PICCOLINE

Programmer’s

Guide

X

PICCOLINE=" 1 P
- o

PICCGi/.iNE

Progrz./:imer's Guide Int. aduction ‘ §'>
Versic.: 2.0 CPy o
Configuration '

. ;jg:«{ .
Console Module Lﬂw

Real Time Clock

Sound
Cassette Teap
Disk System

Parallel Interfaces
Serial Interface

Looal ARnNet ik

i

PN: 9000cs4.

PLCCTLINE. 7752, operating system, CCP/M-86,
softvere, hardoara,

This ranua‘l Msexibce u»r r"”p.w_ml devices

user to
CCOLINE peri-

- is assumed that the
2 ASM&% or the

: ent CP/M
operatiug a}re‘u&. &Jm Ll | ’“i"ingi{,k;‘c’.l device

gntermacing '(W etc. 5o

e manual is intemded for wse im coamection
h versica 3.1 of the CCP/H operating
#;stem and version 2.3 of the XIOS.

miv a6 s 8 registered urademark of Digital Research.
izisd 48 A registered trademark of Intel Corporation.

Copyright © 1985 & & v .gnecentraien af 1979
RC Computer A/S
Udgivel of A/S Megmeteniraien ai 1979, Kebenhavn

Srugore of donne manusl geres opmertisom Pa, Bt spacitiationer-
39 hool wdon m.um’:imhcmmu-
avblub' ot ctler rognatvll, 30m ke Porehonwwe 4

Jonng menwel, g ot e snevariiy for Shatet Tordroagit §
mumm Somt

Table of Contents:

1. INtroduCtioONeccececcecececsccosssossssossnsoscsocnsssase 1
1.1 XJIOS OVervVieW..ececeecooosossessssssnsssnosscsscnssssses 3

2. CPU.cecceossoooosaocnsscsosscssssosssscsssossssassanses 11
2.1 Interrupt SYStemM..cccoeescesonssoscscscossscssocess 11
2.2 Direct MemOry ACCESS...cscccosrsvsossssessssscseee 12

2.2.1 DMA Channel ReservatiONeecccssceccssecesceaes 12
2.2.2 DMA Request Line SetuUPececcerovocsssesocses 13
2.2.3 DMA Interrupt Handling..cecececeeccecceeees 13
2.3 TiMerBe.ecceccccscccrsessccnrsososcsssssnssasscscesse 14

3. ConfiguratioN.ccececcceccsssacesescsososcssssescssssnsssse 15
3.1 Auto ConfiguratioON..ccsecescsoscsesssasssssssocecs 15
3.2 Non Volatile MemMOYY...ceocecocsosonsnscsccsvsanses 16

4. Console MoAUle.cceoeceeooscoccarssrsnsosssssacsscnnsans 25

4.1 CRT controller.c.ccceccecccccscccsessssocsccssonssass 25

4.1.1 82730 Command BloCK.:eeeoosoososscosscseaeas 25

4.1.2 Character Format..cecesceccssssvsccccscscsces 26

4.1.3 Palette.ecceeereecososonvssosessoncossnscnces 26

4.1.4 Graphics MoOd€.ccceeecoccscsccccscosnsosseaes 29

4.2 Direct Console ACCESB..cscccessssscssosccsscnscsscs 30

4.2.1 XIOS CONOUL.ceecesccccccccscscscssonsssssnes 30

4.2.2 Direct Console Buffer Output...ccceceeeeeess 31

2.3 Display Buffer ManipulationN....ccceececceees 32

.4 Get/Set Cursor Position...cccccececcccccses 34

.5 Get/Set Attribute..ccceccecenccccscccrssccces 34

racter SetSeccccccccccccsccccccccccssccsscsseses 35

.1l Altering the Character Set....ccecceveceese 36
.2 Define Character Font

(Alternative Character Set)....oceceeeeeees 37

.3 Define Character Font..ceceecscvosssecssees 38

3.4 Get Character Font Definition....ccceeesess 38

4.4 Console Control CharacterS..c.ccesscecsscesscccsses 40

4.4.1 Console Escape Se€quUeNnCeS.....csesesesseseee 40

4.5 Graphics MOd€..ceceeeereecccsccecsncsssasesossasse 55

4.5.1 Init GraphicCS.ccecececectccccaccscsonsessanss 55

4.5.2 Exit GraphicCS.ccceceeecceccscsscsssscsssnecess 56

4.5.3 Exclusive Access to Pixel Memory....e.eee.. 57

4.5.4 Pixel Address CalculatioN...cesscecescseese 59

Lo [_Ne W W
s e o o
w WWwE v

RC Computer

PICCOLINE

Table of Contents

4.6 Window Handling....ceeoeeceecsosscscsssssssnssanse

4.6.1

e o o o

4.7
4.7.1
4.8 Mouse

Real Time

Return PoinNtersS..cececccescecccccsecncssons
Set Window Manager State......cveeecuieccnnn
Create a New WindoOW.:ceceveeeoescocesnennnas
Set Cursor Tracking Mode and Viewpoint.....
Set Wrap Around CoOlUmMN.:vcceecennoecenscnnns
Switch Between Full Screen and Window......

card Interface..cccceeeceeccennsensssconcnses

Keyboard DrivVer..ceeceecsccecscsscnsanssnsos
Interface..cceceececscscccscccsesccscnnssansns

CloCK.eieeeoenoeoccnostscocsccncccsscscsosssnsnas

5.1 Real Time Clock Controller....cccececececeoccescnssns
5.2 Reading and Writing Real Time Clock Registers....

Sound....

R R A I I I N I R I I I N B N I I I S A AT SR Y

6.1 Programming TONES..ceececceccccescssscsscsossnssasnses
6.2 Programming NOiB€..cecececscscsccccsccnsccssnsans

Casgsette TaPe.cecececcsccsccsssosncscssscscsssosssssssse
7.1 Cassette Tape CONtrol.e.ceecececceessossssesoscsnes
7.2 Cassette Tape Driver...cceceecescccsccscssscsccsscs

7.2.1

8.4.1
8.4.2

Parallel

Data Record Architecture....ccccececcosnces
Cassette Write File Header....eeeesessceses
Cassette Write Next Data..cceceececccccccocns
Cassette Write End of Filee.ceeeeeeecenonns
Cassette Read File Header...cceseesesocsncs
Cassette Read Next Data@.ccececececccccccens

isk SysStemMeccccccccccececcssccscsccssossssscsasscnssasnse
1 Disk CharacteristiCS.ieeeeccccccccscscsccssaccsnne
2 Floppy Disk Controllereesceceseccecscsescoscncossns
3 Floppy DiSk Driver..cccccececcsssssccccsscccscssssnse
4 Reservation of Shared DiskSe...ccceeeecccosnnsocee

Reserve Shared DisSK..eeceeeeesescosssacscsns
Release Shared DisK.ccoeeeeeeossseoossscoons

(Printer) InterfaceS..ceeceseescesscscocsaososns

9.1 Parallel Interfaces DescriptiON.c.ecescssecscescs
9.2 Sample Printer Driver RoutineS....ccecececcccccess
9.3 The DPC Interface...eceeesesssoscssscnscsosnescssoase

9.3.1
9.3.2

Reserve the DPC Interface.....eeeeeeeossces
Release the DPC Interfac€..ceeeveccescsoces

61
61
62
62
63
63
63
64
64
65

67
67
67

71
72
75

77
77
78
79
80
80
81
81
82

85
85
87
88
89
89
89

91
91
94
97
98
98

RC

Computer

Table of Contents PICCOLINE

10. Serial InterfaC@ceeecessesesscccscoscccssscsssscnssscs 99
10.1 Standard Serial Communication Support.......... 99
10.1.1 V24 Handshake Scheme€.....ceeveeessvessse 99

10.2 Serial Communication Controller......ceecee..s 100
10.2.1 Asynchronous Communication...ecccecece.o 101

10.3 Initializing the iSBX35l..cceceecescscocsesaes 102
10.4 Sample Asynchronous Communication Program..... 105

11. Local Area NetwoOrK...eceesesessoccsoscsassnsscssssss 111
11.1 Fundamental ConCeptS.isccescecsossssessessssnss 112
11.2 The Datalink Layer Service Interface.......... 113

11.2.1 RCLLC ServiCeS.eccecscccscsscscsscssssoss 116
11.2.1.1 ACTIVATE.request.cscecccecsccsss 117
11.2.1.2 ACTIVATE.confirm..ccecececoeess 118
11.2.1.3 DEACTIVATE.request....ccoeess. 119
11.2.1.4 DEACTIVATE.confirmeceeecececesss 119
11.2.1.5 TEST.request..c.cesessscssscses 120
11.2.1.6 TEST.confirmecceececceccacsesss 121
11.2.1.7 TEST.indication..ceeoveeeceses 121

11.2.2 Type 1 ServiC@.cccccscscscscssccsssasss 122
11.2.2.1 UDATA.request...ccceeesecacses 122
11.2.2.2 UDATA.confirm.ec.cecececscssass 123
11.2.2.3 UDATA.indicatioON.ecesesceseses 123

11.2.3 Client Network Service....cecoeecescsse 124
11.2.3.1 CONNECT.indication.secesesacsss 125
11.2.3.2 DISCONNECT.indicationN.seceesses 125
11.2.3.3 DISCONNECT.acknowledge........ 126
11.2.3.4 DISCONNECT_ACKNOWLEDGE.confirm 127
11.2.3.5 DATA.request.ccececcsocsccsees 127
11.2.3.6 DATA.confirMecececeesccssessse 128
11.2.3.7 DATA.indicationN.ceseececesee.. 128

11.3 MAC ServiCeS..ccesescsccssssccenscassessssesss 129
. 11.3.1 Controller Specific Information........ 130
11.4 RCLLC Datalink Layer ProtoCoOl...cececeeeesesss 131

11.4.1 Type 1 ProceduresS..ccceeecescaccsascsss 132
11.4.1.1 Unacknowledged Data Transfer.. 132
11.4.1.2 Loop-back Test Procedure...... 132
11.4.1.3 Station Identification

Exchange..ceceeseeccsnsscenseas 133

11.4.2 Procedures for Client Network Service.. 133

11.4.3 RCLLC Protocol ElementS...cccecveeeee.. 138
11.4.3.1 UI (Unnumbered Information)... 141
11.4.3.2 XID {(eXchange IDentification). 141
11.4.3.3 TESTeeceeesnsraccosnsennnnsses 141
11.4.3.4 ACTIVE _SAP.ceessecocccccsensss 142
11.4.3.5 RESET . ccecocesssessscnsocnssosss 142
11.4.3.6 RACK:.eeeeoeecosncenncnceeansss 143
11.4.3.7 DATA.:.ceeesesvscsosnnsssccncnses 143
11.4.3.8 ACKeveeeeenesoossnanecnaeassses 143

RC Computer

PICCOLINE

Table of Contents

12. iSBX Bus SpecificatiONeceeccccccscccscccccccscnccns
12.1 Functional DesScCription.ccceccccscscecscceccnsnss

12.1.1

12.1.2

12.1.3

12.1.4

iSBX Multimodule System Elements.......
12.1.1.1 Base BOardS.cecececcccccccssoss
12.1.1.2 iSBX Multimodule Boards.......
iSBX Bus Interface..cccceesccccennscsses
12.1.2.1 Control LineS..cceceececoseocns
12.1.2.2 Address and Chip Select Lines.
12.1.2.3 Data Lines (MDO-MD7)...¢e0cc..
12.1.2.4 Interrupt Lines
(MINTRO-MINTR1) cccceevoccccces
12.1.2.5 Option Lines (OPTO, OPTl).....
12.1.2.6 Power Lin€S.seecscceccssccscnee
iSBX Multimodule Command Operations....
12.1.3.1 I/0 READ:vecosrecccccsccssosos
12.1.3.2 I/0O WRITE«eceeeeoccoccccconnsns
12.1.3.3 Direct Memory Access (DMA)....
RC759 Interface..cccecceccecccoccccccsscse
12.1.4.1 Address Decoder...ceeeeesccsss
12.1.4.2 Status SignalS.ecccercecccsess
12.1.4.3 Interrupt Signals...cceceveese

12.2 Electrical Specifications..ceeceeccccsccccscnse

12.2.1
12.2.2
12.2.3
12.2.4
12.4.5

General Bus ConsiderationS.....cececeee
Power Supply SpecificationS..cecececees
Environmental...ccececcccccccsssccscnns
TiMingeeceoococssoesocoscrsscssscosscocnss

DC SpecificationS.c.ccseescscssoscssnns

12.3 Mechanical SpecificationS...ccececscecscccccss

12.3.1
12.3.2

12.3.3
12.3.4

12.4 Design
12.4.1

12.4.2
12.4.3
12.4.4
12.4.5

iSBX CONNECtOr.eeceeccosccsccsnssocansasns
iSBX Multimodule Board Height
Requirement..ceceeceosscccscccssascccce
iSBX Multimodule Board Outlin€....ccce.
iSBX Multimodule Board User 1/0
Connector OutlineS...cccecrcososcccccnne
EXAMPle.ccecesceescececssnscnssovssscansasns
Serial I/0 Communications Channel
Interface.ccecccecccccccccsossosssascansns
CPU InterfacCe..ccecsceacecsscssccncsscncos
Interface Buffering...cecececcccccccccs
Clock Generation Circuitry..cceceececeeee
AC SpecificationSeececccscsesssocssscns

13. Inter Computer File Transfer.....ccceessseesnccccces
13.1 ReqUirementSecceceecsssessasssscascsscossessssnsces
13.2 HOWw FILEX WOrKS.ceeiveoeseosesesssssssssncansse

13.2.1
13.2.2

FILEX TransactionS..cececececcccccccces
Transmission protocol...cceesessesecess

145
147
147
148
148
148
149
150
151

151
151
151
152
152
153
155
156
156
156
156
158
158
158
159
159
161
165
165

165
167

168
170

171
172
174
174
174

177
177
178
178
180

RC Computer

Table of Contents PICCOLINE

Appendices:

A. Int-28h Function Interface.......cceceeesececsnsssss 183
B. Peripheral Device I/0 AddresseS...c...veeesececeesss 203
C. Interrupt Vector Assignment.....ccccceeeeecsccccesess 205
D. Character Set and KeystrokeS....ceeceevecenceeceesss 207
E. Keyboard Position Code€S...ccceevoccceccsscsssncsanss 215
F. Console EsScape SeQUENCEeS..ccecccssoscscesssscscsssconse 217
G. ReferenceB..cceeeeecececeoscccsnsoscscsosessssnsases 219

Catchword INndeX.oeeseseeccceosscscssssosssssssscscsenaes 221

RC Computer

1. Introduction
The intention of this manual is to enable programmers to

use the PICCOLINE peripherals in their own ways.

The following peripherals, which are either part of the CPU
or devices connected to the CPU, are standard in a PICCO-
LINE system:

2 DMA channels (integrated on CPU)

3 Timers (integrated on CPU)

1 Interrupt controller (integrated on CPU)

1 Intel 8259A programmable interrupt controller

CRT controller based on Intel 82730

Keyboard interface

Real time clock

Sound device

Non volatile memory (NVM)

Local parallel printer interface

Cassette tape interface

Connector to PICCOLINE Disk/Printer-Adaptor

Connector to micronet interface

iSBX-connector

The interconnection of these peripherals is shown on-
fig.1l.1 page 2.

RC Computer ~1-

Introduction PICCOLINE

1.

104
-tuou ZH09 _\lIl\\lll\.\\\.i\lil\\.li\ll\\\l\l\\lﬁll\l\l\\illili‘\l\ll!l\ll\l.s
0SL0Y 10 104 |
-tuow 010
o ¢
~1uow IHO§ ! oapja aysodwo)
awonyd0uon

]
op2auN0) jmm————f 4 S e e 103LNOD 18D §
X851 " X950 [“
%
3
[2 / NNNNNNNN%/[\R‘ i
PR e | 0\ krzzrrzrrrr ¥
|a)joog | ' rrrrrrrzy, WYd XZE \
s ! 1 7
oo P o s Ve rrrrrrrrees) WINHVE 7
smjosds d d a- II rrrrIIrrIIIIY X8t %
Azt o] Awans / Wi H]
i 3 /I 0amod ' 2
H
pioqhey kxzZIrIrIrIZZIrIZIY)
piooghay | ‘
. rrrrrrrrrrIIs| " %
el $1-0 9
opo vay} “ aw
-0i8 Yapms ‘ Imu \
oy 4 slv-ov %
/Addoyy 0y “ /
10330003 4 “ “
WAN) wor %
owdy X 967 [] “
Z-0al “
H 2180 A 7
ElA“ suso) 144 ssz8 ~ 2
! / $1-0_0v \
H 4 f 4
10)330u0) 1danaw)
a0y vasza (98528 13LNI) sojonved nd
NV1 1svoiany 98108 Xdv! WIUNI 0€Z8 MIINI
L-0a \\
AIVd p—od “
AdILLve 7

2

13A1825V01| JBUCIRW

Fig.1l.1l Block Diagram.

RC Computer

PICCOLINE l. Introduction

Besides these standard peripherals the PICCOLINE system may
be enhanced with

- A local area network controller based on the Intel
82586 ethernet controller

- A PICCOLINE Disk/Ptinter-Adaptor (if PICCOLINE is
connected to disks resident inside the PICCOLINE
Disk/Printer-Controlunit (DPC))

- Other controllers connected to the iSBX-connector. This
connector is supported in accordance to the iSBX bus
standard from INTEL. In this manual only the iSBX
serial multimodule board is described.

In this manual the software interface to the above mentio-
ned peripherals will be described.

1.1 XIOS Overview

The XIOS (eXtended Input/Output System) is the lowest layer
of software in the PICCOLINE.

The XIOS consists of a set of routines, each controlling a
specific hardware component, which together constitutes a
welldefined interface to the CCP/M operating system (see
ref.3)

A XIOS routine is executed as part of the user programs as
a consequence of operating system calls. When a user pro-
gram has requested a service by means of an operating sys-
tem call, the program will be suspended (i.e. the program
will not return from the XIOS routine) until the requested
service can be fullfilled (e.g. a sector on the floppy disk
has been read).

RC Computer -3-

1.

Introduction

PICCOLINE

Table 1.1 is an overview of the available XIOS routines.

The routines with

Routine Name

Routine Number

IO_CONST
IO_CONIN
10_CONOUT
IO_LISTST
IO_LIST
IO_AUXIN
10_AUXOUT
I0_SWITCH
IO_STATLINE
10_SELDSK
10_READ
I0_WRITE
IO_FLUSHBUF
10_POLL
Not used
Not used
WW_POINTER
WW_KEY
WW_STATLINE
WW_IM_HERE

WW_NEW_WINDOW
WW_CURSOR_VIEW
WW_WRAP_COLUMN
WW_FULL_WINDOW
WW_SWITCH_DISPLAY

Not
Not
Not
Not
Not

used
used
used
used
used

GET_SCREEN_MODE

Not
Not
Not
Not
Not
Not

used
used
used
used
used
used

VOEONAONUB WO

Ny ey ey vy
NoOUe WO

N
cwv®

[SASESESESESENSE SN S
WONOOU & WN -

wWww
N O

w W
->w

w w
v

Table 1.1. XIOS routines.

numbers

from

0 to

13 is described in

ref.3, while a description of the remaining routines may be
found in chapter 4.6.

—4-

RC Computer

PICCOLINE ' 1. Introduction

All the above mentioned XIOS routines have a common
convention concerning the contents of the registers when
the routines are entered. The convention is as follows:

Register AL contains the routine number

Register ES contains the paragraph address of the
calling process' User Data Area (UDA)

Register DS contains the SYSDAT segment address

When the XIOS routines are entered as a consequence of a
CCP/M operating system call, CCP/M manages the above
mentioned conventions. On the other hand, when the XIOS
routines are entered directly from a user program it is the
responsibility of this program to establish the register
contents before entering the routine.

Besides the common register contents, a XIOS routine may
require some parameters which for some of the routines are
transferred in a register and for other routines are
transferred on the stack. A detailed description may be
found in ref.3.

Example

This example shows how a program can initialize the ES and
DS register with the UDA and SYSDAT values and how the
standard XIOS routines are entered.

Get Process Descriptor Address.

The address segment is returned in ES and
; in BX (used later)

Mov CL,156

Int 224

o we we

; Initialize DS to SYSDAT segment using
; the fact that the process descriptor

; segment is the same as the SYSDAT segment
Push ES

Pop DS

; Initialize ES with UDA address. UDA address
; is taken from the process description word 10H
Mov ES,10HEBXA

; Now initialize all routine dependent parameters
; (either register parameters or parameters on stack).

RC Computer -5-

1. Introduction PICCOLINE

; Enter the routine via the XIOS entry field in SYSDAT
Mov AX,routine_number
Callf DS:Dword Ptr .28h

As an extension to the standard XIOS routines some extra
routines have been implemented. Opposed to the standard
routines, which are entered through a far call via the XIOS
entry field in the SYSDAT area, these extra routines are
entered by executing a software interrupt on level 28h. A
detailed description of the extra routines may be found in
appendix A. In the remaining chapters the extra routines
will be denoted as 'Int-28h functions'.

The synchronization between the interrupt service routines
for the different peripherals and the programs using the
peripherals is done by means of the CCP/M flag mechanism
(see refs.2,3).

Table 1.2 shows how these flags are assigned on the PICCO-
LINE.

-6~ RC Computer

PICCOLINE

l. Introduction

Flag number

Use

0
1
2
3
4
5
6
8
9

10

11

12
13-18
19
20-21
22

23

24

25
26-63
64-127
128-255

Table 1.2.

Reserved by CCP/M

Tick

Second

Minute

Scroll synchronization
Key available flag
Reserved

Floppy disk

Scroll synchronization
Scroll synchronization
Floppy motor

Local parallel interface
Reserved

Error key flag
Reserved

Net transmitter

Net receiver

Window manager

DPC parallel printer
Reserved for future use
Free

Reserved by DR Net

Flag Assignments

RC Computer

1. Introduction PICCOLINE

In order to manage reservation of different resources, the
operating system maintains a number of gueues. As queue
names must be unique, the names of these queues are
reserved by the operating system. A list of reserved queue
names may be found in table 1.3.

Number of Message

Name messages length Usage

Tmp0 1 112 See below

Tmpl 1 112 See below

Tmp2 1 112 See below

Tnp3 1 112 See below

VCMXQO0 1 0 Virtual console 0

voUuTQO0 16 2 - do -

VINQO 64 2 - do -

VCMXQ1 1 0 Virtual console 1

vouTQl 16 2 - do -

VINQ1 64 2 - do -

VCMXQ2 1 0 Virtual console 2

vouTQ2 16 2 - do -

VINQ2 64 2 - do -~

VCMXQ3 1 0 Virtual console 3

vouTQ3 16 2 - do -

VINQ3 64 2 - do -

MXalt 1 0 Alt. charset reservation
XMIT_REQ 10 15 Net driver (Net system only)
link_req 1 15 Net driver (Net system only)
MXdmal 1 0 DMA channel 0 reservation
MXdma2 1 0 DMA channel 1 reservation
MXsound 1 0 Sound device reservation
MXLoad 1 0 Used during program load
MXdisk 1 0 Disk system reservation
MXcass 1 1 Cassette tape reservation

Table 1.3. Reserved Queue Names.

-8~ RC Computer

PICCOLINE l. Introduction

The Tmp queues (TmpO0, Tmpl, Tmp2 and Tmp3) are primarily
intended for use in connection with the menu system to fa-
cilitate the loading of menu programs and the return to the
outermost menu level, but may also be used by ordinary pro-
grams.

The function of the Tmp queues is as follows:

When a Tmp succeeds in the attempt to attach to its default
console, the first step is to make a conditional queue read
on the relevant Tmp queue. If this read is successfull the
Tmp will use the data read as if it was a command line read
from the keyboard (i.e. the same syntax as for command
lines is valid, including multible commands separated with
the sequence '//'). If no data was read the Tmp makes a
‘read console buffer' operating system call to get the
command line from the keyboard.

RC Computer s

1. Introduction PICCOLINE

-10- RC Computer

2. CPU

The PICCOLINE system is based on an Intel 80186 single chip
CPU with the following integrated peripherals:

- Programmable interrupt controller

-~ 2 Independent DMA channels

- 3 Programmable 16-bit timers

All the integrated peripherals are controlled via 16-bit
registers contained within an internal 256-byte control
block. The base address of this control block is OFFO00H.
The following three chapters give a description of how the-
se peripherals are used in the PICCOLINE.

2.1 Interrupt System

The peripherals which are able to interrupt the CPU are
connected to the internal interrupt controller via an
Intel 8259A Programmable Interrupt Controller which uses

the following I/0 addresses:

Initialization command word: OH
Operation command word: 2H

The IR inputs to the Intel 8259A are connected as follows:

IRO: Floppy controller (from DPC unit)

IR1: Keyboard interface

IR2: Parallel (printer) interface (from DPC unit)
IR3: Real Time Clock

IR4: CRT controller

IR5: NET controller

IR6: Parallel (printer) interface (from CPU unit)
IR7: not used

The Intel 8259A is connected to the INTO and INTAO termi-
nals of the CPU.

RC Computer -11-

2. CPU PICCOLINE

INTRO from the iSBX connector is connected to INT1 on the
CPU (vector type 13) and INTR1l to INT3 (vector type 15)

The internal interrupt controller is initialized to cascade
mode and level triggered interrupts.

The Intel 8259A is initialized to buffer mode, master,.no
slaves connected, fully nested interrupts, specific end of
interrupt, level triggered and first vector 80H.

A list of interrupt vector assignments may be found in ap-
pendix C.

Details about the interrupt controllers may be found in the
Intel reference documentation.

2.2 Direct Memory Access

The two integrated DMA channels are able to transfer data
between memory and I/0 space (e.g. Memory to I/0) or within
the same space (e.g. Memory to memory or I/O to I/0O). Data
can be transferred either in bytes (8 bits) or in words (16
bits) to or from even or odd addresses.

DMA channel 0 is connected to the iSBX connector while DMA
channel 1 is used as floppy tranfer channel.

Detailed information about the DMA channels may be found in
the Intel reference documentation.

2.2.1 DMA Channel Reservation

As the two DMA channels are shared among different periphe-
ral devices, it is necessary to reserve a channel before
using it. The reservation of the channels are done by means
of two mutual exclusion queues, 'MXdma0' and 'MXdmal'. When
a program succeeds in reading one of these gueues, it has
got the right to use the corresponding DMA channel. The DMA
channel is released by writing to the relevant mutual
exclusion queue.

-12- RC Computer

PICCOLINE 2. CPU

2.2.2 DMA Request Line Sétup

Each of the two DMA channels can handle DMA requests from
the following different sources:

DRQSEL DMAO source DMAl source

0 0 iSBX DPC (external floppy)
0 1 0 0

1 0 DPC (external floppy) iSBX

1 1 1 0

When a program has succeeded in reserving a DMA channel, it
must set up a connection for the DMA request signal, be-
tween the peripheral device and the DMA controller. This is
done by writing a control byte to a parallel port located
at I/0 address 74H. The format of the control byte is as
follows:

Bit 0 ENABLE CAS(sette)

Bit 1 MOTOR OFF

Bit 2-3 DRQO-1

Bit 4-5 NVMAO-1 (NVM bank)

Bit 6-7 must have the binary value 11.

2.2.3 DMA Interrupt Handling

The two DMA channels are connnected to the internal 80186
interrupt controller. The interrupt level of DMA channel 0
and 1 is 10 and 11.

Example

DMAInterruptService:
; save context
Push DX
Push AX

; Non specific end of interrupt

; to internal interrupt controller
Mov DX,0FF22H

Mov AX,8000H

Out DX,AX

RC Computer -13-

2. CpPU PICCOLINE

; restore context

Pop AX
Pop DX
Iret

2.3 Timers

The three 16-bit timers are used for the following pur-
poses:

Timer 0 is used to generate serial output to the audio
cassette interface

Timer 1 is used to generate audio output (the 'BELL')
Timer 2 is reserved for future use

Detailed information about the timers may be found in the
Intel reference documentation.

-14- RC Computer

3. Configuration
The basic configuration of the PICCOLINE has two forms:

1. During the initialization after power up or any kind of
reset, the software investigates the hardware environ-
ment to determine the size of the main memory, the num-
ber of disks attached etc. This kind of configuration
is called the auto configuration.

2. During system initialization the operating system ini-
tializes the serial communication controller if any,
the cursor representation, the floppy motor timer etc.
This initialization is done on the basis of the
contents of the non volatile memory (NVM). The content
of the NVM 1is normally only modifiable by the KONFIG
program (ref.5).

If the file KDEF.SYS exist on the load device, the file
is read during system initialization and the content of
KDEF.SYS is written in the NVM.

The file KDEF.SYS is modified by the program OKONFIG.

3.1 Auto Configuration

The hardware configuration map is accessible for the pro-
grammer by means of the Int-28h function 4.

This function returns a pointer to the configuration map
(see appendix A).

NOTE

The contents of the configuration map must not be
modified.

The configuration map has the following format:

Byte offset explanation

0-3 This double word contains the main
memory size in bytes.

4-7 This double word contains the total
memory size in bytes (including the
CRT pixel memory).

8-11 Reserved.

RC Computer -15-

3. Configuration PICCOLINE

12 The value of this byte is OFFH if
the real time clock second source
is installed (see 5.1). Otherwise

the value is 0.

13 The value of this byte is OFFH in
case the 1local area net work con-
troller is installed. Otherwise the
value is 0.

14 The value of this byte is OFFH in
case any iSBX module is installed.
Otherwise the value is 0.

15 This byte is set to OFFH if the
Disk/Printer (DPA) is installed.
Otherwise the value is 0.

16-17 Reserved.
18 This byte specifies the type of
attached monitor:
OH 15.625 kHz colour
1H 15.625 kHz monochrome
2H 22 kHz colour
3H 22 kHz monochrome
19 This byte hold the number of floppy
drives connected to the system.
20-21 Reserved.
22 This byte contains the value of the

nationality code switch of the key-
board (range 0-15).

3.2 Non Volatile Memory

The function of the NVM is to keep various system parame-
ters during power down periods.

The NVM is made ub of a 256 by 4 bit CMOS RAM with battery
backup.

The NVM is divided into 4 blocks each containing 64 4-bits
nibbles. A block is selected by means of bit 4 and bit 5 in
the I/0 port at address 74H. Please note that a block se-
lect operation must not affect the other bits in the 1I/0
port.

-16- RC Computer

PICCOLINE 3. Configuration

After a block has been selected, the 64 nibbles in the
block are accessible on the even 1/0 addresses from 80H to
OFEH. When an IN or OUT instruction is executed with one of
these addresses, the four least significant bits of regis-
ter AL will be transferred to/from the NVM.

A copy of the NVM is accessible for the programmer by means
of Int-28h function 3:

Registers at entry:
AL 3
Registers at return:

ES NVM copy pointer segment
SI NVM copy pointer offset

The NVM layout is as follows (seen as bytes):

byte number description

0 Checksum (see below).

1-2 Type number.

3-4 0

5-6 Serial number.

7-12 Reserved.

13 Baud rate and mode for the

iSBX351/V24 channel. High nibble is
baudrate (receive baudrate = trans-
mit baudrate). The nibble coding
is:

75 baud
75 -
110 -
150 -
300 -
600 -
1200 -
2400 -
4800 -
9600 -

“s ee oo es ss es 4o o

WONOUBEWNFHO

v e

RC Computer -17-

3. Configuration PICCOLINE
Low nibble designates channel
usage
0: virtual console
1: printer

14 Stop bit and parity.

Parity is coded in bit no 0 and 1:
0: no

1: odd

3: even

Stop bit is coded in bits no 2 and
3:

1: 1

2: 1.5

3: 2

15 Initial value of RTS. Bit no 1 is
coded as follows:
0: low
1: high

16 Reserved.

17 Number of bits pr. char. The bits
no 6 and 7 are encoded as follows:
0 5
1 6
2 7
3 8

18 4 most significant bits hold CRT
scroll mode. (0=jmp mode; l=soft
scroll mode).

19 4 most significant bits hold the
cursor height (1 to 10 video
lines). 4 least significant bits
holds the cursor blink mode
(0=so0lid; 1l=blinking).

-18- RC Computer

PICCOLINE 3. Configuration
20 Number of idle seconds before the
floppy motor stops (0-255). Must
not be less than 2. It is also the
time before the floppy disks is

released.

21 Reserved.

22 Default foreground colour. The bits
are encoded as follows:

Bit 0 blue beam on/off

Bit 1 yellow beam on/off
Bit 2 red beam on/off

Bit 3 high intensity on/off
Bit 4-7 0

23 The month of the last power on (1H-
12H).

24 Current year (78H-99H).

25 Load device (i.e. the device from
which the operating system is
loaded). The value is the disc
drive letter 'A' and 'B' or the
letter 'N' which means load via the
local area network.

It is also possible to load from
prom on special PICCOLINEs and in
this case the value is 'P’'.
26 Number of disk buffers (0-255).
27 Memory disk size:
0: 0 Kbytes
1: 64 Kbytes
2: 128 Kbytes
3: 192 Kbytes
4: 256 Kbytes
28 Hardcopy printer type:

0: All characters in the range 32
to 126 are printed without
conversion. All other characters
are converted to blanks.

1: All characters are printed
without conversion.

RC Computer

-19-

3. Configuration PICCOLINE

29 DR Net node id (0-254).

30 DR Net default server id (0-254).

31 Autologon mask:

Bit 0=1: Virtual console 0 is
automatically logged on to
default server when the
system is started.

Bit 1=1: Same as above for console
1.

Bit 2=1: Same as above for console

Bit 3=1: Same as above for console
3.

32-33 Reserved.

34-41 DR Net server password (8 ascii
characters).

42 Reserved.

43-50 Name of file to load when load from
the local area network is used (8
ascii characters).

51 Identification of the iSBX module:
0: Ingen
1: 351
2: 488

52 System disk number (0-15).

53 CPU identification.

FFH if PICCOLINE and OH if Partner.

54-127 Reserved.

Byte number 14, 15, 16 and 17, which hold the format of the
iSBX351/V24 channel, has the same format as Intel 8274 se-
rial controller write registers 4, 5, 1 and 3, which is
used in the Partner (RS232C/V24 channel)

The checksumbyte is used to ensure data integrity in the
NVM. The checksum is calculated so that if the bytes in NVM
block 0, 1 and 2 (not block 3) are added (modulo 256) the
sum should be 0AAH. The checksum must be maintained when
the NVM contents are changed.

-20- RC Computer

PICCOLINE 3. Configuration

Example

This example shows how to read and write in the NVM while
maintaining the checksum.

