
•

•

•

•·

TUNADAN ApS
0STERBAKKEN 56, TUNE

4000 ROSKILOE
Tit. 02 -13 90 40

METANIC COMAL-80
USER'S MANUAL

Ov06 £L-ZO 'Jll
'3Oil>ISOl::I OOOv

:3Nn.J. 'gg N3>1>1'V81:::f3.J.S0
Sd'f N"V□~Nn.L OamaL•■a

EIP
-11,t,kOjto~

•

•

•

COPYRIGHT AND TRADEMARK NOTICES PAGE 1-001

The METANIC COMAL-80 software package and docuMentation are copy
righted by METANIC ApS, DENMARK •

It is against the law to copy any of the software in the COMAL-80
software package on cassette tape, disk or any other MediuM for any
purpose other than personal convenience.

It is against the law to give away or resell copies of any part of
the METANIC COMAL-SO software package. Any unauthorized distribu
tion of this product or any part thereof deprives the authors of
their deserved royalties. METANIC ApS will take full legal resource
against violators.

If you have any questions on these copyrights, please contact:

METANIC APS
KONGEVEJEN 177
DK-2830 VIRUM
DENMARK

Copyright (C) METANIC ApS, 1981
All Rights Reserved
Printed in DENMARK

<TM> COMAL-SO is a tradeMark of METANIC ApS

(TM> SOFTCARD is a tradeMark of Microsoft.

(R) CP/M is a registered tradeMark of Digital Research, Inc.

<R> Z-80 is a registered tradeMark of Zilog, Inc •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

PREFACE PAGE 1-002

ONE THING IS A SHIP TO COMMAND,
ANOTHER IS A CHART TO UNDERSTAND •

This proverb was said many years ago, long before words like byte,
nanoseconds, computers, and interpreters entered our world.

Nevertheless, often during the time we worked on this manual these
words came i~to our minds as we found it a difficult task to
describe in plain words how a complicated thing like a high level
language works.

However, this manual is a result of our combined efforts, and the
only way we can think of the next edition being even better is by
counting on you, the user, and your constructive criticism to reach
the point of perfection that we desire •

Consequently, we shall
comment, suggestion or

be pleased to receive any correction,
addition that you may have to this manual.

As the format of the manual is designed for easy updating, you may
well find your contribution materialized in the next edition. For
your convenience an error report is added at the end of the manual.

We have chosen to arrange all the key words in alphabetical order
because an important part of the philosophy behind COMAL-BO is to
make everything as easy as possible for persons not familiar with
high level languages and the different groups into which the key
words can be categorized.

We hope you will find working with COMAL-SO a must from now on, and
that the manual will help you spend many good hours in the company
of your computer.

THE AUTHORS •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

ACKNOWLEDGEMENTS:

METANIC ApS hereby wishes to thank the followH1g ,v,e,v,bers of the •
staff and friends of COMAL-8O for their dedicated assistance in the
preparation of this publication:

ROY FOX
MOGENS PELLE

ARNE CHRISTENSEN
MOGENS CHRISTENSEN
SUSANNE SONDERSTRUP

A special acknowledgement is extended to all the pioneers who
helped field testing the COMAL-8O interpreter, and whose criticis1Y1 •
and suggestions had great impact on the final specif i cat i ot1s.

The inforMation furnished by METANIC ApS in this publication is
believed to be accurate and reliable. However, no respot1sibility is
assuMed by METANIC ApS for its use.

FIRST EDITION, OCTOBER 1981.
PRINTED IN DENMARK.

COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

•

•

INTRODUCTION PAGE 1-003

METANIC COMAL-80, written for the Z-80 microprocessor, is the most
extensive interpreter available for microcomputers today and con
tains, beside a full extended BASIC, a great number of structures
found in Pascal.

COMAL-80 was originally specified following specific wishes from
the Danish educational field which wanted a language easy to learn,
with built-in programming support and which facilitates a possible
transition to other structured languages.

This manual is divided into two parts plus a number of appendices.
Part 1 contains instructions for initialization of the different
COMAL-80 versions and a general description of features which
affect several or all the COMAL-80 instructions, while part 2
contains the syntax and semantics of all commands, statements, and
functions in alphabetical order. The appendices contain the source
code for the screen driver, guidelines for changing this driver for
different systems, a list of error messages, demonstration programs
and a list of ASCII codes.

This manual is not intended as a tutorial on the COMAL-80 language
but as a reference manual for the specific features of METANIC
COMAL-80 •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

OPERATION. PAGE 1-004

Each of the two different COMAL-BO software packages contains two
versions of the COMAL-BO interpreter. The two versions have identi
cal features, except that the overlayed version leaves more storage
to the user and uses a few seconds in the start and end of each
program execution for reading the overlay file.

The different files are named:
7-digits precision:

Non-overlayed version:
Overlayed version:
Overlay file:

13-digits precision:
Non-overlayed version:
Overlayed version:
Overlay file:

COMAL-BO.COM
COMAL80S.COM
COMAL-B0.1

COMAL80D.COM
CMAL80DS.COM
COMAL80D. 1

Note that each package contains the files for only one of the two
possible precisions and that the CP/M operating system is not
placed on the distribution floppies.

It is advised that the COMAL-80 files are copied to a new floppy,
which also contains the CP/M operating system. Then remove the
original disk from the computer and keep it in a safe place as this
disk only, carries the warranty.

Now type the name of the version without the extension ,.COM,, and
COMAL-BO will sign on. Note that the overlay versions will work
only if the disk is placed in the CP/M default drive.

COMAL-BO being initialized the question is displayed on the ter
minal whether error descriptions are wanted. The user must answer
this by ,y, for yes or ,N, for no.

COMAL-BO is then ready for use which is shown by the prompt charac
ter , *, beit1g displayed. Commands and program statements may be
keyed in •

Commands are recognized by not starting with a line number, this
indicates that the line is to be executed immediately following a
, RETURN7.

As commands, both the special system commands, such as 7 RUN7
,

7 LIST,, etc. as well as a great deal of the COMAL-BO statements
1Y1ay be used enabling H1stant results of arithmetic and logical
operations to be displayed without having to make a program •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

LINE FORMAT PASE 1-005

The stateMent lines within COMAL-SO have the following format:

nnnn COMAL-SO statement [//(comment)]

for which nnnn is a line number within the interval of 1 to 9999.
Only one statement is allowed in each line, except that more
assignMents may occur, separated by semicolons. For further details
see the 'LET' and 'MAT' statements.

All statements may optionally be followed by a comment (also see
'REM' in chapter 2>.

A COMAL-SO statement always starts with a line number, ends by
'RETURN', and may contain up to 159 characters. On terminals having
a physical line length of less than this, the line, when filled,
automatically continues on the following physical line •

INPUT EDITING

If an error is made as a line is being typed, move the cursor back
to point at the error, and type the correct character(s). The new
character<s> will replace the old one<s>. The character pointed at
by the cursor can be deleted by pressing the 'DEL' key (user
defineable). At the same time, all characters on the right move one
position left.

New characters may be inserted between already typed characters by
moving the cursor back to the position where the new characters
should start. Then press the 'INS' key <user defineable) and the
rest of the line (including the character pointed at by the cursor)
moves one position to the right leaving an empty space. This can be
repeated as often as necessary to create space for any number of
characters up to the maximum line length of 159 characters.

When the input is terminated

•
whole line shown on the screen
position.

by pressing the 'RETURN' key, the
is stored regardless of the cursor

A line, which is in the process of being typed, may be deleted by
pressing the 'ESC' key <user defineable), but automatic generation
of line numbers is terminated too.

To correct program lines for a program which is currently in the
memory, re-type the line using the same line number or use the
'EDIT' command.

To delete the entire program currently residing in memory use the
'NEW' command •

• COPYRIGHT <C) 1981 METANIC ApS DENMARK

•

•

•

CHARACTER SET PAGE 1-006

The COMAL-80 character set comprises the alphabetic characters,
numerical characters and special characters •

The alphabetic characters are the upper and lower case letters of
the alphabet including { I } C \ J, which are replaced by national
letters in some countries.

The numerical characters are the digits O through 9.

The following special characters are recognized by COMAL-SO:

CHARACTER

+

* I

(

)

$

&
{

}

'ESC'
, RETURN'

Control-A
Control-\
Control-]
Control-S
Control-H
Control-LI
Control-E
Cont ro 1-I
Control-B
Cont ro-1-K

NAME
Blank
Equal sign or assignment symbol
Plus sign
Minus sign
Multiplication symbol
Slash or division symbol
Exponentiation symbol
Left parenthesis
Right parenthesis
Nuff1ber sign
Dollar sign
Exclamation point
Co1Y1ff1a
Period or decimal point
Double quotation marks
Semicolon
Col ot1
AIY,pe rsand
Less that1
Greater than
Ut1derscore

* Stop and wait for input
Terminate i np1.1t

* Insert
* Cursor left
* Cursor right
* Delete
* Backspace
* Cursor to start of line
* Cursor to end of line
* Cursor 8 step forward
* Cursor 8 step backwards
* Delete to end of line

*maybe changed by the user •

• COPYRIGHT (C) 1981 METANIC ApS DENMAR•<

CONSTANTS PAGE 1-007

Constants are the actual values which COMAL-BO uses during execu-
• tion. There are two types of constants: string and arithmetic.

•

•

A string constant is a sequence of alphanumeric characters enclosed
in double quotation marks. The length of the string is limited by
the available space in the computer only.

A double quotation mark may be included in a string constant by
writing 2 double quotation marks ('"') immediately following each
other.

Characters, which cannot be typed on the keyboard, can be included
in a string constant by typing the characters' decimal ASCII codes
enclosed in double quotation marks •

EXAMPLES OF STRING CONSTANTS:
"COMAL-BO"
"$10.000"
"OPEN THAT DOOR"
"KEY ""S"" TO STOP"
"END"13""

Arithmetic constants are positive and negative numbers. Arithmetic
constants in COMAL-BO cannot contain commas. There are two types of
arithMetic constants:

1. Integer
constants

2. Real
constants

Whole numbers in the range -32767 to 32767.
Integer constants do not have decimal points

Positive or negative real numbers, i.e. num
bers that contain decimal points and posi
tive or negative numbers represented in
exponential form (similar to scientific no
tation). A real constant in exponential form
consists of an optionally signed integer or
fixed point number (the mantissa) followed
by the letter 'E' and an optionally signed
integer (the exponent). In addition, whole
numbers outside the range for int,eger con
stants are considered real constants •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

VARIABLES PAGE 1-008

Variables are names used to represent values that are used in a
COMAL-BO program. The value of a variable May be assigned explicit
ly by the programmer, or it may be assigned as the result of calcu
lations in the program. Before a variable is assigned a value, it
is undefit1ed.

VARIABLE NAMES AND DECLARATION CHARACTERS

COMAL-SO variable names may be of any length up to SO characters.
The characters allowed in a variable name are letters, digits and
underscore. The first character must be a letter. Special type
declaration characters are also allowed. - See below.

A variable name may not be a reserved word unless the reserved word
is embedded. If a variable begins with 'FN', it is assumed to be a
call to a user-defined function. Reserved words include all
COMAL-BO commands, statements, function names, and operator names.

Variables may represent either an arithmetic value or a string.
string variable names are written with a dollar sign($) as the
last character. Integer variable na1v,es are written with a number
sign (#) as the last character. The dollar sign and the number sign
are variable type declaration characters, i.e. they 'declare' that
the variable will represent a string or an integer.

Examples of variable names:

A
AS
DISKNAME$
COUNTER#
VALUE_OF_CURRENT

• COPYRIGHT CC) 1981 METANIC ApS DENMARK

ARRAY VARIABLES PAGE 1-009

An array is a group or table of values referenced by the saMe

•

variable naMe. Each element in an array is referenced by an array
variable naMe that is subscripted with one arithMetic expression
for each diMension. An array variable naMe has as Many subscripts
as there are diMensions in the array. When used as a paraMeter the
array can be referenced as a whole or as an 'array of arrays' by
OMitting soMe or all the subscripts. This is described in detail in
the chapter: PARAMETER SUBSTITUTION.

All arrays Must be declared by a 'DIM' stateMent.

When an arithmetic array is declared, but before it is assigned
values, all its eleMents have the value O (zero).

When a string array is declared, but before it is assigned strings,
• all its eleMents contain the string "" (string of zero length).

SUBSTRINGS.

Apart froM referencing a string variable as a whole, eleMent by
eleMent or as array of array, a part of a string variable eleMent
May be referred to.

This is done by one of the following forMats:

(naMe> (I 1, 12, ••• In, <start> t, (end> J >
(naMe)(I1,I2, ••• In> ((start):(end))

In the forMer case, it is initially checked how Many diMensions the
variable <naMe) contains by Means of the corresponding 'DIM' state
Ment. If it has, say 'n' diMensons, then the first 'n, indices in
the parenthesis are used to specify the actual eleMent. Further,
the parenthesis may contain one or two indices, i.e. (start> and
(end). (start> specifies in which character position the substring
starts, and (end) specifies in which it ends. 0Mitting (end) the

•
substring consists of the character within the said (start) posi
tion only.

In the latter case, the first parenthesis contains the necessary
nuMber of indices, whereas the second parenthesis contains <start>
and <end} inforMation as described in the forMer case. In this case
the (end> specification Must be present and a colon is used to
deliMit it from the <start>.

If (naMe) states a siMple string variable the nuMber of diMensions
is considered zero and the parenthesis contain (start) and (end>
only. In the latter forMat, the first parenthesis is DMitted •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

ARITHMETIC OPERATORS

The arithMetic operators are:

Precedence
1

2
2
2
2

3

4
4

Operator
A

I

* DIV
MOD

+

Operation
Exponentiation

Division X/V
Multiplication X*Y
Integer division X DIV Y
Modulus X MODY

Negation

Addition
Subtraction

-x
X+V
x-v

PAGE 1-010

Precedence of operators Means that froM an expression containing
More than one, they are executed in the order decribed in the above
table. More operators of the saMe precedence are resolved froM left
to right.

The precedence May be overruled by parentheses, as expressions
enclosed in parentheses are resolved first. When More operators
occur in the saMe set of parentheses the above table applies again.

Apart froM negation the arithMetic operators
tween expressions giving arithMetic values.
only for expressions giving arithMetic values.

may be used only be
Negation May be used

The arithmetic value of a logical expression being true is 1,
whereas the arithMetic value for a false logical expression is O •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

RELATIONAL OPERATORS PAGE 1-011

Relational operators are used to coMpare two values. The result of
a such coMparison may be either true (= 1) or false<= 0). This
result may then be used to influence the prograM run.

Whenever an arithMetic value is used as a logical value, the nuMber
0 is interpreted as false, and numbers different from Oare inter
preted as true.

Operator

()

)

(

>=
<=

Relation
Equality
Inequality
Greater than
Less than
Greater than or equal
Less than or equal

E><aMple
X=V
xov
X>V
X<V
X>=V
X<=V

= is also used to assign a value to a variable.)

Relational operators are used between two e><pressions both giving
an arithmetic value or two e><pressions both giving a string value.

Relational operators hold second precedence to arithmetic operators
Meaning that within an e><pression containing both types all arith
Metic operators are resolved before the relational operators.

In the following e><aMple:
X-2)T+3

the values of 'X-2' and 'T+3' are calculated prior to the compari
son of the two values.

CoMparison between 2 string e><pressions is done character by cha
racter using the ASCII codes of each character. 'A' is less than
'E', as the ASCII code for 'A' is 65 and for 'E' it is 69.

For two strings of different lengths, the short one being equal to
the beginning of the long one, the short one is the smallest •
Consequently, "BLACK" is smaller than "BLACKBIRD".

Comparing two strings all characters between the double quotation
Marks are coMpared, including spaces. In this respect the aggre
gates 1111 and "number", each representing only one character when
found within a string value, count as one character only, namely
the character represented by the aggregate •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

FILENAMES

Filenames basically follow the CP/M naMing conventions.
that only the first 8 characters are significant and
case letters are converted to upper case.

PAGE 1-012

This means
that lower

Following a period, an extension of three characters may be speci
fied. The extension can be freely chosen, except in connection with
'SAVE, and 'LOAD' coMmands, where the COMAL-SO systeM automatically
provides the extension ,.CSB,. It is therefore not allowed to
specify any extension in these coMmands.

If no extension is specified, it defaults to ,.CML' when the file
name is used in connection with the 'ENTER' and 'LIST' coMmands, to
'.DAT' in connection with the 'OPEN, comMand/stateMent, to ,.CAT,
in connection wih the 'CAT, command/stateMent and to ,.RAN' for
random files •

The whole naMe, including the extension is
This means that the two commands:

ENTER PROGRAM
ENTER PROGRAM.CML

used to specify a file.

reads the same file into memory, whereas this reads another:

ENTER PROGRAM.LST

The disk drive name is optional but is treated as an integrated
part of the file name. If it is omitted, the current default disk
drive is used. If it is specified, it is written in front of the
file name. The disk drive naMe is the device name of the disk to be
used (see below).

Example:
ENTER DK1:PROGRAM.CML

Note that the disk drive names do not
• convention.

follow the CP/M naMing

The disk drive name consists of the two letters 'DK'
and a unit number followed by a colon. Thus 'DKO:'
CP/M's 'A:', 'DK1:' corresponds to CP/M's 'B:', etc.

(meaning disk)
corresponds to

A similar scheme is used with the other peripheral devices, meaning
that these can be used as files and thereby be the source or desti
nation for data, according to the nature of the specific device •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

The names used for the di fferei-1t devices are:

'LP:' or 'LPO:' 1Y1eaning the line printer • 'LP!:' meaning the puncher
• os:, or 'DSC>:, 1Y1eai-1i i-,g
'KB:' or 'KBO:, meaning

Example:
10
20
30
40
50
60
70

OPEN FILE 0, "KB: 11
,

OPEN FILE 1, "LP:",
DIM A$ OF 100
LOOP

INPUT FILE O:A$
PRINT FILE 1:A$

ENDLOOP

the
the

READ
WRITE

data screei-1
keyboard

When 'INIT', 'RELEASE', 'FORMAT', 'DELETE', 'GETUNIT', 'RENAME',.
'UNIT', and 'CAT' are used as statements, filenames are considered
string expressions and must be enclosed in double quotation marks.
This is not allowed in command mode. An effect of this is that file
names may be specified by any string expression, which evaluates to
a legal file name.

Examples:
100 DELETE "DKO:PROGRAM.CML"
100 INIT "DKO:",A$
100 DELETE "DKO:"+A$+ 11 .CML 11

COMAL-SO use its own format in disk files. The normal CP/M format
can be specified by extending the filename with a '/C. Further ex
tending the filename with a '/B' specifies the CP/M binary format.

Examples:
ENTER TEST.BAK/C // READ CP/M ASCII FILE

//OPEN CP/M BINARY FILE
//OPEN CP/M ASCII FILE

100 OPEN FILE 3,"TEST.XYZ/C/B",READ
100 OPEN FILE 2,"DATA/C",WRITE •

COPYRIGHT (C) 1981 METANIC ApS DENMARK •

PROCEDURES PAGE 1-013

One of the distinct features of COMAL-BO is the inclusion of genu-
• ine procedures with paratt,eters.

A procedure is a named program area placed between the keywords
'PROC <name)' and 'ENDPROC <name)' and which is called by the use
of the keyword 'EXEC (name)'.

They basically act like the subroutines known from BASIC, i.e.
they can be called from one or several places in a program and
when the procedure is finished the program execution continues in
the line following the calling line. But besides this, they have
other features which make them a very efficient programming tool.

Firstly, they are called by
not have to care about the

name, meaning that the programmer does
line number in which the procedure is

• placed.

•

Secondly, the procedure is non-executable until it is called, mea
ning that regardsless where the procedure is placed in the program
the lines inside it will be bypassed unless the procedure is actu
ally called by an 'EXEC' statement and this call can go both for
wards and backwards in the program.

Thirdly, and very important, parameters can be passed on to the
procedure when it is called. This means that a procedure can react
differently and operate on different data each time it is called.

There are two types of procedures, called open and closed procedu
res. The difference between the two is a question of how the pro
edure sees the variables used in the rest of the program.

The variables used in an open procedure has the satt,e status as
variables used in the main program which means that if it is
assigned a new value inside the procedure, it keeps this value when
the procedure is terminated and program execution resumes frotY, the
line following the calling line •

The closed procedure, however, acts in many ways like a separate
program. The closed procedure has its own set of variables, which
can be diMensioned and assigned values inside the procedure, but
they are never able to influence the variables used outside the
procedure unless some special action is taken (reference parameters
and the global statement>. This makes it possible to write library
routines which can be used in any program without risking problems
with the same variable name being used both in the procedure and in
the rest of the program •

• COPYRIGHT (C} 1981 METANIC ApS DENMARK

PAGE 1-014

The difference between the two types of procedures can be illustra-
• ted by the following two progra1Y1s:

1 2

•

•

10 A:=5 10 A:=5
20 EXEC TEST 20 EXEC TEST
30 PRINT A 30 PRINT A
40 PROC TEST 40 PROC TEST CLOSED
50 A:=3 50 A:=3
60 PRINT A 60 PRINT A
70 ENDPROC TEST 70 ENDPROC TEST

Running these 2 programs the first one will twice print the digit
'3' because the assignment in line 50 will overrule the assignment
in line 10. The second example will print the digits '3' AND '5'
because the procedure is closed and thereby the variable in line 50
is not the same as the one in line 10 even though they have the
same name. Technically speaking, the variable 'A' in example 1 is
global to the procedure because the whole program can see and use
it, but a variable inside a closed procedure is local and can only
be used inside the procedure.

A local variable must also be assigned Cline 50) or dimensioned
inside the closed procedure before it is used for the first tii'Ae.
This means that if line 50 is deleted in the second example, the
program execution will stop in line 60 with an error message tel~
ling that the variable is unknown.

Even though the separation of variable names is the basic idea
behind the closed procedures, it is often convenient to make a
variable name known to the main program as well as to the procedure

This can be done by the 'GLOBAL' statement as shown in the follo
wing exa,v,ple:

10 A:=3
20 EXEC TEST
30 PRINT A
40 PROC TEST CLOSED
50 GLOBAL A
60 A:=3*A
70 PRINT A
80 ENDPROC TEST

This progra,v, will twice print the digit '9'. Note that the 'GLOBAL'
statement must be placed in the closed procedure and before the
part of the procedure actually using the variable for the first
time •

• COYRIGHT <C> 1981 METANIC ApS DENMARK

PAGE 1-015

Closed procedures can be nested to any level that the meMory allows

•

(each level uses Mini.v1uM about 50 bytes, depending on the nuMber of
variables>, but the 'GLOBAL' stateMent only works on the level
where it is actually placed. The following program will print the
digit '3' (in line 100) and then stop in line 60 with an error mes-

•

sage that the variable is unknown:

10 A:=3
20 EXEC TEST!
30 PRINT A
40 PROC TEST! CLOSED
50 EXEC TEST2
60 PRINT A
70 ENDPROC TEST!
80 PROC TEST2 CLOSED
90 GLOBAL A

100 PRINT A
110 ENDPROC TEST2

Another way of moving a variable into and out of a closed procedure
is by means of a reference parameter. this is described in details
in the chapter 'PARAMETER SUBSTITUTION'.

When a variable is dimensioned or assigned a value in a closed pro
cedure the necessary me.v,ory is not allocated until the procedure
is actually called and this memory is again de-allocated when the
procedure is terminated.

Thus, no matter the nu.v,ber of times a procedure is called there
will be no error message 'out of storage', if no such error message
occurs on the first call.

This 'clearing the blackboard' also makes it possible to dimension
a variable in a procedure which is called several times without
conflicting with the rule that a variable cannot be re-dimensioned,
and it is possible to overlay arrays and string variables used for

•
intermediate results and thereby economize on storage by dimensio
ning and using these in different closed procedures.

Any procedure may call any procedure defined anywhere in the main
program and it may even call itself (recursion). Note, that also
recursion means nesting to a new level which uses memory and must
be carefully controlled.

A closed procedure can also call an open procedure. The variables
inside these two procedures will then be common for these but can
not be seen from·the caller of the closed procedure.

The rules for variables in closed procedures are also applicable
for the other closed structure: The user-defined function •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

PARAMETER SUBSTITUTION PAGE 1-016

An important part of the COMAL-BO definition is the inclusion of
procedures (and user-defined functions) with parameters, which
allow decomposition of a program into smaller, named routines.
These can be open (open procedures) or closed (closed procedures
and user defined functions).

To move data into and out of a such routine parameters are used,
i.e. list of variable names specified in the calling line <the ac
tual parameters) and in the first line of the routine (the formal
parameters). The actual parameters are then inserted in the formal
parameters when the routine is called.

There are two types of parameters, namely 'call by value' and 'call
by reference' •

'call by value, means that the actual value of the actual parameter
is assigned to the formal parameter. This type can only move data
into the routine as changes to the formal parameter do not affect
the actual parameter.

'call by reference' means that the formal parameter is replaced by
the actual parameter. This type can move data both into and out of
a routine, and is specified by the keyword 'REF' in the formal
parameter list. The above mentioned replacement happens dynamically
i.e. when the routine is called and cannot be seen in program list
ings, which always show the formal parameters.

The following examples show the difference:

1 2
10 A:=3 10 A:=3
20 EXEC TEST<A> 20 EXEC TEST<A>
30 PRINT A 30 PRINT A
40 PROC TEST(X) 40 PROC TEST(REF X)
50 X:=3*X 50 X:=3*X
60 PRINT X 60 PRINT X
70 ENDPROC TEST 70 ENDPROC TEST

Here, in 1 i ne 20 'A' is the actual pa ra«,eter and , X' in line 40 is
the formal paraiY,eter.

In the first example the value '3' is assigned to 'X' when the pro
cedure 'TEST' is called in line 20 and prints the digit '9' in line
60. After the procedure is terminated the digit '3' is printed in
line 30 because the variable 'A' is in no way affected.

The other exatY,ple will twice print the digit '9' because the formal
parameter is replaced by the actual one and the change thereby re
flected back •

• COPYRIGHT CC) 1981 METANIC ApS DENMARK

•

•

•

PAGE 1-017

Parameters are always local, meaning that changes which happen to
'call by value' parameters in a routine cannot affect a variable
with the same name in the rest of the program. This is shown by the
following example:

10 A:=3
20 B:=2
30 EXEC TEST<A>
40 PRINT A,B
50 PROC TEST(A)
60 A:=3*A
70 B:=3*B
80 PRINT A,B
90 ENDPROC TEST

For 'A' this program will print the digit '9' in line 80 and then
the digit '3' in line 40. Both lines print the digit '6' as the
value for 'B'. In other words, the formal parameter 'A' is local to
the procedure and another variable than the variable used in lines
10 and 40, whereas 'B' is not a parameter (and the procedure is not
closed) so it is global to the procedure, and the same variable in
the whole program.

