COPYRIGHT AND TRADEMARK NOTICES

METANIC COMAL-80 and its documentation are copyrighted by METANIC
ApS, DENMARK.

It is illegal to copy any of the software in this COMAL-B80 software
package onto cassette tape, disk or any other medium for any pur-—
pose other than personal convenience.

It is illegal to give away or to resell copies of any part of this
METANIC COMAL-80 software package. Any unauthorized distribution
of this product or any part thereof deprives the authors of their
deserved royalties. METANIC ApS will take full legal recource
against violators.

If you have any questions about these copyrights, please contact:

METANIC APS
KONGEVEJEN 177
DK-2830 VIRUM
DENMARK

Copyright (C) METANIC ApS, 1983
All Rights Reserved

(R) METANIC COMAL-80 is a registered trademark of METANIC ApS.
(R) CP/M is a registered trademark of Digital Research, Inc.

(R) Z-80 is a registered trademark of Zilog, Inc.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-001

PREFACE

IT IS ONE THING TO COMMAND THE SHIP
QUITE ANOTHER TO WRITE THE CHARRTS

An old proverb, written 1long before the world of the byte, the
nanosecond and the interpreter; yet these words often came to mind
as we worked on this manual.

Explaining something as complex as a high level language is as
fraught with reefs as any sea—-voyage, so it our hope that this book
will allow you to chart your way through the intricacies of COMAL-
80 with the minimum of effort.

We have had many suggestions and comments as a result of the, first
edition of this manual and, if the next edition is to be an even
greater improvement, then we still need feedback from you, the user
~— the most important person of all.

There is an error report card at the back of this binder and you
are invited to send any corrections, comments or suggestions that
you think may be of use - we, in turn, will be happy to receive
them. The format of the manual makes it very easy to update, S0
there is every chance that you will see your suggestions in print
in a very short time.

An important part of the philosophy behind COMAL-80 is its ease of
use, especially for those not necessarily familiar with high level
languages. For this reason, and because this is a manual not a
teaching book, all the keywords have been arranged in alphabetical
order rather than in structural, but possibly unfamiliar, groups.

We hope vyou will come to find COMAL-80 an indispensible tool in
your everyday computing and that this manual will help you to enjoy
many pleasant and successful hours with your computer.

THE AUTHORS

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-002

ACKNOWLEDGEMENTS

METANIC ApS hereby wishes to thank the following wmembers of the
staff and friends of COMAL-80 for their dedicated assistance in the
preparatiorn of this manual:

MOGENS PELLE
ARNE CHRISTENSEN
MOGENS CHRISTENSEN
SUSANNE SONDERSTRUF

A special acknowledgement is extended to all the piorneers who
helped with field testing the COMAL-80 interpreter, and whose
criticism and suggestions have had so much impact on the final
specifications.

The information furnished by METANIC ApS in this publication is
believed to be accurate and reliable. However, rno responsibility is
assumed by METANIC ApS for its use.

FOURTH EDITION, JUNE 1983.
GENERAL CP/M VERSION
PRINTED IN DENMARK

COPYRIGHT (C) 1983 METANIC ApS DENMARK FAGE 1-002A

INTRODUCTION

METANIC COMAL—-80, written for the Z—-80 wmicroprocessor, is the most
extensive interpreter available for microcomputers today and con-

‘tains, as well as a full extended BARSIC, a great number of struc-—

tures found in Pascal.

COMAL-80 was originally specified as a result of the specific
wishes of Danish educationalists who wanted an easy to learn lan—
guage with built-in programming support which would facilitate
transition to other structured languages.

This manual is divided into two parts with a riumber of appendices.
Part 1 contains instructions for initialization of the different
versions of COMAL-80 and a general description of features which

affect some or all the COMAL-80 instructions.

Part 2 contains the syntax and semantics of all commands, state-—
ments and functions in alphabetical order.

The appendices contain the source code for the screen driver,
guidelines for changing this to suit different systems, a list of

error messages, demonstration programs and a list of ASCII codes.

This manual is not intended as a tutorial for COMAL-80, but as a
reference manual to the specific features of METANIC COMAL-80.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-003

OPERATIODN

Each of the two COMAL-80 software packages contains two versions of
the COMAL-80 interpreter. The two versions have identical features,
except that the overlayed version leaves more storage for the user
while requiring a few seconds at the start and end of each program
execution to read the overlay file.

The different files are named:

7-digits precision:

Non-overlayed version: COMAL-—-80. COM

Overlayed version! COMAL80S. COM

Overlay file: COMAL—-80. 2
13-digits precision:

Non—overlayed versicn: COMALA8OD. COM

Overlayed version: CMAL.80ODS. COM

Overlay file: COMALBOD. 2

Note that each package contains the files for only one of the two
possible precisions and that the CP/M operating system is not
included on the distribution disks.

It is suggested that the COMAL-80 files be copied to a riew disk
together with the CP/M operating system. Then remove the original
disk from the computer ard keep it in a safe place as this disk
alone carries a warranty.

Now type the name of the version without the extension *.COM’ and
COMAL-80 will sign on. Note that the overlay versions will work
only if the disk is placed in the CP/M default drive.

Once initialized, COMAL—-80 checks whether an initialization file
exists on the disk. If so, it is read and executed. This file is
described in detail in a later chapter. If no such file exist,
COMAL—-80 simply asks whether error descriptions are required.
Answer with 'Y’ for yes or N’ for no.

COMAL-80 is then ready for use, as shown by the prompt character
'#’, Commands and program statements may then be keyed in.

Commands are recognized by the fact that they do not start with a
line number. A command will be executed iwmmediately following a
*RETURN’ .

The special system commands (such as RUNT, 'LIST’, etec.) as well
as many of the COMAL-80 statements may be used as commands allowing
instant results of arithmetic and 1logical operations to be dis-
played without any need to write a program.

COPYRIGHT (C) 1983 METANIC ApS DENMARK) PAGE 1-004

Frogram statements are recognized by the fact that they start with
a line number. This indicates to COMAL-80 that the line should be
stored for later execution.

On pressing *RETURN’, a line is syntax—checked and if no errors are
found it is converted to an internal format and stored in the
workirg memory of the computer. If ari error is found, the line is
displayed on the terminal with the cursor indicating the error
point. An error code and, if the error descriptions are riot dele-
ted, a description of the error are also displayed.

Using the editing facilities of COMARL-80, the error may then be
corrected and followed with *RETURN’. The above sequence is then
repeated until the line is correct.

When the user types *RUN’ a prepass is executed first to complete
the translation into internal format. Among other things it trans-—

lates all refererices to absolute wmemory addresses.

Finally the run module goes into action to execute the program.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-004A

LINE FORMAT
The statement lines in COMAL-80 have the following format:
mnmnn COMAL-80 statement L[// {comment)]

nnrin is a line number between 1 and 9999. Only ore statement is
allowed on each line unless separated by semicolons. For further
details see the "LET’ and *MAT’ statements.

All statements may be followed by a comment (see also *REM’ in
chapter 2).

A COMAL-80 statement always starts with a line number, ends with
RETURN’, and may contain up to a maximum of 159 characters. On
terminals with a physical line length less than this, a line, once
filled will be continued on the next screern line.

INPUT EDITING

If an error is made while a line is being typed in, move the cur-—
sor back to point at the error and type the correct character(s).
The new character(s) will replace the old one(s). The character
pointed at by the cursor can be deleted by pressing the ’DEL’ key
(ugser defineable) whereupon all characters to the right of the cur-
sor will move one position left.

New characters may be inserted between existing characters by
moving the cursor to the position where the insert is to start and
pressing the *INS® key (user defineable). The rest of the lire
(including the character pointed at by the cursor) will move one
position to the right leaving an empty space. This can be repeated
as often as necessary to create space for any number of characters
up to the maximum line length of 1359 characters.

When the input is terminated by pressing the ’RETURN’ key, the
whole line shown on the screen is stored regardless of the cursor
position.

A line which is in the process of being typed may be deleted by
pressing the 'ESC’ key (user defineable). This will also terminate
the automatic gerneration of line numbers.

To correct program lines of a program which is currently in memory,
re~type the line using the same line number or use the ’EDIT’ com—
mand.

To delete an entire program currently residing in memory use the
?NEW’ command.

CORPYRIGHT (C) 1983 METANIC RApS DENMARK PAGE 1-003

CHARACTER SET

The COMAL-80 character set comprises the alphabetic characters,
I numeric characters and special characters.

The alphabetic characters are the upper and iower case letters of

the alphabet, including {1 Y[N1 which may be replaced by
national letters in some countries.

The numeric characters are the digits 0 through 9.
The following special characters are recognized by COMAL-80:
CHARACTER NAME

Blank
Equal sigrn or assignment symbol

+ 1

Plus sign
- Minus sign
. * Multiplication symbol
/ Slash or division symbol
- Exponentiation symbol
(Left parenthesis
) Right parenthesis
Number or hash sign
$ Dollar sign
! Exclamation point
" Comma
. Period or decimal point
" Double quotation marks
3 Semicolon
H Colon
& Ampersand
4 Less than
) Greater than
— Underscore
ESC? ## Stop and wait for input
? RETURN? Terminate input
Control-A #* Insert
Control-H and (= # Cursor left
. Control-L and =) #*# Cursor right
Control-S # Delete
Control~K # Cursor to start of line
Control-J # Cursor to end of line
Coritrol—-1I # Cursor 8 steps forward
Control-B # Cursor 8 steps backwards
Control-E # Delete to end of line

* user definable.

