ﬂataGeneral

User’'s Manual

PROGRAM

EXTENDED BASIC

093-000065-05

INTRODUCTION

Data General's Extended BASIC is available under either the Stand-alone Operating
System (SOS) or under the Real Time Disk Operating System (RDOS). Extended
BASIC systems may be either single-user systems or multi-user systems. Single-
user systems may be configured with or without a disk.

Multi-user systems may be configured with or without a disk. When configured with-
out a disk, the system is automatically designated as non-swapping, non-mapping.
These multi-user non-swapping systems support a number of users simultaneously,
ailotting each user a fixed portion of memory. The system may be configured with
multiplexor handler type 4060 or the 4100 multi-line asynchronous controller support,
which support up to 32 users, It may also be configured with multiplexor handler type |
4026, which supports up to 16 users.

Multi-user systems configured with a disk, i.e., operating under RDOS, may be
configured as swapping or non-swapping Extended BASIC systems. Non-swapping
multi-user disk systems operate the same as multi-user without disk configurations,
described above. Multi-user Swapping Extended BASIC systems allow as many
programs as user core will allow to run simultaneously. A program swap will
occur when a program which is ready to execute is too large to fit into the unused
portion of memory. One or more programs which are in core will be swapped out
to disk to allow the 'mew' program access to system resources.

Multi-user swapping systems may further be configured as mapping systems. Systems
with the Memory Management and Protection Unit (MMPU) provide an absolute hard-
ware protection to separate the foreground and background partitions. For example,
while BASIC is running in the foreground, a FORTRAN IV program could be running

in the background.

Extended BASIC systems under SOS treat devices as files and provide a set of file
I/O statements and their comparable keyboard commands that allow the user to
perform binary and ASCII I/O, chain from an executing program by bringing in
another program from an input device, save a program, and enter a program to
append it to the current program. Extended BASIC users under SOS may select
from a wide variety of standard SOS I/0 devices including one to eight magnetic tape
units, one to‘eight cassette units, and a mark sense card reader. Under SOS up to
eight device channels may be open at one time.

The Extended BASIC systems under RDOS support all the SOS devices as well as
providing full disk file capabilities for either fixed or moveable head disk config-
urations. BASIC statements and commands allow users to search disk directories
for files, load files located on disk into core, run the loaded files, chain from a
running program by bringing in another program from disk or another input device,

i

(8/74 086-000010-00))

save core images on disk files for later running, etc. Under RDOS up to 63 device/
file channels may be open at any given time.

Extended BASIC systems offer all features of the BASIC language as originally devel-
oped at Dartmouth, as well as:

Keyboard mode of operation, which was provided in DGC's Stand -alone
and Time-Sharing BASICs primarily for debugging and desk calculator
uses, has been greatly expanded in Extended BASIC. The user now has
the full range of BASIC statements and File I/O statements to use as
keyboard commands, excluding only those statements that have no
meaning except within program context (REM, FOR, etc.).

Error detection at program input time has been expanded so that all
syntax errors are caught at this time.)

String variables, string concatenation and string subsettings are im-
plemented. String variables may appear in READ statements with
corresponding literals in DATA statements.

Extended BASIC's format for storage of floating point numbers is
compatible with other DGC software. Extended BASIC thus has FORTRAN/
ALGOL compatibility through data files, and CALLed subroutines.

The user has been given far greater control over output formatting. Ex-
tended BASIC permits the user to use either the standard BASIC print
formatting or to use statements and commands that include a picture
specification of output similar to that available in COBOL.

Assignment statements that do not require the keyword LET are imple-
mented.

A generalized IF statement, allowing a THEN clause that can be any
statement, including another IF is implemented.

In addition, systems under RDOS have the following features:

BASIC statements and keyboard commands are available that allow the
user to perform maintenance on his disk files: deleting files, changing
file names, accessing file creation dates, etc.

A private subdirectory or subpartition can be allocated to each user
for his files. By default, files in a subdirectory are private to a given
user. However, these subdirectories can be shared among users if
desired. This allows a flexibility whereby a user's file space can be
limited to a specific amount of a disk or not, depending upon which
choice is made.

ii
(8/74 086-000010~-00)

Using the standard RDOS file structures, compatibility is provided so
that these files could be processed by other DGC software.

The link capability of RDOS files may be utilized to provide sharing
of user files for both reading and/or writing.

Multi-user systems provide capability for an accounting file. At
SYSGEN time the user can request that such a file be provided, The
file is used to keep a record by account ID of each user sign-on and

the time.

The following Data General publications may be referred to for further discussion
of an operating environment:

093-000075

093-000083

093-000087

093-000062

Real Time Disk Operating System User's Manual

Introduction to the Real Time Disk Operating System

BATCH User's Manual 3

Stand-Alone Operating System User's Manual

iii

Below is a list of all BASIC keywords specifying whether they may be used as statement keywords

or command keywords or both.

(An X appearing in the column indicates yes.)

BASIC STATEMENTS AND COMMANDS

BASIC USED AS PAGE
KEY WORD STATEMENT COMMAND REFERENCE
BYE X X 3-3
CALL X App. B
CHAIN X 5-16
CLOSE X X 5-19
CLOSE FILE X X 5-5
CON X 6-11
DATA X 3-40
DEF X 3-4
RDOS Only ~ DELETE X X 5-21
DIM X X 3-5
. END X 3-6
ENTER X X 3 5-18
RDOS Only FILES X 6-4
FOR X 3-7
GOSUB X 3-10
GOTO X 3-12
IF ... THEN X X 3-13
IF ... GOTO X X 3-13
IF ... GOSUB X X 3-13
INPUT X X 3-15
INPUT FILE X X 5-9
LET X X 3-20
RDOS Only LIBRARY X 6-4
LIST X 6-6
LOAD X 6-5
MAT Chapter 4
MAT INPUT X X 4-18
MAT INPUT FILE X X 5-14

BASIC USED AS PAGE
KEY WORD STATEMENT COMMAND REFERENCE

MAT PRINT X X 4-19
MAT PRINT FILE X X 5-15
MAT READ X X 4-17
MAT READ FILE X X 5-12
MAT WRITE FILE X X 5-13
NEW X X 3-21
NEXT X 3-7

ON ... GOTO X 3-22
ON ... THEN X 3-22
ON ... GOSUB X 3-22
ON ESC THEN X - 3-22
ON ERR THEN X 3-22
OPEN FILE X X 5-3

PAGE X 6-15
PRINT X X 3-24
PRINT FILE X X 5-10
PRINT FILE USING X X 5-11
PRINT USING X X 3-30
PUNCH X 6-8

RANDOMIZE X X 3-39
READ X X 3-40
READ FILE X X 5-6

REM X 3-43
RENAME X X 5-22
RENUMBER X 6-12
RESTORE X X 3-44
RETURN X 3-10
RUN X 6-9

vi

BASIC

KEY WORD

U510 AS
STATEMENT

SAVE
SIZF
STOP
TAB
WHATS

WRITE FILE

vii

COMMANID

>

L7

EXTENDED BASIC USER'S MANUAL

TABLE OF CONTENTS

TABLE OF CONTENTS

INTRODUCTION iveennnnn e et e e e L

CHAPTER 1 - WRITING AND RUNNING A BASIC PROGRAM

Preparing a BASIC Program 1-1
Providing Data 1-2
Repetitive Computations e e e 1-3
Performing Calculations 1-4
Printing Qutput .« .. oo v v v v v v v v v n 1-6

Example of a BASIC Program 1-7

Writing, Editing, and Running a Program1-9
Writing and Editing a Program 1-9
Running a Program 1-10

CHAPTER 2 - ARITHMETIC AND STRING OPERATIONS

Arithmetic Operations e e e e 2-1
Numbers . oo vttt i it et e o 2-1
Arithmetic Variables 2-2
Arithmetic Expressions 3. .22
Arrays et e s e 2-3

Declaring an Array 2-3
Array Elements 2-4
Redimensioning Arrays 2-3
Functions e ettt 2-6

Strings ... i e e e e e e 2-9
String Literals e e e 2-9
String Variables and Expressions 2-10

CHAPTER 3 - STATEMENTS

BYE ... i, e e e e e e 3-3
DEF ettt 3-4
DIM ittt it ittt et i e e 3-5
END e s e e et et e e e e e 3-6
FOR and NEXT .+ vev v v e e 3-7
FOR v i i ittt ie i et ennnenns .. 3-7
NEXT B N
FOR and NEXT Examples3-8
GOSUBand RETURNc.0vuvu...3-10
GOSUB et .. 3-10
RETURN et e e 3-10
Examples of GOSUB and RETURN 3-11

CHAPTER 3 - STATEMENTS (Continued)

GO TO L i i ittt i ittt e e 3-12
IF e et e R R
INPUT ittt ittt ieenenaennns . 3-16
LET ittt ittt e i R . 3-21
NEW ottt it i ittt et et eeeneeensss 3-22
ON C e et et s e e C e 3-23
PRINT OF ;¢ v oo v nenson . . . 3-25
Number Representation e .. 3-25
Zone Spacing of OUtPUt (,) < v v e v oo u 3-26
Compact Spacing of OUtPUt « ¢ v s o v v s s 3-27
Spacing to the Next Line e 3-27
Tabulation .+ ..vvevnnnn. cee 3-28
String Variables e 3-30
PRINT USING vt vt vnevesanesnnns ... 3731
Digit Representation (#) v v .. 3-34
Decimal Point (.) e e 3-35
Fixed Sign (+0r =) «evoe.. . .. 3-36
Floating Sign (++... 0T --...) .. 337
Fixed $Sign « v v v e e eneenn.. co. 3737
Floating $ Sign ($%...) 3-38
Separator (,) e ..o e 3-39
Exponent Indicator (¢) 3-39
RANDOMIZE e . 3-40
READ and DATA .. v v it iiin i ennnn. 3-41
READ e e e 3-4]1
DATA e, f et 3-42
Examples of READ and DATA 3-42
REM e e 3-44
RESTORE¢0.0ou... e 3-45
STOP .. i i i nnn e e e e e e 3-46
CHAPTER 4 - MATRICES
Matrix Statements00.... . . 4-1
Matrix Subscripts e e e 4-3
Changing Matrix Dimensions 4-4
Matrix Manipulation Statements 4-5
Store Copy of Matrixc.ov0 e 4-5
Addition and Subtraction 4-6
Scalar Multiplication 4-7
Zero MatTiX . v wv i v n v e v n e e o.s 4-8
Unit Matrix , .. oo v v i v e v v v s o v nsn 4-9
Identity MatriX v o v v v v v v v v e v v v v v 4-10
Matrix Transposition 4-12

X

CHAPTER 4 - MATRICES (Continued)

Matrix Manipulation Statements (Continued)

CHAPTER 5 - FILE 1/0

Matrix Multiplication 4-13
Inverse MatriX .. v v v v v o vt v e v 4-15
Input and Output of Matrices 4-17
MAT READ Statement .., 4-17
MAT INPUT Statement 4-18
MAT PRINT Statement .+« ¢ v v o0 v o v .. 4-19
File Names¢e0 e eeeresas-1
OPEN FILE Statementv.eeeeees.d-3
CLOSE FILE Statement . ., v veeuuon. 5-5
READ FILE Statement vt e v eeennnn 5-6
WRITE FILE Statement00uovu.. 5-8
INPUT FILE Statementveeeueunno. 5-9
PRINT FILE Statement . v v v v o o o o o v s o v o o 5-10
~ PRINT FILE USING Statement5-11
MAT READ FILE Statement g 5-12
MAT WRITE FILE Statement2-13
MAT INPUT FILE Statemento v e 5-14
MAT PRINT FILE Statement = eo... 5-15
CHAIN Statement . g K
SAVE Statement . v i i v o v v v ot o oo v o n 5-17
ENTER Statement — « ..o v v v v v v e e e e e 5-18
CLOSE Statement .+ v v v v o o o s o o s 0o v s ans 5-19
Directory Maintenance Statements 2-20
DELETE Statement . .. o v oo v oo 5-21
RENAME Statement4 0o 5-22
CHAPTER 6 - KEYBOARD MODE OF OPERATION
Control Keys . .. vt iiinenenneennens 6-1
ESC e e 6-1
SHIFT L e e e e e e 6-2
RUBOUT e e e e e e 6-2
Keyboard Commands0000.... 6-2
Directory Maintenance Commands 6-4
FILES Commiand . .. v v v v v v v v v 6-4
LIBRARY Command .. v ee v e v v 6-4
Commands that Load, Modify, and Execute ... 06-5
LOADCommandvueeuunen.. 6-5
LIST Command e e e e e e e e 6-6
PUNCH Command eeeea 6-93

Xi

CHAPTER 6 - KEYBOARD MODE OF OPERATION (Continued)

Commands that Load, Execute and Modify (Continued)

RUNCommand 6-9
CON Command¢¢ceueeeeeonos 6-11
RENUMBER Command 6-12
System Information Requests 6-13
SIZE command « ¢ v v v v vt v oo v s v a oo 6-13
WHATS Command0000u... 6-14
Specifying Output Page Format 6-15
PAGE Command v oo eeeteeoeos 6-15
TABCommand .« ¢ e v oo e v oot saseees 6-15
Commands Derived from BASIC Statements ... 6-16
Perform File I/O . v e v v v v v v v v e v e 6-16
Desk CalculatOr « ¢ o ¢ o o o v e o o o o o o 6-16
Dynamic Program Debugging 6-17
APPENDIX A - ERROR MESSAGES00 e A-1

APPENDIX B - CALLING AN ASSEMBLY LANGUAGE SUB-
ROUTINE FROM EXTENDED BASIC

Character String Storage and Definitions . B-1
Linking the Assembly Language Subroutine ... B-2

APPENDIX C - EXTENDED BASIC OPERATION UNDER RDOS

Configuring RDOS, . C-1
BASIC Configurationccvviv.n.. C-3
BSG Dialoguettt C-3
Loading Extended BASIC Cc-7
System Disk Files and Directories C-10
Disk Directories C-10
BASIC.IDFileooo...... C-11
Program Swaps C-12
Sign-on Procedures C e C-15
BATCH Operations . . . v v v v v v v v v v v e C-18

APPENDIX D - EXTENDED BASIC OPERATION UNDER SOS

Loading Extended BASIC e e D-1
System Dialogue and Configuration D-4
Sign-On/Sign-Off Procedures D-7
Restart Procedures D-8
Loading Extended BASIC (12K Configuration). . . D-8

Xii

APPENDIX E - PROGRAMMING ON MARK SENSE CARDS

APPENDIX F - DOUBLE PRECISION FLOATING POINT
REPRESENTATION . ..

INDEX
CHANGES FROM REVISION 03 TO REVISION 04
SUMMARY OF EXTENDED BASIC

SUMMARY OF ERROR MESSAGES

AL

xiii

CHAPTER 1
WRITING AND RUNNING A BASIC PROGRAM

PREPARING A BASIC PROGRAM

BASIC programs are made up of statements. Each statement is preceded by an
integer that can be between 1 and 9999 inclusive. The number given a statement
determines the order in which it is executed and listed. For example, two state-
ments to be executed sequentially should be given sequential (but not necessarily
consecutive) numbers.

Each statement is on a separate line. The programmer terminates each line at
the teletype with a carriage return (RETURN).

Typing errors on the teletype can be corrected by using special control keys:

1. Pressing RUBOUT erases the last character typed. A back
arrow (=) is printed, representing the erasure.

2. Pressing SHIFT and L at the same time deletes the gntire line.
A back slash (\) is printed, representing line deletion; BASIC
gives a carriage return/line feed. The programmer may then
type a new statement,

An example of a BASIC program is given below. The example will be described
in detail later in this chapter.

100 READ A,B,D,E

110 LET G = A*E-B*D

120 IF G = 0 THEN 180
130 READ C, F

140 LET X = (C*E-B*F)/G
150 LET Y = (A*F-C*D)/G
160 PRINT X, Y

170 GOTO 130

180 PRINT "NO UNIQUE SOLUTION"
190 DATA 1,2,4

200 DATA 2, -7,5

210 DATA 1,3,4, -7

In the program, single letters represent program variables. A variable can be a
single letter (e.g., Z) or a single letter followed by a single digit (e.g., Z4).

1-1

PREPARING A BASIC PROGRAM (Continued)

A BASIC program terminates when there are no more program statements, the
program is out of data, or when an END or STOP statement is executed.

Most programs can be reduced to three steps:
1. Provide data.
2, Perform calculations,
3. Print answers,

Providing Data

One method to provide data is simply to write equations that contain the necessary values. .
The BASIC statement used for equations is the assignment (LET) statement; for example:

20 LET X = 3,141 *10.2 — * means multiply

The statement will cause 3.141 and 10,2 to be multiplied and the resulting
value will be stored in a variable named X,

However, writing values into equations is not very efficient. Programs are
generally used for repetitive computations with a large number of different
values. Instead of writing values into the equation, BASIC uses variables that can
be assigned different values:

20 LET X = 3.141 *Y .

To provide values, BASIC uses two statements, READ and DATA. The READ
statement indicates the variables that are to have values and the DATA state-
ment gives the value:

10 READ Y
20 LET X =3.141 *Y
30 DATA 10.2, 7.3, -56,11, -.003, 34

There are now five possible values that Y will assume, which are listed in the
DATA statement. Upon execution, the order of the values in the DATA statement

1-2

Providing Data (Continued)

is the order in which values are assigned to a variable or to several variables
given in READ statements in the program.

Repetitive Computations

In general, statements in BASIC programs <xecute in the sequential order indicated
by their statement numbers. However, if a program is completely sequential,

it is not possible to perform repetitive calculations on a number of input values.
For example, in the program given under the "Providing Data" section:

10 READ Y
20 LET X = 3.141 *Y
30 DATA 10.2, 7.3, -56.11, -.003, 34

Five data values are given for Y, but only the first one, 10.2, will be used because
the program is completely sequential. It is necessary to insert a statement that
will allow the READ and LET statements to be executed more than once:

25 GO TO 10

The GO TO statement causes a transfer back to statement number 10, The
program '"reads in" the second value for Y, 7.3, and executes the LET
statement again. The program will continue to loop in this way until it
runs out of data values for Y,

Note that the GO TO statement was given statement number 25. The reason
why most BASIC programs are not numbered consecutively is to allow the
programmer to insert any statement he may need without rewriting the entire
program.,

The GO TO statement is a means of transferring control to a part of a program
in a non-sequential manner. There are several ways to do this in BASIC,
Another useful statement in transferring control is the IF statement.

10 READ Y ;

1SIF Y < =0 THEN 10 ‘ <— 10 means statement number 10,
20 LET X = 3.141 *Y

25 GO TO 10

30 DATA 10.2, 7.3, -56.11, -.003, 34

1-3

Repetitive Computations (Continued)

Transfer in an IF statement depends upon whether the expression following the
word IF is true or false., The expression is relational and uses the following
symbols,

Relational Symbol Meanin

]

Equal to

Less than or equal to
Less than

Greater than or equal to
Greater than

Not equal to

ANV V A A
It H

\%

The IF statement in the example would prevent the LET statement from being
executed when the value of Y is zero or negative., The LET statement would only
be executed for positive values of Y; otherwise, control would transfer back to
the READ statement to read in another value.

Performing Calculations

The data provided as input must be computed into answers, A simple arithmetic
statement of the calculations to be performed must be written in such a way that
the BASIC system can recognize the operations required. The statement used is
the assignment (LET) statement.

The LET statement is used to assign the result of a calculation to some variable.
The calculation to be evaluated, called an expression, appears on the righthand
side of the equals sign in the LET statement. The variable to which the expression
is assigned appears on the lefthand side of the equals sign, In the previous
example, the expression provides for multiplying 3,141 by some value
assigned to the variable Y and then assigning the resultant value to the
variable X,

The basic arithmetic symbols used in performing calculations are:

Symbol Operator Example Meaning
+ Addition A+B Add B to A.
Plus +A Positive A.
- Subtraction A-B Subtract B from A,
Minus -A Negative A.

1-4

Performing Calculations (Continued)

Symbol Operator Example = Meaning
* Multiplication A*B 4 Multiply A by B.
/ Division A/B Divide A by B.
t Exponentiation AtB | Ra}i}seA to the power B
(AD).

An expression is made up of elements described in Chapter 2 -- simple variables,
numbers, arrays, array elements, and functions, which are linked together by
the arithmetic symbols.

Parentheses may be used in arithmetic expressions to enclose subexpressions

that are to be treated as entities., A subexpression in parentheses is evaluated
first, Within each subexpression, arithmetic operations are performed in the
sequence -~ exponentiation first, multiplication and division next, addition and
subtraction last,

When two operations are of equal precedence, such as addition and subtraction,
and there are no parentheses, evaluation proceeds from left to right in an
expression,

In addition to arithmetic operations involving the arithmetic symbols, BASIC
has a number of standard mathematical functions. These are described in
Chapter 2; a few examples are:

SIN (X) Sine of X, where X must be in radians.
EXP (X) Natural exponential of X, eX.
INT (X) Integer part of X,

An example of an expression to be evaluated and assigned to a variable is:

100 LET S = S-(17+SIN(Z)) /3

In the example,
1, SIN (Z) is calculated. (Functions evaluated first.)

2, Result of step 1. is added to 17. (Parenthesized subexpression.)

1-5

Performing Calculations (Continued)

3. Result of step 2, is divided by 3. (Division has higher precedence
than subtraction.)

4, Result of step 3. is subtracted from the value of variable S,

S. Result of step 4. is stored (=) into variable S as its new value,

Printing Output

The program is still not complete, It has data and performs calculations but
the user has no way of knowing the results of those calculations. To complete

the program, there must be a printout of results.
E

The PRINT statefnent is used to print out results of calculations. For example,
if the program were written:

10 READ Y

20 LET X = 3,141 *Y

22 PRINT X

25 GO TO 10

30 DATA 10,2, 7.3, -56.11, -.003, 34

The PRINT statement is made part of the loop, so that a value for X is printed
out each time the LET statement is executed. Each value of X will be printed
out on a new line, The fact that the item X in the PRINT statement is terminated
by a carriage return means 'print next value on a new line'. The output

would look as follows:

32,0382
22,9293

106. 794

It is also possible to print out verbatim text using the PRINT statement. The
user might want an explanation of each value printed., For example, the program
could be written:

1-6

Printing Output (Continued)

10 READ Y

20 LET X = 3,141 *Y

22 PRINT "FOR Y= ";Y;" X= ";X
25 GO TO 10

30 DATA 10.2, 7.3, -56.11, -.003, 34

The verbatim text is enclosed in quotation marks. It will be printed out exactly

as shown with the same number of blank spaces. The semicolon between the

items in the PRINT list means 'print on the same line without spacing'. The output
would now be printed as:

FOR Y = 10.2 X = 32,0382
FOR Y =7.3 X =22,9293

FOR Y = 34 X =106, 794

EXAMPLE OF A BASIC PROGRAM

A BASIC program for solving simultaneous linear equations would be:

100 READ A, B,D, E

110 LETG=A*E-B*D
120 IF G = 0 THEN 180

130 READ C, F

140 LET X = (C*E - B*F)/G
150 LET Y = (A*F - C*D)/G
160 PRINT X, Y

170 GO TO 130

180 PRINT "NO UNIQUE SOLUTION"
190 DATA 1, 2, 4

200 DATA 2, -7, 5

210 DATA 1, 3, 4, -7

obtain values for constants

evaluate denominator

if G is 0, there is no unique solution
obtain remaining constant values
solve for X

solve for Y

print solutions for X and Y

loop to new values for C and F
message printed if G= 0

data for A, Band D

data for E and first values for C and F
other values for C and F

LA T N N T B

The program solves the following equations:

1-7

EXAMPLE OF A BASIC PROGRAM (Continued)

X+2y=~7 x+2y=1 xt+2y=4
4x+2y=5 4x+2y=3 4x+2y=-7

The program prints the paired X-Y values for each set of equations and issues
an error message after printing the third pair,

Note that READ and DATA must both be included to provide input data for the
BASIC program, The division of values among the DATA statements is arbitrary
as long as the values are in correct order. The programmer could have written
the DATA statements as:

190 DATA 1,2,4,2
200 DATA -7,5
210 DATA 1,3, 4,-7

or as:

190 DATA 1,2,4,2,-7,5,1,3,4,-7

The blank spaces used in the BASIC program are only for readability. They could
have been omitted. For example, the following statements are equivalent:

120LETG=A*E-B*D

120LETG=A*E-B*D

Within quotation marks, however, blanks in text are significant. If the programmer
had written statement 180 as:

180 PRINT "NOUNIQUESOLUTION"

the resultant message (if G had been 0) would have been

NOUNIQUESOLUTION

1-8

WRITING, EDITING, and RUNNING A PROGRAM

Writing and Editing a Program

The user controls the contents of his current program by statement number., In
effect, every statement the user types at the terminal must have an initial statement

number.

This number is matched by BASIC against statement numbers existing in

the current program. By this means, the user can delete, insert, or change any
given statement as shown below, where n represents a statement number, statement
represents a BASIC statement, and the carriage return which the user must press
to terminate the statement is represented by the symbol ()).

User Types
n)

),

n statement)

BASIC Response

BASIC searches the current program for the
statement numbered n. If found, the state-
ment is deleted. If not found, no action is
taken.

BASIC searches the current program until
statement numbered n; is found. BASIC will
delete statements nj through n 5.

Delete statements from the current program
starting with statement numbered nj and
ending with the last (highest numbgred)
statement within the current program’.

Delete statement from the current program
from the beginning (lowest numbered statement)
through n, .

BASIC searches the current program for the
statement numbered n. If n is not found,
statement is inserted in the current pro-
gram, If n is found, the statement in the
current pr_ogram is replaced by statement.

1-9

Example
0300 /

Deletes the state-
ment numbered 300.

100,500 .

BASIC will delete
statements numbered
100 to 500 inclusive.

55,)

Delete statements
starting with number 55
until the end of the
program,

,789)

Delete the statements

in the program from the
beginning of the program
through 789,

1200 GO TO 50 /

Either inserts statement
1200 or replaces the
current statement

1200 with GO TO 50.

Running a Program

When the programmer has written and edited his program, he can cause execution
by giving the command:

RUN J

The program will be run from the lowest numbered statement, If no fatal program
errors occur (Appendix A), the BASIC system will print out any output from the
program and give the prompting message:

* (space)
when execution is complete.

When a RUN command is given without a statement number argument, the user is
effectively running a program for the first time. Arrays must be dimensioned,
strings must be given lengths, and variables as yet have no associated values.

The programmer has the option to interrupt his program's execution either by .
pressing the ESC key at the keyboard or by a programmed STOP statement. When a
running program is interrupted in this manner, all current string lengths, array
dimensions, and variable values are maintained until the programmer issues
another RUN command.

However, the programmer has the option to retain all information. To do so, he
- resumes execution by giving the command:

RUN n) - where n is the number of some statement in the program
at which execution is to resume.

The programmer can resume running at the statement at which running was inter-
rupted or at any other statement within the program. For example, he can resume
running with all current values intact at the lowest numbered statement in the
current program if he wishes,

1-10

CHAPTER 2

ARITHMETIC AND STRING OPERATIONS

ARITHMETIC OPERATIONS

‘Numbers

BASIC systems can be generated which provide either all single precisior or all
double precision calculations. In both cases, all forms of unformatted PRINT
output provides single precision type significance, while formatted PRINT USING
output allows the user to control the number of significant digits output.

Single Precision Calculations

On "PRINT'" output, any real or integer number that consists of 6 or less digits is
printed out without using exponential form. A real or integer number that requires
more than six digits will be printed in 6-digit format, followed by the letter E,
followed by an exponent.

Double Precision Calculations

On "PRINT" output, any real or integer number that consists of 8 or less digits
is printed out without using exponential form. A real or integer number that
requires more than six digits will be printed in 8-digit format, followed by the
letter E, followed by an exponent.

Number Represented Output Format S. P, Output Format D.P.
2,000, 000 2E+6 2000000

20, 000, 000, 000 2E+10 2E+10

108. 999 108. 999 108. 999

. 0000256789 2.56789E-5 2,.56789E-5

25 : 25 25

.16 . 16 .16

1/16 . 0625 . 0625

Internally, Extended BASIC stores numbers in a format compatible with other D(C
software such as FORTRAN IV and the relocatable assemblers. Single precision
f loating point numbers are stored in two consecutive 16-bit words of the form:

0 1 78 31
[s C | M |

2-1

where: S is the sign of the mantissa M. 0 = positive, 1 = negative.

M is the mantissa, considered to be a normalized six digit
hexidecimal fraction.

C is the characteristic and is an integer exponent of 16 in

excess 6410 code,

Double precision floating point numbers add a word of precision to the mantissa,
which can be represented as: ‘

01 78 16
[T
A\

W

The range of floating point numbers is approximately
- 75
5.4 * 10 79 through 7.2 * 10
For additional information on floating point storage, of double precision numbers,

see Appendix C of "How to Use the Nova Computers. "

Arithmetic Variables

The names of arithmetic variables are either a single letter or a single letter
followed by a single digit:

A
A3
Z
76

Arithmetic Expressions

Arithmetic expressions can be composed of simple variables, arrays, array
elements, and functions, linked together by parentheses and by the arithmetic
operators. The arithmetic operators are:

SYMBOL ME ANING SYMBOL ME ANING
+ Addition Multiplication
+ Plus (positive) / Division

- Subtraction t Raise to the power
- Minus (negative) C

The order in which operations are evaluated affects the result. In BASIC, unary
minus or plus is evaluated first, then exponentation, then multiplication and division,
and last addition and subtraction. When two operators are of equal precdence (*and/),
evaluation proceeds from left to right.

Arithmetic Expressions (continued)

For example:
Z-A+4B*CtD

1. CtD is evaluated.

2. B is multiplied by the value from 1.

3. A is subtracted from Z.

4, The value from 2. is added to the value from 3.

The programmer can change the order of evaluation by enclosing subexpressions in
parentheses. A parenthesized subexpression is evaluated first., Parentheses can be
nested, and the innermost parenthesized operation is always evaluated first.
For example:

Z-((A+B) *C) tD

1. A+B is evaluated.

2. The value from 1. is multiplied by C.

3. The value from 2. is raised to the power D.
4, The value from 3. is subtracted from Z.

Some examples of expressions are:

L1+1

INT(C/D)/10

(2, D*Z(1, J))/A*(ABS(I))
J-5

SQR (ABS(X)

Arrays

An array represents an ordered set of values. Each member of the set is an array

element. Names of arrays are written as a single letter (A-Z). The letter must be
unique; it cannot be used as the name of a variable in the program or an error mes-
sage will result. An attempt to dimension a variable name, such as Z3, will cause

an error.

Declaring an Array

Most arrays are declared in a DIM statement, which gives the name of the array and
its dimensions. An array can have either one or two dimensions. The lower bound of
a dimension is always @; the upper bound is given in the DIM statement. There is no
limitation on the number of elements in a given array dimension other than restrictions
due to available core.

Dimensioning information is enclosed in either parentheses or square brackets |
immediately following the name of the array in the DIM statement.

5 DIM A(15),B[2,3] <+ A is a one-dimensional array of 16 elements (0-15).
B is a two-dimensional array of 12 elements.

2-3

Declaring an Array (Continued)

If the programmer uses an array but does not declare it in a DIM statement,

BASIC sets aside 11 elements (0-10) for each dimension. An undeclared one-
dimensional array cannot have more than 11 elements. If the programmer does

not need 11 or 121 elements for a given array and wishes to conserve space, he
should declare the array with the required number of elements, There are

no restrictions on the number of elements an array may contain, other than restric-
tions due to available core.

Array Elements

Each of the elements of an array is identified by the name of the array followed
by a parenthesized subscript. (The subscript could, alternatively, be enclosed
in square brackets,) The elements of array B[9] would be:

BO], B{1], B{2], ..., B8], HY]

For a two-dimensional array, the first number gives the number of the row and
the second gives the number of the column for each element, The elements of
array C[2, 3] would be:

C(0, 0) C(0,1) C(0,2) C(o, 3)
C(1,0) C(1,1) C(1,2) C(1,3)
C(2,0) C,1) C(Z2,2) C(2,3)

An array element can be referenced with integer or expression subscripts. Any
variable or expression that is used for a subscript must evaluate to a datum
in the range: '

@ < value < upper bound declared in DIM
If the variable or expression does not evaluate to an integer, the BASIC system

will convert ittofixed form usingthe INT function, described in the section on
functions. For example, some elements of array E(24, 5) might be:

2-4

Array Elements (Continued)

E (I-3, J*K)

E(0, 5)

E (ABS(R), 5) < ABS is a function described on page 2-6.

