
•

•

•

METANIC COMAL-80
USER'S MANUAL

OamaL-aa
EIP

-//Jt,kajto~

•

•

•

COPYRIGHT AND TRADEMARK NOTICES

METANIC COMAL-80 and its docuMentation are copyrighted
ApS, DENMARK.

PASE 1-001

by METANIC

It is illegal to copy any of the software in the COMAL-80 software
package onto cassette tape, disk or any other Medium for any pur
pose other than personal convenience.

It is illegal to give away or resell copies of any part of the
METANIC COMAL-80 software package. Any unauthorized distribution
of this product or any part thereof deprives the authors of their
deserved royalties. METANIC ApS will take full legal recource
against violators.

If you have any questions about these copyrights, please contact:

METANIC APS
KONSEVEJEN 177
DK-2830 VIRUM
DENMARK

Copyright (C) METANIC ApS, 1981
All Rights Reserved
Printed in DenMark

(R) METANIC COMAL-SO is a registered tradeMark of METANIC ApS.

<R> Microsoft SOFTCARD is a registered tradeMark of Microsoft.

<R> CP/M is a registered trademark of Digital Research, Inc.

<R> Z-80 is a registered tradeMark of Zilog, Inc •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

PREFACE

ONE THING IS A SHIP TO COMMAND,
ANOTHER IS A CHART TO UNDERSTAND •

PAGE 1-002

An old proverb, written long before words like byte, nanosecond,
or interpreter entered our world.

Nevertheless, these words often came into our Minds as we worked on
this manual. Explaining something as complicated as a high level
language is not easy, but here it is to the best of our combined
abilities.

If there is to be improvement in the next edition, we must count on
you, the user, to supply the constructive criticism that will lead
us on to better things •

There is an error report card at the back of this manual and you
are invited to send any correction, comment, suggestion or addition
that you think may be of use, and we, in turn, will be glad to re
ceive it.

Since the format of the manual alows for easy updating, there is a
good chance that you will find your own contribution in print very
soon.

An important part of the philosophy behind COMAL-SO is ease of·use,
especially for those not familiar with high level languages. For
this same reason we have arranged all the key words in this ma~ual
in alphabetical order rather than attempt to group them into pos
sibly unfamiliar structures.

We hope you will find working with COMAL-SO to be a "must" fro~ now
on and that this manual will lead to many pleasant and successful
hours with your computer.

THE AUTHORS •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

ACKNOWLEDGEMENTS:

METANIC ApS hereby wishes to thank the following members of the
staff and friends of COMAL-8O for their dedicated assistance in the •
preparation of this publication:

ROY FOX
MOBENS PELLE

ARNE CHRISTENSEN
MOBENS CHRISTENSEN
SUSANNE SONDERSTRUP

A special acknowledgement
helped with field testing
criticism and suggestions
specifications.

is extended to all the pioneers who
the COMAL-8O interpreter, and whose

have had a great impact on the final

The information furnished by METANIC ApS in this publication is
believed to be accurate and reliable. However, no responsibility is
assu1Y1ed by METANIC ApS for its use.

SECOND EDITION, MARCH 1982.
PRINTED IN DENMARK.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

INTRODUCTION PASE 1-003

METANIC COMAL-BO, written for the Z-BO microprocessor, is the most

•
extensive interpreter available for microcomputers today and con
tains, as well as a full extended BASIC, a great number of struc
tures found in Pascal.

COMAL-BO was originally specified as a result of specific wishes
from Danish educationalists who wanted a language easy to learn,
with built-in programming support and which would facilitate tran
sition to other structured languages.

This manual is divided into two parts with a number of appendices.

Part 1 contains instructions for initialization of the different
versions of COMAL-BO and a general description of features which
affect several or all the COMAL-BO instructions •

• Part 2 contains the syntax and semantics of all commands, state
ments and functions in alphabetical order.

•

The appendices contain the source code for the screen driver,
guidelines for changing the driver for different systems, a list of
of error messages, demonstration programs and a list of ASCII
codes.

This manual is not intended as a tutorial for COMAL-BO, but as a
reference manual to the specific features of METANIC COMAL-80 •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

OPERATION. PAGE 1-004

Each of the two different COMAL-BO software packages contains two
versions of the COMAL-BO interpreter. The two versions have identi
cal features, except that the overlayed version leaves more storage
to the user but uses a few seconds at the start and end of each
program execution to read the overlay file.

The different files are named:

7-digits precision:
Non-~verlayed version:
Overlayed version:
Overlay file:

13-digits precision:
Non-overlayed version:
Overlayed version:
Overlay file:

COMAL-BO.COM
COMALBOS.COM
COMAL-BO. 1

COMALBOD.COM
CMALBODS.COM
COMALBOD.1

Note that each package contains the files for only one of the two
possible precisions and that the CP/M operating system is not
placed on the distribution disks.

It is advised that the COMAL-BO files be copied to a new disk which
together with the CP/M operating system. Then remove the original
disk from the computer and keep it in a safe place as only this
disk carries a warranty.

Now type the name of the version without the extension '.COM', ,and
COMAL-SO will sign on. Note that the overlay versions will work
only if the disk is placed in the CP/M default drive.

Once initialized, COMAL-SO asks whether error descriptions are
required. Answer with 'Y' for yes or 'N' for no.

COMAL-BO is then ready for use, as shown by the prompt character
'*'· Commands and program statements may then be keyed in •

Commands are recognized by the fact that they do not start with a
line number. The line will be executed immediately following a
'RETURN'.

Both the special system commands (such as 'RUN', 'LIST', etc.) as
as well as many of the COMAL-SO statements may be used as commands
enabling instant results of arithmetic and logical operations to
be displayed without having to write a program •

• COPYRIGHT (C} 1981 METANIC ApS DENMARK

Program statements are recognized by the fact that they start with
a line number. This indicates to COMAL-BO that the line should be
stored for later execution.

On pressing 'RETURN' the line is syntax-checked and if no errors
are found it is converted to internal format and stored in the
working memory of the computer. If an error is found the line is
displayed on the terminal, the cursor indicating the error point.
F1.1rther an error code and, if the error descriptions are not dele
ted, a description of the error are displayed.

Using the editing facilities of COMAL-SO the error may then be
corrected followed by 'RETURN'. The above sequence is then repeated
until the line is correct.

•

When the user types 'RUN' a prepass is executed first to co,v,plete •
the translation into internal format. Among other thimngs it trans
lates all references to absolute memory addresses.

Finally the run-module goes into action and does the actual work •

•

COPYRIGHT (C) 1981 METANIC ApS DENMARK •

•

•

•

LINE FORMAT PAGE 1-005

The statement lines in COMAL-80 have the following format:

nnnn COMAL-80 statement [//(comment>J

for which nnnn is a line number between 1 and 9999. Only one
statement is allowed on each line, except that more assignments
may occur separated by semicolons. For further details see the
'LET, and 7 MAT 7 statements.

All statements may be followed optionally by a comment (see also
'REM' in chapter 2).

A COMAL-80 statement always starts with a line number, ends with
7 RETURN', and may contain up to 159 characters. On terminals with
a physical line length less than this, the line, when filled, will
continue on the next line.

INPUT EDITING

If an error is made as a line is being typed in, move the cursor
back to point at the error and type the correct character(s). The
new character(s) will replace the old one(s). The character pointed
at by the cursor can be deleted by pressing the 7 DEL' key (user
defineable). At the same time, all characters on the right will
move one position left.

New characters may be inserted between existing characters by
moving the cursor to the position where the insert is to start and
pressing the 'INS' key (user defineable). The rest of the line
(including the character pointed at by the cursor) will mQve one
position to the right leaving an empty space. This can be repeated
as often as necessary to create space for any number of characters
up to the maximum line length of 159 characters.

When the input is terminated
whole line shown on the screen
posit ion.

by pressing the 'RETURN' key, the
is stored regardless of the cursor

A line which is in the process of being typed may be deleted by
pressing the 'ESC' key <user defineable), but automatic generation
of line numbers will also be terminated.

To correct program lines for a program which is currently in me
Mory re-type the line using the same line number or use the 'EDIT'
command.

To delete the entire program currently residing in memory use the
, NEW' command •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

CHARACTER SET

The COMAL-80 character set comprises the
numeric characters and special characters.

alphabetic

PAGE 1-006

characters,

The alphabetic characters are the upper and lower case letters of
the alphabet, including < I } C \ J which are replaced by national
letters in some countries.

The numeric characters are the digits O through 9.

The following special characters are recognized by COMAL-BO:

CHARACTER

+

* I

(

)

$

&
(

}

, ESC,
, RETURN,

Control-A
Cont ro 1-\
Control-]
Control-S
Control-H
Control-LI
Cont rol-E
Control-I
Control-B
Cont rol-K

NAME
Blank
Equal sign or assignment symbol
Plus sign
Minus sign
Multiplication symbol
Slash or division symbol
Exponentiation symbol
Left parenthesis
Right parenthesis
Number or hash sign
Dollar sigt1
Exclamation point
Comma
Period or decimal point
Double quotation marks
Semicolon
Colon
Ampersand
Less than
Greater than
Underscore

* Stop and wait for input
Terminate input

* Insert
* Cursor left
* Cursor right
* Delete
* Backspace
* Cursor to start of line
* Cursor to end of line
* Cursor 8 step forward
* Cursor 8 step backwards
* Delete to end of line

* user definable •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

CONSTANTS PAGE 1-007

Constants are the actual values which COMAL-SO uses during execu
tion. There are two types of constants: string and arithmetic •

A string constant is a sequence of alphanumeric characters encl~sed
in double quotation marks. The length of the string is limited by
the space available in the computer only.

A double quotation mark may be included in a string constant by
entering 2 double quotation marks(""> immediately following each
other.

Characters which cannot be typed on the keyboard, can be included
in a string constant by typing the characters, decimal ASCII codes
enclosed in double quotation marks •

EXAMPLES OF STRING CONSTANTS:

"COMAL-80 11

"$10.000 11

11 0PEN THAT DOOR"
"KEY 1111 8 1111 TO STOP"
11 END"13 1111

Arithmetic constants are positive and negative numbers. Arithmetic
constants in COMAL-SO cannot contain commas. There are two types of
arithmetic constants:

1. Integer
constants

2. Real
constants

Whole numbers in the range
Integer constants do not
points.

-32767 to 32767.
have deci1Yial

Positive or negative real numbers, i.e. num
bers that contain decimal points and posi
tive or negative numbers represented in
exponential form (scientific notation). A
real constant in exponential form consists
of an optionally signed integer or fixed
point number (the mantissa) followed by the
letter ,E, and an optionally signed integer
(the exponent>. In addition, whole numbers
outside the range for integer constants are
considered real constants •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

VARIABLES PAGE 1-008

Variables are names used to represent values used in a COMAL-SO
program. The value of a variable may be assigned explicitly by the
programmer or it may be assigned as the result of calculations in
the program. Until a variable has been assigned a value, it is
undefined.

VARIABLE NAMES AND DECLARATION CHARACTERS

COMAL-SO variable names may be any length up to 80 characters. The
characters allowed in a variable name are all letters, digits and
the underscore. The first character must be a letter. Special type
declaration characters are also allowed. - See below.

A variable name may not be a reserved word unless the reserved word
is embedded. If a variable begins with 'FN,, it is assumed to be a
call to a user-defined function. Reserved words include all
COMAL-SO commands, statements, function names and operator names.

Variables may represent either an arithmetic value or a string.
String variable names are written with a'$' (dollar sign) as the
last character. Integer variable names are written with a '#'
(number or hash sign) as the last character. The '$' and the'#'
signs are variable type declaration characters, i.e. they 'declare'
that the variable will represent a string or an integer.

Examples of variable names:

A
AS
DISKNAME$
COUNTER#
VALUE_OF_CURRENT

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

ARRAY VARIABLES PAGE 1-009

An array is a group or table of values referenced by the sa,v,e
variable naMe. Each eleMent in an array is referenced by a variable
naMe subscripted with one arithMetic expression for each diMension.
An array variable naMe has as many subscripts as there are dimen
sions in the array. When used as a parameter the array can be re
ferenced as a whole or as an 'array of arrays' by omitting some or
all the subscripts. This is described in detail in the chapter:
PARAMETER SUBSTITUTION.

All arrays must be declared by a 'DIM' stateMent.

When an arithmetic array is declared, but before it is assigned
values, all its eleMents have the value O (zero).

When a string array is declared, but before it is assigned strings,
all its eleMents contain the string ,. .. (string of zero length>.

SUBSTRINGS.

Apart from referencing a string variable as a whole, element by
eleMent or as an array of array, a part of a string variable ele
Ment May be referred to.

This is done in one of the following formats:

<name> (I 1, 12, ••• In, <start> [, <end) J >
(name> (I1, I2, ••• In> ((start>: (end))

In the first case, the number of dimensions in the variable (naMe>
is checked against the corresponding 'DIM' statement. If it has,
say 'n' dimensons, then the first 'n' indices in the parenthesis
are used to specify the actual eleMent. The parenthesis may contain
one or two indices, i.e. <start) and (end). (start> specifies at
which character position the substring starts, and (end) specifies
at which it ends. Omitting <end) the substring consists of the cha
racter at the (start) position only.

In the second case, the first parenthesis contains the necessary
number of indices, whereas the second parenthesis contains (start)
and (end) information as described in the forMer case. Here the
(end) specification must be present and a colon is used to delimit
it from the (start}.

If (naMe} states a simple string variable then the number of dimen
sions is considered to be zero and the parenthesis contains <start>
and (end> only. In the latter format, the first parenthesis is
omi:tted •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

ARITHMETIC OPERATORS PAGE 1-010

The arithmetic operators are:

Precedence Operator Operation Example
1 ·"' Exponentiation X·"'Y

2 I Division X/Y
2 * Multiplication X*Y
2 DIV Integer division X DIV y
2 MOD Modul llS X MOD y

3 Negation -x
4 + Addition X+Y
4 Subtraction X-Y

Precedence controls the order in which operations are h~ndled with
in an expression. The operator with the highest precedence is
evaluated first, lowest last. Where several operators have the
sameprecedence they will be evaluated from left to right.

Precedence may be overruled by parentheses; expressions enclosed
in parentheses are resolved first. When multiple operators occur
in the same set of parentheses the above table applies.

Apart from negation, the arithmetic operators
tween expressions giving arithmetic values.
only for expressions giving arithmetic values.

may be used only be
Negation may be·used

The arithmetic value of a logical expression being tru~ is 1.
The arithmetic value for a false logical expression is O •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

RELATIONAL OPERATORS PAGE 1-011

Relational operators are used to compare two values. The result of
a such comparison may be either true (= 1) or false<= 0). This
result may then be used to influence the program run.

Whenever an arithmetic value is used as a logical value, the number
0 is interpreted as false, and numbers OTHER THAN Oare interpreted
as true.

Operator Relation Example
= Equality X=Y
0 Inequality XOY

) Greater than X>Y
< Less than X<Y
>= Greater than or equal to X>=Y
<= Less than or equal to X<=Y

= is also used to assign a value to a variable.)

Relational operators are used between two expressions both giving
an arithmetic value or between two expressions both giving a string
value.

Relational operators hold second precedence to arithmetic opera
tors, within an expression containing both types all arithmetic
operators are resolved before the relational operators.

In the following example:
X-2>T+3

the values of 7 X-2' and 'T+37 are calculated before the comparison
of the two values.

Comparison between two string expressions is done character by cha
racter using the ASCII codes for each character. 'A' is less than
'E' (the ASCII code for 'A' is 65 and for 'E' it is 69).

With two strings of different lengths where the short one is equal
to the beginning of the long one, the short one is considered
the smallest. Consequently, "BLACK" is smaller than "BLACKBIRD".

When comparing two strings, all characters between the double quo
tation marks are compared including spaces. In this respect the
aggregates "" and "number", each representing only one character
when found within a string value, count as one character only,
naMely the character represented by the aggregate •

• COPYRIGHT CC) 1981 METANIC ApS DENMARK

•

•

•

FILE NAMES PAGE 1-012

File names basically follow the CP/M naming conventions. Only the
first eight characters are significant and lower case letters are
converted to upper case. COMAL-BO accepts up to 80 characters in
a file name.

Following a period an extension of three characters may be speci
fied. The extension can be chosen freely except in connection with
'SAVP and 'LOAD' commands where the COMAL-BO systew, autow,at ical ly
provides the extension '.CSB'. No extension may be specified with
these coMmands.

If no extension is specified, the default '.CML' is used when the
file name is used in connection with the 'ENTER' and 'LIST'
ccommands. ' • DAT' is used in connection with the 'OPEN' coMMand/
statement, 'CAT' command/statement and '.RAN' is used with random
files.

The whole name, including the extension, is used to specify a file.
This means that the two commands:

ENTER PROGRAM
ENTER PROGRAM.CML

read the same file into memory, whereas

ENTER PROGRAM.LST

reads another.

The disk drive name is optional but is treated as an integral part
of the file name. If it is omitted, the current default disk drive
is used. If it is specified then it is written in front of the file
name. The disk drive name is the device name of the disk to be
used (see below).

Example:
ENTER DK1:PROGRAM.CML

Note that the disk drive names do not follow the CP/M naming
convention.

The disk drive name consists of the.two letters 'DK'
and a unit number followed by a colon. Thus 'DKO:'
CP/M' s 'A:', 'DK1 :• corresponds to CP/M' s 'B:', etc.

(meaning disk)
corresponds to

A similar system is used with the other peripheral devices, so that
these can be used as files and may be the source of or destination
for data, according to the nature of the specific device •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

The names used for the different devices are:

Example:

'LP:' or 'LPO:' for the line printer
'LP1:' for the puncher
• DS:, or , DSO:. for the data screen
'KB:' or 'KBO:' for the keyboard

10 OPEN FILE 0, "KB:", READ
20 OPEN FILE 1, "LP:", WRITE
30 DIM A$ OF 100
40 LOOP
50 INPUT FILE O:A$
60 PRINT FILE 1:A$
70 ENDLOOP

When ' INIT' 'RELEASE' 'FORMAT', 'DELETE', 'GETUNIT', 'RENAME',
'UNIT', and ;CAT' are u~ed as statements, filenames are considered
to be string expressions and must be enclosed in double quotation
marks. This is not allowed in command mode. This allows a file name
to be specified by any string expression which evaluates to a legal
file name.

Examples:
100 DELETE "DKO:PROGRAM.CML"
100 INIT "DKO:",A$
100 DELETE "DKO:"+A$+".CML"

COMAL-SO use its own format in disk files. The normal CP/M format
can be specified by extending the filename with a '/C. Further ex
tending the filename with a '/B' specifies the CP/M binary format.

Examples:
ENTER TEST.BAK/C // READ CP/M ASCII FILE

100 OPEN FILE 3,"TEST.XYZ/C/B",READ //OPEN CP/M BINARY FILE
lCIO OPEN FILE 2,"DATA/C",WRITE //OPEN CP/M ASCII FILE

COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

•

PROCEDURES PAGE 1-013

One of the distinct features of COMAL-BO is the inclusion of genu-
• ine procedures with parameters.

•

•

A procedure is a named program area
'PROC (name>, and 'ENDPROC <name}'
of the keyword 'EXEC (name)'.

placed between the keywords
and which is called by the use

They basically act like the subroutines known from BASIC, i.e.
they can be called from one or several places in a program and
when the procedure is finished the program execution continues in
the line following the calling line. But besides this, they have
other features which make them a very efficient programming tool.

Firstly, they are called by name, meaning that the programmer does
not have to care about the line number in which the procedure is
placed.

Secondly, the procedure is non-executable until it is called, mea
ning that regardsless where the procedure is placed in the program
the lines inside it will be bypassed unless the procedure is actu
ally called by an 'EXEC' statement and this call can go both for
wards and backwards in the program.

Thirdly, and very important, parameters can be passed on to the
procedure when it is called. This means that a procedure can react
differently and operate on different data each time it is called.

There are two types of procedures, called open and closed procedu
res. The difference between the two is a question of how the pro
edure sees the variables used in the rest of the program.

The variables used in an open procedure has the same status as
variables used in the main program which means that if it is
assigned a new value inside the procedure, it keeps this value when
the procedure is terminated and program execution resumes from the
line following the calling line •

The closed procedure, however, acts in many ways like a separate
program. The closed procedure has its own set of variables, which
can be dimensioned and assigned values inside the procedure, but
they are never able to influence the variables used outside the
procedure unless some special action is taken <reference parameters
and the global statement). This makes it possible to write library
routines which can be used in any program without risking problems
with the same variable name being used both in the procedure and in
the rest of the program •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

PAGE 1-014

The difference between the two types of procedures can be illustra
ted by the following two programs:

1

10 A:=5
20 EXEC TEST
30 PRINT A
40 PROC TEST
50 A:=3
GO PRINT A
70 ENDPROC TEST

2

10 A:=5
20 EXEC TEST
30 PRINT A
40 PROC TEST CLOSED
50 A:=3
GO PRINT A
70 ENDPROC TEST

Running these 2 programs the first one will twice print the digit
'3' because the assignment in line 50 will overrule the assignment
in line 10. The second example will print the digits '3' AND '5'
because the procedure is closed and thereby the variable in line 50
is not the same as the one in line 10 even though they have the
same name. Technically speaking, the variable 'A' in example 1 is
global to the procedure because the whole program can see and use
it, but a variable inside a closed procedure is local and can only
be used inside the procedure.

A local variable must also be assigned (line 50) or dimensioned
inside the closed procedure before it is used for the first time.
This means that if line 50 is deleted in the second example,· the
program execution will stop in line GO with an error message tel
ling that the variable is unknown.

Even though the separation of variable names is the basic idea
behind the closed procedures, it is often convenient to make a
variable name known to the main program as well as to the procedure

This can be done by the 'GLOBAL' statement as shown in the follo
wing example:

10 A:=3
20 EXEC TEST
30 PRINT A
40 PROC TEST CLOSED
50 GLOBAL A
GO A:=3*A
70 PRINT A
80 ENDPROC TEST

This program will twice print the digit '9'. Note that the 'GLOBAL'
statement must be placed in the closed procedure and before the
part of the procedure actually using the variable for the first
time •

• COYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

•

PAGE 1-015

Closed procedures can be nested to any level that the memory allows
(each level uses minimum about 50 bytes, depending on the number of
variables), but the 'GLOBAL' statement only works on the level
where it is actually placed. The following program will print the
digit '3' (in line 100) and then stop in line 60 with an error mes
sage that the variable is unknown:

10 A:=3
20 EXEC TEST1
30 PRINT A
40 PROC TEST1 CLOSED
50 EXEC TEST2
60 PRINT A
70 ENDPROC TEST1
80 PROC TEST2 CLOSED
90 GLOBAL A

100 PRINT A
110 ENDPROC TEST2

Another way of moving a variable into and out of a closed procedure
is by means of a reference parameter. this is described in details
in the chapter 'PARAMETER SUBSTITUTION'.

When a variable is dimensioned or assigned a value in a closed pro
cedure the necessary memory is not allocated until the procedure
is actually called and this memory is again de-allocated when the
procedure is terminated.

Thus, no matter the number of times a procedure is called there
will be no error message 'out of storage', if no such error message
occurs on the first call.

This 'clearing the blackboard' also makes it possible to dimension
a variable in a procedure which is called several times without
conflicting with the rule that a variable cannot be re-dimensioned,
and it is possible to overlay arrays and string variables used for
intermediate results and thereby economize on storage by dimensio
ning and using these in different closed procedures.

Any procedure may call any procedure defined anywhere in the main
program and it may even call itself (recursion>. Note, that also
recursion means nesting to a new level which uses w,emory and must
be carefully controlled.

A closed procedure can also call an open procedure. The variables
inside these two procedures will then be common for these but can
not be seen from the caller of the closed procedure.

The rules for variables in closed procedures are also applicable
for the other closed structure: The user-defined function •
COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

PARAMETER SUBSTITUTION PAGE 1-016

An important part of the COMAL-BO definition is the inclusion of
procedures (and user-defined functions) with parameters, which
allow decomposition of a program into smaller, named routines.
These can be open (open procedures) or closed (closed procedures
and user defined functions>.

To move data into and out of a such routine parameters are used,
i.e. list of variable names specified in the calling line (the ac
tual parameters) and in the first line of the routine (the formal
parameters). The actual parameters are then inserted in the formal
parameters when the routine is called.

There are two types of parameters, namely 'call by value' and 'call
by reference' •

'call by value' means that the actual value of the actual parameter
is assigned to the formal parameter. This type can only move data
into the routine as changes to the formal parameter do not affect
the actual parameter.

'call by reference' means that the formal parameter is replaced by
the actual parameter. This type can move data both into and out of
a routine, and is specified by the keyword 'REF' in the formal
parameter list. The above mentioned replacement happens dynamically
i.e. when the routine is called and cannot be seen in program list
ings, which always show the formal parameters.

The following examples show the difference:

1 2
10 A:=3 10 A:=3
20 EXEC TEST(A> 20 EXEC TEST(A)
30 PRINT A 30 PRINT A
40 PROC TEST<X> 40 PROC TEST(REF X)
50 X:=3*X 50 X:=3*X
60 PRINT X 60 PRINT X
70 ENDPROC TEST 70 ENDPROC TEST

Here, in line 20 'A' is the actual parameter and 'X'
the formal parameter.

in line 40 is

In the first example the value '3' is assigned to 'X' when the pro
cedure 'TEST' is called in line 20 and prints the digit '9' in line
60. After the procedure is terminat~d the digit '3' is printed in
line 30 because the variable 'A' is in no way affected.

The other example will twice print the digit '9' because the formal
parameter is replaced by the actual one and the change thereby re
flected back •

• COPVRIGHT <C) 19B1 METANIC ApS DENMARK

•

•

•

PAGE 1-017

ParaMeters are always local, Meaning that changes which happen to
7 call by value, paraMeters in a routine cannot affect a variable
with the saMe naMe in the rest of the program. This is shown by the
following example:

10 A:=3
20 B:=2
30 EXEC TEST<A>
40 PRINT A,B
50 PROC TEST<A>
60 A:=3*A
70 B:=3*B
80 PRINT A,B
90 ENDPROC TEST

For 'A' this prograM will print the digit '9' in line 80 and then
the digit ,3, in line 40. Both lines print the digit '6' as the
value for 'B'. In other words, the formal paraMeter 'A' is local to
the procedure and another variable than the variable used in lines
10 and 40, whereas 'B' is not a paraMeter (and the procedure is not
closed) so it is global to the procedure, and the same variable in
the whole program.

The parameter lists may contain as many paraMeters as the maximum
line length allows (159 characters>, separated by commas, but there
Must be the saMe number of parameters in both lists, and correspon
ding parameters must conform to type and dimension. The only excep
tion is that an integer actual parameter can be assigned to a real
formal parameter when 'call by value, is used.

Constants and expressions can be used as actual parameters when
'call by value' is used.

ExaMple:
10 EXEC TEST(3*5,"ERROR 11 >
20 PROC TEST<A,B$)
30 PRINT A
40 PRINT B$
50 ENDPROC TEST

Note, that a formal parameter cannot be dimensioned, as the call
itself carries the necessary inforMation.

Arrays can be used as paraMeters either as a whole, as an array of
array or a single eleMent, but they can only be used as reference
parameters in the forMer two cases •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

PAGE 1-018

When a single element is used, the element is specified in the ac
tual parameter list with the necessary number of indices and a
variable of the same type specified in the formal parameter list.