;procedure write_nvm(block,offset,value);

;entry : al: offset from block base to the desired byte
ah: block_number (0,1,2 or 3)
cl: byte to be written

exit : the nvm checksum (0AAH) are maintained

.
’
.
’
7
’
.
v
.
I

detroyed: none

checksum_block equ 0
checksum_offset egu 0
block_base equ 80H
nibble_msk equ OFH

write_nvm:
push dx
push bx
push cx
push ax
call read_nvm
mov bl,al
mov -ah,checksum_block
mov al,checksum_offset
call read_nvm
mov bh,al
pop ax
push ax
call address_block

save registers

read the old value
save old value in bl

read the old checksum
save it in bh

save byte number
address the block to
be written

pop ax
mov dx,block_base
shl al,1l
shl al,1l
xor ah,ah
add dx.,ax address of first nible
pop cx retrieve value to be
’ written
push cx

mov al,cl
mov cl,4
shr al,cl strip least signifi-
cant nibble

out dx,al
pop cCx
mov al,cl

Mo Ne Mo e Se Ne Se N Se Ne Ne W6 Se Se Ne Ne We W Ne Ne Ne Ne We %o we Ne e Se Wo we

RC Computer -21-

Configuration

PICCOLINE

and al,nibble_msk

add dx,2
out dx,al

sub bl,cl
add bh,bl

mov ah,checksum_block
call address_block

mov dx,block_base
mov al,bh

mov c¢l,4

shr al,cl

out dx,al
mov al,bh
and al,nibble_msk

add dx,2
out dx,al
pop bx
pop dx
ret

Ne e Ne Mo Ne Mo Ne Mo Ne Na Ne Se Ne We we we Ne Ne we Ne we we Ne wo we o

strip most significant
nibble

checksum update new val

in cl old val in bl old

sum in bh

oldval-newval

sum: =sum
+(oldval-newval)

address the checksum
block

strip least signifi-
cant nibble

strip most significant
nibble

;procedure read_nvm(block,offset,value);
jentry:

7
7
’
’
’

al

exit:

: the desired byte

read_nvm:

push dx
push cx
push ax
call address_block
mov dx,block_base

pop ax
shl al,l
shl al,1l
xor ah,ah
add dx,ax

N Ne Mo Mo Ne o Se o Se Ne Ne we we

; al: offset from block base to the desired byte
ah: block number (0,1,2 or 3)

save registers

select block

convert byte to nibble
offset

-22-

RC Computer

PICCOLINE 3. Configuration
in al,dx ; get high nibble
add dx,2 H
xchg ah,al ;
in al,dx ; get low nibble
mov cl,4 ;
shl ah,cl ; shift high nibble to
; the correct byte
; position
and al,nibble_msk ; clear high nibble in al
or al,ah ; transform nibbles to
; bytes
pop cx ;
pop dx H
ret

nvm_control_port
clear_msk

equ
equ

address_block:

mov
in

and
mov
shl
or

out
ret

dx,nvm_control_port
al,dx

al,clear_msk

cl,4

ah,cl

al,ah

dx,al

748

OCFH

.
H
H
.
;
.
;
.
r
.
H
.
;
.
14

select block number(ah)

RC Computer

—23-

3. Configuration PICCOLINE

~24- RC Computer

4. Console Module

The console module handles the virtual consoles and the
keyboard. The operating system accesses the console module
through the XIOS conin and conout calls.

The operating system may also be bypassed and the console
module accessed directly, and for special purposes the
application program may access the hardware directly e.g.
by supplying its own interrupt routines.

This section contains a description of the software
interface to the console module and a brief description of
the associated hardware.

4.1 CRT controller

The CRT controller is built around an 1Intel 82730 text
processor. For a complete description of this chip please
refer to the relevant Intel documentation.

This section contains information for programmers who want
to make special use of the PICCOLINE hardware including the
Intel 82730 text processor.

To access the CRT controller, palette and pixel memory
directly it is required that

1. The process is executing in the foreground
2. The console is locked (console switching inhibited)
3. The CRT controller environment is restored before
program termination
4.1.1 82730 Command Block
Communication between the 82730 and the CPU takes place
through a command block placed in main memory. The address
of the command block is returned by an 1Int-28h function
accessed with the following register contents:
Registers on entry:
AL = 21
Registers on return:

ES
SsI

segment register of the command block
offset register of the command block

RC Computer -25-

4. Console module PICCOLINE

4.1.2 Character Format

The 82730 fetches characters from main memory and outputs
these to the CRT controller. The characters have the
following format in alphanumeric mode:

bit 0-9 character address
bit 10-14 palette select
bit 15 0

and in graphics mode:

bit 0-9 pixel block address
bit 10-13 palette select
bit 14 0 high resolution graphics

1 = medium resolution graphics
bit 15 0

If bit 15 is a 1, the 82730 interprets the character as a
character stream command.

In both alphanumeric and graphics mode bit 0-9 of the
character addresses a pixel block in the 32k pixel memory
located at address D000:0000H

In alphanumeric mode the pixel blocks function as character
generators. One pixel on the screen corresponds to one bit
in the pixel memory. The width of the character may vary
from 7 to 15 pixels depending on the contents of the pixel
memory (see 4.3). The height of one character row is 10
videolines in the standard configuration.

In graphics mode the pixel blocks are normally organized so
that the 32k pixel memory makes up a complete bitmap of the
screen. One pixel on the screen corresponds to one bit in
the pixel memory in high resolution graphics mode, and to
two bits in medium resolution. The pixel blocks are 16
pixels high by 16 pixels wide in high resolution and 8 by
16 pixels in medium resolution corresponding to 16 words of
memory.

The total resolution is 560 by 250 pixels in alphanumeric
mode, 560 by 256 pixels in high resolution graphics mode
and 280 by 256 pixels in medium resolution graphics mode.

4.1.3 Palette

The output from the pixel memory is used to select one of
two (alphanumeric and high resolution graphics mode) or one
of four (medium resolution graphics mode) colours from a
palette.

-26- RC Computer

PICCOLINE 4. Console module

The palette has room for 32 bytes each containing two 4-bit
nibbles, which are interpreted as follows:

bit 3: I, if set the intensity is increased
bit 2: R, if set the red beam is turned on

bit 1: G, if set the green beam is turned on
bit O0: B, if set the blue beam is turned on

If a monochrome monitor is connected, only bit 2 is used.
The intensity bit, bit 3, has no effect.

The palette is written with an OUT instruction to I/0
address 180H to 1BEH (even addresses). In the following
table the relation between palette cells and I/0 addresses
is shown:

I1/0 address

dec hex colour pair
384 180 1 0
386 182 3 2
388 184 5 4
446 1BE 63 62

The following tables show the relation between the value of
the palette selector and the palette cells selected:

Alphanumeric mode:

Palette Pixel Pixel
Selector =1 =0
0 1 0
1 3 2
2 5 4
31 63 62

RC Computer -27~

4. Console module PICCOLINE

High resolution graphics:

Palette
Selector

Pixel Pixel
= 1 =0
1 (4]

3 2

5 4

31 30

Medium resolution graphics:

Palette
Selector

Examples:

Pixel pair

Alphanumeric mode:

character

bit 0-9

bit 10-14

11 10 01 00

33 32 1 0

35 34 3 2

37 36 5 4

63 62 31 30
= 0100000010000000B

character number = 128
address D000:1000H in the pixel memory.

palette selector = 16:
select the colour nibbles 32 and 33 at I/O0
address 180H + 32.

-28-

RC Computer

PICCOLINE 4. Conscle module

Graphics mode:
character = 0011010000000000B

bit 0-9 pixel block number = 0
address D000:0000H in the pixel memory.

bit 10-13 palette selector = 13:
select colour nibbles 26 and 27 at 1I/O

address 180H + 26.

bit 14 resolution select = 0
select high resolution graphics.

Graphics mode:
character = 0100100000010000B

bit 0-9 pixel block number = 16
address D000:0200H in the pixel memory.

bit 10-13 palette selector = 2:
select colour nibbles 4, 5, 36 and 37 at I/0
addresses 180H + 4 and 180H + 36.

bit 14 resolution select = 1
select medium resolution graphics.

4.1.4 Graphics Mode

Graphics mode is selected by outputting the value 0CH to
I/0 address 76H. Alphanumeric mode is selected by output-
ting ODH.

For normal bitmapped graphics, the graphics mode offered by -
the XIOS is preferred, as this handles all initialization

and supports console switching.

RC Computer —29-

4. Console Module PICCOLINE

4.2 Direct Console Access

The display is normally accessed through the CCP/M
Operating System console handling functions (ref.2). In
cases where speed has a high priority, the operating system
may be bypassed in different ways:

1. Through XIOS Conout entry
2. Through Int-28h function 35

3. Direct manipulation of the display buffer

WARNING!

When the XIOS console driver 1is accessed directly, the
protection offered by the operating system is bypassed,
so be sure only to write to consoles that have been
attached to the process through a previous operating
system call.

4.2.1 XIOS Conout
The XIOS console driver can be accessed directly through a

CALLF to the address XIOS_ENTRY found in the SYSDAT area
(ref.2) with the following register contents:

AX = 2 (Console output function)

DS = SYSDAT segment (ref.2)

ES = UDA segment (ref.2)

CL = Character to output

DL = Virtual console number
Example

The following subroutine prints a specified number of
characters on a process's default console. It is assumed
that DS = SS.

Ne Ne Ne Ne No we Ne

entry exit
BX pointer to string undefined
CcX length of string undefined

print_string:

push bp ; save old stack frame
push cx ; save length of string
push bx ; save pointer to string
mov cl,153 ;

int 224 ; get default console

~-30- RC Computer

PICCOLINE 4. Console Module

mov def_con,al ; save default console
mov cl,156 H
int 224 ; get PD address

; Now use the fact that the PD segment is the same as
; the SYSDAT segment

push es H
pop ds ; SYSDAT segment to DS
mov es, 10HEbxA ; UDA segment to ES
pop bx ; get pointer to string
pop cx ; get length of string

char_loop:
push cx ; save count
push bx ; save position
mov cl,ss: EbxA ; get char from position
mov dl,ss:def_con ; get default console
mov ax,2 ; conout function
callf ds:dword ptr .28H ; callf xios_entry
pop bx ; get position
pop cx ; get count
inc bx ; increment position
loop char_loop ;
mov ax,ss ;
mov ds,ax ; get old DS
pPopP bp ; get old stackframe
ret :

def_con db 0 ; default console number

4.2.2 Direct Console Buffer Output

Int-28h function 35 is provided to quickly update large
portions of the display. This function stores character
strings in the display buffer with the current attribute.
If the console is shown in a window, this is automatically
updated.

No control character or escape sequence interpretation is
done by this routine.

The routine is called with the following register contents:

AL = 35 (function number)

DX = character position (DH = row, DL = column)
CX = number of characters in the string

SI = string address offset

DS = string address segment

RC Computer -31-

4. Console Module PICCOLINE

Example:

; Print the string "RC PICCOLINE" at position (8,20):

push DS ; save DS
push [oF] ; get segment of string
pop DS
mov SI,offset string_l ; and offset
mov CX,lenght string_l1 ; get string length
mov DH,8 ; row number
mov DL, 20 ; column number
mov AL, 35
int 28h
pPop DS ; restore DS
ret
string_1 db 'RC PICCOLINE'

4.2.3 Display Buffer Manipulation

In some cases it 1is desirable to manipulate the display
buffer directly. For example to dump the screen contents to
a file or a printer. It may also be used to modify the
screen, e.g. for horizontal scrolling or scrolling part of
the screen. Printing to the display buffer is easily done
using the Int-28h function 35 (see 4.2.2).

To give a programmer the possibility to manipulate the
display, the console driver offers a function that gives
access to a table of address offsets to the display line
buffers.

Each virtual console is internally represented as 24 (25)
display line buffers each describing one character line of
the display. A character line consists of one 16 bit word
for each of the 80 character positions of the line. Each 16
bit word consists of. a character value (low byte) and a set
of attribute bits (high byte). Do not use the information
in the attribute bytes as the interpretation of these is
version dependent.

The address of the table is obtained by means of an Int-28h
function with the following register contents:

Registers on entry:

AX = 21

-32- RC Computer

PICCOLINE 4. Console Module

Registers on return:

ES = segment of the table
BX = offset of the table
DX = the segment that should be used together with a
single table entry contents to give the full
address of one line buffer.
Example

The following routine return a pointer to a specified
display line buffer.

At call CX contains the line number (0-24).

At return ES:SI contains a pointer to the specified
display line buffer.

Ne Ne we we we

get_line_pointer:

push cx ; save line number

mov ax,21 ; function number

int 28h H

pop c¢x restore line number

shl c¢x,1 each table entry is two bytes
add bx,cx bx contains offset to display

line table

now si contains offset to
specified display line buffer
now es contains segment of
specified display line buffer

mov si,es:EbxA
mov es,dx

ret

Ne Ne Ne e we N we o we

The screen is automatically wupdated if the console is in
the foreground or when the console is switched to the
foreground. If, however, the console is displayed in a
window on the screen, the window 1is not updated when the
display buffer is modified.

Instead the window must be updated using an Int-28h
function with the following register contents:

AL = 39
As there are no means to know whether the console is

displayed in a window or not, this routine must always be
called, if the display buffer is modified.

RC Computer -33-

4. Console Module PICCOLINE

4.2.4 Get/Set Cursor Position

Another useful console driver function returns the current
cursor position.

The cursor position 1is obtained by means of an Int-28h
function with the following register contents:

Registers on entry:
AL = 22
Registers on return:

BH
BL

line position of cursor (0-24)
coloumn position of cursor (0-79)

non

The cursor position may be changed with an Int-28h function
with the following register contents:

AL = 36
BH = line (0-23 if 24 line mode, 0-24 if 25 line mode)
BL = coloumn (0-79)

4.2.5 Get/Set Attribute

The current attribute byte is returned by the following
Int-28h function:

AL = 37
At return register AH contains the attribute byte.

The current attribute byte may be changed by the following
Int-28h function:

AL = 38
AH = attribute byte

These functions are wuseful in connection with direct
manipulation of the display buffer.

WARNING!

The coding of the attribute byte may be subject to
changes in future releases.

-34- RC Computer

PICCOLINE 4. Console Module

4.3 Character Sets

When the display operates in text mode, the character
definitions are placed in the 32 Kbytes pixel memory
located at address D000:0000H.

The pixel memory has room for 1024 character definitions.
As the XIOS handles 8-bit characters, the characters are
divided into 4 different character sets:

0 - 255 Lower Standard Character Set
256 - 511 Upper Standard Character Set
512 - 767 Lower Alternative Character Set
768 -1024 Upper Alternative Character Set

The character sets are selected by escape sequences (see
4.4.1):

ESC-P Select Alternative Character Set
ESC-Q Select Standard Character Set
ESC-g Select upper 256 characters
ESC-h Select lower 256 characters

The default assignment of the alternative character set is
as for the standard character set (see App. D). This is
convenient when only a few changes from the standard cha-
racter set are wanted.

wWhen the underline attribute is set, the upper 256 charac-
ters of the character set are addressed. So normally the
two halves of the character set are identical.

The underline attribute however may be disabled giving a
full 512 character alternative character set. This is also
true for the standard character set, but other processes
may be using the wunderline attribute, which requires the
two halves of the character set to be identical.

If the console is locked (console switching inhibited) and
the standard character set restored before termination, all
1024 characters may be altered.

RC Computer -35-

4. Console Module PICCOLINE

The following escape sequences disables and enables the
underline attribute:

ESC-<246> Disable underline attribute

ESC-<247> Enable underline attribute

4.3.1 Altering the Character Set

A character definition block consists of 16 words (16 bit
memory location), each defining a single video rasterline
of the character.

The width of a character 1is wvariable from 7 to 15 pixels
and 1is controlled by the contents of the definition for
each videoline. The character width is defined by the posi-
tion of the first zero bit followed by all one's.

Example:

A character 7 bit wide is defined by the following bits:
xxxxxxx011111111B

WARNING!

When variable character width is wused, it 1is the
responsibility of the programmer to fill the entire line
with characters (e.g. by means of variable length space
characters).

The standard character width is 7 pixels. The height of one
character row is 10 videolines.

When the display operates in graphics mode about 25 Kbytes
of the pixel memory is used as bitmap. Consequently the
character definitions must be saved each time a process
running in graphics mode takes over the display.

This means that the definition may be in one of two places,
so the character set cannot be altered simply by modifying
the pixel memory. Instead a set of functions is offered in
the XIOS.

The functions which are accessed through software interrupt
28h are described in the following.

-36- RC Computer

PICCOLINE 4. Console Module

As the character sets are common to all consoles, it should
be insured that only one process is using the alternative
character set. This is done by reading the mutual exclusion
queue 'MXalt'. The alternative character set is released by
a write to the queue.

4.3.2 Define Character Font (Alternative Character Set)
This function defines a character in the alternative cha-
racter set. The character is defined in both the lower and

upper (underlined) character sets.

The function is executed with the following register con-
tents:

AL = 20

CL = character value (0-255)

DX = address offset of character definition block

DS = address segment of character definition block
Example

; This routine defines the character number 255 in the
; alternative character set.

define_alternative_char:
mov dx,offset char_def
mov cl,255
mov ax, 20
int 28h
ret

character definition
character ident
define char. function
call xios function

we Ne Ne we S

char_def dw 0000000011111111B
dw 0101110011111111B
dw 0110000011111111B
dw 0100110011111111B
dw 0101000011111111B
dw 0101000011111111B
dw 0101000011111111B
dw 0100110011111111B
dw 0000000011111111B
dw 0000000011111111B

Character definition.

The character is 7 bit
wide (As the tail is
011111111).

Ne Ne we wa we

RC Computer -37-~

4. Console Module PICCOLINE

4.3.3 Define Character Font

This function defines a character in the standard or
alternative character set.

The function is executed with the following register
contents:

AL = 52

CX = character value (0-1023)

DX = address offset of character definition block
DS = address segment of character definition block

4.3.4 Get Character Font Definition

This function returns a character definition in the stan-
dard or alternative character set.

The function is executed with the following register con-
tents:

AL = 51

CX = character value (0-1023)

DX = address offset of character definition block

DS = address segment of character definition block
Example

; This routine changes the standard character set to
; US-ASCII

us_ascii:

mov cx,9 ; no. of characters

mov si,offset char_table ; get table address
char_loop:

push cx

push si

lodsw

mov dx,offset char_buffer

xchg cl,ah

push ax

push dx

mov al,51

int 28h

pop dx

pop ax

xchg cl,al

mov al,52

int 28h ; define the font

pop si

load an ASCII value

~

get the definition

~

-38- RC Computer

PICCOLINE 4. console Module

pop cx

add si,2
loop char_loop ; next character
ret

the following is a table of characters to alter
and the corresponding character definitions in
the standard character set.

H
N
;
;
N
;
(o}

har_table:
db '§,17
db 'R',18
db. 'e',19
db 'A',20
db 'v',21
db ‘z',23
db 'e',24
db 'a',25
db ‘i, 26

char_buffer:
rw 16 ; room for one definition

RC Computer ~39-

4. Console module PICCOLINE

4.4 Console Control Characters

The XIOS console driver recognizes the following characters
as control characters:

Character Value Meaning
(decimal)
NULL 00 Ignored
BELL 07 Acoustic signal
BS 08 Backspace - Cursor left, if the

cursor 1is at column 0, it is moved
to the last position on the
previous line.

LF 10 Line feed - Cursor down one row. If
the cursor is at the bottom line,
the screen is scrolled up one row.

CR 13 Carriage return - move cursor to
column 0.

ESC 27 initiate escape sequence (see
4.4.1)

4.4.1 Console Escape Sequences

Escape sequences are used to control the cursor, change co-
lours, programming function keys and various other purpo-
ses. An ASCII escape character (dec 27) triggers escape se-
quence processsing. The character immediately following the
escape character indicates which function is to be per-
formed. More characters may follow, depending on the func-
tion.

The escape codes and their functions are summarized in
Appendix F.
ESC A - Cursor Up

Moves the cursor up one line. 1If the cursor is already on
the top line, this sequence has no effect.

-40- RC Computer

PICCOLINE 4. cConsole module

ESC B - Cursor Down

Moves cursor down one line. If the cursor is already at the
bottom line, this sequence has no effect.

ESC C - Cursor Forward

Moves the cursor one position to the right. If the cursor
is on the rightmost position on the screen, this sequence
has no effect.

ESC D - Cursor Backward

Moves the cursor one position to the left. This is a non-
destructive move because the characters that the cursor
moves over are not erased. If the cursor is in column O,
this sequence has no effect.

ESC E - Clear Screen

Moves the cursor to column 0, row 0 (top-left corner on the
screen) and clears the whole screen (filled with blanks).

ESC H - Home Cursor

Moves cursor to colum 0, row 0. The screen is not cleared.

ESC I - Reverse Index

Moves the cursor up one line. If the cursor is on the top
line, a scroll down is performed and a blank line is inser-
ted at the top of the screen.

ESC J - Erase to End of Screen
Clears from cursor (including cursor position) to the end
of the screen.

ESC K - Erase to end of line

Clears the line, the cursor is on from the cursor position
to the end of the line.

RC Computer -41-

4. cConsole module PICCOLINE

ESC L - Insert Line

Inserts a blank line by scrolling the line that the cursor
is on and all following lines down one line. The cursor is
moved to the beginning of the new line.

ESC M - Delete Line

Moves the cursor to the beginning of the line and deletes
the line that the cursor is on by moving all the following
lines up one line. A blank line is added at the bottom of
the screen.

ESC N - Delete Character

Deletes the character at the cursor position and moves the
rest of the line one character position to the left. A
blank character is inserted at the end of the line.

ESC O - Insert Character

Inserts a blank character at the cursor position and moves
the rest of the line one character position to the right.

ESC P - Select Alternative Character Set

Selects the user definable character set.

ESC Q - Select Standard Character Set

Selects the standard PICCOLINE character set.

ESC Y - Position Cursor

Moves the cursor to the row and column specified by the two
characters that follow the "Y". The first character speci-
fies the row, the second specifies the column. Rows are
numbered from 0 to 23 (in 24 line mode) or 0 to 24 (in 25
line mode). Columns are numbered from 0 to 79.

The value 32 (20H) is added to the row and column numbers.

~-42- RC Computer

PICCOLINE 4. Console module

Example:
To position the cursor in position (23,79), the sequence is

ESC Y 7 o dec: 27 89 55 111
hex: 1B 59 37 6F

ESC b - Set Foreground Colour

The foreground colour displays the character. The colour is
specified by a colour selection character, that follows the
"b". Only the four least significant bits of the character
are used, with the individual bits having the following
significance:

Colour Monitor Monochrome Monitor
0 Blue

1 Green

2 Red

3 High Intensity 2-3 Intensity

Examples of colour select characters:

Colour Monitor Monochrome monitor

- Black 0 - Black
- Blue

- Green

- Cyan (Blue + Green)

- Red 4
~ Magenta (Red + Blue)

- Yellow (Red + Green)

White (Red + Green + Blue)

- Grey 8 - Low Intensity
- High intensity Blue

- High intensity Green

- High intensity Cyan

- High intensity Red <
- High intensity Magenta

- High intensity Yellow

- High intensity White

Normal Intensity

High Intensity

VWVl A v DOENOBWNHO
1

NOTE

The monochrome monitor of PICCOLINE is not able to show
more than one intensity, - the high intensity. Normal and
low intensity are therefore shown as high intensity too.
But if the background colour is chosen to have higher

RC Computer -43-

4. Console module PICCOLINE

intensity than the foreground colour, the foreground is
shown as black and the background in high intensity. If
the foreground and background have the same intensity
they are impossible to distinguish.

At any time 16 combinations of background and foreground
colours can be displayed simultaneously. Any escape se-
guence that would result in more than 16 colour
combinations will be ignored.

ESC ¢ - Set Background Colour
This function sets the background colour. The colour is
specified by a colour selection character that follows the
"c". The colour selection character is interpreted in the
same way as described under ESC-b (Set Foreground Colour).
NOTE
At any time 16 combinations of background and foreground
colours can be displayed simultaneously. Any escape se-
guence that would result in more than 16 colour
combinations will be ignored.
ESC d - Erase Beginning of Screen
Clears the screen from the home position (0,0) to the cur-
sor position, including the character that the cursor is
on.
ESC e - Enable Cursor
This sequence causes the cursor to be visible on the
screen. :

ESC f - Disable Cursor

This sequence causes the cursor to be invisible. The cursor
may still be moved on the screen.

-44- RC Computer

PICCOLINE 4. Console module

ESC g - Enter Underline Mode

Following the invocation of this sequence, characters are
displayed underlined if the underline attribute is enabled
(see ESC-<247>).

This sequence also selects the upper 256 characters of the
character set.

ESC h - Exit Underline Mode

Exits underline mode.

This sequence also selects the lower 256 characters of the
character set.

ESC i - Enter Non-Displayed Mode

This sequence causes characters to be displayed as blanks.

ESC j - Save Cursor Position

This sequence saves the current cursor position. The cursor
can be restored to the saved position with ESC-k.

ESC k - Restore Cursor Position

This sequence restores the cursor to a previously saved po-
sition. If this sequence is used without a previously saved
cursor position, then the cursor will be moved to the home
position (0,0).

ESC 1 - Erase Line

Clears the entire line that the cursor is on.

ESC m - Enable Cursor

Included to be compatible with some CP/M-86 implementa-
tions. Use ESC-e under CCP/M-86.

RC Computer -45-

4. Console module PICCOLINE

ESC n - Disable Cursor

Included to be compatible with some CP/M-86 implementa-
tions. Use ESC-f under CCP/M-86.

ESC o - Erase Beginning of Line

Clears the start of the line to the cursor position, inclu-
ding the cursor position.

ESC p - Enter Reverse Video Mode

Following the invocation of this sequence, the foreground
and background colours are reversed. If display is already

in reverse video mode, this sequence has no effect.

In reverse video mode, setting foreground colour will
effectively set the background colour.

NOTE
At any time 16 combinations of background and foreground
colours can be displayed simultaneously. Any escape se-
quence that would result in more than 16 colour
combinations will be ignored.

ESC g - Exit Reverse Video Mode

Exits the reverse video mode.

ESC r - Enter Intensify Mode

Following the invocation of this sequence, characters are
displayed in high intensity.

In reverse video mode the background will be intensified.
NOTE
At any time 16 combinations of background and foreground
colours can be displayed simultaneously. Any escape se-

quence that would result in more than 16 colour
combinations will be ignored.

-46- RC Computer

PICCOLINE 4. cConsole module

ESC s - Enter Blink Mode

Causes characters to be displayed blinking.

ESC t - Exit Blink Mode

Causes characters to be displayed not blinking.

ESC u - Exit Intensify Mode

Causes characters to be displayed in normal intensity.

ESC v - Wrap at End of Line

Causes the cursor to move to the beginning of the next line
if a character is written in the rightmost position of the
line. If at the bottom line, the screen is scrolled up one
line.

ESC w - Discard at End of Line

Following the invocation of this sequence, if a character
igs written in the rightmost position of the line, the cur-
sor remains in the same position. The following characters
overprint.

ESC x - Exit Non-Displayed Mode

This sequence causes characters to be displayed normally.

ESC z - Reset Attributes

This sequence turns off the attributes blinking, underline,
high intensity, non-displayed mode to the off condition.
The background colour is set to black and the foreground to
the default colour. Also, cursor is enabled, standard
character set is selected, wrap at end of 1line enabled,
function keys are expanded normally, and the status line is
enabled (24 line mode).

RC Computer —47-

4. Console module PICCOLINE

ESC 0 - Status Line Off (25 Line Mode)

This sequence turns off the status line, thereby leaving
all 25 lines for the application.

ESC 1 - Status Line On (24 Line Mode)

This sequence displays the status line at the bottom of the
screen, thereby leaving 24 lines for the application.

ESC 2 - Save Current Attributes

Saves the values of the attributes blinking, underline and
reverse video, foreground and background colour and
character set selection.

ESC 3 - Restore Attributes

Restores the previously saved values of the attributes
blinking, underline and reverse video, foreground and
background colour and character set selection.

ESC 6 - Function Key Expansion Off

Causes the programmable function keys to return their key
identifiers (ref. ESC-:) with the high order bit set in-
stead of the assigned strings.

ESC 7 - Function Key Expansion On

Enables normal function key expansion, so that the program-
mable function keys return their assigned strings.

ESC : - Program Function Keys

This sequence programs the programmable function keys. The
table below lists the keys that are programmable.

The format of this escape sequence is:
ESC : <key-id> <string> NULL

<key-id> is a key identifier that specifies the key to be
programmed (see table page 50). <string) is an arbitrary

-48- RC Computer

PICCOLINE 4. Console module

string of characters; for the F1-F12 keys used alone,
strings can be up to 20 characters long. For the remaining
function keys, strings can be up to 4 characters. NULL is a
character with value 0, that terminates the string.

With the function key expansion disabled by ESC-6, the
function keys return the hexadecimal value of the function
key identifier with the high order bit set. ESC-7 restores
the normal expansion of function keys.

RC Computer -49-

4. Console module PICCOLINE

The key identifiers are shown in table 4.1.

Identifier Function Key Identifier Function Key
H Fl a alt-F1l
< F2 b alt-rF2
= F3 c alt-F3
> F4 d alt-F4
? F5 e alt-F5
E F6 £ alt-Fé
A F7 g alt-F7
B F8 h alt-F8
C F9 i alt-F9
D F10 j alt-F10
E F1l1 k shift-F1
F F12 1 shift-F2
G Home m shift-F3
H Up Arrow n shift-F4
I Al o shift-F5
J A2 P shift-F6
K Left Arrow q shift-F7
L Return (keypad) r shift-F8
M Right Arrow s shift-F9
N A3 t shift-F10
o A4 u ctrl-F1
P Down Arrow v ctrl-F2
Q Tab (keypad) w ctrl-F3
R Insert X ctrl-F4
s Delete y ctrl-F5
T Print z ctrl-F6
U shift-al @ ctrl-F7
\Y shift-a2] ctrl-F8
W shift-aA3 a ctrl-F9
X shift-A4 u ctrl-F10
Y alt-Fl1
4 alt-F12
E shift-F11
@ shift-F12
A ctrl-F1l1
8] ctrl-F12

Table 4.1. Function Key Identifiers

-50- RC Computer

PICCOLINE 4. Console module

Example:

The following sequence gives function key F2 the value
"PICCOLINE":

ESC : < PICCOLINE NULL

Dec: 27 58 60 80 73 67 67 79 76 73 78 69 00
Hex: 1B 3A 3C 50 49 43 43 4F 4c 49 4E 45 00

The contents of the function keys will remain valid until
the program that defined the keys, is terminated. After the
program has terminated the function keys will regain their
default values. The default values are common to all the

virtual consoles. To change the default assignment use the
FUNCTION program.

ESC < - Scroll Window Up
Scrolls a window consisting of a number of consecutive
lines one row up. A blank row is inserted at the bottom of
the window.
The format of the sequence is:

ESC < row-start row-end
Rows are numbered from 0 to 23 (in 24 line mode) or 0 to 24
(in 25 line mode). The value 32 (20H) is added to the row
numbers. i
Example:

The following sequence scrolls row 4 to row 11 one line up:

ESC < § + ' (dec: 27 60 36 43)
(hex: 1B 3C 24 2B)

ESC > - Scroll Window Down

Scrolls a window consisting of a number of consecutive
lines one row down. A blank row is inserted at the top of
the window.

The format of the seguence is:

ESC > row-start row-end

RC Computer -51-

4. Console module PICCOLINE

Rows are numbered from 0 to 23 (in 24 line mode) or 0 to 24
(in 25 line mode). The value 32 (20H) is added to the row
numbers.
Example:

The following sequence scrolls row 4 to row 1l one line
down:

ESC > § + (dec: 27 62 32 48)
(hex: 1B 3E 20 30)

ESC <241> - Set Blinking Cursor
<241> denotes one character with the decimal value 241.
Selects a blinking cursor.
ESC <242> - Set Non-Blinking Cursor
<242> denotes one character with the decimal value 242.
Selects a non-blinking cursor.
ESC <243> - Set Cursor Representation
<243> denotes one character with the decimal value 243.
Defines the shape of the cursor. The character following
ESC-243 specifies the start and end videoline numbers of
the cursor. The four least significant bits specifiy the
start videoline and the four most significant bit specifiy
the end videoline.
The videolines of a row are numbered 0-9. The number
specified for the end videoline is 1 greater than the
videoline number of the bottom videoline of the cursor.

Examples:

The following sequence selects a block cursor (occupying
videolines 0-9):

dec: 27 243 160 hex: 1B F3 A0

The following sequence selects a double underline cursor
(occupying videolines 8-9):

dec: 27 243 168 hex: 1B F3 A8

-52- RC Computer

PICCOLINE 4. Console module

ESC <244> - Set Soft Scroll

<244> denotes one character with the decimal value 244.
Selects soft scroll mode.

ESC <245> - Set Line Scroll

<245> denotes one character with the decimal value 245.
Selects line scroll mode.

ESC <246> - Disable Underline Attribute

<246> denotes one character with the decimal value 246.
Following the invocation of this escape sequence, the un-
derline attribute is disabled. .

As the upper 256 characters of the character sets are
addressed when the underline attribute is on, the lower and
upper 256 characters must be identical in normal uses of
the wunderline attribute. Disabling underline makes it
possible to use all 512 characters of the character set.
The escape sequences ESC-g and ESC-h are used to select the
upper and lower 256 characters respectively.

ESC <247> - Enable Underline Attribute

<247> denotes one character with the decimal value 247.
Following the invocation of this escape sequence, the un-
derline attribute is enabled.

The escape sequences ESC-g and ESC-h are used to enter and
exit underline mode.

ESC <253> - Save Function Keys

<253> denotes one character with decimal value 253.
Saves the current value af the programmable function keys.

NOTE

Only one set af values can be stored.

RC Computer —-53-

4. console module

PICCOLINE

ESC <254> - Restore Function Keys

<254> denotes one character with decimal value 254.

Restores the saved value
(see ESC 253).

of the programmable function keys

-54-

RC Computer

PICCOLINE 4. Console module

4.5 Graphics Mode

A function is offered in the XIOS to put a console into
graphics mode.

When this function is used, the console module handles
transitions between alphanumeric and graphics mode when a
console is switched from foreground to background and vice
versa. At the same time the console module saves or resto-
res the graphic image on the screen. It also supports con-
sole output in graphics mode.

In graphics mode the bitmap for the display occupies the
32k pixel memory. The character definitions therefore have
to be saved in a save-buffer elsewhere in memory. The
graphics save-buffer must be provided by the application
program.

When a console is switched in or out, the console module
swaps the contents of the pixel memory and the save-buffer.
The application program must provide a variable in which
the console module places a pointer to the segment that
currently contains the graphic image.

To avoid swapping the segments while the graphics segment
is being updated, a semaphore is used to ensure exclusive
access to the graphics segment.

NOTE

In a PICCOLINE 1l-console system (i.e. no background
consoles) the save buffer will allways contain the
character definitions. In order to save memory space only
the lower standard character set is saved in the save-
buffer. Therefore in this case the save-buffer need only
be of size 8k. This also means that only the lower
standard character set may be used in graphics mode.

4.5.1 Init Graphics

Graphics mode is entered by an Int-28h function called with
the following register contents:

AL = 0 (function number)
AH = graphics mode (1 = high resolution)
(2 = medium resolution)
CX = address offset of graphics control block
DX = address segment of graphics control block

RC Computer -55-

4. Console module PICCOLINE

The graphics control block has the following format:

gcb:
gcb_mx db 0 ; mutual exclusion semaphore
gcb_seg dw seg buffer; segment of savebuffer

The gcb_seg field must contain the address segment of a 32k
save buffer (8k in case of a l-console system).