The parameter lists may contain as many parameters as the maximum
line length allows (159 characters), separated by commas, but there
must be the same number of parameters in both lists, and correspon
ding parameters must conform to type and dimension. The only excep
tion is that an integer actual parameter can be assigned to a real
formal parameter when 'call by value' is used.

Constants and expressions can be used as actual parameters when
'call by value' is used.

Example:
10 EXEC TEST(3*5,"ERROR">
20 PROC TEST(A,B$)
30 PRINT A
40 PRINT B$
50 ENDPROC TEST

Note, that a formal parameter cannot be dimensioned, as the call
itself carries the necessary information.

Arrays can be used as parameters either as a whole, as an array of
array or a single element, but they can only be used as reference
parameters in the former two cases •

• COPYRIGHT CC) 1981 METANIC ApS DENMARK

•

•

•

PAGE 1-018

When a single element is used, the element is specified in the ac
tual parameter list with the necessary number of indices and a
variable of the same type specified in the formal parameter list.

ExaMple:
10 DIM A(3,5,2)

100 EXEC TEST(A(l,1,1))

200 PROC TEST(B)

300 ENDPROC TEST

Note, that 'B' does not need to be a referenced parameter as only a
single element is used.

An array of array is used by omitting one or several of the indices
from the right hand side in the actual parameter list and following
the formal parameter name with a parenthesis containing the same
number of commas as the number of omitted indices minus 1.

Example:
10 DIM A(3,5,2)

100 EXEC TEST(A(1,1))

200 PROC TEST(REF B<>>

300 ENDPROC TEST

In this example one should note that the parenthesis following the
formal parameter 'B' is empty because the number of omitted indices
is 1.

The omitted indices are then specified when the formal parameter is
used in the routine •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

The following example shows this:

10 DIM ARRAV_OF_VECTORS(5,3)
20 FOR I:=1 TO 5
30 FOR J:=1 TO 3
40 ARRAV_OF_VECTORS(I,J):=RND(1,5)
50 NEXT J
60 NEXT I
70 EXEC CHANGE_SIGNCARRAV_OF_VECTORSC4))
80 PROC CHANGE_SIGN<REF VECTOR()) CLOSED
90 FOR I:=1 TO 3

100 VECTOR<I>:=-VECTOR(I)
110 NEXT I
120 ENDPROC CHANGE_SISN
130 FOR I:=1 TO 5
140 FOR J:=1 TO 3
150 PRINT ARRAV_OF_VECTORS<I,J>;
160 NEXT J
170 PRINT
180 NEXT I

PAGE 1-019

It is also possible to use a whole array as a parameter. This is
done by removing all the indices in the actual parameter list and
following the formal parameter with a parenthesis containing the
same number of commas as the dimension of the array minus 1.

Example:
10 DIM A$(5,3,2) OF 25

100 EXEC TEST(A$)

200 PROC TEST(REF 8$(,,>>

300 ENDPROC TEST

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

COMAL-80 CoMMands and StateMents. PAGE 2-001

All of the
described in
follows:

Type:

Purpose:

Syntax:

Execution:

ExaMple:

COMMents:

COMAL-SO coMmands, stateMents and
this chapter. Each description is

functions
forMatted

are
as

States whether it is a command, a statement or a
function.

States for what the instruction is used.

Shows the correct syntax for the instruction.
See below for syntax notation.

Describes how the instruction is executed.

Shows sample prograMs or prograM segMents that
deMonstrate the use of the instruction.

Describes in detail how the instruction is used.

Syntax Notation.

Wherever the syntax for a stateMent, a command or a function is
given, the following rules apply:

IteMs in capital letters must be input as shown, but both upper and
lower case letters are usable. The latter are by COMAL-SO converted
to upper case in listings.

IteMs in lower case letters enclosed in angle brackets< < > > are
to be inserted by the user.

IteMs in square brackets ([J) are optional.

All punctuations except angle brackets and square brackets (i.e.
coMMas, parentheses, semicolons, colons, exclaMation points, slash
es, nuMber signs, plus signs, Minus signs or equal signs> Must be
included where shown.

All reserved words Must be preceded by and/or followed by a space
if necessary to avoid multiple interpretations •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

ABS

Type:

Purpose:

Synta><=

PAGE 2-002

Arithmetic function

To calculate the absolute value of an arithmetic eKpression

ABS((expression))

E>eecution:
Returns the absolute value of <expression).

Example:
10 PRINT ABS(3*(-5))

Comments:
1. (expression) being arithmetic is of real or integer type

The result will be of the same type •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

AND

Type:
Logical operator

Purpose:

PAGE 2-003

To create the logical 'AND' between 2 expressions.

Syntax:
<expression!) AND (expression2)

Execution:

ExaMple:

(expression1) and (expression2> are evaluated and the logic
'AND' created.

10 INPUT A*
20 INPUT B*
30 IF A*=5 AND B•=7 THEN
40 PRINT "THE PRODUCT IS 35 11

50 ELSE
60 PRINT 11 THE PRODUCT IS PERHAPS NOT 35"
70 ENDIF

COMMents:
1. The operator has the truth table

(expression1> (expression2>
true true
true false
false true
false false

result
true
false
false
false

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

ATN

Type:

PAGE 2-004

Arithmetic function

Purpose:
Returns the arctangent of an arithmetic expression.

Syntax:
ATN((expression>>

Execution:
Returns the arctangent of (expression> in radians.

Example:
10 INPUT A
20 PRINT ATN(A)

Comments:
1. <expression> being arithmetic is of real or integer type

The result will always be real and in the interval -pi/2
to pi/2 •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

AUTO

Type:

PAGE 2-005

CoMMand

Purpose:

Syntax:

To autoMatically generate a new line nuMber after each
"RETURN7.

AUTO [<start>[., <step) J J

Execution:
Following each "RETURN" a new line nuMber is calculated by
the latest line nuMber used (or the value initially stated)
plus the indicated step. The new nuMber is placed in the
input-buffer and displayed on the screen •
The cursor is set in position 6 ready for a new input line.

ExaMples:
AUTO
AUTO 15
AUTO 10.,5

CoMMents:
1. If the <start> value is oMitted., default 10 is used.
2. If the <step) value is oMitted., default 10 is used.
3. If an existing line nuMber is generated., the new line

replaces the forMer one.
4. The autoMatic generation of line nuMbers can be inter

rupted at any tiMe by pressing the 'ESC" key.
The line in which this is done., is not stored •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

BSTR$

Type:

PAGE 2-006

String function

Purpose:
Converts an arithmetic expression to binary representation.

Syntax:
BSTR$((expression))

Execution:

ExaMple:

(expression> being arithmetic is calculated and rounded if
necessary. Then the value is converted to a binary text
string of exactly 8 characters.

10 DIM A$ OF 8
20 INPUT B
30 A$:=BSTR$(B)
40 PRINT A$

ComMents:
1. <expression) being arithMetic must evaluate to a value

within the closed interval Oto 255 •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•
BVAL

Type:

Purpose:

Synta>e:

PAGE 2-007

Arithmetic function

To convert a binary number from a string to an integer
value.

BVAL ((string e>epression>>

Execution:
The binary number contained in a string of e>eactly 8
characters is converted to integer •

•

Example:
10 DIM A$ OF 8
20 INPUT "WRITE A BINARY VALUE: 11

: A$
30 PRINT BVAL(A$)

•

Comments:
1. If the string contains less or more than 8 digits or if

it contains anything else than binary digits, the
program execution is stopped with an error message •

• COPYRIGHT _<C> 1981 METANIC ApS DENMARK

•
CALL

Type:

Purpose:

Syntax:

PAGE 2-008

Statement, command

By use of 'CALL' assembler programs for the Z-80 micro
processor 1Y1ay be l inJ.ced to a COMAL-SO program.

CALL <expression>

Execution:
(expression) being arithmetic is calculated and rounded if
necessary. The CPU then stores all its registers and calls
the specified address where the program execution is

• started.

Examples:

•

CALL 256
240 CALL 53248

ComMents:
1. For further details on the Z-80 microprocessor and its

assembler codes, please refer to the Manufacturers'
Manuals.

2. The user may use the CPU registers, however, the stack
pointer and the B restart addresses in page zero are
used and must be re-established prior to returning to
COMAL-BO.

3. COMAL-BO does not utilize the interrupt facilities of
the CPU. Consequently, the user may do this, also after
returning to COMAL-SO.

4. Return to COMAL-SO is done by terminating the asseMbler
program using a 'RET' command •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

CASE

Type:

WHEN OTHERWISE ENDCASE PAGE 2-009

Statement

Purpose:

Syntax:

The case structure is used when choosing aMong various
program sections on the basis of an expression value.

CASE (expression> OF
WHEN (list of possibilities>

WHEN (list of possibilities>

WHEN (list of possibilities>

COTHERWISE

.]
ENDCASE

Execution:

Example:

The <expression> is calculated and the ,WHEN, stateMents
are checked one by one to find whether one of the Mentioned
possibilities Matches the calculated value.
In the affirmative the lines froM the 'WHEN' stateMent in
question, up to the next corresponding 'WHEN', 'OTHERWISE'
or 'ENDCASE' statement, are executed, after which the pro
gram continues after the 'ENDCASE' statement, provided that
none of the executed lines have transferred the execution
to an other part of the program.
If none of the checked values fit the value of <expression>
The lines following 7 0THERWISE' will be executed.
If 'OTHERWISE' is omitted the program execution in this
case stops with an error message •

10 DIM A$ OF 1
20 INPUT "PRESS THE 'A' OR THE ,9, KEY":A$
30 CASE A$ OF
40 WHEN II A 11

, "a"
50 PRINT "YOU HAVE PRESSED THE 'A, KEY"
60 WHEN "B 11

, "b 11

70 PRINT "YOU HAVE PRESSED THE 'B' KEY"
80 OTHERWISE
90 GOTO 20

100 ENDCASE

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

Comments:
1. The expressions contained in the 'WHEN' statements Must.

be of the saMe type as <expression) except that integer
expressions in the 'WHEN' statements are allowed if
(expression) is of real type.

2. If more 'WHEN' statements correspond to <expression)
only the program section corresponding to the first one
is executed.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

•

•

•

CAT

Type:

Purpose:

Syntax:

PAGE 2-010

Command

To display the catalog of a connected background storage
device.

CAT C (file name1 > C, (file naMe2) J J
CAT (file name2>

Execution:
The operating system of the computer is called, stating
from which device the catalog is wanted.
The contents of the catalog for the actual files are then
transferred to the specified (file name2).

Examples:
CAT
CAT DK1:
CAT DK1 :K
CAT DK1:,DK0:ABC.DEF
CAT *.CML,LP:
CAT DK1:C???????.*,LP:
CAT LP:

Cow11Y1ent s:
1.

2.

(file name2) is the name of the file to which the
catalog is output.
(file name1) specifies partly or wholly the name(s) of
the catalog entries which are to be output. A partial
specification may consist of a device name only (in
which case the whole catalog of that device is output),
or a partial file name, where the characters,*, and
'?' are used following the specification of CP/M.

3. 0JYtitting (file name2> the catalog is displayed on the
tertY,i nal.

4. 01Y1itting (file r1ame1> the whole catalog of the current
default device is displayed •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

CAT

Type:

Purpose:

Synta>e:

Statement

To write the catalog from a
a file.

PAGE 2-011

background storage device into

CAT (file name>, FILE (file No.>

E><ecution:
The operating system of the coMputer is called, giving the
inforMation as to which device and which file names are to
be written. Then the catalog is written in ASCII forMat in
the specified (file No.> •

E><aMples:
100 CAT 11 DK1: 11

, FILE 3
100 CAT "DKl:*.CML", FILE 2

Comments:
1.
2.
3.

(file name> is a string e>epression.
(file name> specifies the files wanted froM a catalog.
(file name> specifies partly or wholly the naMe(s) of
the catalog entries which are to be output. A partial
specification may consist of a device name only (in
which case the whole catalog of that device is out
put), or a partial file name, where the characters,*,
and,?, are used following the specification of CP/M.

4. (file name> being the empty string the whole catalog of
of the c~rrent default device is displayed.

5. Before meeting the 7 CAT7 stateMent, a file carrying the
stated (file No.> must be opened using the 7 0PEN7 state
Ment.

6. The device on which the catalog is to be output is spe
cified in the 7 0PEN, stateMent •

7. Following a closing and a re-opening, the created file
May be read by using the 7 INPUT FILE, statement.

8. During programming 7 FILE 7 and ,., are interchangeable.
In program listings 7 FILE 7 is used •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

CHAIN

Type:

PAGE 2-012

Statement

Purpose:

Syntax:

To load and start the execution of a program stored as
a memory-image file on the background storage.

CHAIN (file name>

Execution:

Example:

The me1Y1ory of the computer is cleared; the prograM stated
by (file name> is loaded after which the execution resumes
from the lowest line number of this program •

10 // MAIN PROGRAM
20 DIM PROGRAM$ OF 10
30 REPEAT
40 INPUT "WHICH PROGRAM IS WANTED?": PROGRAM$
50 UNTIL PROGRAM$="LIST" OR "UPDATE"
60 CHAIN PROGRAM$

Com1Y1ent s:
1. (file name> is a string expression.
2. This statement is typically used to organize a large

program in smaller independent parts which are loaded
and executed on the basis of user commands.

3. The program (file name> Must be stored in a meMory
i1Y1age format by use of the , SAVE, co1Yt1Ytand.

4. Para«,eters can only be transferred to (file naMe) by
means of data files •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•
CHRS

Type:

Purpose:

Syntax:

PASE 2-013

String function

To convert an arithmetic expression into a single-character
st ring.

CHR$((expression))

Execution:
(expression> being arithmetic is calculated and rounded if
necessary. The value is converted into a string consisting
of a single character with that ASCII code •

•
Example:

10 INPUT A

•

20 PRINT CHRS<A>

Comments:
1. (expression) being arithmetic must be of a value within

the closed interval of Oto 255 •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

CLEAR

Type:

Purpose:

Syntax:

PAGE 2-014

Statement, command

To clear the screen and place the cursor in the upper left
corner.

CLEAR

Execution:
The screen is cleared and the cursor is placed in the upper·
left corner.

ExaMples:
10 CLEAR

CLEAR

COMMents:
1. This statement/coMmand affects the screen only. The

MeMory is cleared using the 'NEW' coMMand •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

CLOSE

Type:

Purpose:

Syntax:

PAGE 2-015

StateMent, COMmand

To close one or more data files after use.

CLOSE [FILE (file No.>J

Execution:
The data file carrying the specified (file No.> is closed.
(file No.> which is an arithmetic expression is calculated
and if necessary rounded prior to the closing.

Examples:
200 CLOSE
390 CLOSE FILE
540 CLOSE FILE

CLOSE

CoeMents:
1. If 'FILE' and (file No.> are omitted, all open data

files are closed.
2. When 'CLOSE' is executed, the stated connection between

(file name> and (file No.> is detached and the file may
be re-opened by the same or a new number.

3. Make sure that the 'CLOSE' statement/command is executed
before the program execution is finished to avoid data
being left in the system buffers.
The 'RELEASE' command will indicate whether this is the
case.

4. During programming 'FILE' and'#' are interchangeable.
In program listings 'FILE' is used •

• COPYRIGHT CC> 1981 METANIC ApS DENMARK

•

•

•

CON

Type:

Purpose:

Syntax:

PAGE 2-016

Command

To resume the program execution after a stop.

CON [(line No.)l

Execution:
The program execution is continued either in the specified
<line No.> or, if a such is missing, at the point of the
previous stop.

Examples:
CON
CON 220

Comments:
1. A new value may be assigned to a variable prior to

resuming the program execution.
2. The program execution may be resumed after a stop

created by a 'STOP' or 'END' statement, after pressing
the 'ESC 7 key, or after a non-fatal error.

3. If the program was stopped because of an error, the pro
gram execution is resumed starting with the statement in
error. In all other cases the program execution is star~
ted in the statement after the last statement executed.

4. If program editing has taken place the program execution
cannot always be resumed.

5. If the program execution is interrupted by the 'ESC' key
while the co«,puter is waiting in an , INPUT' statement, a
value will not be assigned to the variable in question.
In a such case the program execution should be resumed
by 'CON (line No.>' for which (line No.> was displayed
on the screen immediately after pressing the 'ESC' key •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

cos

Type:

Purpose:

Syntax:

PAGE 2-017

Trigonometrical function.

To calculate the cosine of an expression.

COS((expression>>

Execution:

Example:

Cosine of <expression>, for which (expression> is in
radians, is calculated.

10 INPUT A
20 PRINT COS<A>

Comments:
1. <expression> is an arithMetic expression of a real or

integer type. The result will always be real •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

CURSOR PAGE 2-018

Type:
• Statement, command

•

•

Purpose:
To place the cursor in the desired position on the screen.

Syntax:
CURSOR <expressionl), (expression2)

Execution:
<expression1) and <expression2), both of which must be
arithmetic expressions, are calculated and rounded. The
cursor is then moved to the character position, expressed
by {expressionl) and the line number expressed by (expres
sion2) •

Examples:
100 CURSOR 8,12
220 CURSOR CHARACTER#,LINE#
300 CURSOR 3*2,5+4

Co•,nents:
1.

CURSOR 10,15

(expressionl) is counted as positives from left to right
and <expression2> is counted as positives from the top
down. The upper left corner therefore has the coordi
nates 1,1 •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

DATA

Type:

PASE 2-019

Statement

Purpose:

Syntax:

To define constants in the form of a data list to be read
by the 'READ' statement.

DATA <constant1}, <constant2), ••••• , <constantn)

Execution:

Example:

At the start of program execution, a search is made for
'DATA' statements after which they are chained into a data
list. During a run, an internal pointer keeps pointing out
the next constant in the list •

10 DIM FIRST NAME$ OF 10
20 DIM FAMILY NAME$ OF 15
30 DATA "JOHN", 11 DOE 11

40 READ FIRST NAME$
50 READ FAMILY NAME$
60 PRINT FIRST-NAME$+" "+FAMILY_NAME$
70 DATA 35 -
80 READ ASE
90 PRINT ASE; "YEAR"

Comments:
1. 'DATA' statements are non-executable and are skipped

during program execution.
2. Any number of 'DATA' statements may be placed anywhere

in the program.
3. A 'DATA' statement may contain as many constants (sepa

rated by commas) as allowed by the maximum length of
input lines (=159 characters>.

4. The 'READ' statement reads the 'DATA' statements in
order of line numbers.

5. The types of constants may be mixed but must match those
of the corresponding 'READ' statements. Otherwise the
execution results in an error message.
Arithmetic expressions are not allowed in a 'DATA'
statement, and string constants must be enclosed in
double quotation marks.

6. The constants may be re-read, partly or wholly, by means
'RESTORE', 'RESTORE Cline number)', or 'RESTORE <name>'
statements.

7. When the last constant is read the system variable 'EDD'
is assigned the value of true (= 1) •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

DEF

Type:

Purpose:

Syntax:

ENDDEF PAGE 2-020

StateMent

To define and naMe a user-created function.

DEF FN<naMe}C(forMal paraMeter list)]

ENDDEF FN(naMe)

Execution:
When finding a 7 DEF, stateMent during a prograM execution,
COMAL-80 skips this part of the prograM up to and including
the corresponding 7 ENDDEF, stateMent after which execution
is resuMed from the following line.
When the function is called, by the function naMe (if
desired then followed by an actual paraMeter list), in an
expression, the function is calculated and the value is
inserted in the expression, after which the calculation is
cot11pleted.

ExaMples:
10 DEF FNAB<X,Y>
20 FNAB:=XA3/YA2
30 ENDDEF FNAB
40 I:=2
50 J:=3
60 OLE:=FNAB<I,J)
70 PRINT OLE

CoMments:

10 X:=2
20 Y:=3
30 DEF FNAB
40 GLOBAL X,Y
50 FNAB:=XA3/YA2
60 ENDDEF FNAB
70 OLE:=FNAB
80 PRINT OLE

1. (naMe) Must be a legal variable naMe .•
<forMal paraMeter list> is a list of the variable naMes
of the function definition which are replaced by the
actual parameter values when this function is called.

2. Variables used in a function definition are local and
are used only to define the function. ·
Therefore, these names May be used in other parts of the
program. This independence May, however, be removed for
one or More variables by a ,GLOBAL, stateMent.

3. Variable names in (formal paraMeter list> represent one
by one the variable naMes or values as stated in the
actual parameter list at the point of the call •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

4. A function type may be either real or integer.
5. Only by means of global variables and the function,.

result values can be returned to the point of call.
6. Only simple variables (i.e. not arrays) may be used in

(formal parameter list>.
7. If the program section between 7 DEF' and 'ENDDEF'

contains statements of more lines these must all be
contained in the program section.

8. The function value is returned from the function by
assigning it to the function name. Otherwise the value
of the function is undefined.

COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

•

•

•

DEL

Type:

Purpose:

Syntax:

Command

To delete one or more lines from the program.

DEL <start line>C, (end line>]
DEL , (end 1 i ne>
DEL (start line>,

PAGE 2-021

Exec1..1t ion:
The specified line(s) is/are deleted from the program.

Exa,v,ples:
DEL
DEL
DEL
DEL

Comments:

25,100
, 220
95,
40

1. If only (start line> is specified this line alone gets
deleted.

2. If (start line) immediately followed by a comma is
specified, this line and the rest of the program is
deleted.

3. If a comma followed by a line number only is specified,.
the program is deleted up to and including this line.

4. Specifying <start line> comma (end line) the program is
deleted between the former and the latter, including
both •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

DELETE

Type:

PAGE 2-022

• StateMent, COMMand

Purpose:

•

•

To delete file(s) on the background storage.

Syntax:
DELETE (file naMe}

Execution:
The operating systeM is called with inforMation on the
the file(s) to be deleted.

ExaMples:
100 DELETE
220 DELETE
300 DELETE

COMMents:

DELETE
DELETE

11 TEST.CML 11

11 DK1:DATA.DAT 11

11 DK0:D???????.* 11

PROGRAM.CML
DK1:C*.CML

1. In stateMents (file name> is a string expression.
2. (file name> specifies partly or wholly the naMe(s) which

is/are to be deleted where the characters,*, and/or ,7,
can be used following the specification of CP/M.

3. The whole file naMe, including any extension, Must be
specified.

4. In case (filenaMe} is non-existing an error Message is
given for commands, but not for stateMents •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•
DIM (for arithmetic variables) PAGE 2-023

Type:
Statemer,t

Purpose:
To allocate memory space for arrays and set the index
1 iMi ts.

Syntax:
DIM (list of indexed variables>

Execution:
Considering the type of variable the necessary memory is
calculated and allocated.

ExaMples:

•
10 DIM
10 DIM
10 DIM

MONKEY(5)
NUMBER(7,3), COUNT(7)
CARS#(-5:15,3:8)

// SEE NOTE 5

// SEE NOTE 6

•

10 DIM A$ (3 : 2 > , B (5 >

Comments:
1. Arrays must be dimensioned.
2. An array may have arbitrarily many dimensions, limited

only by the memory available and the maximum length of
the input line (159 characters.>

3. Each of the elements in (list of indexed variables> are
specified using the syntax:

(variable name) ((list of index limits>>
where <variable name) optionally includes the declara
tion character,#,.
The elements are separated using comma.
(list of index limits> contains for each dimension the
lower and upper limits for that dimension following the
syntax:

[(lower limit):](upper limit)
The diiY,ensions are separated by commas •
If no lower limit is given it defaults to 1.

4. The ,DIM, statement assigns the value Oto each element.
5. More variables can be dimensioned in the same line.
6. Arithmetic and string variables can be diMensioned on

the same line •

• COPYRIGHT CC) 1981 METANIC ApS DENMARK

•

•

•

DIM

Type:

Purpose:

Syntax:

(for string variables) PAGE 2-024

Statement

To allocate
and set the

1Y1emory space for st rings and arrays of
index 1 imi ts.

DIM (list of indexed variables>

strings

Execution:
Considering the dimension and length of the variable, the
necessary memory is allocated.

ExaMples:
10 DIM A$ OF 80 II SEE NOTE 9
10 DIM A$(3) OF 10 II SEE NOTE 7
10 DIM B$(0:1,3) OF 25 II SEE NOTE 8
10 DIM A$(3:2) OF 10, .B$(5) OF 25 II SEE NOTE 5
10 DIM A$(5) OF 15, C(5) II SEE NOTE 6

CoMments:
1. Arrays and string variables must always be dimensioned.
2. An array may have arbitrarily many dimensions, limited

only by the memory available and the maxitt1UIY1 length of
the input line (159 characters.)

3. Each of the elements in (list of indexed variables> ara
specified using the syntax:

(variable name)[((list of index limits})] OF (length>
where <variable name) includes the declaration character
, $, •

The elements are separated using comMa.
For arrays (list of index limits) contains for each
diiY,ension the lower and Lipper limits for that dimension
following the syntax:

[(lower limit):J(upper limit)
The dimensions are separated by commas.
If no lower limit is given it defaults to 1.
<length> indicates the maximum length of the string
variable or of each of the elements in the string array.
The actual value of a string variable/element may have
a length varying from zero characters (the empty string)
up to and including the stated <length>.

4. The , DIM, statement assigns the value 1111 (empty st ring)
to each element.

5. More variables can be dimensioned in the same line.
6. Arithmetic and string variables can be dimensioned in

the saMe 1 i ne •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

7. This array will contain the elements A$(1), A$(2} and
A$(3) each having a maximu1Y1 length of 10 characters. •

8. This array will contain the elements B$(0,1), B$(0,2),
B$(0,3), B$(1,1), B$(1,2) and B$(1,3) each having a
maximum lentjth of 25 characters.

9. A string variable needs not be an array.

•

•

COPYRIGHT <C> 1981 METANIC ApS DENMARK •

•

•

•

DIV

Type:

PAGE 2-025

Arithmetic operator

Purpose:

Syntax:

To carry out an integer division between two arithmetic
expressions.

(expression!) DIV (expression2)

Execution:
<expression!) is divided by (expression2> and the result is
rounded to integer.

Examples:
100 A#:=B DIV C
100 NUMBER:=17 DIV NUM

Comments:
1. The result N is defined by the integer value of N which

makes the expression
(expression!) - N * (expression2)

assume its lowest possible non-negative value.
2. The calculation is carried out by executing a normal

real division upon which the result is converted to
integer. The type of the result depends upon the type
of (expression!) and (expression2) in the following way:

(expression!) DIV (expression2) result
real real real
real int real
int real real
int int int

3. Also see the 7 MOD, operator •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

EDIT

Type:

Purpose:

Syntax:

Co«t«tand

To «take correcting easier
co«tputer working storage.