Example:
10 DIM A(3,5,2)

100 EXEC TEST(A(l,1,1))

200 PROC TEST(B)

300 ENDPROC TEST

Note, that 'B' does not need to be a referenced parameter as only a
single element is used.

An array of array is used by omitting one or several of the indices
from the right hand side in the actual parameter list and following
the formal parameter name with a parenthesis containing the same
number of commas as the number of omitted indices minus 1.

Example:
10 DIM A(3,5,2)

100 EXEC TEST(A(1,1))

200 PROC TEST (REF B () >

300 ENDPROC TEST

In this example one should note that the parenthesis following the
formal parameter 'B' is empty because the number of omitted indices
is 1.

The omitted indices are then specified when the formal parameter is
used in the routine •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

The following example shows this:

10 DIM ARRAV_OF_VECTORS(5,3>
20 FOR J:=1 TO 5
30 FOR J:=1 TO 3
40 ARRAV_OF_VECTORS<I,J):=RND(1,5)
50 NEXT J
60 NEXT I
70 EXEC CHANGE SIGN<ARRAV OF VECTORS(4))
80 PROC CHANGE=SIGN(REF VECTOR<>> CLOSED
90 FOR I:=1 TO 3

100 VECTOR(I):=-VECTOR<I>
110 NEXT I
120 ENDPROC CHANGE SIGN
130 FOR J:=1 TO 5 -
140 FOR J:=1 TO 3
150 PRINT ARRAV_OF_VECTORS<I,J>;
160 NEXT J
170 PRINT
180 NEXT I

PAGE 1-019

It is also possible to use a whole array as a parameter. This is
done by removing all the indices in the actual parameter list and
following the formal parameter with a parenthesis containing the
same number of commas as the dimension of the array minus 1.

Example:
10 DIM A•<5,3,2) OF 25

100 EXEC TEST<A•>

200 PROC TEST(REF B•<,,>>

• 300 ENDPROC TEST

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

ERROR HANDLING

COMAL-SO actually consists of 3 main modules called:

Input Module
Prepass Module
Run Module

PAGE 1-020

Each module has its own error routines handling different error ty
pes as efficiently as possible.

These routines have at their disposal a library of error messages
giving a short description of each of about 200 different types of
errors.

An error number is always given with the error message and in most
cases the actual line causing the error is displayed with the
cursor indicating the point of error.

To give instant error messages the library is an integrated part of
COMAL-SO. As the library uses about 3K it is possible to delete
most of it when signing on COMAL-SO, giving the user about 2.5K
extra storage.

Except for the messages Missing, the rest of the error reporting
system works in the usual way and the error number makes it pos
sible to find the text in Appendix C of this manual.

SYNTAX ERRORS

The input module consists in fact of two submodules: the editor and
the syntax control.

The editor is a line-oriented editor, which allows the user to key
in a line and change it as appropriate. When the line is terminated
by pressing (return> it is transferred to the syntax control, and
checked against the COMAL-SO specifications.

If no syntax errors are found the line is executed if it is a com
mand, and translated and stored in memory if it is a statement.

If the line contains a syntax error, an error number and (if not
deleted) an error message is displayed followed by the actual line
with the cursor indicating the error location and control is retur
ned to the editor. Now the user can correct the line and repeat the
sequence i..mtil the line is accepted •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

Reading an ASCII file via the "ENTER" command
checked in the same way. If errors occur the
halts and resumes when the line is corrected.

PASE 1-021

each line is syntax
reading temporarily

It is in no way possible to store a line containing a syntax error.

PREPASS ERRORS

When the user wants to execute a program and types ., RUN7 the pre
pass., which is invisible to the user, goes into action. This module
extends the internal representation of the program by absolute
memory addresses and checks that all structures are properly ter
Minated and reference points exist.

no error is found the control is passed on to the run module.

If one of the statements of a structure is missing (FOR ••• NEXT, RE
PEAT •••• UNTIL., WHILE •••• ENDWHILE., a.s.o.>., the line number of the
corresponding statement is displayed on the screen with an error
number and possibly an error message. Line numbers with calls to
non-existing 'LABEL" statements are shown in the same way.

If a statement contains the 'EXIT" statement without the surroun
ding "LOOP" and 'ENDLOOP" statements., the line number of the "EXIT"
statement is returned.

All errors in the whole program are reported at the same time., and
control is then returned to the input module. Note., that it is not
possible to execute any part of a program if it contains a prepass
error.

RUN ERRORS

When the run module is called only errors of dynamic nature (i.e •
occurring when a line is actually executed) can exist. An error of
this type will normally stop COMAL-BO. The line containing the
error will be shown on the screen with the cursor at the point
where the error occurred and the error number and possibly an error
mesage shown, too. Control is then returned to the editor in the
input module for easy correction of the error. However, a number of
errors are non-fatal because they can be bypassed in a well-defined
Manner. An example of this is division by 0., where it is often
convenient to assign as the result the maximum value that COMAL-SO
can handle.

To prevent program stop for non-fatal errors, two special state
ments are implemented: 'TRAP ERR-" and 'TRAP ERR+" •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

PAGE 1-022

If a 'TRAP ERR-' statement has been executed a non-fatal error will
not stop the program execution, but assign its error number to the
system variable 'ERR'. By testing this variable it is then possible
to influence program flow. This mode of ope~ation continues until a
'TRAP ERR+' statement is executed ~fter which the system returns to
normal error handling.

The fatal errors always terminate program execution.

Note that the 'TRAP ERR-' mode is a question of having executed a
such statement. Its actual line number is of no importance.

The 'RUN' command always resets to normal error handling •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

COMAL-SO Co1Y1mands and Statements. PAGE 2-001

All the COMAL-BO commands, statements and functions are described
• in this chapter. Each description is formatted as follows:

Type:

Purpose:

Syntax:

Execution:

Example:

States whether a command, statement or function.

States what the instruction is used for.

Shows the correct syntax for the instruction.
See below for syntax notation.

Describes how the instruction is executed.

Shows sa1Y1ple programs or prograM segments that
demonstrate the use of the instruction •

• ComMents: Describe in detail how the instruction is used.

•

Syntax Notation.

Wherever the syntax for a statement., co1Y11Y1and or function is given,
the following rules apply:

Items in capital letters must be input as shown,
lower case letters may be used. The latter
COMAL-SO to upper case in listings.

but both upper and
are converted by

Items in lower case letters enclosed in angle brackets (< >) are
inserted by the user.

Items in square brackets ([J) are optional.

All punctuation except angle brackets and square brackets (i.e.
commas., parentheses., semicolons, colons, exclamation points., slash
es., number signs., plus signs, minus signs or equal signs) must be
included where shown •

All reserved words must be preceded by and/or followed by a space
if this is necessary to avoid multiple interpretations •

• COPYRIGHT (C> 1981 METANIC ApS DENMARK

•

•

•

ABS

Type:
Arithmetic function

Purpose:

PAGE 2-002

To calculate the absolute value of an arithmetic expression

Syntax:
ABS<<expression))

Execution:
Returns the absolute value of (expression).

Exa,Ytple:
10 PRINT ABS(3*<-5))

CoJY11Y1et1ts:
1. The result will be of the same type <real or integer) as

the expression •

• COPYRIGHT CC> 1981 METANIC ApS DENMARK

•

•

•

AND

Type:

Purpose:

PAGE 2-003

Logical operator

To perform the logical 7 AND, between 2 eKpressions.

SyntaK:
<eKpression1> AND <expression2)

EKecution:
<eKpression1> is ANDed with <expression2>.

Example:
10 INPUT A#
20 INPUT B#
30 IF A#=5 AND B#=7 THEN
40 PRINT "THE PRODUCT IS 35"
50 ELSE
60 PRINT "THE PRODUCT IS PERHAPS NOT 35 11

70 ENDIF

COMMents:
1. The operator uses the truth table:

(eKpression1> (eKpression2> result
true true true
true false false
false true false
false false false

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

ATN

Type:

Purpose:

Syntax:

PAGE 2-004

Arithmetic function

Returns the arctangent of an arithmetic expression.

ATN((expression))

Execution:
Returns the arctangent of (expression> in radians.

Example:
10 INPUT A
20 PRINT ATN(A)

Cow,ments:
1. The result will always be real (whether (expression> is

real or integer> and in the interval -pi/2 to pi/2 •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•
AUTO

Type:

PAGE 2-005

Command

Purpose:
To generate a new line number automatically after each
'RETURN'.

AUTO [(start>[, Cstep)JJ

Execution:
Following each 'RETURN' a new line nuMber is calculated
using the last line number used (or a value initially sta
ted) plus the indicated step. The new nuMber is placed in
the input buffer and displayed on the screen.

• The cursor is set in position 6 ready for a new input line.

•

Examples:
AUTO
AUTO 15
AUTO 10,5

Comments:
1. If the (start> value is omitted, default 10 is used.
2. If the <step> value is omitted, default 10 is used.
3. If an existing line number is generated, the new line

replaces the former one.
4. The automatic generation of line numbers can be inter

rupted at any time by pressing the 'ESC' key.
The line in which this is done, is not stored •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

BSTR$

Type:

Purpose:

Syntax:

PAGE 2-006

String function

Converts an arithmetic expression to binary representation.

BSTR$((expression))

Execution:

ExaiY,ple:

<expression> is calculated and
value is then converted to a
8 characters.

10 DIM A$ OF 8
20 INPUT B
30 A$:=BSTR$(B)
40 PRINT A$

Co1Y1ments:

rounded if necessary. The
binary textstring of exactly

1. (expression> must evaluate t~ a value between O and 255 •

• COPYRIGHT CC> 1981 METANIC ApS DENMARK

•

•

•

BVAL

Type:

PAGE 2-007

Arithmetic function

Purpose:

Syntax:

To convert a binary number from a string to an integer
value.

BVAL <<string expression>>

Execution:

Example:

The binary number contained in a string of exactly 8
characters is converted to its integer form.

10 DIM A$ OF 8
20 INPUT "WRITE A BINARY VALUE: ":
30 PRINT BVAL(A$)

A$

Comments:
1. If the string contains more or less than 8 digits or if

it contains anything other than binary digits 7 proogram
execution is stopped with an error message •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

CALL

Type:

PAGE 2-008

Statement, command

Purpose:
To call a Z-80 machine code routine from COMAL-BO.

Syntax:
CALL <expression>

Execution:
(expression) is calculated and rounded if necessary. The
CPU then stores all its registers and calls the specified
address where program execution starts.

Examples:
CALL 256

240 CALL 53248

Co1Y11Y1ents:
1. For further details on the Z-80

assembler codes please refer
manl1als.

microprocessor and its
to the manufacturers'

2. The user may use the CPU registers, however, the stack
pointer and the 8 restart addresses in page zero are
used and must be re-established prior to returning to
COMAL-80.

3. COMAL-80 does not utilize the interrupt facilities of
the CPU. Consequently, the user may do this after re
turning to COMAL-SO.

4. Terminate the machine code with a 'RET' command to re
turn to COMAL-80 •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

CASE

Type:

Purpose:

Synta><:

WHEN OTHERWISE ENDCASE PAGE 2-009

Statement

The case structure is used to choose between various pro
graiY, sections according to the value of an e><pression.

CASE <expression> OF
WHEN (list of values>

WHEN (list of values>

WHEN (list of values>

COTHERWISE

.]
ENDCASE

Execution:
The <expression> is evaluated and the ,WHEN, statements are
checked one by one to find whether one of the list of
values matches the calculated value.
When a match is found the lines from the 7 WHEN 7 statement
in which it is found, up to the next corresponding 'WHEN',
,OTHERWISE' or 7 ENDCASE, statement, are executed, after
which the program continues after the 7 ENDCASE' statement,
(provided that none of the executed lines have transferred
the execution to an other part of the program).
If none of the checked values fit the value of (expression>
The lines following ,OTHERWISE, will be executed.
If 7 0THERWISE, is omitted the program execution stops with

• an error 1Y,essage if no match is found.

Example:
10 DIM A$ OF 1
20 INPUT "PRESS THE ,A, OR THE ,B, KEY 11 :A$
30 CASE A$ OF
40 WHEN 11 A11

,
11 a 11

50 PRINT "YOU HAVE PRESSED THE ,A, KEY"
60 WHEN 11 B11 ,"b"
70 PRINT "YOU HAVE PRESSED THE ,B, KEY"
80 OTHERWISE
90 GOTO 20

100 ENDCASE

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

Comments:
1. The expressi ol'1s contained in the • WHEN' statements.

must be of the same type as (expression> but integer
expressions are allowed in the 'WHEN' statements if
<expression> is of real type.

2. If several 'WHEN' statements correspond to <expression>
only the program section corresponding to the first one
is executed.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

•

•

•

CAT

Type:

PAGE 2-010

Com«,and

Purpose:

Syntax:

To display the catalog of a background storage device.

CAT [< f i 1 e t1a«,e 1> [, < f i 1 e na«,e2} J J
CAT (file name2>

Execution:
The operating system of
The contents of the file
specified (file name2} •

the computer is called.
catalog are transferred to the

Exa«,ples:
CAT
CAT
CAT
CAT
CAT
CAT
CAT

Comments:
1.

DKl:
DK1 :K
DK1:,DKO:ABC.DEF
*.CML,LP:
DK1:C???????.*,LP:
LP:

(file name2} is the name of the file to which the
catalog is output.
(file name1} specifies partly or wholly the name(s) of
the catalog entries which are to be output. A partial
specification may consist of a device name only (in
which case the whole catalog of that device is output),
or a partial file name, where the characters'*' and
'?' are used following the of CP/M protocol.

3. Omitting (file name2} displays the catalog on the termi
nal.

4. Omitting (file name1} displays the whole catalog of the
current default device •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

CAT

Type:

Purpose:

Syntax:

PAGE 2-011

StatetYtent

To write the catalog froM a background storage device into
a file.

CAT (file natYte), FILE (file No.>

Execution:
The operating systeM of the cotYtputer is called, and infor
Mation as to which device and which file naMes are to be
written is passed to it. The catalog is written in ASCII
format in the specified (file No.> •

Examples:
100 CAT "DK1:", FILE 3
100 CAT "DK1:*.CML", FILE 2

Comments:
1.
2.
3.

4.

5.

6.

7.

8.

(file name> is a string expression.
(file natYte) specifies the files wanted from a catalog.
(file name> specifies partly or wholly the name(s} of
the catalog entries which are to be output. A partial
specification may consist of a device name only (in
which case the whole catalog of that device is out
put>, or a partial file name, where the characters'*,
and'?' are used following the CP/M protocol.
(file name> being the empty string the whole catalog of
of the current default device is displayed.
Before «1eeting the ,CAP statement, a file carrying the
stated (file No.> must be opened using the ,OPEN' state
ment.
The device on which the catalog is to be output must be
specified in the 'OPEN' statement •
Following closing and a re-opening, the created file may
be read using the 'INPUT FILE, statement.
During prograiY,ming 'FILE' and '#' are interchangeable.
In progra1Y1 listings 'FILE' is used •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

CHAIN

Type:

PAGE 2-012

Statement

Purpose:

Syntax:

To load and start execution of a program stored as a
memory-image file on the background storage device.

CHAIN (file name>

Exec1.1t i ot1:

Exa1Y1ple:

The memory of the computer is cleared; the program by
(file name> is loaded and then the execution resumes from
the lowest line number •

10 // MAIN PROGRAM
20 DIM PROGRAM$ OF 10
30 REPEAT
40 INPUT "WHICH PROGRAM IS WANTED?": PROGRAM$
50 UNTIL PROGRAM$="LIST" DR "UPD~TE"
60 CHAIN PROGRAM$

Co1Y11Y1et1ts:
1. <file t1a«,e> is a st ri t1g expression.
2. This statement is typically used to organize a large

program into smaller it1dependent parts which are loaded
and executed on the basis of user commands.

3. The progra«, (file na«,e> must be stored in a mett,ory
image format by the 'SAVE' command.

4. Parameters can only be transferred to (file name)
through data files •

• COPYRIGHT CC) 1981 METANIC ApS DENMARK

•

•

•

CHR$

Type:

PAGE 2-013

String function

Purpose:

Syntax:

To convert an arithmetic expression into a single-character
string.

CHR$((expression))

Execution:

Example:

(expression) is evaluated and rounded if necessary. The
value is converted into a string consisting of a single
character with that ASCII code •

10 INPUT A
20 PRINT CHR$(A)

CoMments:
1. (expression> must be between O AND 255 •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

CLEAR

Type:

Purpose:

Syt1tax:

PAGE 2-014

Statement, command

To clear the screen and place the cursor in the upper left
corner.

CLEAR

Execution:
The screen is cleared and the cursor is placed in the upper
left corner.

Examples:
10 CLEAR

CLEAR

Co1Y1met1t s:
1. This statement/command affects the screen only •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

CLOSE

Type:

Purpose:

Syntax:

PASE 2-015

Statement, command

To close one or more data files after use.

CLOSE [FILE (file No.>J

Execution:
The data file carrying the specified (file No.> is closed.
(file No.> which is an arithmetic expression is evaluated
and if necessary rounded before the closing.

Examples:
200 CLOSE
390 CLOSE
540 CLOSE

FILE 3
FILE A*B

CLOSE

Comments:
1. If 7 FILE 7 and (file No.) are omitted, all open data

files are closed.
2. When 7 CLOSE 7 is executed, the stated connection between

(file name> and (file No.> is detached and the file may
be re-opened by the same or a new number.

3. Make sure that the 7 CLOSE 7 statement/command is executed
before the program execution is finished to avoid data
being left in the system buffers.
The 7 RELEASE 7 command will indicate whether this is the
case.

4. During progra1Y11Y1ing , FILE, and , # 7 are interchangeable.
In program listings 7 FILE7 is used •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•
CON

Type:

Purpose:

Syt1tax:

PAGE 2-016

To resume program execution after a stop.

CON [(line No.)J

Execution:
Program execution is continued at (line No.> if specified,
otherwise at the point of the previous stop.

Examples:
CON

• CON 220

•

Comments:
1. A new value may be assigned to a variable before resu

ming the program execution.
2. Program execution may be resumed after a stop caused by

3.

a 'STOP, or 'END, statement; after pressing the ,ESC'
key, or after a non-fatal error.
If the program stopped because of an error, program exe
cution is resumed starting with the statement in error.
In all other cases the program execution is start~d in
the statement following the last statement executed.

4. If program editing has taken place program execution
cannot always be resumed.,_ If program execution is interrupted using the 'ESC' key
while the computer is waiting in an 'INPUT' statement, a
value will not be assigned to the variable in question.
In this case program execution should be resumed by
'CON (1 i ne No.)' for the (1 ine No.> displayed on the
screen immediately after pressing the ,ESC' key •

• COPYRIGHT <C> 1981 METANIC ApS DENMAR~'(

cos

Type:

PAGE 2-017

•

•

•

Trigonometrical function.

Purpose:
To calculate the cosine of an expression.

Syntax:
COS<<expression))

Execution:

Example:

Cosine
radians,

of <expression>,
is calculated.

10 INPUT A
20 PRINT COS<A>

for which <expression>

Comments:
1. (expression> may be an arithmetic expression of

integer type. The result will always be real •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

is in

real or

•

•

•

CURSOR

Type:

PL!rpose:

Syntax:

PAGE 2-018

Statemet1t, cott11Y1and

To place the cL1rsor at a specified position on the screen.

CURSOR (expressi on1>, (expressi on2}

Execution:
<expression!} and <expression2>, both of which mL1st be
arithmetic expressions, are evalLlated and roL!nded. The
cursor is then moved to the character position defined by
by (expression!) and the line nL1mber defined by <expres
siot-12) •

Examples:
100 CURSOR 8,12
220 CURSOR CHARACTER#,LINE#
300 CURSOR 3*2,5+4

ComMents:
1.

CURSOR 10,15

<expression!) is coL1nted from left to right and <expres
sion2) is counted as positives froM the top down. The
upper left corner, therefore, has the coordinates 1,1 •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

DATA

Type:

PAGE 2-019

StatetYtent

Purpose:

Syntax:

To define constants H1 the form of a data list to be read
by the ,READ, statement.

DATA (constant!>, (constant2), ••••• , <constantn>

E><ecution:

Example:

At the start of program execution, a search is tYtade for
,DATA, statements after which they are chained into a data
list. During a run, an internal pointer is set to the next
constant in the list •

10
20
30
40
50
60
70
80
90

DIM FIRST_NAME$ OF 10
DIM FAMILY_NAME$ OF 15
DATA "JOHN","DOE"
READ FIRST_NAME$
READ FAMILY_NAME$
PRINT FIRST_NAME$+" 11 +FAMILY_NAME$
DATA 35
READ AGE
PRINT AGE; "YEAR"

Comments:
1.

2.

3.

4 •

5.

,DATA, statements are non-executable and are skipped
during program execution.
Any number of 7 DATA, statements may be placed anywhere
in the program.
A 7 DATA, statement may contain as many constants (sepa
rated by commas) as are allowed by the maximum length of
input lines (=159 characters).
The 7 READ, statement reads the 7 DATA, statements in the
order of the line numbers.
The types of constants may be mi><ed but must match those
of the corresponding ,READ, statements otherwise e><ecu-
tion results in an error message.
Arithmetic expressions are not allowed in a ,DATA,
statement, and string constants must be enclosed in
double quotation marks.

6. The constants may be re-read, partly or wholly, by means
of ,RESTORE,, ,RESTORE Cline number>,, or ,RESTORE
(name), statements.

7. When the last constant is read the system variable 'EOD,
is assigned the value of true (= 1) •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

DEF

Type:

ENDDEF PAGE 2-020

Statement

PLtrpose:
To define and name a Ltser-defined fLtnction.

Syntax:
DEF FN<name>t<formal parameter list}]

ENDDEF FN<name>

Execution:
When finding a 'DEF' statement dLtring a prograiY, execution,
COMAL-BO skips this part of the program up to and including
the corresponding 'ENDDEF' statement and execution is
resumed from the next line.
When the function is called by its name (which may be
followed by a para«,eter list>., in an expression, the
function is calculated and the value is inserted in the
expression and used in the subsequent calculation.

Examples:
10 DEF FNABCX,Y>
20 FNAB:=XA3/YA2
30 ENDDEF FNAB
40 I:=2
50 J:=3
60 OLE:=FNAB(I,J>
70 PRINT OLE

Comments:

10 X:=2
20 Y:=3
30 DEF FNAB
40 GLOBAL X,Y
50 FNAB:=XA3/YA2
60 ENDDEF FNAB
70 OLE:=FNAB
80 PRINT OLE

1. (na«,e> 1Y1L1st be a legal variable na«,e.
(formal parameter list} is a list of the variable names
of the function definition which are replaced by the
actual parameter values when this function is called.

2. Variables Ltsed in a function definition are local and
are used only to define the fLtnction.
These na1Y1es may be used in other parts of the prograiY,.
This independence may, however, be removed for one or
more variables by a 'GLOBAL' statement.

3. Variable names in (formal parameter list} represent the
the variable names or values as stated in the parameter
list at the point of the call •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

4. A function type may be either real or integer.
5. The values resulting from a function call can only be

passed using global variables and the function name.
6. Only simple variables <not arrays) may be used in

(formal parameter list>.
7. If the program section between 'DEF' and 'ENDDEF'

contains statements on multiple lines these must all be
contained in the program section.

8. The function value is returned from the function by
assigning it to the function name. Otherwise the value
of the function is undefined.

COPYRIGHT CC) 1981 METANIC ApS DENMARK

•

•

•

•

•

•

•

DEL

Type:

Purpose:

Syntax:

To delete one or more program lines.

DEL (st a rt line> [, (end line> J
DEL , (end line>
DEL (start line>,

PAGE 2-021

Execution:
The specified line(s) is/are deleted from the program.

Examples:
DEL 25,100
DEL ,220
DEL 95,
DEL 40

Comments:
1. If only (start line> is specified

deleted.
2. If (start line> immediately followed

specified, this line and the rest
deleted.

this line alone is

by a comma is
of the program is

3. If a comma followed by a line number only is specified,
the program is deleted up to and including this line.

4. Specifying <start line> comma (end line) deletes the
lines between the two inclusively •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

DELETE

Type:

Purpose:

Sy'l'ltax:

PAGE 2-022

StateiY,e'l'lt, co1Y11Y1and

To delete file(s) o'l'l the background storage device.

DELETE (file Ylame)

Execution:
The operati'l'lg system is called and information on the
file(s) to be deleted is passed to it.

Examples:
100 DELETE "TEST.CML"
220 DELETE "DK1:DATA.DAT"
300 DELETE "DKO:D???????.*"

Co1Y11Y1ents:
1.

DELETE PROGRAM.CML
DELETE DK1:C*.CML

In statements {file name> is a string expression.
{file 'l'lame) specifies partly or wholly the name(s) which
is/are to be deleted where the characters'*' and/or'?'
can be used following the CP/M protocol.

3. The whole file Y1ame, includi'l'lg any extensio'l'l, mu~t be
specified.

4. In case (filename> is Y10Y1-existing an error message is
given for commands, but not for statements •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

DIM

Type:

Purpose:

Syntax:

(for arithmetic variables) PAGE 2-023

Statement

To allocate tY1e«,ory space for arrays and set the index
li«iits.

DIM (list of indexed variables>

Execution:
The necessary memory is calculated and allocated according
to the type of variable.

Examples:
10 DIM MONKEY(5)
10 DIM NUMBER (7, 3), COUNT<7> II SEE NOTE 5
10 DIM CARS#(-5:15,3:8)
10 DIM A$ (3: 2), B(5) II SEE NOTE 6

Comments:
1. Arrays must be dimensioned.
2. An array may have any number of dimensions limited only

by the «,emory available and the maximum length of the
input line (159 characters).

3. Each of the elements in (list of indexed variables> is
specified using the syntax:

<variable name> ((list of index limits>>
where <variable name) optionally includes the declara
tion character,#,.
The elements are separated using commas.
{list of index limits> contains the lower and upper
limits for each dimension following the syntax:

C<lower limit):J(upper limit)
The di«,ensions are separated by commas.
If no lower limit is given it defaults to 1 •

4. The 'DIM' statement assigns the value Oto each element.
5. Several variables can be dimensioned in the same line.
6. Arithmetic and string variables can be dimensioned on

the sa«,e line •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

DIM

Type:

Purpose:

Syntax:

(for string variables} PAGE 2-024

State«1ent

To allocate memory space for strings and arrays of strings
and set the index limits.

DIM (list of indexed variables>

Execution:
The necessarry memory is allocated according to the dimen
sions and length of the variable.

Examples:
10 DIM A$ OF 80 II SEE NOTE 9
10 DIM A$C3) OF 10 II SEE NOTE 7
10 DIM 8$ (0: 1, 3) OF 25 II SEE NOTE a
10 DIM A$(3:2) OF 10, 8$(5) OF 25 II SEE NOTE 5
10 DIM A$(5) OF 15, C(5) II SEE NOTE E,

Co1Y,ments:
1. Arrays and string variables must always be dimensioned.
2. An array rt,ay have any n1.1mber of dimensions 1 imi ted only

by the memory available and the maximum length of the
input line (159 characters).

3. Each of the elemei"1ts in (list of indexed variables> is
specified using the syntax:

<variable name}C((list of index limits})] OF (length}
where <variable name} includes the declaration character
, $'.

The elements are separated using commas.
(list of index limits> contains, for each dimension of
an array, upper and lower limits for that dimension
following the syntax:

[(lower limit} :](upper limit}
The dimensions are separated by commas.
If no lower limit is given it defaults to 1.
<length> indicates the maximum length of the string
variable or of each of the elements in the string array.
The actual value of a string variable/element may have
a length varying from zero characters (the empty string)
up to and including the stated (length>.