CORPYRIGHT (C) 1983 METANILC ApS DENMARK PAGE 1-006

CONSTANTS

Constants are the actual values which COMAL-80 wuses during execu-—
tion. There are two types of constants: string and arithmetic.

A string constant is a sequence of alphanumeric characters enclosed
in double gquotation marks. The length of the string is limited only
by the space available in the computer.

A double quotation mark wmay be included in a string constant by
entering 2 double quotation marks ("") immediately following each
other.

Characters which cannot be typed on the keyboard, can be included
in a string constant by typing the characters’ decimal ASCII code
enclosed in double gquotation marks.

EXAMPLES OF STRING CONSTANTS:

"CoMAL-80"
"$10.000"

"OPEN THART DOOR"
lIKEY " IIS'I 11 TD STDp "
IIEND" 13“ "

Arithmetic constants are positive and negative numbers. Arithmetic
constants in COMAL-80 carmot contain commas. There are two types of
arithmetic constants:

1. Integer Whole numbers in the range -32767 to 32767.

constants Integer constants do not contain a decimal
point.

2. Real Positive or negative real numbers, i.e. num—

constants bers that contain a decimal point and posi-

tive or negative numbers represented in
exponential form (scientifiec notation). A
real constant in exponential form consists
of an optionally signed integer or fixed
point number (the mantissa) followed by the
letter E’ and an optionally signed integer
(the expornent). In addition, whole numbers
outside the range for integer constants are
considered to be real constants.

CORPYRIBHT (C) 1983 METANIC ApS DENMARK PAGE 1-007

VARIABLES

Variables are names used to represent values used in a COMAL-80
program. The value of a variable may be assigned explicitly by the
programmer or it may be assigned as the result of calculations in
the program. Until a variable has been assigned a value, it is
undefined.

VARIABLE NAMES AND DECLARATION CHARACTERS

COMRL-80 variable names may be of any length up to 80 characters.
The characters allowed in a variable name include all letters,
digits and the underscore. The first character wmust be a letter.
Special type declaration characters are also allowed. - See below.

A variable name may not be a reserved word unless the reserved word
is embedded. Reserved words include all COMAL-80 commands, state-

ments, function names, operator names and identifiers defined in an
"EXTENSION".

Variables may represent either an arithmetic value or a string.
String variable names are written with a 4’ (dollar sign) as the
last character. Integer variable names are written with a '#
(number or hash sign) as the last character. The °%’° and the *#’
signs are variable type declaration characters, i.e. they ’'declare’
that the variable will represent a string or an integer.

Examples of variable names:

A

A8

DISKNAME$
COUNTER#
VALUE_OF _CURRENT

CORYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-008

ARRAY VARIABLES

An array is a group or table of values referenced by a single
variable name. Each element in an array is referenced by a variable

‘name subscripted with one arithmetic expression for each dimension.

An array variable name has as many subscripts as there are dimen—
sions in the array. When used as a parameter the array can be re-—
ferenced as a whole or as an ’array of arrays’ by omitting some or
all the subscripts. This is described in detail in the chapter:
PARAMETER SUBSTITUTION.

All arrays must be declared using a 'DIM’ statement or a *RECEIVE’
statement.

When an arithmetic array is declared, but before it has been assig-
ned any values, all its elements have the value O (zero).

When a string array is declared, but before it is assigned strings,
all its elements contain the string "" (string of zero length).

SUBSTRINGS

As well as from referencing a string variable as a whole, or (for
arrays) element by element, or as an array of arrays, a part of a
string variable element may also be referenced.

This is done in one of the following formats:

(name) (I1,12,...1In, (start) L, (end)1)
(name) (I1,I2 ...In) ((start) (2 (end)])

In the first case, the number of dimensions in the variable (name)
is retrieved from the corresponding ’DIM’ statement. If it has,
say 'm’ dimensons, then the first 'n’ indices in the parenthesis
are used to specify the actual element. The parenthesis may contain
one or two further indices, i.e. (start) and (end). (start) speci-
fies at which character position the substring starts, and (end)
specifies where it ends. Whithout (end), the substring consists of
the character at the (start) position only.

In the second case, the first parenthesis contains the necessary
number of indices, wnereas the second parenthesis contains (start)
and (end) information as described before.

If (name) states a simple string variable then the number of disen—
sions is considered to be zero and the parenthesis contains (start)}
and (end)> only. In the latter format, the first parenthesis is
omitted.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-009

ARITHMETIC OPERATORS

The arithmetic operators are:

. Precedence Operator Operation Example
1 -~ Exponentiation X~Y
2 / Division X/Y
2 * Multiplication X®Y
2 DIV Integer division X DIV Y
2 mMoD Modulus X MOD Y
3 - Negation -X
3 + Addition X+Y
3 - Subtraction X-Y

Precedence controls the order in which operations are handled with-

. in an expression. The operator with the highest precedence is
evaluated first, lowest last. Where several operators have the
same precedence they will be evaluated from left to right.

Precedence may be overruled by parentheses: expressions enclosed
in parentheses are resolved first. When multiple operators occur
in the same set of parentheses the above table applies.

Apart from negation, the arithmetic operators may be used only be-
tween expressions giving arithmetic values. Negation may be used
only for expressions giving arithmetic values.

The arithmetic value of a logical true expression is 1. The arith-
metic value for a logical false expression is 0.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-010

RELATIONAL OPERATORS

Relational operators are used to compare two values. The result of
a such comparison may be either true (= 1) or false (= 0), This

‘result may then be used to influence the program run.

Whenever an arithmetic value is used as a logical value, the number
0 is interpreted as false, and numbers other than O are interpreted
as true.

Operator Relation Example
= Equality X=Y
(¢} Inequality XOY
> Greater than XY
{ LLess than X<Y
Y= Breater than or equal to X>=Y
(= Less than or equal to X (=Y
(= is also used to assign a value to a variable.)

Relational operators are used between two expressions both giving
an arithmetic value or between two expressions both giving a string
value.

Relational operators have a lower precedence than arithmetic opera-
tors. MWithin an expression containing both types all arithmetic
operators are resolved before the relational operators.

In the following example:

X=2)T+3
the values of "X-2’ and *T+3’ are calculated before the comparison
of the two values.

Comparison between two string expressions is performed character by
character using the ASCII codes for each character. A’ is less
than "E’ (the ASCII code for A’ is 65 and for E’ is 693).

With two strings of different lengths where the short one is equal
to the begirvming of the 1long one, the short orne is considered
the smallest. Consequently, "BLACK" is smaller than "BLACKBIRD".

When comparing two strings, all characters between the double quo-
tation marks are compared including spaces. In this respect the
aggregates "" and "number", each representing only one character
when found within a string value, count as one character only,
namely the character represented by the aggregate.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-011

FILE NAMES

File names basically follow the CP/M naming conventions. Only the

first eight characters are significant and lower case letters are
converted to upper case.

Following a period an extension of three characters may be speci-
fied. The extension can be chosen freely except in conrection with
'SAVE’ and *LOAD’ commands where the COMAL-80 system automatically
provides the extension *.CSB’. No extension wmay be specified in
construction with these commands.

If no extension is specified, the default *.CML’ is used whenever
the file name is wused in cormection with the *ENTER' and ’'LIST’
commands, *'.DAT’ is used in connection with the 'OPEN’ command/
statement, except for random files where ’RAN’ is used. '.CAT’ with
the "CAT’ command/statement and ’.L0G’ is used for log files.

The whole name, including the extension, is used to specify a file.
This means that the two commands:

ENTER PROGRAM
ENTER PROGRAM. CML

read the same file into memory, whereas
ENTER PROGRAM. LST
reads another.

The disk drive name is optional but is treated as an integral part
of the file name. If it is omitted, the current default disk drive
is used. If it is specified then it is written in front of the file
name. The disk drive name is the device name of the disk to be used
(see below).

Example:?
ENTER DK1:PROGRAM. CML

Note that the disk drive names do not follow the CP/M naming
convention.

The disk drive name consists of the two letters DK’ (meaning disk)
and a unit number followed by a colon. Thus 'DKO:’ corresponds to
CP/M’s A’ , "DK1:’ corresponds to CR/M’s *B:’, etc.

A similar system is used with the other peripheral devices, so that

these can be used as files and may be the source of or destination
for, data according to the nature of the specific device.

COPYRIGHT (C) 1983 METANIC ApS DENMARK : PAGE 1-012

The names used for the different devices are!

LRP:? or 'LRPO:’ for the line printer
LP1? for the punch device
*DS:’ or 'DS0O:’ for the data screen
KB:’ or KBO:' for the keyboard

Example:

10 OPEN FILE O, "KB:", RERD

20 OPEN FILE 1, "LP:", WRITE

30 DIM A% OF 100

40 LOOP

50 INPUT FILE 0O:AQ$

60 PRINT FILE 1:R$%

70 ENDLOOP
When *INIT’, *RELEASE’, ’LOG’, ’DELETE’, *GETUNIT?, *RENAME’,
UNIT’, and 'CAT’ are used as statements, filenames are cornsidered
to be string expressions and must be enclosed in double guotation
marks. This is optional in command mode. This allows a file name

to be specified by any string expression which evaluates to a legal
file name.