If a subscript evaluates to an integer larger than the limit of the dimension for
the array, an error message will be printed,

Redimensioning Arrays

It is possible to redimension a previously defined array during execution of a
program, Redimensioning does not affect the amount of storage previously
defined for the array. It is however, useful for run-time formatting of arrays.

Redimensioning is used primarily to change the subscripting of two-dimensional
arrays, Suppose the user originally defines a 3x4 array A.

100 DIM A[2, 3] Statement defining A,

0 1 2 3 Row/column assignment of values to elements
0j112 {3 |4 of array A, A[O, 0] contains 1, A[O, 1] contains
11516 {7 |8 2, veey A[2,2] contains 11, and A[2, 3] contains
219] 1011112 12,

Later the user might redimension A using the keyboard command DIM. (See Chapter 5.)

DIM A[3,2]) Command transposing the dimensions of A,

0O 1 2 Row/column assignment of values to elements of A,
O{11}127}3 The values remain the same but the subscripts required
114 {516 to retrieve those values have changed:

217 1819
311011} 12 Value New Subscript Old Subscript
4 All1,0] A[0, 3]
6 All,2] Al1,1]
8 A[2,1] All, 3]
11 A[3,1] Al2,2]

2-5

- Redimensioning Arrays (Continued)

An array can only be redimensioned so that it has the same or fewer elements.
For example, redimensioning a 3x5 array as a 4x4 array will cause an error.

Subscript references outside the defined range of subscripts will cause errors.
For example, once array A above is redefined as A(3,2), use of 3 as a column
subscript , e.g., A[2,3] will cause an error. '

Redimensioning an array to have fewer elements (e.g., redimensioning § 3, 5]
as B[4, 3] or redimensioning C[20] as C[15] merely makes referencing the unused
locations impossible. It does not free the locations for other storage.

FUNCTIONS

Some of the examples shown before contained functions. Certain standard
mathematical functions are supplied as part of the BASIC system. They are:

SIN(X) Sine of X where X is in radians.
COS(X) Cosine of X where X is in radians,
TAN(X) Tangent of X where X is in radians.
ATN(X) Arctangent of X where X is in radians,

(- 1/2< ATN(X)< /2)

LOG(X) Natural logarithm of X. (X>O)
EXP(X) eX (-178< X< 175)
SQR(X) Square root of X. (X=0)

ABS(X) Absolute value of X,

The arguments of SIN, COS, TAN, ATN, and ABS are confined to the range of
acceptable real numbers.

The LOG and SQR functions require positive arguments. A negative or zero
argument in the LOG function or a negative argument in the SQR functions will
cause the system to respond with an error message.

The argument of the EXP function is confined within the range of values that will

generate the largest and smallest acceptable real numbers, i.e., for eX the
range is: -178 = x = 175,

2-6

FUNCTIONS

In addition to the standard mathematical functions. the following functions are
supplied as part of the BASIC system.,

INT(X)

RND(X)

- SGN(X)

LEN(S)

’ DET(X)

SYS(X)

TAB(X)

EOF (X)

The greatest integer not larger than X.

A random number between 0 and 1. (There must be a predefined
variable or a constant as an argument, though the argument value
has no significance.)

The algebraic sign of X. (1 if positive, 0 if 0, and -1 if negative.)
The current length of string variable S.

The determinant of the last matrix inverted. (There must be a
predefined variable or a constant as an argument, though the
argument value has no significance.)

Where X is a digit, 0-10, returning the system information:

- the time of day (seconds past 00:00)
- the day of the month (1-31)
- the month of the year (1-12)
- the year in four digits (e.g., 1974)
the terminal line number (-1 if operator's console)
- CPU time used in tenths of seconds
- I/0 usage (number of system calls made)
- the error code of the last error
- the file number of the file most recently referenced
in a file I/O statement
9 - page size
10 - tab size

0~ ONUL W= O
I

Note: the values of SYS(7) and SYS(8) are invalid if no run-time
error occurred, or if a file has never been referenced in a file
I/O statement.

Tabulate to character position X. The TAB function is
described fully on page 3-27.

End-of-file function. Returns 1 if file X is at end-of-file,
if not it returns a zero. The EOF function is described fully
on page 5-6.

2-7
(8/74 - 086-000010-00)

FUNCTIONS (Continued)

The INT function yields the largest integer less than or eQual to its argument,

I

INT(7.25) = 7
INT(-7. 25) = -8
INT(12) ’ = 12
INT(-.1) = -1
INT(X+2) = 16 If X evaluates to 14.9
INT(1.5) = 1

INT may be used to round a number to the nearest integer. To round the value,
~add 0.5 to the arguments:

INT(X+0. 5)

The RND function yields a random number having a value in the range: 0O<value<l.
The function requires an argument, although the argument does not affect the resulting
random number. The argument can be any constant or previously defined variable.

RND(1) might produce . 654318
RND(0) might produce . 005461

The SGN function generates its result as +1 if the argument is positive, 0 if the
argument is 0, and -1 if the argument is negative.

SGN(. 452) = 1
SGN(0. 00) = 0
SGN(-24. 9) = -1

The LEN function produces an integer representing the current length of the string
variable argument. (Strings are described in the next section of this chapter.) If
string variable A$ contains the string TOTAL SALES then:

2-8
(8/74 086-000010-00)

FUNCTIONS (Continued)

LEN(AS) = 11 - the space between TOTAL and SALES
counts as a character.
LEN(B$) = 0 < B$ is unassigned or equals the null string,

The DET function yields the determinant of the last matrix inverted, The function
requires an argument, although the argument does not affect the resultant determinant.
The argument can be any constant or previously defined variable,

If Bis a matrix as follows:

8 1 (Determinant B = 2)
7 3
L
then:
25 MAT C = INV(B) : -~ inverse of matrix B becomes matrix C
30 LET X = DET(1) - assign determinant of last inverted matrix
35 PRINT X to X and print X.

The output would be: 2
STRINGS

String Literals

A string literal is written enclosed in quotation marks.

"DATA GENERAL CORPORATION"

All blank spaces within the quotation marks are significant. The delimiting quotation
marks are not printed if the string literal is output.

If the user wishes to insert an ASCII character or 2 control code into a literal
string, he encloses the decimal equivalent of the ASCII code in angle brackets in the
form: '

< n >

where: the range of nis0g n « 25510.

2-9

String Literals (Continued)

If the string containing the ASCII character is output, the left and right angle brackets
will not be printed.

" AN ASCII CONTROL CHARACTER SOUNDS THE TTY BELL, LE., <7 >"

If the format is not as specified, i.e., if n is outside the range or if n is not enclosed
in both left and right brackets, no such error message occurs. The angle bracket
and the number will be treated as any other string literal characters.

"TEN <25 " -— causing output of TEN < 25

String Variables and Expressions

Extended BASIC permits use of string variables as well as literals. String variables
are indicated by a dollar sign ($) appended to a letter or letter-digit.

R$ or R2%

String variables must be declared in DIM statements., The 'dimension' gives the
maximum number of characters the string can contain, There is no restriction on
the maximum length of a string, other than restrictions due to available core,

DIM A$(25), B3$(215) < A$ can contain up to 25 characters.
B3$ can contain up to 215 characters.

A string variable cannot be assigned more characters than the maximum given in
the DIM statement, and if a string variable is 'redimensioned’, the maximum
number of characters must be less than that given in the original dimensioning
statement,

A string expression is a string literal or a string variable, A variable reference
to a string may be subscripted or unsubscripted as shown following:

2-10

String Variables and Expressions (Continued)

A$ < References the entire string,

A$(2) < References the second character through the last character in
the string inclusive,

AS(I) < References position I through the last character in the string
inclusive,

AS%(3,7) < References characters occupying positions 3 through 7 inclusive.

A%(1,]) < References characters occupying positions I through] inclusive,
where I and | are evaluated to character positions in the string
and I < J. '

A%$(1,1) -~ References only the first character in the string,

Thus a subscripted variable lets the programmer reference a subset of one or more
characters within a string, String expressions can be used in assignment (LET)
statements, PRINT statements, INPUT statements, READ statements, and in rela-
tional expressions of IF statements,

20 PRINT A$(1,4)
30 LET B$ = "RESULTS ARE:"
40 IF A$(L,1) = B$(J,]) GO TO 100

t

Print first 4 characters of A$.

Assign string literal to B$.

If the Ith character of A$ is equal to the
Jth character of B$, transfer to statement
100.

50 INPUT C$, D$(2,2) < At the terminal a datum of one or more
characters can be input for C$ and a single
character for D$(2, 2).

!

t

On the righthand side of an assignment statement, string expressions may be
concatenated, where the concatenation operator is a comma (,).

100 DIM A $(50), B$(50)
110 LET A$="@$2. 50 EACH, THE PROFIT MARGIN IS 15, 8%. "
120 LET B$=A¥(1,4), "25", A$(7,35), "1.2%."

B$ would contain the following after statement 120 was executed:

@$2.25 EACH, THE PROFIT MARGIN IS 11, 2%.

2-11

String Variables and Expressions (Continued)

Following are some string assignment considerations:

20 LET A$ =B$ < contents of A$ are replaced by the contents of B$.
25 LET A$="" < contents of A$ are replaced by a null string.
30 LET A$ = A%, B$ - contents of B$ are appended to the current contents of

’ A$.
35 LET A$ = B$, A$ <+ produces garbage, since A$ no longer exists at the
point at which it is to be appened.

When characters are assigned to a string or part of a string, the number of
characters to be assigned determines what will be stored. For example:

100 LET A$ = "ABCDEE"
110 LET B$ = "1"

120 LET A$(3, 3) = B$

130 LET A$(3,6) = B$

140 LET A$(3) = B$

150 LET A$(3) = B$, BS, B$

produces ABIDEF
produces AB1
produces ABl1
produces AB111

bttt

When strings are used in the relational expression of an IF statement, the strings
are compared character by character on the basis of the ASCII collating sequence
until a difference is found. If a character in a given position in one string has a
higher ASCII code than the character in that position in the other string, the first
string is greater, If the characters in the same positions are identical but one
string has more characters than the other, the longer string is the greater of the
two. Use of strings in relational expressions is described again in Chapter 3,
the IF statement.

200 LET A$ = "ABCDEF"
300 LET B$ = "25 ABCDEFG"

310 IF A$ >B$ GOTO 500 <= True. Transfer occurs.
320 IF A$> B$(4) GOTO 500 < False. No transfer.
330 IF A$(1,4) = B$(4,7) GOTO 500 = True. Transfer occurs.

2-12

String Variables and Expressions (Continued)

Some further examples of string manipulations are:

100 DIM A$(20), B$(20), D$(20), C$(50)
110 LET A$ = "RESULT IS 25.2%"

120 LET B$ = "$155.24 PER ITEM"

130 LET C$ = A$(1,10), B$(1)

140 IF A$(1, 4) = C$(1,4) GO TO 400
150 LET D$(1, 8) = B$(13,16), " NO. "

When statement 130 is executed, C$ contains: "RESULT IS $155.24 PER ITEM",
When statement 150 is executed, D$ contains: "ITEM NO.'", and the relational
expression is true if statement number 130 is executed in the sequence shown,

2-13

CHAPTER 3

STATEMENTS
As shown in Chapter 1, only a few BASIC statements are needed to write a simple
BASIC program. However, the statements available in Extended BASIC allow the user
to write programs using more advanced programming techniques as his familiarity
with BASIC statements incrcases. The statements listed below are described in de-
tail on pages following in this chapter. They constitute the statements of Extended
BASIC with the following exceptions.

Matrix manipulation statement MAT is described in Chapter 4.

The CALL statement that invokes an external program is described in
Appendix B.

Statements that constitute file I/O are described in Chapter 5.

The statements described in this chapter are:

Statement - Usage

BYE Terminate user/system interaction,

DEF Define a user function,

DIM Dimension arrays and string variables,

END Optional terminator of program,

IFOR and NEXT Set up programming loop.

GOSUB and Transfer to and from an internal subprogram.
RETURN

GO TO Transfer control to a nonsequential statement,
I Conditional transfer to another part of the program.
INPUT Request data from the teletype.

LET Assign values to variables,

NEAV Clcar current program, close all open channels,

3-1

Statement

ON

PRINT

PRINT USING
RANDOMIZE
READ and DATA
REM

RESTORE

STOP

Usage

Provide a series of possible transfer points.

Output data.

Output data in accordance with "picture” format,
"Reseed" random number generator.

Input data,

Comment,

Reinitialize the pointer to the start of the data block.

Halt program execution and switch to keyboard mode,

BYE

Format:

Purpose:

Example:

BYE

The BYE statement terminates interaction between the BASIC system
and the user and places the user's terminal into idle mode. The BYE
statement does not terminate the system, but idles the user's terminal.
The result of the execution of this statement is different depending

on which terminal issued the statement, either a user terminal, or the
master console.

When a BYE statement (or command) is issued from a user terminal
under multi-user RDOS, the system will print certain sign-off informa-
tion after which only the user terminal which issued the statement is
idled. This sign-off information will appear as:

07/09/73 14:23 SIGN-OFF, 00 (terminal number)
07/09/73 14:23 CPU-USED, 1 (time used in tenths of seconds)
07/09/73 14:24 I/O0-USED, 13 (number of system calls made)

When a BYE statement (or command) is issued from the master console
using any RDOS system, the sign-off information is printed on the
terminal as shown above. Then the words:

DIRECTORY SPECIFIER:

are printed on the teletypewriter requesting the master console user
to type in a directory name. After the user does so, BASIC is active
with a different user directory being used. There is no way to idle a
Master Console. If at any time the user wishes to deactivate BASIC,
the operator system command #KILL should be issued from the master
console (see Appendix C).

In SOS environment, when a BYE statement or command is issued,
the terminal it was issued from is idled. No sign-off information is

printed.

100 BYE)

3-3

DEF

Format: DEF FNa (d) = expression

where: a is a single letter, A-Z,

d is a dummy arithmetic variable that may appear in expression.

Purpose: To permit a user to define a function that can be referenced several
times during a program. The function returns a value to the

point of reference,

When a function is referenced, the constant, variable, or arithmetic
expression appearing in the reference argument dummy argument d in

the expression.

In the function definition, expression can be any legal arithmetic
expression including one containing other user-defined functions.
Functions may be nested to a depth of four.

Function definition is limited to those formulas that can be
expressed on a single line of text, For longer formulas, sub-
routines should be used.

Examples:

100 DEF FNE (X) = EXP (X 12)
200 LET Y = Y*FNE (.1)

300 IF FNE (A+3) > Y THEN 150

| 30 LET P = 3.14159

40 DEF FNR (X) = X*P/180

50 DEF FNS (X) = SIN (FNR(X))

60 DEF FNC (X) = COS(FNR(X))

70 FOR X = 0 TO 45 STEP 5

80 PRINT X, FNS(X), FNC(X)
90 NEXT X

3-4

definition of the function
function reference; argument = .1

function reference; argument = A+3

Function FNR is nested within
FNS and FNC,

FNS and FNC are referenced with
X having values 0, 5, 10, ..., 45

Format:

DIM array; (dims), stringj (chars), ...

Purpose: To give the dimensions of one and two dimensional arrays and to
give the maximum number of characters in string variables, The
information in this non-executable statement is used to allocate
storage.

- Arrays are dimensioned as follows:

1. The lower bound is always 0 and does not appear in the DIM
statement.

2. The upper bound is given in parentheses or square brackets
following the array name.

3. If there arc two upper bounds, the bounds are separated by
a comma.

String variable names are followed by a single "dimension" in
parentheses or square brackets; this gives the upper limit of the
number of characters that the string may have.

Arrays and strings may appear in any order in a DIM statement.

Inxample:

. 2 DIM A(5,6), C(20), X(17), B$(25), C$(30), Y(14,10)

A is a 6x7-element two dimensional array.

- C is a 21-clement one dimensional array.

X is a 18-clement one dimensional array.

B$ is a string with a maximum of 25 characters. *
C$ is a string with a maximum of 30 characters. *

Y is a 15x11-element two dimensional array.

“Note: the Oth element of a string is not used and is not included in its length.

3-5

END

Format: END

Purpose: Many BASIC systems require an END statement as the last program
statement or as the terminating statement of a main program
that calls one or more subroutines. In Data General's BASIC, all
programs terminate at the last logically executed statement in the
program (if an END statement or STOP statement is not encountered).
However, the implementation allows END statements for compat-
ibility with BASIC programs written for other systems. Multiple
END statements may appear in the same program.

3-6

FOR AND NEXT

FOR

Format:
FOR control variable = expression; TO expression, }
FOR control variable = expressiony TO expression2 STEP expression3 ’

Purpose:

Legal
Nesting

To establish beginning, terminating, and incremental values
for control variable, a variable that determines the number of
times statements contained in a loop are executed.

The loop consists of statements following the FOR statement
up to a NEXT statement that contains the name of control
variable, The variable in a FOR statement cannot be subscripted.

expression; is the first value of the variable.

expressiony is the terminating value of the variable.
expressiony is the increment added to the variable each time
the loop is executed. If not given, the increment is +1,

When the NEXT statement containing the variable name is
encountered, the loop is executed again. The looping ends, and

the statement after NEXT is executed when control variable exceeds
the terminating value, expressiony.

FOR loops may be nested to a depth of seven. The FOR statement
and its terminating NEXT statement must be completely nested.
For example:

FOR X =...
FORY=... FOR X = ...
FOR Z=... FOR Y = ...
E NEXT Z Illegal | NEXT X
Nesting
_ NEXT Y NEXT Y
L NEXTX

3-7

FOR AND NEXT (Continued)

NEXT
Format: NEXT control variable
Purpose: To terminate the loop beginning with a FOR statement. The control

variable contained in the NEXT statement must precisely match

the control variable contained in the last uncompleted FOR statement

pre ceding NEXT,

When the FOR statement conditions have been fulfilled, execution

continues at the statement following the NEXT statement,

FOR and NEXT Examples

S FOR X =,1TO .005 STEP -0.01
10 LET X = X*LOG(X)
20 NEXT X

'10 FOR I1=1 TO 45
20 PRINT 2 ¢t I
30 NEXT I

10 DIM A(25)
20 READ N

30 FORI=1TON
40 READ A(I)

50 NEXT I

100 FORI1=1TO 3

120 FOR J=1 TO 20 STEP I

130 READ B(I,])
140 NEXT]

150 NEXT I

J loop

3-8

I loop

FOR AND NEXT (Continued)

FOR and NEXT Examples (Continued)

90 FORI1=1TO9
100 NEXT I
110 PRINT 1
RUN)
9 «— final value of I loop is the terminating value, 9.
120 FOR J=1TO 9 STEP 3
130 NEXT]
140 PRINT]
RUN » :
7 -— final value of the] loop is the last value before
' o the terminating value is exceeded.

3-9

GOSUB and RETURN

GOSUB

Format: GOSUB statement number

Purpose: To transfer control to statement number, the first statement in
a subroutine. Control will turn to the next sequential statement
after the GOSUB statement when a subroutine RETURN statement
is executed. (see below).
A portion of a program is written as a subroutine when it is executed
at several different places in the program. A _subroutine is an arb-
itrary set of BASIC statements which contains at least one RETURN
statement.,

RETURN

Format: RETURN

Purpose: To exit a subroutine, returning to the first statement after the

GOSUB statement that caused the subroutine to be entered.
A given subroutine may contain a number of RETURN statements

when logic might cause the subroutine to terminate at a number
of different statements.

3-10

Examples of GOSUB and RETURN

In the example following, RETURN causes return to statement number 120 when

the subroutine is entered from statement 110; return is to statement 140 when the
subroutine is entered from statement 130, etc. Note that there are two RETURNSs in
the subroutine, Values for X and Y will be printed and return will be made from
statement numbered 560 as long as Y is less than 100. Otherwise, statement 540

in the subroutine is executed, and a return is made to the calling program without
printing values for X and Y.

100 LET X = 5
110 GOSUB 500
120 LET X = 7
130 GOSUB 500
140 LET X = 11
150 GOSUB 500
| 160 STOP

' 500 LET Y = 3*X

| 510 LET Z = 1.2 * EXP(Y)
520 LET Y = SQR (Z+2)

| 530 IF Y <100 THEN 550

} 540 RETURN

| 550 PRINT X, Y

560 RETURN

In the example following, the subroutine calls itself.

100 LET X = 3.5
200 GOSUB 509 «— call to subroutine from another part of the
. program,

500 LETY=X 1+t 2
520 PRINT X, Y
530 LET X =X + 2.5
540 IF X > 10.0 GOSUB 500 < subroutine calls itself.
550 RETURN ‘

3-11

GOTO

Format: GO TO statement number

Purpose: To transfer control to a statement that is not in normal sequential
order, If control is transferred to an executable statement, that
statement and those following will be executed, If control is .
transferred to a non-executable statement (e.g., DATA), the
first executable statement following the one to which transfer was
made will be executed, '

Examples:

190 DATA 19, -5, -2, 5, -6, 10, 10, 60, 20, 5, 50, 10 '
200 READX, Y, Z
220 LET A= SQR(X+t 2+ Y t 2 - 2*X*Y*FNC(Z))
230 PRINT X, Y, Z, A
240 GO TO 200 < control will continue to transfer back to statement
200 until all values for X,Y, and Z have been read,

190 DATA 19, -5, -2, 5, -6, 10, 10, 60, 20, 5, 50, 10

200 READ X, Y, Z

220 LETA=SQR (Xt 2 4$Y t 2 - 2*X*Y*FNC(Z))

230 PRINT X, Y, Z, A

240 GO TO 190 - same as previous example,

3-12

Format:

Purpose:

Relational
Expression:

IF relational-expression GOTO statement-number
THEN

IF relational-expression GOSUB statement-number

IF relational-expression THEN statement-number

To transfer control on the basis of whether relational-expression
is true or flase,

The IF-GOTO (THEN) statement format causes control to be
passed to the statement whose number appears following GOTO
if relational-expression is ture. If relational-expression is not
true, control is passed sequentially to the next statement
following the IF statement.

The IF-GOSUB statement format causes control to be passed to
the beginning of a subroutine whose statement number appears
following GOSUB if relational-expression is true, If relational-
expression is not true, control is passed sequentially to the next
statement following the IF statement.

The IF-THEN statement format is a generalized form of the IF
statement. Any statement, including an IF statement, may
follow the THEN,

A relational expression consists either of two arithmetic expres-
sions and a relational operator or of two string expressions and
a relational operator and has the form:

expressionl relational operator expression2

The relational operators are:

Symbol Meaning Example
= Equal A =B

< Less than . A <B

<= Less than or equal A <=B
> Greater than A>B

> = Greater than or equal A >=B
<> Not equal A <>B

3-13

IF (Continued)

When relational operators are used to compare string expressions,

strings are compared character-by-character until a difference is
found.

IF "ABCDEF" = "ABCDEFG" THEN...
{F "AB" = "AB" THEN...

IF "ABC" > "AB"

IF "BAC" > "A"

IF "D" > "AAAA"

The branch then depends upon the values of the ASCII codes of the pair

of characters which first differ. The higher ASCII code value indicates the
greater string value. If one string has more characters than

the other, (but they have a common prefix), the longer string is the
greater of the two. To be equal both strings must have the same
characters, in the same order, and be of the same length.

"ABCDEF" = "ABCDEFG" is not true, the second string is

the greater of the two, as it contains more
characters.

"AB" = "AB" is true since both strings contain the same
characters, in the same order, and are of the
same length,
"ABC" > "AB" is true since the first string is identical
to the second string except for an added character.
"BAC" > "A" is true since B has a higher ASCII code than
does A, the first pair of characters to be exammed

"D" > "AAAA" is true since D has a higher ASCII code value than
A where the first difference occurred. #=*

A numeric expression may be used in place of a relational expression
following IF. The numeric expression is considered false if it has
a value of 0 and is considered true in all other cases.

** Note: The ASCII code value of D is 104; A's ASCII code value is 101.

3-14

Examples:

100 IF X + Y = 0 THEN 1000 Relational expressions, where
150 IF .01 > = SQR(X) GO TO 410 values are compared to deter-
200 IF A% < > "YES" GOSUB 650 mine the truth value,

101 IF X+Y THEN 1000 Numeric expressions that evaluate to zero or

151 IF ABS (X) GO TO 410 non-zero. All non-zero values are true. Note that
i statement 101 is the reverse of statement 100,

102 TF X+Y=0 THEN LETI=0 If X+Y=0 is true, the LET statement is
executed and control passes to the next
statement in the program; if X+Y=0is false, the
LET statement is not executed and control
passes immediately to the next statement
in the program,

152 IF X THEN IF .01 > = SQR(X) GO TO 410

The first IF checks the value of X, If
it is zero, control passes to the next
statement in the program, If it is not
zero,-the IF statement following THEN
is executed and control passes to the
next statement in the program or to the
statement 410, depending upon the value
of the square root of X,

3-15

INPUT

Format:

Purpose:

INPUT wvariable-list

where: variable-list can contain arithmetic variables, array
elements, string variables, and string literals.

To input values for variables and string variables at run time

from the user's terminal. The usage of the INPUT statement
(without containing a string literal) contains a list of variable names
and/or string variable names separated from each other by commas:

55 INPUT A,B,C J
60 INPUT P$:;)
70 INPUT D, S$, A$(1,4),]/

The INPUT statements are all terminated with a carriage return
and may be written with a semi-colon preceding the carriage
return (i.e., statement number 60). Arithmetic and string
variables may be interspersed within the variable list of the
INPUT statement (i.e., statement number 70).

When an INPUT statement containing no string literal is executed,
the BASIC system types ? at the terminal, requesting data for the
variables. (When string literals occur, they replace the question
mark prompt. These are discussed later within this section.)
An example of passing data to BASIC in response to question
mark prompts is:

55 INPUT A, B, C)
60 INPUT P$; /
70 INPUT D, $$, AS(1,4),] /

RUN /
210./7?725.)7233)
? ABCDEFG J 7123 J 2 AMOUNT J ? ITEM J ? 456)

The first three items input by the user were separated by carriage
returns (10, 25, and 33); and since statement number 55 ended

with a carriage return, a carriage return/line feed occurred before
executing statement number 60. Input for statement number 60
(INPUT P$) is a string which was also terminated by a carriage
return, but, because statement number 60 ended with a semicolon,
statement number 70's request for input was continued on the same
line as the input received in response to statement number 60,

3-16

INPUT (Continued)

Purpose: The programmer types the list of data values fpr input immediately
following the ?, Each datum is delimited from the next by either
a carriage return (as in our example) or by a comma. If a semi-
colon appears at the end of an INPUT statement a carriage return/
line feed will not occur after the last inputted item in response to
that statement. But, if there is no semicolon at the end of the
INPUT statement, a carriage return/line feed will occur before
the next statement is executed. The data list typed in response to
the INPUT statement must match the variable list in both type of
datum and number of data items. The last data value input by the
user in response to a INPUT statement must be terminated by a
carriage return,

Character strings in the data list may optionally be enclosed within
quotation marks. Character strings may include any characters
including digits and angle bracket delimiters enclosing the decimal
equivalent of an ASCI character. Since a datum is delimited by
commas and carriage returns, a comma or carriage return can-
not be a part of the character string unless the character string

is not enclosed within quotation marks, leading blanks will be
ignored on input:

25.34, THE RESULT IS:, O -— The second item in the data
list is a string of 14 charac-
ters including enclosed
blanks.

25.34, " THE RESULT IS:", 0 <+ The second item in the data
list is a string of 15 charac-
ters including enclosed blanks
and one leading blank.

Pressing carriage return during typing of the data list does not
cause an actual carriage return; it merely signals BASIC that a
value has been terminated. If the return is pressed and BASIC
does not have enough values to fill the input list, the BASIC system
types: ? and sounds the teletype bell. The programmer can then
add the needed values to the list.

If the data list contains anerror detected by the system, for
example, a string value for a numeric value, the BASIC system

3-17

INPUT (Continued)

Purpose:

INPUT Examples:

types: \ ? after which the programmer caatype the correct value,
During the typing of the data list, the programmer may use the
line erase (SHIFT L) or character erase (RUBOUT) to correct
errors within his list. | ‘

It is useful to precede the INPUT statement in the program
with a PRINT statement containing a string that will clarify for the
user at the teletype which variables the values are requested for.

40 PRINT "VALUES FOR A, B, C" < string within quotation
marks will be printed on

line before BASIC

SOINPUT A, B, C

String literals may be utilized in the INPUT statement to print these
prompts; thus the above example could have been written as:

SO0 INPUT "VALUES FOR A, B, C ",A, B, C *

If an INPUT statement is incorporated into a continuous loop, the
programmer can terminate program execution but pressing the
ESC key.

40 PRINT Z, X
RUN .

TEST
2.55

10 DIM A$(10), B$(10)
20 INPUT Z, A$, X, B$
30 PRINT AS$, B$

?2.55. 7 "TEST") ?34 . ? "ITESTOK" /

ITESTOK BASIC Printout; data list
34 ‘separated by carriage returns.

3-18

INPUT (Continued)

10 DIM A$(10), B$(10)
20 INPUT Z, A$, X, B$
30 PRINT A$, B$

40 PRINT Z, X

RUN

?2.55, TEST, 34, "ITESTOK")

TEST ITESTOK BASIC Printout; data list
2.55 34 } separated by commas.
RUN)

72,55 ?"TEST" ? "STRING" \ ? 34, "ITESTOK ")

TEST ITESTOK BASIC Printout

2,55 34 }

(Note: the third item in the data list , the user tried to input a string (STRING)
in the place of a required number. Basic types \?. The user merely
retyped the correct numeric value and the final string value.)

10 DIM A$(10), B$(10)
20 INPUT Z, X, A%, B$;
30 PRINT A$, B$

40 PRINT Z, X

RUN J
?2.55, STRING \ ? 34, "STRING", TEST STRING TEST
2,55 34 \ —_—— J/
1 J

BASIC Printout BASIC Printout

(Note: the second item in the data list is a string in place of the required
number. BASIC types \ ? after which the programmer typed the correct
numeric value.)

3-19

INPUT (Continued)

20 INPUT "VALUESOF X, Y, Z', X, Y, Z - Informs user as to
requested values.
"RUN J
VALUESOF X, Y, Z 2.5, -44.1, .5 <— user supplies 3 values,
10 PRINT "VALUES OF X, Y, Z" ~ Each INPUT statement :
20 INPUT X ‘ contains one variable in list.
30 INPUT Y

40 INPUT Z

RUN) . .

VALUES OF X, Y, Z

? 2.5, -44,1, .5 «— Error message will result
since only one value (X) is
expected.

10 PRINT "VALUES OF X, Y, Z';
20 INPUT X
30 INPUT Y
40 INPUT Z

RUN) :
VALUESOF X, Y, Z ? 2.5/ - Data list separated by

? -44,5 J carriage return.
7.5)

0005 DIM G$(8)
0010 PRINT "FAHRENHEIT"; | | -
0020 INPUT F, G$; -
0030 LET C = (F-32)*5/9 ~ |

0040 PRINT "CENTIGRADE = " C, G$

0050 PRINT

0060 GOTO 0010

RUN .

FAHRENHEIT ?32, " FOR F = 32" CENTIGRADE =0 FOR F = 32
FAHRENHEIT ?50, " FOR F = 50" CENTIGRADE = 10 FOR F = 50

FAHRENHEIT ? (user presses ESC)
STOP AT 0020

3-20

ASSIGNMENT STATEMENT (LET)

Format: variable = expression

LET variable = expression

Purpose: To evaluate expression and assign the value to variable.

String expressions may be assigned to string variables, and
arithmetic expressions may be assigned to arithmetic variables.

The variable may be subscripted.
Use of the mnemonic LET is optional.