When the gcb_mx field is set to 255 (FFH), the console will
not be switched in or out, thus avoiding buffer swapping
when the graphics segment is being updated. As the PIN
process may be waiting for this semaphore, it should not be
set for a longer period.

Example

; this routine puts the console in graphics mode.
; it is assumed that the ES register points at the
; extra segment.

init_graphics:
mov gcb_seg,es
mov al,0
mov ah,l
mov cx,cs:offset gc
mov dx,cs

initialize the buffer segment
function code for init graphics
high resolution
; get offset and segment
of the control block

(ORI

int 28h do the call
ret
gcb rb 0 ; graphics control block
gcb_mx db 0
1

gcbhb_seg rw
eseg
buffer rb 8000h make room for save buffer

2000h in case of l-console system

~. e

4.5.2 Exit Graphics

Alphanumeric mode is entered by an Int-28h function called
with the following register content

AL =1

-56- RC Computer

PICCOLINE 4. console module

4.5.3 Exclusive Access to Pixel Memory

Exclusive access to the graphics image can be ensured in a

number of ways.

1. Use the CHSET utility program to stop program
execution while the console is 1in the background
(Suspend= On). This is probably the easiest

solution.

2. Inhibit console switching by setting the no-switch

bit in the console control block.

3. Disable interrupts while updating the image. Should

only be used for very short updates.

4. Use the mutual exclusion semaphore located in the
graphics control block. A pointer to the graphics

control block is rendered to the XIOS in the init
graphics call.

Example
; this routine sets the no-switch bit in the console
; control block. The keep flag is set in the process
; descriptor so we cannot be terminated before the
; no-switch bit has been cleared.
os equ 224
sys_ccb . equ word ptr 54h
p_flag equ word ptr 6
pf_keep equ 2
ccb_size equ 2ch
ccb_state equ word ptr 14
cf_noswitch equ 8
lock_console:

mov cl1,156 ; get process descriptor

int os

mov sysdat,es

mov pd_addr,bx ; set the keep flag

or es:p_flagXbxA,pf_ keep

; now get the ccb address

mov c¢l,153 ; get console no.

int os

cbw

mov cx,ccb_size

nmul cx

add ax,es:sys_ccb

mov ccb_addr,ax

57—

RC Computer

4. Console module

PICCOLINE

xchg
or
ret

ax,bx

’

set the noswitch flag

es:ccb_stateXZbxA,cf_noswitch

unlock_console:

mov
nov
and
mov
and
ret

sysdat

pd_addr
ccb_addr

Example

Ne Ne we we

es,sysdat

bx,ccb_addr

’

clear noswitch bit

es:ccb_stateZbxA,not cf_noswitch

bx,pd_addr

7

and turn off keep flag

es:p_flagibxA,not pf_keep

rw 1
rw 1
rw 1

and the gcb_seg field

clear_graphics:

call
mov
mov
mov
mov
rep
call
ret

get_mx:
nov
xchg
or
jz
push
push
mov
nov
int
pop
PP
jmps

got_mx:
ret

get_mx
es,gcb_seg
di,o0

ax,0
cx,4000h
stosw
free_mx

al,0ffh
al,gcb_mx
al,al
got_mx
ax

bx
cl,141
dx,1
224

bx

ax
get_mx

this routine demonstrates the use of the mutual exclusion
semaphore.
it is assumed that an

init graphics call has been made
initialised.

S N Se Se

~

get the semaphore
fill with zero's
16k words

release the semaphore

is it free?

yes - we have it

no - delay one tick

save what has to be saved

one tick delay

restore saved registers
and try again

-58-~

RC Computer

PICCOLINE 4. Console module

free_mx:
mov gcb_mx,0
ret

gcb_mx db

0
gcb_seg rw 1

4.5.4 Pixel Address Calculation

The following example shows how the offset in the pixel
memory and the bit number is calculated given an X-Y coor-
dinate. The origin is assumed to be in the lower left hand
corner.

word_address = (X div 16) * 16*16 + Y
= X mod 16

Example

H entry: BX = X-coordinate

; DX = Y-coordinate

; exit: DI = offset of word containing pixel
; BX = bit mask

H

; Algoritm used:

pixel address

y_max egu 255
color equ false ; set to true if assembling to
; medium resolution

calc_pixel_addr:

mov ax,y_max ;get the Y size

sub ax,dx ;move 0 for the Y axis
if color

shl bx,1
endif

save X value
mask out bit number

mov di,bx
and bx,0£££f0h
mov dx,bx
mov cl,4

N we e

shl bx,cl ; BX * 16

add bx,ax ; add in Y-addr

shl bx,1 ; byte addr

and di,0fh ; mask to pixel address
xchg bx,di

RC Computer ~-50-

4. Console module

if not color
shl bx,1
endif

mov bx,bit_masksZbxA

ret

if not color
bit_masks

else
bit_masks

endif

Dw

1000000000000000B
0100000000000000B
0010000000000000B
0001000000000000B
0000100000000000B
0000010000000000B
0000001000000000B
0000000100000000B
0000000010000000B
0000000001000000B
0000000000100000B
0000000000010000B
0000000000001000B
0000000000000100B
0000000000000010B
0000000000000001B

1100000000000000B
0011000000000000B
0000110000000000B
0000001100000000B
0000000011000000B
0000000000110000B
0000000000001100B
0000000000000011B

-60-

PICCOLINE 4. Console module

4.6 Window Handling

The Concurrent CP/M Windows are handled by a number of XIOS
routines. The routines are called through the normal XIOS
entry point.

Some of the routines are used only by the standard window
manager, the rest may be of interest to the application
programmer. They are described in the following sections.

NOTE

In a PICCOLINE l-console system it makes no sense to use
windows. Therefore, in order to save memory space, the
routines are removed. A call of XIOS function number 19
results in an error message in the status line, whereas
call of the other functions has no effect.

4.6.1 Return Pointers

This funtion return pointers to two different data
structures.

A pointer to the window manager data block is returned by
the following call:

entry: al = 16
dl = OFFH
exit: ax = window data block pointer

The window data block has the following format:

list of console numbers from the
back window to the front window

priority rb nvcns

state rb 1 ; window manager state
; 0 = not resident
; 1 = resident but not active
; 2 = resident and active

nvce db nvcns ; number of virtual consoles
14
’

If register DL is a virtual console number the call is
similar to Int-28h function 21 (see 4.2.3).

entry: al = 16
dl = virtual console number
exit: ax = vc structure pointer
dx = screen segment
es = vc structure segment

RC Computer -61-

4. Console module PICCOLINE

The call returns a pointer to a control structure of the
following format:

rw 26 ; display line table (see 4.2.3)
rw 1 ; extra line used when scrolling
rb 1 ; virtual console number

rb 1 ; internal XIOS semaphore

rb 1 ; left column of window

rb 1 ; top row of window

rb 1 ; rigth column of window

rb 1 ; bottom row of window

rw 1 ; last top-left corner

rw 1 ; last bottom-right corner

rb 1 ; actual no. of columns

rb 1 ; actual no. of rows

rb 1 ; window view point, column

rb 1. ; window view point, row

4.6.2 Set Window Manager State

This call is used to tell the XIOS the state of the window
manager and to change which window is on top (console
switch).

entry: al = 19

cl = state

0 => manager not resident

1 => resident but not active

2 => resident and active

3 => leave state unchanged

dl = vc number to switch to top

if d1 = OFFH, then no switch
exit: none

4.6.3 Create a New Window

This call is used to create a new window for a virtual
console. The positions of the windows top-left and bottom-
right corners on the screen are passed as parameters.

entry: al = 20
dl = virtual console number
cx = top left (row,column)
bx = bottom right (row,column)

-62- RC Computer

PICCOLINE 4. Console module

4.6.4 Set Cursor Tracking Mode and Viewpoint

This call sets the tracking mode and viewpoint. The
tracking mode determines whether the window 1is fixed or
follows the cursor. The viewpoint determines which part of
the virtual console is visible in the window.

entry: al = 21
dl = vc number
dh = cursor tracking mode

0 => window is fixed on vc image
1 => window tracks scrolling
cx = row,column of top-left viewpoint

exit: none

4.6.5 Set Wrap Around Column

This call sets the column in which the cursor automatically
wraps around if wrap around is enabled.

entry: al = 22

dl = vc number

cl = wrap column number
exit: none

4.6.6 Switch Between Full Screen and Window

This call toggles the window between full screen and not
full.

entry: al = 23
dl = vc number

exit: none

RC Computer -63-

4. Console module PICCOLINE

4.7 Keyboard Interface

The keyboard is connected to the system via a special
serial port with I/0 address 32 (20H). When a character is
received, an interrupt is generated, and no further
characters will arrive before the character is read.

The interrupt is connected to 1level 1 of the external
interrupt controller 8259A (interrupt level 21H, interrupt
vector address 84H).

When a key is pressed, an 8-bit position code is received
and when the key is released, the keyboard sends the same
code with the high order bit set. The position codes are
shown in Appendix E.

4.7.1 Keyboard Driver

In normal applications the XIOS keyboard driver handles all
input from the keyboard. The driver converts the position
codes into ASCII values and handles special keys (Ctrl,
Alt, sShift, shift Lock and programmable function keys).

The RC739 keyboard includes 98 keys of which 26 are
programmable. The values returned by the keyboard driver
when a key or combination of keys is pressed, are shown in
appendix D.

When a programmable function key is pressed, the driver
returns the programmed string of characters. The function
keys are programmed by the escape sequence ESC-: (see
4.4.1).

The following key combinations invoke special actions in
the driver and no value is returned to the application:

Ctrl+Print hardcopy of display
(in character mode)

Ctrl+al enter setup mode

Ctrl+a2 no action

Ctrl+A3 wake up window manager
(if installed)

Ctrl+A4 full screen key

-64- RC Computer

PICCOLINE 4. Console module

4.8 Mouse Interface

The optical mouse is supported by an Int-28h function. This
function is called with the following register contents:

30
mouse function number

AL
CL

non

Three mouse functions numbers are provided:

CL = 1 : Initialize mouse
CL = 2 : Deinitialize mouse
CL = 3 : Return mouse status

When function 3 (return mouse status) is called, the mouse
status is returned in the following registers:

Registers on return:
AL = 0: nothing happened
AL = 1: button press

register AH contains a button code:

AH = 20H: left button
AH = 21H: middle button
AH = 22H: right button

AL = 2: coordinate information

registers BX and CX contain the change in
coordinates since the last call of mouse status.

delta x
delta y

BX
CX

won

RC Computer -65-

4. Console module PICCOLINE

-66- RC Computer

5. Real Time Clock

The PICCOLINE standard configuration includes a real time
clock controller (RTC) with battery backup.

The RTC time and date information is read during power up
and is used to initialize the time and date fields found in
the SYSDAT area (see ref.2).

After power up the RTC generates an interrupt each second
and this interrupt is used to update the above mentioned
SYSDAT fields.

If a program disables interrupts for more than one second,
it will cause a loss of one or more interrupts from the
RTC. As a consequence, the time and date fields will not be
updated correctly (but the real time clock itself still
holds the correct time and date).

5.1 Real Time Clock Controller

RTC controllers from two different manufacturers are used
in the PICCOLINE. To distinguish between the two types
refer to the KONFIG area byte 'RTC second source' (see
3.1). If this byte is 0 the real time clock is a National
Semiconductor chip: MM58167. If the byte has the value OFFH
the real time clock is an RCA chip: CDP1879.

The two real time clock controllers differs in programming
and in facilities. A detailed description may be found in
the documentation from the manufacturers.

5.2 Reading and Writing Real Time Clock Registers

Although the two RTC controllers are different, they are
interfaced in a way, that makes it possible to read and
write their control registers using the same software rou-
tines. The content of the RTC control registers are coded
in BCD-code, which means that a number is stored with the
the first ciffer in the four MSB and the last ciffer in the
four LSB. For example the number 35 is stored as:

5 4 3 2 1 0
11 0 1 0 1

bit no 7 6

0 0
where bit 0-3 contain the ciffer 5 and bit 4-7 contain the
ciffer 3.

RC Computer -67-

5. Real time clock PICCOLINE

The RTC registers are numbered as follow:

RTC control register

sec 2
min 3
hour 4

The following example shows two routines which can be used
to read and write the RTC control registers.

Example

Registers at entry:
AL = RTC register

Registers at exit
AL = contents of RTC register

Se N Ne we we o we

rtc_adr equ 5CH

read_adr_set_up equ 80H

supply_read_pulse equ 0AOQH

remove_read_pulse equ 9FH
ReadRTC:

; read register address setup
Mov DX, rtc_adr

or AL, read_adr_set_up

Out DX,AL

; generate read pulse
or AL, supply_read_pulse

Out DX,AL

; Wait at least 1 micro sec
Nop

Nop

Nop

Nop

; read from register

Xchg AH,AL

In AL, DX

Xchg AH,AL

-68- RC Computer

PICCOLINE

5.

Real time clock

; remove read pulse

And AL, remove_read_pulse
Out DX,AL

Xchg AH,AL

Ret

WriteRTC:

Registers at entry:

H AL = RTC register
; AH = value
write_adr_set_up equ

supply_write_pulse equ
remove_write_pulse equ

; write register address setup
Mov DX, rtc_adr
And AL,write_adr_set_up

out DX,AL

; write value to register
Sub DX,2

Xchg AH,AL

Out DX,AL

Xchg AH,AL

Add DX,2

; generate write pulse
or AL,supply_write_pulse
Oout DX,AL

; wait at least 1 micro sec
Nop
Nop
Nop
Nop

; remove write pulse

And AL, remove_write_pulse
out DX,AL

Ret

1FH
40H
1FH

RC Computer

-69-

5. Real time clock PICCOLINE

-70- RC Computer

6. Sound

The sound device produces sound via the loudspeaker located
in the CPU unit (some CRT units have a loudspeaker).

The sound device contains four signal sources: three inde-
pendent generators of single-frequency tones and one gene-
rator of noise. In addition, each source has its own atte-
nuator with a 28-dB attenuation range. The output signal
from the four attenuators are summed together as a single
amplified output.

The sound device contains 8 registers that control the va-
rious noise and tone outputs:

RO R1 R2 Control register

0 0 0 tone 1 frequency

0 0 1 tone 1 attenuation
0 1 0 tone 2 frequency

0 1 1 tone 2 attenuation
1 0 0 tone 3 frequency

1 0 1 tone 3 attenuation
1 1 0 noise control

1 1 1 noise attenuation

RO, R1 and R2 denote bit positions in the control bytes
sent to the sound device as described below.

Noise and attenuation parameters are sent to the sound de-
vice as l-byte values, while frequence updates require 2
bytes. To differentiate between the first and second byte
of any data transfer, all first-byte or single-byte trans-
fers have the most significant bit equal to a logic 1. The
second byte always has the MSB equal to logic 0.

Because the CCP/M operating system does not support such
exotic devices as sound generators, this device is accessed
through Int-28h function 12:

12
sound device control byte

AX
DL

To prevent more than one program from using the sound devi-
ce at the same time, the programs should reserve the device
before using it. This is done with the help of a mutual ex-
clusion queue of the name 'MXsound'. The device is reserved
when a queue read from MXsound succeeds. ;

RC Computer -71-

6. Sound PICCOLINE

Example

; This piece of code reserves the sound device by reading
; the mutual exclusion queue 'MXsound '.

mov c¢l,135
mov dx,offset gpb_sound

; queue open function
’
int 224 H
;
;

queue parameter block

mov c¢l1,137
mov dx,offset gpb_sound
int 224

queue read function
; queue parameter block

; the process will not proceed before the sound device is
reserved.

gpb_sound dw 0,0,0,0
db 'MXsound '

After use, the program should release the device as fol-
lows:

; This piece of code releases the sound device by writing
; to the mutual exclusion queue 'MXsound '.

mov <¢l,139 ; queue write function
mov dx,offset gpb_sound ; queu parameter block
int 224 ;

6.1 Programming Tones

Each of the three tone generators cover a range of five
octaves: from two octaves below middle C to three octaves
above it.

Setting a frequency of 440 Hz for tone generator 1 is done
as follows.

First find I

clock rate/(32 * f)
2 MHz/(32 * 440)

I
I
I 142.045

Since 'I' must be an integer gquantity set it to 142. The
actual frequency will be 440.14 Hz.

-72- RC Computer

PICCOLINE 6. Sound

Next, convert 'I' to a 10-bit binary value:

FO F1 F2 F3 F4 F5 F6 F7 F8 F9
0 0 1 0 0 O 1 1 1 O

The frequency data for tone generator 1 must be transferred
as a 2-byte quantity. The formats of the 2 frequency con-
trol bytes are as follows:

byte 1: 1 RO R1 R2 F6 F7 F8 F9
byte 2: 0 x FO F1 F2 F3 F4 F5 (x = don't care)

To address tone register 1 RO, Rl and R2 must be 000.
Therefore, to set tone generator 1 at 440 Hz, the first
control byte becomes

10001110
and the second byte becomes

00001000
Once these values have been transferred, tone generator 1
is loaded, but the attenuator has not been set to enable
any output. Changing the attenuator setting requires only a
single byte of data:

1 RO R1 R2 A0 Al A2 A3

RO, Rl and R2 address the register as mentioned before,
while A0 - A3 determine the attenuation as follows.

A0 Al A2 A3 Attenuation weight
0 0 0 O 0 dB
0o 0 0 1 2 ds
0 0 1 O 4 dB
0 0 1 1 6 dB
01 0 O 8 dB
0 1 0 1 10 4B
01 1 0 12 dB
01 1 1 14 dB
1 0 0 o 16 dB
1 0 0 1 18 dB
1 0 1 0 20 dB
1 0 1 1 22 dB
1 1 0 0 24 4B
1 1 0 1 26 4B
1 1 1 0 28 dB
1 1 1 1 off

RC Computer -73-

6. Sound PICCOLINE

A 0 dB setting turns the volume on full. The resulting for-
matted control byte is

1 0 0 1 0 0 O0 O
Example

; The following subroutine simulates the
; ringing of bells.

chime:
call silence
mov dl,140

call wsg tone 1 = 679 Hz
mov dl,5
call wsg
mov dl,170
call wsg tone 2 = 694 Hz
mov dl,5
call wsg
mov t,-1

cloopl: strike chime 12 times
cmp t,12
jz cloop_exit
inc t
mov va,l44

cloop2: step attenuation
inc va

cnp va,160
jz cloopl
mov dl,va
call wsg
mov dl,va
add d1,32
call wsg
mov cx,0A000H
cloop3:
loop cloop3
jmp cloop2
cloop_exit:
ret

step delay

SO e N6 Ne e Ne Ne Mo Ne we Ne Ne e Ne Ne Ne We Ne Ne Ne Ne we we we Se we we we

~

shut off:
tone generator 1

silence:

mov dl,9FH
call wsg

mov dl,0BFH
call wsg

mov dl,0DFH
call wsg

mov dl,0FFH

tone generator 2

tone generator 3

Se S Se Ne e we we we

noise generator

-74- RC Computer

PICCOLINE 6. Sound

wsg: ; write to sound
mov ax,12 ; device
int 28H ;
ret

t db 0

va db 0

6.2 Programming Noise

The noise generator produces pseudorandom noise by means of
a shift register. The rate at which the register shifts
determines whether the noise contains a majority of high-
frequency or low-frequency components.

To change the output of the noise source, change the noise-
control and noise-attenuation registers. Both use single-
byte commands with the following format.

1 RO R1 R2 x FB NF0 NF1

The FB bit controls the feedback in the noise-generator
shift register. If the FB bit is a logical 1, the result is
white noise. If the FB bit is a logical 0, the feedback is
disabled, and a lower-frequence periodic noise is produced.

Two bits, NF0 and NF1l, control the clock frequency fed to
the noise-generator shift register. Four options are avail-
able:

Three options select fixed rates, the fourth selects the
output from tone generator 3 as the noise generator shift
register clock.

NFO NF1 Shift rate
0 0 clock rate/512
0 1 clock rate/1024
1 0 clock rate/2048
1 1 tone generator 3 output

where clock rate = 2 MHz
Example

; The following subroutine generates an
; explosion sound

RC Computer 75~

6. Sound PICCOLINE

explosion:
call silence

mov dl,0E4H set high pitched

Ne Ne we

call wsg white noise
mov va,OEFH
eloopl:
inc va step attenuation

jz eloop_exit
mov dl,va

[TR

call wsg
mov cx,0FFFFH step delay
eloop2:
loop eloop2 H
jmp eloopl H
eloop_exit:
ret ;
silence: ; shut off:
mov dl,9FH ; tone generator 1
call wsg H
mov dl,0BFH ; tone generator 2
call wsg ;
mov dl, ODFH ; tone generator 3
call wsg ;

mov dl,0FFH noise generator

wsg: ; write to sound
mov ax,12 ; device
int 28H ;
ret ;

va db 0

-76- RC Computer

7. Cassette Tape

The PICCOLINE standard configuration includes a cassette
tape interface. The interface control is implemented in
software by using Timer 0 of the 80186 to control the data
of the cassette recorder.

This chapter describes the interface to the cassette tape.
The plug definition of the interface can be found in ref.5
(appendix D).

7.1 Cassette Tape Control‘

The cassette tape control is implemented in software in the
following way.

Timer 0 output from the 80186 is used to control the output
data to the cassette recorder. The method used in the
existing driver is to set Timer 0 to the period of the
desired data bit. The timer is set to a period of
approximately 1 millisecond for an one bit and 0.5
millisecond for a 2ero bit. The timer then outputs a square
wave with the period given by the count register (see fig.
7.1). When more data bits are written the period of the
timer is changed on the fly.

A detailed description of how to program Timer 0 can be
found in the Intel documentation of the 80186 CPU.

0.25 millisec
—_

I : 0 bit

. 0.5 millisec

4
1

: 1 bit

1 millisec ,

Fig.7.1 Square wave of data bits.

RC Computer -77-

7. Cassette Tape PICCOLINE

Cassette input data is read on the I/O-address 70H (112)
bit 0. A one bit read corresponds to a high pulse of the
data bit and a 0 bit read to a low pulse (see fig.7.1). By
continously reading the pulse value it 1is possible to
determine the period of the square wave and thereby to
determine the value of the data bit. Timer 0 is wused for
measuring the pulse width of the sgquare wave.

Note

Since both reading from and writing to the cassette tape
is very time dependent it may be necessary to turn off
all interrupts while reading or writing.

The casssette drive motor is controlled (on/off) by I/O0-
address 76H (118), see fig.7.2.

Cassette input and output are enabled or disabled by I1/0-
address 76H (118). This can be very usefull for instance
while accelerating or descelerating the cassette drive mo-
tor.

I1/0 address Output Operation
hex dec value
76 118 2 Motor on
76 118 3 Motor off
76 118 1 Enable cassette
76 118 0 Disable cassette

Fig.7.2 Cassette Control.

7.2 Cassette Tape Driver

Because the CCP/M operating system does not support a
cassette tape this device is accessed through Int-28h
function calls.

Before describing the driver functions the general format
of the data written on the cassette tape is described.

-78- RC Computer

PICCOLINE 7. Cassette Tape

7.2.1 Data Record Architecture

All data written on the cassette tape are written as

cassette records. A cassette record consist of following
entries:

block

[o X Nel
[e R Nel

3
;

where each data block contains 128 bytes of data, and the
CRC field 1is a two byte CRC check. The last data block is
extended to 128 bytes.

The delay after start of motor is approximately 1.5
seconds.

The header field consist of following entries:

Header
AL
. N\
Leading Recard Record Number Data
1-bits 0| type mamber of bytes block
(byte) (word) (word)
|_Synchronization bit

where the leader consist of 2024 ones (used to eliminate
problems caused by a slow accelerating cassette motor). The
synchronization bit tells when the leader is finished. The
record type tells what kind of record this is,- either
"file header”, "data record” or "end of file".

RC Computer -79-

7. Cassette Tape PICCOLINE

A data file usually consist of consequtive data records.
Therefore to keep track of the records a record number is
saved in the header. Finally the header contains a field
containing the number of bytes in this record.

The normal format of a file written on cassette tape is:
First a file header record describing the file (name,
type,..). Then a number of data records and finally an end
of file record.

Following five Int-28h functions can be used for reading
and writing files of the kind mentioned above.

7.2.2 Cassette Write File Header

This function writes data from the specified output buffer
into a file header record on the cassette tape.

Registers on entry:

AL = 27
CX = Number of bytes in output buffer
DX = Offset address to output buffer

Topmost element on stack contains segment register of
output buffer.

Registers on return:

AX = 0
CX =0
DX = Offset (in output buffer) to the byte after the

last one written
BX is modified.
Stack is unchanged.

7.2.3 Cassette Write Next Data

This function writes data from the specified output buffer
into a data record on the cassette tape.

Registers on entry:

AL = 29
CX = Number of bytes in output buffer
DX = Offset address to output buffer

Topmost element on stack contains segment register of
output buffer.

-80- RC Computer

PICCOLINE 7. Cassette Tape

Registers on return:

AX = 0
cX =0
DX = Offset (in output buffer) to the byte after the

. last one written

BX is modified.

Stack is unchanged.

Note

The cassette driver itself assigns a record number to the
record. A file header record 1is allways assigned record
number 0. The succeeding data records are then assigned
record number 1, 2, 3,... etc. That is, in order to get a

proper record numbering, data records have to be
preceeded by a file header record.

7.2.4 Cassette Write End of File

This function writes an end of file record on the cassette
tape.

Registers on entry:
AL = 40
Registers on return:

AX = 0
BX, CX and DX are modified

7.2.5 Cassette Read File Header

This function reads the data of a file header record on
cassette tape into the specified input buffer.

Registers on entry:

AL = 26
CX = Max number of bytes to read
DX = Offset address to input buffer

Topmost element on stack contains segment register of
input buffer.

RC Computer -81-

7. Cassette Tape PICCOLINE

Registers on return:
AL Function result

ok

CRC error

no data on tape (time out}

no leader found (after 10 tries)

wrong record number

end of file

N W H O

AH and BX are modified

Number of bytes actually read

Offset (in input buffer) to the byte after the
last byte read

Stack is unchanged.

=]
>
won

Note
The number of bytes actually read is the maximum of the

specified number of bytes and the number of bytes
actually in the record.

7.2.6 Cassette Read Next Data

This function reads the data of the next data record on
cassette tape into the specified input buffer.

Registers on entry:

AL = 28
CX = Max number of bytes to read
DX = Offset address to input buffer

Topmost element on stack contains segment register of
input buffer.

-82- RC Computer

PICCOLINE

7. Cassette Tape

Registers on return:

AL
ok

L T I T I I | B 1}

M WNHFO

Function result

CRC error
no data on tape (time out)

no leader found (after 10 tries)
wrong record number

end of file

AH and BX are modified
CX = Number of bytes actually read

DX = Offset (in input buffer)

last byte

read

Stack is unchanged.

Note

to the byte after the

If the record number of the data record is different from

the preceeding record number

occurs (AL = 4).

Example

Ne e Ne e we

console.
cseg

mov al,27
mov c¢x,length

mov dx,offset
push ds
int 28h

mov al,29
mov cx,length
mov dx,offset

int 28h
mov cl,9

mov dx,offset
int 224

textoutl
textoutl

textout2
textout2

wait_text

Ne Ne we we we

Se Se Se wo w.

.~

incremented by one an error

This program writes a file header record followed by

a data record to cassette tape. Then it waites for
user to rewind the tape before reading the two records
again. Finally the characters read are written on the

write file header
nunmber of bytes in CX
offset in DX

segnent on top of stack
write it!

write next data record
number of bytes in CX
offset in DX

segment allready on stack
write it!

write string
on console

RC Computer

-83~

7. Cassette Tape PICCOLINE
mov cl,1 ; read character
int 224 ; from keyboard
mov al,26 ; read file header
mov ¢x,100 ; max no of chars
mov dx,offset textin
; segment allready on stack
int 28h ; read it!
mov al,28 ; read next data
mov ¢x,100 ; max no of chars
; offset allready in DX
; segment allready on stack
int 28h ; read it!
pop ds ; remove segment from stack
mov cl,9 ; write string
mov dx,offset textin ; on console
int 224
mov c¢x,0 ; terminate process
int 224
dseg
textoutl db 'PICCOLINE '
textout2 db 'the best school micro §'
wait_text db 'rewind tape and press any key',10,13,'S’
textin rb 100
end
-84- RC Computer

8. Disk System
The disk configuration of a PICCOLINE consists of:

0,1 or 2 floppy disk drives
0 or 1 memory disk

Floppy disk drives are always resident inside the PICCOLINE
Disk/Printer-Controlunit (DPC). Up to 4 PICCOLINES are able
to share the same DPC. Therefore a PICCOLINE has to reserve
the floppy disks before accessing them. This is described
in section 8.4.

The disk naming conventions are as follows.

1. disk drive A
2. disk drive B
Memory disk M

8.1 Disk Characteristics

The PICCOLINE diskformat uses a sector to sector skew
factor of 1, and a track to track skew factor of 0, i.e. no
skewing at all.

The PICCOLINE floppy disks, although the size of a 5 1/4"

disk, use a format equivalent to an 8" double sided/dual
density disk.

Drive performance:

Capacity 1604 Kbytes unformatted
1232 Kbytes formatted

Recording density 9646 BPI1

Track density 96 TPI1
Cylinders 77

Tracks 154

Encoding method MFM
Rotational speed 360 RPM
Transfer rate 500 Kbits/sec
Latency (average) 83 msec

RC Computer -85-

8. Disk system

PICCOLINE

Access time

Average 91 msec
Track to track msec
Settling time 15 msec
Head load time 50 msec
Motor start time sec
Floppy disk format:
Capacity 1232
Cylinders 77
Tracks 154
Sectors/track 8
Sector length 1024 Bytes
Precompensation (write)
Cylinder 0-76 125 nsec

Track format:

50

1150
600

Sector format:

[N =
HFWRNNHRRRREWN

-
o
N
>

wm
r g

No. of bytes
80
12

LR I N S S 2R AR 1

LR N I R 2R E I BN NS 2R B 2 .2

K bytes formatted

Value (hex)

4E

00

F6 (writes C2)
FC (index mark)
4E (gap 1)

sec (see below)
4E (gap 4)

4E (filler)

00 (gapl/gap3)

F5 (writes Al)

FE (ID addres mark)
track no.

sector no.

03 (sector length)
F7 (2 CRC written)
4E (gap 2)

00

F5 (write Al)

FB (data addressmark)

E5 (data)
F7 (2 CRC written)
4E (gap 3)

~86-

RC Computer

PICCOLINE 8. Disk system

CCP/M drive characteristics:

77 cylinders per disk
2 track per cylinder
8 sectors per track
1024 bytes per sector
2 sectors per block (2 K bytes block size)
2 reserved tracks
616 blocks per disk
384 directory entries (FCB's) per disk
128 directory entries (SFCB's) per disk
1200 K bytes total disk capacity

8.2 Floppy Disk Controller

The floppy disk controller is based on the WD2797 control-
ler chip. The floppy disk controller (FDC) and an external
control register (FCR) (for precompensation, motor on/off
and drive select) are accessed using the following I/0 ad-
dresses:

Address Direction Function
0280H I Read FDC status register
o] Write control command
02828 I Read FDC TRACK register
(o} Write FDC TRACK register
0284H I Read FDC SECTOR register
(o} Write FDC SECTOR register
0286H I Read FDC DATA register
[o} Write FDC DATA register
0288H o Write FCR register
I Not defined
028EH o] Reserve floppy
I Bus 7 = 0 means wait upon floppy
Bus 7 = 1 means ack from floppy
0290H (o} Release floppy

Further information on programming the registers on address
0280H-0286H may be found in the Western Digital documenta-
tion.

RC Computer -87-

8. Disk system PICCOLINE

The FCR register has the following encoding:

Bit Name Description
0 Drive select 0 selects drive 0
1 selects drive 1
1 Motor 0 0 Motor off
1 Motor on
2 Motor 1 0 Motor off
1 Motor on
3 Write Precomp. enable 0 Disabled
1 Enabled
4 Not used
5 Not used must be 0
6 Not used must be 1
7 Ready control 0 Ready from drive

1 Ready always set
Precompensation is normally applied in the following way.

Cylinder no. Precompensation

0-77 125 nsec.

The FDC is normally initialized to transfer data in DMA-
mode using DMA channel 0. In order to avoid data overrun,
DMA channel 0 is assigned a high priority (see 2.2.3) when
it is used by the FDC.

8.3 Floppy Disk Driver

The XIOS floppy disk driver supports the three basic CCP/M
disk I/0 functions:

IOSELDSK
IOREAD
IOWRITE

See ref.3 for detailed information about these functions.
Additionally the XIOS floppy disk driver supports several

int-28h functions which are described in appendix A (func-
tions 5, 8, 9, 10, 11 and 13).

-88~- RC Computer

PICCOLINE 8. Disk system

8.4 Reservation of Shared Disks

The floppy disks of a PICCOLINE system are resident inside
the PICCOLINE Disk/Printer-Controlunit (DPC), and can be
shared by up to 4 PICCOLINES. Therefore a PICCOLINE has to
reserve the DPC before accessing it and release it
afterwards. Usually this is handled by the disk driver
described in section 8.3, but if the disk controller is
accessed directly the following int-28h functions can be
used.

8.4.1 Reserve Shared Disk

This function reserves the shared disk resident inside the
PICCOLINE DPC. The function returns when reservation is
done.

AL
AH

42
1 (Reserve)

non

8.4.2 Release Shared Disk

This function releases the shared disks resident inside the
PICCOLINE DPC.

AL
AH

42
2 (Release)

RC Computer ~-89-

8. Disk system PICCOLINE

-90- RC Computer

9. Parallel (Printer) Interfaces

The parallel interfaces on the PICCOLINE system are prima-
rily intended for attachment of printers, but may also be
used as general input/output ports.

The CCP/M operating system supports the parallel interfaces
as printer devices. If no mapping to the printers (in the
connection to the net) is used, printer 0 will be the port
on the CPU, called the local interface, and printer 2 will
be the DPC (Disk/Printer-Controlunit) interface.

The main difference between the two interfaces is that the
DPC interface can be shared by up to 4 PICCOLINES, and
therefore it is necessary to reserve the interface before
use and release it afterwards.

9.1 Parallel Interfaces Description

An overview of the electrical signals wused in the
interfaces is shown below.

pin number name

1 STROBE

2-9 8 data bit
10 ACK

11 BUSY

12 PAPER END
13 SELECTED
14 AUTO LINE FEED
15 FAULT

16 INIT PULSE
17 SELECT
18-25 0 Volt

The interface consists of 4 registers.

- Data output register, directly controlling the data pins
if enabled.

- Data input port, reflecting the state of the data pins at
the time of reading.

- Control output register, directly controlling 4 control
output pins and enabling of data output register and
interrupt.

- Status read port, reflecting the state of the 8
control/status pins at the time of reading.

RC Computer -9]1-

9. Parallel Interface PICCOLINE
The registers have the following layouts:
Data output register

dec
Local interface OUT 250H 592
DPC interface OUT 28AH 650
Connector

Bit Pin no. Description

0 2 If the output register is enabled (i.e.

