
•

•

•

•

COPYRIGHT AND TRADEMARK NOTICES

METANIC COMAL-80 and its documentation are copyrighted by METANIC
ApS, DENMARK •

It is illegal to copy any of the software in this COMAL-80 software
package onto cassette tape, disk or any other medium for any pur
pose other than personal convenience.

It is illegal to give away or to resell copies of any part of this
METANIC COMAL-80 software package. Any unauthorized distribution
of this product or any part thereof deprives the authors of their
deserved royalties. METANIC ApS will take full legal recource
against violators.

If you have any questions about these copyrights, please contact:

METANIC APS
KONGEVEJEN 177
DK-2830 VIRUM
DENMARK

Copyright <C> METANIC ApS, 1983
All Rights Reserved

(R) METANIC COMAL-BO is a registered trademark of METANIC ApS.

<R> CP/M is a registered trademark of Digital Research, Inc.

<R> Z-80 is a registered trademark of Zilog, Inc •

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 1-001

•

•

•

•

IT IS ONE THING TO COMMAND THE SHIP
QUITE ANOTHER TO WRITE THE CHARTS

PREFACE

An old proverb, written long before the world of the byte, the
nanosecond and the ir,terpreter; yet these words ofter, came to mir,d
as we worked on this manual.

EKplaining something as compleK as a high level language is as
fraught with reefs as any sea-voyage, so it our hope that this book
will allow you to chart your way through the intricacies of COMAL-
80 with the minimum of effort.

We have had Many suggestior,s and comMents as a result of the, first
edition of this manual and, if the neKt edition is to be an even
greater iMprovement, then we still need feedback froM you, the user
- the Most iMportant person of all •

There is an error report card at the back of this binder and you
are invited to send any corrections, coMments or suggestions that
you think may be of use we, in turn, will be happy to receive
theM. The format of the manual makes it very easy to update, so
there is every chance that you will see your suggestions in print
in a very short time.

An important part of the philosophy behind COMAL-80 is its ease of
use, especially for those not necessarily familiar with high level
languages. For this reason, and because this is a manual not a
teaching book, all the keywords have been arranged in alphabetical
order rather than in structural, but possibly unfamiliar, groups.

We hope you will come to find COMAL-SO an indispensible tool in
your everyday computing and that this manual will help you to enJoy
Many pleasant and successful hours with your computer.

THE AUTHORS

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 1-002

ACKNOWLEDGEMENTS

METANIC ApS hereby wishes to thank the following members of the
staff and friends of COMAL-SO for their dedicated assistance in the
preparation of this manual:

MOGENS PELLE
ARNE CHRISTENSEN

MOGENS CHRISTENSEN
SUSANNE SONDERSTRUP

A special acknowledgement
helped with field testing
criticism and suggestions
specifications.

is extended to all the pioneers who
the COMAL-SO interpreter, and wnose

have had so much impact on the final

The information furnished by METANIC ApS in
believed to be accurate and reliaple. However,
assumed by METANIC ApS for its use.

FOURTH EDITION, JUNE 1983.
GENERAL CP/M VERSION
PRINTED IN DENMARK

COPYRIGHT CC) 1983 METANIC ApS DENMARK

this publication is
no responsibility is

PAGE 1-002A

•

•

•

•

•

•

•

•

INTRODUCTION

METANIC COMAL-80, written for the Z-80 microprocessor, is the most
extensive interpreter available for microcomputers today and con
tains, as well as a full extended BASIC, a great number of struc
tures found in Pascal.

COMAL-80 was originally specified as a result of the specific
wishes of Danish educationalists who wanted an easy to learn lan
guage with built-in programming support which would facilitate
transition to other structured languages.

This manual is divided into two parts with a number of appendices.

Part 1 contains instructions for initialization of the different
versions of COMAL-80 and a general description of features which
affect some or all the COMAL-80 instructions •

Part 2 contains the syntax and semantics of
ments and functions in alphabetical order.

all commands, state-

The appendices contain the source code for the screen driver,
guidelines for changing this to suit different systems, a list of
error messages, demonstration programs and a list of ASCII codes.

This manual is not intended as a tutorial for COMAL-80, but as a
reference manual to the specific features of METANIC COMAL-80 •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-003

•

•

•

•

OPERATION

Each of the two COMAL-BO software packages contains two versions of
the COMAL-SO interpreter. The two versions have identical features,
except that the overlayed version leaves more storage for·the user
while requiring a few seconds at the start and end of each program
execution to read the overlay file.

The different files are named:

7-digits precision:
Non-overlayed version:
Overlayed version:
Overlay file:

13-digits precision:
Non-overlayed version:
Overlayed version:
Overlay file:

COMAL-SO.COM
COMAL80S.COM
COMAL-80.2

COMALSOD.COM
CMALBODS.COM
COMAL80D.2

Note that each package contains the files for only one of the two
possible precisions and that the CP/M operating system is not
included on the distribution disks.

It is suggested that the COMAL-80 files be copied to a new disk
together with the CP/M operating system. Then remove the original
disk from the computer and keep it in a safe place as this disk
alone carries a warranty.

Now type the name of the version without the extension '.COM' and
COMAL-80 will sign on. Note that the overlay versions will work
only if the disk is placed in the CP/M default drive.

Once initialized, COMAL-80 checks whether an initialization file
exists on the disk. If so, it is read and executed. This file is
described in detail in a later c-hapter. If no such file exist,
COMAL-80 simply asks whether error descriptions are required.
Answer with •y• for yes or 'N' for no •

COMAL-80 is then ready for use, as shown by the prompt character
'*'. Commands ar,d program statements may then be keyed in.

Commands are recognized by the fact that they do not start with a
line number. A command will be executed immediately following a
'RETURN'.

The special system commands (such as 'RUN', 'LIST', etc.> as well
as many of the COMAL-SO statements may be used as commands allowing
instant results of arithmetic and logical operations to be dis
played without any need to write a program •

COPYRIGHT (C> 1983 METANIC ApS DENMARK PAGE 1-004

Program statements are recognized by the fact that they start with
a line number. This indicates to COMAL-80 that the line should be
stored for later execution.

On pressing 'RETURN', a line is syntax-checked and if no errors are
found it is converted to an internal format and stored in the
workir,g memory of the cotnputer. If ar, error is four,d, t~1e line is
displayed on the tertninal with the cursor indicating the error
point. An error code and, if the error descriptions are not dele
ted, a description of the error are also displayed.

Using the editing facilities of COMAL-80, the error may then be
corrected and followed with 'RETURN'. The above sequence is then
repeated until the line is correct.

•

When the user types 'RUN' a prepass is executed first to complete
the trar,slation into internal format. Among other thir,gs it trar,s- •
lates all references to absolute memory addresses.

Finally the run module goes into action to execute the program •

•

•
COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-004A

•

•

•

•

LINE FORMAT

The stateMent lines in COMAL-SO have the following format:

nnnn COMAL-SO statement C//(comment>J

nnnn is a line nuMber between 1 and 9999. Only one statement is
allowed on each line unless separated by semicolons. For further
details see the 'LET' and 'MAT' statements.

All statements may be followed by a comment
chapter 2>.

(see also 'REM' in

A COMAL-SO statement always starts with a line number, ends with
'RETURN', and may contain up to a maximum of 159 characters. On
terminals with a physical line length less than this, a line, once
filled will be continued on the next screen line •

INPUT EDITING

If an error is made while a line is being typed in, move the cur
sor back to point at the error and type the correct character(s).
The new character<s> will replace the old one(s). The character
pointed at by the cursor can be deleted by pressing the 'DEL' key
(user defineable) whereupon all characters to the right of the cur
sor will move one position left.

New characters may be inserted between existing characters by
Moving the cursor to the position where the insert is to start and
pressing the 'INS' key (user defineable). The rest of the line
(including the character pointed at by the cursor) will move one
position to the right leaving an empty space. This can be repeated
as often as necessary to create space for any number of characters
up to the maximum line length of 159 characters.

When the input is terminated
whole line shown on the screen
position •

by pressing the 'RETURN' key, the
is stored regardless of the cursor

A line which is in the process of being typed may be deleted by
pressing the 'ESC' key <user defineable). This will also terminate
the automatic generation of line nuMbers.

To correct program lines of a program which is currently in memory,
re-type the line using the same line number or use the 'EDIT' com
mand.

To delete an entire program currently residing in memory use the
'NEW' command •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-005

•

•

•

•

CHARACTER SET

The COMAL-80 character set coMprises the alphabetic characters,
numeric characters and special characters •

The alphabetic characters are the upper and lower case letters of
the alphabet, including < J } C \ J which May be replaced by
national letters in soMe countries.

The numeric characters are the digits O through 9.

The following special characters are recognized by COMAL-80:

CHARACTER

+

*
I

(

)

$

&
(

>

'ESC'
'RETURN'

Control-A
Control-Hand <=
Control-Land=>
Cor,t rol-S
Cont ro 1-K
Control-J
Control-I
Control-B
Control-E

* user definable •

NAME
Blank
Equal sigr, or assignment symbol
Plus sign
Minus sign
Multiplication symbol
Slash or division syMbol
Exponentiation symbol
Left pa rent hes is
Right parenthesis
Number or hash sign
Dollar sigr,
Exclamation point
Comma
Period or decimal point
Double quotation marks
Semicolon
Colon
Ampersand
Less than
Greater than
Underscore

* Stop and wait for input
Terminate input

* Insert
* Cursor left
* Cursor right
* Delete
* Cursor to start of line
* Cursor to end of line
* Cursor 8 steps forward
* Cursor 8 steps backwards
* Delete to end of line

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 1-006

•

•

•

•

CONSTANTS

Constants are the actual values which COMAL-80 uses during execu
tion. There are two types of constants: string and arithmetic .

A string constant is a sequence of alphanumeric characters enclosed
in double quotation marks. The length of the string is limited only
by the space available in the computer.

A double quotation mark may be included in a string constant by
entering 2 double quotation marks (""> immediately following each
other.

Characters which cannot be typed on the keyboard, can be included
in a string constant by typing the characters' decimal ASCII code
enclosed in double quotation marks.

EXAMPLES OF STRING CONSTANTS:

"COMAL-80"
"$10.000"
"OPEN THAT DOOR"
"KEY II "S"" TO STOP"
"END" 13""

Arithmetic constants are positive and negative numbers. Arithmetic
constants in COMAL-SO cannot contain commas. There are two types of
arithmetic constants:

1. Integer
constants

2. Real
constants

Whole numbers in the range -32767 to 32767.
Integer constants do not contain a decimal
po int.

Positive or negative real numbers, i.e. num
bers that contain a decimal point and posi
tive or negative numbers represented in
exponential form <scientific notation>. A
real constant in exponential form consists
of an optionally signed integer or fixed
point number (the mantissa) followed by the
letter 'E' and an optionally signed integer
(the exponent). In addition, whole numbers
outside the range for integer constants are
considered to be real constants •

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 1-007

•

•

•

•

VARIABLES

Variables are names used to represent values used in a COMAL-SO
prograM. The value of a variable may be assigned explicitly by the
programmer or it may be assigned as the result of calculations in
the program. Until a variable has been assigned a value, it is
undefined.

VARIABLE NAMES AND DECLARATION CHARACTERS

COMAL-SO variable names may be of any length up to 80 characters.
The characters allowed in a variable name include all letters,
digits and the underscore. The first character must be a letter.
Special type declaration characters are also allowed. - See below.

A variable name may not be a reserved word unless the reserved word
is embedded. Reserved words include all COMAL-SO commands, state
ments, function names, operator names and identifiers defined in an
"EXTENSION".

Variables may represent either an arithmetic value or a string.
String variable names are writter, with a '$1 (dollar sign> as the
last character. Integer variable names are written with a '#'
(number or hash sign> as the last character. The '$' and the 1 #'
signs are variable type declaration characters, i.e. they 'declare'
that the variable will represent a string or an integer.

ExaMples of variable naMes:

A
AS
DISKNAME$
COUNTER#
VALUE_OF_CURRENT

COPYRIGHT <C> 1983 METANIC ApS DENMARK PAGE 1-008

•

•

•

•

ARRAY VARIABLES

An array is a group or table of values referenced by a single
variable naMe. Each element in an array is referenced by a variable
·naMe subscripted with one arithffietic expression for each diMension.
An array variable naae has as Many subscripts as there are diaen
sions in the array. When used as a paraMeter the array can be re
ferenced as a whole or as an 'array of arrays' by omitting soae or
all the subscripts. This is described in detail in the chapter:
PARAMETER SUBSTITUTION.

All arrays Must be declared using a 'DIM' statement or a 'RECEIVE'
statement.

When an arithmetic array is declared, but before it has been assig
ned any values, all its eleaents have the value O (zero>.

When a string array is declared, but before it is assigned strings,
al 1 its elements contain the st ring 1111 (st ring of zero length).

SUBSTRINGS

As well as from referencing a string variable as a whole, or (for
arrays> eleMent by eleaent, or as an array of arrays, a part of a
string variable eleaent aay also be referenced.

This is done in one of the following formats:

<naM&) <I1., 12., ••• In, (start> C, <end>l>
<naae><I1.,I2, ••• In><<start>C:(end>l>

In the first case, the nuaber of diMensions in the variable <naae>
is retrieved fro• the corresponding 'DIM' statement. If it has,
say 'n' dimensons, then the first 'n' indices in the parenthesis
are used to specify the actual element. The parenthesis may contain
one or two further indices, i.e. (start> and <end>. <start> speci
fies at which character position the substring starts, and <end>
specifies where it ends. Whithout <end>, the substring consists of
the character at the <start> position only.

In the second case, the first parenthesis contains the necessary
number of indices, wnereas the second parenthesis contains <start>
and (end> inforeation as described before.

If <naMe> states a si•ple string variable then the nu•ber of diaen
sions is considered to be zero and the parenthesis contains <start>
and <end> only. In the latter format, the first parenthesis is
omitted •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1--009

•

•

•

•

The arithmetic operators are:

Precedence
1

2
2
2
2

3

3
3

Operator

/

* DIV
MOD

+

Operation
Exponentiation

ARITHMETIC OPERATORS

Division X/Y
Multiplication X*Y
Integer division X DIV Y
Modulus X MODY

Negation

Addition
Subtraction

-x
X+Y
x-v

Precedence controls the order in which operations are handled with
in an expression. The operator with the highest precedence is
evaluated first, lowest last. Where several operators have the
same precedence they will be evaluated from left to right.

Precedence may be overruled by parentheses: expressions enclosed
in parentheses are resolved first. When multiple operators occur
in the same set of parentheses the above table applies.

Apart from negation, the arithmetic operators
tween expressions giving arithmetic values.
only for expressions giving arithmetic values.

may be used only be
Negation may be used

The arithmetic value of a logical true expression is 1.
aetic value for a logical false expression is O •

COPYRIGHT <C> 1983 METANIC ApS DENMARK

The arith-

PAGE 1-010

•

•

•

•

RELATIONAL OPERATORS

Relational operators are used to compare two values. The res•.tlt of
a such comparison may be either true (= 1 > or false (= 0 >. This
result may then be used to influence the program run.

Whenever an arithmetic value is used as a logical value, the number
0 is interpreted as false, and numbers other than Oare interpreted
as true.

Operator Relation Example
Equality X=Y

0 Inequality XOY
) Greater than X>Y
(Less than X(Y
>= Greater than or equal to X>=Y
<= Less than or equal to X<=Y

= is also used to assign a value to a variable.)

Relational operators are used between two expressions both giving
an arithmetic value or between two expressions both giving a string
value.

Relational operators have a lower precedence than arithmetic opera
tors. Within an expression containing both types all arithmetic
operators are resolved before the relational operators.

In the following example:
X-2>T+3

the values of •x-2• and 'T+3' are calculated before the comparison
of the two values.

Comparison between two string expressions is performed character by
character using the ASCII codes for each character. 'A' is less
than 'E' (the ASCII code for 'A' is 65 and for 'E' is 69).

With two strings of different lengths where the short one is equal
to the beginning of the long one, the short one is considered
the smallest. Consequently, "BLACK" is smaller than "BLACKBIRD".

When comparing two strings, all characters between the double quo
tation marks are compared including spaces. In this respect the
aggregates and "number", each representing or,ly one character
when found within a string value, count as one character only,
namely the character represented by the aggregate •

COPYRIGHT <C> 1983 METANIC ApS DENMARK PAGE 1-011

•

•

•

•

FILE NAMES

File naMes basically follow the CP/M naming conventions. Only the
first eight characters are significant and lower case letters are
converted to upper case.

Following a period an extension of three characters may be speci
fied. The extension can be chosen freely except in connection with
'SAVE' and 'LOAD' commands where the COMAL-SO system autoMatically
provides the extension '.CSB'. No extension may be specified in
construction with these commands.

If no extension is specified, the default '.CML' is used whenever
the file naMe is used in connection with the 'ENTER' and 'LIST'
commands, '.DAT' is used in connection with the 'OPEN' command/
statement, except for random files where 'RAN' is used. '.CAT' with
the 'CAT' command/statement and '.LOG' is used for log files •

The whole name, including the extension, is used to specify a file.
This means that the two commands:

ENTER PROGRAM
ENTER PROGRAM.CML

read the same file into memory, whereas

ENTER PROGRAM.LST

reads another.

The disk drive naMe is optional but is treated as an integral part
of the file naMe. If it is oMitted, the current default disk drive
is used. If it is specified then it is written in front of the file
name. The disk drive name is the device name of the disk to be used
<see below>.

Example:
ENTER DK1:PROGRAM.CML

Note that the
convention.

disk drive names do not follow

The disk drive name consists of the two letters 'DK'
and a unit number followed by a colon. Thus 'DKO:•
CP/M's 'A:', 'DK1:• corresponds to tP/M's •a:•, etc.

the CP/M naming

(meaning disk>
corresponds to

A similar system is used with the other peripheral devices, so that
these can be used as files and may be the source of or destination
for, data according to the nature of the specific device •

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 1-012

The names used for the different devices are:

, LP:, or 1 LP0: 1 for the 1 ir,e pri r,ter • 1 LP1: 1 for the punch device
• os:• or • oso:• for the data screer,
, •(B:, or , •(BO:, for the keyboard

Example:
10 OPEN FILE 0, "KB:", READ
20 OPEN FILE 1, "LP:", WRITE
30 DIM AS OF 100
40 LOOP
50 INPUT FILE O:AS
60 PRINT FILE 1 :A$
70 ENDLOOP

When • INIT', •RELEASE', 1 LOG', 1 DELETE', 1 GETUNIT', •RENAME', •
'UNIT', and 'CAT' are used as statements, filenames are considered
to be string expressions and must be enclosed in double quotation
marks. This is optional in command mode. This allows a file name
to be specified by any string e~pression which evaluates to a legal
file name.

Examples:
100 DELETE "DKO:PROGRAM.CML"
100 INIT "DK0: 11 ,AS
100 DELETE "DKO:"+A$+".CML"

COMAL-BO uses its own format in disk files. The normal CP/M format
can be specified by extending the filename with a 'IC'. Further ex
tending the filename with a 1 /B 1 specifies the CP/M binary format.

Examples:
ENTER TEST.BAK/C // READ CP/M ASCII FILE

100 OPEN FILE 3,"TEST.XYZ/C/B",READ //OPEN CP/M BINARY FILE
100 OPEN FILE 2,"DATA/C",WRITE //OPEN CP/M ASCII FILE

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-012A

•

•

•

•

•

•

PROCEDURES

One of the distinct features of COMAL-80 is the inclusion of genu
ine procedures with paraMeters •

A procedure is a named prograM area
'PROC (name>' and 'ENDPROC <name>'
of the keyword 'EXEC (name}'.

placed between the keywords
and which is called by the use

They act basically as subroutines and can be called from one or
several places within a program. When the procedure has been coM
pleted the program execution continues on the line following the
calling line. Apart from this they have other features which make
them a very efficient programming tool.

Firstly, they are called by naMe so that the prograMMer does not
have to worry about the line numbers at which the procedure is lo
cated •

Secondly, the procedure is non-executable until it is called, mea
ning that regardless of where the procedure is placed in the pro
gram, the lines inside it will be bypassed unless the procedure is
actually called by an 'EXEC' statement. This call can go forwards
or backwards in a prograM.

Thirdly, and very important, parameters can be passed to the pro
cedure when it is called. This means that a procedure can react
differently and operate on different data each time it is called.

There are two types of procedures, called open and closed procedu
res. The difference between the two is a question of how the pro
edure sees the variables used in the rest of the program.

A variable used in an open procedure has the same status as a
variable used in the main program. This means that if it is assig
ned a new value within a procedure, it keeps this value when the
procedure is terminated and program execution resumes from the line
following the calling line •

The closed procedure, however, acts in many ways like a separate
program. The closed procedure has its own set of variables, which
can be dimensioned and assigned values within the procedure, but
they are never able to influence the variables used outside the
procedure unless some special action is taken (refer to parameters
and the import statement). This makes it possible to write library
routines which can be used in any program without risking problems
with the same variable name being used both in the procedure and in
the rest of the program .

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-013

The difference between the two types of procedures can be illustra
ted within the following two programs:

1 2

10 A:=5 10 A:=5
20 EXEC TEST 20 EXEC TEST
30 PRINT A 30 PRINT A
40 PROC TEST 40 PROC TEST CLOSED
50 A:=3 50 A:=3
60 PRINT A 60 PRINT A
70 ENDPROC TEST 70 ENDPROC TEST

Running these 2 programs the first one will print the digit '3'
twice because the assignment in line 50 will overrule the assign
ment in line 10. The second example will print the digits '3' and
'5' because the procedure is closed and therefore the variable in
line 50 is not the same as the one in line 10 even though they
have the same name. Technically speaking, the variable 'A' in ex
ample 1 is global because the whole program can see and use it, but
a variable inside a closed procedure is local and can only be used
inside the procedure.

A local variable must also be assigned (line 50) or dimensioned
inside the closed procedure before it is used for the first time.
This means that if line 50 is deleted in the second example, the
program execution will stop in line 60 with an error message say
ing that the variable is unknown.

Even though the separation of variable names is the basic idea
behind the closed procedures, it is often convenient to make a
variable name known to the main program as well as to the procedure

This can be done through the 'IMPORT' statement as snown in the
following example:

10 A:=3
20 EXEC TEST
30 PRINT A
40 PROC TEST CLOSED
50 IMPORT A
GO A:=3*A
70 PRINT A
80 ENDPROC TEST

This program will print the digit '9' twice. Note that the 'IMPORT'
statement must be placed in the closed procedure and before the
part of the procedure actually using the variable for the first
time.