Examples:

10 LET A = 4,174G
40 X = X+Y13.5
80 LET W7 = ((W-X) t 4. 3)*SQR(Z-A)/B

90 J(I, INT(K/10)) = COS(FNA(K+I))

100 DIM A$(10), B$(10), C$(20), D$(10)

140 LET A$ = "NOW"

150 B$ = "TIME"

160 C$ = AS$," IS THE ",B$ -~ string concatenation

170 LET D$ = A$(1,2), B$(1,1), "™, B$(3,4) -— string concatenation

A$ contains NOW

B$ contains TIME

C$ contains NOW IS THE TIME
D$ contains NOT ME

3-21

NEW

Format: NEW

Purpose: The NEW statement clears all currently loaded statements and
variables, and closes any open channels., It is usual to give this
statement before beginning input processing of a new current program,
This statement can be the last executable statement within the \
current program; thereby, after executing the program, and
printing out all results, the program will be immediately cleared
from memory. This statement, in conjunction with ON ERR or ON
ESC statements, can be used to prevent unauthorized reading of a
program. (More elaborate techniques can be used to check a user
password upon detection of an ESC or ERR to decide if read access
should be permitted.) '

Exampleg:

100 READ A
110 LET C = A * 23
120 PRINT C;A

125 GOTO 100

130 NEW

135 DATA 1,2,3,4,5,6
RUN)

23 46 69 92 115 138

*

LIST) ;sMEMORY HAS BEEN CLEARED.

5 ONESC THEN NEW
6 ON ERR THEN NEW
10 - - -

3-22

M

ON.

Format: ON expression GO TO statement number list

ON expression THEN statement number list

ON expression GOSUB statement number list

ON ERR THEN statement

ON ESC THEN statement

Purpose: The ON statement as specified in the first three statement formats,
is written for the purpose of providing several possible transfer
points, The statement to which transfer will be made depends
upon the evaluation of expression, The value of expression must
correspond to the sequence number within the list of one of the
statement numbers.

If expression does not evaluate to an integer, it is truncated to
an integer by the INT function.

If expression evaluates to an integer that is greater than the sequence
number of the last statement number in the list or that is less than
or equal to zcro, the ON statement is ignored and control passes

to the next statement.

ON-GOTO and ON-THEN are equivalent formats. ON-GOSUB
must contain a list of statement numbers, each of which represents
the start of a subroutine within the program.

ON ERR THEN will, when an error results from the execution of
the program, execute statement. statement may be any legal
Extended BASIC statement. ON ESC THEN will, when the user hits
the ESC key, execute statement; statement may be any legal state-
ment. If the ON ESC statement does not execute a GOTO, then con-
trol will eventually return to the user's program at the last line
executed before the escape was typed.

Examples:

ON M-5 GOTO 500, 75, 1000

If M-5 does not evaluate to 1, 2, or 3, the statement is ignored. If M-5 evaluates
to 1, transfer is made to statement 500; if the expression evaluates to 2, transfer

3-23

ON (C ontmued)

is made to statement 75 and 1f the value is 3 transfer is made to statement 1000,

f 21 ON X GOSUB 1000, 2000,-3000, 4000 ;X must be 1,2, 3, or 4 to effect transfer.

| 31 ON Y*I THEN 100, 50, 90, 550, 80,75 ;Y*I must have a value of 1 through 6.

i 55 ON ERR THEN GOSUB 160 ;Transfer to an error subroutine.

% 78 ON ESC THEN GOTO 100 ;Transfer to statement 100 when ESC occurs.

Note: Caution must be exercised with use of the ON ESC THEN statement. Usually,
if the user presses ESC, it indicates to the system that whatever is occurring must
stop. If a program is executing, execution will cease; if data is being output, output
will cezse, But, with the use of the ON ESC THEN statement, instead of halting, the

system transfers control to the statement appearing within the ON ESC THEN statement.

As an example, assume that the user mcludes the statement 100 ON ESC THEN
PRINT X, Y, Z in his program. When the user presses ESC during program execution,
program execution does not cease; instead, control passes to statement 100 and the
vaiues of X,Y, and Z will be printed. Control continues in the program as if line 100
were never executed, that is, in the example below control continues at line 141 if
line 140 were the last to complete before the escape is processed.

i

100 ON ESC THEN PRINT X, Y, Z

149 PRINT X
141Y=2

In order to stop the execution of a program when using the ON ESC THEN statement,
a statement must appear in the program after the ON ESC THEN statement which will
instruct the system to stop. (For example, a STOP statement or an ON ESC THEN
S'lur statement). The latter will also restore normal use of the ESC key.

In the example following, execution of one of the RETURN statements will return con-
trol not to statement 30 but to the statement following the last to complete executlon
after the escape key was struck.

10 ON ESC THEN GOSUB 500
20 DIM X(1000) |
30 FOR I =1 TO 1000

L40 X(I) = A*T 24B*I+C

50 NEXT 1

60 STOP

500 PRINT I, X(1)
510 INPUT "CONTINUE (0) OR NEW INPUTS (1)", D
' 520 IF D = 0 THEN RETURN

1530 INPUT "NEW VALUES FOR A’}B-C" A,B,C
| 540 RETURN | '

3-24

"

‘ - PRINT or ;

Format:
PRINT expression list

; expression list

where: expression list is a list of numeric variables, subscripted

variables, arithmetic expressions, string literals, and string
variables.

PRINT and; are equivalent statement forms.
. Purpose: To output current values for any expressions and variables appear-
ing in the expression list of the PRINT statement, and to output
verbatim text for any string literals in the expression list.

. Output The PRINT statement allows the user to either control output for-
Formatting: matting or to accept default formatting,

Number Representation

Any real or integer number which can be represented as six digits **
and a decimal point is printed out without using exponential form. A
minus sign is printed if the number is negative; a space is left
before a positive number. All other numbers are printed in the

format:
[-]n[.] nononE+ efe]
where: n is a digit
E indicates exponentiation.
‘ e is a digit of the exponent.
[] square brackets indicate optional parts of the number.
If the number is positive, the sign position is left blank.
. Number Printed Output Printed Output D. P.
R . 00000002 2E-8 . 00000002
-. 0002 -. 0002 -.0002
200 200 200
-200. 002 -200. 002 -200. 002
2,000, 000 2E+6 2000000
-20, 000, 000, 000 ~-2E+10 -2E+10

R

“ Eight digits for double precision, see Appendix F, and pages 2-1,2-2.

‘ ;3-25

PRINT or ; (Continued)

Zone Spacing of VOu‘tput (,)

The terminal line is divided into zones. By default, each zone is set to
14 spaces, which is a typical spacing for a 72-character teletypewriter:

0 14 28 42. 56 (14fspace zone, allowing 5 columns of data to
~ be output on a 72-character teletypewriter.) .

The user can set the’ number of spaces per zone at the beginning of a
console session, or at any time dur1ng the console session by means of
the keyboard command, TAB, which is described on page 6-16. The
zone may be set in the range from one character up to the limit of

the page Wldth of the termmal dewce ; .

CJ

A comma between 1tems in the expression list of the PRINT
statement indicates "space to the next zone." If the last print
zone has been filled, the next value is printed in the first
print zone of the next line,

: : (Assume a 14-space

100 LET X =5 e zone, - Note terminating

50 PRINT X, (X*2)t+ 6, X*2, -comma on first PRINT

60 PRINT X ¢t 4, X-25, (X*2)+ 8, X - 100 statement controls the
output of the first value

of the next PRINT statement,)

0 14 | 28 A 42 56
4 v oo v v
5 LE+6 10 625 -20

1E+8 -95 "

When an output value is longer than a single zone, for example,
a long character string, the teletype is spaced to the next free

'zone to print the next value, .
10 LET X = 25 | .
20 PRINT "THE SQUARE ROOT OF X IS:", SQR(X) = “
o 14 28 - position
THE SQUARE ROOT OF X IS 5 «— value

3-26

e

Compact Spacing of Output

The user can obtain more compact output by use of the semicolon
between list items, It inhibits spacing to a print zone, leaving
only a single space between values output for list items. Note
that like the comma, a semicolon at the end of a PRINT statement
will determine the position of the first value of the next PRINT
statement,

10 LET X =5
20 PRINT X; (X*2) t 6; X*2; (X*2) t 4;
30 PRINT X-25; (X*2) t 8; X-100

0 4 10 14 20 25 30 — position
4 ' ¥ ¥ + { 4
5 1E+6 10 10000 -20 1E+8 -95 — value

Spacing to the Next Line

If there is no comma or semicolon terminating the last item of
the list of a PRINT statement, the edited output will be followed
by a line feed/carriage return so that the next PRINT statement
will begin printing on the next line.

I0LET X =5

20 PRINT X, (X*2) ¢ 6
30 PRINT X*2

40 PRINT X-25; (X*2)t 8
50 PRINT X-100

0 5 15 - position
; ! K
S 1E+6 ~— value
10
-20 1E+8
-95

.3-27

Qutput Tabulation
Formatting: ‘ :
(Continued) It is possible to tabulate to a partlcular character position to

output a value using the TAB function:

TAB ‘(ex;;ires,éion)' .

where:

expression evaluates to an integer reprecentlng the

character position to begin output of the next list item
following the TAB function. The TAB function only
tabulates to the given position if the carriage is not set
beyond the desired character position. : If the expression
in the TAB function evaluates to a number greater than
the carriage length, the expression is reduced modulo
carriage length., If expression: evaluates to zero, TAB(0)
causes a carraige return. -

10 DATA 5, -7, 9,
20READ A, B, C, D |
30 PRINT TAB(S),A TAB(lO), B; TAB(lS) C; TAB(20); D

10 15 20 @ - po‘s,ition_" |

0 S
¥
S

0 S
' ¥ ' i b

S -7 9 -11 — value
10 DIM B[4]

20 DATA 5, -7, 9, -11
30 FORI=0TO 3

40 READ B[I]

50 ; TAB(S); B1];

70 NEXT I

7 10 13

-7 9 -l11 -~ Note that the TAB
function only affects

~the first array value,
since the TAB function is
only effective at its

first encounter,

3-28

11]

PRINT or ; (Continued)

Output
Formatting :
(Continued)

Following are a few additional examples of output printing:

10 FORI=1TO 10

20 ;1, «—— If zone = 15 spaces.

30 NEXT 1)

1 2 3 4 -5
6 7 8 9 10

10 FORI=1TO 10
20 PRINT I < Carriage return delimiter,
30 NEXT I

= O 00 N1 O Ul s W N =

10 FORI=1TO 10

20 PRINT I, <« If zone = 14 spaces.
30 NEXT I

1 2 3 4)

6 7 8 9 10

3-29

PRINT OR ; (Continued)

String Variables

String éxpressions may be printed by the use of the PRINT
statement.

10 DIM A$(25), B$(25)

20 LET A$ ="IF X IS -

30 LET B$ = " THEN X SQUARED IS -

40 READ X o

SOLETC=X142

60 PRINT A$;X;B$;C

70 GOTO 40

80 DATA 5, 10, 15, 20, 25

RUN)

IF XIS - 5 THEN X SQUAREDIS - 25

IF X IS - 10 THEN X SQUARED IS - 100

IF XIS - 15 THEN X SQUARED IS - 225
IF X IS - 20 THEN X SQUARED IS - 400

IF X IS - 25 THEN X SQUARED IS - 625

10 DIM A$(25), B$(25)
20 LET A$ = "ABCDEE"
30 LET B$ = "GHIJKLM"
40 PRINT A$,B$

RUN)
ABCDEFGHIJKLM

3-30

i)

PRINT USING

Format: PRINT USING format-string, expression-list

where: expression-list is a list of numeric variables, subscripted
variables, arithmetic expressions, string literals, and
string variables.

format-string may be a string literal or a previously defined
string variable, specifying formats of the fields in which the
value of each of the expressions in the list is to be output.

. Purpose: To output current values for any expressions and variables
appearing in the expression list of the PRINT USING statement in
accordance with the field formats specified by format-string.

Formatting Rules and Examples:

1. Since the output field formats are specified by format-string, all formatting
conventions used in the PRINT statement (TAB function, comma, and semicolon)
are ignored within expression-list. However, any comma or semicolon termi-
nating the expression-list will follow PRINT statement conventions.

2. Within string-expression, a number of format fields and string literals for
output may appear. One or more format fields may be given in format-string;
a format field is made up of combinations of the following characters:

+ - # , . %

‘ The special format field characters may appear as part of string literals within
format - string as well as in format fields. BASIC differentiates format
11elds trom string literals by the characters that appear in format fields. For
example:

"TWO FOR $1,25" -+ $1.25 are characters of a string literal.
"TWO FOR $$5. ## " $$%. ## is a field format (a $ followed by
an appropriate field format character -~
another $ in this case.)
"ANSWER IS -85" -85 are characters of a string literal.
"ANSWER IS -###" ~— -### is a field format (a - followed by an
appropriate field format character --
a # in this case.)

!

!

. 3-31

PRINT USING (Continued)

3. The format fields may be specified in format-string by referencing a
previously ‘defined string variable; for example:

[5 DIM S$(10) e
10LETS$ = e -
20 PRINT USING §$, 1.5, 2 e

4, A format field is termmated by the appearance of the first non-format
fleld character. :

"asad AFOR A $###, ##" L e : '
— -) ~ ." o ‘ ; .

format | string - format
field literal field

field
‘terminator (A represents a space)

S, String literals may appear in the expressicn list of"theﬁ PRINT USING
statement and will be superlmposed on a field format in the followmg
manner: : :

"a. Each character of the string replaces a single format field char-
acter, which may be any one of the format field characters.

b, Strings are left justified in the format field, W1th a fill of spaces ‘
if necessary. s : e

c. If the number of characters in the string is greater than.the number ',c
of characters in the field format, the string will be truncated,

PRINT USING "###, ###, ##", "TEST", "CHARACTER", "SEVENTY-FIVE" .

TESTAAAAANACHARACTER ASEVENTY-FI

(where: each A represents a space)

3-32

PRINT USING (Continued)

S. When there are more expressions in the expression list than field formats
in string-expression, the existing formats will be used repetitively.

vhasy @$HEH, # PER ###"

The first, fourth, seventh, etc., expressmns in the list will be formatted
using the field format ####,

The second, fifth, eighth, etc., expressions in the list will be formatted
using the field format $###, ##,

The third, sixth, ninth, etc., expressions in the list will be formatted
using the field format ###,

The embedded blanks, @ sign, and PER are string literals.

10 PRINT USING "A[#]a=/##, #", 1, A[]]

A[1]=17.9 - possible output; number of expressions in the list
equals the number of field formats.

5 PRINT USING "###, ##/", [, A,B
£51,00AN017,90A025,774 — possible output; number of expressions

in the list exceeds the number
of field formats.

3-33

PRINT USING (Continued)

6. The special characters:
+ -/ «#‘ ’ e $
are used in formatting numeric output as follows:

a, Digit Representation (#)

For each # in the field format, a digit (0-9) is substituted.

Field Format Datum Representation |
##t 25 AAN2S
i -30 AAA30
M 1,95 AAAA2
R 598745 xRN
3-34

[3

Remarks ‘

" Right justify digits

infieldwith leading
blanks.

Signs and other non-
digits are ignored.

Only integers are
represented; the
number is rounded
to an integer,

If the datum is too

large for the field, .
all asterisks will

be output,

L3

b.

PRINT USING (Continued)

Decimal Point (.)

The decimal position indicator (.) places a decimal point within
the string of digits in the fixed character position in which it
appears., Digit positions (#) following the decimal point will
be filled; no blank spaces are left in these digit positions.
Where the datum contains more fractional digits than the field

format decimal indicator allows,

the fraction will be rounded

to the limits of the field. When the datum contains less digits to
the right of the decimal than ther are # positions in the format
string, zeroes are output to fill out the format field.

Field Format

HAHHE, #H

l
HiH#HE, B2

Huaah, #E

Datum

20

29. 347
0.079

789012, 34

©3-35

Representation

ANN20. 00

LAN29, 35
AANND. 08

e 3¢ 3¢ 3k 3¢ ok o o

Remerks

Fractional positions are
filled with zeroes.

Rounding occurs on
fractions.

When the datum has too
many significant digits
to the left of a decimal,
a field of all asterisks,
including the decimal
position, is output.

PRINT USING (Continued)

C.

Fixed Sign (+ or -)

A fixed sign character appears as a single plus (+) or minus (-)
sign in either the first character position in the format field or the
last character position in the format field, = The'signs have the following

- ¢ffect:

+ prints a + in the given field position if the datum is positive
and prints a - in the given field position if the datum is negative,

- V’pr'ihts a - in the given field position if the datum is negative and
leaves a blank space in that field position if the datum is positive,

When a fixed sign is used, any leading zeroes appearing in.the
datum will be replaced by blanks, except for a single leading
zero immediately preceding a decimal point,

Field Format
' &—##.##

+HHE, #H

B
o
s,

HitH, H#it -

HHH, #i#-

HitH, -

Datum Representation
20,5 +20.50
1,01. .~ +Al1.01

-1,236 -Al1,.24
-234.0 ook Ok oK
20.5 A20,350A

000,01 ANO0,01A

-1,236 ANAL, 24- .

-234.0 234,00~

3-36

Remarks

Blanks precede the

number,-

The last leading zero

‘before the decimal point

is not suppressed.

M

PRINT USING (Continued)

d.

Floating Sign (++ ... Oor -~ ,,.)

A floating sign appears as the first two (or more) signs in the field
format., Floating positive (++) outputs either a plus or minus -

sign immediately preceding the datum; floating negative (--) outputs
either a blank space or minus sign immediately preceding the datum,

Positions occupied in the field format by the second sign and any
additional signs can be used for numeric positions in the datum
without field overflow occurring as shown in some of the examples.

'Field Format Datum Representation Remarks
--- #% -20 -20.00 Second and third
signs are treated
“as digit positions

(#) on output,

-—— H# _200 sk sle sje sl sk sk

--- H#E# 2 AN2,00

Either a floating sign or a floating $ sign (see section f.) can be
used but not both,

Fixed $ Sign ($)

A fixed $ sign appears as either the first character or second character
in the string, causing a $ to be placed in that character position,

The $ may appear as the second character if it is preceded by a fixed
sign. A fixed $ causes leading zeroes in the datum to be replaced by
blanks.

Field Format Datum Representation
- Qg H# 30,512 A$A30.51
Sttt #Het+ -30,512 $230.51-
3-37 .

PRINT USING (Continued)

f. Floating $ Sign ($$...)

A floating $ consists of at least two $ characters beginning at either
the first or second character-position in the string, and causing
a $ sign to be placed'in the character position immediately pre-

ceding the first digit, v ; -

If the floating $ sign begins in the second character position of
the string, it is preceded by a fixed sign (+ or -).

-
=

kOnly one bfloating character (sign or $) is permitted ina given

field,
Field Format Datum Representation Remarks
+$$$ ¥, ## 13.20 +AA$13.20 Extra $ signs may
' be replaced by
digits as with floating
+ and - signs,
$SHHE, H4 - -1.0 A$01, 00- Leading zeroes are
: ‘ not suppressed in the
part of the field.

3-38

ks

PRINT USING (Continued)

g. Separator (,)

The separator (,) places a comma within a string of digits in the
fixed character position in which it appears in the field format.
However, if the comma would be output in a field of suppressed
leading zeroes (blanks), a blank space will be output in the comma's

position,
Field Format Datum Representation Remarks

+$#, #ud, #H 30.6 +$ AL A 30,60 Space printed for
comma,

+$%, #EH, 2000 +$2, 000. 00

R 00033 A+00, 033 Comma is printed
when leading zeroes
are not suppressed.

h. Exponent Indicator (t)

Four consecutive arrows (tttt) are required to indicate an expo-
nent field and will be filled by E+nn, where eachn is a digit.

If the exponent field does not contain four up arrows, a run-time
error will result,

Field Format Datum Representation
HHE, HHE A 170.35 +17,03E+01
HHH HEL 1Y -.2 -20, 00E-02

R HEE Y 6002. 35 +600. 24E+01

3- 39

RANDOMIZE
Format: RANDOMIZE
Purpose: ‘The RANDOMIZE statement is used when the programmer wishes
the random number generator to calculate different random numbers
each time it is used. When the RANDOMIZE statement is executed, §
it will cause the RND function to choose a random starting value, so
that a program which is run twice will give different results.
Example: o . *
80 FOR L=1TO 20 Within the program, the random number
90 LET X(L) = L*RND(0) -~ generator is used in calculations,
100 NEXT L
199 NEW
20
2 18 ?g??zh/szE(:) 20 When statements 210 through 230 are executed
the random number generator will generate
220 PRINT RND(0) . ' S
230 NEXT I different number than those used in the calcu-
lations performed by statement numbers 80
’ through 100.

Note: If the user should wish to use the same random numbers within his

program or within two different programs, the user should not use the RANDOMIZE
statement. By merely issuing the RUN command, the BASIC system will
reinitialize the random number generator to a fixed start point.

3-40

H

READ AND DATA

READ

Format:

Purpose:

READ variable list

where: variable list can contain arithmetic variables, array
elements and string variables,

To read values from the data block into variables listed in the
READ statement,

The order in which variables appear in the READ statement is
the order in which values for the variables are retrieved from
the data block, :

Values appearing in all DATA statements in a program are
stored, beforeaprogram is executed, into a single data block
for use as values of variables in the READ statement.

Normally, READ statements are placedin the program at those
points at which data is tobe manipulated, while DATA statements
may be placed anywhere,

A pointer is moved to each consecutive value in the data block"
as values are retrieved for variables in READ statements, If
the number of variables in the READ statement exceeds the
number of values in the data block, an "out of data' error mes-
sage is printed, The RESTORE statement can be used to reset
the pointer to the beginning of the data block,

The type of variable in the list ofthe READ statement must match
the corresponding value in the list of the DATA statement., An
attempt to read an arithmetic value with a string variable

will result in an error message.

3-41

READ AND DATA (Continued)

DATA
Format: -+t DATA constant list -
Purpose: To provide\values to be read into variables appearing in READ

statements.
Numbers and string literals may appear in DATA statements,

‘Each number or string literal is separated from the next
datum by a comma,

-
=

- DATA is a non-executable statement. The values appearing in
the DATA statement or statements are read into a single data
block before the program is run. The values in the data block

are ordered from the data statements by line number, and within ®
a data statement from left to right.

Examples of READ and DATA

150 READ X, Y, Z

200 READ A

250 FOR I=0 TO 10
255 READ B(I)
260 NEXT I

400 DATA 4.2, 7.5, 25.1, -1, .1, .01, .001, .0001
450 DATA.2, .02, .002, . 0002, .015, .025, .3, .03, .003 .

The first three data values are read for X, Y, and Z respectively. The value -1
is read into A, The next eleven values, .1 through .3, are read into the eleven

elements of array B. This ordering holds true even if statement 450 is entered

before statement 400.

3-42-

AL

READ AND DATA (Continued)

Examples of READ and DATA (Continued)

.

100 READ A, B, C

.
(2

300 GO TO 100

.
4

500 DATA 1, 10, .333
510 DATA -1, 1, . 555
520 DATA O, -1, .1

Each series of data values, contained in the three DATA statements will, in
turn, be read into variables A, B, C.

.

S50 READ A, AS, B, B$, C

550 DATA 1, "TIME:", 10,5, "TEMPERATURE:", 43

Numeric values in the DATA statement correspond to numeric variables in the
READ statement; string constants correspond to string variables.

3-43

REM
Format;

Purpose:

Example:

REM text comment

To insert explanatory comments within a program. The text
following REM is stored before the program is runand is re-
produced exactly as it appears in the statement when a listing
of the program is printed, Although the REM statement is
non-executable, note that storage space is required for the
text. :

100 REM PROGRAM TO FIND COMPOUND INTEREST

3-44

RESTORE

Format: RESTORE

Purpose: To permit reuse of the data block, RESTORE sets the data block
pointer to the first value in the data block. The next READ state-
ment following execution of a RESTORE statement will begin read-
ing values from the start of the data block.

Example:

20 FOR K=0TO 10

30 READ B[K] < Data values 1, 2, ..., 11 read into elements of
40 NEXT K array B,
50 RESTORE

60 READ X, Y, Z < Data values 1, 2, 3 read into X, Y, Z respectively,
70 RESTORE '

.
.

200 READ --- <— Next READ; values start at 1 again.,
500 DATA 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

3-45

STOP

Format: STOP
Purpose: To halt the execution of a program at some point returning the user
to keyboard mode.
will cease execution and type the message:
STOP AT xxxx
where: xxxx is the line number of the STOP statement,
The system will wait for a keyboard command,
Example:

90 LET X = B + K*P

105 NEXT K

110 PRINT "ERROR"
120 STOP

130 LET P = P*M

80 FOR K = 0 TO M-

1

<~ Stop program if error occurs.

When STOP is encountered, the BASIC system

100 IF X-M*INT(X /M) = A THEN 130

3-46

MATRIX STATEMENTS

CHAPTER 4

MATRICES

A special set of statements allows users to manipulate two-dimensional arrays as
matrices. Matrix statements begin with the word MAT. Following is a list of the

matrix statements available in BASIC.

Statement

MAT READ A, B, ...
MAT READ A (3, 4), B(5, 5),...

MAT INPUT A, B, ...

MAT INPUT A (2, 4), B(3,3), ...

MAT PRINT A, B, ...

MATA =B

MAT A =B+C
MATA=B-C

MATA =B *C
Illegal MAT A = A*B
" Statements MAT A = B*A

MAT A = (expression) * B

Meaning

Read DATA values for previously dimensioned
arrays or for arrays having the dimensions
given in the statement.

Input values from keyboard for previously
dimensioned arrays or for arrays having
the dimensions given in the statement.

Print current values of previously dimen-
sioned arrays. PRINT delimiters comma (,)
and semicolon (;) may be used in MAT
PRINT statements,

Matrix A is dimensioned to the dimensions of
matrix B and the values of B are stored into A.

Matrix add or subtract B and C. Dimension
A to the dimensions of the resulting matrix
expression and store the values into A, The .
dimensions of B and C must be identical,

Matrix multiply B and C. Dimension A to

the dimensions of the resulting expression

and store the values into A. The dimensions of
A, B, and C must be compatible as defined
later in the description of matrix multiplication.

Scalar multiply matrix B by the parenthesized
expression. Dimension A to the dimensions
of the resulting expression and store the
values into A.

4-1

MATRIX STATEMENTS (Continued)

Statements

MAT A = INV(B)

MAT A = TRN (B)

Illegal
Statement: MAT A = TRN (A)
MAT A = ZER

MAT A = ZER (3, 4).
MAT A = ZER (10)

MAT A = CON
- MAT A = CON (5, 6)
" MAT A = CON (8)

MAT A = IDN
MAT A = IDN (2, 5)
MAT A = IDN (5)

Meaning

Invert matrix B. Dimension A to the dimensj,ons

of the resulting expression and store the ‘
value of the inverse matrix into A. B must be
a square matrix.

Transpose matrix B. Dimension A to the
dimensions of the resulting expression and
store the values into A. A and B must be
two distinct arrays.

Store zero matrix in A, A can be dimen-
sioned in the statement. A single dimension
produces a one-column matrix.

Store matrix of all ones in A. A may be
dimensioned in the statement. A single
dimension produces a one-column matrix.

Store the identity matrix in A. A can be
dimensioned in the statement. A single
dimension produces a one-column matrix.

The matrix file I/O statements are described in Chapter 5. They are:

MAT READ FILE [n], A, B, ...

MAT READ FILE [n], A(3,4), B(5,5)...

MAT INPUT FILE |n], A, B, ...

MAT INPUT FILE [n], A(3,4),B(5,5)...

MAT PRINT FILE [n], A, B, ...

MAT WRITE FILE [n], A, B, ...

Read binary values from file n for previously
dimensioned arrays or for arrays having the
dimensions given in the statement.

Read ASCII values from file n for previously
dimensioned arrays or for arrays having the
dimensions given in the statement.

- Output to file n in ASCII format current values

of previously dimensioned arrays.

Output to file n in binary format current values
of previously dimensioned arrays.

MATRIX SUBSCRIPTS

Caution should be observed when manipulating arrays as matrices. Matrices
do not have zero subscripts. That portion of a previously declared array that
has zero subscripts will be ignored. For example the following coding samples
will produce identical printouts:

0010 DIM A4, 4]

0020 FORI1=0TO 4 « values stored in zero-subscript elements

0030 FOR] = 0 TO 4

0040 READ A[L,]]

0050 NEXT]

0060 NEXT I

0070 MAT PRINT A

0080 DATAL 1,1, 1,1, 2,2,2,2,2,3,3,3,3,3,4,4,4,44,5,5,5,5,5

25 values for array A

0010 DIM A[4,4]

0020 FOR I =1TO 4 < no values stored in zero-subscript elements

0030 FOR] = 1TO 4

0040 READ A[L,]]

0050 NEXT]

0060 NEXT I

0070 MAT PRINT A

0080 DATA 2,2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, «16 values for matrix A

In the first case data is stored into all locations of array A; in the second
example data is stored only into those locations with non-zero subscripts.
When the MAT PRINT statement is executed the following will be the result
in both cases:

\
2 2 2 2
3 3 3 3
MATRIX A
4 4 4 4
5 5 5 5

4-3

MATRIX SUBS CRIPTS (Continued)

Like all BASIC arrays, matrix elements are stored by row in ascending locations
in memory. A matrix dimensioned as

10 MAT READ (3, 3) < first dimension represents rows and
second dimension represents columns,

will be stored as: .

TOows ﬂ

<« columns ¥

The elements would be stored in the following order:

Element Position Element

AL
A(l, 2)
A(1, 3)
A(2,1)
A(2,2)
A(2,3) -
A(3,1) !
A(3,2)
A(3,3)

O 00 1 ON W

CHANGING MATRIX DIMENSIONS | ’

A number of matrix statements allow dimensioning or redimensioning of a
matrix. A previously dimensioned matrix can be redimensioned as long as the
new dimensions da@ not exceed the size of the matrix given in the DIM statement.

4-4

CHANGING MATRIX DIMENSIONS (Continued)

20 DIM A (15,14) <210 elements in matrix (240 in array A)
40 MAT A = CON (20, 7) <140 elements
60 MAT A = ZER (10, 10) <100 elements
80 MAT A = IDN (20, 8) <160 elements

The statements are described in more detail later in the chapter.

MATRIX MANIPULATION STATEMENTS

Descriptions of matrix manipulation statements following are primarily intended
for users who are unfamiliar with matrix arithmetic.

Store Copy of Matrix

MAT A =B

Elements of matrix B are stored in matrix A. Given the statement:

20 MAT A=B

where B is the matrix:

2 4 6 8

1 3 5 7

Matrix A will assume the identical dimensions and values:

2 4 6 8

4-5

MATRIX MANIPULATION STATEMENTS (Continued)

Addition and Subtraction

o
{
|

MAT A=B+C or MAT A=B-C | :

Matrices B and C must have the same dimensions. Only a single arithmetic *
operation is permitted in one statement. One of the two operands of the matrix
expression may be the name of the matrix appearing on the lefthand side of the

= sign.

A =B+C-D < illegal
A =B+C
A=A-D <legal

Matrix addition and subtraction is scalar arithmetic performed element by
element. Given the statement:

| 20 MAT A = B+C
|

If B and C are matrices having the values:

-2 -3 6 4
3 4 -2 15
3 1 .5 4 -
N—— LVJ
B c -

MATRIX MANIPULATION STATEMENTS (Continued)

Addition and Subtraction (Continued)

Then the resultant value for A will be:

4 -1
1 19
2 4.1

Scalar Multiplication

MAT A = (expression) *B

where: expression may be any numeric expression and must be
enclosed in parentheses.

Scalar multiplication is performed element by element. The matrix in the
expression may be the same as the matrix variable on the lefthand side of the
= sign. Given the statement:

30 MAT A = (COS (X)) *B

COS (X) is evaluated. If COS (X) evaluates to . 254 and B is the matrix:

L5 -1

Then A will be the matrix:

-.127 . 2032

. 381 e 254

4-7

MATRIX MANIPULATION STATEMENTS = (Continued)

Zero Matrix

MAT A = ZER
MAT A = ZER (d))

MAT A = ZER (d;, d,)

where: d, is the number of rows of the matrix.

52 is the number of columns of the matrix

A matrix, except for valuesin row zero or column zero positions, is set to
all zeroes by this statement. If the matrix exists and was previously dimensioned,
the format

MAT A = ZER

is used. If the matrix was not previously dimensioned or is to be redimensioned,
one of the other formats is used. For example:

100 MAT A = ZER (3, 3)

0 0 0

0 0 0

0 0 0 a 3x3 matrix
! 110 MAT B = ZER (5)

0

0

0 a 5x1 matrix
0

0

4-8

MATRIX MANIPULATION STATEMENTS (Continued)

Zero Matrix (Continued)

120 MAT INPUT C (2,4)

220 MAT C = ZER

0 0 0 0 a 2x4 matrix

Unit Matrix
MAT A = CON

MAT A = CON (d)
MAT A = CON (d, » d))

where: d1 is the number of rows of the matrix.

d2 is the number of columns of the matrix.