1 3 control register, bit 4 = 0) then a bit in

2 4 the register directly controls the

3 5 corresponding connector pin as follows:

4 6

5 7 Bit state TTL ouput

6 8 0 LOow

7 9 1 HIGH

Data input port

dec
Local interface IN 250H 592
DPC interface IN 28AH 650
Connector

Bit Pin no. Description

0 2 Read back of data output register, or if this

1 3 is disabled the state of the connector pins.

2 4

3 5 Pin TTL level Bit state read

4 6 LOW 0

5 7 HIGH 1

6 8

7 9

Z92-

RC Computer

PICCOLINE 9. Parallel Interface

Control register

dec
Local interface OUT 260H 608
DPC interface OUT 28CH 652

Bit 0-3 of this register are connected through open collec-
tor inverters to corresponding connector pins (all four
having pull up resistors to +5V).

Bit no. Signal (Pin no.) Description

0 -,STROBE (1) See above
1 -,AUTOLF (14) See above
2 -,INIT (16) See above
3 -,SELECT (17) See above
4 OUT DISABLE Output register disable
if 0: enables output register
line drivers
if 1: three-states the output
register and allows pins
2-9 to be used for inputs.
5 NOT USED
6 NOT USED
7 INT DISABLE Interrupt disable

if 0: enables interrupts when
BUSY input pin (11) is
LOW.

if 1: disables interrupts.

Interrupts from the parallel interfaces has been asigned:

IR interrupt vector address
Local interface 6 98H
DPC interface 2 88H
Status input port
dec
Local interface IN 260H 608
DPC interface IN 28CH 652

Each bit in this port represents the inverse state of a pin
in the connector. The 5 LSB are inputs only while the 3 MSB
inputs the state of 3 of the open collector outputs.

RC Computer -93-

9. Parallel Interface PICCOLINE

Connector
Bit no. Pin no. Ssignal description

0 11 NOT BUSY, 0 when input signal BUSY
is high.

1 10 ACK, 0 when input signal is high.

2 15 FAULT, 0 when input signal is high.

3 12 NOT PAPER END, 0 when input signal
is high.

4 13 NOT SELECTED, 0 when input signal
is high.

5 1 STROBE, 0 when input signal is
high.

6 16 INIT, 0 when input signal is high.

7 17 SELECT, O when input signal is
high.

9.2 sample Printer Driver Routines

In the following an example of printer driver routines to
the local interface is listed

list_flag

Equ 12

list_init:
; get sysdat segment

mov
int
mov

cl,154
224
sysdat,es

; get dispatcher address

mov
mov
mov
mov

ax,es:.38
dispatcher,ax
ax,es:.40
dispatcher+2,ax

; get supervisor address

nmov
mov
mov
mov

ax,es: .0
supervisor,ax
ax,es:.2
supervisor+2,ax

-94-

RC Computer

PICCOLINE 9. Parallel Interface

sysdat dw
dispatcher rw
supervisor rw

; initialize interrupt vector

Xor ax,ax

mov es,ax

mov di,98H

mov ax,offset parallel_interrupt
stos ax

mov ax,Cs

stos ax

ret

[SASK-)

list_out:

’

Entry: CL = character

; output character to register
mov al,cl

mov dx,250h

out dx,al

; interrupt disabled, SELECT and STROBE on
mov al,10001001b

mov dx,260h

out dx,al

; interrupt disabled, SELECT on, STROBE off
mov al,10001000b
out dx,al

; allow printer to activate BUSY before enabling
; interrupt (otherwise interrupt will occur at the
; moment interrupt is enabled)

mov c¢x,3

list_delay:

loop list_delay

; Interrupt enable, SELECT on, STROBE off
mov al,00001000b
out dx,al

; wait for interrupt
mov dx,list_flag
call flagwait

ret

RC Computer -95-—

9. Parallel Interface PICCOLINE

list_status:

H Exit: AX = 0 if not ready
0ffffh if ready

’

; test if printer is present and selected
mov dx,260h
in al,dx
test al,l1l6
jnz not_ready
test al,8
jz not_ready
mov ax,0ffffh
ret

not_ready:

Xor ax,ax
ret

parallel_interrupt:

; save context
push ds

push es

pusha

; set ds to sysdat segment
mov ds,sysdat

; disable interrupt
mov al,10000000b
mov dx,260h

out dx,al

non specific end of interrupt to external and
internal interrupt controller

mov al,20h

out 0,al

mov dx,0f£22h

mov ax,8000h

out dx,ax

.
’
.
’

; signal interrupt
mov dx,list_flag
call flagset

-96- RC Computer

PICCOLINE 9. Parallel Interface

; reestablish old context

popa
pop es
pop ds

jmpf cs:dword ptr dispatcher

dev_flagset equ 133
dev_flagwait equ 132
flagset:

push dx

mov cl,dev_flagset
call supif_1

pop dx

test ax,ax

jz flagset_ret

; if error = 'ignored' then try again
cmp cl,2ah
jz flagset
flagset_ret:
ret

flagwait:
mov cl,dev_flagwait

supif:
; get running process
mov bx,rlr

; get process's UDA
mov es,cs: 10HEbxA

supif_ 1:
xor ch,ch
mov ds,sysdat)
callf supervisor
ret

9.3 The DPC Interface

Because the DPC interface can be shared by up to 4
PICCOLINEs it has to be reserved before use. After the
reservation 1is acknowledged the interface is owned by the
current PICCOLINE until released again.

This section describes two 1Int-28h functions avaible for
reserving and releasing the DPC interface.

RC Computer -97-

9. Parallel Interface PICCOLINE

9.3.1 Reserve the DPC Interface
This function reserves the DPC interface:

41
1 (Reserve)

AL
AH

non

Note that return take place only when then DPC has been
reserved.

9.3.2 Release the DPC Interface

This function releases the DPC interface:

41
2 (Release)

AL
AH

non

-98~ RC Computer

10. Serial Interface

This chapter describes the serial communication support on
the PICCOLINE.

The PICCOLINE standard configuration does not include a
serial communication controller. But if MF905 V24 Serial
Interface (iSBX351) is installed the system supports this
serial communication channel.

10.1 Standard Serial Communication Support

CCP/M supports the serial communication channel either as
an extra console device (with console number 5) or as a
list device (with device number 1).

when the channel is operated as a console device access is
gained in the same way as access to the normal virtual
consoles i.e. using CCP/M console input/output functions
(see ref.2).

When the channel is operated as a list device, it is acces-
sed through CCP/M's list device functions (ref.2).

The various operating parameters (such as baudrate and se-
lection between printer mode and console mode) are set
using the KONFIG program (see ref.5).

10.1.1 V24 Bandshake Scheme

When operating the communication channel in the standard
asynchronous mode the connected devices must adhere to the
handshake scheme, based on the signals RTS (Request To
Send), DTR (Data Terminal Ready), CTS (Clear To Send) and
TxD (Transmit Data) as illustrated below.

DTR J
RTS
TxD I L A

The receiver will start to sample data from the RxD (Recei-
ve Data) line when the DCD (Data Carrier Detect) signal
becomes active.

RC Computer . -99-

10. Serial Interface PICCOLINE

10.2 Serial Communication Controller

The channel is only capable of operation in asynchronous
mode, but may be strapped to operate in synchronous mode
instead. Detailed information of how to programme the
channel can be found in ref.ll1l.

The channel consist basically of

- a 8251A USART chip used to convert parallel output
data into serial output data and serial input data
into parallel input data.

- a 8253 PIT used to generate the baud rate clock of
the channel.

These chips are programmed through a sequence of I/0O-Read
and I1/0-Write commands. As shown in the following table
each of the chips recognizes eight seperate 1I/0-addresses
used to control the various programmable functions. Where
two or four addresses are listed for a single function
either addresses may be used.

7] Chip
(n:;r)ou Select Function
'3001 304 ’ Write: Data
308, 30¢ 82514 Read: Data
USART
302 ’ 306 ’ Write: Mode or Command
30a,30e Read: Status

Write: Counter 0
3100r318 (Load Count + N)
Read: Counter 0

Write: Counter 1
(Load Count + N)
Read: Counter 1

3120r3lo

8253 PIT

Write: Counter 2

314or3le (Load Count = N)
Read: Counter 2

Write: Control
3l6or3le Read: None

Fig.10.1 I/0 Address Assignments

-100- RC Computer

PICCOLINE 10. Serial Interface

The interrupts from the iSBX351 are connected to the 80186
CPU INT1 and INT3 pins. The receiver and transmitter are
assigned interrupt level ODH and OFH respectively. This
corresponds to the following interrupt vector addresses:

Interrupt address
hex dec

receiver 0:34 0:52

transmitter 0:3C 0:60

10.2.1 Asynchronous Communication

Counter 2 of the 8253 PIT is used to generate both receiver
and transmitter baud rate. Therefore it is impossible to
have different receiver and transmitter baud rate in the
standard configuration. If it 1is necessary to have
different baud rates it is possible to strap the channel to
use two different counters of the PIT to generate the
different baud rates.

In order to get the appropriate baud rate the counter 2
register of the PIT is set to one of the values in the
following table.

Value Baud rate
1024 75
698 110
512 150
256 300
128 600
64 1200
32 2400
16 . 4800
8 9600

Example

Initialize the 8253 PIT to generate a 2400 baud rate clock
for the serial channel (both receiver and transmitter baud
rate).

mov dx,316H
mov al,O0B6H
out dx,al

PIT control register
select counter 2. Read
least sign. byte first
then most sign. byte

~e S Ne Se

RC Computer -101-

10. Serial Interface PICCOLINE

PIT counter 2
2400 baud
least significant byte

mov dx,316H
mov ax,32
out dx,al
exch ah,al
out dx,al

~e Se Se we we

most significant byte

Further information about the programming af the 8253 PIT
and the 8251A USART can be found in ref.l1l.

10.3 Initializing the iSBX351

Two Int-28h functions are available for initializing the
iSBX351 to operate in standard asynchronous mode.

Int-28h function 24 1is used to initialize the channel
according to a parameter block with the following format.
The format is chosen to be the same as the format used in
the Rc Partner. Hereby the serial communication channel of
the PICCOLINE system is made work like channel B of the
Partner system.

+ 0 1 (allways)

+ 1 Mode (0: Console; 1l: Printer)

+ 2 Protocol (0: None; 1: Xon-Xoff)

+ 3 Receiver baud rate (0: 75 1: 75; 2: 110;
3: 150; 4: 300; 5: 600; 6: 1200; 7: 2400;
8: 4800; 9: 9600)

+ 4 Transmitter baud rate (as for receiver)

+ 5 No. of subsequent write register
specification (see relevant INTEL doc.)

+ 6 Register no.

+ 7 Register contents

+ 8 Register no.

+ 9 Register contents

etc.

-102- RC Computer

PICCOLINE 10. Serial Interface

Since the channel uses only one baud rate generator only
the receiver baud rate field has any effect.

The write registers mentioned corresponds to the write re-
gisters of the INTEL 8274 serial controller of the Partner
system. The format of the registers can be found in section
3.2 (NVM byte 14-17) and in the relevant INTEL documenta-
tion (conserning the INTEL 8274 serial controller). Only
parameters of write register 3-5 of the 8274 has any effect
in the PICCOLINE system.

A pointer to the parameter block must be on the stack when
the function is entered.

Registers on entry:
AL = 24
Stack on entry:

+2 = Parameter block segment
+0 = Parameter block offset

Stack on return:

Unchanged.

Example

CSEG
ORG 100H
SetSIO:
; Put pointer to ParamBlock on stack
Mov AX,0ffset ParamBlock

Push CS

Push AX

Mov AX,24

Int 28H

; clean-up stack
Add Sp,4

Ret

RC Computer -103-

10. Serial Interface PICCOLINE

ParamBlock:
Db 1 ;
Db 0 ; Console mode
Db 1 ; Xon-Xoff
Db 8 ; Receive 4800 baud
Db 8 ; Transmit 4800 baud
Db 3 ; 3 registers to program
Db 4,47H; write register 4:
; Clock * 16
; 1 stopbit

Even parity
Db 3,61H; write register 3:
; Transmit character length = 7 bit
; Receive enable
Db 5,0AAH;write register 5:
; Data Terminal Ready
; Receive character length = 7 bit
; Transmit enabled
; Request To Send

END
Int-28h function 50 is wused to reestablish the standard

initialization (as it is done when the PICCOLINE is
booted). The function has no parameters.

Example
ResetSIO:
Mov AX,50
Int 28H
Ret

Int-28h function 23 is wused to read the status of the
iSBX351 controller. The status returned is encoded in the
following way (in order to be compatible to the rr0 and
rrl registers of the communication channel B of the Partner
system) .

Registers on entry:
AL = 23
Registers on return:

AX = Status

-104- RC Computer

PICCOLINE 10. Serial Interface

where the status in AX is encoded in the following way:

bit 0 = Receiver ready
bit 2 = Transmitter empty
bit 3 = Data set ready
bit 5 = Transmitter ready
bit 12 = Parity error

bit 13 = Overrun error

bit 14 = Framing error

Further details can be found in the relevant Intel docu-
mentation.

10.4 Sample Asynchronous Communication Program

All examples in this chapter use the following decla-
rations:

P_Flagset Equ 133; ccpP/M flagset function
P_Flagwait Equ 132; - flagwait -
ReceiveFlag Equ 13; Flag allocated to receive
TransmitFlag Equ 14; Flag allocated to transmit
DataPort Equ 300; channel data port
CommandPort Equ 302; channel command port

Before any data transfer can take place the hardware and
software must be initialized.

The responsibility of the initialization routine is to do
all hardware and software initialization needed (e.g. set-
ting up the iSBX351 and initialize all driver variables).

Example

Initialize:
; get sysdat segment
Mov CL,154
Int 224
Mov sysdat,ES

RC Computer -105~-

10. Serial Interface PICCOLINE

; get dispatcher address
Mov AX,ES:.38

Mov dispatcher,h AX

Mov AX,ES:.40

Mov dispatcher+2,AX

; get supervisor address
Mov AX,ES:.0

Mov supervisor,bAX

Mov AX,ES:.2

Mov supervisor+2,AX

; initialize interrupt vectors

cli

Xor AX,AX

Mov ES,AX

Mov Di,3CH ; vector for transmit interrupt
Mov AX,0Offset TransmitInterrupt

Stos AX

Mov AX,CsS

Stos AX

Mov Di,34H ; vector for receive interrupt
Mov AX,Offset Receivelnterrupt

Stos AX

Mov AX,CS

Stos AX

sti

; Initialize iSBX controller (see 10.3)
Call SetSIO

Ret
sysdat dw 0
dispatcher rw 2
supervisor rw 2

The receive routine is executed when the user program needs
data from the communication line.

The program waits for data by means of a P_Flagwait opera-
ting system call. This operating system call will suspended
the program until data has arrived and this has been sig-
nalled by the interrupt routine by means of a P_Flagset
operating system call. To avoid loss of data it may be ne-
cessary to maintain a circular buffer which is filled with
received data by the interrupt routine and emptied by the
input routine when the user program needs data.

-106- RC Computer

PICCOLINE 10. Serial Interface

Example

Receive:
; wait for receive interrupt
Mov DX,ReceiveFlag
Mov CL,P_FlagWait
Int 224

; get character from buffer
Mov AL,char
Ret

char db 0

The Transmit routine is - executed when the user program
wants to send data on the communication line.

The Transmit routine sends data and then wait for comple-
tion by means of a P_Flagwait operating system call. When
the controller completes its task the transmitter interrupt
service routine will signal this by means of a P_Flagset
operating system call.

Example

Transmit:
Mov DX,DataPort
out DX,AL

; wait for transmitter interrupt
Mov DX,TransmitFlag

Mov CL,P_FlagWait

Int 224

Ret

In order to handle the interrupts from the serial communi-
cation channel the system has to be enhanced with two in-
terrupt routines:

1) Transmit interrupt routine. This routine will gain con-
trol when the controller has sent a character and is
ready for the next one. The routine should clear the
interrupt by issuing an 'end of interrupt' command to
the INTEL 80186 interrupt controller, set the appro-
priate flag by means of a P_Flagset operating system
call (see above) and force a process dispatch to allow
a process that waits for the flag to continue execu-
tion.

RC Computer -107-

10.

Serial Interface PICCOLINE

2) Receive interrupt routine. This routine will gain con-
trol when the controller has received a character. The
routine is responsible for reading and buffering the
character, for issuing an ‘end of interrupt' command,
for setting the appropriate flag and for forcing a pro-
cess dispatch.

Example

TransmitInterrupt:

; save context
Push DS

Push ES

Pusha

; set ds to sysdat segment
Mov DS,CS:sysdat

; execute non specific end of interrupt
Call Sio_EOI

Mov DX,TransmitFlag
Call Flagset
Jmp DispatchReturn

Receivelnterrupt:

; save context
Push DS

Push ES

Pusha

; set ds to sysdat segment
Mov DS,CS:sysdat

; read character from sio
Mov DX,DataPort
In AL,DX

; save character in buffer
Mov CS:char,AL

; execute non specific end of interrupt
Call sio_EOI

; signal program that character is received
Mov DX,ReceiveFlag
Call Flagset

-108- RC Computer

PICCOLINE

10. Serial Interface

; force a dispatch
Jmp DispatchReturn

Sio_EOI:
Mov
Mov
Out
Ret

DX, 0FF22H
AX,8000H
DX, AX

DispatchReturn:
; reestablish old context
Popa
Pop ES
Pop DS
jmpf cs:dword ptr dispatcher

NodispatchReturn:
; reestablish old context
Popa
Pop ES
Pop DS
Iret

FlagSet:
Push Dx
Mov CL,P_Flagset
Call supif_1
Pop DX
Test AX,AX
Jz FlagSet_ret

’
’

non specific end of
interrupt to internal
interrupt controller.

; if error code='flag set ignored'

; then try again

Cmp CL,2aH

Jz FlagSet
FlagSet_ret:

Ret

FlagWait:

Mov CL,P_Flagwait

Suplf:
; get running process

; (sysdat:68 is pointer to running process)

Mov BX, .68

; get process's UDA
Mov ES,CS:10HXBXA

RC Computer

-109-

10. Serial Interface PICCOLINE

SupIf_1:
Xor CH,CH
Mov DS,sysdat
Callf supervisor
Ret

Example

The following program uses the routines described above to
indefinitely receive and transmit a character on the commu-
nication line.

CSEG
ORG 100H

Call Initialize
NextChar:

Call Receive

Call Transmit

Jmps NextChar

-110- RC Computer

11. Local Area Network

The network software in the PICCOLINE can be considered as
a collection of layers. The higher layers network software
such as DR-NET (ref.4) and IMC (refs.8,9) utilize a common
datalink service.

This section describes in detail the datalink service in-
terface enabling the programmer to implement higher layer
network software using the PICCOLINE datalink service. Fur-
thermore a detailed description of the datalink layer pro-
tocol, the RCLLC protocol, 1is given. This decription makes
it possible for the programmer to attach non RC-products to
the RC Local Area Network (LAN) at the datalink level.

The protocol and service defined in this section form an
extension to the proposed ISO LLC type 1 protocol and ser-
vice (ref.6), viz.:

- all frames which are wvalid according to the RCLLC
protocol are also valid ISO LLC type 1 frames

- RCLLC adds protocol functions and interface service
functionality to ISO LLC type 1 in a fashion which
one might choose to consider as a sublayer added on
top of an LLC type 1 sublayer

The services of LLC type 1 are data transfer on connection-
less data 1links, allowing multiple independent clients
within each station, plus facilities for point-to-point
loop back test traffic.

The essential service of the RCLLC layer, which constitutes
an extension to the type 1 service, is called client
network service. This service comprises the dynamic
configuration, maintenance and supervision of multiple
independent networks of clients. Connection-based data
transfer with sequence control and retransmission to avoid
loss of or damage to data is performed between any pair of
clients belonging to the same client network.

The RCLLC protocol assumes that the services of a Medium
Access Control layer are available. The services of this
layer are in the PICCOLINE mainly implemented by the 1Intel
82586 Ethernet controller (ref.10). To enable the program-
mer to access the controller directly, PICCOLINE specific
information about handling the controller is given.

RC Computer -111-

1ll. Local Area Network PICCOLINE

11.1 Fundamental Concepts

The following terms are used in this document with their
standard meaning as defined in the ISO model for Open
Systems Interconnection (ref.7): station, layer, entity,
peer, protocol, service primitive, datalink, connection.

Further concepts and terminology which are not necessarily
found in the ISO model, but used in this section, are defi-
ned in the following:

An RCLLC station is a station which 1is attached to the
local area network and hosts an RCLLC entity that
communicates with peer entities in other RCLLC stations
according to the RCLLC protocol. A station which supports
only the LLC type 1 protocol and not the full RCLLC
protocol is not considered an RCLLC station. Until the
RCLLC protocol is adopted by other manufacturers, an RCLLC
station will be the same as an RC product attached to the
network.

The Medium Access Control (MAC) layer is the only protocol
layer between the RCLLC layer and the physical network.
Each RCLLC station contains precisely one MAC entity and
one RCLLC entity. The station address is a unique address
which identifies the station within the local area network.
It follows that the station address is also a unique
address of the RCLLC entity.

The data units that are transmitted among RCLLC entities
using the MAC service are called RCLLC protocol elements.

A client is an RCLLC-user, i.e. an entity making use of the
RCLLC service and located in the layer above the RCLLC
layer.

An RCLLC Service Access Point (SAP) is the (logical) point
at which a client accesses the RCLLC service. Within an
RCLLC station each SAP is assigned a local SAP address in
the range 1..63. The complete SAP address is the pair
(station address, local SAP address) which uniquely
identifies a SAP within the local area network.

A SAP can be inactive, 1in which case it is effectively
unknown to the RCLLC layer so that all data and control
information addressed to it are discarded; or it can be
active. An active SAP can be used to obtain either type 1
service or client network service, but not both.

The RCLLC layer maintains a number of logical client
networks. A client network has a network number (within the

-112- RC Computer

PICCOLINE 1ll. Local Area Network

local area network), which must be in the range 1..63, and
comprises all active SAPs within RCLLC stations on the
local area network whose local SAP addresses are equal to
this number, and for which client network service has been
requested.

For all RC local area networks client network number 1 is
assigned to an IMC n:=twork, i.e. the IMC nodes in the RCLLC
stations of a local area network will all access the RCLLC
service using a local SAP address of 1. Similarly, client
network number 2 is used for DR NET.

Associated with each client network within a local area
network is a multicast address which delimits the RCLLC
stations that take part in the client network from all
other stations on the network; i.e. a frame which is
transmitted on the local area network with this multicast
address should be received by (the MAC entity within) a
station if and only if the station is an RCLLC station
containing a SAP belonging to the client network.

Each SAP belonging to a client network has an associated
SAP mask. The SAP mask is a 16-bit word. Two SAP masks
match if at least one bit position contains a one in both
masks, i.e. if a logical AND-operation yields a non-zero
result. The RCLLC layer will maintain connections between
all pairs of SAPs belonging to the same client network
whose masks match.

11.2 The Datalink Layer Service Interface

The datalink layer (the RCLLC entity) is implemented as a
CCP/M-86 Resident System Process named "NETDRV". This
process creates at runtime two child processes "XMIT" and
"REC". The process family will in the following description
be named the driver.

The concept 'a long pointer' will in the following descrip-
tion mean a pointer consisting of a segment and a offset
value and 'octet' will be used synonymous with 'byte’'.

The interaction between the driver and the client is
implemented as a message/answer concept utilizing the
CCP/M-86 gqueue interprocess communication facility. The
communication between the driver and a «client will have
four fundamental forms:

RC Computer -113-

11. Local Area Network PICCOLINE

REQUEST

The driver accepts requests written to a gqueue named
"link_req". This queue is created by the driver. The buffer
written to the gqueue will contain information of the
request kind and regquest specific parameters described
below. The resources (i.e. buffers) passed to the driver in
a request buffer must be regarded as locked and must not be
modified until release (see CONFIRM below).

CONFIRM

The driver will always respond to an issued request with a
confirm event. The purpose of the confirm event is partly
to signal to the client that his outstanding resource (e.i.
a data buffer) has been released and partly to inform the
client about the result of the issued request.

The driver will write confirm messages to a gueue created
by a client. This gueue is made known to the driver when
the client activates a SAP. The confirm gueue nmust be crea-
ted with a buffer size = 4 bytes and a number of buffers
that will ensure that the driver will not be suspended in
an attempt to write to the gqueue.

The format of the queue buffer is:

byte number

0 user buffer offset

2 user buffer segment
User buffer refers to the buffer pointer in the request
buffer (see below) passed by the client to the driver in
the confirmed request. The first three bytes of the buffer
will have the following format:
byte number

0 depend on the confirmed request

1 depend on the confirmed request

2 result of the confirmed request

-114- RC Computer

PICCOLINE 11, Local Area Network

The result can have one of the following values:

result value explanation
0 no problems
1 link down
2 protocol error - already one outstanding data

request on the requested connection

4 SAP class error - the requested service
requires that the SAP has been activated as a
RCLLC SAP

5 SAP class error - the requested service
requires that the SAP has been activated as a
type 1 SAP

6 SAP occupied by another client

7 can't activate a new SAP - no resources

8 illegal SAP number

9 data buffer too big (> 1076 bytes)

10 protocol error SAP removed - reason why

unsyncronized disconnect acknowledge

255 request not implemented

INDICATION

The indication event is signaled by the

driver to the

client to indicate an internal event which is significant

to the client i.e. a data buffer has been
connection has been established or removed.
The driver will write indication events to
by a client. This gueue is made known to
the client activates an SAP.

The indication queue must be created with a
bytes and a number of buffers that will
driver will not be suspended in an attempt
queue.

received or a

a queue created
the driver when

buffer size = 4
ensure that the
to write to the

RC Computer

-115-

11. Local Area Network PICCOLINE

The format of the queue buffer is:

byte number
0 indication structure offset
2 indication structure segment

The content of the indication structure will be described
below in the description of the individual indications.

NOTE

The indication structure must not be modified by the
client. Modifications of the indication structure can
make the system behave unpredictably.

INDICATION ACKNOWLEDGE

Whenever the driver writes an indication event to the
indication gqueue, it will pass resources (the indication
structure and in most cases a data buffer) to the client.
Immediately after processing the indication event (i.e.
copying a possible data buffer into a local buffer), the
client must return these resources to the driver with an
INDICATION ACKNOWLEDGE. In assembly language it is done
with a few lines of code:

; assumption ds:bx long pointer to the indication structure

;push parameters onto the stack

push ds ;segment part of the long pointer

push bx ;offset part of the long pointer

int 29h ;the software interrupt executes
;the indication acknowledge

add sp,4 ;clean up stack

11.2.1 RCLLC Services

The RCLLC services are obtained by a client through an ac-
tive SAP. A SAP can be used either for type 1 service or
for client network service, but not for both. The loop-back
test facility is available regardless of the choice of type
1 or client network service.

-116- RC Computer

PICCOLINE 11, Local Area Network

SAP Activation and Deactivation

There are four primitives to request activation and deac-
tivation of a SAP and to confirm the processing of these
requests. They are described in the following subsections.

11.2.1.1 ACTIVATE.request

The primitive which requests the activation of a SAP is
passed from a client to the driver by writing a request
buffer to the 'link_req' gqueue. The driver can support two

simultaneous SAPs of any type.

Format of the request buffer:

byte number
0 request kind = 0 (activate.request)
1 specifies the local SAP address of the
SAP to be activated (must be in the
range 1 - 63).
2 specifies whether type 1 service (value
= 1) or client network service (value =
0) is requested
3-4 gqueue ID for the indication gqueue
5-6 queue ID for the confirm gqueue
7-8 the 1length of the client information
{max 46 bytes)
9-10 client information offset
11-12 ciient information segment
13-14 unused

The indication queue and the confirm queue must be created
and opened by the client before any attempts to request
activation of a SAP. The queue IDs must be fetched from the
Queue Parameter Block (QPB see ref.2) after the gueues have
been opened.

Client_information is a data wunit which is transmitted and
passed to the remote client in the CONNECT_indication

RC Computer -117-

11. Local Area Network PICCOLINE

primitive whenever a connection is established between the
activated SAP and a remote SAP. The format of the client
information buffer is:
byte number

0-5 reserved by the driver

6-7 the SAP mask used to prevent establishment of
undesired connections, cf. section 11.1

8-45 client defined information

The length of the client information includes the reserved
bytes and the two SAP mask bytes.

11.2.1.2 ACTIVATE.confirm

The primitive which is issued in response to an
ACTIVATE.request primitive is passed from the driver to the
requesting client. This is done by writing a long pointer
(pointing to the client information buffer) to the clients

confirm queue.

Format of the returned client information buffer:

byte number
0 unused
1 confirm kind = 0 (activate.confirm)

2 confirm result indicates whether the SAP was
successfully activated

When a SAP has been activated for type 1 'service
UDATA.request primitives may be issued requesting the
transmission of data.

When a SAP has been activated for client network service,
the RCLLC layer will automatically begin to establish the
appropriate connections. As each connection is established,
the client will be informed by means of a
CONNECT.indication primitive and may subsequently request
transmission of data by issuing DATA.request primitives.

In either case, once a SAP has been activated, the client
may issue the TEST.request primitive to request a loop-back
test.

-118- RC Computer

PICCOLINE 1l. Local Area Network

11.2.1.3 DEACTIVATE.request
The primitive which requests the deactivation of a SAP is

passed from a client to the driver by writing a request
buffer to the 'link_req' queue.

Format of the request buffer:
byte number

0 request kind = 1 (deactivate.request)

1 specifies the local SAP address of the SAP to
be deactivated

2-3 deactivate buffer offset
4-5 deactivate buffer segment
6-14 unused

The deactivate buffer must be at least 3 bytes long and it
is returned to the client by the deactivate.confirm.

11.2.1.4 DEACTIVATE.confirm

The primitive which is issued in response to a
DEACTIVATE.request primitive is passed from the driver to
the requesting client. This is done by writing a long
pointer (pointing to the deactivate buffer) to the clients
confirm gueue. The deactivate confirm event is a signal to
the client, that all outstanding resources i.e. gueues or
databuffers can be regarded as released.

Format of the returned deactivate buffer:

byte number
0 unused
1 confirm kind = 1 (deactivate.confirm)

2 confirm result (always ok)

RC Computer -119-

11. Local Area Network PICCOLINE

Loop-back Test Service

The loop-back test facility allows a client to request a
test of the transmission path between the local RCLLC
entity and one or more remote RCLLC entities without
requiring the participation of any remote client(s). This
is done by transmitting a TEST protocol element (command)
to the specified RCLLC entity/entities to which it/each of
them must respond by transmitting a TEST protocol element
(response) addressed to the requesting client (SAP).

Note
No indication is given if the responding protocol element
fails to arrive from any or all of the RCLLC entities
addressed in the TEST.request primitive.

11.2.1.5 TEST.request

The primitive, which requests that one or more transmission

paths be tested, is passed from a client to the RCLLC
entity by writing a request buffer to the 'link_req' queue.

Format of the request buffer:

byte number
request kind = 4 (test.request)

DSAP is the remote SAP address.

SSAP is the local SAP address.

o N

Ethernet address. This is the MAC address of
the remote RCLLC entity; a multicast or
broadcast address may be used in place of a
specific station address to request testing
of multiple transmission paths.

9-10 length of the test buffer
11-12 test buffer offset
13-14 test buffer segment
The first three bytes in the test buffer are reserved by

the driver. The 1length of the test buffer includes the
bytes reserved by the driver.

-120- RC Computer

PICCOLINE 11. Local Area Network

11.2.1.6 TEST.confirm

The primitive which is issued in response to a TEST.request
primitive is passed from the driver to the client. This is
done by writing a long pointer (pointing to the test buf-
fer) to the clients confirm queue.

Format of the returned test buffer:

byte number
0 DSAP is the remote SAP address.
1 confirm kind = 4 (TEST.confirm)

2 result indicates how the transmission of test
data unit went, e.g. 'no problems' or ‘'too
many collisions'

11.2.1.7 TEST.indication

The primitive which indicates that a TEST response protocol
element addressed to the 1local SAP has been received is
passed from the driver to the client. This is done by
writing a long pointer (pointing to the indication
datastructure) to the clients indication queue.

Format of the indication datastructure:

byte number
0 indication kind = 1 (TEST.indication)
1 reserved
2-3 the length of the received test buffer
4-7 reserved
8-9 received test buffer offset
10-11 received test buffer segment
12-13 reserved

14-19 source Ethernet address

RC Computer -121-

11. Local Area Network PICCOLINE

The information part of the test buffer begins at the
fourth byte in the test buffer. The first three bytes are
included in the length of the test buffer.

Note that a TEST.request primitive issued by a client in an
RCLLC station does not cause this primitive to be generated
in remote RCLLC station(s), as the protocol element (TEST
command) which is transmitted in this case is not addressed
to a SAP, but to one or more remote RCLLC entities.

11.2.2 Type 1 Service

Type 1 service comprises unacknowledged connectionless data
transfer between SAPs.

11.2.2.1 UDATA.request

The primitive which requests transmission of a data buffer

is passed from a client to the driver by writing a request
buffer to the 'link_req' gqueue.

Format of the request buffer:
byte number

0 request kind = 2 (UDATA.request)
DSAP is the remote SAP address.

SSAP is the local SAP address.

[-- T S

Ethernet address. This is the MAC address of
the remote RCLLC entity; a multicast or
broadcast address may be used in place of a
specific station address.

9-10 length of the data buffer
11-12 data buffer offset
13-14 data buffer segment
The first three bytes in the data buffer are reserved by

the driver. The length of the data buffer includes the
bytes reserved by the driver.

-122- RC Computer

PICCOLINE 11. Local Area Network

11.2.2.2 UDATA.confirm

The primitive which is issued in response to a
UDATA.request primitive is passed from the driver to the
client. This is done by writing a long pointer (pointing to
the data buffer) to the clients confirm queue.

Format of the returned data buffer:

byte number

0 DSAP is the remote SAP address

1 confirm kind = 2 (UDATA.confirm)

2 result indicates how the transmission of the

data buffer went, e.g. 'no problems'

11.2.2.3 UDATA.indication
The primitive which is used to deliver a received RCLLC
service data unit is passed from the driver to the client.
This is done by writing a long pointer (pointing to the

indication datastructure) to the clients indication queue.

Format of the indication datastructure:

byte number
0 indication kind = 2 (UDATA.indication)
1 reserved
2-3 the length of the received data buffer
4-7 reserved
8-9 received data buffer offset
10-11 received data buffer segment
12-13 reserved
14-19 source Ethernet address
The information part of the data buffer begins at the

fourth byte in the data buffer. The first three bytes are
included in the length of the data buffer.

RC Computer -123-

11. Local Area Network PICCOLINE

11.2.3 Client Network Service

The driver automatically establishes and maintains a
connection between each pair of SAPs belonging to the same
client network, except when the connection is excluded
because the SAP masks do not match.

when an SAP is activated, connections will be established
to those remote SAPs which were already active. The (local)
client will receive a CONNECT.indication primitive for each
connection when it has been established. Similarly the
- remote clients will each receive a CONNECT.indication
primitive.

when a connection has been established, both clients may
request the transmission of RCLLC service data units by
issuing DATA.request primitives. A received data unit is
passed to the client at the -destination SAP by means of a
DATA.indication primitive.

