
!mtaGeneral

•

•
l

•

User's Manual

PROGRAM

EXTENDED BASIC

093-000065-05

•

•

•

•

INTRODUCTION

Data General's Extended BASIC is available under either the Stand-alone Operating
System (SOS) or under the Real Time Disk Opetating System (RDOS). Extended
BASIC systems may be either single-user systems or multi-user systems. Single -
user systems may be configured with or without a disk.

Multi-user systems may be configured with or without a disk. When configured with -
out a disk, the system is automatically designated as non -swapping, non -mapping.
These multi-user non -swapping systems support a number of users simultaneously,
allotting each user a fixed portion of memory. The system may be configured with
multiplexor handler type 4060 or the 4100 multi- line asynchronous controller support, I
which support up to 32 users. It may also be configured with multiplexor handler type
4026, which supports up to 16 users.

Multi-user systems configured with a disk, i.e., operating under RDOS, may be
configured as swapping or non-swapping Extended BASIC systems. Non -swapping
multi-user disk systems operate the same as multi-user without disk configurations,
described above. Multi-user Swapping Extended BASIC systems allow as many
programs as user core will allow to run simultaneously. A program swap will
occur when a program which is ready to execute is too large to fit into the unused

'\

portion of memory. One or more programs which are in core will be swapped out
to disk to allow the 'new' program access to system resources.

Multi-user swapping systems may further be configured as mapping systems. Systems
with the Memory Management and Protection Unit (MMPU) provide an absolute hard­
ware protection to separate the foreground and background partitions. For example,
while BASIC is running in the foreground, a FOR TRAN IV program could be running
in the background.

Extended BASIC systems under SOS treat devices as files and provide a set of file
I/O statements and their comparable keyboard commands that allow the user to
perform binary and ASCII I/O, chain from an executing program by bringing in
another program from an input device, save a program, and enter a program to
append it to the current program. Extended BASIC users under SOS may select
from a wide variety of standard SOS I/O devices including one to eight magnetic tape
units, one to eight cassette units, and a mark sense card reader. Under SOS up to
eight device channels may be open at one time.

The Extended BASIC systems under RDOS support all the SOS devices as well as
providing full disk file capabilities for either fixed or moveable head disk config­
urations. BASIC statements and commands allow users to search disk directories
for files, load files located on disk into core, run the loaded files, chain from a
running program by bringing in another program from disk or another input device,

i

(8/74 086-000010-00))

save core images on disk files for later running, etc. Under RDOS up to 63 device/
file channels may be open at any given time.

Extended BASIC systems offer all features of the BASIC language as originally devel­
oped at Dartmouth, as well as:

Keyboard mode of operation, which was provided in DGC's Stand-alone
and Time -Sharing BASICs primarily for debugging and desk calculator
uses, has been greatly expanded in Extended BASIC. The user now has
the full range of BASIC statements and File I/O statements to use as
keyboard commands, excluding only those statements that have no
meaning except within program context (REM, FOR, etc.).

Error detection at program input time has been expanded so that all
syntax errors are caught at this time.

String variables, string concatenation and string subsettings are im­
plemented. String variables may appear in READ statements with
corresponding literals in DATA statements.

Extended BASIC' s format for storage of floating point numbers is
compatible with other DGC software. Extended BASIC thus has FORTRAN/
ALGOL compatibility through data files, and CALLed subroutines.

The user has been given far greater control over output formatting. Ex­
tended BASIC permits the user to use either the standard BASIC print
formatting or to use statements and commands that include a picture
specification of output similar to that available in COBOL.

Assignment statements that do not require the keyword LET are imple­
mented.

A generalized IF statement, allowing a THEN clause that can be any
statement, including another IF is implemented.

In addition, systems under RDOS have the following features:

BASIC statements and keyboard commands are available that allow the
user to perform maintenance on his disk files: deleting files, changing
file names, accessing file creation dates, etc.

A private subdirectory or subpartition can be allocated to each user
for his files. By default, files in a subdirectory are private to a given
user. However, these subdirectories can be shared among users if
desired. This allows a flexibility whereby a user's file space can be
limited to a specific amount of a disk or not, depending upon which
choice is made.

ii

(8/74 086-000010-00)

•

•

•

•

•

. -

•

•

•

Using the standard ROOS file structures, compatibility is provided so
that these files could be processed by other DGC software.

The link capability of ROOS files may be utilized to provide sharing
of user files for both reading and/or writing.

Multi-user systems provide capability for an accounting file. At
SYSGEN time the user can request that such a file be provided·. The
file is used to keep a record by account ID of each user sign -on and
the time .

The following Data General publications may be referred to for further discussion
of an operating environment:

093-000075

093-000083

093-000087

093-000062

Real Time Disk Operating System User's Manual

Introduction to the Real Time Disk Operating System

BATCH User's Manual

Stand-Alone Operating System User's Manual

iii

Below is a list of all BASIC keywords specifying whether they may he used as statement keywords • or command keywords or both. (An X appearing in the column indicates yes.)

BASIC STATEMENTS AND COMMANDS

BASIC USED AS PAGE
KEY WORD STATEMENT COMMAND REFERENCE

BYE X X 3-3

CALL X App. B

CHAIN X 5-16

CLOSE X X 5-19

CLOSE FILE X X 5-5

CON X 6-11

DATA X 3-40

DEF X 3-4

• RDOS Only DELETE X X 5-21

DIM X X 3-5

END X 3-6

ENTER X X ,, 5-18
'\

ROOS Only FILES X 6-4

FOR X 3-7

GOSUB X 3-10

GOTO X 3-12

IF •.. THEN X X 3-13

IF ..• GOTO X X 3-13

IF ... GOSUB X X 3-13

• INPUT X X 3-15

INPUT FILE X X 5-9

LET X X 3-20

ROOS Only LIBRARY X 6-4

LIST X 6-6

LOAD X 6-5

MAT Chapter 4

MAT INPUT X X 4-18

MAT INPUT FILE X X 5-14

V

•

•
BASIC USED AS PAGE

KEY WORD STATEMENT COMMAND REFERENCE

MAT PRINT X X 4-19

MAT PRINT FILE X X 5-15

MAT READ X X 4-17

MAT READ FILE X X 5-12

MAT WRITE FILE X X 5-13

NEW X X 3-21

NEXT X 3-7

ON ••. GOTO X 3-22

ON •.. THEN X 3-22 •
ON ••• GOSUB X 3-22

ON ESC THEN X 3-22

ON ERR THEN X 3-22

OPEN FILE X X 5-3

PAGE X 6-15

PRINT X X 3-24

PRINT FILE X X 5-10

PRINT FILE USING X X 5-11

PRINT USING X X 3-30

PUNCH X 6-8

RANDOMIZE X X 3-39 •
READ X X 3-40

READ FILE X X 5-6

REM X 3-43

RENAME X X 5-22

RENUMBER X 6-12

RESTORE X X 3-44

RETURN X 3-10

RUN X 6-9

vi

•

•

•

•

•

BASIC
KLY worm

SlZ I

STUP

Wll:\TS

WRITF FILF

X

n -14

X

vii

•

•

•

•

EXTENDED BASIC USER'S ~NUAL

TABLE OF CONTENTS

•

•

•

•

TABLE OF CONTENTS

INTRODUCTION i

CHAPTER 1 - WRITING AND RUNNING A BASIC PROGRAM

Preparing a BASIC Program••...... 1-1
Providing Data .•....•......... 1-2
Repetitive Computations ...•.•.... 1-3
Performing Calculations .••.•...... 1-4
Printing Output ..•..••.••••..... 1-6

Example of a BASIC Program .•.•••••.•.. 1-7
Writing, Editing, and Running a Program ..•. 1-9

Writing and Editing a Program .•...•• 1-9
Running a Program ...•....•.••. 1-10

CHAPTER 2 - ARITHMETIC AND STRING OPERATIONS

Arithmetic Operations•..•.•...... 2 -1
Numbers•.•..•••....... 2 -1
Arithmetic Variables ...•.•....... 2 -2
Arithmetic Expressions ••..•. z.. 2-2
Arrays 2-3

Declaring an Array 2 -3
Array Elements 2 -4
Redimensioning Arrays 2-5

Functions ..•••.•...•.••.•.... 2 -6
Strings 2-9

String Literals ..••....•••....... 2 -9
String Variables and Express.ions 2 -10

CHAPTER 3 - STATEMENTS

BYE
DEF
DIM

. 3 -3

. 3 -4

. 3 -5
END .••...••• · .••.•••••......... 3-6
FOR and NEXT•.......•........ 3-7

FOR•.•...•....•.... ~1-7
NEXT . . • • • • . • . . • • . . . 3 - 8
FOR and NEXT Examples 3-8

GOSUB and RETURN•..•......... 3-10
GOSUB ..•.....••...•...•.•.. 3-10
RETURN•..•.......... 3-10
Examples of GOSUB and RETURN 3-11

ix

CHAPTER 3 - STATEMENTS (Continued)

GO TO • • 3-12
IF•••..••••.•..•..•• 3-13
INPUT
LET
NEW

3-·16
3-21
3-22
3-2.3
3-25

ON • • • • . • . • . • • . • . • . . .
PRINT or ; > • • • • • • • • • • • • • •

Number Representation .••.••...• 3-25
Zone Spacing of Output (,) ..•...... 3-26
Compact Spacing of Output••..•. 3-27
Spacing to the Next Line ...•.••..•. 3-27
Tabulation ..•...•...••...•.•.. 3-28
String Variables ..•...•••••...... 3-30

PRINT USING . • • . . . • • • • • . • . • 3-31
Digit Representation (#) ••••••••••• 3-34
Decimal Point (.) . . • . • • • . . . • . . • • . 3-35
Fixed Sign(+ or -)•.•...•.•• 3-36
Floating Sign (+t-- ••• or - - .••) . . • . • . 3-37
Fixed $ Sign •...•....•••..•..•• 3-37
Floating $ Sign ($$...) • • . • 3-38
Separator (,)•.•..•..•• 3-39
Exponent Indicator (t) 3-39

RANDOMIZE ..•....•..•.....••••.•. 3-40
READ and DATA•...•.•..... 3-41

READ • . . • . • . . . • . • . . 3-41
DATA
Examples of READ and DATA

RE11

3-42
3-42
3-44
3-45
3-46

RESTORE•..•.•.......
STOP

CHAPTER 4 - MA TRICES

Matrix Statements•.••.......•. 4-1
Matrix Subscripts ...•............... 4-3
Changing Matrix Dimensions•. 4-4
Matrix Manipulation Statements ..•....... 4-5

Store Copy of Matrix ..•.•......... 4-5
Addition and Subtraction ...••...... 4-6
Scalar Multiplication ..•.......... 4-7
Zero Matrix• 4-8
Unit Matrix 4-9
Identity Matrix 4-10
Matrix Transposition •.•.....•.•..• 4-12

X

•

•

•

•

•

•

•

•

CHAPTER 4 - MA TRICES (Continued)

Matrix Manipulation Statements (Continued)
Matrix Multiplication ..•........... --+ -13
Inverse Matrix ..•..•........•... i-1 s

Input and Output of Matrices•.. 4- 17
MAT READ Statement . . • • 4-1 7
MAT INPUT Statement•...•... 4-18
MAT PRINT Statement ..••.•..•... 4-19

CHAPTER 5 - FILE I/O

File Na1nes•.....•........ 5-1
OPEN FILE Statement ..•............•. 5-3
CLOSE FILE Statement•...•...•... 5-.S
READ FILE Statement ..•..•........... 5-6
WRITE FILE Statement•.•..•... 5- 8
INPUT FILE Statement•..... 5-9
PRINT FILE Statement•.•....•..•.. 5-10
PRINT FILE USING Statement•.. 5-11
MAT READ FILE Statement•.. ~ •.•. 5-12
MAT WRITE FILE Statement ..•...•. ' ••.. 5-13
MAT INPUT FILE Statement•.•.... 5-14
MAT PRINT FILE Statement•••.. 5-15
CHAIN Statement•••.•...... 5-16
SA VE Statement
ENTER Statement
CLOSE Statement

.•••.••••••••••••.• 5 -1 7

.............•..... 5-18

.........•......... 5-19
Directory Maintenance Statements .•...•.. 5-20

DELETE Statement 5-21
RENAME Statement••........ 5-22

CHAPTER 6 - KEYBOARD MODE OF OPERATION

Control Keys .•.••. , ..•.••.•......... 6-1
E SC .••....••............... 6-1
SHIFT L•....•.......... 6-2
RUBOUT .•.•..••••••...•..... 6-2

Keyboard Commands ..••.•.•..••..... h-2

Directory Maintenance Commands 6-4
FILES Command .•••........•.. 6-4
LIBRARY Command••....... h-4

Commands that Load, Modify, and Execute .•• 6-S
LOAD Command .••••••.•........ 6-S

LIST Command ••••.•.....•...... 6 -6
PUNCH Command ...•...•........ 6- S

xi

CHAPTER 6 - KEYBOARD MODE OF OPERATION (Continued)

Commands that Load, Execute and Modify (Continued)
RUN Command•........... 6-9
CON Command .•......••....•.. 6-11
RENUMBER Command•....... 6-12

System Information Requests 6-13
SIZE command 6-13
WHATS Command•..••.... 6-14

Specifying Output Page Format ..•....•.• 6 -15
PAGE Command .•...•...••.••.•. 6-15
TAB Command .••.•••....•...••• 6-15

Commands Derived from BASIC Statements ..• 6-16
Perform File I/O ..••..••..•....• 6-16
Desk Calculator•• 6-16
Dynamic Program Debugging ..•....• 6-1 7

APPENDIX A - ERROR MESSAGES •.......••...•.... A-1

APPENDIX B - CALLING AN ASSEMBLY LANGUAGE SUB­
ROUTINE FROM EXTENDED BASIC

Character String Storage and Definitions ..•. B-1
Linking the Assembly Language Subroutine ... B-2

APPENDIX C - EXTENDED BASIC OPERATION UNDER RDOS

Configuring RDOS•.....•.....•.• C-1
BASIC Configuration•.......•. C-3

BSG Dialogue • . . • . . . C -3
Loading Extended BASIC • . • • . . C- 7

System Disk Files and Directories C-10
Disk Directories•...... C-10
BASIC.ID File C-11
Program Swaps C-12

Sign -on Procedures .•.•.•.•.•...•...•. C-15
BATCH Ope rations . C-18

APPENDIX D - EXTENDED BASIC OPERATION UNDER SOS

Loading Extended BASIC•..•..... D-1
System Dialogue and Configuration D-4
Sign -On/Sign - Off Procedures D- 7
Restart Procedures D-8
Loading Extended BASIC (12K Configuration) ... D-8

xii

•

•

•

•

•

•

•

•

APPENDIX E - PROGRAMMING ON MARK SENSE CARDS E-1

APPENDIX F - DOUBLE PRECISION FLOATING POINT
REPRESENTATION ..•.............••• F-1

INDEX

CHANGES FROM REVISION 03 TO REVISION 04

SUMMARY OF EXTENDED BASIC

SUMMARY OF ERROR MESSAGES

xiii

•

•

•

•

CHAPTER 1

WRITING AND RUNNING A BASIC PROGRAM

PREPARING A BASIC PROGRAM

BASIC programs are made up of statements. Each statement is preceded by an
integer that can be between 1 and 9999 inclusive. The number given a statement
determines the order in which it is executed and listed. For example, two state­
ments to be executed sequentially should be given sequential (but not necessarily
consecutive) numbers.

Each statement is on a separate line. The programmer terminates each line at
the teletype with a carriage return (RETURN).

Typing errors on the teletype can be corrected by using special control keys:

Pressing RUBOUT erases the last character typed. A back
arrow (-) is printed, representing the erasure.

2. Pressing SHIFT and Lat the same time deletes the~ntire line.
' A back slash('-.) is printed, representing line deletion; BASIC

gives a carriage return/line feed. The programmer may then
type a new statement.

An example of a BASIC program is given below. The example will be described
in detail later in this chapter.

100 READ A, B, D, E
llO LET G = A *E-B*D
120 IF G = 0 THEN 180
130 READ C, F
140 LET X = (C *E-B*F)/G
l~O LET Y = (A •:<F-C*D)/G
160 PRINT X, Y
170 GOTO 130
180 PRINT "NO UNIQUE SOLUTION"
1 90 DAT A 1, 2, 4
2 00 DAT A 2 , - 7, 5
210 DAT A 1, 3, 4, - 7

In the program, single letters represent program variables. A variable can be a
single letter (e.g., Z) or a single letter followed by a single digit (e.g., Z4).

1-1

PREPARING A BASIC PROGRAM (Continued)

A BASIC program terminates when there are no more program statements, the
progra.m is out of data, or when an END or STOP statement is executed.

Most programs can be reduced to three steps:

l. Provide data.

2. Perform calculations.

3. Print answers.

Providing Data

•

One method to provide data is simply to write equations that contain the necessary values. •
The BASIC statement used for equations is the assignment (LET) statement; for example:

20 LET X = 3.141 * 10.2 - * means multiply

The statement will cause 3. 141 and 10. 2 to be multiplied and the resulting
value will be stored in a variable named X.

However, writing values into equations is not very efficient. Programs are
generally used for repetitive computations with a large number of different
values. Instead of writing values into the equation, BASIC uses variables that can
be assigned different values:

2 0 LET X = 3. 141 * Y

To provide values, BASIC uses two statements, READ and DATA. The READ
statement indicates the variables that are to have values and the DATA state­
ment gives the value:

10 READY
20 LET X = 3. 141 *Y
30DATA10.2, 7.3, -56.11, -.003, 34

There are now five possible values that Y will assume, which are listed in the
DAT A statement. Upon execution, the order of the values in the DAT A statement

1-2

•

•

•

•

•

•

Providing Data (Continued)

is the order in which values are assigned to a variable or to several variable
given in READ statements in the program.

Repetitive Computations

In general, statements in BASIC programs ~xecute in the sequential order inf!icJted
by their statement numbers. However, if a program is completely sequential,
it is not possible to perform repetitive calculations on a number of input values.
For example, in the program given under the "Providing Data" section:

10 READY
20 LET X = 3. 141 *Y
30 DATA 10.2, 7.3, -56.11, -.003, 34

Five data values are given for Y, but only the first one, 10. 2, will be used because
the program is completely sequential. It is necessary to insert a statement that
will allow the READ and LET statements to be executed more than once:

125 GO TO 10

The GO TO statement causes a transfer back to statement number 10. The
program "reads in" the second value for Y, 7. 3, and executes the LET
statement again. The program will continue to loop in this way until it
runs out of data values for Y.

Note that the GO TO statement was given statement number 25. The reason
why most BASIC programs are not numbered consecutively is to allow the
programmer to insert any statement he may need without rewriting the entire
program.

The GO TO statement is a means of transferring control to a part of a program
in a non-sequential manner. There are several ways to do this in BASIC.
Another useful statement in transferring control is the IF statement.

10 READY
15 IF Y < = 0 THEN 10
20 LET X = 3.141 ,:,y

25 GO TO 10

- 10 means statement number 10.

30DATA 10.2, 7.3, -56.11, -.003, 34

1-3

Repetitive Computations (Continued)

Transfer in an IF statement depends upon whether the expression following the
word IF is true or false. The expression is relational and uses the following
symbols.

Relational Symbol

=
<=
<

>=
>
< >

Meaning

Equal to
Less than or equal to
Less than
Greater than or equal to
Greater than
Not equal to

The IF statement in the example would prevent the LET statement from being
executed when the value of Y is zero or negative. The LET statement would only
be ex~cuted for positive values of Y; otherwise, control would transfer back to
the READ statement to read in another value.

Performing Calculations

The data provided as input must be computed into answers. A simple arithmetic
statement of the calculations to be performed must be written in such a way that
the BASIC system can recognize the operations required. The statement used is
the assignment (LET) statement.

The LET statement is used to assign the result of a calculation to some variable.
The calculation to be evaluated, called an expression, appears on the righthand
side of the equals sign in the LET statement. The variable to which the expression
is assigned appears on the lefthand side of the equals sign. In the previous
example, the expression provides for multiplying 3.141 by some value
assigned to the variable Y and then assigning the resultant value to the
variable X.

The basic arithmetic symbols used in performing calculations are:

Symbol Operator Example Meaning

+ Addition A+B Add B to A.
Plus +A Positive A.

Subtraction A-B Subtract B from A.
Minus -A Negative A.

1-4

•

•

•

•

•

•

Performing Calculations (Continued)

Symbol Operator Example

* Multiplication A*B

I Division A/B

Exponentiation At B

Meaning

Multiply A by B.

Divide A by B.

Raise A to the power B
(AB).

An expression is made up of elements described in Chapter 2 - - simple variables,
numbers, arrays, array elements, and functions, which are linked together by
the arithmetic symbols•

Parentheses may be used in arithmetic expressions to enclose subexpressions
that are to be treated as entities. A subexpression in parentheses is evaluated
first. Within each subexpression, arithmetic operations are performed in the
sequence - - exponentiation first, multiplication and division next, addition and
subtraction last.

When two operations are of equal precedence, such as addition and subtraction,
and there are no parentheses, evaluation proceeds from left to right in an
expression.

In addition to arithmetic operations involving tbe arithmetic symbols, BASIC
has a number of standard mathematical functions. These are described in
Chapter 2; a few examples are:

SIN (X)

EXP (X)

INT (X)

Sine of X, where X must be in radians.

Natural exponential of X, X e .

Integer part of X.

• An example of an expression to be evaluated and assigned to a variable is:

1100 LET S = S-(l 7+SIN(Z)) /3

In the example,

1. SIN (Z) is calculated. (Functions evaluated first.)

2. Result of step 1. is added to 17. (Parenthesized sub~xpression.)

1-5

•

Performing Calculations (Continued)

3. Result of step 2. is divided by 3. (Division has higher precedence
than subtraction.)

4. Result of step 3. is subtracted from the value of variable S.

5. Result of step 4. is stored (=) into variable S as its new value.

Printing Output

The program is still not complete. It has data and performs calculations but
the user has no way of knowing the results of those calculations. To complete
the program, there must be a printout of results.

;ti/I'

The PRINT statefnent is used to print out results of calculations. For example,
if the program were written:

10 READY
2 0 LET X = 3. 141 * Y
22 PRINT X
25 GO TO 10
30DATA 10.2, 7.3, -56.ll, -.003, 34

The PRINT statement is made part of the loop, so that a value for X is printed
out each time the LET statement is executed. Each value of X will be printed
out on a new line. The fact that the item X in the PRINT statement is terminated
by a carriage return means 'print next value on a new line'. The output
would look as follows:

32.0382
22.9293

106. 794

It is also possible to print out verbatim text using the PRINT statement. The
user might want an explanation of each value printed. For example, the program
could be written:

1-6

•

•

•

•

•

•

•

•

Printing Output (Continued)

10 READY
20 LET X ~ 3.141 *Y
22 PRINT "FOR Y= ";Y;" X= ";X
25 GO TO 10
30DATA 10.2, 7.3, -56.11, -.003, 34

The verbatim text is enclosed in quotation marks. It will be printed out exactly
as shown with the same number of blank spaces. The semicolon between the
items in the PRINT list means 'print on the same line without spacing'. The output
would now be printed as:

FOR Y = 10. 2 X = 32. 0382
FOR Y = 7. 3 X = 22. 9293

FOR Y = 34 X = 106. 794

EXAMPLE OF A BASIC PROGRAM

A BASIC program for solving simultaneous linear equations would be:

100 READ A, B, D, E - obtain values for constants
110 LET G = A * E - B * D - evaluate denominator
120 IF G = 0 THEN 180 - if G is 0, there is no unique solution
130 READ C, F - obtain remaining constant values
140 LET X = (C*E - B'~F)/G - solve for X
150 LET Y = (A *F - C*D)/G - solve for Y
160 PRINT X, Y - print solutions for X and Y
170 GO TO 130 - loop to new values for C and F
180 PRINT "NO UNIQUE SOLUTION 11 - message printed if G = 0
1 90 DAT A 1, 2, 4 - data for A, B and D
200 DATA 2, -7, 5 - data for E and first values for C and F
210 DATA 1, 3, 4, -7 - other values for C and F

The program solves the following equations:

1-7

EXAMPLE OF A BASIC PROGRAM (Continued)

x+2y=-7
4x+2y=5

x+2y=l
4x+2y=3

x+2y=4
4x+2y=-7

The program prints the paired X-Y values for each set of equations and issues
an error message after printing the third pair.

Note that READ and DAT A must both be included to provide input data for the
BASIC program. The division of values among the DATA statements is arbitrary
as long as the values are in correct order. The programmer could have written
the DAT A statements as:

190 DATA 1,2,4,2
200 DATA -7, 5
210 DATA 1,3,4,-7

or as:

190 DATA 1,2,4,2,-7,S,l,3,4,-7

The blank spaces used in the BASIC program are only for readability. They could
have been omitted. For example, the following statements are equivalent:

120 LET G = A * E - B * D

120LETG=A *E-B*D

Within quotation marks, however, blanks in text are significant. If the programmer
had written statement 180 as:

180 PRINT "NOUNIQUESOLUTION"

the resultant message (if G had been 0) would have been

l NOUNIQU:SOLUTION

1-8

•

•

•

•

•

•

•

•

WRITING, EDITING, and RUNNING A PROGRAM

Writing and Editing a Program

The user controls the contents of his current program by statement number. In
effect, every statement the user types at the terminal must have an initial statement
number. This number is matched by BASIC against statement numbers existing in
the current program. By this means, the user can delete, insert, or change any
given statement as shown below, where~ represents a statement number, statement
represents a BASIC statement, and the carriage return which the user must press
to terminate the statement is represented by the symbol ()).

User Types

n)

BASIC Response

BASIC searches the current program for the
statement numbered n. If found, the state­
ment is deleted. If not found, no action is
taken.

BASIC searches the current program until
statement numbered ~l is found. BASIC will
delete statements ~l through ~ 2.

Delete statements from the current program
starting with statement numbered ~l and
ending with the last (highest numbered)
statement within the current program.

Delete statement from the current program
from the beginning (lowest numbered statement)
through !!2 .

n statement) BASIC searches the current program for the
statement numbered n. If n is not found,
statement is inserted in the current pro­
gram. If!!. is found, the statement in the
current program is replaced by statement.

1-9

Example

0300)

Deletes the state­
ment numbered 300.

100,500)

BASIC will delete
statements numbered
100 to 500 inclusive.

55,)

Delete statements
starting with number 55
until the end of the
program .

, 789)

Delete the statements
in the program from the
beginning of the program
through 7 89.

1200 GO TO 50)

Either inserts statement
1200 or replaces the
current statement
1200 with GO TO SO.

Running a Program

When the programmer has written and edited his program, he can cause execution
by giving the command:

I RUN)

The program will be run from the lowest numbered statement. 1f no fatal program
errors occur (Appendix A), the BASIC system will print out any output from the
program and give the prompting message:

* (space)

when execution is complete.

When a RUN command is given without a statement number argument, the user is
effectively running a program for the first time. Arrays must be dimensioned,
strings must be given lengths, and variables as yet have no associated values.

The programmer has the option to interrupt his program's execution either by
pressing the ESC key at the keyboard or by a programmed STOP statement. When a
running program is interrupted in this manner, all current string lengths, array
dimensions, and variable values are maintained until the programmer issues
another RUN command.

However, the programmer has the option to retain all information. To do so, he
resumes execution by giving the command:

RUN n) - where~ is the number of some statement in the program

•

•

at which execution is to resume. •

The programmer can resume running at the statement at which running was inter-
rupted or at any other statement within the program. For example, he can resume
running with all current values intact at the lowest numbered statement in the
current program if he wishes.

1-10

•

•

•

•

•

~HAPTER 2

ARITHMETIC AND STRING OPERATIONS

ARITHMETIC OPERATIONS

Numbers

BASIC systems can be generated which provide either all single precisior: or all
double precision calculations. In both cases, all forms of unformatted PRINT
output provides single precision type significance, while formatted PRINT USING
output allows the user to control the number of significant digits output .

Single Precision Calculations

On "PRINT" output, any real or integer number that consists of 6 or less digits is
printed out without using exponential form. A real or integer number that requires
more than six digits will be ·printed in 6-digit format, followed by the letter E,
followed by an exponent.

Double Precision Calculations

On "PRINT" output, any real or integer number that consists of 8 or less digits
is printed out without using exponential form. A real or integer number that
requires more than six digits will be printed in 8-digit format, followed by the
letter E, followed by an exponent.

Number Represented Output Format S. P. Output Format D. P.

2,000,000 2E+6 2000000
20,000,000,000 2E+l0 2E+l0
108.999 108.999 108.999
• 0000256789 2. 56789E-5 2.56789E-5
25 25 25
. 16 . 16 • 16
1/16 • 0625 . 0625

Internally, Extended BASIC stores numbers in a format compatible with othc r DCC

software such as FORTRAN IV and the relocatable assemblers. Single precision
f 16ating point numbers are stored in two consecutive 16-b:i.t words of the form:

0 l 7 8 31

ts C M

2-1

where: S is the sign of the mantissa M. 0 = positive, 1 = negative.

M is the mantissa, considered to be a normalized six digit
hexidecimal fraction.

C is the characteristic and is an integer exponent of 16 in
excess 64

10
code.

Double precision floating point numbers add a word of precision to the mantissa,
which can be represented as:

0 1 7 8 16

~I
C I ssf>-

~,(,_\

~~

The range of floating point numbers is approximately

5. 4 * 10 - 79 through 7. 2 '~ 10
75

For additional information on floating point storage, of double precision numbers,
see Appendix C of "How to Use the Nova Computers."

Arithmetic Variables

The names of arithmetic variables are either a single letter or a single letter
followed by a single Jigit:

A
A3
z
Z6

Arithmetic Expressions

Arithmetic expressions can be composed of simple variables, arrays, array
elements, and functions, linked together by parentheses and by the arithmetic
operators. The arithmetic operators are:

SYrvIBOL MEANING SYMBOL MEANING

+ Addition :)::: Multi plication
+ Plus (positive) I Division

Subtraction Raise to the power
Minus (negative)

The order in which operations are evaluated affects the result. In BASIC, unary
minus or plus is evaluated first, then exponentation, then multiplication and division,
and last addition and subtraction. When two operators are of equal precdence (*and/),
evaluation proceeds from left to right.

2-2

•

•

•

•

•

•

•

•

Arithmetic Expressions (continued)

For example:

Z-A+B*Ct D

1. Ct D is evaluated.
2. B is multiplied by the value from 1.
3. A is subtracted from Z.
4. The value from 2. is added to the value from 3.

The programmer can change the order of evaluation by enclosing subexpressions in
parentheses. A parenthesized subexpression is evaluated first. Parentheses can be
nested, and the innermost parenthesized operation is always evaluated first.
For example:

Z-((A+B) *C) t D

1. A +B is evaluated.
2. The value from 1. is multi plied by C •
3. The value from 2. is raised to the power D.
4. The value from 3. is subtracted from Z.

Some examples of expressions are:

Ll+l
INT(C/D)/10
(Z(J, J)':i Z(I, J))/ A*(ABS(I))
J-5
SQR (ABS(X)

Arrays

An array represents an ordered set of values. Each member of the set is an array
element. Names of arrays are written as a single letter (A-Z). The letter must be
unique; it cannot be used as the name of a variable in the program or an error mes­
sage will result. An attempt to dimension a variable name, such as Z3, will cause
an error.

Declaring an Array

Most arrays are declared in a DIM statement, which gives the name of the array and
its dimensions. An array can have either one or two dimensions. The lower bound of
a dimension is always 0; the upper bound is given in the DIM statement. There is no
limitation on the number of elements in a given array dimension other than restrictions
due to available core.