Examples:
100 DELETE "DKO:PROGRAM.CML"
100 INIT "DKO:" A%
100 DELETE "DKO:"+As$+".CML"

COMAL~80 uses its own format in disk files. The normal CFR/M format
can be specified by extending the filename with a */C’. Further ex-—
tending the filename with a /B’ specifies the CP/M binary format.

Examples:

ENTER TEST.BARK/C // READ CP/M ASCII FILE
100 OPEN FILE 3,"TEST.XYZ/C/B",READ //OPEN CFR/M BINARY FILE
100 OPEN FILE 2, "DATA/C",WRITE //0PEN CP/M RSCII FILE

COPYRIGHT (C) 1983 METANIC ApS DENMARK) PAGE 1-012A

PROCEDURES

One of the distinct features of COMAL—-B80 is the inclusion of gernu-
ine procedures with parameters.

A procedure is a named program area placed betweern the keywords
PROC (name)’ and ’ENDPROC <{(rame)’ and which is called by the use
of the keyword 'EXEC (name)’.

They act basically as subroutines and can be called from ore or
several places within a program. When the procedure has been com—
pleted the program execution continues on the line following the
calling line. Apart from this they have other features which make
them a very efficient programming tool.

Firstly, they are called by name so that the programmer does riot
have to worry about the line numbers at which the procedure is lo-
cated.

Secondly, the procedure is non—executable until it is called, mea-—
ning that regardless of where the procedure 1is placed in the pro-
gram, the lines inside it will be bypassed unless the procedure is
actually called by an 'EXEC® statement. This call can go forwards
or backwards in a program.

Thirdly, and very important, parameters can be passed to the pro—
cedure when it is called. This means that a procedure can react
differently and operate on different data each time it is called.

There are two types of procedures, called open and closed procedu-
res. The differerce between the two is a question of how the pro-
edure sees the variables used ivn the rest of the program.

A variable used in an open procedure has the same status as a
variable used in the main program. This means that if it is assig-—
ned a new value within a procedure, it keeps this value when the
procedure is terminated and program execution resumes from the lirne
following the calling line.

The closed procedure, however, acts in many ways like a separate
program. The closed procedure has its own set of variables, which
carn be dimensioned and assigned values within the procedure, but
they are rever able to influence the variables wused outside the
procedure urnless some special action is taken (refer to parameters
and the import statement). This makes it possible to write library
routines which car be used in any program without risking problems
with the same variable nawe being used both in the procedure and in
the rest of the program.

CORYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-013

The difference between the two types of procedures can be illustra-
ted within the following two programs:

1 2

10 A= 10 A:x=

20 EXEC TEST 20 EXEC TEST

30 PRINT A 30 PRINT A

40 PROC TEST 40 PROC TEST CLOSED

S0 A= S50 Ai=

60 PRINT A 60 PRINT A

70 ENDFROC TEST 70 ENDPROC TEST
Runnirng these 2 programs the first one will print the digit * 3
twice because the assigrmment in line 50 will overrule the assign—
ment in line 10. The second example will print the digits '3’ and
'S’ because the procedure is closed and therefore the variable in
line S0 1is not the same as the one in line 10 -~ even though they
have the same name. Technically speaking, the variable A’ in ex-

ample 1 is global because the whole program can see and use it, but
a variable inside a closed procedure is local and can only be used
inside the procedure.

A local variable must also be assigrned (line 50) or dimensioned
inside the closed procedure before it is used for the first time.
This means that if line S50 is deleted in the secord example, t he

program executiorn will stop in line 60 with an error message say-—
ing that the variable is unknown.

Even though the separation of variable names is the basic idea
behind the closed procedures, it is often convernient to make a
variable name knowrn to the main program as well as to the procedure

This can be done through the ’IMPORT’ statement as shown in the
following example:?

10 A:x=
20 EXEC TEST
30 PRINT A

40 PROC TEST CLOSED
S0 IMPORT A

60 AI=3*A

70 PRINT A

80 ENDPROC TEST

This program will print the digit *9’ twice. Note that the * IMPORT’
statement must be placed in the closed procedure and before the
part of the procedure actually using the variable for the first
time. :

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-013A

Closed procedures can be nested to any level that the memory allows
but the ’IMPORT’ statement only works at the level where it is
actually placed. The following program will print the digit *3’
(in line 100) and then stop in line 60 with an error message that
the variable is unkriown:

10 A=
20 EXEC TEST1
30 PRINT R

40 PROC TEST1I CLOSED
S0 EXEC TESTZ

€0 PRINT A

70 ENDPROC TEST1

80 PROC TEST2 CLOSED
90 IMPORT A

100 PRINT A

110 ENDPROC TESTZ

Another way of moving a variable into and out of a closed procedure
is by means of a refererce parameter. this is described in details
in the chapter ’*PARAMETER SUBSTITUTION’.

When a variable is dimensiored or assigned a value in a closed pro-
cedure the necessary memory is not allocated until the procedure
is actually called and this memory is again de—allocated when the
procedure is terminated.

Thus, no matter how many of times a procedure is called, there will
be no error message ’'out of storage’ as long as it does riot happen
on the first call.

This also makes it possible to dimension a variable in a procedure
which is called several times without conflicting with the rule
that a wvariable carnot be re-dimensioned, and it is possible to
overlay arrays and string variables used for intermediate results
and thereby economize on storage by dimensioning and using these in
different closed procedures.

Any procedure may call any procedure defined anywhere in the main
program and it may even call itself (recursion). However, a closed
procedure can only call a closed procedure. Note also, that
recursion implies rnesting to a new level which uses memory and must
be carefully controlled.

The rules for variables in closed procedures also apply to the
other closed structure: The user—defined function.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-014

PRRAMETER SUBSTITUTION

An important part of the COMAL-80 definition is the inclusion of
procedures (and user—defined functions) with parameters, which
allow a program to be brokern down into smaller, named routires.
These can be open or closed.

To move data into and out of a such routirne parameters are used,
i.e. list of variable names specified in the first line of the
routine (the formal parameters) and a list of variables or expres—
sions in the calling line (the actual parameters). The actual para-
meters are then inserted into the formal parameters when the rou—
tine is called.

There are two types of parameters, namely ’'call by value’ and ’call
by reference’.

'call by value’ mearns that the actual value of the actual parameter
is assigrned to the formal parameter. This type can only move data
into the routire as changes to the formal parameter do not affect
the actual parameter.

'call by refererce’ means that the formal parameter is replaced by
the actual parameter. This type can move data both into and out of
a routine, and is sgpecified by the keyword *REF’ in the formal
parameter list. The above mentioned replacement happens dynamical-
ly, i.e. when the routine is called, and it cannot be seen in pro-—
gram listings which always show the formal parameters.

The following examples show the differernce!

1 2

10 A:= 10 A=

20 EXEC TEST(A) 20 EXEC TEST(A)

30 PRINT A 30 PRINT A

40 PROC TEST (X) 40 PROC TEST(REF X)
50 X:=3%X 50 X:=3#X

60 PRINT X 60 PRINT X

70 ENDPROC TEST 70 ENDPROC TEST

Here, in line 20 A’ is the actual parameter and X’ in line 40 is
the formal parameter.

In the first example the value '3’ is assigned to ’X’ when the pro-
cedure 'TEST® is called in line 20 and prints the digit 39" in line
60. After the procedure is terminated the digit '3’ is printed in
line 30 because the variable A’ is in no way affected.

The other example will print the digit 39’ twice because the formal

parameter is replaced by the actual orne and the change is thereby
reflected back.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-015

Parameters are always local, meaning that changes which happen to
'call by value’ parameters in a routine cannot affect a variable
of the same name in the rest of the program. This is shown by the
followirig example:

10 A=

20 Bi=2

30 EXEC TEST(R)
40 PRINT A, B

S50 PROC TEST (R)
60 A:i=3%A

70 1=3%R

80 FPRINT A,R
90 ENDFROC TEST

For A" this program will print the digit 9 in line 80 and then
the digit 3’ in line 40. EBoth lines print the digit ’6&’ as the
value for E’. In other words, the formal parameter A’ is local to
the procedure and ariother variable than the variable used in lines
10 and 40, whereas B’ is not a parameter (and the procedure is riot
closed) so it is global to the procedure, arnd the same variable in
the whole program.

The parameter lists may contain as many parameters as the maximum
lirne lergth allows (159 characters), separated by commwas, but there
must be the same rumber of parameters in both lists, and correspon-
ding parameters must conform to type and dimension. The only excep-—
tion is that an integer actual parameter can be assigned to a real
formal parameter when 'call by value’ is used.

Cornstants and expressions can be used as actual parameters when
'call by value’ is used.

Example:
10 EXEC TEST (3*5, "ERROR")
20 PROC TEST (A, B%)
30 PRINT A
40 PRINT Bs$
50 ENDFPROC TEST

Note, that a formal parameter carinot be dimensiorned, since the call
itself carries the necessary information.

Arrays can be used as parameters either as a whole, as an array of

arrays or as a single element, but they can only be used as
reference parameters in the former two cases.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-013A

When a single element is used, the element is specified in the ac-—
tual parameter list with the necessary number of indices and a
. variable of the same type specified in the formal parameter list.