A matrix, except for values in row zero or columm zero positions, is set to all
ones by this statement. If the matrix exists and was previously dimensioned, the
format

MAT A = CON

is used. If the matrix was not previously dimensioned or is to be redimensioned,
one of the other formats is used. For example:

100 MAT A = CON (3, 2)

1 1 a 3x2 matrix

4-9

MATRIX MANIPULATION STATEMENTS (Continued)

Unit Matrix (Continued)

110 MAT B = CON (6)

a 6x1 matrix

s et e e e

150 MAT C = ZER (2, 3) o

300 MAT C = CON
1 1 1
1 1 1

a 2x3 matrix

Identity Matrix

MAT A = IDN
MAT A = IDN (d)

MAT A = IDN (d; » d,)

wilere: dl is the number of rows of the matrix.

d2 is the number of columns of the matrix.

The major diagonal of the matrix is set equal to ones and the remaining element -
of the matrix are zeroed by the statement. ‘ -

The major diagonal is the diagonal that starts at the final element of the array and
runs diagonally upward from the last element until the first row is encountered.

4-10

MATRIX MANIPULATION STATEMENTS (Continued)

Identity Matrix (Continued)

If the matrix has been previously dimensioned, the format

MAT A = IDN

can be used. If the matrix was not previously dimensioned or is to be redimen-

sioned one of the other formats is used. Some examples of the identity matrix
arc:

100 MAT A = IDN (4,4)

1 0 0 0

0 1 0 0

0 0 1 0 In a square matrix, the major diagonal
terminates at the first element of the matrix.

0 0 0 1

130 MAT B = IDN (4)

0

0 If a matrix contains only one column, only the
0 last element of the matrix is considered to

1 belong to the major diagonal.

140 MAT C = CON (2, 3)

170 MAT C = IDN

If a matrix is two-dimensional but not square,
the major diagonal terminates at row 1 but not
0 0 1 at column 1.

0 1 0

4-11

MATRIX MANIPULATION STATEMENTS (Continued)

Matrix Transposition

MAT A = TRN (B) |

A matrix is transposed by reversing its rows and columns. A matrix cannot be
transposed into itself. : :

200 MAT A = TRN (B) where: B =

O W
W o wn
1V, NN |
AN e JiNe)

When the statement is executed

o 3

"
O N U1
O O OO
~ U w

*w

MATRIX MANIPULATION STATEMENTS (Continued)

Matrix Multiplication

MAT A = B*C

Within the matrix expression, the number of columns of the first matrix (B) must
match the number of rows of the second matrix (C). The resultant matrix will be
dimensioned to have the same number of rows as B and the same number of
columns as C. For example: '

100 DIM B(3,3), C(5,4),A(6,6)

500 MAT A=B*C A will be a 3x4 matrix: A(3,4)

The matrix appearing on the lefthand side of the equals sign cannot appear as a
matrix within the expression. Since the columns of B must match the rows of C,
an expression of the form:

600 MAT A = B*B means B must be a square matrix

To obtain the matrix product of B*C, each row of B is multiplied by each column
of C. Each row/column set is added together to find the resultant matrix
element. For example, given the following two matrices, B(3,2) and C(2, 2):

2 3 -1 -2
1 3 7 8
D

MATRIX MANIPULATION STATEMENTS (Continued)

Matrix Multiplication (Continued)

then:

.30 MAT A = B*C

[B, 1) *C(L,1) +B(L, 2) *C(2,)] [B(1,1) “C(1, 2) +B(1, 2) *C(2, 2)] :
A=[B(2,1) *C(1,1) +B(2, 2) *C(2,1)] [B(2,1) *C(1, 2) +B(2, 2) “C(2,2)] .

[B3, 1) *C(LD+BG3,2) “C2 D] [B(3,1) “C(1,2) +B(3,2) *C(2,2)]

[25(-)+ 3571 [25(-2) + 3%8] 19 20 [
A=[1%(-1) + 5%7] [17(-2)+578] = 34 %8

[0%(-1) + 4*7] [0%(-2) + 478] 28 32

Matrix multiplication is non-associative. For example, an attempt to execute the
‘statement, MAT A=C*B, using the matrices B(3, 2) and C(2, 2) defined above, will
result in an error message since the number of columns of C do not match the
number of rows of B. As another example, given the following two square matrices:

B C

then:

; e (20 +3*4) (2%(-1)+3*6) _ 12 16

| SOMAT A =B7C (10 +574) (*(-1) + 5*6) 20 29 .
A

If the expression is reversed:

042 + (-1)*1 0*3 + (-1)*5 -1 -5

!40 MAT A = C*B 24«,::2 " (6"'1))) 24*3 + (65)) ! - 14 42

i S—~
A

4-14

MATRIX MANIPULATION STATEMENTS (Continued)

Inverse Matrix

. MAT A = INV(B)

The matrix appearing in the expression must be a square matrix (at least 2x2).
The matrix appearing on the lefthand side of the statement may appear on the
righthand side, i.e., matrices may be inverted into themselves.

The arithmetic of matrix inversion requires a knowledge of matrix determinants
and of cofactors of matrix elements. Determinants and cofactors for 2x2 matrices
will be described here. [For larger matrices, consult a mathematics text.

The determinant of a 2x2 matrix is obtained by multiplying along the diagonals
and subtracting the second diagonal from the major diagonal:

12

= (I"4) = (273) = -2
3 4
15

= (120) - (3°3) = 3
3 20

An inverse matrix is defined such that the product of the determinants of the matrix
and its inverse is always one. The two matrices would have inverse matrices
whosc determinants were -.5 and . 2 respectively.

Cofactors of matrix clements of a 2x2 matrix are obtained by:

1. Reversing the elements along the major diagonal.

2. Changing the signs of the elements along the other diagonal.

4-15

MATRIX MANIPULATION STATEMENTS (Continued)

To obtain the inverse matrix, scalar multiply the cofactors by the determinant of the
inverse matrix:

If: 1 9
MAT A=
3 4
then: _
/4 -2 -2 1
INV(A) = (-. 5 =
3 1 1.5 -.5
If:
1 5
MAT B=
3 20
then:
20 - 4 -1
INV(B) = (. 2) =

-3 1 -6 .2

By obtaining the determinants of the inverse matrices, we can show that they are
in fact the reciprocals of the determinants of the original matrices.

-2 1

=) ~(1. 5) =-.5
1.5 -.5
4 -1

= (8 -(.6) =.2
-6 .2

Extended BASIC will invert any square matrix except one that has one or more
zero elements along the major diagonal.

4-16

INPUT AND OUTPUT OF MATRICES

MAT READ Statement

MAT READ list of matrices -

The MAT READ statement is used to read values from the data block into the
elements of a matrix or a list of matrices. The matrix may have been previously
dimensioned or may be dimensioned in the MAT READ statement.

20 MAT READ (M(5, 6))

50 DATA O; 2’4761 8;lOy '9’ '8; '79 "6) 'Sy "41 "39 '2: "1,0,]’ 3) 5’ 7’ 9’ 11
60 DATA .1,.0,.5,7,-8,15,-15,35,41,13,18

Values from the data block will be read into the 30-element matrix dimensioned
as 5x6 in the MAT READ statement. For example:

M1, 1) will contain O

M(1, 6)will contain 10
M(3, I)will contain -3 and
M(5, 6) will contain 35

MAT INPUT Statement

MAT INPUT list of matrices

The MAT INPUT statement is used to read values frem the keyboard into the .
elements of a matrix or a list of matrices at run time. A matrix appearing in
the MAT INPUT statement may have been previously dimensioned or may be

dimensioned in the statement. -

5 MAT INPUT X[2, 3]

At run time, the BASIC system will issue the request for input data:

The programmer writes the data values for the first row of the matrix, delimited
by commas. The value for the last column of the first row is terminated by a
carriage return. The system will then query the programmer for data for the
next row.

?2,4,6 « data values for first row of matrix A[2, 3.
27,7,-9 < data values for second row of matrix A[2, 3].
< matrix is complete and program execution resumes.

The programmer must supply the exact number of values to fill a row before

giving a carriage return. A line of data containing too many or too few values

will be ignored by BASIC, which will continue to query the programmer until -
each row of the matrix has been filled by a matching data line. , .

MAT PRINT Statement

MAT PRINT list of matrices

The MAT PRINT statement is used to output values of elements of a matrix or a list

of matrices. A matrix appearing in the MAT PRINT statement must have been pre-
viously dimensioned.

Aulm DT AL1G, 10,00 1495 1]
AG20 READ N

0034 MAT A=CONLN,N]

agad yMaT B=CONINs N

GmS0 Fdie I=1 030N

e 0N J=1 Ty N

BT LT ALI,Jd1=1/7CT+J-1)
o NEXT ‘

G AT NEINVA)
o0 PRINT "MAr b o= Iaves) =

bl
30 GAT PRI NT 5

AAT B o= INVCA)Y =

1 e5 333333 .20 o2

eSS 3 .25 W2 « 1EHGHT

e 233333 25 5 166667 o 142657
25 W2 1066667 T «125

e P W 16H66HT o« 142057 125 9

4-19

CHAPTER 5
FILE 1/0

Extended BASIC may be used with Data General's Real Time Disk Operating System
(RDOS described in document 093-000075)or with Data General's Stand-alone
Operating System (SOS described in document 093-000062). To use Extended BASIC
with onc of the operating systems, the user should be familiar with file concepts
applicable to the particular operating system.

Briefly, a file is a collection of information that is known by and accessible by a file
name., The Stand-alone Operating System uses only 1/O devices such as the card
reader, paper tape punch, cassette and magnetic tape units for File I/O, and all file
names are reserved device names. Reserved device names are four characters in
length and are either of the form $xxx ($PTR, $CDR, etc.) or of the form xxx:
(MTO:, CT1;, etc.). Appendix D contains a complete list of reserved device names.
Under RDOS, devices may also be used to contain files, but in addition, files are
stored on disk. Files stored on disk are accessible by file names that are listed in
special disk files, called directories. Names of files that are available to all system
users will be listed in the library disk directory. Names of files available only to

a given user are listed in that user's directory.

FILE NAMES

File names arc written as string literals or string variables in BASIC. A file
name appearing in a BASIC console command must be a string literal. However,
a file name appearing in one of the BASIC file statements may be either a literal
or a variable,

Some examples of file names might be:

AP
"AQ. 1" string literals
"Ap.SR"

F$

F$(2) string variables

E$(1+1,])

The file names must conform to RDOS requirements for extended file names.

.

5-1

FILE NAMES (Continued)

consisting of alphanumerics and the character $ with an optional extension
separated from the file name by a decimal point (,). In addition, BASIC file
names must be less than or equal to ten characters (not including the exten-
sion). ‘ ‘ ‘

Only device names may begin with the character $, and these names are re-
served, Any unreserved file name references a disk file.

Each file on disk or each device is opened for reading or writing by associating
the file name with a user file number, Each user may open up to eight files
for reading or writing corresponding to file numbers O through 7.

%

RDOS Extended BASIC only.

5-2

L)

OPEN FILE STATEMENT

Purpose:

Format:

The OPEN FILE statement links a user file name or a system device
name with a user file number for further 1/0 referencing. The
statement also determines the mode for using the file (reading,
writing, random access, or appending).

OPEN FILE [num-expl, num-exp2], file-name

where:

file-name is a literal file name or a string variable
evaluating to a file name.

num-expl is a numeric expression giving the user file
number, which must evaluate to a number in the range 0
through 7 (since 8 is the limit of simultaneously open user
channels). The file number is associated with the file
name and is used for further references to the file (for
reading, writing, closing, etc.).

num-exp2 is a numeric expression giving the mode in
which the file is to be opened and must evaluate to a
number in the range 0 - 3. Each mode is defined as
follows:

Mode 0 - Random Access (Input/Output) o

Only disk files may be opened in random mode. When
opened, a random access file can either be read or writ-
ten. If no file having the name given in the OPEN FILE
statement is found in the user directory, an entry for the
new file name will be made in the directory.

Mode 1 - Output (write a new file)

Either a disk file or appropriate output device can be
opened in this mode. Only writes are permitted to the
file, If a file of this name already exists in the user
directory, the previous copy is first deleted from the
disk. In either case, a new file is created (initialized
with O length) in the user's directory.

** RDOS Extended BASIC only.

OPEN FILE STATEMENT (Continued)

*x Mode 2 - Output (append to an already written file)

Any appropriate output file may be opened in append
mode. When opened, the file is positioned to the end of
the current file so that subsequent data written to the
file will extend it. If the file does not exist in the user
directory, an entry for the file name will be made in the
user's directory.

Mode 3 - Input b

Either a disk file or appropriate input device can be

opened in this mode, If a disk file is opened in this mode,

the file must already exist. Only reads are permitted .
for a file open in Mode 3. If the file is not found in the

user's directory, a search for the file is made in the

public directory.

Examples:

100 OPEN FILE [0,1], "TEST,1"
110 OPEN FILE[1,3], "$PTR"

120 OPEN FILE [I, M], S$

** RDOS Extended BASIC only.

5-4

CLOSE FILE STATEMENT

Purpose: The CLOSE FILE statement disassociates a file name and a user
file number so that the file can no longer be referenced.** Files
are closed when file I/0 is complete. Also, it may be necessary
to change the mode of an open file., To do so, the file must first
be closed and then re-opened using the new mode argument,

Format: CLOSE FILE [num-cx)l]

where: num-exp, is the user file number previously associated
with a file name in an OPEN FILE statement,

Ex‘amples:

200 CLOSE FILE [2]

300 CLOSE FILE [I-1]

** See page 5-19 for a description of the CLOSE statement, which closes all
open channels,

READ FILE STATEMENT

Purpose: The READ FILE statement causcs data in binary format to be

read from a file for those variables listed in the statement,

Format: The first format is used for reading sequential files; the second

format is used for reading a record from a random file,

READ FILE [num-exp;], variable-list

READ FILE [num-expl , num-expz], variable-list

where: variable-list is a list of numeric and string variables
for which values are to be read from the file,

num-exp; is a numeric expression evaluating to the
user file number of a file that has been opened in
Mode 3 for sequential access or in Mode @ for ran-
dom access.

'num—expz is a numeric expression evaluating to the *E
number of the record to be read from a randomly

accessed file,

Notes: Each variable in variable-list ofthe READ FILE statement mustcorres-

pond in data type to each value being read from the file or the
record within the file. If the file contains both numeric and string
values, then variables of the appropriate type must be given in
the correct order in the READ FILE statement,

In reading a random access file, a read of a record that was
never written will input a record of all zeroes,

The EOF function can be used to detect the end of data when trans -
ferring data from a file to core. The EOF function is used in
conjunction with a transfer statement to provide a statement to
which to transfer in case of detection of end-of-file. The format

of the EOF function is:

EOF (file-number)

£

%

RDOS Extended BASIC only.

5-6

‘e

. READ FILE STATEMENT (Continued)

where: file-number is the number of a file opened for reading,

The EOF function evaluates to an integer indicating whether or
not the last read of the file, given by file-number, detected an
end-of-file, If an end-of-file was detected, the function returns
a 1; otherwise, the function returns a 0. Conditional transfer
can be effected if the EOF function is used as a numeric expres-
sion in an IF statement. ‘

Examples:

100 OPEN FILE [1,3], "$PTR"

¢ 120 READ FILE [1], A,B,C, D, E, F,G
130 IF EOF (1) THEN 800

200 OPEN FILE [2,0], "BB"

220 READ FILE [2,50], X, Z%, Y, Z

5-7

WRITE FILE STATEMENT

Purpose: The WRITE FILE statement causes output of data in binary formattoa
sequentially accessed file or a record of a randomly accessed file,

Format: The first format writes data to a sequentially accessed file;
the second writes data to a record of a randomly accessed
file.

WRITE FILE [num-expj], expression-list

WRITE FILE [num-expj,num-exp,], expression-list

where: expression-list is a list of numeric expressions or string
variables or literals evaluating to numeric or string
values for output.

num-exp; is a numeric expression evaluating to the
user file number of a file previously opened in Mode
1 or 2 for sequential access or in Mode 0 for random
access,

o num-exp, is a numeric expression evaluating to the
number of the random record to be written,

Notes: String variables or literals for WRITE FILE in sequential mode
must be 132 bytes or less in length. '

When writing a random record, the record must have 128 or
fewer bytes. (A numeric expression requires 4 bytes; * a string
of n bytes requires n+1 bytes), The length of the record is

the total of all the bgz-tes in the expression-list,

Examples:

0060 OPEN FILE [0, 1], "XX.2"
0090 FOR I =1 TO 50
0100 WRITE FILE [0], A[1], A[1]/I, S$, T$

0700 OPEN FILE [1,0], "DATAS"
0800 WRITE FILE [1,37], L, J, B[I]/A[]]

T_;-_.__
* RDOS Extended BASIC only.
* 8 bytes if floating point hardware option is being used, see Appendix. F,

5-8

INPUT FILE STATEMENT

Purpose: The INPUT FILE statement causes data in ASCII format to be
read from a file, where the data in the file is formatted as
it would be in a teletyped response to an INPUT statement,

Format: INPUT FILE [num-expl], variable-list

“e

where: variable-list is a list of numeric or string variables,
r such that each variable corresponds in data type to the
associated datum in the input file,

num-exp; is a numeric expression evaluating to the
. user file number of a file previously opened in mode
3.

Example :

0040 OPEN FILE [1, 3], "$PTR"

0070 INPUT FILE 1], Z, Y, X, AS, B$ The first three data that are read from the
paper tape reader must be numerics
and the last two must be strings.,

The paper tape data file must be
formatted for INPUT with either
commas or carriage returns
between data items.

The EOF function, described on pages 5-6 and 5-7 for the READ FILE statement,
can be used to provide a statement to which to transfer in case of detection of end-
of -file on the file from which data is being input. The argument to EOF is the
number of the file opened for input.

Example:

0050 OPEN FILE [1,3], "DATA"
0100 INPUT FILE [1], A,B,C,D,E,F,F1,F1$, F$, G[100]
0110 IF EOF (1) GO TO 1000

1000 PRINT "OUT OF DATA"

PRINT FILE STATEMENT

Purpose: The PRINT FILE statement causes output of data in ASCII form.
The output file produced is formatted as would terminal copy
produced by a PRINT statement, The file may be output directly
to an ASCII device such as the line printer or to a disk file for
later off-line printing. '

Format: PRINT FILE [num-exp;], expression-list

where: expression-listis a list of numeric expressions,
string variables, and string literals, separated by
formatting delimiters (, or ; or TAB function),

num-exp, is a numeric expression evaluating to the
user file number of a file previously opened in Mode
1 or Mode 2,

Examples:

0100 PRINT FILE [1], "OUT 6"

0550 PRINT FILE [0], "X="; XSQR="; X t 2; "XCUBE="; X t 3

5-10

PRINT FILE USING STATEMENT

Purpose: The PRINT FILE USING statement causes values for the ex-
pressions given in the statement to be output to a previously
opened file in the format specified by a string field given in
the statement,

Format: PRINT FILE [num-expl] , USING string-expression , expression-list

where: expression-list is a list of numeric expressions, string
variables, and string literals whose values are to be
output,

string-expression specifies the format of the field in
which the value of each expression is to be output, and is
identical to the specification of string-expression given
for the PRINT USING statement in Chapter 3.

num-exp, is a numeric expression evaluating to the
user file number of a file previously opened in either
Mode 1 or Mode 2.

Examples:

0050 OPEN FILE [0,2], "T5"

0150 PRINT FILE [0], USING "++###%, ###,", A, B, C, D, E, F

The output file could conceivably be used later as the input file for an INPUT
FILE statement, because each value is formatted to terminate with a comma.,

MAT READ FILE STATEMENT

Purpose: The MAT READ FILE statement causes data in binary format to be
read from a file for the arrays listed in the statement., The arrays may
have been previously dimensioned or may be dimensioned in the MAT
READ FILE statement.

Format: The first format is used for reading sequential files. The second format
is used for reading a single record from a random file.

MAT READ FILE [num-exp;], array-list

MAT READ FILE [num-exp;, num-expz], array-list

where: array-list is a list of arrays for which values are to be read
from this file.

num-exp; is a numeric expression evaluating to the user file
number of a file that has been opened in Mode 3 for sequential
access or in Mode O for random access,

o num-exp, is a numeric expression evaluating to the number
of the record to be read from a randomly accessed file.

Notes: Previously dimensioned arrays may be listed by array name only. Arrays
that are not already dimensioned must be dimensioned in the MAT READ
FILE statement,

In reading a random access file, a read of a record that was never
written will input a record of all zeroes.

The EOF function, described on pages 5-6 and 5-7 for the READ FILE
statement can be used to provide a statement to which to transfer in
case of detection of end-of-file on the file from which data is being input.
The argument to EOF is the number of the file opened for reading.

Example:

0040 OPEN FILE [1, 3], "VALUES"

0060 MAT READ FILE [1], A, B, C(3,4), D(5)
0080 IF EOF (1) GO TO 500

0500 PRINT "OUT OF VALUES"

** RDOS Extended BASIC only.
5-12

MAT WRITE FILE STATEMENT

Purpose: The MAT WRITE FILE statement causes ‘output of data in accordahcé
with previously dimensioned arrays. Output is in binary format to a
sequentially accessed file or record of a randomly accessed file.

Format: The first format is used in writing to a sequentially accessed file; the
second format is used in writing a single record to a random file.

MAT WRITE FILE [num-exp;], array-list

MAT WRITE FILE [num-exp;, num-exp,|, array-list

where: array-list is a list of previously dimensioned arrays for
which values are to be written to the file.

num-exp] is a numeric expression evaluating to the user file
number of a file that has been opened in Mode 1 or 2 for
sequential access or in Mode O for random access.
num-expy is a numeric expression evaluating to the number = **
of the random record to be written.

Example:

’
0050 OPEN FILE [0, 1], "AAA"

0080 MAT WRITE FILE [0}, B, C, X

** RDOS Extended BASIC only.

MAT INPUT FILE STATEMENT

Purpose: The MAT INPUT FILE statement causes ASCII formatted data to be
read from a filefor the arrays listed in the statement. The arrays
may have been previously dimensioned or may be dimensioned in
the MAT INPUT FILE statement.

Format:

MAT INPUT FILE [num-exp;], array-list

where: array-list is a list of arrays for which values are to be
read from the file.

num-exp] is a numeric expression evaluating to the user
file number of a file previously opened in Mode 3.

Notes: Previously dimensioned arrays may be listed by array name only.
- Arrays that are not already dimensioned must be dimensioned in the
MAT INPUT FILE statement.

The EOF function, described on pages 5-6 and 5-7 for the READ FILE
statement can be used to provide a statement to which to transfer in
case of detection of an end-of-file on the file from which data is being
input, The argument to EOF is the number of the file opened for
reading.

Example:

0010 OPEN FILE [2, 3], "XX.AA"

0050 MAT INPUT FILE [2], X(5,5), Y, Z

5-14

L}

MAT PRINT FILE STATEMENT

Purpose: The MAT PRINT FILE statement causes output of data in accordance
with previously dimensioned arrays. Output is in ASCII format to a
sequentially accessed file or a record of a randomly accessed file in
the case of disk files, or may be to an ASCII device such as the line
printer.

Format:

MAT PRINT FILE Lnum-expl], array-list

where: array-list is a list of previously dimensioned arrays for which
values are to be written to the file.

num-exp; is a numeric expression evaluating to the user file
number of a file that has been opened in Mode 1 or 2 for

sequential access or in Mode O for random access,

Example:

OPEN FILE [0, 0], "Z.22"

MAT PRINT FILE [0}, B

5-15

CHAIN STATEMENT

Purpose:

Format:

Examples:

The CHAIN statement provides a means of invoking a BASIC pro-
gram on disk or on an input device from the currently running
program, '

The CHAIN statement has the following effect:

If the program is on disk, the system searches the user's
directory for filename; if not found, the system will
search the library disk directory.

The user's currently running program is cleared from
core if the program is found and the new program is
loaded into core. If filename is not found, the current
program remains in core.

The newly loaded program is run, by default, from the
lowest numbered statement in the new program.
Optionally, the user may specify where control is to be
transferred within the new program, using the CHAIN
filename THEN GOTO form of the statement. Thus,
the user can specity where, other than the lowest
numbered statement, execution is to begin.

(The CHAIN statement is the equivalent of a RUN filename
command, see Chapter 6.)

CHAIN filename f THEN GOTO statement-no. j

where: filename is a literal file name or a string variable
evaluating to a file name,

statement-no, is any statement number existing in the
program with the specified name, filename.

100 CHAIN "SUB1"
350 CHAIN "Z$"
200 CHAIN "SQRT" THEN GOTO 356

Note:

The program chained to must be in SAVE file format.

5-16

SAVE STATEMENT

Purpose: - The SAVE statement causes the current program (source statements
and data) to be written in binary format to a binary output device
such as the binary paper tape punch or to a disk file., If written
to a disk, the file name is entered into the user's directory, replacing
any file of the same name.

A SAVEd program can be reloaded using the LOAD command/
statement, via a CHAIN statement, or via a RUN filename
statement. Saving a program in binary format (rather than in
ASCII format using the LIST command) is recommended as a
means of saving a program in a compact format, thereby
reducing system overhead. Additionally, a program which
may have been partially executed may be saved in this format
so that when later LOADed execution can be resumed. That is,
it is as if the program were never removed from the system
(even though the user may have signed off and back on). Also,

- a SAVEd program that is reloaded can be edited and listed in
ASCII at a later time.

Format:
SAVE filename

where: filename is the name of a device to which the current
program is to be written or the name to be stored in the
user directory if the current program is to be written
to a disk file.

Examples:

100 SAVE "FA.BC"
253 SAVE "$PTP"
555 SAVE "CTO0:2"

725 SAVE S$(1,7)

5-17

ENTER STATEMENT

Purpose: The statement causes the BASIC statements contained in the ASCII
file given by filename to be entered into the current program.

When statements in the file have the same statement number as a
line in the current program, the ENTERed line will replace the
current line, Where statements in the file have statement numbers
different from those of the current program, the statements will
be inserted in their proper sequence inthe current program., The
user can write or edit lines into the current program using the
ASCII file as input in much the 'same way as he would input new
program lines at the teletypewriter.

The file to be ENTERed may have been created by a LIST file
command (see LIST command write-up) or ‘created as the output
of another BASIC program which used PRINT FILE statements,
or could have been created outside of the Extended BASIC system.
Any ASCII format input device can be used for ENTERing a pro-
gram. If filename is a disk file, the BASIC system will first
search the user directory for the file name. If not found, the
library disk directory will be searched. Error messages are
returned if either the file does not exist, or it is not in source
format (ASCII).

The data portion of an executing program is undisturbed by the
ENTER command. That is, variable assignments and all other
program statuses remain fixed, Thus, ENTER provides a
facility for running subprograms as overlays with all program
variables as ''common''.

Format:
ENTER filename
where: filename is the name of a disk file or 1/0 device con-
taining BASIC statements in ASCII format.
Examples:

55 ENTER "$CDR"

10 ENTER "LINES,BC"

5-18

CLOSE STATEMENT

‘Purpose:

Format:

Examples:

50 CLOSE

The CLOSE statement will close all open channels. (See page
5-5 for a description of the CLOSE FILE statement which will
close a user specified channel.) It is necessary to note that
if the user should issue a CLOSE statement when all channels
have already been closed, no error message will occur.

CLOSE

5-19

DIRECTORY MAINTENANCE STATEMENTS

When using Extended BASIC with a disk, a number of directories are maintained that
contain the file names of files on the disk together with the size in words of each file.
Each user has his own directory containing the names of his files, There is also a
library directory containing the names of files that are available to all users.

The statements that pertain to directorics are those that delete a file name from a
directory, and rename a file in a directory.

These statements are:

DELETE
RENAME

Each is described on the following pages.

5-20

‘e

DELETE **
Format: DELETE filenamel|
where: filename is the name of a file in the user's directory.
Purpose: To delete the disk file named filename from the user's directory
. effectively deleting the file from disk. ‘
. Examples:

100 DELETE "AO0.1"

‘ 555 DELETE "TEST"

** RDOS Extended BASIC only.

5-21

RENAME STATEMENT

Format: RENAME filenamel, filename2

where: filenamel is the current file name.

filename?2 is the new name that replaces filenamel
in the user directory.

Purpose: The command replaces a file name in the user's directory with a
new name,

Examples:

123 RENAME "TEST", "SQRT2"

566 RENAME S$, "A"

5-22

e

FILE I/0 COMMANDS

As described in Chapter 6, the user may issue commands directly from the
terminal. Included in these commands are commands having the same format

and meaning as the File I/O statements described in this chapter. In addition,

there are a number of commands described in Chapter 6 that provide for maintenance
of disk file directories. '

5-23

CHAPTER 6

KEYBOARD MODE OF OPERATION

In keyboard mode of operation, the user can:

Specify file I/O and perform file directory maintenance

Execute programs

Request information about the contents of his program
Edit programs
Perform dynamic debugging

Perform simple desk calculator operations
Vary output page format

These functions are carried out by using certain control keys and issuing keyboard
commands. Keyboard commands start with a command word, which may be
followed by arguments, and terminate with a carriage return. Some of the
commands are keyboard versions of certain BASIC statements; BASIC can recognize .
such a command since it is not preceded by a statement number.

CONTROL KEYS

ESC

Pressing the ESC key essentially means "interrupt the
current operation". The effect depends upon the current
state of the system:

1.

If a program is being executed and an ON ESC THEN...
statement has not been encountered, execution ceases,
and the message:

STOP AT xxxx

is printed, where xxxx is the statement number before
which execution ceased. The system reverts to
keyboard mode,

If a program is being executed, and an ON ESC THEN
statement has been encountered within the program,
then control will transfer to statement. [t is not
possible then to interrupt an executing program unless
a statement executed after statement instructs the
system to stop. This can be accomplished via

ON ESC THEN STOP.

If a keyboard command is being exgcuted, it is
terminated and the system awaits keyboard input.

6-1

CONTROL KEYS (Continued)

ESC
(Continued)

SHIFT L

RUBOUT

4, If the system is in idle mode, ESC activates the terminal
for operation. The system is in idle mode immediately
after the system has been loaded or after the user issues
a BYE command. (See page 6-18.) Activating an idle
system must always be done by pressing ESC. The user
can then start the sign-on sequence.

S. If the user wishes to issue a keyboard command, and the
system is operating in one of the modes indicated above,
pressing the ESC key will change the mode to allow the
system to accept a keyboard command.

When the user is writing and editing BASIC programs at the
keyboard and when he is responding to an INPUT request,
pressing both the SHIFT and L keys simultaneously results in
deletion of the line he is currently typing. He may then retype
the line,

The symbol \ is printed at the teletype to indicate SHIFT L.
BASIC then gives a carriage return/line feed and the user may
replace the deleted line, as shown in the example following:

90 PROMPT "OMTEREST \
90 PRINT"INTEREST @ 5% IS:" ; I

When the user is writing and editing BASIC programs at the
keyboard and when he is responding to an INPUT request,
pressing RUBOUT results in the deletion of the last character
in the current line. He may then retype the character.

The symbol <+ is printed at the teletype to indicate RUBOUT.
The following example shows character deletion and replacement:

90 PRO*INT "OM <<« INTEREST @ 6% ~~5%IS: "; I
The statement within the program will appear as:

90 PRINT "INTEREST @ 5% IS:'; I

6-2

g

]

KEYBOARD COMMANDS

Keyboard commands begin with a key word recognized as a command by BASIC.
Some commands include one or more arguments following the key word. A key-
board command isterminated by pressing carriage return ()) and is immediately
executed by BASIC.

Most of the key words described as statements in Chapters 3, 4 and 5 can be used
as commands. A complete list of all BASIC key words and the way(s) in which
they are used is found on page iv.

There are a number of key words which are recognized solely as keyboard
command indicators. They are listed below and are described on pages following.

CON Continue execution after last statement.

FILES List file names in the user's directory. o
LIERARY List file names in the library directory. *x
LIST List statement(s) from the current program

to the terminal or to a file.

LOAD Clear any current program (implicit NEW),
load a SAVEA file (binary file).