4. The 'DIM, statement assigns the value "" (empty string)
to each ele1Y,ent.

5. Several variables can be dimensioned in the same line.
6. Arithmetic and string variables can be dimensioned in

the saMe 1 i ne •

• COPYRIGHT CC> 1981 METANIC ApS DENMARK

7. This array will contain the elements A$(1), A$(2) and
A$(3) each having a maxi1Y1U1Y1 length of 10 characters. •

8. This array will contain the elements B$(0,1), B$(0,2),
B$(0,3), B$(1,1), B$(1,2) and B$(1,3) each having a
Maximum length of 25 characters.

9. A string variable need not be an array.

•

•

COPYRIGHT (C) 1981 METANIC ApS DENMARK •

•

•

•

DIV

Type:

PAGE 2-025

Arithmetic operator

Purpose:

Syntax:

To carry out an integer division between two arithmetic
expressions.

<expression!) DIV (expression2>

Execution:
<expression!) is divided by (expression2) and the result is
rounded to an integer value.

Examples:
100 A#:=B DIV C
100 NUMBER:=17 DIV NUM

Comments:
1. The result N is defined by the integer value of N which

makes the expression
<expression!) - N * (expression2)

assume its lowest possible non-negative value.
2. The calculation is carried out by executing a normal

real division and then converting the result to integer
form. The type of the result depends upon the type of
(expression!) and (expression2> in the following way:

(expression!) DIV <expression2) result
real real real
real int real
int real real
int int int

3. Also see the 7 MOD, operator •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

EDIT

Type:

Purpose:

Syntax:

PAGE 2-026

Co«11v,at1d

To simplify correction of a program held in working memory.

EDIT C <start> JC, <end) J
EDIT C <start>, J

Execution:
The specified program area is called from the working
storage and displayed on the screen line by line. The
cursor is placed immediately after the last character and
can be moved backwards and forwards on the line using the
two control keys (cursor left and cursor right). Place the
cursor on the character to be corrected, key in the correc
tion and the cursor will move one position to the right.
Press 'RETURN'. The line undergoes the syntax control and
when accepted it is stored. Th~ next line is displayed and
the sequence repeats until <end> is reached.

Exa,v,ples:
EDIT
EDIT 100
EDIT 100,
EDIT ,100
ED IT 100, 200

Coft,ments:
1. If <start> is otY,itted, the editing starts at the first

progra,v, lit1e.
2. If <end> is omitted, the editing continues until the end

of the program.
3. Omitting both limits, starts the editing at the first

program line and continues to the end of the program
(or until the 'ESC' key is pressed).

4. If only (start) is used, without a comma, editing will
be restricted to the one line.

5. All the correction facilities described in INPUT EDITING
in chapter 1 are available •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

6. The line number itself may be edited causing the line to
be placed it'l at tbe new 1 ine number. Any 1 ine al ready •
already stored at that number will be deleted.
The original line will not be deleted from the program
(use the 'DEL' command}.

7. When pressing 'RETURN' the line is stored in memory in
full regardless of the cursor position.

8. The edit command may be interrupted at any time by pres
sing the 'ESC' key. Changes in the line only happen
after pressing 'RETURN'.

COPYRIGHT CC) 1981 METANIC ApS DENMARK

•

•

•

•

•

•

END

Type:

Purpose:

Syntax:

PAGE 2-027

Statement

To stop the execution of a program

END

Execution:

Example:

Program execution is terminated
'*' is displayed to show that the
ready to accept new input.

10 K:=O
20
30
40
50
60
70
80
90

100

IF K>100 THEN
END

ELSE
GOTO JOHN

ENDIF
LABEL JOHN
PRINT K, II II

K:+1
GOTO 20

and the prompt character
COMAL-SO interpreter is

CoMments:
1. The 'END' statement does not give any information as to

where the program execution was interrupted, unlike the
'STOP' stateff,ent.

2. The use of the 'END' statement is optional, as COMAL-BO
adds an invisible statement at the end of each program.
On reaching this statement this message is displayed:

Program execution finished

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

ENTER

Type:

Purpose:

Syntax:

PAGE 2-028

Command

To transfer a file from the background storage device, as a
string of ASCII characters, and place it in working
memory.

ENTER (file name>

Execution:
The specified file is opened and transferred character
by character.
Following each 'RETURN' the line is syntax-checked and the
formed line, if accepted, is placed in the working memory.
if and error occurs the loading is temporarily halted and
the line is displayed with an error message.
Using the normal editing facilities the user may enter
corrections and, after 'RETURN', another syntax-6heck takes
place. When the line is accepted it is placed in working
memory after which the loading of the file continues.

Examples:
ENTER DKO:PROGRAM
ENTER POLVNO

Comments:
1. Only files stored in ASCII format, using the 'LIST'

command, can be read by the 'ENTER' command.
2. The working memory is not cleared prior to the file

being entered. However, new lines having line numbers
replace the old lines. This overwriting takes place on a
line basis, with no consideration of the different
lengths of lines, so that a short line can totally re
place a long one. Provided that there are no overlapping
line numbers this may be used to combine two or more
programs.
In any other case, the working memory should always be
cleared by using the 'NEW' command before reading a file
with the 'ENTER' command.

3. ASCII files may be read by all versions of COMAL-BO and
this format is recommended for storing files for a
longer period of time •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

EDD

Type:

PAGE 2-029

System variable

Purpose:

Syntax:

To determine whether all data from the 7 DATA, statements in
the program has been read.

EDD

Execution:

Example:

EDD has the value of false (= 0) as long as data
, DATA, statements reiY,ains to be read. Having read
set of data, the 7 EOD, is assigned the value
(= 1). On executing a ,RESTORE, statement 7 EOD 7

assigned the value of false (= C>).

10
20
30
40
50

WHILE NOT EDD DO
READ A
PRINT A

ENDWHILE
DATA 55, 2, -15, 35

frosY, the
the last
of true
is again

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

EOF

Type:

PAGE 2-030

Syste1Y1 variable

Purpose:
To determine whether all data in a data file has been read.

Syntax:
EDF (< f i le No. > >

Execution:

Example:

At the execution of an 'OPEN FILE' statement or command of
the 'READ' type, the corresponding 'EDF ((file No.))' sys
tem variable is assigned the value of false (= 0). On
reading the last value of the file, it is assigned the
value of true (= 1) •

10 OPEN FILE O,"TEST",READ
20 REPEAT
30 READ FILE o: A
40 UNTIL EOF((l)

Cott1ments:
1. (file No.> is at1 arith1Y1etic expression •

• COPYRIGHT CC> 1981 METANIC ApS DENMAR•<

•

•

•

ERR

Type:

PAGE 2-031

Systert1 variable

Purpose:

Syntax:

To store a non-fatal error number occurring during a pro
gram execution.

ERR

Execution:

Example:

During a normal program execution, any error will stop the
program and create an error message. However, a number of
errors can be bypassed in a well-defined manner.
In such cases program interruption may be avoided by the
use of a 'TRAP ERR-' statement before the error arises. In
this case, the system variable will be assigned a value
equal to the error number and in all tests will be con
sidered true because it is not O. Program execution will
then continue.

10 INIT "", FILENAMES
20 TRAP ERR-
30 OPEN FILE 0, 11 XPLOCOMM", READ
40 TRAP ERR+
50 IF NOT ERR THEN
60 INPUT FILE o: DEFAULT_FILENAMES
70 ELSE
80 DEFAULT_FILENAME$:="XPLOPROG 11

90 ENDIF
100 CLOSE

Comments:
1. The execution of a program starts with

of false (= 0) being assigned to the
'ERR'.

the value of
system variable

When a 'TRAP ERR-' statement has been executed, an error
number is assigned to 'ERR' and it retains this value
until its status is checked. Immediately after such a
check, 'ERR' is assigned the value of false.
Normally, COMAL-SO sets a variable true by assigning it
the value of 1, but here the error number itself is
used.
The error numbers are described further in appendix C.

2. By executing a 'TRAP ERR+' statement, the system returns
to normal error handling •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

ERRTEXT$

Type:

PAGE 2--032

String function

Purpose:
To give access to error descriptions in the COMAL-BO system

Syntax:
ERRTEXT$((expression>>

Execution:

Example:

(expression} evaluated and rounded if necessary. The corre
sponding error description is then returned.

10 FOR I=l TO 295
20 PRINT ERRTEXT$(l)
30 NEXT I

Comments:
1. This function is only valid w~en error descriptions are

not deleted at the start-up of COMAL-BO. If they are
deleted the function returns an empty string •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

ESC

Type:

Purpose:

Syntax:

PAGE 2-033

SysteiY, variable

To flag the use of the 'ESC' key.

ESC

Execution:

Example:

During normal program execution a check is made to see
whether the 'ESC' key has been pressed. if it has been
pressed then program execution is stopped.
If a 'TRAP ESC-' statement has been executed, this function
is blocked and the system variable 'ESC' is instead assig
ned the value of true (= 1 > when 'ESC' is pressed.

10
20
30
40
50
60

TRAP ESC
REPEAT

PRINT "THE 'ESC' KEY IS NOT PRESSED"
UNTIL ESC
TRAP ESC+
PRINT "THE 'ESC' KEY WAS PRESSED"

Comments:
1. At the start of program execution the system variable

'ESC' is assigned the value of false (= 0). If a
'TRAP ESC-' stateiY,ent is executed and the 'ESC' key
pressed after this program execution continues but the
system variable 'ESC' is assigned the value of true
(= 1) and keeps this value until its status is
checked.
Immediately after the value is used, 'ESC' is again
assigned the value of false (= 0).

2. The system returns to normal handling of the 'ESC' key
when a 'TRAP ESC+' statement is executed.

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

EXEC

Type:

Purpose:

Syntax:

PAGE 2-034

Statement

To call a named sub-program and to return to the next line
on completion.

EXEC (procedure name)C((actual parameter list))]

Execution:
The procedure specified by (procedure name> is called, and
(actual parameter list> replaces the formal parameter list
in the procedure heading.
On reaching the 'ENDPROC' statement, program execution is
resumed from the first executeable line following the
'EXEC' statement.

Examples:
100 EXEC TEST
100 EXEC FATAL_ERROR("ERROR IN X-PL/0-COMPILER")
100 EXEC ERROR(30)
100 EXEC ENTER_(CONSTANT#,LEV#,TX#,DX#)
100 EXEC EXPRESSION<FNINCLUDE(FSYS,RPAREN#),LEV#, TX#)

Comments:
1. The number of actual parameters must be the same as the

number of formal parameters in the 'PROC' statement.
Each parameter must conform to dimension and type.

2. If a formal parameter is specified by 'REF', a variable
(which may be indexed) must be inserted as an actual
parameter.

3. If a formal parameter is not specified by 'REF' the
actual parameter must be an expression of a correspon
ding type, possibly just a variable name.
Actual integer parameters may be inserted in a formal
real parameter.

4. The actual parameters must be defined before the 'EXEC'
statement.

5. See the section 'PARAMETER SUBSTITUTION' in chapter 1
for more information •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

EXP

Type:

PAGE 2-035

Arithmetic function

Purpose:
Returns e to the power of an arithtt,etic expression.

Syntax:
EXP((expression>>

Execution:

Example:

The base of the natural logarithm e (=2.718282) is raised
to the power specified by <expression>.

10 INPUT A
20 PRINT EXPCA>

Comments:
1. (expression} is a real or integer arithtt,etic expression.

The result will always be real.
2. The value of (expression) must be less than or equal to

88.02968 when using the COMAL-80 7-digit version and
292.4283068102 when using 13-digit version. If these
are exceded COMAL-80 stops program execution and creates
an error message •

• COPYRIGHT CC) 1981 METANIC ApS DENMARK

•

•

•

FALSE

Type:
Syste,v, constant

Purpose:

PAGE 2·-035

Mainly to assign a boolean variable the value of false.

Syntax:
FALSE

Execution:

Exa,v,ple:

Returns the value O.

10
20
30
40
50
60
70
BO
90

100
110
120
130
140
150
160
170
180
1 '30
200

II PRIME
II
DIM FLAGS#(0:8190)
SIZE1:=81'30
II
COUNT:=O
MAT FLAGS#:=TRUE
II
FOR I:=O TO SIZE1 DO

IF FLAGS#(!) THEN
PRIME:=I+I+3
K:=I+PRIME
WHILE K<=SIZE1 DO

FLAGS#(K):=FALSE
K:+PRIME

ENDWHILE
COUNT:+1

ENDIF
NEXT I
PRINT 11 TOTAL NUMBER OF PRIMES: ",COUNT

• COPYRIGHT <C> 1'381 METANIC ApS DENMARK

•

•

•

FOR

Type:

TO DOWNTO STEP NEXT PAGE 2-037

Statement

Purpose:

Syntax:

To delimit a program section and define the number of times
it is to be executed.

FOR <variable> •- (start) TO (end) [STEP (step)]

NEXT (variable>

Execution:

Example:

On meeting the 'FOR' statement, (variable) :=(start> is
assigned and the truth of:

((end)-(variable>>*SGN ((step)) >= 0
is tested. If this is false, the 'FOR ••• NEXT' structure,
including this program section is bypassed and execution
continues from the first executable line following the
'NEXT' statement.
If true the program continues through the program section
until it meets the 'NEXT' statement, it then jumps back to
the line following 'FOR' adding (step) to (variable> and
checks the truth again using the new value of (variable>.
This is repeated until the test returns false.

10 FOR 1=1 TO 100 STEP 5
20 PRINT I, " 11

30 NEXT I
40 STOP

Comments:
1. If 'STEP (step)' is omitted the (step) value is set

to 1.
2. If 'DOWNTO' is used instead of 'TO', a negative (step)

value is used.
3. Following a 'FOR ••• NEXT' execution, the (variable} takes

the value not fulfilling the above test.
4. Up to 5 'FOR ••• NEXT' statements may be nested, each of

them having their separate <variable).
Each subroutine level is assigned a 'FOR ••• NEXT' depth
of 5 giving the option of any depth by means of the
'GOSUB' statement or by use of procedures •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

5. Each ,NEXT, statement must contain one only <variable>,
which must be the same one as stated in the correspon
ding ,FOR, statement.

6. It is possible to interrupt a 'FOR ••. NEXT' sequence by
using ,GOTO'.

7. The start value of the (variable} is assigned before
<end}.
Consequently program structures of the type:

10 J:= X
20 FOR J:=1 TO J+X
30 PRINT J
40 NEXT J

will be executed X+1 times.
8. For each 'FOR, statement, one only 'NEXT' statement may

be assigned.
9. During programming,==, and'=' are interchangeable. In

program listings,==, is used.
10. <variable) must be an arithmetic variable.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

•

•

•

•

FRAC

Type:

Purpose:

Syntax:

PAGE 2-038

Arithmetic function

To extract the decimal part of a real number.

FRAC<<expression>>

Execution:

Exa1Y1ple:

The result is calculated according to the expression:
(expression>-INT<<expression))

10 INPUT A
20 PRINT FRAC(A)
30 PRINT FRAC(5.72)
40 PRINT FRAC(-5.72)

Co«,ments:
l. (expression>

w i 11 be rea 1 •
1Y1ust be ari th1Y1et ic and real. The result

1. If <expression> is positive the result is calculated by
cancelling the digits in front of the decimal point.
If <expression) is negative the result is 1 minus the
decimal part of (expression> •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

GETUNIT

Type:

Purpose:

Syntax:

PAGE 2-039

State«,ent, command

To flag the current background storage device.

GETUNIT t<variable)J

Execution:
The name of the current default device is assigned to
<variable> in the form of a 3-character code, two letters
and one digit followed by a colon.

Examples:
100 GETUNIT DISK$

GETUNIT

Comments:
1. When using ,GETUNIT' as a command the (variable> must be

omitted, and the result will be displayed on the termi
nal.
In statements the (variable> must be specified.

2. The two letters indicate the type of device; 'DK, means
floppy disk. The digit indicates the unit number.

3. (variable> is a st ring variable •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

GLOBAL

Type:

Purpose:

Syntax:

PAGE 2-040

To make variables in the main program accessible within a
'PROC' or 'DEF' st ruct Lt re.

GLOBAL (list of variable names}

ExecL1t i ot1:

Exa,Y,ple:

The variables of the main program listed in (list of
variable names) are made accessible within the 'PROC' or
'DEF' structure containing the 'GLOBAL' statement •

10
20
30
40
50

PROC ERROR(N#) CLOSED
GLOBAL CC#, ERR_, ERRORS#
PRINT"*****"; SPC$(CC#-9);
ERR_:=FNINCLUDECERR_,N#+l);

ENDPROC ERROR

11,•',II; N#
ERRORS#:+1

Co,Y11Y,ent s:
1. The variable names in (list of variable names} are sepa

rated by commas. Array variable names cannot be followed
by any indices.

2. This statement may be used only within closed procedures
'DEF' structures.

3. The variables are transferred from the main program even
if the 'PROC' or 'DEF' structure containing the 'GLOBAL'
statement is called from an other structure.

4. The execution of the 'GLOBAL' statement does not affect
the accessibility of the listed variables in any part of
the program other than the 'PROC' or 'DEF' structure
containing the 'GLOBAL' statement.

5. All operations allowed on the variables in the main pro
gram are also allowed within the 'PROC' or 'DEF' struc
ture containing the 'GLOBAL' statement •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

SOSUB

Type:

RETURN PAGE 2-041

Statement

Purpose:

Syntax:

To call a subroutine at a different part of the program and
then return to the line following the call.

GOSUB (line number)

<line nuiv,ber>

RETURN

Execution:

Example:

On meeting a 'GOSUB' statement the program continues from
<line number> until it reaches the 'RETURN' statement, when
program execution is resumed from the line following the
calling 'GOSUB' statement.

10 PRINT "I START IN THE MAIN PROGRAM"
20 GOSUB 50
30 PRINT "I AM BACK IN THE MAIN PROGRAM"
40 STOP
50 PRINT "I AM IN THE SUBROUTINE"
60 RETURN

CoMments:
1. A subroutine may be called any number of times.
2. Subroutines may be called from other subroutines, and

such nestings are limited only by the available memory.
3. Following the 'RETURN' statement program execution is

resumed from the line immediately following the latest
'GOSUB' executed •

4. A subroutine may include more than one 'RETURN' state
ment.

5. Subroutines may be placed anywhere in the program, but
clear identification from the Main program is recommen
ded.

6. To prevent any inadvertant execution of a subroutine it
is a good idea to put a 'STOP', 'GOTO', or an 'END'
statement in the line immediately before the subroutine.

7. Meeting a 'RETURN' statement during an execution with
out having executed a 'GOSUB' stateiv,ent, stops prograiv,
execution and creates an error message •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

GOTO

Type:

PAGE 2-042

StatemeY'lt

Purpose:

Syntax:

To iY'lterrupt Y'lormal sequential program execution and conti
nue from the stated line.

GOTO Cline number>
GOTO (name>

Execution:
n,e execution continl1es ii-1 the stated line or, if not exe
cutable, from the first executable line to follow •

Exa1Y1ples:
10 PRINT "JO", 10 PRINT "JO",
20 GOTO 40 20 GOTO REST
30 STOP 30 LABEL FINISH
40 PRINT "HN" 40 STOP
50 GOTO 30 5(1 LABEL REST

60 PRINT "HN 11

70 GOTO FINISH

Co1Y11Y1ents:
1. Statements like 'LABEL' and 'REM' are among thosj not

executable •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

IF

Type:

THEN PAGE 2-043

St at e«,ent

Purpose:

Syntax:

To execute or skip a statement depending on a logical
expression being true or false.

IF <logical expression> CTHENJ <statement)

Execution:

Example:

Only when (logical expression> is true (<> 0 >, is <state
ment> executed.

10 INPUT "PRINT A NUMBER: ": A
20 IF A THEN PRINT "A O O"
30 IF ACO THEN PRINT "A(O"
40 IF A=O THEN PRINT "A=O"
50 IF A=1 THEN PRINT "A=1"
60 IF A=2 THEN PRINT "A=2"
70 IF A>2 THEN PRINT "A>2"

Comments:
1. The following statements may be used after an 'IF •••

THEW statement:
CALL, CAT, CHAIN, CLEAR, CLOSE, CURSOR, DELETE, END,
EXEC, EXIT, FORMAT, GETUNIT, GOSUB, GOTO, INIT, INPUT,
LET, MAT, ON, OPEN, OUT, PAGE, POKE, PRINT, QUIT,
RANDOM, READ, RELEASE, RENAME, RESTORE, RETURN, SELECT,
STOP, TRAP, UNIT, and WRITE.
A new 'IF ••• THEN' statement is also allowed.

2. During programming 'THEN' may be omitted as COMAL-BO
automatically adds it to program listings •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

IF

Type:

THEN ENDIF PAGE 2-044

Statement

Purpose:

Syntax:

To execute a program section if a logical expression is
true. Otherwise the section is skipped.

IF <logical expression> CTHENJ

ENDIF

Execution:

Exa«,ple:

If the (logical expression> is true (<> 0) the program
section withit1 'IF •.• ENDIF' is execl1ted. If the (logical
expression> is false (= 0) the program is resumed from
the first executable line following the 'ENDIF' statement.

10 IF MEMBER#(! OR MEMBER#>31 THEN
20 EXEC FATALERROR("ERROR IN X-PL/0-COMPILER")
30 ENDIF

Comments:
1. During programming 'THEN' may be omitted, as COMAL-BO

automatically adds it to program listings •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

IF

Type:

THEN ELSE ENDIF PAGE 2-045

Statement

Purpose:

Syntax:

To execute one of two program sections depending on a
logical expression being true or false.

IF (logical expression> tTHENJ

ELSE

ENDIF

Execution:

Example:

If the (logical expression> is true (<> 0) the program
section surrounded by 7 IF •••••• ELSE, is executed. If the
(logical expression> is false (= 0) the program section
surrounded by 'ELSE ••• ENDIF, is executed.

10 INPUT "GUESS A NUMBER BETWEEN 1 AND 5": A
20 B : = RND < 1 , 5 >
30 IF A=B THEN
40 PRINT "CORRECT"
50 ELSE
60 PRINT "WRONG. THE NUMBER WAS: "; B
70 ENDIF
80 STOP

Comments:
1. During progra1Y11Yiing 7 THEN' may be omitted as COMAL-BO

automatically adds it to program listings •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

IF

Type:

Purpose:

Syntax:

THEN ELIF ELSE ENDIF PAGE 2-046

St at e1Y1et1t

To execute one of several program sections depending on
on one of several logical expressions being true.

IF (logical expression 1> tTHENJ

ELIF (logical expression 2> tTHENJ

ELIF <logical expession n> tTHENJ

tELSE

• J
ENDIF

Execution:

Exa1Y1ple:

Each (logical expression n> is checked one by one. If one
is true (<> 0) the following program section is executed
until it meets the corresponding 7 ELIF,, 7 ELSE,, or 7 ENDIF,
statement. The program resumes from the first executable
executable line following the ,ENDIF, statement.
When all (logical expressions> are false (= 0) the pro
gram section surrounded by 7 ELSE .•• ENDIF, is executed,
the program is resumed from the first executable line
following the 7 ENDIF' statement.

10 INPUT "PRESS ONE OF THE DIGITS 1, ,., , OR 3: II : A,
20 IF A=1 THEN
30 PRINT "THE DIGIT WAS 1"
40 ELIF A=2 THEN
50 PRINT "THE DIGIT WAS 211
60 ELIF A=3 THEN
70 PRINT "THE DIGIT WAS 311
BO ELSE
90 PRINT "I ASKED FOR ONE OF THE DIGITS 1, 2, OR 3!"

100 ENDIF

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

Co1r,ments:
1. 7 ELIF' is at1 abbreviatiot1 of 'ELSE IF,. •
2. If several {logical expressions) are tr1..1e, only the

first one is evaluated.
3. Omitting the 'ELSE, statement, and if none of the

(logical expressions) are true, program execution conti
nues in the first line after 'ENDIF'.

4. During programming 'THEN' may be omitted, as COMAL-BO
automatically adds it to program listings.

COPYRIGHT (C) 19B1 METANIC ApS DENMARK

•

•

•

•

•

•

IN

Type:

PAGE 2-047

St ring operator

Purpose:
To check whether one text string is contained in another.

Syntax:
<expression1> IN <expression2>

Execution:

Example:

A check is made to see whether <expression1> is contained
in {expression2>. If it is, the logical value is true
(= 1). If it is not, the logical value is false (= 0).

10
20
30
40
50
60
70
80
90

DIM A$ OF 15
DIM B$ OF 15
INPUT "WRITE A TEXT: ": A$
INPUT "WRITE ANOTHER TEXT: B$
IF B$ IN A$ THEN

PRINT "SECOND TEXT IS PART OF FIRST TEXT"
ELSE

PRINT "SECOND TEXT IS NOT PART OF FIRST TEXT"
ENDIF

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

INIT

Type:

PAGE 2-048

Statement, command

Purpose:
To prepare a formatted diskette (in a drive) for use.

Syntax:
INIT C<device>J

Execution:
The (device} stated is initialized.

Exa1Y1ples:
100 INIT "DKO:"

INIT
INIT DK1:

Comments:
1. Under CP/M all disk drives are initialized and the

(device} indication is t1ot used. If it is given, it must
be the name of a valid disk drive. No disk files may be
open when this statement/command is executed .

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

INP

Type:
Machine code function

Purpose:

PAGE 2-049

To read the value of one of the Z-80 microprocessor input
ports.

Syntax:
INP((expression>>

Execution:
The input port, defined by (expression> is read.

Example:
10 PRINT INP < 17)

Comments:
1.
2.

(expression> must be between O and 255 (inclusive).
(expression> will be rounded to integer form if neces
sesary •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

•

INPUT

Type:

Purpose:

PAGE 2-050

StateiY,ent

To read and assign to variables the values input through
the terminal during program execution.

INPUT [(text}:J <variable list>

Execution:
When meeting the 'INPUT' statement program execution pauses
after displaying and optional (text).
values, they are assigned to the
<variable list> fro1Y1 left to right .
last value the user presses 'RETURN'
coi-1t i nues.

As the user keys in
stated variables in

Having inserted the
and program execution

Exa1Y1ples:
100 INPUT MONKEY, JOHN#, NAME$
100 INPUT "WRITE 3 DIGITS: 11

: A, B, C

Co«11Y1ent s:
1.

2.

If the • INPUT' statemei-1t c'ot1tains a <text>, this is
displayed exactly as described. Only '?' is displayed
when there is no (text>, to indicate that the com~uter
expects some input.
If <variable list> ends with a comma the next output
appears in the following print-zone. The width of the
print-zones are set by using 'TAB'.

3. If (variable list) ends with a semicolon the next output
appears immediately after the last entry.

4. Several values may be entered as long as they are sepa
rated by a character which cannot be part of a numerical
value such as space or comma.

5. String constants must be entered as a sequence of ASCII
characters. It is only possible to insert values
following a string constant if the 'RETURN' key is used
to terminate each one.
When a string constant follows an arithmetic constant
COMAL-80 considers the first character, which may not be
part of the arithmetic constant, a delimiter, and then
then the string constant with the next character.

6. The type of values keyed in must conform with the types
stated in the 'INPUT' statement •

COPYRIGHT (C) 1981 METANIC ApS DENMARK

7. (variabe list) may contain all variable types, but
arrays must be properly indexed and substrings may not
be used.

8. Responding to 'INPUT' with the wrong type of value,
causes the error message 'ERROR IN NUMBER' and the item
must be corrected. No assignment is made until an
acceptable input is given.

