describing the driver functions the general format
of the data written on the cassette tape is described.

-78- RC Computer

PICCOLINE 7. Cassette Tape

7.2.1 Data Record Architecture

All data written on the cassette tape are written as
cassette records. A cassette record consist of following
entries:

EOOICI

l�-W/A
where each data block contains 128 bytes of data, and the
CRC field is a two byte CRC check. The last data block is
extended to 128 bytes.
The delay after start of motor is approximately 1.5
seconds.

The header field consist of following entries:

Header

Leading Record Record Name: Data
1-bits type nunber of bytes block

 byte! _ word! word!

LEEEEEEEEEEEEL

where the leader consist of 2024 ones used to eliminate
problems caused by a slow accelerating cassette motor!. The
synchronization bit tells when the leader is finished. The
record type tells what kind of record this is,- either
"file header". "data record" or "end of file".

RC Computer -79-

7. Cassette Tape PICCOLINE

A data file usually consist of consequtive data records.
Therefore to keep track of the records a record number is
saved in the header. Finally the header contains a field
containing the number of bytes in this record.

The normal format of a file written on cassette tape is:
First a file header record describing the file name,
type,..!. Then a number of data records and finally an end
of file record.
Following five Int-28h functions can be used for reading
and writing files of the kind mentioned above.

7.2.2 Cassette Write File Header

This function writes data from the specified output buffer
into a file header record on the cassette tape.

Registers on entry:

AL = 27
CX = Number of bytes in output buffer
DX = Offset address to output buffer
Topmost element on stack contains segment register of
output buffer.

Registers on return:

AX

 CX
DX

0

 0
Offset in output buffer! to the byte after the

last one written
BX is modified.
Stack is unchanged.

7.2.3 Cassette Write Next Data

This function writes data from the specified output buffer
into a data record on the cassette tape.

Registers on entry:

AL = 29
CX = Number of bytes in output buffer
DX = Offset address to output buffer
Topmost element on stack contains segment register of
output buffer.

-80- RC Computer

PICCOLINE 7. Cassette Ta e

Registers on return:

AX = 0
CX = 0
DX = Offset in output buffer! to the byte after the
� last one written
BX is modified.
Stack is unchanged.

Note

The cassette driver itself assigns a record number to the
record. A file header record is allways assigned record
number 0. The succeeding data records are then assigned
record number 1, 2, 3,... etc. That is, in order to get a
proper record numbering, data records have to be
preceeded by a file header record.

7.2.4 Cassette Write End of File

This function writes an end of file record on the cassette
tape.

Registers on entry:

AL = 40

Registers on return:

Ax = O
BX, CX and DX are modified

7.2.5 Cassette Read Rile Header

This function reads the data of a file header record on
cassette tape into the specified input buffer.

Registers on entry:

AL = 26
CX = Max number of bytes to read
DX = Offset address to input buffer
Topmost element on stack contains segment register of
input buffer.

RC Computer -81-

7. Cassette Tape PICCOLINE

Registers on return:

Function result
ok
CRC error
no data on tape time out!
no leader found after 10 tries!
wrong record number
end of file

AL II II II II II H II

 J1-b »Jl92!|-�C

AH and BX are modified
CX - Number of bytes actually read
DX Offset in input buffer! to the byte after the

last byte read
Stack is unchanged.

Note

The number of bytes actually read is the maximum of the
specified number of bytes and the number of bytes
actually in the record.

7.2.6 Cassette Read Next Data

This function reads the data of the next data record on
cassette tape into the specified input buffer.

Registers on entry:

AL = 28
CX = Max number of bytes to read
DX = Offset address to input buffer
Topmost element on stack contains segment register of
input buffer.

PICCOLINE � ' 7. Cassette Tape

Registers on return:

Function result
ok
CRC error
no data on tape time out!
no leader found after 10 tries!
wrong record number
end of file

AL

II II

II II II IIII

 J'u§U!I92.!|""�O

AH and BX are modified
CX Number of bytes actually read
DX Offset in input buffer! to the byte after the

last byte read
Stack is unchanged.

Note

If the record number of the data record is different from
the preceeding record number incremented by one an error
occurs AL = 4!.

Example

This program writes a file header record followed by
a data record to cassette tape. Then it waites for
user to rewind the tape before reading the two records
again. Finally the characters read are written on the
console.92c

V0 �O �O No
cseg

write file header
number of bytes in CX
offset in DX
segment on top of stack
write it!

mov al,27
mov cx,1ength textoutl
mov dx,offset textoutl
push ds
int 28h V0

CO �C
�O �O

write next data record
number of bytes in CX
offset in DX
segment allready on stack

mov al,29
mov cx,length textout2
mov dx.offset textout2 �o �o �o V0 ho
int 28h write it!

mov C1.9 3 write string
mov dx,offset wait_text ; on console
int 224

7. Cassette Tape _ PICCOLINE

mov cl,1
int 224

mov al,26
mov cx,100
mov dx,offset textin

int 28h

mov al,28
mov cx,100

int 28h

pop ds

mov cl,9
mov dx,offset textin
int 224

mov cx,0

V0 .0

V0 ho it

read character
from keyboard

read file header
max no of chars

segment allready on stack
read it:

read next data
max no of chars
offset allready in DX
segment allready on stack
read it!

remove segment from stack

write string
on console

terminate process
int 224

dseg

textoutl db 'PICCOLINE
textout2 db �the best school micro $'

wait_text db �rewind tape and press any key',10,13,'$'

textin rb 100

end

-84- RC Computer

8. Disk System

The disk configuration of a PICCOLINE consists of:

0,1 or 2 floppy disk drives
0 or 1 memory disk

Floppy disk drives are always resident inside the PICCOLINE
Disk/Printer-Controlunit DPC!. Up to 4 PICCOLINES are able
to share the same DPC. Therefore a PICCOLINE has to reserve
the floppy disks before accessing them. This is described
in section 8.4.

The disk naming conventions are as follows.

1. disk drive A
2. disk drive B
Memory disk M

8.1 Disk Characteristics

The PICCOLINE diskformat uses a sector to sector skew
factor of 1, and a track to track skew factor of 0, i.e. no
skewing at all.

The PICCOLINE floppy disks, although the size of a 5 1/4"
disk, use a format equivalent to an 8" double sided/dual
density disk.

Drive performance:

Capacity 1604 Kbytes unformatted
1232 Kbytes formatted

Recording density 9646 BPI
Track density 96 TPI

Cylinders 77
Tracks 154

Encoding method MFM

Rotational speed 360 RPM
Transfer rate 500 Kbits/sec

Latency average! 83 msec

RC Computer -85-

8. Disk system PICCOLINE

Access time
Average 91 msec
Track to track 3 msec
Settling time 15 msec

Head load time 50 msec
Motor start time 1 sec

Floppy disk format:

Capacity 1232 K bytes formatted

Cylinders 77
Tracks 154
Sectors/track 8
Sector length 1024 Bytes

Precompensation write!
Cylinder 0-76 125 nsec

Track format: No. of bytes Value hex!
80 * 4E
12 * 00

3 * F6 writes C2!
1 * FC index mark!

50 * 4E gap 1!
8 * sec see below!

1150 * 4E gap 4!
600 * 4E filler!

Sector format: g
12 * O0 gapl/gap3!

3 * F5 writes A1!
1 * FE ID addres mark!
1 * track no.
1 * sector no.
1 * 03 sector length!
1 * F7 � CRC written!

22 * 4E gap 2!
12 * 00

3 * F5 write A1!
1 * FB data addressmark!

1024 * E5 data!
1 * F7 � CRC written!

54 * 4E gap 3!

-85- RC Computer

PICCOLINE 8. Disk system

CCP/M drive characteristics:

77 cylinders per disk
2 track per cylinder
8 sectors per track

1024 bytes per sector
2 sectors per block 2 K bytes block size!
2 reserved tracks

616 blocks per disk
384 directory entries FCB's! per disk
128 directory entries SFCB's! per disk

1200 K bytes total disk capacity

8.2 Floppy Disk Controller

The floppy disk controller is based on the WD2797 control-
ler chip. The floppy disk controller FDC! and an external
control register FCR! for precompensation, motor on/off
and drive select! are accessed using the following I/0 ad-
dresses:

Address Direction Function

0280H I Read FDC status register
0 Write control command

02828 I Read FDC TRACK register
0 Write FDC TRACK register

0284H I Read FDC SECTOR register
0 Write FDC SECTOR register

0286H I Read FDC DATA register
0 Write FDC DATA register

0288B 0 Write FCR register
I Not defined

028EH 0 Reserve floppy
I Bus 7 = 0 means wait upon floppy

Bus 7 = 1 means ack from floppy
0290H 0 Release floppy

Further information on programming the registers on address
0280H-0286H may be found in the Western Digital documenta-
tion.

RC Computer -87-

8. Disk system PICCOLINE

The FCR register has the following encoding:

Bit Name Description

0 Drive select 0 selects drive 0
1 selects drive 1

1 Motor 0 0 Motor off
1 Motor on

2 Motor 1 0 Motor off
1 Motor on

3 Write Precomp. enable 0 Disabled
1 Enabled

4 Not used

5 Not used must be 0

6 Not used must be 1

7 Ready control 0 Ready from drive
1 Ready always set

Precompensation is normally applied in the following way.

Cylinder no. Precompensation

0-77 125 nsec.

The FDC is normally initialized to transfer data in DMA�
mode using DMA channel 0. In order to avoid data overrun,
DMA channel 0 is assigned a high priority see 2.2.3! when
it is used by the FDC.

8.3 Floppy Disk Driver

The XIOS floppy disk driver supports the three basic CCP/M
disk I/O functions:

IOSELDSK

 IOREAD

 IOWRITE

See ref.3 for detailed information about these functions.

Additionally the XIOS floppy disk driver supports several
int-28h functions which are described in appendix A func-
tions 5, 8, 9, 10, 11 and 13!.

PICCOLINE 8. Disk system

8.4 Reservation of Shared Disks

The floppy disks of a PICCOLINE system are resident inside
the PICCOLINE Disk/Printer-Controlunit DPC!, and can be
shared by up to 4 PICCOLINES. Therefore a PICCOLINE has to
reserve the DPC before accessing it and release it
afterwards. Usually this is handled by the disk driver
described in section 8.3, but if the disk controller is
accessed directly the following int-28h functions can be
used.

8.4.1 Reserve Shared Disk

This function reserves the shared disk resident inside the
PICCOLINE DPC. The function returns when reservation is
done.

42

 1 Reserve!AL

 AH

8.4.2 Release Shared Disk

This function releases the shared disks resident inside the
PICCOLINE DPC.

42
2 Release!

AL
AH

RC Computer -39-

8. Disk system PICCOLINE

-90- RC Computer

9. Parallel Printer! Interfaces

The parallel interfaces on the PICCOLINE system are prima-
rily intended for attachment of printers, but may also be
used as general input/output ports.

The CCP/M operating system supports the parallel interfaces
as printer devices. If no mapping to the printers in the
connection to the net! is used, printer 0 will be the port
on the CPU, called the local interface, and printer 2 will
be the DPC Disk/Printer-Controlunit! interface.

The main difference between the two interfaces is that the
DPC interface can be shared by up to 4 PICCOLINES, and
therefore it is necessary to reserve the interface before
use and release it afterwards.

9.1 Parallel Interfaces Description

An overview of the electrical signals used in the
interfaces is shown below.

pin number name

1 STROBE
2-9 ~ 8 data bit
10 ACK
ll BUSY
12 PAPER END
13 SELECTED
14 AUTO LINE FEED
15 FAULT
16 INIT PULSE
17 SELECT
18-25 0 Volt

The interface consists of 4 registers.

- Data output register, directly controlling the data pins
if enabled.

- Data input port, reflecting the state of the data pins at
the time of reading.

- Control output register, directly controlling 4 control
output pins and enabling of data output register and
interrupt.

- Status read port, reflecting the state of the 8
control/status pins at the time of reading.

RC Computerl -91-

9. Parallel Interface PICCOLINE

The registers have the following layouts:

Data output register
dec

Local interface OUT 250B 592
DPC interface OUT 28AH 650

Connector
Bit Pin no. Description

0 2 If the output register is enabled i.e.
1 3 control register, bit 4 = 0! then a bit in
2 4 the register directly controls the
3 5 corresponding connector pin as follows:
4 6
5 7 Bit state TTL ouput
6 8 0 LOW
7 9 1 HIGH

Data input port
dec

Local interface IN 250H 592
DPC interface IN 28AH 650

Connector
Bit Pin no. Description

0 2 Read back of data output register, or if this
1 3 is disabled the state of the connector pins.
2 4
3 5 Pin TTL level Bit state read
4 6 LOW 0
5 7 HIGH 1
6 8
7 9

-92- RC Computer

PICCOLINE 9. Parallel Interface

Control register
dec

Local interface OUT 260H 608
DPC interface OUT 28CH 553

Bit 0-3 of this register are connected through open collec-
tor inverters to corresponding connector pins all four
having pull up resistors to +5V!.

Bit no. Signal Pin no.! Description

0 �,STROBE �! See above
1 -,AUTOLF �4! See above
2 -,INIT �6! See above
3 -.SELECT �7! See above
4 OUT DISABLE Output register disable

if 0: enables output register
line drivers

if 1: three-states the output
register and allows pins
2-9 to be used for inputs.

5 NOT USED
6 NOT USED
7 INT DISABLE Interrupt disable

if 0: enables interrupts when
BUSY input pin �1! is
LOW.

if 1: disables interrupts.

Interrupts from the parallel interfaces has been asigned:

IR interrupt vector address

Local interface 6 98H
DPC interface 2 88H

Status input port
dec

Local interface IN 260B 608
DPC interface IN 28CH 652

Each bit in this port represents the inverse state of a pin
in the connector. The 5 LSB are inputs only while the 3 MSB
inputs the state of 3 of the open collector outputs.

RC Computer -93-

9. Parallel Interface PICCOLINE

Connector
Bit no. Pin no. Signal description

0 11 NOT BUSY. 0 when input signal BUSY
is high.

1 10 ACK, 0 when input signal is high.

2 15 FAULT, 0 when input signal is high.

3 12 NOT PAPER END, 0 when input signal
is high.

4 13 NOT SELECTED, 0 when input signal
is high.

5 1 STROBE, 0 when input signal is
high.

6 16 INIT, 0 when input signal is high.

7 17 SELECT, 0 when input signal is
high.

9.2 Sample Printer Driver Routines

In the following an example of printer driver routines to
the local interface is listed

list_flag Equ 12

list_init:

 ; get sysdat segment

mov cl,154
int 224
mov sysdat,es

; get dispatcher address
mov ax,es:.38
mov dispatcher,ax
mov ax,es:.40
mov dispatcher+2,ax

; get supervisor address
mov ax.%s:.0
mov supervisor,ax
mov ax,es:.2
mov supervisor+2,ax

-94- RC Computer

PICCOLINE 9. Parallel Interface

; initialize interrupt vector
xor ax,ax
mov es,ax
mov di.98H
mov ax,offset parallel_interrupt
stos ax
mov ax,cs
stos ax
ret

sysdat dw
dispatcher rw
supervisor rw NIUO

list_out:

 ; Entry: CL = character

; output character to register
mov al,cl
mov dx,250h
out dx,al

; interrupt disabled,SELECT and STROBE on
mov al.l0001001b
mov dx,260h
out dx,al

; interrupt disabled, SELECT on, STROBE off
mov al,10001000b
out dx,al

; allow printer to activate BUSY before enabling
; interrupt otherwise interrupt will occur at the
; moment interrupt is enabled!

mov cx,3

list_delay:

 loop list_delay

; Interrupt enable, SELECT on, STROBE off
mov al,00001000b
out dx,al

; wait for interrupt
mov dx,list_flag
call flagwait
ret

RC Computer -95-

9. Parallel Interface PICCOLINE�

1ist_status:

; Exit: AX 0 if not ready
; Offffh if ready

; test if printer is present and selected

mov dx,260h
in al,dx
test a1,16
jnz not_ready
test al,8
jz not_ready
mov ax.0ffffh
ret

not_ready:

 xor ax,ax

ret

paral1el_interrupt:

; save context
push ds
push es
pusha

; set ds to sysdat segment
mov ds,sysdat

; disable interrupt
mov al,10000000b
mov dx,260h
out dx,al

; non specific end of interrupt to external and
: internal interrupt controller
mov al,20h
out 0,a1
mov dx,0ff22h
mov ax,8000h
out dx,ax

; signal interrupt
mov dx.list_flag
call flagset

_
'95� RC Computer

PICCOLINE 9. Parallel Interface

; reestablish old context

POPS

 pop es
pop ds
jmpf cszdword ptr dispatcher

dev_flagset equ 133
dev_flagwait equ 132

flagset:
push dx
mov cl,dev_flagset
call supif_1
pop dx
test ax,ax
jz flagset_ret

; if error 'ignored' then try again
cmp cl.2ah
jz flagset

flagset_ret:
ret

flagwait:

 mov cl,dev_flagwait

supif:

 ; get running process

mov bx.rlr

; get process's UDA
mov es,cs: 10H£bxA

supif_1:

 xor ch,ch

mov ds,sysdat .
callf supervisor
ret

9.3 The DPC Interface

Because the DPC interface can be shared by up to 4
PICCOLINES it has to be reserved before use. After the
reservation is acknowledged the interface is owned by the
current PICCOLINE until released again.

9. Parallel Interface

9.3.1 Reserve the DPC Interface

This function reserves the DPC interface:

41
1 Reserve!

AL

 AH

Note that return take when
reserved.

place only

9.3.2 Release the DPC Interface

This function releases the DPC interface:

41

 2 Release!AL

 AH

PICCOLINE

then DPC has been

10. Serial Interface

This chapter describes the serial communication support on
the PICCOLINE.

The PICCOLINE standard configuration does not include a
serial communication controller. But if MF905 V24 Serial
Interface iSBX3S1! is installed the system supports this
serial communication channel.