Dimensioning information is enclosed in either pg,rentheses or square brackets
immediately following the name of the array in the DIM statement.

5 DIM A(l5),B[2, 3] - A is a one-dimensional array of 16 elements (0-15).
B is a two-dimensional array of 12 elements.

2-3

Declaring an Array (Continued)

If the programmer uses an array but does not declare it in a DIM statement,
BASIC sets aside 11 elements (0-10) for each dimension. An undeclared one­
dimensional array cannot have more than 11 elements. If the programmer does
not need 11 or 121 elements for a given array and wishes to conserve space, he
should declare the array with the required number of elements. There are
no restrictions on the number of elements an array may contain, other than restric -
tions due to available core.

Array Elements

•
Each of the elements of an array is identified by the name of the array followed
by a parenthesized subscript. (The subscript could, alternatively, be enclosed
in square brackets.) The elements of array B(9] would be:

B(0], B(l], B(2], ••• , ~8], ~9]

For a two-dimensional array, the first number gives the number of the row and
the second gives the number of the column for each element. The elements of
array C[2, 3] would be:

C(O, 0)

C(l, 0)

C(2, 0)

C(0,l)

C(l, 1)

C(2, 1)

C(0,2)

C(l, 2)

C(2, 2)

C(0, 3)

C(l, 3)

C(2,3)

An array element can be referenced with integer or expression subscripts. Any
variable or expression that is used for a subscript must evaluate to a datum
in the range:

~ ~ value ~ upper bound declared in DIM

If the variable or expression does not evaluate to an integer, the BASIC system
will convert itto fixed form usingthe INT function, described in the section on
functions. For example, some elements of array E(24, 5) might be:

2-4

•

•

•

•

•

•

•

•

Array Elements (Continued)

E (I-3, J*K)

E(0, 5)

E (ABS(R), 5) - ABS is a function described on page 2-6.

If a subscript evaluates to an integer larger tl;lan the limit of the dimension for
the array, an error message will be printed.

Redimensioning Arrays

It is possible to redimension a previously defined array during execution of a
program. Redimensioning does not affect the amount of storage previously
defined for the array. It is however, useful for run-time formatting of arrays.

Redimensioning is used primarily to change the subscripting of two-dimensional
arrays. Suppose the user originally defines a 3x4 array A.

0
1
2

100 DIM A[2, 3)

0 1 2 3
1 2 3 4
5 6 7 8
9 10 11 12

Statement defining A.

Row/ column assignment of values to elements
of array A. A[0, OJ contains 1, A[0, lJ contains
2, ••• , A[2, 2J contains 11, and A[2, 3J contains
12.

Later the user might redimension A using the keyboard command DIM. (See Chapter 5.)

0
1
2
3

DIM A[3, 2J J

0 1 2
1 2 3
4 5 6
7 8 9
10 11 12

Command transposing the dimensions of A .

Row/ column assignment of values to elements of A.
The values remain the same but the subscripts required
to retrieve those values have changed;

Value New Subscript Old Subscript

4 A[l, OJ A[0, 3J
6 A[l, 2J A(l,lJ
8 A[2, lJ A[l, 3]
11 A[3, lJ A[2, 2J

2-5

. Redimensioning Arrays (Continued)

An array can only be redimensioned so that it has the same or fewer elements.
For example, redimensioning a 3x5 array as a 4x4 array will cause an error.

Subscript references outside the defined range of subscripts will cause errors.
For example, once array A above is redefined as A(3, 2), use of 3 as a column
subscript , e.g., A[2,3] will cause an error.

Redimensioning an array to have fewer elements (e.g., redimensioning I{3~ 5]
as B[4, 3] or redimensioning C[20] as C[l5] merely makes referencing the unused
locations impossible. It does not free the locations for other storage.

FUNCTIONS

Some of the examples shown before contained functions. Certain standard
mathematical functions are supplied as part of the BASIC system. They are:

SIN(X)

COS(X)

TAN(X)

ATN(X)

LOG(X)

EXP(X)

SQR(X)

ABS(X)

Sine of X where X is in radians.

Cosine of X where X is in radians.

Tangent of X where Xis in radians.

Arctangent of X where X is in radians.
(- rr/2 <£ ATN(X) :5 rr/2)

Natural logarithm of X. (X> 0)

ex (-178 $ x:::; 175)

Square root of X. (X ~ 0)

Absolute value of X.

The arguments of SIN, COS, TAN, A TN, and ABS are confined to the range of
acceptable real numbers.

The LOG and SQR functions require positive arguments. A negative or zero
argument in the LOG function or a negative argument in the SQR functions will
cause the system to respond with an error message.

The argument of the EXP function is confined within the range of values that will
generate the largest and smallest acceptable real numbers, i.e., for ex the
range is : -178 :::; x ::; 175 .

2-6

•

•

•

•

•

•

•

•

FUNCTIONS

In addition to the standard mathematical functions~ the following functions are
supplied as part of the BASIC system.

INT(X)

RND(X)

SGN(X)

LEN(S)

DET(X)

SYS(X)

TAB(X)

EOF(X)

The greatest integer not larger than X.

A random number between O and 1. (There must be a predefined
variable or a constant as an argument, though the argument value
has no significance.)

The algebraic sign of X. (1 if positive, 0 if 0, and -1 if negative.)

The current length of string variable S.

The determinant of the last matrix inverted. (There must be a
predefined variable or a constant as an argument, though the
argument value has no significance.)

Where X is a digit, 0-10, returning the system information:

0
1
2
3
4
5
6
7
8

9
10

the time of day (seconds pa.st 00:00)
the day of the month (1-31)
the month of the year (1-12)
the year in four digits (e.g., 1974)
the terminal line number (-1 if operator's console)
CPU time used in tenths of seconds
I/O usage (number of system calls made)
the error code of the last error
the file number of the file most recently referenced
in a file I/O statement
page size
tab size

Note: the values of SYS(7) and SYS(8) are invalid if no run-time
error occurred, or if a file has never been referenced in a file
I/O statement.

Tabulate to character position X. The TAB function is
described fully on page 3-27.

End-of-file function. Returns 1 if file X is at end-of-file,
if not it returns a zero. The EOF function is described fully
on page 5-6.

2-7
(8/74 086-000010-00)

I

I

FUNCTIONS (Continued)

The INT function yields the largest integer less than or equal to its. argument.

INT(7. 25) = 7
INT(-7. 25) = -8
INT(l2) = 12
INT(-. 1) = -1
INT(X+2) = 16 If X evaluates to 14. 9
INT(l. 5) = 1

INT may be used to round a number to the nearest integer. To round the value,
add 0. 5 to the arguments:

I INT(X+o. 5)

The RND function yields a random number having a value in the range:. 0~value<l.
The function requires an argument, although the argument does not affect the resulting
random number. The argument can be any constant or previously defined variable.

RND(l)

RND(0)

might produce

might produce

• 654318

• 005461

The SGN function generates its result as +l if the argument is positive,. 0 if the
argument is 0, and -1 if the argument is negative.

SGN(. 452)

SGN(0. 00)

SGN(-24. 9)

=

=

=

1

0

-1

The LEN function produces an integer representing the current length of, the string
variable argument. (Strings are described in the next section of this chapter.) If
string variable A$ contains the string TOTAL SALES then:

2-8
(8/74 086-000010-00)

•

•

•

•

•

•

•

FUNCTIONS (Continued)

LEN(A$) = 11

LENB = 0 -------
- the space between TOTAL and SALES

counts as a character.
- B$ is unassigned or equals the null string.

The DET function yields the determinant of the last matrix inverted. The function
requires an argument, although the argument does not affect the resultant determinant.
The argument can be any constant or previously defined variable.

If B is a matrix as follows:

3 1 (Determinant B = 2)

7 3

then:

25 MAT C = INV(B) - inverse of matrix B becomes matrix C
30 LET X = DET(l) - assign determinant of last inverted matrix
35 PRINT X to X and print X.

The output would be: 2

STRINGS

String Literals

A string literal is written enclosed in quotation marks.

I "DATA GENERAL CORPORATION"

All blank spaces within the quotation marks are significant. The delimiting quotation
marks are not printed if the string literal is output.

If the user wishes to insert an ASCII character or ~- control code into .a literal
string, he encloses the decimal equivalent of the ASCII code in angle brackets in the

form: B
where: the range of!!_ is O ~ n ~ 255

10
•

• 2-9

String Literals (Continued)

If the string containing the ASCII character is output, the left and right angle brackets
will not be printed.

I " AN A:SCII CONTROL CHARACTER SOUNDS THE TIY ~ LL, I.E. , < 7 . > "

If the format is not as specified, i.e., if n is outside the range or if n is not enclosed
in both left and right brackets, no such er~or message occurs. The angle bracket
and the number will be treated as any other string literal characters.

l"TEN < 25 " - causing output of TEN < 25

String Variables and Expressions

Extended BASIC permits use of string variables as well as literals. String variables
are indicated by a dollar sign ($) appended to a letter or letter:-digit.

I R$ or R2$

String variables must be declared in DIM statements. The 'dimension' gives the
maximum number of characters the string can contain. There is no restriction on
the maximum length of a string, other than restrictions due to available core.

DIM A$(25), B3$(215) - A$. can contain up to 25 characters.
B3 $ can contain up to 215 characters.

A string variable cannot be assigned more characters than the maximum given in
the DIM statement, and if a string variable is 'redimensioned', .the maximum
number of characters must be less than that given in the original dimensioning
statement.

A string expression is a str;ing literal or a string variable. A variable reference
to a string may be subscripted or unsubscripted as shown following:

2-10

•

•

•

••

•

•

•

•

String Variables and Expressions (Continued)

A$
A$(2)

A$(I)

A$(3, 7)
A$(I, J)

A$(1, 1)

- References the entire string.
- References the second character through the last character in

the string inclusive.
- References position I through the last character in the string

inclusive.
- References characters occupying positions 3 through 7 inclusive.
- References characters occupying positions I through J inclusive,

where I and J are evaluated to character positions in the string
and I ~ J. ·

- References only the first character in the string.

Thus a subscripted variable lets the programmer reference a subset of one or more
characters within a string. String expressions can be used in assignment (LET)
statements, PRINT statements, INPUT statements, READ statements, and in rela­
tional expressions of IF statements.

20 PRINT A$(1, 4)
30 LET B$ = "RES UL TS ARE:"
40 IF A $(I,I) = B$(J, J) GO TO 100

50 INPUT C$, D$(2, 2)

- Print first 4 characters of A$.
- Assign string literal to B$.
- If the Ith character of A$ is equal to the

Jth character of B$, transfer to statement
100.

- At the terminal a datum of one or more
characters can be input for C$ and a single
character for D$(2, 2).

On the righthand side of an assignment statement, string expressions may be
concaten~ted, where the concatenation operator is a comma (,) •

100 DIM A$(50), B$(50)
110 LET A$="@$2. 50 EACH, THE PROFIT MARGIN IS 15. 8%."
120 LET B$=A$(1,4), "25", A$(7,35), "1.2%."

B$ would contain the following after statement 120 was executed:

@$2.25 EACH, THE PROFIT MARGIN IS 11.2%.

2-11

String Variables and Expressions (Continued)

Following are some string assignment considerations:

20 LET A$= B$
2 5 LET A$ = " "

- contents of A$ are replaced by the contents of B$.
- contents of A$ are replaced by a null string.

30 LET A$ = A$, B$ - contents of B$ are appended to the .. current contents of
A$.

35 LET A$ = B$, A$ - produces garbage, since A$ no longer exists at the
point at which it is to be appened.

When characters are assigned to a string or part of a string, the number of
characters to be assigned determines what will be stored. For example:

100 LET A$= "ABCDEF"
110 LET B$ = "1"
120 LET A$(3, 3) = B$
130 LET A$(3, 6) = B$
140 LET A$(3) = B$
150 LET A$(3) = B$, B$, B$

produces ABlDEF
- produces ABl
- produces A Bl
- produces ABlll

When strings are used in the relational expression of an IF statement, the strings
are compared character by character on the basis of the ASCII collating sequence
until a difference is found. If a character in a given position in one string has a
higher ASCII code than the character in that position in the other string,. the first
string is greater. If the characters in the same positions are identical but one
string has more characters than the other, the longer string is the greater of the
two. Use of strings in relational expressions is described again in Chapter 3,
the IF statement.

200 LET A$= "ABCBEF"
300 LET B$ = "25 ABCDEFG"

310 IF A$> B$ GOTO 500 -
320 IF A$> B$(4) GOTO 500 -
330 IF A$(1, 4) = B$(4, 7) GOTO 500 -

True. Transfer occurs •.
False. No transfer.
True. Transfer occurs.

2-12

•

•

•

•

•

•

•

•

String Variables and Expressions (Continued)

Some further examples of string manipulations are:

100 DIM A$(20), B$(20), D$(20), C$(50)
110 LET A$= "RESULT IS 25. 2%"
120 LET B$ = "$155. 24 PER ITEM"
130 LET C$ = A$(1, 10), B$(1)
140 IF A$(1, 4) = C$(1, 4) GO TO 400
150 LET D$(1, 8) = B$(13, 16), " NO. "

When statement 130 is executed, C$ contains: "RESULT IS $155. 24 PER ITEM".
When statement 150 is executed, D$ contains: "ITEM NO. ", and the relational
expression is true if statement number 130 is executed in the sequence shown •

2-13

•

•

•

•

CHAPTER 3

STATEMENTS

As shown in Chapter I, only a few BASIC statements are needed to write a simple
BASIC program. However, the statements available in Extended BASIC allow the user
to \Vrite programs using more advanced programming techniques as his familiarity
with BASIC statements increases. The statements listed below are described in de­
tail on pages following in this chapter. They constitute the statements of Extended
BASIC with the following exceptions.

;'v1atrix manipulation statement MAT is described in Chapter 4.

The CALL statement that invokes an external program is described in
Appendix B •

Statements that constitute file I/0 are described in Chapter 5.

The statements descrihed in this chapter are:

Statement

BYE

DEF

FOR and NFXT

GOSUB and
RF Tl TR(\

GO TO

IF

l):PUT

LFT

Usage

Terminate user/system interaction.

Define a user function.

Dimension arrays and string variables.

Optional terminator of program.

Set up programming loop •

Transfer to and from an internal subprogram.

Transfer control to a nonsequential statement.

Conditional transfer to another part of the program.

Rcque st data from the teletype.

Assign values to variables.

Clear current program, close all open channels.

3-1

Statement

ON

PRINT

PRINT USING

RANDOMIZE

READ and DATA

REM

RESTORE

STOP

Usage

Provide a series of possible transfer points.

Output data.

Output data in accordance with "picture" format.

"Reseed" random number generator.

Input data.

Comment.

Reinitialize the pointer to the start of the data bl~ck.

Halt program execution and switch to keyboard mode.

3-2

•

•

•

•

•
BYE

Format:

Purpose:

•

•
Example:

•

BYE

The BYE statement terminates interaction between the BASIC system
and the user and places the user's terminal into idle mode. The BYE
statement does not terminate the system, but idles the user's terminal.
The result of the execution of this statement is different depending
on which terminal issued the statement, either a user terminal, or the
master console.

When a BYE statement (or command) is issued from a user terminal
under multi-user RDOS, the system will print certain sign-off informa­
tion after which only the user terminal which issued the statement is
idled. This sign -off information will appear as:

07/09/73
07/09/73
07/09/73

14: 23
14: 23
14: 24

SIGN-OFF,
CPU-USED,
I/O-USED,

00
1
13

(terminal number)
(time used in tenths of seconds)
(number of system calls made)

When a BYE statement (or command) is issued from the master console
using any RDOS system, the sign-off information is printed on the
terminal as shown above. Then the words:

DIRECTORY SPECIFIER:

are printed on the teletypewriter requesting the master console user
to type in a directory name. After the user does so, BASIC is active
with a different user directory being used. There is no way to idle a
Master Console. If at any time the user wishes to deactivate BASIC,
the operator system command #KILL should be issued from the master
console (see Appendix C).

In SOS environment, when a BYE statement or command is issued,
the terminal it ,vas issued from is idled. No sign-off information is
printed.

100 BYE)

3-3

DEF

Format:

Purpose:

Examples:

DEF FN~ (~) = expression

where: ! is a single letter, A-Z.

~ is a dummy arithmetic variable that may appear in expression.

To permit a user to define a function that can be referenced several
times during a program. The function returns a value to the
point of reference.

When a function is referenced, the constant, variable, or arithmetic
expression appearing in the reference argument dummy argument ~ in
the expression.

In the function definition, expression can be any legal arithmetic_.
expression including one containing other user-defined functions.
Fup.ctions may be nested to a depth of four.

Function definition is limited to those formulas that can be
expressed on a single line of text. For longer formulas, sub­
routines should be used.

100 DEF FNE (X) = EXP (X t2) - definition of the function

200 LET Y = Y*FNE (. I) - function reference; argument = • I

300 IF FNE (A+3) > Y THEN 150 - function reference; argument= A+3

30 LET P = 3.14159
40 DEF FNR (X) = X*P/180
50 DEF FNS (X) = SIN (FNR(X)) - Function FNR is nested within
60 DEF FNC (X) = COS(FNR(X)) FNS and PNC.
70 FOR X = 0 TO 45 STEP 5
80 PRINT X, FNS(X), FNC(X) - FNS and PNC are referenced with
90 NEXT X X having values 0, 5, 10, ••• , 45

3-4

•

•

•

•

•

•

•

DIM

Format:

Purpose: To give the dimensions of one and two dimensional arrays and to
give the maximum number of characters in string variables. The
information in this non -executable statement is used to allocate
storage.

Arrays are dimensioned as follows:

1. The lower bound is always O and does not appear in the DIM
statement .

2. The upper bound is given in parentheses or square brackets
following the array name.

3. If there are two upper bounds, the bounds are separated by
a comma.

String variable names are followed by a single "dimension" in
parentheses or square brackets; this gives the upper limit of the
number of characters that the string may have.

Arrays and strings may appear in any order in a DIM statement .

2 DIM A(5, 6), C(20), X(l 7), B$(25), C$(30), Y(I4, 10)

A is a 6x7-element two dimensional array.

C is a 21-clement one dimensional array.

Xis a 18-clcment one dimensional array.

B$ is a string \vith a maximum of 25 characters. ,:<

C$ is a string vvith a maximum of 30 characters. ,:<

Y is a 15xl 1-element two dimensional array.

'Note: the 0th element of a string is not used and is not included in its length.

3-5

END

Format:

Purpose:

G
Many BASIC systems require an END statement as the last program
statement or as the terminating statement of a main program
that calls one or more subroutines. In Data General's BASIC, all
programs terminate at the last logically executed statement in the
program (if an END statement or S'FOP statement is not encountered).
However, the implementation allows END statements for compat-
ibility with BASIC programs written for other systems. Multiple
END statements may appear in the same program.

3-6

•

•

•

•

•

•

•

•

FOR

Format:

FOR control variable= expression1 TO expression2

FOR control variable = expression1 TO expression
2

STEP expression3

Purpose:

Legal
Nesting

To establish beginning, terminating, and incremental values
for control variable, a variable that determines the number of
times statements contained in a loop are executed.

The loop consists of statements following the FOR statement
up to a NEXT statement that contains the name of control
variable. The variable in a FOR statement cannot be subscripted.

expression1 is the first value of the variable.
expressionz is the terminating value of the variable.
expression3 is the increment added to the variable each time
the loop is executed. If not given, the increment is + 1.

When the NEXT statement containing the variable name is
encountered, the loop is executed again. The looping ends, and
the statement after NEXT is executed when control variable exceeds
the terminating value, expressionz.

FOR loops may be nested to a depth of seven. The FOR statement
and its terminating NEXT statement must be completely nested.
For example:

[

FOR X = •••

FOR Y = •••

FOR Z = •••

NEXT Z

NEXTY

NEXTX

3-7

Illegal
Nesting

FOR X = •••

FOR Y = •••

NEXT X

NEXT Y

FOR AND NEXT (Continued)

NEXT

Format: NEXT control variable

Purpose: To terminate the loop beginning with a FOR statement. The control
variable contained in the NEXT statement must precisely match
the control variable contained in the last uncompleted FOR statement
pre ceding NEXT.

When the FOR statement conditions have been fulfilled, execution
continues at the statement following the NEXT statement.

FOR and NEXT Examples

5 FOR X = • 1 TO • 005 STEP -0. 01
10 LET X = X*LOG(X)
20 NEXT X

10 FOR I = 1 TO 45
20 PRINT 2 t I
30 NEXT I

10 DIM A(25)
20 READ N
30 FOR I = 1 TO N
40 READ A(I)
50 NEXT I

100 FOR I = 1 TO 3 -----------------------:
120 FOR J = 1 TO 20 STEP I -------- I
130 READ B(I, J) I J loop
140 NEXT J _
150 NEXT I

3-8

I loop

•

•

•

•

•

•

•

•

FOR AND NEXT (Continued)

FOR and NEXT Examples (Continued)

90 FOR I= 1 TO 9
100 NEXT I
110 PRINT I
RUN~
9
120 FOR J = 1 TO 9 STEP 3
130 NEXT J
140 PRINT J
RUN t
7

- final value of I loop is the terminating value, 9.

- final value of the J loop is the last value before
the terminating value is exceeded •

3-9

GOSUB and RETURN

GOSUB

Format:

Purpose:

RETURN

Format:

Purpose:

GOSUB statement number

To transfer control to statement number, the first statement in
a subroutine. Control will turn to the next sequential statement
after the GOSUB statement when a subroutine RETURN statement
is executed. (see below).

A portion of a program is written as a subroutine when it is executed
at several different places in the program. A_subroutine is an arb­
itrary set of BASIC stateme:i:its which coptains at least one RETURN
statement.

To exit a subroutine, returning to the first statement after the
GOSUB statement that caused the subroutine to be entered.

A given subroutine may contain a number of RETURN statements
when logic might cause the subroutine to terminate at a number
of different statements.

3-10

•

•

•

•

•

•

•

Examples of GOSUB and RETURN

In the example following, RETURN causes return to statement number 120 when
the subroutine is entered from statement llO; return is to statement 140 when the
subroutine is entered from statement 130, etc. Note that there are two RETURNs in
the subroutine. Values for X and Y will be printed and return will be made from
statement numbered 560 as long as Y is less than 100. Otherwise, statement 540
in the subroutine is executed, and a return is made to the calling program without
printing values for X and Y.

100 LET X = 5
110 GOSUB 500
120 LET X = 7
130 GOSUB 500
140 LET X = ll
150 GOSUB 500
160 STOP

1 500 LET Y = 3 *X
510 LET Z = 1. 2 * EXP(Y)
520 LET Y = SQR (Z+2)
530 IF Y < 100 THEN 550
540 RETURN

i 550 PRINT X, Y

560 RETURN

In the example following, the subroutine calls itself •

100 LET X = 3. 5
2 00 GO SUB SOJ

- 500 LET Y = X t 2
520 PRINT X, Y
530 LETX = X+2.5

- call to subroutine from another part of the
program.

540 IF X > 1 O. 0 GOSUB 500 - subroutine calls itself.
550 RETURN

• .3-11

GOTO

Format:

Purpose:

Examples:

GO TO statement number

To transfer control to a statement that is not in normal sequential
order. If control is transferred to an executable statement, that
statement and those following will be executed. If control is
transferred to a non-executable statement (e.g., DATA), the
first executable statement following the one to which transfer was
made will be executed. ·

•

190 DATA 19, -5, -2, 5, -6, 10, 10, 60, 20, 5, 50, 10 •
200 READ X, Y, Z
220 LET A= SQR(X t 2 + Y t 2 - 2*X*Y*FNC(Z))
230 PRINT X, Y, Z, A
240 GO TO 200 - control will continue to transfer back to statement

200 until all values for X, Y, and Z have been read.

190 DATA 19, -5, -2, 5, -6, 10, 10, 60, 20, 5, 50, 10
200 READ X, Y, Z
220 LET A= SQR (X t 2 + Y t 2 - 2 *X*Y*FNC(Z))
230 PRINT X, Y, Z, A
240 GO TO 190 - same as previous example.

3-12

•

•

•

•

•

•

IF

Format:

Purpose:

Relational
Expression:

IF relational-expression {GOTO} statement-number
THEN

IF relational-expression GOSUB statement-number

IF relational-expression THEN statement-number

To transfer control on the basis of whether relational-expression
is true or flase.

The IF-GOTO (THEN) statement format causes control to be
passed to the statement whose number appears following GOTO
if relational-expression is ture. If relational-expression is not
true, control is passed sequentially to the next statement
following the IF statement.

The IF-GOSUB statement format causes control to be passed to
the beginning of a subroutine whose statement number appears
following GOSUB if relational-expression is true. If relational­
expression is not true, control is passed sequentially to the next
statement following the IF statement.

The IF-THEN statement format is a generalized form of the IF
statement. Any statement, including an IF statement, may
follow the THEN.

A relational expression consists either of two arithmetic expres­
sions and a relational operator or of two string expressions and
a relational operator and has the form:

expression! relational operator expression2

The relational operators are:

Symbol Meaning Example

= Equal A=B
< Less than A <B
,= Less than or equal A <= B
> Greater than A > B
> = Greater than or equal A>= B
<> Not equal A<> B

3-13

IF (Continued)

When relational operators are used to compare string expressions,
strings are compared character-by-character until a difference is
found.

IF "ABCDEF" = "ABCDEFG" THEN ..•

IF "AB" = "AB" THEN •.•

IF "ABC" > "AB"

IF "BAC " > "A II

IF "D" > "AAAA"

The branch then depends upon the values of the ASCII codes of the pair
of characters which first differ. The higher ASCII code value indicates the
greater string value. If one string has more characters than
the other, (but they have a common prefix), the longer string is the
greater of the two. To be equal both strings must have the same
characters, in the same order, and be of the same length.

"ABCDEF" = "ABCDEFG" is not true, the second string is
the greater of the two, as it contains more
characters.

•

..

•

"AB" = "AB" is true since both strings contain the same
characters, in the same order, and are of the
same length. •

"ABC" > "AB" is true since the first string is identical
to the second string except for an added character.

"BAC" > "A" is true since B has a higher ASCII code than
does A, the first pair of characters to be examined.

"D" > "AAAA" is true since D has a higher ASCII code value than
A where the first difference occurred. * *

A numeric expression may be used in place of a relational expression
following IF. The numeric expression is considered false if it has
a value of O and is considered true in all other cases.

** Note: The ASCII code value of Dis 104; A's ASCII code value is 101.

3-14 •

•

•

•

•

Examples:

100 IF X + Y = 0THEN 1000 }
150 IF • 01 > = SQR(X) GO TO 410
200 IF A$ < > "YES" GOSUB 650

Relational expressions, where
values are compared to deter­
mine the truth value.

101 IF X+ Y THEN 1000 }
151 IF ABS (X) G~ TO 410

102 IF X+Y = 0 THEN LET I= 0

Numeric expressions that evaluate to zero or
non-zero. Al1 non -zero values are true. Note that
statement 101 is the reverse of statement 100 •

If X+ Y=0 is true, the LET statement is
executed and control passes to the next
statement in the program; if X+Y= 0 is false, the
LET statement is not executed and control
passes immediately to the next statement
in the program.

152 IF X THEN IF • 01 > = SQR(X) GO TO 410

The first IF checks the value of X. If
it is zero, control passes to the next
statement in the program. If it is not
zero, -the IF statement following THEN
is executed and control passes to the
next statement in the program or to the
statement 410, depending upon the value
of the square root of X.

3-15

INPUT

Format:

Purpose:

INPUT variable- list

where: variable- list can contain arithmetic variables, array
elements, string variables, and string literals.

To input values for variables and string variables at run time
from the user's termjnal. The usage of the INPUT statement
(without containing a string literal) contains a list of variable names
and/or string variable names separated from each other by commas:

55 INPUT A, B, C)
60 INPUT P$;)
70 INPUT D, S$, A$(1,4), J)

The INPUT statements are all terminated with a carriage return
and may be written with a semi-colon preceding the carriage
return (i.e. , statement number 60). Arithmetic and string
variables may be interspersed within the variable list of the
INPUT statement (i.e., statement number 70).

When an INPUT statement containing no string literal is executed,
the BASIC system types ? at the terminal, requesting data for the
variables. (When string literals occur, they replace the question
mark prompt. These are discussed later within this section.)
An example of passing data to BASIC in response to question
mark prompts is:

55 INPUT A, B, C)
60 INPUT P$;)
? 0 INPUT D, S $, A $(1, 4), J)

RUN)
? 10) ? 25) ? 33)
? ABCDEFG) ? 123) ? AMOUNT)? ITEM)? 456)

The first three items input by the user were separated by carriage
returns (10, 25, and 33); and since statement number 55 ended
with a carriage return, a carriage return/line feed occurred before
executing statement number 60. Input for statement number 60
(INPUT P$) is a string which was also terminated by a carriage
return, but, because statement number 60 ended with a semicolon,
statement number 70' s request for input was continued on the same
line as the input received in response to statement number 60.

3-16

•

•

•

•

•

•

•

•

I.'\PUT (Continued)

Purpose: The programmer types the list of data val!.~~s fpr input immediatEdy
following the ?. Each datum is delimited from the next by either
a carriage return (as in our example) or by a comma. If a semi­
colon appears at the end of an INPUT statement a carriage return/
line feed will not occur after the last inputted item in response to
that statement. But, if there is no semicolon at the end of the
INPUT statement, a carriage return/line feed will occur before
the next statement is executed. The data list typed in response to
the INPUT statement must match the variable list in both type of
datum and number of data items. The last data value input by the
user in response to a INPUT statement must be terminated by a
carriage return .

Character strings in the data list may optionally be enclosed within
quotation marks. Character striJlgs may include any characters
includhig digits and angle bracket de limiters enclosing the decimal
equivalent of an ASCII character. Since a datum is delimited by
commas and carriage returns, a comma or carriage return can­
not be a part of the character string unless the character string
is not enclosed within quotation marks, leading blanks will be
ignored on input:

2~. 34, THE RESULT IS: , 0

2 ~ . 3 4, " THE RESULT IS : ", 0

The second item in the data
list is a string of 14 charac­
ters including enclosed
blanks .
The second item in the data
list is a string of 15 charac­
ters including enclosed blanks
and one leading blank.

Pressing carriage return during typing of the data list does not
cause an actual carriage return; it merely signals BASIC that a
value has been terminated. If the return is pressed and BASIC
does not have enough values to fill the input list, the BASIC system
types: ? and sounds the teletype bell. The programmer can then
add the needed values to the list.

If the data list contains an error detected by the system, for
example, a string value for a numeric value, the BASIC system

3-17

INPUT (Continued)

Purpose:

INPUT Examples:

types: \ 1 after which the programmer ca.utype tl:.1.t: curr~ct value.
During the typing of the data list, 'the programmer may use the
line erase (SHIFT L) or character erase (RUBOUT) to correct
errors within his list.

It is useful to precede the INPUT statement in the p:cogram
with a PRINT statement containing a string that will clarify for the
user at the teletype which variables_ the values are requested for.

40 PRINT "VALUES FOR A, B, C"

50 INPUT A, B, C

- string within quotation
marks will be printed on
line before BASIC

String literals may be utilized in the INPUT statement to print these
prompts; thus the above example could have been written as:

50 INPUT "VALUES FOR A, B, C ",A, B, C

If an INPUT statement is incorporated into a continuous loop, the
programmer can terminate program execution but pressing the
ESC key.

10 DIM A$(10), B$(10)
20 INPUT Z, A$, X, B$
30 PRINT A$, B$
40 PRINTZ, X
RUN)
? 2. 55) ? "TEST") ? 34) ? "ITE STOK")
TEST ITESTOK }
2.55 34

3-18

BASIC Printout; data list
separated by carriage returns.