COPYRIGHT <C> 1983 METANIC ApS DENMARK PAGE 1-013A

•

•

•

•

•

•

•

•

Closed procedures can be nested to any level that the memory allows
but the 'IMPORT' statement only works at the level where it is
actually placed. The following program will print the aigit •3•
(in line 100) and then stop in line 60 with an error message that
the variable is unknown:

10 A:=3
20 EXEC TEST1
30 PRINT A
40 PROC TESTl CLOSED
50 EXEC TEST2
60 PRINT A
70 ENDPROC TEST1
80 PROC TEST2 CLOSED
90 IMPORT A

100 PRINT A
110 ENDPROC TEST2

Another way of moving a variable into and out of a closed procedure
is by means of a reference parameter. this is described in details
in the chapter 'PARAMETER SUBSTITUTION'.

When a variable is dimensioned or assigned a value in a closed pro
cedure the necessary memory is not allocated until the procedure
is actually called and this memory is again de-allocated when the
procedure is terminated.

Thus, no matter how many of times a procedure is called, there will
be no error message 'out of storage' as long as it does not happen
on the first call.

This also makes it possible to dimension a variable in a procedure
which is called several times without conflicting with the rule
that a variable cannot be re-dim~nsioned, and it is possible to
overlay arrays and string variables used for intermediate results
and thereby economize on storage by dimensioning and using these in
different closed procedures •

Any procedure may call any procedure defined anywhere in the main
program and it may even call itself (recursion). However, a closed
procedure can only call a closed procedure. Note also, that
recursion implies nesting to a new level which uses memory and must
be carefully controlled.

The rules for variables in closed procedures also apply to the
other closed structure: The user-defined function •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-014

•

•

•

•

PARAMETER SUBSTITUTION

An important part of the COMAL-80 definition is the inclusion of
procedures (and user-defined functions) with parameters, which
allow a program to be broken down into smaller, named routines.
These can be open or closed.

To move data into and out of a such routine parameters are used,
i.e. list of variable names specified in the first line of the
routine (the formal parameters> and a list of variables or expres
sions in the calling line (the actual parameters). The actual para
meters are then inserted into the formal parameters wnen the rou
tine is called.

There are two types of parameters, namely 'call by value' and 'call
by reference'.

'call by value' means that the actual value of the actual parameter
is assigned to the formal parameter. This type can only move data
into the routine as changes to the formal parameter do not affect
the actual parameter.

'call by reference' means that the formal parameter is replaced by
the actual parameter. This type can move data both into and out of
a routine, and is specified by the keyword 'REF' in the formal
parameter list. The above mentioned replacement happens dynamical
ly, i.e. wnen the routine is called, and it cannot be seen in pro
gram listings which always show the formal parameters.

The followiY1g examples show the di ffereY1ce:

1 2
10 A:=3 10 A:=3
20 EXEC TEST<A> 20 EXEC TESTCA>
30 PRINT A 30 PRINT A
40 PROC TESTCX) 40 PROC TESTCREF X>
50 X:=3*X 50 X:=3*X
60 PRINT X 60 PRINT X
70 ENDPROC TEST 70 ENDPROC TEST

Here, in line 20 'A' is the actual parameter and 'X'
the formal parameter.

in 1 i Y1e 40 i s

In the first example the value '3' is assigned to 'X' when the pro
cedure 'TEST' is called in line 20 and prints the digit '9' in line
60. After the procedure is terminated the digit '3' is printed in
line 30 because the variable 'A' is in no way affected.

The other example will print the digit '9' twice because the formal
parameter is replaced by the actual one and the change is thereby
reflected back •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-015

Parameters are always local, meaning that changes wnich happen to
'call by value' parameters ir, a routir,e carir,ot affect a variable •
of the same name in the rest of the program. This is shown by the
following example:

10 A:=3
20 B:=2
30 EXEC TEST<A>
40 PRINT A,B
50 PROC TEST(A)
60 A:=3*A
70 B:=3*B
80 PRINT A,B
90 ENDPROC TEST

For 'A' t~1is progra«, will prir,t the digit '9' in lir,e 80 ar,d tt-1en.
the digit '3' ir, lir,e 40. Both lir,es prir,t the digit 1 6 1 as the
value for 'B'. In other words, the formal parameter 'A' is local to
the procedure and another variable than the variable used in lines
10 and 40, whereas 'B' is not a parameter <and the procedure is not
closed) so it is global to the procedure, and the same variable in
the whole program.

The parameter lists may contain as many parameters as the maximum
line length allows (159 characters>, separated by commas, but there
must be the same number of parameters in both lists, and correspon
ding par~meters must conform to type and dimension. The only excep
tion is that an integer actual parameter can be assigned to a real
formal parameter when 'call by value' is used.

Constants and expressions can be used as actual parameters when
'call by value' is used.

Example:
10 EXEC TEST (3*5, "ERROR">
20 PROC TEST<A,B$)
30 PRINT A
40 PRINT B$
50 ENDPROC TEST

Note, that a formal parameter cannot be dimensioned, since the call
itself carries the necessary information.

Arrays can be used as parameters either as a whole, as an array of
arrays or as a single element, but they can only be used as
reference parameters in the former two cases.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-015A

•

•

•

•

•

•

When a single element is used, the element is specified in the ac
tual parameter list with the necessary number of indices and a
variable of the same type specified in the formal parameter list.

Example:
10 DIM A<3,5,2)

100 EXEC TESTCA(l, 1,1>>

200 PROC TEST

300 ENDPROC TEST

Note, that 'B' does not need to be a referenced parameter since
only a single element is used.

An array of arrays is used by omitting one or several of the indi
ces from the right hand side in the actual parameter list and fol
lowing the formal parameter name with a parenthesis containing the
same number of commas as the number of omitted indices minus 1.

Example:
10 DIM A<3,5,2)

100 EXEC TESTCA<l, 1))

200 PROC TESTCREF B<>>

300 ENDPROC TEST

In this example one should note that the parenthesis following the
formal parameter 'B' is empty because the number of omitted indices
is 1.

The omitted indices are then specified when the formal parameter is
used in the routine •

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 1-016

The following example shows this:

10 DIM ARRAY~OF_VECTORS(5,3)
20 FOR 1:=1 TO 5
30 FOR J:=1 TO 3
40 ARRAY_OF_VECTORS(I,J):=RND(l,5)
50 NEXT J
60 NEXT I
70 EXEC CHANGE_SIGN(ARRAY_OF_VECTORS(4))
80 PROC CHANGE_SIGNCREF VECTOR()) CLOSED
90 FOR I :=1 TO 3

100 VECTOR(I):=-VECTOR<I>
110 NEXT I
120 ENDPROC CHANGE_SIGN
130 FOR I :=1 TO 5
140 FOR J:=1 TO 3
150 PRINT ARRAY_OF_VECTORS<I,J>;
160 NEXT J
170 PRINT
180 NEXT I

It is also possible to use a whole array as a parameter. This is
done by removing all the indices in the actual parameter list and
following the formal parameter with a parenthesis containing the
same number of commas as the dimension of the array minus 1.

Example:
10 DIM A$(5,3,2) OF 25

100 EXEC TEST(A$)

200 PROC TEST(REF 8$(,,))

300 ENDPROC TEST

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-016A

•

•

•

•

•

•

•

•

ERROR HANDLING

COMAL-SO actually consists of 3 main modules called:

Input module
Prepass module
Run module

Each module has its own error routines handling different error ty
pes as efficiently as possible.

These routines have at their disposal a
each giving a short description of about
errors.

library of error messages
200 different types of

An error number is always given with the error message and in most
cases the actual line causing the error is displayed with the
cursor indicating the point of error •

To give instant error messages the library is an integrated part of
COMAL-SO. The library uses about 3K and it is possible to delete
most of it when signing on COMAL-80, giving the user about 2.5K
extra storage.

Except for the missing messages, the rest of the error reporting
system works in the usual way and the error number makes it pos
sible to find the text by referring to appendix C of this manual.

SYNTAX ERRORS.

The input module consists of two submodules: the editor and the
syntax controller.

The editor is a line-oriented editor, which allows the user to key
in a line and change it as appropriate. When the line is terminated
by pressing <return> it is transferred to the syntax controller and
checked against COMAL-80 specifications •

If no syntax errors are found the line is executed (if it is a com
mand) and translated and stored in memory (if it is a statement).

If the line contains a syntax error, an error number and (if avail
able) an error message is displayed followed by the actual line
with the cursor indicating the error location, control is then re
turned to the editor. The user can then correct the line and repeat
the sequence until the line is accepted •

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 1-017

When reading an ASCII file via the 'ENTER' command, each line is
syr1tax checked ir1 the sa1Y1e way. If ar, error occurs the lir,e is dis- •
played on the console together with an error number (and possibly a
message) and an arrow pointing to the error, the line is not stored
in memory. Loading is then resumed.

It is not possible to store a line containing a syntax error.

PREPASS ERRORS

When the user wants to execute a program and types 'RUN' the pre
pass, wnich is invisible to the user, goes into action. This module
extends the internal representation of the program using absolute
memory addresses and checks that all structures are properly ter
minated ar,d that, all reference points exist.

If no error is found, control is passed on to the run module.

If one of the statements of a structure is missing CFOR ••• NEXT,
REPEAT ••• UNTIL, WHILE .•• ENDWHILE, a.s.o.), tne line number of the
corresponding utatement is displayed on the screen with an error
number and pos~ibly an error message. Line numbers with calls to
non-existing ~LABEL' statements are shown in the same way.

If a statemerit cor,tains t~,e 'EXIT' statemer,t without the surrour,
ding 'LOOP' and 'ENDLDOP' statements, the line number of the 'EXIT'
statement is returned.

All errors in a program are reported at the same time, and control
is then returned to the input module. It is not possible to execute
any part of a program if it contains a prepass error.

RUN ERRORS

When the run module is called only errors of dynamic nature (i.e.
occurring when a line is actually executed) can exist. An error of
this type will normally stop COMAL-SO. The line containing the
error will be shown on the screen with the error number and, pos
sibly, an error message. Control is then returned to the editor in
the input module for easy correction of the error. However, a num
ber of errors are non-fatal because they can be bypassed in a well
defined manner. An example of this is division by O where it is
often convenient to assign as the result the maximum value that
COMAL-80 can handle.

To prevent a program stopping for non-fatal errors, two special
statements are implemented: 'TRAP ERR-' and 'TRAP ERR+'.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-017A

•

•

•

•

•

•

•

If a 'TRAP ERR-' statement has been executed a non-fatal error will
not stop the program execution, but a subsequent call of the
system function 'ERR()' will return the error number. B~ testing
this function it is then possible to influence program flow. This
mode of operation continues until a 'TRAP ERR+' statement is execu
ted after which the system returns to normal error handling.

The fatal errors always terminate program execution.

Note that the 'TRAP ERR-' mode is a question of having executed a
such statement. Its actual line number is of no importance.

The 'RUN' command always resets to normal error handling •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-018

•

•

•

•

VARIABLE, PROCEDURE & FUNCTION NAMING

COMAL-SO allows the same string of characters to be used for dif
ferent variable types and for procedure and function names. To
avoid conflicts, the following rules apply:

Static binding is used everywhere.
gram text what each name stands for.
of the rules below.

It must be clear from the pro
This is reflected by several

All variables introduced within a closed procedure or function are
local to the procedure or function and cannot be referenced from
within any other procedure or function, or from the main program.
This also applies to the parameters of a closed procedure/function
since these are cases of local variables.

From within a closed procedure/function the following variables can
be referenced: The local variables of the procedure/function and
any variables explicitly imported from the main program by means of
the 'IMPORT' statement. No other variables can be referenced from
within the closed procedure/function.

Parameters to an open procedure/function are local to the procedure
/function and cannot be referenced from within any other procedure/
function (not even from within another open procedure/function) or
by the main program. An open procedure/function has no local vari
ables apart from the parameters.

From within an open procedure/function the following variables can
be referenced: The parameters of the procedure/function and the
variables of the main program. No other variables can be referenced
from within the open procedure/function. If any variables are
'DIM'ensioned within the open procedure they are, in all respects,
treated as if they had been 'DIM'ensioned within the main program.
Variables that are used within the open procedure/function but not
in the main program, are still considered belonging to the main
program.

The 'IMPORT' statement can only be used in closed procedures/func
tions. It cannot be used in an open procedure/function or in the
main program.

System variables and functions can be referenced everywhere.

Procedures and functions cannot be nested, whether open or closed.

Procedures and functions can call each other and can call them
selves recursively, whether ocen or closed.

Procedures can be called throughout the program.
cannot be' IMPORT'ed .

COPYRIGHT CC) 1983 METANIC ApS DENMARK

Procedure names

PAGE 1-019

Functions can be called throughout the program exceot at points
where a variable with the same name masks the function. This is
only possible if the fur,ctior, has para,v,eters. The rule is: If a •
'DIM'ensioned variable with the same name as the function can be
referenced at a certain point then the function cannot be called at
t~1is point. Ar,y atteir,pt to call the fur,ctior, at this point will be
interpreted as a reference to the variable with the parameters in
terpreted as indices.

A call to a function without parameters is programmed by writing
the name of the function followed by an emoty parenthesis, e.g.
'FUNCTION()'. Thus there is no possibility of confusion even if a
variable with the same name can be referenced at the point of the
cal 1.

The above rules are introduced in order to allow for arbitrary
r1a1Y1ir,g of local variables in library procedures (wl-1icr1 will always •
be closed).

Function names cannot be' IMPORT'ed.

Labels defined in the main program can only be referenced in the
main program. Labels defined in a procedure or function, wnether it
be open or closed, can only be referenced in the procedure or func
tion where they have been defined. Labels cannot be 'IMPORT'ed •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-01'3A

•

•

•

•

•

•

INITIALIZATION FILE

After COMAL-80 has been read into memory and has started to execute
(but before the prompt sign is displayed), it is often convenient
to be able to change default values automatically, or to' load and
execute a program.

The ir,itializatior, file offers this opportunity. Before the prompt
sign is displayed, the CP/M default disk drive is searched for an
appropriate file which is read in an executed (if it exists>.

The file itself is a normal COMAL-80 text file stored on the disk
wit~, the 'LIST' cort11Y1and under the name 'COMAL80I. NIT' (for the 7-
d ig it version) and 'CMA~BODI.NIT' (for the 13-digit version>. As
this is a text file, each line <except the very first one> follows
the syntax:

Cline No.> II (COMAL-80 statement or command>

The first line follows the syntax:

Cline No.> // (error text mode) [(highest memory address)]

<lir,e No.> is a nor1Y1al
initialization file.

line number used only when editing the

The remark sign ('//' > allows anything to be written on the rest of
the 1 ine.

<COMAL-BO statement or command> is a normal COMAL-80 statement or
command as described in chapter 2 of this manual; the only excep
tions being that the 'AUTO' and 'EDIT' commands are not allowed.

<error text mode> specifies whether error texts are wanted or not.
Possible answers are 'Y' for yes, 'N' for no, and 'A' for ask. When
using 'A' the question whether or ~ot error messages are wanted
will be displayed on the screen.

<highest memory address> specifies in decimal the high~st memory
address for use by the COMAL-80 system. This specificaton is optio
nal and defaults to the first memory position below the CP/M opera
ting system.

When the initialization file is executed it is read line by line
from the disk. The (line No.> and the remark sign are skipped and
the rest of the line is executed exactly as a normal COMAL-BO line.

Example:
0010 II Y 50000
0020 II ZONE:=a; PAGEWIDTH:=132; PAGELENGTH:=o
0030 II CLEAR
0040 II PRINT "WELCOME TO COMAL-BO"

This file contains commands only and in line 0010 the COMAL-BO
system is instructed that error messages are wanted and that no me
mory location above address 50000 may be used.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-020

The rest of the lines are then read and executed one by one.

The initialization file may also include statements as shown in the
following example:

0010 II N
0020 II 10 II PRINT 80 STARS
0030 II 20 FOR 1=1 TO 80
0040 II 30 PRINT 11*11'11

0050 II 40 NEXT I
0060 II RUN

In this example the 'FOR ••• NEXT' loop is first stored in memory,
controlled by the line numbers 20, 30, and 40 and then executed
when the 'RUN' command is met in line 0060. Note, that the state
ments are actually stored in memory and they will still be there
when the initialization file is terminated and the prompt sign is
shown, unless a 'NEW' command is included.

It is also possible to load and execute one or more files:

0010 II N
0020 II LOAD DK1:PROG1
0030 II RUN
0040 II NEW
0050 II ENTER PROG2
0060 II RUN

This example will first load 'PROG1' from disk drive 1, execute it,
clear the memory, and then it will enter 'PROG2' and execute that
one.

To guarantee that the whole initialization file is executed the
'ESC' key is disabled until the last line is reached. This means
when 'PROGl' is executing in the former example, it cannot be stop
ped by pressing the 'ESC' key, whereas the system reacts normally
when 'PROG2' is running because the 'RUN' command is the last line
in the initialization file.

The error checking system works in the normal way but due to the
disabling of the 'ESC' key it is only possible to correct tne line
shown on the screen. This means that there are situations wnere
errors can only be bypassed by deleting the whole line.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-020A

•

•

•

•

•

•

•

•

EXTENSIONS

COMAL-80 offers extensions as a unique feature which allows the
user to customize the language and extend to it by adding new
statement types, standard functions and operators •

New keywords and the necessary 280 machine code is stored in a disk
file produced using a re-locatable assembler. One or more of these
files are then activated using the 'EXTENSION' command, and the new
keywords become reserved words which, in all aspects, act like the
original keywords.

Appendix D shows a full working example of this feature which
should be studied in conJunction with this description.

An assembler program defining extensions must start with

NAME<• (name>• >

where <name> is the name of the program.

After this, the contents of the file 'EXTDEFS.MAC' are followed
with the specifications for the extensions defined in the file
which must follow immediately after each other. Each extension will
be formatted as follows:

EXTENSION <name>[, <local name>J
(interface>
ENDEXT <r,ame> [, <local name> J

The same <name> and, if used, <local name> must be used in both
places. For the very last specification, the word 'ENDEXT' is re
placed with 'ENDALLEXT'.

<name> is the name with which the extension will be called in a
COMAL-80 program, excluding any possible dollar-sign.

(local name} is the name of the extension within the assembler
file. If <local name> is not given, <name> will be used in the
assembler file as well. It may be useful to give a <local name> if
several extensions have names in which the first five characters
are the same, or if <name> contains an underscore,
as a 280 op-code.

o r is t he same

(interface} is different for functions, statements, and operators.

For funct i or,s:

FUNCTION <return type>
(list of parameters>

where the <return type} is of either type• INT', 'REAL' or 'STR' •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-021

For statemer-,ts:

STATEMENT
(list of parameters>

(list of parameters> must consist of zero or more lines with each
line specifying one parameter in the following way:

PARAMETER C(dimension>,J(type>

If (dimension> is not stated it is assumed to be a 'call by value'
parameter. Otherwise the parameter is a 'call by reference' para
meter and (dimension> states the dimension of the parameter. 0 =
simple variable, 1 = vector, and so on. Also 'ANYDIM' may be stated
for (dimension>. This will mean that the actual parameter may have
any dimension and that it will be a 'call by reference' parameter.
Then it is up to the extension to determine which dimension the
parameter has and to handle it accordingly.

(type) states the type of the parameter which may be 'INT', 'REAL'
or 'STR' (for ir-,teger, real or string respectively).

'ANYTYPE' or 'INTREAL' may be stated: 'ANYTYPE' means that the
actual parameter may have any type ('INT', 'REAL', 'STR'>, and
'INTREAL' means that the actual parameter may be of either 'INT' or
'REAL' type. The special rules for these two cases <regarding the
way they are transfe~red to the extension> are described below.

For operators (interface> is either

or

OPERATOR (returr-, type), <left operand type>,
<right operand type>, (priority>

OPERATOR <return type>, (operand type>, (priority>

the former is used for dyadic operators and the latter for monadic
operators. As with functions <return type> is either 'INT', 'REAL'
or 'STR'.

(left operand type>. (right operar-,d type> and (operand type> may be
'INT', 'REAL', 'STR', 'ANYTYPE' or' INTREAL' used as described for
functions and statements above.

Parameters to operators can only be 'call by value' parameters.

(priority> states the priority of the evaluation of the operator in
relation to other operators, including the standard operators.

(priority> is stated as the name of a standard operator, using the
name used for a call to the mathematical package. The operator will
then have the same priority as the standard operator. The follow~
ing names may be used:

COPYRIGHT <C> 1983 METANIC ApS DENMARK PASE 1-021A

•

•

•

•

•

•

•

•

POWER
TIMES, SLASH, DIV, MOD,
PLUS, MINUS, CHS,
LEQ, LSS, SEQ, GTR, EQL, NEQ, IN,
B. NOT,
B. AND,
B. OR

After the line containing 'ENDALLEXT .•• • comes the code for the
specified extensions. Each routine starts with a label which is
<name> (or (local r,ame> > of the corresponding • EXTENSION' line.

When the routine starts, all registers used by COMAL-80 are saved
and may be used. The parameters are pushed on the stack referenced
by IX. This stack grows downwards like the SP-stack with the last
parameter on the top.

For 'call by reference' parameters, a 'reference element' is placed
on the stack (described below>. Note that if the formal parameter
is of the type 'ANYTYPE' or 'REALINT', the extension must find the
type of the actual parameter and act accordingly. The type is de
termir,ed by the referer,ce element as described below.

For 'call by value' parameters, the value is on the stack. The way
in which the value is structured is described below. If the formal
parameter is of type 'ANYTYPE' or 'REALINT', an extra byte is push
ed on top of the value and this byte states the type of the value
in the following way: For 'ANYTYPE' the byte may be of the value
'INT', 'REAL' or 'STR', corresponding to the type of the actual
parameter. For• INTREAL' an actual parameter of type 'REAL' will
always be converted (rounded if necessary> to 'INT' before the
extension is called but the extra byte will state whether the con
version created an overflow (if the number was too large>. In that
case the byte will not be 0, otherwise it will be equal to O. If
the actual parameter is of type • INT' the byte will be equal to O.
Ir, the case of an overflow, the integer will still be in the stack
<Just below the byte> although its value will be of no interest.

The A and B registers contain, respectively, the version number of
the running COMAL-80 version and the sub-version number. For
version 2.0 the sub-version number is O and the version number is
8+0B+OV for which DB=O for the 7-digit version and D8=2 for the
13-digit version, while OV=O for the non-overlaid version and OV=l
for the overlay version.

Before the routine returns, all parameters must be popped from the
IX-stack. If the routine corresponds to a function or an operatQr,
the return value must be pushed onto the IX-stack before the
return. However, if the return takes place while the C-bit is set
<see below>, it is not necessary to pop the parameters or push any
return value. The return is made using 'RET'. Nothing must be done
to change the size of the SP-stack (which may be used as there is
about 100 bytes of free space) •

COPYRIGHT <C> 1983 METANIC ApS DENMARK PAGE. 1-022

Depending on the contents of the AF-register, COMAL-BO may give an
error message on returning from the routine. Both fatal and non
fatal error messages are possible. If the Z-bit has been set, no
error message will appear, otherwise the error message correspon-
ding to the number in the A-register will be given, unless the n1..11Y,- •
ber is above 150 in which case the error number is increased by 50.
The error message will be fatal if the C-bit is set; otherwise it
will be non-fatal, which means that it will not appear when a 'TRAP
ERR-' statement has been included; the error number may be returned
by using 'ERR()'.