9. Responding to 'INPUT' with too few items, causes a '?'
to be printed on the terminal and the program awaits

10.
more input.
Responding to
error message
corrected.

'INPUT' with too many items, causes the
'TOO MUCH INPUT', and the input must be

COPYRIG~T <C> 1981 METANIC ApS DENMARK

•

•

•

•

•

•

•

INPUT FILE

Type:

PAGE 2-051

Statement

Purpose:

Syntax:

To read data from an ASCII data-file written by the 'PRINT
(USING> FILE' statement.

INPUT FILE (file No.> C, <rec. No.> J: <variable 1 ist>

Execution:
The values of the variables in (variable list> are read
from the file contained in (file No.}.

Examples:
100 INPUT FILE 3: A$
100 INPUT FILE O: B#, C

Comments:
1. Before meetit1g the 'INPUT FILE' statement a file must

be opened and the connection established between the
stated file name and the (file No.> of the 'INPUT FILE'
statement. This is done with the 'OPEN FILE' statement
mentor command, followed by 'READ' or 'RANDOM'.

2. The (rec. No.> is used only in 'RANDOM' files and is an
arithmetic expression which is rounded to integer if
necessary.

3. (file No.> is an arithmetic expression.

4. <variable list>
ar-rays Must be
be used.

may contain all variable types but
properly indexed and substrings may not

5. The elements of (variable list> are separated by commas •

6. During programming 'FILE'
In program listings 'FILE'

and '#'
is used.

are interchangeable.

7. Several values may be entered as long as they are sepa
rated by a character which cannot be part of a numerical
value such as space or comma •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

8. String constants ~ust be entered as a sequence of ASCII
characters. It is oi-1ly possible to insert values.
fo!lowing a string constant if the 'RETURN' key is used
to terminate each one.
W½en a string constant follows an arithmetic constant
COMAL-BO considers the first character, which may not be
part of the arithmetic- constant, a delimiter, and then
then the string constant with the next character.

9. The type of values keyed in must conform with the types
stated in the 'INPUT' statement.

COPYRIGHT CC) 1981 METANIC ApS DENMARK

•

•

•

•

•

•

Purpose:

Syntax:

PAGE 2-052

Arithmetic function

Returns the largest integer, equal to or less than a speci
fied expression.

INT!(expression))

Execution:

Example:

ne largest integer less than or equal to
calculated.

10 INPUT A
20 B:=INT(A)
30 PRINT B
40 PRINT INT(5.72)
50 PRINT INT(-5.72)

(expression) is

Comments:
1. (expression) is of real type. The result is an integer

of real type.
2. Also see the 'ROUND' and 'TRUNC' functions •

• COPYRIGHT CC) 1981 METANIC ApS DENMARK

•

•

•

I'./AL

Type:

PAGE 2-·053

Arithmetic function

P•_trpose:

Syntax:

To convert an integer, existing as a string, to an integer
of integer type.

IVAL(<string expression})

Execution:

Example:

The characters in <string expression}, which must represent
a valid integer number, are converted to integer form.

10 DIM A$ OF 4
20 INPUT A$
30 PRINT IVAL(A$)
~O PRINT IVALC"3215")

Comments:
1. If the string in <string expression) contains other

characters than digits (including a sign), program
execution is stopped and an error message is displayed.

2. Also see the 7 VAL, function •

• COPYRIGHT (C) 19Bi METANIC ApS DENMARK

•

•

•

;_ABEL

Type:

P:_1rpose:

Syntax:

PAGE 2-054

To name a point in a COMAL-BO program for reference to the
'GOTO' and 'RESTORE' statements.

Execut i oi-1:

E:><a,Y,p le:

The 'LABEL' statement is non-executable and serves only to
mark a point in the program.

10 LABEL START
20 INPUT "WRITE A NUMBER: 11

: NUMBER
30 PRINT NUMBER
40 GOTO START

• COPYRIGHT (C} 1981 METANIC ApS DENMARK

•

•

•

LEN PAGE 2-055

Type:
Arithmetic function.

Purpose:
Returns the actual length of a string variable.

Syntax:
LEN (<variable>)

Execution:

Example:

The number of characters in (variable) is counted.

10 DIM A$(1:10) OF 15
20 INPUT A$(5)
30 B#:=LEN(A$(5))
40 PRINT A$(5)
50 PRINT B#

Comments:
1. The actual contents of the <variable) are used to deter

mine its length. The dimensioned length is only of im
portance since it is the maximum value of the result •

• COPYRIGHT CC) 1981 METANIC ApS DENMARK

•

•

•

LET PAGE 2-056

Type:
St at e,Y,er,t

Purpose:
To assign the value of an expression to a variable.

Syr,tax:
CLETJ <variable) -- (expressioi-1)

Execution:

Exa,y,ple:

(expression> is calculated and the result is stored in the
memory space allocated for (variable)

10 LET A:= 5
20 LET B := 3
30 LET SUM:= A+B
li.O A:+B
50 DIFFERENCE:= A-B
50 PRINT SUM
70 PRINT A
BO DRINT DIFFERENCE

Co1Y11Y1e~1t s:
1. The use of the word 'LET' is optional, i.e. it iY,ay_ be

omitted as shown in line 40 of the example. In program
listings 'LET' is omitted.

2. During programming'=' and':=' are interchangeable. In
program listings ':=' is used. ·

3. <variable) ■- (variable) + (expression) may be written
as <variable> :+ (expression>.

4.

,:-.., .

S"

7.

a.

<variable) .- (variable) - (expression> may be expressed
(variable) :- {expression>, though the latter may not be
used for string variables.
The type used for (expression> and <variable) must be
the same, although integer values can be assigned to a
rea.l variable.
For string variables having (expression> longer than
<variable), (expressioi-1) will be shortened from the
right.
For string variables having (expression) shorter than
(variable), (variable) takes the actual let1gth only.
When assigning to substrings, (expression> and (vari
able) must be of the same length.
Several assignments may be performed on a single line,
separated by semicolons, but the reserved word 'LET'
(which is optional) must only appear in front of the
first assignment •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

LIST

Type:

Purpose:

Syntax:

Co«1«1at1d

To list programs in ASCII, in full or in part.

LI ST t <st a rt > J t, <end> J C < f i 1 e na«,e > J
LIST [(start),J[(file name)J

PAGE 2-057

Execution:
The specified part of of the program is converted from in
ternal format to a string of ASCII characters and listed on
the specified file •

Examples:
LIST
LIST 10
LIST 10, 100
LIST ~ 100
LIST 100,
LIST TEST
!..IST 10, 100 TEST
LIST ,100 DK1:TEST
LIST LPO:

Comments:
1. If (file name> is omitted all listings ar~ displayed on

the terminal carrying the device name of 7 DSO:,.
If the specified listing contains more lines than the
device is able to show in one screen, only the first
page is shown and the COMAL-80 interpreter waits for the
'SPACE BAR' to be pressed before displaying the next
page, or the 'RETURN' key for displaying the next line.
Pressing the 'ESC' key will terminate the listing.

2. Omitting both (start line) and (end line) lists the
entire program. Omitting only (start line>, causes the
listing to start at the first program line. Leaving (end
line) out continues the listing to the end of the pro
gram. Specifying only <start line>, without the comma,
lists only the specified line.

3. The , LIST' command considers al 1 1 ist i ngs as being a
transfer of characters from the memory to a file.
Consequently, a listing on a connected printer is ob
tained by stating 'LP:' for a (file name>, possibly fol
lowed by the unit number of the printer. When no ut1it
number is speciified it defaults to LPO: •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

4. Listings may not necessarily have the same form as ori
ginally keyed in, as automatic indentation takes place
in order to clarify the program structure. However,
'LABEL' statements are not indented making them easy to
f :i.nd.

C' ...,_

When several keywords have identical meaning,
is used for all listings.

one only

If (file name> does not contain an extension it defaults
to '. CML'.

6. Programs stored by the 'LIST' command may be read later
by the 'ENTER' command.

7. Programs intended for storage for a longer period of
time, or intended for exchanges, should be stored using
'LIST' command as this format should all be compatible
with future versions of COMAL-80.

•

B. If (file na«,e> is already ot1 the device in questiot1 this.
is reported and the user is offered the option of conti-
n1.tit1g ~ having the old file deleted, or of stopping
(' RETURN/,SC' > •

'./')/,·.)

COPYRIGHT (C) 1981 METANIC ApS DENMAm..:

•

•

•

•

•

LOAD PAGE 2-058

Type:

Purpose:
To read a binary file from the background storage device.

Syntax:
LOAD (file i-1ame>

Execut i oi-1:
The working memory of
ting system is called,

the computer is cleared,
and the file is read.

the opera-

Exa,v,ples:
LOAD TEST
LOAD DK1:PROGRAM

Com,Y,ents:
1. Only binary files can be

i.e. files stored by the
listings these files may
'. CSB'.

read by the 'LOAD' command,
'SAVE' co1Y1«1and. In catalog

be identified by the extension

2. The extension '.CSB' is always supplied by the COMAL-BO
system and cannot be entered by the user •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

LOG

Type:

PAGE 2-059

Arithmetic function

Purpose:
Returns the natural logarithm of an arithmetic expression.

Syntax:
LOG((expression))

Execution:
The natural logarithm of <expression> is calculated.

Examples:
10 INPUT A
20 PRINT LOG(A)

CoMments:
1. <expression) may be an arithmeti~ expression of real or

integer type. The result will always be real.
2. If (expression> is less than or equal to O program exe

cution is stopped and followed by an error message.·

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

LOOP

Type:

Purpose:

Syntax:

EXIT ENDLOOP PAGE 2-060

To repeat execution of a program section until an internal
condition is fulfilled.

LOOP

ENDLOOP

Execution:

Exa«,p 1 e:

The program section enclosed by 'LOOP •••• ENDLOOP' is
executed repeatedly until meeting an 'EXIT' statement in
the progra1Y,.
Then program execution resumes from the first executable
line following the 'ENDLOOP' stateiY,ent.

10 NUMBER:=O
20 LOOP
30 NUMBER:+1
40 PRINT NUMBER
50 IF NUMBER=8 THEN EXIT
60 ENDLOOP

Co,vuv,e-rYt s:
1. The execution of the 'LOOP ••• ENDLOOP' section may be

interrupted by a 'GOTO' statement.
2. If 'LOOP ••• ENDLOOP' statements are nested, execution of

an 'EXIT' statement will abandon execution of the inner
Most 'LOOP ••• ENDLOOP' statement containing the 'EXIT'
state1Y,et1t only.

• COPYRIGHT (C) 1981 METANIC ApS DENMAR!-\

•

•

•

MAT

Type:

Purpose:

Syt1tax: •

Example:

State1Y1ent

To assign values to each element in an array.

MAT (variable):=(expression>

10 DIM ARRAY(50)
20 MAT ARRAY:=5

PAGE 2-061

Co«uv,ents:
1. <variable> and (expression> must be of the same type •

However, an integer expression may be assigned to the
elements in a real array.

2. During programming'=' and':=' are interchangeable. In
program listings':=' is used.

3. For string variables having (expression> longer ~han
<variable>, (expressiot1> will be shortened frolY, the
right.

4. For string variables having (expression> shorter than
<variable>, (variable> takes the actual length 011ly.

5. Several assignments may be made on a single line, sepa
rated by semicolons~ but the keyword 'MAT' may only
appear before the first assignment •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

MOD

Type:

Purpose:

Syi-,t ax:

PAGE 2-062

ArithMetic operator

To return the remainder following an integer division.

(expression1> MOD (expression2)

Execut i oi-1:

Exa1Y1ple:

<expression1) is integer divided by (expression2). The re
Mainder is <expression!) minus the result, multiplied by
(expression2).

10 INPUT A
20 B:=A MOD 7
3(i PRINT B

C o<r1mei-1t s:
1. The result N is defined by th~ lowest non-negative value

which the expression:
<expression1) - N * Cexpression2)

can assume for integer N.
2. The type of the result depends upon the type of (ex~res

sion1} and (expression2) in the following way:
<expression!) MOD {expression2} result

real real real
real i'r1t real
int real real
i l'it int int

3. Also see the 'DIV' operator.

• COPYRIGHT (C) 1981 METANIC ApS DENMAR}\

•

•

•

NEW

Type:

Purpose:

Syntax:

X
PAGE 2-063

To clear the computer 7 s memory and prepare the COMAL-SO
system for a new program.

NEW

I
Execution: •

All internal ~are initialized except the system
variable ~W.

Example:
NEW

Co,nments:
1. The 7 NEW 7 command should always be used before starting

a new program.
2. Also see note 2 to the 7 ENTER7 command.

":)fl le(\ '0'..:

1 1Zf\P 1:::S(~ £,',;_+

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

NOT

Type:

Purpose:

Syntax:

Logic operator.

To negate a logic value

NOT <expression}

Execut i oi-1:
The logical value of <expression> is negated.

ExaiY,ple:
100 IF NOT ERR THEN EXEC READ_OK

Co1Y11Y1ent s:
1. The operator has the

<expression>
t r1.1e
false

following truth table
res1.1l t
false
true

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

PAGE 2-064

•

•

•

ON

Type:

GOTO ON GOSUB PAGE 2-065

Statement

Purpose:

Syntax:

To transfer execution to a program line number resulting
from evaluation of an expression.

ON <expression> GOTO (list of line numbers>
ON (expression) GOSUB (list of line numbers)

Execution:

Example:

<expression> is evaluated and rounded to integer if neces
sary. The corresponding line number is chosen from (list of
line numbers>. <expression>=! corresponds to the first line
number froM the left; <expression>=2 corresponds to the
second line number from the left, etc.

10 INPUT "WRITE A NUMBER BETWEEN 1 AND 3 INCL: 11
: NUMBER

20 ON NUMBER GOTO 40,60,80
30 GOTO 10
40 PRINT "YOU WROTE 1 11

50 GOTO FINISH
60 PRINT "YOU WROTE 2 11

70 GOTO FINISH
80 PRINT "YOU WROTE 3"
90 LABEL FINISH

Comments:
1. Unlike the 'GOTO, statement, names may not be used in

the 'ON ••• GOTO' statement.
2. If the rounded value of {expression> does not fulfil the

test:
1 <= <expression} <= ite«,s in <list of line numbers>

the statement is skipped and the program is resumed from
the next executable state«,ent.

3. For 'ON ••• GOSUB, statements each line number in (list of
line numbers> must be the first statement in a subrouti
ne ended by a 'RETURN' stateMent.
O·r1 meeting this, the program execution resuMes at the
first executable line after the ,GOSUB' statement.
See also the ,GOSUB' stateMent •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

OPEN FILE

Type:

PAGE 2-066

Statement, command

Purpose:
To open a data file on the background storage device.

OPEN FILE (file No.), (file r1a«1e), (type) C, (record size} J

Execution:
All 'WRITE' files are validated against the file names held
on the background storage device. If the name is not found
program execution is stopped followed by an error message;
otherwise the file is opened.
For 'READ' and 'RANDOM' files, (file name> is checked on
the back-up storage device.
If a name is not found, 'READ' gives an error message,
and 'RANDOM' creates a file. Then (file name) and (file
nuMber> are coupled so that all references to (file name>
are done by (file number> until the file is closed with a
'CLOSE' statement or command.

Examples:
100 OPEN FILE 2, "TEST",WRITE
100 OPEN FILE 0,"DK1:DATA.RAN",RANDOM,40

Co1Y1met1t s:
1.

3.

(file number> is an arithmetic expression which must
be one of the following values 0, 1, 2, 3, 4, 5~ 6, 7,
B, or 9, after rounding if required.
(file name> is a string expression. Please note that not
all operating systems allow all possible characters in
file names. For example, CP/M allows only 8 characters,
and only 8 characters are transferred to the diskette.
(type} specifies how the file is used. Following op
tions are available:

READ Reads sequentially from the file
WRITE Writes sequentially in the file
RANDOM Reads and writes the file

• COPYRIGHT CC) 1981 METANIC ApS DENMARK

4. <record size) is used only for files of ,RANDOM' type
and expresses the total number of bytes to be written in
each record. The necessary size is calculated as fol
lows:

- Integers take 2 bytes
- Real figures take 4 bytes at 7-digits precision,

and 8 bytes at 13-digits precision.
- Strings take 2 bytes plus one byte per character

o f t he st r i r1g.

•
5. Up to 8 disk files may be open at the same time. This

leaves room for another 2 non-disk files to be open at
the same time. If disk files are used in connection with
,SELECT OUTPUT', 'LIST', ,SAVE,, 'CAT', 'ENTER', or
'LOAD,, fewer than 8 disk files may be opened by 'OPEN,.
A file may be open on several file numbers at the same
time provided that the sa1Yte (type> is used. •

6. It is not possible to write to a sequet1tial file once it
has been closed.

7. A ,RANDOM' file must always be re-opened using the same
<record size> with which it was originally opened.
<record size> can be recovered by the program:

10 OPEN FILE 0, "(f i lenart,e). RAN", READ
20 READ FILE O; RECORD_SIZE#
30 PRINT RECORD_SIZE
40 CLOSE

COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

•

•

OR

Type:

Purpose:

Syntax:

PAGE 2-067

Logical operator.

Performs the logic 7 0R, between two expressions.

<expression!> OR {expression2>

Execution:

Example:

<expression!> and (expression2> are evaluated and if equal
to zero considered false, otherwisee true. <expression!> is
ORws with (expression2>.

100 IF END_DATA1 OR END_DATA2 THEN EXEC END_DATA

Comments:
1. The operator has the following

<expression1> <expression2>
t r1..1e true
true false
false true
false false

truth table:
result
true
true
true
false

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

ORD

Type:

Purpose:

Syntax:

PAGE 2-068

Arithmetic function

To convert the first character in a string into its ASCII
number.

DRDC(string expression})

Execution:

Example:

Returns the ASCII value of the first character in (string
expression).

10 DIM AS OF 1
20 INPUT AS
30 PRINT □ROCA$)

CoMments:
1. The result is an integer and will lie between O and 255 •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

OUT

Type:

Purpose:

Syntax:

PAGE 2-069

Machine language function

To send a byte to a machine output port.

OUT(expression1>, (expression2>

Execution:

Exa1Y1ple:

The values of
and rounded
is send to
(expression!> •

10 INPUT A
20 OUT 15,A

<expression!) and <expression2) are evaluated
if necessary. The value of (expression2)
the machine output port corresponding to

Comments:
1. The value of (expression!) and <expression2> must be a

real or integer number greater between O and 255.
2. Also see ,INP, •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

PAGE

Type:

PAGE 2-070

St at e«,ent,

Purpose:
To advance the paper on a line printer to the top of the
r,ext page.

PAGE

Execut i ot1:
The line feed character (OAH) is transmitted to the line
printer until the top of the next page is reached.

Exa«,ples:
100 PAGE

PAGE

Co1Y11Y1e·r1ts:
1. Form feed is controlled by a counter within COMAL-BO,

it is important that the paper is inserted correctly in
the printer and that is is not fed manually.

2. This state«,ent/co,v11v,and 01"1ly 'works for the prit1ter with
the device t1a1Y1e 'LP(>:' (or 'LP:') •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

PEEK

Type:

PAGE 2-071

Machine language function

Purpose:

Syntax:

To determine the value of a memory location determined by
an arithmetic expression.

PEEK<<expression>>

Execution:

Example:

The value of (expression> is evaluated and rounded if
necessary. The value of the corresponding memory address is
returned •

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160

DIM B$ OF 1
TRAP ESC-
EXEC GET_CHR_ESC(B$)
PRINT B$
PROC GET_CHR_ESC(REF A$)
// GET KEYBOARD INPUT WITHOUT ECHO TO SCREEN
// THE ,ESC, KEY IS TREATED LIKE ANY OTHER
/ / CHARACTER.
// THE ,TRAP ESC-, STATEMENT MUST BE EXECUTED BEFORE
// THIS PROCEDURE IS CALLED.
POKE 256, 255
REPEAT

IF ESC THEN POKE 256, 27
UNTIL PEEK(256) ()255
A$:=CHR$(PEEK<256))

ENDPROC GET_CHR_ESC

Com1Y1ents:
1.

2 •

The value of (expression> must be a real or integer
number between O and 65535. The result will be of inte
integer type between O and 255.
See , POKP

• COPYRIGHT (C) 19B1 METANIC ApS DENMARK

•

•

•

POKE

Type:

PAGE 2-072

Machine language function

P1.1 rpose:

Syntax:

To set the contents of a memory position to a value deter
mined by an arithmetic expression.

POKE (expressi 0-.-11 >, {expressi oi-12>

Execution:

Exa1Y1ple:

The values of {expression!> and (expression2) are evaluated
and rounded if necessary. The memory address corresponding
to (expression!) is set to the value of {expression2} •

10 DIM B$ OF 1
20 EXEC GET_CHARACTER(B$)
30 PRINT B$
40 PROC GET CHARACTER(REF A$)
50 // GET REYBOARD INPUT WITHOUT ECHO ON THE SCREEN
60 // THE 'ESC' KEY WORKS IN THE NORMAL WAY
70 POKE 256, 255
80 REPEAT
90 UNTIL PEEK(256) (}255

100 A$:=CHR$(PEEK(256))
110 ENDPROC GET_CHARACTER

Co1Y1ment s:
1. The value of <expression1) must be a real or integer

number between O and 65535. The value of (expression2)
must lie between O and 255.

2. See 'PEEK' .

• COPYRIGHT (C) 1981 METANIC ApS DENMAm-.;

•

•

•

POS

Type:

PAGE 2-073

Arithmetic function

Purpose:

Syntax:

To deterrtline whether one string is contained in ar-.other
and if so, where it is placed.

POS (<string expressi onl), (string expressi on2>)

Execution:
A test is made character by character, to see if <string
expression!) is contained in <string expression2). If it
is the result of the function is an integer, returning the
character position of <string expression2> at which <string
expression!) starts.

Co1Y11Y1et1t s:

10 DIM A$ OF 25
20 DIM B$ OF 25
30 INPUT "FIRST STRING:
40 INPUT "SECOND STRING:
50 C#:=POS(A$,B$)
60 PRINT C#

II :A$
II :B$

1. If (string expression!) is a null strH1g, the fm1ctiot1
returns the result 1.

2. If <string expression!) is not contained in (string ex
pression2), the function returns the result O.

3. The result of the function is always an il'1teger •

• COPYRIGHT (C} 1981 METANIC ApS DENMARK

•

•

•

PRINT

Type:

P1.1 r·pose:

Syntax:

PAGE 2-074

Statement, command

To display data on an output device.

PRINT [(list of expressions)]

Execut i ot1:
The (list of expressions> consists of variables, constants
and literals the values of which are output to the default
output device.

Exa«,ples:
100 PRINT "THE RESULT IS: "; A
100 PRINT TAB(15); A, B

Co1v11v1er,t s:
1. The single elements of (list of expressions} must be

separated by commas or semicolons. If two elements are
separated by a semicolon, the ~econd element is printed
immediately after the first one, while a space is
inserted after an arithmetic expression. Separating two
elements by a comma causes the second element to be
printed at the start of the next print-zone. ·
When loading COMAL-SO the width of the print-zones is
set to O c~aracters.
T~e width of the print-zones may be changed by 'TAB:=
<arithmetic expression)' executed as a statement or a
command for which (arithmetic expression) is rounded to
integer greater than or equal to 0.
The rules for semicolon and comma also are valid after
the last element in (list of expressions), as the impact
is carried onto the first element of the next 'PRINT'
state,v,ent •
When (list of expressions} ends without a comma or semi
colon, the execution of the statement ends with a change
t<:l a ·new 1 i t1e.
This also happens if (list of expressions) is omitted.

2. If the remaining space on the actual line is too short
to contain the "r1ext print ele,v1e"r1t, it is prii-1ted fro,v,
the start of the following line •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

3. Switching between the output devi~es is by execution of
a 'SELECT OUTPUT' statement.

4. <expression) is arithmetic and represents the number of
character positions from the left, the function 'TAB
<<expression})' tabulates to the wanted character po
sition.
For more details also see 'TAB'.

5. During programming 'PRINT' may be substituted with';'.
In program listings 'PRINT' is used.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

•

•

•

•

PRINT FILE PRINT FILE USING PAGE 2-075

Type:
StateiY,ent

Purpose:
To write data in ASCII format into a data file.

Syt1tax:
PRINT FILE (file No.> [, < rec. No.> J: <1 i st of expressions}

Execution:
The values of the expressions in (list of expressions> are
written to the file indicated by (file No.}.

Examples:
100 PRINT FILE O,RECNO: A$, B, C+D

100 DIM A$ OF 5
110 A$:="##.##"
120 PRINT FILE 3: USING"##.##": A, B, CA2
130 PRINT FILE 4: USING A$: D

Co1Y1ments:
1. Before meeting the 'PRINT FILE (USING), statement, a

file must be opened and connection between (file name)
and the (file No.} used in the 'PRINT FILE (USING),
statement must be established by the use of an 'OPEN
FILE' statement or command, and a type: 'WRITE' or
, RANDOM'.

2. (rec. No.> is only needed for , RANDOM' files and is ai-1
arithmetic expression which will be rounded to integer
if necessary and which designates the number of the lo
gical record of the file to be utilized.

3. (file No.> is an arith1Y1etic expression.
4. The elements in (list of expressions} should be separa

ted by commas or semicolons, similar to the syntax of
,PRINT' and 7 PRINT USING, •

5. ,PRINT FILE' and 'PRINT FILE USING, perform similar
functions to 'PRINT' and 7 PRINT USING, the only diffe
rence being the destination of the output.
The syntax for 'PRINT FILE USING' is obtained by substi
tuting (list of expressions} in the above syntax with:

USING (string expression}:(list of expressions>
6. During programming 'FILE' and ,#, are interchangeable.

In program listings ,FILE' is used.
7. During programming ,PRINT' may be substituted with ';'.

In program listings ,PRINT' is used •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

PRINT USING PAGE 2-076

Type:

Purpose:
To print text strings and/or numbers in a specified format.

Syntax:
PRINT USING (string expression):(list of expressions>

Execut i oi-1:
The text string specified in (string expression} is trans
ferred character by character onto the output device.
String expressions and/or arithmetic expressions from (list
of expressions) are inserted where marked'#' .

Examples:
100 PRINT USING "THE RESULT IS###.##": A

10 DIM A$ OF 6
20 A$:="i#.###"
30 PRINT USING A$: B

Co1Y11Y1e1·1t s:
1. The individual characters in <string expression) have

the following significance:
'#' character position and sign.
' ' decimal point if surrounded by'#'.
'+' preceding plus, when'#' follows immediately after.
'-' preceding minus, when'#' follows immediately after.
All other characters are transferred unchanged.

2. A format starting with'+' will assign space for signs
and the sign will be printed for both negative and
positive values.

3. A format starting with'-' will assign space for signs
but it will be printed for negative values only.

4. For text strings a preceding'+' or'-' will be equal
t O

7 #' ■
5. If an arithmetic value contains too many digits to be

printed in the specified format, the position is filled
with'*'· If an arithmetic value contains more decimals
than specified in the format, rounding takes place auto-
1Y1at ical ly.

6. Text strings always start at the extreme left within the
format. If a string is too long, the necessary number
of characters is deleted from the right. When a text
string is too short, the rest of the format is filled
with spaces.

• COPYRIGHT (C) 1981 METANIC ApS DENMAR}<

7. When there are no more expressions in (list of expres
sions) execution of the 'PRINT USING' statement is ter
minated. If (list of expressions) contains more expres
sions than stated in (string expression>, the forMats
within are again used from the left.