•

•

•

•

•

•

•

•

INPUT (Continued)

10 DIM A$(10), B$(10)
20 INPUT Z, A$, X, B$
30 PRINT A$, B$
40 PRINTZ, X
RUN)
? 2. 55 ,
TEST
2.55

RUN)

TEST , 34 , "ITESTOK")

ITESTOK }
34

BASIC Printout; data list
separated by commas.

?2.55? "TEST"? "STRING" \ ? 34 , "ITESTOK ")
TEST ITESTOK }
2. 55 34

BASIC Printout

(Note: the third item in the data list , the user tried to input a string (STRING)
in the place of a required number. Basic types \ ? • The user merely
retyped the correct numeric value and the final string value.)

10 DIM A$(10), B$(10)
20 INPUT Z, X, A$, B$;
30 PRINT A$, B$
40 PRINTZ, X
RUN)
? 2. 55 , STRING\? 34 , "STRING", TEST STRING TEST
2. 55 34 \. ______ """'" _____ ;

\, I
"" BASIC Printout BASIC Printout

(Note: the second item in the data list is a string in place of the required
number. BASIC types \ ? after which the programmer typed the correct
numeric value.)

3-19

INPUT (Continued)

20 INPUT "VALUES OF X, Y, Z", X, Y, Z - Informs user as to
requested values.

RUN)
VALUES OF X, Y, Z 2.5, -44.1, .5

10 PRINT 0 VALUES OF X, Y, Z"
20 INPUT X
30 INPUT Y
40 INPUT Z

RUN)
VALUES OF X, Y, Z
? 2. 5 , -44. 1 , • 5

10 PRINT "VALUES OFX, Y, Z";
20 INPUT X
30 INPUT Y
40 INPUT Z

RUN)
VALUES OF X, Y, Z ? 2. 5)
? -44.5)
? . 5)

0005 DIM G$(8)
0010 PRINT "FAHRENHEIT";
0020 INPUT F, G$;
0030 LET C = (F-32)*5/9
0040 PRINT "CENTIGRADE = '·' C, G$
0050 PRINT
0060 GOTO 0010
RUN)
FAHRENHEIT ? 32 , " FOR F = 32"
FAHRENHEIT ? 50 , " FOR F = 50"
FAHRENHEIT ? (user presses ESC)
STOP AT 0020

- user supplies 3 values.

- Each INPUT statement
contains one variable in list.

- Error message will result
since only one value (X) is
expected.

- Data list separated by
carriage return.

CENTIGRADE = 0 FOR F = 32
CENTIGRADE = 10 FOR F = 50

3-20

•

•

•

•

•

•

•

•

ASSIGNMENT STATEMENT (LET)

Format:

Purpose:

Examples:

variable = expression

LET variable = expression

To evaluate expression and assign the value to variable.

String expressions may be assigned to string variables, and
arithmetic expressions may be assigned to arithmetic variables.

The variable may be subscripted •

Use of the mnemonic LET is optional.

10 LET A= 4. l 7+G

40 X = X+Y t 3. 5

80 LET W7 = ((W-X)t 4. 3)*SQR(Z-A)/B

90 J(I, INT(K/10)) = COS(FNA(K+l}}

100 DIM A$(10), B$(10), C$(20), 0$(10)
140 LET A$ = "NOW"
150 B$ = "TIME"
160 C $ = A$," IS THE ", B$ - string concatenation
1 70 LET D$ == A$(1, 2), B$(1, 1), " ", B$(3, 4) - string concatenation

A$ contains NOW
B$ contains TIME
C $ contains NOW IS THE TIME
0$ contains NOT ME

3-21

NEW

Format:

Purpose: The NEW statement clears all currently loaded statements and
variables, and closes any open channels. It is usual to give this
statement before beginning input processing of a new current program.
This statement can be the last executable statement within the
current program; thereby, after executing the program, and
printing out all results, the program will be immediately cleared
from memory. This statement, in conjunction with ON ERR or ON
ESC statements, can be used to prevent unauthorized reading of a
program. (More elaborate techniques can be used to check a user
password upon detection of an ESC or ERR to decide if read access
should be permitted.)

Examples:

"

100 READ A
110 LET C =A* 23
120 PRINT C;A
125 GOTO 100
130 NEW
135 DA TA 1, 2, 3, 4, 5, 6
RUN I
23 46 69 92 115 138

LIST I

S ON ESC THEN NEW
6 ON ERR THEN NEW
10 - - -

;MEMORY HAS BEEN CLEARED.

3-22

•

•

•
..

•

•

•

•
..

•

ON

Format:

Purpose:

Examples:

ON expression GO TO statement number list

ON expression THEN statement number list

ON expression GOSUB statement number list

ON ERR THEN statement

ON ESC THEN statement

The ON statement as specified in the first three statement formats,
is written for the purpose of providing several possible transfer
points. The statement to which transfer will be made depends
upon the evaluation of e?g?ression~ The value of expression must
correspond to the sequence number within the list of one of the
statement numbers.

If expression does not evaluate to an integer, it is truncated to
an integer by the INT function.

If expression evaluates to an integer that is greater than the sequence
number of the last statement number in the list or that is less than
or equal to zero, the ON statement is ignored and control passes
to the next statement.

ON-GOTO and ON-THEN are equivalent formats. ON-GOSUB
must contain a list of statement numbers, each of which represents
the start of a subroutine within the program •

ON ERR THEN will, when an error results from the execution of
the program, execute statement. statement may be any legal
Extended BASIC statement. ON ESC THEN will, when the user hits
the ESC key, execute statement; statement may be any legal state­
ment. If the ON ESC statement does not execute a GITTO, then con­
trol will eventually return to the user's program at the last lL11e
executed before the escape was typed.

ON M ... 5 GOTO 500, 7 5, 1000

If M -5 does not evaluate to 1, 2, or 3, the statement is ignored. If M -5 evaluates
to 1, transfer is made to statement 500; if the expression evaluates to 2, transfer

3-23

ON (Continued)

is made to statement 75, and if the value is 3, transfer is made to statement 1000.

! 21 ON X GOSUB 1000,2000,.3000,4000 ;X must be 1,2,3, or 4 to effect transfer.
31 ON Y*I THEN 100, 50, 90,550, 80, 75 ;Y*I must have a value of l through 6.
55 ON ERR THEN GOSUB 160 ;Transfer to an error subroutine.
78 ON ESC THEN GOTO 100 ;Transfer to statement 100 when ESC occurs.

Note: Caution must be exercised with use of the ON ESC THEN statement. Usually,
if the user presses ESC, it indicates to the system that whatever is occurring must
stop. If a program is executing, execution will cease; if data is being output, output
'Nill ceEse. But, with the use of the ON ESC THEN statement, instead of halting, the
system transfers control to the statement appearing within the ON ESC THEN staJement.

As an example, assume that the user includes the statement 100 ON ESC THEN
PRINT X, Y, Z in his program. When the user presses ESC during program execution,
program execution does not cease; instead, control pas~es to statement 100 and the
values of X, Y, and Z willbe printed. Controlcontinues in the program as if line 100
were never executed, that is, in the example below control continues at line 141 if
line 140 were the last to complete before the escape is processed.

100 qN ESC THEN PRINT X, Y, Z

1-iD PRINT X
141 Y = Z

In order to stop the execution of a program when using the ON ESC THEN statement,
a statement must appear in the program after the ON ESC THEN statement which will
instruct the system to stop. (For example, a STOP statement or an ON ESC THEN
STUt' statement). The latter will also restore normal use of the ESC key.

In the example following, execution of one of the RETURN statements will return con­
trol not to statement 30 but to the statement following the last to complete execution
after the escape key was struck.

10 ON ESC THEN GOSUB 500
20 DIM X(l 000)
30 FOR I = 1 TO 1000
40 X(I) = A *I 2+B *I+C
50 NEXT I
60 STOP

'

500 PRINT I, X(I)
510 INPUT "CONTINUE (0) OR NEW INPUTS (l)", D
520 IF D = 0 THEN RETURN
:)30 INPUT "NEW VALUES FOR A, B, C", A, B, C
::;40 RETURN

3-24

•

•

•
..

•

•

•

•
..

•

PRINT or

Format:

Purpose:

Output
Formatting:

where:

PRINT expression list

expression list

expression list is a list of numeric variables, subscripted
variables, arithmetic expressions, string literals, and string
variables.

PRINT and; are equivalent statement forms.
To output current values for any expressions and variables appear­
ing in the expression list of the PRINT statement, and to output
verbatim text for any string literals in the expression list.

The PRINT statement allows the user to either control output for­
matting or to accept default formatting.

Number Representation

Any real or integer number which can be represented as six digits **
and a decimal point is printed out without using exponential form. A
minus sign is printed if the number is negative; a space is left
before a positive number. All other numbers are printed in the
format:

where:

Number

. 00000002
-.0002
200
-200.002
2,000,000

[-] !:_[.] nnnnnE_± ::_[::_]

!:.. is a digit

E indicates exponentiation •

~ is a digit of the exponent.

[] square brackets indicate optional parts of the number.

If the number is positive, the sign position is left blank.

Printed Outpm Printed Output D. P.

2E-8 • 00000002
-.0002 - • 0002
200 200
-200.002 -200. 002
2E+6 2000000

-20,000,000,000 -2E+l0 -2E+l0

*,:, Eight digits for double precision, see Appendix F # and pages 2-1, 2-2.

3-25

PRINT or ; (Continued)

Zone Spacing of Ou!put (,)

The terminal line is divided ,into zones. By default, each zone is set to
14 spaces, which is a typical spacing for a 72 .. character teletypewriter:

0 14 2 8 42 56 (14 .. space zone, allowing 5 columns of data to
be output on a 72 .. character teletypewriter.)

The user can set the number of spaces per zone at the beginning of a
console session, or at any time during the console session by means of
the keyboard command, TAB, which is described on page 6-16. The
zone may be set in the range from one charact'er up to the limit of
the page width of the terminal de~ice.

A comma between items in the expression list of the PRINT
statement indicates "space to the next zone." If the last print
zone has been filled, the next value is printed in the first
print zone of the next line.

10 LET X = 5
50 PRINT X, (X *2) t 6, X*2,
60 PRINT X t 4, X-25, (X*2) t 8, X-100

(Assume a 14-space
zone. Note terminating
comma on first PRINT
statement controls the
output of the first value
of the next PRINT statement.)

0
t
5
1E+8

14
t

l!E+6
-95

28
t

10

42
t

625

When an output value is longer than a single zone, for example,
a long character string, the teletype is spaced to the next free
zone to print the next valde.

10 LET X = 25
20PRlNT "THE SQUARE ROOT OF XIS:", SQR(X)

0 14

t ' THE SQUARE ROOT OF X IS

3-26

28
t

5

position

value

56
t

-20

•

•

•

•

•

!:

•

•
..

•

Compact Spacing of Output

The user can obtain more compact output by use of the semicolon
between list items. It inhibits spacing to a print zone, leaving
only a single space between values output for list items. Note
that like the comma, a semicolon at the end of a PRINT statement
will determine the position of the first value of the next PRINT
statement.

10 LET X = 5
20 PRINT X; (X>;c2) t 6; x):c2; (X,:c2) t 4;
30 PRINT x..-25; (X*2) t 8; x .. 100

0 4 10 14 20 25 30
♦ + ♦ + ♦ ♦ ♦

5 1E+6 10 10000 -20 1E+8 -95

Spacing to the Next Line

If there is no comma or semicolon terminating the last item of
the list of a PRINT statement, the edited output will be followed
by a line feed/ carriage return so that the next PRINT statement
will begin printing on the next line.

10 LET X = 5
20 PRINT X, (X *2) t 6
30 PRINT X*2
40 PRINT X-25; (X,:'2) t 8
50 PRINT X..-100

0 5 15 - position
♦ ♦

5 1E+6 value
10

-20 1E+8
-95

.3-27

- position

value

Output
Formatting:
(Continued)

Tabulation

It is possible to tabulate to a pa.rticular character position to
output a value using the TAB functiQn:

TAB (expression)

where: expression evaluates to an integer representing the
character position to begin output o'f the next list item
following the TAB function. The TAB function only
tabulates to the given, position. if the carriage is not set
beyond the desired character _position. lithe expression
in the TAB function evaluates to a number greater than
the carriage length, the expression is reduced modulo
carriage length. If expression evaluates to zero, TAB(0)
causes a ca.rraige return.

10 DATA 5, -7, 9, -11
20READ A, B, C, D ..
30 PRINT TAB(5); A; TAB(l0); B; TAB(l5); C; TAB(20); D

0 10 ·. 15 20

10 DIM B[4]

!
-7

20 DATA 5, -7, 9,
30 FOR I = 0 TO 3
40 READ B[I]
50; TAB(5); B[I];
70 NEXT I

0 5 7 10
! ! !
5 -7 9

!

9

-11

13
!
-11

3-28

½

-11

- position

- value

- Note that the TAB
function only affects

· the first array value,
since the TAB function is
only effective at its
first encounter.

•

•

•
.,

•

•

•

•
..

•

PRINT or ; (Continued)

Output
Formatting :
(Continued)

Following are a few additional examples of output printing:

10 FOR I= 1 TO 10
20 ;I,
30 NEXT I

1
6

2
7

10 FOR I = 1 TO 10
20 PRINT I
30 NEXT I

1
2
3
4
5
6
7
8
9
10

10 FOR I = 1 TO 10
20 PRINT I,
30 NEXT I

1 2
6 7

3
8

3-29

3
8

- If zone = 15 spaces.

4
9

5
10

- Carriage return delimiter.

- If zone = 14 spaces.

4
9

5
10

PRINT OR ; (Continued)

String Variables

String expressions may be printed by the use of the PRINT
statement.

10 DIM A$(25), B$(25)
20 LET A$ = uIF X IS - " ·
30 LET B$ = 11 THEN X SQUARED IS ..

11

40 READ X
50 LET C = X t 2
60 PRINT A$;X;B$;C
70GOTO 40
80 DATA 5, 10, 15, 20, 25
RUN)
IF X IS - 5 THEN X SQUARED IS - 25
IF X IS - 10 THEN X SQUARED IS - 100
IF X IS - 15 THEN X SQUARED IS - 225

. IF X IS - 20 THEN X SQUARED IS - 400
IF X IS - 25 THEN X SQUARED IS - 625

10 DIM A$(25),B$(25)
20 LET A$ = "ABCDEF 11

30 LET B$ = "GHIJKLM"
40 PRINT A$, B$
RUN)
ABCDEFGHIJKLM

3-30

•

•

•
•

•

•

•

•
•

•

PRINT USING

Format: PRINT USING format-string, expression-list

Purpose:

where: expression-list is a list of numeric variables, subscripted
variables, arithmetic expressions, string literals, and
string variables.

format-string may be a string literal or a previously defined
string variable, specifying formats of the fields in which the
value of each of the expressions in the list is to be output •

To output current values for any expressions and variables
appearing in the expression list of the PRINT USING statement in
accordance with the field formats specified by format-string.

Formatting Rules and Examples:

1. Since the output field formats are specified by format-string, all formatting
conventions used in the PRINT statement (TAB function, comma, and semicolon)
are ignored within expression- list. However, any comma or semicolon termi­
nating the expression- list will foliow PRINT statement conventions.

2. Within string-expression, a number of format fields and string literals for
output may appear. One or more format fields may be given in format-string;
a format field is made up of combinations of the following characters:

+ - # $

The special format field characters may appear as part of string literals within
format - string as well as in format fields. BASIC differentiates format
uelds from string literals by the characters that appear in format fields. For
example:

"TWO FOR $1. 25" -
"TWO FOR $$$. ##" ·-
"ANSWER IS ·85" -
"ANSWER IS -###" -

$1. 25 are characters of a string literal.
$$$. ## is a field format (a $ followed by
an appropriate field format character - -
another $ in this case.)
-85 are characters of a string literal.

-### is a field format (a - followed by an
appropriate field format character - -
a # in this case.)

.3-31

PRINT USING (Continued)

3. The format fields may be specified in format-:>String by referencing a
previously ·defined string variable;· for example:

5 DIM S$(10)
!:0 LET S$ ~ "##. ## "
20 PRINT USING S$, 1. 5, 2

. .

4.. A forinat: field is terminated by, the appearance of the first non-format
field character.

format_ string
field literal

fit.ld

format.
field

terminator (6. represents a space)

5. String literals may appear in the expression Ust of the PRINT USING
statement and will be superimposed on a field format in the following
manner:

a. Each character of the string replaces a ·single format field char­
acter, which may be any one of the format field characters.

b. Strings are left justified in the format field, with a fill of spaces
if necessary.

c. If the number of characters in the string; is greater than .the number
of characters in the field format, the string will be truncated.

PRINT USING ''###, ###.##",''TEST", "CHARACTER", "SEVENTY-FIVE"

TEST 6666.66CHARACTER 6SEVENTY ..;·Fr

(where: each 6 represents a space)

3-32

•

•

•

•

•

•

. ;

...

•

PRINT USING (Continued)

5. When there are more expressions in the expression list than field formats
in string-expression, the existing formats will be used repetitively.

"#### @$###. ## PER###"

The first, fourth, seventh, etc., expressions in the list will be formatted
using the field format ####.

The, second, fifth, eighth, etc. , expressions in the list will be formatted
using the field format $###. ## •

The third, sixth, ninth, etc., expressions in the list will be formatted
using the field format ###.

The embedded blanks, @ sign, and PER are string literals.

10 PRINT USING "A [#]6=6##. #", I, A[I]

A[l] = 17.9 possible output; number of expressions in the list
equals the number of field formats.

5 PRINT USING "###. ##f_"", I, A, B

L61. 006617. 906625. 776

3 ... 33

- possible output; number of expressions
in the list exceeds the number
of field formats •

•
PRINT USING (Continued)

6. The special characters:

are used in formatting numeric output as follows:

a. Digit Representation (#)

For each # in the field format, a digit (0-9) is substituted.

Field Format Datum Representation Remarks •
25 66625 Right justify digits

in field with leading
blanks.

-30 66630 Signs and other non -
digits are ignored.

I. 95 66662 Only integers are
represented; the
number is rounded
to an integer.

598745 ***** If the datum is too
large for the field, • all asterisks will
be output.

3-34 •

•

•

•
•

•

PRINT USING (Continued)

b. Decimal Point (.)

The decimal position indicator (.) places a decimal point within
the string of digits in the fixed character position in which it
appears. Digit positions (#) following the decimal point will
be filled; no blank spaces are left in these digit positions.
Where the datum contains more fractional digits than the field
format decimal indicator allows, the fraction will be rounded
to the limits of tbe field. When the datum contains less digits to
the right of the decimal than ther are # positions in the format
string, zeroes are output to fill out the format field .

Field Format

#####.##

I
#####.##

Datum

20

29. 34 7
0.079

789012.34

3-35

Representation

66020.00

tL:&9. 35
~.08

Rem2rks

Fractional positions are
filled with zeroes.

Rounding occurs on
fractions.

When the datum has too
many significant digits
to the left of a decimal,
a field of all asterisks,
including the decimal
position, is output •

PRINT USING (Continued)

c. Fixed Sign (+ or -)

A fixed sign character appears as a single plus (+) or minus (-)
sign in either the first character position in the format field or the
last character position .in the format field. The signs have the following
effect:

+ prints a+ in the given field position if the datum is positive
and prints a - in the given field _position if the datum is negative.

- prints a - in the given field position if the datum is negative and
leaves a blank spa~~ in that field position if the datum is positive.

When a fixed sign is used, any leading zeroes appearing in the
datum will be replaced by blanks, except for a single leading
zero immediately preceding a decimal point.

Field Format Datum Representation Remarks

+##.## 20. 5 +20.50

+##.## 1. 01 +61. 01 Blanks prec.ede the
number •.

+##.## -1. 236 - LL 24

+##.## -234.0 ******

###.##- 20. 5 &20. SOL

###.##- 000.01 LLO. 01 L The last leading zero
before the decimal point
is not suppressed.

###.##- -1.236 6,61. 24-.

###.##- -234.0 234.00-

3-36

•

•

•
•

•

•

•

•
•

•

PRINT USING (Continued)

d.

e •

Floating Sign (++ ••• or - - •••)

A floating sign appears as the first two (or more) signs in the field
format. Floating positive (++) outputs either a plus or minus ·
sign immediately preceding the datum; floating negative (.. ,..) outputs
either a blank space or minus sign immediately preceding the datum.

Positions occupied in the field format by the second sign and any
additional signs can be used for numeric positions in the datum
without field overflow occurring as shown in some of the examples •

1

Field Format

---.##

---.##

Datum

-20

-200

2

Representation

-20.00

Remarks

Second and third
signs are treated
as digit positions
(#) on output.

Either a floating sign or a floating $ sign (see section f.) can be
used but not both.

Fixed $ Sign ($)

A fixed $ sign appears as either the first character or second character
in the string, causing a $ to be placed in that character position.
The $ may appear as the second character if it is preceded by a fixed
sign. A fixed $ causes leading zeroes in the datum to be replaced by
blanks.

Field Format Datum Representation

30. 512 6 $ L'.\30. 51

-30. 512 $ 630. 51-

3-37 •

PRINT USING (Continued)

f. Floating $ Sign ($$ •••)

A floating $ consists of at least two $ characters beginning at either
the first or second character position, in the string, and causing
a $ sign to be placed in the character position immediately pre­
ceding the first digit.

If the floating $ sign begins in the second character position of
the string, it is preceded by a fixed sign (+ or -).

Only one floating character (sign or $) is permitted in a given
field.

Field Format Datum

13.20

-1.0

3-38

Representation

+66$13. 20

6$01. 00-

Remarks

Extra $ signs may
be replaced by
digits as with floating
+ and - signs.

Leading zeroes are
not suppressed in the
part of the field.

•

•

•
•

•

•

:t

•

•
•

•

PRINT USING (Continued)

g. Separator (,)

The separator (,) places a comma within a string of digits in the
fixed character position in which it appears in the field format.
However, if the comma would be output .in a field of suppressed
leading zeroes (blanks), a blank space will be output in the comma's
position.

Field Format Datum Representation Remarks

+$#,###.## 30.6 +$6L.630. 60 Space printed for
comma.

+$#'###.#=it 2000 +$2,000.00

+t-# # ' +t# if 00033 6+00, 033 Comma is printed
when leading zeroes
are not suppressed.

h. Exponent Indicator (t)

Four consecutive arrows (t t t t) are required to indicate an expo­
nent field and will be filled by E~nn, where each n is a digit.

If the exponent field does not contain four up arrows, a run-time
error will result •

Field Format Datum Re presentation

+##.##tttt 170.35 +17. 03E+Ol

+##.##tttt - • 2 -20. 00E-02

++##.##tttt 6002.35 +600. 24E+Ol

3- 39

RANDOMIZE

Forma.t:

Purpose: The RANDOMIZE statement is used when the programmer wishes
the random number generator to calculate different random numbers
each time it is used. When the RANDOMIZE statement is executed,
it will cause the RND function to choose a random starting value, so
that a program which is rtm twice will give different results.

Example:

. } 80 FOR L = 1 TO 20
90 LET X(L) = L*RND(0)

100 NEXT L

199 NEW
200 RANDOMIZE
210 FOR I = 1 TO 20
220 PRINT RND(0)
230 NEXT I

Within the program, the random number
generator is used in calculations.

When statements 210 th.tough 230 are executed
the random number generator will generate
different number than those used in the calcu -
la.tions performed by. statement numbers 80
through 100.

•

•

Note: If the user should wish to use the same random numbers within his •
program or within two differ~nt programs, the ,user should not use the RANDOMIZE
statement. By merely issuing the RUN command, the BASIC system will
reinitialize the random number generator to a fixed start point.

•

3-40

•

•

•

•
•

•

RE.t\ D AND DAT A

READ

Format:

Purpose:

where:

READ variable list

variable list can contain arithmetic variables, array
elements and string variables.

To read values from the data block into variables listed in the
READ statement.

The order in which variables appear in the READ statement is
the order in which values for the variables are retrieved from
the data block •

Values appearing in all DATA statements in a- program are
stored, before a program is executed, into a single data block
for use as values of variables in the READ statement.

Normally, READ statements are placed in the program at those
points at which data is to be manipulated, while DAT A statements
may be placed anywhere.

A pointer is moved to each consecutive value in the data block ·
as values are retrieved for variables in READ statements. If
the number of variables in the READ statement exceeds the
number of values in the data block, an ''out of data" error mes­
sage is printed. The RESTORE statement can be used to reset
the pointer to the beginning of the data block.

The type of variable in the list of the READ statement must match
the corresponding value in the list of the DATA statement. An
attempt to read an arithmetic value with a string variable
will result in an error message •

3-41

READ AND DATA (Continued)

DATA

Format:

Purpose:

DAT A constant list

To provide values to be read into variables appearing in READ
statements.

Numbers and string literals may appear in DATA statements.

Each number or string literal is separated from the next
datum by a comma.

DATAis a non-executable statement. The values appearing in
the DATA statement or statements are read into a single data
block before the program is run. The values in the data block
are ordered from the data statement~. by line number, and within
a data statement from left to right.

Examples of READ and DATA

150 READ X, Y, Z

200 READ A

250 FOR I = 0 TO 10
255 READ B(I)
260 NEXT I

400 DATA 4.2, 7.5, 25.1, -1, .1, .01, .001, .0001
450 DATA. 2, • 02, • 002, • 0002, • 015, • 025, • 3, • 03, • 003

The first three data values are read for X, Y, and Z respectively. The value -1
is read into A. The next eleven values, .1 through • 3, are read into the eleven
elements of array B. This ordering holds true even if statement "-1:50 is entered
before statement 400.

3-42

•

•

•
•

•

•

•

•
•

•

READ ANO DATA (Continued)

Examples of READ and DATA (Continued)

100 READ A, B, C

300 GO TO 100

500 DATA 1, 10, • 333
510 DATA -1, 1, • 555
520 DATA 0, -1, .1

Each series of data values, contained in the three DATA statements will, in
turn, be r~ad into variables A, B, C.

50 READ A, A$, B, B$, C

550 DATA 1, "TIME:", 10.5, "TEMPERATURE:", 43

Numeric values in the DATA statement correspond to numeric variables in the
READ statement; string constants correspond to string variables •

3-43

REM

Format:

Purpose:

Example:

REM text comment

To insert explanatory comments within a program. The text
following REM is stored before the program is run and is re­
produced exactly as it appears in the statement when a listing
of the program is printed. Although the REM statement is
non-executable, note that storage space is required for the
text.

100 REM PROGRAM TO FIND COMPOUND INTEREST

3-44

•

•

•

•

•

•

•

•

RESTORE

Format:

Purpose: To permit reuse of the data block. RESTORE sets the data block
pointer to the first value in the data block. The next READ state -
ment following execution of a RESTORE statement will begin read­
ing values from the start of the data block.

Example:

2 0 FOR K = 0 TO 10
30 READ B[K]
40 NEXT K
50 RESTORE
60 READ X, Y, Z
70 RESTORE

200 READ -- -

Data values 1, 2, ••• , 11 read into elements of
array B .

Data values 1, 2, 3 read into X, Y, Z respectively.

Next READ; values start at 1 again.

:=-,oo DATA 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

3 ... 45

STOP

Format:

Purpose:

Example:

B
To halt the execution of a program at some point returning the user
to keyboard mode. When STOP is encountered~ the BASIC system
will cease execution and type the message:

STOP AT xxxx

where: -~ is the line number of the STOP statement.

The system will wait for a keyboard command.

80 FORK= 0 TO M-1
90 LET X = B + K*P

100 IF X-M*INT(X/M) = A THEN 130
105 NEXT K
110 PRINT "ERROR"
120 STOP - ·stop program if error occurs.
130 LET P = P*M

3-46

•

•

•
,.

•

•

•

•

•

MATRIX STATEMENTS

CHAPTER 4

MATRICES

A special set of statements allows users to manipulate two-dimensional arrays as
matrices. Matrix statements begin with the word MAT. Following is a list of the
matrix statements available in BASIC.

Statement

MAT READ A, B, ...
MAT READ A (3, 4), B(S, 5), ...

MAT INPUT A, B, ...
MAT INPUT A (2, 4), B(3, 3),

!\1A T PRINT A, B, ...

MAT A= B

MATA=B+C
MATA=B-C

MATA=B*C

Illegal
- Statements

{ MATA:=A*B
MATA= B*A

MAT A = (expression) >:~ B

Meaning

Read DATA values for previously dimensioned
arrays or for arrays having the dimensions
given in the statement .

Input values from keyboard for previously
dimensioned arrays or for arrays having
the dimensions given in the statement.

Print current values of previously dimen­
sioned arrays. PRINT delimiters comma(,)
and semicolon (;) may be used in MAT
PRINT statements.

Matrix A is dimensioned to the dimensions of
matrix B and the values of B are stored into A.

Matrix add or subtract B and C. Dimension
A to the dimensions of the resulting matrix
expression and store the values into A. The
dimensions of Band C must be identical.

Matrix multiply B and C. Dimension A to
the dimensions of the resulting expression
and store the values into A. The dimensions of
A, B, and C must be compatible as defined
later in the description of matrix multiplication.

Scalar multiply matrix B by the parenthesized
expression. Dimension A to the dimensions
of the resulting expression and store the
values into A.

4-1

MATRIX STATEMENTS (Continued)

Statements

MAT A = INV(B)

MAT A= TRN (B)

Illegal
Statement: MAT A= TRN (A)

MAT A= ZER
MAT A= ZER (3,4)
MATA= ZER (10)

MATA= CON
MAT A= CON (5,6)
MAT A= CON (8)

MATA= IDN
MAT A= IDN (2, 5)
MAT A= IDN (5)

Meaning

Invert matrix B. Dimension A to the dimensions
of the resulting expression and store the
value of the inverse matrix into A. B must be
a square matrix.

Transpose matrix B. Dimension A to the
dimensions of the resulting expression and
store the values into A. A and B must be
two distinct arrays.

Store zero matrix in A. A can be di men -
sioned in the statement. A single dimension
produces a one-column matrix.

Store matrix of all ones in A. A may be
dimensioned in the statement. A single
dimension produces a one-column matrix.

Store the identity matrix in A. A can be
dimensioned in the statement. A single
dimension produces a one-column matrix.

The matrix file I/O statements are described in Chapter 5. They are:

MAT READ FILE [n], A, B, • • • Read binary values from file!!-_ for previously
MAT READ FILE [n], A(3, 4), B(5, 5) •.. dimensioned arrays or for arrays having the

dimensions given in the statement.

MAT INPUT FILE Ln], A, B, • • • Read ASCII values from file!!-_ for previously
MAT INPUT FILE [n], A(3, 4), B(5, 5) ••. dimensioned arrays or for arrays having the

dimensions given in the statement.

MAT PRINT FILE [n], A, B, ••.

MAT WRITE FILE [n], A, B, .••

Output to file ~ in ASCII format current values
of previously dimensioned arrays.

Output to file~ in binary format current values
of previously dimensioned arrays.