PAGE Specify width of output page.
PUNCH List statements from the current program to
. the teletypewriter punch with leader and trailer
of nulis.

RENUMBER Renumber statements in the current program.

RUN Execute the current program or other named
program.
SIZE Print size in words of current program and

user memory space still available.
TAB Specify the setting of tabulation zones for output.

WHATS Prints directory information about specific file. *x

** RDOS Extended BASIC only.

6-3

DIRECTORY MAINTENANCE COMMANDS

When using Extended BASIC with a disk, a number of directories are maintained
that contain the file names of files on the disk together with the size in words of
each file. Each user has his own directory containing the names of his files,
logically referred to as a user directory. There is also a library directory con-
taining the names of those files that are available to all users.

The keyboard commands that pertain to directories are those that list the file

names contained in either the user directory or the library directory, FILES
and LIBRARY respectively; each is described following.

FILES Command **

Format: FILES

Purpose: The command causes a list of all file names in the user directory
to be printed to the terminal. Files names, when printed, will
be seperated by a tab.

Example: FILES

LIBRARY Command * ok

Format: LIBRARY

Purpose: The command causes a list of file names contained in the library.
disk directory to be printed to the terminal. File names, when
printed, will not be seperated by a tab.

Example: LIBRARY)

** RDOS Extended BASIC only.

6-4

‘e

COMMANDS THAT LOAD, MODIFY, AND EXECUTE PROGRAMS

The user can, using specific BASIC commands, load a program into core from a
saved disk file, Once this program is read into core it is called the current pro-
gram. A current program may be listed, punched, modified if necessary, and
executed. The commands which implement these functions are described on

this and pages following.

LOAD Command

Format: LOAD filename

where: filename is the name of a binary file created by a previous
SAVE command.

Purpose: The command executes an implicit NEW, clearing the current program
if any. The file specified is then read into core, becoming the current
program. The file named may be on disk or may be on a binary input
device such as the paper tape reader. In all cases, however, only
a file that was previously SAVEd (see page 5-17) can
be LOADed.

If a disk file is specified, BASIC first searches the user's directory.
If the file name is not in the user's directory, BASIC searches the

library directory for the file name,

When a file is LOADed, it can be listed, modified or executed as
desired.

Examples: LOAD "$PTR" /

LOAD "MATH3" /

LOAD "MTO:1" /

COMMANDS THAT LOAD, MODIFY AND EXECUTE PROGRAMS (Continued)

LIST Command

Format:

Purpose:

- LIST
LIST statement-noj _
>[filename]
LIST TO statement-nop
TO
LIST statement-nol statement-n02
- T)

where: statement-no; is the first statement to be listed.
statement-no, is the last statement to be listed.
filename is the name of a device or of a disk file.

The LIST command causes all or part of the current program to be
listed in ASCII either to the file given by filename or by default to
the terminal if no filename is given., (Output of a listing of the
current program to the teletype punch is described on the next
page, PUNCH command). The range of statements to be listed is
determined as follows: ‘

LIST / - List the entire program starting at
: ~ the lowest numbered statement.

LIST n; / - List only the single statement
ERREERE numberedn; .

LIST TO ny / - List from the lowest numbered state-
ment through statement n,.

LIST n; {T?} n, / List from the statement numbered 0
through statement ny.

When the filename argument is given, the command causes the
specified lines to be written to a disk file, called filename, or
to the device given by filename. The file created by the LIST
command can be read back into core using the ENTER command
(see ENTER command writeup). If statements are LISTed to a
disk file, filename is entered in the user's directory, replacing
any previous file of the same name.

6-6

COMMANDS THAT LOAD, MODIFY, AND EXECUTE PROGRAMS (Continued)

LIST Command (Continued)

Examples: LIST 700 TO 9999 /

LIST 200 /

LIST "$LPT" /

LIST 600 TO 900 "F2.2" /

List statements 600 to
statement 900 to file F2.2

h

List the entire current pro-
. gram to the line printer.

List statement number 200, by
default, to the terminal.

List statements 700 to statement
9999, by default, to the terminal.

COMMANDS THAT LOAD, MODIFY AND EXECUTE PROGRAMS (Continued)

PUNCH Command

—
Format: PUNCH

! PUNCH statement-no 1
PUNCH TO statement -109

PUNCH statement -no 1 (T’O> statement -no,

where: statement-noj is the first statement to be punched.

statement -no, is the last statement to be punched.

The PUNCH formats shown above are identical in meaning

to those given for the LIST command (previous page) except
that output is to the terminal punch rather than to the terminal
printer or to a file,

Purpose: The PUNCH command is the equivalent of a LIST command when output
is to the terminal punch.. A leader of null characters precedes the
punched listing and a trailer of null characters follows t he listing.

The number of null characters punched as both leader and trailer is
equivalent to the number of characters given as the limit of page size
width (see PAGE command, page 6-15). This represents

7-8 inches of leader or trailer for a 132-character line.

Note that input of the command PUNCH to BASIC does not turn on the
punch. The following procedure should be followed:

1. Type the desired PUNCH command followed by a
carriage return and immediately press the ON
button on the terminal punch.

2. BASIC will punch a null leader, followed by the desired
listing, followed by null trailer.

3. When punching is completed, press the OFF button on
on the punch.

If the user turned on the punch before typing all or part of his punch
command, he should tear off that part of the tape, in front of the leader.

Example:

PUNCH 20, 1000)

COMMANDS THAT LOAD, MODIFY, AND EXECUTE MEMORY (Continued)

RUN Command

Format: RUN

RUN statement-number

RUN filename

where: statement-number is the number of the statement line

in the current program where execution is to begin.

filename is the name of a file on disk or a device
containing a file to be read in for execution.

Purpose: The command causes all or part of a current program to be
executed or the loading of the program from disk or a device
followed by its execution. The effects of the RUN commands

are as follows:

RUN J

RUNn)

RUN "filename")

Clear all variables, undimension all arrays
and strings, do a RESTORE, initialize the
random number generator, and then run the
current program from the first statement.

All existing information (variable values,
dimensioning, etc.) resulting from a
previous execution of the current program
are retained and the current program is

run starting at the statement numbered n.
This form of the RUN command allows the
user to resume execution of his program,
retaining current values of all variables and
parameters obtained during program exec-
ution thus far. It may be used after a STOP
or after an error and will incorporate any
alterations to the program that the user may
have made via editing directly after the STOP
or error occurred. :

If the file is on disk, the system follows
the search procedure outlined in the LOAD
command. When filename is found, the
command executes a NEW, clearing the
current program if any, then a LOAD,

6-9

COMMANDS THAT LOAD, MODIFY, AND EXECUTE MEMORY (Continued)

RUN Command (Continued)

- reading the specified file into core; and then

- executes the new current program.
Examples: RUN)
RUN "$PTR")
RUN 250 J
RUN "MATH3")

RUN "MTL:0" /

6-10

‘a

COMMANDS THAT LOAD, MODIFY AND EXECUTE PROGRAMS (Continued)

CON Command

Format: "CON

Purpose: The command causes continuation of program execution after
a STOP statement has been executed, The CON command
is equivalent to a RUN statement number command where
statement number is equal to the statement directly following
the programmed STOP statement,

In addition to using the CON command after a programmed
STOP statement, it may be used after a run-time error has
been encountered within the program, After the user has
corrected his error, the CON command may be issued to
begin execution from the statement where the error occurred.

Example: S0 READ P, T
SSLETA=P*(1+.04)4T
60 PRINT "PRINCIPAL IS ";P;" EARNING 4% FOR ';T;" YEARS =";A
70 GOTO 50

80 DATA 375, .8, 550, 4,600, 1

90 STOP

95 GOTO 50

RUN

PRINCIPAL IS 375 EARNING 4% FOR .8 YEARS = 386. 954

STOP AT 90

80 DATA 500, 3, 600, 3, 600, 5

CON ~

PRINCIPAL IS 500 EARNING 3Y, FOR 3 YEARS =

6-11

COMMANDS THAT LOAD, MODIFY AND EXECUTE PROGRAMS (Continued)

RENUMBER Command

Format: RENUMBER
RENUMBER statement-noy
RENUMBER STEP statement-noz

RENUMBER statement-no; STEP statemeln‘t,-no2

where: statement-noj is an optional argument giving the initial
statement number for the current program.

statement-no, is an optional argument giving the increment
between statement numbers for the current program.

Purpose: The command causes all statements in the current program to be
renumbered as follows:

RENUMBER / - by default the initial statement num-
ber is 0010 with a default increment
of 10 between each statement.

RENUMBER n J - the initial statement number is ny
with an increment of ng between each
statement. '

RENUMBER STEP ny / - the initial statement is 0010 with an

increment of n, between each statement.

RENUMBER n; STEP n, / - the initial statement number is n
with an increment of 0y between
each statement.

Statement numbers have a four-digit limit, i.e., the number of any

statement may not be greater than 9999. If a RENUMBER command

would cause one or more statement numbers to exceed the 9999 limit,

BASIC effectively executes the following RENUMBER command instead:
RENUMBER 1 STEP 1 /

Examples: RENUMBER STEPS /

RENUMBER 1000 v
6-12

SYSTEM INFORMATION REQUESTS

The following commands may be issued to obtain information on the size of the
current program and remaining space available, on the attributes associated with
a particular file, a file's byte length, the date on which the file was created and
the date on which the file was last used.

SIZE Command

Format: SIZE

Purpose: The command causes a printout at the terminal of the number of
bytes used by the program and the total number of bytes that are
still available. This printout is printed with decimal numbers.

Example: SIZE J
USED: 6700BYTES
LEFT: 8077 BYTES

6-13

SYSTEM INFORMATION REQUESTS (Continued)

Format:

Purpose:

Example:

WHATS filename | **

where: filename is the name of a file currently on disk.

This command will print out on the terminal information
pertaining to the file with the specified name filename. The
type of information printed, and the format in which it will be
printed is as follows:

filename attributes byte length date created (date last used)

WHATS "ABC")
ABC D 2039 06/14/73 (07/21/73)

** RDOS Extended BASIC only.

6-14

SPECIFYING THE OUTPUT PAGE FORMAT

PAGE Command

Format:

Purpose:

Example:

TAB Command

Format;:

Purpose:

Example:

PAGE =

{i=

where: n is an integer in the range:

1 <n < 132
The command sets the limit of page width where n is the maximum
number of characters that may be output on a line of a given

terminal device.

If the command is not given, the default maximum of 72 characters
will result.

PAGE =132 »

TADB

il
=

where: n is an integer in the range:
1 = n = size of page
The command sets the zone spacing desired between output data.
If the command is not given, the default zone spacing is 14 characters,

which allows five columns of output data to the 72-character teletype-
writer line.

Since the maximum range of zone spacing depends upon the page width,
it is good practice to set the page width first and then the zone spacing.

PAGE =132 /
TAB =12 »

6-15

COMMANDS DERIVED FROM BASIC STATEMENTS

Any BASIC statement that can meaningfully be written as a keyboard command can be
used in that mode. Certain statements having meaning only within the context of a
Program cannot be used as keyboard commands. These are CALL, CHAIN, DATA,
DEF, END, FOR, GOSUB, GOTO, NEXT, ON, REM, RETURN, and STOP. All

other statements are implemented as keyboard commands; some use of these
Statements are:

Perform File I/0 ’

The opening and closing of files and input/output of programs and data from files and
devices can be handled by keyboard commands derived from the file I/O statements
described in Chapter 5.

OPEN FILE [1,3}, "$PTR" / .

READ FILE [1], A, B, C, D, E, F, 5] ~

Desk Calculator

The PRINT command can be used as a desk calculator. The command PRINT (;) is
followed by any expression. Upon the user's striking RETURN, the system immediately
computes the value of the expression and prints it on the same line. The examples
show expressions consisting of literal operands.

;EXP (SIN (3.4/8)) 1.51032 BASIC responds
with value on same

SUSING "-+#:4# ## 1 441", EXP(SIN(3. 4/8))+1510. 32E-03 line.

Desk Calculator - Using Program Values

Besides literal operands, the user can include values assigned to program variables.
The user can interrupt a running program and use assigned program values in obtaining
values for calculations. ‘

0010 DIM A$[10], B$[10]
0020 LET A$ = "IOU $10. 50"
0030 B$ = "XRAY"

RUN /

(ESC)

;B$(4);A%(2, 3) YOU

6-16

COMMANDS DERIVED FROM BASIC STATEMENTS (Continued)

Desk Calculator - Using Program Values (Continued)

0010 DIM A[3,3]
User writes and runs a BASIC program.
RUN ~
(ESC)
STOP AT 0500
;USING "+, #####E 1417, A(L, 2), A(1,2)*9 +5.12100E+02 +4.60890E+03

Dynamic Program Debugging

A running program can be interrupted (using ESC or by programmed STOP statements)

at a number of different program points. The current values of the variables can then

be checked at those points and corrections made in the program, either to statements

or variables, as necessary. The programmer can then use the RUN statement-no
command to restart the interrupted program without losing either the values of the variables
at the point of interruption or the newly inserted values and statements.

(ESC)
STOP AT 1100
IF A <> BTHEN PRINTB, A / <User command conditionally provides for

. 025 .5 examination of A and B.

2,33333 +—results of a series of program calculations
5.41234 being printed.

8.99999

(ESC)

STOP AT 0570

READ X1, X2, X3/ <user spaces over the next 3 values in the data
RUN 570 / block and resumes program execution at the

statement at which it was interrupted.

6-17

COMMANDS DERIVED FROM BASIC STATEMENTS (Continued)

Dynamic Program Debugging (Contihued) |

(ESC) ,

STOP AT 1100

A0 <User checks value of variable A,

A= -1 <User changes string variable C$ and the value of arith- s
C$ ="% OF LOSS" / metic variable A and resumes running at statement 505. ‘

RUN 505 /

20 DIM A[4, 4]

(ESC)
STOP AT 500

DIM A[3,5] / <—User redimensions array A.

6-18

¥y

APPENDIX A

ERROR MESSAGES

Error messages are printed as two digit codes, followed by a brief explanatory
message when operating under RDOS. There are three types of error messages:

1.

Errors that are recognized during program input by BASIC.
If the user input the statement in error from the teletype,
the incorrect statement will appear on the teletypewriter
printer just above the error message. If the statement in
error was input from a file or other input device, BASIC will
first print the statement in error before printing the error
message. The form of the error message is:

ERROR xx text

where: Xxx is a two-digit decimal error code.
textis a brief description of the error which is
printed when operating under RDOS.

All syntax errors are recognized during program input.

Errors, other than file I/0, that are recognized at run time.
BASIC system run-time errors cause printout of an error
message of the form:

ERROR xx AT yyyy text

where: xx is a two-digit decimal error code,
Z}_]ﬂ is the line number at which the error was
detected.
text is a brief description of the error which is
printed when operating under RDOS.

I/O error messages. File 1/0 errors are printed in the
format:

I/0 ERROR xx (AT yyyy) text

where: Xxx is a two-digit decimal error code.
gr—_Xy_X is the line number which is printed if the I/0
error is detected at run-time.
text is a brief description of the error which is
printed when operating under RDOS,.

A-1

The meanings of the decimal error codes for errors other than file I/O are given in
the list beginning on the following page. Following each message is a brief
description of the message and an example showing its occurrence.

Following the BASIC system errors is a list of the I/O errors and their meanings.
Under the heading TYPE are one letter characters, either E or A. E indicates
that the error occurs directly after the user has entered the command line on

the teletypewriter, after pressing the carriage return key. The letter A indicates
that the error occurs during the execution of a program.

e

BASIC ERROR MESSAGES

CODE | TYPE TEXT MEANING EXAMPLE

00 E - | FORMAT unrecognizable statement
format. ‘

01 E CHARACTER illegal ASCII character or RUN %100
unexpected character. ENTER #$LPT"

02 E SYNTAX unrecognizable keyword or 10 LETT A =10
invalid argument type. 20 IF SIN(A $=0...

03 A READ/DATA READ specifies different 10 DIM A$(10)

TYPES IN - data type than DATA state- 20 READ A$
CONSISTENT ment. 30 DATA 12
RUN

04 A SYSTEM Hardware or software
malfunction,

05 E STATEMENT statement number not in 0000 GOTO 100

NUMBER the range: 1 <n <9999, 99999 STOP
0010 GOTO 81373
06 E EXCESSIVE attempt to declare more
VARIABLES than 286 variables.

07 E COMMAND(I/O) | attempt to execute a com- ENTER "ABC" &
mand from a file (and not file ABC contains
in a BATCH mode). a LIST command

08 E SPECIFICA - value specified is not PAGE = 200

TION within limits (PAGE/ PAGE = 72
TAB) TAB = 80

BASIC ERROR MESSAGES

CODE | TYPE - TEXT MEANING EXAMPLE
09 E |ILLEGAL RE- | reserved file name not recog- | ENTER "$ABC"
SERVED FILE | nized by system (see system
NAME generation for valid names)
10 E | RESERVED another user has control of USER A:
FILE IN USE the specified 1/0 device. ENTER "$PTR"
(Except $LPT - requests USER B:
are queued.) ENTER "$PTR"
11 E PARENTHESIS | parentheses in an expression A= ((B-C)
~are not paired.
12 E COMMAND system cannot execute key- GOSUB 100
board command. NEXT I
13 E/ |LINE NUMBER | attempt to delete or list an 100
A unknown line; attempt to 10 GOTO 100
transfer to an unknown line, RUN
14 E PROGRAM not enough storage to EN- ENTER "ABC"
OVERFLOW TER source program.
15 A END OF not enough DATA arguments 10 READ A, B,C
DATA 1 to satisfy READ ‘ 120 DATA 91,21
RUN '-
16 A ARITHMETIC | value too large or too A = 1234 + 66
small to evaluate i A 120
17 A UNASSIGNED attempt to reference an A
VARIABLE '

unknown variable

‘#

Y

BASIC ERROR MESSAGES

CODE TYPE TEXT MEANING EXAMPLE
18 A | GOSUB more than 6 nested GOSUB's
NESTING
19 A RETURN - NO} RETURN statement encount- 10 RETURN
GOSUB ered without a corresponding | RUN
GOSUB
20 A FOR NESTING} more than 4 nested FOR's
21 A FOR - NO FOR statement encountered 1 FOR =1 TO 10
NEXT without corresponding 251
NEXT RUN
22 A NEXT - NEXT statement encounter- 10 NEXT I
NO FOR ed without a corresponding RUN
FOR
23 A DATA OVER- | not enough storage left to 10 DIM A(300000)
FLOW assign space for variables RUN
24 A NO AVAIL- channel limit specified at
ABLE CHAN- | SYSGEN time has been
NELS reached
25 A OPTION matrix operations were MAT PRINT A
not specified at BASIC
SYSGEN
26 A PROGRAM/ attempt to LOAD or RUN a LOAD "ABC"
DATA OVER- | SAVE'd file which is too
FLOW large for available storage

A-5

(8/74 086-000010-00)

BASIC ERROR MESSAGES

ODE TYPE TEXT MEANING EXAMPLE
27 A FILE NUMBER] invalid file designation in an OPEN FILE(9, 0)
NOT 0-7 I/0 statement
28 A | DIM OVER- | an array or string exceeds
FLOW its initial dimensions
29 A | EXPRESSION | an expression is too com- A=(((A+HL)H(A-
‘1 plex for evaluation 7+3)*3)+RND(0))
30 A NODE NUM- invalid mode designation OPEN FILE(O, 7)
BER NOT 0-3] in an I/O statement
31 A SUBSCRIPT subscript exceeds array's 10 DIM A$(2)
dimension ;AS(1, 30)
RUN
32 A UNDEFINED statement looks like a func- ;ABC(1)
FUNCTION tion but was never defined by
DEF and not a standard
BASIC function
33 A FUNCTION the nesting of too many
NESTING defined functions.
34 A J FUNCTION argument range exceeded A =1234
ARGUMENT ;A Y 34652
35 A | ILLEGAL PRINT USING statement is ;USING "A", A
FORMAT lillegal '
STRING |
36 A STRING SIZE |print line exceeds page PAGE =15
specification ;"AAA ...
A-6

(8/74 086-000010-00)

1

BASIC ERROR MESSAGES

CODE | TYPE | TEXT MEANING EXAMPLE
37 A USER CALL statement specifies 10 CALL 2
ROUTINE a user routine not in RUN
storage
38 A UNDIMEN - attempt to reference an AS
SIONED STKiN{ unknown string variable
39 A DUP MATRIX same matrix appears on 10 DIM A(10, 10)
both sides of a MAT mul- 20 MAT A=A*A
tiply or transpose state- RUN
ment.
40 A MATRICES matrices have different 10 DIM A(10, 10)
SIZES sizes 20 DIM B(20, 20)
30 MAT A=B
RUN
41 A MATRIX matrix has a zero dimen- 10 DIM A(10)
DIM sion 20 DIM B(10, 10)
30 MATB=A
v RUN
42 A FILE AL- two OPEN statements without | OPEN FILE (0,0).. .
READY OPEN an intervening CLOSE OPEN FILE (0,0)..
43 A MATRIX attempt to invert a non- 10 DIM A(20, 30)
NOT SQUARE square matrix 20 MAT B = INV(A)
RUN
44 A FILE an attempt to read/write a DIM A$(10)
UNOPENED file which has never been WRITE FILE(0), A$

opened

A-7

(8/74 086-000010-00)

BASIC ERROR MESSAGES

CODE | TYPE TEXT MEANING "EXAMPLE
45 A RECORD 2 logical record size limit DIMA $(300)
128 BYTES exceeded OPEN FILE(0, 1)"ABC"
WRITE FILE(0),A$
46 A INPUT data entered in response INPUT A 7 ABC
to INPUT is incorrect
input file opened for writing
47 A WRONG or output file opened for OPEN FILE (0, 1), ...
MODE reading. READ FILE(0),...
a LOAD, RUN or CHAIN
48 E NOT A SAVE | was attempted on a file
FILE which was not previously
SAVEd
49 E NO ROOM FILES or LIBRARY com- 10 DIM A(8000)
FOR DIRECT-] mands cannot find 256 words| RUN
ORY in user program storage to FILES
read disk directory
50 E INVALID a command preceded by #ABC
OPERATOR a # (operator command
COMMAND specifier) is not recognized
(See page C-15)
53 E RENUMBER- | a reference is made to at 100 GOTO 1090
ING ERROR(S)| least one non-existing 110 END
statement number
54 E STATEMENT | statement length exceeds
LENGTH 132 characters in internal
: representation
58 E INCOMPATI- | incompatible version of
BLE SAVE BASIC (i.e., REV, 3.0
or earlier) or different

FILE

floating point configura-
tion

A-8
(8/74 086-000010-00)

FILE 1/0 ERROR CODES AND THEIR MEANINGS

ERROR CODE MEANING ERROR CODE MEANING f
0 Illegal channel 36 Squash file
1 Illegal file number 37 Device already exists
2 Illegal system command 38 Insufficient contiguous
3 [llegal command for blocks
device 39 QTY
4 Not a saved file 40 Task queue table
5 File already exists 41 No more DCB's
6 End of file » DIR specifier
7 Read-protected file 43 DIR specifier
8 Write-protected file 44 DIR too small
9 File already exists 45 DIR depth
10 File not found 46 DIR in use
11 Permanent file 47 Link depth
12 Attribute protected file 48 File in use
13 File not opened 49 Task ID
14 Swapping disk error- 50 Common size
program lost 51 Common usage
17 UFT in use 52 File position
18 Line limit 53 Data chain map
19 Image not found 54 DIR not initialized
20 Parity 55 No default DIR
21 Push limit 56 FG already active
22 Storage overflow 57 Partition set
23 No file space 58 Insufficient arguments
24 Read error 59 Attribute
25 Select status 60 No Debug
26 Start address 01 No continuation addres
27 Storage protect 62 No start address
29 Different Directories 63 Checksum ‘
30 Device name 04 No source file !
31 Overlay number 65 Not a command
32 Overlay file attribute 66 Block type i
33 Set time 67 No files match |
34 No TCB's 68 Phase ‘
69 Excess arguments

A-9
(8/74 086-000010-00)

INITIALIZATION ERRORS

The following table is a list of initialization errors. Some errors are fatal but

should not occur.

When a fatal error occurs call your Data General representative,

The remaining errors indicate conditions that can be remedied.

INITIALIZATION ERRORS

23

CODE TEXT ME ANING
1-8 INITIALIZATION ERROR |} Call your Data General Representative
9 INITIALIZE MASTER BASIC, DR is not present:
DIRECTORY
10 & 11| INITIALIZATION ERROR | call your Data General Representative
12 ‘RESERVE AVAILABLE Insufficient memory to execute BASIC, SV
MEMORY
13 CREATE SWAPPING Insufficient contiguous blocks for BASIC. SW,
FILE Remedy: Use RDOS CLI to rearrange disk
files or reduce the maximum space allowed
for user's BASIC program.
BASIC. SW is present with a non-zero use
“count. Remedy: Execute RDOS CLI com-
mand "CLEAR BASIC,SW".
14-21 INITIALIZATION ERROR [Call your Data General Representative
22 IDENTIFY MULTIPLEXOR] For systems with 4060 type multiplexors, the

INTERRUPT HANDLER -

option. If this error occurs for either a 4100

QTY device was sysgened into the RDOS system.
Remedy: Configure an RDOS without the QTY

or a 4026 multiplexor, call your DGC repre-
sentative,

—— ,‘

INITIALIZATION ERROR

Call your Data General representative.

(8/74

A-10
086-000010-00)

APPENDIX B

CALLING AN ASSEMBLY LANGUAGE SUBROUTINE
FROM EXTENDED BASIC

It is possible to call a subroutine written in assembly language from an Extended
BASIC program. The format of the BASIC call is:

CALL sub# [, Al’ eees Apl

where: sub# is a positive integer (in the range 0 to 32767) representing
the subroutine number.

Al,...,An are optional arguments to be passed to the subroutine
(n must be in the range 1to 8) and may be arithmetic variables

or expressions, or string variables or expressions., Dimensioned
numeric variable names should not appear alone, i.e., without
subscripts. (Statement numbers are not permitted as arguments.)

Character String Storage and Definitions

The assembly language programmer should be aware of the following information if

he wishes to handle character strings in a CALLed subroutine. BASIC keeps a

count of the number of characters currently defined in each string variable (referred
to as the current length of the string variable). A current length is stored as part of
a header immediately preceding the contents of each string variable, (See illustration
below,) The current length must be updated each time characters are added to or

taken away from the string variable.

Current length CL

C1 Co Increasing memory
Characters ' C3 C4 addresses

Cs Ce

String Variable Storage

B-1

Character String Storage and Definitions (Continued)

In the following examples, assume that A$ is dimensioned to 10, and A$ = "ABCDE".
The current length of A$ is 5.

A substring is defined as any contiguous part of a string variable, For example:
A$(2,4) and A$ are substrings of A$,
The current length of a substring is defined as the number of defined characters within

the substring. For example, the current length of A$(4,7) is 2, because only
A$(4,4) and A$(5,5) are defined.

The maximum length of a substring is defined as the number of character positions
within the substring. For example, the maximum length of substring A$(4,7) is 4.

Linking the Assembly Language Subroutine

The user's assembly language subroutines must be given as input to the relocatable
loader when the BASIC system save file is created. The user must include a
subroutine table with his subroutines. The table must have the entry point SBR'TB,

The subroutine table is a list of all assembly language subroutines available to a
BASIC program. For each assembly language subroutine a four-word list item is
required, containing the following:

subroutine number
subroutine entry point
number of arguments
argument control word

The table is terminated by an item whose subroutine number is -1.

The argument control word is used by BASIC to give run-time error checking on
the types of arguments. The argument control word is divided into eight two-bit
fields for the eight possible arguments A}...Ag. The value of the two bit field
determines the allowable argument.

009 <argument may be any string expression
0l <—argument must be a string variable

10 <argument may be any numeric expression
115 ~argument must be a numeric variable

B-2

Linking the Assembly Language Subroutine (Continued)

BASIC calls the assembly language subroutines by the sequence:

LDA 2,.+2 ;load
JSR <SUB> R ;jump to subroutine
ADLST ;address list

ADLST: <address of Aj or A
descriptor words >

& ;addresses of passed arguments
<address of Ay or Ap

descriptor words >
(return point) s

If A; is a substring of a string variable, the address list contains the address of the
string descriptor words, which contain the following information:

word 1: Dbyte address of the first character of the substring
word 2: current length of the substring

word 3: maximum length of the substring

word 4: word address of the current length of the string variable

If Aj is a string expression, the address list contains the address of the string
descriptor words, which contain the following information:

word 1: Dbyte address of the first character of the string
word 2: length of the string

If Ai is a numeric variable, the address list contains the storage address of the
variable. (All numeric variables are represented in standard floating point
format. See page 2-1.) ' '

If A. is a numeric expression, the address list contains the storage address of the
value of the expression,

B-3

Linking the Assembly Language Subroutine (Continued)

SBRTB:

. TITLE SBRTB

. ENT SBRTB
.NREL

7

A

5
2B1+2B3+3B5+1B7+0B9
4
B
0
0

-1

;SUBROUTINE NUMBER
;SUBROUTINE ENTRY POINT
;NUMBER OF ARGUMENTS
;ARGUMENT CONTROL WORD
;SUBROUTINE NUMBER
;SUBROUTINE ENTRY POINT
;NUMBER OF ARGUMENTS
;ARGUMENT CONTROL WORD
;END OF SBRTB

(coding for subroutine A)

JMP 3,2

;RETURN

(coding for subroutine B)

JMP 0,2
.END

;RETURN

Legal calls from BASIC to the subroutines of the examples are:

CALL 7, Q+17, B, B2, A$(2,4), "TIME"

CALL 4

Illegal calls which would result in an error message would be:

CALL 7, Q+17, B, B2*2, A$, "
CALL 7, Q+17, B

CALL 4, Q
CALL 2, A, B

Third parameter must be a variable,
Not enough parameters.

Too many parameters.

No subroutine number 2,

B-4

Linking the Assembly Language Subroutine (Continued)

An illegal CALL, causing error 17, will result from an attempt to pass a variable in
the CALL that does not have a previously assigned value. All variables passed in the
CALL must have been previously assigned values even if their current value is not to
be used in the CALLed subroutine,

Several subroutines are available in BASIC to help the user in manipulating numbers
and character strings. The pointers to the routines are in page zero and should be
declared as displacement externals.

Routines | Result*
. FIX Converts floating point number in AC0-ACl1 to an

integer in ACO-ACIL. If there is overflow, the
largest possible integer is returned in ACO-ACI.
Bit 0 of ACO is the sign of the number. Bit O of
AC1 is a significant bit.

LFLOT Converts an integer in AC0O-ACI1 to floating point
format in ACO-ACI1.

.ADDF FO+F1 Arithmetic routines to perform floating point add,

.SUBF FO-F1 subtract, multiply, divide. In each routine, ACO-
.MPYF - FO*F1 ACl initially contains the floating point value of F1
.DIVF FO/F1 and AC2 contains the address of the value of FO.

The result is returned in AC0-ACI.

Underflow returns a zero result; overflow results
in error number 16,

. MPY A1*A2 — A0, Al In the integer multiply routines, AC1 contains the

. MPYA AO+A1*A2 —A0,Al unsigned integer multiplicand and AC2 contains the
unsigned integer multiplier. The result is a double
length product with high-order bits in ACO and low-
order bits in AC1, Contents of AC2 are unchanged.
The difference between the routines is that . MPYA
adds the result of the multiplication to the contents
of ACO.

In systems having floating point hardware, the floating point number is stored in
the Floating Point Accumulator (FPAC) rather than in ACO-AC1.

B-5

Linking the Assembly Language Subroutines (Continued)

Routine Result
.DVD (A0, Al)/A2 —A1,A0 In the integer divide routines the dividend is in AC1
.DVDI Al1/A2 —A1,A0 (single-length) or in ACO and AC1 (double-length

with high order bits in AC)). The divisor is in AC2
and the result is left with the quotient in AC1 and the
remainder in ACQ. Contents of AC2 are unchanged.

.MOST Moves the character string described by the string
descriptor words in AC0O, AC1 to the substring
described by the string descriptor words in the
memory locations labeled TR3, TR4, TR5. TR6.*

Before a JSR to MOST, these accumulators and
memory locations should be loaded as follows:

ACO - Dbyte address of the first character of the
source string

AC1 - length of the source string

TR3 - Dbyte address of the first character of the
destination string

TR4 - current length of the destination substring

TRS - maximum length of the destination substring

TR6 - word address of the current length of the

destination string variable.