Example:
10 DIM A(3,5,2)

100 EXEC TEST(A(1,1,1))

200 PROC TEST (R)

300 ENDPROC TEST

' Note, that B does not need to be a referenced parameter since
only a single element is used.

An array of arrays is used by omitting one or several of the indi-
ces from the right hand side in the actual parameter list and fol-
lowing the formal parameter name with a parenthesis containing the
same number of commas as the rnumber of omitted indices minus 1.

Example:
1¢ DIM A(3,5,2)

100 EXEC TEST(A(1,1))

200 PROC TEST(REF E())

300 ENDPROC TEST
In this example one should note that the parenthesis following the
. formal parameter B’ is empty because the number of omitted indices

is 1.

The omitted indices are theri specified when the formal parameter is
used in the routine.)

COPYRIGHT (C) 13983 METANIC ApS DENMARK PAGE 1-016

The following example shows this:

10 DIM ARRAY_OF_VECTORS (S5, 3) .
20 FOR I:=1 TO S

30 FOR J:=1 TO 3

40 ARRAY_OF _VECTORS(I,J) :=RND(1,5)

S0 NEXT J

60 NEXT I

70 EXEC CHANGE _SIGN(ARRAY_OF_VECTORS(4))
80 PROC CHANGE_SIGN(REF VECTOR()) CLOSED
90 FOR I:=1 TO 3

100 VECTOR(I) :=-VECTOR(I)

110 NEXT I

120 ENDPROC CHANGE_SIGN

130 FOR I:=1 TO S

140 FOR J:=1 TO 3

150 PRINT ARRAY_OF_VECTORS(I,J); .
160 NEXT J

170 PRINT

180 NEXT I

It is also possible to use a whole array as a parameter. This is
dorne by removing all the indices in the actual parameter list and
following the formal parameter with a parenthesis containing the
same number of commas as the dimernsion of the array mirnus 1.

Example:
10 DIM A%(5,3,2) OF 25

100 EXEC TEST (A%)

200 PROC TEST(REF B%(,,))

300 ENDFROC TEST ’

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-016R

ERROR HANDLING
COMAL-80 actually consists of 3 main modules called:

Input module
Prepass module
Run module

Each module has its own error routines handling different error ty-
pes as efficiently as possible.

These routines have at their disposal a library of error messages
each giving a short description of about 200 different types of
errors.

An error number is always given with the error message and in most
cases the actual line causing the error is displayed with the
cursor indicating the point of error.

To give instant error messages the library is an integrated part of
COMAL-80. The library uses about 3K and it is possible to delete
most of it when signing on COMAL-B80, giving the user about 2.5K
extra storage.

Except for the wmissing messages, the rest of the error reporting
system works in the usual way and the error number makes it pos-—
sible to find the text by referring to appendix C of this manual.

SYNTAX ERRORS.

The input module consists of two submodules: the editor and the
syntax controller.

The editor is a line-oriented editor, which allows the user to key-
in a line and change it as appropriate. When the line is terminated
by pressing {(return) it is transferred to the syntax corntroller arnd
checked against COMAL-80 specifications.

If no syntax errors are found the line is executed (if it is a com—
mand) and translated and stored in memory (if it is a statement).

If the line contains a syntax error, an error number and (if avail-
able) an error message is displayed followed by the actual line
with the cursor indicating the error location, control is then re-
turned to the editor. The user can then correct the line and repeat
the sequence until the line is accepted.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-017

When reading arnn ASCII file via the *ENTER’ command, each live is
syntax checked in the same way. If an error occurs the lirne is dis—
played on the console together with arn error rnumber (and possibly a
message) and an arrow pointing to the error, the line is rnot stored
in memory. Loading is then resumed.

It is not possible to store a line containing a syntax error.

PREPASS ERRORS

Whern the user warits to execute a program and types *RUN’ the pre-—
pass, which is invisible to the user, goes into actior. This module
extends the internal representation of the program using absolute
memory addresses and checks that all structures are properly ter—
minated and that all reference points exist.

If no error is found, coritrol is passed on to the run wmodule.

If one of the statements of a structure is wmissing (FOR...NEXT,
REFPEAT...UNTIL,’ WHILE. .. ENDWHILE, a.s.o0.), the line rumber of the
corresponding statemert is displayed on the screen with an errorvr
number and possibly an error message. Line numbers with calls to
nor—existing VLQBEL’ statements are shown in the same way.

If a statemerit contains the ’EXIT’ statement without the surroun-—
ding *LOOF’ and *ENDLOOF’ statements, the line rumber of the *EXIT’
statement is returned.

All errors in a program are reported at the same time, and control
is then returred to the irnput module. It is riot possible to execute
any part of a program if it contains a prepass error.

RUN ERRORS

When the run module is called only errors of dynamic nature (i.e.
occurring when a line is actually executed) can exist. An error of
this type will normally stop COMAL-80. The line containing the
error will be shown on the screen with the error number and, pos—
sibly, an error message. Control is then returried to the editor in
the input module for easy correction of the error. However, a num-—
ber of errors are non—fatal because they can be bypassed in a well-
defired marmer. An example of this is division by 0O where it is
often convenient to assign as the result the maximum value that
COMAL~80 can handle.

To prevent a program stopping for non—-fatal errors, two special
statements are implemented: ’*TRAF ERR-" and ’*TRAF ERR+’.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-017R

If a *"TRAP ERR~' statement has beernn executed a non—fatal error will
not stop the program execution, but a subsequent call of the
system function ’ERR()’ will return the error number. By testing
this function it is then possible to influence program flow. This
mode of operation continues until a *TRAP ERR+’ statement is execu-
ted after which the system returns to normal error handling.

The fatal errors always terminate program execution.

Note that the *TRAP ERR-’ mode is a question of having executed a
such statement. Its actual line number is of no importance.

The *RUN’ command always'resets to normal error handling.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-018

VARIABLE, PROCEDURE & FUNCTION NAMING

COMAL-80 allows the same string of characters to be used for dif-
ferent variable types and for procedure and function mnames. To
avoid conflicts, the following rules apply:

Static binding is used everywhere. It must be clear from the pro-—
gram text what each name stands for. This is reflected by several
of the rules below.

All variables introduced within a closed procedure or function are
local to the procedure or function and canmot be referenced from
within any other procedure or function, or from the main program.
This also applies to the parameters of a closed procedure/function
since these are cases of local variables.

From within a closed procedure/function the following variables can
be referenced: The local variables of the procedure/function and
any variables explicitly imported from the main program by means of
the *IMPORT®' statement. No other variables can be referenced from
within the closed procedure/function.

Parameters to an open procedure/function are local to the procedure
/function and carmot be referenced from within any other procedure/
furnction (not even from within another open procedure/function) or
by the main program. An open procedure/furction has no local vari-
ables apart from the parameters.

From within an open procedure/function the following variables can
be referenced: The parameters of the procedure/furiction and the
variables of the main program. Mo other variables can be referenced
from within the opern procedure/function. If any variables are
'DIM’ensioned within the open procedure they are, in all respects,
treated as if they had been ’DIM’ensioned within the main program.
Variables that are used within the open procedure/function but not
in the main program, are still considered belonging to the main
program.

The ' IMPORT’ statement carn only be used in closed procedures/func—
tions. It cannot be used in an open procedure/function or in the
main program.

System variables and furctions can be referernced everywhere.

Frocedures and functions cannot be nested, whether open or closed.

Procedures and functions can call each other and can call them—
selves recursively, whether open or closed.

Procedures can be called throughout the program. Procedure names
carmot be ’ IMPORT’ ed.

CORPYRIGHT (C) 1983 METANIC RpS DENMARK PAGE 1-019

Functions can be called throughout the program except at points
where a variable with the same rname masks the furnction. This is
ornly possible if the function has paraweters. The rule is: If a
'DIM’ensioned variable with the same name as the function can be
referenced at a certain point then the function carnrot be called at
this point. Arny attempt to call the function at this point will be
interpreted as a refererce to the variable with the parameters irn-
terpreted as indices.

A call to a function without parameters is programmed by writing
the name of the function followed by an empty parenthesis, e.9.
TFUNCTIONC()’. Thus there is wo possibility of confusion even if a
variable with the same nawe can be referenced at the point of the
call.

The above rules are introduced in order to allow for arbitrary
naming of local variables in library procedures (which will always
be closed!.

Function nawmes carmnot be * IMPORT’ ed.
Labels defined in the main program can only be referenced in the
main program. Labels defined in a procedure or function, whether it

be oper or closed, can only be refererced in the procedure or func-
tior where they have been defined. Labels carmot be * IMPORT’ ed.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-019A

INITIALIZATION FILE

After COMAL-80 has been read into memory and has started to execute
(but before the prompt sign is displayed), it is often convenient
to be able to change default values automatically, or to load and
execute a program.

The initialization file offers this opportunity. Before the prompt
sign is displayed, the CP/M default disk drive is searched for an
appropriate file which is read in an executed (if it exists).

The file itself is a normal COMAL-80 text file stored on the disk
with the ’LIST’ command under the name ’COMALBOI.NIT’ (for the 7-
digit version) and ’*CMALBODI.NIT’ (for the 13-digit version). As
this is a text file, each line (except the very first one) follows
the syntax:

(line No.) // {(COMAL—80 statement or command)
The first line follows the syntax:
{line No.)> // {error text mode) [{highest memory address)l

(line No.> 1is a normal lirne number used only when editing the
initialization file.