10.1 Standard Serial Communication Support

CCP/M supports the serial communication channel either as
an extra console device with console number 5! or as a
list device with device number 1!.
when the channel is operated as a console device access is
gained in the same way as access to the normal virtual
consoles i.e. using CCP/M console input/output functions
 see ref.2!.

when the channel is operated as a list device, it is acces-
sed through CCP/M's list device functions ref.2!.

The various operating parameters such as baudrate and se-
lection between printer mode and console mode! are set
using the KONFIG program see ref.5!.

10.1.1 V24 Handshake Scheme

When operating the communication channel in the standard�
asynchronous mode the connected devices must adhere to the
handshake scheme. based on the signals RTS Request To
Send!, DTR Data Terminal Ready!, CTS Clear To Send! and
TxD Transmit Data! as illustrated below.

DTR I

RTS

CTS

TxD

The receiver will start to sample data from the RxD Recei-
ve Data! line when the DCD Data Carrier Detect! signal
becomes active.

RC Computer � -99-

10. Serial Interface PICCOLINE

10.2 Serial Communication Controller

The channel is only capable of operation in asynchronous
mode, but may be strapped to operate in synchronous mode
instead. Detailed information of how to programme the
channel can be found in ref.ll.

The channel consist basically of

- a 8251A USART chip used to convert parallel output
data into serial output data and serial input data
into parallel input data.

- a 8253 PIT used to generate the baud rate clock of
the channel.

These chips are programmed through a sequence of I/O-Read
and I/O-Write commands. As shown in the following table
each of the chips recognizes eight seperate I/O�addresses
used to control the various programmable functions. Where
two or four addresses are listed for a single function
either addresses may be used.

no cup
ddrou Select
ex

-300, 304,
303, 30c 8251A

USART
302: 306: write: Mode or Command
300 , 309 Read: Status

i : Co r3]0°r3]8 Wrte unte 0
 Load Count + N!

�3l2or3lo

Read: Counter 0

Write: Counter 1
 Load Count + N!

Read: Counter 1
8253 PIT

Write: Counter 2
 Load Count -:- N!

Read: Counter 2

Write: Control
316 or 318 Read: None

Fig.l0.l I/O Address Assignments

3l4or3lc

-l00- RC Computer

PICCOLINE 10. Serial Interface

The interrupts from the iSBX351 are connected to the 80186
CPU INT1 and INT3 pins. The receiver and transmitter are
assigned interrupt level ODH and OFH respectively. This
corresponds to the following interrupt vector addresses:

Interrupt address
hex dec

receiver 0:34 0:52
transmitter 0:3C 0:60

10.2.1 Asynchronous Communication

Counter 2 of the 8253 PIT is used to generate both receiver
and transmitter baud rate. Therefore it is impossible to
have different receiver and transmitter baud rate in the
standard configuration. If it is necessary to have
different baud rates it is possible to strap the channel to
use two different counters of the PIT to generate the
different baud rates.

In order to get the appropriate baud rate the counter 2
register of the PIT is set to one of the values in the
following table.

Value Baud rate

1024 75
698 110
512 150
256 300
128 600

64 1200
32 2400
16 4800

8 9600

Example

Initialize the 8253 PIT to generate a 2400 baud rate clock
for the serial channel both receiver and transmitter baud
rate!.

mov dx,316H
mov al,0B6H
out dx,al

PIT control register
select counter 2. Read
least sign. byte first
then most sign. byte§l V0

50 V0

RC Computer -101-

10. Serial Interface PICCOLINE

mov dx,316H ; PIT counter 2
mov ax,32 ; 2400 baud
out dx,al ; least significant byte
exch ah,al :
out dx,al ; most significant byte

Further information about the programming af the 8253 PIT
and the 8251A USART can be found in ref.ll.

10.3 Initializing the iSBX351

Two Int-28h functions are available for initializing the
iSBX351 to operate in standard asynchronous mode.

Int-28h function 24 is used to initialize the channel
according to a parameter block with the following format.
The format is chosen to be the same as the format used in
the Rc Partner. Hereby the serial communication channel of
the PICCOLINE system is made work like channel B of the
Partner system.

+ 0 1 allways!

+ 1 Mode �: Console; 1: Printer!

+ 2 Protocol �: None; 1: Xon�Xoff!

+ 3 Receiver baud rate �: 75 1: 75; 2: 110;
3: 150; 4: 300; 5: 600; 6: 1200; 7: 2400;
8: 4800; 9: 9600!

+ 4 Transmitter baud rate as for receiver!

+ 5 No. of subsequent write register
specification see relevant INTEL doc.!

+ 6 Register no.

+ 7 Register contents

+ 8 Register no.

+ 9 Register contents

etc.

-102* RC Computer

PICCOLINE 10. Serial Interface

Since the channel uses only one baud rate generator only
the receiver baud rate field has any effect.
The write registers mentioned corresponds to the write re-
gisters of the INTEL 8274 serial controller of the Partner
system. The format of the registers can be found in section
3.2 NVM byte 14-17! and in the relevant INTEL documenta-
tion conserning the INTEL 8274 serial controller!. Only
parameters of write register 3-5 of the 8274 has any effect
in the PICCOLINE system.

A pointer to the parameter block must be on the stack when
the function is entered.

Registers on entry:

AL = 24

Stack on entry:

+2
+0

Parameter block segment
Parameter block offset

Stack on return:

Unchanged.

Example

CSEG
ORG l00H

SetSIO:

 ; Put pointer to ParamBlock on stack

Mov AX,0ffset ParamBlock
Push CS
Push AX

Mov AX,24
Int 28H

; clean-up stack
Add Sp,4
Ret

RC Computer -103-

10. Serial Interface PICCOLINE

Even parity
write register 3:

Transmit character length = 7 bit
; Receive enable

Db 5,0AAH;write register 5:
° Data Terminal Ready

Receive character length = 7 bit
Transmit enabled
Request To Send

Db 3,6lH°

ParamBlock:

 Db 1 ,

Db 0 , Console mode
Db 1 , Xon-Xoff
Db 8 , Receive 4800 baud
Db 8 , Transmit 4800 baud
Db 3 . 3 registers to program
Db 4,47H; write register 4:

I *
, 1 stopbit

V0

V0 V:
V

END

Int-28h function 50 is used to reestablish the standard
initialization as it is done when the PICCOLINE is
booted!. The function has no parameters.

Example

ResetSIO:

 Mov AX,50

Int 28H
Ret

Int-28h function 23 is used to read the status of the
iSBX351 controller. The status returned is encoded in the
following way in order to be compatible to the rr0 and
rrl registers of the communication channel B of the Partner
system!.

Registers on entry:

AL 23

Registers on return:

AX Status

-104~ RC Computer

PICCOLINE 10. Serial Interface

where the status in AX is encoded in the following way:

bit 0 = Receiver ready
bit 2 = Transmitter empty
bit 3 = Data set ready
bit 5 = Transmitter ready
bit 12 = Parity error
bit 13 = Overrun error
bit 14 = Framing error

Further details can be found in the relevant Intel docu-
mentation.

10.4 Sample Asynchronous Communication Program

All examples in this chapter use the following decla-
rations:

P_F1agset Equ 133; CCP/M flagset function
P_F1agwait Equ 132; - flagwait -

ReceiveFlag Equ 13; Flag allocated to receive
TransmitFlag Equ 14; Flag allocated to transmit

DataPort Equ 300; channel data port
CommandPort Equ 302; channel command port

Before any data transfer can take place the hardware and
software must be initialized.

The responsibility of the initialization routine is to do
all hardware and software initialization needed e.g. set-
ting up the iSBX351 and initialize all driver variables!.

Example

Initialize:

 ; get sysdat segment

Mov CL,154
Int 224
Mov sysdat,ES

RC Computer -105-

10. Serial Interface PICCOLINE

; get dispatcher address
Mov AX,ES:.38
Mov dispatcher,AX
Mov AX,ES:.40
Mov dispatcher+2,AX

; get supervisor address
Mov AX,ES:.0
Mov supervisor,AX
Mov AX,ES:.2
Mov supervisor+2,AX

; initialize interrupt vectors
Cli
Xor AX,AX
Mov ES,AX
Mov Di,3CH ; vector for transmit interrupt
Mov AX,Offset Transmitlnterrupt
Stos AX
Mov AX,CS
Stos AX
Mov Di,34H ; vector for receive interrupt
Mov AX,Offset Receivelnterrupt
Stos AX
Mov AX,CS
Stos AX
Sti

; Initialize iSBX controller see 10.3!
Call SetSIO

Ret

sysdat dw 0
dispatcher rw 2
supervisor rw 2

The receive routine is executed when the user program needs
data from the communication line.

The program waits for data by means of a P_Flagwait opera-
ting system call. This operating system call will suspended
the program until data has arrived and this has been sig-
nalled by the interrupt routine by means of a P_Flagset
operating system call. To avoid loss of data it may be ne-
cessary to maintain a circular buffer which is filled with
received data by the interrupt routine and emptied by the
input routine when the user program needs data.

-106� RC Computer

PICCOLINE 10. Serial Interface

Example

Receive:

 ; wait for receive interrupt

Mov DX,ReceiveFlag
Mov CL,P_FlagWait
Int 224

; get character from buffer
Mov AL.char
Ret

�char db 0

The Transmit routine is ~executed when the user program
wants to send data on the communication line.

The Transmit routine sends data and then wait for comple-
tion by means of a P_£lagwait operating system call. when
the controller completes its task the transmitter interrupt
service routine will signal this by means of a P_Flagset
operating system call.

Example

Transmit:

 Mov DX,DataPort

out DX.AL

; wait for transmitter interrupt
Mov DX.TransmitFlag
Mov CL,P_FlagWait
Int 224
Ret

In order to handle the interrupts from the serial communi-
cation channel the system has to be enhanced with two in-
terrupt routines:

1! Transmit interrupt routine. This routine will gain con-
trol when the controller has sent a character and is
ready for the next one. The routine should clear the
interrupt by issuing an �end of interrupt� command to
the INTEL 80186 interrupt controller, set the appro-
priate flag by means of a P_Flagset operating system
call see above! and force a process dispatch to allow
a process that waits for the flag to continue execu-
tion.

RC Computer -107-

10. Serial Interface PICCOLINE

2! Receive interrupt routine. This routine will gain con-
trol when the controller has received a character. The
routine is responsible for reading and buffering the
character, for issuing an �end of interrupt� command,
for setting the appropriate flag and for forcing a pro-
cess dispatch.

Example

Transmitlnterruptz

 ; save context

Push DS
Push ES
Pusha

; set ds to sysdat segment
Mov DS,CS:sysdat

; execute non specific end of interrupt
Call Sio_EOI

Mov DX,TransmitFlag
Call Flagset
Jmp DispatchReturn

Receivelnterruptz

 ; save context

Push DS
Push ES
Pusha

; set ds to sysdat segment
Mov DS,CS:sysdat

; read character from sio
Mov DX.DataPort
In AL,DX

; save character in buffer
Mov CS:char,AL

; execute non specific end of interrupt
Call sio_EOI

; signal program that character is received
Mov DX,ReceiveFlag
Call Flagset

-l08- RC Computer

PICCOLINE 10. Serial Interface

; force a dispatch
Jmp DispatchReturn

Sio_EOI:

 Mov DX,0FF22H ; non specific end of

Mov AX,8000H / ; interrupt to internal
Out DX,AX ; interrupt controller.
Ret

DispatchReturn:
; reestablish old context
Popa
Pop ES
Pop DS
jmpf cszdword ptr dispatcher

NodispatchReturn:
; reestablish old context
Popa
Pop ES
Pop DS
Iret

Flagset:
Push Dx
Mov CL,P_F1agset
Call Supif_1
Pop DX
Test AX.AX
Jz FlagSet_ret

: if error code='f1ag set ignored�
; then try again
Cmp CL,2aH
J2 Flagset

FlagSet_ret:

 Ret

Flagwaitz

 Mov CL,P_F1agwait

SupIf:

 ; get running process

: sysdat:68 is pointer to running process!
Mov BX,.68

; get process's UDA

10. Serial Interface PICCOLINE

SupIf_l:
Xor CH,CH
Mov DS,sysdat
Callf supervisor
Ret

Example

The following program uses the routines described above to
indefinitely receive and transmit a character on the commu-
nication line.

CSEG
ORG 100H

Call Initialize
Nextcharz

Call Receive
Call Transmit
Jmps Nextchar

-110- RC Computer

ll. Local Area Network

The network software in the PICCOLINE can be considered as
a collection of layers. The higher layers network software
such as DR�NET ref.4! and IMC refs.8,9! utilize a common
datalink service.

This section describes in detail the datalink service in-
terface enabling the programmer to implement higher layer
network software using the PICCOLINE datalink service. Fur-
thermore a detailed description of the datalink layer pro-
tocol, the RCLLC protocol, is given. This decription makes
it possible for the programmer to attach non RC-products to
the RC Local Area Network LAN! at the datalink level.

The protocol and service defined in this section form an
extension to the proposed ISO LLC type 1 protocol and ser-
vice ref.6!, viz.:

- all frames which are valid according to the RCLLC
protocol are also valid ISO LLC type 1 frames

- RCLLC adds protocol functions and interface service
functionality to ISO LLC type 1 in a fashion which
one might choose to consider as a sublayer added on
top of an LLC type 1 sublayer

The services of LLC type 1 are data transfer on connection-
less data links, allowing multiple independent clients
within each station, plus facilities for point�to-point
loop back test traffic.

The essential service of the RCLLC layer, which constitutes
an extension to the type 1 service, is called client
network service. This service comprises the dynamic
configuration, maintenance and supervision of multiple
independent networks of clients. Connection-based data
transfer with sequence control and retransmission to avoid
loss of or damage to data is performed between any pair of
clients belonging to the same client network.

The RCLLC protocol assumes that the services of a Medium
Access� Control layer are available. The services of this
layer are in the PICCOLINE mainly implemented by the Intel
82586 Ethernet controller ref.10!. To enable the program-
mer to access the controller directly, PICCOLINE specific
information about handling the controller is given.

RC Computer -111-

11. Local Area Network PICCOLINE

11.1 Fundamental Concepts

The following terms are used in this document with their
standard meaning as defined in the ISO model for Open
Systems Interconnection ref.7!: station, layer, entity,
peer, protocol, service primitive, datalink, connection.

Further concepts and terminology which are not necessarily
found in the ISO model, but used in this section, are defi-
ned in the following:

An RCLLC station is a station which is attached to the
local area network and hosts an RCLLC entity that
communicates with peer entities in other RCLLC stations
according to the RCLLC protocol. A station which supports
only the LLC type 1 protocol and not the full RCLLC
protocol is not considered an RCLLC station. Until the
RCLLC protocol is adopted by other manufacturers, an RCLLC
station will be the same as an RC product attached to the
network.

The Medium Access Control MAC! layer is the only protocol
layer between the RCLLC layer and the physical network.
Each RCLLC station contains precisely one MAC entity and
one RCLLC entity. The station address is a unique address
which identifies the station within the local area network.
It follows that the station address is also a unique
address of the RCLLC entity.

The data units that are transmitted among RCLLC entities
using the MAC service are called RCLLC protocol elements.

A client is an RCLLC-user, i.e. an entity making use of the
RCLLC service and located in the layer above the RCLLC
layer.

An RCLLC §ervice Access Point SAP! is the logical! point
at which a client accesses the RCLLC service. Within an
RCLLC station each SAP is assigned a local SAP address in
the range 1..63. The complete SAP address is the pair
 station address, local SAP address! which uniquely
identifies a SAP within the local area network.

A SAP can be inactive, in which case it is effectively
unknown to the RCLLC layer so that all data and control
information addressed to it are discarded; or it can be
active. An active SAP can be used to obtain either type 1
service or client network service, but not both.

The RCLLC layer maintains a number of logical client
networks. A client network has a network number within the

-112- RC Computer

PICCOLINE 11. Local Area Network

local area network!, which must be in the range l..63, and
comprises all active SAPs within RCLLC stations on the
local area network whose local SAP addresses are equal to
this number, and for which client network service has been
requested.

For all RC local area networks client network number 1 is
assigned to an INC network, i.e. the IMC nodes in the RCLLC
stations of a local area network will all access the RCLLC
service using a local SAP address of 1. Similarly, client
network number 2 is used for DR NET.

Associated with each client network within a local area
network is a multicast address which delimits the RCLLC
stations that take part in the client network from all
other stations on the network; i.e. a frame which is
transmitted on the local area network with this multicast
address should be received by� the MAC entity within! a
station if and only if the station is an RCLLC station
containing a SAP belonging to the client network.

Each SAP belonging to a client network has an associated
SAP mask. The SAP mask is a 16-bit word. Two SAP masks
match if at least one bit position contains a one in both
masks, i.e. if a logical AND-operation yields a non-zero
result. The RCLLC layer will maintain connections between
all pairs of SAPS belonging to the same client network
whose masks match.

11.2 The Datalink Layer Service Interface

The datalink layer the RCLLC entity! is implemented as a
CCP/M-86 Resident System Process named "NETDRV". This
process creates at runtime two child processes "XMIT" and
"REC". The process family will in the following description
be named the driver.
The concept �a long pointer� will in the following descrip-
tion mean a pointer consisting of a segment and a offset.
value and �octet� will be used synonymous with �byte�.
The interaction between the driver and the client is
implemented as a message/answer concept utilizing the
CCP/M-86 queue interprocess communication facility. The
communication between the driver and a client will have
four fundamental forms:

RC Computer -113-

11. Local Area Network PICCOLINE

REQUEST

The driver accepts requests written to a queue named
"link_req". This queue is created by the driver. The buffer
written to the queue will contain information of the
request kind and request specific parameters described
below. The resources i.e. buffers! passed to the driver in
a request buffer must be regarded as locked and must not be
modified until release see CONFIRM below!.