The order in which RCLLC service data units are passed to
the driver for transmission on a connection is preserved to
the point of delivery. RCLLC service data units are deli-
vered free of transmission errors.

when an SAP is deactivated, either because of a request or
because the station in which it exists ceases to operate or
is reinitialized, the driver will detect the event and
remove the connections in which the SAP took part. Each of
the clients at the remote end of such a connection will be
notified by means of a DISCONNECT.indication primitive.

There is no guarantee that all service data units passed to
the driver for transmission will have been delivered before
a connection is removed.

When the driver has removed (one end-point of) a connection
and passed the indication to the client it will not estab-
lish a new connection to the same remote SAP until the cli--
ent has acknowledged the removal of the connection by issu-
ing a DISCONNECT.acknowledge primitive. This procedure is
significant when a connection is removed because of a tem-
porary malfunction or the reinitialization of a station. It
allows the client to gracefully terminate any activity as-
sociated with the connection before it is reestablished.

Details about the six primitives used in conjunction with
client network service are given in the following
subsections.

-124- RC Computer

PICCOLINE 11. Local Area Network

11.2.3.1 CONNECT.indication

The primitive, which indicates that a connection has been
established, is passed from the driver to the client. This
is done by writing a long pointer (pointing to the indica-
tion datastructure) to the clients indication gueue.

Format of the indication datastructure:

byte number
0 indication kind = 3 (CONNECT.indication)

1 connection index (th station address of the
remote SAP) :

2-3 the length of the received client information
4-7 reserved
8-9 received client information offset
10-11 received client information segment
12-13 reserved
14-19 source Ethernet address
The information part of the client information begins in
the ninth byte in the client information buffer. The first
eigth bytes are included in the length of the client
information.
After receiving the primitive the client may issue
DATA.request primitives on the connection, and should
expect DATA.indication primitives to arrive.
11.2.3.2 DISCONNECT.indication
The primitive, which indicates that a connection has been
removed, 1is passed from the driver to the client. This is

done by writing a long pointer (pointing to the indication
datastructure) to the clients indication queue.

RC Computer -125-

11. Local Area Network PICCOLINE

Format of the indication datastructure:

byte number
0 indication kind = 0 (DISCONNECT.indication)

1 connection index of the disconnected
connection

2-19 reserved
The client should acknowledge receipt of the primitive by
issuing a DISCONNECT.acknowledge primitive. A new connec-
tion to the same remote SAP will not be established wuntil
this has been done.
11.2.3.3 DISCONNECT.acknowledge
The primitive which acknowledges the removal of a connec-
tion is passed from a client to the driver by writing a
request buffer to the 'link_req' queue.

Format of the request buffer:

byte number
0 request kind = 6 (DISCONNECT.acknowledge)

1 connection index. This is the logical address
of the remote MAC entity.

2 DSAP is the local SAP address, i.e. the
client network number.

3 ssAP is the 1local SAP address, i.e. the
client network number.

4-5 unused
6-7 disconnect acknowledge buffer offset
8-9 disconnect acknowledge buffer segment
10-14 unused
The disconnect acknowledge buffer must be at least three
bytes 1long and it is returned to the client by the DISCON-
NECT ACKNOWLEDGE confirm. After receiving the primitive the

driver may establish a new connection to the same remote
SAP.

-126- RC Computer

PICCOLINE 1l. Local Area Network

11.2.3.4 DISCONNECT_ACKNOWLEDGE.confirm

The primitive, which is issued in response to a DISCON-
NECT.ACKNOWLEDGE primitive, is passed from the driver
to the client. This is done by writing a long pointer
(pointing to the disconnect acknowledge buffer) to the
clients confirm queue.

Format of the returned disconnect acknowledge buffer:

byte number
0 unused
1 confirm kind = 6 (DISCONNECT.acknowledge)

2 result

11.2.3.5 DATA.request

The primitive, which requests that a data buffer be trans-
mitted on a connection, is passed from a client to the
driver.

NOTE
The client must not request transmission on the same con-

nection until confirmation (DATA.confirm) has been recei-
ved. There are no restrictions on other connections.

Format of the request buffer:
byte number
0 request kind =5 (DATA.request)

1 connection index. This is the logical address
of the remote MAC entity

2 DSAP is the local SAP address, 1i.e. the
client network number

3 SSAP is the 1local SAP address, i.e. the
client network number

RC Computer -127-

11. Local Area Network PICCOLINE

4-5 length of the data buffer
6-7 data buffer offset
8-9 data buffer segment
10-14 unused
The first six bytes of the data buffer are reserved by the

driver. The length of the data buffer includes the bytes
reserved by the driver.

11.2.3.6 DATA.confirm

The primitive, which indicates that a data buffer previous-
ly passed in a DATA.request primitive has been transmitted
on a connection, is passed from the driver to the request-
ing client. This is done by writing a long pointer (point-
ing to the data buffer) to the clients confirm queue.

Format of the returned data buffer:

byte number

0 DSAP is the remote SAP address, i.e. the
client network number.

1 confirm kind = 5 (DATA.confirm)

2 result indicates how the transmission went,
e.g. 'no problems' , 'too many collisions' or
'link down'

The primitive may confirm that the data wunit has been
transmitted and acknowledged, but not that it has been
delivered to and received by the remote client.

11.2.3.7 DATA.indication

The primitive, which is used to deliver a data buffer re-
ceived on a connection, is passed from the driver to the
client. This is done by writing a long pointer (pointing
to the indication datastructure) to the clients indication
queue.

-128- RC Computer

PICCOLINE 1l. Local Area Network

Format of the indication datastructure:

byte number
0 indication kind = 4 (DATA.indication)

1 connection index (identify the connection on
which the data has been received)

2-3 the length of the received data buffer
4-7 reserved
8-9 received data buffer offset

10-11 received data buffer segment

12-13 reserved

14-19 source Ethernet address

The information part of the data buffer begins at the
seventh byte in the data buffer. The first six bytes are
included in the length of the data buffer.

11.3 MAC Services

The function performed by the MAC layer is to accept from
an RCLLC entity a MAC service data unit, to transmit it to
one, several (multicast), or all stations in the network,
and in the receiving station(s) to deliver the unit to the
destination RCLLC entity(ies).

In the PICCOLINE (CSMA/CD) type network the MAC service
includes retransmission following a detected collision.

There is no guarantee that a MAC service data unit which is
transmitted from one station on the network is received at
the destination station(s).

Each MAC entity 1is sensitive to its station address and
possibly one or more multicast addresses, i.e. addresses of
groups of stations to which the station belongs. Only MAC
service data units transmitted with one of these addresses
or the broadcast address will be received by the MAC
entity.

RC Computer -129-

11. Local Area Network PICCOLINE

Padding of frames containing MAC service data units in
order to reach the minimum size (46 bytes) is performed by
the MAC layer. The padding is removed again before
delivery.

The maximum size (1076 bytes) for MAC service data units is
also enforced by the MAC layer, i.e. data units exceeding
the maximum size will not be transmitted, and the receiver
part of a MAC entity will discard all incoming frames that
would yield a data unit longer than the maximum size.

The RCLLC layer uses the MAC service by transmitting each
RCLLC protocol element as a MAC service data unit.

11.3.1 Controller Specific Information.

This subsection describes the PICCOLINE specific
programming of the INTEL 82586 Ethernet controller. For
general information about programming the controller we
refer to ref.10.

Interrupt vector.

The offset part of the pointer to the net controller
interrupt rutine must be placed in 0:94H. The segment part
of the pointer to the net controller interrupt routine must
be placed in 0:96H.

Setting up interrupt vector:

; assumption cs:ax long pointer to net controller
; interrupt routine
; es segment register = 0 (interrupt table starts in 0:0)

cli ;disable all interrupts

mov di,94H +94H = offset part of net interrupt
;jroutine

stosw H

mov ax,cs ;get segment pointer

stosw ;96H = segment part of net
;interrupt

sti ;enable interrupts

After setting of the interrupt vector the interrupt source
must be enabled. It 1is default disable after system
initialization.

-130- RC Computer

PICCOLINE 1l. Local Area Network

Enabling interrupts from the net controller:

mov dx,2 ;8259 interrupt controller I/O
;address

and al,10111111B ;enable net interrupt

out dx,al ;execute the open

The communication with the net controller is performed by
information exchange in common memory (the SCB and related
control structures). When the user will force the
controller to look in the common memory, he executes a
channel attention. When the controller will force the user
to look in the common memory, it executes an interrupt.

A channel attention is performed:

mov dx,100H ;net controller channel
;attention I/0 address

in al,dx ;note overwrites the contents of al
;reg with non significant
;information

Due to an Intel based inconsistency between the CRT con-
troller's and the net controller's interpretation of the
SYSBUS bit, the initialization of the net controller dif-
fers a little bit from the description given in ref.ll.
Ref.10 prescribes that the System Configuration Pointer
(SCP) begins at location OFFFF:6 (PICCOLINE Prom address
room). In PICCOLINE the SCP is placed in the RAM address
room. The SCP segment is 3000H and the SCP offset is
OFFF6H. The SYSBUS byte in the SCP must be 0 to indicate 16
bits bus word mode.

11.4 RCLLC Datalink Layer Protocol.

The description of RCLLC procedures falls in two parts:

- 1) the type 1 procedures which are in conformance with
(ref.6)

2) the procedures for client network service which con
stitute a functional extension to the type 1 procedures.

In general, an RCLLC protocol element may be a command pro-
tocol element or a response protocol element. As a protocol
element is transmitted using the services of the MAC layer

RC Computer -131-

11. Local Area Network PICCOLINE

it may be addressed to one or several stations, using an
individual, multicast, or broadcast station address. Within
each addressed station an RCLLC protocol element is addres-
sed either to the RCLLC entity as such or to a specific
SAP.

11.4.1 Type 1 Procedures

This section contains a general description of the type 1
procedures. Details not covered in the general description
are given in conjunction with the individual protocol ele-
ments in section 11.4.3.

11.4.1.1 Unacknowledged Data Transfer

This subsection applies to data transfer between active
SAPs for which type 1 service has been requested.

Unacknowledged connectionless data transfer as requested by
the UDATA.request primitive is accomplished by transmission
of a UI protocol element containing the service data unit
passed as a parameter of the primitive. This may occur at
any time while the source SAP is active.

Wwhen a UI protocol element 1is correctly received, the ser-
vice data unit which it contains is passed to the client by
means of a UDATA.indication primitive. There is no associa-
ted acknowledgement or sequence checking. Notice that a UI
protocol element which is found to be in error by the re-
ceiving MAC or RCLLC entity is simply discarded. Buffer
shortage in the receiving RCLLC entity may also cause a UI
protocol element to be discarded.

11.4.1.2 Loop-back Test Procedure

An RCLLC entity will initiate the loop-back test procedure
upon receipt of a TEST.request primitive from a client. It
does so by transmitting a TEST command protocol element
with the poll bit set to 1 and addressed as specified in
the request. The information field of the TEST command will
contain the specified test data unit. Notice that multi- or
broadcasting may be used to test several transmission paths
using one command protocol element.

For each TEST response protocol element which is subse-
quently received correctly, with or without an information
field, the client is informed by means of a TEST.indication
primitive.

-132- RC Computer

PICCOLINE 11. Local Area Network

An RCLLC entity will not transmit a TEST command protocol
element, except when directed by a TEST.request primitive.

When an RCLLC entity correctly receives a TEST command pro-
tocol element addressed to itself or to an active SAP, with
the poll bit set to 1, it will respond by transmitting a
TEST response protocol element addressed to the source
RCLLC entity or SAP. The received information is copied to
the response protocol element. If the information field
could not be held in the receive buffer(s) of the RCLLC en-
tity due to overlength, the response protocol element will
contain an empty information field. The receiving of the
TEST command protocol element will not effect the receiving
RCLLC entity's clients.

A TEST command protocol element received with poll bit set
to 0 is discarded.

11.4.1.3 station Identification Exchange

Type 1 station identification exchange is not supported as
part of the RCLLC service interface, and an RCLLC entity
will not, therefore, transmit XID command protocol
elements. It will, however, answer politely when an XID
protocol element addressed to itself or to an active SAP is
correctly received. Observe that the source station in this
case will not be an RCLLC station.

11.4.2 Procedures for Client Network Service

This section contains a general description of the
procedures for client network service. Details not covered
in the general description are given in conjunction with
the individual protocol elements in section 11.4.3.

Client networks are supervised by the RCLLC layer. The pro-
tocol element ACTIVE_SAP plays a central role in this re-
spect. Whenever a SAP belonging to a client network is ac-
tive the RCLLC entity serving the SAP will regularly trans-
mit this protocol element to its peer entities using the
multicast address for the client network. An RCLLC recei-
ving the ACTIVE_SAP protocol element will discard it unless
the included SAP mask matches the mask of the local SAP be-
longing to the same client network.

This procedure serves to make an SAP known throughout the
client network so all desired connections to the SAP may be
established. Notice that the SAP remains unknown to all
stations where its mask does not match the local SAP mask.

RC Computer -133-

1l1. Local Area Network PICCOLINE

Moreover, the procedure allows RCLLC entities to supervise
that all existing connections are alive. When the ACTI-
VE_SAP protocol element fails to arrive from an SAP to
which a connection exists, for a sufficiently long period
of time, this will be taken to indicate that the SAP is no
longer active, and the RCLLC entity will therefore remove
its end of the connection.

All protocol elements other than ACTIVE_SAP are transmitted
using individual station address.

The rigorous description of the procedures for establish-
ment and supervision of connections which is given in the
following is based on a state, two timers and a retransmis-
sion counter maintained by an RCLLC entity for each connec-
tion in which it takes part, i.e. for each remote SAP it
knows. The following connection states exist: UNKNOWN,
RESETTING, DATA, DISCONNECTING. The timers are:

- the acknowledgement timer which runs when an
acknowledgement, i.e. a RACK or ACK protocol element,
is expected

- the SAP alive timer which runs whenever the remote
SAP is known and is restarted each time an ACTIVE_SAP
protocol element is received.

In addition to the state, timers, and retransmission
counter an RCLLC entity maintains for each connection two
sequence counters for data units, N(S): the number of the
data unit to transmit, and N(R): the number of the next
data unit to be received.

The following events may cause the state of a connection to
change:

PE_new_SAP An ACTIVE_SAP protocol element is received
from the remote SAP indicating it has become
active, possibly by reinitialization, see.
section 11.4.3.4

PE_rack A RACK or RESET protocol element is received from
the remote SAP when RACK is expected.

PE_reset A RESET protocol element is received from the
remote SAP, except when RACK is expected.

give_up The RCLLC entity gives up the connection when the
retransmission counter 1is exhausted, or when the
SAP alive timer runs out.

-134- RC Computer

PICCOLINE 1l1. Local Area Network

SP_dack An expected DISCONNECT.acknowledge service
primitive is received from the client.

An overview of the state changes caused by events and the
associated actions, i.e. protocol elements and service
primitives that are generated, is given in figure 1. Note
that the figure and the description which follows apply to
a single connection, in fact to each end-point separately.

UNKNOWN F

PE_new_SAP J { PE_resst
<RESET> <RACK>
<CONNECT_Andicastion> <CONNECT_Andicstion>
X PE_reck
REBETTING i 4 DATA
PE_new_BAP ' PE_new_saP J
PE_reset
gAve_up give_up

<DISCONNECT, dicstion>

SP_geck
DISCONNECTING

Figure 11.1: State graph for a connection.

A general procedure applies to the transmission of protocol
elements for which an acknowledgement is required in the
form of a protocol element transmitted in the opposite di-
rection, viz. RESET and DATA which are acknowledged by RACK
and ACK, respectively. Initiating the transmission of one

RC Computer -135-

11. Local Area Network . PICCOLINE

of these elements means: initializing the retransmission
counter, starting the acknowledgement timer, and actually
transmitting the protocol element. When the acknowledging
protocol element arrives, the transmission is considered
successfully completed, and the timer is stopped. If, on
the other hand, the acknowledgement timer expires, the
retransmission counter is decremented, and if it was
exhausted, i.e. became zero, the connection is given up
(give_up event). Otherwise, the timer is restarted and the
protocol element retransmitted.

There is never more than one outstanding protocol element
requiring acknowledgement, i.e. transmission of a RESET or
DATA protocol element is not initiated wuntil transmission
of the previous element is completed. For this reason a
DATA.request primitive containing an RCLLC service data
unit for transmission on a connection may be accepted while
an unacknowledged protocol element is outstanding, but it
will then be queued (by the RCLLC entity) for transmission
rather than processed immediately.

The remaining part of this section contains a discussion of
the meaning of each state of a connection (end-point) and
the procedures followed by an RCLLC entity in each state.

UNKNOWN

The RCLLC entity has no knowledge of the remote SAP, but is
ready to establish a connection. No service primitives are
accepted and all protocol elements except ACTIVE_SAP and
RESET are discarded.

A received ACTIVE_SAP protocol element (with matching SaP
mask) constitutes a PE_new_SAP event. It causes the RCLLC
entity to establish a connection to the remote SAP by
starting the SAP alive timer, initiating the transmission
of a RESET protocol element, resetting the sequence
counters, passing a CONNECT.indication primitive to the
client, and changing the connection state to RESETTING.

A received RESET protocol element constitutes a PE_reset
event indicating that the local SAP has become known to the
remote RCLLC entity and caused it to establish a
connection. The local RCLLC entity will establish its end
of the connection by starting the SAP alive timer, trans-
mitting a RACK protocol element to acknowledge RESET,
resetting the segquence counters, passing a
CONNECT.indication primitive to the client, and changing
the connection state to DATA.

-136- RC Computer

PICCOLINE 11. Local Area Network

RESETTING

The RCLLC entity has established the connection by initia-
ting the transmission of a RESET protocol element. The sta-
te is used to wait for the acknowledging RACK protocol ele-
ment after which data may be transmitted in both direc-
tions.

DATA.request primitives are accepted (queued). DISCONNECT.-
acknowledge primitives are discarded.

A received RESET or RACK protocol element constitutes a
PE_rack event and causes the RCLLC entity to change the
connection state to DATA. RESET, which may occur if RESET
protocol elements are transmitted in both directions simul-
taneously, is answered with RACK.

Received DATA or ACK protocol elements are discarded.

If a PE_new_SAP event occurs (see section 11.4.3.4), or if
the connection is given up, either because the SAP alive
timer expires or because the RESET protocol element is re-
transmitted to exhaustion, the RCLLC entity will pass a
DISCONNECT.indication primitive to the client and change
the connection state to DISCONNECTING.

DATA

The connection has been completely established through the
exchange of RESET and RACK protocol elements. In this state
RCLLC service data units are transferred between the two
SAPs through the exchange of DATA and ACK protocol elements
between the RCLLC entities.

Each DATA.request primitive received from the client causes
initiation of the transmission of a DATA protocol element
containing the service data unit passed as a parameter of
the primitive. The sequence number of the protocol element
is set equal to the value of N(S), and subsequently N(S) is
incremented modulo 2. Initiation of the transmission of the
protocol element takes place: either when an ACK or RACK
protocol element is received marking the successful comple-
tion of a previous transmission provided a non-empty queue
of service data units are awaiting transmission; or immedi-
ately upon receipt of the DATA.request primitive if there
is no outstanding protocol element awaiting acknowledge-
ment.

When a DATA protocol element is received, its segquence
number is compared to the value of N(R). If they are equal

RC Computer -137-

1l. Local Area Network PICCOLINE

the received service data unit is passed to the client by
means of a DATA.indication primitive, and N(R) is incremen-
ted modulo 2. Otherwise, the service data unit is discar-
ded. In both cases an ACK protocol element with sequence
number equal to that of the DATA protocol element is trans-
mitted to the remote SAP in order to acknowledge receipt.

If a RACK protocol element or a DISCONNECT.acknowledge ser-
vice primitive is received, it is discarded.

If a PE_new_SAP event occurs (see section 11.4.3.4), if a
RESET protocol element is received, or if the connection is
given up, either because the SAP alive timer expires or be-
cause a DATA protocol element is retransmitted to exhaus-
tion, the RCLLC entity will pass a DISCONNECT.indication
primitive to the client and change the connection state to
DISCONNECTING.

DISCONNECTING

The connection has been disconnected as seen from the point
of view of the RCLLC layer. This state allows the client to
decide when it will accept the connection to be reesta-
blished.

All received protocol elements and service primitives are
discarded except the DISCONNECT.acknowledge primitive. When
this primitive is received the connection state is changed
to UNKNOWN.

11.4.3 RCLLC Protocol Elements

All RCLLC protocol elements conform to the syntax for LLC
type 1 protocol elements ("protocol data units"). This is
achieved by defining the formats of all the protocol ele-
ments used in the procedures oriented toward client network
service to be instances of type 1 UI (Unnumbered Informa-
tion) commands.

The following conventions apply to the figures in this sec-
tion: the octets of a protocol element are shown in the or-
der they are transmitted downward on the page, and the bits
within an byte similarly from right to left. The least sig-
nificant bit position within an byte, the contents of which
are transmitted first, is numbered 0, and so forth.

-138- RC Computer

PICCOLINE 11. Local Area Network

The general format for type 1 protocol elements consists of
a three-octet link control header followed by an
information field:

bit no. 7 6 5 4 3 2 1 0
byte no. 0 DSAP [o 0
1 SSAP [o [ec/r
2 Control
3

Type 1 Information

The DSAP field contains the local SAP address of the desti-
nation SAP and the SSAP field the local SAP address of the
source SAP.

If the DSAP field contains 0 (all bits 0) the protocol ele-
ment is interpreted as addressed to the destination RCLLC
(or other LLC type 1) entity rather than to a client.

If the DSAP field does not contain all 0 bits, its contents
taken as a binary number in the range 1..63 are interpreted
as the address of an individual SAP.

A C/R bit with value 0 indicates a command protocol
element, and one with value 1 a response protocol element.
The UI protocol element, and thus all protocol elements for
client network service, can only be transmitted as
commands, i.e. with the C/R bit set to 0.

Bit 0 of byte 0 and bit 1 of byte 1 must always be 0.

If the SSAP field contains 0 (all bits 0), the protocol
element is interpreted as originating from the source RCLLC
(or other LLC type 1) entity rather than from a client.
Otherwise, the contents of the SSAP field are interpreted
as a binary number in the range 1..63.

Bit 4 of byte 2 (the Control field) is the Poll/Final bit.
When this bit is set to 1 (Poll) in a command, a response
is requested. The response should contain the same coding
of the Control field; i.e., bit 4 (Final) should also be
set in the response. The Poll bit must not be set in a UI
protocol element; this bit is 0 in all protocol elements
for client network service.

The SSAP field of a response protocol element always con-
tains the same value as the DSAP field of the command
protocol element to which it corresponds, and vice versa.

RC Computer -139-

11. Local Area Network PICCOLINE

The remaining bits of the Control field specify the type of
protocol element in question, viz.:

00000011 UI, Unnumbered Information
101X1111 XID, eXchange IDentification
111x0011 TEST

The use of the Type 1 Information field depends on the type
of protocol element, and is described for each element type
in the section Type 1 Protocol Elements page 141.

The protocol elements for «client network service are UI
commands addressed to an individual SAP with three extra
bytes of RCLLC header in addition to the LLC type 1 header.
Source

and destination SAPs have the same local address which is
equal to the client network number, Netno. The format is as
shown below: '

bit no. 7 6 5 4 3 2 1 0

byte no. 0 Netno 010
1 Netno 010 type 1
2 0 0 0o o o 01111 header RCLLC
3 Function header
4 Param 0
5 Param 1
6

Information

The value in the Function field specifies the type of
protocol element, viz.:

00000000 (binary 0) ~ ACTIVE_SAP
00000001 (binary 1) RESET
00000010 (binary 2) RACK
00000011 (binary 3) DATA
00000100 (binary 4) ACK

The use of the Param 0 and 1 fields and of the Information
field depends on the type of protocol element, and is des-
cribed for each element type in the section Protocol Ele-
ments for Client Network Service page 141.

-140- RC Computer

PICCOLINE 11. Local Area Network

Type 1 Protocol Elements

This section specifies the encoding of the Type 1
Information field of protocol elements used in conjunction
with type 1 procedures.

11.4.3.1 UI (Unnumbered Information)

The UI protocol element may only be transmitted as a
command, i.e. the C/R bit must be 1.

When the protocol element is used for type 1 service the
Type 1 Information field is used to hold an RCLLC service
data unit.

11.4.3.2 XID (eXchange IDentification)

The Type 1 Information field in a received XID command is
ignored. In an XID response protocol element transmitted by
an RCLLC entity three octets, numbers 6 through 8, are
encoded as follows:

bit no. 7 6 5 4 3 2 1 0
byte no. 6 1 0 0 0 0 o0 o0 1
7 0 0 0 0 0 0 0 1

8 0 0 0 0O O 0 0 o0

11.4.3.3 TEST

The Type 1 Information field is wused to hold a test data
unit. The associated procedure is described in subsection
11.4.1.2.

Protocol Elements for Client Network Service

In order to facilitate speedy access to status information
associated with connections, each RCLLC entity will assign
to each connection an index in the range 0..255. When a
connection is established the assigned indices are exchan-
ged between the two RCLLC entities. Subsequent DATA and ACK
protocol elements each contains the index assigned to the
connection by the receiver of the element.

RC Computer -141-

11. Local Area Network PICCOLINE

11.4.3.4 ACTIVE_SAP

An RCLLC entity transmits this protocol element periodical-
ly for each active SAP it serves which belongs to a client
network. It is transmitted using the multicast address for
the client network in question so that all relevant RCLLC
entities will receive it. The fregquency with which the pro-
tocol element is transmitted depends on the implementation.

The first word of the information field contains the SAP
mask of the active SAP. Unless the mask matches that of the
local SAP at the receiving RCLLC entity the protocol ele-
ment is discarded.

The Param 1 field contains a sequence number in the range
0..254. The first 255 ACTIVE_SAP protocol elements trans-
mitted after activation of a SAP will have sequence numbers
0, 1, 2,.. 254. In all subsequent ACTIVE_SAP protocol ele-
ments the seguence number will also be 254. This procedure
allows the receiving RCLLC entity to detect when an SAP is
deactivated and swiftly reactivated, possibly because of
station reinitialization.

When an ACTIVE_SAP protocol element is received from a pre-
viously unknown SAP a PE_new_SAP event is generated (cf.
section 11.4.2). The same is the case if the segquence num-
ber is less than the sequence number found in the last re-
ceived ACTIVE_SAP or RESET protocol element from the same
SAP. However, when the sequence number are equal or ascend-
ing, the protocol element is only taken to indicate that
the SAP is still active. In the latter case the SAP alive
timer is restarted.

The Information field from the third byte contains the cli-
ent_info passed from the client when the SAP was activated.
11.4.3.5 RESET

This protocol element is transmitted in conjunction with
establishment of a connection.

The Param 0 field contains the index assigned to the con-
nection by the sending RCLLC entity.

The Param 1 field contains the sequence number to be inclu-
ded in the next ACTIVE_SAP protocol element to be transmit-
ted from the sender.

The Information field contains the client_info passed from
the client when the SAP was activated.

-142- RC Computer

PICCOLINE 11. Local Area Network

11.4.3.6 RACK

This protocol element is transmitted to acknowledge receipt
of a RESET protocol element in conjunction with establish-
ment of a connection.

The Param 0 field contains the index assigned to the con-
nection by the sending RCLLC entity.

The Param 1 field contains the index assigned to the con-
nection by the receiver as indicated in the RESET protocol
element being acknowledged.

The Information field is empty.

11.4.3.7 DATA

This protocol element is transmitted to carry an RCLLC
service data unit from the source SAP to the destination
SAP.

The Param 0 field contains the sequence number of the ele-
ment, cf. section 11.4.2. The sequence number, which can
only be 0 or 1, is placed in bit 0. The remaining bits are
all 0.

The Param 1 field contains the index assigned to the con-
nection at the destination RCLLC entity.

The Information field contains the RCLLC service data unit.

11.4.3.8 ACK

This protocol element is transmitted to acknowledge receipt
of a DATA protocol element on a connection.

The Param 0 field contains the sequence number of the ele-
ment being acknowledged.

The Param 1 field contains the index assigned to the con-
nection at the destination RCLLC entity, i.e. the sender of
the DATA element.

The Information field is empty.

RC Computer -143-

11. Local Area Network PICCOLINE

-144- RC Computer

12. iSBX Bus Specification

The iSBX bus is a unique interface facilitating on-board
expansion with 1iSBX Multimodule boards. The iSBX bus is
derived directly from the on-board CPU bus and, as such, an
iSBX Multimodule board plugged into the iSBX bus becomes an
integral element of the PICCOLINE computer. The physical
interface between the single board computer and the iSBX
Multimodule board is a unique connector designed specifi-
cally for the iSBX bus. The iSBX bus is brought out to a
female iSBX bus connector on the computer and mates with
its male equivalent resident on the iSBX Multimodule board
(fig.12.1) page 146.

The iSBX Multimodule board concept offers a unigue design
approach to board level users. The iSBX Multimodule boards
bring a new concept to expansion, providing a product fami-
ly of smaller modules that can be plugged directly onto the
single board computer. In short, the user may now tailor
his application directly onboard the single board computer
at a minimal cost. In addition, the iSBX Multimodule boards
offer maximum performance because they are tightly coupled
to the microprocessor through the iSBX bus.

This chapter has been prepared for those users who intend
to evaluate or design custom iSBX Multimodule board
products that will be compatible with RC759 base board. The
chapter defines the logical, electrical, and mechanical
aspects of the iSBX Multimodule boards. The iSBX Multi-
module board specifications are defined in a similar way an
I/0 component would be.

RC Computer -145-

PICCOLINE

iSBX Bus Specification

12.

Fig.12.1 iSBX Multimodule Board Concept

RC Computer

-146-

PICCOLINE 12. iSBX Bus Specification

12.1 Functional Description

This section will give the reader an overall understanding
of how the iSBX Multimodule board functions. It describes
the basic elements of an iSBX Multimodule board, defines
the iSBX Multimodule interface signals and describes the
basic communication operations.

In this section, as well as throughout the specification, a
clear and consistent notation for signals has been used.
The I/0 Read (IORD) signal will be used to explain this
notation. The terms one, zero, true, and false can be
ambiguous, so their use will be avoided. In their place,
the terms electrical High and Low (H and L) will be used. A
slash following a signal name (IORD/) indicates that the
signal is active low as shown:

IORD/ = IORD = IORD- = Asserted at 0 volts

The signal (IORD/), driven by a three state driver will be
pulled up to VCC when not asserted. Fig.12.2 is used to
further explain the notation used in this specification.

. Definition
Signal
Name Electrical Logical State
H 1 True
Active,
IORD L 0 Faise Ctive, Asserted
L 1 True .
1ORD/ H 0 False Active, Asserted

Fig.12.2 Notational Summary

12.1.1 iSBX Multimodule System Elements

This section will describe the two basic elements in an
iSBX Multimodule system: base boards and iSBX Multimodule
boards (see fig.12.1).

RC Computer -147-

12. iSBX Bus Specification PICCOLINE

12.1.1.1 Base Boards

The base board provides an electrical and mechanical inter-
face for the iSBX Multimodule boards. The electrical inter-
face provides the communication 1link between the two ele-
ments. The base board is the master of this link, in that
it controls the address and command signals. The base board
also provides the mounting for the iSBX Multimodule board.
With the aid of screws, spacers, nuts, and the iSBX connec-
tor, the iSBX Multimodule board is mounted to the base
board.

There are two classes of base boards: those with Direct
Memory Access (DMA) support and without.

Base boards with DMA support are boards with DMA control-
lers on them. These boards, in conjunction with an iSBX
Multimodule board (with DMA capability), can perform direct
I/0 to memory or memory to I/0 operations. Base boards
without DMA support use a subset of the iSBX bus and simply
do not use that aspect of the iSBX Multimodule board.

12.1.1.2 iSBX Multimodule Boards

The iSBX Multimodule boards are small, specialized, I/0
mapped boards which plug into base boards. The iSBX boards
connect to the iSBX bus connector and convert the iSBX bus
signals to a defined I/0 interface.

12.1.2 iSBX Bus Interface

The iSBX bus interfacez can be grouped into six functional
classes:

Control Lines

Address and Chip Select Lines
Data Lines

Interrupt Lines

Option Lines

Power Lines

-148- RC Computer

PICCOLINE ' 12. iSBX Bus Specification

12.1.2.1 Control Lines

The following signals are classified as control lines:

COMMANDS :
IORD/ (I/0 Read)
IOWRT/ (I/0 Write)

DMA:
MDRQT (DMA Request)
MDACK/ (DMA Acknowledge)
TDMA (Terminate DMA)
INITIALIZE:
RESET
CLOCK :

MCLK (iSBX Multimodule Clock)

SYSTEM CONTROL:
MWAIT/
MPST/ (iSBX Multimodule Board Present)

Command Lines (IORD/, IOWRT/)

The command lines are active low signals which provide the
communication link between the base board and the iSBX
Multimodule board. An active command line, conditioned by
chip select, indicates to the iSBX Multimodule board that
the address lines are valid and the iSBX Multimodule board
should perform the specified operation.

DMA Lines (MDRQT, MDACK/, TDMA)

The DMA lines are the communication 1link between the DMA
controller device on the base board and the iSBX Multi-
module board. MDRQT is an active high output signal from
the iSBX Multimodule board to the base board's DMA device
requesting a DMA cycle. MDACK/ is an active low input sig-
nal to the iSBX Multimodule board from the base board DMA
device acknowledging that the requested DMA cycle has been
granted. TMDA is used by the iSBX Multimodule board to ter-
minate DMA activity. The use of the DMA lines is optional
as not all base boards will provide DMA channels and not
all iSBX Multimodule boards will be capable of supporting a
DMA channel.

RC Computer -149-

12. iSBX Bus Specification PICCOLINE

Initialize Lines (Reset)

This input line to the iSBX Multimodule board is generated
by the base board to put the iSBX Multimodule board into a
known internal state.

Clock Lines (MCL)

This input to the iSBX Multimodule board is a timing sig-
nal. The clock frequency is 10 MHZ. This clock is asynchro-
nous from all other iSBX bus signals.

System Control Lines (MWAIT/, MPST/)

These output signals from the iSBX Multimodule board con-
trol the state of the system.

Active MWAIT/ (Active Low) will put the CPU on the board
into a wait state providing additional time for the iSBX
Multimodule board to perform the requested operation.
MWAIT/ must be generated from address (address plus chip
select) information only. If MWAIT/ is driven active due to
a glitch on the €S 1line during address transitions, MWAIT/
must be driven inactive in less than 75 ns.

The iSBX Multimodule board present (MPST/) is an active low
signal (tied to signal ground) that informs the base board
I/0 decode logic that an iSBX Multimodule board has been
installed.

12.1.2.2 Address and Chip Select Lines

The address and chip select lines are made up of two groups
of signals.

Address Lines: MAO-MA2
Chip Select Lines: MCS0/-MCS1l/

The base board decodes I/0 addresses and generates the chip
selects for the iSBX Multimodule boards. The base board de-
codes all but the lower order three addresses in generating
the iSBX Multimodule board chip selects. Thus, a base board
would normally reserve two blocks of 8 I/O ports for each
iSBX socket it provides.