The remark sign (’//) allows anything to be written on the rest of
the line.

{COMAL-80 statement or command) is a normal COMAL-8Q statement or
command as described in chapter 2 of this manual; the only excep—
tions being that the "AUTO’ and 'EDIT’ commands are not allowed.

{(error text mode) specifies whether error texts are wanted or not.
Possible answers are 'Y’ for yes, N’ for no, and A’ for ask. When
using A’ the question whether or not error mnessages are wanted
will be displayed on the screen.

{highest memory address) specifies in decimal the highést memory
address for use by the COMAL-80 system. This specificaton is optio—
nal and defaults to the first memory position below the CP/M opera-—
ting system.

When the initialization file is executed it is read 1line by line
from the disk. The {line No.)> and the remark sign are skipped and
the rest of the line is executed exactly as a normal COMAL-80 line.

Example:
0010 // Y S0000
0020 // ZONE:=8: PRAGEWIDTH:=132; PAGELENGTH:=0
0030 // CLERR
0040 // PRINT "WELCOME TO COMAL-80"

This file contains commands only and in line 0010 the COMAL-80

system is instructed that error messages are wanted and that no me-
mory location above address 50000 may be used.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-020

The rest of the lines are then read and executed ore by one.

The initialization file may also include statements as shown in the
following example:®

0010 // N

0020 // 10 // PRINT 80 STRARS
0030 // 20 FOR I=1 TO 80
0040 // 30 FRINT "#*v

0050 // 40 NEXT I

0060 // RUN

In this example the ’*FOR...NEXT’ loop is first stored in memory,
controlled by the line riumbers 20, 30, and 40 and then executed
whern the *RUN’ command is met in line 00E&0. Note, that the state-—
mernts are actually stored in memory and they will still be there
whernn the initialization file is terminated and the prompt sign is
shown, unless a *NEW’ command is included.

It is also possible to load and execute ore or more files:

0010 // N

0020 // LOAD DK1:FROGI1
0030 // RUN

0040 // NEW

0050 // ENTER PROGZ2
Q0O&0 // RUN

This example will first load *FROG1’ from disk drive 1, execute it,
clear the memory, and then it will enter *PROGZ’ and execute that
one.

To guarantee that the whole initialization file is executed the
'ESC' key is disabled until the last line is reached. This means
when *FROG1’ is executing in the former example, it carmot be stop-
ped by pressing the ’ESC’ key, whereas the system reacts riormally
when ’*FROGZ’ is rurming because the ’*RUN' command is the last lirne
in the initialization file.

The error checking system works in the normal way but due to the
disabling of the ’ESC’ key it is only possible to correct the lire
shown on the screen. This means that there are situations where
errors can only be bypassed by deleting the whole lirne.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-020A

EXTENSIONS

COMAL-B80 offers extensions as a unique feature which allows the
user to customize the language and extend to it by adding new
statement types, standard functions and operators.

New keywords and the necessary 280 machine code is stored in a disk
file produced using a re—locatable assembler. One or more of these
files are then activated using the 'EXTENSION’ command, and the new
keywords become reserved words which, in all aspects, act like the
original keywords.

Appendix D shows a full working example of this feature which
should be studied irn congunction with this description.

An assembler program defining extensions must start with
NAME (7 (name)’)

where (name) is the name of the pragram.

After this, the contents of the file ’'EXTDEFS.MAC® are followed

with the specifications for the extensions defined in the file

which must follow immediately after each other. Each extension will

be formatted as follows:

EXTENSION {(name) [, (local name)l

{interface)
ENDEXT {name) [, {local name)]
The same <(name) and, if used, {local name’ must be used in both

places. For the very last specification, the word *ENDEXT’ is re-
placed with *ENDALLEXT’.

{(name) is the name with which the extension will be called in a
COMAL-80 program, excluding any possible dollar—-sign.

{local name) is the name of the extension within the assembler
file. If (local name) is not given, {(name) will be used in the

assenbler file as well. It may be useful to give a (local name) if
several extensions have names in which the first five characters
are the sawe, or if {(name) contains an urnderscore, or is the same

as a 280 op-code.
{(interface) is different for functions, statements, and operators.
For functions:

FUNCTION <(return type)
{(list of parameters)

where the (return type) is of either type *INT’, *REAL’ or *STR’.

COPYRIGHT (C) 1983 METANIC ApS DENMARK FAGE 1-021

For statements:

STATEMENT
(list of parameters)

(list of parameters) must consist of =zero or more lines with each
line specifying orne parameter in the following way:

PARAMETER [{(dimernsion),] {type)

If (dimension) is riot stated it is assumed to be a 'call by value’
parameter. Otherwise the parameter is a ’call by refererce’ para-
meter and {(dimension) states the dimernsion of the parameter. 0o =
simple variable, 1 = vector, and so on. Also 'ANYDIM’ may be stated
for (dimension). This will mean that the actual parameter may have
any dimerision and that it will be a ’call by reference’ parameter.
Then it is up to the externsion to determine which dimension the
parameter has and to handle it accordingly.

(type) states the type of the parameter which may be *INT’, *REAL’
or *STR®> (for integer, real or string respectively).

TANYTYPE? or 'INTRERL’ may be stated: ’'ANYTYPE’ means that the
actual parameter may have arny type (?INT?, * REAL’ , STR*), and
*INTREAL.’ means that the actual parameter may be of either *INT’ or
"REAL’ type. The special rules for these two cases (regarding the
way they are transferred to the extension) are described below.

For operators (interface) is either

OPERATOR <(return type), (left operand type),
{(right operand type), (priority)

or

OPERATOR (return type), (operand type), (priority)
the former is used for dyadic operators and the latter for monadic
operators. As with functions (return type) is either ’INT’, ’REAL’
or 'STR?.
(left operand type), <{(right operand type) and (operand type) may be
PINT', 'RERL’, *STR’, 'ANYTYPE' or ' INTREAL’ used as described for
functions and statements above.

Parameters to operators can only be 'call by value’ parameters.

{(priority) states the priority of the evaluation of the operator in
relation to other operators, including the standard operators.

{priority) is stated as the name of a standard operator, using the
name used for a call to the mathematical package. The operator will

then have the same priority as the standard operator. The follow-— .

ing names may be used:

COPYRIBHT (C) 1983 METANIC ApS DENMARK PAGE 1-021A

POWER

TIMES, SLASH, DIV, MOD,

PLUS, MINUS, CHS,

LEQ, LSS, GE@, GTR, EGL, NE@, IN,
B. NOT,

B. AND,

E. OR

After the 1lirne contairning ’ENDALLEXT...’ comes the code for the
specified extensions. Eachh routine starts with a label which is
{name? (or {(local name)) of the corresponding *EXTENSION’ line.

When the routine starts, all registers used by COMAL-80 are saved
and may be used. The parameters are pushed on the stack referenced
by IX. This stack grows dowrnwards like the SP-stack with the last
parameter on the top.

For "call by refererice’ parameters, a ’reference element’ is placed
on the stack (described below). Note that if the formal parameter
is of the type ANYTYPE® or "RERLINT’, the extension must find the
type of the actual parameter and act accordingly. The type is de—
termined by the refererce element as described below.

For ’call by value’ parameters, the value is on the stack. The way
in which the value is structured is described below. If the formal
parameter is of type ANYTYPE’ or *RERLINT’, an extra byte is push-
ed on top of the value and this byte states the type of the value
in the following way: For 'ANYTYRPE® the byte may be of the value

TINT?, * REAL’ or 'STR?, corresponding to the type of the actual
parameter. For *INTREAL’ an actual parameter of type ’*REAL’ will
always be converted (rounded if necessary) to ’INT’ before the

extension is called but the extra byte will state whether the con-—
version created an overflow (if the number was too large). In that
case the byte will not be O, otherwise it will be equal to O. If
the actual parameter is of type 'INT’ the byte will be egqual to O.
In the case of an overflow, the integer will still be in the stack
(Just below the byte) although its value will be of no interest.

The A and B registers contain, respectively, the version number of
the running COMAL-80 version and the sub-version number. For
version 2.0 the sub-version number is 0 and the version number is
8+DB+0V for which DB=0 for the 7-digit version and DB=2 for the
13—digit version, while OV=0 for the non—overlaid version and 0V=1
for the overlay version.

Before the routine returns, all parameters must be popped from the
IX—-stack. If the routine corresponds to a function or an operator,
the return value must be pushed onto the IX-stack before the
return. However, if the return takes place while the C-bit is set
(see below), it is not necessary to pop the parameters or push any
return value. The return is made using *RET’. Nothing must be done
to change the size of the SP-stack (which may be used as there is
about 100 bytes of free space). -

COPYRIGHT (C) 1983 METANIC ApS DENMARK FAGE - 1-022

Depending on the contents of the AF-register, COMAL-B80 may give an
error message on returning from the routine. Both fatal and non-—-
fatal error messages are possible. If the Z-bit has been set, nro
error message will appear, otherwise the error message correspori—
ding to the number in the A-register will be given, unless the num-—
ber is above 130 in which case the error number is increased by S50.
The error message will be fatal if the C—-bit is set; otherwise it
will be non—fatal, which means that it will not appear when a ’'TRAF
ERR-’ statement has been included; the error riumber may be returned
by using ERR()’.