4-2

•

"1

•

•

•

•

•

•
•

•

MA TRIX SUBSCRIPTS

Caution should be observed when manipulating arrays as matrices. Matrices
do not have zero subscripts. That portion of a previously declared array that
has zero subscripts will be ignored. For example the following coding samples
will produce identical printouts:

0010 DIM A[4, 4]
0020 FOR I = 0 TO 4
0030 FOR J = 0 TO 4
0040 READ A[I,J]
0050 NEXT J
0060 NEXT I
0070 MAT PRINT A

+ values stored in zero-subscript elements

00 8 0 DAT A 1, I, 1, I, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4 , 4 , 4, 4, 4 , 5, 5 , 5 , 5 , 5

0010 DIM A[4, 4]
0020 FOR I = 1 TO 4
0030 FOR J = lTO 4
0040 READ A[I, TI
0050 NEXT J
0060 NEXT I
0070 MAT PRINT A

25 values for array A

4<- no values stored in zero-subscript elements

0080 DATA 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, +16 values for matrix A

In the first case data is stored into all locations of array A; in the second
example data is stored only into those locations with non-zero subscripts.
When the MAT PRINT statement is executed the following will be the result
in both cases:

2 2 2 2

3 3 3 3
MATRIX

4 4 4 4

5 5 5 5

4-3

A

MA TRIX SUBSCRIPTS (Continued)

Like all BASIC arrays, matrix elements are stored by row in ascending locations
in memory. A matrix dimensioned as

10 MAT READ (3, 3)

will be stored as:

rows
+ 0

0 A[0, 0]

1 A[1, 0]

2 A[2, 0]

3 A[3, 0]

1

A[0, l]

A[1, l]

A[2, l]

A[3, l]

+- first dimension represents rows and
second dimension represents columns.

2 3 +-columns

A[0, 2] A[O, 3]

A[1, 2] A[1, 3]

A[2, 2] A[2, 3]

A[3, 2] A[3, 3]

The elements would be stored in the following order:

Element Position

1
2
3
4
5
6
7
8
9

CHANGING MATRIX DIMENSIONS

Element

A(l, I)
A(l, 2)
A(l, 3)
A(Z, 1)
A(2,2)
A(2, 3)
A(3, l)
A(3, 2)

A(3, 3)

A number of matrix statements allow dimensioning or redimensioning of a
matrix. A previously dimensioned matrix can be redimensioned as long as the
new dimensions do not exceed the size of the matrix given in the DIM statement.

4-4

•

•

•

•

•

•

•

•

CHANGING MATRIX DIMENSIONS (Continued)

20 DIM A (15, 14)
40 MAT A = CON (20, 7)
60 MAT A= ZER (10, 10)
80 MAT A= ION (20, 8)

+210 elements in matrix (240 in array A)
+-140 elements
+100 elements
+-160 elements

The statements are described in more detail later in the chapter.

MATRIX MANIPULATION STATEMENTS

Descriptions of matrix manipulation statements following are primarily intended
for users who are unfamiliar with matrix arithmetic.

Store Copy of Matrix

I MAT A= B I
Elements of matrix B are stored in matrix A. Given the statement:

20 MAT A=B

where B is the matrix:

2 4 6 8

1 3 5 7

Matrix A will assume the identical dimensions and values:

2 4 6 8

1 3 5 7

4-5

MATRIX MANIPULATION STATEMENTS (Continued)

Addition and Subtraction

MAT A= B+C or MAT A= B-C

Matrices B and C must have the same dimensions. Only a single arithmetic
operation is permitted in one statement. One of the two operands of the matrix
expression may be the name of the matrix appearing on the lefthand side of the
= sign.

A= B+C-D

A= B+C}
A= A-D

+ illegal

+legal

Matrix addition and subtraction is scalar arithmetic performed element by
element. Given the statement:

I 20 MAT A= B+C

If B and C are matrices having the values:

-2 -5

3 4

• 5 . 1
~

B

6

-2

4

15

~
C

4-6

•

'C

•

•

•

•

•

MATRIX MANIPULATION STATEMENTS (Continued)

Addition and Subtraction (Continued)

Then the resultant value for A will be:

4 -1

1 19

2 4. 1

Scalar Multiplication

MAT A= (expression) ,:,B

where: expression may be any numeric expression and must be
enclosed in parentheses.

Scalar multiplication is performed element by element. The matrix in the
expression may be the same as the matrix variable on the lefthand side of the
= sign. Given the statement:

130 MAT A= (COS (X)} *B

• COS (X) is evaluated. If COS (X) evaluates to . 254 and Bis the matrix:

•

-. 5 . 8

I. 5 -1

Then A will be the matrix:

-. 127

• 381

. 2032

-.254

4-7

MATRIX MANIPULATION STATEMENT'S (Continued)

Zero Matdx

MAT A= ZER

MAT A= ZER (~
1
)

MAT A= ZER ~I' ~ 2)

where: ~I is the number of rows of the matrix.
~

2
is the number of columns of the matrix

A matrix, except for values in row zero or column zero positions, is set to
all zeroes by this statement. If the matrix exists and was previously dimensioned,
the format

MAT A= ZER

is used. If the matrix was not previously dimensioned or is to be redimensioned,
one of the other formats is used. For example:

100 MAT A= ZER (3, 3)

0 0 0

0 0 0 a 3x3 matrix

0 0 ()

110 MAT B = ZER (5)

0
0
0 a Sxl matrix
0
()

4-8

•

•

•
-

•

•

•

•
...

•

MATRIX MANIPULATION STATEMENTS (Continued)

Zero Matrix (Continued)

120 MAT INPUT C (2, 4)

220 MAT C = ZER

0
0

0
()

Unit Matrix

0
0

0
0

a 2x4 matrix

MAT A= CON

MATA=CON~i

MAT A= CON (~I, _:!2)

where: £i is the number of rows of the matrix.

£
2

is the number of columns of the matrix.

A matrix, except for values in row zero or columm zero positions, is set to all
ones by this statement. If the matrix exists and was previously dimensioned, the
format

MAT A= CON

is used. If the matrix was not previously dimensioned or is to be redimensioned,
one of the other formats is used. For example:

100 MAT A= CON (3, 2)

I I a 3x2 matrix

1 I

4-9

MATRIX MANIPULATION STATEMENTS (Continued)

Unit 0.fatrix (Continued)

110 MAT B = COT'\ (6)

1
1
1
1
1

150 MAT C = ZER (2, 3)

300 MAT C = CON

1 1

1 1

Identity Matrix

a 6xl matrix

a 2x3 matrix

MAT A= IDN

MAT A= IDN (d \
-1'

MAT A= IDN (_~l, .9-2)

w::1ere: -9.
1

is the number of rows of the matrix.

~
2

is the number of columns of the matrix.

The major diagonal of the matrix is set equal to ones and the remaining element
of the matrix are zeroed by the statement.

The major diagonal is the diagonal that starts at the final element of the array and
runs diagonally upward from the last element until the first row is encountered.

4-10

•

•

•

•

•

•

•

,,

•

•

•

MATRIX MANIPULATION STATEMENTS (Continued)

Identity Matrix (Continued)

If the matrix has been previously dimensioned, the format

MAT A= ION

can be used. If the matrix was not previously dimensioned or is to be redimen­
sioned one of the other formats is used. Some examples of the identity matrix
are:

100 tvf AT A = ION (4, 4)

1 0 0

0 1 0

0 0 1

0 0 0

13 0 MAT B = ID i'\ (4)

0
0

0
1

0

0

0

140 MAT C = COL'\ (2, 3)

170 MAT C = 101'\

0 0

lo ()
1

In a square matrix, the major diagonal
terminates at the first element of the matrix.

If a matrix contains only one column, only the
last element of the matrix is considered to
belong to the major diagonal.

If a matrix is two-dimensional but not square,
the major diagonal terminates at row 1 but not
at column 1.

4-11

MATRIX MANIPULATION STATEMENTS (Continued)

Matrix Transposition

MAT A = TRN (B)

A matrix is transposed by reversing its rows and columns. A matrix cannot be
transposed into itself.

j 200 MAT A= TRN (B)

When the statement is executed

4
5

A = 7
9

0
0
0
0

I
3
5
7

where: 8=4
0
l

4-12

5 7 9
0 0 0
3 5 7

•

•

•

•

•

•

• .

•

•
.

•

MATRIX MANIPULATION STATEMENTS (Continued)

Matrix Multiplication

Within the matrix expression, the number of columns of the first matrix (B) must
match the number of rows of the second matrix (C). The resultant matrix will be

dimensioned to have the same number of rows as Band the same number of
columns as C. For example:

100 DIM 8(3, 5), C(S, 4),A(6, 6)

A will be a 3x4 matrix: A(3, 4)

The matrix appearing on the Jefthand side of the equals sign cannot appear as a
matrix within the expression. Since the columns of B must match the rows of C,
an expression of the form:

1600 MAT A= B''Il means B must be a square matrix

To obtain the matrix product of IFC, each row of B is multiplied by each column
of C. Each row/ column set is added together to find the resultant matrix
element. For example, given the following two matrices, B(3, 2) and C(2, 2):

2 3 -1 -2

1 5 ~
~-_j

C

I3

4-13

MA TRIX MANIPULATION STATEMENTS (Continued)

Matrix Multiplication (Continued)

then:

· 30 MAT A= B':'C

[B(l, 1) ,:,C(l, 1) +1;3(1, 2) ,:,C(2, l)J

A= [B(2, 1) ,:,C(l, I) +B(2, 2) *C(2, 1)]

[B(3, 1) ,i,C(l, 1) +B(3, 2) ,:,C(2, l)]

[2':'(-1) + 3,:,7] [2':'(-2) + 3,:,8]

A= [F(-1) + 5,:,7] [P(-2) + 5':'8]

[0':'(-1) + 4,:,7) [0':'(-2) + 4,:,3]

[B(l,l) ,:,c(l, 2) +B(l, 2) ,:,C(2, 2)]

[B(2, l) ,:,c(l, 2) +B(2, 2) ,;,C(2, 2)]

[B (3, 1) ,:, C (1, 2) +B (3, 2) "~ C (2 , 2) J

19 20

= 34 38

28 32

Matrix multiplication is non-associative. For example, an attempt to execute the
statement, MAT A=C':'B, using the matrices B(3, 2) and C(2, 2) defined above, will
result in an error message since the number of columns of C do not match the
number of rows of B. As another example, given the following two square matrices:

2 3

then:

0 -1

(2':'o +3':'4)
(PO +S':,4)

If the expression is reversed:

(0':' 2 + (-1)':'l)
(4':'2 + 6,:'l)

(2':' (-1) +3':' 6)
(],:, (-1) + 5,:,6)

(0 ,:: 3 + (-1) ,:, 5)
(4':,3 + 6':'5)

4-14

=

=

12 16
20 29
'---v----'

A

•

•

•

•

•

•

/

•

•

•

MATRIX MANIPULATION STATEMENTS (Continued)

Inverse Matrix

MAT A= II\1\T(B)

The matrix appearing in the expression must be a square matrix (at least 2x2).
The matrix appearing on the lefthand side of the statement may appear on the
righthand side, i.e., matrices may be inverted into themselvc~.

The arithmetic of matrix inversion requires a knowledge of matrix determinants

and of cofactors of matrix elements. Determinants and cofactors for 2x2 matrices
will be described here. for larger matrices, consult a mathematics text .

The determinant of a 2x2 matrix is obtained by multiplying along the diagonals
and subtracting the second diagonal from the major diagonal:

2
= (F4) - (r3) = -2

3

5 I = (F 20) - (.::; 3) = 5
20

An inverse matrix is defined such that the product of the determinants of the matrix
and its inverse is a1ways one. The two matrices would have inverse matrices
whose determinants were -. 5 and. 2 respectively .

Cofactors of matrix clements of a 2x2 matrix are obtained by:

I. Reversing the elements along the major diagonal.

2. Changing the signs of the elements along the other diagonal.

4-15

MATRIX MANIPULATION STATEMENTS (Continued)

To obtain the inverse matrix, scalar multiply the cofactors by the determinant of the
inverse matrix:

If:
1 2

MAT A=
3 4

then:
/

If:

(4
INV(A) = (-. 5\s

I 5
MATB=

3 20

-2 I

=
1.5 -.5

4 -1

=
-. 6 . 2

By obtaining the determinants of the inverse matrices, we can show that they are
in fact the reciprocals of the determinants of the original matrices.

-2 I

I. 5 -. 5

4 -1

-. 6 • 2

=

=

(1) ... (l. 5) = -. 5

(. 8) -(. 6) =.2

Extended BASIC will invert any square matrix except one that has one or more
zero elements along the major diagonal.

4-16

•

\

•

•
•

•

•

•

•

•

I0JPUT Ai\'"D OUTPUT OF MA TRICES

MAT READ Statement

MAT READ list of matrices

The MAT READ statement is used to read values from the data block into the
elements of a matrix or a list of matrices. The matrix may have been previously
dimensioned or may be dimensioned in the MAT READ statement.

20 MAT READ (M(S, 6))

50 DATA 0, 2, 4, 6, 8, 10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0,], 3, 5, 7, 9, 11
60 DATA .1,. 0,. 5, 7, -8, 15, -15, 35,41, 13, 18

Values from the data block will be read into the 30-element matrix dimensioned
as Sx6 in the MAT READ statement. For example:

M(l, 1) will contain 0
M(l, 6) will contain 10
M(3, l)will contain -3 and
M(5, 6) will contain 35

4-17

MAT INPUT Statement

MAT INPUT list of matrices

The MAT INPUT statement is used to read values from the keyboard into the
elements of a matrix or a list of matrices at run time. A matrix appearing in
the MAT INPUT statement may have been previously dimensioned or may be
dimensioned in the statement.

5 MAT INPUT X [2, 3]

At run time, the BASIC system will issue the request for input data:

?

The programmer writes the data values for the first row of the matrix, delimited
by commas. The value for the last column of the first row is terminated by a
carriage return. The system will then query the programmer for data for the
next row.

? 2,4,6
? 7,7,-9

+ data values for first row of matrix A [2, 3J.
+- data values for second row of matrix A[2, 3].
+- matrix is complete and program execution resumes. --------

The programmer must supply the exact number of values to fill a row before
giving a carriage return. A line of dat~ containing too many or too few values
will be ignored by BASIC, which will continue to query the programmer until
each row of the matrix has been filled by a matching data line.

4-18

•

•

•
..

•

•

•

•

•

•

MAT PRINT Statement

MAT PRINT list of matrices I
The MAT PRII'\T statement is used to output values of elements of a matrix or a list
of matrices. A matrix appearing in the MAT PRINT statement must have been pre­
viously dimensioned.

n:J1 1-·1 DI:•i f\[li/1, 1 11,;![l J, 1 1 /J
:1 (J? f·J i•; ~Jd) :\J
0 (, 3 ·.1 ,·✓:i ~i f /\ = CO >J [. \) , -~ J
'.1 (j i: ~, '.Vi AT Fi= co .,J (\J , ,1 J
C'} ~ .. -; 5 r.; ~- ·:J; ~ I = 1 f :J :·~
C1r-16 t; F"O :-: .J= 1 TIJ ,\J

'..; r,,:; 7 · ·) U·: i' f\ [I , .J J :: 1 / C J + .J - 1)
1·l O '.·~. :.,; .'J f•:>: T . J
:.i: '.! '): J 'J :< .'< f I
u 1 :·' ri ,; :.\ T , 1= I\ V C (\)
'. ; l : > , l ; J >- T .\ T "·:V: 6. l' ~, -- I \J v C r,) = "
1·: l 3' 1 --l.6,T ;->:,I .'-JT ,·;;

),'. !Ji,:

,·.,i ,".\ T :1 = I .\JV C ,~) =

..: . ._)
I_)•·

• c • ...)
() . .- . • 1 (:,6(,67

• 3] :3 :3 3 ~l • ;~::, ~ • 1 6 6 o 6 ·, • 1 L:; ~ ;-; 5 rl
.2~ .? .]66667 7 .1~~
e '.J • 1 {, 6 6 ;,\ r/ • 1 4 ~-~: ~ '::) ri • 1 ~~ 5 9

4-19

•

•

•
•

•

CHAPTER 5

FILE I/O

Extended BASIC may be used with Data General's Real Time Disk Operating System
(ROOS described in document 093-000075) or with Data General's Stand-alone
Operating System (SOS described in document 093-000062). To use Extended BASIC
with one of the operating systems, the user should be familiar with file concepts
applicable to the particular operating system.

Briefly, a file is a collection of information that is known by and accessible by a file
name. The Stand-alone Operating System uses only I/O devices such as the card
reader, paper tape punch, cassette and magnetic tape units for File I/O, and all file
names are reserved device names. Reserved device names are four characters in
length and are either of the form $:xxx ($PTR, $CDR, etc.) or of the form xxx:
(MT0:, CTl :, etc.). Appendix D contains a complete list of reserved device names.
Under ROOS, devices may also be used to contain files, but in addition, files are
stored on disk. Files stored on disk are accessible by file names that are listed in
special disk files, called directories. Names of files that are available to all system
users will be listed in the library disk directory. Names of files available only to
a given user are listed in that user's directory.

FILE NAMES

File names arc \vritten as string literals or string variables in BASIC. A file
name appearing in a BASIC console command must be a string literal. However,
a file name appearing in one of the BASIC file statements may be either a literal
or a variable.

Some examples of file names might be:

''A0"

"A0. l"

"A0. SR"

F$

F$(2)

F$(1+1,J)

string literals

string variables

The file names must conform to ROOS requirements for extended file names.

5-1

FILE NAMES (Continued)

consisting of alphanumerics and the character $ with an optional extension
separated from the file name by a decimal point (.). In addition, BASIC file
names must be less than or equal to ten characters (not including the exten­
sion).

Only device names may begin with the character $, and these names are re­
served. Any unreserved file name references a disk file.

Each file on disk or each device is opened fo.r reading or writing by associating
the file name with a user file number. Each user may open up to eight files
for reading or writing corresponding to file numbers O through 7.

ROOS Extended BASIC only.

5-2

•

•

•
•

•

•

•

•
•

•

OPEN FILE STATEMENT

Purpose:

Format:

The OPEN FILE statement links a user file name or a system device
name with a user file number for further 1/0 referencing. The
statement also determines the mode for using the file (reading,
writing, random access, or appending).

OPEN FILE [num-expl, num-exp2], file-name

where: file-name is a literal file name or a string variable
evaluating to a file name.

num-expl is a numeric expression giving the user file
number, which must evaluate to a number in the range 0
through 7 (since 8 is the limit of simultaneously open user
channels). The file number is associated with the file
name and is used for further references to the file (for
reading, writing, closing, etc.).

num -exp2 is a numeric expression giving the mode in
which the file is to be opened and must evaluate to a
number in the range O - 3. Each mode is defined as
follows:

Mode O - Random Access (Input/Output)

Only disk files may be opened in random mode. When
opened, a random access file can either be read or writ­
ten. If no file having the name given in the OPEN FILE
statement is found in the user directory, an entry for the
new file name will be made in the directory .

Mode 1 - Output (write a new file)

Either a disk file or appropriate output device can be
opened in this mode. Only writes are permitted to the
file. If a file of this name already exists in the user
directory, the previous copy is first deleted from the
disk. In either case, a new file is created (initialized
with O length) in the user's directory.

**

* * ROOS Extended BASIC only.

5-3

OPEN FILE STATEMENT (Continued)

** Mode 2 - Output (append to an already written file)

Any appropriate output file may be opened in append
mode. When opened, the file is positioned to the end of
the current file so that subsequent data written to the
file will extend it. If the file does not exist in the user
directory, an entry for the file name will be made in the
user's directory.

Mode 3 - Input

Either a disk file or appropriate input device can be
opened in this mode. If a disk file is opened in this mode,
the file must already exist. Only reads are permitted
for a file open in Mode 3. If the file is not found in the
user's directory, a search for the file is made in the
public directory.

Examples:

100 OPEN FILE [O, l], "TEST. l"

llO OPEN FILE [l, 3], "$PTR"

120 OPEN FILE [I, M], S$

** RDOS Extended BASIC only.

5-4

•

!

•

•
•

•

•

• .

•

•

•

CLOSE FILE STATEMENT

Purpose:

Format:

Examples:

The CLOSE FILE statement disassociates a file name and a user
file number so that the file can no longer be referenced.** Files
are closed \vhen file I/O is complete. Also, it may be necessary
to change the mode of an open file. To do so, the file must first
be closed and then re-opened using the new mode argument •

where:

CLOSE FILE [num-exp1]

num -exp1 is the user file number previously associated
with a file name in an OPEN FILE statement •

200 CLOSE FILE [2]

300 CLOSE FILE [I-1]

u See page 5-19 for a description of the CLOSE statement, which closes all

open channels.

5-5

READ FILE STATEMENT

Purpose:

Format:

Notes:

The READ FILE statement causes data in binary format to be
read from a file for those variables listed in the statement.

The first format is used for reading sequential files; the second
format is used for reading a record from a random file.

READ FILE [num-exp1], variable-list

READ FILE [num -exp1 , num-exp2J, variable-list

where: variable- list is a list of numeric and string variables
for which values are to be read from the file.

num-exp1 is a numeric expression evaluating to the
user file number of a file that has been opened in
Mode 3 for sequential access or in Mode 0 for ran -
dom access.

num -exp2 is a numeric expression evaluating to the
number of the record to be read from a randomly
accessed file.

**

Each variable in variable-list of the READ FILE statement must corres­
pond in data type to each value being read from the file or the
record within the file. If the file contains both numeric and string
values, then variables of the appropriate type must be given in
the correct order in the READ FILE statement.

In reading a random access file, a read of a record that was
never written will input a record of all zeroes.

The E OF function can be used to detect the end of data when trans -
£erring data from a file to core. The EOF function is used in
conjunction \Vi.th a transfer statement to provide a statement to
which to transfer in case of detection of end-of-file. The format
of the EOF function is:

EOF (file-number)

,:o:. ROOS Extended BASIC only.

5-6

•

•

•

•

•

•

•

•

•

•

READ FILE STATEMENT (Continued)

Examples:

where: file-number is the number of a file opened for reading.

The EOF function evaluates to an integer indicating whether or
not the last read of the file, given by file-number, detected an
end-of-file. If an end-of-file was detected, the function returns
a 1; otherwise, the function returns a 0. Conditional transfer
can be effected if the EOF function is used as a numeric expres­
sion in an IF statement •

100 OPEN FILE [1,3], "$PTR"

120 READ FILE [l], A, B, C, D, E, F, G

130 IF EOF (1) THEN 800

200 OPEN FILE [2, O], "BI3"

220 READ FILE [2, 50], X, Z$, Y, Z

5-7

WRITE FILE STATEMENT

Purpose:

Format:

**

Notes:

Examples:

The WRITE FILE statement causes output of data in binary format to a
sequentially accessed file or a record of a randomly accessed file.

The first format writes data to a sequentially accessed file;
the second writes data to a record of a randomly accessed
file.

WRITE FILE [num-exp1], expression-list

WRITE FILE [num-exp1, num-exp2], expression-list

where: expression-list is a list of numeric expressions or string
variables or literals evaluating to numeric or string
values for output.

num-exp1 is a numeric expression evaluating to the
user file number of a file previously opened in Mode
1 or 2 for sequential access or in Mode O for random
access.

num-exp2 is a numeric expression evaluating to the
number of the random record to be written.

String variables or literals for WRITE FILE in sequential mode
must be 132 bytes or less in length.

When writing a random record, the record must have 128 or
fewer bytes. (A numeric expression requires 4 bytes;* a string
of!!. bytes requires !!_+l bytes). The length of the record is
the total of all the bytes in the expression-list.

0060 OPEN FILE [0, l], "XX. 2''
0090 FOR I = 1 TO 50
0109 WRITE FILE [O], A[I], A[I]/I, S$, T$

0700 OPEN FILE [1, O], "DATA5"
0800 WRITE FILE [l, 37], I, J, B[I]/ A[J]

** RDOS Extended BASIC only.
* 8 bytes if floating point hardware option is being used, see Appendix. F.

5-8

•

•

•

•

•

•

,.

•

•

•

INPUT FILE STATEMENT

Purpose:

Format:

Example:

The INPUT FILE statement causes data in ASCII format to be
read from a file, where the data in the file is formatted as
it would be in a teletyped response to an INPUT statement.

INPITT FILE [num -exp
1
], variable- list

where: variable-list is a list of numeric or string variables,
such that each variable corresponds in data type to the
associated datum in the input file.

num-exp1 is a numeric expression evaluating to the
user file number of a file previously opened in mode
3.

0040 OPEN FILE [l, 3], "$PTR"

0070 INPUT FILE fl], Z, Y, X, A$, B$ The first three data that are read from the
paper tape reader must be numerics
and the last two must be strings.

The paper tape data file must be
formatted for INPUT with either
commas or carriage returns
bet\veen data items .

The EOF function, described on pages 5-6 and 5 .. 7 for the READ FILE statement,
can be used to provide a statement to which to transfer in case of detection of end -
of -file on the file from which data is being input. The argument to E OF is the
number of the file opened for input.

Example:

0050 OPEN FILE [1, 3], "DATA"

0100 INPUT FILE [1], A, B, C, D, E, F, Fl, Fl$, F$, G[100]

0110 IF: EOF (1) GO TO 1000

1000 PRINT "OUT OF DATA"

5-9

PRINT FILE STATEMENT

Purpose:

Format:

Examples:

The PRINT FILE statement causes output of data in ASCII form.
The output file produced is formatted as would terminal copy
produced by a PRINT statement. The file may be output directly
to an ASCII device such as the line printer or to a disk file for
later off-line printing.

PRINT FILE [num-exp1], expression-list

where: expression- list is a list of numeric expressions,
string variables, and string literals, separated by
formatting delimiters (, or ; or TAB function).

num-exp
1

is a numeric expression evaluating to the
user file number of a file previously opened in Mode
1 or Mode 2.

0100 PRINT FILE [l], "OUT 6"

0550 PRINT FILE [O], "X="; XSQR="; X t 2; "XCUBE="; X t 3

5-10

•

•

•

•

•

r

•

•

•

PRINT FILE USING STATEMENT

Purpose:

Format:

Examples:

The PRINT FILE USING statement causes values for the ex­
pressions given in the statement to be output to a previously
opened file in the format specified by a string field given in
the statement.

PRINT FILE [num-exp~, USING string-expression~ expression-list

where: expression - list is a list of numeric expressions, string
variables, and string literals whose values are to be
output.

string-expression specifies the format of the field in
which the value of each expression is to be output, and is
identical to the specification of string-expression given
for the PRINT USING statement in Chapter 3.

num-exp
1

is a numeric expression evaluating to the
user file number of a file previously opened in either
Mode 1 or Mode 2.

0050 OPEN FILE [0,2], "TS"

0150 PRII\1T FILE [OJ, USING "++#:it##. #:i:t#, ", A, B, C, D, E, F

The output file could conceivably be used later as the input file for an INPUT
FILE statement, because each value is formatted to terminate with a comma.

5-11

MAT READ FILE STATEMENT

Purpose:

Format:

Notes:

Example:

The MAT READ FILE statement causes data in binary format to be
read from a file for the arrays listed in the statement. The arrays may
have been previously dimensioned or may be dimensioned in the MAT
READ FILE statement.

The first format is used for reading sequential files. The second format
is used for reading a single record from a random file.

where:

MAT READ FILE [num-exp1], array-list

MAT READ FILE [num-exp1, num-exp2], array-list

array- list is a list of arrays for which values are to be read
from this file.

num-exp1 is a numeric expression evaluating to the user file
number of a file that has been opened in Mode 3 for sequential
access or in Mode O for random access.

num-exp2 is a numeric expression evaluating to the number
of the record to be read from a randomly accessed file.

Previously dimensioned arrays may be listed by array name only. Arrays
that are not already dimensioned must be dimensioned in the MAT READ
FILE statement.

In reading a random access file, a read of a record that was never
written will input a record of all zeroes.

The EOF function, described on pages 5-6 and 5-7 for the READ FILE
statement can be used to provide a statement to which to transfer in
case of detection of end-of-file on the file from which data is being input.
The argument to EOF is the number of the file opened for reading.

0040 OPEN FILE [l, 3J, "VALUES"
0060 MAT READ FILE [l], A,B,C(3,4),D(5)
0080 IF EOF (1) GO TO 500
0500 PRINT "OUT OF VALUES"

*):c RDOS Extended BASIC only.

5-12

•

•

•

•

•

•

•

•

MAT WRITE FILE STATEMENT

Purpose:

Format:

Example:

The MAT WRITE FILE statement causes output of data in accordance
with previously dimensioned arrays. Output is in binary format to a
sequentially accessed file or record of a randomly accessed file.

The first format is used in writing to a sequentially accessed file; the
second format is used in writing a single record to a random file.

where:

'

MAT WRITE FILE [num -exp1J, array- list

MA T WRITE FILE [num-exp1, num-exp2J, array- list

array- list is a list of previously dimensioned arrays for
which values are to be written to the file.

num-exp1_ is a numeric expression evaluating to the user file
number of a file that has been opened in Mode 1 or 2 for
sequential access or in Mode O for random access.

num -exp2 is a numeric expression evaluating to the number
of the random record to be written.

0050 OPEN FILE (0, l], "AAA"

0080 MAT WRITE FILE (OJ, B, C, X

,~* RDOS Extended BASIC only.

5-13

MAT INPUT FILE STATEMENT

Purpose:

Format:

Notes:

Example:

The MAT INPUT FILE statement causes ASCII formatted data to be
read from a file for the arrays listed in the statement. The arrays
may have been previously dimensioned or may be dimensioned in
the MAT INPUT FILE statement.

where:

MAT INPUT FILE [num-expi], array-list

array- list is a list of arrays for which values are to be
read from the file.

num -exp1 is a numeric expression evaluating to the user
file number of a file previously opened in Mode 3.

Previously dimensioned arrays may be listed by array name only.
Arrays that are not already dimensioned must be dimensioned in the
MAT INPUT FILE statement.

The EOF function, described on pages 5-6 and 5-7 for the READ FILE
statement can be used to provide a statement to which to transfer in
case of detection of an end-of-file on the file from which data is being
input. The argument to EOF is the number of the file opened for
reading.

0010 OPEN FILE [2, 3J, "XX. AA"

0050 MAT INPUT FILE [2J, X(5, 5), Y, Z

5-14

•

•

•

•

•

.P

•

•

•

MAT PRINT FILE STATEMENT

Purpose:

Format:

Example:

The MAT PRINT FILE statement causes output of data in accordance
with previously dimensioned arrays. Output is in ASCII format to a
sequentially accessed file or a record of a randomly accessed file in
the case of disk files, or may be to an ASCII device such as the line
printer.

where:

MAT PRINT FILE [num-exp1], array-list

array- list is a list of previously dimensioned arrays for which
values are to be written to the file .

num-exp1 is a numeric expression evaluating to the user file
number of a file that has been opened in Mode 1 or 2 for
sequential access or in Mode O for random access.

OPE?\ FILE [0, OJ, "Z. 22"

MAT PRINT FILE (OJ, B

5-15

CHAIN STATEMENT

Purpose:

Format:

Examples:

The CHAIN statement provides a means of invoking a BASIC pro­
gram on disk or on an input device from the currently running
program.

The CHAIN statement has the following effect:

If the program is on disk, the system searches the user's
directory for filename; if not found, the system will
sea~ch the library disk directory.

The user's currently running program is cleared from
core if the program is found and the new program is
loaded into core. If filename is not found, the current
program remains in core.

The newly loaded program is run, by default, from the
lowest numbered statement in the new program.
Optionally, the user may specify where control is to be
transfer~ed within ~he new program, us}ng !he CHAIN
filename THEN GOTO form of the statement. Thus,
the user can specify where, other than the lowest
numbered statement, execution is to begin.

(The CHAIN statement is the equivalent of a RUN filename
command, see Chapter 6.)

CHAIN filename t THEN GOTO statement-no. 3

where: filename is a literal file name or a string variable
evaluating to a file name.

statement-no. is any statement number existing in the
program with the specified name, filename.

100 CHAIN "SUBl"
350 CHAIN "Z$"
200 CHAIN "SQRT" THEN GOTO 356

Note: The program chained to must be in SA VE file format.