-150- RC Computer

PICCOLINE 12. iSBX Bus Specification

Address Linec (MAO-MA2)

These positive true input 1lines to the iSBX Multimodule
boards are generally the least three significant bits of
the I/0 address. In conjunction with the commmand and chip
select lines, they establish the I/0 port address being ac-
cessed.

Chip Select Lines (MCS0/-MCS1/)

These input lines to the iSBX Multimodule board are the re-
sult of the base board I/0 decode logic. MCS/ is an active
low signal which conditions the I/0O command signals and
enables communication with the iSBX Multimodule boards.

NOTE

If MCS/ glitches, the MWAIT/ line may also glitch. MWAIT/
must be in its proper state in less than tgy, (75 ns) af-
ter MCS/ is in its proper state.

12.1.2.3 Data Lines (MD0-MD7)

Eight bidirectional data lines (active high) are used to
transmit or receive information to or from the iSBX Multi-
module ports. MDO is the least significant bit.

12.1.2.4 Interrupt Lines (MINTRO-MINTR1)

These active high output 1lines from the iSBX Multimodule
board are used to make interrupt requests to the base
board.

12.1.2.5 Option Lines (OPTO, OPT1)

These two signals are two reserved lines that are connected
to wire wrap posts on both the base board and iSBX Multimo-
dule board. They are for unique requirements where a user
needs a base board signal on the iSBX Multimodule board and
is willing to put a potentially long wire on the base board
to connect it.

12.1.2.6 Power Lines

All base boards will provide +5 and +12 /-12 volts to the
i8BX Multimodule boards.

RC Computer -151-

12. iSBX Bus Specification PICCOLINE

12.1.3 iSBX Multimodule Command Operations

The command lines are driven from the base board by tri-
state drivers with pull-up resistors or standard TTL totem
pole drivers. These lines indicate to the iSBX Multimodule
board what action is being requested.

12.1.3.1 1I/0 READ

There are two I/0 READ operations that a base board can
perform. The iSBX Multimodule board determines which type
of I/0 READ is performed. The first type is a full speed
I/0 READ (fig.12.3). The base board generates a valid 1/0
address and a valid chip select for the iSBX Multimodule
board. After the set up timings are met, the base board
activates the IORD line. The iSBX Multimodule board must
generate valid data from the addressed I/0 port in less
than 250 ns. The base board then reads the data and removes
the read command, address, and chip selects shown in the
timing diagram.

MAD-MAZ * VALID ADDRESS

s

10RD/ \\f
MDO-MD? —{ rvn.a DATA)-———-

\

T

™

Fig.12.3 iSBX Multimodule Board Read, Full Speed

The second type of I/O READ is an extended read (fig.12.4).
This type of read is used by iSBX Multimodule boards that
cannot perform a READ operation under the full speed speci-
fications. The base board generates a valid address and

-152- RC Computer

PICCOLINE 12, iSBX Bus Specification

chip select, just as in a full speed read. The iSBX Multi-
module board then activates the MWAIT/ signal which in turn
deactivates the ready input to the CPU (putting it into a
WAIT state). The iSBX Multimodule board will remove the
MWAIT/ signal when valid READ data is on the iSBX Multimo-
dule data bus. The base board then reads the data and deac-
tivates the command, address, and chip select.

maomaz [— VALID ADDRESS Y
e /: //'_ﬂ-
r 4
MWAIT/ -—————-c:\ ,“N
. % . %‘
wo0-M07 { Y VALID DATA)

Fig.12.4 iSBX Multimodule Board Extended Read

12.1.3.2 I/0 WRITE

There are two I/0 WRITE operations that a base board can
perform. The iSBX Multimodule board determines which type
of 1/0 WRITE is performed.

The first type of write is a full speed I/0 WRITE
(fig.12.5). The base board generates a valid 1/0 address
and chip select. The base board activates the IOWRT line
after the set up times are met. The IOWRT/ line will remain
active for 300 ns and the data will be wvalid for 250 ns
before the IOWRT/ command is removed. The base board will
then remove the data address and chip select after it meets
the hold times as shown in fig.12.5.

.

RC Computer -153-

12. iSBX Bus Specification PICCOLINE

MAO-MA2 X _ VALID ADDAESS X

pA—

IOWRT/ r,\

woomor _ [VALID DATA -

Fig.12.5 iSBX Multimodule Board Write, Full Speed

The second type of 1I/0 WRITE is an extended write
(fig.12.6). This write is used by iSBX Multimodule boards
that cannot write into an I/0 port with the full speed spe-
cifications. The base board again generates valid address
and chip selects. The iSBX Multimodule board will activate
the MWAIT/ signal based on address information (chip select
+ MAO-1). This will remove the ready from the CPU causing
it to go into a wait state after the WRITE command has been
activated and valid data provided. The iSBX Multimodule
board will remove the MWAIT/ signal (allowing the CPU to
leave its wait state) when it has satisfied its write pulse
width requirement. The base board will then remove the WRI-
TE command, then the data, address, and chip select after
the hold times are met.

maomaz X VALID ADDRESS)
e (‘ s A
MWAIT/ <\ e @
OWRT/ \‘
woo-Mp7 e { ™" VALID DATA P

Fig.12.6 iSBX Multimodule Board Extended Write

-154- RC Computer

PICCOLINE 12. iSBX Bus Specification

12.1.3.3 Direct Memory Access (DMA)

An iSBX Multimodule system can support DMA when the base
board has a DMA controller and the iSBX Multimodule board
can support DMA mode. The following example is for a base
board using an 8257 DMA controller. Because of the simila-
rity between DMA reads and DMA writes, only the DMA write
is given in the following example. A DMA cycle is initiated
when the iSBX Multimodule board activates MDRQT, which goes
to the DMA controller on the base board (fig.12.7). Once
the DMA controller gains control of the base board bus, it
acknowledges back to the iSBX Multimodule board with
MDACK/. The DMA controller then activates a memory write or
I/0 write respectively. The delay may be zero, if the me-
mory is a trailing edge type (data is written when the wri-
te pin changes from active to inactive state). The MDACK/
signal must act as a chip select and address to the iSBX
Multimodule board (the MCS and MAO-MAl signals are undeter-
mined as they are driven by the memory address). The iSBX
Multimodule board will remove the DMA request during the
cycle to stop the DMA cycle. Once the write operation is
complete (MWAIT inactive and memory acknowledge active),
the DMA controller deactivates the write command and the
read command providing a data hold time. If the DMA request
signal was removed, the controller will release the base
board bus back to the CPU and remove MDACK/. If the request
is not removed, the DMA controller will proceed to do ano-
ther DMA cycle (burst mode).

SOURCE SIGNAL N
B8X BD MDRQT J ‘

‘sAsE 8D MDACK/ ____4@\ —
sus w0 tomes —_—— —
BASE BD MEM WRITE/ ?é _____J_———

woowor —— Y W% VALID RERD DATA) S—

Fig.12.7 iSBX Multimodule Board DMA Cycle

(iSBX Multimodule to Base Board Memory)

RC Computer ~155-

12. iSBX Bus Specification PICCOLINE

12.1.4 RC759 Interface

This section gives information in details about the RC759
address decoder and interrupt circuit.

12.1.4.1 Address Decoder

on £ig.12.9 is shown the relationship between the RC739 I/O
addresses and the signals in the iSBX connector.

Remark that DMA acknowledge is generated by an OUTput in-
struction to a special device number.

12.1.4.2 Status Signals

The state of MPST/ OPT0 and OPT1 can be sensed by the

RC759 programmer by an INput instruction to device 70H.
This INput returns the following information:

T LI
[[—> MPST/

Fig.12.8 Status Signals

MPSTS/ = 0 if an iSBX module is present. The state of OPT1-
2 are iSBX dependent.
12.1.4.3 Interrupt Signals

MINTRO and MINTR1 are connected to the INT1 and INT3 1nter-
rupt inputs to 80186 interrupt controller.

MINTRO has vector type 13
MINTR1 has vector type 15

Both interrupt sources must deliver edge triggered inter-
rupts.

-156- RC Computer

PICCOLINE 12. iSBX Bus Specification

RC759 ‘
I/0 device number iSBX signal
(HEX) MCSX/ MA2 | MA1 | MmO OPERATION
IOBASE + 300)]] 0
302 0 0 1 iSBX module dependent
304 MCS0/ 0 1 0
306) =0 0 1 LI ¢
308 1 0 0
308 1 0 1
30C 1 1 0
30E J 1 1 1 f
IOBASE + 310) (] 0 0
312 0 0 1
314 MCS1/ 0 1 0
316 =0 0 1 1 iSBEX module dependent
318 (1 0 o |
31a 1 (] 1
31C 1 1 0
31E J 1 1 1)
IOBASE + 320 X X X Out to this device number
generates MDACK/

IOBASE = 0 for RC759

Fig.12.9 RC759 Device Decoder

RC Computer -157-

12. iSBX Bus Specification PICCOLINE

12.2 Electrical Specifications

This section will define all electrical specifications for
an iSBX Multimodule board. First the ac timing is specified
and then the dc specifications are described.

12.2.1 General Bus Considerations

Fig.12.10 shows the relationship between logical and elec-
trical states.

12.2.2 Power Supply Specifications

All power supply voltages are + 5%.

Mi inal Maxi M "
(volts) (volts) (volts) (current)
+4.75 +5.0 +5.25 4.0A
+11.4 +12 +12.6 0.3A
-12.6 -12 -11.4 0.3A

- GND - 2.0A

-158- RC Computer

PICCOLINE

iSBX Bus Specification

12.2.3 Environmental

All bus specifications should be met while the environment

is within the following ranges:

Signal Logical Electrical A At
Name State Signal Level Receiver Driver
10RD/ 0 H = TTL High State S22 H2 20V 5252 H = 2.4V
I0RD/ 1 L = TTL Low State 08 =L = -05V 052L =0V
IORD 0 L = TTL Low State 08 2L =05V 052L 2 0v
I0RD 1 H = TTL High State §252>2H 2= 20V 525 2 H 2 2.4V
Vce = 5 volts 5% referenced to logical ground.
V = volts.
Fig.12.10 Logical and Electrical States
Temperature: 0-55 C (32-131 F) Free moving air across the
base board and iSBX Multimodule board.
Humidity: 90% max relative (no condensation).
Shock: 30 g's of force for an 11 msec duration 3 ti-
mes in 3 planes both sides (total of 18
drops) .
Vibration: Sweeping from 10 Hz to 55 Hz and back to 10

12.2.4 Timing

Fig.12.11 summarizes all the

Hz at a distance of 0.010 inches peak-to-peak
lasting 15 minutes in each of three planes.

ac timing specifications. The

timing diagrams are shown in fig.12.12 through 12.15.

NOTE

The input waveforms for

as follows:

the ac timing specifications are

x 0v 20v
0.9V o.sv
a.esv.

RC Computer

-159-

12. iSBX Bus Specification PICCOLINE
Symbol Parameter Min (ns) Max (ns) pure
th Address stable before read 50 - 13
t2 Address stable sfier read 30 - 13
ta Read pulse width 300 - 13
1° Data valid trom read 0 250 13
1s° Data ficat after read [150 13
te Time between RD and/or WRT - Note 3
t7 CS stable before CMD 25 - 13
te CS stable after CMD 30 - 13
[Power up reset puise width 50 Msec - 15
110 Address stable before WRT 50 - 12
1 Address stable after WRT 30 - 12
ta2 Write pulse width 300 - 12
1s? Data valid to write 250 - 12
a Data valid after write 30 - 12
tis MCLK cycle 100 110 15
116 MCLK width 35 65 15
117 MWAIT/ puise width 0 4 msec 12, 13
te Reset pulse width 10 Msec - 15
tie MCS/ to MWAIT/ valid 0 75 12, 13
t20 DACK set up to 1/O CMD 100 - 14
tar DACK hold 30 - 14
122 CMD to DMA RQT removed to end of DMA cycle - 200 14
t23 TDMA pulse width 500 _ 14
124’ MWAIT/ to valid read data - 0 13
128 MWAIT/ to WRT CMD 1) - 12
NOTES:

1. Required only if WAIT is activated.
2. if MWAIT/ not activated.

3. To be specified by each iSBX Multimodule board.

Fig.12.11 iSBX Multimodule Board I/0 AC Specifications

-160-

RC Computer

PICCOLINE 12. iSBX Bus Specification

12.4.5 DC Specifications

The dc specifications for the iSBX bus are summarized in
fig.12.16. The figure is divided into two sections, output
specifications and input specifications. The output speci-
fications are the requirements on the output drivers of the
iSBX Multimodule board (i.e., the data bus output drivers
must guarantee at least 1.6 mA @ 0.5 volts). The output
specifications in fig.12.16 are the minimum drive require-
ments. The input specifications are the regquirements of the
receivers on the iSBX Multimodule board (e.g., the loading
of the address lines (MA0O-MA2) can be no greater than 0.5
mA@pO.B volts). Fig.12.16 also summarizes the maximum
loading permitted on an iSBX Multimodule interface at any
one time.

MAN)]

e
MWAIT/ L

IOWRT/

Fig.12.12 iSBX Multimodule Board I1/0 Write Timing

RC Computer -161-

12. iSBX Bus Specification PICCOLINE

MAN)
et -]
MCS(N)/
DU
™ nv
MWAIT/
e
®
1oRD/
L] “
MDO-MD? - D

Fig.12.13 iSBX Multimodule Board I/0 Read Timing

X
T
MDROT m.

MDACK/ e —
po— e — be tr
10 CMD/ — —
TOMA

Fig.12.14 iSBX Multimodule Board I/0 DMA Timing

-162- RC Computer

PICCOLINE 12. isSBX Bus Specification

Fig.12.15 iSBX Multimodule Board I/O Reset Timing

RC Computer -163-

12. iSBX Bus Specification

PICCOLINE

Output

=l - I I B S I B
MDO-MD7 TRI 1.6 0.5 —200 24 130
MINTRO-1 L 20 0.5 =100 24 40
MDRQT TTL 1.6 0.5 - 50 2.4 40
MWAIT/ T 1.6 0.5 - 50 24 40
OPT1-2 TTL 1.6 05 - 50 24 40
MPST/ TTL Note 3

Input
Bus Signal Type* In Max @ Vm Max I Max @ VN Max Ci Max
Name Receiver (mA) (volts) WwA) (volts) (L]

MDO-MD7 TRI -0.5 0.8 70 20 40
MAO-MA2 TTL -0.5 08 70 20 40
MCS0/-MCSV/ TTL -4.0 0.8 100 20 40
MRESET T -21 0.8 100 20 40
MDACK/ TIL -1.0 0.8 100 20 40
:gsv% , a8 -1.0 0.8 100 20 40
MCLK TTL -24 0.8 100 20 40
OPT1-OPT2 T -2.0 0.8 100 20 40
NOTES:

2. TTL = standard totem pole oulpﬁt TR! = Three-state.
3. iSBX Multimodule board must connect this signal to ground.

Fig.12.16 iSBX Multimodule Board I/0 DC Specifications

-164~

RC Computer

PICCOLINE 12. iSBX Bus Specification

12.3 Mechanical Specifications

This sections describes all the physical attributes of an
iSBX Multimodule board.

12.3.1 iSBX Connector

The male iSBX connector is attached to the iSBX Multimodule
board and the female iSBX connector is attached to the base
board. Fig.12.17 is an outline drawing of the iSBX connec-
tor and also shows the pin numbering. Fig.12.19 lists the
signal pin assignments.

12.3.2 isBX Multimodule Board Height Requirement

Fig.12.18 shows the iSBX Multimodule board height require-
ments. The total board height minus the iSBX connector is:

Maximum component height (0.400 Max) 0.400

P.C. board thickness (0.62 + 0.005) 0.067

Component lead length (0.093 Max) 0.093
0.560 in.

, il
3 = o |
m\u 7’43
(oo 0 o}
[oo [
PIN 36 '\”l‘l

Fig.12.17 iSBX Connector

RC Computer -165-

12. iSBX Bus Specification PICCOLINE

Ll g
67 r 1'5 ‘f§ MULTIMODULE™ 1O PWB 1 S
1 [l | =1

PR TR PR B

Fig.12.18 iSBX Multimodule Board Height

-166- RC Computer

PICCOLINE 12. iSBX Bus Specification
Pin Mnemonic Description Pin Mnemonic Description
35 GND Signal Ground 36 +5V +5 Volts
33 MDO MDATA Bit 0 K7} MDRQT M DMA Request
] MD1 MDATA Bit 1 32 MDACK/ M DMA Acknowledge
29 MD2 _MDATA Bit 2 30 OPTO Option 0
27 MD3 MDATA Bit 3 28 oPT1 Option 1
25 MD4 MDATA Bit 4 26 TDMA Terminate DMA
23 MDS MDATA Bit 5 24 Reserved
21 MD8 MDATA Bit 6 22 MCSO/ M Chip Select 0
19 MD7 MDATA Bit 7 20 MCSY/ M Chip Select 1
” GND Signal Gnd 18 +5V +5 Vots
15 10RD/ 1/0 Read Cmd 16 MWAIT/ M Wait
13 IOWRT/ 1/0 Write Cmd “ MINTRO M interrupt 0
" MAO M Address 0 12 MINTR1 M Interrupt 1

) MA1 M Address 1 10 Reserved

7 MA2 M Address 2 8 MPST/ iSBX Multimodute

5 RESET Reset 6 MCLK M Clock

3 GND Signal Gnd 4 +5V +5 Volts

1 +12v +12 Volts 2 —12v y -12 Volts

All undefined pins are reserved for future use.

Fig.12.19 iSBX Signal Pin Assignments

12.3.3 iSBX Multimodule Board Outline

have two standard board
show the iSBX Multimodule

boards will
and 12.21

The iSBX Multimodule
outlines. Fig.12.20
board outlines.

RC Computer -167~-

12. iSBX Bus Specification PICCOLINE

12.3.4 iSBX Multimodule Board User I/0 Connector Outlines

The top of the iSBX Multimodule board can be defined by the
user. Fig.12.22 through 12.24 show the dimensions of sugge-
sted top edge connectors for the most common designs.

™ 7T
¢ j—I
B l
/{, I\ o
oy 7 EF 2 mACES
LOCATION pe— 250

N
N 2

100

T
|

%
e =N

LOCATION
COMPONENT SIDE

Fig.12.21 iSBX Multimodule Board Outline

-168- RC Computer

PICCOLINE 12. iSBX Bus Specification

N
AN

N ' T
i

=
S M
le— 550 2 Puaces
COMPONENT SIDE

Fig.12.22 13/26 Pin Connector

i\
BN r =TT
= L.

o

~]
i
- E}\i"’&"&.

COMPONENT SI10€

Fig.12.23 20/50 Pin Connector

RC Computer -169-

12. 3iSBX Bus Specification PICCOLINE

e

4 X a5
o pLACES

\ 1760 ———tmr
o 1270 —

[}

BN N =k
U

2700
I
-n\
rocarion”] "IN 56 o
—] o550 2 PLACES
P §, 50 i

COMPONENT SIDE

Fig.12.24 13/26 and 20/40 Pin Connector

12.4 Design Example

This section provides a functional description of a design
example. The design example that will be used is an Serial
Multimodule Board. The functional description includes de-
tails on the RS232C and RS422/449 communications interface
signals, the interface signals between the iSBX Multimodule
board and the host microcomputer, and the clock generation
hardware on the iSBX Multimodule board. Fig.12.25 shows a
block diagram of the Communication Multimodule board.

-170- RC Computer

PICCOLINE 12. iSBX Bus Specification

cLock
MINTRO @ o GENERATOR
MINTRY @ 3o
OPT0 —po 208 M2
OPTY —p=o A
CLOCK DIVIDER l
180 Ktz
1.23 Mz
'K
c2 o co
meso ——_ dce oure
283 prm——C)
os P oyr2
D
nsmmc
o HeADERS nE232C
WTYERFACE
cLocx
4 TXC/
nxc
MDO-MDT o8 necEVER/
0231A ORvERs
USART SERAL WTERFACE
10RD/ D
OWRT/ wR
MCBY/ el C8
MEADERS Rz
INTERFACE

Fig.12.25 iSBX Board Block Diagram

12.4.1 serial I/0 Communications Channel Interface

The communications interface on the iSBX Multimodule board
may be configured for either RS232C or RS422/449 operation
via jumper modifications. Default wiring of the iSBX Multi-
module board is for RS232C operation. To convert to
RS422/449 operation, move the two 8-circuit shorting plugs
from sockets XU6 and XU7 to XU4 and XUS5.

RC Computer -171-

12. iSBX Bus Specification PICCOLINE

The serial interface provides RS232C or RS422 buffers for
eight lines. These lines are the Data In, Data Out, Regquest
to Send, Clear to Send, Data Set Ready, Data Terminal Rea-
dy, Receive Clock, and DTE Transmit Clock. All necessary
driver and receiver chips are supplied with the board.

12.4.2 CPU Interface

The interface between the host microcomputer and the iSBX
Multimodule board consists of several signals that are de-
fined in the following paragraphs. The DC characteristics
for these signals are given in fig.12.26.

RESET (Reset). This active high input signal to the 8251A
USART places the USART chip into the IDLE mode until a new
set of control words is written to the chip.

MAO (Address bit 0). This active high input to the 8251A
USART and to the 8253 is used in conjunction with IORD/ and
IOWRT/ signals to define which register on the 8251A or
8253 is addressed.

MAl (Address bit 1). This active high input signal to the
8253 isused in conjunction with MAO to select one of the
counters to be operated on in 8253 and to address the con-
trol word register for mode selection.

IORD/ (I/0 Read). This active low input signal to the iSBX
Multimodule board performs one of two functions depending
on the chip selected. When low, IORD/ informs the 8251a
that the host iSBC microcomputer is reading data or status
from the 8251A, and it informs the 8253 that the host iSBC
microcomputer is reading the value of a counter.

JOWRT/ (I/0 Write). This active 1low input to the iSBX Mul-
timodule board may perform one of two functions dependent
on chip select. When low, IOWRT/ informs the 8251A that the
host microcomputer is writing data or control words to the
8251A. IOWRT/ also informs the 8253 that the host micro-
computer is outputting mode information or loading coun-
ters.

MCSO0/ (Chip Select). This active low input signal to the
8251A USART enables it to perform read and write operati-
ons. When MCS0/ is high, the USART bus is held in a float
state and the IORD/ and IOWRT/ signals do not effect the
USART.

-172- RC Computer

PICCOLINE 12. isBX Bus Specification

MCS1/ (Chip Select). This active low input signal to the
8253 PIT enables it to perform read and write operations.
However, MCS1/ has no effect on the operation of the inter-
nal counters in the 8253.

MD0-MD7 (Bidirectional Data Bus). These active high I/0 li-
nes are the iSBX Multimodule boards' tie-in to the host
iSBC microcomputer data bus. MDO through MD7 transfer data,
commands, and status between the iSBX Multimodule board and
the host iSBC microcomputer.

MINTRO, MINTR1 (Interrupt Request Lines). These active high
output lines may be 3jumpered to OUT 0, or OUT 1 on the
8253, or to TXRDY on the 8251A.

OPTO0, OPT1 (Option Lines). These active high 1/0 lines are
included to give the iSBX Multimodule board greater func-
tional flexibility. These lines may be user-configured for
special functions.

Output

Bus Signal Type o Max VoL Max lon Max Vou Min Co (Min,

Name Drive (mA) o = Max (A) fon = Max éo)
MDO-MD7 TRI 22 0.45 -3%0 24 130
MINTRO-1 TTL 2.2 0.45 =200 24 40
OPTO-1 TTL 22 0.45 ~200 24 40

Input

Bus Signal Type I Max (mA) ViL Max i Max (mA) Vm Min Ci (Max)

Name Receiver Vi = 0.45V Ve = 2.4V [(-1)]
MDO-MD7 TRI =0.02 0.8 0.02 2.2 40
MAO-1 TTL -0.02 0.8 0.02 22 20
MCSOo/-1/ TTL -0.01 08 0.01 2.2 20
RESET TTL ~0.01 08 0.02 2.0 2
10RD/,
JOWRT/ TTL 0.02 0.8 0.02 22 40
OPT0-1 TTL -1.6 0.8 0.02 2.2 4
TTL = Standard totem pole output.
TRI = Three state output.

Fig.12.26 DC Characteristics
RC Computer -173-

12. iSBX Bus Specification PICCOLINE

12.4.3 Interface Buffering

Interface buffering is provided by three receiver/driver
logic elements Ul, U2, and U3. Ul is an input buffer that
may be used with either RS232C or RS442 configuration, de-
pending on the position of the mode selection header
blocks. U2 provides RS422 output buffering, and U3 provides
RS232C output buffering.

12.4.4 Clock Generation Circuitry

The Communication 351 board includes an 8224 Clock Gene-
rator chip that creates a 2.46 MHz output from a 22.1148
MHz crystal input. The output is then passed through a syn-
chronous four-bit counter which generates a 1.23 MHz clock
and a 153.6 KHz clock to drive the 8253 PIT. The clock
output frequency labeled OUT 2, which is produced by the
8253 PIT, will vary according to the configuration and
programming of the PIT chip.

The two remaining clock frequencies output from the 8253
PIT are jumper selectable to generate interrupts for the
iSBX Multimodule board.

12.4.5 AC Specifications
The ac specifications for the Communication Multimodule

Board are listed in fig.12.27. Fig.12.28 and 12.29 define
the timing parameters for the board.

-174- RC Computer

PICCOLINE

12,

iSBX Bus Specification

Symbol Parameter ::'.'; :‘”::
1 Address stable before IORD/ 50 -
12 Address stable after JORD/ 30 -
13 READ puise width 300 -
e Data valid from I0RD/ - 250
ts Data fioat atter IORD/ 0} 100
6" | Time between commands 1000 [—
t7 CS stable before CMD 25 -
ts CS stable atter CMD 30 -
to Address stable before IOWRT/ 50 -
to Address stable after IOWRT/ 30 -
t1y WRITE puise width 300 -
12 Data valid to IOWRT/ 250 -
t1s Data valid after IOWRT/ 30 -
t1e Reset puise width 2= -
NOTES:

1. During initialization, all writes to the control port:
te = 1.82 ps. After initislization in asynchronous
mode all writes to the control port: te = 2.56 u5s.
After initialization in synchronous mode all writes
to the control port: t¢ = 5.12 us. All writes 1o the
data port: Depends upon the baud rate since

TXRDY must be true.

Fig.12.27 AC Specifications

RC Computer

-175-

12. iSBX Bus Specification PICCOLINE

ADORESS VALID
e R
CHIP SELECT/ \ Yy

no/ i \L y

i 4 y

DATA \) \ VALID }——.—.
Fig.12.28 READ Timing
ADORESS vALID
ovrt
cHIp SELECT/ \ }V
WRT, N Y/
' _

DATA VALID

Fig.12.29 WRITE Timing

-176- RC Computer

13. Inter Computer File Transfer

This chapter provides technical information concerning the
FILEX file transfer program which in its standard form can
be used to transfer files between a PICCOLINE and one of
the following computers:

1) Another PICCOLINE (RC759)

2) An RC750 Partner
3) An RC702 Piccolo
4) An RC703 Piccolo

5) An RC855 Workstation

Together with the FILEX source program included on the PIC-
COLINE distribution disk, this chapter contains the neces-
sary information for an experienced user to modify FILEX or
implement a FILEX type file transfer program on another
computer with serial communication support (e.g. an IBM PC
with SYNC/ASYNC controller option installed).

13.1 Requirements

Since the FILEX file transfer program is based on serial
communication the PICCOLINE system has to be enhanced with
an iSBX351 serial interface (V24-interface).

The two computers on which FILEX is to run must be connec-
ted by means of an appropiate cable.

To connect two computers, arbitrarily chosen among the
RC702, RC703, RC855, RC750 and RC759, one of the following
cables should be used:

1) CBL912 (5 metres)
2) CBL913 (12 metres)
3) CBL914 (25 metres)

Furthermore, the user should configurate the two selected
computers to ensure:

1) that the two computers use the same baudrate on
the channel used, .
2) that the line character format is set to 7 bits

per character.

RC Computer -177-

13. Inter Computer File Transfer PICCOLINE

13.2 How FILEX Works
FILEX type file transfers take place as follows.

The local computer sends a number of transactions to the
remote computer. Each time the remote computer receives a
transaction, it carries out the appropriate file operation
and sends an answer back to the local computer. The trans-
actions sent depend upon whether the file is to be trans-
ferred to or from the local computer (see the FILEX program
listing for details).

The entire set of transactions and the transmission proto-
col are described in the following.
13.2.1 FILEX Transactions

The effect of the file operations below is as described in
ref.2.

OPEN
Request Field Answer
1 opcode 1
0 unused 0
0 result result
file name name
16 byte
MAKE
Request Field Answer
2 opcode 2
0 unused 0
0 result result
file name name
16 byte

-178- RC Computer

PICCOLINE 13. Inter Computer File Transfer

READ
Request Field Answer
3 opcode 3
0 unused 0
0 result result
area area
128 byte
WRITE
Regquest Field Answer
4 opcode 4
0 unused 0
0 result result
area area
128 byte
CLOSE
Request ‘ Field Answer
5 opcode 5
0 unused 0
0 result result
END
Reguest Field Answer
6 opcode 6
0 unused 0
0 result result

RC Computer -179-

13. Inter Computer File Transfer PICCOLINE

13.2.2 Transmission protocol

The transactions described in 13.2.1 are sent by means of
the blocked tranmission protocol described below.

A block consists of the following elements:

1) start character:
ASCII value 35

2) Block size:

The size defines the number of characters (N) in the
string to be sent, not the number of characters necess-
ary to send the string (2*N+8, explained below). The
block size is a 16-bit integer (0..65535) split into
four 4-bit digits. Each digit is interpreted as an in-
teger to which 64 has been added, so that the resulting
value 1lies between 64 and 79. These values are trans-
mitted as characters, the most significant part first,
the least significant part last.

3) Data section:
Each character in the string to be sent is split into
two 4-bit digits, to which 64 is added, as above. These
two integers are transmitted as ASCII values, the most
significant part first.

4) Checksum:
An 8-bit number which is transmitted as two ASCII valu-
es as explained above. The checksum is calculated so
that the following condition is satisfied:

((the sum of the values of the characters in the origi-
nal string) + checksum) modulo 256 = 0.

5) Stop character:
ASCII value 13.

-180- RC Computer

PICCOLINE 13. Inter Computer File Transfer

If the number of characters in the string to be transmitted
is N, then the actual number of characters transmitted are:

(start character)
(block size)
*N (data section)

(checksum)

o4+ N+ N+

(stop character)

2*N + 8 characters.

RC Computer -181-

13. Inter Computer File Transfer PICCOLINE

-182- RC Computer

A. Int-28h Function Interface

Function 0
Changes the console mode to graphics mode.

Registers on entry:

AL 0

AH 1=high resolution/2=medium resolution

DX Address segment of graphics control block.
cX Address offset of graphics control block.

Registers on return:
Undefined

See 4.5.1.

Function 1

Changes the console mode to character mode.
Registers on entry:

AL 1

Registers on return:

Undefined

See 4.5.2.

Function 2

Reserved

RC Computer

-183~-

A. Int-28h Function Interface

PICCOLINE

Function 3

Returns the address of a
contents.

copy

Registers on entry:
AL 3

Registers on return:

ES Address segment
SI1 Address offset
See 3.2.

Function 4

of the nonvolatile memory

Returns the address of a configuration description.

Registers on entry:
AL 4

Registers on return:

ES Address segment

S1 Address offset

See 3.1.

-184- RC Computer

PICCOLINE A. Int-28h Function

Interface

Function 5

Recalibrate floppy disk drive.
Registers on entry:

AL 5

Stack on entry:

+10 Drive (0/1)
+ 8 Head (0/1)

+ 6 Cylinder

+ 4 Bytecount

+ 2 DMA segment
+ 0 DMA offset

Registers on return:

AL Floppy disk controller status register

Function 6-7

Reserved.

Function 8

Step floppy drive head one track in.
Registers on entry:

AL 8

Stack on entry:

+10 Drive (0/1)
+ 8 Head (0/1)

+ 6 Cylinder

+ 4 Bytecount

+ 2 DMA segment
+ 0 DMA offset

Registers on return:

AL Floppy disk controller status register

RC Computer

-185-

A. Int-28h Function Interface PICCOLINE

Function 9

Step floppy drive head one track out.
Registers on entry:

AL 9

Stack on entry:

+10 Drive (0/1)
+ 8 Head (0/1)

+ 6 Cylinder

+ 4 Bytecount

+ 2 DMA segment
+ 0 DMA offset

Registers on return:

AL Floppy disk controller status register

Function 10

Write a track to floppy disk.
Registers on entry:

AL 10

Stack on entry:

+10 Drive (0/1)
+ 8 Head (0/1)

+ 6 Cylinder

+ 4 Bytecount

+ 2 DMA segment
+ 0 DMA offset

Registers on return:

AL Floppy disk controller status register

-186- RC Computer

PICCOLINE A. Int-28h Function Interface

Function 11

Read a track from floppy disk.
Registers on entry:

AL 11

Stack on entry:

1 Drive (0/1)
Head (0/1)
Cylinder
Bytecount
DMA segment

DMA offset

FR S S

ON OO

Registers on return:

AL Floppy disk controller status register

Function 12
Write a byte to the sound generator.
Registers on entry:

AL 12
DL byte

Registers on return:

Undefined

Function 13

Get address of disk driver statistics
Registers on entry:

AL 13

Registers on return:

ES Address segment
BX Address offset

RC Computer

-187-

A. Int-28h Function Interface PICCOLINE

The disk driver statistics has the following layout:

Read_Count RW 16 ; Each word contain number of
; read operations on the
; corresponding drive (word 0 is
; count for drive A etc.)
Write_Count RW 16 Each word contain number of

write operations on the
corresponding drive.

~e we we

Each word contain number of
non recoverable errors occured
during read operations on the
corresponding drive.

Hard_Err_Read RW 16

Ne we we we

Each word contain number of
non recoverable errors occured
during write operations on the
corresponding drive.

Hard_Err_Write RW 16

~e we we Ne

Each word contain number of
recoverable errors occured
during read operations on the
corresponding drive.

Soft_Err_Read RW 16

~e Ne we Ne

Each word contain number of
recoverable errors occured
during write operations on the
corresponding drive.

Soft_Err_Write RW 16

we Ne we wo

Floppy controller status bit statistics. First word in
each field is count for drive A, second field is count
for drive B. See WD1797 controller manual for details.

~. we we

Fl_Error_Read DW 0,0 ; Bit 0 - BUSY
DW 0,0 ; Bit 1 - DRQ
DW 0,0 ; Bit 2 - LOST DATA
Dw 0,0 ; Bit 3 - CRC ERROR
DW 0,0 ; Bit 4 - RECORD NOT FOUND
DWw 0,0 ; Bit 5 - DELETED DATA
Dw 0,0 ; Bit 6 - NOT USED
DW 0,0 ; Bit 7 - READY

-188- RC Computer

PICCOLINE A. Int-28h Function Interface
Fl_Error_Write DW 0,0 ; Bit 0 - BUSY

DW 0,0 ; Bit 1 - DRQ

DW 0,0 ; Bit 2 - LOST DATA

Dw 0,0 ; Bit 3 - CRC ERROR

Dw 0,0 ; Bit 4 - RECORD NOT FOUND

DW 0,0 ; Bit 5 - DELETED DATA

DW 0,0 ; Bit 6 - NOT USED

0,0 ; Bit 7 - READY

Function 14-18

Reserved

Function 19
Returns 16 mS counter.