EDIT [(start)][, (end)]
EDIT r <start>, l

PAGE 2-026

in progra«ts already in the

Execution:
The specified progra«t area is called fro«t the working
storage and displayed on the screen line by line. The
cursor is placed i«t«tediately after the last character and
can be Moved back and forwards on the line using the two
control keys cursor left and cursor right respectively.
Place the cursor on the character to be corrected, key in
the correction and the cursor Moves one position to the
right.
Having co«tpleted the corrections, press 'RETURN' upon which
the line undergoes the syntax control and when accepted it
is stored. The next line is displayed and the sequence
repeats until (end) is reached.

Examples:
EDIT
EDIT 100
EDIT 100,
EDIT , 100
EDIT 100,200

CoMments:
1. If <start> is o«titted, the editing starts at the first

prograM 1 ine.
2. If <end) is OMitted, the editing continues until the end

of the program.
3. Omitting both liMits, the editing starts in the first

prograM line and continues until the end of the prograM
(or until the 'ESC' key is pressed).

4. Stating only <start), without the comma, the editing
covers this particular line only.

5. All the correction facilities described in INPUT EDITING
in chapter 1 are available •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

6. Also the line nuMber May be edited which causes the line
to be placed in the working storage according to the new.
line number. Any line already stored at that number will
be deleted.
The original line will not be deleted from the prograM
(use the 'DEL' coMMand).

7. When pressing 'RETURN' the line is stored in the working
storage as the line is displayed on the screen regard
less of the cursor position.

8. The edit coMMand May be interrupted at any tiMe by pres
sing the 'ESC' key, whereas changes in the actual line
only happens when pressing 'RETURN'.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

•

•

•

END

Type:

Purpose:

Syntax:

PAGE 2-027

Statement

To stop the execution of a program

END

Execution:

ExaMple:

Program execution is terminated
,*, is displayed to show that the
ready to accept new input.

10 K:=O
20 IF K>lOO THEN
30 END
40 ELSE
50 GOTO JOHN
60 ENDIF
70 LABEL JOHN
80 PRINT K, 11

II,

90 K:+1
100 GOTO 20

and the proMpt character
COMAL-BO interpreter is

C 01Y11Y1ent s :
1. The 7 END, statement does not give any inforMation as to

where the program execution was interrupted, as is the
the case when using the 7 STOP7 statement.

2. The use of the 7 END, statement is optional, as COMAL-80
adds a such (invisible) statement at the end of each
program.
Reaching this statement it automatically informs:

Program execution finished

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

ENTER

Type:

Purpose:

Syntax:

PAGE 2-028

Command

To transfer a file from the background storage, stored as a
string of ASCII characters, and place it in the working
storage.

ENTER (file naMe)

Execution:
The specified file is opened and transferred character
by character.
Following each 'RETURN' the line is syntax-checked and the
formed line, if accepted, is placed in the working storage.
In case of error the loading is temporarily halted upon
which the line is displayed along with an error message.
Using the normal editing facilities the user may enter
corrections, and after 'RETURN' another syntax-check takes
place. When the line is accepted it is placed in the
working storage after which the loading of the file
continues.

Examples:
ENTER DKO:PROGRAM
ENTER POLVNO

Comments:
1. Only files stored in ASCII format, using the 'LIST'

command, can be read by the 'ENTER' command.
2. The working storage is not cleared prior to the file

being entered. However, new lines having a line number
already existing in the working storage replace the old
lines. This overriding takes place on a line-basis, with
no consideration of the different lengths of lines, so
that a short line can totally replace a long one. Making
sure that there are no overlapping line numbers this may
be used for combining two or more programs.
In any other case, the working storage should always be
cleared by using the 'NEW' command before reading a file
by the 'ENTER' command.

3. ASCII files may be read by all versions of COMAL-BO why
this format is recommended for storing files for a
longer period of time •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

EDD

• Type:

Purpose:

Syntax:

PAGE 2-029

Syste1Y1 variable

To deter1Y1i ne whet her al 1 data f ro1Y1 the , DATA, stateMents in
the program have been read.

EDD

Execution:

• Exa1Y1ple:

•

EDD has the value of false C = 0 > as long as data froM the
7 DATA 7 statements of the program are to be read. Having
read the last set of data, the 'EDD, is assigned the value
of true (= 1). Then executing a 7 RESTORE 7 statement,
7 EOD' again is assigned the value of false.

10 WHILE NOT EDD DD
20 READ A
30 PRINT A
40 ENDWHILE
50 DATA 55, 2, -15, 35

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

EOF PAGE 2-030

• Type:
SysteM variable

Purpose:
To determine whether all data in a data file have been read

Syntax:
EOF ((file No.>>

Execution:
At the execution of an 'OPEN FILE' stateMent or command of
the type of 'READ', the corresponding 'EOF ((file No.))'
system variable is assigned the value of false (= 0).
Having read the last value of the file, it is assigned the

• value of true (= 1).

Example:

•

10 OPEN FILE 0,"TEST",READ
20 REPEAT
30 READ FILE O: A
40 UNTIL EOF (0)

Comments:
1. (file No.> is an arithMetic expression •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

ERR PAGE 2-031

• Type:
System variable

•

•

Purpose:

Syntax:

To remember whether a non-fatal error has occurred during
a program execution.

ERR

Execution:

Exa«,ple:

During a normal program execution, any error will stop the
program and create an error message. However, a number of
errors can be bypassed in a well-defined manner.
In such cases a program interruption may be avoided by the
use of a 7 TRAP ERR- 7 statement, before the error arises. In
these cases, the system variable will be assigned a value
equal to the error number, which in all tests will be
considered true because it is different from O. The program
execution will then continue.

10 !NIT , FILENAME$
20 TRAP ERR-
30 OPEN FILE 0, "XPLOCOMM", READ
40 TRAP ERR+
50 IF NOT ERR THEN
60 INPUT FILE O: DEFAULT FILENAME$
70 ELSE -
80 DEFAULT_FILENAMEs:="XPLOPROG"
90 ENDIF

100 CLOSE

Comments:
1. The execution of a program starts by assigning the value

of false (= 0) to the system variable 7 ERR7
•

When a ,TRAP ERR-, statement has been executed, a non
fatal error assigns its error number to 7 ERR 7 and it
retains this value until its status is checked. Immedi
ately after a such check, 7 ERR7 is assigned the value of
false.
Normally, COMAL-BO sets a variable true by assigning it
the value of 1, but in this case the error number is
used.
The error numbers are further described in appendiK C.

2. By executing a 'TRAP ERR+' statement, the system returns
to normal error handling •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•
ERRTEXT$

Type:

PAGE 2-032

String function

Purpose:
To give access to error descriptions in the COMAL-SO system

Synta>e:
ERRTEXT$((e>epression>>

E>eecution:
(e>epression> being arithmetic is calculated and rounded if
necessary. The corresponding error description is then
returned.

E>eample:

•
· 10 FOR 1=1 TO 295

20 PRINT ERRTEXT$(I)
30 NEXT I

•

Conunents:
1. This function is only valid when error descriptions are

not deleted at the start-up of COMAL-80. If they are
deleted the result will be that the function returns an
eMpty string •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

ESC

Type:

PAGE 2-033

Syste,y, variable

Purpose:
To remember whether the 'ESC' key has been pressed.

Syntax:
ESC

Execution:

ExaMple:

During normal program execution it is checked, before each
statemer,t, whether the 'ESC' key has been pressed. In the
affirmative the program execution is stopped.
If a 'TRAP ESC-' statement has been executed, this function
is blocked and the system variable 'ESC' is instead assig
ned the value of true (= 1) when 'ESC' is pressed.

10 TRAP ESC-
20 REPEAT
30 PRINT "THE 'ESC' KEY IS NOT PRESSED"
40 UNTIL ESC
50 TRAP ESC+
60 PRINT "THE 'ESC' KEY WAS PRESSED"

Cort,ments:
1. Starting program execution the system variable 'ESC' is

assigned the value of false (= 0). If a 'TRAP ESC-'
statement is executed and the 'ESC' key pressed after
that, the program execution continues but the system
variable 'ESC' is assigned the value of true (= 1 > and
keeps this value until its status is checked.
IMmediately after the value is used, 'ESC' is again
assigned the value of false (= 0).

2. The system returns to normal handling of the 'ESC' key
when a 'TRAP ESC+' statement is executed •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

EXEC

Type:

Purpose:

Syntax:

PAGE 2-034

Statement

To call a named sub-program and after this is finished, to
return to the line following.

EXEC (procedure name>C((actual parameter list))]

Execution:
The procedure specified by (procedure name> is called, as
(actual parameter list> replaces the formal parameter list
in the procedure heading.
Meeting the 'ENDPROC' statement, the program execution is
resumed from the first executeable line following the
'EXEC' statement.

Examples:
100 EXEC TEST
100 EXEC FATAL_ERROR<"ERROR IN X-PL/0-COMPILER")
100 EXEC ERROR(30)
100 EXEC ENTER_<CONSTANT*,LEV#,TX#,DX#)
100 EXEC EXPRESSION(FNINCLUDE(FSVS,RPAREN*>,LEV#,TX#>

CoMments:
1. The number of actual parameters must be the same as the

number of formal parameters in the 'PROC' statement.
Further, each parameter must conform to dimension and
type.

2. If the formal parameter is specified by 'REF', a
variable (possibly indexed) must be inserted as an
actual parameter.

3. If the formal parameter is not specified by 'REF' the
actual parameter must be an expression of a correspon
ding type, possibly just a variable name •
Actual integer parameters may, however, be inserted in a
formal real parameter.

4. The actual para11r1eters must be defined before the 'EXEC'
statement.

5. See the section 'PARAMETER SUBSTITUTION' in chapter 1
for more information •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

EXP

Type:

Purpose:

Syntax:

PAGE 2-035

ArithMetic function

Returns e to the power of an arithmetic expression.

EXP((expression))

Execution:

ExaMple:

The base of the natural logarithm e (=2.718282) is raised
to a power specified by <expression).

10 INPUT A
20 PRINT EXP(A)

CoMments:
1. <expression> is an arithMetic expression of real or

integer type. The result will always be real.
2. The value of <expression> Must be less than or equal to

88.02968 by use of the COMAL-BO 7-digits version and
292.4283068102 by the 13-digit version; otherwise COMAL
BO stops the program execution and creates an error
«,essage •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

FALSE

Type:
SysteM constant

Purpose:

PAGE 2-036

Mainly to assign a boolean variable the value of false.

Synta><:
FALSE

E><ecution:
Returns the value 0.

10 II PRIME
20 II
30 DIM FLAGS#(0:8190)
40 SIZE1:=8190
50 II
60 COUNT:=O
70 MAT FLAGS#:=TRUE
80 II
90 FOR I:=O TO SIZE1 DO

100 IF FLAGS#(!) THEN
110 PRIME:=I+I+3
120 K:=I+PRIME
130 WHILE K<=SIZE1 DO
140 FLAGS#(K):=FALSE
150 K:+PRIME
160 ENDWHILE
1 70 COUNT:+ 1
180 ENDIF
190 NEXT I
200 PRINT 11 TOTAL NUMBER OF PRIMES: ",COUNT

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

FOR

Type:

TO DOWNTO STEP NEXT PAGE 2-037

Statement

Purpose:

Syntax:

To delimit a program section and define the number of times
it is to be executed.

FOR (variable) -- <start) TO (end) [STEP (step> J

NEXT <variable)

Execution:

Example:

Meeting the 'FOR' statement, Cvariable):=<start) is assig
ned and it is calculated whether the inequality

({end>-<variable>>*SGN ((step)) >= 0
is met. If this is not the case, the 'FOR ••• NEXT' structure
including this program section is bypassed and the execu
tion continues from the first executable line following the
'NEXT' statement.
In case the inequality does hold, the program continues
through the program section until meeting the 'NEXT' state
ment, then it jumps back to the line following 'FOR' adding
<step) to <variable) and checks the inequality again using
the new value of <variable>.
This repeats until the inequality does not hold any longer.

10 FOR I=1 TO 100 STEP 5
20 PRINT I, 11 11

30 NEXT I
40 STOP

Cottuv,ent s:
1. Omitting 'STEP <step)' the <step> value is set to 1.
2. If 'DOWNTO' is used in stead of 'TO', (step) is negated.
3. Following a 'FOR ••• NEXT' execution, the <variable> has

the value not fulfilling the above inequality.
4. Up to 5 'FOR ••• NEXT' statements may be nested, each of

them having their separate (variable).
Each subroutine level is assigned a 'FOR ••• NEXT' depth
of 5 giving the option of any depth by means of the
'GOSUB' statement or by use of procedures •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

5. Each 'NEXT' statement must contain one only (variable>,
which must be the same one as stated in the correspon
ding 'FOR' statement.

6. It is possible to interrupt a 'FOR ••• NEXT' sequence by
using 'GOTO'.

7. The start value of the (variable> is assigned before
<end>.
Consequently program structures of the type:

10 J:= X
20 FOR J:=1 TO J+X
30 PRINT J
40 NEXT J

will be executed X+1 times.

•
8. For each 'FOR' statement, one only 'NEXT' statement can

be assigned.
9. During programming ':=• and '=' are interchat1geable. In •

program listings':=• is used.
10. <variable) must be an arithmetic variable.

•

COPYRIGHT <C> 1981 METANIC ApS DENMARK •

PAGE 2-038

Intentionally left blank •

•

•

•

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

FRAC

Type:

Purpose:

Syntax:

PAGE 2-039

Arithmetic function

To extract the decimal part of a real number.

FRAC(<expression))

Execution:

Example:

The resl1lt is calculated according to the expression:
<expression>-INT((expression))

10 INPUT A
20 PRINT FRAC<A>
30 PRINT FRAC(5.72)
40 PRINT FRACC-5.72)

Co1Y11Y1ents:
1. <expression> being arithmetic must be of real type. The

result will be of real type.
1. (expression> being positive the result is calculated by

cancelling the digits before the decimal point.
If (expression> is negative the result is 1 minus the
decimals of (expression> •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

6ETUNIT

Type:

Purpose:

Syntax:

Statement, command

To inform which background storage device
default device.

GETUNIT [(variable)]

PAGE 2-040

is the present

Execution:
The name of the current default device is assigned to
<variable) in the form of a 3-character code, two letters
and one figure, followed by a colon.

Examples:
100 GETUNIT DISK$

GETUNIT

CoMMents:
1. Using 'GETUNIT' as a command the <variable> must be

omitted, after which the result is displayed on the
terMinal.
In stateMents the <variable> must be specified.

2. The two letters indicate the type of device, for which
'DK' means floppy disk. The digit indicates the unit
number.

3. (variable) is a string variable •

• COPYRIGHT <C> 1981 METANIC.ApS DENMARK

•
GLOBAL

Type:
Statement

Purpose:

PAGE 2-041

To tY,ake variables i'r'l the tt,ain program accessible within a
, PROC, or , DEF7 structure.

, Syntax:

•

•

GLOBAL (list of variable names>

Execution:
The variables of the main program mentioned in (list of
variable names> are made accessible within the 7 PROC' or
• DEF7 structure containing the , GLOBAL, stateMent •

Exa«,ple:
10
20
30
40
50

CotYuv,ents:

PROC ERROR(N#) CLOSED
GLOBAL CC#, ERR_, ERRORS#
PRINT"*****"; SPC$(CC#-9>;
ERR_:=FNINCLUDE<ERR_,N#+l);

ENDPROC ERROR

"·''"; N#
ERRORS#:+1

1. The variable names in (list of varimble names) are sepa
rated by comma. Array variable names cannot be followed
by a'r'ly indices.

2. This stateme'r'lt may be used withi'r'l closed procedures and
7 DEF, structures only.

3. The variables are tra'r'lsferred from the main program even
if the 7 PROC 7 or 7 DEF 7 structure containing the 'GLOBAL'
statement is called from an other such structure.

4. The executio'r'l of the 'GLOBAL' state«,ent does not affect
the accessibility of the mentioned variables in any
other part of the program than the 7 PROC' or 'DEF'
structure contai'r'ling the 'GLOBAL' stateMent.

5. All operations allowed on the variables in the main pro
gram are also allowed within the 7 PROC' or ,DEF, struc
ture containing the 'GLOBAL' statement •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•
GOSUB

Type:

Purpose:

Syntax:

RETURN PAGE 2-042

StateMent

To call a subroutine, possibly from more locations in the
same prograM, and return to the line following the call.

GOSUB (line nuMber>

<line nu1Ytber)

RETURN

•
Execution:

Meeting a 7 GOSUB' stateMent the prograM continues froM the
(line number> stated until Meeting the 'RETURN, stateMent,

•

ExaMple:

upon which the prograM is resuMed from the line following
the calling 7 GOSUB, stateMent.

10 PRINT "I START IN THE MAIN PROGRAM"
20 GOSUB 50
30 PRINT 11 I AM BACK IN THE MAIN PROGRAM11

40 STOP
50 PRINT 11 1 AM IN THE SUBROUTINE"
60 RETURN

CoMMents:
1. A subroutine May be called any nuMber of tiMes.
2. Subroutines May be called froM other subroutines, and

such nestings are liMited by the available MeMory only.
3. Following the 7 RETURN 7 stateMent the prograM is resuMed

froM the line iMMediately following the latest 'GOSUB'
executed •

4. A subroutine May include More than one 7 RETURN7 state
Ment.

5. Subroutines May be placed anywhere in the prograM, but
clear identification froM the main prograM is recomMen
ded.

6. To prevent any inadvertant execution of a subroutine it
is recomMended to place a 7 STOP', 'GOTO', or an 'END'
statement in the line iMMediately before the subroutine.

7. Meeting a 7 RETURN7 stateMent during an execution with
out having executed a 'GOSUB' statement, the program
stops the execution and creates an error message •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•
GOTO

Type:

Purpose:

Syntax:

Statement

To interrupt the normal sequential program
continue from the stated line.

GOTO (line number>
GOTO (name>

PAGE 2-043

execution and

Execution:
The execution continues in the stated line or, if not exe
cutable, from the first executable line to follow •

•
Examples:

10 PRINT "JO",
20 SOTO 40

10 PRINT "JO",
20 GOTO REST

•

30 STOP
40 PRINT "HN"
50 GOTO 30

Comments:

30 LABEL FINISH
40 STOP
50 LABEL REST
60 PRINT "HN"
70 GOTO FINISH

1. Statements like ,LABEL, and 'REM, are among those not
executable •

• COPYRIGHT (C> 1981 METANIC ApS DENMARK

IF THEN PAGE 2-044

Type:
• Statement

p·urpose:

Syntax:

To execute or skip a statement depending on a logical
expression being true or false.

IF (logical expression> [THEN] (statement>

Execution:

Example:

Only when (logical expression> is true (<> 0 >, <state
ment> is executed.

•
10
20
30

INPUT "PRINT A NUMBER: ": A
IF A THEN PRINT "A <> 0"

•

40
50
60
70

Comments:

IF AC0 THEN PRINT "A<0"
IF A=0 THEN PRINT "A=0"
IF A=1 THEN PRINT "A=1"
IF A=2 THEN PRINT "A=2"
IF A>2 THEN PRINT "A)2"

1. Following an 'IF ••• THEN, stateMent the following state
ments may be used:
CALL, CAT, CHAIN, CLEAR, CLOSE, CURSOR, DELETE, END,
EXEC, EXIT, FORMAT, GETUNIT, GOSUB, GOTO, INIT, INPUT,
LET, MAT, ON, OPEN, OUT, PAGE, POKE, PRINT, QUIT,
RANDOM, READ, RELEASE, RENAME, RESTORE, RETURN, SELECT,
STOP, TRAP, UNIT, and WRITE.
Further, a new 'IF ••• THEN' statement is allowed.

2. During programming 'THEN' may be omitted as COMAL-BO
automatically adds it to program listings •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

IF THEN ENDIF PAGE 2-045

Type:
• Statement

Purpose:

•

•

Syntax:

To execute a program section if a logical
true; otherwise the section is skipped.

IF (logical expression> CTHENJ

ENDIF

expression is

Execution:

Example:

If the (logical expression> is true (<> 0) the prog~aM
section within 'IF ••• ENDIF' is executed. The (logical
expression> being false (= 0) the program is resumed froM
the first executable line following the 'ENDIF' statement.

10 IF MEMBER#(! OR MEMBER#)31 THEN
20 EXEC FATALERROR<"ERROR IN X-PL/0-COMPILER">
30 ENDIF

Comments:
1. During progra«,ming 'THEN' may be omitted, as C0MAL-80.

automatically adds it to program listings •

• COPYRIGHT CC> 1981 METANIC ApS DENMARK

IF THEN ELSE ENDIF PAGE 2-046

Type:
• StateMent

Purpose:

•

Syntax:

To execute one of two prograM sections depending on a
logical expression being true or false.

IF <logical expression> CTHENl

ELSE

ENDIF

Execution:

Example:

If the (logical expression) is true (<> 0 the program
section surrounded by 'IF •••••• ELSE' is executed. The
(logical expression) being false (= 0 > the program
section surrounded by 'ELSE ••• ENDIF' is executed.

10 INPUT "GUESS A NUMBER BETWEEN 1 AND 5": A
20 B:=RND < 1, 5)
30 IF A=B THEN
40 PRINT "CORRECT"
50 ELSE
60 PRINT "WRONG. THE NUMBER WAS: 11

; B
70 ENDIF
80 STOP

Comments:
1. During programming 'THEN' may be omitted as COMAL-BO

• automatically adds it to program listings •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

IF

Type:

THEN ELIF ELSE ENDIF PAGE 2-047

Statement

Purpose:

Syntax:

To execute one of several program sections depending
on one of several logical expressions being true.

IF (logical expression 1) CTHENJ

ELIF (logical expression 2) [THEN]

ELIF (logical expession n> CTHENJ

[ELSE

.]
ENDIF

on

Execution:

Example:

Every (logical expression n> is checked one by one. If one
is true< <> 0 > the following program section is executed
until meeting the corresponding 'ELIF', 'ELSE', or 'ENDIF'
statement, upon which the program resumes from the first
executable line following the 'ENDIF' statement.
When all (logical expressions> are false (= 0 > the pro
gram section surrounded by 'ELSE ••• ENDIF' is executed,
upon which the program is resumed from the first executable
line following the 'ENDIF' statement.

10 INPUT "PRESS ONE OF THE DIGITS 1, 2, OR 3: ": A,
20 IF A=1 THEN
30 PRINT 11 THE DIGIT WAS 1"
40 ELIF A=2 THEN
50 PRINT "THE DIGIT WAS 2"
60 ELIF A=3 THEN
70 PRINT 11 THE DIGIT WAS 3"
80 ELSE
90 PRINT "I ASKED FOR ONE OF THE DIGITS 1, 2, OR 3! 11

100 ENDIF

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

CoMMents:
1. 'ELIF' is an abbreviation of 'ELSE IF'. •
2. If More (logical expressions> are true, only the first

one is evaluated.
3. 0Mitting the 'ELSE' statement, and none of the <logical

expressions> are true, the program execution continues
in the first line after 'ENDIF'.

4. During prograMMing 'THEN' May be omitted, as COMAL-80
automatically adds it to program listings.

COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

IN PAGE 2-048

Type:
• String operator

Purpose:
To check whether a text string is contained in another.

Syntax:
<expression!) IN (expression2)

Execution:

Example:

It is checked whether <expression!> is contained in
<expression2). If it is, the logical value is true (= 1 >.
If it is not, the logical value is false (= 0).

•

1()

20
30

DIM A$ OF 15
DIM B$ OF 15

•

40
50
60
70
80
90

INPUT "WRITE A TEXT: 11
: A$

INPUT "WRITE ANOTHER TEXT: B$
IF B$ IN A$ THEN
PRINT "SECOND TEXT IS PART OF FIRST TEXT"

ELSE
PRINT "SECOND TEXT IS NOT PART OF FIRST TEXT"

ENDIF

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

INIT

Type:

PAGE 2-049

Statement, coMmand

Purpose:

Synta><=

To prepare a formatted diskette, placed in the drive for
use.

INIT [(device> J

E><ecution:
The stated (device> is initialized.

E><amples:
100 INIT 11 DK0: 11

INIT
INIT DK1:

Comments:
1. Under CP/M all disk drives are initialized and the

(device) indication is not used, but if it is given, it
must be the name of a disk drive. No disk files may be
open when this statement/command is e><ecuted •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•
INP

Type:

Purpose:

Syntax:

Machine code function

To read the value of one of the Z-80
ports.

INP<<expression>>

Execution:

PAGE 2-050

l'f1icroprocessor input

The input port, defined by <expression> is read.

Example:
10 PRINT INP <17)

• Comments:
1. <expression> must be of a value greater than or equal to

0 and less than or equal to 255.
2.

•

(expression> is considered a decimal value which is
rounded to integer if necessary •

·C~PYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

INPUT

Type:

Purpose:

Syntax:

StateMent

To read and assign to variables the values
the terminal, during program execution.

INPUT C(text>:J (variable list>

PAGE 2-051

received froM

Execution:
When ff,eet i ng the ' INPUT' st at emer,t the p rog raM execution
pauses after a possible <text> is displayed. As the user
keys in values, they are assigned to the stated variables
in (variable list> from left to right. Having inserted the
last value the user presses •RETURN', upon which the
program execution continues.

ExaMples:
100 INPUT MONKEY, JOHN#, NAME$
100 INPUT "WRITE 3 DIGITS: ": A, B, C

CoMMents:
1. If the 'INPUT' statement contains a (text>, this is

displayed exactly as described, whereas only '?' is
displayed when there is no <text>, indicating that the
computer expects some input.

2. If <variable list> ends by a comma the following output
appears in the print-zone following. The width of the
print-zones are set by using 'TAB'.

3. If (variable list> ends by a semicolon the following
output appears immediately following the latest value
presented from the keyboard.

4. More values may be entered as long as they are separated
by a character which cannot be part of a nuMerical value
such as space or comMa •

5. String constants must be entered as a sequence of ASCII
characters. It is only possible to insert values
following a string constant if the 'RETURN' key is used
to terMinate each such.
When a string constant follows an arithMetic constant
COMAL-BO considers the first character, which cannot be
part of the artihmetic constant, a delimiter, and starts
the string constant with the next character.

6. The type of values keyed in must conform with the types
stated in the 'INPUT' statement •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

7. (variabe list) ,v,ay contain al 1 variable types, but
arrays must be properly indexed and substrings may not
be used. •

8. Responding to 'INPUT' by the wrong type of value, causes
the error message 'ERROR IN NUMBER' and the item must be
corrected. No assignment is made until an acceptable
input is given.

9. Responding to 'INPUT' with too few ite,v,s, causes a '?'

10.

to be printed on the terminal and the program awaits
More input.
Responding to
error message
corrected.

'INPUT' with too many items, causes the
'TOO MUCH INPUT', and the input must be

COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

•

•

•

•

INPUT FILE PAGE 2-052

Type:

Purpose:

Syntax:

StateMent

To read data froM an ASCII data-file written by the 'PRINT
(USING) FILE' stateMent.

INPUT FILE (file No.> C, <rec. No.> J: <variable list>

Execution:
The values of the variables in <variable list> are read
from the file contained in (file No.>.