CONFIRM

The driver will always respond to an issued request with a
confirm event. The purpose of the confirm event is partly
to signal to the client that his outstanding resource e.i.
a data buffer! has been released and partly to inform the
client about the result of the issued request.
The driver will write confirm messages to a queue created
by a client. This queue is made known to the driver when
the client activates a SAP. The confirm queue must be crea-
ted with a buffer size = 4 bytes and a number of buffers
that will ensure that the driver will not be suspended in
an attempt to write to the queue.

The format of the queue buffer is:

byte number

 0 user buffer offset

2 user buffer segment

User buffer refers to the buffer pointer in the request
buffer see below! passed by the client to the driver in
the confirmed request. The first three bytes of the buffer
will have the following format:

byte number

 0 depend on the confirmed request

1 depend on the confirmed request

2 result of the confirmed request

PICCOLINE 11. Local Area Network

The result can have one of the following values:

result value explanation

0 no problems

1 link down

2 protocol error - already one outstanding data
request on the requested connection

4 SAP class error - the requested service
requires that the SAP has been activated as a
RCLLC SAP

5 SAP class error - the requested service
requires that the SAP has been activated as a
type 1 SAP

6 SAP occupied by another client

7 can't activate a new SAP - no resources

8 illegal SAP number

9 data buffer too big > 1076 bytes!

10 protocol error SAP removed - reason why
unsyncronized disconnect acknowledge

255 request not implemented

INDICATION

The indication event is signaled by the driver to the
client to indicate an internal event which is significant
to the client i.e. a data buffer has been received or a
connection has been established or removed.
The driver will write indication events to a queue created
by a "client. This queue is made known to the driver when
the client activates an SAP.
The indication queue must be created with a buffer size = 4
bytes and a number of buffers that will ensure that the
driver will not be suspended in an attempt to write to the
queue.

RC Computer -115-

11. Local Area Network PICCOLINE

The format of the gueue buffer is:

byte number

0 indication structure offset

2 indication structure segment

The content of the indication structure will be described
below in the description of the individual indications.

NOTE

The indication structure must not be modified by the
client. Modifications of the indication structure can
make the system behave unpredictably.

INDICATION ACKNOWLEDGE

Whenever the driver writes an indication event to the
indication queue, it will pass resources the indication
structure and in most cases a data buffer! to the client.
Immediately after processing the indication event i.e.
copying a possible data buffer into a local buffer!, the
client must return these resources to the driver with an
INDICATION ACKNOWLEDGE. In assembly language it is done
with a few lines of code:

; assumption dszbx long pointer to the indication structure

;push parameters onto the stack
push ds ;segment part of the long pointer
push bx ;offset part of the long pointer
int 29h ;the software interrupt executes

;the indication acknowledge
add sp,4 ;clean up stack

11.2.1 RCLLC Services

The RCLLC services are obtained by a client through an ac-
tive SAP. A SAP can be used either for type 1 service or
for client network service, but not for both. The loop-back
test facility is available regardless of the choice of type
1 or client network service.

-116- RC Computer

PICCOLINE 11. Local Area Network

SAP Activation and Deactivation

There are four primitives to request activation and deac-
tivation of a SAP and to confirm the processing of these
requests. They are described in the following subsections.

11.2.1.1 ACTIVATE.request

The primitive which requests the activation of a SAP is
passed from a client to the driver by writing a request
buffer to the 'link_req' queue. The driver can support two
simultaneous SAPs of any type.

Format of the request buffer:

byte number

 0 request kind = 0 activate.request!

1 specifies the local SAP address of the
SAP to be activated must be in the
range 1 - 63!.

2 specifies whether type 1 service value
= 1! or client network service value =
0! is requested

3-4 queue ID for the indication queue

5-6 queue ID for the confirm queue

7-8 the length of the client information
 max 46 bytes!

9-10 client information offset

11-12 client information segment

13-14 unused

The indication queue and the confirm queue must be created
and opened by the client before any attempts to request
activation of a SAP. The queue IDs must be fetched from the
Queue Parameter Block QPB see ref.2! after the queues have
been opened.

Client_information is a data unit which is transmitted and
passed to the remote client in the CONNECT_indication

RC Computer -117-

11. Local Area Network PICCOLINE

primitive whenever a connection is established between the
activated SAP and a remote SAP. The format of the client
information buffer is:

byte number

 0-5 reserved by the driver

6-7 the SAP mask used to prevent establishment of
undesired connections, cf. section 11.1

8-45 client defined information

The length of the client information includes the reserved
bytes and the two SAP mask bytes.

11.2.1.2 ACTIVATE.confirm

The primitive which is issued in response to an
ACTIVATE.request primitive is passed from the driver to the
requesting client. This is done by writing a long pointer
 pointing to the client information buffer! to the clients
confirm queue.

Format of the returned client information buffer:

byte number

 0 unused

1 confirm kind = 0 activate.confirm!

2 confirm result indicates whether the SAP was
successfully activated

When a SAP has been activated for type 1 "service
UDATA.request primitives may be issued requesting the
transmission of data.

When a SAP has been activated for client network service.
the RCLLC layer will automatically begin to establish the
appropriate connections. As each connection is established,
the client will be informed by means of a
CONNECT.indication primitive and may subsequently request
transmission of data by issuing DATA.request primitives.

In either case, once a SAP has been activated, the client
may issue the TEST.request primitive to request a loop�back

PICCOLINE 11. Local Area Network

11.2.1.3 DEACTIVATE.request

The primitive which requests the deactivation of a SAP is
passed from a client to the driver by writing a request
buffer to the 'link_req' queue.

Format of the request buffer:

byte number

0 request kind = 1 deactivate.request!

1 specifies the local SAP address of the SAP to
be deactivated

2-3 deactivate buffer offset

4-5 deactivate buffer segment

6-14 unused

The deactivate buffer must be at least 3 bytes long and it
is returned to the client by the deactivate.confirm.

11.2.1.4 DEACTIVATE.confirm

The primitive which is issuedl in response to a
DEACTIVATE.request primitive is passed from the driver to
the requesting client. This is done by writing a long
pointer pointing to the deactivate buffer! to the clients
confirm queue. The deactivate confirm event is a signal to
the client, that all outstanding resources i.e. queues or
databuffers can be regarded as released.

Format of the returned deactivate buffer:

byte number

 0 unused

1 confirm kind = 1 deactivate.confirm!

2 confirm result always ok!

RC Computer -119-

11. Local Area Network PICCOLINE

Loop-back Test Service

The loop-back test facility allows a client to request a
test of the transmission path between the local RCLLC
entity and one or more remote RCLLC entities without
requiring the participation of any remote client s!. This
is done by transmitting a TEST protocol element command!
to the specified RCLLC entity/entities to which it/each of
them must respond by transmitting a TEST protocol element
 response! addressed to the requesting client SAP!.

Note

No indication is given if the responding protocol element
fails to arrive from any or all of the RCLLC entities
addressed in the TEST.request primitive.

11.2.1.5 TEST.request

The primitive, which requests that one or more transmission
paths be tested, is passed from a client to the RCLLC
entity by writing a request buffer to the 'link_req' queue.

Format of the request buffer:

byte number

 0 request kind = 4 test.request!

1 DSAP is the remote SAP address.

2 SSAP is the local SAP address.

3-8 Ethernet address. This is the MAC address of
the remote RCLLC entity; a multicast or
broadcast address may be used in place of a
specific station address to request testing
of multiple transmission paths.

9-10 length of the test buffer

1.1-12 test buffer offset

13-14 test buffer segment

The first three bytes in the test buffer are reserved by
the driver. The length of the test buffer includes the
bytes reserved by the driver.

-l20- RC Computer

PICCOLINE 11. Local Area Network

11.2.1.6 TEST.confirm

The primitive which is issued in response to a TEST.request
primitive is passed from the driver to the client. This is
done by writing a long pointer pointing to the test buf-
fer! to the clients confirm queue.

Format of the returned test buffer:

byte number

 0 DSAP is the remote SAP address.

1 confirm kind = 4 TEST.confirm!

2 result indicates how the transmission of test
data unit went, e.g. �no problems� or �too
many collisions�

11.2.1.7 TEST.indication

The primitive which indicates that a TEST response protocol
element addressed to the local SAP has been received is
passed from the driver to the client. This is done by
writing a long pointer pointing to the indication
datastructure! to the clients indication queue.

Format of the indication datastructure:

byte number

0 indication kind = 1 TEST.indication!

1 reserved

2-3 the length of the received test buffer

4-7 reserved

8-9 received test buffer offset

10-11 received test buffer segment

12-13 reserved

14-19 source Ethernet address

RC Computer -121-

' Local Area Network PICCOLINE11.

The information part of the test buffer begins at the
fourth byte in the test buffer. The first three bytes are
included in the length of the test buffer.
Note that a TEST.request primitive issued by a client in an
RCLLC station does not cause this primitive to be generated
in remote RCLLC station s!, as the protocol element TEST
command! which is transmitted in this case is not addressed
to a SAP, but to one or more remote RCLLC entities.

11.2.2 Type 1 Service

Type 1 service comprises unacknowledged connectionless data
transfer between SAPs.

11.2.2.1 UDATA.request

The primitive which requests transmission of a data buffer
is passed from a client to the driver by writing a request
buffer to the 'link_req' queue.

Format of the request buffer:

byte number

 0 request kind = 2 UDATA.request!

1 DSAP is the remote SAP address.

2 SSAP is the local SAP address.

3-8 Ethernet address. This is the MAC address of
the remote RCLLC entity; a multicast or
broadcast address may be used in place of a
specific station address.

9-10 length of the data buffer

ll-12 data buffer offset

13-14 data buffer segment

The first three bytes in the data buffer are reserved by
the driver. The length of the data buffer includes the
bytes reserved by the driver.

-122- RC Computer

PICCOLINE 11. Local Area Network

11.2.2.2 UDATA.confirm

The primitive which is issued in response to a
UDATA.request primitive is passed from the driver to the
client. This is done by writing a long pointer pointing to
the data buffer! to the clients confirm queue.

Format of the returned data buffer:*

byte number

0 DSAP is the remote SAP address

1 confirm kind = 2 UDATA.confirm!

2 result indicates how the transmission of the
data buffer went, e.g. �no problems�

11.2.2.3 UDATA.indication

The primitive which is used to deliver a received RCLLC
service data unit is passed from the driver to the client.
This is done by writing a long pointer pointing to the
indication datastructure! to the clients indication queue.

Format of the indication datastructure:

byte number

 0 indication kind = 2 UDATA.indication!

1 reserved

2-3 the length of the received data buffer

4-7 reserved

8-9 received data buffer offset

10-11 received data buffer segment

12-13 reserved

14-19 source Ethernet address

The information part of the data buffer begins at the
fourth byte in the data buffer. The first three bytes are
included in the length of the data buffer.

RC Computer -123-

11. Local Area Network PICCOLINE

11.2.3 Client Network Service

The driver automatically establishes and maintains a
connection between each pair of SAPs belonging to the same
client network, except when the connection is excluded
because the SAP masks do not match.

When an SAP is activated, connections will be established
to those remote SAPs which were already active. The local!
client will receive a CONNECT.indication primitive for each
connection when it has been established. Similarly the

- remote clients will each receive a CONNECT.indication
primitive.

When a connection has been established. both clients may
request the transmission of RCLLC service data units by
issuing DATA.request primitives. A received data unit is
passed to the client at the «destination SAP by means of a
DATA.indication primitive.

The order in which RCLLC service data units are passed to
the driver for transmission on a connection is preserved to
the point of delivery. RCLLC service data units are deli-
vered free of transmission errors.

when an SAP is deactivated, either because of a request or
because the station in which it exists ceases to operate or
is reinitialized, the driver will detect the event and
remove the connections in which the SAP took part. Each of
the clients at the remote end of such a connection will be
notified by means of a DISCONNECT.indication primitive.

There is no guarantee that all service data units passed to
the driver for transmission will have been delivered before
a connection is removed.

When the driver has removed one end-point of! a connection
and passed the indication to the client it will not estab-
lish a new connection to the same remote SAP until the c1i--
ent has acknowledged the removal of the connection by issu-
ing a DISCONNECT.acknow1edge primitive. This procedure is
significant when a connection is removed because of a tem-
porary malfunction or the reinitialization of a station. It
allows the client to gracefully terminate any activity as-
sociated with the connection before it is reestablished.

Details about the six primitives� used in conjunction with
client network service are given in the following
subsections.

-l24- RC Computer

PICCOLINE 11. Local Area Network

11.2.3.1 CONNECT.indication

The primitive, which indicates that a connection has been
established, is passed from the driver to the client. This
is done by writing a long pointer pointing to the indica-
tion datastructure! to the clients indication queue.

Format of the indication datastructure:

byte number

0 indication kind = 3 CONNECT.indication!

1 connection index th station address of the
remote SAP! '

2-3 the length of the received client information

4-7 reserved

8-9 received client information offset

10-ll received client information segment

12-13 reserved

14-19 source Ethernet address

The information part of the client information begins in
the ninth byte in the client information buffer. The first
eigth bytes are included in the length of the client
information.
After receiving the primitive the client may issue
DATA.request primitives on the connection, and should
expect DATA.indication primitives to arrive.

11.2.3.2 DISCONNECT.indication

The primitive, which indicates that a connection has been
removed, is passed from the driver to the client. This is
done by writing a long pointer pointing to the indication
datastructure! to the clients indication queue.

RC Computer -125-

11. Local Area Network PICCOLINE

Format of the indication datastructure:

byte number

 0 indication kind = O DISCONNECT.indication!

1 connection index of the disconnected
connection

2-19 reserved

The client should acknowledge receipt of the primitive by
issuing a DISCONNECT.acknowledge primitive. A new connec-
tion to the same remote SAP will not be established until
this has been done.

11.2.3.3 DIsCONNECT.acknowledge

The primitive which acknowledges the removal of a connec-
_ tion is passed from a client to the driver by writing a

request buffer to the 'link_req' queue.

Format of the request buffer:

byte number

 0 request kind = 6 DISCONNECT.acknowledge!

1 connection index. This is the logical address
of the remote MAC entity.

2 DSAP is the local SAP address, i.e. the
client network number.

3 SSAP is the local SAP address, i.e. the
client network number.

4-5 unused

6-7 disconnect acknowledge buffer offset

8-9 disconnect acknowledge buffer segment

10-14 unused

The disconnect acknowledge buffer must be at least three
bytes long and it is returned to the client by the DISCON-
NECT ACKNOWLEDGE confirm. After receiving the primitive the
driver may establish a new connection to the same remote

PICCOLINE 11. Local Area Network

11.2.3.4 DISCONNECT_ACKNOWLEDGE.confirm

The primitive, which is issued in response to a DISCON-
NECT.ACKNOWLEDGE primitive, is passed from the driver
to the client. This is done by writing a long pointer
 pointing to the disconnect acknowledge buffer! to the
clients confirm queue.

Format of the returned disconnect acknowledge buffer:

byte number

 0 unused

1 confirm kind = 6 DISCONNECT.acknowledge!

2 result

11.2.3.5 DATA.request

The primitive, which requests that a data buffer be trans-
mitted on a connection, is passed from a client to the
driver.

NOTE

The client must not request transmission on the same con-
nection until confirmation DATA.confirm! has been recei-
ved. There are no restrictions on other connections.

Format of the request buffer:

byte number

 0 request kind =.5 DATA.request!

1 connection index. This is the logical address
of the remote MAC entity

2 DSAP is the local SAP address, i.e. the
client network number

3 SSAP is the local SAP address, i.e. the
client network number

11. Local Area Network PICCOLINE

4-5 length of the data buffer

6-7 data buffer offset

8-9 data buffer segment

10-14 unused

The first six bytes of the data buffer are reserved by the
driver. The length of the data buffer includes the bytes
reserved by the driver.

11.2.3.6 DATA.confirm

The primitive, which indicates that a data buffer previous-
ly passed in a DATA.request primitive has been transmitted
on a connection, is passed from the driver to the request-
ing client. This is done by writing a long pointer point-
ing to the data buffer! to the clients confirm queue.

Format of the returned data buffer:

byte number:

0 DSAP is the remote SAP address, i.e. the
client network number.

1 confirm kind = 5 DATA.confirm!

2 result indicates how the transmission went,
e.g. �no problems� , �too many collisions� or
�link down�

The primitive may confirm that the data unit has been
transmitted and acknowledged, but not that it has been
delivered to and received by the remote client.

11.2.3.7 DATA.indication

The primitive, which is used to deliver a data buffer re-
ceived on a connection, is passed from the driver to the
client. This is done by writing a long pointer pointing
to the indication datastructure! to the clients indication
queue.

-l28- RC Computer

HPICCOLINE 11. Local Area Network

Format of the indication datastructure:

byte number

0 indication kind = 4 DATA.indication!

1 connection index identify the connection on
which the data has been received!

2-3 the length of the received data buffer

4~7 reserved

8-9 received data buffer offset

10-11 received data buffer segment

12-13 reserved

14-19 source Ethernet address

The information part of the data buffer begins at the
seventh byte in the data buffer. The first six bytes are
included in the length of the data buffer.

11.3 MAC Services

The function performed by the MAC layer is to accept from
an RCLLC entity a MAC service data unit, to transmit it to
one, several multicast!, or all stations in the network,
and in the receiving station s! to deliver the unit to the
destination RCLLC entity ies!.

In the PICCOLINE CSMA/CD! type network the MAC service
includes retransmission following a detected collision.

There is no guarantee that a MAC service data unit which is
transmitted from one station on the network is received at
the destination station s!.

Each MAC entity is sensitive to its station address and
possibly one or more multicast addresses, i.e. addresses of
groups of stations to which the station belongs. Only MAC
service data units transmitted with one of these addresses
or the broadcast address will be received by the MAC
entity.

RC Computer -129-

11. Local Area Network PICCOLINE

Padding of frames containing MAC service data units in
order to reach the minimum size �6 bytes! is performed by
the MAC layer. The padding is removed again before
delivery.