TR3, TR4, TRS, and TR6 should be declared as displacement externals in the
assembly language subroutine. MOST automatically updates the current length of the
destination string variable. Subroutine MOST has two returns. Return at CALL +1
means the character string move was terminated by the source string becoming
empty.

Return at CALL + 2 means the move was terminated by the destination substring
becoming full,

* In the SOS BASIC system, these locations are labeled TS1, TS2, TS4, TSS.

B-6

APPENDIX C
EXTENDED BASIC OPERATION UNDER RDOS

CONFIGURING RDOS

The system generation program, SYSGEN, SV, configures a system save file by
interrogating the user as to the characteristics of the system which the user wishes
to generate. To invoke the SYSGEN program, the user types the command:

SYSGEN)

The CLI will then load and transfer control to SYSGEN., SV which will issue the
message:

SYSGEN REV n.nn
VALID ANSWERS ARE IN PARENTHESES RESPOND ACCORDINGLY

followed by a series of questions to which the user must respond; number responses
are decimal integers. Each response must be followed by a carriage return. A
simple carriage return response will be interpreted as a response of 0, The Real
Time Disk Operating System User's Manual, 093-000075, Appendix E, lists all the
queries issued during the SYSGEN procedure and the appropriate responses for each.

Below are several of those queries and the proper responses of each as relating to
Extended BASIC,

QTY?("0" = NO, "1" = YES)

RDOS should be configured without the QTY handler (response of 0)
if Extended BASIC will be using the multiplexor handler type 4060.

RTC? ("0" = NO, "1" = YES)

The proper response to this question is 0 if your system lacks a
real time clock, or 1 if there is a real time clock in your system.

ENTER RTC FREQ (1 = 10HZ, 2=100HZ, 3= 1000HZ)

This question will be asked only if the response to the previous
question was'l, The RTC interrupt rate should be configured to
10 HZ (response of 1) when configuring RDOS for Extended BASIC.

C-1
(8/74 086-000010-00)

CONFIGURING RDOS (Continned)

ENTER NUMBER OF STACKS (1-5)

This question refers to the number of system stacks which you wish to be
available to RDOS, It is preferable for the user to enter 5 in response
to this query for either a multi-user or single-user system (@ minimum
response of 2 is necessary for BASIC).

ENTER NUMBER OF EXTRA BUFFERS REQUIRED (0-N)

This question refers to the number of system buffers which you wish to “
make available to RDOS, Respond with a non-negative integer equal to the ‘
greatest number of buffers as core will allow, The guidelines for

selecting the number of extra core buffers allowed in your system follows,

Each system buffer is 414 (octal) words in length; the system will allocate

a minimum of six of these buffers or two buffers for each system stack,
whichever is larger. If multiples of 414 (octal) core locations are available
for RDOS in a mapped system, these multiples will be used for additional
system buffers, System buffers are used to receive system (not user)
overlays and for I/O transfers; thus the speed of RDOS Extended BASIC is
enhanced by the availability of extra buffers,

MAXIMUM NUMBER OF SUB-DIRECTORIES/SUB-PARTITIONS ACCESSIBLE
AT ONE TIME (0-32)

If you do not wish to use disk partitions in this system, respond with a 0;
otherwise, respond with the maximum number of subpartitions and/ or
subdirectories which you want to be accessible (i.e., able to be initialized).
This number is found by using the formula below:

1 for each user +1 for the library = response .
OPERATOR MESSAGES? ("0" = NO, "1" = YES)

The proper response to this question is 1 if you wish to be able to issue

read/write operator message system calls (. RDOP/., WROP); otherwise, -
response with 0, It is recommended, when using Extended BASIC, to
respond with a 1. (If not included initialization errors will not appear at
the system console.)

C-2
(8/74 086-000010-00)

CONFIGURING RDOS (Continued)

MAPPED SYSTEM ("0" = NO, "1" = YES)

Respond with O if your system has no Memory Management and Protection
Unit (MMPU); respond with 1 if your system does have MMPU., '

USER INTERRUPT SERVICE (0" = NO, "1" = YES)

This question will be asked if you responded with a 1 to the above question.
Using Extended BASIC under RDOS, you should respond with a 1 to this
question, : ‘

MAXIMUM NUMBER OF CHANNE LS BACKGROUND WILL USE (1-N)
MAXIMUM NUMBER OF CHANNEL FOREGROUND WILI USE (1-N)

These questions will be asked only if you have specified that your system
employs mapped addressing (a response of 1 to the query MAPPED
SYSTEM above). Respond with an integer value N in the range 0-63. If

N is selected to be smaller than the requirement specified at load time,
the program will be aborted when execution is attempted.

BASIC CONFIGURATION

Before the Extended BASIC system can be loaded, the system must be configured.

To configure the BASIC system under RDOS, the user executes the RDOS CLI and
then gives the command:

BSG)

BSG responds by querying the user as to the device configuration for Extended BASIC.
BSG. SV is supplied as a part of the BASIC package.

BSG Dialogue

After the user has issued the command BSG, the system will respond with a series
of queries as to the type of device configuration the user wishes for his Extended
BASIC system. The queries and applicable responses are listed following. The
following series of interrogations is numbered for your convenience; no such
numbering occurs during the operation of BSG.

C-3
(8/74 086-000010-00)

BSG Dialogue (Continued)

1. MAPPING SYSTEM?

The user responds with a Y to this query if his system is to be a mapped
system (i.e., his system includes a Memory Management and Protection
Unit (MMPU), or N if not.

2. BATCH SYSTEM?

If the system to be configured is to be a BATCH sys‘tem respond with Y,
if not, respond with N. If you respond with a Y to this query, jump to
the query numbered 10; otherwise continue with query number 3.

3. MULTI-USER SYSTEM?

The system is querying as to whether the system is a Single-User

System (respond with N) or a Multi-user System (respond with Y).
If response is N, jump to the query numbered 10; otherwise, continue

with query number 4,
4, 4026 MULTIPLEXOR?

There are three possible multiplexor handlers available to the user, ,
type 4100, type 4060 and type 4026, By responding with a Y to this query,
your system will be configured with multiplexor handler type 4026; a

N will prompt the next query.

4a. 4100 MULTIPLEXOR?

A Y will configure your system with handler type 4100; by responding with
a N to this query, your system will be configured with multiplexor
handler type 4060.

S. SWAPPING SYSTEM?

This query determines whether the Extended BASIC system is a swapping
or non-swapping system. The user responds with Y or N, depending
upon his system configuration, If the user responds with Y, the swapping
system will create a file called DK0:BASIC. SW which will be used for
program swapping. | o |

C-4
(8/74 086-000010-00)

BSG Dialogue (Continued)

6-

LINE CONFIURATION?

This query requests the line configuration to be used. The user responds
to the query with a list of line numbers, a range of line numbers, or both,
followed by a carriage return. The 4026 multiplexor uses lines 0-15
(maximum of 16 lines). The 4060 and 4100 multiplexors use lines 0-31
(maximum of 32 lines). The user lists line numbers separated by
commas, or gives a range of line numbers as follows:

0,1,2,4 - line numbers 0,1, 2, and 4
0-2, 4 - line numbers 0, 1,2, and 4

These line numbers, or range of line numbers are terminated by a
carriage return,

DIAL-UP CONFIGURATION?

The user responds to the query with a list of dial-up line numbers, a
range of dial-up line numbers, or both, selected from those line numbers
given in response to query number 6, LINE CONFIGURATION, Dial-up
lines are those connected by an interface to a telephone line. The
response to the query has the same format as the response to the

LINE CONFIGURATION query. The dial-up line numbers are terminated
by a carriage return. If there are no dial-up lines, the user responds to
the query with a carriage return.

CONSOLE TTY?

The user responds to this query with Y if he wishes to use the teletype-
writer as the master console or he responds with a N if he does not.

[f the user responds with a Y, jump to query number 10; if the response
is N, continue on with query number 9. ‘

MASTER CONSOLE LINE NO, ?

The user responds to this query with the line number of the master
console to be used. (The master console is the only terminal in the
system having write-access to library files as well as access to all
user directories.) ‘

C-5
(8/74 086-000010-00)

BSG Dialogue (Continued)

10, RESERVED FILES:

11,

The user responds with a list of reserved names of devices to be used
during the console session, Any number of devices can be listed from
the reserved devices. The reserved file names are:

Reserved Name Device

$PLT Incremental Plotter
$LPT Line Printer

$CDR Card read (including mark sense)
$PTR Paper Tape Reader
$PTP Paper Tape Punch
MTO: Magnetic Tape Unit 0
MT1: Magnetic Tape Unit 1
MT2: Magnetic Tape Unit 2
MT3: Magnetic Tape Unit 3
MT4: Magnetic Tape Unit 4
MTS: Magnetic Tape Unit 5
MT6: Magnetic Tape Unit 6
MT7: Magnetic Tape Unit 7
CTO: Cassette Unit 0

CTl: Cassette Unit 1

CT2: Cassette Unit 2

CT3: Cassette Unit 3

CT4: Cassette Unit 4

CT5: Cassette Unit 5

CTé6: Cassette Unit 6

CT7: Cassette Unit 7

The console TTY should never be configured as a reserved file name.
To indicate the end of the reserved name list, the user types a carriage
return which is not preceded by a reserved file name.

MARK SENSE. CARD READER?

If $CDR was included as a reserved file name in response to query
number 10, this query will be printed, If $CDR was not included in

the list of reserved file names, continue with query number 12, With

a response of Y to this query, all cards input to the card reader will
be interpreted to be mark sense cards. A response of N to this query
indicates that the cards will be interpreted as Hollerith punched cards.

C-6 ,
(8/74 086-000010-00)

BSG Dialogue (Continued)

12.

13.

NUMBER OF USER DISK CHANNELS?

The user responds with a decimal number indicating the number of
disk files that can be open at a given time. The number must be in
the range 1 to 64, -n, where n equals the number of reserved files
specified by the dser in respoﬁse to query 10. The user must include
1 channel for the swapping file (if used) and 2 channels if using BATCH
in addition to other desired channels.

HARDWARE FLOATING POINT?

If the hardware floating point option'is to be a part of the user's system

~ configuration, he should respond with Y to the query; otherwise, he

14.

15.

16.

should respond with N.
HARDWARE MULTIPLY /DIVIDE?

If the hardware multiply/divide option is to be a part of the user's
system configuration, he should respond with Y to this query; other-
wise, respond with a N and jump to query number 16.

ORIGINAL NOVA?

If the response to query number 14 was Y, the ORIGINAL NOVA query
will be asked. The user responds with a Y for an original model
NOVA® * computer (vs. 800, 1200 or SUPERNOVA® * computer) or N
to this query, depending upon the system he is using.

MATRIX OPERATIONS?

If the user wishes to use matrix operations, he should respond with a
Y to this query, if not, respond with a N.

The files SY.RB and BASIC. CL are now created and the system will give the prompt:

R

signifying that the user may now load Extended BASIC.

*NOVA and SUPERNOVA are registered trademarks of Data General Corporation,
Southboro, Massachusetts.

C-7

(8/74 086-000010-00)

Loading Extended BASIC

NOTE: the following discussion does not include configuration information for
Multiplexor Handler type 4100. This information is available from your DGC
representative.

- The Extended BASIC system may be loaded in two ways. After the user has finished
answering the queries outlined above and on preceding pages, a file is created called
BASIC.CL containing a relocatable load command line corresponding to the responses
the user gave to the various queries. The user can then issue the command:

@BASIC.CL@ f filename/L }

to load his Extended BASIC system. If "filename/L" option is used a loadmap of
the BASIC system will be appended to file "filename". Alternatively, the user may
issue the following RLDR command line to load his Extended BASIC system. The
RLDR command line format is: ‘

RLDR/N BASIC.SV/S SY || MP60 § RD60 } FTTY} +)
MP26 f RD26 }
MP100 { RD100}

MDSW
MDHW [overlay filenames] BASICA. LB BASICB.LB f SBRTB:} 1t)
MDNO
X MATX
BASIC JYE LB {MATY BASIC . 1B SYS.LB INT)
DMAT ’

1
2
3
4
5)
6

where: Global switch /N should be appended to RLDR; this inhibits a search
of the system library SYS. LB. By default, the search will be
performed. '

The save file to be output is named BASIC. SV, as specified by the
/S local switch.

{ | indicates alternate choices.
f } indicates optional choices.

SY(SY.RB) is the BASIC system configuration module, created by
the user using the BASIC system generation routine, 088-000045.

C-8
(8/74 086~000010-00)

Loading Extended BASIC (Continued)

where:

(Continued)
MP60 and MP26 are the multiplexor handlers as follows:

MP60.RB (089-000123) Multiplexor handler type 4060
MP26. RB(089-000124) Multiplexor handler type 4026

If there are any dial-up lines in the configuration, each
multiplexor handler must be followed by its respective dial-up
line handler:

RD60. RB (089-000125) Dial-up for handler type 4060
RD26. RB (089-000126) Dial-up for handler type 4026

TTY (TTY.RB) (089-000135) must be loaded if the user wishes to
use the teletypewriter as the master console, also the user must
have responded with a Y to query number 8 on page C-5.

MDSW, MDHW, MDNO are alternative multiply/divide
options as follows:

MDSW. RB (089-000127) Software multiply/divide

MDHW. RB (089-000169) Hardware multiply/divide
(SUPERNOVA, NOVA 1200/
1220, 800/820)

MDNO. RB (089-000170) Hardware multiply/divide (NOVA)

The felocatable loader creates an oyerlay file from modules
supplied on tape (088-000089). The module names are:

PRU{>Y(}, OINIT, BYE, OMISC, CALL, ERROR, ERIOI1,
ERIOZ, OFILE, XDCD2, ODIR, OPER, OMAC IMUX

Note: The overlay filenames tape also contains some modules

- for 4100 Multiplexor configurations.

BASICA. LB (099-000044) contains the Extended BASIC compiler
common library; and BASICB. LB (099-000045) contains the
Extended BASIC Interpreter common library.

SBRTB is an optional user-written binary containing any user
subroutines.

C-9

(8/74 086-000010-00)

Loading Extended BASIC (Continued)

The user has the option to load matrix operations or a dummy matrix tape
if no matrix operations are required. The dummy tape is DMAT.RB ‘
(089-000153).

For users requiring matrix operations, the tape to be loaded is dependent
upon whether the configured system contains the hardware floating point
option. For systems with the FP option, use MATY.RB (089-000155); and
for systems without the FP option, use MATX, RB (089-000154).

BASICX. LB (099-000067) is loaded for systems configured without the
hardware floating point option; and BASICY. LB (099-000068) is loaded
for systems which are configured with the FP hardware option.

The Extended BASIC libraries are: »

BASICI1. LB - single-user Extended BASIC - 099-000050

BASIC2. LB - multi-user Extended BASIC - 099-000051

BASIC3. LB - multi-user swapping Extended BASIC - 099-000052 .
BASIC4. LB - single-user, mapping Extended BASIC - 099-000066

BASICS. LB - multi-user, mapping Extended BASIC - 099-000069

BASIC6. LB - multi-user, mapping, swapping, Extended BASIC - 099-000070

SYSTEM DISK FILES AND DIRECTORIES

Disk Directories

There are two types of disk directories, a library directory and a user directory.
The library directory contains a list of all file names which are read-accessible

to all users. The user directory contains a list of all file names created and main-
tained by the user. The files contained within the user directory can be read,
written, deleted, and renamed by the user.

The library directory (BASIC. DR) must always be present as either a subdirectory
or secondary partition. Each user directory also is either a subdirectory or a
secondary partition. After RDOS initialization of the system, the RDOS CLI command:

CDIR name

is used to create a subdirectory called name. The librafy directory (BASIC. DR)
must exist before you can execute BASIC or an error message will occur. }

C-10
(8/74 086-000010-00)

BASIC. ID File

On multi-user Extended BASIC systems, an ASCII disk file called BASIC. ID must be
present, containing the account identification of all system users. Each entry in
the file must be separated from the next by a carriage return.

A user's account identification is written in the ASCII file in the following format:
aaaata...at /dd... df /ssss}

where: aaaa is the user's account identification number (ID).
The four characters must be alphanumeric (A to Z and
0 to 9).

fa... a} an optional password of up to 16 alphanumeric
characters.

/dd ... d is the directory name; the directory must exist
within the system or the user may not sign-on to the
system. Two different users may use the same directory.
The system will not permit a second user to sign on

with an identification number already in use.

f /ssss } is the optional name of a SAVEd program exist-
ing in the library directory. After a successful sign-
on, the SAVEd program will be executed automatically.

When the user is signing on to his system (see Sign-On Procedures, page C - 15)
the proper response to the query ACCOUNT-ID: is represented by aaaaf a...a}.

This will appear as:
ACCOUNT-ID: XXXXXXX

An X will be printed for each character typed for security reasons. For instance,
if the user types 12345ABCD the resultant appearance of the query and response
would be:

ACCOUNT-ID: XXXXXXXXX

The user must sign-on with exactly the same character sequence as the account
identification. For instance, with an account ID of 12AB34CD, a user could not
respond with 1234 ABCD, or ABCDI1234, but must sign on with the proper sequence
of 12AB34CD.

C-11
(8/74 086-000010-00)

BASIC. ID File (Continued)

The system manager can execute a program from the master console which can .
modify the BASIC, ID file while BASIC is running. In order to do this he must sign
onto directory SYS. .

Program Swaps

To describe BASIC program swaps, assume memory to appear as follows:

BASIC

User # 1's program

User's #1's data .

User's #2's program

Users's #2's data

RDOS

C-12

(8/74 086-000010-00)

Program Swaps (Continued)

The two programs, belonging to User 1 and User 2, together fit user core exactly.
Further suppose a program belongs to User 3:

User #3's program

User's #3'5 data

This program is as large as the two current programs. In order for User #3's

. program to be executed, a program swap must occur, The two current programs,
User #1's and User #2's, are swapped out to disk and user #3's program is read in.
Memory now can be represented as:

Swapped Programs ‘Current Memory Representation

User #1's program :
BASIC

User #1's data :
User #3's program

User #2's program v
User #3's-data

. . User #2's data

RDOS

C-13
(8/74 086-000010-00)

Program Swaps (Continued)

Now assume two more programs:

User #4's program

User #4's data

User #5's program
User #5's data R

User #3's program will be swapped out to disk, and user #4's and user #5's programs
will be brought into core. Also User #2's program will be brought back in since

there is room enough for it at this time in core, Memory may then be represented ‘
as:
Swapped Programs Current Memory Representation

User #1's program BASIC

User #1's data ,
User #4's program

User #4's data
User #3's program User #3's program
User #5's data

User #2's program

User #2's data - .

User #3's data

RDOS,

It is important to note that BASIC and RDOS are never swapped, they are fixed

portions of memory. As user #2'S program illustrates, the smaller a program is
the less likely, or the fewer times, it will be swapped. A program, of course, is
never swapped if there is no other non-core-resident program awaiting CPU time.

C-14
(8/74 086-000010~00)

Sign-On/Sign-Off Procedures

Before discussing sign-on procedures, it is necessary to discuss the term master
console. The master console is the teletypewriter which is used to configure the
RDOS system and the BASIC system. In most cases, the master console is
physically the closest teletypewrlter to the system; and it is assigned the lowest

line number.
Y

SYSTIZM Master Teletype- Teletype- loee] Telctvpe-
Console writer writer writer
L 4 % J
, M
referred to as TTY referred to as MUX

All single-user systems, therefore, use the TTY as the master console. Multi-user
systems use the TTY if the TTY was configured as part of the system during the
configuration process; otherwise, the master console is the teletypewriter having
the line number specified during the BSG dialogue (queries 8 and 9 on page C-5).

The sign-on procedure is different depending upon which software system you are
going to use, i.e., whether or not the system is multi-user and which teletype-
writer is to be used as the master console, Look at the chart on page C-16 for

the various sign-on procedures, Note that before signing on to the BASIC system
the library directory (BASIC.DR) and BASIC, ID must exist (refer to pages C-10 and
C-11) for multi-user systems. BASIC.DR musgt exist for single-user systems. An
error message will be printed if the appropriate user-created file(s) is (are) not
present,

In order to kill the BASIC system and return to the CLI (Command Line Interpreter),
it is necessary to issue the system command:*

#KILL

N

The operator command to unlock an escape loop at a user's console logged on under
<account [D>is:

#UESC <account ID>

#KILL and #UESC are console commands which may only be issued from the master
console,

*NOTE: ¥indicates a consle system command, which may only be issued from the
master console.

C-15 -
(8/74 086-000010-00)

MULTI-USER USING TTY AS
MASTER CONSOLE

MULTI-USER USING A MUX
AS MASTER CONSOLE

SING LE -USER
SYSTEM

TTY

MUX

MASTER MUX LINE

IACCOUNTING ?

user responds with
Y or N. Y = write
accounting informa-
tion to an account-
ing file named
BASIC,AF . N=
only write account-
ing information to
terminals.

user responds with
the name of the di-
rectory to be used.
This query is re-
peated until correct
response is given,

ISIGN ON time _da_yli_ne#

System prints sign-
on information.

*(space)

System is ready to
accept instructions,

[DIRECTORY SPECIFIER;

The user is informed
of the system's ready

DGC READY

user presses ESC

ACCOUNT-ID:

user responds with
his account identi-
fication .

This query is re-
peated until correct
response is given.

SIGN ON time date line#

System prints sign-
on information,

*(space)

System is ready to
accept instruction,

status by the message:

OTHER MUX LINE

The user is informed
of the system's ready
status by the message:

DGC READY

user presses ESC
ACCOUNT-ID:

user responds with
his account identi-
fication.

This query is re-
peated until correct
response is given,

SIGN ON time date line4|

System prints sign-
on information.

*(space)

System is ready to
accept instructions.

ACCOUNTING?

user responds with

Y or N."Y = write
accounting informa-
tion to an accounting
file named BASIC. AF,
N = only write ac-
counting information
to terminals,

DIRECTORY SPECIFIER

user responds with
the name of the di-
rectory to be used.
This query is re-
peated until correct
response is given.

SIGN ON time date line#

System prints sign-
on information.

*(space)

System is ready to
accept instructions.

ACCOUNTING?

user responds with
Y or N. Y = write
accounting infor-
mation to an ac-
counting file
named BASICAF.
N = only write ac-
counting infor-
mation to ter-
minals.

DIRECTORY
SPECIFIER:

user responds with
the name of the
directory to be
used. This query
is repeated until
correct response
is given.

SIGN ON time
date line#

System prints
sign-on infor-
mation.

*(space)
System is ready

to accept
instructions.

C-16

(8/74 086-000010-00)

BATCH OPERATION

BATCH is an RDOS program that permits system software to be dedicated to the
processing of a job stream without operator intervention. The BATCH configuration
is single-user; when BASIC is configured for BATCH using BSG, all multi-user
queries are skipped (see page C-4), '

BATCH initiates the execution of one or more job files, making up a job stream.
Each job file is an input file containing one or more user jobs, and each job is
complete with job control commands and optional data sets.

The BATCH commands begin with an exclamation point, The BATCH command to
execute BASIC is !IBASIC, In using BASIC under BATCH, the user writes a series
of BASIC commands as if he were inputting them from the console,

To replace non-BATCH terminal operation with BATCH, the user needs an input file,
an output file, and a log file. The default assignment of the log file is the console
terminal printer; the default assignment of the input and output files (called SYSIN
and SYSOUT respectively) are the card reader and the line printer. The !BASIC
command has a /T switch permitting SYSIN to be read in mark-sense card format
rather than in 80-column punch card format (see Appendix E).

The Extended BASIC user may override the default input and output file assignments
in his BATCH job input file (which may be a disk file), The procedure is described
in the BATCH User's Manual, 093-000087, which the user should consult before
attempting to use BATCH, '

Extended BASIC commands under BATCH must not attempt any input/output to unit
record devices assigned to SYSIN or SYSOUT. For example, the following are
illegal commands while $CDR is defined as SYSIN and $LPT is defined as SYSOUT:
ENTER "$CDR"
LIST "$LPT"

An example of a BATCH job stream containing Extended BASIC commands is given
on the following page.

C-17
(8/74 086-000010-00)

BATCH OPERATION (Continued)

Job Stream Comments -

1JOB BASIC Job identification.,

IDISK

ILIST/E BASIC, - } RDOS commands DISK and LIST.
IBASIC : Execute BASIC,

N No accounting file required.

BASIC Responsento "DIRECTORY SPECIFIER"
SIZE

PAGE = 80

ENTER "FACTOR. SR BASIC commands.

1250PERATOR Illegal command.

LIST ; o
RUN BASIC commands,

1234E66 :

1234 : Input data.

7474

0

SIZE BASIC command.

#KILL Exit BASIC and return to BATCH command mode,
'EOF End of BATCH job file.

Note the use of the command #KILL, In non-BATCH operation, this returns you to the
CLI and in BATCH operation to the BATCH monitor. See page C-15,

C-18

(8/74 086-000010-00)

BASIC. AF FILE

Each time Extended BASIC is initialized the query
ACCOUNTING?

éppears on the master console., The system manager responds "Y' if he wants
accounting information to be recorded. Any other response indicates that accounting
information need not be recorded., When Accounting information is to be recorded
a sequential file, BASIC, AF, is created, if it does not already exist. In any case,
all information written to BASIC. AF is appended to the end of the file, This means
that the file will continue to grow as BASIC log-ons or BYE's are executed, A
system manager should process this file every so often, so as not to allow it to use
up too much disk space. Suggestions on how to do this is given below following the
description of entries in the BASIC, AF file.

An entry is made in BASIC, AF by writing one line of ASCII characters at a time,
Lines of information for various system users can be interleaved, However, each
line of information has a precise meaning and identifies a user uniquely. Therefore
it is easy to fully recover the accounting information stored.

General format of a line in BASIC. AF

SIGN-ON, NN

aaaa mm/dd/yy HH:MM SIGN-OFF, NN |
CPU-USED, t
I/O-USED, s

1

aaaa user Identification number (4 characters) 4 asterisks on master

console (****),

mm = month (e.g., 03)

dd = day (e.g., 23)

yy = year (e.g., 74)

HH = hour of day (24 hour clock)

MM = minute

NN = port number (e.g., 03 - -1 = master console)

= integer number of seconds of CPU time used since the previous
log-on tor this port
s = integer; measure related to amount of I/O performed (No. of RDOS

.SYSTM calls)

‘An example of a segment of a BASIC, AF file follows.

C-19
(8/74 086-000010-00)

BASIC, A" FILE (Continued)

03/15/74 15:53 SIGN-ON, -1
0003 03/15/74 15:57 SIGN-ON, 01
0002 03/15/74 16:05 SIGN-ON, 02
0001 03/15/74 16:35 SIGN-ON, 00
0001 03/15/74 17:55 SIGN-OFF, 00
0001 03/15/74 17:55 CPU-USED, 237
0003 03/15/74 17:55 SIGN-OFF, 01
0001 03/15/74 17:55 I/O-USED, 556
0003 03/15/74 17:55 CPU-USED, 272
0002 03/15/74 17:55 SIGN-OFF, 02
0003 03/15/74 17:55 [/O-USED, 365
0002 03/15/74 17:55 CPU-USED, 40
0002 03/15/74 17:55 [/O-USED, 417
0002 03/15/74 17:56 SIGN-ON, 03
0002 03/15/74 17:56 SIGN-OFF, 03
0002 03/15/74 17:56 CPU-USED, 11
0002 03/15/74 17:36 I/O-USED, 40
o ke 03/15/74 17:56 SIGN-OFF, -1
B 03/15/74 17:56 CPU-USED, 3164
e 03/15/74 17:56 I/O-USED, 1662

Information in the Accounting file can be read by a BASIC program which may be
executed at the master console, Since the Accounting file is opened and closed

for each line of data written to it, a system program can be written which RENAMEs
this file and then opens a (new) file called BASIC.AF., In this way the system
manager can periodically remove old Accounting information for processing, even
while the BASIC system remains operational. Since the information is pure ASCII
text, it is easy to write a BASIC program to process the data. The space delimiter
between each field makes the sub-entries easily accessible.

SUMMARY OF DEDICATED FILE NAMES USED BY BASIC:

Requirement
BASIC, CL} _ Created by system generation '
SY.RB program BSG.SV All systems,
BASIC. SV - System save file All systems.
BASIC,OL - System overlay file ’
BASIC.DR - Library directory All systems.
BASIC. ID - Account Identification file Any M.U. system,
BASIC, AF - Accounting File Option in all systems
BASIC.SW - Swapping File (contiguous) Created by BASIC

initialization for
swapping system

“Asterisks indicates must be set up by system manager
before BASIC can be successfully executed.
C-20
(8/74 086-000010~00)

APPENDIX D

EXTENDED BASIC OPERATION UNDER SOS

INTRODUCTION

A stand-alone version of Extended BASIC is available for use on machines not
having a direct access I/O device. This appendix describes the generation and
operation of such a system. Although these systems differ only slightly from
their RDOS BASIC counterparts, a table of differences is included in this appendix.

Persons concerned with generating non-disk Extended BASIC systems should be
familiar with the operation of the machine and the concepts of the Stand-alone
Operating System (SOS) as described in STAND-ALONE OPERATING SYSTEM
USER'S MANUAL, 093-000062.

STARTER SYSTEM

A small starter system, capable of running in 12K words of core storage is
available. This system is configured at the factory and contains the following
features:

A device driver for the console terminal

A device driver for an 80 column line printer

A device driver for a high speed paper tape reader
A device driver for a high speed paper tape punch
PRINT USING capability

Matrix manipulation routines

N Ul = W N~

This absolute binary (core image) paper tape can be loaded with the Binary Loader,
as described in the appropriate manual, 093-000003. When loading has been
completed, the system will halt. Press CONTINUE, enter the current date and
time, and the system is ready to accept input.

BUILDING EXTENDED BASIC

For machines having at least 16K words of storage, Extended BASIC may be
tailored to support a number of different hardware configurations. The process of
configuring a system consists of the following:

1. Producing a trigger which specifies the desired I/O support and
program features.

D-1 Oct. 1974

BUILDING EXTENDED BASIC (Continued)

2. Performing a relocatable load of the trigger, the appropriate SOS
libraries and the BASIC libraries and relocatable binaries.

3. Performing a run-time system generation to further tailor the
system.

CREATING A TRIGGER

Triggers are produced by the SOS SYSGEN program. This program accepts a
command line which contains device driver ENTRY symbols from the console
device. It outputs a relocatable binary file (the trigger) which is comprised of
EXTERNAL NORMAL symbols corresponding to the named device drivers. These
EXTERNAL NORMALs cause the selection or 'triggering' of the desired routines
for loading when the trigger precedes the SOS libraries as input to the relocatable
loader.

The first step to create a trigger is to load a‘nd start the SYSGEN program. This
can be done by using the binary loader to load an absolute binary SYSGEN paper
tape (091-000070, 091-000071, 091-000074). SYSGEN can be loaded from
cassette or magnetic tape using the Core Image Loader/Writer.

When the SYSGEN program is started, it outputs the prompt:
SYSG !
and waits for a command line response. The command line has the format:

(SYSG) driver ...drivern .RDSI output-device/O BTRIG/T

1
where:
driver1 cos drivern is a list of entry symbols in the desired device
driver routines. Table D-1 lists all possible symbols.
output -device is the name of the device to which the trigger is to be
output. This name must be followed by the "/O" switch.
BTRIG/T assigns the title BTRIG to the trigger.

D-2 ~ Oct. 1974

Table D-1 Driver Entry Symbols for SYSGEN Command Line

Driver SOS

Entry Program

Symbol Name Function

.CDRD CDRDR card reader driver (includes mark sense)
.CTAD CTADR cassette driver for unit O

.CTU1 CTU1 control table/buffer for cassette units 0-1
.CTU7 CTu7 control table/buffer for cassette units 0-7
.L132 LP132 132 column line printer driver

.LPTD LPTDR 80 column line printer driver

.MTAD MTADR magnetic tape driver for unit O

.MTU1 MTU1 control table/buffer for magnetic tape units 0-1
. MTU7 ' MTU7 control table/buffer for magnetic tape units 0-7
.PLTD PLTDR plotter driver (access via CALL)

.PTPD PTPDR high speed paper tape punch driver

. PTRD PTRDR high speed paper tape reader driver

LTTI TTY1 second console teletype (TTI1, TTOIl)

D-3 Oct. 1974

CREATING A TRIGGER (Continued)

For example, to produce a trigger for the following devices

paper tape reader
paper tape punch

132 column line printer
mark sense card reader

one would respond to the SYSG prompt with -

.PTRD .PTPD .L132 .CDRD .RDSI $PTP/O BTRIG/T)

PERFORMING A RELOCATABLE LOAD (PAPER TAPE)

Once a trigger has been created and saved on an external device, the following steps .
must be followed to produce an absolute binary tape.