5-16

•

:

•

•

•

•

•

•
.

•

SAVE STATEMENT

Purpose:

Format:

Examples:

100 SAVE

253 SAVE

555 SAVE

725 SAVE

The SA VE statement causes the current program (source statements
and data) to be written in binary format to a binary output device
such as the binary paper tape punch or to a disk file. If written
to a disk, the file name is entered into the user's directory, replacing
any file of the same name.

A SA VEd program can be reloaded using the LOAD command/
statement, via a CHAIN statement, or via a RUN filename
statement. Saving a program in binary format (rather than in
ASCII format using the LIST command) is recommended as a
means of saving a program in a compact format, thereby
reducing system overhead. Additionally, a program which
may have been partially executed may be saved in this format
so that when later LOADed execution can be resumed. That is,
it is as if the program were never removed from the system
(even though the user may have signed off and back on). Also,

• a SAVEd program that is reloaded can be edited and listed in
ASCII at a later time.

SA VE filename

where: filename is the name of a device to which the current
program is to be written or the name to be stored in the
user directory if the current program is to be written
to a disk file.

"FA. BC"

"$PTP"

"CT0:2"

S$(1, 7)

5-17

ENTER STATEMENT

Purpose:

Format:

Examples:

The statement causes the BASIC statements contained in the ASCII
file given by filename to be entered into the current program.

When statements in the file have the same statement number as a
line in the current program, the ENTERed line will replace the
current line. Where statements in the file have statement numbers
different from those of the current program, the statements will
be inserted in their proper sequence in the current program. The
user can write or edit lines into the current program using the
ASCII file as input in much the ·same way as he would input new
program lines at the teletypewriter.

The file to be ENTERed may have been created by a LIST file
command (see LIST command write-up) or ·created as the output
of another BASIC program which used PRINT FILE statements,
or could have been created outside of the Extended BASIC system.
Any ASCII format input device can be used for ENTERing a pro­
gram. If filename is a disk file, the BASIC system will first
search the user directory for the file name. If not found, the
library disk directory will be searched. Error messages are
returned if either the file does not exist, or it is not in source
format (~SCII).

The data portion of an executing program is undisturbed by the
ENTER command. That is, variable assignments and all other
program statuses remain fixed. Thus, ENTER provides a
facility for running subprograms as overlays with all program
variables as "common".

ENTER filename

where: filename is the name of a disk file or 1/0 device con­
taining BASIC statements in ASCII format.

55 ENTER "$CDR"

10 ENTER "LINES. BC"

5-18

•

:

•

•
..

•

•

•

•

•

CLOSE STATEMENT

Purpose:

Format:

Examples:

50 CLOSE

The CLOSE statement will close all open channels. (See page
5-5 for a description of the CLOSE FILE statement which will
close a user specified channel.) It is necessary to note that
if the user should issue a CLOSE statement when all channels
have already been closed, no error message will occur.

5-19

DIRECTORY .MAU~TENANCE STATEMENTS

When using Extended BASIC with a disk, a number of directories are maintained that
contain the file names of files on the disk together with the size in words of each file.
Each user has his own directory containing the names of his files. There is also a
library directory containing the names of files that are available to all users.

The statements that pertain to directories are those that delete a file name from a
directory, and rename a file in a directory.

These statements are:

DELETE
RENAME

Each is described on the following pages.

5-20

•

•

•
..

•

•

•

•
.,.

•

DELETE **

Format: DELETE filename

Purpose:

Examples:

where: filename is the name of a file in the user's directory.

To delete the disk file named filename from the user's directory
effectively deleting the file from disk.

100 DELETE "AO. 1"

555 DELETE "TEST"

**. ROOS Extended BASIC only.

5-21

RENAME STATEMENT

Format:

Purpose:

Examples:

RENAME filename!, filename2

where: filename! is the current file name.

filename2 is the new name that replaces filename!
in the user directory.

The command replaces a fiie name in the user's directory with a
new name.

123 RENAME "TEST", "SQRT2"

566 RENAME S$, "A"

5-22

•

. ..

•

•
.,

•

•

•

•
..
•

•

FILE I/0 COMMANDS

As described in Chapter 6, the user may issue commands directly from the
terminal. Included in these commands are commands having the same format
and meaning as the File I/0 statements described in this chapter. In addition,
there are a number of commands described in Chapter 6 that provide for maintenance
of disk file directories •

5-23

•

•

•

•

CHAPTER 6

KEYBOARD MODE OF OPERATION

In keyboard mode of operation, the user can:

Specify file I/O and perform file directory maintenance
Execute programe
Request information about the contents of his program
Edit programs
Perform dynamic debugging
Perform simple desk calculator operations
Vary output page format

These functions are carried out by using certain control keys and issuing keyboard
commands. Keyboard commands start with a command word, which may be
followed by arguments, and terminate with a carriage return. Some of the
commands are keyboard versions of certain BASIC statements; BASIC can recognize
such a command since it is not preceded by a statement number.

CONTROL KEYS

ESC Pr.essing the ESC key essentially means "interrupt the
current operation". The effect depends upon the current
state of the system:

1. If a program is being executed and an ON ESC THEN ...
statement has not been encountered, execution ceases,
and the message:

2.

3.

STOP AT xxxx

is printed, where xxxx is the statement number before
which execution ceased. The system reverts to
keyboard mode.

If a program is being executed, and an ON ESC THEN
statement has been encountered within the program,
then control will transfer to statement. It is not
possible then to interrupt an executing program unless
a statement executed after statement instructs the
system to stop. This can be accomplished via
ON ESC THEN STOP.

If a keyboard command is being ex~c~ted, it is
terminated and the system awaits keyboard input.

6-1

CONTROL KEYS (Continued)

ESC
(Continued)

SHIFT L

RUBOUT

4.

5.

If the system is in idle mode, ESC activates the terminal
for operation. The system is in idle mode immediately
after the system has been loaded or after the user issues
a BYE command. (See page 6-18.) Activating an idle
system must always be done by pressing ESC. The user
can then start the sign-on sequence.

If the user wishes to issue a keyboard command, and the
system is operating in one of the modes indicated above,
pressing the ESC key will change the mode to allow the
system to accept a keyboard command.

When the user is writing and editing BASIC programs at the
keyboard and when he is responding to an INPUT request,
pressing both the SHIFT and L keys simultaneously results in
deletion of the line he is currently typing. He may then retype
the line.

The symbol \ is printed at the teletype to indicate SHIFT L.
BASIC then gives a carriage return/line feed and the user may
replace the deleted line, as shown in the example following:

90 PROMPT "OMTER.EST \
90 PRINT"INTEREST@ 5% IS:" ; I

When the user is writing and editing BASIC programs at the
keyboard and when he is responding to an INPUT request,
pressing RUBOUT results in the deletion of the last character
in the current line. He may then retype the character.

The symbol - is printed at the teletype to indicate RUBOUT.
The following example shows character deletion and replacement:

90 PRO-INT "OM --INTEREST@ 6%--5% IS:"; I

The statement within the program will appear as:

90 PRINT "INTEREST@ 5% IS:"; I

6-2

•

•

•
..

•

•

•

•
...
,.

•

KEYBOARD COMMANDS

Keyboard commands begin with a key word recognized as a command by BASIC.
Some commands include one or more arguments following the key word. A key -
board command is terminated by pressing carriage return ()) and is immediately
executed by BASIC.

Most of the key words described as statements in Chapters 3, 4 and 5 can be used
as commands. A complete list of all BASIC key words and the way(s) in which
they are used is found on page iv.

There are a number of key words which are rec'ognized solely as keyboard
command indicators. They are listed below and are described on pages following.

CON Continue execution after last statement .

FILES List file names in the user's directory. **
LIBRARY List file names in the library directory. **
LIST List statement(s) from the current program

to the terminal or to a file.

LOAD Clear any current program (implicit NEW),
load a SAVEd file (binary file).

PAGE Specify width of output page.

PUNCH List statements from the current program to
the teletypewriter punch with leader and trailer
of nulls .

RENUMBER Renumber statements in the current program.

RUN Execute the current program or other named
program.

SIZE Print size in words of current program and
user memory space still available .

TAB Specify the setting of tabulation zones for output.

WHATS Prints directory information about specific file. **
** ROOS Extended BASIC only.

6·3

DIRECTORY MAINTENANCE COMMANDS

When using Extended BASIC with a disk, a number of directories are maintained
that contain the file names of files on the disk together with the size in words of
each file. Each user has his own directory containing the names of his files,
logically referred to as a user directory. There is also a library directory con­
taining the names of those files that are available to all users.

The keyboard commands that pertain to directories are those that list the file
names contained in either the user directory or the library directory, FILES
and LIBRARY respectively; each is described following.

FILES Command * *

Format:

Purpose:

Example:

The command causes a list of all file names in the user directory
to be printed to the terminal. Files names, when printed, will
be seperated by a tab.

FILES)

LIBRARY Command

Format:

Purpose:

Example:

LIBRARY

The command causes a list of file names contained in the library.
disk directory to be printed to the terminal. File names, when
printed, will not be seperated by a tab.

LIBRARY)

** RDOS Extended BASIC only.

6-4

•

•

•
..

•

•

•

•

•

COMMANDS THAT LOAD, MODIFY, AND EXECUTE PROGRAMS

The user can, using specific BASIC commands, load a program into core from a
saved disk file. Once this program is read into core it is called the current pro­
gram. A current program may be listed, punched, modified if necessary, and
executed. The commands which implement these functions are described on
this and pages following.

LOAD Command

Format:

Purpose:

Examples:

LOAD filename

where: filename is the name of a binary file created by a previous
SA VE command.

The command executes an implicit NEW, clearing the current program
if any. The file specified is then read into core, becoming the current
program. The file named may be on disk or may be on a binary input
device such as the paper tape reader. In all cases, however, only
a file that was previously SA VEd (see page 5-17) can
be LOADed.

If a disk file is specified, BASIC first searches the user's directory.
If the file name is not in the user's directory, BASIC searches the
library directory for the file name.

When a file is LOADed, it can be listed, modified or executed as
desired .

LOAD "$PrR")

LOAD "MA TH3")

LOAD "MT0:l")

6-5

COM11ANDS THAT LOAD, MODIFY AND EXECUTE PROGRAMS (Continued)

LIST Command

Format:

Purpose:

LIST

LIST statement-1101

LIST TO staternent-no2

LIST statement-no1 { T~} statement-no2
.,J

> [filename]

where: statement-no1 is the first statement to be listed.

statement-1102 is the last statement to be listed.

filename is the name of a device or of a disk file.

The LIST command causes all or part of the current program to be
listed in ASCII either to the file given by filename or by default to
the terminal if no filename is given. (Output of a listing of the
current program to the teletype punch is described on the next
page, PUNCH command). The range of statements to be listed is
determined as follows:

LIST)

LIST ~l)

LIST TO ~)

List the entire program starting at
the lowest numbered statement.

List only the single statement
numbered ~ l .

List from the lowest numbered state­
ment through statement ~2.

List from the statement numbered ~l
through statement !!2.

When the filename argument is given, the command causes the
specified lines to be written to a disk file, called filename, or
to the device given by filename. The file created by the LIST
command can be read back into core using the ENTER command
(see ENTER command writeup). If statements are LISTed to a
disk file, filename is entered in the user's directory, replacing
any previous file of the same name.

6-6

•

•

•

•

•

•

•
,,,

•

COM11ANDS THAT LOAD, MODIFY, AND EXECUTE PROGRAMS (Continued)

LIST Command (Continued)

Examples: LIST 700 TO 9999)

LIST 200)

LIST "$LPT")

LIST 600 TO 900 "F2.2")I
List statements 600 to ___J
statement 900 to file F2. 2

List the entire current pro• ------gram t o the line printer.

List statement: number 200, by
default, to the terminal. ·-------'

List statements 700 to statement
9999, by default, to the terminal.

6-7

COM:MANDS THAT LOAD, MODIFY AND EXECUTE PROGRAMS (Continued)

PUNCH Command

Format:

Purpose:

Example:

PUNCH

PUNCH statement -no 1

PUNCH TO statement-no2

PUNCH statement-no1 (~°} statement-no2

where: statement-no1 is the first statement to be punched.

statement-no2 is the last stateme.nt to be punched.

The PUNCH formats shown above are identical in meaning
to those given for the LIST command (previous page) except
that output is to the terminal punch rather than to the terminal
printer or to a file.

The PUNCH command is the equivalent of a LIST command when output
is to the terminal punch. _ A leader of null characters prece·des the
punched listing and a trailer of mill chara~ters _ follows the listing.

The number of null characters punched as both leader and trailer is
equivalent to the nl!mber of characters given as the limit of page size
width (see PAGE command, page 6-15). This represents
7-8 inches of leader or trailer for a 132-character line.

Note that input of the command PUNCH to Bf\.SIC does not turn on the
punch. The following procedure should be followed:

1. Type the desired PUNCH command followed by a
carriage return and immediately press the ON
button on the terminal punch.

2. BASIC will punch a null leader, followed by the desired
listing, followed by null trailer.

3. When punching is completed, press the OFF button on
on the punch.

If the user turned on the punch before typing all or part of his punch
command, he should tear off that part of the tape, in front of the leader.

PUNCH 20, 1000)

6-8

•

I

•

•
..

•

•

•

•

•

COMMANDS THAT LOAD, MODIFY, AND EXECUTE MEMORY (Continued)

RUN Command

Format:

Purpose:

RUN

RUN statement-number

RUN filename

where: statement-number is the number of the statement line
in the current program where execution is to begin.

filename is the name of a file on disk or a device
containing a file to be read in for execution .

The command causes all or part of a current program to be
executed or the loading of the program from disk or a device
followed by its execution. The effects of the RUN commands
are as follows:

RUN)

RUN n)

Clear all variables, undimension all arrays
and strings, do a RESTORE, initialize the
random number generator, and then run the
current program from the first statement.

All existing information (variable values,
dimensioning, etc.) resulting from a
previous execution of the current program
are retained and the current program is
run starting at the statement numbered ~­
This form of the RUN command allows the
user to resume execution of his program,
retaining current values of all variables and
parameters obtained during program exec­
ution thus far. It may be used after a STOP
or after an error and will incorporate any
alterations to the program that the user may
have made via editing directly after the STOP
or error occurred.

RUN "filename") If the file is on disk, the system follows
the search procedure outlined in the LOAD
command. When filename is found, the
command executes a NEW, clearing the
current program if any, then a LOAD,

COMMANDS THAT ,LOAD, MODIFY, AND EXECUTE.MEMORY (Continued)

RUN Command (Continued)

Examples: RUN)

RUN "$PTR")

RUN 250)

RUN ''MATH3''

RUN "MTl :0")

)

reading the specified file into core; and then
executes the new current program.

6-10

•

•

•
!J

•

•

,,_•

•

•

•

COMMANDS THAT LOAD, MODIFY AND EXECUTE PROGRAMS (Continued)

CON Command

Format:

Purpose:

Example:

The command causes continuation of program execution after
a STOP statement has been executed. The CON command
is equivalent to a RUN statement number command where
statement number is equal to the statement directly following
the programmed STOP statement.

In addition to using the COI\' command after a programmed
STOP statement, it may be used after a run-time error has
been encountered within the program. After the user has
corrected his error, the CO:t\1 command may be issued to
begin execution from the statement where the error occurred.

50 READ P, T
55 LET A::; P ~" (1 +. 04) t T
60 PRINT "PRINCIPAL IS ";P; 11 EARJ\'If\G 4~',: FOR 11 ;T; 11 YEARS ::; ";A
70 GOTO 50
80 DA TA 375,. 8, 550, 4,600, 1
90 ST1JP
95 GOTO 50
RUN)
fRINCIPAL IS 375 EARNING 4% FOR • 8 YEARS::; 386. 954

STOP AT 90
80 DAT A 500, 3, 600, 3,600, 5
CO;\,,:

PRINCIPAL IS 500 EARNING 39~) FOR 3 YEARS::;

6-11

COMMANDS THAT LOAD, MODIFY Ai'lD EXECUTE PROGRAMS (Continued)

RENUMBER Command

Format:

Purpose:

Examples:

RENUMBER

RENUMBER statement-no 1

RENUMBER STEP statement-no2

RENUMBER statement-no1 STEP statement-no2

where: statement-no1 is an optional argument giving the initial
statement number for the current program.

statement-no2 is an optional argument giving the increment
between statement numbers for the current program.

The command causes all statements in the current program to be
renumbered as follows:

RENUMBER)

RENUMBER~ J

RE1'-HJMBER STEP !2.z)

RENUMBER~ STEP~)

by default the initial statement num -
ber is 0010 with a default increment
of 10 between each statement.

the initial statement number is~
with an increment of ~ between each
statement.

the initial statement is 0010 with an
increment of !!-2 between each statement .

the initial statement number is ~l
with an increment of ~ between
each statement.

Statement numbers have a four-digit limit, i.e., the number of any
statement may not be greater than 9999. If a RENUMBER command
would cause one or more statement numbers to exceed the 9999 limit,
BASIC effectively executes the following REI\11.JMBER command instead:

RENUMBER 1 STEP 1 J

RENUMBER STEP 5)

RE :t\TT.JMBE R 1000)

6-12

•

•

•
"

•

•

•

•

•

SYSTEM INFORMATION REQUESTS

TI1e following commands maybe issued to obtain information on the size of the
current program and remaining space available, on the attributes associated witll
a particular file, a file's byte length, the date on which the file was created and
the date on which the file was fa st used.

SIZE Command

Format:

Purpose:

Example:

EJ
The command causes a printout at the terminal of the number of
bytes used by the program and the total number of bytes that are
still available. This printout is printed with decimal numbers.

SIZE)
USED: 6700BYTES
LEFT: 8077 BYTES

6-13

SYSTEM INFORMATION REQUESTS (Continued)

Format:

Purpose:

Example:

WHATS filename **

where: filename is the name of a file currently on disk.

This command will print out on the terminal information
pertaining to the file with the specified name filename. TI1e
type of information printed, and -the format in which it will be
printed is as follows:

filename attributes byte length date created (date last used)

WHATS "ABC")
ABC D 2039 06/14/73 (07 /21/73)

)}: * RDOS Extended BASIC only.

6-14

•

•

•

•

•

•

•
..

•

SPECIFYING THE OUTPUT PAGE FORMAT

PAGE Command

Format: I PAGE = ~ I

Purpose:

Example:

TAB Command

where: E:. is an integer in the range:

1 ~ n :::; 132

The command sets the limit of page width where E:. is the maximum
number of characters that may be output on a line of a given
terminal device .

If the command is not given, the default maximum of 72 characters
will result.

PAGE= 132 J

Format: I TAB=~ · 1

Purpose:

Example:

where: ~ is an integer in the range:

I 5 ~ ~ size of page

The command sets the zone spacing desired between output data.
If the command is not given, the default zone spacing is 14 characters,
which allows five columns of output data to the 72 -character teletype­
writer line .

Since the maximum range of zone spacing depends upon the page width,
it is good practice to set the page width first and then the zone spacing.

PAGE= 132)
TAI3 = 12 J

6-15

COMMANDS DERIVED FROM BASIC STATEMENTS

Any BASIC statement that can meaningfully be written as a keyboard command can be
used in that mode. Certain statements having meaning only within the context of a
program cannot be used as keyboard commands. These are CALL, CHAIN, DATA,
DEF, END, FOR, GOSUB, GOTO, NEXT, ON, REM, RETIJRN, and STOP. All
other statements are implemented as keyboard commands; some use of these
statements are:

Perform File 1/0

The opening and closing of files and input/output of programs and data from files and
devices can be handled by keyboard commands derived from the file I/0 statements
described in Chapter 5.

OPEN FILE [l, 3] , "$PTR")

READ FILE [l], A, B, C, D, E, F, G[5] J

Desk Calculator

The PRINT command can be used as a desk calculator. The command PRINT(;) is
followed by any expression. Upon the user's striking RETURN, the system immediately
computes the value of the expression and prints it on the same line. The examples
show expressions consisting of literal operands.

;EXP (SIN (3. 4/8)) 1. 51032

:USING "-rtt###. ## t t t t ", EXP(SIN(3. 4/8))+1510. 32E-03

Desk Calculator - Using Program Values

BASIC responds
with value on same
line.

Besides literal operands, the user can include values assigned to program variables.
The user can interrupt a running p:rogram and use assigned program values in obtaining
values for calculations.

0010 DIM A$ [10], B$[10]
0020 LET A$ = "IOU $10. 50"
0030 B$ = "XRA Y"
RUN)

(ESC)
;B$(4);A$(2, 3) YOU

6-16

•

•

•
•

•

•
•

•

COMMANDS DERIVED FROM BASIC STATEMENTS (Continued)

Desk Calculator - Using Program Values (Continued)

0010 DIM A[3, 3]

RUN J

(ESC)
STOP AT 0500

User writes and runs a BASIC program.

;USING "+#.#####Etttt", A(l,2),A(l,2)*9 +5.12100E+o2 +4.60890E+o3

Dynamic Program Debugging

A running program can be interrupted (using ESC or by programmed STOP statements)
at a number of different program points. The current values of the variables can then
be checked at those points and corrections made in the program, either to statements
or variables, as necessary. The programmer can then use the RUN statement-no
command to restart the interrupted program without losing either the values of the variables
at the point of interruption or the newly inserted values and statements.

(ESC)
STOP AT 1100
IF A < > B THEN PRINT B, A)
. 025 . 5

2.33333
5.41234
8.99999
(ESC)
STOP AT 0570
READ Xl, X2, X3)
RUN 570)

-User command conditionally provides for
examination of A and B •

- results of a series of program calculations
being printed.

-user spaces over the next 3 values in the data
block and resumes program execution at the
statement at which it was interrupted.

6-17

COMi\11.ANDS DERIVED FROM BASIC STATEMENTS (Continued)

Dynamic Program Debugging (Continued)

(ESC)
STOP AT 1100
;A 0
A = -1 J

C$ = "% OF LOSS")
RUN 505)

20 DIM A[4, 4]

(ESC)
STOP AT 500

DIM A[3, 5])

-User checks value of variable A.
-User changes string variable C$ and the value of ar.ith-

metic variable A and resumes running at statement 505.

-User redimensions array A.

6-18

•

-...,

•

•

•

•

--

•

•

•

APPENDIX A

ERROR MESSAGES

Error messages are printed as two digit codes, followed by a brief explanatory
message .when operating under RDOS. There are three types of error messages:

1. Errors that are recognized during program input by BASIC.
If the user input the statement in error from the teletype,
the incorrect statement will appear on the teletypewriter
printer just above the error message. If the statement in
error was input from a file or other input device, BASIC will
first print the statement in error before printing the error
message. The form of the error message is:

ERROR xx text

where: xx is a two-digit decimal error code.
text is a brief description of the error which is
printed when operating under RDOS.

All syntax errors are recognized during program input.

2. Errors, other than file 1/0, that are recognized at run time.

3.

BASIC system run -time errors cause printout of an error
message of the form:

ERROR ~ AT yyyy text

where: ~ is a two-digit decimal error code.
yyyy is the line number at which the error was
detected .
text is a brief description of the error which is
printed when operating under RDOS.

1/0 error messages. File I/0 errors are printed in the
format:

I/0 ERROR ~ (AT 'fl.Ii_) text

where: xx is a two-digit decimal error code.
yyyy is the line number which is printed if the I/0
error is detected at run-time.
text is a brief description of the error which is
printed when operating under RDOS.

A-1

The meanings of the decimal error codes for errors other than file I/0 are given in
the list beginning on the following page. Following each message is a brief
description of the message and an example showing its occurrence.

Following the BASIC system errors is a list of the I/0 errors and their meanings.
Under the heading TYPE are one letter characters, either E or A. E indicates
that the error occurs directly after the user has entered the command line on
the teletypewriter, after pressing the carriage return key. The letter A indicates
that the error occurs during the execution of a program. ·

A-2

•

·-

•

•

•

• BASIC ERROR MESSAGES
CODE TYPE TEXT MEANING EXAMPLE

00 E FORMAT unrecognizable statement
format.

01 E CHARACTER illegal ASCII character or RUN $100
unexpected character. ENTER #$LPT"

-· 02 E SYNTAX unrecognizable keyword or 10 LETT A= 10
invalid argument type. 20 IF SIN(A$)=0 ...

• 03 A READ/DATA READ specifies different 10 DIM A$(10)
TYPES IN-- data type than DATA state- 20 READ A$
CONSISTENT ment. 30 DATA 12

RUN

04 A SYSTEM Hardware or software
malfunction.

05 E STATEMENT statement number not in 0000 GOTO 100
NUMBER the range : 1 $ n $ 9999. 99999 STOP

0010 GOTO 81373

06 E EXCESSIVE attempt to declare more
VARIABLES than 2 86 variables. •

07 E COMMAND(I/O) attempt to execute a com- ENTER "ABC II &
mand from a file (and not file ABC contains
in a BATCH mode). a LIST command

08 E SPECIFICA·· value specified is not PAGE= 200
TION within limits (PAGE/ PAGE= 72

TAB) TAB= 80

A-3

•

• BASIC.ERROR MESSAGES
CODE TYPE TEXT MEANING PXAtvIPLE

09 E ILLEGAL RE- reserved file name not recog- ENTER "$ABC"
SERVED FILE nized by system (see system
NAME generation for valid names)

10 E RESERVED another user has control of USER A:
FILE IN USE the specified I/0 device. ENTER "$PTR II

(Except $LPT - requests USER B:
are queued.) ENTER "$PTR" "'.:..

11 E PARENTHESIS parentheses in an expression A = ((B-C)
are not paired. •

12 E COMMAND system cannot execute key- GOSUB 100
board command. NEXT I

13 E/ LINE NUMBER attempt to delete or list an 100
A unknown line; attempt to 10 GOTO 100

transfer to an unknown line. RUN

'

14 E PROGRAM not enough storage to EN- ENTER "ABC II

OVERFLOW TER source program.

15 A END OF not enough DAT A arguments 10 READ A, B, C
DATA to satisfy READ 20 DATA 91, 21 • RUN

16 A ARITHMETIC value too large or too A= 1234 + 66
small to evaluate : A t 20

17 A UNASSIGNED attempt to reference an ;A
VARIABLE unknown variable

A-4

•

• BASIC ERROR MESSAGES f
CODE TYPE TEXT MEANING EXAMPLE j

18 A GOSUB more than 6 nested GOSUB' s
NESTING

19 A RETURN - NO RETURN statement encount- 10 RETURN

GOSUB erect without a corresponding RUN
GOSUB

20 A FOR NESTING more than 4 nested FOR' s

21 A FOR - NO FOR statement encountered 1 FOR I=l TO 10
NEXT without corresponding 2 ;I • NEXT RUN

2:2 A NEXT - NEXT statement encounter- 10 NEXT I
NO FOR ed without a corresponding RUN

FOR

23 A DATA OVER- not enough storage left to 10 DIM A(300000)
FLOW assign space for variables RUN

24 A NO AVAIL- channel limit specified at
ABLE CHAN- SYSGEN time has been
NELS reached

• 25 A OITION matrix operations were MAT PRINT A
not specified at BASIC
SYSGEN

26 A PROGRAM/ attempt to LOAD or RUN a LOAD "A BC II

DATA OVER- SAVE' d file which is too
FLOW large for available storage

i

A-5

(8/74 086 ... 000010-00)

•

• BASIC ERROR MESSAGES
CODE TYPE TEXT MEANING EXAMPLE

27 A FILE NUMBER invalid file designation in an OPEN FILE(9, 0)
NOT 0-7 I/0 statement

28 A DIM OVER- an array or string exceeds
FLOW its initia 1 dimensions

29 A EXPRESSION an expression is too com - A=(((A +l)+((A-

plex for evaluation 7+3)*3)+RND(0))

30 A NODE NUM- invalid mode designation OPEN FILE(0, 7)
BER NOT 0-3 in an I/0 statement •

31 A SUBSCRIPT' subscript exceeds array's 10 DIM A$(2)
dimension ;A$(1, 30)

RUN

32 A UNDEFINED statement looks like a func - ;ABC(l)
FUNCTION tion but was never defined by

DEF and not a standard
BASIC function

33 A FUNCTION the nesting of too many
NESTING defined functions. •

34 A FUNCTION argument range exceeded A= 1234
ARGUMENT ;A, 34652

35 A ILLEGAL PRINT USING statement is ; us ING II A II, A
FORMAT illegal
STRING

36 A STRING SIZE print line exceeds page PAGE= 15

specification ; "AAA •••

A-6
(8/74 086-000010-00)

•

• - - -

BASIC ERROR MESSAGES
CODE TYPE TEXT MEANING EXAMPLE

37 A USER CA LL statement specifies 10 CALL 2
ROUTINE a user routine not in RUN

storage
..

38 A UNDIMEN - attempt to reference an ;A$
SIONED STlU~u unknown string variable

39 A DUPMATRIX same matrix appears on 10 DIM A(10, 10)
both sides of a MAT mul- 20 MAT A=A ~:<A
tiply or transpose state- RUN

• ment .

40 A MATRICES matrices have different 10 DIM A(lO, 10)
SIZES sizes 20 DIM B(20, 20)

30MATA=B
RUN

41 A MATRIX matrix has a zero dimen- 10 DIM A(lO)
DIM sion 20 DIM B(lO, 10)

30 MAT B = A
,. RUN

42 A FILE AL- two OPEN statements without OPEN FILE (0, 0) ...
READY OPEN an intervening CLOSE OPEN FILE (0, 0) ... • 43 A MATRIX attempt to invert a non- 10 DIM A(20, 30)
NOT SQUARE square matrix 20 MAT B = INV(A)

RUN

44 A FILE an attempt to read/write a DIM A$(10)
UNOPENED file \f hich has never been WRITE FILE(0), A$

opened

A-7
(8 /74 086-000010·00)

•

• BASIC ERROR MESSAGES
CODE TYPE TEXT MEANING ·EXAMPLE

45 A RECORD~ logical record size limit DIMA$(300)
128 BYTES exceeded OPEN FILE(0, l)"ABC"

WRITE FILE(0), A$

46 A INPUT data entered in response INPUT A ? ABC
to INPUT is incorrect

47 A WRONG
input file opened for writing
or output file opened for OPEN FILE (0, 1), •••

MODE reading. READ FILE(0), •••
a LOAD, RUN or CHAIN

48 E NOT A SAVE was attempted on a file
FILE which was not previously

SAVEd - • 49 E NO ROOM FILES or LIBRARY corn - 10 DIM A(8000)
FOR DIRECT- mands cannot find 2 56 words RUN
ORY in user program storage to FILES

read disk directory

50 E INVALID a command preceded by #ABC
OPERATOR a # (operator command
COMMAND specifier) is not recognized

(See page C-15)

53 E RENUMBER- a reference is made to at 100 GOTO 1090
ING ERROR(S) least one non -existing 110 END

statement number

54 E STATEMENT statement length exceeds
LENGTH 132 characters in internal

representation •
58 E INCOMPATI- incompatible version of

BLE SAVE BASIC (i.e., REV. 3. 0
FILE or earlier~ or different

floating point configura-
tion

I

A-8
(8/74 086-000010-00) •

• FILE I/O ERROR CODES AND THEIR MEANINGS

ERROR CODE MEANING ERROR CODE MEANING

1

0 Illegal channel 36 Squash file 1

1 Illega 1 file number 37 Device already exists l
" 2 Illegal system command 38 Insufficient contiguousj

3 Illegal command for blocks l

l
device 39 QTY

j

l
!