8. If the 'PRINT USING' statement ends with a comma, the
next printout will happen immediately after the output
produced by the 'PRINT USING' statement. Otherwise the
execution of the 'PRINT USING' statement will cause a
change to a new line.

9. The 'PRINT USING' statement may be used for writing in
a data file following exactly the same rules as descr~
bed for the 'PRINT FILE' statement.

10. During programming 'PRINT' may be substituted with
In program listings 'PRINT' is used.

COPYRIGHT (C) 1981 METP.NIC ApS DENMARK

, . , , .

•

•

•

•

•

•

•

PROC

Type:

ENDPROC

Statement

Purpose:

CLOSED

To define a sub-program (a procedure)

Syntax:

PAGE 2-077

PROC <name> C CREFJ <variable> t (d i1Y1) J J CCLOSEDJ

ENDPROC <naiY,e}

Execution:
On 1Y1eeting a , PROC, statement the progra1Y1
ped up to and including the corresponding
Ment. It will be executed only when the
led by a connected ,EXEC, statement.

Examples:
10
20
30
40
50

PROC ERROR(N#) CLOSED
GLOBAL CC#, ERR_, ERRORS*
PRINT "*****";SPC$CCC#-9);".-..";N#
ERR_:=FNINCLUDE<ERR_,N#+1); ERRORS#:+!

.ENDPROC ERROR

PROCEDURE HEADINGS ONLY:
10 PROC XYZ(A,B,REF C$) CLOSED
10 PROC ZYX<REF A#(,,), REF CC>, D$)

section is skip
,ENDPROC, state

procedure is cal-

10 PROC YZX<REF 0$(,,), REF E#, REF C) CLOSED

Comments:
1. The 7 PROC, statement may not be used within the follow-

ing statements:
- Conditional state1Y1ents
-

7 CASE, statements
- Repeating statements
- 'PROC, statements
- Function declarations

2. A procedure may call other procedures, and may call it
self (recursion).

3. <variable> contains the names of the foriYial para1Y1eters
which, when called by the procedure, will receive values
from the actual parameters in the corresponding 7 ~XEC,
statement •

• COPYRIGHT CC) 1981 METANIC ApS DENMARK

4. The changes happening to a parameter in a procedure are
local unless 'REF' is used to indicate that the changes
must affect the actual parameter.
'REF' may be stated for simple arithmetic or string
variables.
'REF' must be stated for all array variables.

6. Array variables must be followed by a dimension defini
tion consisting of commas in parantheses, corresponding
to the number of dimensions -1, i.e. for 3-dimensional
arrays the paranthesis contains 2 commas whereas a vec-

7.
tor is followed by an empty paranthesis.
If the procedure is declared 'CLOSED' all variable names
are local and may be used for other purposes outside
the procedure. This function may be declared invalid
for one or more variables by the 'GLOBAL' statement

COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

•

•

•

•

QUIT

Type:

Purpose:

Syntax:

Statement, command

To stop the COMAL-BO interpreter and return to the environ
ment which called it.

QUIT

Execution:
Under CP/M, a warm boot is performed, transferring control
to the CCP.

Examples:
100 QUIT

QUIT

• COPYRIGHT (C) 1981 METANIC ApS DENMAR•<

•

•

•

RANDOM

Type:

RANDOMIZE PAGE 2-079

St at e1Y1ent,

Purpose:

Syntax:

To set a random startpoint for the ,RND' functon.

RANDOM
RANDOMIZE

Execution:
A Z-80 CPU has a built-in counter
value found is used as the seed
calculates a random value •

Examples:
100 RANDOM

RANDOM

Comments:

which
for the

is read and the
algorith1Y1 which

1. ,RANDOM' and ,RANDOMIZE, are interchangable. In prograM
listings 'RANDOM, is used.

2. The counter works constantly when the the CPU is active.
Its clock frequency is around 500 KHz when the CPU
clock frequency is 2.5MHz.

3. If 'RANDOM' is not found in a program calling the 'RND'
function, any execution of the program will give the
same sequence of random numbers •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

READ

Type:

Purpose:
To assign values to variables from the data list.

Synta_x:
READ <variable list)

Execution:
The single elements of (variable list) are assigned values
from the data list. This is done in sequence from left to
r :i ght.

EHa1Y1ples:
10 DIM FIRST_NAMES OF 10
20 DIM ~AMILY_NAME$ OF 10
30 DATA ".JOHN", "DOE", 10
40 READ FIRST_NAME$, FAMILY_NAME$
50 PRINT FIRST NAME$+" "+FAMILY NAME$
60 READ AGE - -
70 PRINT AGE; "YEAR"

Co1Y,1Y1e1·1t s:
1. If the type o~ value does not correspond to that of the

stated variable or if t:•1e data list is e1Y1pty, prograiY,
execution is stopped with an error message.

2. Assigning values to a string variable follows the same
rules as given for 'LET' statements.

3. See the 'DATA' statement •

• COPYRIGHT (C) 1981 METANIC ApS DENMAm{

•

•

•

READ FILE

Type:

PAGE 2-081

State1Y1ent

Purpose:

Syntax:

To read data from a binary data file written by the 7 WRITE
FILE, statement.

READ FILE (file No.> C, (rec No.>J:<variable list}

Execut ioti:
The values of the variables in <variable list> are read
from the file contained in (file No.}.

Exa,Yiples:
100 READ FILE 5,REC_NO: A
100 READ FILE 3: A, B, C

Comments:
1. Before meeting the 7 READ FILE, statement a file must be.

opened and the connection established between the stated
file name and the used (file No.> of the ,READ FILE,
statement. This is done with the 'OPEN FILE, statement
or command and type 'READ' or ,RANDOM'.

2. The (rec No.} is only used in 'RANDOM' files and is an
arithmetic expression which will be rounded to integer
if necessary.

3. (file No.> is an arithmetic expressiot1.
4. (variable I ist} may contain al 1 variable types. Arrays

are read in total if no indices are specified.
5. The elements of (variable list} are separated by commas.
6. During programming 'FILE' and '# 7 are interchangeab!e.

In program listings 'FILE' is used •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

RELEASE

Type:

Purpose:

Statement, command

To check that all disk files are closed.

Syntax:
RELEASE [(device}]

Execution:
It is checked whether all disk files are closed.

Exa1Y1ples:
100 RELEASE 1111

100 RELEASE "DKl: 11

100 RELEASE "DK"+DISK$+":"

Co1Y11Y1ent s:

RELEASE
RELEASE m, 1 :

1. Under CP/M, the (device) indioation
it is given, it must be the name of

2. If a disk file is opei-1 executio1·1 is
error message is displayed .

is not used, but if
a disk drive.

terminated and an

• COPYRIGHT CC) 1981 METANIC ApS DENMARK

•

•

•

REM

Type:

Purpose:

Syntax:

II PAGE 2-083

To allow for insertion of explanatory text in a COMAL-BO
program.

II
REM

Execution:
The 'REM' statement is ignored during program execution •

Examples:
10 //PROGRAM TO CALCULATE
20 REM POLYNOMIAL
30 ! 3(>/ 1(>/ 1980
40 OPEN FILE 4,"TEST",READ //OPEN DATA FILE

Co1Y11Y1ent s:
1. During programming 'REM', '//', and ''' are inter

changeable. In program listings'//' is used.
2. All statements 1Y1ay be followed by a co1Y11Y1el'lt •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

RENAME

Type:

Purpose:

Syntax:

co«11Y1ai-1d

To change the name of a file on the background sta~age
device.

RENAME < o 1 d f i 1 e na1Y1e) , {r1ew f i 1 e i-1a«1e)

Execut i 0~1:
The operating system of the computer is called and parame
ters for 'old name' and 'new name' are exchanged.

Examples:
220 RENAME "mo : FIL. CML 11

,
11 m<i : FIL. BA~-.:"

RENAME DK1:FIL.CML,DK1:FIL.BAK
RENAME FIL.CML,FIL.BAK

Co«11Y1ents:
!. <old file i-1ame> 1Y1ust be one existii-1g oi-1 the stated

device.
2. If no device is stated the statement/command is carried

out on the current default deyice.
3. If the (new file name> is already in use, this is repor

ted and the statement/command is terminated.
4. If a device description

name, the same device
other name •

is contained in one of· the
indication must be part of the

• COPYRIGHT CC) 1981 METANIC ApS DENMAR•-.:

•

•

•

RENUM RENUMBER PAGE 2-085

Type:

Purpose:
To renumber program lines and to move areas of programs.

Syi-,tax:
RENUM CC(start line):(end line>,J<start>t, <step)JJ

Execution:
If only a part of a program is to be renumbered a check is
made to see whether there is sufficient room to renumber
using the intervals specified. If not, execution is stopped
followed by an error message.
If there is enough room, the new line numbers are calcu
lated and stored. The program is checked and all referen
ces ('GOTO', , GOSUB', etc.} are updated.
Finally, the old line numbers are deleted.

ExaiY,ples:
RENUM
RENUM 15
RENUM 15,3
RENUM 20:90,310,1

Comments:
1.
2.
3.

If (step> is not stated, default 10 is used.
If {start> is not stated, default 10 is used.
(start line) and (end line> are used when only a section
of a program is renumbered and specify the first and
last line number to renumber. In this case (start) spe
cifies the first new line number and {step> the new step
between line numbers. This way a program section can op
tionally be moved to any place in a program, if there
are enough free line numbers, starting in {start) and
using the indicated (step), before the next original
line number, to contain the program section. No overwri
ting and no mixing is possible.

4. If {start line}:(endline), is not stated the whole pro
gram is renumbered •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

REPEAT

Type:

Purpose:

Syntax:

UNTIL PAGE 2-oe.s

St at e1Y1ent

To repeat the execution of a program section until the
condition contained in the 'UNTIL' statement is fulfilled.

REPEAT

UNTIL (logical expression)

Execution:

Example:

On meeting the 'UNTIL' statement the value of the (logical
expression} is calculated. If itis true, execution re~uMes
from the first executable statement following the 'UNTIL'
statement. If <logical expression) is false the program
continues from the first executable statement following
the 'REPEAT' statement.

10 DIM A$ OF 1
20 DIM B$ OF 25
30 PRINT "THE PROGRAM IS STOPPED BY"
40 PRINT "PRESSING THE 'ESC' KEY"
50 TRAP ESC-
60 REPEAT
70 INPUT "WRITE A LETTER: It : A$,
80 B$:=B$+A$
90 UNTIL ESC

100 PRINT "YOU WROTE: II • B$,

Co1Y11Y1er1t s:
1. A program section surrounded by

always executed at least once.
is

• COPYRIGHT (C) 1981 METANIC ApS DENMAm<

•

•

•

RESTORE

Type:

PAGE 2·-087

Statement

Purpose:

Syntax:

To move the pointer of the data list, enabling a total or
partial re-reading of the data list.

RESTORE <line m1mber>
RESTORE <name>
RESTORE

Execution:

Example:

The pointer of the data list is set to the first constant
in the stated line, or to the first constant declared if no
line is specified.

10 LABEL AGAIN
20 RESTORE DATA2
30 READ X
40 PRINT X
50 DATA 47
60 RESTORE 50
70 READ X
80 PRINT X
90 GOTO AGAIN

100 LABEL DATA2
110 DATA -47

Comments:
1. If the ,RESTORE' statement contains a line number, the

corresponding line must contain a ,DATA, statement.
2. If the 'RESTORE' statement contains a name, the state

ment immediately following the label statement defining
that label must contain a 'DATA' statement •

3. If the 'RESTORE' statement contains neither a line
number nor a name, the pointer is set to the first
constant of the first 'DATA' statement •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

RND

Type:

Pu1~pose:

Syi-1tax:

Arithmetic function.

To create a pseudo-random number.

RND[((expressioi-11}, <expression2>) J

Execut i oi-1:

Exa1v,ple:

Based on the seed (which can be changed with
statement/command) or on the latest random
one is generated.

100 A:=RND
100 B:=RND(-5, 17)

t he ' RANDOM•
nu,v,ber, a new

Co1Y11v,ent s:
1. Any execution of a program will give the same sequence

of random figures unless a ~RANDOM' statement has been
executed earlier in the program.

2. Omitting the two limits (expression!) and (expression2)
creates a random real number in the open interval of
0 to 1

3. If (expression1) and/or (expression2} is not an int~ger,
rounding takes place.

4. If limits are stated, the result will always be an inte
ger between <expressionl) and {expression2) inclusively •

• COPYRIGHT (C) 19B1 METANIC ApS DENMARK

•

•

•

ROUND

Type:

Purpose:

Syntax:

PAGE 2-089

Arithmetic function

To convert a real expression to integer type.

ROUND((expression))

Execution:

Example:

Arithmetic (expression) is rounded and the result converted
to integer type.

10 INPUT A
20 Btt:=ROUND(A)
30 C:=ROUND<A>
40 PRINT Btt, C
50 PRINT ROUNDCS.72)
60 PRINT ROUND(-5.72)

Comments:
1. Rounding is carried out to the nearest integer. If the

number lies evenly between two integers, the one with
the highest absolute value is chosen.

2. <expression> is of real type. The result is an integer
type. Note that an integer can be assigned to a real
variable.

3. See the 7 INT 7 and 7 TRUNC7 functions •

• COPYRIGHT CC) 1981 METANIC ApS DENMARK

•

•

•

RUN

Type:

Purpose:

Syntax:

PAGE 2-090

Command

To start execution of a program.

RUN [(line number)]

Execution:
COMAL-BO is brought to a defined start position which
other things, closes all files left open from any previous
execution and initializes the variable area.
After this a special prepass checks to see whether the pro
gram contains structures (FOR ••• NEXT, LOOP ••• ENDLOOP, etc.)
and references (EXEC, LABEL, etc.) and the internal repre
sentation of these statements is extended to increase the
the working speed.
Finally, program execution is started at the stated line
number.

Examples:
RUN
RUN 230

Comments:
1. Omitting (line number) starts the program at the lowest

line number •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

SAVE

Type:

Purpose:

Syntax:

PAGE 2-091

Command

To store programs on the background storage device in the
internal (binary) format.

SAVE (file name>

Execution:
The operating system of the computer is called with infor
mation on {file name> and the area of memory to be trans
ferred .

ExaMples:
SAVE TEST
SAVE DK1:TEST

CoMments:
1. If a program is to be called by the 'CHAIN' statement it-

must first be stored by the 'SAVE' command.
2. Programs stored by the 'SAVE' command may be re-read

by the 'LOAD' command.
3. The internal format may be different on various versions

of COMAL-80. Consequently, a program cannot always be
stored by the 'SAVE' command in one version and read by
the 'LOAD' command in an other version.
Programs to be exchanged or stored for longer periods of
time should therefore be stored using the 'LIST' com
Mand.

4. If {file name) is already on the current device this is
reported and the user may continue and delete the old
file, or stop ('RETURN/ESC').

5. The extension '.CSB' is always supplied by the COMAL-80
system and cannot be stated by the user •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

SELECT OUTPUT

Type:

PAGE 2-·092

Statement, command

Purpose:

Syntax:

To specify a new default device/file for printout from the
'PRINT' and 'PRINT USING' statements.

SELECT OUTPUT (string expression>

Execut i oi-1:
Internal pointers in the COMAL-SO system switch to select
the specified printout device/file.

Exa,Y1ples:
220 SELECT OUTPUT "LPO: II

220 SELECT OUTPUT 11 m\l :TEKST"
220 SELECT OUTPUT "TEKST"
220 SELECT OUTPUT "DS: II

SELECT OUTPUT "LP: II

Co«11Y1ei-1t s:
1. Whenever the program execution is started by the 'RUN'

command the console is chosen as default output file.
During program execution a new default file may be cho
sen by specifying the name of the peripheral or a·file
with (string expression}.
When program execution is term nated, either by use of
the 'ESC' key, or because it s finished, the terminal
again defaults as the output f le •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

SGN

Type:

Purpose:

Syntax:

PAGE 2-0'33

Arithmetic function

Returns the sign of an arithmetic expression.

SGN((expression})

Execution:
Arithme~ic (expression) is calculated and if the result is
greater than O the function returns the value 1. If the
result equals 0, 0 is returned, and if the result is less
than 0, -1 is returned •

Examples:
10 INPUT "WRITE A NUMBER: II ■ A
20 ON SGN(A)+2 GOTO 30,50,70
30 PRINT "A (0"
40 STOP
50 PRINT "A=O"
60 STOP
70 PRINT "A) 0 11

80 STOP

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

SIN

Type:

PAGE 2-09l~

TrigonoMetric function

Purpose:
Returns the sine of an expression.

Syr,tax:
SIN((expression>>

EXECUTION:
The sit,e of (expressiot1>, in radians, is calculated.

Exa1Y1ples:
10 INPUT A
20 PRINT SIN<A>

Com«,ents:
1. <expression> is an arithMetic expression of

integer type. The result will always be real •
real or

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

SIZE

Type:

Purpose:

Syntax:

PAGE 2-095

Command

To display the size of the used area of memory.

SIZE

Execution:

Example:

The amount of memory used is displayed
together with the amount remaining and
variables.

SIZE

on the terminal
the amount used by

Comments:
1. The figures displayed indicate the number of bytes.
2. The space used for variables is not valid for the next

program execution, and refers only to variables dimen
sioned or used during the last execution.

3. The size of COMAL-SO is not displayed •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

SPC$

Type:

PAGE 2-096

String function

Purpose:

Syntax:

To create a string consisting of spaces, the number being
defined by an arithmetic expression.

SPC$((expression))

Execution:

Exa«,ple:

The arithmetic (expression) is calculated and rounded if
necessary. Then a string containing that number of spaces
is created •

10 INPUT A
20 PRINT SPC$(3*5),A

Comments:
1. <expressiot1> 1Y1ust be equal to or greater than O •

• COPYRIGHT (C) 1981 METANIC ApS DENMAR•-(

•

•

•

SQR

Type:

PAGE 2-097

Arithmetic function

Purpose:
To calculate the square root of an arithmetic expression.

Syntax:
SQR((expression>)

Execution:

ExaMple:

The square root of an (expression> equal to or greater than
0 is calculated.

10 INPUT A
20 PRINT SQR(A)

COMMents:
1. (expression} is arithmetic and may be real or integer.

The result will always be real.
2. If (expression> is less than O the execution is stopped

with an error message. If these have been inhibited with
the 'TRAP ERR-' statement the system variable 'ERR' is
set true (not equal to 0) and the square root is calcu
lated from the expression:

SQR(ABS<<expression})

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

STOP

Type:

P1..1rpose:

Syntax:

PAGE 2-0'38

To stop exec1..1tion of a program.

STOP

Exec1..1tion:

ExaiY,ple:

The program exec1..1tion stops and the following is displayed
on the screen:

STOP IN LINE nnnn

nnnn is the line number of the 'STOP' statement.

540 STOP

Comments:
1. The 'STOP' statement is normally used to stop the

execution of a program in lines other than the last.
2. ProgratY, exec1..1tion may be resumed by using the 'COW

command •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

STR$

Type:

PAGE 2-099

String function

Purpose:
To convert an arithmetic expression into a string.

Syntax:
STR$((expression>>

Execution:

Example:

The arithmetic expression is converted to a string contai
ning the characters which would be output if the value
were printed by a ,PRINT, statement.

10 DIM B$ OF 7
20 INPUT "WRITE A NUMBER": A
30 B$:= STR$(A*1.5)
40 PRINT B$

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

TAB

Type:

PAGE 2-100

Command, statement, (system variable)

Purpose:

Syntax:

To establish a new print-zone width by assigning this
value to the system variable 'TAB'.

TAB:=(arithmetic expression>

Execution:
The system variable 'TAB' is assigned the value of
(arithmetic expression> which is rounded if necessary.

Exa«,ples:
100 TAB:=8
100 TAB=X*Y+3

TAB=12

Com«,ents:
1. On loading COMAL-80, 'TAB' is assigned the value of O.

This value can only be changed by a 'TAB' statement
or co«,«,and.

2. It is not possible to read the value
3. The 'NEW' command does not change

system variable 'TAB'.
4. See 'PRINT'

of 'TAB'.
the value of the

5. During programming':=' and'=' are interchangeable. In
program listings':=• is used •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

TAB

Type:

PAGE 2-101

Prit1t function

Purpose:

Syntax:

In connection with a 'PRINT' statement to tabulate to the
character position before the next printout.

TAB((expression>>

Execution:

Example:

The arithmetic expression is evaluated and if necessary
rounded. The result defines the start position of the next
printout •

100 PRINT TAB (10), "THE RESULT IS: ",RESULT

Comments:
1. TAB((expression>> can only be used in connection with

'PRINT' statements.
2. (expression) is an absolute value counted from the left

hand margin of the output unit.
3. If the last printout before the , TAB((expression})' has

passed the specified position, program execution is
stopped with an error message.

4. The arithmetic <expression> must evaluate to greater
than or equal to 1 and less than or equal to the maximum
number of characters allowed in the width of the output
device •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

TAN

Type:
Trigonometric function

Purpose:

PAGE 2-102

To calculate the tangent of an arithmetic expression.

Syntax:
TAN((expression))

Execution:
The tangent of (expression>, in radians, is calculated.

Example:
10 INPUT A
20 PRINT TAN(A)

Co1Y11Y1ent s:
1. The arithmetic <expression>

sult will always be real •
is real or integer. The re-

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

TRAP ERR

TYPE:

PAGE 2-103

Statement, command

Purpose:

Syntax:

To change the normal system action on a non-fatal error.

TRAP ERR
TRAP ERR+

Execution:

Example:

During a normal program execution, any error will stop the
program and create an error message. However, a number of
errors can be bypassed in a well-defined manner.
In such cases a program interruption may be avoided by the
use of a ,TRAP ERR-, statement, before the error arises. In
this case, the system variable 7 ERR' will be assigned a
value equal to the error number, which in all tests will be
considered true because it is different from O. The program
execution will then continue.

10 INIT "", FILENAME$
20 TRAP ERR-
30 OPEN FILE 0, "XPLOCOMM", READ
40 TRAP ERR+
50 IF NOT ERR THEN
60 INPUT FILE O: DEFAULT FILENAME$
70 ELSE -
80 DEFAULT_FILENAME$:= 11 XPLOPROG 11

90 ENDIF
100 CLOSE

Comments:
1. The execution of a program starts by assigning the value

of false < = 0) to the system variable 7 ERR'. When a
'TRAP ERR-' statement has been executed, a non-fatal
error assigns its error number to 'ERR, and it retains
this value until its status is checked. Immediately
after a such check, 7 ERR' is assigned the value of
false.
Normally COMAL-BO sets a variable true by assigning it
the value of 1, here the error number is used.
The error numbers are described further in appendix C.

2. After executing a , TRAP ERR+, stateMent, the systett,
returns to normal error handling •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

TRAP ESC

TYPE:

Purpose:

Syt1tax:

Statement, command

To change the system response to the 'ESC' key.

TRAP ESC
TRAP ESC+

PAGE 2-104

Execution:

Exa1Y1ple:

During normal program execution a check is made before each
statement, to see whether the 'ESC' key has been pressed.
If it has the program execution is stopped.
If a 'TRAP ESC-' statement has been executed, this function
is blocked and the system variable 'ESC' is instead assig
ned the value of true (= 1) when 'ESC' is pressed.

10 TRAP ESC-
20 REPEAT
30 PRINT "THE 'ESC' KEY IS NOT PRESSED"
40 UNTIL ESC
50 TRAP ESC+
60 PRINT "THE 'ESC' KEY WAS PRESSED"

Comments:
1. Starting program execution the system variable 'ESC' is

assigned the value of false (= 0). If a 'TRAP ESC-'
statement is executed and the 'ESC' key pressed after
that, program execution continues but the system vari
able 'ESC' is assigned the value of true (= 1} and ·
retains this value until its status is checked.
Immediately after the value is used, 'ESC' is again
assigned the value of false (= 0).

2. The system returns to normal handling of the 'ESC' key
after a 'TRAP ESC+' statement has been executed •

• COPYRIGHT (C) 1981 METANIC ApS DENMAR~~

•

•

•

TRUE

Type:
Syst e«i const ar1t

Purpose:

PAGE 2-105

Mainly to assign a boolean variable the value of true.

Syntax:
TRUE

Execution:

Example:

Returns the value 1.

10 II PRIME
20 II
30 DIM FLAGS#(0:8190)
40 SIZEl:=8190
50 II
60 COUNT:=O
70 MAT FLAGS#:=TRUE
80 II
90 FOR I:=o TO SIZE1 DO

100 IF FLAGS#(!) THEN
110 PRIME:=I+I+3
120 K:=I+PRIME
130 WHILE K<=SIZE1 DO
140 FLAGS#(K):=FALSE
150 K:+PRIME
160 ENDWHILE
170 COUNT:+1
180 ENDIF
190 NEXT I
200 PRINT "TOTAL NUMBER OF PRIMES: ",COUNT

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

TRUNC

Type:

Purpose:

Syntax:

Arithmetic function

To convert a real expression to an integer.

TRUNCC<expression})

Exec1.1t ion:

PAGE 2-106

The arithmetic (expression) is evaluated and the result is
converted to integer type disregarding any decimals.

ExaiY,p les:
100 A=TRUNC(5.72)
100 A:=TRUNCCA/B)

Commet1ts:
1. <expression> is real.

The result is integer.
2. See the 'ROUND' and ' INT' fr..mct ions •

• COPYRIGHT CC) 1981 METANIC ApS DENMARK

•

•

•

Type:

Purpose:

?AGE 2-107

To assign the background storage device which is to be the
the default device.

UNIT (device>

Execution:
The internal pointers are updated to point at the stated
device.

Exan-,ples:
100 UNIT "DK1:"

Co«nv,ent s:
1.

UNIT DK1:

(device} is stated in the forM of 2 letters describing
the type of background storage device, followed by the
unit number and a colon •

• COPYRIGHT (C) 1981 METANIC ApS DENMAR~~

•

•

•

VAL

Type:

Purpose:

St r :i. ng fi.mct :i. o·r·i.

To convert a real number of string type to a number cc real
ty:,Je.

VAL((string expression))

E:><ecut i o·r·1:
The real number in (string expression>
number of real type .

is converted tc a

1C> DIM A$ OF 5
2(> AS : = 11 32" 3L:. 11

30 PR!NT VAL<A$)

CorY11·,,ei-1t s ~

L If (str:i.1·1g expression> does not
formed rea! or integer number,
stopped with an error message.

2. See t½e 'IVAL' function •

contain a correctly
program execution is

• COPYRIGHT (C) 1981 METANIC ApS DENMAR~'{

•

•

•

•

VARPTR

Type:

Purpose:

Syntax:

PAGE 2···10'3

Mac~ine code function.

To find the absolute address in the memory at which a
variable is stored.

VARPTR <<variable>>

Execution:

Exatf1ple:

The deciMal, absolute address in memory at which the first
byte af the variable <variable> is stored, is found.

10 INPUT A
20 PRINT VARPTR<A>

Co1Y11Y1erits:
1. The result states where the first byte of the variable

is stored. The remainder of the bytes are or. t~e
following locations.
Integers take 2 bytes with lower part of the number
first.
Real numbers take 4 bytes in the 7-digit version.
Real numbers take 8 bytes in the 13-digit version.
For string variables the first 2 bytes state the length
and the string is then stored contigosly.

2. The result is of real type.
3. The varia~le may be an array with or without indices. If

no indices are stated, the address of the first ele1Y1eYit
of the array is returned.