Examples:
100 INPUT FILE 3: A$
100 INPUT FILE O: Bl, C

Comments:
1. Before meeting the 'INPUT FILE' statement a file must

be opet1ed and the connection established between the
stated file naMe and the used (file No.) of the 'INPUT
FILE' statement. This is done by the 'OPEN FILE' state
ment or comMand, and type 'READ' or 'RANDOM'.

2. The <rec. No.> is used only in 'RANDOM' files and is an
arithmetic expression which is rounded to integer if
necessary.

3.
4.

(file No.> is an arithmetic expression.
<variable list> may contain all variable types but
arrays must be properly indexed and substrings may not
be used.

5. The elements of (variable
6. During programming 'FILE'

In program listings 'FILE'
7. Comments 4, 5, and 6 to

equally well here •

list> are separated by comMas.
and '*' are interchangeable.
is used.
the 'INPUT' stateMent apply

COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

INT

Type:

Purpose:

Syntax:

PAGE 2-053

Arithmetic function

Returns the largest integer, equal to or less than a speci
fied expression.

INT<<expression))

Execution:

Exa1Y1ple:

The largest integer less than or equal to (expression) is
calculated.

10 INPUT A
20 B:=INT(A)
30 PRINT B
40 PRINT INT(5.72)
50 PRINT INT<-5.72)

Co1Y11Y1ent s:
1. <expressiot1) is of real type. The result is an integer

of real type.
2. Also see the 'ROUND' and 'TRUNC' functions •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•
IVAL

Type:

Purpose:

Syntax:

PAGE 2-054

Arithmetic function

To convert an integer, existing as a string, to an integer
of integer type.

IVAL((string expression>>

Execution:
The characters in (string expression>, which Must forM an
integer number, are converted to integer •

•

Example:
10 DIM A$ OF 4
20 INPUT A$

•

30 PRINT IVAL(A$)
40 PRINT IVAL< "3215" >

Comments:
1. If the string in (string expression> contains other

characters than digits including a possible sign, the
program execution is stopped and an error message is
displayed.

2. Also see the ,VAL, function •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•
LABEL

Type:

Purpose:

Syntax:

PAGE 2-055

To name a point in a COMAL-80 program for reference to the
'GOTO' and 'RESTORE' statements.

LABEL (naiY,e>

Execution:

•

Example:

•

The 'LABEL' statement is non-executable and serves only to
mark a point in the program •

10 LABEL START
20 INPUT "WRITE A NUMBER: ": NUMBER
30 PRINT NUMBER
40 GOTO START

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

LEN PAGE 2-056

Type:
Arithmetic function •

Purpose:
Returns the actual length of a string variable.

Syntax:
LEN(<variable))

Execution:
The actual number of characters in <variable) is counted.

Example:
10 DIM A$(1:10) OF 15
20 INPUT A$(5)
30 B#:=LEN(A$(5))
40 PRINT A$(5)
50 PRINT B#

Comments:
1. It is the actual contents of the (variable) that is used

to determine its length. The dimensioned length is only
of importance by being the maximum value of the result •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

LET

Type:

Purpose:

Syntax:

PAGE 2-057

Statert,ent

To assign the value of an expression to a variable.

tLETJ <variable) -- <expression)

Execution:

Exa«,ple:

<expression) is calculated and the result is stored in the
memory space allocated for <variable>

10 LET A:= 5
20 LET B := 3
30 LET SUM:= A+B
40 A:+B
50 DIFFERENCE:= A-B
60 PRINT SUM
70 PRINT A
80 PRINT DIFFERENCE

Comments:
1. The use of the word 'LET' is optional, i.e. it may be

omitted as shown in line 40 of the example. In program
listings 'LET' is OMitted.

2. During programming'=' and':=' are interchangeable. In
prog rart, 1 i stings ' : =' is used.

3. (variable) := <variable) + (expression) may in short be
written as <variable> :+ (expression>.
<variable) := <variable) (expression) may be expressed
(variable} :- <expression>, though the latter may not be
used for string variables.

4. The type used for (expression> and <variable) must be
equal, though integer values can be assigned to a real
variable.

5. For string variables having (expression> longer than
<variable>, <expression> wi 11 be shortened from the
right.

6. For string variables having (expression) shorter than
<variable), <variable> gets the actual length only.

7. Assigning to s1.1bstri'r1gs, <expression) and (variable)
must be of the same length.

8. More assignments may be done on a single line, separated
by semicolon, but the keyword 'LET' (which is optional)
must only appear before the first assignment •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

LIST

Type:

Purpose:

Synta><:

PAGE 2-058

Cort11Y1and

To list the working storage of the computer, partly or
wholly, as a string of ASCII characters.

LIST [<start) JC, <end> JC {file name> J
LIST C<start>,JC(file name>J

E><ecution:
The specified part of of the program, being in the internal
format, is converted into a string of ASCII characters and
listed on the specified file •

E><amples:
LIST
LIST 10
LIST 10,100
LIST , 100
LIST 100,
LIST TEST
LIST 10,100 TEST
LIST ,100 DK1:TEST
LIST LPO:

Co MiY'1ent s :
1. Omitting (file name> all listings are presented on the

terminal carrying the device name of 7 DSO:,.
If the specified listing contains more lines than this
device is able to show in one picture, only the first
page is shown and the COMAL-BO interpreter awaits that
the 7 SPACE BAR, is pressed to display the next page, or
the ,RETURN, key for displaying the next line. Pressing
the 7 ESC, key will terminate the listing •

2. Omitting both (start line) and <end line> the total
program is listed. Omitting only <start line>, the
listing starts at the first program line. Leaving (end
line) out the listing continues until the end of the
program. Specifying only (start line>, without the
comma, only the specified line is listed.

3. The 7 LIST 7 command considers all listings being a trans
fer of characters from the memory to a file.
Consequently, a listing on a connected printer is ob
tained by stating 7 LP:, for a (file name>, possibly fol
lowed by the unit t1umber of the printer. When no unit
number is speciified it defaults to LPO: •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

4. (record size> is used only for files of 'RANDOM' type
and expresses the total number of bytes to be written in
each record. The necessary size is calculated along the
f o 11 ow it1g 1 i nes:

- Integers take 2 bytes
- Real figures take 4 bytes at 7-digits precision,

and 8 bytes at 13-digits precision.
- Strings take 2 bytes plus one byte per character

of t he st ring.
5. Up to 8 disk files may be open at the same time. This

leaves room for another 2 non-disk files to be open at
the same time. If disk files are used in connection with
'SELECT OUTPUT', 'LIST', 'SAVE', 'CAT', 'ENTER', or
'LOAD', fewer than 8 disk files may be opened by 'OPEN'.
A file may be open on more file numbers contemporarily,
provided that the same <type) is used.

6. Having closed a sequential file, it cannot again accept
to be written in.

7. A file type 'RANDOM' always Must be re-opened using the
satYte <record size) with which it was originally opened.
<record size> can be recovered by the prograM:

10 OPEN FILE 0, "(filename>.RAN",READ
20 READ FILE O; RECORD_SIZE#
30 PRINT RECORD_SIZE
40 CLOSE

COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

•

•

•

•

LOAD PAGE 2-059

Type:

Purpose:
To read a binary file froM the background storage.

Syntax:
LOAD (file name>

Execution:
The working storage of the computer is deleted and the
operating system is called, upon which the file is read.

Exat11ples:
LOAD TEST
LOAD DKl:PROGRAM

Comments:
1. Only binary files can be read by the 'LOAD' command,

i.e. files stored by the 'SAVE' co«,mand. In catalog
listings these files may be identified by the extension
of the name by •·. CSB'.

2. The extension '.CSB' is always supplied by the COMAL-80
system and cannot be stated by the user •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

LOG

Type:

Purpose:

Syntax:

PAGE 2-060

Arithmetic function

Returns the natural logarithm of an arithmetic expression.

LOG<<expression))

Execution:
The natural logarithm of <expression> is calculated.

Exatt,ples:
10 INPUT A
20 PRINT LOG(A)

Cott11Y1ents:
1. {expression) is an arithmetic expression of real or in

teger type. The result will always be real.
2. If (expression> is less than or equal to O the program

execution is stopped and followed by an error message •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

LOOP EXIT ENDLOOP PAGE 2-061

Type:
• Statement

Purpose:

Syntax:

To repeat the execution of a program section until an
internal condition is fulfilled.

LOOP

ENDLOOP

•
Execution:

The program section enclosed by 7 LOOP •••• ENDLOOP 7 is
repeatedly executed until meeting an 'EXIT' statement in
the program.

Example:

Then the progra«, execution resumes from the first exe
cutable line following the 'ENDLOOP' statement.

10 NUMBER:=O
20 LOOP
30 NUMBER:+1
40 PRINT NUMBER
50 IF NUMBER=B THEN EXIT
60 ENDLOOP

Comments:
1. The execution of the 'LOOP ••• ENDLOOP' section may also

be interrupted by a 7 GOT07 statement.
2. If 'LOOP ••• ENDLOOP' statements are nested 7 execution of

an 'EXIT' statement will abandon execution of the inner
most 'LOOP ••. ENDLOOP' statement containing the 'EXIT'

• statement only •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

MAT

Type:

PAGE 2-062

• State«1ent

Purpose:

•

•

Syntax:

Example:

To assign values to each element in an array.

MAT (variable}:=<expression>

10 DIM ARRAY(50)
20 MAT ARRAY:=5

Co«,ments:
1. <variable> and <expression> must be of the saMe type.

However, an integer expression may be assigned to the
elements in a real array.

2. During programming'=' and':='
progra,v, listings ':=' is used.

are interchangeable. In

3. For string variables having (expression} longer than
(variable>, <expression> will be shortened froM the
right.

4. For string variables having <expression} shorter than
<variable}, <variable} gets the actual length only.

5. More assignments may be done on a single line, separated
by setYticolon, but the keyword 'MAT' Must only appear
before the first assignment •

• COPYRIGHT CC> 1981 METANIC ApS DENMARK

•

•

•

MOD

Type:

PAGE 2-063

Arithmetic operator

Purpose:
To return the remainder following an integer division.

Syntax:
<expression!) MOD <expression2>

Execution:

Example:

<expression!) is integer divided by <expression2) and the
remainder being <expression!> minus the result multiplied
by <expression2> is found.

10 INPUT A
20 B:=A MOD 7
30 PRINT B

Comments:
1. The result N is defined by the lowest non-negative value

which the expression:
<expression!) - N * (expression2>

can assume for integer N.
2. The type of the result depends upon the type of <expres

sionl) and <expression2) in the following way:
(expression!) MOD <expression2> result

real real real
real int real
int real real
int int int

3. Also see the ,DIV, operator •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

NEW

Type:

Purpose:

Syntax:

PAGE 2-064

To clear the working storage of the computer and prepare
the COMAL-BO system for a new program.

NEW

Execution:

Example:

The internal pointers are initialized, except the system
variable , TAB,.

NEW

C Oft11Y1ent s :
1. The , NEW coft1ft1and should always be used before Making a

new program.
2. Also see note 2 to the 'ENTER' command •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

NOT

Type:
• Logic operator.

Purpose:
To negate a logic value

Synta><:
NOT (e><pression>

E><ecution:
The logical value of <e><pression> is negated.

E><aMple:
100 IF NOT ERR THEN EXEC READ_OK

•
COMMents:

1. The operator has the
<e><pression)

•

true
false

following truth table
result
false
true

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

PAGE 2-065

•

•

•

ON

Type:

GOTO ON GOSUB PASE 2-066

Statew,ent

Purpose:

Syntax:

From the value of an arithmetic expression to choose one
line number out of many.

ON (expression> GOTO (list of line numbers>
ON <expression> GOSUB (list of line numbers>

Execution:

Example:

<expression} is calculated and rounded to integer if
necessary. Within (list of line numbers} the corresponding
line number is chosen. (expression}=! corresponds to the
first line number from the left; <expression)=2 corre
sponds to the second 1 ine n1.t1Y1ber from the left, etc.

10 INPUT "WRITE A NUMBER BETWEEN 1 AND 3 INCL: ": NUMBER
20 ON NUMBER GOTO 40,60,80
30 GOTO 10
40 PRINT "YOU WROTE 1"
50 GOTO FINISH
60 PRINT "YOU WROTE 2"
70 GOTO FINISH
80 PRINT "YOU WROTE 3"
90 LABEL FINISH

Comw,ents:
1. Contradictive to the 'GOTO' statement, names may not be

used in the 'ON ••• GOTO, statement.
2. If the rounded value of (expression) does not fulfil the

inequality of:
1 <= <expression) <= items in (list of line numbers>

the statement is skipped and the program is resumed from
the next executable statement.

3. For ,ON ••• GOSUB' statements each line number in (list of
line numbers> must be the first statement in a subrouti
ne ended by a 'RETURN, statement.
Meeting this, the program execution resumes in the first
executable line after the ,GOSUB' statement.
See also the 'GOSUB' statement •

• COPYRIGHT (C) 19B1 METANIC ApS DENMARK

•

•

•

OPEN FILE PAGE 2-067

Type:
Statement, command

Purpose:
To open a data file on the background storage.

Syi-1tax:
OPEN FILE (file No.>, {file na1Y1e), <type}[, <record size> J

Execution:
For all 'WRITE, files it is checked whether the specified
(file name) is already on the background storage, in which
case the program execution is stopped followed by an error
message; otherwise the file is opened.
For 'READ, and 'RANDOM' files it is checked whether the
(file name) is already on the back-up storage.
!f not so, 'READ' gives an error message, whereas at
'RANDOM' the file is created. Then (file name} and (file
number) are coupled so that all references to (file name)
is done by (file number> until the file is closed by a
'CLOSE' statement or command.

Exa1Y1ples:
100 OPEN FILE 2,"TEST",WRITE
100 OPEN FILE 0,"DK1:DATA.RAN",RANDOM,40

Co1Y11Y1ents:
1.

2.

3 •

(file number) is an arithmetic expression which must
meet one of the following values 0, 1, 2, 3, 4, 5, 6, 7,
B, or 9, after a possible rounding.
{file name> is a string expression. Please note that not
all operating systems allow that many characters in file
names. For example, CP/M allows only 8 characters, being
the reason why only S characters are transferred to the
diskette.
<type> specifies how the file is used. Following possi
bilities are at hand:

READ Reads sequentially from the file
WRITE Writes sequentially in the file
RANDOM Reads and writes the file

• COPYRIGHT CC) 1981 METANIC ApS DENMARK

4. <block size> is used only for files of , RANDOM7 type
and expresses the total number of bytes to be written in
each record. The necessary size is calculated along the
following lines:

- Integers take 2 bytes
Real figures take 4 bytes at 7-digits precision,
and 8 bytes at 13-digits precision.
Strings take 2 bytes plus as many bytes as the
dimensioned maximum number of characters in the
string.

5. Up to 8 disk files may be open at the same time. This
leaves room for another 2 non-disk files to be open at
the same time. If disk files are used in connection with
, SELECT OUTPUT7, , LIST7, , SAVE,, ., CAT,, , ENTER,, or
'LOAD.,, fewer than 8 disk files may be opened by , OPEN7 •
A file may be open on more file numbers contemporarily,
provided that the same <type} is used.

6. Having closed a sequential file, it cannot again accept
to be written in.

7. A file type ,RANDOM, always must be re-opened using the
same (record size> with which it was originally opened •

COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

•

•

•

•

OR

Type:

Purpose:

Syntax:

PAGE 2-068

Logical operator .

Returns the logic 'OR' between two expressions.

(expression!) OR (expression2>

Execution:

Example:

<expression!) and <expression2> are evaluated and if equal
to zero considered false, else true. The logic 'OR' is
then created.

100 IF END_DATA1 OR END_DATA2 THEN EXEC END_DATA

Comments:
1. The operator has the following

(expression!> (expression2>
true true
true false
false true
false false

truth table:
result
true
true
true
false

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

ORD

Type:

Purpose:

Syntax:

Arithmetic function

To convert the first character in a string
nL11Y1ber.

ORD((string expression))

PAGE 2-069

into its ASCII

Execution:

Example:

Returns the ASCII value of the first character in <string
expression).

10 DIM A$ OF 1
20 INPUT A$
30 PRINT ORD(A$)

C 01Y11Y1ent s :
1. The result is an integer and will be greater than or

equal to O and less than or equal to 255 •

• COPYRIGHT (C> 1981 METANIC ApS DENMARK

OUT PAGE 2-070

Type: • Purpose:

Machine language function

To send a byte to a «1achine output port.

Syntax:
OUT(expression1>, <expression2>

Execution:
The value of (expression!) and (expression2> are evaluated
and rounded if necessary. The value of (expression2)
is send to the machine output port corresponding to
<expressi on1>.

AExample:
.., 10 INPUT A

20 OUT 15,A

Comments:

•

1. The value of <expressionl> and (expression2) must be a
real or integer number greater than or equal to O and
less than or equal to 255.

2. Also see 'INP' •

-□PVRISHT (C) 1981 METANIC ApS DENMARK

PAGE PAGE 2-071

Type:
• Statement, command

Purpose:

Syntax:

To advance the paper on a connected line printer to the top
of the next page.

PAGE

Execution:
The line feed character COAH) is trans«iitted to the line
printer until reaching the top of the next page.

Examples:

•
100 PAGE

PAGE

Co«,ments:

•

1. Page shift is controlled by a counter within COMAL-BO.
Therefore, it is important that the paper is inserted
correctly in the printer, and is not fed manually.

2. This statement/command only works for the printer with
the device name ,LPO:, (or 'LP:') •

• OPYRIGHT (C) 1981 METANIC ApS DENMARK

•
PEEK

Type:

Purpose:

Syntax:

Machine language function

To deterMine the value of a memory
an arithmetic expression.

PEEK(<expression>>

PAGE 2-072

position deterMined by

Execution:
The value of (expression> is evaluated and rounded if
necessary. The value of the corresponding MeMory address is
returned •

•
Example:

10 DIM B$ OF 1
20 TRAP ESC-

•

30 EXEC GET CHR ESC(B$)
40 PRINT B$- -
50 PROC GET CHR ESC<REF A$)
60 II GET KEYBOARD INPUT WITHOUT ECHO ON THE SCREEN
70 II THE ,ESC, KEY IS TREATED LIKE ANY OTHER
80 II CHARACTER.
90 II THE ,TRAP ESC-, STATEMENT MUST BE EXECUTED BEFORE

100 II THIS PROCEDURE IS CALLED.
110 POKE 256, 255
120 REPEAT
130 IF ESC THEN POKE 256, 27
140 UNTIL PEEK(256) <>255
150 A$:=CHR$(PEEK(256))
160 ENDPROC GET_CHR_ESC

Cot11Ments:
1. The value of (expression> Must be a real or integer

number greater than or equal to O and less than or equal
to 65535. The result will be of integer type and greater
than or equal to O and less than or equal to 255.

2. Also see 7 POKE,

.COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

POKE

Type:

Purpose:

Syntax:

Machine language function

To set the contents of a Memory
arithmetic expression.

POKE <expressi on1}, (expressi on2}

PAGE 2-073

position determined by an

Execut i ot1:

Example:

The value of (expression1} and (expression2} is evaluated
and rounded if necessary. The contents of the memory
address corresponding to <expression!} is set to the value
of <expression2} •

10 DIM B$ OF 1
20 EXEC GET_CHARACTER(B$)
30 PRINT B$
10 PROC GET_CHARACTER(REF A$)
20 II GET KEYBOARD INPUT WITHOUT
30 // THE ,ESC, KEV WORKS IN THE
40 POKE 256, 255
50 REPEAT
60 UNTIL PEEK(256) (}255
70 A$:=CHR$CPEEK(256))
80 ENDPROC GET_CHARACTER

ECHO ON THE SCREEN
NORMAL WAY

Co.vuYient s:
1. The value of (expression!} must be a real or integer

number greater than or equal to O and less than or equal
to 65535 and the value of (expression2> must be a real
or integer number greater than or equal to O and less
than or equal to 255.

2. Also see ,PEEK' •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

POS

Type:

Purpose:

Syntax:

Arithmetic function

To deter1Yline whether one string
and if so, where it is placed.

is contained

POS ((string expression!), (string expression2> >

PAGE 2-074

in another

Execution:

Example:

It is checked, character by character, whether (string ex
pression!) is contained in (string expression2). If it is,
the result of the function is an integer, stating in which
character position of <string expression2) that (string
expression!) starts.

10 DIM A$ OF 25
20 DIM B$ OF 25
30 INPUT "FIRST STRING: 11 :A$
40 INPUT "SECOND STRING: ":B$
50 C#:=POS(A$,BS)
60 PRINT C#

Comments:
1. If (string expression!> is an empty string, the function

returns the result 1.
2. If (string expression!) is not contained in (string ex

pression2), the function returns the result O.
3. The result of the function is always of integer type •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

PRINT

Type:

PAGE 2-075

• Statement, command

Purpose:
To display data on an output device.

Syntax:
PRINT [(list of expressions>J

Execution:
The (list of expressions> consists of variables, constants
and literals the values of which are output to the default
output device.

ExaMples:

•
100 PRINT "THE RESULT IS: "; A
100 PRINT TAB(15); A, B

•

Comments:
1.

2.

The single elements of (list of expressions> are
separated by commas or semicolons. If two eleMents are
separated by a semicolon, the second element is printed
immediately after the first one, while a space is
inserted after an arithmetic expression. Separating two
elements by a comma the second element is printed at the
start of the next print-zone.
When loading COMAL-BO the width of the print-zones is
set to O characters.
The width of the print-zones tt,ay be changed by , TAB:=
(arithmetic expression>, executed as a statement or a
command for which (arithtt,etic expression> is rounded to
integer greater than or equal to O.
The rules for semicolon and comma also are valid after
the last element in (list of expressions>, as the impact
is carried onto the first element of the next 7 PRINT,
st at emer1t •
When (list of expressions> ends without a comma or semi
colon, the execution of the statement ends by a change
to a t1ew line.
This also happens if {list of expressions) is omitted.
If the remaining space on the actual line is too short
to contain the next pritit ele«1ent, it is printed from
the start of the following line •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

3. Switchir1g between the output devices is done by execu-
ting a 'SELECT OUTPUT' statement. •

4. <expression> being arithmetic and representing the
number of character positions from the left, the func
tion 'TAB({expression>>' tabulates to the wanted cha
racter position.
For more details also see 'TAB'.

5. During prograMming 'PRINT' may be substituted by 7
;

7
• In

progra«r listings • PR!NT' is used.

COPYRIGHT (C} 1 '381 METANIC ApS DENMARF'(

•

•

•

•

•

•

PRINT FILE PRINT FILE USI"-!G PAGE 2-076

Type:
Statement

Purpose:
To write data in the ASCII format into a data fi :!.e.

Syntax:
PRINT FILE {file No.}!:, { rec·. :--.:o. > J: < 1 ist of expressions>

Execut i ot1:
The values of the expressions in
written in the file indicated by

Exa!Y!ples:

(list of expressions} are
(file No.}.

100 PRINT FILE O,RECNO: A$, B, C+D

100 DIM A$ OF 5
110 A$:="##.##"
120 PRINT FILE 3: USING "##. ##": A, B, C-'··2
130 PRINT FILE 4: USING A$: D

Co«11Y1ei-1t s:
1. Before meeting the 'PRINT FILE (USING)' statement, a

file must be opened and connection between (file naMe}
and the (file No.) used in the 'PRINT FILE <USING)'
statement must be established by the use of the 'OPEN
FILE' state1Y1ent or co1Y11Y1and, ai-1d type 'WRITE' or:
'RANDOM'.

2. <rec. No.} is or1ly stated for 'RANDOW files and is an
arithmetic expression which may be rounded to integer if
necessary and which designates the number of the logical
record of the file, which is to be utilized.

3. (file No.> is an arithmetic expression.
4. The elements in (list of expressions> are separated by

commas or semicolons, similar to the syntax of 7 PRINT 7

and 7 PRINT USING' .
5. 'PRINT FILE' and 'PR!NT FILE USING, perform similar to

'PRINT' and 'PRINT USING' the only difference being the
destination of the output.
The syntax for 'PRINT FILE USING' is obtained by substi
tuting (list of expressions) in the above syntax with:

USING (string expression}:(list of expressions>
6. During programming 'FILE, and '#' are interchangeable.

In progra«1 listings ,FILE' is used.
7. During programming 'PRINT, may be substituted by,;'. In

program listings 'PRINT' is used •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

PRINT USING PAGE 2-077

Type:
• Statement

Purpose:

Syntax:

To print text strings and/or numbers by use of a specified
format

PRINT USING (string expression):(list of expressions>

Execution:
The text string specified in (string expression> is trans
ferred character by character onto the output device, as
string expressions and/or arithmetic expressions from (list
of expressions> a re i 1-1serted where <t,a rked • # 7

•

• ExaM-ples:

•

100 PRINT USING "THE RESULT IS###.##": A

10 DIM A$ OF 6
20 A$:="##.###"
30 PRINT USING A$: B

Cow,ments:
1. The individual characters in (string expression} have

the following impact:

2.

3.

4.

5.

'#' character position and sign.
' • decimal point if surrounded by'#'.
'+' preceding plus, when'#' follows immediately after.

preceding minus, when'#' follows immediately after.
All other characters are transferred unchanged.
A format starting with'+' will assign space for signs
and the sign will be printed for both negative and
positive values.
A format starting with•-• will assign space for signs
but it will be printed for negative values only •
For text strings a preceding'+' or,_, will be equal
t O 7 #'.
If an arithmetic value contains
printed in the specified format,
with'*'· If an arithmetic value
than specified in the format, a
cal ly done.

too many digits to be
the position is filled
contains more decimals
rounding is automati-

6. Text strings always start at the very left within the
format. If a string is too long, the necessary number
of characters is deleted from the right. When a text
string is too short, the rest of the format is filled
with spaces •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

7. When there are no more expressions in (list of expres
sions) the execution of the 'PRINT USING' state«1et1t is.
terMinated. If (list of expressions> contains more
expressions than stated in <string expression), the
formats within are again used from the left.

8. Ending the 'PRINT USING' statement with a comma, the
next printout will happen i1Y11Y1ediately after the 01.1tput
produced by the 'PRINT USING' statement. Otherwise the
execution of the 'PRINT USING' statement will conclude
by a change to a new line.

9. The 'PRINT USING' statement may be used for writing in
a data file following exactly the same rules as descri
bed for the 'PRINT FILE' statement.

10. During programming 'PRINT' may be substituted by
program listings 'PRINT' is used.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

, . , , . In

•

•

•

•

•

•

PROC

Type:

Pllrpose:

Syntax:

ENDPROC CLOSED PAGE 2-078

State,v,ent

To define a Sllb-program (a procedllre}

PROC <name> CCREFJ <variable> C(dim)JJ CCLOSEDJ

ENDPROC <na,v,e)

Execution:
Meeting a 'PROC' statement the program section is skipped
up to and including the corresponding 'ENDPROC' statement,
and will be executed when the procedure is called by
a connected 'EXEC' statement, only.