The maximum size �076 bytes! for MAC service data units is
also enforced by the MAC layer, i.e. data units exceeding
the maximum size will not be transmitted, and the receiver
part of a MAC entity will.discard all incoming frames that
would yield a data unit longer than the maximum size.

The RCLLC layer uses the MAC service by transmitting each
RCLLC protocol element as a MAC service data unit.

11.3.1 Controller Specific Information.

This subsection describes the PICCOLINE specific
programming of the INTEL 82586 Ethernet controller. For
general information about programming the controller we
refer to ref.10. '

Interrupt vector.

The offset part of the pointer to the net controller
interrupt rutine must be placed in 0:94H. The segment part
of the pointer to the net controller interrupt routine must
be placed in 0:968.

Setting up interrupt vector:

; assumption cs:ax long pointer to net controller
: interrupt routine
; es segment register = 0 interrupt table starts in 0:0!

cli ;disable all interrupts
mov di,94H ;94H = offset part of net interrupt-

;routine
stosw ;
mov ax,cs ;get segment pointer
stosw ;96H = segment part of net

;interrupt
sti ;enable interrupts

After setting of the interrupt vector the interrupt source
must be enabled. It is default disable after system
initialization.

-130- RC Computer

PICCOLINE 11. Local Area Network

Enabling interrupts from the net controller:

mov dx,2 ;8259 interrupt controller I/O
;address

and al,10111111B ;enable net interrupt
out dx,al ;execute the open

The communication with the net controller is performed by
information exchange in common memory the SCB and related
control structures!. When the user will force the
controller to look in the common memory, he executes a
channel attention. When the controller will force the user
to look in the common memory, it executes an interrupt.

A channel attention is performed:

mov dx,100H ;net controller channel
;attention I/O address

in al,dx ;note overwrites the contents of al
;reg with non significant
;information

Due to an Intel based inconsistency between the CRT con-
troller's and the net controller's interpretation of the
SYSBUS bit, the initialization of the net controller dif-
fers a little bit from the description given in ref.11.
Ref.10 prescribes that the System Configuration Pointer
 SCP! begins at location OFFFF:6 PICCOLINE Prom address
room!. In PICCOLINE the SCP is placed in the RAM address
room. The SCP segment is 3000H and the SCP offset is
OFFFGH. The SYSBUS byte in the SCP must be 0 to indicate 16
bits bus word mode.

11.4 RCLLC Datalink Layer Protocol.

The description of RCLLC procedures falls in two parts:

~ 1! the type 1 procedures which are in conformance with
 ref.6!

2! the procedures for client network service which con
stitute a functional extension to the type 1 procedures.

In general. an RCLLC protocol element may be a command pro-
tocol element or a response protocol element. As a protocol
element is transmitted using the services of the MAC layer

RC Computer -131-

11. Local Area Network PICCOLINE

it may be addressed to one or several stations, using an
individual, multicast, or broadcast station address. Within
each addressed station an RCLLC protocol element is addres-
sed either to the RCLLC entity as such or to a specific
SAP.

11.4.1 Type 1 Procedures

This section contains a general description of the type 1
procedures. Details not covered in the general description
are given in conjunction with the individual protocol ele-
ments in section 11.4.3.

11.4.1.1 Unacknowledged Data Transfer

This subsection applies to data transfer between active
SAPs for which type 1 service has been requested.

Unacknowledged connectionless data transfer as requested by
the UDATA.request primitive is accomplished by transmission
of a U1 protocol element containing the service data unit
passed as a parameter of the primitive. This may occur at
any time while the source SAP is active.

when a U1 protocol element is correctly received, the ser-
vice data unit which it contains is passed to the client by
means of a UDATA.indication primitive. There is no associa-
ted acknowledgement or sequence checking. Notice that a U1
protocol element which is found to be in error by the re-
ceiving MAC or RCLLC entity is simply discarded. Buffer
shortage in the receiving RCLLC entity may also cause a UI
protocol element to be discarded.

11.4.1.2 Loop-back Test Procedure

An RCLLC entity will initiate the loop-back test procedure�
upon receipt of a TEST.request primitive from a client. It
does so by transmitting a TEST command protocol element
with the poll bit set to 1 and addressed as specified in
the request. The information field of the TEST command will
contain the specified test data unit. Notice that multi- or
broadcasting may be used to test several transmission paths
using one command protocol element.

For each TEST response protocol element which is subse-
quently received correctly, with or without an information
field, the client is informed by means of a TEST.indication
primitive.

-132- RC Computer

PICCOLINE 11. Local Area Network

An RCLLC entity will not transmit a TEST command protocol
element, except when directed by a TEST.request primitive.

when an RCLLC entity correctly receives a TEST command pro-
tocol element addressed to itself or to an active SAP, with
the poll bit set to 1, it will respond by transmitting a
TEST response protocol element addressed to the source
RCLLC entity or SAP. The received information is copied to
the response protocol element. If the information field
could not be held in the receive buffer s! of the RCLLC en-
tity due to overlength, the response protocol element will
contain an empty information field. The receiving of the
TEST command protocol element will not effect the receiving
RCLLC entity's clients.

A TEST command protocol element received with poll bit set
to 0 is discarded.

11.4.1.3 Station Identification Exchange

Type 1 station identification exchange is not supported as
part of the RCLLC service interface, and an RCLLC entity
will not, therefore, transmit XID command protocol
elements. It will, however, answer politely when an XID
protocol element addressed to itself or to an active SAP is
correctly received. Observe that the source station in this
case will not be an RCLLC station.

11.4.2 Procedures for Client Network Service

This section contains a general description of the
procedures for client network service. Details not covered
in the general description are given in conjunction with
the individual protocol elements in section 11.4.3.

Client networks are supervised by the RCLLC layer. The pro-
tocol element ACTIVE_SAP plays a central role in this re-
spect. Whenever a SAP belonging to a client network is ac-
tive the RCLLC entity serving the SAP will regularly trans-
mit this protocol element to its peer entities using the
multicast address for the client network. An RCLLC recei-
ving the ACTIVE_SAP protocol element will discard it unless
the included SAP mask matches the mask of the local SAP be-
longing to the same client network.

This procedure serves to make an SAP known throughout the
client network so all desired connections to the SAP may be
established. Notice that the SAP remains unknown to all
stations where its mask does not match the local SAP mask.

RC Computer -133-

11. Local Area Network PICCOLINE

Moreover, the procedure allows RCLLC entities to supervise
that all existing connections are alive. when the ACTI-
VE_SAP protocol element fails to arrive from an SAP to
which a connection exists, for a sufficiently long period
of time, this will be taken to indicate that the SAP is no
longer active, and the RCLLC entity will therefore remove
its end of the connection.

All protocol elements other than ACTIVE_SAP are transmitted
using individual station address.

The rigorous description of the procedures for establish-
ment and supervision of connections which is given in the
following is based on a state, two timers and a retransmis-
sion counter maintained by an RCLLC entity for each connec-
tion in which it takes part, i.e. for each remote SAP it
knows. The following connection states exist: UNKNOWN,
RESETTING, DATA, DISCONNECTING. The timers are:

- the acknowledgement timer which runs when an
acknowledgement, i.e. a RACK or ACK protocol element,
is expected

- the SAP alive timer which runs whenever the remote
SAP is known and is restarted each time an ACTIVE_SAP
protocol element is received.

In addition to the state, timers, and retransmission
counter an RCLLC entity maintains for each connection two
sequence counters for data units, N S!: the number of the
data unit to transmit, and N R!: the number of the next
data unit to be received.

The following events may cause the state of a connection to
change:

PE_new_SAP An ACTTVE_SAP protocol element is received
from the remote SAP indicating it has become
active, possibly by reinitialization, see-
section 11.4.3.4

PE_rack A RACK or RESET protocol element is received from
the remote SAP when RACK is expected.

PE_reset A RESET protocol element is received from the
remote SAP, except when RACK is expected.

give_up The RCLLC entity gives up the connection when the
retransmission counter is exhausted, or when the
SAP alive timer runs out.

�134� RC Computer

PICCOLINE 11. Local Area Network

SP_dack An expected DISCONNECT.acknowledge service
primitive is received from the client.

An overview of the state changes caused by events and the
associated actions, i.e. protocol elements and service
primitives that are generated. is given in figure 1. Note
that the figure and the description which follows apply to
a single connection, in fact to each end-point separately.

PE_ncw_sAP

<nESET>

 <CONNECT_;nd1eIt1on> <cONNECT_;nd1cIt1o >

nsszvfxna

PE_now_lAP ' PE_now_BAP

<DI8cONNECT d1cuttan>

DIBCDNNECTIN6

Figure 11.1: State graph for a connection.

A general procedure applies to the transmission of protocol
elements for which an acknowledgement is required in the
form of a protocol element transmitted in the opposite di-
rection, viz. RESET and DATA which are acknowledged by RACK
and ACK, respectively. Initiating the transmission of one

RC Computer -135-

11. Local Area Network . PICCOLINE

of these elements means: initializing the retransmission
counter, starting the acknowledgement timer, and actually
transmitting the protocol element. when the acknowledging
protocol element arrives, the transmission is considered
successfully completed, and the timer is stopped. If, on
the other hand, the acknowledgement timer expires, the
retransmission counter is decremented, and if it was
exhausted, i.e. became zero, the connection is given up
 give_up event!. Otherwise, the timer is restarted and the
protocol element retransmitted.

There is never more than one outstanding protocol element
requiring acknowledgement, i.e. transmission of a RESET or
DATA protocol element is not initiated until transmission
of the previous element is completed. For this reason a
DATA.request primitive containing an RCLLC service data
unit for transmission on a connection may be accepted while
an unacknowledged protocol element is outstanding, but it
will then be queued by the RCLLC entity! for transmission
rather than processed immediately.

The remaining part of this section contains a discussion of
the meaning of each state of a connection end-point! and
the procedures followed by an RCLLC entity in each state.

UNKNOWN

The RCLLC entity has no knowledge of the remote SAP, but is
ready to establish a connection. No service primitives are
accepted and all protocol elements except ACTIVE_SAP and
RESET are discarded.

�A received ACTIVE_SAP protocol element with matching SAP
mask! constitutes a PE_new_SAP event. It causes the RCLLC
entity to establish a connection to the remote SAP by
starting the SAP alive timer, initiating the transmission
of a RESET protocol element, resetting the sequence
counters, passing a CONNECT.indication primitive to the
client, and changing the connection state to RESETTING.

A received RESET protocol element constitutes a PE_reset
event indicating that the local SAP has become known to the
remote RCLLC entity and caused it to establish a
connection. The local RCLLC entity will establish its end
of the connection by starting the SAP alive timer, trans-
mitting a RACK protocol element to acknowledge RESET,
resetting the sequence counters, passing a
CONNECT.indication primitive to the client, and changing
the connection state to DATA.

�136- RC Computer

PICCOLINE 11. Local Area Network

RESETTING

The RCLLC entity has established the connection by initia-
ting the transmission of a RESET protocol element. The sta-
te is used to wait for the acknowledging RACK protocol ele-
ment after which data may be transmitted in both direc-
tions.

DATA.request primitives are accepted queued!. DISCONNECT.-
acknowledge primitives are discarded.

A received RESET or RACK protocol element constitutes a
PE_rack event and causes the RCLLC entity to change the
connection state to DATA. RESET, which may occur if RESET
protocol elements are transmitted in both directions simul-
taneously, is answered with RACK.

Received DATA or ACK protocol elements are discarded.

If a PE_new_SAP event occurs see section 11.4.3.4!. or if
the connection is given up, either because the SAP alive
timer expires or because the RESET protocol element is re-
transmitted to exhaustion, the RCLLC entity will pass a
DISCONNECT.indication primitive to the client and change
the connection state to DISCONNECTING.

DATA

The connection has been completely established through the
exchange of RESET and RACK protocol elements. In this state
RCLLC service data units are transferred between'the two
SAPS through the exchange of DATA and ACK protocol elements
between the RCLLC entities.

Each DATA.request primitive received from the client causes
initiation of the transmission of a DATA protocol element
containing the service data unit passed as a parameter of
the primitive. The sequence number of the protocol element
is set equal to the value of N S!, and subsequently N S! is
incremented modulo 2. Initiation of the transmission of the
protocol element takes place: either when an ACK or RACK
protocol element is received marking the successful comple-
tion of a previous transmission provided a non-empty queue
of service data units are awaiting transmission; or immedi-
ately upon receipt of the DATA.request primitive if there
is no outstanding protocol element awaiting acknowledge-
ment.

When a DATA protocol element is received, its sequence
number is compared to the value of N R!. If they are equal

RC Computer -137-

11. Local Area Network PICCOLINE

the received service data unit is passed to the client by
means of a DATA.indication primitive, and N R! is incremen-
ted modulo 2. Otherwise, the service data unit is discar-
ded. In both cases an ACK protocol element with sequence
number equal to that of the DATA protocol element is trans-
mitted to the remote SAP in order to acknowledge receipt.

If a RACK protocol element or a DISCONNECT.acknowledge ser-
vice primitive is received, it is discarded.

If a PE_new_SAP event occurs see section 11.4.3.4!. if a
RESET protocol element is received, or if the connection is
given up, either because the SAP alive timer expires or be-
cause a DATA protocol element is retransmitted to exhaus-
tion, the RCLLC entity will pass a DISCONNECT.indication
primitive to the client and change the connection state to
DISCONNECTING.

DISCONNECTING

The connection has been disconnected as seen from the point
of view of the RCLLC layer. This state allows the client to
decide when it will accept the connection to be reesta-
blished.

All received protocol elements and service primitives are
discarded except the DISCONNECT.acknowledge primitive. when
this primitive is received the connection state is changed
to UNKNOWN.

11.4.3 RCLLC Protocol Elements

All RCLLC protocol elements conform to the syntax for LLC
type 1 protocol elements "protocol data units"!. This is
achieved by defining the formats of all the protocol ele-
ments used in the procedures oriented toward client network
service to be instances of type 1 UI Unnumbered Informa-
tion! commands.

The following conventions apply to the figures in this sec-
tion: the octets of a protocol element are shown in the or-
der they are transmitted downward on the page, and the bits
within an byte similarly from right to left. The least sig-
nificant bit position within an byte, the contents of which
are transmitted first, is numbered 0, and so forth.

-l38- RC Computer

PICCOLINE 11. Local Area Network

The general format for type 1 protocol elements consists of
a three-octet link control header followed by an
information field:

bit no. 7 6 5 4 3 2 1 0
byte no - 0 _

1 I
2

 3

Type 1 Information

The DSAP field contains the local SAP address of the desti-
nation SAP and the SSAP field the local SAP address of the
source SAP.

If the DSAP field contains 0 all bits 0! the protocol ele-
ment is interpreted as addressed to the destination RCLLC
 or other LLC type 1! entity rather than to a client.

If the DSAP field does not contain all 0 bits, its contents
taken as a binary number in the range 1..63 are interpreted
as the address of an individual SAP.

A C/R bit with value 0 indicates. a command protocol
element, and one with value 1 a response protocol element.
The UI protocol element, and thus all protocol elements for
client network service, can only be transmitted as
commands, i.e. with the C/R bit set to 0.

Bit O of byte 0 and bit 1 of byte 1 must always be 0.

If the SSAP field contains 0 all bits 0!, the protocol
element is interpreted as originating from the source RCLLC
 or other LLC type 1! entity rather than from a client.
Otherwise, the contents of the SSAP field are interpreted
as a binary number in the range 1..63.

Bit 4 of byte 2 the Control field! is the Poll/Final bit.
When this bit is set to 1 Poll! in a command, a response
is requested. The response should contain the same coding
of the Control field; i.e., bit 4 Final! should also be
set in the response. The Poll bit must not be set in a UI
protocol element; this bit is 0 in all protocol elements
for client network service.

The SSAP field of a response protocol element always con-
tains the same value as the DSAP field of the command
protocol element to which it corresponds, and vice versa.

RC Computer -139-

11. Local Area Network PICCOLINE

The remaining bits of the Control field specify the type of
protocol element in question, viz.:

00000011 UI, Unnumbered Information

101X1111 XID, exchange IDentification

l11X0011 TEST

The use of the Type 1 Information field depends on the type
of protocol element, and is described for each element type
in the section Type 1 Protocol Elements page 141.

The protocol elements for client network service are UI
commands addressed to an individual SAP with three extra
bytes of RCLLC header in addition to the LLC type 1 header.
Source
and destination SAPs have the same local address which is
equal to the client network number, Netno. The format is as
shown below: '

bit no. 7 6 5 4 3 2 1 0
byte no. 0 Netno I].

Netno I]. type 1
0 0 0 0 0 0 III header RCLLC

Function header
Param 0
Param 1O�IU|nb .aJl92J|-�

Information

The value in the Function field specifies the type of
protocol element, viz.:

00000000 binary 0! � ACTIVE_SAP
00000001 binary 1! RESET
00000010 binary 2! RACK
00000011 binary 3! DATA
00000100 binary 4! ACK

The use of the Param 0 and 1 fields and of the Information
field depends on the type of protocol element, and is des-
cribed for each element type in the section Protocol Ele-
ments for Client Network Service page 141.

-140- V RC Computer

PICCOLINE 11. Local Area Network

Type 1 Protocol Elements

This section specifies the encoding of the Type 1
Information field of protocol elements used in conjunction
with type 1 procedures.

11.4.3.1 UI Unnumbered Information!

The U1 protocol element may only be transmitted as a
command, i.e. the C/R bit must be 1.
When the protocol element is used for type 1 service the
Type 1 Information field is used to hold an RCLLC service
data unit.

11.4.3.2 XID exchange Inentification!

The Type 1 Information field in a received XID command is
ignored. In an XID response protocol element transmitted by
an RCLLC entity three octets, numbers 6 through 8, are
encoded as follows:

bit no. 7 6 5 4 3 2 1 0
byte no. 6 1 0 0 0 0 O O 1

7 0 0 0 0 0 0 1
8 O 0 0 0 0 0

11.4.3.3 TEST

The Type 1 Information field is used to hold a test data
unit. The associated procedure is described in subsection
11.4.1.2.