STRUCTURE OF PARAMETERS

This section describes how parameters
ments> are represented in COMAL-SO:

(values and reference ele-

Integers: The bit-pattern 8000H meaY,s • uY,defiY,ed' aY,d it will never •
be supplied as a paraMeter. It should Y,ot be returned or assigr,ed
to any paraMeters. If a 'call by reference' paraMeter holds this
value it Means that the variable never has been assigned any value.
This must be checked before the value is used. This is done auto
matically by the function 'LDVAL' of the mathematical package.

Real nuMbers use 4 bytes in the 7-digit version and 8 bytes in the
13-digit version. If the first byte is equal to 80H and the last
byte to OOH, this means • undefined' (see •integers').

Strings consist of two parts: The first 2 bytes indicate the length
of the string, the remaiYiing bytes are a character-by-cnaracter re
presentation of the string.

Reference elements denote variables of all kinds, both simple vari
ables including string variables, as well as arrays and sub
strings. The format for reference eleMents for substrings is spe
cial and will be described separately; all other reference elements
use 4 bytes and consist of two pointers: a pointer to a description
of the variable, and a pointer to the data area of the variable.

The description of a variable is of varyiY,g size aY,d grows towards •
lower addresses <NB!). For simple variables it consists of a byte
carrying the value '-INT', '-REAL', or '-STR' corresponding the
three types. If it is '-STR' this byte is followed by the maximum
length of the string variable (an integer of 2 bytes>.

For arrays a number of index-fields is first stated corresponding
to the number of indices. Each index-field contains the following:

number of index-fields following
lower limit for this index
upper limit for this index
size of the data of each sub-array
or element

COPYRIGHT CC) 1983 METANIC ApS DENMARK

(1 byte)
(integer
(integer

< integer

2 bytes)
2 bytes>

2 bytes>

PAGE 1-022A

•

•

•

•

•

Example:
The description of a variable for an array dimensioned by

'DIM A$(-2:5, 1: 10) OF 20'

will be:
1 (1 byte)
-2 (2 bytes>
5 (2 bytes>
220 (2 bytes>

0 (1 byte)
1 (2 bytes>
10 (2 bytes)
22 (2 bytes> (2 for actual ler,gth + 20 for t r1e

characters)

-STR (1 byte>
20 (2 bytes)

Reference elements for substrings also start with a pointer to a
variable description which in this case is one single byte of ei
ther value '-STR-1' or '-STR-2'.

Then follows a pointer to the
which the substring is a part.

data-area for the string variable of
Ther, fo 11 ows

the maximum (dimensioned) length for the specific
st ring variable,

2nd index (to-value), and
1st index (from-value>

which are used to specify the substring.

Examples of 2nd and 1st index are:

For 'A$ (8: 17>'
2nd index 17
1st i r,dex 8

For 'A$ C 10)'
2nd index 10
1st index 10

All four values above are integers (2 bytes).

The data-area for a simple variable is structured as for values.
The data-area for an array is a continuous row of simple data
areas - one for each element. For string arrays, space is allocated
for the maximum possible length of each element •

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 1-023

MATHEMATICAL PACKAGE

Within 'EXTDEFS.MAC' the necessary information for use of the
mathematical package is defined. The mathematical package can be •
called using the macro

EXPR

End the call by using

EXPREND

The commands are executed one by one in the order in which they are
written. Mostly, they take their arguments from the IX-stack and
store their results on this stack. The commands may be considered
as a program for a stack-oriented computer. In reality the commands
are macros defined in 'EXTDEFS.MAC'. Each macro expands to one or
Mo re bytes (with parameters) and cal ls the mat ~1emat ical package •
which interprets these parameters and operates on the IX-stack.

The following commands may all be used:

Corresponding to the standard functions of COMAL-80, the following
commands may be used. All commands require arguments of a certain
type and return a result of a certain type. The arguMent must be
integer when• INTREAL' is stated, but it will be accepted if it is
the result of a call of 'REALINT' immediately before the command.

Name

ATN
cos
SIN
TAN
LOG
EXP
SQR
ESC
ERR
EDD
EDF
LEN
ORD
!VAL
VAL
INT
FRAC
TRUNC
ROUND
POS
BVAL
CHR
STR
I. STR

Type of
Argument(s)

REAL
REAL
REAL
REAL
REAL
REAL
REAL

REALINT
ref.elemt.
STR
STR
STR
REAL
REAL
REAL
REAL
STR, STR
STR
REALINT
REAL
INT

Type of
Result

REAL
REAL
REAL
REAL
REAL
REAL
REAL
INT
INT
INT
INT
INT
INT
INT
REAL
REAL
REAL
INT
INT
INT
INT
STR
STR
STR

(ref.elemt. must be string)

(both correspond to STRS but taken
of a real number or an integer,
respectively)

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-023A

•

•

ERRTEXT REALINT STR
SGN REAL INT (both correspond to SGN but taken
I. SGN INT INT of a real number or an integer,

• respectively)
ABS REAL REAL (both correspond to ABS but taken
I. ABS INT INT of a real number or ar, integer,

respectively)
RNDO REAL (RND without parameters>
RND2 REALINT,REALINT INT <RND with two parameters)
SPC REALINT STR
PEEK REAL INT
INP REALINT INT
VARPTR ref.elemt. REAL
FREEST . INT <FREESTORE>

CONVERSIONS:

• CONV converts the topmost stack element from 'INT' to 'REAL'.

•

•

CONV1 converts the topmost minus one stack element from 'INT' to
'REAL'. The top element is assumed to be of 'REAL' type.

REALINT converts the topmost stack element from 'REAL' to 'INT' in
cluding rounding if necessary. If the number is outside the
integer area, the topmost stack element will be undefined.
However, a special overflow-flag is set for suitable reac
tion by the standard functions for which 'REALINT' i~
stated above.

RLBL converts the topmost stack element from 'REAL' to 'INT' in
such a way that the result will be 1 if the number is not
0, otherwise it will be O.
This is used in connection with boolean operates.

RLBL1 converts the topmost minus one stack element from 'REAL' to
'INT' in the same way as done by 'RLBL'. The top element is
assumed to be an' INT' type •

In this connection the standard
following names:

operators of COMAL-BO have the

Name COMAL-BO
Name

CHS - <monadic>

POWER
TIMES * SLASH I
DIV DIV
MOD MOD
PLUS +
MINUS - (dydadic)

Type of the
Argument <s>

REAL

>-> REAL, REAL
)

)

)

COPYRIGHT (C) 1983 METANIC ApS DENMARK

Type of the
Result

REAL

REAL

PAGE 1-024

LEQ (=
LSS (

GEQ >=
GTR
EQL
NEQ 0

I.CHS

I. TIMES * I. DIV DIV
I. MOD MOD
I.PLUS +
I. MINUS

I. LEQ <=
I. LSS (

I. GEQ >=
I. GTR
I. EQL
I. NEQ 0

S.PLUS +

S.LEQ <=
S.LSS
S.GEQ >=
S.GTR
S.EQL
S.NEQ 0

IN IN
B.AND AND
B.OR OR
B.NOT NOT

>-> REAL, REAL

INT

>-> INT, INT
)

)

>-> INT, INT
)

)

STR, STR

>->STR, STR
)

)

STR, STR
INT, INT
INT, INT
INT

INT
(value O or 1) • INT

INT

INT
< va 1 ue O or 1) •
STR

INT
(value O or 1)

)

>->I NT
<value O or 1>

OTHER COMMANDS:

INX expects a number followed by a referer,ce ele1Y1er1t to an •
array or a string variable on top of the stack. Also, it
performs indexing, i.e. it pops the stack and pushes a re
ference element for the chosen element of the stated array

LOVAL

or the stated substring.
The number may be integer or real. If real, it is automati
cally converted to an integer with rounding. The type
(' INT' or 'REAL'> must be stated after• INX', for example:

INX REAL

expects to find a reference element on top of the stack. It
pops it and then pushes the value of the corresponding
variable. 'LDVAL' may also be used after• INX 1

• It checks
that the variable is not 1 ur1defir,ed 1

, i.e. that it does not.
6arry the special value meaning that no value has been
assigned to it.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-024A

•

•

•

•

STVAL

LOAD

STORE

INTCON

STRCON

UROUND

SYSVAR

TRUE

FALSE

expects a reference element followed by a value on the top
of the stack. Both are popped and the value is stored in
the variable given by the reference element. The type of
value and that of the variable denoted by the referenee
element must conform. May be used after• INX'.

expects an address (2 bytes) on the top of the stack. It
pops the address and pushes the value/reference element at
that address. The type of the value must be stated, unless
it is stated as being a reference element. This is done in
the same way as 'LOAD' and might look like this:

LOAD INT

expects an address (2 bytes) followed by a value or a refe
rence element on the top of the stack. Both are popped
and the value/reference element are stored at the given
address. As with 'LOAD', the type of value must be stated,
unless it is stated as being a reference element. Also, as
with 'LOAD', an example might be:

STORE REF

pushes an integer or an address (2 bytes)
The integer/address must appear on the
'INTCON' as:

INTCON 47

or,to the stack.
same line as

pushes a string onto the stack. The string value must
appear on the same line as 'STRCON':

STRCON 'Strings appear in single quotaton marks'

expects a real number on the stack. The number is popped,
converted to an unsigned integer between O and 65535, and
pushed again.

pushes the value of one of the system variables as an inte
ger. The system variable in question must be stated on the
same line as 'SYSVAR', as in the example:

SYSVAR PAGEWI

In connection with this the names of the system variables
must be shortened according to the list below:

Name in COMAL-80

ZONE
INDENTION
PAGEWIDTH
PAGEL ENG TH
KEYWORDLOWER
IDENTIFIERLOWER

pushes a 1 •

pushes a O.

SYSVAR Name

ZONE
INDENT
PAGEWI
PAGELE
t'<WLOWER
IDLOWER

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-025

There is a possibility of errors occuring during the use of tne
MatheMatical package: overflow, index error, functions being given
arguMents, out of range, and so on. Here, tnere is a destinction
between fatal ar-1d nor-,-fatal errors. Errors whic~, would be fatal du- •
ring a normal COMAL-BO run will also be fatal in this connection.
Errors which would not be fatal during a normal COMAL-BO run and
consequently could be bypassed using 'TRAP ERR-' are also non-fatal
here. The error number is stored and the execution of commands is
resumed whenever a non-fatal error occurs. The error number will
then be held in the A-register wnen returning to the extension
after 'ENDEXPR', and the carry-bit will be 0, Z will be 1.

If a fatal error occurs the rest of the comMands will be skipped,
IX is set to the value held on entry to the MatheMatical package,
and the systeM returns to the extension after 'ENDEXPR' with the
error r-11.tmber ir-, the A-register: carry = 1 ar-,d Z = 1. If r-,o errors
whatsoever occur A= 0 and Z = 0 on returning to the extension
after 'ENDEXPR'. This mear-,s tt,at it cam be checked whether errors.
occur during the execution of a specific command by adding

ENDEXPR
JP
EXPR

NZ,ERROR_HANDLING

after this command.

Note that these conventions covering the contents of A,
correspond to the conventions for reporting errors
calling COMAL-8O program.

FORMAT FOR '.EXT' FILES

CY, ar-,d Z
back to t ne

The file being loaded by COMAL-8O when using the 'EXTENSION' com
mand must have a specific format. This is a very simple relocatable
format. The assembler program, the form of which is described in
the first chapter, can be translated by the Microsoft MBO Macro
assembler to one relocatable forMat. Other assemblers use other re
locatable formats (and some of these even require that the defini
tions within 'EXTDEFS.MAC' are re-written>. COMAL-8O defines its
own relocatable format as follows:

n,e file starts with an i r-,teger of 2 bytes infort,1ir-1g t,ow much code
is contained in the file (i YI bytes>. This is not the same as the
ler-,gt h of the file, as the file COY1taiY1S the code as well as ir-,-
formation as to wt,ich parts of the code is to be relocated.

The rest of the file consists of a number of blocks with the same
format. Each block consists of 9 bytes of which 8 contain code and
the 9th holds information on the relocation of the 8 bytes. If the
number with which the file starts is L, there will be (L + 7) DIV 8
blocks. If L is not a multiple of 8 there will be space left over
in the last block. The contents of the remaining space is unimpor
tar-1t.

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 1-025A

•

•

•

•

•

•

The code contained in the blocks represents one long row of code
bytes. Consequent!~. the code contained in two following blocks
will follow right after each other when the file is read by COMAL-
80. The byte carrying the information on relocation contains one
bit for each of the 8 code-bytes so that bit O corespon~s to the
first byte and so on up to bit 7 which corresponds the 8th and last
code-byte. If one of these bits is 1, it means that the address re
siding in that particular byte and the one preceeding are to be
relocated. The two bytes are not to be relocated if the bit is 0.

The 'CONVERT' program can change a relocatable file in the Micro
soft format into the corresponding file in the COMAL-SO format. If
an assembler with another format is used, the user must write a
program to change the relocatable file into COMAL-SO format •

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 1-026

•
COMAL-80 Commands and Statements

All the COMAL-80 commands, statements and functions are described
in this chapter. Each description is formatted as follows:

Type:

Purpose:

Syntax:

Execution:

Example:

States whether a command, statement or function.

States what the instruction is used for.

Shows the correct syntax for the instruction.
See below for syntax notation.

Describes how the instruction is executed.

Shows sample programs or program segments that
demonstrate the use of the instruction •

• Comments: Describes in detail how the instruction is used.

•

•

Syntax Notation.

Wherever the syntax of a statement, command or function is given,
the following rules apply:

Items in capital letters must be entered as shown, using either
upper or lower case letters.

Items in lower case letters and enclosed in angle brackets < >
are inserted by the user.

Items in square brackets ([J) are optional.

All punctuation except angle brackets and square brackets (i.e.
commas, parentheses, semicolons, colons, exclamation points, slash
es, number signs, plus signs, minus signs and equal signs> must be
included where shown.

All reserved words must be preceded by and/or followed by a
if this is necessary to avoid multiple interpretations •

space

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-001

•

•

•

•

ABS

Type:
Arithmetic function

Purpose:
To calculate the absolute value of an arithmetic expression

Syntax:
ABS(<expression>>

Execution:
Returns the absolute value of <expression>.

ExaMple:
10 PRINT ABS(3*(-5))

ComMents:
1. The result will be of the same type (real or integer> as

the expression •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-002

AND

Type:

• Logical operator

Purpose:
To perform the logical 'AND' between 2 expressions.

Syntax:
<expressionl> AND <expression2>

Execution:
<expressionl> is ANDed with <expression2}.

Example:
10 INPUT A#
20 INPUT B#

• 30 IF A#=5 AND B#=7 THEN
40 PRINT "THE PRODUCT IS 35"
50 ELSE
60 PRINT "THE PRODUCT MAY NOT BE 35"
70 ENDIF

Comments:
1. This operator uses the truth table:

<expressionl> <expressi on2> result
true true true
true false false
false true false
false false false

•

•
COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-003

•

•

•

•

ATN

Type:
Arithmetic function

Purpose:
Returns the arctangent of an arithmetic expression.

Syntax:
ATN<<expression>>

Execution:
Returns the arctangent of <expression> in radians.

Example:
10 INPUT A
20 PRINT ATN<A>

ComMents:
1. The result will always be real (whether <expression> is

real or integer) and will lie between -pi/2 and pi/2 •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PASE 2-004

•

•

•

•

AUTO

Type:
Command

Purpose:

Syntax:

To generate a new
'RETURN'.

l ir1e number

AUTO C <start> C, <step> JJ

automatically after each

Execution:
Following each 'RETURN' a new line number is calculated
using the last line number used (or the value entered as
<start>> plus the value of (step). The new number is placed
in the input buffer and displayed on the screen.
The cursor is set to column 6 plus the current indent
(which is program dependent> ready for a new input line.

Examples:
AUTO
AUTO 15
AUTO 10,5

Comments:
1. If the (start> value is omitted, default 10 is used.

2. If the <step> value is omitted, default 10 is ltsed.

3. If an existing line number is generated,
replaces the former one.

t he r,ew 1 i r1e

4. The automatic generation of line numbers can be inter
rupted at any time by pressing the 'ESC' key.
The line in which this is done will not be stored •

COPYRIGHT <C> 1983 METANIC ApS DENMARK PAGE 2-005

•

•

•

•

BSTR$

Type:
String 'function

Purpose:
Converts an arithmetic expression to binary representation.

Syntax:
BSTR$((expression>>

Execution:

Example:

<expression> is calculated and
value is then .converted to
st ring.

10 DIM A$ OF 8
20 INPUT B
30 A$:=BSTR$(B)
40 PRINT A$

Comments:

rounded if necessary. The
an 8 character binary text

1. <expressior,> must evaluate to a value between O and 255 •

COPYRIGHT <C> 1983 METANIC ApS DENMARK PAGE 2-006

•

•

•

•

Type:
Arithmetic function

Purpose:

Syntax:

To convert a binary number
value.

BVAL ((string expression>>

Execution:

BVAL

from a string to an integer

A binary number contained in a string of 8 characters is
converted to its integer form.

Example:
10 DIM A$ OF 8
20 DIM BS OF 8
30 INPUT "WRITE A BINARY VALUE: 11

• A$
40 B$:="10101100"
50 PRINT BVAL(A$)
60 C#:=BVAL(B$)
70 PRINT C#

Comments:
1. If the string contains more than or less than 8 digits,

or if it contains anything other than binary digits
(0 and 1) program execution will be stopped with an
error message •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-007

•

•

•

•

CALL

Type:
Statement, command

Purpose:
To call a Z-80 macnine code routine from COMAL-BO.

Syntax:
CALL <expression>

Execution:
<expression> is calculated and rounded if necessary. The
CPU then stores. all its registers and executes a machine
code routine starting at the specified address.

ExaMples:
CALL 256

240 CALL 53248

Commer,ts:
1. For further details on the Z-80 microprocessor and its

assembler codes please refer to the manufacturers'
manuals.

2. The user may use the CPU registers, however, the stack
pointer must be re-established prior to returning to
COMAL-BO.

3. COMAL-BO does not utilize the interrupt facilities of
the CPU. Consequently, the user may do this after retur
ning to COMAL-80.

4. End the machine code with a 'RET' command to return to
COMAL-BO .

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-008

•

•

•

•

CASE WHEN OTHERWISE ENDCASE

Type:

Purpose:

Syntax:

Statemer,t

The case structure is used to select the program section to
be executed according to the value of an expression.

CASE <expression> OF
WHEN (list of values>

WHEN (list of values>

WHEN <list of values>

COTHERWISE

• J
ENDCASE

Executior,:

Example:

The (expression> is evaluated and the 'WHEN' statements are
checked or,e by or,e to fir,d whether or,e of the list of
vali.tes matches the calculated value.
When a match is found the lines from the 'WHEN' statement
in which it is found, up to the next corresponding 'WHEN',
'OTHERWISE', or 'ENDCASE' statement, are executed, after
which program execution continues after the 'ENDCASE'
statement (provided that none of the executed lines have
transferred the execution to yet another part of the
program>.
If none of the values fit the value of <expression> the
lines following 'OTHERWISE' will be executed.
If 'OTHERWISE' is omitted, program execution stops with an
error message if no match is found.

10 DIM A$ OF 1
20 INPUT "PRESS THE 'A' OR THE 'B' KEY":A$
30 CASE AS OF
40 WHEN "A", "a"
50 PRINT "YOU HAVE PRESSED THE 'A' KEY"
60 WHEN 11 B 11

, "b"
70 PRINT "YOU HAVE PRESSED THE 'B' KEY"
80 OTHERWISE
90 GOTO 20

100 ENDCASE

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 2-009

Commer,ts:
1. The expressions contained in tne 'WHEN' statements must

be of the same type as <expression) but integer expres
sions are allowed in the 'WHEN' statements if <expres
sion) is of real type.

2. If several 'WHEN' statements correspond to
only the first one will be executed.

<express 1 or,>

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 2-009A

•

•

•

•

•

•

•

•

Type:

Purpose:

Synta><:

Command

To display the catalog of a background storage device.

CAT C (file namel > C, <file name2> J l
CAT (file name2>

CAT

Execution:
The operating sy~tem of the
contents of the file catalog
fied (file name2>.

Examples:
CAT
CAT DKl:
CAT DKl:K
CAT DKl:,DKO:ABC.DEF
CAT *.CML,LP:
CAT DKl:C???????.*,LP:
CAT LP:

Comments:

computer is called and the
are transferred to the speci-

1. (file name2>
log is output.

is the name of the file to which the cata-

2. {file naMel> specifies partly or wholly the name(s) of
the catalog entries which are to be output. A partial
specification May consist of a device name only (in
which case the whole catalog of that device is output>,
or a partial file name, ~here the characters'*' and'?'
are used following the CP/M protocol.

3. Omitting {file name2> displays the catalog on the termi
nal •

4. Omitting {file namel> displays the whole catalog of the
current default device •

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 2-010

•

•

•

•

Type:

Purpose:

Syntax:

Statement

To write the catalog from a
a file.

CAT

background storage device into

CAT (file name>, FILE (file No.>

Execution:
The operating system of the computer is called, and infor
mation as to which device and which file names are to be
written is passed to it. The catalog is written in ASCII
format in the specified (file No.> •

Examples:
100 CAT "DKl: 11

, FILE 3
100 CAT "DKl:*.CML", FILE 2

Commer-,ts:
1. (file name> must be a string expression.

2. (file r-,ame> specifies the files required from a catalog.

3. (file naMe) specifies partly or wholly the naMe(s} of
the catalog entries which are to be output. A partial
specification May consist of a device name only (in
which case the whole catalog of that device is output>,
or a partial file name, where the characters'*' AND'?'
are used following the CP/M protocol.

4. If (file name> is an empty string, the whole catalog of
the current default device will be displayed.

5. Before meeting the 'CAT' statement, a file carrying the
stated <file No.> must be opened using the 'OPEN' state
ment.

6. The device on which the catalog is to be output must be
specified in the 'OPEN' statement.

7. Following closing and re-opening, the created file may
be read using the 'INPUT FILE' statement.

8. If a line printer with
used for the printout,
each 1 ine.

pagewidth = 0 or a diskfile is
one file name is printed on each

9. During programMing 'FILE' and '#' are interchangeable.
In program listings 'FILE' is used •

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 2-011

•

•

•

••

Type:

Purpose:

Synta><=

CHAIN

Statement

To load and start execution of a program stored as a
memory-image file or, the background storage device.

CHAIN (file naMe> C, <list of variables> l

Execution:

ExaMple:

The MeMory of the computer is cleared; the program
<file naMe> is loaded and execution resumes from the lowest
line number.

10 // MAIN PROGRAM
20 DIM PROGRAM$ OF 10
30 REPEAT
40 INPUT "WHICH PROGRAM IS WANTED?": PROGRAM$
50 UNTIL PROGRAM$="LIST" OR PROGRAM$="UPDATE"
60 CHAIN PROGRAM$

Comments:
1. (file naMe} is a string expression.