Examples:
10 PROC ERROR(N#) CLOSED
20 GLOBAL CC#, ERR_, ERRORS#
30 PRINT "*****";SPC$(CC#-9};" ";N#
40 ERR_:=FNINCLUDE(ERR_,N#+l); ERRORS#:+1
50 ENDPROC ERROR

PROCEDURE HEADINGS ONLY:
10 PROC XYZ(A,B,REF C$) CLOSED
10 PROC ZYX(REF A#<,,>, REF C<>, D$)
10 PROC YZX<REF D$(,,>, REF E#, REF C) CLOSED

Co1Y11Y1ent s:
1. The 'PROC' statement may not be used within the follow-

ing state,v,ents:
- Conditional statements
- 'CASE' statements
- Repeating statements
- 'PROC' statements
- Function declarations

2. A procedure may call other procedures, and even itself
(recursion).

3. <variable> contains the names of the formal parameters
which, when called by the procedure, will receive values
from the actual parameters in the corresponding 'EXEC'
statement •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

4. The changes happening to a parameter in a procedure are
local unless it is stated by 'REF' that the changes must •
affect the actual parameter, too.

5. 'REF' may be stated for simple arithmetic or string
variables.
'REF' must be stated for all array variables.

6. Array variables must be followed by a dimension defini
tion consisting of commas in paranthesis, corresponding
the dimension -1, i.e. for 3-dimensional arrays the pa
ranthesis contains 2 commas whereas a vector is followed
by an empty paranthesis.

7. If the procedure by instruction is declared 'CLOSED' all
variable names are local and may be used for other
purposes outside the procedure. This function may be
declared void for or1e or «,ore variables by the 'GLOBAL' •
statement.

•

COPYRIGHT <C> 1981 METANIC ApS DENMARK •

•

•

•

QUIT

Type:

PAGE 2-079

Statement, co1Y11v,and

Purpose:

Syntax:

To stop the COMAL-BO interpreter and return to the environ
ment which called it.

QUIT

Execution:
Under CP/M, a warm boot is performed, thus transferring
control to the CCP.

Examples:
100 QUIT

QUIT

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

RANDOM

Type:

RANDOMIZE PAGE 2-080

Statement, command

Purpose:

Syntax:

To set a random startpoint for the 'RND' functon.

RANDOM
RANDOMIZE

Execut i ot1:
A Z-80 CPU has a built-in counter which is read and the
found value is used as the seed for the algorithm presen
ting a random value at the call of the 'RND' function •

Exa1Y1ples:
100 RANDOM

RANDOM

Comments:
1. ,RANDOM' and 'RANDOMIZE' are interchangable. In program

listings 'RANDOM, is used.
2. The counter works constantly when the the CPU is active.

Its clock frequency is around 500 KHz when the CPU
clock frequency is 2.5MHz.

3. If 'RANDOM' is not found in a program calling the 'RND'
function, any execution of the program will give the
same sequence of random numbers •

• COPYRIGHT (C) 1981 METANIC ApS DENMARt'<

•

•

•

READ

Type:

Purpose:

Syntax:

PAGE 2-081

State1Y1ent

To assign values from the data list to variables.

READ <variable list)

Execution:
The single elements of <variable list> are assigned
from the data list. This is done in sequence from
right.

Examples:
10 DIM FIRST NAME$ OF 10
20 DIM FAMILY_NAME$ OF 10
30 DATA "JOHN", "DOE", 10
40 READ FIRST_NAME$, FAMILY_NAME$
50 PRINT FIRST NAME$+" "+FAMILY NAME$
60 READ AGE - -
70 PRINT AGE; "YEAR"

Comments:

values
left to

1. If the type of value does not correspond to that of the
stated variable or if the data list is eMpty, the pro
gram execution is stopped followed by an error message.

2. Assigning values to a string variable, follows the same
rules as given for 'LET' statements.

3. Also see the 'DATA' statement •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

READ FILE

Type:

PAGE 2-0B2

Purpose:

Syntax:

St at e1Y1et1t

To read data from a bitiary datafile
FILE' statement.

written by the 'WRITE

READ FILE (file No.> C, <rec No. >J: {variable list>

Execution:
The values of the variables in <variable list> are read
from the file contained in {file No.>.

ExaiY,ples:
100 READ FILE 5,REC_NO: A
100 READ FILE 3: A, B, C

Co«11Y1ent s:
1. Before meeting the 'READ FILE' stateMent a file must be

opened and the connection established between the stated
file name and the used (file No.) of the 'READ FILE'
statement. This is done by the 'OPEN FILE' stateMent or
command and type 'READ' or 'RANDOM'.

2. The {rec No.) is only used in 'RANDOM' files and is an
arithmetic expression which is rounded to integer if
necessary.

3. (file No.> is an arith«,etic expression.
4. <variable list> may contain all variable types. Arrays

are read in total if no indices are stated.
5. The elements of {variable list> are separated by commas.
6. Duritig programming 'FILE' and '#' are ~nterchangeable.

h1 progra1Y1 listings 'FILE' is 1..1sed •

• ~OPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

RELEASE

Type:
Statement, command

Purpose:
To check that all disk files are closed.

Syntax:
RELEASE C(device>J

Execution:
It is checked whether all disk files are closed.

ExaMples:
100
100
100

CoMMents:

RELEASE 1111

RELEASE 11 DK1: 11

RELEASE 11 DK 11 +DISK$+ 11
:

11

RELEASE
RELEASE DK 1 :

PAGE 2-083

1. Under CP/M, the (device> indication is not used, but if
it is given, it must be the naMe of a disk drive.

2. If a disk file is open the execution is terminated and
an error message displayed •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

REM

Type:

II

St at e«,ent

P1.1rpose:

Syt1tax:

To allow for insertion of explaining
program.

II
REM

Execution:

PAGE 2-084

text in a COMAL-BO

The 'REM' statement is skipped during program execution •

Exa«,ples:
10 //PROGRAM TO CALCULATE
20 REM POLYNOMIAL
30 ! 30/10/1980
40 OPEN FILE 4, 11 TEST 11 ,READ //OPEN DATA FILE

Co «11v1ent s :
1. During progratY,ming 'REM', '//', at1d ' 1 ' are inter-

changeable. In prograw, listii-19s '//7 is 1.1sed.
2. All statements can be followed by a comment •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

RENAME PAGE 2-085

Type:
• State1Y1ent, cofi11Y1and

Purpose:

•

•

To change the name of a file on the background storage.

Syntax:
RENAME Cold file name>, <new file name>

Execution:
The operating system of the computer is called and parame
ters for 'old name' and 'new name' are used.

Examples:
220 RENAME "DK 1 : FIL. CML", "DK 1 : FIL. BAK"

RENAME DK1:FIL.CML,DK1:FIL.BAK
RENAME FIL.CML,FIL.BAK

Comments:
1. (old file name> must

device.
be one existing on the stated

2. If no device is stated the statement/command is carried
out on the current default device.

3. If the (new file name> is already present, this is
reported and the statement/command is terminated.

4. If a device description is contained in one of the names
the same device indication must be part of the other
na1Y1e •

• COPYRIGHT CC) 1981 METANIC ApS DENMARK

RENUM RENUMBER PAGE 2-0BE.

Type:
• Co«11Y1and

Purpose:

•

•

To renumber program lines and move areas of programs.

Syi-1tax:
RENUM [[(start lit1e}: <ei-1d lit1e),J <start) C, <step}]]

Execut i oi-1:
If only an area of a program is to be renumbered it is
checked whether there is sufficient room between the two
line numbers before and after the place of the new nuMbers.
If not, the execution is stopped followed by an error mes
sage •
If there is room enough, the new line numbers are calcu
lated and stored. The program is checked and all referen
ces ('GOTO', 'GOSUB', etc.) are updated.
Finally, the old line numbers are deleted.

Examples:
RENUM
RENUM 15
RENUM 15,3
RENUM 20:90,310,1

Co«,«,ent s:
1.

3.

If (step> is not stated, default 10 is used.
If {start) is not stated, default 10 is used.
(start line> and (end line) are used when only a section
of a program is renumbered and specifies the first and
last 1 ine nu«,ber to rem.1«,ber. !n this case <start> spe
cifies the first new line number and (step) the new step
between line numbers. In this way a program section op
tionally can be moved to any place in a program, if
there are enough free line numbers, starting in <start>
and using the indicated (step>, before the next original
line number, to contain the program section. No overwri
ting and no mixing can take place.

4. If <start line>: (endline>, is i-1ot stated the total pro
gram is renumbered •

• ~OPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

REPEAT

Type:

UNTIL PAGE 2-087

StatemeYlt

Purpose:
To repeat the execution of a program section
condition contained in the 'UNTIL' statement is

REPEAT

UNTIL {logical expression}

until the
fulfilled.

Execution:

Example:

Meeting the 'UNTIL' statement the value of the {logical
expression} is calculated. If this is true, execution
resumes from the first executable statement following the
'UNTIL' statement. If the (logical expression> is false the
program continues from the first executable statement
following the 'REPEAT' statement.

10 DIM A$ OF 1
20 DIM B$ OF 25
30 PRINT "THE PROGRAM IS STOPPED BY"
40 PRINT "PRESSING THE 'ESC' KEY"
50 TRAP ESC-
60 REPEAT
70 INPUT "WRITE A LETTER: ": A$,
80 B$:=B$+A$
90 UNTIL ESC

100 PRINT "YOU WROTE: "; B$

Comments:
1. A program section

executed at least
surrounded

once •
by 'REPEAT ••• UNTIL' is

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

RESTORE

Type:

P1..1rpose:

Syr,tax:

St at e,Y,ent

To move the pointer of the data list, enabling
partial re-reading of the data list.

RESTORE (line number>
RESTORE < naJY,e >
RESTORE

PAGE 2-088

a total or

Execution:
The pointer of the data list is set on the first constant
in the stated line, or the first constant at all if no line
is specified •

10 LABEL AGAIN
20 RESTORE DATA2
30 READ X
40 PRINT X
50 DATA 47
60 RESTORE 50
70 READ X
80 PRINT X
90 GOTO AGAIN

100 LABEL DATA2
110 DATA -47

Co1Y11Y1ents:
1. If the 'RESTORE' statement contains a line number, the

corresponding line must contain a 'DATA' statement.
2. If the 'RESTORE' statement contains a name, the state

ment immediately following the label statement defining
that label must contain a 'DATA' statement •

3. If the 'RESTORE' statement contains neither a line
number nor a naJY,e, the pointer is set on the first
constant of the first 'DATA' statement •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

RND

Type:

Purpose:

Syntax:

PAGE 2-089

Arithmetic function •

To create a pseudo-random number.

RND[((expression!), (expression2)) J

Execution:

ExaMple:

Based on the seed <which can be changed by the 7 RANDOM,
statement/command) or the latest rat1do,v, nuMber, a new is
generated.

100 A:=RND
100 B:=RND(-5,17)

CoMMents:
1. Any execution of a program will give the same sequence

of random figures unless a 7 RANDOM 7 statement has been
executed earlier in the program.

2. Omitting the two limits <expression!} and (expression2)
a random real figure is created in the open interval of
O to 1

3. If (expression!) and/or <expression2> is not an integer,
rounding is done.

4. If limits are stated, the result will always be an inte
ger in the closed interval from <expression!} to
(expressi on2> •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

ROUND

Type:

PAGE 2-090

Arithmetic function

Purpose:
To convert an expression of real type to integer type.

Syntax:
ROUND<<expression))

Execution:

Example:

{expression> being arithmetic is rounded and the result
converted to integer type.

10 INPUT A
20 B#:=ROUND(A)
30 C:=ROUND(A)
40 PRINT B#, C
50 PRINT ROUND(5.72)
60 PRINT ROUND(-5.72)

Co1Y1tY1ent s:
1. Rounding is doi-1e to the nearest integer. If the number

has the same distance to two integers, the one with the
highest absolute value is chosen.

2. <expression) is of real type. The result is of integer
type. Note that an integer can be assigned to a real
variable.

3. Also see the 'INT' and 'TRUNC' functions •

• ~OPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

RUN

Type:

PAGE 2-091

Command

Purpose:
To start the execution of a program.

Syntax:
RUN [(line number)J

Execution:
COMAL-SO is brought to a well-defined start position which
among others, closes all files left open from a possible
previous execution and initializes the variable area.
Thereafter, a special prepass checks whether the program
contains structures (FOR ••• NEXT, LOOP ••• ENDLOOP, etc.> and
references (EXEC, LABEL, etc.) and the internal representa
tion of such statements is extended by inforrt,ation increa
sing the working speed.
Finally, the program execution is started at the stated
line numbeJ•.

Examples:
RUN
RUN 230

Conunents:
1. Omitting (line number) the program starts at the lowest

line number •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

SAVE

Type:

Purpose:

Syntax:

PAGE 2-092

Com1Y1cmd

To store programs on the background storage in the internal
(binary) format as that of the program in the working
storage of .the computer.

SAVE (file t1a1Y1e>

Execution:
The operating system of the computer is called giving
information on (file name> and the area of the storage to
be transferred •

Exart,ples:
SAVE TEST
SAVE DK1:TEST

Co1Y1ments:
1. Enabling a program to be called by the 7 CHAIN' state

ment it must be stored by the 7 SAVE 7 command.
2. PrograiY,s stored by the , SAVE, coiYuv,and May be re-read

by the , LOAD' coM1Y1and.
3. The internal format may be different on the various

versions of COMAL-80. Consequently, a program cannot
always be stored by the , SAVE' co1Y11Y1and in one version
and read by the 'LOAD' command in an other version.
Programs to be exchanged or stored for longer periods of
time should therefore be stored by the 7 LIST' command.

4. If (file name> is already on the device in question this
is reported and the user receives the option to continue
and have the old file deleted, or stop ('RETURN/ESC'>.

5. The extension '.CSB' is always supplied by the COMAL-80
system and cannot be stated by the user •

• COPYRIGHT CC) 1981 METANIC ApS DENMARK

•

•

•

SELECT OUTPUT

Type:

PAGE 2-093

Purpose:

Syntax:

Statement, command

To specify a new default device/file for
,PRINT, and ,PRINT USING, statements.

SELECT OUTPUT <string expression>

printout from the

Execution:
Internal pointers in the COMAL-BO system switch to select
the specified printout device/file.

Examples:
220 SELECT OUTPUT 11 LPO: II

220 SELECT OUTPUT 11 DK1:TEKST 11

220 SELECT OUTPUT 11 TEKST 11

220 SELECT OUTPUT "DS: II

SELECT OUTPUT "LP: II

Comments:
1. Every time the

, RUN, cortuv,and
file.

program execution is started by the
the console is chosen as default output

During program execution a new default file may be cho
sen by specifying the name of the peripheral or a file
by <string expression>.
When program execution is terminated, either because it
is stopped by pressing the 7 ESC, key, or because it is
finished, the terminal is again chosen as default output
file •

• COPYRIGHT CC) 1981 METANIC ApS DENMARK

•

•

•

SGN

Type:

Purpose:

Syntax:

PAGE 2-094

Arithmetic function

Returns the sign of an arithmetic expression.

SGN((expression>>

Execution:
<expression> being arithmetic is calculated. If the result
is greater than O the function returns the value 1. If the
result equals 0, 0 is returned, and if the result is less
than 0, -1 is returned.

Examples:
10 INPUT "WRITE A NUMBER: It : A
20 ON SGN(A)+2 GOTO 30,50,70
30 PRINT "A {0"
40 STOP
50 PRINT "A=O"
60 STOP
70 PRINT "A>O"
BO STOP

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

SIN

Type:

PASE 2-095

Trigonometric function

Purpose:
Returns the sine of an expression.

Syntax:
SIN((expression))

EXECUTION:
The sine of (expression) for which (expression) is in radi
ans is calculated.

Exa111ples:
10 INPUT A
20 PRINT SIN(A)

Comments:
1. (expression> is an arithmetic expression of

integer type. The result will always be real •
real or

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

SIZE

Type:

Purpose:

Syntax:

PAGE 2-096

To display the size of the used area of the working storage
of the computer.

SIZE

Execution:

Example:

The amount of working storage used is displayed on the
terminal as well as how much space is left, and how much is
used for variables.

SIZE

Comments:
1. The figures displayed indicate the number of bytes.
2. The space consumption for variables is not valid before

program execution, and is stated only for variables
dimensioned or in use during the latest execution.

3. The size of COMAL-BO is not displayed •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

SPC$

Type:

Purpose:

Syntax:

String function

To create a string consisting of spaces,
which is stated by an arithmetic expression.

SPC$((expression>>

PAGE 2-097

the number of

Execution:

ExaMple:

(expression> being arithmetic
if necessary. Then a string
spaces is created •

10 INPUT A
20 PRINT SPC$(3*5),A

ComMents:

is calculated and
containing that

rounded
number of

1. <expression> must be greater than or equal to 0 •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

SQR

Type:

Purpose:

Syntax:

Arithmetic function

To calculate the square root of

SQR({expression})

PAGE 2-098

an arithmetic expression.

Execution:

Exa1Y1ple:

The square root of (expression> being greater than or equal
0 is calculated.

10 INPUT A
20 PRINT SQR(A)

ComiY,ents:
1. <expression} beH1g arith1Y1etic is of real or integer

type. The result will always be real.
2. If <expression> is less than O the execution is stopped

followed by an error message. If these are inhibited by
the 'TRAP ERR-' statement the system variable 'ERR' is
set true (not equal to 0) and the square root is calcu
lated from the expression:

SQR<ABS((expression>>

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

STOP

Type:

Purpose:

Syntax:

PAGE 2-099

St at e«,ent

To stop the execution of a program.

STOP

Execution:

Example:

The program execution stops and the following is displayed
on the screen:

STOP IN LINE nnnn

in which nnnn states the line number of the ,STOP' state
ment.

540 STOP

Comments:
1. The 'STOP' statement is normally used to stop the

execution of a program in other lines than the last.
2. The program execution may be resumed by using the 'CON,

comMand •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

STR$

Type:

PAGE 2-100

String function

Purpose:
To convert an arithmetic expression into a string.

Syntax:
STR$((expression>>

Execution:

ExalYlple:

The arithmetic expression is calculated and converted to a
string containing the characters which would be output if
the value were printed by a , PRINT7 statelYlent.

10 DIM 8$ OF 7
20 INPUT "WRITE A NUMBER": A
30 8$:= STR$(A*1.5)
40 PRINT B$

• COPYRIGHT CC> 1981 METANIC ApS DENMARK

•

•

•

TAB

Type:

Purpose:

Syntax:

Command, statement, (system variable)

To establish a new print-zone width
value to the system variable 'TAB'.

TAB:=(arithmetic expression>

PAGE 2-101

by assigning this

Execution:
The system variable 'TAB' is assigned the value of
<arithmetic expression) which is rounded if necessary.

ExaMples:
100 TAB:=8
100 TAB=X*Y+3

TAB=12

CoaMents:
1. Loading COMAL-BO, 7 TAB' is assigned the value of O. This

value can be changed only by the use of a 'TAB' state
ment or command.

2. It is not possible to read the value of 7 TAB'.
3. The 'NEW' command does not change the value of the

system variable 7 TAB,.
4. See , PRINT'
5. During programming,:=' and,=, are interchangeable. In

program listings,:=' is used •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

TAB

Type:

PAGE 2-102

Pr i tit f u net i on

Purpose:

Syntax:

In connection with a 'PRINT' statement to tabulate
character position before the next printout.

TAB(Cexpression))

to the

Execution:

Exa«1ple:

The arith,v,etic expressioti is calculated and if necessary
rounded. The result defines the start position of the next
printout.

100 PRINT TAB C 10), "THE RESULT IS: ", RESULT

Co,vuv,ents:
1. TAB(Cexpression)) can be used in connection with 'PRINT'

statements only.
2. <expression> is an absolute value counted froM the left

side margin of the output unit.
3. If the last pri tit out before the 'TAB< <expression)>' has

passed the specified position, the prograM execution is
stopped by an error message.

4. (expression) being arithmetic must evaluate to a valus
greater than or equal to 1 and less than or equal to the
,v,ax imum i-1u,v,ber of characters al 1 owed in the width of the
output device .

• COPYRIGHT CC> 1981 METANIC ApS DENMARK

•

•

•

TAN PAGE 2-103

Type:
Trigonometric function

Pu1~pose:
To calculate the tangent of an arithmetic expression.

Syntax:
TAN(<expression>)

Execution:

Example:

The tangent of <expression> which is in radians is calcu
lated.

10 INPUT A
20 PRINT TAN<A>

Com1Y1ents:
1. <expression> being arithmetic is

type. The result will always be real •
of real or integer

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

TRAP ERR

TYPE:

PAGE 2-104

Statement, command

Purpose:

Syntax:

To change the normal system action on a non-fatal error.

TRAP ERR
TRAP ERR+

Execution:
During a normal program execution, any error will stop the
program and create an error message. However, a number of
errors can be bypassed in a well-defined manner.
In such cases a program interruption may be avoided by the
use of a 'TRAP ERR-' statement, before the error arises. In
this case, the system variable 'ERR' will be assigned a
value equal to the error number, which in all tests will be
considered true because it is different from O. The program
execution will then continue.

10 INIT , FILENAME$
2C> TRAP ERR-
30 OPEN FILE 0, "XPLOCOMM", READ
40 TRAP ERR+
50 IF NOT ERR THEN
60 INPUT FILE O: DEFAULT_FILENAME$
70 ELSE
80 DEFAULT_FILENAME$:="XPLOPROG"
90 ENDIF

100 CLOSE

CotY,ments:
1. The execution of a prograrY, starts by assigning the value

of false (= 0 > to the system variable 'ERR'. When a
'TRAP ERR-' statement has been executed, a non-fatal
er~or assigns its error number to 'ERR' and it retains
this value until its status is checked. lMMediately
after a such check, 'ERR' is assigned the value of
false.
NortY,ally COMAL-80 sets a variable true by assigning it
the value of 1, but in this case the error number is
used.
The error numbers are further described in appendix C.

2. By executing a 'TRAP ERR+' statetY,ent, the systeM returns
to normal error handling •

• COPYRIGHT (C> 1981 METANIC ApS DENMARK

•

•

•

TRAP ESC

TYPE:

PAGE 2-105

Purpose:

Syntax:

Statement, command

To change the system action to a press on the 'ESC' key.

TRAP ESC
TRAP ESC+

Execution:

ExaMple:

During normal program execution it is checked, before each
statement, whether the 'ESC' key has been pressed. In the
affirmative the program execution is stopped.
If a 'TRAP ESC-' statement has been executed, this function
is blocked and the system variable 'ESC' is instead assig
ned the value of true (= 1) when 'ESC' is pressed.

10 TRAP ESC-
20 REPEAT
30 PRINT "THE 'ESC' KEV IS NOT PRESSED"
40 UNTIL ESC
50 TRAP ESC+
60 PRINT "THE 'ESC' KEV WAS PRESSED"

CoMMents:
1. Starting program execution the system variable 'ESC' is

assigned the value of false (= 0). If a 'TRAP ESC-'
statement is executed and the 'ESC' key pressed after
that, the program execution continues but the systeM
variable 'ESC' is assigned the value of true (= 1) and
keeps this value until its status is checked.
Immediately after the value is used, 'ESC' is again
assigned the value of false (= 0).

2. The syste,v, returns to normal handling of the 'ESC' key
when a 'TRAP ESC+' statement is executed •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

TRUE

Type:
System constant

Purpose:

PASE 2-106

Mainly to assign a boolean variable the value of true.

Syntax:
TRUE

Execution:
Returns the value 1.

10 II PRIME
20 II
30 DIM FLAGS#(0:8190)
40 SIZEl:=81'30
50 II
60 COUNT:=O
70 MAT FLAGS#:=TRUE
80 II
90 FOR I:=O TO SIZE1 DO

100 IF FLAGS#(!) THEN
110 PRIME:=I+I+3
120 K:=I+PRIME
130 WHILE KC=SIZE1 DO
140 FLAGS#(K):=FALSE
150 K:+PRIME
160 ENDWHILE
170 COUNT:+1
180 ENDIF
190 NEXT I
200 PRINT "TOTAL NUMBER OF PRIMES: ",COUNT

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

TRUNC PAGC: 2-107

Type:
Arithmetic function

Purpose:
To convert an expression of real type to an integer.

Syr1tax:
TRUNC({expression})

Execut i or1:
(expression) being arithmetic is evaluated and the result
converted to integer type while disregarding any decimals.

Exa1Y1p 1 es:
100 A=TRUNC(5.72)
100 A:=TRUNC(A/B)

Co1Y11Y1er1t s:
1. (expressior1) is of real type.

The result is of integer type.
2. Also see the 'ROUND' and 'INT' functions •

• COPYRIGHT (C) 1981 METANIC ApS DENMAm·,

UNIT PAGE 2-108

Type:
• Co1Y11Y1and

P1-1rpose:

Syntax:

To assign the background storage device which will be con
sidered the default device.

UNIT (device)

Execution:
The internal pointers are updated to point at the stated
device.

Examples:

•
100 UNIT 11 DK1: 11

UNIT DK1:

•

Comments:
1. (device) is stated as 2 letters, describing the type of

background storage device, followed by the unit number
and a colon •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

VAL

Type:

Purpose:

Syntax:

PAGE 2-109

String function .

To convert a real number of string type to a number of real
type.

VAL((string expression))

Execution:

Example:

The real number in (string expression)
number of real type.

10 DIM A$ OF 5
20 A$:="32.34"
30 PRINT VAL<A$)

is converted to a

C 01Y11Y1er1t s :
1. If <strit1g expression} does r1ot contain a well-formed

real or integer number, the program execution is stopped
with an error message.

2. Also see the 'IVAL' function •

• COPYRIGHT CC) 1981 METANIC ApS DENMAm<

•

•

•

VARPTR

Type:

Purpose:

Syntax:

Machine code function •

To find the absolute address
variable is stored.

VARPTR ((variable>>

PAGE 2-110

in the at which a

Execution:

ExaMple:

The decimal, absolute address in the memory, in which the
first byte af the variable <variable} is stored, is found.

10 INPUT A
20 PRINT VARPTR(A)

ComMents:
1. The result states where the first byte of the variable

is stored. The remail'ider of the bytes are on the
locations following.
Integers take 2 bytes of which the lower part of the
number is first.
Real numbers take 4 bytes in the 7-digits version.
Real numbers take 8 bytes in the 13-digits version.
For string variables the first 2 bytes state the length
and the string is then stored consecutively.

2. The result is of real type.
3. The variable may be an array with or without indices. If

no indices are stated, the address of the first element
of the array is delivered.