Protocol Elements for Client Network Service

In order to facilitate speedy access to status information
associated with connections, each RCLLC entity will assign
to each connection an index in the range 0..255. When a
connection is established the assigned indices are exchan-
ged between the two RCLLC entities. Subsequent DATA and ACK
protocol elements each contains the index assigned to the
connection by the receiver of the element.

RC Computer -141-

11. Local Area Network PICCOLINE

11.4.3.4 ACTIVE_SAP

An RCLLC entity transmits this protocol element periodical-
ly for each active SAP it serves which belongs to a client
network. It is transmitted using the multicast address for
the client network in question so that all relevant RCLLC
entities will receive it. The frequency with which the pro-
tocol element is transmitted depends on the implementation.

The first word of the information field contains the SAP
mask of the active SAP. Unless the mask matches that of the
local SAP at the receiving RCLLC entity the protocol ele-
mnt is discarded.

The Param 1 field contains a sequence number in the range
O..254. The first 255 ACTIVE_SAP protocol elements trans-
mitted after activation of a SAP will have sequence numbers
0, 1, 2... 254. In all subsequent ACTIVE_SAP protocol ele-
ments the sequence number will also be 254. This procedure
allows the receiving RCLLC entity to detect when an SAP is
deactivated and swiftly reactivated, possibly because of
station reinitialization.

When_an ACTIVE_SAP protocol element is received from a pre-
viously unknown SAP a PE_new_SAP event is generated cf.
section 11.4.2!. The same is the case if the sequence num-
ber is less than the sequence number found in the last re-
ceived ACTIVE_SAP or RESET protocol element from the same
SAP. However, when the sequence number are equal or ascend-
ing, the protocol element is only taken to indicate that
the SAP is still active. In the latter case the SAP alive
timer is restarted.

The Information field from the third byte contains the cli-
ent_info passed from the client when the SAP was activated.

11.4.3.5 RESET

This protocol element is transmitted in conjunction with
establishment of a connection.

The Param 0 field contains the index assigned to the con-
nection by the sending RCLLC entity.

The Param 1 field contains the sequence number to be inclu-
ded in the next ACTIVE_SAP protocol element to be transmit-
ted from the sender.

The Information field contains the client_info passed from
the client when the SAP was activated.

-142- RC Computer

PICCOLINE 11. Local Area Network

11.4.3.6 RACK

This protocol element is transmitted to acknowledge receipt
of a RESET protocol element in conjunction with establish-
ment of a connection.

The Param 0 field contains the index assigned to the con-
nection by the sending RCLLC entity.

The Param 1 field contains the index assigned to the con-
nection by the receiver as indicated in the RESET protocol
element being acknowledged.

The Information field is empty.

11.4.3.7 DATA

This protocol element is transmitted to carry an RCLLC
service data unit from the source SAP to the destination
SAP.

The Param 0 field contains the sequence number of the ele-
ment, cf. section 11.4.2. The sequence number, which can
only be 0 or 1, is placed in bit 0. The remaining bits are
all 0.

The Param 1 field contains the index assigned to the con-
nection at the destination RCLLC entity.

The Information field contains the RCLLC service data unit.

11.4.3.8 ACK

This protocol element is transmitted to acknowledge receipt
of a DATA protocol element on a connection.

The Param 0 field contains the sequence number of the ele-
ment being acknowledged.

The Param 1 field contains the index assigned to the con-
nection at the destination RCLLC entity, i.e. the sender of
the DATA element.

The Information field is empty.

RC Computer -143-

11. Local Area Network PICCOLINE

'144' RC Computer

12. iSBX Bus Specification

The iSBX bus is a unique interface facilitating on-board
expansion with iSBX Multimodule boards. The iSBX bus is
derived directly from the on-board CPU bus and, as such, an
iSBX Multimodule board plugged into the iSBX bus becomes an
integral element of the PICCOLINE computer. The physical
interface between the single board computer and the iSBX
Multimodule board is a unique connector designed specifi-
cally for the iSBX bus. The iSBX bus is brought out to a
female iSBX bus connector on the computer and mates with
its male equivalent resident on the iSBX Multimodule board
 fig.12.1! page 146.

The iSBX Multimodule board concept offers a unique design
approach to board level users. The iSBX Multimodule boards
bring a new concept to expansion, providing a product fami-
ly of smaller modules that can be plugged directly onto the
single board computer. In short, the user may now tailor
his application directly onboard the single board computer
at a minimal cost. In addition, the iSBX Multimodule boards
offer maximum performance because they are tightly coupled
to the microprocessor through the iSBX bus.

This chapter has been prepared� for those users who intend
to evaluate or design custom iSBX Multimodule board
products that will be compatible with RC759 base board. The
chapter defines the logical, electrical, and mechanical
aspects of the iSBX Multimodule boards. The iSBX Multi-
module board specifications are defined in a similar way an
I/O component would be.

RC Computer -145-

12. iSBX Bus S ecification PICCOLINE

lI759

Fig.12.1 iSBX Multimodule Board Concept

~146- RC Computer

PICCOLINE 12. iSBX Bus S ecification

12.1 Functional Description

This section will give the reader an overall understanding
of how the iSBX Multimodule board functions. It describes
the basic elements of an iSBX Multimodule board, defines
the iSBX Multimodule interface signals and describes the
basic communication operations.

In this section, as well as throughout the specification, a
clear and consistent notation for signals has been used.
The I/O Read IORD! signal will be used to explain this
notation. The terms one, zero, true, and false can be
ambiguous, so their use will be avoided. In their place,
the terms electrical High and Low H and L! will be used. A
slash following a signal name IORD/! indicates that the
signal is active low as shown:

IiIORD/ IORD = IORD- = Asserted at 0 volts

The signal IORD/!, driven by a three state driver will be
pulled up to VCC when not asserted. Fig.12.2 is used to
further explain the notation used in this specification.

Fig.12.2 Notational Summary

12.1.1 iSBX Multimodule System Elements

This section will describe the two basic elements in an
iSBX Multimodule system: base boards and iSBX Multimodule
boards see fig.12.1!.

RC Computer -147-

12. iSBX Bus S ecification PICCOLINE

12.1.1.1 Base Boards

The base board provides an electrical and mechanical inter-
face for the iSBX Multimodule boards. The electrical inter-
face provides the communication link between the two ele-
ments. The base board is the master of this link, in that
it controls the address and command signals. The base board
also provides the mounting for the iSBX Multimodule board.
With the aid of screws, spacers, nuts, and the iSBX connec-
tor, the iSBX Multimodule board is mounted to the base
board.

There are two classes of base boards: those with Direct
Memory Access DMA! support and without.

Base boards with DMA support are boards with DMA control-
lers on them. These boards, in conjunction with an iSBX
Multimodule board with DMA capability!, can perform direct
1/0 to memory or memory to I/O operations. Base boards
without DMA support use a subset of the iSBX bus and simply
do not use that aspect of the iSBX Multimodule board.

12.1.1.2 iSBX Multimodule Boards

The iSBX Multimodule boards are small, specialized, I/0
mapped boards which plug into base boards. The iSBX boards
connect to the iSBX bus connector and convert the iSBX bus
signals to a defined I/0 interface. -

12.1.2 iSBX Bus Interface

The iSBX bus interface can be grouped into six functional
classes:

Control Lines
Address and Chip Select Lines
Data Lines
Interrupt Lines
Option Lines
Power Lines

-148- RC Computer

PICCOLINE ' 12. iSBX Bus Specification

12.1.2.1 Control Lines

The following signals are classified as control lines:

COMMANDS:

 IORD/ I/O Read!

IOWRT/ I/O Write!

DMA:

 MDRQT DMA Request!

MDACK/ DMA Acknowledge!
TDMA Terminate DMA!

INITIALIZE:

 RESET

CLOCK:
MCLK iSBX Multimodule Clock!

SYSTEM CONTROL:

MWAIT/

 MPST/ iSBX Multimodule Board Present!

Command Lines IORD/, IOWRT/!

The command lines are active low signals which provide the
communication link between the base board and the iSBX
Multimodule board. An active command line, conditioned by
chip select, indicates to the iSBX Multimodule board that
the address lines are valid and the iSBX Multimodule board
should perform the specified operation.

DMA Lines MDRQT, MDACK/, TDMA!

The DMA lines are the communication link between the DMA
controller device on the base board and the iSBX Multi-
module board. MDRQT is an active high output signal from
the iSBX Multimodule board to the base board's DMA device
requesting a DMA cycle. MDACK/ is an active low input sig-
nal to the iSBX Multimodule board from the base board DMA
device acknowledging that the requested DMA cycle has been
granted. TMDA is used by the iSBX Multimodule board to ter-
minate DMA activity. The use of the DMA lines is optional
as not all base boards will provide DMA channels and not
all iSBX Multimodule boards will be capable of supporting a
DMA channel.

12. iSBX Bus Specification PICCOLINE

Initialize Lines Reset!

This input line to the iSBX Multimodule board is generated
by the base board to put the iSBX Multimodule board into a
known internal state.

Clock Lines MCL!

This input to the iSBX Multimodule board is a timing sig-
nal. The clock frequency is 10 MHZ. This clock is asynchro-
nous from all other iSBX bus signals.

System Control Lines MWAIT/, MPST/!

These output signals from the iSBX Multimodule board con-
trol the state of the system.

Active MWAIT/ Active Low! will put the CPU on the board
into a wait state providing additional time for the iSBX
Multimodule board to perform the requested operation.
MWAIT/ must be generated from address address plus chip
select! information only. If MWAIT/ is driven active due to
a glitch on the CS line during address transitions, MWAITI
must be driven inactive in less than 75 ns.

The iSBX Multimodule board present MPST/! is an active low
signal tied to signal ground! that informs the base board
I/O decode logic that an iSBX Multimodule board has been
installed.

12.1.2.2 Address and Chip Select Lines

The address and chip select lines are made up of two groups
of signals.

Address Lines: MAO-MA2
Chip Select Lines: MCSO/-MCS1/

The base board decodes I/O addresses and generates the chip
selects for the iSBX Multimodule boards. The base board de-
codes all but the lower order three addresses in generating
the iSBX Multimodule board chip selects. Thus, a base board
would normally reserve two blocks of 8 I/0 ports for each
iSBX socket it provides.

-150� RC Computer

PICCOLINE 12. iSBX Bus Specification

Address Line: MAO�MA2!

These positive true input lines to the iSBX Multimodule
boards are generally the least three significant bits of
the 1/0 address. In conjunction with the commmand and chip
select lines, they establish the 1/0 port address being ac-
cessed.

Chip Select Lines MCSO/-MCS1/!

These input lines to the iSBX Multimodule board are the re-
sult of the base board I/0 decode logic. MCSI is an active
low signal which conditions the I/O command signals and
enables communication with the iSBX Multimodule boards.

NOTE

If MCS/ glitches, the MWAIT/ line may also glitch. MWAITI
must be in its proper state in less than tcw �5 ns! af-
ter MCSI is in its proper state.

Eight bidirectional data lines active high! are used to
transmit or receive information to or from the iSBX Multi-
module ports. MDO is the least significant bit.

12.1.2.4 Interrupt Lines MINTRO-MINTR1!

These active high output lines from the iSBX Multimodule
board are used to make interrupt requests to the base
board.

12.1.2.5 Option Lines opwo, OPT1!

These two signals are two reserved lines that are connected
to wire wrap posts on both the base board and iSBX Multimo-
dule board. They are for unique requirements where a user
needs a base board signal on the iSBX Multimodule board and
is willing to put a potentially long wire on the base board
to connect it.

12.1.2.6 Power Lines

All base boards will provide +5 and +12 /-12 volts to the
iSBX Multimodule boards.

RC Computer -151-

12. iSBX Bus Specification PICCOLINE

12.1.3 iSBX Multimodule Command Operations

The command lines are driven from the base board by tri-
state drivers with pull-up resistors or standard TTL totem
pole drivers. These lines indicate to the iSBX Multimodule
board what action is being requested.

12.1.3.1 I/O READ

There are two I/O READ operations that a base board can
perform. The iSBX Multimodule board determines which type
of I/O READ is performed. The first type is a full speed
I/0 READ fig.12.3!. The base board generates a valid I/0
address and a valid chip select for the iSBX Multimodule
board. After the set up timings are met, the base board
activates the IORD line. The iSBX Multimodule board must
generate valid data from the addressed I/O port in less
than 250 ns. The base board then reads the data and removes
the read command. address, and chip selects shown in the
timing diagram.

UCSI

Fig.12.3 iSBX Multimodule Board Read, Full Speed

The second type of I/O READ is an extended read fig.l2.4!.
This type of read is used by iSBX Multimodule boards that
cannot perform a READ operation under the full speed speci-
fications. The base board generates a valid address and

'15?� RC Computer

PICCOLINE 12. iSBX Bus Specification

chip select, just as in a full speed read. The iSBX Multi-
module board then activates the MWAIT/ signal which in turn
deactivates the ready input to the CPU putting it into a
WAIT state!. The iSBX Multimodule board will remove the
MWAIT/ signal when valid READ data is on the iSBX Multimo-
dule data bus. The base board then reads the data and deac-
tivates the command, address, and chip select.

MAFIA!

I38]

I WAIT I

IOIDI

I06-ID?

Fig.12.4 iSBX Multimodule Board Extended Read

12.1.3.2 I/O WRITE

There are two I/O WRITE operations that a base board can
perform. The iSBX Multimodule board determines which type
of I/O WRITE is performed.

The first type of write is a full speed I/0 WRITE
 fig.12.5!. The base board generates a valid I/O address
and chip select. The base board activates the IOWRT line
after the set up times are met. The IOWRT/ line will remain
active for 300 ns and the data will be valid for 250 ns
before the IOWRT/ command is removed. The base board will
then remove the data address and chip select after it meets
the hold times as shown in fig.l2.5.

P
RC Computer -153-

12. iSBX Bus Specification PICCOLINE

M-Hm

next I

 � 5.

 " I

I00-"07 ' vauo Mn

Fig.12.5 iSBX Multimodule Board Write, Full Speed

The second type of I/O WRITE is an extended write
 fig.12.6!. This write is used by iSBX Multimodule boards
that cannot write into an I/O port with the full speed spe-
cifications. The base board again generates �valid address
and chip selects. The iSBX Multimodule board will activate
the MWAIT/ signal based on address information chip select
+ MAO-1!. This will remove the ready from the CPU causing
it to go into a wait state after the WRITE command has been
activated and valid data provided. The iSBX Multimodule
board will remove the MWAIT/ signal allowing the CPU to
leave its wait state! when it has satisfied its write pulse
width requirement. The base board will then remove the WRI-
TE command, then the data, address, and chip select after
the hold times are met.

HAO-HA3

ICSI

hlj--V
IOUITI

I00-H07

Fig.12.6 iSBX Multimodule Board Extended Write

-154- RC Computer

PICCOLINE 12. iSBX Bus Specification

12.1.3.3 Direct Memory Access DMA!

An iSBX Multimodule system can support DMA when the base
board has a DMA controller and the iSBX Multimodule board
can support DMA mode. The following example is for a base
board using an 8257 DMA controller. Because of the simila-
rity between DMA reads and DMA writes, only the DMA write
is given in the following example. A DMA cycle is initiated
when the iSBX Multimodule board activates MDRQT, which goes
to the DMA controller on the base board fig.12.7!. Once
the DMA controller gains control of the base board bus, it
acknowledges back to the iSBX Multimodule board with
MDACK/. The DMA controller then activates a memory write or
I/O write respectively. The delay may be zero, if the me-
mory is a trailing edge type data is written when the wri-
te pin changes from active to inactive state!. The MDACK/
signal must act as a chip select and address to the iSBX
Multimodule board the MCS and MAO-MA1 signals are undeter-
mined as they are driven by the memory address!. The iSBX
Multimodule board will remove the DMA request during the
cycle to stop the DMA cycle. Once the write operation is
complete MWAIT inactive and memory acknowledge active!,
the DMA controller deactivates the write command and the
read command providing a data hold time. If the DMA request
signal was removed, the controller will release the base
board bus back to the CPU and remove MDACK/. If the request
is not removed, the DMA controller will proceed to do ano-
ther DMA cycle burst mode!.

.,,,.''.�,'I'�� __I*�-�������92___________
�use to uoacnu -�-�--1�¢�-� � r�''

us: so none: -�-�-B é--�--� r-"""""

M00-"D7 �

Fig.l2.7 iSBX Multimodule Board DMA Cycle

 iSBX Multimodule to Base Board Memory!

RC Computer -155-

12. iSBX Bus Specification PICCOLINE

12.1.4 RC759 Interface

This section gives information in details about the RC759
address decoder and interrupt circuit.

12.1.4.1 Address Decoder

on fig.12.9 is shown the relationship between the RC759 I/0
addresses and the signals in the iSBX connector.

Remark that DMA acknowledge is generated by an OUTput in-4
struction to a special device number.

12.1.4.2 Status Signals

The state of MPSTI OPTO and OPT1 can be sensed by the
RC759 programmer by an INput instruction to device 70H.
This INput returns the following information:

[:§:1:§:1:§:1:§:1:E:f:1:£:1:§:1

 [L

--�-�> opro
------- --> OPT1

Fig.12.8 Status Signals

MPSTS/ = 0 if an iSBx module is present. The state of OPT1-
2 are iSBX dependent,

12.1.4.3 Interrupt Signals

MINTRO and MINTR1 are connected to the INT1 and INT3 inter-
rupt inputs to 80186 interrupt controller. -

MINTRO has vector type 13
MINTR1 has vector type 15

Both interrupt sources must deliver edge triggered inter-
rupts.

p1ccoL1NE 12. iSBX Bus 8 ecification

K2759 �
I/0 device number iSBx Sin .1

«am» mm mm

RXESE4>3OO

 302

304

306

308

30A

30C

30E

is�xnom�eckmemkmt

R�¥£E +INO

 312
314

 316
318

31A

31C

 31E

��wtmah�eckgenkxm

Clnztoi��sckwdcexnmter

 gammaua;MmM3UEIESE-+320

12. iSBX Bus Specification PICCOLINE

12.2 Electrical Specifications

This section will define all electrical specifications for
an iSBX Multimodule board. First the ac timing is specified
and then the dc specifications are described.