2. If the • CHAIN' statemer,t includes a <list of variables>
the new program section should have a 'RECEIVE (list of
variables>• statement.

3. This statement is used typically to organize a large
program into smaller independent parts which may be
1 oaded ar,d executed acco_rd i ng to user commar,ds.

4. The program (file name> Must be stored by the 'SAVE'
command •

5. See also the 'RECEIVE' statement •

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 2-012

•

•

•

•

CHR$

Type:
String 'functior1

Purpose:

Syr,tax:

To convert an arithmetic expression into a single-character
strir,g.

CHR$C(expression>>

Execut i or,:

Example:

<expression> is eva~uated and rounded if necessary. The
value is converted into a string consisting of a single
character represented by that ASCII code.

10 INPUT A
20 PRINT CHR$CA>

Co,viment s:
1. <expressior1) ,v1ust be betweer1 0 ar,d 255 •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-013

•

•

•

•

Type:

Purpose:

Syntax:

Statement, command

To clear the screen and
corner.

CLEAR

Execution:

CLEAR

place the cursor i r, the top left

The screen is cleared and the cursor is placed in the top
left co rr,er.

Examples:
10 CLEAR

CLEAR

Com,ner,t s:
1. This statement/command affects the screen only •

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 2-014

•

•

•

•

CLOSE

Type:
Statement, command

Purpose:
To close one or more data files after use.

Syntax:
CLOSE CFILE (file No.)J

Execution:
The data file carrying the specified (file No.> is closed.
(file No.>, whic~, is ar-1 arith,rietic expression, is evaluated
and if necessary rounded before closing.

Examples:
200 CLOSE
390 CLOSE FILE 3
540 CLOSE FILE A*B

ComMents:
1.

CLOSE

If 'FILE' and (file No.>
files are closed.

are o,riitted, a 1 1 o per, d at a

2. When 'CLOSE' is executed, the stated connection between
(file name) and (file No.> is detached and the file may
be re-opened with the same or a new number.

3. Make sure that the 'CLOSE' statement/command is executed
before program execution is finished to avoid leaving
data in the system buffers.
The 'RELEASE' command will indicate whether all files
have been closed.

4. During programming 'FILE'
In program listings 'FILE'

COPYRIGHT (C) 1983 METANIC ApS DENMARK

ar,d • #'
is used •

are interchangeable.

PAGE 2-015

•

•

•

•

CON

Type:
ComMand

Purpose:
To resume program execution after a stop.

Syntax:
CON C<line No.>J

Execution:
Program execution is continued at <line No.> if specified,
otherwise at the.point at which it was stopped.

Examples:
CON
CON 220

Comments:
1. New values may be assigned to variables before resuming

program execution.

2. Program execution may be resumed after a stop caused by
a 'STOP' or an 'END' statement, after pressing the 'ESC'
key and after a non-fatal error.

3. If the program stopped because of an error, program exe
cution will be resumed starting with the statement in
error. In all other cases program execution is started
with the statement following the last statement execu
ted.

4. If program editing has taken place,
cannot always be resume~.

program execution

5. If program execution is interrupted using the 'ESC' key
while the computer is waiting in an' INPUT' statement, a
value will not be assigned to the variable in question.
In this case program execution should be resumed by 'CON
Cline No.>' for the Cline No.> displayed on the screen
immediately after pressing the 'ESC' key •

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 2-016

•

•

•

•

cos

Type:
Trigonometrical function

Purpose:
To calculate the cosine of an expression.

Syntax:
COSC<expression>>

Execution:

Example:

Cosine of <expression>,
radians, is calculated.

10 INPUT A
20 PRINT COSCA>

for which <expression> is in

Comments:
1. (expression> may be an arithmetic expression of real or

integer type. The result will always be real •

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 2-017

•

•

•

•

CURSOR

Type:
Statement, command

Purpose:
To place the cursor at a specified position on the screen.

Syntax:
CURSOR <expressi or,1 >, <expressi or,2>

Execution:
<expressionl> and <expression2>, both of which must be
arithmetic expressions, are evaluated and rounded. The
cursor is then moved to the column defined by <expressionl>
and to the line number defined by <expresion2>.

ExaMples:
100 CURSOR 8, 12
220 CURSOR CHARACTER#,LINE#
300 CURSOR 3*2, 5+4

CURSOR 10, 15

Comments:
1. <expressionl> is counted from left to right and <expres

sion2> is counted as positives from the top down. The
top left corner has the coordinates 1,1 •

COPYRIGHT <C> 1983 METANIC ApS DENMARK PAGE 2-018

•

•

•

•

DATA

Type:
Statement

Purpose:

Syntax:

To define constants in the form of a data list
by the 'READ' statement.

DATA <cor,stant 1 >, <constant2>, •.••• , <constantn>

to be read

Execution:

Example:

At the start of program execution, a search is made for
'DATA' statements and they are chained into a data list.
During a run, an internal pointer is set to the next con
stant in the list •

10 DIM FIRST_NAME$ OF 10
20 DIM FAMILY_NAME$ OF 15
30 DATA "JOHN", "DOE"
40 READ FIRST_NAME$
50 READ FAMILY_NAME$
60 PRINT FIRST_NAME$+" "+FAMILY_NAME$
70 DATA 35
80 READ AGE
90 PRINT AGE; "YEAR"

Commer,ts:
1. 'DATA' statements are non-executable

during program execution.
and are skipped

2. Any number of 'DATA' statements may be placed anywhere
in the program.

3. A 'DATA' statement may contain as many constants (sepa
rated by commas> as are allowed by the maximum length of
an input line (159 characters>.

4. The 'READ' statement reads the 'DATA' statements in
line nuMber order.

5. The types of constants may be mixed but must match those
of the corresponding 'READ' statements otherwise execu
tion results in an error message.
Arithmetic expressions are not allowed in a 'DATA'
statement, and string constants must be enclosed in
double quotation marks.

6. The constants may be re-read, partly or wholly,
of 'RESTORE', 'RESTORE < 1 i r-,e number>', or
<naMe>' statements.

by means
'RESTORE

7. When the last constant is read the system function
'EOD()' will return the value of true<= 1).

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 2-019

•

•

•

•

Type:

Purpose:

Syntax:

Command

To delete one or more program lines.

DEL <start lir,e> C, <end line>]
DEL • <er,d 1 i ne>
DEL <start line>,

DEL

Execut i or,:
The specified line(s) is/are deleted from the program.

Examples:
DEL 25,100
DEL ,220
DEL 95,
DEL 40

Comments:
1. I f <st a rt 1 i ne > on 1 y i s s pee i f i ed. t h is l i r,e a l one w i 11

be deleted.

2. If (start line> immediately fol lowed by a comma is
specified, this line and the rest of the program will be
deleted.

3. If a comma followed by a line r,umber only is specified,
the program is deleted up to and including this line.

4. Specifying <start line> comma (end line> deletes the
lines between the two in~lusively •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-020

•

•

•

•

DELETE

Type:
Statement, command

Purpose:
To delete file Cs) on the background storage device.

Syntax:
DELETE (file name>

Execution:
The operating system is called and information on the
file(s) to be deleted is passed to it.

Examples:
100 DELETE "TEST.CML"
220 DELETE "DK1:DATA.DAT"
300 DELETE "DKO:D???????.*"

Commer,t s :

DELETE PROGRAM.CML
DELETE DK1:C*.CML

1. In statements (file name) must be a string expression.

2. (file name) specifies partly or wholly the r,ame(s) whict1
is/are to be deleted. The characters'*' and/or'?' can
be used following the CP/M protocol.

3. The whole file name,
specified.

including any extension, ,v,ust be

4. If (filename> does not exist then an error message is
given if 'DELETE' has been used as a command but not
if it has been used as a statement .

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 2-021

•

•

•

•

Type.:

Purpose:

Syntax:

Cfor arithmetic variables> DIM

Statement

To allocate memory space for arrays and set to the
1 imi ts.

DIM (list of indexed variables>

Execution:
The necessary me~ory is calc~lated and allocated according
to the type of variable.

Examples:
10 DIM MONKEY(5)
10 DIM NUMBER(7,3>, COUNT(7)
10 DIM CARS#C-5:15,3:8)
10 DIM A$ C 3 : 2 > , B C 5 >

Comments:
1. Arrays must be dimensioned.

// SEE NOTE 5

// SEE NOTE 6

2. An array may have any number of dimensions limited only
by the memory available and the maximum length of an
input line (159 characters>.

3. Each of the elements in (list of indexed variables> is
specified using the syntax:

<variable name>C<list of index limits>>
where (variable name> optionally includes the declara
tion character'#'.
The elements are separated using commas.
<list of index limits> contains the lower and upper
limits for each dimension following the syntax:

[(lower limit) :J (upper liMit>
The dittiensions are separated by commas •
If no lower limit is given, a default of 1 is used.

4. The 'DIM' statement assigns the value Oto each element.

5. Several variables can be diMe~sioned in the saMe line.

6. Arithmetic and st~ing variables can be dimensioned on
the sattie line •

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 2-022

•

•

•

•

Type:

Purpose:

Syntax:

(for string variables) DIM

Statement

To allocate memory space for strings
and set the index limits.

DIM (list of indexed variables>

and arrays of strings

Execution:
The necessary memory is allocated according to the dimen
sions and length of the variable.

Examples:
10 DIM A$ OF 80 II SEE NOTE 9
10 DIM A$(3) OF 10 II SEE NOTE 7
10 DIM B$ <O: 1, 3) OF 25 II SEE NOTE a
10 DIM A$(3:2) OF 10, B$(5) OF 25 II SEE NOTE 5
10 DIM A$(5) OF 15, CC5) II SEE NOTE E,

Commer,ts:
1. Arrays and string variables must always be dimensioned.

2. An array may have any number of dimensions limited only
by the memory available and the maximum length of the
input lir,e (159 characters>.

3. Each of the elements in (list of indexed variables> is
specified using the syntax:

<variable name>CC(list of index limits>>J OF (length>
where <variable name> includes the declaration character
, $, •

The elements are separated using commas.
<list of index limits> contains, for each dimension of
an array, upper and lower limits for that dimension
following the syntax:

(Clower limit> :J <upper limit>
The dimensions are separated by commas.
If no lower limit is given a default value of 1 is used.
(length> indicates the maximum length of the string
variable or of each of the elements in the string array.
The actual value of a string variable/element may vary
from zero characters (the empty string) up to and inclu
ding the stated <length>.

4. The 'DIM' statement assigns the value 1111 (empty string)
to each elemer,t.

5. Several variables can be dimensioned in the same line •

6. Arithmetic and string variables can be dimensioned in
the same 1 i ne.

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 2-023

7. This array will contain the elements A$(1), A$(2) and
A$(3) each having a maximum length of 10 characters •

8. This array will contain the elements 8$(0, 1), 8$(0,2),
B$(0,3), 8$(1, 1), 8$(1,2) and 8$(1,3) each having a
maximum length of 25 characters.

9. A string variable need not be an array.

COPYRIGHT <C> 1983 METANIC ApS DENMARK PAGE 2-023A

•

•

•

•

•

•

•

•

Type:

Purpose:

Syntax:

Arithmetic operator

To carry out an integer division
expressions.

(expressionl> DIV <expression2>

DIV

between two arithmetic

Execution:
<expressionl> is.divided by <expression2> and the result is
rounded to an integer value.

Examples:
100 A#:=B DIV C
100 NUMBER:=17 DIV NUM

Comments:
1. The result N is defined by the integer value of N which

makes the expression
<expressionl) - N * <expression2>

assume its lowest possible non-negative value.

2. The type of the result depends upon the type of (expres
sionl> and {expression2> in the following way:

<expressi oY,1 > DIV <expression2> result
real real real
real int real
int real real
int int int

3. Also see the 'MOD' operator.

COPYRIGHT <C> 1983 METANIC ApS DENMARK PAGE 2-024

•

•

•

•

EDIT

Type:

Purpose:

Syntax:

ComMand

To simplify correction of a program held in working memory.

EDIT E<start>JE, <end)J
EDIT C <start>, J

Execution:
The specified program area is called from working storage
and displayed on the screen line by line. The cursor is
placed immediately after the last character and can be
moved backwards and forwards on the line using the cursor
control keys. Place the cursor over the character to be
corrected, key in the correction and the cursor will move
one position to the right.
When the corrections are complete, press 'RETURN'. The line
undergoes the syntax control and when accepted it is
stored. The next line is displayed and the sequence repeats
until <end> is reached.

Examples:
EDIT
EDIT 100
EDIT 100,
EDIT , 100
EDIT 100,200

CoMments:
1. If <start> is omitted,

program 1 ir,e.
the editing starts at the first

2. If <end> is omitted, the edit ir,g cont ir,ues ur,t i l the er,d
of the program •

3. Omitting both limits, starts the editing at the first
program line and continues to the end of the program
(or until the 'ESC' key is pressed).

4. If only <start> is used, without a comma, editir,g will
be restricted to the one line.

5. All the correction facilities described in INPUT EDITING
in chapter 1 are available •

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 2-025

6. The line number itself may be eoited causing the line to
be placed in 1Y1e1Y10 ry at the r-,ew 1 i r-,e r-,u,v,ber. Ar,y 1 i r,e •
already stored at that number will be deleted.
The original line will not have been deleted from the
program (use the 'DEL' command).

7. On pressing 'RETURN' the entire line is stored in memory
regardless of the position of the cursor.

8. The edit command may be interrupted at any time by pres
sing the 'ESC' key. Changes in the line will be entered
only after pressing 'RETURN'.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PASE 2-025A

•

•

•

•

•

•

•

END

Type:
Statemer,t

Purpose:
To stop the execution of a program.

Syntax:
END

Execut i or,:

Example:

Program execution is terminated
'*' is displayed to show that the
ready to accept new input.

10 K:=O
20 K:+1
30 IF K>lOO THEN END
40 PRINT t(

50 GOTO 20

and the prompt character
COMAL-SO interpreter is

Comments:
1. The 'END' statement does not give any information as to

where program execution was stopped (see 'STOP').

2. The use of the 'END' statement is optional, as COMAL-80
adds an invisible statement to the end of each program.
When this statement is reached, the following message is
displayed:

Program execution finished

COPYRIGHT <C> 1983 METANIC ApS DENMARK PAGE 2-026

•

•

•

•

Type:

Purpose:

Syntax:

Command

To transfer a file from the background
working memory in ASCII format.

ENTER (file name>

ENTER

storage device to

Execution:
The specified file is opened and transferred one character
at a time.
Following each 'RETURN' the line is syntax-checked and the
line, if accepted, is placed in the working memory. If an
error occurs then the loading is halted temporarily, the
line is displayed with an error message and the loading of
the file continues. A line containing a syntax error will
not be stored.

Examples:
ENTER DKO:PROGRAM
ENTER POLYNO

Comments:
1. Only files stored in ASCII format can be read by the

'ENTER' command. Thus files created by means of 'SAVE'
cannot be read in this way. Use 'LOAD' instead.

2. The working memory is not cleared prior to the file
being entered. However, new lines having line numbers
which match existing lines will replace the old ones.
This overwriting takes place on a line basis, with no
consideration of the different lengths of lines, so that
a short line can totally replace a long one. Provided
that there are no overlapping line numbers this system
may be used to combine two or more programs.
Normally the working memory would be cleared by using
the 'NEW' command before reading a file with the 'ENTER'
command.

3. ASCII files may be read by all
this format is recommended
files •

COPYRIGHT CC) 1983 METANIC ApS DENMARK

versions of COMAL-80 and
for long-term storage of

PAGE 2-027

•

•

•

•

Type:

Purpose:

Syntax:

EDD

System function

To determine whether all data from the 'DATA' statements in
the program has been read.

EOD<>

Execution:

Example:

EOD<> returns a ~alue of false<= 0 > as long as there is
data in 'DATA' statements still to be read. Having read the
last item of data, 'E0D()' will return the value of true
< = 1 >. After executing a 'RESTORE' statement 'EDD<>' will
return the value of false (= 0) •

10 WHILE NOT EDD<> DO
20 READ A
30 PRINT A
40 ENDWHILE
50 DATA 55, 2, -15, 35

Comments:
1. During programming 'E0D' and 'EODC)' are interchange

able. In program listings 'E0DO' is used •

COPYRIGHT <C> 1983 METANIC ApS DENMARK PAGE 2-028

•

•

•

•

EOF

Type:
System function

Purpose:
To determine whether all data in a data file has been read.

Syntax:
EDF ((file No.>>

Execut i or-,:

Exa,Yiple:

After execution of an 'OPEN FILE' statement or a 'READ'
command, the corresponding 'EDF ((file No.>)' will
return the value false < = 0). After reading the last item
in the file, it will return the value true (= 1).

10 OPEN FILE 0,"TEST",READ
20 REPEAT
30 READ FILE o: A
40 UNTIL EDF CO)

Commer-,ts:
1. (file No.> is ar-1 arit~1metic expressior-1 •

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 2-029

•

•

•

•

ERR

Type:

Purpose:

Syr,tax:

System funct i or,

To return the number of a non-fatal error encountered
during program execution.

ERR<>

Execut i or,:

Example:

During normal program execution, any error will stop the
program and create an error message. However, a number of
errors can subsequently be bypassed.
In such cases program interruption may be avoided by the
use of a 'TRAP ERR-' statement before the error arises. In
this case, 'ERR()' will return a value equal to the error
number of the last error and in all tests will be consider
ed as true (because it is not 0). Program execution will
then cor,t i nue.

10 INIT
20 TRAP ERR-
30 OPEN FILE 0,"DK1:DISK_5",READ
40 TRAP ERR+
50 IF NOT ERR() THEN
60 CLOSE
70 CHAIN "DK1:PART5"
80 ELSE
90 CLEAR

100 CURSOR 1, 10
110 PRINT "WRONG DISK IN DRIVE 1"
120 STOP
130 ENDIF

Co,Ytments:
1. At the beginning of the execution of a program the value

false < = 0 > is returned if 'ERR<>' is called.
When a 'TRAP ERR-' statement has been executed, a non
fatal error will not stop program execution. The number
of the error is returned by 'ERR()'. However, subsequent
calls of 'ERR()' will return O. This way only informa
tion on the last error that has occured since the last
call of 'ERR()' will be retrieved. Since every value
different from O is treated as true in tests, construc
tions like 'IF ERR<> THEN ••• • will behave normally.
The error numbers are described further in appendix C.

2. By executing a 'TRAP ERR+' statement, the system returns
to normal error handling •

3. During programming 'ERR' and 'ERR<>' are interchange
able. In program listir,gs 'ERR<>' is used.

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 2-030

•

•

•

•

ERRTEXT$

Type:
String function

Purpose:
To give access to error descriptions in the COMAL-BO system

Syntax:
ERRTEXT$((expression>>

Execution:

Example:

(expression} is evaluated and rounded if necessary. The
corresponding error description is then returned.

10 FOR I=l TO 295
20 PRINT ERRTEXTS(I)
30 NEXT I

Comments:
1. This function is only valid when error descriptions are

not deleted at the start-up of COMAL-BO. If they are
deleted the function will return an empty string .

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 2-031

•

•

•

•

ESC

Type:
System function

Purpose:
To flag the use of the 'ESC' key.

Syntax:
ESC <>

Execution:

ExaMple:

During normal program execution a check is made to see
whether the 'ESC'. key has been pressed. If it has been
pressed then program execution is stopped.
If a 'TRAP ESC-' statement has been executed, this function
is blocked and 'ESCC)' will instead return the value of
true < = 1 > when 'ESC' is pressed •

10 TRAP ESC-
20 REPEAT
30 PRINT "THE 'ESC' •<EY HAS NOT BEEN PRESSED"
40 UNTIL ESC 0
50 TRAP ESC+
60 PRINT "THE 'ESC' •<EY HAS BEEN PRESSED"

ComMents:
1. At the start of program execution 'ESCC)' will return

the value false (= 0 >. If a 'TRAP ESC-' statement is
executed and the 'ESC' key pressed after this program
execution continues but the first call of 'ESC()' will
return the value true (= 1). Any subsequent calls will
again return the value false (= 0).

2. The system returns to n~rmal handling of the 1 ESC' key
after a 'TRAP ESC+' statement has been executed.

3. During programming 'ESC' and 'ESC()' are interchange
able. In program 1 ist ings 'ESC (>' is used •

COPYRIGHT <C> 1983 METANIC ApS DENMARK PAGE 2-032

•

•

•

•

Type:

Purpose:

Synta><:

Statement

To call a named sub-program and to return to the
of the current program on completion.

EXEC <procedure name>CC(actual parameter list>>J

EXEC

ne><t line

E><ecut i or,:
The procedure specified by (procedure name> is called, and
<actual parameter list> replaces the formal parameter list
in the procedure heading.
On reaching the 'ENDPROC' statement, program execution is
resumed from the first e><ecuteable line following the
'EXEC' statement.

Examples:
100 EXEC TEST
100 EXEC FATAL ERRORC"ERROR IN X-PL/0-COMPILER">
100 EXEC ERRORC30)
100 EXEC ENTER_CCONSTANT#,LEV#,TX#,OX#)

Commer,ts:
1. The number of actual parameters must be the same as the

number of formal parameters in the 'PROC' statement.
Each parameter must conform in dimension and type.

2. If a fo rma 1 parameter is s pee i f i ed by ' REF• ,
<which may be indexed) must be inserted as
parameter.

a variable
ar, actual

3. If a formal parameter is not specified by 'REF' the
actual parameter must be an expression of a correspon
ding type, a variable name alone will suffice.
Actual integer parameters may be inserted in a formal
real parameter.

4. See the section 'PARAMETER SUBSTITUTION'
for more information .

COPYRIGHT CC> 1983 METANIC ApS DENMARK

i r, chapter 1

PAGE 2-033

•

•

•

•

EXP

Type:
Arithmetic function

Purpose:
Returns e to the power of an arithmetic expression.

Syntax:
EXP<<expression>>

Execution:

Example:

The base of the natural logarithm e <2.718282) is raised to
the power specified by <expression>.

10 INPUT A
20 PRINT EXP(A)

Comments:
1. <expression> is a real or integer arithmetic expression.

The result will always be real.

2. The value of <expression> must be less than or equal to
88.02968 when using the COMAL-80 7-digit version and
292.4283068102 when using 13-digit version. If these
are exceded COMAL-80 stops program execution and dis
plays an error message •

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 2-034

•

•

•

•

EXTENSION

Type:
Command

Purpose:

Syntax:

To add user-defineable statements, functions, and operators
to COMAL-BO.

EXTENSION <file name>

Execution:

Example:

<file name> is opened and transferred to the memory. The
identifiers specified in this file are then linked to
COMAL-BO and become reserved words.

EXTENSION GRAPHPAC

Commer,ts:
1. This command is only allowed when there is no program in

memory.