4. WARNING: In one situation a variable is moved after it
has been allocated storage, thus changing its address.
This occurs upon exit from a non-closed procedure to
all variables that have been encountered and allocated
storage for the first time during the current call of
the procedure •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

WHILE

Type:

ENDWHILE PAGE 2-111

State1Y,ei-1t

P1.1rpose:

Syntax:

To repeat the execution of a program section
condition contained in the 'WHILE' statement is

WHILE (logical expression}

ENDWHILE

ut1t i l the
fulfilled.

Execution:

ExaMple:

Meeting the 'WHILE' statement the value of the (logical
expression) is calculated. If this is true, execution
resumes from the first executable stateMent following the
'WHILE' statement. If the {logical expression) is false the
program continues from the first executable stateMent
following the 'ENDWHILE' statement.

10 ODEN FILE 0,"DATA",READ
20 WHILE NOT EOFCO) DO
30 READ FILE O: INDEX, NUMBER#, TEXT$
40 ENDWHILE

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

WR!TE FILE PAGE 2-112

Statement

Purpose:
To write data in the binary format into a data file.

Syntax:
WRITE FILE (file No.> C, <rec. No.> J: (variable list>

Execution:
The values of the variables in <variable list> are written
in the file contained in (file No.>.

Examples:
100 WRITE FILE 7,REC_NO: A, B, C
100 WRITE FILE 3: A$, B#, C

Comments:
1. Before meeting the 'WRITE FILE' statement, a file must

be opened and connection between (file name) and the
(file No.> used in the 'WRITE FILE' statement must be
established by the use of the 'OPEN FILE' statement or
command, and type 'WRITE' or 'RANDOM'.

2. <rec. No.> is only stated at 'RANDOM7 files and is an
arithmetic expression which may be rounded to integer if
necessary.

3. (file No.> is an arithmetic expression.
4. (variable list> tt,ay contain all variable types. If an

array variable is stated without indices, the whole
array is written.

5. The elements in (variable list> are separated by commas.
6. During programming 'FILE' and '#' are interchangeable.

In program listings 'FILE' is used •

• COPYRIGHT CC) 1981 METANIC ApS DENMARK

•
APPENDIX A

MODIFYING COMAL-BO

PAGE A-001

COMAL-BO is a very interactive program in the way that it tries to
help the user to a correct program by displaying error messages and
tt,oving the cursor to points, where there are problett,s. It is there
fore necessary that the connected terminal supports functions like
'erase to end of line', 'erase to end of screen', cursor addressing
and a few more.

Unfortunately, the specifications for CP/M do not include a de
scription of how these functions should be implemented and many
different methods are used.

To overcome this problem, the source code for the screen driver is
shown in appendix B, and it will normally be possible to change

• this driver, so that most CRT-terminals can be used.

It is not recommended to use printing terminals like teletypes.

•

The necessary changes normally are very easy to do in a few minutes
by replacing control characters in a table with the actual ones.

STEP BY STEP GUIDE.

1. Make a copy of the received disk, remove this disk from the
computer and store it in a safe place. Remember, that your
warranty is carried by this disk only.

2. Read the source code for the screen driver and this guide care
fully.

3. Read the manual for the actual terminal and check whether it
supports the functions mentioned in the table defining the con
trol characters.

4.

If it does, you are in for an easy job. Carry on •

If it does not, go to step 13.

Go to your computer and use DDT to make the necessary changes.
Depending on which version you want to change, enter

DDT COMAL-BO.COM
DDT COMALBOS.COM
DDT COMALBOD.COM
DDT CMALBODS.COM

or
or
or

and remember which version you are working on •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

•

5.

PAGE A-002

Check whether the actual control characters the terminal wants,
are the same as those shown in the control-character table
placed in the hexadecimal addresses 15C7H to 15D2H.

If they are, go to step 6.

If not, replace the old ones by the new ones.

6. Place in address 15D3H the hexadecimal number of characters per
line and in address 15D4H the hexadecimal number of lines on
the screen. The original values in those two places are 28H and
18H.

7. Check, that the cursor address routine called 'GOTOXY' and
placed in adresses 174FH to 1768H works in a way, that the
actual terminal wants .

'GOTOXY' firstly sends an 'ESC' character, then a,=', then the
line number and last the character number adding hexadecimal
20H to the latter two.

If the terminal needs something else, change 'GOTOXY' as neces
sary. If the new routine is larger than the old one, place the
rest (or the whole routine) in the free space starting in
address 17E2H.

8. COMAL-BO expects that the terminal is equipped with an 'ESC'
key sending the hexadecimal code '1BH'. If this is not the case
with the actual terminal, change the following two places:

1894H and 1AC3H

to the new code or the code for a suitable key. This key is
very important as it stops everything and it is best to use a
key, which is easy to find without looking at the keyboard •

9. Ten other keys can be redefined. These are:

FUNCTION ORIGINAL VALUE ORIGINAL CHARACTER
CURSOR RIGHT 1DH control]

CURSOR LEFT 1CH control \
INSERT 01H control A
DELETE 13H control s
BACKSPACE 08H control H
CURSOR TO START OF LINE 15H control u
CURSOR TO END OF LINE 05H control E
CURSOR 8 STEP FORWARD ~H control I
CURSOR 8 STEP BACKWARD ~H control B
DELETE TO END OF LINE OBH control K

COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

PAGE A-003

These functions can be related to new keys simply by inserting
the new code in the following addresses:

CURSOR RIGHT 1897H
CURSOR LEFT 1881H
INSERT 18ECH
DELETE 18B1H
BACKSPACE 192DH
CURSOR TO START OF LINE 195CH
CURSOR TO END OF LINE 1976H
CURSOR 8 STEP FORWARD 198EH
CURSOR 8 STEP BACKWARD 19BAH
DELETE TO END OF LINE 19E7H

These changes affect only the transmission from the keyboard to
the computer and have no influence on the transmission from the
computer to the screen.

10. If the terminal has more than 64 characters per line, the 7 CAT 7

command should be changed to list four files per line by
changing addresses 142FH and 1464H to 04 instead of 02.

11. The last thing to do is to tell COMAL-SO how many disk drives
are connected to the computer. Do this by inserting the m.11Ytber
of disks minus one in address 145H. The original value in this
address is 01H which means that COMAL-SO is prepared for 2
disks.

12. Press control-C and when CP/M has re-initialized enter:

SAVE 155 COMAL-SO.COM or
SAVE 110 COMALBOS.COM or
SAVE 156 COMALBOD.COM or
SAVE 111 CMALBODS.COM

• 13.

depending on which version you worked on •

Terminals, which do not support cursor addressing or other
functions which COMAL-BO needs are a bit more complicated, as
some assembler programming will be necessary.

Do not try to do these changes unless you have a relatively
good knowledge of this special art.

Unfortunately, d1.1e to big differences in the way the various
terMinals work, it is not possible to tell exactly how the
screen driver should be changed but it is possible to give some
guidelines •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

15B2

001B
OOOD
0008
oooc
000B
OOOA
001E
001F
001D
001B

0108

010A

010B

010C

010D

1C55
184E
0005

0001
0002
0003
0004
0005
0006
0007
0008

PAGE B-001

••••••••••••••••••••••••• ■ •••••••• ■ •••••••••••••••••••
, , , , -, , , , , , , , , ., , , , , , , , , , , , ,. , , , , , , , ., , , , , , , , , , , , 7 , , , , , , 1' ,

SCREEN DRIVER FOR COMAL-BO V 1.8
COPYRIGHT CC) 1981 METANIC ApS DENMARK

••••••••••••••••••••• ■ ••••••• ■ •••••••••••••••••••••••• ,,,,,,,,,,,,,,,,,.,,,,,,,,,,,,,,,,,,,,,.,,,,,,,,1.,,,,,,,

; :; ; ; ; ; ; ; ; ;
0009 ASCII NUMBERS OF SOME CONTROL CHARACTERS
0010 ; THESE CHARACTERS ARE USED INSIDE COMAL-BO AND MUST NOT
0011 ; BE CHANGED. THE ACTUAL KEYBOARD CHARACTERS DO NOT
0012 ; AFFECT THIS TABLE.
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029

... ,,,,,,,,,,,,,,,,,,,,,,,,,.,,,,,,11,,,,,,,,,,,,,,,,,,,,,,,
PSECT ABS
ORG 15B2H VERSION 1.8 ONLY

7

ESC EQU
CR EQU
CLEFT EQU
CRIGHT EQU
CUP EQU
CDOWN EQU
CHOME EQU
CLRLINE EQU
CLRDISP EQU
LEADIN EQU

1BH
ODH
08H
OCH
OBH
OAH
1EH
1FH
1DH
1BH

ESCAPE CHARACTER
CARRIAGE RETURN
CURSOR·LEFT
CURSOR RIGHT
CURSOR'UP
CURSOR DOWN
CURSOR HOME
CLEAR REST OF LINE
CLEAR REST OF DISPLAY
LEAD IN CHARACTER

; VARIABLE ADDRESSES - THESE VARIABLES ARE PLACES IN THE
SAME ADDRESSES AS THE INITIALISATIO~ CODE.

0030
0031 CURSOR EQU 108H
0032
0033
0034
0035
0036 CHARNO EQU
0037
0038 LINENO EQU
0039
0040
0041

10AH

10BH

0042 LASTWASPRINTABLE EQU
0043
0044
0045
0046
0047
0048
0049 LASTW1 EQU
0050
0051
0052 OPENMO EQU
0053 CRTIN EQU
0054 XBDOS EQU
0055
0056

10DH

1C55H
184EH
05H

10CH

LOGICAL CURSOR ADDRESS
RELATIVE TO HOME POS.

ALWAYS = CHARNO +
#CHRLI N*LINENO

X ADDRESS OF CURSOR POS.
IN RANGE O •• #CHRLIN-1

Y ADDRESS OF CURSOR POS.
IN RANGE O •• #LINES-1.
HOME POS. HAS LINENO=O

FLAG THAT TELLS IF THE
LAST OPERATION ON THE
DISPLAY WAS OUTPUTTING
A PRINTABLE CHARACTER.
CALLS OF 'MOVECURSOR'
ARE BLIND IN THIS
RESPECT.

TEMPORARY FOR
'LASTWASPRINTABLE'

VERSION 1. 8 ONLY
VERSION 1.8 ONLY

.COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

15B2
1585
15B8
15BB
1·5BE
15C1
15C4

15C7
15C9
15CB
15CD
15CF
15D1
15D3
15D4

15D5

C3D515
C3D615
C3D715
C3E215
C36917
C37A17
C3AB17

oooc
000B
OOOA
001E
1B54
1859
28
18

C9

0057
0058
0059
0060
0061
0062
0063
0064
0065

PAGE B-002

■ •• ■ ••• - ••••• - ••
7 7 7 7 7 7 7 7 7 7 7 7 7 7 ,- 7 7 7 7 7 7 7 7 7 7 7 7 7 1 7 7 7 7 7 7 7 7 7 'I 7 'J 7 7 7 7 '7 7 7 7 7 1' 7 7 7 11 7 7 7

THIS TABLE ESTABLISHES THE CONNECTION BETWEEN COMAL-BO
AND THE SCREEN DRIVER.
IF THE SCREEN DRIVER IS CHANGED, THIS TABLE MUST BE
CHANGED TOO, BUT THE REST OF COMAL-BO IS UNijFFECTED.

... -........... . ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.,,,,,,,,.,.,,,,.,,,,.,,
0066 DSSTART
0067 DSEND

JP
JP
JP
JP
JP
JP
JP

XDSSTART
XDSEND
XCLRSCRE
XCRTOUT
XCHARIN
XMOVECURSOR
XPLACECURSOR

0068 CLRSCREEN
0069 CRTOUT
0070 CHARIN
0071 MOVECURSOR
0072 PLACECURSOR
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108

••••••••••••••••••• ■ ••••••••••••••••••••••••••••••••••••••
7 7 7 7 7 7 7 7 7 7 7 7 7 '77,177 7 777,777 'JI 77,777 7 7 7 7 7 7 ,., 7 7-,-, 'J 7 'I 7 7 'J 7 7 7 7 7 7

; THIS TABLE DEFINES THE CONTROLCHARACTERS FOR THE SCREEN
; AS WELL AS THE SCREEN FORMAT.

••••••••••• ■ ••••••••••••••••••••••••••••••••••••••• ■ •••••• ,,,,,,,,,,.,,,.,,,,,,,,?,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
CURIGHT
CUUP
CUDOWN
CUHOME
CLEAR
CLEARO
#CHRLIN
#LINES

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

00,CRIGHT
00,CUP
00,CDOWN
00,CHOME
LEAD IN,• T'
LEADIN,, V'
40
24

CURSOR RIGHT
CURSOR UP
CURSOR. DOWN
CURSOR HOME
CLEAR REST.OF
CLEAR REST OF
CHARACTERS PR
LINES PR PAGE

LINE
DISPLAY
LINE

.. ,,.,,,,,,,,,,,,

PROCEDURE DSSTART INITIALISATION PROCEDURE

NO INPUT, NO OUTPUT

FUNCTION:
INITIALISATION FOR THE CRT DRIVER.

USED AT START-UP TIME ONLY

.. ,,,,,,,,,,,,,,,,,,,.,,,,,,,,,,,,,,,,,.,,,,,,11,,,,,,,,,,,,,,,

XDSSTART: RET

.COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

15D6 C9

15D7
15D7
15DA
150D

15EO

21E015
110200
C3E215

1E1D

0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119

PASE B-003

••••••••••••••••••••••••• ■ •••••••••••••••••••••••••••••••• ,,,,,,,,,,,,,,,,,,,,,,,.,.,,,,,.,,,,.,,,,,,,,,,,.,.,.,,.,.,.,,,,,.,.,,

PROCEDURE DSEND FINALISATION PROCEDURE

NO INPUT, NO OUTPUT

FUNCTION:
FINALIZATION FOR THE CRT DRIVER

USED IN CLOSING DOWN THE COMAL SYSTEM.

0120 ;
0121
0122 XDSEND: RET
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147

..
1 7 1 1 1 1 1 7 7 1 7 'I 1 1 7 7 1 1 1 1 1 1' 1 7 7 1 7 1 7 1 7 , 1 1 1 1 1 7 1 ., 7 7 1 , 1 'I 1 , 11 :, , 1 'I 7 7 -, 1 7

PROCEDURE CLRSCREEN

NO INPUT, NO OUTPUT

FUNCTION:

CLEAR SCREEN

CLEARS THE DATA SCREEN AND SETS THE CURSOR IN THE
UPPER LEFT HAND CORNER.

.. ,,,,,,,,,,,,,,,,,,,,,,,,,,.,,,,,.,,,,,,,,,,,,,,,,.,,,,.,,,,,,,,

XCLRSCREEN:
LD
LO
JP

CLRS90: DEFB

HL,CLRS90
DE,2
XCRTOUT

CHOME,CLRDISP

WRITE CHOME, CLRDISP

• OPYRISHT <C> 1981 METANIC ApS DENMAR~<

•

•

•

15E2
15E2
15E3
15E4
15E5
15E6
15E9
15EA
15EC
15ED
15EE
15EF
15F1
15F4
15F6
15F8
15F9
15FC
15FD
15FE
1600
1603
1604
1607
160A
160B
160C
160E
1611
1614
1615
1618

7A
B3
ca
AF
320D01
7E
CBBF
23
1B
D9
FE20
D20B17
FEOD
2023
47
3AOA01
5F
B7
2007
3AOC01
B7
C22817
2A0801
AF
57
ED52
220801
320A01
78
CD3217
C3B816

0148
0149
0150
0151
0152
0153
0154
0155
0156

PAGE B-004

••••••••••••••••••••••••• ■ •••••••••••••••••••••••••••• ,,,, ,, ,.,,.,,,.,,.,.,,,, ,,,,,,,11,,,, .,,,,,, ,,,,,,,,,,,, ,.,,.,,,

PROCEDURE CRTOUT OUTPUT TO CRT

INPUT: HL PTR TO A TEXT
DE: THE NUMBER OF CHARACTERS IN THE TEXT

NO OUTPUT

0157 FUNCTION:
0158 THE TEXT IS OUTPUT AT THE CURRENT CURSOR POSITION
0159 ON THE CRT. THE CURSOR POSITION IS UPDATED. SCROLL
0160 IS IMPLEMENTED. THE CONTROL CHARACTERS THAT ARE
0161 RECOGNISED ARE MENTIONED IN THE CONSTANTS SECTION
0162 IN THE BEGINNING OF THIS FILE.
0163
0164 MODIFIES AF, DE, HL, BC', DE', HL'
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199

...
., , , , , , , , , ., ., ., , , , , , ., , ., , , , , ., , ., , , , , ., ., , ., , ., ., ., , , , 1 , , , , ., ., , , ., , , , , ,

XCRTOUT:
CRT005: LD

OR
RET
XOR
LD
LD
RES
INC
DEC
EXX
CP
JP
CP
JR
LO
LD
LO
OR
JR
LD
OR
JP

CRT010: LO
XOR
LD
SBC
LD
LD
LO
CALL
JP

A,D
E
z
A
<LASTW1>,A
A, (HU
7,A
HL
DE

NC,CRT075
CR
NZ,CRT020
B,A
A, (CHARN□ >
E,A
A
NZ, CRT010

; WHILE DE O O DO

LASTW1 := FALSE
A:= <HL> BITS 0-6

HL :+ 1
DE:- 1
(ALTERNATE BANK>
IF A <, , THEN

IF A= CR THEN

IF CHARNO O 0

A, <LASTWASPRINTABLE>;
A

DR NOT
LASTWASPRINTABLE

THEN NZ,CRT085
HL, <CURSOR>
A
D,A
HL,DE
(CURSOR>,HL
(CHARN□>, A
A,B
CRT072
CRT051

CURSOR:- CHARNO

CHARNO := 0

NORMALWRITE<A>
GOTO CURSOR_DDWN

.COPYRIGHT <C> 1981 METANIC ApS DENMARK

PAGE B-005

1618 FE08 0200 CRT020: CP CLEFT ELIF A = CLEFT THEN
161D 2033 0201 JR NZ,CRT030 • 161F CD3217 0202 CALL CRT072 NORMALWRITE(A>
1622 2A0801 0203 LD HL, (CURSOR) CURSOR:- 1
1625 2B 0204 DEC HL
1626 220801 0205 LD (CURSOR),HL
1629 CB7C 0206 BIT 7,H IF CURSOR { 0
1628 2810 0207 JR Z,CRT025 THEN
162D 3AD315 0208 LD A, (#CHRLIN) CURSOR:=
1630 3D 0209 DEC A #CHRLIN-1
1631 6F 0210 LD L,A CHARNO :=
1632 2600 0211 LD H,O #CHRLIN-1
1634 220801 0212 LD (CURSOR>,HL
1637 320A01 0213 LD (CHARNO> ,A
163A C32817 0214 JP CRT085
163D 3AOA01 0215 CRT025: LD A, (CHARNO> ELSE
1640 C6FF 0216 ADD A,-1 CHARNO :- 1
1642 3808 0217 JR C,CRT028 IF CHARNO (0
1644 210B01 0218 LD HL, LINEN□ THEN • 1647 35 0219 DEC (HU LINEN□ :-
1648 3AD315 0220 LD A, (#CHRLIN> CHARNO :=
1648 3D 0221 DEC A #CHRLIN-1
164C 320A01 0222 CRT028: LD <CHARNO> ,A ENDIF
164F C32817 0223 JP CRT085 ENDIF

0224
1652 FEOC 0225 CRT030: CP CRIGHT ELIF A= CRIGHT THEN
1654 2038 0226 JR NZ,CRT040
1656 21C715 0227 LD HL, CURIGHT CONTROLWRITE<
1659 CD3D17 0228 CALL CONWRI CURIGHT>
165C 0229 CRT032: CURSOR_RIGHT:
165C 2A0801 0230 LD HL, (CURSOR) CURSOR :+
165F 23 0231 INC HL
1660 220801 0232 LD (CURSOR),HL
1663 210A01 0233 LD HL,CHARNO CHARNO :+ 1
1666 34 0234 INC (HU
1667 3AD315 0235 LD A, C#CHRLIN> IF CHARNO=#CHRLIN
166A BE 0236 CP <HU
166B C22817 0237 JP NZ,CRT085 THEN
166E 3600 0238 LD <HL>,O CHARNO ·- 0
1670 210B01 0239 LD HL, LINEN□ LINEN□ :+ 1
1673 34 0240 INC (HU
1674 3AD415 0241 LD A, (#LINES> IF LINEN□
1677 BE 0242 CP <HL> #LINES • 1678 C22817 0243 JP NZ,CRT085 THEN
167B 35 0244 DEC (HU LINEN□ :- 1
167C 2A0801 0245 LD HL, <CURSOR> CURSOR -
167F 3AD315 0246 LD A, (#CHRLIN> #CHRLIN
1682 SF 0247 LD E,A
1683 1600 0248 LD D,O
1685 A7 0249 AND A
1686 ED52 0250 SBC HL,DE
1688 220801 0251 LD <CURSOR>,HL
1688 C32817 0252 JP CRT085 ENDIF

0253 ENDIF
0254

168E FEOB 0255 CRT040: CP CUP EL!F A= CUP THEN
1690 2022 0256 JR NZ,CRT050
1692 21C915 0257 LD HL,CUUP CONTROLWRITE<
1695 CD3D17 0258 CALL CONWRI CUUP>

.COPYRIGHT <C> 1981 METANIC ApS DENMARK

PAGE B-006

1698 0259 CRT042: CURSOR_UP:
1698 3AOB01 0260 LD A, (LINEN□) • 169B B7 0251 OR A IF LINEN□ 0
169C 2813 0252 JR Z,CRT045 THEN
169E 3D 0263 DEC A
169F 320B01 0264 LD (LINEND>, A LINEN□ - 1
16A2 3AD315 0265 LD A, (#CHRLIN)
16A5 5F 0266 LD E,A
16A6 1600 0267 LD D, 0
16A8 2A0801 0268 LD HL, (CURSOR> CURSOR :-
16AB A7 0269 AND A #CHRLIN
16AC ED52 0270 SBC HL,DE
16AE 220801 0271 LD (CURSOR>,HL
1681 C32817 0272 CRT045 JP CRT085 ENDIF

0273
1684 FEOA 0274 CRT050: CP CDOWN ELIF A = CDOWN THEN
1586 2021 0275 JR NZ,CRT060
16B8 3EOA 0276 CRT051 LD A,CDOWN CURSOR_DOWN: • 16BA CD3217 0277 CALL CRT072 NORMALWRITE<CDOWN>
16BD 3AOB01 0278 LD A, (LINEN□ >
16CO 3C 0279 INC A
15C1 21D415 0280 LD HL,#LINES IF LINEN□ <
16C4 BE 0281 CP CHU #LINES-1
16C5 2810 0282 JR Z,CRT055 THEN
16C7 320B01 0283 LD (LINEN□), A LINEN□ :+
16CA 2A0801 0284 LD HL, (CURSOR) CURSOR :+
16CD 3AD315 0285 LD A, (#CHRLIN) #CHRLIN
16D0 5F 0286 LD E,A
16D1 1600 0287 LD D,0
16D3 19 0288 ADD HL,DE
16D4 220801 0289 LD (CURSOR),HL
16D7 184F 0290 CRT055: JR CRT085 ENDIF

0291
16D9 FE1E 0292 CRT060: CP CHOME ELIF A = CHOME THEN
16DB 2015 0293 JR NZ,CRT065
160D 21CD15 0294 LD HL,CUHOME CONTROLWRITE<
16EO CD3D17 0295 CALL CONWRI CUHOME)
16E3 210000 0296 LD HL,O
16E6 220801 0297 LD (CURSOR>,HL CURSOR == 0
16E9 AF 0298 XOR A
16EA 320A01 0299 LO (CHARNO>, A CHARNO ·- 0
16ED 320801 0300 LD (LINEN□ >, A LINEN□ == 0
16FO 1836 0301 JR CRT085 • 0302
16F2 FE1F 0303 CRT065: CP CLRLINE ELIF A= CLRLINE
16F4 2008 0304. JR NZ,CRT070 THEN
16F6 21CF15 0305 LD HL,CLEAR
16F9 C03D17 0306 CALL CONWRI CONTROLWRITE (
16FC 182A 0307 JR CRT085 CLEAR>

0308
16FE FE1D 0309 CRT070: CP CLRDISP ELIF A = CLRDISP
1700 C22817 0310 JP NZ,CRT085 THEN
1703 21D115 0311 LO HL,CLEARD
1706 C03D17 0312 CALL CONWRI CONTROLWR ITE <
1709 181D 0313 JR CRT085 CLEARO>

0314 ELSE
0315 NOTHING
0316 ENDIF

.COPYRIGHT (C) 1981 METANIC ApS DENMAR~<

PAGE B-007

170B 0-317 CRT075: ELSE
0318 IF A O OFFH THEN

170B FEFF 0319 CP OFFH
.170D 2808 0320 JR Z,CRT080

170F CD3217 0321 CALL CRT072 NORMALWRITE <A>
1712 3E01 0322 LD A, 1
1714 320D01 0323 LD <LASTW1 >, A LASTW1:=TRUE
1717 C35C16 0324 JP CRT032 GOTO CURSOR_RIGHT
171A 5F 0325 CRT080 LD E,A ELSE
171B OE02 0326 LD C,02
171D CDCC17 0327 CALL BOOS BDOS. WRITE <A>
1720 3E01 0328 LD A, 1 LASTW1 := TRUE
1722 320D01 0329 LD <LASTW1 >, A
1725 C35C16 0330 JP CRT032 GOTO CURSOR_RIGH-T

0331 ENDIF
1728 0332 CRT085: ENDIF

0333
1728 3AOD01 0334 LD A, (LASTW1) , LASTWASPRINTABLE --
172B 320C01 0335 LD (LASTWASPRINTABLE),A; LASTWl

.172E D9 0336 EXX
'

<MAIN BANK>
172F C3E215 0337 JP CRT005 ; ENDWHILE

0338
0339
0340
0341
0342 PROCEDURE NORMALWRITE
0343
0344 INPUT: A CHARACTER
0345
0346 NO OUTPUT
0347
0348 FUNCTION: OUTPUTS A ON THE CRT. ASSUMES THAT A IS A
0349 PRINTABLE CHARACTER, CR, CURSDR_LEFT DR
0350 CURSDR_DOWN <LINEFEED>
0351
0352 MODIFIES AF,BC,DE,HL
0353

' 1732 ES 0354 CRTD72 PUSH HL
1733 D5 0355 PUSH DE
1734 SF 0356 LD E,A
1735 OE06 0357 LD C,6
1737 CDCC17 0358 CALL BOOS
173A D1 0359 POP DE

.173B El 0360 POP HL
173C C9 0361 RET

0362

.OPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

173D
173D
173E
173F
1742
1743
174li.
1745
1746
1747
1749
174C
174D
174E

174F
174F
1751
1754
1756
1759
175C

175E
1761
1764

1766

7E
B7
C44417
23
7E
E5
D5
5F
OE06
CDCC17
Dl
El
C9

3E1B
CD3217
3E3D
CD3217
3AOB01
C620

CD3217
3AOAC>1
C620

C33217

PAGE B--008

0363
0364 PROCEDURE CONTROLWRITE
0365
0366
0367
0368
0369
0370
0371

INPUT: HL POINTS OUT EN ENTRY IN THE TRANSLATION TABLE
THAT STARTS A LABEL CURIGHT. THIS ENTRY CONSISTS
OF TWO BYTES. IF THE FIRST BYTE IS> 0, IT IS
WRITTEN OUT. THE SECOND BYTE IS ALWAYS WRITTEN
OUT.