1.

Using the Binary Loader, load the Extended Relocatable Loader,
091-000038.

Mount the trigger in the Teletype ® * reader and type 1 or, in the
high speed reader, type 2.

Set the switch register to 1§@@, Type in 3.

If the trigger specifies support for cassette or magnetic tape drivers,
mount either the SOS Cassette Library (099-000041) or the SOS Magnetic
Tape Library (099-000042) in the Teletype reader and type 1, or in the
high speed reader and type 2.

Mount the SOS Library (099-000010) in the Teletype reader and type 1, or
in the high speed reader, type 2. .

Mount the relocatable binaries and libraries in the order shown in
Table D-2 in the Teletype reader and type 1, or in the high speed reader,

type 2.

*Teletype is a registered trademark of Teletype Corporation, Skokie, Illinois.

D-4 Oct. 1974

Tape Name

MP.RB
MP26. RB
MP60. RB
MDSW. RB
MDHW. RB

MDNO. RB

MSCR. RB
BASICA. LB
BASICB. LB
SBRTB. RB
MAT.RB
PRU.RB
BASIC7. LB
BASICS. LB

Supplied As

089-000137
089-000141
089-000140
089-000156
089-000157

089-000158

089-000
099-000046
099-000047
user -written
089-000138
089-000139
099-00004 8
099-000049

Purpose

driver for system console

driver for system console and 4026 multiplexer
driver for system console and 4060 multiplexer
standard multiply/divide routines (all machines)
multiply/divide routines for machines having
options 8007, 8107, 8207, 8307

multiple /divide routines for machines having
option 4031

translator for mark sense card (N96829)
compiler routines

interpreter routines

CALL resolutions (see Appendix B)

routines to perform matrix functions

routines to perform PRINT USING functions
single user library

multi -user library

Table D-2 Extended BASIC Supplied Paper Tapes

Comment

Choose One

Choose One

May be omitted

Required
Required

May be omitted
May be omitted
May be omitted

Choose One

Oct. 1974

PERFORMING A RELOCATABLE LOAD (PAPER TAPE) -

6. Type 5 and note the value of NMAX output by the relocatable loader on the
Teletype; this number will be used in step 12.

7. Mount the relocatable binary punch program (089-000080) on the Teletype
reader and type 1, or on the high speed paper tape reader and type 2.

8. Type 6 and note the value of RBFP output by the relocatable loader on the
Teletype; this number will be used in step 10.

9. Type 8 to terminate the loading process. -

10. Enter RBFP (from step 8 into the data switches on the computer console,
press RESET then START.

11. Type OH for output on the Teletype punch or 1H for output on the high
speed punch.

12, Type 1, nmaxP where nmax is the value of NMAX noted in step 6.
13. Type 377E, to specify a starting address for the program.

The paper tape output from this procedure can now be loaded by using the
binary loader.

PERFORMING A RELOCATABLE LOAD (MAGNETIC TAPE OR CASSETTE)

SOS users with a magnetic tape or cassette may create a SAVE BASIC

file by using the SOS CLI command RLDR (see SOS User's Manual, Chapter 3).
The order of input of the relocatable binaries is the same as for paper tapes. The
tape file number for each binary can be found on the keysheet supplied with each
system.

D-6 Oct. 1974

PERFORMING A RELOCATABLE LOAD (RDOS SYSTEMS)

The entire BASIC system can be built on RDOS disk-based systems and subsequently
transferred to non-disk systems by following this procedure:

1. Create a trigger source file:
XFER/A $TTI BTRIG.SR

.TITLE BTRIG
.COMM TASK, O
. EXTN .RDSI

. EXTN device

. ;SOS device drivers from Table D-1
.END
+7

N

Assemble the trigger:

MAC BTRIG

3. Transfer the relocatable binaries from tépe to disk:
XFER $PTR SOS.LB

XFER MTO0:0 SOS.LB

4. Perform a relocatable load:

RLDR/Z/N $LPT/L BASIC/S BTRIG 1000/N t)

SOSMT. LB SOSCT.LB SOS.LB*)
MP60 MSCR MDSW BASICA.LB BASICB.LB MAT PRU BASICS.LB)

5. Test the resultant system:

BOOT BASIC

Note: RDOS must be re-initialized after this test.

6. Make a core image file for loading on the machine without a disk:

MKABS/Z/S BASIC $PTP

D-7 Oct. 1974

SYSTEM DIALOGUE

Once the core image file has been created and loaded, BASIC starts automatically
and identifies itself:

BASIC REVISION X.X MM/DD/YY
where:

X. X represents the revision level and should be noted on all corre-
spondence with DGC,

MM/DD/YY represents the date that system testing at the factory
was completed.

At this point, a single error message may occur:
INCOMPATIBLE OPERATING SYSTEM
signifying that the SOS. LB is Revision § or earlier.

It is possible to configure several different BASIC systems and to save each one
on an external medium such as paper tape. The configuration process is termed
BASIC SYSGEN and is described in the following paragraphs.

SYSGEN restart may be accomplished by pressing the ESC key at any time.
LINE CONFIGURATION: (multi-user systems only)

Required response is a list of terminal line numbers, a range of terminal line
numbers or both. The 4026 multiplexer is capable of addressing 16 lines (0-15)
and the 4060 multiplexer can have a maximum 32 lines (0-31). The maximum
number of working terminals which can be serviced by Extended BASIC is 33 (32
multiplexer lines and a system console). Line numbers may be individually
separated by commas and ranges specified by a dash:

0,1,2,4 - lines 0, 1, 2 and 4
3-7, 10, 12-13, 17 - lines 3, 4, 5, 6, 7, 10, 12, 13 and 17
0-31 - lines O through 31 inclusive

DIAL-UP LINE CONFIGURATION: (multi-user systems only)

Required response is in the same format as described above. Dial-up lines
must be a subset of those specified in the preceding example. (A carriage return
specifies no dial-up lines.)

RESERVED FILE NAMES:

D-8 Oct. 1974

. Reserved File

Name Device
$CDR [mark sense] card reader
CTO: ‘ cassette unit 0
CT1: cassette unit 1
CT2: cassette unit 2
CT3: cassette unit 3
CT4. cassette unit 4
_ CT5: cassette unit 5
CTé6: cassette unit 6
CT7: cassette unit 7
- $LPT line printer
MTO: magnetic tape unit 0
MT1: magnetic tape unit 1
MT2: magnetic tape unit 2
. MT3: magnetic tape unit 3
MT4: magnetic tape unit 4
MT5: magnetic tape unit 5
MT6: magnetic tape unit 6
MT7: magnetic tape unit 7
$PLT plotter
$PTP paper tape punch
$PTR paper tape reader
TTI1 secondrTeletype keyboard
TTO1 second Teletype printer
‘ Table D-3 Reserved File Names
D-9 Oct. 1974

SYSTEM DIALOGUE (Continued)

Required response is a list of reserved file names taken from table D-3. In order
to later access any device in the list, be sure that the appropriate driver was
included in the trigger, BTRIG.RB. The list is terminated with a carriage return.

Note that $TTI, $TTO, $TTR and $TTP are not in the list. These devices may be
accessed by the ENTER, LIST, PUNCH, PRINT and INPUT keyboard commands.

ERROR MESSAGE TEXT?

Responses include Y (YES), carriage return (YES) or anything else (NO). A'Y
response will cause a brief description of the error to be appended to each error .
message.

BASIC SYSGEN is now complete and the machine will halt. The entire configured
system may be saved by invoking the Relocatable Binary Punch program, RBFP.
Locate the symbol RBFP on the load map, enter the corresponding address in the
console switches and press RESET and START. Otherwise, press CONTINUE.

DATE AND TIME

The system operator must now enter the date:
DATE: MM-DD-YY
and the time:

TIME: HH:MM

in 24 hour notation.

SIGN-ON

The system console is now activated:

10/01/74 15:33 SIGN-ON, SC

*

D-10 Oct. 1974

SYSTEM DIALOGUE (Continued)

The system now attempt to allocate a minimum portion of 1024 bytes for each user.
An error message,

NO CORE

indicates that insufficient storage is available. A new system must be generated
with either fewer users, fewer features or both. The multiplexer terminals may
be activated by pressing the ESC key once: '

10/01/74 15:34 SIGN-ON, 0

RESTART

The system may be stopped at any time and restarted at location 377. A NEW is
automatically performed for each user.

POWER FAIL/AUTO RESTART

For machines equipped with this optional feature, system status is preserved upon
detection of a power failure and the system comes to an orderly halt. When power
is restored, the system will restart if the power switch on the console is in the
LOCK position. If not, the system must be manually restarted at location 0.

All user files will then be closed and each user must press ESC to activate his
terminal.

POWER FAIL [AT nnnn]

will then be printed at each terminal, where nnnn is the statement which was being
executed when the power failure occurred. User programs remain intact.

D-11 Oct. 1974

Table D-4
Error Messages Initiated by BASIC

Code Meaning Comment
e INCOMPATIBLE OPERATING SYSTEM “use SOS rev 9

—_— NO CORE

00 ARITHMETIC OPERATORS IN ILLEGAL COMBINATION
01 INVALID CHARACTER

{system too large
for-available core

02 SYNTAX

03 [MAT] READ/DATA TYPES INCONSISTENT

04 INTERNAL SYSTEM FAULT

05 INVALID STATEMENT NUMBER

06 ATTEMPT TO DEFINE MORE THAN 93 VARIABLES
07 ILLEGAL COMMAND (FROM A FILE)

08 PAGE OR TAB SPECIFICATION ILLEGAL

09 ILLEGAL RESERVED FILE NAME

10 RESERVED FILE IN USE

11 PARENTHESES NOT PAIRED

12 ILLEGAL COMMAND

13 STATEMENT NUMBER MISSING

14 INSUFFICIENT STORAGE TO ENTER STATEMENT
15 UNSATISFIED [MAT] READ

16 ARITHMETIC OVERFLOW, UNDERFLOW OR DIVIDE BY ZERO
17 UNDEFINED VARIABLE

18 GOSUB NESTING LIMIT

19 RETURN - NO GOSUB

20 FOR NESTING LIMIT

21 FOR - NO NEXT

22 NEXT - NO FOR

23 INSUFFICIENT STORAGE FOR A VARIABLE OR AN ARRAY
24 LINE NUMBER MISSING

25 MAT OR PRU NOT IN SYSTEM

26 INSUFFICIENT STORAGE TO LOAD SAVE FILE
27 INVALID FILE REFERENCE

28 ARRAY EXCEEDS INITIAL DIMENSION

29 EXPRESSION TOO COMPLEX FOR EVALUATION
30 INVALID FILE MODE

31 SUBSCRIPT EXCEEDS DIMENSION

32 UNDEFINED USER FUNCTION

33 FUNCTION NESTING LIMIT

34 FUNCTION ARGUMENT

35 ILLEGAL EDIT MASK

36 PRINT LINE GREATER THAN PAGE WIDTH

37 USER SUBROUTINE (SBRTB) NOT FOUND

38 UNDIMENSIONED STRING

39 REDUNDANT MATRIX SPECIFICATION

40 MATRICES UNEQUAL SIZES

41 MATRIX HAS ONLY ONE DIMENSION

42 FILE ALREADY OPENED

43 MATRIX NOT SQUARE

44 FILE NOT OPEN

45 NOT A SAVE FILE

46 INCORRECT RESPONSE TO [MAT] INPUT

47 FILE OPENED IN WRONG MODE

D-12 Oct. 1974

00
01
02
03
06
07
08
10
13
17
18
20
22
24
25
30
33

37

Table D-5 Error Messages Initiated by SOS

ILLEGAL CHANNEL

ILLEGAL FILE NAME

ILLEGAL SYSTEM COMMAND
ILLEGAL COMMAND FOR DEVICE
END OF FILE

READ-PROTECTED FILE
WRITE-PROTECTED FILE
NON-EXISTENT FILE

FILE NOT OPEN

CHANNEL IN USE

RECORD SIZE EXCEEDED
PARITY

STORAGE ALLOCATION

FILE DATA CHECK

UNIT IMPROPERLY SELECTED
ILLEGAL DPEVICE CODE
ILLEGAL TIME OR DATE
INTERRUPT DEVICE CODE IN USE

D-13

Oct. 1974

Table D=6 Differences Between RDOS BASIC and SOS BASIC

SOS Extended BASIC

- has no MMPU support

- has no FPU support

- has no disk support (swapping, accounting, BATCH, etc.)

- requires that the system console be assigned to the same Teletype as
the SOS CLI console.

- has no account names

- refers to system console line number as 'SC’ in sign-on and sign-off
messages

- hasno LIBRARY, FILES or WHATS commands

- needs no record delimiter other than CR on Teletype paper tapes

- supports power fail on multi-user systems

- has manual restart capability

- does not print 'DGC READY ' at each terminal on start-up

- has a time slice of 16/100 seconds (16/110 for 4026 systems)

- needs no real time clock for 4026 systems

- runs real time clock at 100 hertz

- prints optional error message text

- has no SYS(9) or SYS(10)

- has no ON ERR THEN INIT

- has different error codes

D-14 | Oct. 1974

Table D-7 BASIC Core Requirements in Bytes

REQUIRED COMPONENTS

SOS NUCLEUS (SOS. LB WITH $PTR, $PTP, $LPT) 4846
SYSTEM STORAGE 512
BASIC NUCLEUS (BASICA. LB, BASICB. LB) 13548

INTERACTIVE DRIVERS

SINGLE USER (BASIC7. LB, MP. RB) 3594
4060 MULTI-USER (BASICS. LB, MP60. RB) 3642
4026 MULTI-USER (BASICS8. LB, MP26. RB) 3694
USER TABLES (ONE REQUIRED FOR EACH USER) 204
\

MULTIPLE/DIVIDE ROUTINES

STANDARD (MDSW. RB) 54
8007, 8107, 8207, 8307 HARDWARE (MDHW. RB) 12
4031 HARDWARE (MDNO. RB) 36

OPTIONAL COMPONENTS

SOS MAGNETIC TAPE DRIVER (SOSMT. LB) 5170
SOS CASSETTE TAPE DRIVER (SOSCT. LB) 5170
MARK SENSE CARD TRANSLATOR (MSCR. RB) 550
MATRIX MANIPULATOR (MAT. RB) 1550
PRINT USING ROUTINES (PRU, RB) 978

USER-WRITTEN SUBROUTINES (SBRTB. RB) ---

D-15

APPENDIX E
PROGRAMMING ON MARK-SENSE CARDS
Source programs may be written on Data General's Extended BASIC mark-sense pro-

gramming cards for input to the mark sense card reader. The Data General Extended
- BASIC mark-sense programming card is a 37-column card as shown below.

i / L STAT EVENT L . _FORMuLA '"” - T \
remen [€1 [T e %f I A O A A R
"“”i“ b jﬁNP“T: e | 1-]] el] Rﬂ DOsh 0N 30 ;:f;mw

o “f‘““wm D”Ai.? IRIN | I [i SEEENEERRRRRRREE

babdhe o on | 10T 0000 00D no00000002

U9 4] 3l e [o]) 1) P00 o0 ey 00000« 0000000

folldp Q]| 000000 Dm0 Q0D D0eD000l 0t
5308 5l [fouw 1 O R
PGB8 S0P N NI A 1 s VR G G
BN T I DU Y 10 1 T I | &
T L O Y & i B BB HERT BCRTHE L LR R
N T o I N o | -
L1011 iy |['|ﬂ lﬂ IU |J |U IUID lﬂlﬂlulnlﬂlﬂlﬂlﬂlﬂl&ij L/

A stack of mark-sense cards may be read as a file and requires an EOF card at the
end, which is a card with a single column in which all rows are marked. When in

. Batch mode, entire jobs may be entered from the card reader. Such card decks
must conform to the Batch job control formats. Keyboard commands are suitable
card input in Batch mode only. '

The mark-sense reader has an option that permits either markings or punches to be
read. Users having the option may punch mark-sense cards. Marked and punched

cards may be intermixed in a deck and a single card may contain both markings and
punches. -

The BASIC statement field of the mark-sense card, as shown above, is three columns
which allows all possible combinations of statement keywords. For example, MAT
appears in the first column of the field, WRITE in the second, and FILE in the third,
permitting the user to indicate a MAT WRITE FILE statement.

A single Extended BASIC statement or part of a statement may be written on a single
card. Cards are marked with No. 2 pencil in the appropriate column; for example,
the statement 450 DATA 4.2, 7.5, 1, -1, +5 would appear as:

STATE M NT FORMULA r :'
swiewgse (1PN UalNG‘ I B R i; T) I A O O O E e

oo _ f;_ o] 1] | | ! EERERERERRD
Ol e] ARRREERERRNRREREA
o) o)] 1) O A
U o e [pus] | [EARUNE RN R RERE
Qoo olpr Qpwec])) ERERLEEREREEE R
”Jl ! EERRRUNNRARENRRNEILY
I T L A O R
’5 L O R R -
NP N LT UE UL UL SEHE L BEUIRN NP
L 91 L d L I[Jl]lﬂlﬂlul l]IHIBIJIDIUIDIUIUIUIE?I L/

N96930 N36829

e lp J
450 DATA 4.2, 7.5, 1, -1, +5
space
(optional)

Part of a statement may be written on one card and continued on the next by marking
the CONT box in the upper righthand corner of the first card and continuing the statement
on the card following beginning with the FORMULA section.

When writing an IF or an ON statement, the programmer writes one card containing
the IF or ON expression and marks the THEN box in the upper righthand corner of
card. The programmer continues the THEN clause on the next card beginning in
the FORMULA section.

The FORMULA section of each card must be filled out in Hollerith code, and pro-
grammers familiar with punched cards will have no difficulty with the format, To
assist any programmers who are not familiar with punched cards, each card contains
a key indicating the lines that must be marked for each character. For each char-
acter, a box on the horizontal line on which the character appears must be marked.

In additior, in the horizontal lines immediately below the character, a line must be
marked if a square appears on the lefthand side. If we use punched card notation,

the top line is designated 12, the second from the top is designated 11, and the other

E-2

X * LOG(X)

25 NEXTX

S5 FORX=.1TO.005STEP -0.01

15 X

——= “aﬂu -— CD D CT O T
SO CInNED D €D € e 5 <
CoTD D e O € € 0 € e

CD S ST S o €T T
CITITe ST o S T Tr €k
A COUOCITIT ID €T € e
- T € G D U3 e
T e OO
€ QI OIS0 G sl

CTTRNCITD I €T T 4T

enp |

STATEMENT
PRINT ¢ JUSING

Y

weur | fene |-l
" WRITE

DATA 1

As a further example of use of mark-sense cards, the following source code is shown

lines are numbered from O through 9. To indicate 4, put a mark on line 4; to indicate
on cards:

*, put marks on lines 11-4-8; to indicate #, put marks on lines 3-8, etc.

/

v
i)

);;

=
pew
= a-
(=]
L R o T | — >
— |l 2 _oMm o
L [y L
- < oach— m b
R PeNLITTE 4 e €.
= — o~ <
= o= Lot R v } [}
o — ~
=2 |
= = H T € L ¥
2] il
[s
-

o ¢) 0 o5 Reap”

3} 3] 3] 3 uext 1 Joose
sl 57 o) of jon [{oean”

2; 2]

) B
o
bo. ° v’

Hce it PO
T T
111

prey
—
i s——

f — =
E 2 TVH3IN3IO Viva
< =
- P 2261 '29Q (0) LHOIMAJOD
Lt R S SRR €T - € T TS T T
= —_— o~ ~ =+ [=3 oD e
SIIUD MIIIN I D e O 3 T O T e O
-
CT D IR D €D D o € o 3 T
—
CUTe LT RN D € O D C D D T Ty
= mm -
TR ST IR € €O €O O D O €T D
- -
T D DR T D D o D D D D
- - -
CTD CoD & DR D C) CO C D O D D
- -
CIO D DR D D C D C O C o €D D
- -
CT D DD €O C O C O o OO OO D o
3 - -—
CD CR D CR CD D o oy 0 O
- ~ - —
D o e Y D D D e D O
-+ .- A~ - —
T D e RCD P D D D o T
= = - —
- T Co D Co el C O O OO T aEmmm D
~ -
A O CCr D € 3 o €O 95 T 5
J . —
U CoO eEEEp C— D o CoO C O T D ¢ > — >
s = - —
Rﬁ!l.]l.”“.nﬂ..”.ﬂ.”..“-.”v'ﬂlbl.lﬂu
O - D CORCD O CO O ER OO O o fl.llllvl
W
[g 4 T O Ty D 0D € €7 OTID T
~ -

¥

oo
WAy

9y 9, 4 9

SFORX=.1TO.005STEP -0.01

. ®

THEN

62896N OEB9EN
IvHaN3o viva 4 v A

22461 '090 () LHONAL0D

L Lle WUle ST AT €I € L w— S St S —
= p— [3¥] ~ < wd o — <O <S> e
TR IR ST AT €T D € 6 O 3 D
——
S S wae N mownen I { munms B s B svwos B w— 1 U [S s— Y s— Y —)
T L SR D O D D D Ty oy Ty
) =]
Ji Lbusins S a1 s s— O s— A svnon Y o WY —" G aowe S S S —"
" -
T €T ST 0 €0 €D € o D DD T
S
=N
T DI O D o € € O 4 €0 D
® -
I D R €D D D O) D D D>

TR IO T D O o 0 > D T
e

Lot Y s | |

* (]
L

O OO T N

CIoT AT CIDRETD D D D D € D EID e
- - b [}
T €I CUIDHCD D € D €T £ D o D
+ e - [
oD O o D D D D D o T
paws = . —
M .. -l
C D oM e D D D Y T D e
~ ok SR] - -
A C e € CT " -2 €O € € &5 T €T I
| DY - -]
Do 00 =i 0 €0 € € & o ¢ =
— —
> — - o
R.UU“M.“DUUU.H-.U.HJ[.“
O 0 O R 0 o € € — D €D D o
T T 2 e T D 0D TR 0TI 650 T e
— o ~ —
-a
DY T T D T 0 T T T LT ST
x= =] > - —
LTI G I D D O ey e vy Gy e)
(-] a- >< - —
§
CI O G YT o T €T O -— . »
[(= = - —
W TR ST T ST S T . .
(] = = l —
W TR e s T e W L} S »
=) = oD —
WIITTe SEEEE T T I T T @00 AN -
> —t — —
< [
e Gy T e e D 2 .
: —
[ae] R o]
CTITe e ¢ T €T €T o e g -_— T
=< — poy —
IS VT e MM TAINT &I €I T UUs - - L o 3
—
| e viwpiet I T e €T Lnsigest J T - T
- ' = — o~ ~ <r uw> o —~ . o> —
[& - T O s oo VL e roe iy
—
T .1 —
ooy e fere e [y Dot S Doty . oo o
P = em—
= [FUR R = | o= ~- | =2
=3 == = v 3 R
Z| > o (o) = — B |Cyn e—
b o .
S o e e P L ¥ PRt P PERN
e —— .. [y o] = s —
= =) 2 =< = [%] = = — P
= = & jor o 3 = = S
o= = [} = ao o = L e L
e = [== (=]} < (=3 = (=} [y RKQW#H S, O, e
] e) = Py DUy PRy R N
' = |3 = — o | ~
s— = @D 'l oz >< b= [= |z
- = dd =3 e = ¥ ' = B
(R8sl Ble [EiF |2 E]FE —
. . e LI CEI e 770 eEmmEw 0T e LR -
T (=1 - g ~ 4 w 3 oy —
(==
E e ‘ B TR R R s T e e S ot LN T e |
= =1 - o ~ < s} [7=) ~ A —
=z A eRETe T IR §TTTR aITUTe & . Py
% = o] ~ - [V [y oy
e ©e WNITY U €T E P et
< — o ~ < w o - S

X * LOG(X)

15 X

® .

62996N OS895N

\ =
= £ vyaN3o viva h 'U
R x
. e 2261 ‘090 {J) LHOGAdOD
. Aoe T eI REIIT 4T ST 0T T w0
3 = — o~y ~ - el =] ,_‘U 9 a—
,w AT WIITT DRI € €003 € € 3 T £ e
——
e TR SIIDRTTD €5 2 L € € € D >
——
CUTDI I SR €D € €0 D D D) £y Ty
= - —
TR I ST D D D D D o T
H L
-
TR ST ETDEE Y D D D O €D T €50 D
= - b
CIT I TR T D D D D D D €T €
® - -
g €T ST CCDREC D D D) €D D o D
* [] -
I I COORC D O €O O C CD T D D
. -
I ST R D D D D € €y Ty T
- - = - am -
T D CTOMC D O O € O 66 o i €
+ A - - -
C s C D €0 €50 €O € €3 €—» «—
~ 4 [- -
CIie &7 €330 €O € O CCo o i
~ A [] []
CTTY T | S—
-

I
!

lll.
—
—
CTTe T RO O £ €D o € O
—
oy TR ORI D D D O CTD 3
—
CLIT T O T €0 0T CIF S0TT €SI SR eTTTe
= = T~ -
oD SO CSD 0D £ €003 €0 €03 €03 eIl ¢ T ST
x= =1 > 18 -
€I 0D EIDaLTT o € €00 € T ©0 s - . liTe
& a- > - —
T o TR ATTD € €T €T O Nne
[f=) = - —
OO T DT T T £ § D T 4l e s . .
[} = = - S|
I § e ST ITeSEIR T €IS €T ST e R .
(=] = = - —
LTI €T «TImOETID €T €00 £ € PR .
> —t —
= [
STITe 4TTIZ 4TTTeNeTTIID OOID €17 6D Ea— >
== 3 (%2 - —
ST €INUTe ST ST €ITD £ €T e R . B oot }
< R <~ =m —
U €T ETTTHROTTI 0TI CT—s €T B . s
=
I STITY OIS T ST T o I e s s
- | = —_ o~ ~ = w> @ ~ o —
TS €T R <dTITN €CIITd LU el T . - o ..
B —
a T T
T e T e i) D e 3 At €l 3 ERANEPY PR ?
= (= = = = z
[l B S S o | e =13
Z| 3D ey ! = - [CF |
w = - ;
| S oo ere o eermn o oo feriia feunme fe L
Wy = = = s = | B | & =! 5!, —
—| = = << — fow] =5 — <C —y <+
g = =S] <T a- = (== x T | . .
={as = == (=3 (=3 (=] = [S lames T =
e
L IR D R P oteia) ek 3 Pl PR Py B Vieo
o [ERE—
- = = = = = a5 |
- : - =
o =y S D S [} . == 2 fww} = ZF
—J <o <D [= e < 122 ot D | TE e
L IIr eI €TTh €T S TR T S o e
= = —_ ~J o < [re) =} ~— ES 5y —
w
= 4 € TenETITY G €707 CIITM 600D 47 4l . yoeT
- =) o~y ~ -r u o ~) oy ve—
T =
vrcm = .) ITR €I I STIID 4TI el e "8
175 = — o~ ~ < w = o -
e STIT DI 6IIe ETITe LTI oy
= — o ~ Loy w @ © \U\-ll

/

25 NEXTX

E-4

Following is a card showing the statement:

10 OPEN FILE [1,3] 'FNAME"

62898N ‘ocassN

e =
\4 z ouanas viva d v)
= =
S oowid 2.6 ‘090 (D) LHOMALOD
- - TTTe SOTTT TTT C E a3 TLT3
= — oo ~ = w o =
i Th CIImReTT T 3 € O T oo T
———
p— D ST CO O O e T3 e T
—
I DI D D D € o o T T
o = - —
SO TR Y £ €0 D 0 e D
u - -
Comh ST AT D £ O D D O €5
- - -
T O DT O D D D D D e D
® - -
D T DD O CD D O O D D D
* - -
S T T D D D D O D e
I —
oA ST ETORECTT O € €3 o 0 o3 o o0
e - . -
C T OO T D € P € o LT e
o~ - - -
T T O RETT €5 D €D D D o T D
=~ - ¢ - -
T G CTr AT o D D T o o e
~ ES 32 - —
< O e TSN e D £ S o O WD
J4 0 e - ns - -
Dt e e e D D o D o e e
>S5 = - 7 - ma -
Z
RNH.JQ.,BDUDUUH.JJU
Qe e s 9 00 69 5 5 = —> —
CTTD €T ST T D € D o v e SR
— (= ~ I —
— T ORI O € € @My D €T v ST
ES] =] > [—
CT M ST T TN O € emme T e ST 4TI)
[y a- > - —
- T T TS CST3 O € S €T 4 s -
[y =) = [—
o B T T T e £ W T ST . »
fren = = - —
R I $TUTeSSITR ST £ ST €T e S . .
(= = =] —-—
e TR UTIRTETI LT ATITR ST TR & ammgs e .
.2 ——d — l —
ST §ITI emme TS G YT TTe 0T & . . — o
=) = (%) - -—
eI T S Ta Il €I emmee oD T e e S eI
-< - -~ - —
CrmTe W0 ek SE€TTD €T GEMEM O 6 T -— =
-—
COID T O e S D T T C e et s T
s l = — o ~ < - « - S vy —
amma, s T €TV eCTUTI G CTITIe T 6 s e emme o3
—
! 1 T H—
T | e el eI eI [T o e S PO PR
2 | 5=
= L =) = = =
=135 = = T o 35
Z = [re) = o3 L e | B em
Py - L=
S e eT e e S T e | e e e T . - -
Wiz mslejlx<i=B3 =125 -
i I2IS|2|E]3|g I :
= £ Lad S, e
g Tl |l slosle |l = |58 Ee ny | —
i o she e e eler ez e fe S s CRC
[= =3 —
) - = =1 — a.
Do = [V [==S -~ >< - = b A
bl > D T S wd = ¥ \ A o
<5 s |ae—) & = = = ~ o 50
. WM - TTe €37 EITD SIUTR EIIIe G0 e s oo
Fad = — o ~ <t el <« — - oy w—
~
= e mEm €TTT €03 €SN oo TR []
(] IM) —_— o~ ~ <t (723 &> ; - 5
= =
= = SILOTeNEITTR CITD £T0Tr T 40T e o
o (=] -_— o ~ < = - —
£0RLEITTe e €I €I OO T [t
= — oy ~ < u o - oy

Following is an end-of-file card with all rows of column 5 marked.

i
| THEN

mAmwmz Oﬂﬂwmz
IAVH3IN3O viva
2161 '090 (D) LHOMAOD

nvd

P eIl SILIBOIIIR €3 €D € T oD «
= — ~ v o o~ 5" o
. TR T D £ 6 6 E5 == e=
- T OISO € € oD €= o e
- TN IR AETT €0 650D € € £ o £
= - —
O CIID TR RCIT oD D 3 D T o 3)
i -
ST D o RCT E ED E E C C
- - -
DD D D D D D D 2 D
@ - -
I TR D CD O € D € D
* - -
CIT O CIDECTD D O D D O D o
-
Co D TR £ €D €53 € €0 O € o
- - © - w. -
C oD O €D D O € €0 £ e
-+ .~ - - -
CTD eI CTTIACTTY € €0 €0 €T o o T e
= = }
- []
O I AT £ €D € o o € oo
* S - -
Los o vz = 5 0= = o o o —
4 e - - -
D i i v R RETS €T €00 €0 8 T €5 oo e
g T TR IR ETD £ 6D 60 £ o0 e
Otz i vivrinms o D =5 e = > o= —
P e S S T OIS o3 £ €3 €0 €T €L00 oo
ooy = ~ - onang
ST WITIC €T TR EEIUTI £ €0 €3 €3 T £ €T i
x= =4 > . —
Sl T EI_TeneTT DT Ok 0 €T T LT S e T
< al < - —
ST €T OB SITT O €0D s 60703 £5.Th £ Lls £ v
[< = - —
T NI TTTReLTTR e ST ETTTh €T 9T e e . -
(=) = = ' J
NI et e e Tave T a ST ST T e . .
(=Y = = - —
T CITD ST UEIID T €00 D €T 0T s .
(=) o — - —
SIS o CITmoe T OITD 0 S eTe 8 . 3
= = %) - —
COTTIe WTTTTR WTTUTew TR &0 s €ITIe €L € . . =
< T T e —
e e aLT s Tl e €T T €2 . < . —_
oy
o O CTIn O e e o e STTT TR T
-5 i = —_— o~ ~ =2 w> =} ~ = o> =
oo e AL A B o LR R pu T €. . * .
—
T —
Dt 3 RS DR RS o oee o fes e . N
w
SElgle =lzl=13
z S = | & = Do x -
W T Lo S
Sieoslennle cemsalams e e for e . [N
- i
Wi b g < = = = =t ! -
LElZ 2IS|E|IE|IE|E| 2 Bz
[-—d iedpmn
.AINIDI = =) f=] > = =Y 3 QuUu_rﬂxnw. v w—
T , oS e
w sl e e e e s e e e We L SN
o
= =1 _ = — a m i -
. = I3 >< = - bz
Gl oy LB 1S s ["~ = = oy =, i
| S | E e & = p—y S oo =15 E A —
€ PaelTIn SINe €T €TT® CITTe 0TI 6Ty
P = — o ~ - u < ~ s - L
w =
= W €LV €IS €I €T €I T O 600) eoTa
L = - — o~ ~o < u w ~— kS oy —
: S
= = €T Tes eI OUTIN €T3 T TR SITE 4T 40 Th oamnTa
w - — o~ ~ L= w> w ~— o o —
CRES ANEy | TS SEEr GEE GEED SIED SIS I A e T
=) —_— o ~ < w2 [¥=] r~ @ =

L1411

E-5

APPENDIX F
DOUBLE PRECISION FLOATING POINT REPRESENTATION

Nova systems having a Floating Point Unit are capable of executing a double pre-
cision (but not single precision) version of Extended BASIC. With double precision
BASIC, all calculations are carried out to 13-15 digits of precision.