4 Not a saved file 40 Task queue table l
5 File already exists 41 No more DCI3' s
6 End of file ~ DIR specifier

• 7 Read-protected file 43 DIR specifier
8 Write -protected file 44 DIR too small
9 File already exists 45 DIR depth
10 File not found 46 DIR in use
11 Permanent file 47 Link depth
12 Attribute protected file 48 File in use
13 Fil~ not opened 49 Task ID
14 Swapping disk error- 50 Common size

program lost 51 Common usage
17 UFT in use 52 File posit.ion
18 Linc limit 53 Data chain map I

19 Image not found 54 DIR not initialized I

20 Parity 55 No defau It DIR
21 Push limit 56 FG already acti Vl'

22 Storage overflow 57 Partition set
23 ;'\o file space S8 Insufficient arguments
24 Read error :=;9 Attribute • 25 Select status 60 No Dchug
26 Start address 61 No continuation acldrcs:.
27 Storage protect 62 No start ~1ddrcss l
29 Different Directories 63 Checksum

)

30 Device name 64 No source file
31 Overlay number 65 'Not c1 cornrn;rnd
32 Overlay file attribute 66 Block type
3.1 Set time 67 T\o files match i

34 No TCB's 68 Phase
:

69 Excess a rg11 rncnts l

A-9

(8/74 086-000010-00)

•

INITIALIZATION ERRORS

The following table is a list of initialization errors. Some errors are fatal but
should not occur. When a fatal error occurs call your Data General representative.
The remaining errors indicate conditions that can be remedied.

CODE

1-8

9

INITIALIZATION ERRORS
TEXT MEANING

INITIALIZATION ERROR Call your Data General Representative

INITIALIZE MASTER
DIRECTORY

BASIC. DR is not present

10 & 11 INITIALIZATION ERROl Call your Data General Representative

12

13

14-21

22

23

·RESERVE AVAILABLE
MEMORY

CREATE SWAPPING
FILE

Insufficient memory to execute BASIC. SV

Insufficient contiguous blocks for BASIC. SW.
Remedy: Use ROOS CLI to rearrange disk
files or reduce the maximum space allowed
for user's BASIC program.

BASIC. SW is present with a non-zero use
count. Remedy: Execute ROOS CLI com -
mand "CLEAR BASIC. SW".

INITIALIZATION ERROR Call your Data General Representative

IDENTIFY MULTIPLEXOR
INTERRUPT HANDLER

For systems with 4060 type multiplexors, the
QTY device was sysgened into the RDOS system.
Remedy: Configure an ROOS without the QTY
option. If this error occurs for either a 4100
or a 4026 multiplexor, call your DGC repre -
sentative.

INITIALIZATION ERROR Call your Data General representative.

A-10

(8/74 086-000010-00)

•

I

•

•

•

•

•

•

•

APPENDIX B

CALLING AN ASSEMBLY LANGUAGE SUBROUTINE
FROM EXTENDED BASIC

It is possible to call a subroutine written in assembly language from an Extended
BASIC program. The format of the BASIC call is:

where: ~ub# is a positive integer (in the range Oto 32767) representing
the subroutine number.

Ai, ••• , An are optional arguments to be passed to the subroutine
(n must be in the range 1 to 8) and may be arithmetic variables
or expressions, or string variables or expressions. Dimensioned
numeric variable names should not appear alone, i.e., without
subscripts. (Statement numbers are not permitted as arguments.)

Character String Storage and Definitions

The assembly language programmer should be aware of the following information if
he wishes to handle character strings in a CALLed subroutine. BASIC keeps a
count of the number of characters currently defined in each string variable (referred
to as the current length of the string variable). A current length is stored as part of
a header immediately preceding the contents of each string variable. (See illustration
below.) The current length must he updated each time characters are added to or
taken away from the string variable.

Current length
C1

Characters C3
C5

Str·n 1 g

CL
C?
C4
C6

Vari b e Stora e a I g

B-1

Inc re a sing memory
addresses

Character String Storage and Definitions (Continued)

In the following examples, as~ume that A$ is dimensioned to 10, and A$= "ABCDE ".
The current length of A$ is 5.

A substring is defined as any contiguous part of a string variable. For example:

A$(2, 4) and A$ are substrings of A$.

The current length of a substring is defined as the number of defined characters within
the substring. For example, the current length of A$(4, 7) is 2, because only

•

A$(4, 4) and A$(5, 5) are defined. ',.,

The maximum length of a substring is defined as· the number of character positions
within the substring. For example, the maximum length of substring A$(4, 7) is 4.

Linking the Assembly Language Subroutine

The user's assembly language subroutines must be given as input to the relocatable
loader when the BASIC system save file is created. The user must include a
subroutine table with his subroutines. The table must have the entry point SBR TB.

The subroutine table is a list of all assembly language subroutines available to a
BASIC program. For each assembly language subroutine a four-word list item is
required, containing the following:

subroutine number
subroutine entry point
number of arguments
argument control word

The table is terminated by an item whose subroutine number is -1.

The argument control word is used by BASIC to give run-time error checking on
the types of arguments. The argument control word is divided into eight two-bit
fields for the eight possible arguments Ai .•• A8. The value of the two bit field
determines the allowable argument.

-argument may be any string expression
-argument must be a string variable
- argument may be any numeric expression
- argument must be a numeric variable

B-2

•

•

•

•

•

•

•

Linking the Assembly Language Subroutine (Continued)

BASIC calls the assembly language subroutines by the sequence:

LDA
]SR
ADLST

2, .+2
<SUB>

ADLST: <address of A1 or A1
descriptor words >

< address of An or An
descriptor words >
(return point)

;load
;jump to subroutine
;address list

;addresses of passed arguments

If Ai is a substring of a string variable, the address list contains the address of the
string descriptor words, which contain the following information:

word 1: byte address of the first character of the substring
word 2: current length of the substring
word 3: maximum length of the substring
word 4: word address of the current length of the string variable

If Ai is a string expression, the address list contains the address of the string
descriptor words, which contain the following information:

word 1:
word 2:

byte address of the first character of the string
length of the string

If A. is a numeric variable, the address list contains the storage address of the
1

variable. (All numeric variables are represented in standard floating point
format. See page 2 -1.)

If A. is a numeric expression, the address list contains the storage address of the
1

value of the expression.

8·3

Linking the Assembly Language Subroutine (Continued)

SBRTB:

A:

B:

. TITLE SBRTB

. ENT SBRTB

.NREL
7 ;SUBROUTINE NUMBER
A ;SUBROUTINE ENTRY POINT
5 ;NUMBER OF ARGUMENTS
2Bl+2B3+3B5+1B7+-0B9 ;ARGUMENT CONTROL WORD
4 ;SUBROUTINE NUMBER
B ;SUBROUTINE ENTRY POINT
0 ;NUMBER OF ARGUMENTS
0 ;ARGUMENT CONTROL WORD
-1 ;END OF SBRTB

(coding for subroutine A)

JMP 3, 2 ;RETURN

(coding for subroutine B)

JMP 0, 2
.END

;RETURN

Legal calls from BASIC to the subroutines of the examples are:

CALL 7, Q+l 7, B, B2, A$(2, 4), "TIME"
CALL 4

Illegal calls which would result in an error message would be:

CALL 7, Q+l 7, B, B2 *2, A$, lllf

CALL 7, Q+l 7, B
CALL 4, Q
CALL 2, A, B

Third parameter must be a variable.
Not enough parameters.
Too many parameters.
No subroutine number 2.

B-4

•

-fl

•

•

•

•

•

•

•

Linking the Assembly Language Subroutine (Continued)

An illegal CA LL, causing error 17, will result from an attempt to pass a variable in
the CALL that does not have a previously assigned value. All variables passed in the
CALL must have been previously assigned values even if their current value is not to
be used in the CALLed subroutine.

Several subroutines are available in BASIC to help the user in manipulating numbers
and character strings. The pointers to the routines are in page zero and should be
declared as displacement externals.

Routines

. FIX

.FLOT

.ADDF

.SUBF

.MPYF
• DIVF

• MPY
.MPYA

Fo+Fl
F0-Fl
F0*Fl
FD/Fl

Al *A2 - A0,Al
Ao+Al *A2 -A0,Al

Converts floating point number in AC0-ACl to an
integer in AC0-ACl. If there is overflow, the
largest possible integer is returned in AC0-ACl.
Bit 0 of AC0 is the sign of the number. Bit 0 of
ACl is a significant bit .

Converts an integer in AC0-ACl to floating point
format in AC0-ACl.

Arithmetic routines to perform floating point add,
subtract, multiply, divide. In each routine, AC0-
ACl initially contains the floating point yalue of Fl
and AC2 contains the address of the value of F0 .
The result is returned in A CO-AC 1.

Underflow returns a zero result; overflow results
in error number 16.

In the integer multiply routines, ACl contains the
unsigned integer multiplicand and AC2 contains the
unsigned integer multiplier. The result is a double
length product with high-order bits in AC0 and low­
order bits in A Cl. Contents of AC2 are unchanged.
The difference between the routines is that . MPY A
adds the result of the multiplication to the contents
of AC0.

·,- In systems having floating point hardware, the floating point number is stored in

the Floating Point Accumulator (FPAC) rather than in AC0-ACl.

B-5

Linking the Assembly Language Subroutines (Continued)

Routine

.DVD

.DVD!

. MOST

(A0,Al)/A2 -Al,A0
Al/A2 -Al,A0

Result

In the integer divide routines the dividend is in ACl
(single-length) or in AC0 and ACl (double-length
with high order bits in AC)). The divisor is in AC2
and the result is left with the quotient in ACl and the
remainder in ACO. Contents of AC2 are unchanged .

Moves the character string described by the string
descriptor words in AC0, ACl to the substring
described by the string descriptor words in the
memory locations labeled TR3, TR4, TRS. TR6. *

Before a JSR to MOST, these accumulators and
memory locations should be loaded as follows:

AC0 -

ACl -
TR3 -

TR4 -
TRS -
TR6 -

byte address of the first character of the
source string
length of the source string
byte address of the first character of the
destination string
current length of the destination substring
maximum length of the destination substring
word address of the current length of the
destination string variable.

TR3, TR4, TRS, and TR6 should be declared as displacement externals in the
assembly language subroutine. MOST automatically updates the current length of the
destination string variable. Subroutine MOST has two returns. Return at CALL+ 1
means the character string move was terminated' by the source string becoming
empty.

Return at CALL + 2 means the move was terminated by the destination substring
becoming full.

* In the SOS BASIC system, these locations are labeled TSl, TS2, TS4, TSS.

B-6

•

-..

•

•

•

•

--

•

•

•

APPENDIX C

EXTENDED BASIC OPERATION UNDER RDOS

CONFIGURING RDOS

The system generation program, SYSGEN. SV, configures a system save file by
interrogating the user as to the characteristics of the system which the user wishes
to generate. To invoke the SYSGEN program, the user types the command:

SYSGEN)

The CLI will then load and transfer control to SYSGEN. SV which will issue the
message:

SYSGEN REV n. nn

VALID ANSWERS ARE IN PARENTHESES RESPOND ACCORDINGLY

followed by a series of questions to which the user must respond; number responses
are decimal integers. Each response must be followed by a carriage return. A
simple carriage return response will be interpreted as a response of 0. The Real
Time Disk Operating System User's Manual, 093-000075, Appendix E; lists all the
queries issued during the SYSGEN procedure and the appropriate responses for each.
Below are several of those queries and the proper responses of each as relating to
Extended BASIC.

QTY? ("0" = NO, "l" = YES)

RDOS should be configured without the QTY handler (response of 0)
if Extended BASIC will be using the multiplexor handler type 4060.

RTC? ("0" = NO, "l" = YES)

The proper response to this question is 0 if your system lacks a
real time clock, or 1 if there is a real time clock in your system.

ENTER R!C FREQ (1 = lOHZ, 2=100HZ, 3 = lO00HZ)

This question will be asked only if the response to the previous
question was 1. The RTC interrupt rate should be configured to
10 HZ (response of 1) when configuring RDOS for Extended BASIC.

C-1

(8/74 086-000010-00)

I

CONFIGURING RDOS (ContinlJed)

ENTER NUMBER OF STACKS (1-5)

This question refers to the number of system stacks which you wish to be
available to RDOS. It is preferable for the user to enter 5 in response
to this query for either a multi-user or single-user system (a minimum
response of 2 is necessary for BASIC).

ENTER NUMBER OF EXTRA BUFFERS REQUIRED (0-N)

This question refers to the number of system buffers which you wish to
make available to RDOS. Respond with a non-negative integer equal to the
greatest number of buffers as core will allow. The guidelines for
selecting the number of extra core buffers allowed in your system follows.

Each system buffer is 414 (octal) words in length; the system will allocate
a minimum of six of these buffers or two buffers for each system stack,
whichever is larger. If multiples of 414 (octal) core locations are available
for RDOS in a mapped system, these multiples will be used for additional
system buffers. System buffers are used to receive system (not user)
overlays and for I/0 transfers; thus the speed of RDOS Extended BASIC is
enhanced by the availability of extra buffers.

MAXIMUM NUMBER OF SUB-DIRECTORIES/SUB-PARTITIONS ACCESSIBLE
AT ONE TIME (0-32)

If you do not wish to use disk partitions in this system, respond with a O;
otherwise, respond with the maximum number of subpartitions and/ or
subdirectories which you want to be accessible (i.e., able to be initialized).
This number is found by using the formula be low:

1 for each user + 1 for the library = response

OPERATOR MESSAGES? ("0" = NO, "l" = YES)

The proper response to this question is 1 if you wish to be able to issue
read/write operator message system calls (. RDOP/. WROP); otherwise,
response with O. It is recommended, when using Extended BASIC, to
respond with a 1. (If not included initialization errors will not appear at
the system console.)

C-2

(8/74 086-000010-00)

•

•

•

•

•

•

•

•

CONFIGURING RDOS (Continued)

MAPPED SYSTEM ("0" = NO, "l" = YES)

Respond with O if your system has no Memory Management and Protection
Unit (MMPU); respond with 1 if your system does have MMPU.

'
USER INTERRUPT SERVICE ("O" = NO, "l" = YES)

This question will be asked if you responded with a 1 to the above question.
Using Extended BASIC under RDOS, you should respond with a 1 to this
question.

MAXIMUM NUMBER OF CHANNELS BACKGROUND WILL USE (1-N)

MAXIMUM NUMBER OF CHANNEL FOREGROUND WILL USE (1-N)

These questions will be asked only if you have specified that your system
employs mapped addressing (a response of 1 to the query MAPPED
SYSTEM above). Respond with an integer value Nin the range 0-63. If
N is selected to be smaller than the requirement specified at load time,
the program will be aborted when execution is attempted.

BASIC CONFIGURATION

Before the Extended BASIC system can be loaded, the system must be configured.

To configure the BASIC system under RDOS, the user executes the RDOS CLI and
then gives the command:

BSG)

BSG responds by querying the user as to the device configuration for Extended BASIC.
BSG. SV is supplied as a part of the BASIC package.

BSG Dialogue

After the user has issued the command BSG, the system will respond with a series
of queries as to the type of device configuration the user wishes for his Extended
BASIC system. The queries and applicable responses are listed following. The
following series of interrogations is numbered for your convenience; no such
numbering occurs during the operation of BSG.

C-3

(8/74 086-000010-00)

BSG Dialogue (Continued)

1. MAPPING SYSTEM?

The user responds with a Y to this query if his system is to be a mapped
system (i.e. , his system includes a Memory Management and .Protection
Unit (MMPU), or N if not.

2. BATCH SYSTEM?

If the system to be configured is to be a BATCH system respond with Y,
if not, respond with N. If you respond with a Y to this query, jump to
the query numbered 10; otherwise continue with query number 3.

3. MULTI-USER SYSTEM?

The system is querying as to whether the system is a Single- Usf'r
System (respond with N) or a Multi-user System (respond with Y).
If response is N, jump to the query numbered 10; otherwise, continue
with query number 4.

4. 4026 MULTIPLEXOR?

There are three possible multiplexor handlers available to the user,
type 4100, type 4060 and type 4026. By responding with a Y to this query,
your system will be configured with multiplexor handler type 4026; a
N will prompt the next query.

4a. 4100 MULTIPLEXOR?

A Y will configure your system with handler type 4100; by responding with
a N to this query, your system will be configured with multiplexor
handler type 4060.

5. SWAPPING SYSTEM?

This query determines whether the Extended BASIC system is a swapping
or non-swapping system. The user responds with Yor N, depending
upon his system configuration. If the user responds with Y, the swapping
system will create a file called DK0:BASIC. SW which will be used for
program swapping.

C-4

(8/74 086-000010-00)

•

- ...

•

•

•

•

•

•

BSG Dialogue (Continued)

6. LINE CONFIURATION?

7.

8.

9.

This query requests the line configuration to be used. The user responds
to the query with a list of line numbers, a range of line numbers, or both,
followed by a carriage return. The 4026 multiplexor uses lines 0-15
(maximum of 16 lines). The 4060 and 4100 multiplexors use lines 0-31
(maximum of 32 lines). The user lists line numbers separated by
commas, or gives a range of line numbers as follows:

0,1,2,4 - line numbers 0, 1, 2, and 4

0-2, 4 - line numbers 0, 1, 2, and 4

These line numbers, or range of line numbers are terminated by a
carriage return.

DIAL-UP CONFIGURATION?

The user responds to the query with a list of dial-up line numbers, a
range of dial-up line numbers, or both, selected from those line numbers
given in response to query number 6, LINE CONFIGURATION. Dial-up
lines are those connected by an interface to a telephone line. The
response to the query has the sa1ne format as the response to the
LINE CONFIGURATION query. The dial-up line numbers are terminated
by a carriage return. If there are no dial-up lines, the user responds to
the query with a carriage return.

CONSOLE TTY?

The user responds to this query with Y if he wishes to use the teletype­
writer as the master console or he responds with a N if he does not .
If the user responds with a Y, jump to query number 10; if the response
is N, continue on with query number 9.

MASTER CONSOLE LINE NO. ?

The user responds to this query with the line number of the master
console to be used. (The master console is the only terminal in the
system having write-access to library files as well as access to all
user directories.)

C-5

(8/74 086-000010-00)

BSG Dialogue (Continued)

10. RESERVED FILES:

The user responds with a list of reserved names of devices to be used
during the console session. Any number of devices can be listed from
the reserved devices. The reserved file names are:

Reserved Name Device

$PLT Incremental Plotter
$LPT Line Printer
$CDR Card read (including mark sense)
$PTR Paper Tape Reader
$PTP Paper Tape Punch
MT0: Magnetic Tape Unit 0
MTl: Magnetic Tape Unit 1
MT2: Magnetic Tape Unit 2
MT3: Magnetic Tape Unit 3
MT4: Magnetic Tape Unit 4
MTS: Magnetic Tape Unit 5
MT6: Magnetic Tape Unit 6
MT7: Magnetic Tape Unit 7
CT0: Cassette Unit 0
CTI: Cassette Unit 1
CT2: Cassette Unit 2
CT3: Cassette Unit 3
CT4: Cassette Unit 4
CTS: Cassette Unit 5
CT6: Cassette Unit 6
CT7: Cassette Unit 7

The console TTY should never be configured as a reserved file name.
To indicate the end of the reserved name list, the user types a carriage
return which is not preceded by a reserved file name.

11. MARK SENSE. CARD READER?

If $CDR was included as a reserved file name in response to query
number 10, this query will be printed. If $CDR was not included in
the list of reserved file names, continue with query number 12. With
a response of Y to this query, all cards input to the card reader will
be interpreted to be mark sense cards. A response of N to this query
indicates that the cards will be interpreted as Hollerith punched cards.

C-6
(8/74 086-000010-00)

•

••

•

•

•

•

•

•

BSG Dialogue (Continued)

12. NUMBER OF USER DISK CHANNELS?

The user responds with a decimal number indicating the number of
disk files that can be open at a given time. The number must be in
the range 1 to 64

10
-~, where~ equals the number of reserved files

specified by the user in response to query 10. The user must include
1 channel for the swapping file (if used) and 2 channels if using BATCH
in addition to other desired channels.

13. HARDWARE FLOATING POINT?

If the hardware floating point option'is to be a part of the user's system
configuration, he should respond with Y to the query; otherwise, he
should respond with N •

14. HARDWARE MULTIPLY /DIVIDE?

If the hardware multiply/divide option is to be a part of the user's
system configuration, he should respond with Y to this query; other­
wise, respond with a N and jump to query number 16.

15. ORIGINAL NOVA?

If the response to query number 14 was Y, the ORIGINAL NOVA query
will be asked. The user responds w~th a Y for an original model
NOVA® * computer (vs. 800, 1200 or SUPERNOVA® * computer) or N
to this query, depending upon the system he is using.

16. MATRIX OPERATIONS?

If the user wishes to use matrix operations, he should respond with a
Y to this query, if not, respond with a N.

The files SY. RB and BASIC. CL are now created and the system will give the prompt:

R

signifying that the user may now load Extended BASIC.

*NOV A and SUPERNOVA are registered trademarks of Data General Corporation,
Southboro, Massachusetts.

C-7

(8/74 086-000010-00)

-- ------------------------------~~---------------

Loading Extended BASIC

NOTE: the following discussion does not include configuration information for
Multiplexor Handler type 4100. This information is available from your DGC
representative.

The Extended BASIC system may be loaded in two ways. After the user has finished
answering the queries outlined above and on preceding pages, a file is created called
BASIC. CL containing a relocatable load command line corresponding to the responses
the user gave to the various queries. The user can then issue the command:

@BASIC. CL@ f filename/L}

to load his Extended BASIC system. If "filename/L" option is used a loadmap of
the BASIC system will be appended to file ''filename". Alternatively, the user may
issue the following R LDR command line to load his Extended BASIC system. The
RLDR command line format is:

R LDR/N BASIC. sv /S SY {I MP60 f RD60 } J
MP26 f RD26 }
MPlO0 f RDIO0}

MDSW

fTTY} t)

MDHW [over lay filenames] BASIC A. LB BAS I CB. LB f SBR TB. } t)

MONO

BASIC 1~ ~ . LB l
MATX
MATY
DMAT

BASIC 1
2
3
4
5
6

• LB SYS. LB INT)

where: Global switch /N should be appended to R LDR: this inhibits a search
of the system library SYS. LB. By default, the search will be
performed.

The save file to be output is named BASIC. SV, as specified by the
/S local switch.

{ } indicates alternate choices.

f } indicates optional choices.

SY(SY. RB) is the BASIC system configuration module, created by
the user using the BASIC system generation routine, 088-000045.

C-8

(8/74 086-000010-00)

•

•

•

•

•

•

•

•

Loading Extended BASIC (Continued)

where: (O:mtinued)
MP60 and MP26 are the multiplexor handlers as follows:

MP60.RB (089-000123) Multiplexor handler type 4060
MP26. RB (089-000124) Multiplexor handler type 4026

If there are any dial-up lines in the configuration, each
multiplexor handler must be followed by its respective dial-up
line handler:

RD60. RB (089-000125) Dial-up for handler type 4060
RD26. RB (089-000126) Dial-up for handler type 4026

TTY (TTY. RB) (089-000135) must be loaded if the user wishes to
use the teletypewriter as the master console, also the user must
have responded with a Y to query number 8 on page C-5 .

MDSW, MDHW, MDNO are alternative multiply /divide
options as follows:

MDSW. RB (089-000127) Software multiply /divide
MDHW. RB (089-000169) Hardware multiply /divide

(SUPERNOVA, NOVA 1200/
1220, 800 /820)

MDNO. RB (089-000170) Hardware multiply /divide (NOVA)

The relocatable loader creates an °"verlay file from modules
supplied on tape (088-000089). The module names are:

PRU{~}, OINIT, BYE, OMISC, CALL, ERROR, ERIOl,
ERI02, OFILE, XDCD2, ODIR, OPER, OMAC IMUX

Note: The overlay filenames tape also contains some modules
· for 4100 Multiplexor configurations .

BASICA. LB (099-000044) contains the Extended BASIC compiler
common library; and BASICB. LB (099-000045) contains the
Extended BASIC Interpreter common library.

SBRTB is an optional user-written binary containing any user
subroutines.

C-9

(8/74 086-000010-00)

Loading Extended BASIC (Continued)

The user has the option to load matrix operations or a dummy matrix tape
if no matrix operations are required. The dummy tape is DMAT. RB
(089-000153).

For users requiring matrix operations, the tape to be loaded is dependent
upon whether the configured system contains the hardware floating point
option. For systems with the PP option, use MATY. RB (089-000155); and
for systems without the PP option, use MATX. RB (089-000154).

BASICX. LB (099-000067) is loaded for systems configured without the
hardware floating point option; and BASICY. LB (099-000068) is loaded
for systems which are configured with the PP hardware option.

The Extended BASIC libraries are:

BASICl. LB - single-user Extended BASIC - 099-000050
BASIC2. LB - multi-user Extended BASIC - 099-000051

•

BASIC3. LB - multi-user swapping Extended BASIC - 099-000052 •
BASIC4. LB - single-user, mapping Extended BASIC - 099-000066
BASICS. LB - multi-user, mapping Extended BASIC - 099-000069
BASIC6. LB - multi-user, mapping, swapping, Extended BASIC - 099-000070

SYSTEM DISK FILES AND DIRECTORIES

Disk Directories

There are two types of disk directories, a library directory and a user directory.
The library directory contains a list of all file names which are read-accessible
to all users. The user directory contains a list of all file names created and main­
tained by the user. The files contained within the user directory can be read,
written, deleted, and renamed by the user.

The library directory (BASIC. DR) must always be present as either a subdirectory
or secondary partition. Each user directory also is either a subdirectory or a
secondary partition. After ROOS initialization of the system, the ROOS C LI command: •

CDIR name

is used to create a subdirectory called name. The library directory (BASIC. DR)
must exist before you can execute BASIC or an error message will occur.

C-10

(8/74 086-000010-00)

•

•

..

•

•

•

BASIC. ID File

On multi-user Extended BASIC systems, an ASCII disk file called BASIC. ID must be
present, containing the account identification of all system users. Each entry in
the file must be separated from the next by a carriage return.

A user's account identification is written in the ASCII file in the following format:

where: aaaa is the user's account identification number (ID).
The four characters must be alphanumeric (A to Z and
0 to 9).

fa ... a} an optional password of up to 16 alphanumeric
characters.

/dd ••• d is the directory name; the directory must exist
within the system or the user may not sign-on to the
system. Two different users may use the same directory.
The system will not permit a second user to sign on
with an identification number already in use.

£ /ssss } is the optional name of a SAVEd program exist­
ing in the library directory. After a successful sign-
on, the SAVEd program will be executed automatically.

When the user is signing on to his system (see Sign-On Procedures, page C - 15)
the proper response to the query ACCOUNT-ID: is represented by~ f ~ ... ~ }.

This will appear as:

ACCOUNT-ID: XXXXXXX

An X will be printed for each character typed for security reasons. For instance,
if the user types 12345ABCD the resultant appearance of the query and response
would be:

ACCOUNT-ID: XXXXXXXXX

The user must sign-on with exactly the same character sequence as the account I
identification. For instance, with an account ID of 12AB34CD, a user could not
respond with 1234ABCD, or ABCD1234, but must sign on with the proper sequence
of 12AB34CD.

C-11

(8/74 086-000010-00)

BASIC. ID File (Continued)

The system manager can execute a program from the master console which can
modify the BASIC. ID file while BASIC is running. In order to do this he must sign
onto directory SYS.

Pro gr am Swaps

To describe BASIC program swaps, assume memory to appear as follows:

BASIC

User# l's program

User's #1 's data

User's #2's program

Users's #2's data

RDOS

C-12

(8/74 086-000010-00)

•

•

•

•

•

•

•

•

Program Swaps (Continued)

The two programs, belonging to User 1 and User 2, together fit user core exactly.
Further suppose a program belongs to User 3:

User #3' s program .

User's #3's data

This program is as large as the two current programs. In order for User #3's
program to be executed, a program swap must occur. The two current programs,
User #1 's and• User #2's, are swapped out to disk and user #3's program is read in.
Memory now can be represented as:

Swapped Programs Current Memory Representation

User #1 's program
BASIC

User :#1 's data
User #3's program

User #2's program
User #3' s- data

User #2 's data

RDOS

C-13

(8/74 086-000010-00)

Program Swaps (Continued)

Now assume two more programs:

User #4's program

User #4 's data

User #5' s program
User #5' s data

User #3's program will be swapped out to disk, and user #4's and user #S's programs
will be brought into core. Also User #2 's program will be brought back in since
there is room enough for it at this time in core. Memory may then be represented
as:

Swapped Programs Current Memory Representation
.

User #1 's program BASIC

User #1 's data
User #4's program

User #4's data
User #3's program User #5' s program

User #5' s data

User #2's program

User #2' s data

User #3' s data
RDOS

It is important to note that BASIC and RDOS are never swapped, they are fixed
portions of memory. As user #2's program illustrates, the smalle.r.a program is
the less likely, or the fewer times, it will be swapped. A program, of course, is
never swapped if there is no other non-core-resident program awaiting CPU time.

C-14
(8/74 086-000010-00)

•

•

•

•

•

•

•

•

Sign -On/Sign -Off Procedures

Before discussing sign~on procedures, it is necessary to discuss the term master
console. The master console is the teletypewriter which is used to configure the
RDOS system and the BASIC system. In most cases, the master console is
physically the closest teletypewriter to the system; and it is assigned the lowest
line number.

I I I I I
SYSTF?vI !\faster Teletype- Teletyp2- ••• Teletype-

Console ,vritcr writer ·wrjter

\..----~----.,/
refe:t red to as TTY referred to as MUX

All single-user systems, therefore, use the TTY as the master console. Multi-user
systems use the TTY if the TTY was configured as part of the system during the
configuration process; otherwise, the master console is the teletypewriter having
the line number specified during the BSG dialogue (queries 8 and 9 on page C-5).

The sign -on procedure is different depending upon which software system you are
going to use, i.e., whether or not the system is multi-user and which teletype­
writer is to be used as the master console. Look at the chart on page C-16 for
the various sign-on procedures. Note that before signing on to the BASIC system
the library directory (BASIC. DR) and BASIC. ID must exist (refer to pages C-10 and
C-11) for multi-user systems. BASIC. DR must exist for single-user systems. An

' error message will be printed if the appropriate user--created file(s) is (are) not
present.

In order to kill the BASIC system and return to the CLI (Command Line Interpreter),
it is necessary to issue the system command:*

#KILL

The operator command to unlock an escape loop at a user's console logged on under
<account ID>is:

#UESC <account ID>

#KILL and #UESC are console commands which may only be issued from the master
console.

*NOTE: #indicates a cons le system command, which may only be issued from the
master console.

C-15
(8/74 086-000010-00)

l'\IULTI-USER USING TTY AS
MASTER CONSOLE

TTY

~CCOUNTINC;?

user responds with
Y or N. Y = write
accounting informa­
tion to an account­
ing file named
J3ASIC. AF . N =

only write account­
ing information to
terminals.

DIRECTORY SPECIFIER:

user responds with
the name of the di -
rectory to be used.
This query is re­
peated until correct
response is given.

System prints sign­
on information.

System is ready to
accept inst ructions.

MUX

The user is informed
of the system's ready
status by the message:

DGC READY

user presses ESC

ACCOUNT- ID:

user responds with
his account identi­
fication.
This query is re­
peated until correct
response is given.

SIGN ON time date line#

System prints sign­
on information.

*(space)

System is ready to
accept instruction.

MULTI-USER USING A MUX
AS MASTER CONSOLE

SINGLE-USER
SYSTEM

OTHER MUX LINE MASTER MUX LINE

The user is informed
of the system's ready
status by the message:

DGC READY

user presses ESC

ACCOUNT-ID:

user responds with
his account identi -
fication.
This query is re­
peated until correct
response is given.

SIGN ON time date lind ------
System prints sign­
on information.