2. See the section 'EXTENSION' in chapter 1 and appendix D
for further information •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-035

•

•

•

•

Type:
System constar-,t

Purpose:
To assign a boolean variable the value of false.

Synta><=
FALSE

E><ecution:

E><ample:

Returns the value O.

10 II PRIME
20 II
30 DIM FLAGS#(0:8190)
40 SIZEl:=8190
50 II
60 COUNT:=O
70 MAT FLAGS#:=TRUE
BO II
90 FOR I:=O TO SIZEl DO

100 IF FLAGS#CI) THEN
110 PRIME:=I+I+3
120 K:=I+PRIME
130 WHILE K<=SIZEl DO
140 FLAGS#(K):=FALSE
150
160
170
180
190
200

K:+PRIME
ENDWHILE
COUNT:+1

ENDIF
NEXT I
PRINT "TOTAL NUMBER OF PRIMES: ",COUNT

COPYRIGHT CC) 1983 METANIC ApS DENMARK

FALSE

PAGE 2-036

•

•

•

•

Type:

Purpose:

Syntax:

FOR TO DOWNTO STEP NEXT

StateMent

To deliMit a program section and define the number of tiMes
it is to be executed.

FOR <variable> := (start> TO <end) ESTEP <step> J

NEXT <variable)

Execution:

Exa.Mple:

On meeting the • FOR' state1Y1er1t, <variable> ==<start> is
assigned and the truth of:

<<end>-<variable>>*SGN <<step}) >= 0
is tested. If this is false, the 'FOR ••• NEXT' structure,
including this prograM section, is bypassed and execution
continues from the first executable line following the
'NEXT' statement.
If true the prograM continues through the program section
until it meets a 'NEXT' statement; it then Jumps back to
the line following 'FOR' adding <step> to <variable> and
checks the truth again using the new value of <variable>.
This is repeated until the test returns false.

10 FOR I=1 TO 100 STEP 5
20 p RI NT I , II II 1

30 NEXT I
40 STOP

If 'STEP <step>' is omitted the (step> value defaults to
1.

2. If 'DOWNTO' is used instead of 'TO', the negative value
of (step> is used as the step value.

3. Following a 'FOR ••• NEXT' execution, <variable} takes the
value not fulfilling the above test.

4. Up to five 'FOR ••• NEXT' stateMents may be nested, each
of them having their separate <variable}.
Each subroutine level is assigned a 'FOR ••• NEXT' depth
of five, giving the option of any depth through the
'GOSUB' stateMent or by use of procedures •

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 2-037

5. Each 'NEXT' statement may contain one only
which must be the same one as stated in the
ding 'FOR' statement.

<variable),
correspon-

6. It is possible to interrupt a , FOR ••• NEXT' sequence by
using 'GOTO'.

7. The start value of the
<er,d>.

<variable> is assigned before

Consequently program structures of the type:
10 J:= X
20 FOR J:=1 TO J+X
30 PRINT J
40 NEXT J

will be executed X+1 times.

•

8. Only one 'NEXT'
statement.

statemer,t iv,ay be assigr,ed for each , FOR' •

9. During programming,:=• and'='
program listings,:=• is used.

are interchangeable. In

10. <variable} must be an arithmetic variable.

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 2-037A

•

•

•

•

•

•

FRAC

Type:
Arithmetic function

Purpose:
To extract the decimal part of a real number.

Syntax:
FRACC(expression>>

Execution:

Example:

The result is calculated according to the expression:
<expression>-INT<<expression>>

10 INPUT A
20 PRINT FRACCA>
30 PRINT FRAC(5.72)
40 PRINT FRAC<-5.72)

Commer,ts:
1. <expression> must be

w i 1 1 be rea l .
arithmetic and real. The result

2. If (expression> is positive the result is calculated by
cancelling the digits in front of the decimal point.
If <expression> is negative the result is 1 minus the
decimal part of <expression> •

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 2-038

•

•

•

•

FREESTORE

Type:
System function

Purpose:
To return the number of bytes of free meMory space.

Syntax:
FREESTORE < >

E><ecution:
The available free space is calculated based on the current
use of the memory.

E><aMple:
10 PRINT FREESTOREC>

ComMents:
1. During programMing 'FREESTORE'

interchangeable. In prograM
used •

COPYRIGHT CC) 19B3 METANIC ApS DENMARK

and 'FREESTOREC)' are
listings 'FREESTOREC)' is

PAGE 2-039

•

•

•

•

FUNC ENDFUNC

Type:
StateMent

Purpose:
To define and name a user-defined function.

Syntax:
FUNC <name>C<formal parameter list>] CCLOSEDJ

ENDFUNC (name>

Execution:
When finding a 'FUNC' statement during program execution,
COMAL-80 skips this part of the program up to and including
the corresponding 'ENDFUNC' statement and execution is
resumed from the next line.
When the function is called by its name (optionally
followed by a parameter list> in an expression, the func
tion is calculated ar,d the value is inserted in the ex
pression and used in the subsequent calculation.

Examples:
10
20
30
40
50
60
70

Comments:

FUNC X_Y_POWER<X,Y>
RETURN X,...3/Y,...2

ENDFUNC X_Y_POWER
1:=2
J:=3
OLE:=X_Y_POWERCI,J>
PRINT OLE

10 x:=2
20 v:=3
30 FUNC x_v POWER CLOSED
40 IMPORT X,Y
50 RETURN X,...3/Y,...2
60 ENDFUNC X_V_POWER
70 OLE:=x_v_POWER()
80 PRINT OLE

1. The 'FUNC' ,statement may not be used within the follow-
ing statements:

- Conditional statements
- Repeating stateMents
- Other procedure or function declarations

2. <name> must be a legal variable name.

3. A function may call other functions, and may call itself
<recursion). A closed function can only call a closed
function or procedure.

4. (formal parameter list> contains the names of the for~al
parameters which will receive values from the actual
parameters in the function call when called.

5. The changes happening to a parameter in a function are
local unless 'REF' has been used ~to indicate that the
changes are to affect the actual parameter.

6. 'REF' may be stated for simple arithmetic or string
variables, and must be stated for all array variables.

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 2-040

7. A function type may be either real, integer or string.

8. Array variables must be followed by a dimension defini-
tior1 consistir1g of com«1as ir1 parentt1eses correspondir1g •
to the number of diMensior1s -1, i.e. for 3-dimerasional
arrays the parenthesis contains two comMas, while a vec-
tor would be followed by an empty parenthesis.

9. If tt1e function is declared 'CLOSED', all variable na«1es
are local and may be used for other purposes outside
the function. This may be declared invalid for one or
more variables by use of the 'IMPORT' statement.

10. The 'INPUT' and 'PRINT USING' statements are not allowed
ir1 functions.

11. If the program section between 'FUNC' and 'ENDFUNC' •
contains statements on multiple lines these must all be
contained in the program section.

12. The
the

function
'RETURN'

value is
statemer1t.

function is undefined.

returned from the function by
Otherwise the value of the

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-040A

•

•

•

•

•

•

GETUNIT

Type:
Statement, command

Purpose:
Returns the current background storage device.

Syntax:
GETUNIT C<variable>J

Execution:
The name of the current default device is assigned to
(variable) in the form of a 3-character code, two letters
and one digit followed by a colon.

Examples:
100 GETUNIT DISK$

GETUNIT

Comments:
1. When using 'GETUNIT' as a command the (variable> must be

omitted, and the result will be displayed on the termi
nal.
In statements the <variable> must be specified.

2. The two letters indicate the type of device; 'DK' means
floppy disk. The digit indicates the unit number.

3. (variable) is a string variable •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-041

•

•

•

•

Type:

Purpose:

Syntax:

GOSUB RETURN

Statement

To call a subroutine at a different part of the program and
then return to the line following the call.

GOSUB (line number>

(1 ine number>

RETURN

Execution:

Example:

On meeting a 'GOSUB' statement, program execution continues
from (line number> until it reaches the 'RETURN' statement
when program execution is resumed from the line following
the 'GOSUB' statement.

10 PRINT "START IN THE MAIN PROGRAM"
20 GOSUB 50
30 PRINT "BACK IN THE MAIN PROGRAM"
40 STOP
50 PRINT "THIS IS THE SUBROUTINE"
60 RETURN

Comments:
1. A subroutine may be called any number of times.

2. Subroutines may be called from other subroutines, and
such nestings are limited only by the available memory.

3. Following the 'RETURN'
resumed from the line
executed.

statement program execution is
immediately following the 'GOSUB'

4. A subroutine may include more than one 'RETURN' state
ment.

5. Subroutines may be placed anywhere in the main program,
but clear separation from the main program listing is
recoMmended.

6. To prevent any inadvertant execution of a subroutine it
is a good idea to put a 'STOP', 'GOTO', or an 'END'
statement immediately before the subroutine •

7. NOTE. The keyword
dures and functions.
page 2-098.

• RETURN'
This is

COPYRIGHT (C) 1983 METANIC ApS DENMARK

may also be used in proce
described in details on

PAGE 2-042

GOTO

Type:

•

St atemer,t

Purpose:

Syntax:

To interrupt normal sequential program execution and conti
nue from the stated line.

GOTO (line number>
GOTO <name>

Execut i or,:
The execution continues
cannot be executed, from
line .

at ttie stated 1 ir,e or, if this
the first following executable

• Examples:
10 PRINT "JO",
20 GOTO 40

10 PRINT "JO",
20 GOTO REST

•

•

30 STOP
40 PRINT "HN"
50 GOTO 30

Comments:

30 LABEL FINISH
40 STOP
50 LABEL REST
60 PRINT "HN"
70 GOTO FINISH

1. Statements such as 'LABEL' and 'REM' are not executable •

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 2-043

•

•

•

•

Type:

Purpose:

Syntax:

IDENTIFIERLOWER

System variable

To specify whether identifiers in program listings are to
appear in upper or lower case letters.

IDENTIFIERLOWER

Execution:
The value of the.system variable' IDENTIFIERLOWER' controls
the format of identifiers in program listings.

Examples:
100 IDENTIFIERLOWER:=O
100 IDENTIFIERLOWER:=A
100 IDENTIFIERLOWER:=TRUE
100 PRINT IDENTIFIERLOWER

IDENTIFIERLOWER:=1

Comments:
1. On loading COMAL-80 'IDENTIFIERLOWER' is assigned the

value of O. This value can only be changed by an assign
ment to' IDENTIFIERLOWER'.

2. The value assigned must be O or 1. Assigned values are
rounded if necessary.

3. If the value of 'IDENTIFIERLOWER' is equal to O all
identifiers will be listed in upper case. Otherwise they
will be listed in lower case.

4. This keyword can be us~d as operand or be assigned to.
When used as operand it is of integer type.

5. The 'NEW' command does not change the value of the
system variable' IDENTIFIERLOWER' •

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 2-044

IF THEN

Type:
• Statement

Purpose:

•

•

•

Syntax:

To execute or sKip a statement depending on a logical
expression being true or false.

IF < 1 og ical expression> CTHENJ <statement>

Execution:

Example:

Only when <logical expressior,> is true < 0 0 >, is <state
mer,t> executed.

10
20
30
40
50
60
70

INPUT "PRINT A NUMBER: II a

IF A THEN PRINT "A 0 0"
IF A<O THEN PRINT "A <O"
IF A=O THEN PRINT "A=O"
IF A=l THEN PRINT "A=1"
IF A=2 THEN PRINT 11 A=2"
IF A>2 THEN PRINT "A>2"

A

Commer,ts:
1. The following statements may be used after an 'IF •••

THEN' statement:
CALL, CAT, CHAIN, CLEAR, CLOSE, CURSOR, D~LETE, END,
EXEC, EXIT, GETUNIT, GOSUB, GOTO, INIT, INPUT, LET,
LOGOFF, LOGON, MAT, ON, OPEN, OUT, PAGE, PO~E, PRINT,
QUIT, RANDOM, READ, RECEIVE, RELEASE, RENAME, RESTORE,
RETURN, SELECT, STOP, TRAP, UNIT, WRITE, and statements
defined as 'EXTENSIONS'.
A new 'IF ••. THEN' statement is also allowed.

2. During programming 'THEN' may be omitted as COMAL-80
automatically adds it to program listings •

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 2-045

•

•

•

•

Type:

Purpose:

Syr,tax:

IF THEN ENDIF

Statement

To execute a program section if a logical expression is
true. Otherwise the section is s~ipped.

IF <logical expression) CTHENJ

ENDIF

Execution:

Example:

If the (logical expression> is true (<> 0) the program
section within 'IF •.• ENDIF' is executed. If the <logical
expression> is false C = 0 > the program is resumed from
the first executable line following the 'ENDIF' statement.

10 IF MEMBER#C1 OR MEMBER#}31 THEN
20 EXEC FATALERRORC"ERROR IN X-PL/0-COMPILER")
30 ENDIF

Comments:
1. During programming 'THEN' may be omitted, as COMAL-80

automatically aads it to program listings •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-046

IF THEN ELSE ENDIF

Type:

•

Statement

Purpose:

•

•

•

Syntax:

To execute one of two program sections depending on a
logical expression being true or false.

IF <logical expression> CTHENJ

ELSE

ENDIF

Execution:

Example:

If the <logical expression> is true < <> 0 > the program
section surrounded by 'IF ••• ELSE' is executed. If the
(logical expression> is false (= 0 > ti-,e program section
surrounded by 'ELSE ••• ENDIF' is executed.

10 INPUT "GUESS A NUMBER BETWEEN 1 AND 5": A
20 B : = RND < 1 , 5 >
30 IF A=B THEN
40 PRINT "CORRECT"
50 ELSE
60 PRINT "WRONG. THE NUMBER WAS: "; B
70 ENDIF
80 STOP

Co,r,ment s:
1. During programming 'THEN' may be omitted as COMAL-80

automatically adds it to program listings .

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 2-047

•

•

•

•

Type:

Purpose:

Syntax:

IF THEN ELIF ELSE ENDIF

Statemer-,t

To execute one of several program sections depending on one
of several logical expressions being true.

IF <logical expression 1> [THENJ

ELIF (logical expression 2> CTHENJ

ELIF <logical expression n> CTHENJ

CELSE

• J
ENDIF

Execution:

Example:

Each (logical expression .• > is checked one by one. If one
is true (<> 0) the following program section is executed
until it meets the corresponding 'ELIF', 'ELSE', or 'ENDIF'
statement. The program resumes from the first executable
line following the 'ENDIF' statement.
When all (logical expressions> are false C = 0 > the pro
gram section surrounded by 'ELSE ••• ENDIF' is executed and
the program is resumed from the first executable line
following the 'ENDIF' statement.

10
20
30
40
50
60
70
80
90

100

INPUT "PRESS ONE OF THE DIGITS 1, 2, OR 3: "" A,
IF A=1 THEN

PRINT "THE DIGIT WAS 1"
ELIF A=2 THEN

PRINT "THE DIGIT WAS 2"
ELIF A=3 THEN

PRINT "THE DIGIT WAS 3"
ELSE

PRINT "I ASKED FOR ONE OF THE DIGITS 1, 2, OR 3!"
ENDIF

ComMents:
1. If several <logical expressions> are true, only the

first one is evaluated.

2. If there is no 'ELSE' statement, and if none of the
(logical expressions> are true, program execution conti
nues in the first line after 'ENDIF'.

3. During programming 'THEN' may be omitted, as COMAL-BO
automatically adds it to program listings.

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 2-048

IMPORT

Type:

•

Statement

Purpose:

Syr,tax:

To make variables in tne main program or another 'PROC' or
'FUNG' accessible within a ~PROC' or 'FUNG' structure.

IMPORT (list of variable names>

Execut i or,:
The variables listed in (list of variable names> are made
accessible within the 'PROC' or 'FUNG' s~ructure containing
the' IMPORT' statement •

•

Exa1Y1ple:
10 PROC ERROR(N#) CLOSED
20 IMPORT FATAL_ERROR:CC#, ERR_, ERRORS#
30 PRINT "*****"; SPC$ CCC#-9); .,, ; N#

•

•

40 ERR_:=INCLUDE<ERR_,N#+l); ERRORS#:+1
50 ENDPROC ERROR

Co,Ytmer,t s:
1. The variable names in (list of variable names> must be

separated by commas. Array variaole names snould not be
followed by any subscripts.

2. Each variable name in (list of variable names> may be
preceded by a <closed area name> wnere (closed area
name> is the name of tne closed function or proceoure
from which the variable is taken.
The (closed area name> must be the caller of tne
'PROC/FUNC' containing the' IMPORT' statement or it must
be the caller of the caller, etc. The variaole is taken
from the most recent call of a (closed area name>.
If (closed area name> is omitted, the variaole is taken
from the main program •

3. This statement may be used only within closed 'PROC' and
'FUNG' structures.

4. The execution of the' IMPORT' statement does not affect
the accessibility of the listed variables in any part of
the program other tnan the 'PROC' or 'FUNG' structure
containing the' IMPORT' statement.

5. All operations allowed on the variables in the main pro
gram are also allowed within the 'PROC' or 'FUNC' struc
ture containing the 'IMPORT' statement.

6. During programming 'GLOBAL' and 'IMPORT' are inter
cnar,geable. IY-1 program listir,gs 'IMPORT' is used.

COPYRIGHT CC> 1983 METANIC AoS DENMARK PAGE 2-049

•

•

•

•

IN

Type:
St r i r,g operator

Purpose:
To cnec~ wnether one text string is contained in anotner.

Syr1tax:
<expressi or,1 > IN {expressi or,2}

Execut i or,:

Exa1Y1ple:

A check is made to see wnether <expressionl> is contained
ir1 <expression2> •. If it is, t~1e logical value returr,ed will
be true (= 1). If it is r,ot, the logical value returr,ed
will be false < = 0).

10 DIM A$ OF 15
20 DIM B$ OF 15
30 INPUT "WRITE A TEXT: "" A$
40 INPUT "WRITE ANOTHER TEXT: B$
50 IF B$ IN A$ THEN
60 PRINT "SECOND TEXT IS PART OF FIRST TEXT"
70 Ei...SE
80 PRINT "SECOND TEXT IS NOT PART OF FIRST TEXT"
90 ENDIF

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-050

•

•

•

•

Type:

Purpose:

Syntax:

INDENTION

System variaole

To define the number of cnaracter positions to be used for
the indent of the internal part of structures in program
1 ist i ngs.

INDENTION

Execution:
The actual value of the system variable 'INDENTION' con
trols the number of character positions tne internal part
of a structure is indented in program listings •

Examples:
100 INDENTION:=8
100 INDENTION=(A+3>*B
100 PRINT INDENTION

INDENTION:=3

Commer,ts:
1. On loading COMAL-80 'INDENTION'

2. This value can be cnanged
value to 'INDENTION'.

is assigned the value of
by assignment of a new

2. Any assigned value must be an integer number between 0
and 10 inclusive. Tne assigned value will be rounded if
necessary.

3. Assignments can be made to this keyword and it can also
be used as operand. When used as ooerand it is of
integer type.

4. The 'NEW' command does not change the value of tne
system variable' INDENTION' •

COPYRIGHT (C) 1983 METANIC AoS DENMARK PAGE 2-051

•

•

•

•

INIT

Type:
Statemer,t, commano

Purpose:
To preoare a formatted disKette (in a drive> for use.

Syntax:
INIT C(device>J

Execution:
The (device> stated is initialized.

Examples:
100 INIT "m"<o:"

INIT
INIT DKl:

Comments:
1. Under CP/M, all disK drives will be initialized and the

(device> indicatior, is not used. If used, (device> must
be the name of a valid disk drive. No disk files may be
open when this statement/command is executed.

2. (device> 1Y1ust be stated when • INIT'
statement, but may be the empty string •

COPYRIGHT (C) 1983 METANIC ApS DENMARK

is used as a

PAGE 2-052

INP

Type:

•

Machir,e code fur,ction

P•.1rpose:
To read the value at a Z-80 microorocessor input port.

Syntax:
INP<<exoression>>

Execut i or,:

Exa,Ytple:

The input port, defined by <expression>
value found there is returned.

10 PRINT INP (17)

is read ar,d the

• Com,Yter,t s:
1. <expressior,> «,ust be betweer, 0 ar,d 255 (ir,clusive).

•

•

2. <expression> will be rounded to integer form if neces
sary •

COPYRIGHT CC) 1983 METANIC AoS DENMARK PAGE 2-053

•

•

•

•

INPUT

Type:

Purpose:

Syr1tax:

Statement

To read and to assign to variables the values input througn
the terminal d~ring program execution.

INPUT C<text}:J (variable list>

Execut i or1:
When meeting tne • INPUT' statement, program execution
pauses after displaying an optional <text>. As the user
keys in values, they are assigned to the stated variables
in <variable list> fro1v1 left to right. Having ir1serted the
last value the user cresses 'RETURN' and program execution
cont i r1ues.

Examples:
100 INPUT MONKEY, JOHN#, NAME$
100 INPUT "WRITE 3 DIGITS: 11

: A, B, C

Co,v11Y1er,ts:
1. If the 'INPUT' statement contains a <text>, this is

displayed exactly as entered. '?' alone is displayed
when tt1ere is r,o (text>, indicatir1g that the computer
expects an input.

2. If <variable list> er,ds wiU1 a comma,
appears in the following print-zone.
print-zones is set by using 'ZONE' .

the next output
The width of the

..). If <variable list> er,ds with a semicolon, the r1ext out
put appears immediately ~fter the last entry.

4. Several numeric values may be entered as long as they
are separated by a character. This character cannot be
part of a numerical value such as space or comma.

5. String constants must be entered as a sequence of ASCII
characters. It is only possible to insert values
following a st~ing constant if the 'RETURN' key is used
to terminate each one.
When a string constant follows an arithmetic constant,
COMAL-BO considers the first character (which may not .be
part of the arithmetic constant>, a delimiter and then
the string constant with the next character.

6. The type of values keyed in must conform to the types
stated in the 'INPUT' statement •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-054

7. <variable list> may contain any variaole type, but
arrays must be properly indexed and substrings may not
be used.

8. Responding to' INPUT' witn the wrong type of value leads
to the error message 'ERROR IN NUMBER' and the item must
be corrected. No assignment is made until an acceptaole
input is given.

9. Responding to 'INPUT' with too few items, causes a'?'
to be printed on the terminal and the program awaits
more inout.

10. Responding to
error message
be corrected.

'INPUT' with too
'TOO MUCH INPUT'

many items causes tne
and the inout must then

11. 'INPUT' statements are not allowed in functions.

COPYRIGHT <C) 1983 METANIC AoS DENMARK PAGE 2-054A

•

•

•

•

•

•

•

•

Type:

Purpose:
To read data from an ASCII data-file written
(USING> FILE' statement.

INPUT FILE

by the 'F'RINT

INPUT FILE (file No.> C, (rec. No.> J: (variable 1 ist>

Exec1.1t i or,:
The values of the variables in <variable list)
from the file contained in (file No.).

are read

Exa,Yiples:
100 INPUT FILE 3: A$
100 INPUT FILE 0: B#, C

. -. .::..