4. WARNING: In one situation a variable is moved after it
has been allocated storage, thus changing its address.
T~is ha?pens upon exit from a non-closed procedure to
al 1 variables that ~,ave been encountered and al located
storage for the first time during the current call of
the procedure •

CO~YRIGHT CC) 1981 METANIC ApS DENMARK

•

•

•

Type:

Oi.1 r;::iose ~
To repeat the execution of a program section
condition contained in the 'WHILE' statement is

WY!LE (logical expression)

ENDt-JHILE

PAGE 2-110

u-r1t i l the
fulfilled.

Er:ecut i crn:

E><a1Y1ple:

On meeting the 'WHILE' statement the value of the {logical
expression} is calculated. If this is true, execution
resumes from the first executable statement following the
'WH!LE' staterY,ent. If the <logical expression> is false the
program continues from the f~rst executable statement
following the 'ENDWHILE' statement.

10 OPEN FILE 0, "DATA",READ
20 WHILE NOT EOF(O) DD
30 READ FILE O: INDEX, NUMBER#, TEXT$
40 ENDWHILE

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

WRITE i::-rLE PAGE 2·-111

Purpose:
To write data in the binary format into a data file.

WRITE FILE (file No.} [, (rec. No.> J: <variable 1 ist>

Execut i 01-1:

The values of the variables in (variable list> are written
to the file contained in (file No.).

E><aiY1ples:
100 WRITE FILE 7,REC_NO: A, B, C
100 WRITE FILE 3: A$, B#, C

Co,Y11Y,et1t s:
1. Before Meeting the 'WRITE FILE' statement, a file roust

be opened and connection between (file name> and the
(fi~e ~o.) used in the 'WRITE FILE' statement must be
established by use of the 'OPEN FILE' statement or com
Mand, and type 'WRITE' or 'RANDOM'.

2. <rec. No.) is only used with 'RANDOM' files and is at1
arithmetic expression which may be rounded to integer if
t1ecessa ry.

3. (file No.> is a1-1 ar-ith,v,etic expression.
4. <variable list) :Y1ay contaiti all variable types. If an

array variable is stated without indices, the whole
array is written.

5. The elements in (variable list> are separated by commas.
6. During programming 'FILE' and '#' are interchangeable.

J>1 program 1 ist ir1gs ., FILE7 is used •

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

APPENDIX A

MODIFYING COMAL-80

PAGE A-001

COMAL-80 is a very interactive program in the way that it tries to
help the user towards a correct program by displaying comprehensive
error messages and moving the cursor to points where there are
problems. It is therefore necessary that the connected terminal
terminal supports functions like 7 erase to end of line,, 7 erase to
end of screen,, cursor addressing and others.

Unfortunately, the specifications for CP/M do not include a de
scription of how these· functions should be implemented and many
different methods are used.

To overcome this problem, the source code for the screen driver is
shown in appendix B, and it will normally be possible to change
this driver, so that most CRT-terminals can be used.

Printing terminals such as teletypes are not recommended.

The necessary changes are normally very easy to make in a few
Minutes by replacing control characters in a table with the actual
ones.

STEP BY STEP GUIDE.

1. Make a copy of the master disk, remove
computer and store it in a safe place.
warranty is carried by this disk only.

this disk from the
Remember, that your

2. Read the source code for the screen driver and this guide care
fully.

3. Read the manual for the actual terminal and check whether it
supports the functions mentioned in the table defining the con
trol characters.

• If it does, you are in for an easy job. Carry on.

If it does not, go to step 13.

4. Go to your computer and use DDT to make the necessary changes.
Depending on which version you want to change, enter

DDT COMAL-BO.COM
DDT COMALBOS.COM
DDT COMAL80D.COM
DDT CMALBODS.COM

or
or
or

and remember which version you are working on •

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

C'
..Jo

PAGE A-002

Check whether the actual control characters the terMinal wants
are the saMe as those shown in the control-character table
at the hexadeciMal addresses 15C7H to 15D2H.

If they are, go to step 6.

If not, replace the old ones with the new ones.

6. Load address 15D3H with the hexadeciMal nuMber of characters
per line; at address 15D4H the hexadeciMal nuMber of lines on
the screen. The original values are 28H and 18H respectively.

7. Check that the cursor address routine called 'GOTOXY' at
adresses 174FH to 1768H works in a way that suits your
terMi nal •

'GOTOXY' first sends an 'ESC' character, then a'=', then the
line number and last the character number (adding hexadecimal
20H to the latter two).

If the terminal needs further support change 'GOTOXV' as neces
sary. If the new routine is larger than the old one, place the
rest (or the whol- routine) in the free space starting at
address 17E2H.

8. COMAL-80 expects the terMinal to be equipped with an 'ESC' key
sending the hexadeciMal code '1BH'. If this is not the case
with your terminal, change the following two addresses:

187CH and 1AABH

to the new code or to the code for a suitable key. This key is
very important as it stops everything. It is best to use a key
which is easy to find without looking at the keyboard •

• 9. Ten other keys can be redefined. These are:

FUNCTION ORIGINAL VALUE ORIGINAL CHARACTER
CURSOR RIGHT 1DH control J
CURSOR LEFT 1CH control \
INSERT 01H control A
DELETE 13H control s
BACKSPACE OSH control H
CURSOR TO START OF LINE 15H control u
CURSOR TO END OF LINE 05H control E
CURSOR 8 STEP FORWARD 09H control I
CURSOR 8 STEP BACKWARD 02H control B
DELETE TO END OF LINE OBH control K

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

PAGE A-003

These functions can be related to new keys simply by inserting
the new code in the following addresses:

CURSOR RIGHT 1897H
CURSOR LEFT 1881H
INSERT 18ECH
DELETE 18B1H
BACKSPACE 1'32DH
CURSOR TO START OF LINE 1'35CH
CURSOR TO END OF LINE 1976H
CURSOR 8 STEP FORWARD 1'38EH
CURSOR 8 STEP BACKWARD 1'3BAH
DELETE TO END OF LINE 1'3E7H

These changes affect only the transmission from the keyboard to
the computer and have no influence on the transmission from the
computer to the screen.

10. If the te~minal has more than 64 characters per line, the 7 CAT,
command should be changed to list four files per line by
changing addresses 142FH and 1464H to 04 instead of 02.

11. The last thing to do is to tell COMAL-SO how Many disk drives
are connected to the computer. Do this by inserting the number
of disks minus one in address 145H. The original value in this
address is 01H which means that COMAL-SO is prepared for 2
disk drives.

12. Press control-C and when CP/M has re-initialized enter:

SAVE 155 COMAL-SO.COM
SAVE 110 COMALSOS.COM
SAVE 156 COMALSOD.COM
SAVE 111 CMAL80DS.COM

or
or
or

• 13.

depending on which version you worked on •

Terminals which do not support cursor addressing or other
functions which COMAL-SO needs are a bit more complicated as
some assembler programming will be necessary.

Do not try to make these changes unless you have a relatively
good knowledge of this special art.

Unfortunately, due to big differences in the way the various
terminals work, it is not possible to describe exactly how the
screen driver should be changed but it is possible to give some
guidelines •

• COPYRIGHT CC> 1981 METANIC ApS DENMARK

•

•

•

1582

0018
OOOD
0008
oooc
000B
OOOA
001E
001F
001D
001B

0108

010A

010B

010C

010D

1C55
184E
0005

PAGE B-001

0001
0002
0003
0004
0005
0006

·· 1 7 7 7 11 7 7 7 7 7 7 7 7 7 7 , , , 7 7 7 11 1 1 7 1 7 7 7 7 7 1 7 7 7 7 7 ,_ 7 7 7 1 7 , 7 'I 1 , , 7 1 7 7 7

SCREEN DRIVER FOR COMAL-BO V 1.8
COPYRIGHT (C) 1981 METANIC ApS DENMARK

••••••••••••• ■ ••••••••••••••••••••••••••••••••••• ■ •••• ,,,.,,,,,,,,,,,,,,,,.,,,.,,,,,,,,.,,,,,,,,,,,,,,.,,,,,.,,,,,

0007 ;
0008
0009
0010
0011
0012
0013
0014
0015
0016

; ASCII NUMBERS OF SOME CONTROL CHARACTERS
; THESE CHARACTERS ARE USED INSIDE COMAL-SO AND MUST NOT
; BE CHANGED. THE ACTUAL KEYBOARD CHARACTERS DO NOT
; AFFECT THIS TABLE.
··· ,,,,,,,,,,,.,,,,,,,,,,,,,,,,,,,,,,,,,,.,,.,,,,,,,,,.,,.,,,,,

PSECT ABS
ORG 15B2H

0017 ESC EQU
0018 CR EQU
0019 CLEFT EQU
0020 CRIGHT EQU
0021 CUP EQU
0022 CDOWN EQU
0023 CHOME EQU
0024 CLRLINE EQU
0025 CLRDISP EQU
0026 LEADIN EQU
0027

1BH
ODH
08H
OCH
OBH
OAH
1EH
1FH
1DH
1BH

VERSION 1.8 ONLY

ESCAPE CHARACTER
CARRIAGE RETURN
CURSOR LEFT
CURSOR RIGHT
CURSOR UP
CURSOR DOWN
CURSOR HOME
CLEAR REST OF LINE
CLEAR REST OF DISPLAY
LEAD IN CHARACTER

0028; VARIABLE ADDRESSES - THESE VARIABLES ARE PLACES IN THE
0029 SAME ADDRESSES AS THE INITIALISATION CODE.
0030
0031 CURSOR EQU
0032
0033
0034
0035
0036 CHARNO EQU
0037
0038 LINEN□ EQU
0039
0040
0041

108H

10AH

10BH

0042 LASTWASPRINTABLE EQU
0043
0044
0045
0046
0047
0048
0049 LASTW1 EQU
0050
0051
0052 OPENMO EQU
0053 CRTIN EQU
0054 XBDOS EQU
0055
0056

10DH

1C55H
184EH
05H

10CH

LOGICAL CURSOR ADDRESS
RELATIVE TO HOME POS.

ALWAYS = CHARNO +
#CHRLIN*LINENO

X ADDRESS OF CURSOR POS.
IN RANGE O •• #CHRLIN-1

Y ADDRESS OF CURSOR POS.
IN RANGE O •• #LINES-1.
HOME POS. HAS LINENO=O

FLAG TELLS IF THE
LAST OPERATION ON THE
DISPLAY WAS OUTPUTTING
A PRINTABLE CHARACTER.
CALLS OF 'MOVECURSOR'
ARE BLIND IN THIS
RESPECT.

TEMPORARY FOR
'LASTWASPRINTABLE'

VERSION 1.8 ONLY
VERSION 1.8 ONLY

.COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

15B2
15B5
15B8
15BB
15BE
15C1
15C4

15C7
15C9
15CB
15CD
15CF
15D1
15D3
15D4

15D5

C3D515
C3D615
C3D715
C3E215
C36917
C37A17
C3AB17

oooc
000B
OOOA
001E
1B54
1B59
28
18

C9

0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108

PAGE B-002

•••••••••••••••• ■ ••••••••• ■ ••••••••••• ■ ••• ■ , , , , , ,,, , , ,,, , , , , ,, , , , ,, , , , ,, , ,, , , , ,, , , ,, , , , , ',,,,,,,,,,,,

THIS TABLE ESTABLISHES THE CONNECTION BETWEEN COMAL-BO
AND THE SCREEN DRIVER.
IF THE SCREEN DRIVER IS CHANGED, THIS TABLE MUST BE
CHANGED TOO, BUT THE REST OF COMAL-BO IS UNAFFECTED.

■ ■■ ■■■■■ ■■■■ ■ ■■ ■■■ ■ ■■■■■ ■■ ■■ ■■■■ ■■-■■■ ■■■■■■■■■ II ■■■■■■ C ■ a ■ , ,, ,,,,,., ,,,, ,, ,,,,.,, ,,, ,, .,,, ,,, , ,, ,,, ,,,,,, ,, , , ., , , , , , ,,, ,
DSSTART
DSEND
CL RSC REEN
CRTOUT
CHARIN
MOVECURSOR
PLACECURSOR

JP
JP
JP
JP
JP
JP
JP

XDSSTART
XDSEND
XCLRSCRE
XCRTOUT
XCHARIN
XMOVECURSOR
XPLACECURSOR

.. , ,,,, ,, ,,,,,, ,,,,,,,,,, ,,,,,,,, ,, ,,,, ,, ,,,,,,,,,, ,,,, ,,,,,

THIS TABLE DEFINES THE CONTROL CHARACTERS FOR THE SCREEN
AS WELL AS THE SCREEN FORMAT.

••••••••••••••••••••••••••••••••••• ■ ••••••••••••••••••••••

CURIGHT.DEFB
7777

◊0:CRIGHT'''''''''cuRS□R'RIGHT
777777777777

CUUP DEFB 00,CUP CURSOR UP
CUDOWN DEFB 00,CDOWN CURSOR DOWN
CUHOME DEFB 00,CHOME CURSOR HOME
CLEAR DEFB LEADIN,'T' CLEAR REST OF LINE
CLEARO DEFB LEADIN,'Y' CLEAR REST OF DISPLAY
#CHRLIN DEFB 40 CHARACTERS PR LINE
#LINES DEFB 24 LINES PR PAGE

··········· .. . ,,,,, ,,,,,,,,,.,,,,, ,,,,,,,,,,,,,,, ,,,,,,,,,,,,.,,,,.,., .,,, ., .,.,

PROCEDURE DSSTART

NO INPUT, NO OUTPUT

FUNCTION:

INITIALISATION PROCEDURE

INITIALISATION FOR THE CRT DRIVER.

USED AT START-UP TIME ONLY

....................... ··········
7 7 7 7 -, -, 7 7 7 7 7 , 7 7 7 7 7 1 7 7 7 7 7 7 7 7 7 7 7 , 7 7 7 7 7 7 7 7 7 7 7 7 7 7 , 7 7 7 'I 7 7 7 7 7 l 1 1 'J

XDSSTART: RET

.OPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

15D6

15D7
15D7
15DA
15DD

15EO

C9

21E015
110200
C3E215

1E1D

PAGE B-003

0109 ;
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119

PROCEDURE DSEND FINALISATION PROCEDURE

NO INPUT, NO OUTPUT

FUNCTION:
FINALIZATION FOR THE CRT DRIVER

USED IN CLOSING DOWN THE COMAL SYSTEM.

0120 ;
0121
0122 XDSEND: RET
0123
0124
0125
0126
0127 ;
0128
0129
0130
0131
0132
0133
0134
0135
0136

PROCEDURE CLRSCREEN CLEAR SCREEN

NO INPUT, NO OUTPUT

FUNCTION:
CLEARS THE DATA SCREEN AND PUTS THE CURSOR IN THE

UPPER LEFT HAND CORNER.

0137 ;
0138
0139
0140
0141
0142
0143

XCLRSCREEN:
LD
LD
JP

0144 CLRS90: DEFB
0145
0146
0147

HL,CLRS90
DE,2
XCRTOUT

CHOME,CLRDISP

WRITE CHOME, CLRDISP

• COPYRIGHT ,(C) 1981 METANIC ApS DENMARK

•

•

•

15E2
15E2
15E3
15E4
15E5
15E6
15E9
15EA
15EC
15ED
15EE
15EF
15F1
15F4
15F6
15F8
15F9
15FC
15FD
15FE
1600
1603
1604
1607
160A
160B
160C
160E
1611
1614
1615
1618

7A
B3
ca
AF
320D01
7E
CBBF
23
1B
D9
FE20
D20B17
FEOD
2023
47
3AOA01
5F
B7
2007
3AOC01
B7
C22817
2A0801
AF
57

·ED52
220801
320A01
78
CD3217
C3B816

0148
0149
0150
0151

PAGE B-004

•••• ■ •••
, ,,, , 1, 7 7 ,,, 7 l, 7 7 7 l 7 ,,- l l l 'l' 7'J7l771,111117 l, ,- 7l771,1 7, 7 l

PROCEDURE CRTOUT OUTPUT TO CRT

0152 INPUT: HL PTR TO A TEXT
0153 DE : THE NUMBER OF CHARACTERS IN THE TEXT
0154
0155 NO OUTPUT
0156
0157 FUN CT ION :
0158 THE TEXT IS OUTPUT AT THE CURRENT CURSOR POSITION
0159 ON THE CRT. THE CURSOR POSITION IS UPDATED. SCROLL
0160 IS IMPLEMENTED. THE CONTROL CHARACTERS
0161 RECOGNISED ARE MENTIONED IN THE CONSTANTS SECTION
0162 AT THE BEGINNING OF THIS FILE.
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199

MODIFIES AF, DE, HL, BC', DE', HL'

• •••••• ■ •• ■ ••
, , , , , , , , , , , , , , , ., 7 ,. , , , , ,

XCRTOUT:
CRT005: LD

OR
RET
XOR
LD
LD
RES
INC
DEC
EXX
CP
JP
CP
JR
LD
LD
LD
OR
JR
LD
OR
JP

CRTOlO: LD
XOR
LD
SBC
LD
LD
LD
CALL
JP

A,D
E
z
A
<LASTW1>,A
A, <HU
7,A
HL
DE

NC,CRT075
CR
NZ,CRT020
B,A
A, <CHARNO>
E,A
A
NZ,CRT010

; WHILE DE <> 0 DO

LASTW1 := FALSE
A := (HL> BITS 0-6

HL :+ 1
DE:- 1
(ALTERNATE BANK)
IF A <' ' THEN

IF A CR THEN

IF CHARNO O 0

A, <LASTWASPRINTABLE>;
A

OR NOT
LASTWASPRINTABLE

THEN NZ,CRT085
HL, <CURSOR)
A
D, A
HL,DE
(CURSOR),HL
(CHARNO>, A
A,B
CRT072
CRT051

CURSOR:- CHARNO

CHARNO := 0

NORMALWRITE <A>
GOTO CURSOR_DOWN

•□PYRIGHT <C> 1981 METANIC ApS DENMARK

PAGE B-005

1618 FE08 0200 CRT020: CP CLEFT ELIF A = CLEFT THEN
1610 2033 0201 JR NZ,CRT030 • 161F CD3217 0202 CALL CRT072 NORMALWR ITE <A)
1622 2A0801 0203 LD HL, (CURSOR) CURSOR:- 1
1625 2B 0204 DEC HL
1626 220801 0205 LD <CURSOR>,HL
1629 CB7C 0206 BIT 7,H IF CURSOR < 0
162B 2810 0207 JR Z,CRT025 THEN
162D 3AD315 0208 LD A, (#CHRLIN> CURSOR:=
1630 3D 0209 DEC A #CHRLIN-1
1631 6F 0210 LD L,A CHARNO :=
1632 2600 0211 LD H,O #CHRLIN-1
1634 220801 0212 LD (CURSOR),HL
1637 320A01 0213 LD (CHARND>, A
163A C32817 0214 JP CRT085
163D 3AOA01 0215 CRT025: LD A, (CHARND> ELSE
1640 C6FF 0216 ADD A,-1 CHARNO :- 1
1642 3808 0217 JR C,CRTD28 IF CHARNO < 0 • 1644 210B01 0218 LD HL, LINEN□ THEN
1647 35 0219 DEC <HU LINENO :-
1648 3AD315 0220 LD A, (#CHRLIN> CHARNO :=
164B 3D 0221 DEC A #CHRLIN-1
164C 320A01 0222 CRT028: LD (CHARNO>, A ENDIF
164F C32817 0223 JP CRT085 ENDIF

0224
1652 FEOC 0225 CRT030: CP CRIGHT ELIF A = CRIGHT THEN
1654 2038 0226 JR NZ,CRT040
1656 21C715 0227 LD HL,CURIGHT CONTROLWRITE<
1659 CD3D17 0228 CALL CONWRI CURIGHT>
165C 0229 CRT032: CURSOR RIGHT:
165C 2A0801 0230 LD HL, (CURSOR) CURSOR :+
165F 23 0231 INC HL
1660 220801 0232 LD CCURSOR),HL
1663 210A01 0233 LD HL,CHARNO CHARNO :+ 1
1666 34 0234 INC <HU
1667 3AD315 0235 LD A, (#CHRLIN> IF CHARNO=#CHRLIN
166A BE 0236 CP CHU
166B C22817 0237 JP NZ,CRT085 THEN
166E 3600 0238 LD (HU,O CHARNO == 0
1670 210B01 0239 LD HL, LINEN□ LINENO :+ 1
1673 34 0240 INC (HU
1674 3AD415 0241 LD A, (#LINES> IF LINEN□

• 1677 BE 0242 CP CHU #LINES
1678 C22817 0243 JP NZ,CRT085 THEN
167B 35 0244 DEC <HL> LINENO :-
167C 2A0801 0245 LD HL, (CURSOR> CURSOR :-
167F 3AD315 0246 LD A, (#CHRLIN> #CHRLIN
1682 5F 0247 LD E,A
1683 1600 0248 LD D,0
1685 A7 0249 AND A
1686 ED52 0250 SBC HL,DE
1688 220801 0251 LD <CURSOR),HL
168B C32817 0252 JP CRT085 ENDIF

0253 ENDIF
0254

168E FEOB 0255 CRT040: CP CUP ELIF A = CUP THEN
1690 2022 0256 JR NZ,CRT050
1692 21C915 0257 LD HL,CUUP CONTROLWRITE<
1695 CD3D17 0258 CALL CONWRI CUUP>

.COPYRIGHT CC) 1981 METANIC ApS DENMARK

PAGE B-006

1698 0259 CRT042: CURSDR_UP:
1698 3AOB01 0260 LO A, (LINEN□ > • 169B B7 0261 OR A IF LINEN□ 0
169C 2813 0262 JR Z,CRT045 THEN
169E 3D 0263 DEC A
169F 320B01 0264 LD (LINEN□ >, A LINEN□ - l
16A2 3AD315 0265 LO A, (#CHRLIN>
16A5 5F 0266 LD E,A
16A6 1600 0267 LD D,O
16A8 2A0801 0268 LD HL, (CURSOR> CURSOR :-
16AB A7 0269 AND A #CHRLIN
16AC ED52 0270 SBC HL,DE
16AE 220801 0271 LD (CURSOR),HL
16B1 C32817 0272 CRT045 JP CRT085 ENDIF

0273
16B4 FEOA 0274 CRT050: CP CDOWN ELIF A = CDOWN THEN
16B6 2021 0275 JR NZ,CRT060
16B8 3EOA 0276 CRT051 LD A,CDOWN CURSOR_DOWN: • 16BA CD3217 0277 CALL CRT072 NORMALWRITE(CDOWN)
16BD 3AOB01 0278 LD A, <LINEN□ >
16CO 3C 0279 INC A
16C1 21D415 0280 LD HL, #LINES IF LINEN□ <
16C4 BE 0281 CP (HU #LINES-1
16C5 2810 0282 JR Z,CRT055 THEN
16C7 320B01 0283 LD (LINEN□ >, A LINEN□ :+
16CA 2A0801 0284 LD HL, (CURSOR) CURSOR :+
16CD 3AD315 0285 LD A, (#CHRLIN> #CHRLIN
16D0 5F 0286 LD E,A
16D1 1600 0287 LD D,0
16D3 19 0288 ADD HL,DE
16D4 220801 0289 LD (CURSOR>,HL
16D7 184F 0290 CRT055: JR CRT085 ENDIF

0291
16D9 FE1E 0292 CRT060: CP CHOME ELIF A = CHDME THEN
16DB 2015 0293 JR NZ,CRT065
16DD 21CD15 0294 LD HL,CUHOME CONTROLWRITE(
16EO CD3D17 0295 CALL CONWRI CUHOME)
16E3 210000 0296 LD HL,O
16E6 220801 0297 LD (CURSOR>,HL CURSOR ·- 0
16E9 AF 0298 XOR A
16EA 320A01 0299 LD (CHARNO),A CHARND ·- 0
16ED 320B01 0300 LD (LINEN□ >, A LINEN□ ·- 0
16FO 1836 0301 JR CRTD85

.16F2
0302

FE1F 0303 CRT065: CP CLRLINE ELIF A= CLRLINE
16F4 2008 0304 JR NZ,CRT070 THEN
16F6 21CF15 0305 LD HL,CLEAR
16F9 CD3D17 0306 CALL CONWRI C□NTROLWRITE(
16FC 182A 0307 JR CRT085 CLEAR>

0308
16FE FElD 0309 CRT070: CP CLRDISP ELIF A = CLRDISP
1700 C22817 0310 JP NZ,CRT085 THEN
1703 210115 0311 LD HL,CLEARD
1706 CD3D17 0312 CALL CONWRI CONTROLWR ITE (
1709 1810 0313 JR CRT085 CLEARO>

0314 ELSE
0315 NOTHING
0316 ENDIF

-□PYRIGHT (C) 1981 METANIC ApS DENMARK

170B

•
170B
170D
170F
1712
1714
1717
171A
171B
171D
1720
1722
1725

1728

FEFF
280B
CD3217
3E01
320D01
C35C16
5F
0E02
CDCC17
3E01
320D01
C35C16

1728 3A0D01

•

172B 320C0 1
172E D9
172F C3E215

1732 E5
1733 D5
1734 SF
1735 0E06
1737 CDCC17

•

173A D1
173B El
173C C9

0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362

CRT075:

CP
JR
CALL
LD
LD
JP

CRT080 LD
LD
CALL
LD
LD
JP

CRT085:

0FFH
Z,CRT080
CRT072
A,1
<LASTW1>,A
CRT032
E,A
C,02
BODS
A, 1
<LASTW1>,A
CRT032

PAGE B-007

ELSE
IF AO 0FFH THEN

N0RMALWRITE <A>

LASTW1 :=TRUE
GOTO CURSOR RIGHT

ELSE -

BOOS. WRITE <A>
LASTW1 := TRUE

GOTO CURS0R_RIGHT
ENDIF

ENDIF

LD A, (LASTW1> , LASTWASPRINTABLE --

,

LD <LASTWASPRINTABLE>,A; LASTW1
EXX , <MAIN BANK>
JP CRT005 ; ENDWHILE

PROCEDURE NORMALWRITE

INPUT:

NO OUTPUT

FUNCTION:

A CHARACTER

OUTPUTS A ON THE CRT. ASSUMES THAT A IS A
PRINTABLE CHARACTER, CR, CURS0R_LEFT DR
CURS0R_DOWN <LINEFEED>

MODIFIES AF,BC,DE,HL

CRT072 PUSH HL
PUSH DE
LD E,A
LD C,6
CALL BDOS
POP DE
POP HL
RET

•□PYRIGHT (C) 1981 METANIC ApS DENMARK

•
173D
173D 7E
173E B7
173F C44417
1742 23
1743 7E • 1744 E5
1745 D5
1746 5F
1747 OEOE,
1749 CDCC17
174C D1
174D El
174E C9

174F

.174F 3E1B
1751 CD3217
1754 3E3D
1756 CD3217
1759 3AOB01
175C C620

175E CD3217
1761 3AOA01
1764 C620

1766 C33217

PAGE B-008

0363
0364 PROCEDURE CONTROLWRITE
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418

INPUT: HL POINTS OUT AN ENTRY IN THE TRANSLATION TABLE
THAT STARTS AT LABEL CURIGHT. THIS ENTRY CONSISTS
OF TWO BYTES. IF THE FIRST BYTE IS> 0, IT IS
WRITTEN OUT. THE SECOND BYTE IS ALWAYS WRITTEN
OUT.