12.2.1 General Bus Considerations

Fig.12.1O shows the relationship between logical and elec-
trical states.

12.2.2 Power Supply Specifications

All power supply voltages are + 5%.

'l58- RC Computer

PICCOLINE 12. iSBX Bus S ecification

12.2.3 Environmental

All bus specifications should be met while the environment
is within the following ranges:

EuammE33
11 H . m High 5.... 5... 2 H .2 2... . 2. 2 H 2 2...
� L = TTL Low State 0.8 2 L 2 -0.5V 0.5 .>.. L 2 0V

L 8 TTL Law State 0.8 2 L > -05V 0.5 2 L 2 0V

H 1: TTL High State 5.25 2 H 2 2.0V 5.25 2 H 2 2.4V

Vcc 2 5 volts 15% referenced to logical ground.
V 8 volts.

Fig.12.10 Logical and Electrical States

Temperature: 0-55 C �2-131 P! Free moving air across the
base board and iSBX Multimodule board.

Humidity: 90% max relative no condensation!.

Shock: 30 g's of force for an 11 msec duration 3 ti-
mes in 3 planes both sides total of 18
drops!.

Vibration: Vsweeping from 10 Hz to 55 Hz and back to 10
Hz at a distance of 0.010 inches peak-to-peak
lasting 15 minutes in each of three planes.

12.2.4 Timing

Fig.12.11 summarizes all the ac timing specifications. The
timing diagrams are shown in fig.12.12 through 12.15.

NOTE

The input waveforms for the ac timing specifications are
as follows:

2.4V

 2.0V 2.0V

0.0V 0.lVI. ISV

RC Computer -159-

12. iSBX Bus S ecification PICCOLINE

3 Address we we --v E-
X ~=«=~== st-we -W ve-= @-

Read pulse width

Data valid trom read

Time between RD and/or WRT �
CS stable before CMD � E

E cs stable after cuo

E

 �j

 @-

E-� Data valid to write

n MWAITI pulse width
�*3� °�'*° *�°"� �
MCSI to MWAITI valid u
DACK set up to I/O CMD

3
@-

 E

T
�le

PICCOLINE 12. iSBX Bus Specification

12.4.5 DC Specifications

The dc specifications for the iSBX bus are summarized in
fig.l2.16. The figure is divided into two sections, output
specifications and input specifications. The output speci-
fications are the requirements on the output drivers of the
iSBX Multimodule board i.e., the data bus output drivers
must guarantee at least 1.6 mA@ 0.5 volts!. The output
specifications in fig.12.16 are the minimum drive require-
ments. The input specifications are the requirements of the
receivers on the iSBX Multimodule board e.g., the loading
of the address lines MAO-MA2! can be no greater than 0.5
mA@ 0.8 volts!. Fig.12.16 also summarizes the maximum
loading permitted on an iSBX Multimodule interface at any
one time.

HAIR!

ucmm

NWAIT I

Fig.12.12 iSBX Multimodule Board I/O Write Timing

RC Computer -161-

12. iSBX Bus S ecification PICCOLINE

tum!

 ta

MCS N!I

 .
IIWAITI

 now!

 I�: 3

It :-
uowm � _

Fig.12.13 iSBX Multimodule Board I/O Read Timing

PICCOLINE 12. iSBX Bus Sgecification

UCLK

+5 VOLT:

Pig.12.15 iSBX Multimodule Board I/0 Reset Timing

RC Computer -163-

12. iSBX Bus S ecification PICCOLINE

Bus Sbgnal
Name

@ Volts Ion Mu
 VOL Mu! -Min 01A!

MDO-MD7

MWTRO-1

 MDROT

 MWAITI
OPT�!-2

 MPSTI

MOO-MD7 �rm

MAO-MA2 TTL

MCSO/-MCSV

MDACKI

TTL

IORDI

 IOWRTI
MCLK

2!

�

PICCOLINE 12. iSBX Bus Specification

12.3 Mechanical Specifications

This sections describes all the physical attributes of an
iSBX Multimodule board.

12.3.1 iSBX Connector

The male iSBX connector is attached to the iSBX Multimodule
board and the female iSBX connector is attached to the base
board. Fig.12.17 is an outline drawing of the iSBX connec-
tor and also shows the pin numbering. Fig.12.l9 lists the
signal pin assignments.

12.3.2 iSBX Multimodule Board Height Requirement

Fig.12.18 shows the iSBX Multimodule board height require-
ments. The total board height minus the iSBX connector is:

Maximum component height �.400 Max! 0.400
P.C. board thickness �.62 + 0.005! 0.067
Component lead length �.093 Max! 0.093

 0.560 in;

Fig.l2.17 iSBX Connector

____________~__

 RC Computer -155-

12. iSBX Bus S ecification PICCOLINE

Fig.12.18 iSBX Multimodule Board Height

-166- RC Computer

PICCOLINE 12. iSBX Bus S ecification

+-sv

 Mow

"W

 M
MCSOI M Chip Select 0

Signal Ground

MDATA Bit 0

MDATA Bit 1

/_MDATA an 2
MDATA Bit 3

MDATA Bit 4

MDATA Bit 5

11

 d

MDATA Bi! 6

MD? MDATA Bit 7 MCS1/
+5 Vans3

 at

 g .

IORDI I/O Read Cmd

IOWRTI ' I/O Write Cmd MINTRO

M Address 0

M Address 1 Reserved

iSBX Multimodule
MPST� Board PresentM Address 2

MCLK J
+5V � +5 Volts

-12V+12v +12 Vans

All undefined pins are reserved for future use.

Fig.12.19 iSBX Signal Pin Assignments

12. iSBX Bus S ecification PICCOLINE

12.3.4 iSBX Multimodule Board User I/O Connector Outlines

The top of the iSBX Multimodule board can be defined by the
user. Fig.12.22 through 12.24 show the dimensions of sugge-
sted top edge connectors for the most common designs.

COMPONENT SIDE

Fig.12.2l iSBX Multimodule Board Outline

-l68- RC Computer

PICCOLINE 12. iSBX Bus S ecification

1.50

 IE7

 13$

T 1 .3 '5'Location 4� DIA-
J�. 3 'I.lC�3

1.�
CT"? 3!

Fig.12.22 13/26 Pin Connector

+4
an .59

I-3 an
us

nu

ma 1
LOCAYION

 no net

L_ .150 on."� 2 I-ucu
JO

couroueut not

Fig.12.23 20/50 Pin Connector

12. iSBX Bus S ecification PICCOLINE

COMPONENY CDC

Fig.12.24 13/26 and 20/40 Pin Connector

12.4 Design Example

This section provides a functional description of a design
example. The design example that will be used is an Serial
Multimodule Board. The functional description includes de-
tails on the RS232C and RS422/449 communications interface
signals, the interface signals between the iSBX Multimodule
board and the host microcomputer, and the clock generation
hardware on the iSBX Multimodule board. Fig.12.25 shows a
block diagram of the Communication Multimodule board.

-170- RC Computer

p1ccoL1NE 12. iSBX Bus S ecification

DOWN?!

 UCIV
RESET

Il��
HEADERS gggg

NTEIFACC

Fig.12.25 iSBX Board Block Diagram

12.4.1 Serial I/0 Communications Channel Interface

The communications interface on the iSBX Multimodule board
may be configured for either RS232C or RS422/449 operation
via jumper modifications. Default wiring of the iSBX Multi-
module board is for RS232C operation. To convert to
RS422/449 operation, move the two 8-circuit shorting plugs
from sockets XU6 and XU7 to XU4 and XU5.

-171-RC Computer

12. iSBX Bus Specification PICCOLINE

The serial interface provides RS232C or RS422 buffers for
eight lines. These lines are the Data In, Data Out, Request
to Send, Clear to Send. Data Set Ready, Data Terminal Rea-
dy, Receive Clock, and DTE Transmit Clock. All necessary
driver and receiver chips are supplied with the board.

12.4.2 CPU Interface

The interface between the host microcomputer and the iSBX
Multimodule board consists of several signals that are de-
fined in the following paragraphs. The DC characteristics
for these signals are given in fig.12.26.

RESET Reset!. This active high input signal to the 8251A
USART places the USART chip into the IDLE mode until a new
set of control words is written to the chip.

MAO Address bit 0!. This active high input to the 8251A
USART and to the 8253 is used in conjunction with IORD/ and
IOWRT/ signals to define which register on the 8251A or
8253 is addressed.

MA1 Address bit 1!. This active high input signal to the
8253 isused in conjunction with MAO to select one of the
counters to be operated on in 8253 and to address the con-
trol word register for mode selection.

IORD/ I/0 Read!. This active low input signal to the iSBX
Multimodule board performs one of two functions depending
on the chip selected. When low, IORD/ informs the 8251A
that the host iSBC microcomputer is reading data or status
from the 8251A. and it informs the 8253 that the host iSBC
microcomputer is reading the value of a counter.

IOWRTI I/O Write!. This active low input to the iSBX Mul-
timodule board may perform one of two functions dependent
on chip select. when low, IOWRT/ informs the 8251A that the
host microcomputer is writing data or control words to the~
8251A. IOWRT/ also informs the 8253 that the host micro-
computer is outputting mode information or loading coun-
ters. � ~

MCSO/ Chip Select!. This active low input signal to the
8251A USART enables it to perform read and write operati-
ons. when MCSO/ is high, the USART bus is held in a float
state and the IORD/ and IOWRT/ signals do not effect the
USART.

-l72- RC Computer

PICCOLINE 12. iSBX Bus S ecification

MCS1/ Chip Select!. This active low input signal to the
8253 PIT enables it to perform read and write operations.
However, MCS1/ has no effect on the operation of the inter-
nal counters in the 8253.

MDO-MD7 Bidirectional Data Bus!. These active high I/O li-
nes are the iSBX Multimodule boards� tie-in to the host
iSBC microcomputer data bus. MDO through MD7 transfer data,
commands, and status between the iSBX Multimodule board and
the host iSBC microcomputer.

MINTRO, MINTR1 Interrupt Request Lines!. These active high
output lines may be jumpered to OUT 0, or OUT 1 on the
8253, or to TXRDY on the 8251A.

OPTO, 0PT1 Option Lines!. These active high I/O lines are
included to give the iSBX Multimodule board greater func-

ptional flexibility. These lines may be user-configured for
special functions.

�r

TTL 8 Standard totem pole output.
TRI a: Three state output.

Fig.l2.26 DC Characteristics

RC Computer -173-

12. iSBX Bus Specification PICCOLINE

12.4.3 Interface Buffering

Interface buffering is provided by three receiver/driver
logic elements U1, U2, and U3. U1 is an input buffer that
may be used with either RS232C or RS442 configuration. de-
pending on the position of the mode selection header
blocks. U2 provides RS422 output buffering. and U3 provides
RS232C output buffering.

12.4.4 Clock Generation Circuitry

The Communication 351 board includes an 8224 Clock Gene-
rator chip that creates a 2.46 MHz output from a 22.1148
MHz crystal input. The output is then passed through a syn-
chronous four�bit counter which generates a 1.23 MHz clock
and a 153.6 KHz clock to drive the 8253 PIT. The clock
output frequency labeled OUT 2, which is produced by the
8253 PIT, will vary according to the configuration and
programming of the PIT chip.

The two remaining clock frequencies output from the 8253
PIT are jumper selectable to generate interrupts for the
iSBX Multimodule board.

12.4.5 AC Specifications

The ac specifications for the Communication Multimodule
Board are listed in fig.12.27. Fig.12.28 and 12.29 define
the timing parameters for the board.

-174- RC Computer

PICCOLINE 12. iSBX Bus S ecification

m Address stable before IORDI
E Address mm. utter ronox �-
J M M» -W EH
_ Data valid from IORDI
m Data tloat after IORDI

XE

 cs cmo E-
� cs me W cue �-
m Address stable betore IOWRTI
u Address stable alter IOWRTI
1 Wm M» W EH
E cm and to rowan
n on. mac attcr oowrm

. 2.9

NOTES:

 1. During initialization. all writes to the control port:

t5 = 1.92 us. After initialization in asynchronous
mode all writes to the control part: ti; = 2.56 us.
After initialization in synchronous mode all writes
to the control port: ta 8 5.12 us. All writes to the
data port: Depends upon the baud rate since
TXRDY must be true.

Fig.12.27 AC Specifications

12. iSBX Bus S ecification PICCOLINE

Aoonzss

CUM? SELIC1� I

DATA

'Fig.12.28 READ Timing

«mun: {

CHIP SELECT]

WRTI

ha hi

4"�

Fig.12.29 WRITE Timing

-176- RC Computer

13. Inter Computer File Transfer

This chapter provides technical information concerning the
FILEX file transfer program which in its standard form can
be used to transfer files between a PICCOLINE and one of
the following computers:

1! Another PICCOLINE RC759!
2! An RC750 Partner
3! An RC702 Piccolo
4! An RC703 Piccolo
5! An RC855 Workstation

Together with the FILEX source program included on the PIC-
COLINE distribution disk, this chapter contains the neces-
sary information for an experienced user to modify FILEX or
implement a FILEX type file transfer program on another
computer with serial communication support e.g. an IBM PC
with SYNC/ASYNC controller option installed!.

13.1 Requirements

Since the FILEX file transfer program is based on serial
communication the PICCOLINE system has to be enhanced with
an iSBX351 serial interface V24-interface!.

The two computers on which FILEX is to run must be connec-
ted by means of an appropiate cable.

To connect two computers, arbitrarily chosen among the
RC702, RC703, RC855, RC750 and RC759, one of the following
cables should be used:

1! CBL912 � metres!
2! CBL913 �2 metres!
3! CBL914 �5 metres!

Furthermore, the user should configurate the two selected
computers to ensure:

1! that the two computers use the same baudrate on
the channel used, .

2! that the line character format is set to 7 bits
per character.

RC Computer -177-

13. Inter Computer File Transfer PICCOLINE

13.2 How FILEX Works

FILEX type file transfers take place as follows.

The local computer sends a number of transactions to the
remote computer. Each time the remote computer receives a
transaction, it carries out the appropriate file operation
and sends an answer back to the local computer. The trans-
actions sent depend upon whether the file is to be trans-
ferred to or from the local computer see the FILEX program
listing for details!.

The entire set of transactions and the transmission proto-
col are described in the following.

13.2.1 FILEX Transactions

The effect of the file operations below is as described in
ref.2.

OPEN

 Request Field Answer

1

result

file name

MAKE

 Request Field Answer

2

result

file name

PICCOLINE 13. Inter Com uter File Transfer

21

 I31

 3�

 C

Request Field Answer

result

WRITE

Request Field Answer

result

area

CLOSE

Request Field Answer

resultO
EN

Request Field Answer

result

RC Computer -179-

13. Inter Computer File Transfer PICCOLINE

13.2.2 Transmission protocol

The transactions described in 13.2.1 are sent by means of
the blocked tranmission protocol described below.

A block consists of the following elements:

1! start character:
ASCII value 35

2! Block size:
The size defines the number of characters N! in the
string to be sent, not the number of characters necess-
ary to send the string �*N+8, explained below!. The
block size is a 16-bit integer �..65535! split into
four 4-bit digits. Each digit is interpreted as an in-
teger to which 64 has been added, so that the resulting
value lies between 64 and 79. These values are trans-
mitted as characters, the most significant part first,
the least significant part last.

3! Data section:
Each character in the string to be sent is split into
two 4-bit digits, to which 64 is added, as above. These
two integers are transmitted as ASCII values, the most
significant part first.

4! Checksum:
An 8-bit number which is transmitted as two ASCII valu-
es as explained above. The checksum is calculated so
that the following condition is satisfied:

 the sum of the values of the characters in the origi-
nal string! + checksum! modulo 256 = O.

5! Stop character:
ASCII value 13.

-180- RC Computer

PICCOLINE 13. Inter Comguter File Transfer.

If the number of characters in the string to be transmitted
is N, then the actual number of characters transmitted are:

 start character!

 block size!

*N data section!

 checksum!I-�+l92.!+l~!+ub+l--� stop character!

2*N + 8 characters.

RC Computer -131-

13. Inter Comguter File Transfer PICCOLINE

�132� RC Computer

A. Int-28h Function Interface

Function 0

Changes the console mode to graphics mode.

Registers on entry:

AL 0
AH l=high resolution/2=medium resolution
DX Address segment of graphics control block.
CX Address offset of graphics control block.

Registers on return:

Undefined

See 4.5.1.

Function 1

Changes the console mode to character mode.

Registers on entry:

AL 1

Registers on return:

Undefined

See 4.5.2.

Function 2

Reserved

__

 RC Computer -133-

A. Int-28h Function Interface PICCOLINE

Function 3

Returns the address of a copy of the nonvolatile memory
contents.

Registers on entry:

AL 3

Registers on return:

ES Address segment
SI Address offset

See 3.2.

Function 4

Returns the address of a configuration description.
Registers on entry:

AL 4

Registers on return:

ES Address segment
SI Address offset

See 3.1.

�134� RC Computer

PICCOLINE A. Int-28h Function Interface

Function 5

Recalibrate floppy disk drive.

Registers on entry:

AL 5

Stack on entry:

+10 Drive �/1!
+ 8 Head �/1!
+ 6 Cylinder
+ 4 Bytecount
+ 2 DMA segment
+ 0 DMA offset

Registers on return:

AL Floppy disk controller status register

Function 6-7

Reserved.