0372 NO OUTPUT
0373
0374
0375 CONWRI:
0376
0377
0378
0379
0380
0381 CONW10:
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391.

LD
OR
CALL
INC
LD
PUSH
PUSH
LD
LD
CALL
POP
POP
RET

A, (HU
A
NZ,CONW10
HL
A, (HU
HL
DE
E,A
C,6
BDOS
DE
HL

GET FIRST
SET FLAGS
IF NOT ZERO
INC POINTER
GET SECOND
SAVE HL
SAVE DE
MAKE READY FOR CP/M

CALL CP/M
RESTORE DE
RESTORE HL
RETURN

0392
0393
0394
0395
0396
0397

..
',, 777 ,.,,,,,,, ,, 1,,,,,,,.,,, .,,,,,,, ,,,,,,,,,,..,,,,,,,.,,,,,,,,

0398
0399
0400
0401

PROCEDURE GOTOXY POSITION CURSOR

NO REGISTER INPUT OR OUTPUT

FUNCTION:
THE CURSOR IS POSITIONED AT THE X, Y COORDINATES

FOUND IN THE VARIABLES CHARNO AND LINEN□.

0402 ;;
0403
0404 GOTOXY:
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418

LD
CALL
LD
CALL
LD
ADD

CALL
LD
ADD

JP

A,ESC
CRT072
A,,=,
CRT072
A, <LINEN□ >
A,32

CRT072
A, (CHARNO>
A,32

CRT072

NORMALWRITE<ESC>

NORMALWRITE <' =, >

OFFSET USED BY MANY TER
NALS
NORMALWRITE<LINENO)

OFFSET USED BY MANY TER
MINALS
NORMALWRITE(CHARNO)

.COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

1769
1769
176A
176B
176C
176E
1770
1773
1774
1776
1777
1778
1779

177A
177A
177B
177E
177F
1781
1782
1785
1786
1788

E5
D5
cs
OE06
1EFF
CDCC17
B7
CBBF
Cl
D1
El
C9

ES
3AOA01
SF
1600
19
3AD315
SF
1600
3AOB01

0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474

PAGE B-0◊9

•• ■ ••••••••••••••••
7 , 7 7 , 7 7 7 1' 7 , 1 -, 7 7 7 7 1 'J 7 7 'J 7 , 7 7 'I 1 7 1 1 1 7 7 7 7 7 1 7 7 7 1 1 7 7 7 1 7 7 7 7 'J , 7 7 1 7

PROCEDURE CHARIN

NO INPUT

OUTPUT: A: CHARACTER

FUNCTION:

INPUT CHARACTER

READS A CHARACTER FROM THE KEYBOARD.

MODIFIES AF

•••••••• ■ ••••••••••••••• ■ •••••••••••••••••••••••••••••••• ,,,,,,,,,,,,,,,,,,,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.,,,,,,,

XCHARIN:
PUSH
PUSH
PUSH

XCHAlO: LD
LD
CALL
OR
RES
POP
POP
POP
RET

HL
DE
BC
C,06
E,OFFH
BOOS
A
7,A
BC
DE
HL

•• ■ •••• ■ •••••••• ,,,,,,,,,,,,,,,,,,,,,.,,,,,,,,,,,,,,,,,,.,,,,,,,,,,7,,1,,,,,

PROCEDURE MOVECURSOR

INPUT: HL

NO OUTPUT

FUNCTION:

NUMBER OF CHARACTERS TO MOVE THE CURSOR
<SIGNED:+ FORWARDS, - BACKWARDS)

MOVES THE CURSOR UNDER THE ASSUMPTION THAT NO
SCROLLING IS NECESSARY.

••••••••••••••••••••• ■ •••••••••••••••••••••••••••••••••••• ,,,,,,,,,,,,,,.,.,,,,,,,,,,,,,,,,,,,,,,.,,,,,,,,,,,,,,,,,,,,,

XMOVECURSOR:
PUSH
LD
LD
LD
ADD
LD
LD
LD
LD

HL
A, (CHARNO>
E,A
D,O
HL,DE
A, (#CHRLIN>
E,A
D,O
A, <LINEN□ >

CHARNO :+ HL

-□PYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

178B
178C
178D
178F
1792
1793
1794
1796
1799
179C
179D
17AO
17A1
i7A4
17A5
17A8

17AB
17AB
17AE
17AF
17B1
17B2
17B5
17B8
17B9
178B
17BC
17B0
17BF
17CO
17C2
17C2
17C5
17C6
17C9

A7
3C
ED52
F28B17
A7
3D
ED5A
FA9217
320B01
7D
320A01
Dl
2A0801
19
220801
C34F17

320A01
6F
2600
78
320B01
3AD315
5F
1600
78
B7
2803
19
10FD

220801
AF
320C01
C34F17

0475 MDVElO:
0476
0477
0478
0479 MOVE20:
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491

AND
INC
SBC
JP
AND
DEC
ADC
JP
LD
LD
LD
POP
LD
ADD
LD
JP

A
A
HL,DE
P,MOVE10
A
A
HL,DE
M,MOVE20
<LINEN□), A
A,L
(CHARNO),A
DE
HL, <CURSOR>
HL,DE
(CURS□R>,HL

GDTOXV

PAGE B-010

REPEAT
LINEN□ :+ 1
CHARND :- 80

UNTIL CHARND < 0
REPEAT

LINEN□ :- 1
CHARNO :+ 80

UNTIL CHARNO >= 0

CURSOR:+ HL

OUTCURSDR

0492
0493
0494
0495

.. , , , , , , , , , , , , , , , , ., ., , ., , , , ., , , ., ., ., , , ., ., , , , , ,

PROCEDURE PLACECURSOR

0496
0497
0498

INPUT: A
B

NO OUTPUT

FUNCTION:

X-COORDINATE
V-COORDINATE

0499
0500
0501
0502
0503
0504
0505
0506

THE CURSOR IS MOVED TO THE INDICATED POSITION AND
THE 'LASTWASPRINTABLE' FLAG IS RESET.

.. .,,,.,,,,,,,,,.,,

0507 XPLACECURSOR:
0508 LD
0509
0510
0511
0512
0513
0514
0515
0516
0517

LD
LD
LD
LD
LD
LD
LD
LD
OR

0518 JR
0519 PLAC05: ADD
0520 DJNZ
0521 PLAC10
0522 LD
0523 XOR
0524 LD
0525 JP
0526

(CHARNO>,A
L,A
H,O
A,B
<LINENO>, A
A, (#CHRLIN)
E,A
D,O
A,B
A
Z,PLAClO
HL,DE
PLAC05

(CURSOR>,HL

; CHARNO := A

LINEN□ := B
CURSOR:= CHARNO +

LI NENO*#CHRLIN

A LASTWASPRINTABLE ■-
(LASTWASPRINTABLE),A; FALSE
GOTOXV ; OUTCURSOR

·C~PVRIGHT (C) 1981 METANIC ApS DENMARK

PAGE B-011

0527 ••••••••• ■ •••
, -, , , , , , , , ., , , , ., , , , , , , , , , , , 1' , , , , , ,

0528 • 0529 PROCEDURE BDOS
0530
0531 STORES ALTERNATIVE REGISTER SET, IX AND IV
0532 THE NECESSARY MAIN REGISTERS ARE STORED INSIDE
0533 COMAL-BO
0534
0535 ••••••••••••••••••••••••••••••••• ■ •••••••••••••••••••

7 7 7 7 1' 1' 1' 'I 1' 7 1' 7 7 7 7 7 7 1' 7 7 7 'J 7 7 7 'J 7 7 7 7 7 'J 7 7 -, 7 7 7 7 7 , 7 7 7 7 7 'I 7 1 7 7 7 7

17CC D9 0536 BDOS: EXX
17CD E5 0537 PUSH HL
17CE D5 0538 PUSH DE
·17CF C5 0539 PUSH BC
17DO DDE5 0540 PUSH IX
17D2 FDE5 0541 PUSH IV
17D4 D9 0542 EXX
17D5 CD0500 0543 CALL XBDOS
17D8 D9 0544 EXX • 17D9 FDEl 0545 POP IV
17DB DDEl 0546 POP IX
17DD Cl 0547 POP BC
17DE D1 0548 POP DE
17DF El 0549 POP HL
17EO D9 0550 EXX
17E1 C9 0551 RET

0552
17E2 0553 DEFS 100 SPACE FOR YOUR OWN

0554 DRIVER.
0555 USE THIS AREA FROM THE
0556 LOWEST ADRESS UP, AS
0557 PATCHES, IF IT BECOMES
0558 NESSESARY, WILL USE THIS
0559 AREA FROM THE TOP DOWN.

1846 00 0560 DEFB 0 BYTE SO THE ASSEMBLER
0561 WORKS PROPERLY.

•

• OPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

APPENDIX C
LIST OF ERROR MESSAGES

ERROR

1
2
3

TEXT

No «,ore storage
Syntax error
Overflow

4 No$/# here
5
6
7
B
9

10
11
12
13
14
15
16

17
1B

19
20
21
22
23
24
25
26

For stri"r1gs only
Error in command
No more new names
StriYlg not terminated
Illegal character
Illegal character
Illegal line number
Line too long
Variable expected
,), expected
Type conf1ict
Expression too
complicated
• (• expected
Type conflict i 1-1

parameter
Has no parameters
Wrong type
,,, expected
TAB not allowed here
Operand expected
Constant expected
• :• expected
Function not allowed
here

27 Illegal use of
:=/:+/:-/=

28
29
30
31
32
33
34
35
36
37
38
39
40
41

:=/:+/:- expected
• ;' not allowed here
'FILE, expected
End-of-line here?
Unknown device
A name expected
See tt,anual
• OF' expected
Not a string function
Line number expected
GOTO/GOSUB expected
Illegal after 'THE~•
See tt,anual
Array not allowed

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

PAGE C-001

•

•

•

4 .-. ..-:.

43

44
45
46
47
48

49
50

51
52
53

54
55
56

TO/DOWNTO expected
READ/WRITE/RANDOM
expected
FrolY, > = To
End-of-line expected
Statement expected
Co1Y11Y1at1d expected
Error in prog ra!Y,
st ructL1re
Type conflic~
Error in program
structure
Multiply defined
Function naMe expected
Name conflict with
PROC/DEF
FOR-NEXT nesting depth
Unknown line number
RESTORE: to a data-
state,v,ent ot1ly

57 Control structure not
closed

58 Control structure not
closed

59 Control structure not
closed

60 Control structure not
closed

61 Control structure not
closed

62 Control structure not
closed

63 Control structure not
closed

64 Unknown PROC/DEF/LABEL
65

66
67
68
69
70
71
72
73

74

Program structure too
co1Y1pl icated
'OUTPUT' expected
Index error
Illegal record number
No substrings here
Too few indices
Too ,v,any ind ices
Out of data
Error in assignment
to sL1bst l"'ing
For arrays ot1ly

• COPYRIGHT (C) 1981 METANIC ApS DENMARi-(

'.'AGE C-002

•

•

•

75 Error in the USING-

76
·77
78
79

80
81
82
83
84
85
B6
87

BB
89
90
91

92
93
94
95
96
97
98
99

100
101

102
103
104
105
106
107

108
109

110

111
112

string
Illegal TAB-value
Variable already exists
Cannot return
Name conflict with
PROC/DEF
CASE-value not existing
STEP= 0
SYSTEM ERROR
SYSTEM ERROR
Out of domain
Too long
OVERFLOW
Undefined variable
or function value
Too long
Not now
Index error
Type conflict in
parameter
Too many parameters
Too few parameters
Division by 0
SYSTEM ERROR
Type conflict
Line too long
Not now
Error in NEXT
, :, not allowed here
No line has such a
number
IMpossible
I1Y1possi ble
IMpossible
Auto overflow

Saved under an incom
patible COMAL-version
Arrays must carry REF
The parameter must be
a variable
The parameter has a
wrong d i1Y1ensi on
EXIT without LOOP
Control structure not
closed

• COPYRIGHT CC) 1981 METANIC ApS DENMARK

PAGE C-003

".'.lf.1S!::: C-004

113 The channel is al 1--eady

• open
114 The charn1el is not open
115 Illegal chani-1el i-1u1Y1be r
116 Ut1known i/o device
117 Unkt1owi-1 i/o device
118 Error in fi:!.er1ame
119 Error in filetype
120 Error in version nurt,ber
121 No filetype statec
122 Filetype r,ot allowed

here
123 SYSTEM ERROR
124 SYSTEM ERROR
125 SYSTEM ERROR • 126 Cannot write
127 Cannot read
128 Already open in

another mode
129 File in use
130 SYSTEM ERROR
131 Cannot open ,Y,ore

disk files
1-:r--,
~ Non-exist i rn;; file

133 Version nu1Y,ber r,ot
allowed here

134 SYSTEM ERROR
135 SYSTEM ERROR
136 Impossible as a file

is open
137 SYSTEM ERROR
138 Simple i/o device
139 SYSTEM ERROR
140 SYSTEM ERROR
141 SYSTEM ERROR
142 Fi le catalog full • 143 Disk or file full
144 SYSTEM ERROR
145 Illegal use of the file
146 "End-of-file"
147 SYSTEM ERROR
148 SYSTEM ERROR
149 Wrong block length
150 Control structure -,.-,ot

closed
151 The channel is already

open
152 The channel is not open

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

153
154

.155
156
157
158
159
160

161
162
163
164
165
166

.167
168
169

170
171

172
173
174

175
176
177
178
179
180
181
182
183

•
184
185
186
187
188
189
190
191
192
193
194
195

Illegal channel number
Unknown i/o device
Unknown i/o device
Error in filename
Error in filetype
Error in version number
No filetype stated
Filetype not allowed
here
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
Cannot write
Cannot read
Already open in
another mode
File in use
SYSTEM ERROR
Cannot open «10 re
disk files
Non-existing file
Version number not
al 1 owed here
SYSTEM ERROR
SYSTEM ERROR
Impossible as a file
is open
SYSTEM ERROR
Simple i/o device
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
File catalog full
Disk or file full
SYSTEM ERROR
Illegal use of the file
"End-of-file"
SYSTEM ERROR
SYSTEM ERROR
Wrong block length
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR

.COPYRIGHT (C) 1981 METANIC ApS DENMARK

PAGE C-005

196 • 197
198
199
200

201

202
203
204
205
206
207
208 .209
210

211
212
213
214
215
216

217
218
219

220
221

SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
Control structure not
closed
The channel is already
open
The channel is not open
Illegal channel number
Unknown i/o device
Unknown i/o device
Error in filename
Error in filetype
Error in version number
No filetype stated
Filetype not allowed
here
SYS:EM ERROR
SYSTEM EqRQR
SYSTEM ERROR
Cannot write
Cannot read
Al ready open i r1

at1ot her 1Y1ode
File in use
SYSTEM ERROR
Cai-1not open rt,ore
disk files
Non-existing file
Version number not
allowed here

222 SYSTEM ERROR
223 SYSTEM ERROR
224 Impossible as a file

•
225
226
227
228
229
230
231
232
234
235
236
237

is opei-1
SYSTEM ERROR
Simple i/o device
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
File catalog full
Disk or file full
SYSTEM ERROR
Illegal use of the file
"End-of-file"
SYSTEM ERROR
SYSTEM ERROR

• COPYRIGHT <C> 1981 METANIC ApS DENMARI·<

PAGE C-006

238

• 239
240
241
242
243
244
245
246
247
248
249
250
251
252 • 253
254
255
256
257
258
259
260
261
262
263
264

265
266
267
268
269
270
271
272

.273
274
275
276
277
278
279
280
281
282
283
284

Wrong block length
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
Record exceeded
Illegal record length
This is not a RANDOM file
Wrong record length
Existing file
Impossible
Version number not
allowed here
Error in filename
Different i/o devices specified
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

PAGE C-007

PAJ;:: ::;...0:)8

285 SYSTEM ERROR

• 286 SYSTEM ERROR
287 SYSTEM ERROR
288 SYSTEM ERROR
289 SYSTEM ERROR
290 SYSTEM ERROR
291 SYSTEM ERRDR
292 SYSTEM ERROR
293 SYSTEM ERROR

•

•

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

APPENDIX D

DEMONSTRATION PROGRAMS

• 0010 // PRIME FACTORING PROGRAM
0020 II
0030 // ASK FOR A NUMBER AND TEST IT
0040 //
0050 LOOP

PAGE D-001

0060 INPUT "INPUT POSITIVE INTEGER TO BE FACTORED: ": NUMBER
0070 IF NUMBER>O AND FRAC(NUMBER>=O THEN EXIT //TEST FOR POSITIVE
0080 II INTEGER
0090 PRINT "I ASKED FOR A POSITIVE INTEGER!"
0100 ENDLOOP
0110 PRINT "THE PRIME FACTORS ARE: 11

0120 //
0130 // PRIME 2 AND 3 MUST BE TREATED SEPARATELY

•
0140 //
0150 DIVISOR:=2
0160 EXEC TEST
0170 DIVISOR:=3
0180 EXEC TEST
0190 //
0200 //ALL PRIMES CAN BE EXPRESSED AS
0210 //N*6+5 AND N*6+7
0220 II
0230 FOR N:=O TO SQR(NUMBER)/6 DO
0240 DIVISOR:=6*N+5
0250 EXEC TEST
0260 DIVISOR:=6*N+7
0270 EXEC TEST
0280 NEXT N
0290 IF NUMBER()! THEN PRINT NUMBER
0300 //
0310 PROC TEST
0320 WHILE NUMBER MOD DIVISOR=O DO
0330 PRINT DIVISOR;
0340 NUMBER:=NUMBER DIV DIVISOR

•
0350 ENDWHILE
0360 ENDPROC TEST

• COPYRIGHT 1981 METANIC ApS DENMARK

•

•

•

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110

PAGE 0---002
II CHARACTER SORT PROGRAM
DIM STRING$ OF 2000
DIM CHARACTER$ OF 1
DIM COUNTER<ORD("A") :ORD("Z"))
SPECIAL_CHARACTERS:=O
SPACES:=O
TRAP ESC- II TAKE CARE. SAVE THE PROGRAM
II
PRINT II INPUT A STRING: II,

LOOP
EXEC GET_CHARACTER(CHARACTER$) II GET CHARACTERS ONE BY ONE

0120 IF CHARACTER$= 1111 27 1111 THEN EXIT
0130 PRINT CHARACTER$,
0140 STRING$:+CHARACTER$ II CONCATENATE CHARACTERS
0150 ENDLOOP II "ESC 11 TERMINATES INPUT
0160 PRINT
0170 II
0180 FOR I:=1 TO LEN(STRING$) DO
0190 CHARACTER$:=STRING$(I)
0200 IF CHARACTER$=" 11 THEN SPACES:+1 II TEST FOR SPACE
0210 IF CHARACTER$)="A 11 AND CHARACTER$(= 11 Z11 THEN II LETTER?
0220 COUNTER(ORD<CHARACTER$)):+1 II COUNT LETTER
0230 ELSE
0240 SPECIAL_CHARACTERS:+1 II COUNT OTHER CHARACTERS
0250 ENDIF
0260 NEXT I II GET NEXT CHARACTER
0270 II SET UP THE PRINT OUT FORMAT
0280 FOR J:=ORD< 11 A11 > TO ORD< 11 Z11

) DO II PRINT THE LETTERS
0290 PRINT 11 11 ,CHR$(J),
0300 NEXT J
0310 PRINT II EMPTY LINE
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500

FOR K:=ORD< 11 A11 > TO ORD("Z") DO II PRINT THE COUNT
PRINT USING 11 ##": COUNTER<K>,

NEXT K
PRINT
PRINT
PRINT "NUMBER OF CHARACTERS: ",LEN(STRING$)
PRINT
PRINT "NUMBER OF SPECIAL CHARACTERS INCLUDING SPACES: 11

PRINT SPECIAL_CHARACTERS
PRINT
PRINT "NUMBER OF SPECIAL CHARACTERS EXCLUDING SPACES: 11

PRINT SPECIAL_CHARACTERS-SPACES
PROC GET_CHARACTER<REF A$) II LIBRARY PROCEDURE

POKE 256, 255
REPEAT

IF ESC THEN POKE 256, 27
UNTIL PEEK(256) <>255
A$:=CHR$(PEEK(256))

ENDPROC GET_CHARACTER

• COPYRIGHT 1981 METANIC ApS DENMARK

•

•

•

PAGE D-003
0010 // CHANGING BASES
0020 II THIS PROGRAM WILL CHANGE A POSITIVE INTEGER BASE 10
0030 II TO ANY NEW BASE BETWEEN 2 AND 16
0040 DIM VALUE$(0:15) OF 1
0050 DIM DIGIT(20)
0060 FOR I:=O TO 15 DO
0070 II
0080 II SET UP THE CHARACTER SET USED FOR OUTPUT
0090 II
0100 READ VALUE$<I>
0110 NEXT I
0120 DATA "0 11

,
11 111

, "2 11
,

11 3 11
,

11 4", "5", 11 6 11
,

11 7 11

0130 DATA 11 8 11
, "9 11

,
11 A 11

,
11 B11

, "C", "D".. 11 E 11
•

11 F 11

0140 II
0150 II GET THE NEW BASE AND TEST IT
0160 II
0170 REPEAT
0180 INPUT "NEW BASE: 11

: NEW BASE
0190 UNTIL 2(=NEW_BASE AND NEW=BASE<=16 AND FRAC<NEW_BASE)=O
0200 II
0210 II GET THE NUMBER TO CONVERT
0220 II
0230 REPEAT
0240 INPUT "POSITIVE INTEGER TO BE CONVERTED: ": VALUE
0250 V:=VALUE
0260 UNTIL FRAC(VALUE)=O AND VALUE>O
0270 II
0280 II CONVERT
0290 II
0300 I:=1
0310 REPEAT
0320 DIGIT(I):=VALUE MOD NEW_BASE; VALUE:=VALUE DIV NEW_BASE
0330 I:+1
0340 UNTIL VALUE=O
0350 NO_DIGITS:=I-1
0360 II
0370 II PRINT THE RESULT
0380 II
0390 PRINT VALUE," BASE 10 CONVERTS IN BASE 11 ,NEW_BASE, 11 TO: 11

0400 FOR I:=NO DIGITS DOWNTO 1 DO
0410 PRINT V~LUE$(DIGIT(l)), 11

"

0420 NEXT I

• COPYRIGHT 1981 METANIC ApS DENMARK

•

•

•

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0:250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450

PAGE D-004
II LISSAJOUS PATTERNS
II
II CONSTANTS DEFINING THE SCREEN.
II HALVE THE VALUES FOR 40-CHARACTER SCREENS.
II ADJUST 'SCALE' TO YOUR SCREEN SO THAT INPUTS 1, 1 AND 0.5
II PRODUCE A PERFECT CIRCLE.
II
SCALE:=27
CHARACTERS:=80 II NUMBER OF CHARACTERS ACROSS THE SCREEN
LINES:=24 II NUMBER OF LINES ON THE SCREEN
II
ADJUST:=INT((CHARACTERS-2*SCALE-1)12)
IF ADJUST<O THEN STOP
X_LIMIT:=(LINES-2)/2
II
DIM LINE$ OF CHARACTERS
PI:=3. 14159
CLEAR
II
REPEAT

INPUT "RELATIVE FREQ. FOR X: ": X_REL_FREQ II TRY 4
UNTIL FRAC(X REL FREQ)=O AND X REL FREQ>=1
NO_STEPS:=X_REL_FREQ; X_REL_FREQ:=2*PI*X_REL_FREQ
II
REPEAT

INPUT "RELATIVE FREQ. FOR Y: ": Y_REL_FREQ II TRY 3
UNTIL FRAC(Y REL FREQ)=O ANDY REL FREQ>=1
Y_REL_FREQ:=2*PI*Y_REL_FREQ - -
II
INPUT "Y PHASE, MULTIPLE OF PI: ": Y_PHASE II TRY 0
Y_PHASE:=PI*Y_PHASE
II
CLEAR
FOR X_STEP:=X_LIMIT DOWNTO -X_LIMIT DO

LINE$:=SPC$(CHARACTERS)
X:=FN ARCSIN(X STEPIX LIMIT>
FOR I:=O TO NO=STEPS-1 DO

LINE$(FN_SCALED(X,I)):="*"
LINE$(FN_SCALED(PI-X,I)):="*"

NEXT I
PRINT LINE$

NEXT X_STEP
CURSOR 1, LINES-1
END
II

• ~OPYRIGHT 1981 METANIC ApS DENMARK

•

•

•

0460 DEF FN_ARCSIN<X>
0470 IF ABS(X) <0.1 THEN
0480 FN_ARCSIN:=X+XA3/6+XA5*0.075+XA7/22.4
0490 ELSE
0500 FN_ARCSIN:=2*FN_ARCSIN(X/(SQR(1+X>+SQR(1-X)))
0510 ENDIF
0520 ENDDEF FN_ARCSIN
0530 //
0540 DEF FN_CDMPUTE(T, I)
0550 GLOBAL PI, X_REL_FREQ, V_REL_FREQ, Y_PHASE
0560 TT:=(T+2*I*PI)/X_REL_FREQ
0570 FN_COMPUTE:=SIN(Y_REL_FREQ*TT+Y_PHASE>
0580 ENDDEF FN_COMPUTE
0590 //
0600 DEF FN_SCALED <T, I>
0610 GLOBAL SCALE, ADJUST

PAGE D-005

0620 FN_SCALED:=1+ADJUST+ROUND(SCALE*<FN_COMPUTE(T,I)+1))
0630 ENDDEF FN_SCALED

• COPYRIGHT 1981 METANIC ApS DENMARK

•

•

•

0010 II WRITTEN october -81 PAGE D-006
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0150
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
//
II
II
II
II
II
II
II
II

by H.C. Grosblll-Poulsen, GI.Rye, Denmark

DESCRIPTION of the procedure 'EDITLINE'
The procedure is closed, qualifying it for
immediate inclusion in the User's library.
PURPOSE: to edit a textvariable written on
the screen, thus the procedure is effectively
a l i need i t o r.
PARAMETERS: ORG_X# and ORG_Y# are integers
(valueparameter) describing the coordinates
of the position where the textvariable
originally was written.
REF LINE$ is the textvariable. It is a variable
parameter, so that the editing
to the invocating variable.

is refered back

REF KEYBOARD# is an integer, whose sole purpose
is to refer back the last input from the
keyboard for further processing in the calling
program. Value by entrance is of no significance.