To offer a better time resolution than the one second from
the real time clock, the XIOS maintains a 32 bit wide se-
cond count field and a tick (16 millisecond) count field
which together make it possible to make relative time mea-
surements with a 16 millisecond resolution.

Both the second and the tick count field are initialized to
zero at boot time and it 1is not possible to adjust them
later (the counters are intended for relative time measure-
ments only).

Registers on entry:

AL 19

Registers on return:

DX Second count high
AX Second count low
CcX Elapsed 16 mS periods of next second.

RC Computer -189-

A. Int-28h Function Interface PICCOLINE

Function 20

Defines a character in the alternative character set.

Registers on entry:

20

Character number (0-255)

Address segment of character definition block
Address offset of character definition block

Registers on return:

Undefined

See 4.3.2.

Function 21

Returns a pointer to a console display list.

Registers on entry:

AL

21

Registers on return:

ES
BX
DX
SI

See 4.2.3.

Address segment display list table
Address offset display list table
Display buffer segment

Intel 82730 command block

Function 22

Returns the current cursor position.

Registers on entry:

AL

22

Registers on return:

BH Row

BL Column

See 4.2.4.

-190- RC Computer

PICCOLINE A. Int-28h Function Interface

Function 23

Returns status of iSBX351 controller (if installed).
Registers on entry:

AL 23

Registers on return:

AX Status

See 10.3

Function 24

Initializes the iSBX351 controller (if installed).
Registers on entry:

AL 24

Stack on entry:

+2 Parameter block segment
+0 Parameter block offset

Registers on return:
Undefined

See 10.3

Function 25

Reserved.

RC Computer -191-

A. Int-28h Function Interface PICCOLINE

Function 26
Read file header record from cassette tape.

Registers on entry:

AL 26
CX Max number of bytes to read
DX Input buffer offset

Stack on entry:

+0 Input buffer segment

Registers on return:

Al Function result
=0 ok
=1 CRC error
= 2 no data on tape
= 3 no leader found
= 4 wrong record number
= 5 end of file
AH, BX Undefined
cxX Number of bytes read
DX Ooffset of next byte in input buffer

Stack on return:
Unchanged

See 7.2.5

Function 27
Write file header on cassette tape.

Registers on entry:

AL 27
CX Number of bytes to write
DX Output buffer offset

Stack on entry:

+0 Output buffer segment

-192- RC Computer

PICCOLINE A. Int-28h Function Interface

Registers on return:

AX, CX 0
BX Undefined
DX Offset of next byte in output buffer

Stack on return:
Unchanged

See 7.2.2

Function 28
Read next data record from cassette tape.

Registers on entry:

AL 28
CcX Max number of bytes to read
DX Input buffer offset

Stack on entry:

+0 Input buffer segment

Registers on return:

Al Function result

= 0 ok
= 1 CRC error
= 2 no data on tape
= 3 no leader found
= 4 wrong record number
= 5 end of file
AH, BX Undefined
CcX Number of bytes read
DX Offset of next byte in input buffer

Stack on return:
Unchanged

See 7.2.6

RC Computer -193-

A. Int-28h Function Interface PICCOLINE

Function 29
Write next data record on cassette tape.

Registers on entry:

AL 29
CX Number of bytes to write
DX output buffer offset

Stack on entry:
+0 Output buffer segment

Registers on return:

AX, CX 0
BX Undefined
DX offset of next byte in output buffer

Stack on return:
Unchanged

See 7.2.3

-194- RC Computer

PICCOLINE

A. Int-28h Function Interface

Function 30

Subfunction

Subfunction

1:
Initializes mouse.
Registers on entry:

AL 30
CL 1

Registers on return:
Undefined

2:
Deinitializes mouse.
Registers on entry:

AL 30
CL 2

Registers on return:

Undefined

RC Computer

-195-

A. Int-28h Function Interface PICCOLINE

Subfunction 3:
Returns the current status of the mouse device.
Registers on entry:

AL 30
CL 3

Registers on return:
a) Nothing happened
AL 0

b) Button pressed

AL 1
AH Character information.

c) Mouse moved

AL 2
BX Delta x
CcX Delta y

See 4.7.

Function 31
Defines palette contents.

Registers on entry:

AL 31
DS Address segment of palette definition
DX Address offset of palette definition

Registers on return:
Undefined

See 4.1.3.

Function 32-34

Reserved

-196- RC Computer

PICCOLINE A. Int-28h Function

Interface

Function 35
Write a string direct to the console buffer.

Registers on entry:

AL 35

DL Column

DH Row

CX Count

DS Address segment of string
SI Address offset of string

Registers on return:
Undefined

See 4.2.2.

Function 36
Set cursor position.
Registers on entry:

BH Row
BL Column

Registers on return:
Undefined

See 4.2.4.

Function 37

Returns current attributes.
Registers on enﬁry:

AL 37

Registers on return:

AH Current attributes

See 4.2.5.

RC Computer

-197-

A. Int-28h Function Interface

PICCOLINE

Function 38
Set attributes.
Registers on entry:

AL 38
AH Attributes

Registers on return:
Undefined

See 4.2.5.

Function 39

Update physical screen.
Registers on entry:

AL 39
Registers on return:
Undefined

See 4.2.3

Function 40

Write an end of file record on cassette tape.

Registers on entry:
AL 40
Registers on return:

AX 0

-198-

RC

Computer

PICCOLINE A. Int-28h Function Interface

Function 41

Subfunction 1:
Reserve DPC parallel interface.
Registers on entry:

AL 41
AH 1

Registers on return:
Undefined
See 9.3.1
Subfunction 2:
Release DPC parallel interface.
Registers on entry:

AL 41
AH 2

Registers on return:
Undefined

See 9.3.2

Function 42

Subfunction 1:
Reserve shared disk.
Registers on entry:

AL 42
AH 1

Registers on return:
Undefined

See 8.4.1

RC Computer -199-

A. Int-28h Function Interface

PICCOLINE

Subfunction 2:
Release shared disk.
Registers on entry:

AL 42
AH 2

Registers on return:
Undefined

See 8.4.2

Function 43-49

Reserved

Function 50

Reset iSBX351.
Registers on entry:
AL 50
Registers on return:
Undefined

see 10.3

-200-

RC Computer

PICCOLINE A. Int-28h Function Interface

Function 51
Get font.
Returns a character from the character set.

Registers on entry:

AL 51

CcX Character number (0-1023)

DS Address segment of character definition block
DX Address offset of character definition block

Registers on return:
Undefined

See 4.3.4.

Function 52
Define font.
Defines a character in the character set.

Registers on entry:

AL 52

CX Character number (0-1023)

DS Address segment of character definition block
DX Address offset of character definition block

Registers on return:
Undefined

See 4.3.3.

RC Computer -201-

A. Int-28h Function Interface PICCOLINE

Function 53

Get XIOS version
Registers on entry:
AL : 53

Registers on return:

AH Year (BCD)

AL Version number (BCD)
BH Month (BCD)

BL Day (BCD)

-202- RC Computer

B. Peripheral Device I/0 Addresses

Address Peripheral Direction 1Interrupt request
0000H 18259 Int. Crt.
0020H Keyboard I 1
0056H-005CH
Sound o
005CH RTC 3
0060H CRT Control (o} 4 3
0070H PPI Port A I
0072H PPI Port B I
00748 PPI Port C (o}
0076H Control 70H-74H [o}
0080H~-00FEH
NVM I/0
0100H Net Ch. Attent
0180H-01BEH
Palette (e}
0230H Reset Int. CRT
0240H Ch. Attent.
0250H Local Prin. Data I/0 6
0260H Local Prin. Contr.
0280H Floppy Control 1/0 0 0
0282H Track Reg. I/0
0284H Sector Reg. I/0
0286H Data Reg. I/0
0288H Floppy Control (o}
028AH DPC Prin. Data I/0
028CH DPC Prin. Contr. I/0 2
028EH Test Floppy I
028EH Reserve Floppy (o}
0290H Release Floppy (o]
0292H Test Printer I
0292H Reserve Printer o
0294H Release Printer o
0300H-030EH
iSBX I/0 INT1
0310H-031EH
iSBX I/0 INT3
0320H DMA ACK to iSBX o]
0330H TC to 1iSBX [e]

RC Computer

-203-

B. Peripheral Device 1/0 Addresses PICCOLINE

-204- RC Computer

C. Interrupt Vector Assignment

Cause Type Vector

Divide error exception Internal 0 0000:0000H
Single step interrupt Internal 1 0000:0004H
Non maskable interrupt Internal 2 0000:0008H
Breakpoint interrupt Internal 3 0000:000CH
INT 0 detected Internal 4 0000:0010H
Array bounds exception Internal 5 0000:0014H
Unused opcode exception Internal 6 0000:0018H
ESC opcode exception Internal 7 0000:001CH
Timer 0 interrupt Internal 8 0000:0020H
Timer 1 interrupt Internal 18 0000:0048H
Timer 2 interrupt Internal 19 0000:004CH
DMA 0 interrupt Internal 10 0000:0028H
DMA 1 interrupt Internal 11 0000:002CH
INT 0 interrupt Internal 12 0000:0030H
INT 1 interrupt Internal 13 0000:0034H
INT 2 interrupt Internal 14 0000:0038H
INT 3 interrupt Internal 15 0000:003CH
Floppy controller External 0 0000: 0080H
Keyboard interface External 1 0000:0084H
DPC interface External 2 0000:0088H
Real time clock External 3 0000:008CH
CRT External 4 0000:0090H
Net controller External § 0000:0094H
Parallel interface External 6 0000:0098H
Not used External 7 0000:009CH
Int-28h functions Int 28H 0000:00A0H
Net driver Int 29H 0000:00A4H
IMC Int 30H 0000:00A8H

RC Computer

-205-

C. Interrupt Vector Assignment PICCOLINE

-206- RC Computer

D. Character Set and Keystrokes

VALUE VALUE
DEC [HEX | KEYSTROKES DEC [HEX | KEYSTROKES
01| 00 CTRL e 16 | 10 CTRL P §
1101 CTRL A t 17 | 11 CTAL @ #
2| 02 CTRL B ﬁ 18 | 12 CTRL R [
3] 03 CTRL C o 19| 13 CTRL S ""'
4| 04 CTRL D E 20 | 14 CTAL T]
L] . 6
5| 05 CTAL E 2 21| 15 CTRL U
tj 5
6| 06 CTAL F 22 | 16 CTRL V
71 07 CTAL 6 23 | 17 CTRL W {
I
8| 08 * n 24 | 18 ctAL x| !
9| 09 < £ 25| 19 CTRL Y }
5" 4
10 | 0A CTRL J 26 | 1A CTRAL 7
11 | oB CTAL K E 27 | 1B ESC @
12| oc € B 28| 1C ctaL o] B
13 | oD K—J 29| 1D CTRL A "
14 | OE CTRL N ﬁ 30 | 4E cTRL O é
15 | oF craL o] M 31| 1F cTRL _| W
-207-

RC Computer

D. Character Set and Keystrokes PICCOLINE
VALUE VALUE
DEC |HEX | KEYSTROKES DEC |HEX | KEYSTROKES
32 20 space bar 48 | 30 0 0
' 1
33| 2t SHIFT ! | * 49| 31 1
[1] EE
34| 22 SHIFT * 50 | 32 2
.-
35| 23 SHIFT § 2 51| 33 3 3
36| 24 SHIFT § i’ 52 | 34 4 4
]
37| 25 SHIFT % """I 53| 35 5 5
38| 26 SHIFT & & 54 | 36 6 6
) 7
3g | 27 SHIFT ° 55 | 37 7
40 | 28 SHIFT (f 56 | 38 8 8
41 | 29 SHIFT) :' 57 | 39 9 9
* []
42 | 2A SHIFT * 58 | 3A .
|]
43| 2B SHIFT + + 58 | 3B 13
44| 2cC 12 60 | 3C SHIFT < {
45 | 20 -1 61| 30 SHIFT =| —
46 | 2E . 62 | 3E SHIFT > }
3
47 | oF / ""’ 63| 3F SHIFT ?| =

-208-

RC Computer

PICCOLINE D. Character Set and Keystrokes

VALUE VALUE
DEC [HEX | KEYSTROKES DEC [HEX | KEYSTROKES

64 | 40 SHIFT @ @ 80 | 50 SHIFT P F
65 | 41 SHIFT A H 81 | 51 SHIFT @ A
66 | 42 SHIFT B B 82 | 52 SHIFT R e
67 | 43 SHIFT C C 83 | 53 SHIFT S S
68 | 44 SHIFT D I 84 | 54 SHIFT T T
69 | 45 SHIFT E E 85 | 55 SHIFT U U
70 | 46 SHIFT F F 86 | 56 SHIFT V v
71| 47 SHIFT G G 87 | 57 SHIFT W W
72 | 48 SHIFT H H 88 | 58 SHIFT X A
73 | 49 SHIFT 1 I 89 | 59 SHIFT Y Y
74 | 4A SHIFT J J 90 | 5A SHIFT Z A
75 | 4B SHIFT K K 91 | 58 SHIFT £ 3
76 | 4C SHIFT L L 92 | 5C SHIFT B o]
77 | 4D SHIFT M M 93 | 5D SHIFT A A
78 | 4E SHIFT N H 94 | 5E SHIFT 0 U
79 | 4F SHIFT 0 O 95 | SF SHIFT _| ==

RC Computer -209-

D. Character Set and Keystrokes PICCOLINE
VALUE VALUE
DEC |HEX | KEYSTROKES DEC |HEX | KEYSTROKES
96 | 60 0 12| 70 P p
97 | 61 A 4 113 | 71 0 q
98 | 62 B b 114 | 72 R P
ag | 63 c c 115 | 73 s =
100 | 64 D d 116 | 74 T t’
101 | 65 E e 117 | 75 u U
102 | 66 F 'F 118 | 76 v 4
103 | 67 G g 119 | 77 W W
104 | 68 H h 120 | 78 X A
105 | 69 1 l" 121 | 79 \ H
106 | 6A J J 122 | 7A z Z
107 | 68 K l‘{ 123 | 78 | ®
108 | 6C L]- 124 | 7C p| @
109 | 6D M m 125 | 7D A é
110 | 6E v 1 126 | 7€ 0 U
111 | 6F 0 Q 127 | 7F | CTAL -
-210- RC Computer

PICCOLINE D. Character Set and Keystrokes
VALUE VALUE
DEC |HEX | KEYSTROKES DEC |HEX | KEYSTROKES
128 | BO CTRL ALT e r 144 | 90 CTRL ALT P ‘_
129 | B4 CTRL ALT 1 145 | 91 CTRL ALT @Q -}
130 | 82 CTRL ALT L 146 | 92 CTRL ALT R T
131 | 83 CTRL ALT J 147 | 93 CTRL ALT S 4'
132 | B84 CTRL ALT T 148 | 94 CTRL ALT T F‘"
.| +
133 | 85 CTRL ALT 149 | 95 CTRL ALT U| ==
134 | 86 CTRL ALT } 150 | 96 CTRL ALT V k
. >
135 | 87 CTRL ALT 151 | 97 CTRL ALT W| =
— ‘
136 | B8 CTRL ALT 152 | 98 CTRL ALT X| ™
I o~
137 | 89 CTRL ALT 153 | 99 CTRL ALT Y| ™
138 | BA CTRL ALT + 154 | 9A CTRL ALT Z "'-l
130 | e8| ctaL atk| € 155 | o8 | cTAL ALT K| ¥
140 | 8C CTRL ALT 1 156 | 9C CTRL ALT P r
141 | 8D CTRL ALT k 157 | 9D CTRL ALT A I'I
4 z
142 | BE CTAL ALT 158 | 9E CTRL ALT O
. 3
143 | BF CTRL ALT 159 | 9F CTRL ALT _

RC Computer

-211-

D. Character Set and Keystrokes PICCOLINE
VALUE VALUE
DEC [HEX | KEYSTROKES DEC |HEX | KEYSTROKES
160 | AO | ALT SPACE 176 | BO ALT 0| W
n]
164 | A1 | SHIFT ALT ! 177 | B4 ALT 1|
] []
162 | A2 | SHIFT ALT * 178 | B2 ALT 21 @
m |
163 | A3 | SHIFT ALT @ 179 | B3 ALT 3| m
164 | A4 | SHIFT ALT $ n 180 | B4 ALT 4 I
165 | A5 | SHIFT ALT % l i81 | B5 ALT 5 l
166 | A6 | SHIFT ALT & .. 182 | B6 ALT 6 '.
167 | A7 | SHIFT ALT * r 183 | B7 ALT 7 r
168 | AB | SHIFT ALT (n 184 | BB ALT 8 ..
169 | A9 | SHIFT ALT) -. 185 | B9 ALT 9 b
170 | AA | SHIFT ALT * I 186 | BA ALT : II
171 | AB | SHIFT ALT + 1 187 | BB ALT :
| r
172 | AC ALT , 188 | BC | SHIFT ALT <
173 | AD ALT - . 189 | BD | SHIFT ALT = '
174 | AE ALT . ‘ 190 | BE | SHIFT ALT > ‘
175 | AF ALT / . 194 | BF | SHIFT ALT ? '
-212- RC Computer

PICCOLINE D. Character Set and Keystrokes

VALUE VALUE
DEC |HEX | KEYSTROKES DEC |HEX | KEYSTROKES

182 | CO | SHIFT ALT @ 208 | DO | SHIFT ALT P

193 | C1 | SHIFT ALT A 209 | D4 | SHIFT ALT @

194 | C2 | SHIFT ALT B 210 | D2 | SHIFT ALT R

195 | C3 | SHIFT ALT C 211 | D3 | SHIFT ALT S

196 | C4 | SHIFT ALT D 212 | D4 SHIFT ALT T

197 | C5 | SHIFT ALT E 213 | D5 | SHIFT ALT U

198 | C6 | SHIFT ALT F 214 | D6 | SHIFT ALT V

199 | C7 | SHIFT ALT G 215 | D7 | SHIFT ALT W

200 | CB | SHIFT ALT H 216 | DB | SHIFT ALT X

204 | C9 | SHIFT ALT I 247 | D9 | SHIFT ALT Y

202 | CA | SHIFT ALT J 218 | DA | SHIFT ALT Z

203 | CB | SHIFT ALT K 219 | DB | SHIFT ALT £

204 | CC | SHIFT ALT L 220 | DC | SHIFT ALT B

>

205 | CD | SHIFT ALT M 224 | DD | SHIFT ALT

[ot}

LSl NSNS S N S el LRI Bl

206 | CE | SHIFT ALT N 222 | DE | SHIFT ALT

ol ol ol |l |l ™ | o | ™™ ™| ™ (0 B{w o m|n ¥

207 | CF | SHIFT ALT O 223 | DF | SHIFT ALT _

RC Computer -213-

D. Character Set and Keystrokes : PICCOLINE

1

VALUE VALUE

DEC |HEX | KEYSTROKES DEC [HEX | KEYSTROKES
224 | EO ALT ° x 240 | FO ALT P P
225 | E1 ALT A ﬁ 241 | Fi ar o 9
226 | E2 ALT B P 242 | F2 ALT R 1.-
227 | E3 ALT C E 243 | F3 ALT S U
228 | E4 ALT D E 244 | F4 ALT T ¢
229 | E5 ALT E g 245 | F5 ALT U }{
230 | E6 ALT F L 246 | F6 ALT V "l"
231 | E7 ALT 6 9 247 | F7 ALT W 0
232 | EB ALT H l" 248 | F8 ALT X d
233 | EQ ALT-I K 249 | F9 ALT Y r
234 | EA ALT J :"- 250 | FA ALT Z E
235 | EB ALT K JJ 251 | FB ALT £ M
236 | EC | ALT L V 252 | FC ALT 2
237 | ED ALT M 'g 253 | FD ALT A #

¢ an
238 | EE ALT N 254 | FE ALT 0

|

239 | EF ALT O 255 | FF impossible

-214- RC Computer

E. Keyboard Position Codes

96)_B6 LB)| 26
G6|| ¥6]| EB

16j| 06j| 68| 88| 48

98J| S8j| ¥B|| EBJ| c8B

18]| 08| 6] B4[£L]

94| S| VL[ELf eL

LS
vSi| ESJ| SSI|_TSI| 0S| B¥|| BY|| L¥]| V]| SYI| v¥ii 9G 14
Yv|l EV] Scj| BE)| LE)| SEj| SE|| VE|| EE|| CE]| TE|| OE| OF)| &2
B2)| BEj| 2] Sej| el Ec) 2c|| 1e| 02|| 6V BF|| L¥|{ 9T)| S¥|| &S
PHLEHLSHLIHL O Bl Bl £ S S| ¥l_€El_ 2 ¥
V4| OZ){ B B89I| £9]{ 99]| &9i| ¥S|{ €9} 29I{ 79|, 09]{ 6S|| BS

-215-

RC Computer

E. Keyboard Position Codes PICCOLINE

=216~ RC Computer

F. Console Escape Sequences

Sequence Function

ESC A Cursor Up

ESC B Cursor Down

ESC C Cursor Forward

ESC D Cursor Backward

ESC E Clear Screen, Cursor Home

ESC H Cursor Home

ESC I Reverse Index

ESC J Erase to End of Screen

ESC K Erase to end of line

ESC L Insert Line

ESC M Delete Line

ESC N Delete Character

ESC O Insert Character

ESC P Select Alternative Character Set

ESC Q Select Standard Character Set

ESC Y x x Position Cursor

ESC a Ignored

ESC b x Set Foreground Colour

ESC c x Set. Background Colour

ESC 4 Erase Beginning of Screen

ESC e Enable Cursor

ESC f Disable Cursor

ESC g Enter Underline Mode

ESC h Exit Underline Mode

ESC i Enter Non-Displayed Mode

ESC j Save Cursor Position

ESC k Restore Cursor Position

ESC 1 Erase Line

ESC m Enable Cursor

ESC n Disable Cursor

ESC o Erase Beginning of Line

ESC p Enter Reverse Video Mode

ESC g Exit Reverse Video Mode

ESC r Enter Intensify Mode

ESC s Enter Blink Mode

ESC t Exit Blink Mode

ESC u Exit Intensify Mode

ESC v Wrap at End of Line

ESC w Discard at End of Line

ESC x Exit Non-Displayed Mode
z

ESC Reset Attributes

RC Computer -217-

F. Console Escape Segquences PICCOLINE

Sequence Function
ESC 0 Status Line Off (25 Line Mode)
ESC 1 Status Line On (24 Line Mode)
ESC 2 Save Current Attributes
ESC 3 Restore Attributes
ESC 6 Function Key Expansion Off
ESC 7 Function Key Expansion On
ESC : x c...c NUL Program Function Keys
ESC < x x Scroll Window Up
ESC > x x Scroll Window Down
ESC <241> Set Blinking Cursor
ESC <242> Set Non-Blinking Cursor
ESC <243> x Set Cursor Representation
ESC <244> Set Soft Scroll
ESC <245> Set Line Scroll
ESC <246> Disable Underline Attribute
ESC <247> Enable Underline Attibute
ESC <253> Save Function Keys
ESC <254> Restore Function Keys
-218- RC Computer

G. References

1. Concurrent CP/M-86, User's Guide.
Digital Research

2. Concurrent CP/M-86, Programmer's Reference Guide.
Digital Research

3. Concurrent CP/M-86, System Guide.
Digital Research

4. DrNet, Network operating system, System guide.
Digital Research

5. PICCOLINE brugervejledning.
SW1401D
RC COMPUTER

6. Local Area Networks - Logical Link Control - Draft E
ISO/DP 8802/2 (TC 97/SC 6 N2925)

7. Data Processing - Open Systems Interconnection
Basic Reference Model
Feb. 4, 1982
ISO/DIS 7498

8. Distributed System Architecture, Report
RCSL No. 42-i1982
RC Computer

9. DSA Inter Module Communication,
Functional Description
RCSL No. 42-i1983
RC Computer

10. Intel 82586 Reference Manual
order number 210891-001
Intel Corporation, 1983

11. RC 759 Techical Hardwaredocumentation
SW1493D
RC Computer, 1985

RC Computer -219-

G. References PICCOLINE

-220- RC Computer

Catchword Index:

24 1INES tveveecessssssnscescccncssssss 48

25 1iNeS ceveccccssccnsscsconscssssssss 48

BO1BO .vceveeecscecssossscsoscncsessssss See CPU

8251A USART .tvcvesesocscssscnssacsssses 100

8253 PIT ceveveeerscossssosssoassacnssnss 100

B259A ti.cceetetnscsssccaccssscssssssssss See interrupt controller
B2730 teceeccscrcenssccnsenssssesesssss See text processor

A

activate.confirmceceeesecsccccsees 118
activate.confirm buffer format 118
activate.request c.ccecercctrcecrcaness 117
activate.request buffer format 117

Active_SaP ccceccccecsrcctccocscccssasess 142
alphanumeric mode ..¢cceeeeseeccesce.s.. See character mode
alternative character set .¢..cceveceeee 35

ASCII value .ccceececccrocccnscncecceass 64

asynchronous mode e..ccveeecccccccscess 99,100
attenuationceersecsessocscsccsneas 71

attenuation weight «¢.ccceeveccvcecceses 73

attribute bits ..cccceciececccceneceeas 32

attribute byte ...cccceecccccncacsesce. 34

attributescciiciiiiiieeceerces.. 48

attributes currentcccc0essecees... See function 37
attributes set¢ccc0tc0eeececes... see function 38
auto configuration eceeccecececerceccces 15

AULO lO0gON ceevecccaccssscsnsonscssnosss 20

B

basic configurationecceoccecccsses 15
baud rateceieceecresrccenscccccccess 99
BCD COdE@ .vvivessveccssnsoncscsscnnssns 67
BELL cocecccccccccccssocssnascsoscessse 40
Ditmap cececeeeceecsecercsccnsccncsaecsss 26,36,55
bitmapped graphicscceececeececcess 29
bits pr. charviieeescccsosnsceseaes 18
black ceeveereesoccsossosscossecsssnnsses 43
blink modecicevcececerccccccceees 47
blinking cursorcceeceeevecsacess 52
Y X |
blue beam ...vvvseesvscsesesssnsencaess 27
= 1]
bus interfacecevcveveccececcccesss 145
bus specificationccceecveececa.. 145

RC Computer -221-

Catchword Index PICCOLINE

(o4

cassette controlccieeecieinncenees 77,78

cassette Ariverccceececcniecoesss 77,78

cassette inputcccccciececerrncecaes 78

cassette MOLOr ...ceeeeencecescnesseses 78

cassette output ..cccceeccrtccnensceses 78

cassette record ..iecececcrtescssoccnsss 79

cassette recorderceciieccnccoconess 17

cassette tape ...ccceccccecocnnccncanes 17

cassette tape read ...cccciieveeseses... see function 26
cassette tape read next0...... see function 28
cassette tape writeécc0000000.... see function 27
cassette tape write next See function 29
cassette tape, end of file see function 40
ch., attent ¢.cceeeececececscccnsscsaass 203

character definition¢..cceaseseese 36,55,190
character format ..ceecccccccccencesscas 26

character height ..cceceeecevsecsessses 26,36
character mode ...cccceceececsoscnsesnss 26,27,29,56
character mode, set ..ccccceeceesessss. see function 1
character set ..cicececccccccsncccsnsnss 207

character sets ..ccccececccecccccsscssees 35

character value ..ccecceeccccecccnssesees 32

character width ..ccececcccescccssseess 26,36

CheCKSUM «cceececceccccccccecscncssnses 17,20

CHSET .t.scccecccccssscassccssnsnsssnnss D7

Clear SCreen ..ceeeececocssscccssssesess see ESC E
client ..ccececccscccccscocsssanssonsss 112

client confirm queue e.ccccvcccccccese. 118

client information e..ceececcccsccceess 117

client information buffer¢.... 118

client network «.ceeecceccccccsscccasss 133

client network servicecccceveece.. 124
client network service procedures 133
clock rate ceeecsciccccscccsccccsccccses 72,75
COlOUY tveevsccccscsconcsossscnssssncsscascs 26
colour mONitor c.eeceeececccesoscccsccess 43
command block ecccieeeccccasssecccencsse 25

communication channelcceceveeeceecs 18
configurationcccecccciecerccrscecess 15
configuration description address see function 4
confirm ..cceeeeerececccocacesccnnsesoss 114
confirm queueccccceeceneccccecesas 117
confirm queue buffer format ..cevev.e.. 114
confirm user buffercc00c0ce0e.. 114
confirm user buffer values 115
CONIN tticeeevceocccoosoaocnssssonssssnssss 25
connect.indication .e.cecieiesesescsssaa. 118,125
connect.indication datastructure 125
CONNECLION cveevovecoccccssossosesasesss 112

-222- RC Computer

PICCOLINE Catchword Index

connection state changecccceeee.. 134

connection states ..ceccceereecacecees. 134,135

CONOUT +veeecosscscsocecanssscsssnsesnsss 25,30

CONSOlE 5 cvvversscesecsscnscanssnseasss 99

console buffer write¢esceeces..... see function 35
console display .c.cetecccccccscscesss. see function 21
console driver ..ccescescccccncsceceses 30

console escape SEqUEeNnCesS ...ccecsessses 217

console MOde ..ceesvececccssnossoceasess 99,183

console Module ..cceevcesccscrccscssnsss 25,55

console output ...cececeeccsceccssecess 30

console switching .ceceeeeccccccccceees 57

control block ceeecerccsessssesesnsoses 11

control characters ...c.ceceecececccnces 40

control output register ...cccccceceess 91

control PPI ..ceeeceseccsncsoncncnseaess 203

control register ...cceccccevccccecess.. 87,88,93

control, cassette ...cccsceesccccesses. See cassette control
controller specific information 130
counter, 16 MS ..ccvvenscccccscncsns see function 19
CPU ¢cececcccsccccsosscscsssssnssss

CPU identification e..cceoeeeccccccces

. 11
. 20

. 40

. 79,82

see Xfunction 20
203

CR cceevovscceassscanssosnnsacsssecse

o« o o o

CRC tcvececcocsccscscssssscscccscsnscsse
create new Window ..ecoeccscssccscsscns
CRT cONtrol c.ceeececccscscccccccsssnsnss
CRT controllercceecccsscssecsscassss 25
CRT scroll mode e.ceeceoveccococncsccccess 18

CEr] tecececosoncosacescsscscncssscsess 64

CErl1+Al tieeeesasccscsssssssasassnansese 04

Ctrl+A3 tieeeecesceccsossssscsssssnnces 04

CEY1+A4 tiueevesoossessccssesssnsscsses 64

CLtrl+Print ceeeeecesssssccsoscscscscses 64

current attributescccccsceseee.e.. see function 37
current YEAr secececsccccccscscasccscssss 19

cursor backward c.ccccececccccccssscssss See ESC D

cursor blinK eeeeeeececcocscccacossosees 18

CUrsSOr AOWN ececeeecccscceccsecsscsssess See ESC B
cursor forward ..cccecssccnsccsssesssss See ESC C
cursor heightcccceeeocccesecccsess. 18

CUrSOYr hOME +ieevssvssscoscesssssecsssss See ESC H
CUrsoOr poOSitiOn .esececcssssscoscccesss 34

cursor position currentc....... see function 22
cursor position set ...ccceeceeeescs... see function 36
cursor representation0000000.. 52

cursor tracking modeccc0...0... see Xfunction 21
CUFSOY UP +esesocoscsssscscssscssacsssss See ESC A

CYAN cvseesensocescassscsseasscnssnsnoes 43

RC Computer -223-

Catchword Index PICCOLINE

D

dAt@ ceecescecseccctencoccccncsasssssssss 143
data block ceeeceeeeeeeccccncsnscscennee 79
data input POrteeeecesssesccescsss 91,92
data output register ...e...siveececcess. 91,92
data record cecececccccscaccsssaseacncess 79,82
data registercceccccccecessasess 203
data.confirm ...cceeeeeccceccasscssessss 128
data.confirm buffer format 128
data.indication ...ceseccecessenscccsss 128
data.indication datastructure 129
data.request ..ccccececcccccsccccessaaosss 118,127
data.request buffer formatc.c00.0. 127
datalink .c.ccececcccccnccsscecnsscanesss 112
deactivate bufferccccvereecceccses 119
deactivate.confirm ...ccccceiecceceeas. 119
deactivate.confirm buffer format 119
deactivate.request ...ccccececccccccccss 119
deactivate.request buffer format 119
define character fontccc00ecees. 37,38
define font .scceevcececnsccccsscacssssss see function 52
deinitialize mouseccccctceece.ce.. see function 30
delete character ...ccecccceeesecsecssess. See ESC N
delete line .c.eeeeecoccccsscsscssesssss S€e ESC M
device addresSSeS ..ccceececessscccccsss 203
direct console accesSs ..c.cceceecsccsecss 30
direct console outputccceeseesecss 31
direct memMoOry acCesSS .ceceecececesscscss.. See DMA
disable cassette ..ccecceccecsccccccees. 78
disable cursor ...cceeccecsescscseses.. see ESC £
disable interrupts ..cceccceccescsscccess 57
disable underline attribute see ESC <246>
discard at end of line ...ccceeeeeee... See ESC w
disconnect.acknowledgececceceescsss 126
disconnect.acknowledge request buffer . 126
disconnect.indication ...ccceceecscee.s 125
disconnect.indication datastructure ... 126
disconnect_acknowledge.confirm ...ec... 127
disconnect_acknowledge.confirm buffer

format . 127
disk buffers ..ccivcecescescassnssssess 19
disk characteristicCs .ccesceccccsesssss 85
disk controller ...ccecececsccccocsccss 87
disk drivercieeececessssssccescscs 88
disk driver statistics ...ecccevecss... see function 13
disk format ..c.ceeecccceccnceasesssesss 85,86
disk NAMiIng cec.evecececovssossaseseses 85
disk numberccececccsssccsscescess 20
disk releaseeiececcccnccancessssa. see function 42
disk reserve ...ieeececcesssscasccssss. see function 42

-224- RC Computer

PICCOL

INE

Catchword Index

disk system ..coceesesonne

Disk/P
Disk/P
displa
AC
ch
ch
ch
ch
in
in
pr
re
in
in
in
pr
DPC pr
drive
drive
drive

E

enable
enable
enable
end of
end of
enter
enter
enter
enter
enter
enter
enter
entity
erase
erase
erase
erase
erase
ESC ..
ESC O
ESC 1
ESC 2
ESC 3

rinter-Adaptor
rinter-Controlunit
y buffer
K to iSBX
annel 0
annel 1
annel reservation ..
annels
terrupt handling ...
terrupt level
iority
gquest signal

esec s s e s s cs e

.
s s e
.
ec e s s e

ees s e s
ees s s e v

esee s s s
eseccsecs s

cs s e
D A]

P R

terface
terface release
terface reserve
inter control
inter data .ccceec.e
characteristics
head step in ecconee
head step out

es e s e s es s

es s

cassette
cursor
underline attribute
file
file record
blink mode
graphics mode
intensify mode
non-displayed mode .
reverse video mode .
setup mode «.ceecces
underline mode
beginning of line
beginning of screen
line
to end of line
to end of screen ...

e s s st ecsces s

eesecsccs e

ee e e s v

ses e s e v e

es s

ses e s s

sese e

e s

..

v o s e

P I I S AR AP AT A A
es s s s e et s e
ee s 0 e s s eceos s ss s

LR R A N NI N I R AT S SR}

.