STRUCTURE OF PRRAMETERS

This section describes how parameters (values and reference ele—
ments) are represented in COMAL-80:

Integers: The bit—pattern 8000H means ’undefined’ and it will never
be supplied as a parameter. It should rot be returned or assigned
to any parameters. If a ’call by referernce’ parameter holds this
value it means that the variable never has been assigned any value.
This must be checked before the value is used. This is done auto-
matically by the function *LDVAL® of the mathematical package.

Real numbers use 4 bytes in the 7-digit version and 8 bytes in the
13-digit version. If the first byte is equal to 80H and the last
byte to OOH, this means *undefined’ (see ’'integers’).

Strings consist of two parts: The first 2 bytes indicate the levgth
of the string, the remaining bytes are a character—by—character re-
presentation of the string.

Reference elements denote variables of all kinds, both simple vari-
ables including string variables, as well as arrays and sub-
strings. The format for reference elements for substrings is spe-—
cial and will be described separately: all other reference elements
use 4 bytes and consist of two poirnters: a pointer to a description
of the variable, and a pointer to the data area of the variable.

The description of a variable is of varying size and grows towards
lower addresses (NB!). For simple variables it consists of a byte
carrying the value *-~INT’, ’'-REAL’, or *"-8TR’ corresponding the
three types. If it is '-STR’ this byte is followed by the maximum
length of the string variable (an integer of 2 bytes).

For arrays a number of index—fields is first stated corresponding
to the number of indices. Each index—field contains the following:

number of index-fields following (1 byte)

lower limit for this index (integer 2 bytes)
upper limit for this index (integer 2 bytes)
size of the data of each sub—-array

or element (integer 2 bytes)

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-022A

Example:
The description of a variable for an array dimensioned by

"DIM A$(-2:5, 1:10) OF 20°

will be:

1 (1 byte)

-2 (2 bytes)

S (2 bytes)

220 (2 bytes)

[¢] (1 byte)

1 (2 bytes)

10 (2 bytes)

22 (2 bytes) (2 for actual length + 20 for the

characters)

-8TR (1 byte)

20 (2 bytes)

Reference elements for substrings also start with a pointer to a
variable description which in this case is one single byte of ei-
ther value *-8TR-1’ or *"-STR-2’.

Then follows a pointer to the data-area for the string variable of
which the substring is a part. Thern follows

the maximuwm (dimensioned) length for the specific
string variable,
2nd index (to-value), and
lst index (from-value)
which are used to specify the substring.

Examples of 2nd and lst index are:

For "RA$(8:17)"

2nd index = 17

1st index = 8
For *A%(10)°

2nd index = 10

1st index = 10
All four values above are integers (2 bytes).
The data—area for a simple variable 1is structured as for values.
The data-area for an array 1is a corntinuous row of simple data-—

areas - one for each element. For string arrays, space is allocated
for the maximum possible length of each element.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-023

MATHEMATICAL FACKAGE
Within *EXTDEFS.MAC’ the rnecessary informatiornn for use of the
mat hemat ical package is defined. The mathematical package can be
called using the macro

EXPR
End the call by using

EXPREND

The commands are executed one by one in the order in which they are
written. Mostly, they take their arguments from the IX-stack and

store their results on this stack. The commands may be considered
as a program for a stack—oriented computer. In reality the commands
are macros defined in *EXTDEFS.MAC®’. Each macro expands to ore or

more bytes (with parameters) and calls the mathematical package
which interprets these parameters and operates on the IX—-stack.

The following commands may all be used:

Correspornding to the standard functions of COMAL-80, the following
commands may be used. All commands require arguments of a certain
type and return a result of a certain type. The argument must be
integer when * INTREAL® is stated, but it will be accepted if it is
the result of a call of *REALINT’ immediately before the command.

Name Type of Type of
Argument (s) Result
ATN REAL REAL
cos REAL REAL
SIN REAL REAL
TAN REAL RERL
LOG REAL RERL
EXP REAL REAL
SER REAL REAL
ESC - INT
ERR - INT
EOD - INT
EOF REALINT INT
LEN ref.elemt. INT (ref.elemt. must be string)
ORD STR INT
IvAaL STR INT
VAL STR REAL
INT REAL REAL
FRAC REAL REAL
TRUNC REAL INT
ROUND REAL INT
POS STR, STR INT
BVAL STR INT
CHR REALINT STR
STR REAL STR (both correspond to STR$ but taken
I.8TR INT STR of a real number or an integer,

respectively)

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-023A

ERRTEXT REALINT STR

SGN REAL INT (both correspond to SGN but taken
I.SGN INT INT of a real number or an integer,
respectively) .
‘ ABS REAL REAL (both correspond to ABS but taken
I.ABS INT INT of a real number or an integer,
respectively)
RNDO - REAL (RND without parameters)
RNDZ2 REALINT, REALINT INT (RND with two parameters)
sPC REALINT STR
PEEK REAL INT
INP REAL.INT INT
VARPTR ref.elemt. REAL
FREEST - . INT (FREESTORE)
CONVERSIONS :
‘ CONV converts the topmost stack element from *INT’ to *REAL’.
CONV1 converts the topmost minus one stack element from 'INT’ to

'REAL’. The top element is assumed to be of 'REAL’ type.

REALINT converts the topmost stack element from *REAL’ to *INT’ in-—
cluding rounding if necessary. If the number is outside the
integer area, the topmost stack element will be undefined.
However, a special overflow-flag is set for suitable reac-—
tion by the standard furctions for which 'RERALINT? is
stated above.

RLEBL. converts the topmost stack element from ’*REAL’ to ’INT’ in
such a way that the result will be 1 if the number is not
0, otherwise it will be 0.
This is used iv connection with boolean operatos.

RLBL 1 converts the topmost minus one stack element from 'REAL’ to
TINT® in the same way as done by "RLBL’. The top element is
assumed to be an ’INT’ type.

. In this connectionn the standard operators of COMAL-80 have the
following names:

Name COMAL-80 Type of the Type of the
Name Argument (s) Result
CHS - {(monadic) REAL REAL
POWER ~)
TIMES *)
SLASH /)
DIV DIV)—-) REAL, REAL RERL
MOoD MaD)
PLUS +)
‘ MINUS - (dydadic))

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-024

LE@
LSS
GE@
GTR
EQL
NER

I.CHS

I. TIMES
I.DIV
I.MOD
I.PLUS
I.MINUS

I.LE®@
I.1.SS
1. GE®@
I.BTR
I.EQL
I.NE@

S.PLUS

S. LE®@
S.LSS
S. GER®
S.6TR
S.EQL
S. NE@

IN

B. AND
B. OR
B. NOT

-} RERL, REAL INT
(value O or 1)

A~y A~
[}
R V)

- INT INT

*)

DIV)

mMOD }=) INT, INT INT

+)

-)

(=)

<)

)= Y=Y INT, INT INT

>) (value O or 1)
=)

[$)

+ ' STR, STR STR

(=)

<)

y=)->»8TR, STR INT

)) (value 0 or 1)
=)

(9})

IN STR, STR)

AND INT, INT) =) INT

OR INT, INT) (value O or 1)
NOT INT)

OTHER COMMANDS:

INX

LbvAL

expects a number followed by a reference element to an
array or a string variable on top of the stack. Also, it
performs indexing, i.e. it pops the stack and pushes a re-
ference element for the chosen element of the stated array
or the stated substring. :

The number may be integer or real. If real, it is automati-

cally converted to an integer with rounding. The type
("INT’ or "REAL’) must be stated after *INX’, for example:
INX REARL

expects to find a reference elemert on top of the stack. It
pops it and then pushes the value of the corresponding
variable. LDVAL’ may also be used after *INX’. It checks
that the variable is not ’undefined’, i.e. that it does not
carry the special value wmeaning that no value has been
assigned to it.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-024A

STVAL

LOAD

STORE

INTCON

STRCON
UROUND

SYSVAR

TRUE

‘ FALSE

expects a reference element followed by a value on the top
of the stack. Both are popped and the value is stored in
the variable given by the reference element. The type of
value and that of the variable denoted by the reference
element must conform. May be used after ? INX’.

expects an address (2 bytes) on the top of the stack. It
pops the address and pushes the value/refererce element at
that address. The type of the value must be stated, unless
it is stated as beirng a reference elewent. This is done in
the same way as LORD’ and might look like this:

LOAD INT

expects an address (2 bytes) followed by a value or a refe-—
rernce element on the top of the stack. Both are popped
and the value/refererice element are stored at the given
address. RAs with "LOAD’, the type of value must be stated,
unless it is stated as being a reference element. Also, as
with LOAD’, an example might be:

STORE REF

pushes an integer or an address (2 bytes) onto the stack.
The integer/address must appear on the same line as
*INTCON’ as:

INTCON 47

pushes a string onto the stack. The string value must
appear on the same line as *STRCON’ :
STRCON ’Strings appear in single quotaton marks’

expects a real number on the stack. The number is popped,
converted to an unsigned integer between O and 633535, and
pushed again.

pushes the value of one of the system variables as an inte—
ger. The system variable in question must be stated on the
same line as 'SYSVAR’, as in the example:

SYSVAR PAGEWI

In cormection with this the names of the system variables
must be shortered according to the list below:

Name in COMARL-80 SYSVAR Name
ZONE ZONE
INDENTION INDENT
PAGEWIDTH PRAGEWI
PAGELENGTH PRAGELE
KEYWORDLOWER KWLOWER
IDENTIFIERLOWER IDLOWER

pushes a 1.

pushes a O.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-0295

There is a possibility of errors occuring during the use of the
mat hematical package: overflow, index error, functions being given
arguments, out of range, and so on. Here, there is a destirnction
betweern fatal and non—-fatal errors. Errors which would be fatal du-—
ring & normal COMAL-80 run will also be fatal in this connection.
Errors which would not be fatal during a normal COMAL-80 run and
consequently could be bypassed using 'TRAF ERR-’ are also norn—fatal
here. The error number is stored and the execution of commands is
resumed wherever a non—-fatal error occurs. The error rnumber will
then be held in the A-register when returning to the extension
after 'ENDEXPR’, and the carry—-bit will be O, Z will be 1.