Before meeting the 'INPUT FILE' statement a file must
be opened and the connection established between tne
stated file name and the (file No.) of tne 'INPUT FILE'
statement. This is done using tne 'OPEN FILE' statement
or command, followed by 'READ' or 'RANDOM' .

Tne (rec. No.> is used
arithmetic expression
value if necessary.

only in 'RANDOM' files and is an
wnich is rounded to an integer

3. <file No.) is an aritt,,Ytetic expressior,.

4. <variable list) may contain all
arrays must be properly indexed
be used.

variable types but
and substrings may not

5. The elements of <variable list> are separated by commas •

6. During programming 'FILE' and '#' are interchangeable.
In progra1Y1 listir,gs 'FILE' is used.

7. Comments 4, 5, 6, and 11 to the 'INPUT' statement aooly
~,ere as wel 1 .

COPYRIGHT (C) 1983 METANIC AoS DENMARK PAGE 2-055

•

•

•

•

Type:

Purpose:

Syntax:

Arithmetic function

Returns the largest
specified expression.

INT((expression>>

integer equal to

Execut i or,:

Exa,Yiple:

The largest integer less tnan or equal to
calculated.

10 INPUT A
20 B:=INT<A>
30 PRINT B
40 PRINT INTC5.72)
50 PRINT INTC-5.72)

Co,Y11Y1er,ts:

INT

or less t t1ar, tr,e

<expression> is

1. <expressior,> is of real type.
of real type.

The result is an integer

2. See also the 'ROUND' and 'TRUNC' functions •

COPYRIGHT CC) 1983 METANIC AoS DENMARK PAGE 2-056

!VAL

Type:
Arithmetic function

• Purpose:

•

•

•

To convert an integer,
integer type.

from a string to an integer of

IVAL<<string expression>>

Execution:
The characters in <string expression>, wnicn must represent
a valid integer number, are converted to i~teger numeric
form •

10 DIM A$ OF 4
20 INPUT A$
30 PRINT IVAL(AS>
40 PRINT !VAL ("3215")

::01v11v1er1t s:
1. If the strir,g ir1 <string expressior,> cor,tair1s otner

characters t r1a.r, digits < i r1cl ud i ng a sign>. prog ra,v,
execution is stopped and an error message is displa.yeo.

2. Also see the 'VAL' function •

:□PYRIGHT (CJ 1983 METANIC AoS DENMARK PAGE 2-057

•

•

•

•

Type:

Purpose:

Syntax:

System variable

To specify whether keywords in program
appear in upper or lower case letters.

KEYWORDLOWER

KEYWORDLOWER

listings snould

Execution:
The current value of the system variaole 'KEYWORDLOWER'
controls the format of keywords in program listings.

Examoles:
100 KEYWORDLOWER:=O
100 KEYWORDLOWER:=A
100 KEYWORDLOWER:=TRUE
100 PRINT KEYWORDLOWER

~EYWORDLOWER:=1

Comments:
1. On loading COMAL-80 'KEYWORDLOWER'

of 0. This value can be changed
'KEYWORDLOWER' only.

2. The value assigned must be O or 1.
rounded if necessary.

is assignee tne value
by an assignment to

Assigned values are

3. If the value of 'KEYWORDLOWER'
keywords will be listed in upoer
will be listed in lower case.

is equal to 0, then
case. Otherwise

all
they

4. Assignments can be mad~ to tnis keyword a~d it can be
used as operand. When used as operand it is of integer
type •

5. The 'NEW' command does not change the value of tne
system variable 'KEYWORDLOWER' •

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 2-058

LABEL

Type:

•

. State1v1er1t

Purpose:

•

•

•

Syntax:

To name a point in a
'GOTO' and 'RESTORE'

LABEL <raame>

C0MAL-80 program for reference by tne
stateiY,ents.

Execution:

Example:

The 'LABEL' statement is non-executable and serves only to
mark a point in the program.

10 LABEL START
20 INPUT "WRITE
30 PRINT NUMBER
40 GOTO START

A NUMBER:

Co1Y11Y1er1t s:
1. A 'LABEL' statement used inside a procedure or function

can only be referenced 1ns1de tn1s local area •

COPYRIGHT CC> 1983 METANIC AcS DENMARK PAGE 2-059

•

•

•

•

LEN

Type:
Arithmetic function •

Purpose:
Returns tne length of a string variaole.

Syntax:
LEN<<variable>>

Execution:
The number of cnaracters in (variable> is coun~ed.

Example:
10 DIM A$(1:10) OF 15
20 INPUT A$C5>
30 B#:=LENCAS(5))
40 PRINT AS(5)
50 PRINT B#

Comments:
1. The current contents of the <variaole} are used to

determine its length. The dimensioned length only is of
importance, since it is the maximum value of tne result •

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 2-060

•

•

•

•

LET

Type:
Stateiv,ent

Purpose:
To assign the value of an expression to a variaole.

Syntax:
CLETJ <variable> • - <expression>

Execution:

Exa,Yiple:

<expression> is calculated and the result is stored in the
space allocated for that <variable>.

1 C> LET A ■- 5
20 LET B := 3
30 LET SUM ■- A+B
40 A:+B
50 DIFFERENCE ■- A-B
60 PRINT SUM
70 PRINT A
80 PRINT DIFFERENCE

Coiv,ments:
1. The use of the word 'LET' is optional, it may be omitted

as shown in line 40 of the examole. In program listings
'LET' is o,v,itted.

2. During programming'-' and':=' are interchangeaole. In
progra1Y1 1 ist ir1gs ' :=' is used.

3. (variable} ■- <variable> + (expression) 1Y1ay be writter1
as <variaole> :+ <expressior1>.

4.

5.

<variable) • - <variable} - <expressi or,> ,v,ay be expresseo
<variable} :- <expressior1>, thougr1 the latter 1Y1ay riot be
used for string variables •

The types used for <expression>
the same. Integer values can
variable.

<variable}
assigr1ed to

1v1ust be
a real

For st ri rig
(variable},
ri gt1t.

variables havir,g <exoression> lor1ger tnan
<expression> will be truncated from the

6. For strir1g variables havir,g <expressior1> st1orter tt1ar1
{variable>, <variable> takes the actual ler1gtt1 or1ly.

7. When assigning to substrings, <expression>
able> must be of the same length •

and <va ri-

8. Several assignments may be performed on a single line
secarateo by semicolons, and the reserved word 'LET'
(which is optional) may only aooear in front of the
first assignment.

COPYRIGHT CC> 1983 METANIC AcS DENMARK PAGE 2-061

•

•

•

•

Type:

Purpose:

Syntax:

Co1Y11Y1and

To list a program in ASCII, in full or in part.

LIST [(start)][, <er,d)]C(file name>J
LIST [(start>,JC(file name>J

LIST

Execution:
The specified part of of the program is converted from its
internal format to a string of ASCII characters and listed
on the specified file (or device).

Examples:
LIST
LIST 10
LIST 10, 100
LIST , 100
LIST 100,
LIST TEST
LIST 10, 100 TEST
LIST ,100 DKl:TEST
LIST LPO:

Co1Y11Y1ent s:
1. If <file r1a1Y1e} is om1ttec:1 all listings are displayec on

tne terminal carrying the device name 'DSO:'.
If the specified listing contains more lines than the
device is able to show in one screen, only the first
page is shown and the COMAL-BO interpreter waits for tne
'SPACE BAR' to be pressed before displaying the next
page, or tne 'RETURN' k~y to display the next line.
Pressing the 'ESC' key will end the listing.

2. Omitting both <start line> ar,d <end lir,e> lists tr1e
entire program. Omitting only <start line>, causes the
listing to start at the first program line. Leaving <enc
line> out continues the listing to the end of the pro
gram. Specifying only <start lir,e>, wit~1out the co1Y1ma,
lists only the specified line.

3. The 'LIST' command considers all listings as being a
transfer of characters from the memory to a file. Con
sequently, a listing on a connected printer is obtained
by stating 'LP:' for a (file name>, obtionally followed
by the unit number of the printer. When no unit number
is specified it defaults to LPO: •

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 2-062

4. Listings may not necessarily have the same form as when
origir,ally keyed in s1r,ce automatic ir,dentir,g takes.
place in order to clarify the program structure. 'LABEL'
statements are not indented making them easy to find.
When several keywords have identical meanings, only one
of them is used for all listings.

5. If (file name> does r,ot contair, ar, exter,sior, it defaults
to '. CML'.

6. Programs stored using the 'LIST' command may be read
later using the 'ENTER' command.

7. Programs intended for storage for a longer period of
time, and programs intended for exchange, should be
stored usir,g 'LIST' co1Y1mand as t~1is for,v,at is coiY,patible •
with all COMAL-80 versions and future versions will
attempt to follow this.

8. If (file name> is already on the device ir, questior, this
is reported and the ujer is offered the option of conti
nuing and having the old file deleted, or of stopping
(' RETURN/ESC').

9. The amount of indent can be selected by means of
' INDENTION' •

COPYRIGHT <C> 1983 METANIC ApS DENMARK PAGE 2-062A

•

•

•

•

•

•

LOAD

Type:
Co1v11v,and

Puroose:
To read a binary file from the background storage device.

Syr,tax:
LOAD <file name>

Execut i or,:
The working memory of tne computer is cleared,
ting system is called ano tne file is read.

the ooera-

Exa1Y1p 1 es:
LOAD TEST
LOf:.)D m,1: PROGRAM

Co1Y11Yter1t s:
1. Only oinary files canoe

i.e. files stored by tne
listings these files can
'. CSB'.

read by tne 'LOAD' command,
'SAVE' co«,mar,d. Ir, catalog

be identified by the extension

2. The extension '.CSB' is always suoplied by the COMAL-8O
system and cannot be entered by the user.

3. Any 'EXTENSION' wnich was present when tne program was
'SAVE'o must also be present wnen tne program is
'i...OAD' ed aga i r1.

4. Before 'LOAD' ing, an imolicit
cally executed •

COPYRIGHT (C) 1983 METANIC AoS DENMARK

'NEW' command is automati-

PAGE 2-063

•

•

•

•

LOG

Type:
Arithmetic function

Purpose:
Returns the natural logarithm of an arithmetic exoression.

Syntax:
LOG<<expression))

Execution:
The natural logarithm of (expression> is calculated.

Examples:
10 INPUT A
20 PRINT LDG(A)

Comments:
1. <expression> may be an aritnmetic expression of real or

integer type. The result will always be real.

2. If <expression> is less than or equal to 0, program exe
cution is stopoeo and followed by an error message •

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 2-064

•

•

•

•

LOGOFF

Type:
Statement, command

Purpose:
To terminate logging mooe and close the log file.

Syntax:
LOGOFF

Execution:
The logging mode is terminateo and the file is closed.

Examples:
100 LOGOFF

LOGOFF

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-065

•

•

•

•

LOGON

Type:
Statement. command

Purpose:
To produce a log of everything displayed on the screen.

Syr,tax:
LOGON (file name>

Execution:
A file with the given (file name> is opened and everything
which COMAL-80 sends to the screen is written to this file.

Examples:
100 LOGON "LOGFILE.LOG"

LOGON LOGFILE
LOGON LP:

Comments:
1. Wnen the log is stored in a disk file it can be display

ed on the screen by the program

10 DIM A$ OF 160
20 OPEN FILE 0, "LOGFILE. LOG", READ
30 REPEAT
40 INPUT FILE 0: A$
50 PRINT A$
60 UNTIL EOF (0)
70 CLOSE

2. If logging is stopped tnrough a 'LOGOFF' statement and
then restarted under the same (file name> the new infor
mation is appended to tne file •

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 2-066

•

•

•

•

Type:

Purpose:

Syntax:

LOOP EXIT ENDLOOP

Statement

To repeat execution of a program section until an internal
condition has been fulfilled.

LOOP

ENDLOOP

Execution:

Example:

The program section enclosed by 'LOOP •.. ENDLOOP' is execu
ted repeatedly until an 'EXIT' statement is encountered.
Program execution resumes at the first executable line
following the 'ENDLOOP' statement.

10 NUMBER:=O
20 LOOP
30 NUMBER:+1
40 PRINT NUMBER
50 IF NUMBER=8 THEN EXIT
60 ENDLOOP

Comments:
1. The execution of tne 'LOOP .•• ENDLOOP'

interrupted by a 'GOTO' statement.
section may be

2. If 'LOOP .•• ENDLOOP' statements are nested, execution of
an 'EXIT' statement will abandon execution of the inner
most 'LOOP •.. ENDLOOP' statement containing the 'EXIT'
statement only •

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 2-067

•

•

•

•

MAT

Type:
Statement

Purpose:
To assign values to all elements in an array.

Syntax:
MAT <variable> ==<expression>

Execution:

ExaMple:

Each element
<expression>.

ir, <variable> is assigned tne value of

10 DIM ARRAYC50)
20 MAT ARRAY:=5

2.

<variable> and <expression>
However, an integer expression
elements in a real array.

For st ring
(variable>,
right.

variables having
<expression> will

must be of the same type.
may be assigned to the

{expression> longer than
be truncated from tne

3. For string variables having {expression> shorter than
(variable>, <variaole> takes tne current length or,ly.

4. Several assignments may be made on a single line (sepa
rated by semicolons), but the keyword 'MAT' may only
appear in front of the first assignment.

5. During programming 1 = 1 a~d • :=•
program listings•:=• is used •

are interchangeable. In

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 2-068

•

•

•

•

MOD

Type:
Arithmetic operator

Purpose:
To return the reMainder following an integer division.

Syntax:
(expressionl> MOD <expression2>

Execution:

ExaMple:

<expressionl> is integer divided by <expres-ion2>. The re
Mainder is <expressionl> minus the result, Multiplied by
<expression2).

10 INPUT A
20 B:=A MOD 7
30 PRINT B

Comments:
1. The result N is defined by the lowest non-negative value

which the expression:
<expression!} - N * (expression2>

can assume for integer N.

2. The type of the result depends upon the type of <expres
sionl> and <expression2> in the following way:

<expressionl> MOD
real
real
int
int

<expression2>
real
int
real
int

3. Also see the 'DIV' operator •

COPYRIGHT CC> 1983 METANIC ApS DENMARK

result
real
real
real
int

PAGE 2-069

•

•

•

•

Type:

Purpose:

Syntax:

Command

To clear the computer's memory
system for a new program.

NEW

NEW

and prepare COMAL-BO

Execution:

Example:

The stored program
from a previous
space is recovered
In addition, the
executed:

10 CLOSE

(if any) and any variables left over
program execution are deleted and the
for use by a new program.
equivalent to the following program is

20 SELECT OUTPUT "DS: II

30 TRAP ERR+
40 TRAP ESC+

and the system functions 'ERR<>'
sequently return O.

NEW

and 'ESC()' will sub-

Co,v,mer,t s:
1. The 'NEW' command snould always be used before keying in

a new program.

2. System variables C'KEYWORDLOWER', 'IDENTIFIERLOWER',
'INDENTION', 'PAGEWIDTH', 'PAGELENGTH' and 'ZONE') are
not affected by this command.

3. Also see note 2 to the 'ENTER' command •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-070

•

•

•

•

Type:
Logic operator

Purpose:
To perform the logical 'NOT' operation.

Syntax:
NOT <expression>

Execut i or,:

NOT

The logical value of <expression> is logically negated.

Example:
100 IF NOT ERR() THEN EXEC READ_OK

Co1Y11Ytent s:
1. The operator has the following truth table

<expressior,>
true
false

result
false
true

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 2-071

•

•

•

•

ON GOTO ON GOSUB

Type:

Purpose:

Syntax:

Statemer1t

To transfer execution to a program line number resulting
from the evaluation of an expression.

ON <expression> GOTO (list of line numbers>
ON <expression> GOSUB <list of line numbers>

Execution:

Example:

<expression> is evaluated and rounded to integer if neces
sary. The corresponding line number is chosen from (list of
line numbers>. Cexpression>=1 corresponds to the first line
number fro,v, the left; <expressior1)=2 corresponds to the
second line number from the left and so on.

10 INPUT "WRITE A NUMBER BETWEEN 1 AND 3 INCL: "• NUMBER
20 ON NUMBER GOTO 40,60,80
30 GOTO 10
40 PRINT "YOU WROTE 1"
50 GOTO FINISH
60 PRINT "YOU WROTE 211
70 GOTO FINISH
80 PRINT "YOU WROTE 3"
90 LABEL FINISH

Commer,ts:
1. Unlike the 'GOTO' statement, names may not be used in

the 'ON ••. GOTO' statement.

2. If the rounded value of ~expression> does not fulfil the
test:

1 <= <expression> <= items in (list of line numbers>
the statement is skipped and the program is resumed from
the next executable statement.

3. For 'ON ••. GOSUB' statements each line number in (list of
line numbers> must be the first statement in a subrouti
ne ended by a 'RETURN' statement.
On meeting this, the program execution resumes at the
first executable line after the 'GOSUB' statement.

4. See also the 'GOSUB' statement •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-072

•

•

•

•

OPEN FILE

Type:
Statement, coMmand

Purpose:
To open a data file on the background storage device.

Syntax:
OPEN FILE (file No.>, (file name>, <type) C, <record size> J

Execut i or,:
First, a file with name (file name> is searched for on tne
background storage device.
If it is found and • WRITE' <type> was stated, or if it is
not found and • READ' (type) was stated, program execut iorr
is stopped and an error message is displayed.
In the case of 'APPEND' or 'RANDOM' (type) being stated,
the file is created if not found; otherwise the existing
file is used.
Then (file name> and (file No.> are coupled so that all
references to (file name> are done by (file No.> until the
file is closed with a 'CLOSE' statement or command.

Examples:
100 OPEN FILE 2,"TEST",WRITE
100 OPEN FILE 0,"DK1:DATA.RAN",RANDOM,40

Comments:
1.

2.

<file No.> is an arithmetic expression wnich must be one
of the integer values Oto 9 inclusive.

(file name> must be a string expression. Please note
that not all operating systems allow all possible cha
racters in file names. For example, CP/M allows only 8
characters, and only 8 characters are transferred to the
disk •

3. <type} specifies how tt,e file is used. n,e followir,g

4.

options are available:
READ Reads sequentially from the file.
WRITE Writes sequentially to the file.
RANDOM Reads from and writes to the file.
APPEND Appenas new information to an existing

file created using • WRITE' <type}.

<record size> is used or,ly for 'RANDOM' files and ex-
presses the total number of bytes to be wri tterr to each
record. The r,ecessary size is calculated as follows
(assuming t t1at 'READ' and 'WRITE' statemer,ts are used
wher, tt,e file is read froM and written to):

Integers take 2 bytes
Redi figures take 4 bytes at 7-digit precision,
and 8 bytes at 13-digit precision.
Strings take 2 bytes plus one byte per cnaracter
of the st ring.

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 2-073

5. Up to 8 disk files may be open at one time. This leaves
roo1Y1 for ar,other 2 non-disk files to be oper1 at the sa1Y1e.
ti,v,e. If disk files are used in connectior, with 'LOAD',
'SELECT OUTPUT', 'LIST', 'SAVE', 'CAT', or 'ENTER',
fewer than 8 disk files may be opened by 'OPEN'.
A file may be open on several file numbers at the same
time provided that the same (type> is used.

6. A' RANDOM' file must always be re-opened using the same
(record size> with which it was originally opened.
(record size> can be recovered using the program:

10 OPEN FILE 0,"(file name>.RAN",READ
20 READ FILE O: RECORD_SIZE#
30 PRINT RECORD_SIZE#
40 CLOSE

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 2-073A

•

•

•

•

•

•

•

OR

Type:
Logical operator

Purpose:
Performs the logical 'OR' ooeration between two expressions

Syntax:
<expressionl> OR <expression2>

Execution:

Example:

<expressionl> and <expression2> are evaluated and if equal
to zero considered false, otherwise true. <expressionl} is
then ORed with (expression2>.

100 IF END_DATAl OR END_DATA2 THEN EXEC END_DATA

Commer,ts:
1. The operator has the following truth table=

(expressi onl > <expression2> result
true true true
true f'alse true
false true true
false false false

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-074

•

•

•

•

Type:

Purpose:

Syntax:

Arithmetic function

To convert the first character in a string into its
value.

0RD<<string expression))

Execution:

Example:

Returns the ASCII value of the first character in
expression}.

10 DIM A$ OF 1
20 INPUT A$
30 PRINT ORD(A$)

Comments:
1. The result is an integer between 0 and 255 .

ORD

ASCII

(string

COPYRIGHT CC> 1983 METANIC AoS DENMARK PAGE 2-075

•

•

•

•

OUT

Type:
Machine language function

Purpose:
To send a byte to a 280 output port.

Synta><:
OUT <e><pressionl>, <express1on2>

Execution:

Example:

The values of <expressionl> and (e><pression2> are evaluated
and rounded if necessary. The value of Cexpression2> is
sent to the machine output port corresponding to <expres
sion!}.

10 INPUT A
20 OUT 15,A

Comments:
1. The value of <expressionl> and <expression2> must be a

real or integer number between O and 255.

2. Also see' INP' •

COPYRIGHT <C> 1983 METANIC ApS DENMARK PAGE 2-076

•

•

•

•

Type:

Purpose:

Syntax:

Statement, command

To advance tne paper on a
page.

PAGE

PAGE

printer to the top of the next

Execution:
If 'PAGELENGTH' = 0, a form feed character is transmitted
to the line printer. Otherwise, tne line feed cnaracter
COAH> is transmitted until the top of the next page is
reached •

Examples:
100 PAGE

PAGE

Comments:
1. Form feed is controlled by a counter

when 'PAGELENGTH' > O. In this case,
that the paper is inserted correctly
that it is not fed manually.

within COMAL-BO
it is important

in the printer and

2. The length of a page can be changed by the 'PAGELENGTH'
statement or command •

COPYRIGHT CC) 19B3 METANIC ApS DENMARK PAGE 2-077

•

•

•

•

Type:

Purpose:

Syntax:

System variable

To specify the number
printer.

PAGELENGTH

PAGE LENGTH

of lines per page or, an a-ctacned

Execution:
An internal counter in COMAL-80 keeps track of the numoer
of lines printed on the current page on the printer. This
number is used when a 'PAGE' statement or command is execu
ted and a form feed character is sent to the printer which
together with the value of 'PAGELENGTH' determines tne
number of line feed cnaracters to be substituted for tne
form feed character. Thus, 'PAGELENGTH' determines the
numoer of lines on a page.

Examples:
100 PAGELENGTH:=72
100 PRINT PAGELENGTH
100 PAGELENGTH:=MAX_LINES

PAGELENGTH=88

Comments:
1. On loading COMAL-80

of 72. This value
'PAGELENGTH'.

'PAGELENGTH' is assigned the value
can be changed by an assignment to

2. An assigned value must lie between O and 254 (inclusive)

3. This keyword can be use~ as operand or may be assigned
to. When used as operand it is of integer type.

4. The current value of 'PAGELENGTH' is valid for both pos
s i b 1 e pr int e rs.

5. The value O stops the internal counter and disables tne
translation of form feed into line feed characters. Thus
form feed characters can be sent to the printer as such.