85
see
see
32
12
203

DPA
DPC

12,88

12
12
11
13
13
88
13

3,16

3,85,89,91

97

see
see
203
203
87

see
see

78

see
see
81

79

see
see
see
see
see
see
see
112
see
see
see
see
see
40

48

48

48

function 41
function 41

function 8
function 9

ESC e
ESC <247>

ESC s
function 0
ESC r

ESC i

ESC p
Ctrl+al
ESC g

ESC
ESC
ESC
ESC
ESC

G®—=0,0

RC Computer

Catchword Index PICCOLINE

ESC 6 cceessncessosscacsosnsssoscssasssos 48
ESC 7 tteseecesssassesssncnssnsesnsenss 48
ESC : eveececesssssssascssssansseseeasse 48
ESC € teveocecsocsossssossossssseassnssssss 51
ESC <2417 .ceeereeessonascssssecnsessnssee 52
ESC €242) cveeesscsseacoosnsssesnansasnes 52
ESC <243) teveesessonsassossasssassannss D2
ESC <2447 tvvesvscssocnsnsessnsonaseses 53
ESC <245) veeesseosssecessssnossnssasss 53
ESC <246 t.ovavssccsscsscsscsnssacacnss 36,53
ESC 2477 cveeesnsssssassssscsseanseassss 36,53
ESC €253 teeessocsscossnssssnssnssosse 53
ESC €254 tuceeveecosososssnssssssssssssss D4
tesesssesssessscsensssssssnsseases DI
ceesessecesessessssscsnssssssssns 40
Y X
cseesssessessssssecsasasssesscass 41
tssesssesssssessscseassssssesansss 44
cesessscssesnsssacessssnsssssssse 41
cesessscssessecssseessnssessccces 44
R 3 |
P Y |
ceteesscessesssssscnesevesssssssse 41
teeeessessesaseseccssanrssesanses 44
teesesescssessssscssasssscscccsnses 35,45
esssessesssesssssssessssssssesses 35,45
eeseescevcessssscccsssssscssevces 41
eteeessesssssssssssesseesssssssss 45
csecessscsssesssssccsssssscsssesess 41
cesecssessseesssensassssssssscsss 45
ceceessessscssssssacsscessssssceses 41
cessesssesesscssessssssssescsscss 45
R 3
cssesesesessecnssesscsessssssccss 45
cesserssessecssssesssenssesssnnse 42
cecesssescsescsccscssacesassssssss 45,5€e ESC e
tecessecsessessessssesssesssssens 42
cececsssssessecseccssscccsssssssss 46,8ee ESC f
cssessevssscecesnsseessssssccsess 42
S 191
Y ¥
Y 1
T L - ¥
ceecesssesesecsssccsnsscccsssessss 46
cseersessssssnsssessesscensessesvss 35,42
Y 19
Y ¥
Y ¥
Y ¥

T ¥

2]
0n
(o]
£t ROOQUDO0ZIRBU-RIFUQUHKFIIDFARDOOAONOO DT P v

. ¥

-226- RC Computer

PICCOLINE

Catchword Index

ESC x
ESC Y
ESC z

escape seguence
escape sequences

ss s e s s s e

e s e s e et s s s s e s s et s st st s ses s

o6 e s e s s s s s e s s st st s e e0ses s

R A R R R

ee s ce s e s ccesses oo

L A A O A I I I I I A R R AT R

eXchange IDentification ...eececacennes

exclusive access
blink mode
graphics
intensify mode
non-displayed modecccceeceens
reverse video mode
underline mode
external interrupt controller

exit
exit
exit
exit
exit
exit

F

FCR
file head

file transfer

FILEX

flag assignments

flags

floppy
floppy
floppy
floppy
floppy
floppy
floppy
floppy
font,

di

te
get

foreground colour

er

sk

st

s s e s s s s s s et e s
e s e s s st s s s e et es s s

s ees s cecs s s st s s s

D R I I A I I A R

sececcsosvsss s
esse0 e s s cs 00

sese s s

R e I I R R R R R I I I AR

see s s e cscsescssscnos s e

eseecsessesesssses s

D I I I L A I R R R R A R R

esesse s s s e s e eses o0

P I I I R N I

control

seessccsececscssvsesssscscee

.
drive performance ...ccecceceecne
drives
motor
release
reserve

P N N N A A N A R]

D I I R R I N I IR}

ss0esscsssserc0ss s

D I I I R R

I I I O I I I N

R R A A R I I A A S AP AP A RS A Y

eesessecss s s s

frequency ...cieececscerecccsccssscncnnss

frequency data

full scre

en

47

42

47
35,40
217

see XID

57

see ESC t

see function 1
see ESC u

see ESC x

see
see
see

ESC g
ESC h
interrupt controller

see control register
79,81

177

177

6

6

203,203

85

85

16

19

203

203

203

see function 51
19

71,72

R A R I R e)

ses e s e

L I I I R R A

full screen key ..ccecececcccccccnscans

function
function
function
function
function
function
function
function
function
function
function
function
function

VoUW OO

11
12
13
19

L I R e I I IR A I B AR A B}

L A N N R

eee e e s e

e es s e s e s st s s et s e

ss e eseessssecs e s e ress e

®ecevsses s s s sccs s s s s

es s e s e es s ssses s s sss e

e eeccrscse s s s s e s e

S e eesesrrrevsesesces e

e s e s e s e s s e s s s s s s e e

73
63
see
183
55

Ctrl+a4

56,183
17,184
15,184

185
185
186
186
187

71,187

187
189

RC Comput

er

-227-

Catchword

Index

PICCOLINE

function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function

G

20
21
22
23
24
26
27
28
29
30
31
35
36
37
38
39
40
41
42
50
51
52
53

e e s e s e s e e e e et e

eesemses e e s s e s s s e s e

e e s eeecs s e e e v s s e s

ees s e e s s e s s 00 e s s e o0

seses s s s es e s s st s s st es e

R R R R R

ee s s s s s s e e e s s s s s csses s o

ee s s o sese e eeesssesscss s e

P R R I S A AT SR)

essssscesevesoss s s s ssss e

P R I N R N N A R]

esessss e s s es s s s e es s

R R R N R I A A R R

D O I I I A N

D N A A I I I I A A A A R A Y

L N A e I I R R R R R

I R R R I R A A]

R R I I A R A I I AT S S A)

R A I I I R A R A NI SR

sseesecsescvsscsesvssssses s

L N R I N I S R N I Y

L I I I R N)

P R I R N A A A A S N A A I I IR

Key cveeccecccccsnscnccosocnnns
key axpansion offccc00.
key expansion On ...ececesccces
key identifier ...ceccccccccen

gCb_MX ciciecericcccctcaccsrssrstsrsnnnas
generator,
generator,
get attribute byte ...cccccecccccccecns
get character font ..cecceeccccccccncns
get command block ceececconcccoccconsen
get cursor posSition cecccececcccrcsccens
get display line buffercc0000cc0e
get font ceeecciciicttcenrstetsstcensens
get XIOS VErSiON ceessseccessssssvccsscs
GET_SCREEN_MODE +.cevevecncocnsnannnnns
graphiC image ..cceeeeeeccassssccsscnsns
graphics control block ...cceevecscncee
graphics Mode ..cceeecsessessssonsnsnnse
GXEEN ...ecsessvssosssscccsssassonccscs
green beam ...eeeecocsccsscsssccsscsans

GIEEY ceoeoserscsacssosccscnsossscssnnss

NOLISE ceeveecssoocssncoacnscns
single-frequency ..cccecceee

37,190
25,322,190
34,190

104,
102,

191
103,191

81,192
80,192
82,193
80,194
65,195

196

31,197
34,197
34,197
34,198
33,198
81,198
98,199
89,199

104,

200

38,201
38,201

202
48
see
see
50

56
71
71
see
38
see
see
see
see
see
see
55
56

ESC 6
ESC 7

function 37
function 21
function 22
function 21
function 51
function 53
Xfunction 30

26,28,29,36,55,183

43
27
43

-228-

RC Computer

PICCOLINE

Catchword Index

H

hardCOPY cceeoecseccceccccscencscossannsnss
header fieldccccectcecncccasconses
high pulsecciiceececcecccccsecnses
high resolutioncceceecceecrccnses
horizontal scrolling ...eeecececesccsns

I

I/O SYStem ..cceeececccccccccncacocoasa
I/0-address 112 .c.ciceeeecccccsccocncns
I/0-address 118ecececccccccsosonnns
I/0-address 70H ..ccecececcnscccssasens
I1/0-address 76H .cccececncccccccsoncncs
I8259 int. Crt. cecceceecocascacannanes
IMC .ccececcccecsccsoscccscscnosnnsscssssssssnsnse
indication ..iceicecciicccccccsanccaronns
indication acknowledgecccccecsce
indication queueccceccecccncnccons
indication queue buffer format
init graphics ...ccceeececcccccccccscss
initialize iSBX351 ...cccccsccccsnscoas
initialize mousecccccecciicitenonns
insert characterccecceccccccoconss
insert line ...ececceccccccncccssnronns
INt=28h cieeenrerroncsnonconsosensnsnnns
Int-28h function ..ceeececesccoceccocens
INTO cocecocccsscccccssoscssssccsccnsans
INT]1 cccecccccocssscssssscssssssnccncscns
INT3 cecececsccscsccossoscssossassnsosscsssss
INTAD oo cesvocscscccssosossssscscnnnssss
Intel 80186 .iceeesecscocooscoscocnnnans
Intel 8259A ieveecescsensosscscsncnnons
Intel 82730 ..veeresescesccscccnncanosns
AntensSity cceeccecsscccsccccscsccccncns
Inter Module Communication ...ceececsces
internal interrupt controller ...cccc..
interrupt controller ...cceceessccccncs
interrupt external ..ccesccisrerscrcanes
interrupt internal ...ceccersccccccccns
interrupt level 21cceeveccccccenns
interrupt routine ...cesesccecscscacnans
interrupt SYStem ..seceeececcoccsccccens
interrupt vector .ececcieccccstrtcosccans
interrupt vector address .c.cecececcscns
interrupt vector assignmentc..0..
INTRO ceeeecennescnsossssnsnsccssnncanns
INTRI cveeveeensonssosssssscascsosncccsonns
JORD/ cooeesensosssosssssssossscssasnsoces

64
79
78
26
32

see
78

78

see
see
203
113
115
116
117
116
see
see
see
see
see
205
see
11

12

12

11

see
see
see

X108

I/0-address 112
I1/0-address 118

function 0
function 24
function 30
ESC O
ESC L

function

CPU
interrupt controller
text processor

27,43

see
11
11
205
205
64
25
11
130
93
205
12
12
149

IMC

RC Computer

-229-

Catchword Index

PICCOLINE

IOREAD
IOSELDSK ...
IOWRITE
IOWRT/ «o.s.
I0_AUXIN ...
10_AUXOUT ..
I0_CONIN ...
10_CONOUT ..
10_CONST ...
10_FLUSHBUF
I10_LIST

I0_LISTST ..

I0_POLL
IO_READ
I10_SELDSK ..
IO_STATLINE
IO_SWITCH ..
I0_WRITE ...
iSBX int. ..
iSBX module
isSBX-bus ...

P I R I I A A AT A A P S AR)

P I R R R R K I I I NI A AP AP A

I I R R I N A A N I I I T AR A

s e e s s s e e s e e st ss s

S s s e s s e s e s s sttt

D I I I A I I IR A AP AR

es e seees e e e s ssess st e

eeessees e e e s s sss e s s st a0

s e s e e s e ee s e e e s e e s

D I I I R R N

I R R R A I A I ST AT A

L O R I I I I R R I

esseseecse0 00 srcssscssssen s

eevsseecses e s ss e s sss e

®s s sss e e e esscssseecssss e

L I R I I I T R R

seceececsecosssecssssssrr e

oo 00 ssesceccssseccvcsr s

#esescscsscecsssssescssssses

1SBX-CONNECtOor cieccecescssscscscscccnss

- iSBX351

Peccesss e svs s ssesssssen

iSBX351 controller initializec0...
iSBX351 controller status ...cceeceeess
1iSBX35]1 reset c..cccecccsccscccscssnens
iSBX351/v24 channel cecceceesscnccnsncss

K

KDEF.SYS ...

D I I I I R R A R A A N)

key identifier ...cccececececccoscccane

key pressed
keyboard ...

L R I R R Y

essscseseesscsessss0scscscce

keyboard Ariver ...c.eccccceccccscccccssns
keyboard interface ..ccccceccccccsccncns
keyboard position codescccccceenns

keystrokes .

L

LANc000
LAN concepts

D I I R R N

DR A A A R I R R I R I A A AR)

DR R N R I I I N R R K]

LAN fundamental concepts ...oesescecess

layer
leader
LEF ccceccene
line buffer
line scroll

D I I R R A R R Y

L I I I A S S A A R]

ees s s ce s e 00 et essses s e

R I T R A A A A)

e es s s e s s e s s st s

88

88

88

149
see
see
see
see
see
see
see
see
see
see
see
see
see
see
203

Xfunction
Xfunction
Xfunction
Xfunction
Xfunction
Xfunction
Xfunction
Xfunction
Xfunction
Xfunction
Xfunction
Xfunction
Xfunction
Xfunction

LS

FPFNoOoOUHEFWBHFEFONMRFROOD
o w

[

16,20

145
3

99,100

see
see
see
18

15

function 24
function 23
function 50

49,50

64

25,64,203

64
64

see position code

207

3,16,111

112
112
112
79
40
32
53

-230-

RC Computer

PICCOLINE

Catchword Index

1ink_req .eeeeceesosscescncescsossnnnns

list device 1
load device
load from net
local area network
local printer control
local printer data
logon
long pointer
loop-back service

P I T I R A I)
e e e e s s e s s e e s s e s st e e e
eses s s s e s s e s es e es e s

essesees e sss s e e

LR I R L

D I I I Y

e e e s e e s s e s s s s et e s s s e

R R I I A A R e S A

ss s es e s s s s s es s e

loop-back test procedurec.ccccee..

loudspeaker

L I I I I I

loWw PUlSE cevvereecccccccsccccncsnnnses

M

MAO
MA2
MAC
MAC services
magenta
MCL
MCSO0/
MCS1/
MDO-MD7
MDACK/
MDRQT
Medium Access Control
medium resolution
memory
memory
MINTRO
MINTR1
monitor color
monitor monochrome
monochrome monitor
month

size

e s eecceesccsessssssess s seses s
I N R I R R R I I I I
L I R I I I I I I I R
sseseesesssessssssserssv e
©cccecsecsesevsssccsesssessses e
I R R I I I R I R R
I I R R N I I I I I I R
D R R T I I I R A I I IR A I
e s s e eesesesssessvesesssseseoee
D R I IR I A A S A A S A)

D R I I R R A I I I A SRR

eeescecccscsss s

ceseescscescasescanen
diSK ceeecoceccsccocccnccccsnnss
tececeirsecsescasasessssane
tecessesacensssssescssasesansens
et etseseassasesscsesscsnssosnnn
teescssecssasesessesnaens
ceeecscacssensasanes
tesesesesessessssnss

L I R I T R A A A I I I AR

motor delay eecececesescsccccscsscsenns
MOUSE ceoeecsscssesscsassososacansonsss
mouse deinitialize .s..ceesvcessesceccne
mouse initializecccccevececcceanenn
mouse interfacecv00000000s0000nn
mouse statusccveeeccccceccccncsns
mouse status readcccevvvveccveccs

MPST/

multible commands
multicast address
mutual exclusion (graphics)

MWAIT/
MXalt

s s e e

DR R R I I R R I I R AT IE S

ee s ecssses et s

R R I N R R I

e e s s s s e s s s s s et s es s e

L O I I I I N N A A

8,114
99
15,19
20
see LAN
203
203
20
113
120
132
71

78

151

151

112

129

43

150

151

151

151

149

149

see MAC

26

19,85

15

151,156

151,156

16

16,27,43

see monitor monochrome
19

79

65

see function 30
see function 30
65

65

see function 30
150

9

113

57

150

8

RC Computer

-231-

Catchword Index PICCOLINE

MXCASS toceessssccscoscsocscsasscnascssss 8
MXA1iSK ceceescccscescssscsossosasnssnsss 8
MXAMAO0 .c.veeseccesosccsoscnsessoosoanses 12
MXAMAl c.ceesvecsoncssocsccsncsnnnesses 8,12
MXAMA2 ..cceceeecoccccncsssnssccssancnsss 8
MX1oad cveeeccccscscccsocescnscnssssnns 8
MXsound ..cevesccosscccscsssosacencscesnes 8,71,72

N

National Semiconductor chipc.0. 67

net ch. attent ...ccceeccvnccsncascnses 203

net controller interrupt vector 130

net default Server ...ceccicecesccnsssses 20

net node id ...ccevecvcccsccccronscnass 20

net server passwordceccececcscss.. 20

new Window .ccccecscscccccssosssesscscsss 62

no-switch bit ...cvceecersccccsecccssess 57

NOLBE ceceececccccccancsscscscssssssss S€E generator noise
noise attenuation ...ccccccccccccccssss 71,75

noise control ..eececececssscsscsccsccss 71

noise control ..cccccccscscscctcncaccses 75

Non Volatile MEmory e..ceccecesccesesess See NVM

NULL ccecccscoccccccccscscssncscncscccccas 40

number of bytes ..ecceecscsccsssnncoses 79

NVM cceececccescsccsssoscsssossossscnsncce 16

NVM addresSS seeecocscoscscssssessscsesess 203

NVM, copy addreSsS ...cccosescscsesssss. See function 3

(o}

OCLAVES ceiveenscccososcncsnnsssssonnss 72
octet ..ceeccetcccccccsccssorsncsssesass 113
OKONFIG tcccecscocscosccscccscccccsssosnsss 15
OPTO cecvecccsescososscnnsessasansasssnsas 151
OPT]l ..ieeseosvsssesannosososssnnssnsssseas 151
output signalcccccccrscccssssasss 71

P

palettecititniteceecttanonesnnasns 25,26,26,196,203
palette cells .veeveerecosnsnncnnncenss 27

palette contentcccce0v0eesese.... See function 31
palette selector ..cceecessccccesccssces 27

parallel interface ...eeeeoscesescseses 91,199

parallel interface interrupts 93

parallel interface registers ..cceees.. 91

PArity ceceecececseeesoocncsnsasasssoases 18

-232- RC Computer

PICCOLINE Catchword Index

PASSWOXrd ceeeseeccvcccccscacacsassessss 20

PEEr «vceeceasesnscnascncasanssscsnsssse 112

peripheral device I/0 addresses 203
peripherals ...cceccceseccsoccoscessssnse 1

Pin mMUmMbEr ...cccicecccnccrecccecassaaces 91

pixel address calculation 59

piXel Memory .ceeeeeececceecceaasessaas 25,26,35,55,57
POIt cceseeeececosananccsncsnscsassassss 91

position code .c.ceeieccretrcccccnseosss 64

position codes ...eceereccecccccnnasess 215

POSition CUrSOrecceeececceccsesssss See ESC Y

PPI POrt A ceeeeeesccccscscccssossssses 203

PPI POrt B cicceceececcescnseceansssnses 203

PPI POrt € eccecenccccacsesensosossnses 203

pressed K€Y ...ceceeerecesenceccsssssss. See key pressed
printer 0 ...ccceeccccccccccccccnsnsess 91

pPrinter 2 ..ceieicececcensonccceanssess 91

printer driver, example ¢ccccccceccccss 94

printer interfacecccccecenesees 91

printer MOde ...ccceeccccecccscccccccnss 99

printer releasecccececccccencscss 203

pPrinter reServe .c.cecccecececcccsccssscses 203

printer testcccceiiccccteccessasess 203

printer type ..ccceccecccccccccccrssssss 19

program function keycccccces0... See ESC
programmable function key see function key
programmable interrupt controller see interrupt controller
programming tONEeS ..c.cececsecscocnssses 72

ProtoCOl cececscecscesssssssosssssssesss 112

protocol elements ...cccccecccsccesccss 141

pulse width cceceecesccesorsocccssccnces 77

Q

queue MXSoUNd ...cescesevsscscssecesesss See MXsound
QUEUE NAMES s cossevccsscsscssssssssssce 8

R

YAaCK teeeeeoreensssssassssssosssecnanses 143
rasterlineciescesccsscscssesscess 36

RCA ChipP ceteersescsnscosssscscanccncees 67
RCLLC datalink layer protocol 131
RCLLC entity eoveeeccecccsoosaensseaeess 113
RCLLC protocol elements ...ceoeveeeeess 112,138
RCLLC SErviCes ...oeeesesescosccnscacsaas 116
RCLLC station .e.eeeeceocenccneneeeansas 112
RCLLC-USEY t.ieetesesossnssassososnosaas 112
read beam ...coverescrcscssssssccsssoss 27

RC Computer -233-

Catchword Index PICCOLINE

read file header ...cceceveeccseccesssss 81,192

read next data c.ceccccccscrccctccncsses 82,193

read RTC register ..ceeceecccsceccccees 67

read NV .c.cecececcccscsosscssessnsanss 22

real time clock c.ccccetiececteneceess.. see RTC

REC teececesccsossocccossssnscnsasssanss 113

recalibrate disk drivecesse0.... see function 5
receiver baud rate ..cciiececiseriecescss 101

record NUMbEYr .:ceccececcccscsssscosocess 79,81

record tYPe seeececcscccsncscssescncses 79

record, cassetteé ..c.cccceecceciesces... See cassette record
Fed cecececsccssssccscccsscssessssasces 43

register USAQgEe scccecccsccccccaccvccsons D

release DPC interface ...ccceeeecceeses 97

release sound devicCe ...cececccccconses 72

request ..ccccrrcrscccnserssracsscccses 114

reserve diSK ecceccccccccssccsccssssses 89

reserve DPC interface ¢cccccceccccccees 97

reserve sound devicCe ccccecccccescssess 72

reSet ccceeccccccccscscssccscnsessesses 142
reset attributescccccccecccscess.. See ESC z

reset int. CRT cscecevscssnsccscsscscass 203

reset iSBX351 .ccccceccccscccscccesssss see function 50
resolution ..eccesccccccccsccsnascssces 26

resolution (high/medium) see function 0
restore attributes ..ccccccccececccce.. see ESC 3
restore cursor position ...cccccccc.... see ESC k
restore function keys ...ccsecececce... Ssee ESC <254>
return mouse status8 e¢cc..cccccesscccc... see function 30
return pointers ceceececcccccces see Xfunction 16
reverse indexX c.cececcecees

.
.
.
.
.
.
.
.

seseses See ESC I

RTC cceceecccsccccocssocsccsoscsonnscssssssss 16,67
RTC controller ..cceececccescsccssccsss 67
RTC second SOUXCE eceecsscsssssscsccsss 67
RTS .csceccccccsscssccoccassssssossessss 18

S

SAP .cccsecccccsosssssnccssssssesacsseass 112
SAP activation ..eeeccccccccossoccceces 117
SAP addresSs ..ccsoseeccscccscnssanssccsocs 112
SAP deactivation ...ceececccccseccccces 117
SAP MAaSK +cvcseccsococccnnsenssensssnses 113

save current attribute see ESC 2
save cursor positionceeecescsces.s see ESC j
save function keysc0e0c000e.... See ESC <253>

save-buffercc0ccercecrssrsncccssss 55
screen dUMP «cceiecsnocccccssossossccces 32
screen updateccccceceessssccss.. see function 39
scroll modecccceeeniiiiciresesssas 18

-234- RC Computer

PICCOLINE Catchword Index

scroll window AOWN .cccssecccccassesessss sSee ESC >

sSCroll Window UP «eceeseesceseccsssssss See ESC <
scroll, line ..ceeeeeeeccsnecensssesass See line scroll
sCcroll, SOft cesieesscccscssesscsseesss. see soft scroll
sector register ..cicceiiccicscocascecess 203

select alt. char. set ..¢cccveeeees.... see ESC P

select std. char. setcecvveeee... see ESC Q

serial communication .eeiecececasescess 99

serial controllercieeceececsessoos see iSBX351
serial interfacecoeceevneccecesces 99

serial number ...ccccecicccctcnntccceaces 17

Service Access Pointcccccceeeee... See SAP

service Primitive ccceececccccscccecees 112

set attribute byte¢cceteeeeeses.. see function 38
set background colour ..ecccceceee..... see ESC c

set blinking CUrsoOr ...cceeeeececesses. see ESC <241>
set character mode ...c.vcceeeeeeeecsss. see function 1
set cursor positionccccceceee..... see function 36
set cursor representationc...... See ESC <243>
set foreground colourcccccess.... See ESC b

set line scroll ...ccceeecccnceccressss See ESC <245>
set non-blinking CUrsOrceceeeeses. See ESC <242>
set soft scroll ...ccieecieececesese.s. sSee ESC <244>
set tracking mode ¢..cccceccceccecsss... see Xfunction 21
set Viewpoint ec.cececccsccssssccssesss see Xfunction 21
set window manager statece........ see Xfunction 19
set wrap around columnccecseee.... see Xfunction 22
Shift seeececesesceecossasssssscssccasses 64

Shift lock cieveeeecccccaseccocncncess. 64
signal SoUrces ..cecececcecccsnnscanses 71
sOft SCroll ..cveeeeccsccescsnssennecsss 53
SOUNd ccveeesessccccossssssssoasscssssss 203

sound deviCe ..cesecscssesccnsesocscses 71

sound device, registersccveecccess 71

sound generator ...ccececccccccscssesss 71,187

sound, control registerccececeeces 71

sound, exampleccvcecrscccceccccsec. 74,75

special KeYyS .cceeeecereccccesncsccnnses 64

SQUAYE WAVE eseeosssssssssssossssesasnss 17

standard character set ..cceveeeecesese 35

state of window manager00.. 62

Station t.ieeececracessescssssccsaneeess 112

station identification exchange 133

status input POrt ...eeeeeceescacnacsss 93

status iSBX351 tiiecosssccsscccscscees. see function 23
status line ...eiiecetceccttccncccesass 48

status line off ...ccictetsoccseceess.. S€€ ESC 0
status line on ...ciieetiitecetiesecess.. see ESC 1
status read PoOrt ..ecececcesecscennasese 91

Stop bit t.veeiiiieieiiitececnencnesssas 18

switch between screen and window see Xfunction 23

RC Computer -235-

Catchword Index

PICCOLINE

synch
synch
synch

SYSDAT

ronization
ronization bit
ronous mode

esec e es e s ses s s s

se e s s s s s e s erse e e

P I I R R R A R)

P R P I N N A A P R A A A

system diSK c.ceeerecccccrcertocrcansoans

system queues

T

TC to
TDMA
test
test
test

iSBX

I R R I I)

D I T N R R R

PR R R I R R A A A S

DR I I R A N N N R A L]

buffer
protocol

eessess e s s 00sess e s

L R R I I I R I I I I I

test.CONfirm ..civeeeccocescecsssnnnsoss

test.confirm buffer format

test.

test.indication datastructure

test.

test.request buffer format

text

text

Timer
Timer
Timer
timer
Tmp

Tmp0
Tmpl
Tmp2
Trmp3
tone
tone
track
track
track
track

indication
request

mode
processor

seevssesecse

L I R A I I A R A A Y

R I I I R I A N N A I

I A I I I I R R R

D I I I N I I R A N A N

L

1l teeeeeencecncscsstscecssosccnsns

2 tieeretcerenetessssssserresnnnn

S seeeesssssssessccccsscsssensecns

R R R O I I R R N N A I I I ST AT A

seosessesessecscsevensecssssecsss e

LI R O I I I R O A N A A N N ST AP A

“eeessessssesscss s sesev s e

®eesseesessssscs0e00ssscscscsnoso

generator
register address

R I I I I I R R

ecsssvescssscs s

D I I I R R A N I A A A IO NI

read
register
write

®sses s e e e esssseesss st s

D A I I I I e R XY

D I R R R R R R Y

tracking modec.ceecectiencccinnnnns

trans
trans
TRC

type
type
type
type

mision protocol
mitter baud rate

1 procedures

1 protocol elements

1 service
number

@eceevsseccccccs o
sesecscscsss s s o
R I I R R A IR I I R S N I I I AR A)

eseesseesensssssssssece

R L R

LI O I I R A R R

D O A I I I R I I A A

6
79
100
5
20
see

203
149
141
120
120
121
121
121
121

118,

120
see
25

gueue names

120

character mode

14,77

14
14

11,14

9

8

8

8

8
72
73
85
see
203
see
63
180
101
203
132
141
122
17

function 11

function 10

-236-

RC Computer

PICCOLINE Catchword Index -

U

UDA .ttt eeeecessssssossssosnosasssssasssasns D
udata.confirm .sceeceeceeecscecesosocssssses 123
udata.confirm buffer format 123
udata.indication ..ceecceccccccccccescss 123
udata.indication datastructure 123
udata.requestccecececcctccccoccacsss 122
udata.request buffer format 122

5 T K 5 §
unacknowledged data transfer 132
underline attribute¢ccc0eeveeees.. 35,45,53
underline Mode ...ceocecvsccccscsacsoass 45
unnumbered information .¢.cccececeec... see UI
update Window ..c.ceecetccecsccecacso.. See function 39
User Data Area cccescesscsccsscsccscsss See UDA

\Y

VCMXQO .t.coveesocccesssssssscsosscnncnsse
VCMXQl c.ceeceovoescsscsosscsoscssssccnsnss
VCMXQ2 teeessssncccncoas
VCMXQ3 .cceeevcscssoocscse
videoline ...eceeecesces
viewpoint ...cceecccccse
VINQO t:ieeeesnsevccnnsns
VINQlL ..cevceccccccscsnese
VINQ2 teeecocsoccccossscsssnsns .
VINQ3 tieececsoccccnsscssannscs .
virtual console ..ccececcicccccnns
VOUTQO +evevecccccccscenosccccnces

w o

* o o o

VOUTQL vvvveveenonnencncncnonans
VOUTQ2 evveeeecnnnnnnenneasanans
VOUTQ3 veveveeoncnnancnnsosasncs

COXPONODODODOONWDD®®D

e e e s e o o @
.
.

W

wake up Window Manager ...cecc.ceceses0. See Ctrl+A3
WD1797 teiieeeeeeesnnneococnansocnsnsses 87

White ...t ieriieneenseeessnccscscacass 43

window handlingcececvecssecsesss 61

Window MANager ...csceeececesccccsccsecs 61,62,64
window manager data block .¢ceccieeeee.. 61

window manager statecccccccecces. 62

WindOWS c.veveenecscanscsncensncncscses 61

WraAp AQround cceiessscsccccsaccccnccnces 63

wrap around Columncccceceses0s0.. See Xfunction 22
wrap at end of lineccccveeeeecee.. See ESC v
write end of fileeeeeeeeecesesesas 81,198

RC Computer -237-

Catchword Index PICCOLINE

write file headercccceeeeeeeeace. 80,192

write next data ccvecsssccccrsocsccasss 80,194

write RTC register ecececececesesccocass 67

write to sound generator see function 12
WEFite_NVM eceveeecscsosscssssaccossnsass 21
WW_CURSOR_VIEW «ccveveecccseseecasasss. See Xfunction 21
WW_FULL_WINDOW «v.cvceevevsenceseseses. See Xfunction 23
WW_IM HERE ...cccevcveenncccececscsssss See Xfunction 19
WW_KEY ccoeecesncccvoscasssseassssnss-o see Xfunction 17
WW_NEW_WINDOW .cccceeececnsscsssssssss. see Xfunction 20
WW_POINTER «.cecevcvccnscscssscesssssss See Xfunction 16
WW_STATLINE tcececeeescecssnassssesssse See Xfunction 18
WW_SWITCH_DISPLAY +cccscesccccsssessss. See Xfunction 24
WW_WRAP_COLUMN «.ceccceseccssscassessss. See Xfunction 22

X

Xfunction .eeeeesevosccccsosacsscsonses 3
Xfunction 0 .c.eeeececsccccsccccssnsonces 4
Xfunction 1 ..eceeccceccescscccscsonsss 4
Xfunction 2 .teeeeerscccccsessosansosces 4
Xfunction 3 ..esecesccccssscccssescccss 4
Xfunction 4 ...cccececccccassccccsscscce 4
Xfunction 5 ..cececccccccsccnoscnsenses 4
Xfunction 6 ..ccceecccocccsscscccsssnces &
Xfunction 7 ceeeecesecsccssccsssccncccs 4
Xfunction 8 ..ecieeccccccscscccsccccses 4
Xfunction 9 ..ccerecccccccnscccncsassos 4
Xfunction 10 ..ccceecccscccsscccccscncce 4
Xfunction 11l ceeeeessccessosccsscssesse 4
Xfunction 12 ...ciececcccsssocscccncses 4
Xfunction 13 ..eciecsocosscsccccncacsee 4
Xfunction 16 ...cceeccecescscassasscsss 4,61
Xfunction 17 ceeieceecoscososcscssccccs 4
Xfunction 18 .eciecccccccscascsccscsses 4
Xfunction 19 ...cceecccosccscossocsccses 4,62
Xfunction 20 ..ciiececcsncncssnccsscess 4,62
Xfunction 21 .eieeesersescenscessssscss 4,63
Xfunction 22iciiiiiiiiicianreeeees 4,63
Xfunction 23iiecercccscnssoscsceees 4,63
Xfunction 24 ...iciececcccccssscsscsses 4
Xfunction 30 c.ieeecsonsscccncnccccsess 4

XID wovecsosaccneassoncasssossnscansssses 141

XIOS ciceevsevsencssossensssssascssonsass 3

XIOS entry fieldccceveeccssesccses 6

XIOS function ...cceeeccsssscssccccsss. see Xfunction
XIOS OVEerview .ceeceecceccssssacsscsoessas 3

XIOS routinNe .eieeeeeeccecessnsccessss.. See XIOS function
XIOS VErSiON ..seesscecccccescncscnesss See function 53
XMIT coeeceeososcssoscsasossasossossssssas 113

XMIT _REQ +evveeoccnsasnnoscansenansnses 8

-238- RC Computer

PICCOLINE Catchword Index

Y

YEAY +cteeriecvsencsscssssssrasssanacens 19
YElloW c.eiierneecscssossscocsnsonanass 43

RC Computer -239-

RETURN LETTER

Title: PICCOLINE Programmer's Guide RCSL No.: 99 0 00864
Version 2.0

A/S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to im-

prove the quality and usefulness of its publications. To do this effectively we need

user feedback, your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability,
and readability:

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Name: Title:
Company:
Address:

Date:
Thank you

PN: 99200176

...........................

.................

here

¢REGNECENTRALEN

af 1979
Information Department
Lautrupbjerg 1
DK-2750 Ballerup
Denmark