System is ready to
accept instructions.

C-16

(8/74 086-000010-00)

ACCOUNTING?

user responds with
Y or N. Y = write
accounting informa­
tion to an accounting
file named 13ASIC. AF.
N = only write ac­
counting information
to terminals.

ACCOUNTINC?

user responds with
Y or N. Y :c: write
accounting infor­
mation to an ac­
counting file
named BASICAF.
N = only write ac­
counting infor-
mation to ter­

DIRECTORY SPECIFIER minals.

user responds with
the name of the di -
rectory to be used.
This query is re­
peated until correct
response is given.

DIRECTORY
SPECIFIER:

user responds with
the name of the
directory to he
used. This query

SIGN ON time date line# is repeated until
correct response

System prints sign- is given.
on information.

System is ready to
accept instructions.

SIGN ON time
date line#

System prints
sign -on infor­
mation.

System is ready
to accept
instructions.

•

•

•

•

•

•

•

•

BATCH OPERATION

BATCH is an ROOS program that permits system software to be dedicated to the
processing of a job stream without operator intervention. The BATCH configuration
is single-user; when BASIC is configured for BATCH using BSG, all multi-user
queries are skipped (see page C-4).

BATCH initiates the execution of one or more job files, making up a job stream.
Each job file is an input file containing one or more user jobs, and each job is
complete with job control commands and optional data sets.

The BATCH commands begin with an exclamation point. The BATCH command to
execute BASIC is !BASIC. In using BASIC under BATCH, the user writes a series
of BASIC commands as if he were inputting them from the console.

To replace non -BATCH terminal operation with BATCH, the user needs an input file,
an output file, and a log file. The default assignment of the log file is the console
terminal printer; the default assignment of the input and output files (called SYSIN
and SYSOUT respectively) are the card reader and the line printer. The !BASIC
command has a /T switch permitting SYSIN to be read in mark- sense card format
rather than in SO-column punch card format (see Appendix E).

The Extended BASIC user may override the default input and output file assignments
in his BATCH job input file (which may be a disk file). The procedure is described
in the BATCH User's Manual, 093-000087, which the user should consult before
attempting to use BATCH.

Extended BASIC commands under BATCH must not attempt any input/output to unit
record devices assigned to SYSIN or SYSOUT. For example, the following are
illegal commands while $CDR is defined as SYSIN and $1.PT is defined as SYSOUT:

ENTER "$CDR"

LIST "$LPT"

An example of a BATCH job stream containing Extended BASIC commands is given
on the following page.

C-17
(8/74 086-000010-00)

BATCH OPERATION (Continued)

Job Stream

!JOB BASIC
!DISK
! LIST /E BASIC. -
!BASIC
N
BASIC

}

SIZE 'I
PAGE= 80 ~
ENTER "FACTOR. SR" J
1250PERA TOR

LIST }
RUN

1234E66)
1234
7474
0
SIZE
#KILL
!EOF

Comments

Job identification.

RDOS commands DISK and LIST.
Execute BASIC.
No accounting file required.
Respons~to "DIRECTORY SPECIFIER"

BASIC commands.

Illegal command.

BASIC commands.

Input data.

BASIC command.
Exit BASIC and return to BATCH command mode.
End of BATCH job file.

Note the use of the command #KILL. In non-BATCH operation, this returns you to the
CLI and in BATCH operation to the BATCH monitor. See page C-15.

C-18

(8/74 086-000010-00)

•

•

•

•

•

•

•

•

BASIC. AF FILE

Each time Extended BASIC is initialized the query

ACCOUNTING?

~ppears on the master console. The system manager responds "Y" if he wants
accounting information to be recorded. Any other response indicates that accounting
information need not be recorded. When Accounting information is to be recorded
a sequential file, BASIC. AF, is created, if it does not already exist. In any case,
all information written to BASIC. AF is appended to the end of the file. This means
that the file will continue to grow as BASIC log-ons or BYE' s are executed. A
system manager should process this file every so often, so as not to allow it to use
up too much disk space. Suggestions on how to do this is given below following the
description of entries in the BASIC. AF file •

An entry is made in BASIC. AF by writing one line of ASCII characters at a time.
Lines of information for various system users can be interleaved. However, each
line of information has a precise meaning and identifies a user uniquely. Therefore
it is easy to fully recover the accounting information stored.

General format of a line in BASIC.·AF

aaaa mm/dd/yy HH:MM l
SIGN-ON, NN

.

SIGN-OFF, NN ·
CPU-USED, t
I/O-USED, s

aaaa = user Identification number (4 characters) 4 asterisks on master
console(****).

mm = month (e.g., 03)
dd = day (e. g. , 2 3)
yy = year (e.g., 74)
HH = hour of day (24 hour clock)
MM= minute
NN = port number (e. g. , 0~ · -1 = master console)

t = integer number of seconds of CPU time used since the previous
log-on tor tn1s port

s = integer; measure related to amount of I/O performed (No. of RDOS
. SYSTM calls)

An example of a segment of a BASIC. AF file follows.

C-19

(8/74 086-000010-00)

lt\SIC. AF FILE (Continued)

:-,;~ ;:~ 03/15/74 15:53 SIGN-ON, -1
0003 03/15/74 15:57 SIGN-ON, 01
0002 03/15/74 16:05 SIGN-ON, 02
0001 03/15/74 16:35 SIGN-ON, 00
0001 03/15/74 17:55 SIGN-OFF, 00
0001 03/15/74 17:55 CPU-USED, 237
0003 03/15/74 17:55 SIGN-OFF, 01
0001 03/15/74 17:55 I/0-USED, 556
0003 03/15/74 17:55 CPU-USED, 272
0002 03/15/74 17:55 SIGN-OFF, 02
0003 03/15/74 17:55 I/0-USED, 365
0002 03/15/74 17:55 CPU-USED, 40
0002 03/15/74 17:55 I/0-USED, 417
0002 03/15/74 17:56 SIGN-ON, 03
0002 03/15/74 17:56 SIGN-OFF, 03
0002 03/15/74 17:56 CPU-USED, 11
0002 03/15/74 17:56 I/0-USED, 40
:ij< * >:~ };< 03/15/74 17:56 SIGN-OFF, -1
>~ * >~ ,:, 03/15/74 17:56 CPU-USED, 3164
* *~l<:❖: 03/15/74 17:56 I/0-USED, 1662

Information in the Accounting file can be read by a BASIC program which may be
executed at the master console. Since the Accounting file is opened and closed
for each line of data written to it, a system program can be written which RENAMEs
this file and then opens a (new) file called BASIC. AF. In this way the system
manager can periodically remove old Accounting information for processing, even
while the BASIC system remains operational. Since the information is pure ASCII
text, it is easy to write a BASIC program to process the data. The space delimiter
between each field makes the sub-entries easily accessible.

SUMMARY OF DEDICATED FILE NAMES USED BY BASIC:

BASIC. CL)
SY.RB
BASIC. SV
BASIC. OL
BASIC. DR
BASIC. ID
BASIC. AF
BASIC. SW

Created by system generation
program BSG. SV
System save file
System overlay file
Library directory
Account Identification file
Accounting File
Swapping File (contiguous)

,:'Asterisks indicates must be set up by system manager
before BASIC can be successfully executed.

C-20

(8 /74 086-000010-00)

Requirement

All systems.
All systems.

All systems.
Any M. U. system.
Option in all systems
Created by BASIC
initialization for
swapping system

•

•

•

•

•

•

•

•

APPENDIX D

EXTENDED BASIC OPERATION UNDER SOS

INTRODUCTION

A stand-alone version of Extended BASIC is available for use on machines not
having a direct access I/O device. This appendix describes the generation and
operation of such a system. Although these systems differ only slightly from
their RDOS BASIC counterparts, a table of differences is included in this appendix.

Persons concerned with generating non -disk Extended BASIC systems should be
familiar with the operation of the machine and the concepts of the Stand-alone
Operating System (SOS) as described in STAND-ALONE OPERA TING SYSTEM
USER'S MANUAL, 093-000062.

STARTER SYSTEM

A small starter system, capable of running in 12K words of core storage is
available. This system is configured at the factory and contains the following
features:

1. A device driver for the console terminal
2. A device driver for an 80 column line printer
3. A device driver for a high speed paper tape reader
4. A device driver for a high speed paper tape punch
5. PRINT USING capability
6. Matrix manipulation routines

This absolute binary (core image) paper tape can be loaded with the Binary Loader,
as described in the appropriate manual, 093-000003. When loading has been
completed, the system will halt. Press CONTINUE, enter the current date and
time, and the system is ready to accept input.

BUILDING EXTENDED BASIC

For machines having at least 16K words of storage, Extended BASIC may be
tailored to support a number of different hardware configurations. The process of
configuring a system consists of the following:

1. Producing a trigger which specifies the desired I/O support and
program features.

D-1 Oct. 1974

BUILDING EXTENDED BASIC (Continued)

2. Performing a relocatable load of the trigger, the appropriate SOS
libraries and the BASIC libraries and relocatable binaries.

3. Performing a run -time system generation to further tailor the
system.

CREA TING A TRIGGER

Triggers are produced by the SOS SYSG EN program. This program accepts a
command line which contains device driver ENTRY symbols from the console
device. It outputs a relocatable binary file (the trigger) which is comprised of
EXTERNAL NORMAL symbols corresponding to the named device drivers. These
EXTERNAL NORMA Ls cause the selection or "triggering" of the desired routines
for loading when the trigger precedes the SOS libraries as input to the relocatable
loader.

The first step to create a trigger is to load ahd start the SYSGEN program. This
can be done by using the binary loader to load an absolute binary SYSGEN paper
tape (091-000070, 091-000071, 091-000074). SYSGEN can be loaded from
cassette or magnetic tape using the Core Image Loader /Writer.

When the SYSGEN program is started, it outputs the prompt:

SYSG

and waits for a command line response. The command line has the format:

(SYSG) driver
1

... drivern . ROSI output-device/O BTRIG/T

where:

driver
1

driver
n

output-device

BTRIG/T

is a list of entry symbols in the desired device
driver routines. Table 0-1 lists all possible symbols.

is the name of the device to which the trigger is to be
output. This name must be followed by the "/0" switch.

assigns the title BTRIG to the trigger.

0-2 " Oct. 1974

•

•

•

•

•

•

•

•

Driver
Entry
Symbol

.CDRD

.CTAD

.CTUl

.CTU7
• L132
.LPTD
.MTAD
.MTUl

.MTU7

.PLTD

.PTPD

.PTRD

.TIil

Table D-1 Driver Entry Symbols for SYSGEN Command Line

sos
Program
Name

CDRDR
CTADR
CTUl

CTU7
LP132
LPTDR
MTADR
MTUl

MTU7
PLTDR
PTPDR
PTRDR
TTYI

Function

card reader driver (includes mark sense)
cassette driver for unit 0
control table/buffer for cassette units 0-1

control table/buffer for cassette units 0-7
132 column line printer driver
80 column line printer driver
magnetic tape driver for unit 0
control table/buffer for magnetic tape units 0-1

control table/buffer for magnetic tape units 0-7
plotter driver (access via CALL)
high speed paper tape punch driver
high speed paper tape reader driver
second console teletype (TTil, TIO 1)

D-3 Oct. 1974

CREA TING A TRIGGER (Continued)

For example, to produce a trigger for the following devices

paper tape reader
paper tape punch
132 column line printer
mark sense card reader

one would respond to the SYSG prompt with

. PTRD . PTPD . Ll 32 . CORD . ROSI $PTP /0 BTRIG /T)

PERFORMING A RELOCATABLE LOAD (PAPER TAPE)

Once a trigger has been created and saved on an external device, the following steps
must be followed to produce an absolute binary tape.

1. Using the Binary Loader, load the Extended Relocatable Loader,
091-000038.

2. Mount the trigger in the Teletype®'~ reader and type 1 or, in the
high speed reader, type 2.

3. Set the switch register to 1000, Type in 3.

4. If the trigger specifies support for cassette or magnetic tape drivers,
mount either the SOS Qissette Library (099-000041) or the SOS Magnetic
Tape Library (099-000042) in the Teletype reader and type 1, or in the
high speed reader and type 2.

Mount the SOS Library (099-000010) in the Teletype reader and type 1, or
in the high speed reader, type 2.

5. Mount the relocatable binaries and libraries in the order shown in
Table D-2 in the Teletype reader and type 1, or in the high speed reader,
type 2.

llc'"feletype is a registered trademark of Teletype. Corporation, Skokie, Illinois.

D-4 Oct. 1974

•

•

•

•

• Tape Name Supplied As Purpase Comment

MP.RB 089-000137 driver for system console I
MP26.RB 089-000141 driver for system console and 4026 multiplexer Choose One
MP60.RB 089-000140 driver for system console and 4060 multiplexer
MDSW.RB 089-000156 standard multiply /divide routines (all machines)
MDHW.RB 089-000157 multiply /divide routines for machines having

Choose One
options 8007, 8107, 8207, 8307

MONO.RB 089-000158 multiple/divide routines for machines having
option 4031

MSCR. RB 089-000 translator for mark sense card (N96829) May be omitted
BASICA.LB 099-000046 compiler routines Required
BASICS. LB 099-000047 interpreter routines Required
SBRTB. RB user -written CALL resolutions (see Appendix B) May be omitted
MAT.RB 089-000138 routines to perform matrix functions May be omitted
PRU.RB 089-000139 routines to perform PRINT USING functions May be omitted
BASIC7. LB 099-000048 single user library i Choose One
BASICS. LB 099-000049 multi -user library

•

Table 0-2 Extended BASIC Supplied Paper Tapes •

0-5 Oct. 1974

•

PERFORMING A RELOCATABLE LOAD (PAPER TAPE)

6. Type 5 and note the value of NMAX output by the relocatable loader on the
Teletype; this number will be used in step 12.

7. Mount the relocatable binary punch program (089.-000080) on the Teletype
reader and type 1, or on the high speed paper tape reader and type 2.

8. Type 6 and note the value of RBFP output by the relocatable loader on the
Teletype; this number will be used in step 10.

9. Type 8 to terminate the loading process.

10. Enter RBFP (from step 8 into the data switches on the computer console,
press RESET then START.

11. Type OH for output on the Teletype punch or lH for output on the high
speed punch.

12. Type 1, nmaxP where nmax is the value of NMAX noted in step 6.

13. Type 377E, to specify a starting address for the program.

The paper tape output from this procedure can now be loaded by using the
binary loader.

PERFORMING A RELOCATABLE LOAD (:MAGNETIC TAPE OR CASSETTE)

SOS users with a magnetic tape or cassette may create a SAVE BASIC
file by using the SOS CLI command RLDR (see SOS User's Manual, Chapter 3).
The order of input of the relocatable binaries is the same as for paper tapes. The
tape file number for each binary can be found on the keysheet supplied with each
system.

D.-6 Oct. 1974

•

•

•

•

•

•

•

•

PERFORMING A RELOCATABLE LOAD (RDOS SYSTEMS)

The entire BASIC system can be built on RDOS disk-based systems and subsequent! y
transferred to non-disk systems by following this procedure:

l. Create a trigger source file:

XFER/ A $TTI BTRIG. SR

. TITLE

.COMM

.EXTN

BTRIG
TASK,O
.RDSI

. EXTN device

;SOS device drivers from Table D-1
.END
tZ

2. Assemble the trigger:

MAC BTRIG

3. Transfer the relocatable binaries from tape to disk:

XFER $PTR SOS. LB

XFER MT0:0 SOS. LB
or

4. Perform a relocatable load:

RLDR/Z/N $LPT /L BASIC/S BTRIG 1000/N t)
SOSMT. LB SOSCT. LB SOS. LB•)

MP60 MSCR MDSW BASICA. LB BASICB. LB MAT PRU BASICS. LB)

5. Test the resultant system:

BOOT BASIC

Note: RDOS must be re-initialized after this test.

6. Make a core image file for loading on the machine without a disk:

MKABS/Z/S BASIC $PTP

D-7 Oct. 1974

SYSTEM DIALOGUE

Once the core image file has been created and loaded, BASIC starts automatically
and identifies itself:

BASIC REVISION X. X MM/DD/YY

where:

X. X represents tbe revision level and should be noted on all corre­
spondence with DG C.
Mi\'1/DD/YY represents the date that system testing at the factory
\Vas completed.

At this point, a single error message may occur:

INCO:t\1PATIBLE OPERATii\'G SYSTEM

signifying that the SOS. LB is Revision 8 or earlier.

It is possible to configure several different BASIC systems and to save each one
on an external medium such as paper tape. The configuration process is termed
BASIC SYSGEN and is described in the following paragraphs.

SYSGEN restart may be accomplished by pressing the ESC key at any time.

LINE CONFIGURATION: (multi-user systems only)

Required response is a list of terminal line numbers, a range of terminal line
numbers or lX)th. T11e 4026 multiplexer is capable of addressing 16 lines (0-1.S)
and the 4060 multiplexer can have a maximum 32 lines (0-31). The maximum
number of working terminals which can be serviced by Extended BA.SIC is 33 (32
multiplexer lines and a system console). Line numbers may be individually
separated by commas and ranges specified by a dash:

0,1,2,4
3-7, 10, 12-13, 17
0-31

- lines 0, 1, 2 and 4
- lines 3, 4, 5, 6, 7, 10, 12, 1.3 and 17
- lines O through 31 inclusive

DIAL-UP LINE CONFIGURATION: (multi-user systems only)

Required response is in the same format as described above. Dial-up fo1es
must be a subset of those specified in the preceding example. (A carriage return
specifies no dial -up lines.)

RESERVED FILE NAMES:

D-8 Oct. 1974

•

•

•

•

• Reserved File
Name Device

$CDR (mark s1ense] card reader
CT0: cassette unit 0
CTI: cassette unit 1
CT2: cassette unit 2
CT3: cassette unit 3
CT4: cassette unit 4
CTS: cassette unit 5
CT6: cassette unit 6
CT7: cassette unit 7

$LPT line printer
MT0: magnetic tape unit 0
MTl: magnetic tape unit 1
MT2: magnetic tape unit 2 • MT3: magnetic tape unit 3
MT4: magnetic tape unit 4
MTS: magnetic tape unit S
MT6: magnetic tape unit 6
MT7: magnetic tape unit 7

$PLT plotter
$FTP paper tape punch
$PTR paper tape reader
TTil second, Teletype keyboard
TTOl second Teletype printer

• Table D-3 Reserved File Names

D-9 Oct. 1974

•

SYSTEM DIALOGUE (Continued)

Required response is a list of reserved file names taken from table D-3. In order
to later access any device in the list, be sure that the appropriate driver was
included in the trigger, BTRIG. RB. The list is terminated with a carriage return.

Note that $TT!, $TTO, $TTR and $TTP are not in the list. These devices may be
accessed by the ENTER, LIST, PUNCH, PRINT and INPUT keyboard commands.

ERROR MESSAGE TEXT?

Responses include Y (YES), carriage return (YES) or anything else (NO). A Y
response will cause a brief description of the error to be appended to each error
message.

BASIC SYSG EN is now complete and the machine will halt. The entire configured
system may be saved by invoking the Relocatable Binary Punch program, RBFP.
Locate the symbol RBFP on the load map, enter the corresponding address in the
console switches and press RESET and START. Otherwise, press CONTINUE.

DATE AND TIME

The system operator must now enter the date:

DATE: MM-DD-YY

and the time:

TIME: HH:MM

in 24 hour notation.

SIGN-ON

The system console is now activated:

10/01/74 15:33 SIGN-ON, SC
*

D-10 Oct. 1974

•

•

•

•

•

•

•

•

SYSTEM DIALOGUE (Continued)

The system now attempt to allocate a minimum portion of 1024 bytes for each user.
An error message,

NO CORE

indicates that insufficient storage is available. A new system must be generated
with either fewer users, fewer features or both. The multiplexer terminals may
be activated by pressing the ESC key once:

10/01/74 15:34 SIGN-ON, 0

RESTART

The system may be stopped at any time and restarted at location 377. A NEW is

automatically performed for each user.

POWER FAIL/AUTO RESTART

For machines equipped with this optional feature, system status is preserved upon
detection of a power failure and the system comes to an orderly halt. When power
is restored, the system will restart if the power switch on the console is in the
LOCK position. If not. the system must be manually restarted at location 0.
All user files will then be closed and each user must press ESC to activate his
terminal.

POWER FAIL [AT nnnn]

will then be printed at each terminal, where ~ is the statement which was being
executed when the power failure occurred. User programs remain intact .

D-11 Oct. 1974

•
Table D-4

Error Messages Initiated by BASIC

Code Meaning 0:>mment

Ii\'CO:tvIPATIBLE OPERA TING SYSTEM · use SOS rev 9

t'\O CORE
{ system too large

for available core
00 ARITHMETIC OPERATORS IN ILLEGAL COMBINATION
01 INVALID CHARACTER
02 SYNTAX
03 rMATJ READ/DATA TYPES INCONSISTENT
04 II\'TERr--.:AL SYSTEM FAULT
(Vi Ii\VALID STATEME~T l'\UMBER
06 ATTEMPT TO DEFINE MORE THAN 93 VARIABLES
07 ILLEGAL COMMAND (FROM A FILE) • 08 PAGE OR TAB SPECIFICATION ILLEGAL
09 ILLEGAL RESERVED FILE NAME
10 RESERVED FILE IN USE
11 PARENTHESES NOT PAIRED

12 ILLEGAL COMMAND
13 STATEMENT NUMBER MISSING
14 INSUFFICIENT STORAGE TO ENf ER STATEMENT
15 UNSATISFIED [MAT] READ
16 ARITHMETIC OVERFLOW, UNDERFLOW OR DIVIDE BY ZERO
17 UNDEFINED VARV\.BLE
18 GOSUB NESTil'\G LIMIT
19 RETURN - i\'O GOSUB
20 FOR NESTING LIMIT
2] FOR - NO t\EXT
22 NEXT - NO FOR
23 INSUFFICIEI\1T STORAGE FOR A VARIABLE OR AN ARRAY
24 LINE NUMBER MISSING
25 MAT OR PRU NOT IN SYSTEM
26 INSUFFICIE1'.1T STORAGE TO LOAD SAVE FILE
27 INVALID FILE REFERENCE
28 ARRAY EXCEEDS INITIAL DIMENSION
29 EXPRESSION TOO COMPLEX FOR EVALUATION • 30 INVALID FILE MODE
31 SUBSCRIPT EXCEEDS DIMENSION
32 UNDEFINED USER FUNCTION
:n FUNCTIO0J J\:ESTING LIMIT
.'34 FUNCTION ARGUMEJ\;'T
35 ILLEGAL EDIT MASK
36 PRINT LINE GREATER THAN PAGE WIDTH
37 USER SUBROUTL.'\JE (SBRTB) NOT FOUND
:rn UNDIMENSIONED STRING
39 REDUNDANT MATRIX SPECIFICATION
40 MA TRICES Ul\'EQUAL SIZES
41 MATRIX HAS O1'\LY ONE DIMENSION
42 FILE ALREADY OPEl'\ED
43 MA TRIX t'\OT SQUARE
44 FI LE NOT OPEN
4'5 NOT A SA VE FILE
46 lNCORREC'T RESPONSE TO [MAT] INPUT
47 FILE OPENED IN WROl\'G MODE

D-12 Oct. 1974 •

•
Table D-5 Error Messages Initiated by SOS

00 ILLEGAL CHANNEL
01 ILLEGAL FILE NAME
02 ILLEGAL SYSTEM COMMAND
03 ILLEGAL COMMAND FOR DEVICE
06 END OF FILE
07 READ-PROTECTED FILE
08 WRITE-PROTECTED FILE
10 NON-EXISTENT FILE
13 FILE NOT OPEN
17 CHANNEL IN USE • 18 RECORD SIZE EXCEEDED
20 PARITY
22 STORAGE ALLOCATION
24 FILE DATA CHECK
25 UNIT IMPROPERLY SELECTED
30 ILLEGAL DEVICE CODE
33 ILLEGAL TIME OR DA TE
37 INTERRUPT DEVICE CODE IN USE

•

D-13 Oct. 1974

•

Table D-6 Differences Between RDOS BASIC and SOS BASIC

SOS Extended BASIC

has no MMPU support
has no FPU support
has no disk support (~wapping, accounting, BATCH, etc.)
requires that the system console be assigned to the same Teletype as
the SOS CLI console.
has no account names
refers to system console line number as 'SC' m sign-on and sign-off
messages
has no LIBRARY, FILES or WHATS commands
needs no record delimiter other than CR on Teletype paper tapes
supports power fail on multi -user systems
has manual restart capability
does not print 'DGC READY' at each terminal on start-up
has a time slice of 16/100 seconds (16/110 for 4026 systems)
needs no real time clock for 402 6 systems
runs real time clock at 100 hertz
prints optional error message text
has no SYS(9) or SYS(lO)
has no ON ERR THEN INIT
has different error codes

D-14 Oct. 1974

•

•

•

•

•

•

•

•

Table D-7 BASIC Core Requirements in Bytes

REQUIRED COMPONENTS

SOS NUCLEUS (SOS. LB WITH $PTR, $PTP, $LPT)
SYSTEM STORAGE
BASIC NUCLEUS (BASICA. LB, BASICB. LB)

INTERACTIVE DRIVERS
SINGLE USER (BASIC7. LB, MP. RB)
4060 MULTI-USER (BASIC8. LB, MP60. RB)
4026 MULTI-USER (BASIC8. LB, MP26. RB)

3594
3642
3694

USER TABLES (ONE REQUIRED FOR EACH USER) 204
1,

MULTIPLE/DIVIDE ROUTINES
STANDARD(MDSW.RB) 54
8007, 8107, 8207, 8307 HARDWARE (MDHW. RB) 12
4031 HARDWARE (MONO. RB) 36

OPfIONAL COMPONENTS

SOS MAGNETIC TAPE DRIVER (SOSMT. LB)
SOS CASSETTE TAPE DRIVER (SOSCT. LB)
MARK SENSE CARD TRANSLATOR (MSCR. RR)
MATRIX MANIPULATOR (MAT. RB)
PRINT USING ROUTINES (PRU. RB)
USER-WRITTEN SUBROlJfINES (SBRTB. RB)

D-15

5170
5170
550

1550
978

4846
512

13548

•

•

•

•

APPENDIX E

PROGRAMMING ON MARK-SENSE CARDS

Source programs may be. written on Data General's Extended BASIC mark-sense pro­
gramming cards for input to the mark sense card reader. The Data General Extended
BASIC mark-sense programming card is a 37-column card as shown below.

S TlfTE: MU..f: i

~E-1-:· :):~Nl :: USING I]
b:•:} ·ilNPUT. FILE :·!
I • i , ,_.

SlATEMf·N'

~UMHlR

----•····-·······♦ ·---- +---·--- -·-·
0 f/~;_.;-l. qi AO • [N[) :·; .,

A stack of mark-sense cards may be read as a file and requires an EOF card at the
end, which is a card with a single column in which all rows are marked. When in
Batch mode, entire jobs may be entered from the card reader. Such card decks
must conform to the Batch job control formats. Keyboard commands are suitable
card input in Batch mode only.

The mark-sense reader has an option that permits either markings or punches to be
read. Users having the option may punch mark-sense cards. Marked and punched
cards may be intermixed in a deck and a single card may contain both markings and
punches.

The BASIC statement field of the mark-sense card, as shown above, is three columns
which allows all possible combinations of statement keywords. For example, MAT
appears in the first column of the field, WRITE in the second, and FILE in the third,
permitting the user to indicate a MAT WRITE FILE statement.

E-1

A single Extended BASIC statement or part of a statement may be written on a single
card. Cards are marked with No. 2 pencil in the appropriate column; for example,
the statement 450 DATA 4.2, 7. 5, 1, -1, +5 would appear as:

~ 1 , I\ I
~ "' '-r'

450 DATA 4.2, 7.5, 1, -1, +5

~
(optional)

Part of a statement may be written on one card and continued on the next by marking
the CONT box in the upper righthand corner of the first card and continuing the statement
on the card following beginning with the FORMULA section.

When writing an IF or an ON statement, the programmer writes one card containing
the IF or ON expression and marks the THEN box in the upper righthand corner of
card. The programmer continues the THEN clause on the next card beginning in
the FORMULA section.

The FORMULA section of each card must be filled out in Hollerith code, and pro­
grammers familiar with punched cards will have no difficulty with the format. To
assist any programmers who are not familiar with punched cards, each card contains
a key indicating the lines that must be marked for each character. For each char­
acter, a box on the horizontal line on which the character appears must be marked.
In addition, in the horizontal lines immediately below the character, a line must be
marked if a square appears on the lefthand side. If we use punched card notation,
the top line is designated 12, the second from the top is designated 11, and the other

E-2

•

•

•

•

•

•

•

•

lines are numbered from 0 through 9. To indicate 4, put a mark on line 4; to indicate
*, put marks on lines 11-4-8; to indicate#, put marks on lines 3-8, etc.

As a further example of use of mark-sense cards, the following source code is shown
on cards:

5 FOR X = . 1 TO . 005 STEP -0. 01
15 X = X * LOG(X)
25 NEXT X

l STATEMEI\JT

SlAitMU~: I.fl • PRINT"! USll~G 1J 11 &l]
NUMRER GOTO ,. !NPUT ·; FILE :'! :~ - ii • ~ u ~ ---------

0 i~ 0. 0:~ 0 GOSUR ., READ :1 END !l I 0 :·j,
•.i .: 1,.1 ,

17 I /i 11 :~ rc-=-.::-~·~l-~I~.- r
1
i

l U 1 ·, 1 i,i l ~: TURN :. DATA j • :,i 11J

'rn· I ·~ ~~n
2 ,,i 2 i,: 2 IJ 2;_ FOR OPtN .l jj i :.: 2 iJ

3 I] 3LJ 3~ 3~ NEXT !] ClOSE!J :: J 3[!

5 FORX= .1 TO. 005 STEP -0. 01

E-3

• -- ·-

THEN

? . 2 ,. / i . FOR , OPEN .!
• • -. • J ,,1

3 i: 3;: 3:1 31
~ NEXT !°i CLOSE!l

,.J I., ,,; '•I I. l_.r

411 4_·: 4:1 4/: 1F n wR1rc ~
~ w ~ w ~ ~

•
15 X = X * LOG(X)

NUMBER GOTO • INPUT ·: FiLE i'j ., - :i
•' .- '• . ;

(0:, (0: cosu(READ:] END :': I 0 i]
' . i. ~~-~t.-f--.- - 1 ~

I • I :J l i] <i %RN iJ DATA :] u i] l I]
r ·_·_- / 2 I 2 i.·~- FOR ,.:: oPEN n 111 2 !l

.... i.- '• '-' 1.1 i.1 :J 1,

3 J 3[i 3LJ 3~ NEXT I CLOSE!] !] [i 31] • 4 ~ 4:] 4 :J 4 I] IF i] WRITE:] • ;:i 4)]

25 NEXT X

E-4 •

• Following is a card showing the statement:

10 OPEN FILE [1, 3] _'FNAME ._,

•

Following is an end-of-file card with all rows of column 5 marked .

•

E-5 •

•

•

•

•

APPENDIX F

DOUBLE PRECISION FLOATING POINT REPRESENTATION

Nova systems having a Floating Point Unit 'are capable of executing a double pre­
cision (but not single precision) version of Extended BASIC. With double precision
BASIC, all calculations are carried out to 13-15 digits of precision.

Double precision floating point numbers are in hexadecimal notation and are rep­
resented internally by 64 bits (4 words). Double precision representation is
identical to that of single precision (page 2 -1) except that the mantissa extends
to words 3 and 4, i.e. :

0 1

f 1

C

33

where:

7 8

I
M

64

S is the sign of the manitssa. 0 = positive, 1 = negative.