6. The 'NEW' command does not change the value of the
system variable 'PAGELENGTH' •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-078

•

•

•

•

PAGEWIDTH

Type:

Purpose:

Syntax:

System variable

To specify the number of cnaracters per line on an attacned
printer.

PAGEWIDTH

Execut i or,:
An internal counter in COMAL-BO keeps track of the current
print position and issues a carriage return and line feed
comMand when the maximuM allowed number of characters has
been pri r,ted •

Examples:
100 PAGEWIDTH:=40
100 PRINT PAGEWIDTH
100 PAGEWIDTH:=MAX_CHARACTERS

PAGEWIDTH:=80

Co1Ytmer,ts:
1. On loading COMAL-80 'PAGEWIDTH'

of 80. This value can be changed
'PAGEWIDTH'.

is assigned a value
by an assignment to

2. An assigned value must lie between O and 254 (inclusive>

3. This keyword can be used as operand or may be assignee
to. When used as ooerand it is of integer type.

4. The current value of 'PAGEWIDTH' is valid for both pos
sible printers.

5. The value O inhibits the automatic issuing of carriage
return and line feed.

6. The 'NEW' command does not change the value of the
system variable 'PAGEWIDTH' •

COPYRIGHT (C) 1383 METANIC ApS DENMARK PAGE 2-079

•

•

•

•

Type:

Purpose:

Syntax:

Machine language function

To determine the value of a memory location
an arithmetic expression.

PEEK(<expression>>

PEEr<

det e rm i r,eo by

Execut i or,:

Example:

The value of <expression> is evaluated and rounded if
necessary. The value of the corresponding memory address is
returr,ed.

10 DIM B$ OF 1
20 TRAP ESC-
30 EXEC GET_CHR ESCCB$)
40 PRINT B$
50 PROC GET_CHR_ESCCREF A$)
60 II GET KEYBOARD INPUT WITHOUT ECHO TO SCREEN
70 II THE 'ESC' KEY IS TREATED LIKE ANY OTHER
80 II CHARACTER.
90 II THE 'TRAP ESC-' STATEMENT MUST BE EXECUTED BEFORE

100 II THIS PROCEDURE IS CALLED.
110 POKE 256, 255
120 REPEAT
130 IF ESC() THEN POKE 256, 27
140 UNTIL PEEKC256) <>255
150 A$:=CHR$(PEEKC256))
160 ENDPROC GET_CHR_ESC

ComMents:
1. The value of <expression> must be a real or integer num

ber between O ar,d 65535. The result wi 11 be of integer
type between O and 255.

2. Also see 'POKE' •

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 2-080

•

•

•

•

POKE

Type:
Machine language function

Purpose:

Syntax:

To set the contents of a Memory location
mined by an arithMetic expression.

POt<E <expressi on1 >, <expressi on2>

to a value deter-

Execut i or,:

Example:

The values of {expressionl) and <expression2> are evaluated
and rounded if necessary. The memory address corresponding
to <expressionl> is loaded with the value of <expression2>.

10 DIM BS OF 1
20 EXEC GET_CHARACTER(B$)
30 PRINT B$
40 PROC GET_CHARACTER<REF A$)
50 // GET KEYBOARD INPUT WITHOUT ECHO ON THE SCREEN
60 // THE 'ESC' KEY WORKS IN THE NORMAL WAY
70 POKE 256, 255
80 REPEAT
90 UNTIL PEEK(256) ()255

100 A$:=CHR$(P£EK(256))
110 ENDPROC GET_CHARACTER

Co,vimer,t s:
1. The value of <expressionl>

number between O and 65535.
must lie between O and 255.

2. Also see 'PEEK' •

COPYRIGHT (C) 1983 METANIC ApS DENMARK

must be a real or integer
Tne value of <expression2>

PAGE 2-081

•

•

•

•

Type:

Purpose:

Synta><=

POS

Arithmetic function

To determine whether one string is contained within another
and, if so, whereacouts.

POS< <string expressionl>, <string expression2> >

Execution:

Example:

A character by character test is made to see if <string
expressionl) is contair,ed ir, (string e><pression2>. If it
is, the result of the function is an integer returning the
character position of (string expression2> at which (string
expressionl> starts •

10 DIM A$ OF 25
20 DIM 8$ OF 25
30 INPUT "FIRST STRING: ":A$
40 INPUT "SECOND STRING: ":B$
50 C#:=POS(A$,B$)
60 PRINT C#

Comments:
1. If (string expressionl>

returns the value 1.
is a null string, the function

2. If (string expressionl> is not contair,ed in <string ex
pression2>, the function returns the result O.

3. The result of the function is always an integer •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-082

•

•

•

•

PRINT

Type:
Statement, command

Purpose:
To display data on an output device.

Syntax:
PRINT C<list of expressions>]

Execut i or,:
The (list of expressions> consists of variables, constants,
and literals, the values of wnich are output to tne assig
ned output device.

ExaMples:
100 PRINT "THE RESULT IS:
100 PRINT TABC15); A, B

II; A

2.

The single eleMents of <list of expressions> must be
separated by commas or semicolons. If two elements are
separated by a semicolon, the second element is printed
immediately after the first one, while a sPace is
inserted after an arith1Ytetic expression. Separating two
eleMents with a comma causes tne second element to be
printed at the start of the next print-zone.
The width of the print-zones may be cnanged using
'ZONE:= (arithmetic expression}' executed as a state
ment or a command for wnicn <arithmetic expression> is
rounded to an integer greater than or equal to O and
less than or equal to 160.
The rules for semicolon and comma are also valid after
the last element in (list of expressions>, as the effect
is carried onto tne first element of the next 'PRINT'
state1Y1er1t.
When (list of expressions> ends without a comma or semi
colon, the execution of the statement ends with a line
feed.
This also happens if (list of expressions> is omitted.

If the remaining space on the actual line
to contair, the next prir,t element, it is
the start of the following line.

is too snort
printed fro1Y1

3. Execution of a 'SELECT OUTPUT' statement switches be
tween output devices.

4.

5.

<expression> is arithmetic and represents the number of
character positions from the left margin, the function
'TAB ((expression>>' tabulates to the required character
position •
For more details see 'TAB'.

During programming 'PRINT' may be replaced by'
program list ir1gs 'PRINT' is used.

.,
' .

COPYRIGHT CC> 1983 METANIC APS DENMARK PAGE 2-083

•

•

•

•

PRINT FILE PRINT FILE USING

Type:
Statement

Purpose:
To write data in ASCII format to a data file.

Syntax:
PRINT FILE (file No.> C, <rec. No.> J: <list of exoressior,s>

Execution:
The values of the expressions in (list of expressions> are
written to the file indicated by <file No.>.

Examples:
100 PRINT FILE O,RECNO: A$, B, C+D

100 DIM AS OF 5
110 AS:= 11 ##.## 11

120 PRINT FILE 3: USING "##. ##": A, B, c··'·2
130 PRINT FILE 4: USING A$: D

Commer,ts:
1. Before meeting tne 'PRINT FILE (USING)' statement, a

file must be opened and connection between the (file
name> and the (file No.> used in the 'PRINT FILE
(USING>' statement must be estaolished with an 'OPEN
FILE' statement or command, and a type: 'APPEND',
'WRITE' or 'RANDOM'.

2. <rec. No.> is only needed for 'RANDOM' files arid is an
arithmetic expression wnich will be rounded to integer
if necessary and which designates the number of the lo
gical record of the file to be used.

3. (file No.> is ar, arithmetic expression.

4. The elements in (list of expressions> should be separa
ted by commas or semicolons, similar to the syntax of
'PRINT' and 'PRINT USING'.

5. 'PRINT FILE' and 'PRINT FILE USING' perform similar
functions to 'PRINT' and 'PRINT USING', the only diffe
rence being the destination of the output.
The syntax for 'PRINT FILE USING' is obtained by substi
tuting <list of expressions> in the above syntax with:

USING (string expression):(list of expressions>

6. During programming 'FILE' and '#' are interchangeaole.
In program listings 'FILE' is used.

7. During programming 'PRINT' may be replaced by'
program listings 'PRINT' is used.

., , . In

COPYRIGHT (Cl 1983 METANIC ApS DENMARK PAGE 2-084

•

•

•

•

PRINT USING

Type:
Statement

Purpose:
To print text strings and/or numbers in a soecifiea format.

Syntax:
PRINT USING <string expression): (11st of expressions>

Execut i or,:
The text string specified in (string expression> is trans
ferred character by character onto the output device.
String expressions and/or arithmetic expressions from (list
of expressions} are used to replace the'#' characters.

Examples:
100 PRINT USING "THE RESULT IS###.##": A

10 DIM A$ OF 6
20 A$:="##.###"
30 PRINT USING A$: B

Com,Y1er,t s:
1. The individual characters in <string expression>

the following significance:
'#' character position and sign.
• • decimal point if surrounded by'#'.
'+' preceding plus, wnen followea by'#'.
,_, preceding minus, wnen followea by'#'.
All other characters are transferred unchanged.

have

2. A format starting with
which will be printed
values.

'+' will assign a soace for sign
for both negative and positive

3. A format starting with will assign space for signs
but it will be printed for negative values only .

4. For text strings a preceding '+' or• • will be treated
as '#'.

5. If ar, arith1Y1et ic value contair,s too many digits to be
prir,ted in the specified for,Ylat, tr1e positior, is fillea
with '*'. If an arith1Y1etic value cor,tair,s more deci,Yials
than specified in t r1e fo r1Y1at, rour,d i r,g takes pl ace auto
matically.

6. Text strings always start at the extreme left within the
format. If a string is too long, the necessary number of
characters is deleted from the right. Wnen a text string
is too sr-.1·,,t, the rest of tr1e for1Y1at is filled with
spaces.

COPYRIGHT (C) 1983 METANIC AoS DENMARK PAGE 2-085

7. Wnen tnere are no more expressions in <list of ex □ res

sior1s>, executior1 of ti-1e 'PRINT USING' state1Y1er1t is ter-·.
mir1ated. If {list of expressions, •ntair1s more expres--·
sions than stated in <string expression>, the formats
within are again used from tne left.

8. If tt1e 'PRINT USING' state1Y1er1t er,ds w1tr1 a se1Y11colon,
the next printout will start immediately after tne out
put produced by tne 'PRINT USING' statement. If it enas
with a comma the next printout will start at the be
ginning of the next print zone. Otherwise tne execution
of the 'PRINT USING' statement will cause a change to a
new line.

9.

10.

The 'PRINT USING' statement may be used for writing in
a data file following exactly the same rules as descri
bed for the 'PRINT FILE' statement.

During programming 'PRINT' may be replaced by'
program listings 'PRINT' is used.

., , .

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 2-085A

•

•

•

•

•

•

•

PROC ENDPROC CLOSED

Type:
Statemer,t

Purpose:
To define and name a sub-program Ca procedure)

Syntax:
PROC (name> [(formal parameter list>J CCLOSEDJ

ENDPROC <r,ame>

Execution:
On encountering a 'PROC' statement, the program section is
skipped up to and including the corresponding 'ENDPROC'
statemer,t. It will be executed or,ly when tr1e procedure is
called by name using an 'EXEC' statement.

ExaMples:
10 PROC ERROR(N#) CLOSED
20 IMPORT CC#, ERR_, ERRORS#
30 PRINT "****";SPCCCC#-9);" ";N#
40 ERR_:=INCLUDE<ERR_,N#+1>; ERRORS#:+1
50 ENDPROC ERROR

PROCEDURE HEADINGS ONLY:
10 PROC XYZCA,B,REF C$) CLOSED
10 PROC ZYX (REF A# (,, >, REF CO, D$)
10 PROC YZXCREF D$(,,>, R£F E#, REF C) CLOSED

Co«11Yient s:
1. The 'PROC' statement may not be used within:

- Conditional statements
- Repeating stateme~ts

Other procedure or function declarations

2. {r,aMe) must be a legal variable name •

3. A procedure may call other functions, and even itself
(recursion). A closed procedure can only call a closed
function or procedure.

4. {formal parameter list> contair,s the names of the formal
parameters which will receive values from the current
parameters in the procedure call when called.

5. The changes to a paraMeter within a procedure remain
local unless 'REF' is used to indicate that the changes
should affect the actual parameter.

6. 'REF' may be stated for siMple arithmetic or string
variables, and must be stated for all array variables.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-086

7. A procedure type may be either real, integer or string.

8. Array variables 1Y1ust be followed by a di1Y1ensior1 defini- •
tion consisting of coMmas in parentheses corresponding
to the number of dimer,sior,s -1. I.e. for 3-diMensior,al
arrays, the parenthesis contains two commas, while a
vector would be followed by an empty parenthesis.

9. If the procedure is declared 1 CLOSED' variable na,Ytes re
main local and may be used for other purposes outside
the procedure. This may be declared invalid for one or
more variables using the' IMPORT' statement.

10. If the program section between 'PROC' and 'ENDPROC'
contains statements of multiple lines these must all be
contained in the program section.

11. As well as using an 'ENDPROC <name>' statement
from t ►,e procedure, it is also possible t:o
'RETURN' statement.

to return
use the

12. The sections 'PROCEDURES'
in chapter 1 give a more
keywords.

COPYRIGHT CC) 1983 METANIC ApS DENMARK

and 'PARAMETER SUBSTITUTION'
detailed description of these

PAGE 2-086A

•

•

•

•

•

•

•

QUIT

Type:
Statement, command

Purpose:
To stop the COMAL-80 interpreter and return to tne environ
ment from which it was called.

Syntax:
QUIT

Execution:
Under CP/M a warm boot is performed.

Exa1Y1ples:
100 QUIT

QUIT

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 2-087

•

•

•

•

RANDOM RANDOMIZE

Type:

Purpose:

Synta><=

Statement, command

To set a random startooint for tne 'RND' functon.

RANDOM
RANDOMIZE

E><ecution:
The Z-80 CPU has a built-in counter whicn is read and the
value found is used as the seed for the algorithm wnich
calculates the rar,dom value.

Examples:
100 RANDOM

RANDOM

Comments:
1. The counter works constantly when the the CPU is active.

Its clock frequency is around 500 KHz at a CPU clock
frequency of 2.5 MHz.

2. If 'RANDOM' is not found in a program calling the 'RND'
function, any execution of the program will give the
same sequence of random numbers.

3. 'RANDOM' and 'RANDOMIZE' are interchangeable. In program
listings 'RANDOM' is used .

COPYRIGHT <C> 1983 METANIC ApS DENMARK PAGE 2-088

•

•

•

•

READ

Type:
Statement

Purpose:
To assign values to variables from a data list.

Syntax:
READ <variable list>

Execution:
The single elements of <variable list> are assigned values
from the data list. This is done in sequence from left to
right.

Examples:
10 DIM FIRST_NAME$ OF 10
20 DIM FAMILY_NAME$ OF 10
30
40
50
60
70

DATA "JOHN", "DOE", 10
READ FIRST_NAMES, FAMILY_NAME$
PRINT FIRST_NAME$+ 11 "+FAMILY_NAME$
READ AGE
PRINT AGE; "YEAR"

Comments:
1. If the type of value does not correspond to tnat of the

stated variable, or if the data list is e1Y1pty, progra1Yt
execution is stopped with an error message.

2. Assigning values to a string variaole follows tne same
rules as given for 'LET' statements.

3. See the 'DATA' statement •

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 2-089

•

•

•

•

Type:

Purpose:

Syntax:

Statement

To read data from a binary
'WRITE FILE' statement.

data 'file written

READ FI LE < 'f i 1 e No. > C, (rec No. > J : <var i ab 1 e l is t >

READ FILE

using the

Execution:
The values of" the variables in (variable list>
'froM the 'file connected to (file No.>.

ExaMples:
100 READ FILE 5,REC_NO: A
100 READ FILE 3: A, B, C

Comments:

are read

1. Before encountering the 'READ FILE' statement, a file
must be opened and the connection must be established
between the file name and the <'file No.> of the 'READ
FILE' statement. This is done with the 'OPEN FILE'
statement or command and type 'READ' or 'RANDOM'.

2. The (rec No.> is only used in 'RANDOM' files and is an
arithmetic expression which will be rounded to integer
if necessary. It indicates the number of the logical
record to be utilized.

3. (file No.> is an arithmetic expression.

4. <variable list> may con~air-1 any variable type.
are read in total if" no indices are specified.

Arrays

5. The elements of <variable list> are separated by commas •

6. During programming 'FILE'
In program listings 'FILE'

COPYRIGHT CC) 1983 METANIC ApS DENMARK

ar-,d '#'
is used •

are interchangeable.

PAGE 2-090

•

•

•

•

Type:

Purpose:

Syntax:

RECEIVE

Statement

To transfer variables from the current program to a program
called using the 'CHAIN' s~atement.

RECEIVE <list of variables>

Execution:
When the 'CHAIN' statement, which loads the program con
taining the 'RECEIVE' statement, is executed, the current
values of tne variables listed in the 'CHAIN' statement
are saved.
The 'RECEIVE' statement is used to enter tnese values to
the new program. After its execution, tne variaole names in
the (list of variables> have been dimensioned acprooriate
priately if necessary and have been assigned tne values
wnich were saved.

Examples:
100 RECEIVE A,B,C
100 RECEIVE AS,B#,C

Comments:
1. The type of variables specified in (list of variables>

in the 'RECEIVE' and 'CHAIN' statements must correspond.

2. Variaoles reoresenting arrays and strings carry their
dimension from the old to the new program part and must
not be re-dimensioned •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-091

'

•

•

•

•

RELEAS£

Type:
Statement, commano

Purpose:
To check that all disK files are closed.

Syntax:
RELEASE C(device>J

Execution:
All disk files are checked to see that they are closed.

Examples:
100 RELEASE
100 RELEASE "DK1:"
100 RELEASE "Dt("+DISK$+": 11

RELEASE
RELEASE DK 1 :

Comments:
1. Under CP/M,

it is given,
the (device> indication is not used but, if
it must be the name of a disk drive.

2. If a disk file is open, execution is terminated and an
error message is displayed.

3. (device> must be giver, when • RELEASE'
statemer1t but may be the empty string •

COPYRIGHT (C> 1983 METANIC ApS DENMARK

is used as a

PAGE 2-092

•

•

•

•

Type:
Statement

Purpose:

Syntax:

To allow for
program.

II
REM

Execution:

REM //

insertion of explanatory text il"', a COMA1...-80

The 'REM' statement is ignored during program execution.

Examples:
10 //PROGRAM TO CALCULATE
20 REM POLYNOMIAL
30 ! 30/10/1980
40 OPEN FILE 4,"TEST",READ //OPEN DATA FILE

Comments:
1. Durir,g progra,Ylming •REM', '//', and • '' are ir,ter-

changeable. In program listings'//' is used.

2. All statements may be followed by a comment •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-093

•

•

•

•

Type:

Purpose:

Syntax:

Statement, commana

To cnange the name of a file on the
device.

RENAME (old file name>, <new file name>

RENAME

backgrour,d storage

Execution:
The operating system of the computer is called and the file
named <old file name> is renamed to <new file name>.

Examples:
220 RENAME "DK1 :FIL. CML", "DK1 :Fii.... BAK"

RENAME DK1:FIL.CML,DK1:FIL.BAK
RENAME FIL.CML,FIL.BAK

Comments:
1. <old file r,ame> ,v,ust e>< ist on the stated device.

2. If no device is stated, tne statement/command is carried
out on tne current default device.

3. If the <new file name> is already in use, this is repor
ted and the statement/command is terminated.

4. If a device description is contained in one of the
names, the same device indication must be part of the
other name •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-0'34

•

•

•

•

Type:

Purpose:

Syntax:

Command

To renumber program lines
tu res.

RENUM RENUMB£R

and to re-arrange program struc-

RENUM CC<start line>: <end line>, J <start> C, <step>JJ

Execution:
If only a part of a program is to be renumoered, a cneck is
made to see whether there is sufficient room to renumber
using the intervals specified. If not, execution is stopped
followed by an error message.
If there is enough room, the new line numbers are calcu
lated ar,d stored. The progratY1 is checked arid all referer,
ces ('GOTO', 'GOSUB', etc.) are updated.
Finally, the old line numbers are deleted.

Examples:
RENUM
RENUM 15
RENUM 15,3
RENUM 20:90,310,1

Comments:
1. If <step) is not given, default 10 is used.

2. If <start> is not given, default 10 is used.

3. <start 1 ir,e> ar,d <er,d 1 ir,e> are used wt1en or,ly a sect ior-,
of a program is renumbered. They specify tne first and
last line numbers to renumber. In this case <start> spe
cifies the first new line number and <step> the new steo
between line numbers. In this way a program section can
be moved to any place in a program if there are enougn
free line numbers. No overwriting and no mixing is
possible.

4. If <start line>: (endline}, is not given the wnole pro-
gram is renumbered •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-095

•

•

•

•

Type:

Purpose:

Syntax:

REPEAT UNTIL

Statemer,t

To repeat the execution of a program section until the con
dition contained in the 'UNTIL' statement is fulfilled.

REPEAT

UNTIL (logical expression>

Execution:
On meeting the 'UNTIL' statement the value of the <logical
expression> is calci..1lated. If it is true, executior, resumes
from the first executable statement following the 'UNTIL'
statemer,t. If < 1 og ical exp ressi or,> is false t ~,e program
continues from the first executable statement following the
'REPEAT' statement.

10 DIM A$ OF 1
20 DIM B$ OF 25
30 PRINT "THE PROGRAM IS STOPPED BY"
40 PRINT "PRESSING THE 'ESC' KEY"
50 TRAP ESC-
60 REPEAT
70 INPUT "WRITE A LETTER: 11

• A$,
80 B$:=B$+A$
90 UNTIL ESC<>

100 PRINT "YOU WROTE: "; B$

Com,Ytents:
1. A program section surrounded

always executed at least once .

COPYRIGHT <C> 1983 METANIC ApS DENMARK

by 'REPEAT •.. UNTIL' is

PAGE 2-096

•

•

•

•

Type:

Pur-pose:

Syntax:

Statement

To move the data list pointer to
or wnolly re-read.

RESTORE (line number>
RESTORE <name>
RESTORE

, Rt::STORE:

allow it to be partially

Execution:

Example:

The pointer of the data list is set to the first data item
in the stated line, or to the first data item oeclared if
no line is specified •

10 LABEL AGAIN
20 RESTORE DATA2
30 READ X
40 PRINT X
50 DATA 47
60 RESTORE 50
70 READ X
80 PRINT X
90 GOTO AGAIN

100 LABEi... DATA2
110 DATA -47

Co1Y11Y1er1ts:
1. If the 'RESTORE' statement contains a line number, the

corresponding line must contain a 'DATA' statement.