Double precision floating point numbers are in hexadecimal notation and are rep-
resented internally by 64 bits (4 words). Double precision representation is

identical to that of single precision (page 2-1) except that the mantissa extends
to words 3 and 4, i.e.:

01 7 8 32
S C
| [y
33 64
where: S is the sign of the manitssa. 0 = positive, 1 = negative.

M is the mantissa, considered to be a normalized 14-
digit hexadecimal fraction.

C is the characteristic and is an integer exponent of 16
in excess 64]1(code.

The range of double precision floating point numbers is approximately:
5.4 * 10779 through 7.2 * 1073

The BASIC double precision floating point format is compatible with that of Data
General's FORTRAN.

The PRINT statement in double precision Extended BASIC causes up to eight

significant digits of a number to be printed. PRINT USING can be used to cause
the printing of more or less signficant digits.

F-1

ABS function 2-6
account identification number C-11
accounting procedures App. C
.ADDF B-5
angle brackets 2-9, 3-16
appending to a file 5-3
argument control word B-2
argument to command 6-1
arithmetic expressions 1-4, 2-2
arithmetic functions 2-6
arithmetic operations Chapter 2
arithmetic operators 1-4
arithmetic symbols 1-4
arithmetic variables 1-1, 1-2, 2-2
array elements 2-3, 2-4
arrays
bounds 3-4
definition 2-3
declaring an 2-3f, 3-4
elements 2-3, 2-4
matrix-array differences 4-3
redimensioning an 2-5, 3-4
storage 2-4

ASCII collating in string comparison 2-11

ASCII characters 2-9
ASCII format read 5-9
ASCII formatted data

ENTER 5-18

INPUT FILE 5-9

LIST Chapter 6

MAT INPUT FILE 5-14

MAT PRINT FILE 5-13

PRINT FILE 5-10

PRINT FILE USING 5-11
ASCII output 5-10, 5-15
assembly language subroutine B-1
assignment statement 1-2, 2-11, 3-20
attributes 6-14
ATN function 2-7

backarrow 1-1
background

channels C-3

partition i, Appendix C
backslash 1-1, 3-17
BASIC

commands Chapter 6

configuration C-3

debugging 6-17ff

ID file C-11

libraries C-10

statements Chapter 3, 1-1

termination of 1-2
BASIC commands, list of

CON 6-11

FILES 6-4

LIBRARY 6-4

LIST 6-6

LOAD 6-5

PAGE 6-15

BASIC commands, list of (Continued)
PUNCH 6-8
RENUMBER 6-12
RUN 6-9
SIZE 6-13
TAB 6-15
WHATS 6-14

BASIC.CL C-7

BASIC.ID file C-11

BASIC configuration C-3

BASIC libraries C-10

BASIC statements, list of
BYE 3-3
CALL Appendix B
CHAIN 5-16
CLOSE 5-19
CLOSE FILE 5-5
DATA 3-40ff
DEF 3-4
DELETE 5-21
DIM 3-5
END 3-6
ENTER 5-18
FOR 3-7ff
GOSUB 3-10
GOTO 3-12
IF 3-13
INPUT 3-15
INPUT FILE 5-9
LET 3-20
MAT Chapter 4
MAT INPUT FILE 5-14
MAT PRINT FILE 5-13
MAT READ FILE 5-12
MAT WRITE FILE 5-13
NEW 3-21
NEXT 3-7ff
ON 3-22
OPEN FILE 5-3
PRINT 3-17, 3-24
PRINT FILE 5-10
PRINT FILE USING 5-11
PRINT USING 3-30ff
RANDOMIZE 3-39
READ 3-40ff
READ FILE 5-6
REM 3-43
RENAME 5-22
RESTORE 3-44
RETURN 3-10
SAVE 5-17
STOP 3-45
WRITE FILE 5-8

BATCH
discussion C-4
examples C-17
operations C-17

binary file
loading 6-5
reading 5-6
saving 5-17
writing 5-8

INDEX-1

binary output 5-8, 5-13
binary punch D-3
binary read 5-0, 5-12
blank space
in INPUT data 3-16
in program 1-8
in verbatim text 1-8, 2-8
bounds of an array 3-5
BSG C-3
buffers C-2
BYE statement 3-3

calculations
in program 1-4)
keyboard PRINT used for 6-17
repetitive 1-3
CALL statement Appendix B
card, mark sense Appendix E
carriage return 1-6, 1-9, 3-15
CDIR C-11
CHAIN statement 5-16
changing matrix dimensions 4-4
changing statements 1-9
character erase 3-17
character error A-3
character strings 3-16
clear memory 3-21
close channels 3-21
CLOSE statement 5-19
CLOSE FILE statement 5-5
comma 2-11, 3-15, 3-16, 3-25
commands Chapter 6
command error A-3
comments 3-43
compact spacing of output 3-26
comparison
of strings 2-12, 3-14

of string expressions 3-14, 2-12

concatenation of strings 2-11
CON command 6-11
conditional transfer 3-22
constant
arithmetic 1-1
list of DATA statement 3-40
string 2-7
configuring
RDOS Appendix C
BASIC Appendix C, Appendix D
SOS Appendix D

continuation of program execution 6-11

control keys 6-1ff

control transfer 3-10, 3-12

COS function 2-6

CPART C-10

current length of string B-1ff
current length of substring B-2
current program, definition of 6-5

data
block 3-40
file 5-6, 5-9

INPUT/keyboard for input of 3-15

READ/DATA for input of 3-40
statement 3-40
providing 1-3, 3-15
DATA statement 1-2, 1-8, 3-40ff
debugging 6-1ff, 6-17

decimal indicator in PRINT USING = 3-

declaring an array 2-3
default formatting 3-24
define uscr function 3-4
DEF statement 3-4
deleting

statement 1-9

program 6-7

character 1-1, 6-2
DELETE statement 5-21
desk calculator 6-16
determinant of matrix 2-7
DET function 2-7, 2-9
device channels i
device names

discussion 5-1ff

SOS D-4

RDOS Appendix C
dial-up handlers C-8
digit representation of PRINT USING
dimensions :

of an array 2-3, 3-5

of a matrix Chapter 4

of a string 2-10, 3-5
DIM statement 2-3, 2-10, 3-5
directory Chapter 5
directory maintenance

commands 6-4

statements 5-20
directory name C-11
directory specifier C-15
disassociate file name/number 5-5
disk directories C-10
.DVIF B-5
dollar sign 2-10, 5-2, 3-37, 3-38
driver entry symbol D-1

.DSI D-2
.DVD B-6
.DVDI B-6

E in numbers 2-1, 3-24
editing a program 1-9, 6-17
elements

discussion 1-5

of an array 2-3

of a matrix 4-4
END statement 3-6

INDEX-2

34

3-33

end-of-file
function 5-6
on mark sense cards E-5
ENTER statement 5-18
EOF function 5-6, 5-9, 5-12
equal sign 1-4, 3-20
ERR 3-22ff
error in data list 3-16
error messages Appendix A
errors 1-1
ESC key 3-17, 3-22ff, 6-1ff, C-15
evaluate expression 3-20, 1-5, 2-2
example
of a BASIC program 1-1, 1-5
of an expression 1-5
excessive variable error A-3
executing loop 3-7
executing program 1-10
execution
programmed halt of 3-45, 1-10
resumption of 1-10, 6-9, 6-11
start of 6-9
interrupt of 3-22, 1-10, 6-1
exit a subroutine 3-10
EXP function 1-5, 2-7
exponent indicator 3-38
exponentation 2-2
exponent representation 2-1
expressions 2-2, 3-13, 3-35, 2-9
extension to file names 5-2

field formats 3-30ff
file
closing 5-5
definition 5-1
device as 5-1
disk 5-1
mode 5-3
opening 5-3
reading 5-6, 5-9, 5-12, 5-14
writing 5-8
file definition 5-1
file information 6-14
fite 1/O i, Chapter 5
file 1/O errors Appendix A
file names 5-1f
file number 5-2

format fields 3-30ff
formatting rules 3-30ff
FOR statement 3-7f
FPAC B-5

functions 1-5, 2-6, 2-7
function nesting error A-6

generalized IF statement 3-13
GOSUB nesting error A-5
GOSUB statement 3-10

GOTO statement 1-3, 3-12

halt execution of program 3-45
handlers C-8

identification number C-11
identity matrix 4-2, 4-10
idle mode 3-3

IF statement 1-3, 2-11, 3-13
information commands 6-16
input data 3-15

input error A-8

input in ASCII format 5-9
INPUT statement 2-11, 3-15
INPUT FILE statement 5-9
input values for matrix 4-1
inserting statements 1-9
INT function 1-5, 2-4, 2-7, 3-22
integer subscripts 2-4
integer exponent 2-1
interrupting a program 1-10
inverse matrix 4-15
inverting a matrix 4-2
invoking a program on disk 5-16
1/0 errors Appendix A

1/0O referencing 5-3

keyboard commands 6-3ff
keyboard mode
change to 3-45, 6-1
description of 6-1ff

FILES command 6-4 KILL C-15

LFIX B-5

fixed signs in PRINT USING 3-35, 3-36

floating point accumulator B-5 leading blanks 3-16
floating point hardware C-7, Appendix F leading zeroes 3-30
floating point numbers 2-1, Appendix F LEN function 2-7
floating signs in PRINT USING 3-36, 3-37 length

LFLOT B-5 of string 2-10

foreground partition
discussion i, Appendix C
channels C=-3

format error A-3

of record 5-8

LET statement 1-2, 2-11, 2-12, 3-20

LIBRARY command 6-4
library directory C-10

INDEX -3

library disk directory 5-1 names

line configuration C-4 of arrays 2-1
line deletion 1-1, 3-17 of variables 1-1
line erase 3-17, 1-1 of files 5-1
line number 1-1 nesting of FOR/NEXT 4-7
line terminator 1-1) nesting of GOSUBs 3-10
linking to subroutine B-2 NEW statement 3-21
LIST command 6-6 NEXT statement 3-7ff
loading BASIC non-mathematical functions 2-7
12K configuration numbers 2-1
under RDOS C-7 numbers of bytes used 6-13
under SOS D-1 number sign 3-33, C-15 -
LOAD command 6-5 number storage 2-1
1.OG function 2-7 number representation 3-24
loop, program 1-3, 3-7ff -

lower bound of an array 2-3

one-dimensional arrays 2-4
ON statement 3-22f

mantissa 2-1 OPEN FILE command 6-16
mapped system i, C-4 OPEN FILE statement 5-3 .
mark sense card reader C-6, Appendix E operation of BASIC
master console C-15 under RDOS Appendix C
MAT statements Chapter 4, Chapter 5 under SOS Appendix D
mathematical operator command error A-8
constants 2-1 operators
expressions 2-2 arithmetic 1-4, 2-2
functions 1-5, 2-6 logical 1-4
operators 2-2 precedence 1-5, 2-2
variables 2-2 operating systems 5-1ff, Appendix C, Appendix D
mathematical functions 1-5, 2-6 output
MAT INPUT FILE statement 5-14 PRINT statement 3-24
MAT PRINT FILE statement 5-15 PRINT USING statement 3-30
MAT READ FILE statement 5-12 to file Chapter 4, 5-6ff
matrices Chapter 4 output field formats 3-30ff
matrix output format 2-1, 3-24ff
addition 4-6 output text 3-24
array-matrix differences 4-3 output values 3-24, 3-30ff
copying 4-5 order of evaluation 2-2
determinant 2-8 overlay file C-9, 5-18
identity 4-10
optional loading of Appendix C, D~
transposition 4-12 .
unit 4-9 PAGE command 6-15
zero 4-8 parameters
matrix statements Chapter 4, Chapter 5 in call to assembly subroutine Appendix B
MAT WRITE FILE statement 5-13 variable control word Appendix B
maximum length of substring B-2 parentheses 1-5, 2-2, 2-3
memory management and protection unit i, C-3 parentheses error A-4
MMPU i, C-3 parenthesized subscript 2-4 -
modes of file [/O 5-3 performing calculations 1-4
.MOST B-6 picture formatting 3-30ff
.MPY B-5 precedence of operators 1-5, 2-2 *
.MPYA B-5 preparing a BASIC program 1-1
.MPYF B-5 PRINT command 6-16
multiplexors i, C-8 printing
‘multi-user systems i, Appendix C, Appendix D output 1-6
MUX C-15ff a matrix 4-1
INDEX -4

PRINT FILL statement 5-10
PRINT statement 1-6, 2-11, 3-24, 3-17
PRINT USING statement 3-30
program
current 5-6
editing 6-11ff, 1-9
interruption 1-10
loop 1-3, 3-7ff
running & 1-9
swaps i, C-12ff
termination 1-2
variables 1-1
writinga 1-9
prompt 1-10

provide
values 3-41
data 1-2

PUNCH command 6-8

quotation marks 1-7, 1-8, 2-9, 3-15, 3-16

random access 5-3
RANDOMIZE statement 3-39
random number generator 3-39
random number function 2-7
range of statement numbers 1-1
range; floating point 2-1, Appendix F
RDOS

discussion i

configuration of C-1ff

devices i, Appendix C

files i, 5-1ff, Appendix C
reading a file 5-3
READ FILE command 6-16
read file mode 5-3
READ statement 1-2, 1-8, 2-11, 3-40ff
real time clock C-1
Real Time Disk Operating System i, Appendix C
redimensioning

arrays 2-5

matrix 4-6

strings 2-10
referencing

an array 2-4

strings 2-11

string variables 3-31
reinitialize random number generator 3-39
relational

expressions 1-4, 2-11, 3-13

operators 1-4, 3-13
relational transfer of control 3-13
REM statement 3-43
RENAMI: statement 5-22
RENUMBER command 6-12

repetitive computations 1-2
replace line in program 1-9
request for data 3-15
reseed random number generator 3-39
reserved

device names 5-1f, C-6, D-4

file names 5-1f, C-6, D-4
restart procedures D-8
RESTORE statement 3-40, 3-44
resume cxecution 1-10
RETURN key 1-1, 3-10, 3-16, 6-16
RETURN statement 3-10ff
return to keyboard mode 3-45
reuse data block 3-44
RFBP D-3
RLDR command line C-7ff
RND function 2-7, 3-39
RTC interrupt rate C-1
RUBOUT 1-1, 6-2
RUN command 1-10, 6-9
running a program 1-10
run-time errors Appendix A

SAVE statement 5-17
SBRTB B-2, D-3
scalar multiplication 4-1, 4-7
secondary partition C-10
semicolon 1-7, 3-15, 3-24, 3-26, 6-16
separator in PRINT USING 3-38
sequential order 1-3
SGN function 2-7
SHIFT L 1-1, 3-17, 6-2
sign-on procedures
RDOS C-15ff
SOS D-7ff
SIN function 1-5, 2-6

single-user systems i, Appendix C, Appendix D

SIZE command 6-13
SOS
discussion i, 5-1ff, Appendix D
devices i, Appendix D
files i, Appendix D
configuration D-4
operation Appendix D
spacing to the next line 3-26
special format field characters 3-30ff
specification error A-3
specifying output page format 6-15
SQR function 2-6
square brackets 2-3
Stand-alone operating system Appendix D
statements Chapter 3
statement number 1-1
statement number error A-3
STOP statement 3-45
storage of numbers 2-1

INDEX-5

store copy of matrix 4-5
string
assignment of 3-20, 2-12
expressions 2-10, 3-20
concatenation 2-11
discussion 2-9
variables 3-5, 2-10, B-1
operations Chapter 2
names 3-5, 5-1
output 3-24, 3-29
subexpression 1-5, 2-2
subdirectories C-2, C-10
.SUBF B-5
subpartitions C-2, C-10
subscripts
of variables 2-11
of matrices 4-3
discussion 2-4
subscript error A-6
substring B-2
subroutine table B-2
subroutine

link to assembly language Appendix B

enter into -3-10, Appendix B
exit from 3-10, Appendix B
swapping i, C-4, C-12ff
syntax error A-3
SYS function 2-7

SYSGEN
RDOS C-1ff
SOS D-1

system command C-16
system dialogue
RDOS Appendix C
SOS D-4
system directories C-10
system disk files C-10
system error A-3
system information requests 6-13
system information 2-7
system stacks C-2
SY.RB C-3

TAB command 3-25, 6-15
TAB function - 3-27
tabulation 3-27
TAN function 2-6
teletype bell 3-16
terminate
a program 1-2
a programming loop 3-8
a format field 3-31
a line 1-1
a statement 1-1
system /user interaction 3-3
terminating statement 3-6
text comment 3-43

transfer

of control 1-3, 3-10, 3-12, 3-13, 3-22ff
to subroutine 3-10, 3-13, Appendix B

transpose a matrix 4-2
trigger D-2

TTY as master console C-15
two-dimensional array 2-4
typing errors 1-1

unconditional transfer of control 3-12
undeclared array 2-4

unit matrix 4-9

upper bounds of an array 2-3

user directory 5-1, C-10

user function 3-4

user interrupt service C-3

value assignment 3-20
variables 1-1, 2-2

WHATS command 6-14
WRITE FILE statement 5-8
writing a BASIC program 1-9
writing a file 5-3

zero matrix 4-2, 4-8
zone spacing of output 3-25

INDEX-6

SUMMARY OF EXTENDED BASIC

SUMMARY OF OPERATORS SUMMARY OF STATEMENT SYNTAX

Arithmetic Operators Mcaning

+ Addition # BYE

- Subtraction

* Multiplication # CALL sub#t,Ay ..., AL}

/ Division

t Exponentation # CHAIN filename t THEN GOTO statement # }
Logical Operator Mcaning

= Equal to # CLOSE

: Less than

<= Less than or cqual to # CLOSE FILE t number-expression §

> Greater than

> = Greater than or cqual to # DATA constant list

<> Not cqual to

ETS

DEF FNa (d) = expression

SUMMARY OF FUNCTIONS

matrix inverted

String IFunction

Meaning

LIEN(S)

currcent length of string
variable, S

FFile 'unction

Mcaning

EOT(X)

L if file X is the end-of-file,
if not returns a 0, (X = file
number)

Print Function NMcuning
i TAB(X) Tabulate to position X
System l'unctions Meaning
SYS(0) time of day
SYS(1) month of the ycar
SYS(2) day of the month
SYS(3) the year
SYS(4) terminal line number (-1 if
opcerator's console)
SYS(3) CPU time used in seconds
SYS(6) 1/0 timce uscd in scconds
SYS(7) crror code of the Jast run-
time cerror
SYS(8) file number of file most re-

cently opened

DELETE filename
Mathematical Function Mecaning
SIN(X) sine of X # DIM array (dimensionfsi)\...|/array(dints])
COS(X) cosine of X string (characterfsy) string(chartsi
TAN(X) tangent of X
ATN(X) arctangent of X # END
LOG(X) natural Jogarithm of X
EXP(X) find ¢ # ENTER filename
SQR(X) square root of X
INT(X) greatest integer not larger # FOR variable = expy TO_L:)_(E2 t STEPEE:; 3
than X
RND(X) random number hetween) % GOSUB statement-number
and 1
SGN(X) algebraic sign of X % GOTO statement-number
Matrix [Function Mcaning
DIET(X) determinant of the last % 117 relational-exp COTO statement-numbcry

IIF relational-exp THEN statement-numbcer
% IIF rclational -exp COSUB statement-number
= II¥ relational-exp THIEN statement

[

INPUT variable list

= INPUT FLLE [number-exp |, variable-list

#t LET A variable = expression

MAT matrix = matrix expression

f MAT matrix ={ ZER ()
CON G i’l)
DN

#MAT matrix; = TRN
INV

(niatrix,)

MAT | READ | list of matrices
INPUT
PRINT

SUMMARY OF EXTENDED BASIC (continved)

SUMMARY OF STATEMENT SYNTAX (continued)

SUMMARY OF COMMAND SYNTAX

= MAT INPUT FILE [num-exp], array list

| i

MAT PRINT FILE [num-exp], array-list

MAT READ FILE[num-exp] , array-list
MAT READ FILE[num-exp;, num-expy],array-ist

g n

MAT WRITE FILE[num-cxp], array-list
MAT WRITE FILE[num-expy, num-expz], array-list

| 4] 4

All of the statements listed under Summary of
Basic Statement Syntax may also be used as
commands, in addition to those summarized
following. Some statements, though, make
scnse only within program context, i.e., FOR
and NEXT.

| #

NEW

ON exp GOTO statement number list
ON exp THEN statement number list
ON exp GOSUB statement number list
ON ERR THEN statement
ON ESC THEN statement

EREAEAEAET

|t

OPEN FILE [num-expy, num-exps], filename

[

PRINT expression list

3

e

PRINT FILE [num-exp] , expression list

|

PRINT FILE[num-exp], USING str-exp, exp-list

PRINT USING string-exp , expression list

f RANDOMIZE
_»‘f READ variable list

READ FILE [num-exp] , variable-list
READ FILE [num-expp, num-exp,], variable-list

REM text comment

ﬁ RENAME fi‘lenamel) filenamez)

RESTORE

RETURN

SAVE filename
STOP

WRITE FILE [num-exp] , expression-list
WRITE FILE [num -€Xpj,num-expy], variable-list

CON

FILES

LIBRARY

LIST statement-number f filename J

TO statement-numberffilename}
statement-no; {TO statement-no
’

t filenamed
LOAD filename
PAGE = number

PUNCH statement-no f filename §
TO statement-no t filename 4
statement-nol{ro statement-no .,

’ f filename §

RENUMBER Statement-number;
STEP statement-numbersy
statement-noj STEP statement-noy

RUN statement-number
filename

SIZE

TAB = number

WHATS filename

Syntax Definitions

= line number; t = optional parts of format;

[1= a part of format; () = a part of format;

{ }= alternate choices of format; uppercase
letters = actual parts of particular format;
lowercase letters = variable parts of format;
num = number; exp = expression; var = variable;
str = string; §_ll_t_)#_'-‘ subroutine number; dims =
dimensions; chars = characters

SUMMARY OF ERROR MESSAGES

BASIC ERROR MESSAGES

CODE TEXT MEANING
00 FORMAT unrecognizable statement format.
01 CHARACTER illegal ASCII character or unexpected character
02 SYNTAX unrecognizable keyword or invalid argument type
03 READ/DATA TYPES INCON- READ specifies different format than DATA
SISTENT statement
04 SYSTEM) hardware or software malfunction.
05 STATEMENT NUMBIER statement number not in the range: 1= n:= 9999
06 EXCESSIVE VARIABLES attempt to declare more than 286 variables
07 COMMAND (1/0) attempt to execute a command from a file (and
not in BATCH mode)
08 SPECIFICATION value specified is not within limits (PAGE /TAB)
09 ILLEGAL RESERVED FILE reserved file name not recognized by the system
NAME (see system generation for valid names)
10 RIEISERVED FILE IN USE another user has control of the specified 1/0O
device. (except $LPT - requests are qucued.)
11 PARENTHESIS parcenthesis in an expression are not paired.
12 COMMAND system cannot execute keyboard command
13 LINE NUMBER attempt to delete or list an unknown line; attempt
to transfer to an unknown line.
14 PROGRAM OVI:RIFLOW not enough storage to ENTER source program
15 END OF DATA not enough DATA arguments to satisfy READ
16 ARITHMETIC value too large or too small to evaluate
17 UNASSIGNED VARIABLYE attempt to reference an unknown variable
18 GOSUB NESTING more than six nested GOSUB's
19 RETURN - NO GOSUB RETURN statement encountered without a cor-
responding GOSUB
FOR NESTING more than seven nested FOR's
21 IFOR - NO NEXT FOR statement encountercd without corresponding
NEXT
22 NEXT - NO FOR NEXT statement encountering without a cor-
responding [FOR
23 DATA OVERFLOW not enough storage left to assign space for variables
24 NO AVAILABLE CHANNELS channel limit specified at SYSGEN time has been
reached
25 OPTION feature specified not available (SYSGLN)
26 PROGRAM/DATA OVERFLOW attempt to LOAD or RUN a SAVIZ'd file which is too
large for available storage.
27 FITLIE NUMBIER NOT 0-7 invalid file designation in an 1/0 statement
28 DIM OVEREFT,OW an array or string exceceds its initial dimensions
29 EXPRESSION an exptession is too complex for evaluation
30 MODE NUMBIEER NOT 0-3 invalid mode designation in an 1/0 statemoent
31 SUBSCRIPT subscript excecds array's dimension
32 UNDEFINED IFUNCTION statement looks like a function but never defined
by DEF and not a standard function
33 FUNCTION NESTING the nesting of too many defined functions
3+ FUNCTION ARGUMIEENT argument range exceeded
35 [LLEGAL FORMAT STRING PRINT USING statement is illegal
30 STRING SIZ1¢ the size of the string excecds PAGE specification
37 USER ROUTIND CALL statement specifies a user routine not in
storage
38 UNDIMENSIONED STRING attempt to reference an unknown string variable
349 DUP MATRIX same matrix appears on both sides ol a NAT mltiph
or transpose statement
40 MATRICES SIZES matrices have differcent sizes
41 MATRIX DIM matrix has a zero dimension
42 FLILE ALREADY OPEN two OPEN statements without an intcvvening CHOSE
43 MATRIX NOT SQUARE attempt to invert a non-squarce matrix

SUMMARY OF ERROR MESSAGES

CODE TEXT MEANING
44 FILE UNOPENED an attempt to do I/O to a file for which an OPEN
was never performed
45 RECORD =128 BYTES logical record size limit exceeded
46 INPUT data entered in response to INPUT is incorrect
47 WRONG MODE input file opened for writing or output file opened
for reading
49 NO ROOM FOR DIRECTORY FILES or LIBRARY commands cannot find 256
words in user program storage to read disk
directory)
50 INVALID OPERATOR a command preceded by a # (operator command
COMMAND specifier) is not recognized
INPUT/OUTPUT ERROR MESSAGES
" CODE MEANING CODE MEANING
0 Illegal channel 37 Device already exists
1 Illegal file number 38 Insufficient contiguous blocks
2 Illegal system command 39 QTY
3 Illegal command for device 40 Task queue table
4 Not a saved file 41 No more DCB's
5 File already exists 42 DIR specifier
6 End of file 43 DIR specifier
7 Read-protected file 44 DIR too small
8 Write-protected file 45 DIR depth
9 File already exists 46 DIR in use
10 File not found 47 Link depth
11 Permanent file 48 File in use
12 Attributes protected 49 Task ID
13 File not opened 50 Common size
14 Swapping disk error-program lost 51 Common usage
17 UFT in use 52 File position
18 Line limit 53 Data chain map
19 Image not found 54 DIR not initialized
20 Parity 55 No default DIR
21 Push limit 56 FG already active
22 Storage overflow 57 Partition set
23 No file space 58 Insufficient arguments’
24 Read error 59 Attribute
25 Select status 60 No Debug
26 Start address 61 No continuation address
27 Storage protect 62 | No start address
29 Different directories 63 Checksum
30 Device name 64 No source file
31 Overlay number 65 Not a command
32 Overlay file attribute 66 Block type
33 Set time 7 No files match
34 No TCB's 68 Phase
36 Squash file 69 Excess arguments
!

DataGeneral

PROGRAMMING DOCUMENTATION

REMARKS FORM

Document Title

Document No.

Tape No.

SPECIFIC COMMENTS: List specific comments. Reference page numbers when applicable.

Label each comment as an addition, deletion, change or error if applicable.

GENERAL COMMENTS: Also, suggestions for improvement of the Publication.

FROM:

Name Title Date
Company Name

Address (No. & Street) City State Zip Code

TFForm No. 10-24-004

FOLD DOWN FIRST FOLD DOWN -

FIRST
CLASS
PERMIT

No. 26

Southboro

Mass. 01772 .

BUSINESS REPLY MAIL

No Postage Necessary it Mailed in The United States

Postage will be paid by:

Data General Corporation

Southboro, Massachusetts 01772

ATTENTION: Programming Documentation

FOLD UP SECOND FOLD UP

STAPLE

	_0001
	_0003
	_0004
	_0005
	_0007
	_0008
	_0009
	_0011
	_0013
	_0014
	_0015
	_0016
	_0017
	_0019
	_0020
	_0021
	_0022
	_0023
	_0024
	_0025
	_0026
	_0027
	_0028
	_0029
	_0030
	_0031
	_0032
	_0033
	_0034
	_0035
	_0036
	_0037
	_0038
	_0039
	_0040
	_0041
	_0043
	_0044
	_0045
	_0046
	_0047
	_0048
	_0049
	_0050
	_0051
	_0052
	_0053
	_0054
	_0055
	_0056
	_0057
	_0058
	_0059
	_0060
	_0061
	_0062
	_0063
	_0064
	_0065
	_0066
	_0067
	_0068
	_0069
	_0070
	_0071
	_0072
	_0073
	_0074
	_0075
	_0076
	_0077
	_0078
	_0079
	_0080
	_0081
	_0082
	_0083
	_0084
	_0085
	_0086
	_0087
	_0088
	_0089
	_0090
	_0091
	_0092
	_0093
	_0094
	_0095
	_0096
	_0097
	_0098
	_0099
	_0100
	_0101
	_0102
	_0103
	_0104
	_0105
	_0106
	_0107
	_0109
	_0110
	_0111
	_0112
	_0113
	_0114
	_0115
	_0116
	_0117
	_0118
	_0119
	_0120
	_0121
	_0122
	_0123
	_0124
	_0125
	_0126
	_0127
	_0128
	_0129
	_0130
	_0131
	_0133
	_0134
	_0135
	_0136
	_0137
	_0138
	_0139
	_0140
	_0141
	_0142
	_0143
	_0144
	_0145
	_0146
	_0147
	_0148
	_0149
	_0150
	_0151
	_0152
	_0153
	_0154
	_0155
	_0156
	_0157
	_0158
	_0159
	_0160
	_0161
	_0162
	_0163
	_0164
	_0165
	_0166
	_0167
	_0168
	_0169
	_0170
	_0171
	_0172
	_0173
	_0174
	_0175
	_0176
	_0177
	_0178
	_0179
	_0180
	_0181
	_0182
	_0183
	_0184
	_0185
	_0186
	_0187
	_0188
	_0189
	_0190
	_0191
	_0192
	_0193
	_0194
	_0195
	_0196
	_0197
	_0198
	_0199
	_0200
	_0201
	_0203
	_0204
	_0205
	_0206
	_0207
	_0209
	_0211
	_0212
	_0213
	_0214
	_0215
	_0216
	_0217
	_0218
	_0219
	_0220
	_0221
	_0222