If a fatal error occurs the rest of the commarnds will be skipped,
IX is set to the value held on erntry to the wmathematical package,
and the system returrns to the extension after 7’ENDEXFR’ with the
error rnumber irn the A-register: carry =1 and Z = 1. If rio errors
whatsoever occur A =0 and Z = 0 on returning to tihe extension
after *ENDEXFR’. This means that it can be checked whether errors
occur during the execution of a specific command by adding

ENDEXFR

JR MZ, ERROR_HANDL ING

EXPR
after this command.

Note that these conventions covering the contents of A, Cy, ard Z
correspond to the conventions for reporting errors back to the
calling COMRL-80 program.

FORMAT FOR ’.EXT’ FILES

The file being loaded by COMAL-80 when using the *EXTENSION® com-—
mand must have a specific format. This is a very simple relocatable
format. The assembler program, the form of which 1is described in
the first chapter, can be translated by the Microsoft MB80O Macro-
assembler to one relocatable format. Other assemblers use other re-—
locatable formats (and some of these even require that the defini-
tions within 'EXTDEFS.MAC’ are re-written). COMAL-80 defines its
owri relocatable format as follows:

The file starts with an integer of 2 bytes informing how much code
is contained in the file (in bytes). This is not the same as the
length of the file, as the file contains the code as well as in-—
formation as to which parts of the code is to be relocated.

The rest of the file consists of a number of blocks with the same
format. Each block consists of 9 bytes of which 8 contain code and
the 9th holds information on the relocation of the 8 bytes. If the
nuvber with which the file starts is L, there will be (L + 7) DIV 8
blocks. If L is not a multiple of 8 there will be space left over
in the last block. The contents of the remaining space is unimpor-
tant.

COPYRIBHT (C) 1983 METANIC ApS DENMARK PAGE 1-0Z5A

The code contained in the blocks represents one long row of code-
bytes. Consequently, the code contained in two following blocks
will follow right after each other when the file is read by COMAL-—
80. The byte carrying the information on relocation contains one
bit for each of the 8 code-bytes so that bit 0 coresponds to the
first byte and so on up to bit 7 which corresponds the 8th and last
code—-byte. If one of these bits is 1, it means that the address re-
siding in that particular byte and the one preceeding are to be
relocated. The two bytes are not to be relocated if the bit is O.

The *CONVERT’ program can change a relocatable file in the Micro-
soft format into the corresponding file in the COMARL-80 format. If
an assembler with another format is used, the user must write a
program to change the relocatable file into COMAL-80 format.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 1-026

COMAL—-80 Commands and Statements

All the COMAL—-80 commands, statements and functions are described
in this chapter. Each description is formatted as follows:

Type: States whether a command, statewment or function.
Purpose: States what the instruction is used for.
Syntax:? Shows the correct syntax for the instruction.

See below for syntax notation.
Execution: Describes how the instruction is executed.

Example: Shows sample programs or program segwments that
demonstrate the use of the instructior.

Comments: Describes in detail how the instruction is used.

Syntax MNotation.

Wherever the syntax of a statement, command or function is given,
the following rules apply:

Items in capital letters must be entered as shown, using either
upper or lower case letters.

Items in lower case letters and enclosed in angle brackets (¢))
are inserted by the user.

Items in square brackets ([1) are optional.

All punctuation except angle brackets and square brackets (i.e.
commas, parentheses, semicolons, colons, exclamation points, slash-—
es, number signs, plus signs, minus signs and equal signs) must be

included where shown.

All reserved words must be preceded by and/or followed by a space
if this is rnecessary to avoid multiple interpretations.

CORYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-001

ABS

Type:
Arithmetic function

‘ Purpose:

To calculate the absolute value of an arithmetic expression

Syntax:
ABS ((expression))

Execution:
Returns the absolute value of (expression’.

Example:
10 PRINT ABS(3%#(-5))

Comments:
‘ 1. The result will be of the same type (real or integer) as
the expression.

COPYRIGHT (C) 1983 METANIC ApS DENMARK FPAGE 2-002

AND

Type:
Logical operator

Purpose?
To perform the logical *AND’ between 2 expressions.

Syntax:
(expressionl) AND <(expression)

Execution?
(expressionl) is ANDed with (expression2).

Example:
10 INPUT A#
20 INPUT B#
30 IF A#=5 AND B#=7 THEN
40 PRINT "THE PRODUCT IS 33"
30 ELSE
60 PRINT "THE PRODUCT MAY NOT BE 35"
70 ENDIF

Comments:
1. This operator uses the truth table:

{(expressionl) {(expressionz) result
trie t rue t rue

true false false
false t rue false
false false false

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-003

ATN

Type:

Arithmetic function
Purpose:

Returns the arctangent of an arithmetic expression.
Syntax:

ATN({(expression))

Execution:
Returns the arctangent of (expression) in radians.

Example:
10 INPUT R
20 PRINT ATN{(R)

Comments:

1. The result will always be real {(whether (expression} is
real or integer) and will lie between -pi/2 and pi/2.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-004

AUTD

Type:
Command

Purpose:
To generate a new line number automatically after each
*RETURN? .

Syntax:

AUTO C(start) [, (step)1]

Execution:
Following each *RETURN’ a new line number is calculated
using the last line number used (or the value entered as
(start)) plus the value of (step). The new number is placed
in the input buffer and displayed on the screen.
The cursor is set to column 6 plus the current indent
(which is program dependent) ready for a new input line.

Examples:
AUTO
AUTO 15
AUTO 10,5

Comments:
1. If the (start) value is omitted, default 10 is used.

2. If the (step) value is omitted, default 10 is used.

3. If an existing 1line number is generated, the new line
replaces the former one.

4. The automatic generation of line numbers can be inter-—

rupted at any time by pressing the *ESC’ key.
The line in which this is done will riot be stored.

CORYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-0035

BSTR#

Type:
String function
. Purpose:
Converts an arithmetic expression to binary representation.
Syntax:

BSTR$ ((expression))

Execution:
{(expression) is calculated and rounded if necessary. The

value is then converted to an 8 character binary text
string.
Example:
10 DIM A% OF 8
. 20 INPUT E
30 A$:=BSTR%(B)
40 PRINT A%

Comments:
1. (expression) must evaluate to a value between 0 and 255.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PRAGE 2-006

BVAL

Type:
Arithmetic function

Purpose:
To convert a binary number from a string to an integer
value.

Syntax:

BVAL ({(string expression’)

Executions:
A binary number contained in a string of 8 characters is
converted to its integer form.

Example:
10 DIM A% OF 8
20 DIM B$ OF 8
30 INPUT "WRITE A BINRRY VALUE: ": A%
40 B$:="10101100"
50 PRINT BVAL (A%)
60 C#:=BVAL (B%)
70 PRINT C#

Comments:®
1. If the string contairns more than or less than 8 digits,
or if it contains anything other than binary digits
(O and 1) program execution will be stopped with an
error message.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-007

CALL

Type:

Statement, command
Purpose:

To call a Z-80 machine code routine from COMAL-B80.
Syntax:

CALL {(expression}

Execution:?
{expression) is calculated and rounded if nrecessary. The
CPU then stores. all its registers and executes a machine
code routine starting at the specified address.

Examples:
CALL 256
240 CALL 53248

Comments:

1. For further details on the Z-80 wmicroprocessor and its
assembler codes please refer to the manufacturers’
manuals.

2. The user may use the CPU registers, however, the stack
pointer must be re-established prior to returning to
COMAL—-80.

3. COMAL-80 does not utilize the interrupt facilities of
the CPU. Consequently, the user may do this after retur-
ning to COMAL-80.

4. End the machine code with a *RET’ command to return to
COMAL-80.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-008

CASE WHEN OTHERWISE ENDCASE

Type:

. Statement

Purpose:

The case structure is used to select the program section to
be executed according to the value of an expression.

Syntax?
CARSE (expression) OF
WHEN (list of values)

WHEN (list of values)

. WHEN (list of values)

[OTHERWISE
.1
ENDCASE

Execution:

The {(expression) is evaluated and the 'WHEN’ statements are
checked orne by one to find whether one of the list of
values matches the calculated value.
When a match is found the lines from the ’*WHEN® statement
in which it is found, up to the next corresponding *WHEN’,
'OTHERWISE’, or ’ENDCARSE®' statement, are executed, after
which program execution continues after the ’ENDCASE’
statement (provided that none of the executed lines have
transferred the execution to yet another part of the
program).
If norne of the values fit the value of <(expression) the
lines following *OTHERWISE’ will be executed.
If "OTHERWISE’ is omitted, program execution stops with an

. error message if no match is found.