NO OUTPUT

CONWRI:
LD A, (HU GET FIRST
OR A SET FLAGS
CALL NZ,CONW10 IF NOT ZERO
INC HL INC POINTER
LD A, (HU GET SECOND

CONWlO: PUSH HL SAVE HL
PUSH DE SAVE DE
LO E,A MAKE READY FDR CP/M
LO C,6
CALL BOOS CALL CP/M
POP DE RESTORE DE
POP HL RESTORE HL
RET RETURN

■ •••••••••• ■ •••• ■ •••• ,. ••••••••••••• ■ ■ ■ •••••••••••••••••••• ,,,,,,,,,.,,,,,,,,,,,,,,,,,,,,,, ,,,,,,.,,,,,,, ,, ,,,, ,,,,,,,,

PROCEDURE GDTOXY POSITION CURSOR

NO REGISTER INPUT OR OUTPUT

FUNCTION:
THE CURSOR IS POSITIONED AT THE X, Y COORDINATES

FOUND IN THE VARIABLES CHARNO AND LINEN□.

.. ·········· ,,,,,.,,,,,,,,,,,,,,,,,,,,, ,, ,,,,,,,, ,,,,,,,,,, ,,, ,,,, ,,,,,

GOTOXY:
LO A,ESC
CALL CRT072 NORMALWRITE(ESC>
LO A,'='
CALL CRT072 NORMALWRITE (' =')
LO A, (LINEN□ >
ADD A,32 OFFSET USED BY MANY TER-

NALS
CALL CRT072 NORMALWRITE<LINENO>
LO A, (CHARNO>
ADD A,32 OFFSET USED BY MANY TER-

JYIINALS
JP CRT072 NORMALWRITE(CHARNO)

•□PYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

1769
1769
176A
176B
176C
176E
1770
1773
1774
1776
1777
1778
1779

177A
177A
177B
177E
177F
1781
1782
1785
1786
1788

E5
D5
C5
OE06
lEFF
CDCC17
B7
CBBF
Cl
D1
El
C9

E5
3AOA01
5F
1600
19
3AD315
SF
1600
3AOB01

0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474

PAGE B-009

...
7 7 7 7 7 7 7 7 11 7 7 , 7 1' 1 7 7 7 7 7 7 7 7 7 7 7 7 1 'J 7 7 , , 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 7 7 7 7 J 7 7 7

PROCEDURE CHARIN

NO INPUT

OUTPUT: A: CHARACTER

FUNCTION:

INPUT CHARACTER

READS A CHARACTER FROM THE KEYBOARD.

MODIFIES AF

... ,,,,,,,,,,,,,,,,,,,,,,,,,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

XCHARIN:
PUSH
PUSH
PUSH

XCHAlO: LD
LD
CALL
OR
RES
POP
POP
POP
RET

HL
DE
BC
C,06
E,OFFH
BDOS
A
7,A
BC
DE
HL

•• ■ ••••••• ,,,,,,,,,,,,,,,,,,,,,,,,,,.,,,,,,,,,,,,.,,,,,,,,,.,,,,,,,,,,,,

PROCEDURE MOVECURSOR

INPUT: HL NUMBER OF CHARACTERS TO MOVE THE CURSOR
(SIGNED:+ FORWARDS, - BACKWARDS)

NO OUTPUT

FUNCTION:
MOVES THE CURSOR WITHOUT SCROLLING.

•••••••••••••••••••••••••••••••••••• ■ ••••••••••••••••••••• ,,,.,,,

XMOVECURSOR:
PUSH
LD
LD
LD
ADD
LD
LD
LD
LD

HL
A, (CHARNO>
E,A
D,O
HL,DE
A, (#CHRLIN>
E,A
D,O
A, (LINEN□)

CHARNO :+ HL

.COPYRIGHT (C) 1981 METANIC ApS DENMARK

PAGE B-010

178B A7 0475 M□VE10: AND A REPEAT
17BC 3C 0476 INC A LINEN□ :+ 1 • 17BD ED52 0477 SBC HL,DE CHARN□ :- BO
17BF F2BB17 0478 JP P,M□VE10 UNTIL CHARN□ ((I

1792 A7 0479 M□VE20: AND A REPEAT
1793 30 0480 DEC A LINEN□ :- 1
1794 ED5A 0481 ADC HL,DE CHARN□ :+ 80
1796 FA9217 0482 JP M,M□VE20 UNTIL CHARNO > = (I

1799 320801 0483 LO <LINEN□ >, A
179C 70 0484 LD A,L
1790 320A01 0485 LD (CHARN□ >, A
17AO 01 0486 POP DE
17A1 2AOB01 0487 LD HL, (CURSOR> CURSOR :+ HL
17A4 19 0488 ADD HL,DE
17A5 220801 0489 LD <CURSOR),HL
17AB C34F17 0490 JP G□T□XY OUTCURSOR

0491
0492 .. , .,. , 7 , • 0493
0494 PROCEDURE PLACECURSOR
0495
0496 INPUT : A x-c□□RDINATE
0497 B v-c□□RDINATE
0498
0499 NO OUTPUT
0500
0501 FUNCTION:
0502 THE CURSOR IS MOVED TO THE INDICATED POSITION AND
0503 THE 'LASTWASPRINTABLE' FLAG IS RESET.
0504
0505 .. ,,,,.,,,,,,,,,,,,,,,,,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0506

17AB 0507 XPLACECURSOR:
17AB 320A01 0508 LO (CHARNO),A ; CHARN□ := A
17AE 6F 0509 LO L,A
17AF 2600 0510 LO H, 0
17B1 78 0511 LO A,B
17B2 320B01 0512 LD <LINENO>, A LINEN□ := B
17B5 3AD315 0513 LD A, (#CHRLIN> CURSOR := CHARNO +
17B8 5F 0514 LD E,A LINENO*#CHRLIN
17B9 1600 0515 LD D,O
17BB 78 0516 LD A,B

• 17BC B7 0517 OR A
17BD 2803 0518 JR Z,PLAC10
17BF 19 0519 PLAC05: ADD HL,DE
17CO 10FD 0520 DJNZ PLAC05
17C2 0521 PLAC10
17C2 220801 0522 LD (CURSOR),HL
17C5 AF 0523 XOR A LASTWASPRINTABLE ==
17C6 320C01 0524 LD (LASTWASPRINTABLE>,A; FALSE
17C9 C34F17 0525 JP GOTOXY ; OUT CURSOR

0526

•□PVRIGHT (C) 1981 METANIC ApS DENMARK

PAGE B-011

0527 •• ■ •••••••••••••••••••••••••••••••••••• ■ •••••••••••••
, , ,,,, 7 ,,,, ,,,,,,, ,, ,, , ,,,,,,, ,,, , , ,,, , , ,,, , , , , , , ,, , ,

0528 • 0529 PROCEDURE BOOS
0530
0531 STORES ALTERNATIVE REGISTER SET, IX AND IY
0532 THE NECESSARY MAIN REGISTERS ARE STORED INSIDE
0533 COMAL-80
0534
0535 ... 77777 77,7777777777777 777 77'J77'J777 7717?, 77 77177-, 71?"} 7 l

17CC D9 0536 BOOS: EXX
17CD E5 0537 PUSH HL
17CE D5 0538 PUSH DE
17CF C5 0539 PUSH BC
17D0 DDE5 0540 PUSH IX
17D2 FDE5 0541 PUSH IV
17D4 D9 0542 EXX
17D5 CD0500 0543 CALL XBDOS
17D8 D9 0544 EXX • 17D9 FDE1 0545 POP IY
17DB DDEl 0546 POP IX
170D Cl 0547 POP BC
17DE D1 0548 POP DE
17DF El 0549 POP HL
17EO D9 0550 EXX
17E1 C9 0551 RET

0552
17E2 0553 DEFS 100 SPACE FOR YOUR OWN

0554 DRIVER.
0555 USE THIS AREA FROM T-HE
0556 LOWEST ADRESS UP.
0557 PATCHES WILL, IF
0558 NESSESARY, USE THIS
0559 AREA FROM THE TOP. DOWN.

1846 00 0560 DEFB 0 BYTE SO THE ASSEMBLER
0561 WORKS PROPERLY •

•

• COPYRIGHT <C> 1981 METANIC ApS DENMARK

•

•

•

APPENDIX C
LIST OF ERROR MESSAGES

ERROR

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

17
18

19
20
21
22
23
24
25
26

27

28
29
30
31
32
33
34
35
36
37
38
39
40
41

TEXT

No more storage
Syntax error
Overflow
No$/# here
For strings only
Error in command
No more new names
String not terminated
Illegal character
Illegal character
Illegal line number
Line too long
Variable expected
.. >.. expected
Type conflict
Expression too
complicated
.. (' expected
Type conflict in
parameter
Has no parameters
Wrong type
',' expected
TAB not allowed here
Operand expected
Constant expected
., : ' expected
Function not allowed
here
Illegal use of
:=/:+/:-/=
:=/:+/:- expected
., ;" not allowed here
., FILE" expected
End-of-line here?
Unknown device
A name expected
See manual
'OF' expected
Not a string function
Line number expected
GOTO/GOSUB expected
Illegal after 'THEN"
See tt,anual
Array not allowed

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

PAGE C-001

•

•

•

42
43

44
45
46
47
48

4'3
50

51
52
53

54
55
56

TO/DOWNTO expected
READ/WRITE/RANDOM
expected
Fro,Y1 > = To
End-of-line expected
Statement expected
CoiYtMand expected
Error in progratY,
structure
Type conflict
Error in prograffl
structure
Multiply defined
Function name expected
Na.Me conflict with
PROC/DEF
FOR-NEXT nesting depth
Unknown line number
RESTORE: to a data-
state,Y1ent only

57 Control structure not
closed

58 Control structure not
closed

59 Control structure not
closed

60 Control structure not
closed

61 Control structure not
closed

62 Control structure not
closed

63 Control structure not
closed

64 Unknown PROC/DEF/LABEL
65

66
67
58
69
70
71
72
73

74

Program structure too
co,Ytpl icated
,OUTPUT' expected
Index error
Illegal record number
No substrings here
Too few indices
Too many indices
Out of data
Error in assignment
to substring
For arrays only

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

PAGE C-002

•

•

•

75 Error in the USING-

76
77
78
79

80
81
82
83
84
85
86
87

88
89
90
91

92
93
94
95
96
97
98
99

100
101

102
103
104
105
106
107

108
109

110

111
112

string
Illegal TAB-value
Variable already exists
Cannot return
Name conflict with
PROC/DEF
CASE-value not existing
STEP= 0
SYSTEM ERROR
SYSTEM ERROR
Out of domain
Too long
OVERFLOW
Undefined variable
or function value
Too long
Not now
Index error
Type conflict in
parameter
Too many parameters
Too few parameters
Division by 0
SYSTEM ERROR
Type conflict
Line too long
Not now
Error in NEXT
7 1 7 not allowed here
No line has such a
number
Impossible
Impossible
Itt1possible
Auto overflow

Saved under an incom
patible COMAL-version
Arrays must carry REF
The paratt1eter must be
a variable
The parameter has a
wrong dimension
EXIT without LOOP
Control structure not
closed

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

PAGE C-003

•

•

•

113 The channel is already

114
115
116
117
118
119
120
121
122

123
124
125
126
127
128

129
130
131

open
The channel is not open
Illegal channel number
Unknown i/o device
Unknown i/o device
Error in filename
Error in filetype
Error in version number
No filetype stated
Filetype not allowed
here
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
Cannot write
Cannot read
Already open in
another Mode
File in use
SYSTEM ERROR
Cannot open more
disk files

132 Non-existing file
133 Version nuMber not

al 1 owed here
134 SYSTEM ERROR
135 SYSTEM ERROR
136 Impossible as a file

is open
137 SYSTEM ERROR
138 Simple i/o device
139 SYSTEM ERROR
140 SYSTEM ERROR
141 SYSTEM ERROR
142
143
144
145
146
147
148
149
150

151

File catalog full
Disk or file full
SYSTEM ERROR
Illegal use of the file
"End-of-file"
SYSTEM ERROR
SYSTEM ERROR
Wrong block length
Control structure not
closed
The channel is already
open

152 The channel is not open

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

PAGE C-004

•

•

•

153
154
155
156
157
158
159
160

161
162
163
164
165
166

167
168
169

170
171

172
173
174

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

Illegal channel number
Unknown i/o device
Unknown i/o device
Error in filename
Error in filetype
Error in version number
No filetype stated
Filetype not allowed
here
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
Cannot write
Cannot read
Already open in
another mode
File in use
SYSTEM ERROR
Cannot open more
disk files
Non-existing file
Version number not
all owed here
SYSTEM ERROR
SYSTEM ERROR
Impossible as a file
is open
SYSTEM ERROR
Simple i/o.device
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
File catalog full
Disk or file full
SYSTEM ERROR
Illegal use of the file
"End-of-file"
SYSTEM ERROR
SYSTEM ERROR
Wrong block length
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

PAGE C-005

196 • 1'37
1'38
199
200

201

202
203
204
205
206
207
208 • 209
210

211
212
213
214
215
216

217
218
219

220
221

222
223
224

• 225
226
227 -228
22'3
230
231
232
234
235
236
237

SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
Control structure not
closed
The channel is already
open
The channel is not open
Illegal channel number
Unknown i/o device
Unknown i/o device
Error in filename
Error in filetype
Error in version number
No filetype stated
Filetype not allowed
here
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
Cannot write
Cannot read
Already open in
another mode
File in use
SYSTEM ERROR
Cannot open sY,ore
disk files
Non-existing file
Version number not
al lowed here
SYSTEM ERROR
SYSTEM ERROR
Impossible as a file
is open
SYSTEM ERROR
Simple i/o device
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
File catalog full
Disk or file full
SYSTEM ERROR
Illegal use of the file
"End-of-file"
SYSTEM ERROR
SYSTEM ERROR

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

PAGE C-006

238
• 239

240
241
242
243
244
245
246
247
248
249
250
251
252

• 253
254
255
256
257
258
259
260
261
262
263 ~
264

265
266

~

267
268
269
270
271
272

.273
274
275
276
277
278
279
280
281
282
283
284

Wrong block length
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
Record exceeded
Illegal record length
This is not a RANDOM file
Wrong record length
Existing file
IMpossible
Version nuMber not
allowed here
Error in filename
Different i/o devices specified
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR
SYSTEM ERROR

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

PAGE C-007

PAGE C-OO8

285 SYSTEM ERROR • 286 SYSTEM ERROR
287 SYSTEM ERROR
288 SYSTEM ERROR
289 SYSTEM ERROR
29(1 SYSTEM ERROR
291 SYSTEM ERROR
2'32 SYSTEM ERROR
293 SYSTEM ERROR

•

•

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

•

•

•

APPENDIX D

DEMONSTRATION PROGRAMS

0010 // PRIME FACTORING PROGRAM
0020 II
0030 // ASK FOR A NUMBER AND TEST IT
0040 //
0050 LOOP

PAGE D-001

0060 INPUT "INPUT POSITIVE INTEGER TO BE FACTORED: ": NUMBER
0070 IF NUMBER)O AND FRAC(NUMBER)=O THEN EXIT //TEST FOR POSITIVE
0080 // INTEGER
0090 PRINT "I ASKED FOR A POSITIVE INTEGER!"
01C>O ENDLOOP
0110 PRINT "THE PRIME FACTORS ARE: "
0120 II
0130 // PRIME 2 AND 3 MUST BE TREATED SEPARATELY
0140 //
0150 DIVISOR:=2
0160 EXEC TEST
0170 DIVISOR:=3
0180 EXEC TEST
0190 //
0200 //ALL PRIMES CAN BE EXPRESSED AS
0210 //N*6+5 AND N*6+7
0220 //
0230 FOR N:=O TO SQR(NUMBER)/6 DO
0240 DIVISOR:=6*N+5
0250 EXEC TEST
0260 DIVISOR:=6*N+7
0270 EXEC TEST
0280 NEXT N
0290 IF NUMBER<>l THEN PRINT NUMBER
0300 //
0310 PROC TEST
0320 WHILE NUMBER MOD DIVISOR=O DO
0330 PRINT DIVISOR;
0340 NUMBER:=NUMBER DIV DIVISOR
0350 ENDWHILE
0360 ENDPROC TEST

• COPYRIGHT 1981 METANIC ApS DENMARK

•

•

•

•

0010 II CHARACTER SORT PROGRAM
0020 DIM STRING$ OF 2000
0030 DIM CHARACTER$ OF 1
0040 DIM COUNTER (ORD ("A"> : ORD ("Z" > >
0050 SPECIAL_CHARACTERS:=O
0060 SPACES:=O
0070 TRAP ESC- II TAKE CARE. SAVE THE PROGRAM
0080 II
0090 PRINT "INPUT A STRING: ",
0100 LOOP

PAGE D-002

0110 EXEC GET_CHARACTERCCHARACTER$) II GET CHARACTERS ONE BY ONE
0120 IF CHARACTER$= 1111 27" 11 THEN EXIT
0130 PRINT CHARACTER$,
0140 STRING$:+CHARACTER$ II CONCATENATE CHARACTERS
0150 ENDLODP II "ESC 11 TERMINATES INPUT
0160 PRINT
0170 II
0180 FOR I:=1 TO LEN(STRING$) DO
0190 CHARACTER$:=STRING$<I>
0200 IF CHARACTER$=" "THEN SPACES:+1 II TEST FOR SPACE
0210 IF CHARACTER$)="A" AND CHARACTER$(= 11 Z11 THEN// LETTER?
0220 COUNTER(ORD(CHARACTER$)):+1 II COUNT LETTER
0230 ELSE
0240 SPECIAL_CHARACTERS:+1 II COUNT OTHER CHARACTERS
0250 ENDIF
0260 NEXT I II GET NEXT CHARACTER
0270 II SET UP THE PRINT OUT FORMAT
0280 FOR J:=ORD(11 A11

) TO ORD("Z") DO// PRINT THE LETTERS
0290 PRINT " 11

, CHR$ (J),
0300 NEXT J
0310 PRINT II EMPTY LINE
0320 FOR K:=ORD("A 11 > TO ORD("Z") DO II PRINT THE COUNT
0330 PRINT USING"##": COUNTERCK),
0340 NEXT K
0350 PRINT
03GO PRINT
0370 PRINT "NUMBER OF CHARACTERS: ",LEN<STRING$)
0380 PRINT
0390 PRINT "NUMBER OF SPECIAL CHARACTERS INCLUDING SPACES: 11

,

0400 PRINT SPECIAL_CHARACTERS
0410 PRINT
0420 PRINT "NUMBER OF SP.ECIAL CHARACTERS EXCLUDING SPACES: 11

0430 PRINT SPECIAL_CHARACTERS-SPACES
0440 PROC GET_CHARACTER<REF A$) II LIBRARY PROCEDURE
0450 POKE 256, 255
0460 REPEAT
0470 IF ESC THEN POKE 256, 27
0480 UNTIL PEEK(256) ()255
0490 A$:=CHR$CPEEK(256))
0500 ENDPROC GET_CHARACTER

COPYRIGHT 1981 METANIC ApS DENMARK

PAGE D-003
0010 II CHANGING BASES
0020 II THIS PROGRAM WILL CHANGE A POSITIVE INTEGER BASE 10

•
0030 II TO ANY NEW BASE.BETWEEN 2 AND 16
0040 DIM VALUE$(0:15) OF 1
0050 DIM DIGITC20>
0060 FOR I:=O TO 15 DO
0070 II
0080 II SET UP THE CHARACTER SET USED FOR OUTPUT
0090 II
0100 READ VALUE$(!)
0110 NEXT I
0120 DATA "0", "1 ", 11 2", "3", "4", "5", 11 6 11

, "7"
0130 DATA 11 8 11

, "9", "A", "B", "C", "D", "E 11
,

11 F"
0140 II
0150 II GET THE NEW BASE AND TEST IT
0160 II

•
0170 REPEAT
0180 INPUT "NEW BASE: ": NEW_BASE
0190 UNTIL 2(=NEW_BASE AND NEW_BASE<=16 AND FRAC(NEW_BASE>=O
0200 II
0210 II GET THE NUMBER TO CONVERT
0220 II
0230 REPEAT
0240 INPUT "POSITIVE INTEGER TO BE CONVERTED: ": VALUE
0250 V:=VALUE
0260 UNTIL FRAC<VALUE>=O AND VALUE)O
0270 II
0280 II CONVERT
0290 II
0300 I:=1
0310 REPEAT
0320 DIGIT<I>:=VALUE MOD NEW_BASE; VALUE:=VALUE DIV NEW_BASE
0330 I:+1
0340 UNTIL VALUE=O
0350 NO_DIGITS:=I-1
0360 II
0370 II PRINT THE RESULT

• 0380 II
0390 PRINT VALUE," BASE 10 CONVERTS IN BASE 11 ,NEW_BASE, 11 TO: 11

0400 FOR I:=NO_DIGITS DOWNTO 1 DO
0410 PRINT VALUE$(DIGIT(I))," 11

0420 NEXT I

• COPYRIGHT 1981 METANIC ApS DENMARK

•

•

•

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450

PAGE D-004
II LISSAJOUS PATTERNS
II
II CONSTANTS DEFINING THE SCREEN.
II HALVE THE VALUES FOR 40-CHARACTER SCREENS.
II ADJUST 'SCALE' TO YOUR SCREEN SO THAT INPUTS 1, 1 AND 0.5
II PRODUCE A PERFECT CIRCLE.
II
SCALE:=27
CHARACTERS:=80 II NUMBER OF CHARACTERS ACROSS THE SCREEN
LINES:=24 II NUMBER OF LINES ON THE SCREEN
II
ADJUST:=INT((CHARACTERS-2*SCALE-1)12)
IF ADJUST<O THEN STOP
X_LIMIT:=(LINES-2)12
II
DIM LINE$ OF CHARACTERS
PI:=3.14159
CLEAR
II
REPEAT

INPUT "RELATIVE FREQ. FOR X: ": X_REL_FREQ II TRY 4
UNTIL FRAC(X_REL_FREQ)=O AND X_REL_FREQ)=l
NO_STEPS:=X_REL_FREQ; X_REL_FREQ:=2*PI*X_REL_FREQ
II
REPEAT

INPUT "RELATIVE FREQ. FOR Y: ": Y_REL_FREQ II TRY 3
UNTIL FRAC(Y_REL_FREQ)=O AND Y_REL_FREQ)=l
Y_REL_FREQ:=2*PI*Y_REL_FREQ
II
INPUT "Y PHASE, MULTIPLE OF PI: ": Y_PHASE // TRY 0
Y_PHASE:=PI*Y_PHASE
II
CLEAR
FOR X_STEP:=X_LIMIT DOWNTO -X_LIMIT DO

LINE$:=SPC$(CHARACTERS)
X:=FN_ARCSIN<X_STEPIX_LIMIT>
FOR I:=O TO NO_STEPS-1 DO

LINE$(FN_SCALED<X,I)):="*"
LINE$(FN_SCALED<PI-X,I)):="*"

NEXT I
PRINT LINE$

NEXT X_STEP
CURSOR 1, LINES-1
END
II

• COPYRIGHT 1981 METANIC ApS DENMARK

•

•

•

0460 DEF FN ARCSIN<X>
0470 IF ABS(X) (0.1 THEN
0480 FN_ARCSIN:=X+XA3/6+XA5*0.075+XA7/22.4
0490 ELSE
0500 FN ARCSIN:=2*FN ARCSIN(X/(SQR(1+X)+SQR(1-X>>>
0510 ENDIF -
0520 ENDDEF FN_~RCSIN
0530 //
0540 DEF FN_COMPUTE(T, I>
0550 GLOBAL PI, X_REL_FREQ, Y_REL_FREQ, Y_PHASE
0560 TT:=(T+2*I*Pl)/X REL FREQ
0570 FN COMPUTE:=SIN<V REL FREQ*TT+Y PHASE>
0580 ENDDEF FN COMPUTE - - -
0590 // -
0600 DEF FN_SCALED<T, I)
0610 GLOBAL SCALE, ADJUST

PAGE D-005

0620 FN_SCALED:=1+ADJUST+ROUND(SCALE*(FN_COMPUTE(T,1>+1>>
0630 ENDDEF FN_SCALED

• COPYRIGHT 1981 METANIC ApS DENMARK

•

•

•

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0350
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510

II WRITTEN october -81
II by H.C. Grosblll-Poulseri, Gl.Rye, Denmark
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

DESCRIPTION of the procedure 'EDITLINE'
The procedure is closed, qualifying it for
immediate inclusion in the User's library.
PURPOSE: to edit a text variable written on
the screen. The procedure is effectively
a l i ne ed it o r.
PARAMETERS: ORG_X# and ORG_Y# are integers
(valueparameter) describing the coordinates
of the position where the text variable
originally was written.
REF LINE$ is the text variable. It is a variable-
parameter, so that the editing is refered back
to the calling variable.
REF KEYBOARD# is an integer, whose sole purpose
is to refer back the last input from the
keyboard for further processing in the calling
program. Value by entrance is of no significance.