Example:
CURSOR 20, 15
PRINT TEXT$(!);
EXEC EDITLINE(20,15,TEXT$(I),A#)

11---
II
PROC EDITLINECORG_X#, ORG_Y#, REF LINE$, REF KEYBOARD#) CLOSED

DIM CODE$ OF 15, HELP$ OF 80 II NB: The length may vary
X#:=1; RETURNBACK:=FALSE
EXEC INDATAINIT
CURSOR ORG_X#, ORG_Y#
REPEAT

EXEC INDATA<KEYBOARD#,MACHINECODE>
CASE KEYBOARD# OF
WHEN 13, 11, 10 I I

RETURNBACK:=TRUE
WHEN 8

EXEC CURSORLEFT
WHEN 12

EXEC CURSORRIGHT
WHEN 127

EXEC DELETEBVTE
WHEN 31

EXEC INSERTBLANK
OTHERWISE

EXEC WRITEBYTE
ENDCASE

UNTIL RETURNBACK
ENDPROC EDITLINE

refer to ASCII-table

• COPYRIGHT 1981 METANIC ApS DENMARK

0520 //
0530 //

•

0540 PROC CURSORLEFT // if possible, l'f!OVe cursor left
0550 IF X#)1 THEN
0560 X#:-1
0570 CURSOR ORG_X#+X#-1, ORG_V#
0580 ENDIF
0590 ENDPROC CURSORLEFT
0600 //
0610 //
0620 PROC CURSORRIGHT // if possible, move right
0630 IF X#-1 <LEN <LINE$) THEN
0640 X#:+1
0650 CURSOR ORG_X#+X#-1, ORG_Y#
0660 ENDIF
0670 ENDPROC CURSORRIGHT

•
0680 //
0690 //
0700 PROC INSERTBLANK // test for e><treme positioning
0710 IF LEN<LINE$))X#-1 THEN// of the cursor
0720 HELP$:=LINE$(X#:LEN(LINE$))
0730 ELSE
0740 HELP$:=""
0750 ENDIF
0760 IF X#)1 THEN
0770 LINE$:=LINE$(1,X#-1)
0780 ELSE
0790 LINE$:=""
0800 ENDIF
0810 LINE$:+" "+HELP$
0820 EXEC REWRITELINE
0830 ENDPROC INSERTBLANK
0840 //
0850 //
0860 PROC LINETEST // test for extreme positioning
0870 IF LENCLINE$))X# THEN// of the cursor
0880 HELP$:=LINE$(X#+1:LEN<LINE$))

•
0890 ELSE
0900 HELP$:=""
0910 ENDIF
0920 IF X#)1 THEN
0930 LINE$:=LINE$(1,X#-1)
0940 ELSE
0950 LINE$:=""
0960 ENDIF
0970 ENDPROC LINETEST
0980 //
0990 //

.COPYRIGHT 1981 METANIC ApS DENMARK

PAGE D-007

1000
1010 • 1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150

•
1160
1170
1180
1190
1200
121 O
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360

•
1370
1380
1390
1400
1410
1420
1430
1440

PROC DELETEBYTE
EXEC LINETEST
LINE$:+HELP$
EXEC REWRITELINE

ENDPROC DELETEBYTE
II
II
PROC WRITEBYTE

EXEC LINETEST
LINE$:+CHR$(KEYBDARD#)+HELP$
EXEC REWRITELINE
EXEC CURSORRIGHT

ENDPROC WRITEBYTE
II
II
PROC REWRITELINE // used after writing, deletion

CURSOR ORG_X#, ORG_Y# II or insertion of a
PRINT LINE$+" 11

; // character
CURSOR ORG_X#+X#-1, ORG_Y#

ENDPROC REWRITELINE
II
II

PAGE D-008

PROC INDATAINIT II place machinecode in the space
MACHINECODE:=VARPTR(CODE$); B:=MACHINECODE II allocated
Pm~E B, 30 I I LO E, 255 for in CODE$
POKE B+l, 255
POKE B+2, 14 II LD C,6 refer to 280 and
POKE B+3, 6
POKE B+4, 205 // CALL BOOS CPIM manuals
POKE B+5, 5
POKE B+6, 0
POKE B+7, 183 II OR A
POKE B+B, 202 II JP NZ,B
POKE B+9, B MOD 256
POKE B+10, B DIV 256
POKE B+11, 50 II LD <KEYBOARD#),A II making the value
POKE B+12, VARPTR(KEYBOARD#) MOD 256 II accessible to
POKE B+13, VARPTR<KEYBOARD#) DIV 256 II COMAL-BO
POKE B+14, 210 II RET

ENDPROC INDATAINIT
II
II
PROC INDATA(REF KEYBOARD#, MACHINECODE> II get an

CALL MACHINECODE II unechoed input from console
ENDPROC INDATA

.COPYRIGHT 1981 METANIC ApS DENMARK

APPENDIX F PAGE F-001

ASCII CHARACTER CODES • ASCII ASCII ASCII
Code CHARACTER Code CHARACTER Code CHARACTER

000 NUL 043 + 086 V
001 SOH 044 087 w
002 STX 045 088 X
003 ETX 046 089 y
004 EOT 047 I 090 z
005 ENQ 048 0 091 [

006 ACK 049 1 092 \
007 BEL 050 2 093]

008 BS 051 3 094 A

009 HT 052 4 095 • 010 LF 053 5 096
011 VT 054 6 097 a
012 FF 055 7 098 b
013 CR 056 8 099 C

014 so 057 9 100 d
015 SI 058 101 e
016 DLE 059 , 102 f
017 DC1 060 (103 g
018 DC2 061 = 104 h
019 DC3 062 105 i
020 DC4 063 ? 106 j

021 NAK 064 @ 107 k
022 SYN 065 A 108 1
023 ETB 066 B 109 M
024 CAN 067 C 110 n
025 EM 068 D 111 0

026 SUB 069 E 112 p
027 ESC 070 F 113 q
028 FS 071 G 114 r
029 GS 072 H 115 s
030 RS 073 I 116 t • 031 vs 074 J 117 u
032 SPACE 075 K 118 V

033 076 L 119 w
034 077 M 120 X

035 # 078 N 121 y
036 $ 079 0 122 z
037 '}{. 080 p 123 {

038 & 081 Q 124 I
039 082 R 125 }

040 (083 · s 126
041) 084 T 127 DEL
042 * 085 u

ASCII codes are in decimal • LF=Line Feed, FF=Fo rlY, Feed, CR=Carriage Return, DEL=Rubout

•

•

•

USER,S COMMENTS - ERROR REPORT COMAL-SO MANUAL

In our continuous efforts to improve this manual, METANIC ApS ask
you, the user, to use this report and send us any correction,
comment, suggestion, or addition that you may ~ave to t~is Manual.

The format of the COMAL-80 manual is designed for easy up~ating,
and your report may well be included in the next update. Forwarded
information becomes the property of METANIC A~S.

Please specify page and line references where applicable.

Manual Edition:

Errors:

Comments:

Name: Date:
Address:

Country:

• FORWARD TO: METANIC APS, KONGEVEJEN 177, DK-283O VIRUM, DENMARK

•

•

•

•

M ETAN IC COMAL-80
SYNTAX DIAGRAMS & EXAMPLES

OamaL•■a
EIP

-tw/uyfof~

METANIC COMAL-BO

Acknowledgements:

MET ANIC hereby wishes to thank all the persons

involved in specifying and testing of COMAL-BO.

A special acknowledgement is extended to

Mr. Btrge R. Christensen, DATO, Ttnder.

This booklet contains the total syntax diagrams

for METANIC COMAL-BO, Version 1.

Minor differences may occur in the implementation

onto specific microcomputers. Please consult

your manual for changes.

The information furnished by MET ANIC in this

publication is believed to be accurate and

reliable. However, no responsibility is assumed

by MET ANIC for its use.

•

•

•

•

•

•
Line:

MET ANIC COMAL -80

SYNTAX DIAGRAMS

VERSION 1.

,-REM7

---- -@7
-+line No.lstatement

I
l (D----...comment

Statement:

~READ--___..f"I . bl I ' I e t cria::J
G)

r,~a-b~~7
• ~RESTOREC.:J-------____.

-+DATATsigned constant I
---G) ... •---

• ~WRITE __ ..,.. file--c varia::.J

G)

1

MET ANIC COMAL -80

TAB---c~ • o G
* ** Q *** \.SI r LET-.... variable-----1

ti G G
--------G) ------

expression

0 • :-** -CG . ~MAT~l variable @~express,onr

----------G)·•-------
0

!...sELECT--.OUTPUT ■-.string expression---..

~INPUT--___..file---~
1

...... varia~

C)

variab:E:e
string constant-OJ ·~ Q•

LC) CD·
•

**
· 1n connection with strings :- may not be used,
whereas :+ may be used.

Variable and expression in one assignment must be • of the same type. The only exception is:

real variable:= integer expression

2

MET ANIC COMAL-SO

~CJ-,
• !_.PRINT--~ file ---....-------~

•

•

•

string 0 CG)::L
USING---. expression_.....,. : expres~n lo

~------+-expression-------~r--~

TAB-CD-numerical expression-Q)J

G)

Q

---■+-PROC-..... name-L©

REF ___.variable name----.,._ __

REF --variable name-CD r0 J . CD
-----------0.,_ ___ _

. Lrt\ variable
-.DEF----+-funct10n name '1; L name -1 • Q)~

G) .. •----

........ ENDPROC-------~name---....

........ENDDEF------....... function name----■+-

3

MET ANIC COMAL-80

0-....... numerical expression

--+DIM__.. variable f7\ numerical - Q)
name ~--c::ression) l

G)...,___-
for strings only

if string variable

-----... numerical expression

0
r~~riable7

· --+EXEC name,-1 • CD-c~~ion I' Q)--+

--+GLOBAL---f--..... , variable name-..-----~

-------G)~• ---

~GOSUB-------•line No.----.....

~RETURN--------------.....

--+LABEL--------..... label----~

~STOP---------------~

4

•

•

•

•

METANIC COMAL-80

r-1abel7
• ~GOT0....l.....1ine No.------------~

o . numerical .
---.ON---. e xpre s sion---r+ GOTOtT hn:_ No.I

l.Gosus..J L-c_J.....J

~END-------------------.

• ~IF numerical
_ __,.expression--1 ... •THEN t L •

statemeni~

** Only statements marked O may be used here.

---+-ELIF..___.numerical expression , •THEN t
---.ELSE

• ---.ENDIF

---.REPEAT

---.UNTIL numerical expression

• ---.wHILE----+numerical expression •DO

t
5

MET ANIC COMAL-80

-.END WHILE-------------.

-.LOOP--------------~

~EXIT---------------.

--.ENDLOOP--------------.

--+-CASE---+-expressioni------==• _o_F~:f
---0•

_,._WHEN--!~, expression-I _______ ,..

.---.OTHERWISE-----------....

~ENDCASE-------------+

~CHAIN-------+-string expression---+

o
~ RANDOM--
!._.RANDOMIZE-l _________ __.,.

0

!._.TRAP

•

•

•
1 CESC-_J--[0_J I.

ERR 0 •
0

!....cLEAR---------------+-

6

METANIC COMAL-80

G
• -.FOR integer variable name__cgi-7 __

•

•

•

E
integer expression•

j , integer expression

DOWNTO DO-.

STEP integer expression ' r@~
real variable name------- L@

-------numerical expression l • TO =:J • numerical expression~ I ,
DOWNTO !STEP• - DO

l..numerical expression L
---..NEXT----c· integer variable name

real variable name---~

o r@1
:!:....oPENLFILE-4numerical expression---i

----1. , , --string expression.,.__Q.J

.....,__.READ-

WRITE-----'------------~

RANDOM-.... G)-+numerical expressionj

0 ~7
:!:....cLOSE----..FILE--lnumerical expression~

7

MET ANIC COMAL-80
0

~PAGE----------------.

i numerical G) numerical •
---+-CURSOR----. expression~ ' ----+-expression---.

0
~POKE--... numerical n_ numerical

expression ----.w------,,-expression____.

0
~OUT--___.. numerical G) numerical

expression----. ' ----+-expression---+-

o
!_.CALL--....... numerical _________

expression

~INIT---• string G) string
expression---. ' ~variable------.

~RELEASE---------... string_ .---.
expression

o string G) string
---+FORMAT ~xpression---+- ' ----.expression■----+-

o string
---+DELETE .------.ex press ion

. r@7 . I
o strmg ---n.l...i FJ. numenca
----+-CAT expression~\.v FILE expression----+-

~UNIT------------• string . __.
expression

~GETUNIT string _.....,..variable

8

•

•

•

MET ANIC COMAL-80

• o string G) string
-+-RENAME---. expression__,. ' --+-expression

~QUIT----------------..

Line No.:

--+-integer constant (1-9999)-------.......

• File:

Ci:\ numerical ________ ~Q
TvTexpression L . _J • : _..
(.1 =J G) numencal

FILE ____. expression

Label:

-+name----------------~

• Signed Constant:

-+string constant------------...

-+-FALSE----------------.

--+-TRUE----------------..

• [
real constant

integer constant--~

9

METANIC COMAL-SO

Command:

• ---+DEL---~-lines-------------.,

---AUTOrstart & step t •
---RENUMBERl '

---RENUM I• line No.-Q line No.-.G)T

I :: start & step

--.usT • lines
t

• filename
t

---.ENTER~filename •
---.LOAD---+ filename

~SAVE filename

---+NEW - • -

-+CON • line No. l
10

•
METANIC COMAL-BO

-.SIZE----------------~

--+RUN--~) line No.--1--------~

--.INIT--1 ...) device name--l--------~

• --.RELEASE--------1 .. , device namej_

•

•

-.FORMAT ~device name----■.-G) ■+tape name--+

-.DELETE --+file name---------...

--.UNIT--1.-) device name ! _______ ___.
--.GETUNIT--------------~

-.RENAME---+ file name - G) file name-......

All statements marked * may be used as
commands.

11

METANIC COMAL-80

Lines:

Tline No. _[G)_t __ ..,.. line No ___ J _____ ____.
-----....... •G) •line No~-----...

•
Start & Ste~:

......... line No.--------1 ... , ?--+-line No. T •
File Name & Device Name:

Any sequence of characters not starting with
a digit, a comma, a space, or a colon, and not
containing a comma or a space may be used.

Numerical Ex~ression:

.......... integer expression-----------•

......... real expression--------------..

String-, Integer-,
& Real-Expressions:

______ l_N_~_T_j ____ ___,.•operand------..

Lopera tor-----------

12

•

•

METANIC COMAL-80

O~erator: •

•
QQerand:

--___..(D--.expression--.Q)------....

___ ___,.integer c~:>nstant----------.

• ----... real constant-------...

----.. string constant-------.....

--------+TRUE-----------+

------+FALSE----------+

• -~function name -....actual parameter list---.....

13

METANIC COMAL-SO

--+variable------------~

A TN SIN LOG SQA SGN EOF CHA$

COS TAN EXP ABS INP PEEK

BSTR$ STA$

SPC$ ERRTEXT$

ri\ numerical Q)
W__..expression)

- ' l ' l ORD BVAL

I IVAL I VAL
I I• (D---..string expression•Q)-.

---. v ARPTR------+-(D--~variable-~Q)--.

14

•

•

•

•

•

•

•

•

METANIC COMAL-80

1JT J RolNo l
I TRU,NC I FR,AC
__ --------------+-•rt_. real . -.Q) ~ expression)

CD string G) string Q)
~ _.. _.. . _.. _.. ~

POS expression ' express10n)

ri\ numerical G) numerical Q)
-+RNDrw-expression- • expression) r
~LEN----__..(D___,.string variable~Q)

** Not substrings.

Variable:

f . ***
_[

unct10n name------------....

CO numerical /\\
variable name--+ { f,____ . ---rJ.;--~

expression~ -

O· - -
for strings only

ri\ numerical O numerical Q)
---.• ~ expression~ : _..expression~ ...

Can be substituted for variables in expressions

and LET, READ, and INPUT statements only.

15

MET ANIC COMAL 80

Actual Parameter List:

---G) .. •--
________ ____.., (D-------l expression-..... , Q)-.

•
Variable name:

E~
(string) • (integer) l ---+-name
Creal) t

Integer Variable Name:

---+-name---... @------------..

Real Variable Name: • ---+-name---------------~

Comment & Ta~e Name:

t-----any character] •
16

MET ANIC COMAL -80

• Name:
** 1 1etter

** • ~letter--------_.,.. _ _..., ____ .,_.

~digit

LG
• String Constant:

•

•

.-any character except • : . . (:)
L(:)T integer constant Tc}]

Function Name:

---.co-.@
Jletter

@

~igit

G
**
Names starting with fn are reserved for function

names only .

17

MET ANIC COMAL -80
PROGRAM EXAMPLE

1
0010 I I ALL SOLUTIONS TO THE EIGHT-QUEENS •
0020 II PROBLEM. FROM: ALGORITHMS+ DATA
0030 II STRUCTURES= PROGRAMS BY N.WIRTH
0040 I I BY ARNE CHRISTENSEN, 1980
0050 I I
0060 DIM A(1 :8), 8(2: 16), C(-7:7), X(1 :8)
0070 PROC PRINTING
0080 FOR K:= 1 TO 8 DO
0090 PRINT USING "####": X(K), •
0100 NEXT K
0110 PRINT
0120 ENDPROC PRINTING
0130 I I
0140 PROC TRY(I) CLOSED
0150 GLOBAL A, 8, C, X
0160 FOR J:=1 TO 8 DO
0170 IF A(J) AND B(l+J) AND C(I-J) THEN
0180 X(l):=J; A(J):=FALSE; B(l+J):=FALSE
0190 C(I-J):=FALSE
0200 IF 1<8 THEN
0210 EXEC TRY(l+1)
0220 ELSE •
0230 EXEC PRINTING
0240 ENDIF
0250 A(J):= TRUE; B(l+J):= TRUE; C(I-J):= TRUE
0260 ENDIF
0270 NEXT J
0280 ENDPROC TRY
0290 II
0300 MAT A:=TRUE; B:=TRUE; C:=TRUE •
0310 EXEC TRY(1)

18

•

•

•

•

MET ANIC COMAL-80
PROGRAM EXAMPLE

#2
0010 I I LABEL DEMONSTRATION
0020 I I BY ARNE CHRISTENSEN, 1980
0030 LABEL AGAIN
0040 RESTORE DAT A2
0050 READ X
0060 PRINT X
0070 RESTORE DAT A 1
0080 READ X
0090 PRINT X
0100 GOTO AGAIN
0110 LABEL DATA 1
0120 DATA 47
0130 LABEL DATA2
0140 DATA -47

3
0010 SUM:=0
0020 FOR FIGURE+:=500 DOWNTO 1
0030 SUM:+ FIGURE#
0040 NEXT FIGURE#
0050 PRINT SUM

#4
0010 DIM FIRST _NAME$ OF 10
0020 DIM FAMILY_NAME$ OF 10
0030 DAT A •John•, •ooe•, 1 o
0040 READ FIRST _NAME$, FAMILY _NAME$
0050 PRINT FIRST_NAME$+• •+FAMILY _NAME$
0060 READ AGE
0070 PRINT AGE; .YEAR •

19 ,

MET ANIC COMAL-80
PROGRAM EXAMPLE

5
0010 I I LOOP AND CASE DEMONSTRATION
0020 I I A SMALL RPN CALCULATOR PROGRAM
0030 I I BY ARNE CHRISTENSEN, 1980
0040 DIM 5(10), COMMAND$ OF 10
0050 MAT S:= 0 II S IS THE STACK
0060 TOP:=0
0070 CLEAR I I CLEAR SCREEN
0080 LOOP
0090 I I PRINT OUT THE ST ACK
0100 CURSOR 1, 1 I I UPPER LEFT
0110 FOR I:= 1 TO TOP DO
0120 · PRINT S(I); SPC$(20)
0130 NEXT I
0140 PRINT SPC$(20)
0150 I I GET NEXT COMMAND
0160 CURSOR 1, TOP+3
0170 INPUT COMMAND$
0180 CURSOR 1, TOP+3
0190 PRINT SPC$(20)
0200 I I EXECUTE COMMAND
0210 CASE COMMAND$ OF
0220 WHEN"+•
0230 TOP:-1; S(TOP):+S(TOP+ 1)
0240 WHEN "-"
0250 TOP:-1; S(TOP):-S(TOP+ 1)
0260 WHEN "*"
0270 TOP:-1; S(TOP):=S(TOP)*S(TOP+ 1)

. 0280 WHEN "/"
0290 TOP:-1; S(TOP):=S(TOP)IS(TOP+ 1)
0300 OTHERWISE
0310 TOP:+ 1; S(TOP):= V AL(COMMAND$)
0320 ENDCASE
0330 ENDLOOP

20

•

•

•

•

MET ANIC COMAL-BO

INDEX Page Pag~

• ABS 14 ~ CURSOR 8

Actual

Parameter List 16 DATA 1

AND 13 DEF 3

ATN 14 DEL 10

AUTO 10 o DELETE 8, 11 • Device Name 12

BSTR$ 14 DIM 4

BVAL 14 DIV 13

DO 5, 7

~ CALL 8 DOWNTO 7

CASE 6

o CAT 8, 11 EDIT 10

o CHAIN 6 ELIF 5

• CHA$ 14 ELSE 5

~ CLEAR 6 o END 5

~ CLOSE 7 ENDCASE 6

CLOSED 3 ENDDEF 3

Command 10 ENDIF 5

Comment 16 ENDLOOP 6

• CON 10 ENDPROC 3

cos 14 ENDWHILE 6

21

METANIC COMAL-80

Page Page

ENTER 10 o GOTO 5 • EOD 14

EOF 14 o IF 5

ERR 6,14 IN 13

ERRTEXT$ 14 o INIT 8, 11

ESC 6, 14 INP 14

o EXEC 4 o INPUT 2 •
o EXIT 6 INT 15

EXP 14 Integer

Expression 12

FALSE 9,13 Integer

File 9 Variable Name 16

FILE 7,8,9 IVAL 14

File Name 12

FOR 7 Label 9 • o FORMAT 8, 11 LABEL 4

FRAC 15 LEN 15

Function Name 17 i LET 2

Line 1

o GETUNIT· 8, 11 Line No. 9

GLOBAL 4 Lines 12 • o GOSUB 4,5 LIST 10

22

MET ANIC COMAL-80

Page Page .. LOAD 10 ~ OUT 8

LOG 14 OUTPUT 2

LOOP 6

~ PAGE 8

~ MAT 2 PEEK 14

MOD 13 ~ POKE 8 • POS 15

Name 17 ~ PRINT 3

NEW 10 PROC 3

NEXT 7

NOT. 12 o QUIT 9

Numerical

Expression 12 ~ RANDOM 6, 7

~ RANDOMIZE 6

• OF 4,-6 o READ 1, 7

o ON 5 Real Expression 12

~ OPEN 7 Real Variable

Operand 13 Name 16

Operator 13 REF 3

OR 13 o RELEASE 8, 11

• ORD 14 REM 1

OTHERWISE 6 o RENAME 9, 11

23

MET ANIC COMAL-BO

Pag~ Pag~

RENUM 10 String Expression 12 • RENUMBER 10 STA$ 14

REPEAT 5

o RESTORE 1 TAB 2,3

o RETURN 4 TAN 14

RND 15 Tape Name 16

ROUND 15 THEN 5 •
RUN 1 1 TO 7

~ TRAP 6

SAVE 10 TRUE 9,13

~ SELECT 2 TRUNC 15

SGN 14

Signed Constant 9 o UNIT 8, 11

SIN 14 UNTIL 5

SIZE 1 1 USING 3 • SPC$ 14

SQR 14 VAL 14

Start & Step 12 Variable 15

Statement 1 Variable Name 16

STEP 7 VARPTR 14

o STOP 4 • String Constant 17 WHEN 6

24

•

•

•

MET ANIC COMAL-BO

WHILE

o WRITE

Pag~

5

1,7

All statements marked * may be used as
commands .

Only statements marked O may be used
after IF THEN .

25

•
Distributor: •

•
Copyright @ 1980 by MET ANIC ApS, Denmark .

All rights reserved. •

	_0001
	_0003
	_0005
	_0006
	_0007
	_0009
	_0011
	_0013
	_0015
	_0017
	_0019
	_0021
	_0023
	_0025
	_0026
	_0027
	_0029
	_0031
	_0033
	_0035
	_0037
	_0039
	_0041
	_0043
	_0045
	_0047
	_0049
	_0051
	_0053
	_0055
	_0057
	_0058
	_0059
	_0061
	_0063
	_0065
	_0067
	_0069
	_0071
	_0073
	_0075
	_0077
	_0079
	_0080
	_0081
	_0083
	_0085
	_0087
	_0088
	_0089
	_0091
	_0092
	_0093
	_0095
	_0097
	_0099
	_0101
	_0103
	_0105
	_0107
	_0109
	_0111
	_0113
	_0114
	_0115
	_0117
	_0119
	_0121
	_0123
	_0125
	_0127
	_0129
	_0131
	_0133
	_0134
	_0135
	_0137
	_0139
	_0141
	_0142
	_0143
	_0145
	_0147
	_0149
	_0151
	_0153
	_0155
	_0156
	_0157
	_0159
	_0161
	_0163
	_0165
	_0167
	_0169
	_0171
	_0173
	_0174
	_0175
	_0177
	_0179
	_0181
	_0183
	_0185
	_0187
	_0189
	_0190
	_0191
	_0193
	_0194
	_0195
	_0196
	_0197
	_0199
	_0201
	_0203
	_0205
	_0207
	_0209
	_0211
	_0213
	_0215
	_0217
	_0219
	_0221
	_0223
	_0225
	_0227
	_0229
	_0231
	_0233
	_0235
	_0237
	_0239
	_0241
	_0243
	_0245
	_0247
	_0249
	_0251
	_0253
	_0255
	_0257
	_0259
	_0261
	_0263
	_0265
	_0267
	_0269
	_0271
	_0273
	_0275
	_0277
	_0279
	_0281
	_0283
	_0285
	_0287
	_0289
	_0291
	_0293
	_0295
	_0297
	_0299
	_0301
	_0303
	_0305
	_0307
	_0309
	_0311
	_0313
	_0315
	_0317
	_0319
	_0321
	_0323
	_0325
	_0327
	_0329
	_0330
	_0331
	_0332
	_0333
	_0334
	_0335
	_0336
	_0337
	_0338
	_0339
	_0340
	_0341
	_0342
	_0343
	_0344
	_0345
	_0346
	_0347
	_0348
	_0349
	_0350
	_0351
	_0352
	_0353
	_0354
	_0355
	_0356