Function 8

Step floppy drive head one track in.

Registers on entry:

AL 8

Stack on entry:

+10 Drive �/1!
+ 8 Head �/1!
+ 6 Cylinder
+ 4 Bytecount
+ 2 DMA segment
+ 0 DMA offset

Registers on return:

AL Floppy disk controller status register

RC Computer -185-

A. Int-28h Function Interface PICCOLINE

Function 9

Step floppy drive head one track out.

Registers on entry:

AL 9

Stack on entry:

+10 Drive �/1!
+ Head �/1!

Cylinder

 Bytecount

 DMA segment
DMA offset

4' +
+4!-

 Ol92J-bO92@
Registers on return:

AL Floppy disk controller status register

Function 10

Write a track to floppy disk.

Registers on entry:

AL 10

Stack on entry:

+10 Drive �/1!
+ 8 Head �/1!
+ 6 Cylinder
+ 4 Bytecount
+ 2 DMA segment
+ 0 DMA offset

Registers on return:

PICCOLINE A. Int-28h Function Interface

Function 11

Read a track from floppy disk.

Registers on entry:

AL 11

Stack on entry:

Drive �/1!
Head �/1!
Cylinder

Bytecount

 DMA segment
DMA offset++++++

 Ck!-I:-O92®O
Registers on return:

AL Floppy disk controller status register

Function 12

Write a byte to the sound generator.

Registers on entry:

AL 12
DL byte

Registers on return:

Undefined

Function 13

Get address of disk driver statistics

Registers on entry:

AL 13

Registers on return:

ES Address segment

A. Int-28h Function Interface PICCOLINE

The disk driver statistics has the following layout:

Read_Count RW 16

Write_Count RW

Hard_Err_Read RW

Hard_Err_write RW

Soft_Err_Read RW

Soft_Err_Write RW

�O

�O �O �I

16 �O �O �O
16 it it V0 V0
16

V0 he
in �O

16 is No is in
16 V0 V0 V0 V0

Bach word contain number of
read operations on the
corresponding drive word 0 is
count for drive A etc.!

Each word contain number of
write operations on the
corresponding drive.

Each word contain number of
non recoverable errors occured
during read operations on the
corresponding drive.

Each word contain number of
non recoverable errors occured
during write operations on the
corresponding drive.

Each word contain number of
recoverable errors occured
during read operations on the
corresponding drive.

Each word contain number of
recoverable errors occured
during write operations on the
corresponding drive.

; Floppy controller status bit statistics. First word in
; each field.is count for
; for drive B. See WD1797

Fl_Error_Read DW

 DW
DW
DW

DW

 DW
DW

 DWOOOOOCDOO

�V

PICCOLINE A. Int-28h Function Interface

Fl_Error_Write DW 0.0 ; Bit O - BUSY
DW 0.0 ; Bit 1 - DRQ
DW 0,0 ; Bit 2 - LOST DATA
DW 0,0 ; Bit 3 - CRC ERROR
DW 0,0 ; Bit 4 - RECORD NOT FOUND
DW 0.0 ; Bit 5 - DELETED DATA
DW 0,0 ; Bit 6 - NOT USED

0.0 ; Bit 7 - READYDW

Function 14-18

Reserved

Function 19

Returns 16 ms counter.

To offer a better time resolution than the one second from
the real time clock, the X108 maintains a 32 bit wide se-
cond count field and a tick �6 millisecond! count field
which together make it possible to make relative time mea-
surements with a 16 millisecond resolution.

Both the second and the tick count field are initialized to
zero at boot time and it is not possible to adjust them
later the counters are intended for relative time measure-
ments only!.

Registers on entry:

AL 19

Registers on return:

DX Second count high
AX Second count low
CX Elapsed 16 m3 periods of next second.

RC Computer -139-

A. Int-28h Function Interface PICCOLINE

Function 20

Defines a character in the alternative character set.

Registers on entry:

AL 20
CL Character number O-255!
DS Address segment of character definition block
DX Address offset of character definition block

Registers on return:

Undefined

See 4.3.2.

Function 21

Returns a pointer to a console display list.

Registers on entry:

AL 21

Registers on return:

ES Address segment display list table
BX Address offset display list table
DX Display buffer segment
SI Intel 82730 command block

See 4.2.3.

Function 22

Returns the current cursor position.

Registers on entry:

AL 22

Registers on return:

BH Row
BL Column

See 4.2.4.

-190- RC Computer

PICCOLINE A. Int-28h Function Interface

Function 23

Returns status of iSBX351 controller if installed!.

Registers on entry:

AL 23

Registers on return:

AX Status

See 10.3

Function 24

Initializes the iSBX351 controller if installed!.

Registers on entry:

AL 24

Stack on entry:

+2 Parameter block segment
+0 Parameter block offset

Registers on return:

Undefined

See 10.3

Function 25

Reserved.

RC Computer -191-

A. Int-28h Function Interface PICCOLINE

Function 26

Read file header record from cassette tape.

Registers on entry:

AL 26
CX Max number of bytes to read
DX Input buffer offset

Stack on entry:

+0 Input buffer segment

Registers on return:

Al Function result
0 ok
1 CRC error
2 no data on tape
3 no leader found
4 wrong record number
5 end of file

AH, BX Undefined
CX Number of bytes read
DX Offset of next byte in input buffer

Stack on return:

Unchanged

See 7.2.5

Function 27

Write file header on cassette tape.

Registers on entry:

AL 27
CX Number of bytes to write
DX Output buffer offset

Stack on entry:

+0 Output buffer segment

-192- ' RC Computer

PICCOLINE A. Int-28h Function Interface

Registers on return:

AX. CX 0
BX Undefined
DX Offset of next byte in output buffer

Stack on return:

Unchanged

See 7.2.2

Function 28

Read next data record from cassette tape.

Registers on entry:

AL 28
CX Max number of bytes to read
DX Input buffer offset

Stack on entry:

+0 Input buffer segment

Registers on return:

A1 Function result
0 ok
1 CRC error
2 no data on tape
3 no leader found
4 wrong record number
5 end of file

AH, BX Undefined
CX Number of bytes read
DX Offset of next byte in input buffer

Stack on return:

Unchanged

See 7.2.6

RC Computer -193-

A. Int-28h Function Interface PICCOLINE

Function 29

write next data record on cassette tape.

Registers on entry:

AL 29
CX Number of bytes to write
DX Output buffer offset

Stack on entry:

+0 Output buffer segment

Registers on return:

AX. CX 0
BX Undefined
DX � Offset of next byte in output buffer

Stack on return:

Unchanged

see 7.2.3

'194-. RC Computer

PICCOLINE

Function 30

AC

Subfunction 1:

Initializes mouse.

Registers on entry:

AL 30
CL 1

Registers on return:

Undefined

Subfunction 2:

RC Computer

Deinitializes mouse.

Registers on entry:

AL 30
CL 2

Registers on return:

Undefined

Int-28h Function Interface

-195-

A. Int�28h Function Interface PICCOLINE

Subfunction 3:

Returns the current status of the mouse device.

Registers on entry:

AL 30
CL 3

Registers on return:

a! Nothing happened

AL 0

b! Button pressed

AL 1
AH Character information.

c! Mouse moved

AL 2
Bx Delta x
CX Delta y

See 4.7.

Function 31

Defines palette contents.

Registers on entry:

AL 31
DS Address segment of palette definition
DX Address offset of palette definition

Registers on return:

Undefined

See 4.1.3.

Function 32-34

Reserved

-196- RC Computer

PICCOLINE A. Int-28h Function Interface

Function 35

Write a string direct to the console buffer.

Registers on entry:

AL 35
DL Column
DH Row
CX Count
DS Address segment of string
SI Address offset of string

Registers on return:

Undefined

See 4.2.2.

Function 36

Set cursor position.

Registers on entry:

BB Row
BL Column

Registers on return:

Undefined

See 4.2.4.

Function 37

Returns current attributes.

Registers on entry:

AL 37

Registers on return:

AH Current attributes

See 4.2.5.

RC Computer -197-

A. Int-28h Function Interface PICCOLINE

Function 38

Set attributes.

Registers on entry:

AL 38
AH Attributes

Registers on return:

Undefined

See 4.2.5.

Function 39

Update physical screen.

Registers on entry:

AL 39

Registers on return:

Undefined

See 4.2.3

Function 40

Write an end of file record on cassette tape.

Registers on entry:

AL 40

Registers on return:

AX ' 0

-198- RC Computer

PICCOLINE A. Int-28h Function Interface

Function 41

Subfunction 1:

Reserve DPC parallel interface.

Registers on entry:

AL 41
AB 1

Registers on return:

Undefined

See 9.3.1

Subfunction 2:

Release DPC parallel interface.

Registers on entry:

AL 41
AH 2

Registers on return:

Undefined

�See 9.3.2

Function 42

Subfunction 1:

Reserve shared disk.

Registers on entry:

AL 42
AB 1

Registers on return:

Undefined

See 8.4.1

RC Computer -199-

A. Int�28h Function Interface PICCOLINE

Subfunction 2:

Release shared disk.

Registers on entry:

AL 42
AH 2

Registers on return:

Undefined

See 8.4.2

Function 43-49

Reserved

Function 50

Reset iSBX35l.

Registers on entry:

AL 50

Registers on return:

Undefined

see 10.3

-200- RC Computer

PICCOLINE A. Int�28h Function Interface

Function 51

Get font.

Returns a character from the character set.

Registers on entry:

AL 51
CX Character number �-1023!
DS Address segment of character definition block
DX Address offset of character definition block

Registers on return:

Undefined

See 4.3.4.

Function 52

Define font.

Defines a character in the character set.

Registers on entry:

AL 52
CX Character number ��1023!
DS Address segment of character definition block
DX Address offset of character definition block

Registers on return:

Undefined

See 4.3.3.

__

 RC Computer -201-

A. Int-28h Function Interface PICCOLINE

Function 53

Get XIOS version

Registers on entry:

AL ~ 53

Registers on return:

AH Year BCD!
AL Version number BCD!
BH Month BCD !
BL Day BCD!

�202- RC Computer

B. Peripheral Device I/O Addresses

DMA
Address Peripheral Direction Interrupt reguest

00008 I8259 Int. Crt.
0020H Keyboard I 1
0056H-OOSCH

Sound 0
005CH RTC 3
0060H CRT Control 0 4 3
0070H PPI Port A I
O072H PPI Port B I
0074H PPI Port C O
0076H Control 70H-74H O
O080H-OOFEH

NVM I/0
0100H Net Ch. Attent
0l80H-OIBEH

Palette O
0230H Reset Int. CRT
0240H Ch. Attent.
0250H Local Prin. Data I/O 6
0260H Local Prin. Contr.
0280H Floppy Control I/O 0
0282B Track Reg. I/0
0284H Sector Reg. I/O
0286H Data Reg. I/O
0288B Floppy Control 0
028AH DPC Prin. Data I/O
028CH DPC Prin. Contr. I/O 2
028EH Test Floppy I
028EH Reserve Floppy 0
02908 Release Floppy O
0292H Test Printer I
0292H Reserve Printer 0
0294H Release Printer 0
0300H�030EH

iSBX I/O INT1
0310H-031EH

iSBX I/O INT3
0320H DMA ACK to iSBX O
O330H TC to iSBX O

RC Computer -203-

B. Perigheral Device I/O Addresses PICCOLINE

-204- RC Computer

C. Interrupt Vector Assignment

Cause Type Vector

Divide error exception Internal 0 0000:00OOH
Single step interrupt Internal 1 0000:00O4H
Non maskable interrupt Internal 2 00O0:0008H
Breakpoint interrupt Internal 3 0000:000CH
INT 0 detected Internal 4 00O0:001OH
Array bounds exception Internal 5 0000:0014H
Unused opcode exception Internal 6 0000:0018H
ESC opcode exception Internal 7 0000:001CH
Timer 0 interrupt Internal 8 0000:0020H

Timer 1 interrupt Internal 18 0000:0048H
Timer 2 interrupt Internal 19 00O0:0O4CH

DMA 0 interrupt Internal 10 0000:0028H
DMA 1 interrupt Internal 11 0000:002CH
INT 0 interrupt Internal 12 0000:0030H
INT 1 interrupt Internal 13 0000:0034H
INT 2 interrupt Internal 14 O00O:0038H
INT 3 interrupt Internal 15 0000:003CH

Floppy controller External 0 0000:0080H
Keyboard interface External 1 O000:0084H
DPC interface External 2 0000:0088H
Real time clock External 3 00O0:008CH
CRT External 4 OO00:OO90H
Net controller External 5 0000:O094H
Parallel interface External 6 O000:0098H
Not used External 7 0000:009CH

Int-28h functions Int 28H 0000:00AOH
Net driver Int 29H O000:O0A4H
IMC Int 30H 0000:00A8H

RC Computer -205-

C. Interrugt Vector Assignment PICCOLINE

-206- RC Computer

D. Character Set and Keystrokes

CTHL E

E

 B
IE5 ll
IE I

CTRL F 22 16 CTRL VIE-E II-
I
IE1 an
IE
HI I
HE! E
E! B

-

CTRL P

D. Character Set and Ke strokes PICCOLINE

- I

SHIFT '

Ea

E

 EH -

M SHIFT XEEIEEE

PICCOLINE D. Character Set and Ke strokes

- 1

EEE Eli

EH 5

EHEI ME
E3 HE
E HE

E E
El] HE

E
H E

El
E El

E
El I

RC Computer -209-

D. Character Set and Ke strokes PICCOLINE

-

EE-
-5

Gail!

 EH
ELIE

HEB

 E
13

MHZ

PICCOLINE D. Character Set and Ke strokes

I I

+133 35 CTRL ALT E 149 CTRL ALT u �

 3-

37 CTRL ALT G 97 CTRL ALT w -

 -C

135 as CTRL ALT H 152 CTHL ALT x -

D. Character Set and Ke strokés

1

MI
E
MEN

EH

 H��

PICCOLINE D. Character Set and Ke strokes

VALUE VALUE

- KEYSTRUKES

SHIFT ALT 9 I SHIFT ALT P

c2 SHIFT ALT B SHIFT ALT R

195 C3 SHIFT ALT C

R!

 u-s

 G

3 SHIFT ALT SEU

 H-

 I-

 C3

195 CA. SHIFT ALT D HIFT ALTamm�hmmmml197 C5 SHIFT ALT E HIFT ALT

cs SHIFT ALT F ': SHIFT ALT v
199 C7 SHIFT ALT G 7 SHIFT ALT W

CB SHIFT ALT H SHIFT ALT X

|'92J

R.!

 I---I-5

D. Character Set and Re strokes - PICCOLINE

I -

E 5
QB ME

55

 5
EH QE
5 5
EH £
ME E

 5!]
EH 5

RC Computer -215-

��������������

E. Keyboard Position Codes PICCOLINE

-216-' RC Computer

F. Console Escape Sequences

Sequence Function

ESC A Cursor Up
ESC B Cursor Down
ESC C Cursor Forward
ESC D Cursor Backward
ESC E Clear Screen, Cursor Home
ESC H Cursor Home
ESC I Reverse Index
ESC J Erase to End of Screen
ESC K Erase to end of line
ESC L Insert Line
ESC M �Delete Line
ESC N Delete Character
ESC 0 Insert Character
ESC P Select Alternative Character Set
ESC Q Select Standard Character Set
ESC Y x x Position Cursor
ESC a Ignored
ESC b x Set Foreground Colour
ESC c x Set Background Colour
ESC d Erase Beginning of Screen
ESC e Enable Cursor
ESC f Disable Cursor
ESC g Enter Underline Mode
ESC h Exit Underline Mode
ESC i Enter Non-Displayed Mode
ESC j Save Cursor Position
ESC k Restore Cursor Position
ESC l Erase Line
ESC m Enable Cursor
ESC n Disable Cursor
ESC o Erase Beginning of Line
ESC p Enter Reverse Video Mode
ESC q Exit Reverse Video Mode
ESC r Enter Intensify Mode
ESC s Enter Blink Mode
ESC t Exit Blink Mode
ESC u Exit Intensify Mode
ESC v Wrap at End of Line
ESC w Discard at End of Line
ESC x Exit Non-Displayed Mode
ESC 2 Reset Attributes

RC Computer -217-

F. Console Escape Seguences PICCOLINE

Sequence Function

ESC 0 Status Line Off �5 Line Mode!
ESC 1 Status Line On �4 Line Mode!
ESC 2 Save Current Attributes
ESC 3 Restore Attributes
ESC 6 Function Key Expansion Off
ESC 7 Function Key Expansion On
ESC : x c...c NUL Program Function Keys
ESC < x x Scroll Window Up
ESC ! x x Scroll Window Down
ESC �41! Set Blinking Cursor
ESC �42! Set Non-Blinking Cursor
ESC �43! x Set Cursor Representation
ESC �44! Set Soft Scroll
ESC �45! Set Line Scroll
ESC �46! Disable Underline Attribute
ESC �47! Enable Underline Attibute
ESC �53! Save Function Keys
ESC �54! Restore Function Keys

-218- RC Computer

G. References

1. Concurrent CP/M�86, User's Guide.
Digital Research

2. Concurrent CP/M-86, Programmer's Reference Guide.
Digital Research

3. Concurrent CP/M-86, System Guide.
Digital Research

4. DrNet, Network operating system, System guide.
Digital Research

5. PICCOLINE brugervejledning.
SWl40lD
RC COMPUTER

6. Local Area Networks - Logical Link Control - Draft E
ISO/DP 8802/2 TC 97/SC 6 N2925!

7. Data Processing - Open Systems Interconnection
Basic Reference Model
Feb. 4. 1982
ISO/DIS 7498

8. Distributed System Architecture, Report
RCSL No. 42-11982
RC Computer

9. DSA Inter Module Communication,
Functional Description
RCSL No. 42-i1983
RC Computer

10. Intel 82586 Reference Manual
order number 210891-001
Intel Corporation, 1983

11. RC 759 Techical Hardwaredocumentation
SW1493D
RC Computer, 1985

RC Computer -219-

G. References PICCOLINE

-220- RC Computer

Catchword Index:

24 0 0 0 oo oo o o o o 000 no 0 once 0 a 0 0 0 o o 0 o
25 0 0 too 0 on 0 cc 0 000 0 0 0 0 on 0 o 0 o o o o 0 0
 o 0 o a u o 0 0 0 0 0 0 0 o u 0 0 o 0 0 0 o 0 0 o o 0 0 oo 0 O0

OCOOICOIOOOICOICOIO OOOOOOI
OOOOOIOOOOOCIIOOOOOOIO:I000000

8259A see interrupt controller
82730 see text processor

A

activate.confirm 118
activate.confirm buffer format 118
activate.request 117
activate.request buffer format 117
active_sap 142
alphanumeric mode see character mode
alternative character set 35
ASCII value 64
asynchronous mode 99,100
attenuation 71
attenuation weight 73
attribute bits 32
attribute byte 34
attributes 48
attributes current see function 37
attributes set see function 38
auto configuration 15
auto logon 20

B

basic configuration 15
baud rate 99
BCD code 67
BELL 40
bitmap;........ 26,36,55
bitmapped graphics 29
bits pr. char 18
black 43
blink mode 47
blinking cursor 52
blue 43
blue beam 27
BS 000000COIOOOIOOIOIOOOOOOOCOOO0000000

OOOIIIOOOOICIIOOOOIIOOOII
bus specification 145

RC Computer -221-

Catchword Index PICCOLINE

C

cassette control 77,78
cassette driver 77,78
cassette input 78
cassette motor 78
cassette output 78
cassette record 79
cassette recorder 77
cassette tape 77
cassette tape read see function 26
cassette tape read next see function 28
cassette tape write see function 27
cassette tape write next see function 29
cassette tape, end of file see function 40
ch. attent 203
character definition 36,55,190
character format 26
character height 26,36
character mode 26,27,29,56
character mode, set see function 1
character set 207
character sets 35
character value 32
character width 26,36
checksum 17,20
CHSET 57
clear screen see ESC E
client 112
client confirm queue 118
client information 117
client information buffer 118
client network 133
client network service 124
client network service procedures 133
clock rate 72,75
colour 26
colour monitor 43
command block 25
communication channel 18
configuration 15
configuration description address see function 4
confirm 114
confirm queue 117
confirm queue buffer format 114
confirm user buffer 114
confirm user buffer values 115
CONIN 25
connect.indication 118,125
connect.indication datastructure 125
connection 112

-222- RC Computer

PICCOLINE Catchword Index

connection state change 134
connection states 134,135
 OOOIIOIOOOOOICOOOOIIIIDIIOOOOOOI
consolesOIOIOOOOOOOOIOOOOOOOCOOOIOOOO
console buffer write see function 35
console display see function 21
console driver 30
console escape sequences 217
console mode 99,183
console module 25,55
console output 30
console switching 57
control block 11
control characters 40
control output register 91
control PPI 203
control register 87,88,93
control. cassette see cassette control
controller specific information 130
counter, 16 ms see function 19

OOOIOOOOIICOOOOOOOOOOOOOOOOOOOOOOOO
 OIOIOOOOOOOOIOOOOOOO
CR IOOCOOCOOOOIOOOOOOOIOOOIOCOIOOOOCOO0
CRC 79,82
create new window see Xfunction 20
CRT control 203
CRT controller 25
CRT scroll mode 18
Ctrl 64
Ctrl+Al 64
Ctr1+A3 64
Ctrl+A4 64

IOUOIOOOOOOIOOIOIOOIOOOOOOOO
current attributes see function 37
current year 19
cursor backward see ESC D
cursor blink 18
cursor down see ESC B
cursor forward see ESC C
cursor height 18
cursor home see ESC H
cursor position 34
cursor position current see function 22
cursor position set see function 36
cursor representation 52
cursor tracking mode see Xfunction 21
cursor up see ESC A

OCOOCUCOOCOOOOOOOOICOOOOOOOCIOCOIO

RC Computer -223-

Catchword Index PICCOLINE

D

 data 143
data block 79
data input port 91.92
data output register 91,92
data record 79,82
data register 203
data.confirm 128
data.confirm buffer format 128
data.indication 128
data.indication datastructure 129
data.request 118,127
data.request buffer format 127
datalink 112
deactivate buffer 119
deactivate.confirm 119
deactivate.confirm buffer format 119
deactivate.request 119
deactivate.request buffer format 119
define character font 37,38
define font see function 52
deinitialize mouse see function 30
delete character see ESC N
delete line see ESC M
device addresses 203
direct console access 30
direct console output 31
direct memory access see DMA
disable cassette 78
disable cursor see ESC f
disable interrupts 57
disable underline attribute see ESC <246>
discard at end of line see ESC w
disconnect.acknowledge 126
disconnect.acknowledge request buffer . 126
disconnect.indication 125
disconnect.indication datastructure ... 126
disconnect_acknowledge.confirm 127
disconnect_acknowledge.confirm buffer

format . 127
disk buffers 19
disk characteristics 85
disk controller 87
disk driver 88
disk driver statistics see function 13
disk format 85,86
disk naming 85
disk number 20
disk release see function 42
disk reserve see function 42

-224- RC Computer

PICCOLINE Catchword Index

disk system 85
Disk/Printer-Adaptor see DPA
Disk/Printer-Controlunit see DPC
display buffer 32
DMA 12
DMA ACK to iSBX 203
DMA channel 0 12,88
DMA channel 1 12
DMA channel reservation 12
DMA channels 11
DMA interrupt handling 13
DMA interrupt level 13
DMA priority 88
DMA request signal 13
DPA 3.16
DPC 3,85,89,91
DPC interface 97
DPC interface release see function 41
DPC interface reserve see function 41
DPC printer control 203
DPC printer data 203
drive characteristics 87
drive head step in see function 8
drive head step out see function 9

E

enable cassette 78
enable cursor see ESC e
enable underline attribute see ESC <247>
end of file 81
end of file record 79
enter blink mode see ESC s
enter graphics mode see function 0
enter intensify mode,.. see ESC r
enter non-displayed mode;..... see ESC i
enter reverse video mode see ESC p
enter setup mode see Ctrl+A1
enter underline mode see ESC g
entity 112
erase beginning of line see ESC
erase beginning of screen see ESC
erase line see ESC
erase to end of line see ESC
erase to end of screen see ESC
ESC 40
ESC 0 48
ESC 1 48
ESC 2 48
ESC 3 48

C-I�J'§9-�D40

RC Computer -225-

umudm�ouUmIwmmn

haI000IIIIIOICICOOCOOCIOIIIIIOOCOOComm

umm

 omm

PICCOLINE Catchword Index

000000000 0 0 0 0 0000000 0 0 0 0 000000000
000000000000

ESC x
ESC Y
ESC z 47
escape sequence 35,40
escape sequences 217
exchange IDentification see XID
exclusive access ...
exit blink mode see ESC t
exit graphics see function 1
exit intensify mode see ESC u
exit non-displayed mode see ESC x
exit reverse video mode see ESC q
exit underline mode see ESC h
external interrupt controller see interrupt controller

000000 0 0 0 0 000000000

F

FCR see control register
file header 79,81
file transfer 177
FILEX 177
flag assignments 6
flags 6
floppy control 203,203
floppy disk 85
floppy drive performance 85
floppy drives 16
floppy motor 19
floppy release 203
floppy reserve 203
floppy test 203
font, get see function 51
foreground colour 19
frequency;............ 71,72
frequency data,...... 73
full screen 63
full screen key see Ctr1+A4
function 183
function 55
function 56,183
function 17,184
function 15,184
function 185

function

 function
function 10 186
function 11 187

000000000000000000000000000092D®Ul-[>009--�DO00I000000000000000000000I000

function 71,187
function 13 IIIIIIIIIf.fI...IIIIIIIIIII137
 000000000 0 0 0 0 00000000000000

RC Computer -227-

Catchword Index

function

 function

 function

 function

 function

 function
function

PICCOLINE Catchword Index

H

hardcopy 64
header field 79
high pulse 78
high resolution 26
horizontal scrolling 32

I

OICICOOOOCIOOCIOOODIOCCOOCCU
I/O-address 112 78
I/O-address 118 78
I/0-address 70H see I/O-address 112
I/0-address 76H see I/Otaddress 118
18259 int. crt.; 203
IMC 113
indication 115
indication acknowledge 116
indication queue 117
indication queue buffer format .. . 116
init graphics see function 0
initialize iSBX351 see function 24
initialize mouse see function 30
insert character see ESC 0
insert line see ESC L
Int-28h 205
Int-28h function see function
INTO 11
INT1 12
INT3 12
INTAO 11

IIOOOOOOIOOOOO0000000000000
Intel 8259A see interrupt controller
Intel 82730 see text processor
intensity 27,43
Inter Module Communication see IMC
internal interrupt controller 11
interrupt controller 11
interrupt external 205
interrupt internal 205
interrupt level 21 64
interrupt routine 25
interrupt system 11
interrupt vector 130
interrupt vector address 93
interrupt vector assignment 205
INTRO 12
INTR1 12
IORD/ 149

RC Computer -229-

Catchword

IOREAD

 IOSELDSK

 IOWRITE .
IOWRT/

 I0_AUXIN

IO_AUXOUT

 IO_CONIN

 I0_CONOUT

 IO_CONST
IO_FLUSHBUF
IO_LIST
IO_LISTST

000000000000

I0_READ

 I0_SELDSK
IO_STATLINE

IO_SWITCH

 I0_WRITE

Index

00000000000000000000000000000

00000000000000000000000000000

 0000000000000000 0000000000000
0000000000 00 000000 00 00000000

00000000000000000000000000000

PICCOLINE

link_req
list device 1
load device
load from net
local area network
local printer control
local printer data
logon
long pointer
loop-back service ...
1oop�back test procedure
loudspeaker
low pulse

OIOOOOOOOOOOOOOOIOIOIIIOO

00000OOOIOOIOOOOOOOOOOOIOOO

 OIIOOOOOOOOOOOOOOOOOOIIO0

 OCOOOOOOOOOIOOOOOOOO

 OOOOOOOOOIOOCOOOO
OCOOOOOOOOOOOOOOOIIO

O0000ODDOOOIIOIOCOCIOOOOOOOOIOOCO

 IOOOOOOOIOOCOOOOOIIOIIOIOI

 OIOOOOOOOOOOOUOOOO

OOOOOIOOOOOOOOOOCOI0000.000

M

MAO

 MA2
MAC

 MAC services

magenta

 MCL

Catchword Index PICCOLINE

Mxcass
Mxdisk
MXdma0
Mxdmal 8,12
MXdma2 8
Mxload 8
Mxsound 8,7l,72

I-�Chm

N

National Semiconductor chip 67
net ch. attent ;....................... 203
net controller interrupt vector 130
net default server 20
net node id 20
net server password 20
new window 62
no-switch bit 57
noise;........................ see generator noise
noise attenuation 71,75
noise control 71
noise control 75
Non Volatile Memory see NVM
NULL 40
number of bytes 79
NVM 16
NVM address 203
NVM, copy address see function 3

O

octaves 72
octet 113
OKONFIG 15
OPTO 151
OPTl 151
output signal 71

P

palette 25,26,26,196,203
palette cells 27
palette content see function 31
palette selector 27
parallel interface 91,199
parallel interface interrupts 93
parallel interface registers 91
parity 18

-232� RC Computer

PICCOLINE Catchword Index

password 20
peer 112
peripheral device I/O addresses 203
peripherals 1
pin mumber 91
pixel address calculation 59
pixel memory 25,26,35,55,57
port 91
position code 64
position codes 215
position cursor see ESC Y
PPI Port A 203
PPI Port B 203
PPI Port C 203
pressed key see key pressed
printer 0 91
printer 2 91
printer driver, example 94
printer interface 91
printer mode 99
printer release 203
printer reserve 203
printer test 203
printer type 19
program function key see ESC.:
programmable function key see function key
programmable interrupt controller see interrupt controller
programming tones 72
protocol 112
protocol elements 141
pulse width 77

Q

queue Mxsound see Mxsound
 OOOOIOOIOOOIOOOOIOOOOOOOOOI8

R

rack 143
rasterline 36
RCA chip 67
RCLLC datalink layer protocol 131
RCLLC entity 113
RCLLC protocol elements 112,138
RCLLC services 116
RCLLC station 112
RCLLC-user 112
read beam 27

RC Computer -233-

Catchword Index PICCOLINE

read file header 81,192
read next data 82,193
read RTC register 67
read_nvm 22
real time clock see RTC
REC-.............................. 113
recalibrate disk drive see function 5
receiver baud rate 101
record number 79,81
record type 79
record, cassette see cassette record
red 43
register usage 5
release DPC interface 97
release sound device 72
request 114
reserve disk 89
reserve DPC interface 97
reserve sound device 72
reset 142
reset attributes see ESC z
reset int. CRT;................... 203
reset iSBX351 see function 50
resolution 26
resolution high/medium! see function 0
restore attributes see ESC 3
restore cursor position see ESC k
restore function keys see ESC �54!
return mouse status see function 30
return pointers see Xfunction 16
reverse index see ESC I
RTC 16,67
RTC controller 67
RTC second source 67

00000000000OIOOOOOOOOOOOOOOOIOOIOOO

S

SAP 112
SAP activation 117
SAP address 112
SAP deactivation 117
SAP mask 113
save current attribute see ESC 2
save cursor position see ESC j
save function keys see ESC <253>
save-buffer 55
screen dump 32
screen update see function 39
scroll mode 18

-234- RC Computer

PICCOLINE Catchword Index

scroll window down see ESC >
scroll window up see ESC
scroll, line see line scroll
scroll, soft see soft scroll

ooooooouoooooocoooooooo
select alt. char. set see ESC P
select std. char. set see ESC Q
serial communication 99
serial controller see iSBX351
serial interface 99
serial number 17
Service Access Point see SAP
service primitive 112
set attribute byte see function 38
set background colour see ESC c
set blinking cursor see ESC �41!
set character mode see function 1
set cursor position see function 36
set cursor representation see ESC �43!
set foreground colour see ESC b
set line scroll see ESC �45!
set non-blinking cursor see ESC �42!
set soft scroll see ESC �44!
set tracking mode see Xfunction 21
set viewpoint see Xfunction 21
set window manager state see Xfunction 19
set wrap around column see Xfunction 22
Shift 64
Shift lock 64
signal sources 71
soft scroll 53
sound 203
sound device 71
sound device, registers 71
sound generator 71,187
sound, control register 71
sound. example 74,75
special keys 64
square wave 77
standard character set 35
state of window manager 62
station 112
station identification exchange 133
status input port 93
status iSBX351 see function 23
status line 48
status line off see ESC 0
status line on see ESC 1
status read port 91
stop bit 18
switch between screen and window see Xfunction 23

RC Computer -235-

Catchword Index PICCOLINE

synchronization 6
synchronization bit 79
synchronous mode 100
SYSDAT 5

gggggooooooooooooooo o o o o o on
 coocooooooooooooooooooout

T

TC to iSBX;....... 203
IDMA 149
test 141
test buffer 120
test protocol 120
test.confirm 121
test.confirm buffer format 121
test.indication 121
test.indication datastructure 121
test.request 118,120
test.request buffer format 120
text mode see character mode
text processor 25
Timer 0 14,77
Timer 1 14
Timer 2 14
timers 11,14
Tmp 9
TmpO 8
Tmpl 8
Tmp2 8

0000000OOOOOOOOOOOOOOIOOOOIOOUOICO 8
tone generator 72
tone register address 73
track 85
track read see function 11
track register 203
track write see function 10
tracking mode 63
transmision protocol 180
transmitter baud rate 101
TRC,........ 203
type 1 procedures 132
type 1 protocol elements 141
type 1 service 122
type number 17

-236- RC Computer

PICCOLINE Catchword Index�

O O O O 0000000000000000000000000IOIIOI 5
udata.confirm 123
udata.confirm buffer format 123
udata.indication 123
udata.indication datastructure 123
udata.request 122
udata.request buffer format 122
[11 OOOOOOOOOOOOIOOOOO000000000000OOOIOI
unacknowledged data transfer 132
underline attribute 35,45,53

OOQOOOOOOOOOOOOQIOCOIOIO
unnumbered information see UI
update window see function 39
User Data Area see UDA

V

VCMXQO
VCMXQ1
VCMXQ2
VCMXQ3
videoline
viewpoint
VINQO
VINQ1 I

 I

Catchword Index 2 PICCOLINE

write file header 80,192
write next data 80,194
write RTC register 67
write to sound generator see function 12
write_nvm 21
wW_CURSOR_VIEW see Xfunction 21
WW_FULL_WINDOW see Xfunction 23
WW_IM_HERE see Xfunction 19
WW_KEY see Xfunction 17
WW_NEW_WINDOW see Xfunction 20
WW_POINTER see Xfunction 16
WW_STATLINE see Xfunction 18
WW_SWITCH_DISPLAY see Xfunction 24
WW_WRAP_COLUMN see Xfunction 22

X

Xfunction

 Xfunction

Xfunction

 Xfunction

 Xfunction

PICCQLINE Catchword Index

Y

year 19
 ooouoouooooooooooouooooaooocoooo

RC Computer -239-

RETURN LETTER

Title: PICCOLINE Programmer's Guide RCSL No.: 99 0 00864
Version 2.0

A/S Regnecentralen af 19 79 /RC Computer A/S maintains a continual effort to im-
prove the quality and usefulness of its publications. To do this effectively we need
user feedback, your critical evaluation of this manual.

Please comment on this manual�s completeness, accuracy, organization, usability,
and readability:

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Name: Title:

Company:

 Address:

Date :

 Thank youPN: 99200176

. Donottear-Foldhereandstaplc

 Af�x

 P°�38°