M is the mantissa, considered to be a normalized 14-
digit hexadecimal fraction.

C is the characteristic and is an integer exponent of 16
in excess 6410 code.

The range of double precision floating point numbers is approximately:

5. 4 * 10-79 through 7. 2 * 1075

The BASIC double precision floating point format is compatible with that of Data
General's FORTRAN.

The PRINT statement in double precision Extended BASIC causes up to eight
significant digits of a number to be printed. PRINT USING can be used to cause
the printing of more or less signficant digits.

F-1

•

•

•

•

ABS function 2-6
account identification number C-11
accounting procedures App. C
. ADDF B-5
angle brackets 2-9, 3-16
appending to a file 5-3
argument control word B-2
argument to command 6-1
arithmetic expressions 1-4, 2-2
arithmetic functions 2-6
arithmetic operations Chapter 2
arithmetic operators 1-4
arithmetic symbols 1-4
arithmetic variables 1-1, 1-2, 2-2
array elements 2-3, 2-4
arrays

bounds 3-4
definition 2 -3
declaring an 2-3f, 3-4
elements 2-3, 2-4
matrix-array differences 4-3
redimensioning an 2-5, 3-4
storage 2-4

ASCII collating in string comparison 2-11
ASCII characters 2-9
ASCII format read 5-9
ASCII formatted data

ENTER 5-18
INPUT FILE 5-9
LIST Chapter 6
MAT INPUT FILE 5-14
MAT PRI!'\T FILE 5-13
PRINT FILE 5-10
PRINT FILE USING 5-11

ASCII output 5-10, 5-15
assembly language subroutine B-1
assignment statement 1-2, 2-11, 3-20
attributes 6-14
A Tl\' function 2-7

backarrow 1-1
background

channels C-3
partition i, Appendix C

backslash 1-1, 3-17
BASIC

commands Chapter 6
configuration C-3
debugging 6-l 7ff
ID file C-11
libraries C-10
statements Chapter 3, 1-1
termination of 1-2

BASIC commands, list of
CON 6-11
FILES 6-4
LIBRARY 6-4
LIST 6-6
LOAD 6-5
PAGE 6-15

BASIC commands, list of (Continued)
PUNCH 6-8
RENUMBER 6-12
RUN 6-9
SIZE 6-13
TAB 6-15
WHATS 6-14

BASIC. CL C-7
BASIC. ID file C-11
BASIC configuration C-3
BASIC libraries C-10
BASIC statements, list of

BYE 3-3
CALL Appendix B
CHAIN 5-16
CLOSE 5-19
CLOSE FILE 5-5
DATA 3-40ff
DEF 3-4
DELETE 5-21
DIM 3-5
END 3-6
ENTER 5-18
FOR 3-7ff
GOSUB 3-10
GOTO 3-12
IF 3-13
INPUT 3-15
INPUT FILE 5-9
LET 3-20
MAT Chapter 4
MAT INPUT FILE 5-14
MAT PRINT FILE 5-13
MAT READ FILE
MAT WRITE FILE
NEW 3-21
NEXT 3-7ff
ON 3-22
OPEN FILE 5-3
PRINT 3-17, 3-24
PRINT FILE 5-10

5-12
5-13

PRINT FILE USING 5-11
PRINT USING 3-30ff
RANDOMIZE 3-39
READ 3-40ff
READ FILE 5-6
REM 3-43
RENAME 5-22
RESTORE 3-44
RETURN 3-10
SAVE 5-17
STOP 3-45
WRITE FILE 5-8

BATCH
discussion C-4
examples C-17
operations C-17

binary file

INDEX-I

loading 6-5
reading 5-6
saving 5-17
writing 5-8

binary output
binary punch

S-8, S-13
D-3

binary read 5-b, 5-12
blank space

in INPUT data 3-16
in program 1- 8
in verbatim text 1-8, 2-8

bounds of an array 3-5
BSG C-3
buffers C-2
BYE statement 3-3

calculations
in program 1-4
keyboard PRINT used for 6-17
repetitive 1-3

CALL statement Appendix B
card, mark sense Appendix E
carriage return 1-6, 1-9, 3-15
CDIR C-11
CHAIN statement 5-16
changing matrix dimensions 4-4
changing statements 1-9
character erase 3-17
character error A-3
character strings 3-16
clear memory 3-21
close channels 3-21
CLOSE statement 5-19
CLOSE FILE statement 5-5
comma 2-11, 3-15, 3-16, 3-25
commands Chapter 6
command error A-3
comments 3-43
compact spacing of output 3-26
comparison

of strings 2-12, 3-14
of string expressions 3-14, 2-12

concatenation of strings 2-11
CON command 6-11
conditional transfer 3-22
constant

arithmetic 1-1
list of DATA statement
string 2-7

configuring
RDOS Appendix C

3-40

BASIC
sos

Appendix C, Appendix D
Appendix D

continuation of program execution 6-11
control keys 6-lff
control transfer 3-10, 3-12
COS function 2-6
CPART C-10
current length of string B- lff
current length of substring B-2
current program, definition of 6-5

data
block 3-40
file :'i-6, 5-9
INPUT/keyboard for input of 3 -1 S
READ/DATA for input of 3-40
statement 3-40
providing 1-3, 3-15

DATA statement 1-2, 1-8, 3-40ff
debugging 6-lff, 6-17
decimal indicator in PRINT USING 3-34
declaring an array 2-3
default formatting 3-24
define user function 3-4
DEF statement 3-4
deleting

statement 1-9
program 6-7
character 1-1, 6-2

DELETE statement 5-21
desk calculator 6-16
determinant of matrix 2-7
DET function 2-7, 2-9
device channels
device names

discussion 5-lff
SOS D-4
ROOS Appendix C

dial-up handlers C-8
digit representation of PRINT USING 3-33
dimensions

of an array 2-3, 3-5
of a matrix Chapter 4
of a string 2-10, 3-5

DIM statement 2-3, 2-10, 3-5
directory Chapter 5
directory maintenance

commands 6-4
statements 5-20

directory name C-11
directory specifier C-15
disassociate file name/number 5-5
disk directories C-10
. DVIF B-5
dollar sign 2-10, 5-2, 3-37, 3-38
driver entry symbol D-1
. DSI D-2
. DVD B-6
. DVDI B-6

E in numbers 2-1, 3-24
editing a program 1-9, 6-1 7
elements

discussion 1-5
of an array 2 -3
of a matrix 4 -4

END statement 3-6

INDEX-2

•

•

•

•

•

•

•

•

end-of-file
functjon 5-6
on mark sense cards E-5

ENTER statement 5-18
EOF function 5-6, 5-9, 5-12
equal sign 1-4, 3-20
ERR 3-22ff
error in data list 3-16
error messages Appendix A
errors 1-1
F.SC key 3-17, 3-22ff, 6-lff, C-15
evaluate expression 3-20, 1-5, 2-2
example

of a BASIC program 1-1, 1-5
of an expression 1-5

excessive variable error A-3
executing loop 3-7
executing program 1-10
execution

programmed halt of 3-45, 1-10
resumption of 1-10, 6-9, 6-11
start of 6-9
interrupt of 3-22, 1-10, 6-1

exit a subroutine 3-10
EXP function 1-5, 2-7
exponent indicator 3-38
exponentation 2-2
exponent representatjon 2 -1
expressions 2-2, 3-13, 3-35, 2-9
extension to file names 5-2

field formats 3-30ff
file

closing 5-5
defjnition 5-1
device as 5-1
disk 5-1
mode S-3
opening 5-3
reading
writing

file definition

5-6, 5-9, 5-12, 5-14
5-8

5-1
file information 6-14
file I/0 i, Chapter 5
file I/0 errors Appendix A
file names 5-lf
file number 5-2
FILES command 6-4
. FIX 13-5
fixed signs in PRINT USIAG 3-35, 3-36
floating point accumulator 13-5
floating point hardware C-7, Appendix F
floating point numbers 2-1, Appendix F
floating signs in PRINT USING 3-36, 3-37
. l' I ,CH B-:'i

foreground partition
disrnssion i, Appendix C
~ lid llJH: ls C - 3

I 1irrn:it error A-3

format fields 3-30ff
formatting rules 3-30ff
FOR statement 3-7f
FPAC B-5
functions 1-5, 2-6, 2-7
function nesting error A -6

generalized IF statement 3-13
GOSUB nesting error A-5
GOSUB statement 3-10
GOTO statement 1-3, 3-12

halt execution of program 3-45
handlers C-8

identification number C-11
identity matrix 4-2, 4-10
idle mode 3-3
IF statement 1-3, 2-11, 3-13
information commands 6-16
input data 3-15
in put error A - 8

input in ASCII format 5-9
INPUT statement 2-11, 3-15
INPUT FILE statement 5-9
input values for matrix 4-1
inserting statements 1-9
INT function 1-5, 2-4, 2-7, 3-22
integer subscripts 2-4
integer exponent 2-1
interrupting a program 1-10
inverse matrix 4-15
inverting a matrix 4-2
invoking a program on disk 5-16
I/0 errors Appendix A
I/0 referencing 5-3

keyboard commands 6-3ff
keyboard mode

change to 3-45, 6-1
description of 6-1 ff

KILL C-15

leading blanks 3-16
leading zeroes 3-30
LEN function 2 -7
length

of string 2-10
ofrecord 5-8

LET statement 1-2, 2-11, 2-12, 3-20
LIBRARY command 6-4
library directory C -10

INDEX-3

library disk directory 5-1
line ;:onfiguration C-4
line deletion 1-1, 3-17
line erase 3-17, 1-1
line number 1-1
line terminator 1-1
linking to subroutine B-2
LIST command 6-6
loading BASIC

12K configuration
under ROOS C-7
under SOS D-1

LOAD command 6-5
LOG function 2 - 7
loop, 1)::-'0gram 1-3, 3-7ff
lower bound of an array 2-3

mantissa 2-1
mapped system i, C-4
mark sense card reader C-6, Appendix E
master console C-15
MAT statements Chapter 4, Chapter 5
mathematical

constants 2 -1
expressions 2-2
functions 1-5, 2-6
operators 2-2
variables 2-2

mathematical functions 1-5,
}.1A T INPUT FILE statement
MAT PRINT FILE statement
MAT READ FILE statement
matrices Chapter 4
matrix

addition 4-6

2-6
5-14

5-15
5-12

array-matrix differences 4-3
copying 4-5
determinant 2 -8
identity 4-10
optional loading of Appendix C, D ·
transposition 4-12
unit 4-9
zero 4-8

matrix statements Chapter 4, Chapter 5
MAT WRITE FILE statement 5-13
maximum length of substring B-2
memory management and protection unit i, C-3
MMPU i, C-3
modes of file I/0 5-3
. MOST B-6
. MPY B-5
. MPYA B-5
. MPYF B-5
multiplexors i, C-8
multi -user systems i, Appendix C, Appendix D
MUX C-15ff

names
of arrays 2-1
of variables 1-1
of files 5-1

nesting of FOR/NEXT 4-7
nesting of GOSUBs 3-10
NEW statement 3-21
NEXT statement 3-7ff
non-mathematical functions 2-7
numbers 2-1
numbers of bytes used 6-13
number sign 3-33, C-15
number storage 2-1
number representation 3-24

one -dimensional arrays 2 -4
ON statement 3-22f
OPEN FILE command 6-16
OPEN FILE statement 5-3
operation of BASIC

under ROOS Appendix C
under SOS Appendix D

operator command error A-8
operators

arithmetic 1-4, 2-2
logical 1-4
precedence 1-5, 2-2

operating systems 5-lff, Appendix C, Appendix D
output

PRINT statement 3-24
PRINT USING statement 3-30
to file Chapter 4, 5-6ff

output field formats 3-30ff
output format 2-1, 3-24ff
output text 3-24
output values 3-24, 3-30ff
order of evaluation 2-2
overlay file C-9, 5-18

PAGE command 6-15
parameters

in call to assembly subroutine Appendix B
variable control word Appendix B

parentheses 1-5, 2-2, 2-3
parentheses error A-4
parenthesized subscript 2-4
performing calculations 1-4
picture formatting 3-30ff
precedence of operators 1-5, 2-2
preparing a BASIC program 1-1
PRINT command 6-16
printing

output 1-6
a matrix 4-1

INDEX-4

•

•

•

•

•

•

•

•

PRINT FILE st;.;tement 5-10
PRINT statement 1-6, 2-11, 3-24, 3-17
PRINT USING statement 3-30
program

current 5-6
editing 6-lff, 1-9
interruption 1-10
loop 1-.'3, 3-7ff
nmning a 1-9
swaps i, C-12ff
terminatiO'l 1-2
variables 1-1
writing a 1-9

prompt 1-10
provide

values 3-41
data 1-2

PUNCH command 6-8

quotation marks 1-7, 1-8, 2-9, 3-1.S, 3-16

random access 5-3
RANDO1'1IZE statement 3-39
random number generator 3-39
random number function 2-7
range of statement numbers 1-1
range, floating point 2 -1, Appendix F
RDOS

discussion i
configuration of C-lff
devices i, Appendix C
files i, 5-lff, Appendix C

reading u file 5-3
READ FILE command 6-16
read file mode 5-3
READ statement 1-2, 1-8, 2-11, 3-40ff
real time clock C-1
Real Time Disk Operating System i, Appendix C
redimensioning

arrays 2-5
matrix 4-6
strings 2 -10

referencing
an array 2 -4
strings 2 -11
string variables 3-31

reinitialize random number generator 3-39
relational

expressions 1-4, 2-11, 3-13
operators 1-4, 3-13

relational transfer of control 3-13
REM statement 3-43
RENAMt statement
RL~L\1BFR command

5-22
6-12

repetitive corn pu tations 1-2
replace line in program 1-9
request for data 3-15
reseed random number generator 3-39
reserved

device names 5-lf, C-6, D-4
file names 5-lf, C-6, D-4

restart procedures D-8
RES,,ORE statement 3-40, 3-44
resume execution 1-10
RETURN key 1-1, 3-10, 3-16, 6-16
RE TURN statement 3-1 Off
return to keyboard mode 3-45
reuse data block 3-44
RFBP D-3
RLDR command line C-7ff
RND function 2-7, 3-39
R TC interrupt rate C-1
RUBOUT 1-1, 6-2
RUN command 1-10, 6-9
running a program 1-10
run-time errors Appendix A

SA VE statement 5-17
SBRTB B-2, D-3
scalar multiplication 4-1, 4-7

secondary partition C-10
semicolon 1-7, 3-15, 3-24, 3-26, 6-16
separator in PRINT USING 3-38
sequential order 1-3
SGN function 2-7

SHIFT L 1-1, 3-17, 6-2
sign -on procedures

RDOS C-15ff
SOS D-7ff

SIN function 1-5, 2 -6
single-user systems i, Appendix C, Appendix D
SIZE command 6-13
sos

discussion i, 5-lff, Appendix D
devices i, Appendix D
files i, Appendix D
confi611.1ration D-4
operation Appendix D

spacing to the next line 3-26
special format field characters 3-30ff
specification error A-3
specifying output page format 6-15
SQR function 2-6
square brackets 2 -3
Stand-alone operating system Appendix D
statements Chapter 3
statement number 1-1
statement number error A-3
STOP statement 3-45
storage of numbers 2-1

INDEX-5

store copy of matrix 4-5
string

assip1111ent of 3-20, 2-12
expressions 2-10, 3-20
cone a tenation 2 -11
discussion 2-9
variables 3-5, 2-10, B-1
operations Chapter 2
names 3-5, 5-1
output 3-24, 3-29

subexpression 1-5, 2-2
subdirectories C-2, C-10
. SUBF B-5
subpartitions C-2, C-10
subscripts

of variables 2-11
of matrices 4-3
discussion

subscript error
substring 8-2
subroutine table
subroutine

2-4
A-6

B-2

link to assembly language Appendix B
enter into 3-10, Appendix B
exit from 3-10, Appendix B

swapping i, C-4, C-12ff
syntax error A-3
SYS function 2-7
SYSGEN

ROOS C-lff
SOS 0-1

system command C-16
system dialogue

ROOS Appendix C
SOS 0-4

system directories C-10
system disk files C-10
system error A-3
system information requests
system information 2-7
system stacks C-2
SY. RB C-3

TAB command 3-25, 6-15
TAB function 3-27
tabulation 3-27
TAN function 2-6
teletype bell 3-16
terminate

a program 1-2
a programming loop 3- 8
a format field 3-31
a line 1-1

6-13

a statement 1 -1
system/user interaction 3-3

terminating statement 3-6
text comment 3-43

transfer
of control 1-3, 3-10, 3-12, 3-13, 3-22ff
to subroutine 3-10, 3-13, Appendix f3

transpose a matrix 4-2
trigger 0-2
TTY as master console C-15
two-dimensional array 2-4
typing errors 1-1

unconditional transfer of control 3-12
undeclared array 2-4
unit matrix 4-9
upper bounds of an array 2-3
user directory 5-1, C-10
user function 3-4
user interrupt service C-3

value assignment 3-20
variables 1-1, 2-2

WHATS command 6-14
WRITE FILE statement
writing a BASIC program
writing a file 5-3

zero matrix 4-2, 4-8

5-8
1-9

zone spacing of output 3-25

INDEX-6

•

•

•

•

•

•

•

•

SUMMARY OF EXTENDED BASIC

SUMMARY OF OPERATORS

Arithmetic Operators Meaning

+ Addition

- Subtraction
,,,

Multiplication

I Division
t Exponentation

Logical O1-x:rator Meaning
= Equal to

' Less than
,= Less than or equal to
> Crcatcr than
> = Greater than or equa 1 to

'' Not equal to

SUMMARY OF FUNCTIONS

Mathenwtical Function Meaning
SIN(X) sine of X
COS(X) cosine of X
TA~(X) tangent of X
ATi\'(X) a rctangcnt of X
LOC(X) natural logarithm of X
FXP(X) find eX

SQR(X) square root of X
I!\T(X) greatest integer not larger

than X
Ri\'D(X) rundorn number between 0

and 1
SC'.\;(X) algebraic sign of X

~latrix Function Meaning
m:T(X) determ inc.lilt of the la st

matrix inverted
String Function l\kaning

LFi\'(S) current length of string
variabk, s

Fik !··unction Meaning
FOF(X) 1 if file X is the end-of-file,

if 1101 returns a O. (X :::: file
numhL·r)

l'ri nt Fun ct ion 0-ll';i ning
'L\B(X) Tahu late to position X

Syste111 1:unctions :vleaning
SYS(0) time of clciy
SYS(1) 111011111 of the year
S YS(2) dav of the month
SYS(,)) the Yl':J r
SYS(➔) terminal line number (-1 if

opv rat or's console)
SYS(.')) CPl. 1 imc used in seconds
S\'S(o) I /0 ti me used in seconds
S YS(7) error code of the last run-

time c rror
SYS(8) file number of file most re-

cently opened

SUMMARY OF STATEMENT SYNT/...,X

BYE

! CHAIN file namer THEl\: GOTO statement '"]-

CLOSE

CLOSE FILE r number-expression :I

DAT A constant list

! DEF FN~ (:!_)=expression

:i::: DELETE filename

DIM { array (dimensionf~ -;\ .•• f{array(din_ihj J
string (characterf:.~J) ~tring(charf:~:!J

~ El\1D

ENTER filename

:, FOR variable = exp1 TO exp
2

f STEP cxp3 J

COSUl3 statement-number

;; COTO statement-number

:_ IF relational-exp GOTO statement-number
~ IF relational-exp THEN statement-number
:_ IF relational-exp COSUB statement-numhc 1·
:_ IF relational-exp Tl !EN statement

Il'\PUT variable list

~ INPUT I<'ILF Lnumhcr-cxp J , varic1blc-list

:._ t LET J variable -'-' expression

SUMMARY OF EXTENDED BASIC (continued)

SUMMARY OF STATEMENT SYNTAX koritinued)

:. I\1AT IJ\PUT FILE Lnurn-exp] , c1rray list

:_ MAT PRINT FILE l nurn-exp] , c1rray-list

:. I\1AT READ FILE Lnum-exp] , array-list
.:_ I\lAT READ FILF[num-exp1,num-exp2],array-list

:_ ?v!A T WRITE FILE[num-exp], arrc1y-list
::;: MAT WRITE FILE[num-exp1,nurn-exp2J,arrny-list

:P: NEW

:_ ON exp GOTO statement number list
:_ ON exp THEN statement number list
'ff ON exp GOSUB statement number list
;- ON ERR THEN statement
t± ON ESC THEN statement

:_ OPEN FILE [num-exp1,nurn-exp2], filename

'_ { PR'.NT} expression list

:_ PRINT FILE [num-exp] , expression list

:_ PRINT FILE[num-exp], USING str-exp, exp-list

:_ PRINT USING string-exp , expression list

RA NDOl\1IZ E

READ variable list

:i:/: READ FILE [nurn-exp] , variable-list
! READ FILE [num-exp1, num-exp2], variable-list

":I+ REM text comment

!_ RENAME fHename1, filename 2

RESTORE

RETURN

SA VE filename

STOP

WRITE FILE [num-exp] , expression-list
! WRITE FILE [num-expl, num-exP2], variable-list

SUMMARY OF COMMAND SYNTAX

All of the statements listed under Summary of
Basic Statement Syntax may also be used as
commands, in addition to those summarized
following. Some statements, though, make
sense only within program context, i.e., FOR
and NEXT.

CON

FILES

LIBRARY

LIST f tstatement-number E filename 3 JJ
TO statement-numberffilename3
statement-no1 {TO} statement-no

' E filename3

LOAD filename

PAGE = number

PUNCH f {statement-no E filename 3 jJ
TO statement-no E filename 3
statement-no1fTO} statement-no 2

\. ' E filename 3

{~
-

RENUMBER statement-number1
STEP statement-number2
statcmcnt-no1 STEP statemcnt-no1

RUN I{ s_tatement-number} l -
l f1 lename J

SIZE

TAB= number

WHATS filename

Syntax Definitions
! = line number; E 3 = optional parts of format;
[] = a part of format; () = a part of format;
[} = alternate choices of format; uppercase
letters = actual parts of particular format;
lowercase letters = variable parts of format;
~=number;~ = expression; var= variable;
str = string; sub# :.: subroutine number; dims =
dimensions; chars = characters --

•

•

•

•

•

•

•

•

SUMMARY OF ERROR MESSAGES

BASIC ERROR MESSAGES

CODE
00
01
02
03

04
05
06
07

08
09

11
12
13

14
15
16
17
18
19

20
21

22

23
24

TEXT
FORMAT
CHARACTER
SYNTAX
READ/DATA TYPES INCON­
SISTENT

SYSTEM
STATEMENT NUMBER
EXCESSIVE VARIABLES
COMMAND (T/O)

SPECIFICATION
ILLEGAL RESERVED FILE
NAME

RESERVED FILE IN USE

PARENTHESIS
COMMAND
LINE NUMBER

PROGRAM OVERFLOW
END OF DATA
ARITHMETIC

UNASSIGNED VARI1\BLF
GOSUB NESTING
RETURN - NO COSl ;n

FOR NESTING
FOR - NO NEXT

!'\EXT - NO FOR

DATA OVERFLOW
NO A VAILA13LE ClfANNFLS

OIYfION
PROGRAM/DATA OVFRFLOW

FILF l'\I JMBFR NOT (l-7

J)It\1 OVERFLOW
FX PRF SS!Oi'\
i\'lODF ;\:l;\1fWR 1\'0T 0-3
Sl 1 flSCRTPT
l'.0'.])f,'.)<'!Nl':D FUi'\CTIO:\

flJNCTJOi\' \YSTJi\(;
Fl 1NCTION ARCl1M)<:\T
ILLFCJ\ L 1:0IZ/''1/\T STlff\C
STH Ii\C Sf'/,J,:
l 'Sl<R IWl :TC\J,:

I '\:l)J \1 J,'.i\SIONJ<D STRI 1\.'.C,

DUI' \L\TRIX

,\1/\'I JUCI-S Sll'.FS
\lATJUX. !)lf\1

1:1u: ALRFAIW 01'!·:\J

1'1ATRJX i\:OT SQl!AJn:

MEANING
unrecognizable statement format.
illegal ASCII character or unexpected character
unrecognizable keyword or invalid argument type
READ specifies different format than DA TA
statement
hardware or software malfunction.
statement number not in the range: 1:__:__n:::9999
attempt to declare more than 286 variables
attempt to execute a command from a file (and
not in BATCH mode)
value specified is not within limits (PAGE/TAB)
reserved file name not recognized by the system
(sec system generation for valid names)
another user has control of the specified I/0
device. (except $LPT - requests arc queued.)
parenthesis in an expression are not paired.
system cannot execute keyboard command
attempt to delete or list an unknown line; attempt
to transfer to an unknown line.
not enough storage to ENTER source program
not enough DATA arguments to satisfy READ
value too large or too small to evaluate
attempt to reference an unknown variable
more than six nested GOSUl3' s
RETURN statement encountered without a cor­
responding GOSUB
more than seven nested FOR' s
FOR statement encountered without corresponding
NEXT
NEXT statement encountering without a cor­
responding FOR
not enough storage left to assign spuce for ,·ariahlcs
channel limit specified at SYSGEN time has been
reached
feature specified not available (SYSCEN)
attempt to LOAD or RU;\1 a SA VE 'cl file which is too
large for available stor3ge.
invalid file designation in an I/O swtcrnent
311 array or string exceeds its initial dimensions
Jn expression is too complex for cvalu;itio11
invalid mode dcsig1wtion in an l/O st:1tcrnc·11t
subscript exceeds array's di mens ion
statement looks like a function hut nt·\lT ddirit,I

by DFF 3nd not a standard func1 ion
the nesting of too nwny defined functions
argument range exceeded
PRINT USING sti.ltcrnent is i llcga 1
tile size of the string exceeds P1\Cl•: spL·,· i t'icil 1n11

CA LL statement specifics a user rolll inc 1wt i11
storage
attempt to reference an unknown st ring v:1 ri:1 hi,

same matrix appears 011 hotli sides of :i \1\1 11111 ii iJ~!\

or transpose statement
matrices have different sizes
matrix has a zero dimension
two OPEN statements without an intcT\'1._'11ing l l (lSI·

attempt to invert a non-square matrix

•
SUMMARY OF ERROR MESSAGES

CODE TEXT MEANING
44 FILE UNOPENED an attempt to do I/O to a file for which an OPEN

was never performed
45 RECORD~ 12 8 BYTES logical record size limit exceeded
46 INPUT data entered in response to INPUT is incorrect
47 WRONG MODE input file opened for writing or output file opened

for reading
49 NO ROOM FOR DIRECTORY FILES or LIBRARY commands cannot find 256

words in user program storage to read disk
directory

50 INVALID OPERATOR a command preceded by a# (operator command
COMMAND specifier) is not recognized

• INPUT /OUTPUT ERROR MESSAGES

CODE MEANING CODE MEANING
0 Illegal channel 37 Device already exists
1 Illegal file number 38 Insufficient contiguous blocks
2 Illegal system command 39 QTY
3 Illegal command for device 40 Task queue table
4 Not a saved file 41 No more DCB' s
5 File already exists 42 DIR specifier
6 End of file 43 DIR specifier
7 Read -protected file 44 DIR too small
8 Write-protected file 45 DIR depth
9 File already exists 46 DIR in use
10 File not found 47 Link depth
11 Permanent file 48 File in use
12 Attributes protected 49 Task ID
13 File not opened 50 Common size
14 Swapping disk error-program lost 51 Common usage
17 UFT in use 52 File position
18 Line limit 53 Data chain map
19 Image not found 54 DIR not initialized • 20 Parity 55 No default DIR
21 Push limit 56 FG already active
22 Storage overflow 57 Partition set
23 No file space 58 Insufficient arguments'
24 Read error 59 Attribute
25 Select status 60 No Debug ,.
26 Start address 61 No continuation address
27 Storage protect 62 No start address
29 Different directories 63 Checksum
30 Device name 64 No source file
31 Overlay number 65 Not a command
32 Overlay file attribute 66 Block type
33 Set time 67 No files match
34 No TCB's 68 Phase

i 36 Squash file 69 Excess arguments
' i__._ ·---

•

•

•

•
,.

•

DataGeneral
Document Title

PROGRAMMING DOCUMENTATION
REMARKS FORM

l!Jocument No. !Tape No.

SPECIFIC COMMENTS: List specific comments. Reference page numbers when applicable.
Label each comment as an addition, deletion, change or error if applicable.

I

GENERAL COMMENTS: Also, suggestions for improvement of the Publication.

FROM:
Rame

Company Name

,\ddress (No. & Street) City State Zip Code

h)rm No. 10-24-004

FOLD DOWN FIRST FOLD DOWN

----~--~--~---~------------

BUSINESS REPLY MAIL
No Postage Necessary If Mailed In The United States

Postage will be paid by:

Data General Corporation
Southboro, Massachusetts 01772

~ TT ENTION: Programming Documentation

FIRST
CLASS
PERMIT
No. 26

Southboro
Mass. 01772

►---~----~--
FOLD UP SECOND FOLD UP

STAPLE

•

•

•

	_0001
	_0003
	_0004
	_0005
	_0007
	_0008
	_0009
	_0011
	_0013
	_0014
	_0015
	_0016
	_0017
	_0019
	_0020
	_0021
	_0022
	_0023
	_0024
	_0025
	_0026
	_0027
	_0028
	_0029
	_0030
	_0031
	_0032
	_0033
	_0034
	_0035
	_0036
	_0037
	_0038
	_0039
	_0040
	_0041
	_0043
	_0044
	_0045
	_0046
	_0047
	_0048
	_0049
	_0050
	_0051
	_0052
	_0053
	_0054
	_0055
	_0056
	_0057
	_0058
	_0059
	_0060
	_0061
	_0062
	_0063
	_0064
	_0065
	_0066
	_0067
	_0068
	_0069
	_0070
	_0071
	_0072
	_0073
	_0074
	_0075
	_0076
	_0077
	_0078
	_0079
	_0080
	_0081
	_0082
	_0083
	_0084
	_0085
	_0086
	_0087
	_0088
	_0089
	_0090
	_0091
	_0092
	_0093
	_0094
	_0095
	_0096
	_0097
	_0098
	_0099
	_0100
	_0101
	_0102
	_0103
	_0104
	_0105
	_0106
	_0107
	_0109
	_0110
	_0111
	_0112
	_0113
	_0114
	_0115
	_0116
	_0117
	_0118
	_0119
	_0120
	_0121
	_0122
	_0123
	_0124
	_0125
	_0126
	_0127
	_0128
	_0129
	_0130
	_0131
	_0133
	_0134
	_0135
	_0136
	_0137
	_0138
	_0139
	_0140
	_0141
	_0142
	_0143
	_0144
	_0145
	_0146
	_0147
	_0148
	_0149
	_0150
	_0151
	_0152
	_0153
	_0154
	_0155
	_0156
	_0157
	_0158
	_0159
	_0160
	_0161
	_0162
	_0163
	_0164
	_0165
	_0166
	_0167
	_0168
	_0169
	_0170
	_0171
	_0172
	_0173
	_0174
	_0175
	_0176
	_0177
	_0178
	_0179
	_0180
	_0181
	_0182
	_0183
	_0184
	_0185
	_0186
	_0187
	_0188
	_0189
	_0190
	_0191
	_0192
	_0193
	_0194
	_0195
	_0196
	_0197
	_0198
	_0199
	_0200
	_0201
	_0203
	_0204
	_0205
	_0206
	_0207
	_0209
	_0211
	_0212
	_0213
	_0214
	_0215
	_0216
	_0217
	_0218
	_0219
	_0220
	_0221
	_0222