Example:
CURSOR 20, 15
PRINT TEXT$(!);
EXEC EDITLINE(20,15,TEXT$(I),A#)

PAGE D-006

ll---
1/
PROC EDITLINE(ORG_X#, ORG_Y#, REF LINE$, REF KEYBOARD#) CLOSED

DIM CODE$ OF 15, HELP$ OF 80 II NB: The length may yary
X#:=1; RETURNBACK:=FALSE
EXEC INDATAINIT
CURSOR ORG_X#, ORG_Y#
REPEAT

EXEC INDATA(KEYBOARD#,MACHINECODE>
CASE KEYBOARD# OF
WHEN 13, 11, 10 I I

RETURNBACK:=TRUE
WHEN 8

EXEC CURSORLEFT
WHEN 12

EXEC CURSORRIGHT
WHEN 127

EXEC DELETEBYTE
WHEN 31

EXEC INSERTBLANK
OTHERWISE

EXEC WRITEBYTE
ENDCASE

UNTIL RETURNBACK
ENDPROC EDITLINE

refer to ASCII-table

• COPYRIGHT 1981 METANIC ApS DENMARK

•

•

•

•

0520 //
0530 //
0540 PROC CURSORLEFT // if possible, move cursor left
0550 IF X#)1 THEN
0560 X#:-1
0570 CURSOR ORG_X#+X#-1, ORG_Y#
0580 ENDIF
0590 ENDPROC CURSORLEFT
0600 //
0610 //
0620 PROC CURSORRIGHT // if possible, move right
0630 IF X#-1<LEN<LINE$) THEN
0640 X#:+1
0650 CURSOR ORG_X#+X#-1, ORG_Y#
0660 ENDIF
0670 ENDPROC CURSORRIGHT
0680 //
0690 //
0700 PROC INSERTBLANK // test for extreme positioning
0710 IF LEN<LINE$))X#-1 THEN// of the cursor
0720 HELP$:=LINE$(X#:LEN<LINE$))
0730 ELSE
0740 HELP$:=""
0750 ENDIF
0760 IF X#)1 THEN
0770 LINE$:=LINE$(1,X#-1)
0780 ELSE
0790 LINE$:= 1111

0800 ENDIF
0810 LINE$:+" "+HELP$
0820 EXEC REWRITELINE
0830 ENDPROC INSERTBLANK
0840 //
0850 //
0860 PROC LINETEST // test for extreme positioning
0870 IF LEN(LINE$))X# THEN// of the cursor
0880 HELP$:=LINE$(X#+1:LEN<LINE$))
0890 ELSE
0900 HELP$:=""
0910 ENDIF
0920 IF X#)1 THEN
0930 LINE$:=LINE$(1,X#-1)
0940 ELSE
0950 LINE$:=""
0960 ENDIF
0970 ENDPROC LINETEST
0980 //
0990 //

COPYRIGHT 1981 METANIC ApS DENMARK

PAGE D-007

•

•

•

•

PAGE D-008
1000 PROC DELETEBYTE
1010 EXEC LINETEST
1020 LINE$:+HELP$
1030 EXEC REWRITELINE
1040 ENDPROC DELETEBYTE
1050 //
1060 //
1070 PROC WRITEBYTE
1080 EXEC LINETEST
1090 LINE$:+CHR$CKEYBOARD#>+HELP$
1100 EXEC REWRITELINE
1110 EXEC CURSORRIGHT
1120 ENDPROC WRITEBYTE
1130 //
1140 //
1150 PROC REWRITELINE // used after writing, deletion
1160 CURSOR ORG_X#, ORG_Y# // or insertion of a
1170 PRINT LINE$+" "; // character
1180 CURSOR ORG_X#+X#-1, ORG_Y#
1190 ENDPROC REWRITELINE
1200 //
1210 //
1220 PROC INDATAINIT // place machine code in the space
1230 MACHINECODE:=VARPTR(CODE$); B:=MACHINECODE // allocated
1240 POKE B, 30 // LD E,255 for in CODE$
1250 POKE B+1, 255
1260 POKE B+2, 14 // LD C,6 refer to 280 and·
1270 POKE B+3, 6
1280 POKE B+4, 205 // CALL BDOS CP/M manuals
1290 POKE B+5, 5
1300 POKE B+6, 0
1310 POKE B+7, 183 //ORA
1320 POKE B+8, 202 // JP NZ,B
1330 POKE B+9, B MOD 256
1340 POKE B+10, B DIV 256
1350 POKE B+11, 50 // LD (KEYBOARD#),A // making the value
1360 POKE B+12, VARPTR(KEYBOARD#) MOD 256 // accessible to
1370 POKE B+13, VARPTRCKEYBOARD#) DIV 256 // COMAL-BO
1380 POKE B+14, 210 // RET
1390 ENDPROC INDATAINIT
1400 //
1410 //
1420 PROC INDATA<REF KEYBOARD#, MACHINECODE) // get an
1430 CALL MACHINECODE // unechoed input from console
1440 ENDPROC INDATA

COPYRIGHT 1981 METANIC ApS DENMARK

•

•

•

•

APPENDIX E
LIBRARY ROUTINES

9933 // PROCEDURE TO GET KEYBOARD INPUT WITHOUT ECHO TO
9934 // THE SCREEN.
9935 // THE 'ESC' KEY WORKS IN THE NORMAL WAY
9936 PROC GET_CHARACTER<REF A$)
9937 POKE 256,255
9938 REPEAT
9939 UNTIL PEEK<256) ()255
9940 A$:=CHR$CPEEK(256))
9941 ENDPROC GET_CHARACTER
9942 //
9943 // PROCEDURE TO GET KEYBOARD INPUT WITHOUT ECHO TO
9944 // THE SCREEN.

PAGE E-001

9945 // THE 'ESC' KEY IS TREATED LIKE ANY OTHER CHARACTER •
9946 // THE 'TRAP ESC-' STATEMENT MUST BE EXECUTED BEFORE
9947 // THIS PROCEDURE IS CALLED.
9948 PROCEDURE GET_CHR_ESC<REF A$)
9949 POKE 256,255
9950 REPEAT
9951 IF ESC THEN POKE 256,27
9952 UNTIL PEEK(256) <>255
9953 A$:=CHR$(PEEK(256))
9954 ENDPROC GET_CHR_ESC
9955 //
9956 // PROCEDURE TO SET PRINTED LINE WIDTH IN NUMBER OF
9957 // CHARACTERS. WORKS FOR DEVICE 'LP:' OR 'LPO:' ONLY.
9958 // THE POKE CAN ALSO BE DONE IN COMMAND MODE.
9959 / / VALID FOR COMAL-80 VERSION 1. 8 ONLY
9960 PROC WIDTH
9961 POKE 1379,N // N := NUMBER OF CHARACTERS
9962 ENDPROC WIDTH
9963 //
9964 // PROCEDURE TO SET PAGE LENGTH IN NUMBER OF LINES.
9965 // WORKS FOR DEVICE 'LP:' OR 'LPO:' ONLY.
9966 // THE POKE CAN ALSO BE DONE IN COMMAND MODE •
9967 // VALID FOR COMAL-BO VERSION 1.8 ONLY.
9968 PROC LENGTH
9969 POKE 1378,K // K:= NUMBER OF LINES
9970 ENDPROC LENGTH

COPYRIGHT CC) 1981 METANIC ApS DENMARK

PAGE E-002

9971 II • 9972 II USER DEFINED FUNCTION TO DETERMINE FREE USER SPACE
9973 II THE RETURNED VALUE IS A LITTLE LESS THAN THE ACTUAL
9974 II AVAILABLE SPACE.
9975 II BASED ON THE 'DIM' STATEMENT GIVING A NON FATAL
9976 II ERROR IN THE 'OUT OF STORAGE' SITUATION.
9977 II CALLED AS A NORMAL VARIABLE. EXAMPLE:
9978 II 100 PRINT FN_FREE_SPACE
9979 II
9980 DEF FN_FREE_SPACE
9981 MIN:=1; MAX:=32768; OK:=O
9982 REPEAT
9983 MIDDLE:=<MIN+MAX) DIV 2
9984 EXEC TRY<MIDDLE,OK)
9985 IF OK THEN • 9986 MIN:=MIDDLE
9987 ELSE
9988 MAX:=MIDDLE-1
9989 ENDIF
9990 UNTIL MIN>=MAX-1
9991 FN_FREE_SPACE~=MIN
9992 ENDDEF FN_FREE_SPACE
9993 PROC TRY(AMOUNT, REF OK> CLOSED
9994 TRAP ERR-
9995 DIM A$ OF AMOUNT
9996 TRAP ERR+
9997 OK:=(ERR=C>)
9998 ENDPROC TRY
9999 II

•

• COPYRIGHT (C) 1981 METANIC ApS DENMARK

APPENDIX F PAGE F-001

ASCII CHARACTER CODES • ASCII ASCII ASCII
Code CHARACTER Code CHARACTER Code CHARACTER

000 NUL 043 + 086 V
001 SOH 044 087 w
002 STX 045 088 X
003 ETX 046 089 y
004 EOT 047 I 090 z
005 ENQ 048 0 091 [

006 ACK 049 1 092 \
007 BEL 050 2 093 J
008 BS 051 3 094
009 HT 052 4 095 • 010 LF 053 5 096
011 VT 054 6 097 a
012 FF 055 7 098 b
013 CR 056 8 099 C

014 so 057 9 100 d
015 SI 058 101 e
016 DLE 059 ; 102 f
017 DC1 060 (103 g
018 DC2 061 = 104 h
019 DC3 062 105 i
020 DC4 063 ? 106 j

021 NAK 064 @ 107 k
022 SYN 065 A 108 1
023 ETB 066 B 109 IYI

024 CAN 067 C 110 Yl

025 EM 068 D 111 0

026 SUB 069 E 112 p
027 ESC 070 F 113 q
028 FS 071 G 114 r
029 GS 072 H 115 s

• 030 RS 073 I 116 t
031 vs 074 J 117 u
032 SPACE 075 K 118 V

033 076 L 119 w
034 077 M 120 X

035 • 078 N 121 y
036 $ 079 0 122 z
037 " 080 p 123 {

038 & 081 Q 124 I
039 082 R 125 }

040 (083 s 126
041) 084 T 127 DEL
042 * 085 u

• ASCII codes are in decimal
LF=LiYle Feed., FF=Form Feed., CR=Carriage Return, DEL=Rubout

•

•

•

•

USER,S COMMENTS - ERROR REPORT COMAL-SO MANUAL

In our continuous efforts to improve this manual, METANIC ApS ask
you, the user, to use this report to send us any correction,
comment, suggestion, or addition that you may have for this manual.

The format of the COMAL-SO manual is designed for easy updating,
and your report may well be included in the next update. Forwarded
information becomes the property of METANIC ApS.

Please specify page and line references where applicable.

Manual Edition:

Errors:

Comments:

Name: Date:
Address:

-------------------------· -------------------------------
Country:

FORWARD TO: METANIC APS, KONGEVEJEN 177, DK-2830 VIRUM, DENMARK

•

•

•

•

METANIC COMAL-80
SYNTAX DIAGRAMS & EXAMPLES

OamaL•■a
EIP

-~~to~

METANIC COMAL-BO

Acknowledgements:

METANIC hereby wishes to thank all the persons

involved in specifying and testing of COMAL-BO .

This booklet contains the total syntax diagrams

for MET ANIC COMAL-BO, Version 1.

Minor differences may occur in the implementation

onto specific microcomputers. Please consult

your manual for changes.

The information furnished by METANIC in this

publication is believed to be accurate and

reliable. However, no responsibility is assumed

by MET ANIC for its use.

•

•

•

•

•

•

•

•

Line:

METANIC COMAL-80

SYNTAX DIAGRAMS

VERSION 1.

REt.'17

@7
-+-line No. statement-■--■-~(D---.-comment---+-

Statement:

~READ--__..t·1 . bl I ' I e t cna:J
G)

r,~a~~~7
~RESTORE~-----------+-

-+OATArsigned constant I
---G) •---

~WRITE --~file--c varia'.:J
G)

1

MET ANIC COMAL -80

TAB--c~

o G
* ** o_ *** \.:::,) r LET--..... variable------ expression

G t l G
--------()..,_ ____ _

0

* @
~MAT~l variable-C@=:J-expressionr

----------()·•-------
0

!....sELECT--+-OUTPUT--+string expression----+-

~INPUT---.-.file----1 ... varia~

G)

**

variabRe
string constant Q-[Q•

. G) G)•

In connection with strings :- may not be used,
whereas :+ may be used.

Variable and expression in one assignment must be
of the same type. The only exception is:

real variable:= integer expression

2

•

•

•

•

METANIC COMAL-80

• ~CJ-,
:!:__.PRINT--t ... file --'-----..---------....-

string 0 CG)::L
USING-. expression _ ___,. : expres~n lo

•
~-----+-expression-------~--.

T AB-(D-numerical expression-+-Q)J G)
Q

REF __.variable name----,.._ __

REF -variable name-CD rG)J ' Q)

• -----------G) ----
. L/f\ variable

-DEF-function name ,J; lg~me -1 • Q)

..__.ENDPROC-------~name---.....,._ • ..__.ENDDEF---------.function name---..

3

MET ANIC COMAL-80

Q1

- numerical expression

--+DIM__.,. variable (D numerical __._......,..I)' name -c::res ... s-io_n __ w7
G)

for strings only

if string variable

~----.., numerical expression

r:~riable7
~EXEC-+name,--.-1~• WCQ~ion I' Q)-

--+GLOBAL--__,..f __ ..,.. variable name-----~

...... _ ----~G) ---

~GOSUB-------•line No.----~

~RETURN--------------....

--+LABEL--------•label----~

~STOP---------------~

4

•

•

•

•

MET ANIC COMAL-80

r---1abel7
• ~GOTO__l__.line No ____ _________ ..

o . numerical .
_,.ON--+-expression-rGOTO-rf hn:_No.l

l.....Gosus-J ~~

~END-----------------~

• ~IF numerical EN
_ __,..expression--, ... ,TH f L •

statemeni~

** Only statements marked O may be used here.

-.EUF-■-..numerical expression I •THEN t
_,.ELSE

• _,.ENDIF

_,.REPEAT

_,.UNTIL numerical expression

• _,.WHILE~numerical expression •DO
t

5

MET ANIC COMAL-80

---+END WHILE------------~

----.LOOP---------------..

~EXIT---------------..

---+-ENDLOOP------------~

---+-CASE--... expressioni----~• OF -

1
~

__.OTHERWISE-----------...-

---+-ENDCASE------------~

~CHAIN------..-string expression---+

0

~ RANDOM--

!._.RANDOMIZE-1---------~

0

!_.TRAP

0

!_.CLEAR-------------~

6

•·

•

•

•

•

•

•

•

METANIC COMAL-80

~FOR
rG

integer variable name____j___G)_l __

E
integer expression (

j , integer expression

DOWNTO DO-+-

STEP integer expression • ~~
real variable name------- l@

-------n·umerical expression

[, TO =:J , numerical expressio=1 I •
DOWNTO !STEP (- DO

l..numerical expression L
--+NEXT----c~integer variable name

real variable name---~

o r@1
!...oPENL-FILE-1.numerical expression j

----G)~-string expression+--G)

----..READ--

WRITE-----------~

RANDOM-... G)-numerical expressionj

0 @7
!...cLOSE----..FILE----:lnumerical expression-.

7

METANIC COMAL-SO
0

!_.PAGE----------------.

0
* numerical G) numerical
--.cuRSOR---.expression----+ ' ---.expression___,.

0
!_.POKE--... numerical G) numerical

expression---. , ---. expression____.

0
!...ouT--___,.. numerical G) numerical

expression__. ' ---.expression____.

0

~CALL--__,.. numerical ---------~
expression

~INIT---• string
expression

~RELEASE----------+- string_ ------.
expression

o string G) string
---+FORMAT ~xpression..___. ' ---.expression__.

o string
---+DELETE---+-expression

. r--♦@7 . I
o strmg G)-1.F =-4 numenca
---+CA T--+-expression__. ' FILE expression---.

~UNIT-----------~ string . __.
expression

8

~GETUNIT-___,.. string
variable_

•

•

•

•

MET ANIC COMAL -80

• o string G) string
-.RENAME__,.. expression--. ' --. expression___.

~QUIT------------------+-

Line No.:

--.integer constant (1-9999)-------........

• File:

Ci:\ numerical-■.---------~Q
TvTexpression L . _J • : ~

L., =J G) numencal
FILE ..__. expression

Label:

-.name-------------------+-

• Signed Constant:

-.string constant------------.....

-.FALSE--------------___,.

-+TRUE-----------------+

• [
real constant

integer constant--..-

9

METANIC COMAL-80

Command:

• --+-DEL--... lines-------------+

---+EDff--... , lines--
1
----------~

-AUTOrstart & step t •
-RENUMBERl '

-RENUM I • line No,-+Q+line No.-+G)T

I start & step

---+LIST • lines
t

• filename
t

--+ ENTER__..filename •
-+-LOAD filename

-+SAVE - filename

-+-NEW •
-+-CON • line No. l

10

•

•

•

•

MET ANIC COMAL-80

---.SIZE----------------....

---+RUN----•, line No ___ J ________

---+INIT--1 ... , device name--! ________ .,...

---.RELEASE-------__...!, device namel.

_.,...DELETE -----+-file name-------------+-

__.,...UNIT--1., device name--l ________ ,..

__.,...GETUNIT--------------.....

---+RENAME-.file name-.... G)--+file name-___..

All statements marked * may be used as
commands.

11

METANIC COMAL-80

Lines:

Tline No. _[o_t __ .,.., line No _____ } ______ __,.

-----...... •G) •line No~------+-

•
Start & Ste~

----+line No.--------1-+• ?-line No. T •
File Name & Device Name:

Any sequence of characters not starting with
a digit, a comma, a space, or a colon, and not
containing a comma or a space may be used.

Numerical Ex~ression:

----+integer expression-----------...

----+real expression------------__,...

String-, Integer-,
& Real-Expressions:

____ l_~_~_Tj ________ .,.,operand---_,.

Loperator-----------

12

•

•

METANIC COMAL-80

O~erator:

•

•
QQerand:

__ _,,..(0-.expression-+Q)-------+-

___ _,.integer constant--------

• -----+-real constant--------+-

----... string constant-------.....

-------+TRUE--------___.

-----___.FALSE--------....

• -----.function name -....actual parameter list--.

13

METANIC COMAL-80

--+variable------------~

A TN SIN LOG SOR SGN EOF CHA$

COS TAN EXP ABS INP PEEK

BSTR$ STA$

SPC$ ERRTEXT$

II\ numerical Q)
w__. expression ..) ..

- l l l EOD ERR

I Er I

- l l l l ORD BVA~

I IVAL I VAL
I I. (1)--.string expression•Q)-+

-. V ARPTR-------.(1)--.... variable--+Q)-.

14

•

•

•

•

•

•

•

METANIC COMAL-SO

CD string G) string Q) ~-+--+- ■ -+--+- -~ ~ POS expression ' express10n)

ri\ numerical G) numerical Q)
--o-RNDr~-expression- • -expression-) f
~LEN----___..© ~string variable~Q) ...

** Not substrings.

Variable:

f . ***
_[

unction name-------------....-

variable name-~'(' t. , __ n_u_merical --r-Q) ~ ~ expression~ --
0 • - .

for strings only

I (D numerical O numerical Q) --♦- ~ ~·-+- ~>~ expression · expression

*** • Can be substituted for variables in expressions

and LET, READ, and INPUT statements only.

15

MET ANIC COMAL 80

Actual Parameter List:

i--0---· -
-------........ ({)-------..... expression-----.... , Q)~

•
Variable name:

E~
(string) • (integer) l ----.name
(real) t

Integer Variable Name:

----.name---~@-------------+

Real Variable Name: • ----.name------------------+

Comment & Ta~e Name:

t _____ any character] •
16

MET ANIC COMAL-80

• Name:
** 1 1etter

** ~ ---.fetter------~-__..·---.----~

~igit

G

• String Constant:

C--any character except • :

J -0~
L®Tinteger constantTC)J

Function Name:

• __.CD_.@
Jletter

@

~igit

G
**
Names starting with fn are reserved for function

• names only.

17

1

MET ANIC COMAL-80
PROGRAM EXAMPLE

0010 I I ALL SOLUTIONS TO THE EIGHT-QUEENS
0020 II PROBLEM. FROM: ALGORITHMS+ DATA
0030 II STRUCTURES= PROGRAMS BY N.WIRTH
0040 I I BY ARNE CHRISTENSEN, 1980
0050 II
0060 DIM A(1 :8), 8(2: 16), C(-7:7), X(1 :8)
0070 PROC PRINTING
0080 FOR K:= 1 TO 8 DO
0090 PRINT USING "####

0
: X(K),

0100 NEXT K
0110 PRINT
0120 ENDPROC PRINTING
0130 //
0140 PROC TRY(I) CLOSED
0150 GLOBAL A, B, C, X
0160 FOR J:=1 TO 8 DO
0170 IF A(J) AND B(l+J) AND C{I-J) THEN
0180 X(l):=J; A{J):=FALSE; B{l+J):=FALSE
0190 C(I-J):=FALSE
0200 IF 1<8 THEN
0210 EXEC TRY(l+1)
0220 ELSE
0230 EXEC PRINTING
0240 ENDIF
0250 A(J):= TRUE; B{l+J):= TRUE; C(I-J):= TRUE
0260 ENDIF

. 0270 NEXT J
0280 ENDPROC TRY
0290 //
0300 MAT A:=TRUE; B:=TRUE; C:=TRUE
0310 EXEC TRY(1)

18

•

•

•

•

•

•

•

•

MET ANIC COMAL -80
PROGRAM EXAMPLE

#2
0010 // LABEL DEMONSTRATION
0020 I I BY ARNE CHRISTENSEN, 1980
0030 LABEL AGAIN
0040 RESTORE DAT A2
0050 READ X
0060 PRINT X
0070 RESTORE DAT A 1
0080 READ X
0090 PRINT X
0100 GOTO AGAIN
0110 LABEL DATA 1
0120 DATA 47
0130 LABEL DATA2
0140 DATA -47

3
0010 SUM:=0
0020 FOR FIGURE#:=500 DOWNTO 1
0030 SUM:+ FIGURE#
0040 NEXT FIGURE#
0050 PRINT SUM

#4
0010 DIM FIRST _NAME$ OF 10
0020 DIM FAMILY_NAME$ OF 10
0030 DAT A "John", •Doe•, 1 o
0040 READ FIRST _NAME$, FAMILY _NAME$
0050 PRINT FIRST_NAME$+" "+FAMILY _NAME$
0060 READ AGE
0070 PRINT AGE; "YEAR"

19

MET ANIC COMAL-80
PROGRAM EXAMPLE

5
0010 I I LOOP AND CASE DEMONSTRATION
0020 I I A SMALL RPN CALCULATOR PROGRAM
0030 I I BY ARNE CHRISTENSEN, 1980
0040 DIM S(10), COMMAND$ OF 10
0050 MAT S:= 0 I I S IS THE STACK
0060 TOP:=0
0070 CLEAR I I CLEAR SCREEN
0080 LOOP
0090 II PRINT OUT THE STACK
0100 CURSOR 1, 1 I I UPPER LEFT
0110 FOR I:= 1 TO TOP DO
0120 · PRINT S(I); SPC$(20)
0130 NEXT I
0140 PRINT SPC$(20)
0150 I I GET NEXT COMMAND
0160 CURSOR 1, TOP+3
0170 INPUT COMMAND$
0180 CURSOR 1, TOP+3
0190 PRINT SPC$(20)
0200 I I EXECUTE COMMAND
0210 CASE COMMAND$ OF
0220 WHEN•+•
0230 TOP:-1; S(TOP):+S(TOP+ 1)
0240 WHEN •-•
0250 TOP:-1; S(TOP):-S(TOP+ 1)
0260 WHEN • * •
0270 TOP:-1; S(TOP):=S(TOP)*S(TOP+ 1)
0280 WHEN •r
0290 TOP:-1; S(TOP):=S(TOP)IS(TOP+ 1)
0300 OTHERWISE
0310 TOP:+ 1; S(TOP):= VAL(COMMAND$)
0320 ENDCASE
0330 ENDLOOP

20

•

•

•

•

MET ANIC COMAL -80

INDEX Page Page

• ABS 14 ~ CURSOR 8

Actual

-Parameter List 16 DATA 1

AND 13 DEF 3

ATN 14 DEL 10

AUTO 10 o DELETE 8, 11 • Device Name 12

BSTR$ 14 DIM 4

BVAL 14 DIV 13

DO 5, 7

~ CALL 8 DOWNTO 7

CASE 6

o CAT 8, 11 EDIT 10

o CHAIN 6 ELIF 5

• CHA$ 14 ELSE 5

~ CLEAR 6 o END 5

~ CLOSE 7 ENDCASE 6

CLOSED 3 ENDDEF 3

Command 10 ENDIF 5

Comment 16 ENDLOOP 6

• CON 10 ENDPROC 3

cos 14 ENDWHILE 6

21

METANIC COMAL-BO

Page Page

ENTER 10 o GOTO 5 • EOD 14

EOF 14 o IF 5

ERR 6,14 IN 13

ERRTEXT$ 14 o INIT a. 11 I
ESC 6, 14 INP 14

o EXEC 4 o INPUT 2 •
o EXIT 6 INT 15

EXP 14 Integer

Expression 12

FALSE 9,13 Integer

File 9 Variable Name 16

FILE 7,8,9 IVAL 14

File Name 12

FOR 7 Label 9 • FRAC 15 LABEL 4

Function Name 17 LEN 15

~ LET 2

Line 1

o GETUNIT 8, 11 Line No. 9

GLOBAL 4 Lines 12 • o GOSUB 4,5 LIST 10

22

METANIC COMAL-80

Page Page

• LOAD 10 ~ OUT 8

LOG 14 OUTPUT 2

LOOP 6

~ PAGE 8

~ MAT 2 PEEK 14

MOD 13 ~ POKE 8 • POS 15

Name 17 i PRINT 3

NEW 10 PROC 3

NEXT 7

NOT 12 o QUIT 9

Numerical

Expression 12 ~ RANDOM 6, 7

~ RANDOMIZE 6

• OF 4,-6 o READ 1, 7

o ON 5 Real Expression 12

~ OPEN 7 Real Variable

Operand 13 Name 16

Operator 13 REF 3

OR 13 o RELEASE 8, 11

• ORD 14 REM 1

OTHERWISE 6 o RENAME 9, 11

23

MET ANIC COMAL-80

Page Page

RENUM 10 String Expression 12 • RENUMBER 10 STA$ 14

REPEAT 5

o RESTORE 1 TAB 2,3

o RETURN 4 TAN 14

RND 15 Tape Name 16

ROUND 15 THEN 5 •
RUN 1 1 TO 7

~ TRAP 6

SAVE 10 TRUE 9,13

~ SELECT 2 TRUNC 15

SGN 14

Signed Constant 9 o UNIT 8, 11

SIN 14 UNTIL 5

SIZE 1 1 USING 3 • SPC$ 14

SQR 14 VAL 14

Start & Step 12 Variable 15

Statement 1 Variable Name 16

STEP 7 VARPTR 14

o STOP 4 • String Constant 17 WHEN 6

24

•

•

•

•

WHILE

o WRITE

Pag!_

5

1,7

METANIC COMAL-BO

All statements marked * may be used as
commands .

Only statements marked O may be used
after IF THEN .

Tryk: Kriwi Multtprint ApS · GI. Rye 2 5

•
Distributor: •

Copyright @ 1980 by MET ANIC ApS, Denmark .

All rights reserved. •

	_0001
	_0003
	_0005
	_0006
	_0007
	_0009
	_0010
	_0011
	_0013
	_0015
	_0017
	_0019
	_0021
	_0023
	_0025
	_0026
	_0027
	_0029
	_0031
	_0033
	_0035
	_0037
	_0039
	_0041
	_0043
	_0045
	_0047
	_0049
	_0051
	_0053
	_0055
	_0057
	_0059
	_0061
	_0063
	_0064
	_0065
	_0067
	_0069
	_0071
	_0073
	_0075
	_0077
	_0079
	_0081
	_0083
	_0085
	_0086
	_0087
	_0089
	_0091
	_0093
	_0094
	_0095
	_0097
	_0098
	_0099
	_0101
	_0103
	_0105
	_0107
	_0109
	_0111
	_0113
	_0115
	_0117
	_0119
	_0120
	_0121
	_0123
	_0125
	_0127
	_0129
	_0131
	_0133
	_0135
	_0137
	_0138
	_0139
	_0141
	_0143
	_0145
	_0146
	_0147
	_0148
	_0149
	_0151
	_0153
	_0155
	_0157
	_0159
	_0160
	_0161
	_0163
	_0165
	_0167
	_0169
	_0171
	_0173
	_0175
	_0177
	_0178
	_0179
	_0181
	_0183
	_0185
	_0187
	_0189
	_0191
	_0193
	_0194
	_0195
	_0197
	_0198
	_0199
	_0200
	_0201
	_0203
	_0205
	_0207
	_0209
	_0211
	_0213
	_0215
	_0217
	_0219
	_0221
	_0223
	_0225
	_0227
	_0229
	_0231
	_0233
	_0235
	_0237
	_0239
	_0241
	_0243
	_0245
	_0247
	_0249
	_0251
	_0253
	_0255
	_0257
	_0259
	_0261
	_0263
	_0265
	_0267
	_0269
	_0271
	_0273
	_0275
	_0277
	_0279
	_0281
	_0283
	_0285
	_0287
	_0289
	_0291
	_0293
	_0295
	_0297
	_0299
	_0301
	_0303
	_0305
	_0307
	_0309
	_0311
	_0313
	_0315
	_0317
	_0319
	_0321
	_0323
	_0325
	_0327
	_0329
	_0331
	_0333
	_0335
	_0337
	_0338
	_0339
	_0340
	_0341
	_0342
	_0343
	_0344
	_0345
	_0346
	_0347
	_0348
	_0349
	_0350
	_0351
	_0352
	_0353
	_0354
	_0355
	_0356
	_0357
	_0358
	_0359
	_0360
	_0361
	_0362
	_0363
	_0364