2. If the 'RESTORE' statement contains a name, tne state
ment immediately following tne 'LABEL' statement de
fining that label must contain a 'DATA' statement •

3. If the 'RESTORE' statement contains neither a line
number nor a name, the pointer is set to the first
item of the first 'DATA' statement •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-097

•

•

•

•

Type:

Purpose:

Syntax:

RETURN

Statemer,t

To terminate a subroutine or a procedure, or to terminate a
user defined function and return the function value.

RETURN
RETURN <expression>

(for procedures and subroutines)
(for functior,s>

Execution:
Execution of procedures and subroutines is terminated and
resumes from the line following the calling line. For func
tions, execution is terminated and the function value is
inserted in the expression which caused execution of the
fur,ct i or,.

Examples:
10 FUNC X_Y_POWER(X,Y>
20 RETURN XA3/YA2
30 ENDFUNC X_Y_POWER
40 I :=2
50 J:=3
60 OLE:=X_Y_POWER(I,J>
70 PRINT OLE

10 EXEC OPEN_FILE
20 PROC OPEN_FILE

10 PRINT "MAIN PROGRAM"
20 GOSUB 50
30 STOP
50 PRINT "SUBROUTINE"
60 RETURN

30 IF A$="DEFAULT" THEN RETURN
40 OPEN FILE 3,"DK1:"+A$,READ
50 ENDPROC OPEN_FILE

Commer,ts:
1. In user defined functions, the function value can only

be returned using the 'RETURN' statement. If this is not
included, the function value will be undefined and an
error message will be displayed.

2. <expression> in the • RETURN' statement must of be the
same type as the function name. The only exception is
that an integer expression will be accepted in a func
tion of real type.

3. Within a procedure a 'RETURN' statement without <expres
sion> cannot be used to return from a subroutine. In the
main program a 'RETURN' statement can only be used to
return from a subroutine •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-0'38

•

•

•

•

RND

Type:
Arithmetic function •

Purpose:
To return a pseudo-random number.

Syntax:
RND C()J
RND <expressionl>, <expression2>

Execution:

Example:

A random number is generated based on the seed
be changed with the 'RANDOM' statement/command)
most recently generated random number.

100 A:=RND<>
100 B:=RND(-5,17>

<which can
or on the

Comments:
1. Any execution of a program will give the same sequence

of random figures unless a 'RANDOM' statement has first
been executed.

2. Omitting the two limits <expressionl) and <expression2>
creates a random real number in the range Oto 1.

3. If <expressionl> and/or Cexpression2> is not an integer,
then rounding taKes place.

4. If limits are stated, the result will always be an inte
ger between <expression1> and Cexpression2> inclusive.

5. During programming the parenthesis after 'RND' may be
omitted if empty. Thus, instead of 'RND(>', 'RND' may be
used. In program listings 'RND<>' will be used •

COPYRIGHT (C) 1983 METANIC AoS DENMARK PAGE 2-099

•

•

•

•

ROUND

Type:
Arithmetic function

Purpose:
To convert a real expression to an integer type.

Syr,tax:
ROUND<<expression>>

Execution:

ExaMple:

The arithmetic <expression>
converted to integer type.

10 INPUT A
20 B#:=ROUND<A>
30 C:=ROUND<A>
40 PRINT B#, C
50 PRINT ROUND(S.72>
60 PRINT ROUNDC-5.72>

is rounded and the result is

Comments:
1. Rounding is carried out to the nearest integer. If the

number lies evenly between two integers, the one with
the highest absolute value is chosen.

2. <expression> is of real type. The result is an integer
type. Note that an integer can be assigned to a real
variable.

3. See the• INT' and 'TRUNC' functions •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-100

•

•

•

•

RUN

Type:
Co1Y1mand

Purpose:
To start execution of a program.

Syntax:
RUN C <Ii r,e number> J

Execut i or,:
COMAL-80 is brought to a defined start position wnicn,
among other things, closes all files left aper, from ar,y
previous execut ior,, performs a 'SELECT OUTPUT "OS:"' and
initializes the variable area.
After this a special prepass module checks to see wnether
the program contains structures CFOR ••• NEXT, LOOP ••• ENDLOOP
etc.) and references <EXEC, LABEL, etc.> and tne internal
representation of these statements is extended to increase
the working speed.
Finally, program execution is started at the given line
number.

Examples:
RUN
RUN 230

Commer,ts:
1. Omitting (line number> starts the program at the lowest

line number •

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 2-101

•

•

•

•

SAVE

Type:

Purpose:

Syntax:

CoMtYtand

To store programs on the background storage device in the
internal (binary> format.

SAVE <file name>

Execution:
The operating system of the computer is called and infor
mation on (file name> and the area of memory to be trans
ferred is passed to it for the 'SAVE' operation.

Examples:
SAVE TEST
SAVE DK1:TEST

Comments:
1. If a program is to be called by the 'CHAIN' statement it

must have been stored using the 'SAVE' command.

2. Programs stored using the 'SAVE' command may be re-read
by tne 'LOAD' command.

3. The internal format may be different on different ver
sions of COMAL-80. Consequently, a program cannot always
be stored using the 'SAVE' command in one version and
read using the 'LOAD' command in an other version.
Programs to be exchanged or stored for longer periods of
time should be stored using the 'LIST' command.

4. If <file name> already exists on the current device,
this is reported and the user may continue, thus
deleting the old file, or stop ('RETURN/ESC') •

5. The extension '.CSB' is always supplied by the COMAL-80
system and not by the user.

6. Information on the 'EXTENSIONS' loaded at the time of
execution of 'SAVE' is also stored in the file. This
information is checked when 'LOAD' or 'CHAIN' is used
and any discrepancy from the 'EXTENSIONS' loaded at that
time is an error •

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 2-102

•

•

•

•

Type:

Purpose:

Synta><=

Statement, command

Ta specify a new default device/file
'PRINT' and 'PRINT USING' statements.

SELECT COUTPUTJ <string e><pressian>

SELECT OUTPU"f

for printout by the

E><ecutian:
Internal painters in the COMAL-80 system are switched to
select the specified printout device/file.

Examples:
220
220
220
220

CamMents:
1.

SELECT OUTPUT "LPO: II
SELECT OUTPUT "DK1:TEXT"
SELECT OUTPUT "TEXT"
SELECT OUTPUT "OS: II

SELECT OUTPUT "LP: II

Whenever the program e><ecution is
'RUN' command, the console is chosen
file.

started using tne
as default output

During program execution a new default file may be cna
sen by specifying the name of the peripheral or a file
using a <string e><pressian>.
When program execution is terminateo, either by use of
the 'ESC' key, or because it is finished, the terminal
again defaults as the output file •

COPYRIGHT (C) 1983 METANIC AoS DENMARK PAGE 2-103

•

•

•

•

SGN

Type:
Arithmetic function

Purpose:
Returns the sign of an arithMetic expression.

Syntax:
SGN<<expression>>

Execution:
ArithMetic <expression> is calculated and if the result is
greater than O the function returns the value 1. If the
result equals 0, 0 is returned, and if the result is less
than 0, -1 is returned.

ExaMples:
10 INPUT "WRITE A NUMBER: " . A
20 ON SGN(A)+2 GOTO 30,50,70
30 PRINT "A(O"
40 STOP
50 PRINT "A=O"
60 STOP
70 PRINT "A>O"
80 STOP

COPYRIGHT <C> 1983 METANIC ApS DENMARK PAGE 2-104

•
Type:

TrigonoMetric function

Purpose:
Returns the sine of an expr-essioY,.

Syntax:
SIN<<expression>>

Execution:
The sine of <expression>, in radians, is calculated.

ExaMple:
10 INPUT A
20 PRINT SINCA)

• Co1Y11\'ler,t s:
1. (expression> is an arithMetic expression of

integer type. The result will always be real •

•

•

SIN

real or

COPYRIGHT (C> 1983 METANIC ApS DENMARK PAGE 2-105

•

•

•

•

SIZE

Type:
Command

Purpose:
To display t~e size of the used memory area.

Syntax:
SIZE

Execution:

Example:

The amount of memory used for storage of the user's program
with • EXTENSIONS' is displayed on the terminal, together
with the amount remaining and the amount used by variables.

SIZE

Comments:
1. The figures displayed

or remaining.
indicate the number of bytes used

2. The figure shown as space used for variables refers only
to variables dimensioned or used during the last program
execution.

3. The size of COMAL-80 itself is not displayed •

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 2-106

•

•

•

•

Type:

Purpose:

Syntax:

Strir,g f1 .. mctior1

To create a string consisting of spaces, the
these being defined by an arithMetic expression.

SPCS((expression))

SPC$

r1l11Y1ber of

Execut i or,:

ExaMple:

The arithMetic <expression> is calculated (and rounded if
necessary) then a string containing that nuMber of soaces
is created.

10 INPUT A
20 PRINT SPC$(3*5>,A

Co1Y11Y1er1t s:
1. (expressior,> Must be equal to, or greater thar,, 0 •

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 2-107

•

•

•

•

SQR

Type:
Arithmetic function

Purpose:
To calculate the square root of an arithmetic expression.

Syntax:
SQR(<expression))

Execution:

Example:

The square root of an <expression> equal to or greater tnan
0 is calculated.

10 INPUT A
20 PRINT SQR(A)

Comments:
1. <expression> is arithmetic and may be real or integer.

The result will always be real.

2. If (expression} is less thar, 0, execution is stopped
witl-1 an error message. If these have beer, ir,hibited
using the 'TRAP ERR-' statement, the system function
'ERR()' will subsequently return the error number, and
the square root is calculatea from the expression:

SQR(ABSC<expression})

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-108

•

•

•

•

STOP

Type:

Purpose:
To stop execution of a program.

Syntax:
STOP

Execution:

Example:

Program execution stops and the following message is dis
played on the screen:

STOP IN LINE nnnn

nnnn is the line number containing the 'STOP' statement .

540 STOP

Comments:
1. The 'STOP' statement is normally used to stop execution

of a program ~ther tnan at the end.

2. Program execution may be resumed by using the 'CON'
command •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-109

•

•

•

•

STRf.

Type:
String function

Purpose:
To convert an arithmetic expression into a string.

Syntax:
STR$((expression>>

Execution:

Example:

The arithmetic expression is converted to a string con
taining the characters wnich would be output if the value
were printed by a 'PRINT' statement.

10 DIM B$ OF 7
20 INPUT "WRITE A NUMBER": A
30 B$:= STR$(A*1.5)
40 PRINT B$

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-110

•

•

•

•

TAB

Type:
Print function

Purpose:

Syntax:

To tabulate to the next Character position
with a 'PRINT' stateMent.

TABC<expression>>

in cor,nection

Execution:

Example:

The arithMetic expression is evaluated and if necessary
rounded. The result defines the start position of the next
printout.

100 PRINT TAB<l0>, "THE RESULT IS: "• RESULT

ComMents:
1. TABC<expression>> can only be used in connection with

'PRINT' statements.

2. <expression> is an absolute value counted 'from the left
hand margin of the output unit.

3. If the last printout before the 'TAB<<expression>>' has
already passed the specified position, program execution
is stopped with an error message.

4. The aritnmetic <expression> must evaluate as greater
than or equal to 1, and less than or equal to the maxi
mum number of characters allowed in the width of the
out put device •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-111

•

•

•

•

Type:
TrigonoMetric function

Purpose:
To calculate the tangent of an arithMetic expression.

Syntax:
TAN<<expression>>

Execution:

Example:

The tangent of <expressior,>, given in radiar,s, is calcula
ted.

10 INPUT A
20 PRINT TAN(A)

Comments:
1. The arithMetic <expression> May be real or integer. The

result will always be real •

COPYRIGHT <C> 1983 METANIC ApS DENMARK PAGE 2-112

•

•

•

•

Type:

Purpose:

Syntax:

TRAP ERR

Statement, command

To cnange the normal system response to a non-'fatal error.

TRAP ERR
TRAP ERR+

Execution:

ExaMple:

During normal program execution any error will stop the
program and will create an error message. However, a number
of errors can be bypassed in a w~ll-defined manner.
In tnese cases program interruption may be avoided by use
of a • TRAP ERR-' statemer,t before the error arises. In
this case, the system function 'ERRO' will return a value
equal to the error number next time it is called (in all
tests this will be considered true because it is not 0).
Program execution will then continue.

10 INIT " 11
, FILENAME$

20 TRAP ERR-
30 OPEN FILE 0, "XPLOCOMM", READ
40 TRAP ERR+
50 IF NOT ERR<> THEN
60 INPUT FILE O: DEFAULT_FILENAMES
70 ELSE
80 DEFAULT_FILENAMES:="XPLOi::iROG"
90 ENDIF

100 CLOSE

Execution of a program starts by assigning tne value
false < = 0 > to the system variaole 'ERR<>'. wnen a
'TRAP ERR-' statement has been executed, a non-fatal
error assigns its error numoer to 'E~RC>' wnicn retains
this value until its status is checked. Immediately
after a such cnec~, 'ERR<>' is again assigned the value
of false.
Normally COMAL-80 sets a variable true by assigning it
the value of 1, but here the error numoer is used.
The error numbers are described further in appendix C.

2. After executing a 'TRAP ERR+' statement,
returns to normal error handling.

the system

3. During programming 'ERR' and 'ERR()' are intercnange
aole, but ir, program listings 'ERRO' is used •

COPYRIGHT CC) 1983 METANIC ApS DENMARK PAGE 2-113

•

•

•

•

Type:

Purpose:

Syntax:

Statement, commana

To change the systeM response to the 'ESC' key.

TRAP ESC
TRAP ESC+

TRAP ESC

Execution:

Example:

During normal program execution a check is made before each
statement, to see whether the 'ESC' key has been pressed.
If it has the program execution is stopped.
If a 'TRAP ESC-' statement has been executed, this function
is blocked and the system function 'ESC()' will instead
return the value of true C = 1) when 'ESC' is pressed.

10
20
30
40
50
60

TRAP ESC
REPEAT

PRINT "THE 'ESC' KEY IS NOT PRESSED"
UNTIL ESC 0
TRAP ESC+
PRINT "THE 'ESC' t'<EY WAS PRESSED"

Comments:
1. At the start of program execution, the system variable

'ESCC)' is assigned the value of false < = 0). If a
'TRAP ESC-' statement is executed and the 'ESC' key is
pressed after that, program execution continues but the
system variable 'ESC<>' is assigned the value of true
C = 1 > and retains this value until its status has been
checked.
Immediately after the value is used, 'ESC()' is again
assigned the value of false (= 0) •

2. The system returns to normal handling of the 'ESC' key
after a 'TRAP ESC+' statement has been executed.

3. During programming 'ESC' and 'ESC<>'
able, but in program listings 'ESC()'

COPYRIGHT (C> 1983 METANIC ApS DENMARK

are interchange
is used •

PAGE 2-114

•

•

•

•

TRUE

Type:
System constar,t

Purpose:
To assign the value of true to a boolean variable.

Syntax:
TRUE

Execution:
Returns the value 1.

10 II PRIME
20 II
30 DIM FLAGS#(0:8190)
40 SIZE1:=8190
50 II
60 COUNT:=O
70 MAT FLAGS#:=TRUE
BO II
90 FOR I:=O TO SIZEl DD

100 IF FLAGS#(!) THEN
110 PRIME:=I+I+3
120 K:=I+PRIME
130 WHILE K<=SIZEl DO
140 FLAGS#(K):=FALSE
150 K:+PRIME
160 ENDWHILE
170 COUNT:+1
180 ENDIF
190 NEXT I
200 PRINT "TOTAL NUMBER OF PRIMES: "~COUNT

COPYRIGHT <C> 1983 METANIC ApS DENMARK PAGE 2-115

•

•

•

•

TRUNC

Type:
Arithmetic function

Puroose:
To convert a real expression to an integer.

Syntax:
TRUNC(Cexpression>>

Execution:
The arithmetic <expression> is evaluated and tne result is
converted to integer type, decimals are disregarded.

Examples:
100 A=TRUNC(5.72)
100 A:=TRUNC(A/B)

Comments:
1. <expression> is real.

The result is integer.

2. See also the 'ROUND' and 'INT' functions •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-116

•

•

•

•

Type:

Purpose:

Syntax:

Command

To assign the backgrouna storage device
the default device.

UNIT (device>

Execut i or-,:

UNIT

wnicn is to be the

The internal pointers are updated to point at tne stated
device.

Examples:
100 UNIT "DK1:"

Co1Y1ments:
1.

UNIT DK1:

(device> is defined as 2 letters describing the type of
background storage device followed by the unit number
and a colon •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-117

•

•

•

•

Type:

Purpose:

Syntax:

VAL

St ring function

To convert a real number of string type to a number of real
type.

VAL(Cstring expression>>

Execut i oY,:

Example:

The real number in {string expression)
nufflber of real type.

10 DIM A$ OF 5
20 A$:="32.34"
30 PRINT VAL(A$)

is converted to a

CommeY,ts:
1. If <string expression> does not contain a correctly

formed real or integer number, program execution is
stopped with an error message.

2. See the 'IVAL' function •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-118

•

•

•

•

Type:

Purpose:

Syntax:

Machine code function

To find the absolute address
variable is stored.

VARPTR <<variable>>

in

VARPTR

the memory at wt1ict1 a

Execution:

Exa1Ytple:

The deciMal, absolute address in memory at which the first
byte of the variable <variable> is stored, is returned.

10 INPUT A
20 PRINT VARPTR<A>

Commer,ts:
1. The result states where the first byte of the variaole

is stored. The remaining bytes are in the immediately
following locations.
Integers are stored ir, 2 bytes with t t1e lower part of
the number first.
Real nuMbers are stored in 4 bytes in tne 7-digit
version.
Real numbers are stored in 8 bytes in the 13-digit
version.
For string variables the first 2 bytes define the length
and the string is then stored contiguously.

2. The result is of real type.

3. The variable May be an array with or without indices. If
no indices are given, the address of the first element
of the array is returned •

4. WARNING: In one situation a variable is moved after it
has been allocated storage, thus cnangir,g its address.
This happens, on exit from a non-closed procedure, to
all variables encountered and allocated storage for
the first time during the current call of the procedure •

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 2-119

•

•

•

•

WHILE ENDWHILE

Type:

Purp·ose:

Syntax:

Statement

To repeat the execution of a progra1Y1 section uY,til t~1e
condition contaiY1ed in the 7 WHIL£' statement is fulfilled.

WHILE <logical expression>

ENDWHILE

Execution:

Example:

On meeting the 'WHILE' statement the value of the (logical
expression> is calculated. If this is true, execution
resumes from the first executable statement following the
'WHILE' statement. When 'ENDWHILE' is reached execution
continues with the 'WHILE' statement and the (logical
expressioY,> is evaluated again. If the <logical expressioY,>
is false the program continues from the first executable
statement following the 'ENDWHILE' statement.

10 OPEN FILE 0,"DATA",READ
20 WHILE NOT EOFCO) DO
30 READ FILE O: INDEX, NUMBER#, TEXT$
40 ENDWHILE

COPYRIGHT CC> 1983 METANIC ApS DENMARK PAGE 2-120

•

•

•

•

WRITE FILE

Type:
Statement

Purpose:
To write data in binary format to a data file.

Syr,tax:
WRITE FILE (file No.> C, <rec. No.> J: <variacle list>

Execution:
The values of the variables in <variable list> are written
to the file contained in <file No.).

Examples:
100 WRITE FILE 7,REC_NO: A, B, C
100 WRITE FILE 3: A$, B#, C

Comments:
1. Before encountering a 'WRITE FILE' state~ent, a file

must be opened and connection between <file name> and
the <file No.) used in the 'WRITE FILE' statement must
be established through the 'OPEN FILE' statement (or
command), and type 'WRITE', 'RANDOM', or 'APPEND' must
be established •

. -, ..::.. < rec. No. > is only used with 'RANDOM' files
arithmetic expression which will be roundea
if necessary.

3. (file No.> is ar, arith,Ytetic expression.

and is an
to integer

4. <variable list> may contain all variable types. If am
array variable is given without indices, the wnole
array will be written.

5. The elements in <variable list> are separated by commas •

6. During programming 'FILE' and '#' are interchangeable.
In program listings 'FILE' is used .

COPYRIGHT <C> 1983 METANIC ApS DENMARK PAGE 2-121

•

•

•

•

ZONE

Type:

Purpose:

Syntax:

System variable

To establish a new print-zone w1dtn by assigning this value
to the system variable 'ZONE'.

ZONE:=(arithmetic expression>

Execut i or,:
The system variable 'ZONE' is assigned the value of <arith
metic expression> which is rounded if necessary.

Examples:
100 ZONE:=8
100 ZONE=X*Y+3

ZONE=12
CURRENT:=ZONE

Com,Yier,ts:
1. On loading COMAL-80, 'ZONE' is assigned the value of 0.

0. This value can only be.changed by an assignment to
'ZONE'.

2. The 'NEW' command does not change the value of the
system variable 'ZONE'.

3. See 'PRINT'

4. During programming '•-' and'=' are interchangeable. In
program listings'·-• is used •

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-122

	_0001
	_0003
	_0004
	_0005
	_0007
	_0008
	_0009
	_0011
	_0013
	_0015
	_0017
	_0019
	_0021
	_0023
	_0024
	_0025
	_0026
	_0027
	_0029
	_0030
	_0031
	_0032
	_0033
	_0034
	_0035
	_0037
	_0038
	_0039
	_0040
	_0041
	_0042
	_0043
	_0044
	_0045
	_0046
	_0047
	_0048
	_0049
	_0050
	_0051
	_0053
	_0055
	_0057
	_0059
	_0061
	_0063
	_0065
	_0067
	_0069
	_0070
	_0071
	_0073
	_0075
	_0077
	_0079
	_0081
	_0083
	_0085
	_0087
	_0089
	_0091
	_0093
	_0095
	_0097
	_0098
	_0099
	_0101
	_0102
	_0103
	_0105
	_0107
	_0109
	_0111
	_0113
	_0115
	_0117
	_0119
	_0121
	_0123
	_0125
	_0126
	_0127
	_0129
	_0131
	_0132
	_0133
	_0135
	_0137
	_0139
	_0141
	_0143
	_0145
	_0147
	_0149
	_0151
	_0153
	_0155
	_0157
	_0159
	_0160
	_0161
	_0163
	_0165
	_0167
	_0169
	_0171
	_0173
	_0175
	_0176
	_0177
	_0179
	_0181
	_0183
	_0185
	_0187
	_0189
	_0191
	_0193
	_0195
	_0197
	_0198
	_0199
	_0201
	_0203
	_0205
	_0207
	_0209
	_0211
	_0213
	_0215
	_0217
	_0219
	_0221
	_0222
	_0223
	_0224
	_0225
	_0227
	_0229
	_0231
	_0233
	_0235
	_0237
	_0239
	_0241
	_0243
	_0245
	_0247
	_0249
	_0251
	_0253
	_0255
	_0257
	_0259
	_0261
	_0263
	_0265
	_0267
	_0269
	_0271
	_0273
	_0275
	_0277
	_0279
	_0281
	_0283
	_0285
	_0287
	_0289
	_0291
	_0293
	_0295