Example:
10 DIM A% OF 1
20 INPUT “"PRESS THE 'R’ OR THE ’*B' KEY":R%
30 CARSE A% OF
40 wHEN lln" 5 Ilall
50 PRINT "YOU HAVE PRESSED THE 'R’ KEY"
60 NHEN l‘lBll’ " bll
70 PRINT "YOU HAVE PRESSED THE *B’ KEY"
80 OTHERWISE
90 G6OTO 20
100 ENDCASE

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-009

Comments:
1.

COPYRIGHT (C)

The expressions contained in tne ’WHEN’ statements must
be of the same type as {(expressior) but integer expres-—
sions are allowed in the *WHEN’

statements if (expres-—
sion) is of real type.

If several *WHEN’ statements correspornd to

{expressior)
only the first orie will be executed.

1983 METANIC ApS DENMARK PAGE 2-009A

Type:
Command

’ Purpose:

To display the catalog of a background storage device.

Syntax:
CAT [(file namel) L[, (file name2) 1]
CAT (file name2)

Execution:
The operating system of the computer is called and the
contents of the file catalog are transferred to the speci-
fied (file name2).

Examples:
@ "l
CAT DKi:

CAT DK1:K

CAT DK1:, DKO:ABC. DEF
CAT *.CML,LP:

CAT DK1:C?777227. %, LP:
CAT LP:

Comments:
1. (file name2) is the name of the file to which the cata-
log is output.

2. (file namel) specifies partly or wholly the name(s) of
the catalog entries which are to be output. A partial
specification may consist of a device name only (in
which case the whole catalog of that device is output),
or a partial file name, where the characters %’ and *?°
are used following the CP/M protocol.

3. Omitting (file name2) displays the catalog on the termi-

' nal.

4. Omitting <(file namel) displays the whole catalog of the
current default device.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-010

CAT

Type:
Statement

Purpose!
To write the catalog from a background storage device into
a file.

Syntax:
CAT (file name), FILE {(file No.?

Execution?
The operating system of the computer is called, and infor-
mation as to which device and which file names are to be
written is passed to it. The catalog is written in ASCII
format in the specified (file No.).

Examples:
100 CAT "DK1:", FILE 3
100 CAT "DKi:%.CML", FILE 2

Comments:
1. (file name) must be a string expression.

2. {(file rname) specifies the files required from a catalog.

3. {(file name) specifies partly or wholly the name(s) of
the catalog entries which are to be output. A partial
specification may consist of a device name only (in
which case the whole catalog of that device is output),
or a partial file name, where the characters *%’ AND 72’
are used following the CP/M protocol.

4. If (file name) is an empty string, the whole catalog of
the current default device will be displayed.

S. Before meeting the *CRT’ statement, a file carrying the
stated (file No.)> must be opened using the ’0OPEN’ state-
ment.

6. The device on which the catalog is to be output wust be
specified in the *0FPEN’ statement.

7. Following closing and re—opening, the created file may
be read using the *INPUT FILE’® statement.

8. If a line printer with pagewidth = 0 or a diskfile is
used for the printout, one file nawme is printed on each

each line.

3. During programming *FILE’ and ’#°’ are interchangeable.
In program listings FILE’ is used.

CORPYRIGHT (L) 1983 METANIC ApS DENMRRK PAGE 2-011

CHAIN

Type:
Statement

Purpose:
To 1load and start execution of a program stored as a
memory—image file orn the background storage device.

Syntax:

CHAIN (file nawme) [, (list of variables)l

Execution:
The memory of the computer is cleared; the program
{(file name) is loaded and execution resumes from the lowest
line number.

Example:
10 /7 MRAIN PROGRAM
20 DIM PROGRAMS$ OF 10
30 REPEAT
40 INPUT “"WHICH FROGRAM IS WANTED? ": PROGRAMS
S0 UNTIL PROGRAM$="LIST" OR FROGRAM$="UPDRTE"
60 CHAIN FPROGRAMS$

Comments: .
1. (file name) is a string expression.

2. If the ’CHAIN’ statement includes a (list of variables)
the new program section should have a 'RECEIVE (list of
variables)’ statement.

3. This statement is used typically to organize a large
program into smaller indeperndent parts which wmay be
loaded and executed according to user commands.

4. The program <{file name) must be stored by the ’SAVE’
command.

5. See also the *RECEIVE’ statement.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-01Z

CHR$

Type:
String function

Purpose:
To cornvert an arithmetic expression into a single—-character
string.

Syntax:?

CHR% ((expression))

Execution:
{(expression) is evaluated and rounded if nrecessary. The
value is converted into a string consisting of a single
character represented by that ASCII code.

Example:
10 INPUT A
20 PRINT CHR$(R)

Comments:
1. <(expression? must be betweeri 0 and 258.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-013

CLEAR

Type:

. Purpose!

Statement, command
To clear the screen and place the cursor in the top left
corner.

Syntax:
CLERAR

Execution!
The screen is cleared and the cursor is placed in the top
left corner.

Examples:
10 CLEAR

. CLERAR

Comvments:

1. This statement/command affects the screen only.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-014

CLOSE

Type:
Statement, command

Purpose:
To close one or more data files after use.

Syntax:
CLOSE (FILE <{(file No.)1l

Execution:
The data file carrying the specified (file No.? is closed.
(file No.), which is an arithmetic expression, is evaluated
and if necessary rounded before closing.

Examples:
200 CLOSE
390 CLOSE FILE 3
5S40 CLOSE FILE A*EB
CLOSE

Comments:
1. If ?*FILFE’ and (file No.?> are omitted, all open data
files are closed.

2. When ’CLOSE’ is executed, the stated cormection between
(file name) and (file No.) is detached and the file may
be re-opened with the same or a rew riumber.

3. Make sure that the *CLOSE’ statement/command is executed
before program execution is finished to avoid leaving
data in the system buffers.

The *RELEASE’ command will indicate whether all files
have beeri closed.

4. During programming ‘FILE® and *#’ are interchangeable.
In program listings 'FILE® is used.

CORYRIGHT (C} 1983 METANIC ApS DENMARK PAGE 2-015

CON

Type:
Command

Purpose:
To resume program execution after a stop.

Syntax:
CON [(line No.>1l

Execution:

Program execution is continued at {line No.) if specified,
otherwise at the point at which it was stopped.

Examples:
CON
CON 220

Comments:

1. New values may be assigried to variables before resuming
program executior.

2. Program execution may be resumed after a stop caused by
a STOP’ or arn END’ statement, after pressing the *ESC’
key and after a non—fatal error.

3. If the program stopped because of an error, program exe-
cution will be resumed starting with the statement in
error. In all other cases program execution is started
with the statement following the last statement execu-
ted.

4. If program editing has taken place, program execution
cannot always be resumeq.

S. If program execution is interrupted using the *ESC’ key
while the computer is waiting in an ’ INPUT’ statement, a
value will not be assigned to the variable in question.
In this case program execution should be resumed by ’CON
{line No.>’ for the (line No.) displayed on the screen
immediately after pressing the *ESC’ key.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE Zz-016

cos

Type:

Trigonometrical function
Purpose:

To calculate the cosine of an expression.
Syntax:

COS ({expression})

Executiont

Cosine of <(expression), for which (expression} is in
radians, is calculated.

Example:
10 INPUT A
20 PRINT COS(A)

Comments:

1. (expression) may be an arithmetic expression of real or
integer type. The result will always be real.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2~017

CURSOR

Type:

Statement, command
Purpose:?

To place the cursor at a specified position on the screen.
Syntax:

CURSOR (expressionril), <{(expressionz)

Execution?
(expressioni}) and {(expressionz), both of which must be
arithmetic expressions, are evaluated and rourded. The
cursor is then moved to the column defined by <{(expressioni}
and to the line number defined by <(expresionz).

Examples:
100 CURSOR 8, 12
220 CURSOR CHARACTER#, L.INE#
300 CURSOR 3%2, S+4
CURSOR 10, 19

Comments:
1. (expressionl}) is counted from left to right and {(expres-
sionz) is counted as positives from the top down. The
top left corner has the coordinates 1,1.

CORPYRIBHT (C) 1983 METANIC ApS DENMARK PAGE 2-018

Type:

DATA

Statement

Purpose:
To
by

Syntax:

define constants in the form of a data list +to be read
the ’ READ’ statement.

DATA (constantl), (constant2),....., {(constantn)

Executiont
At

the start of program execution, a search is made for

'DATA’ statements and they are chained into a data list.
During a run, an internal pointer is set to the next con-—
stant in the list.

‘ Example:

10
20
30
40
S0
60
70
80
20

Comments:
1.

2.

DIM FIRST_NAME$ OF 10

DIM FAMILY_NAMES$ OF 15

DATA “JOHN", "DOE"

READ FIRST_NAMES

READ FAMILY_NAMES

PRINT FIRST_NAMES$+" "+FAMILY_NAMES$
DATA 35

READ AGE

PRINT AGE; “YEAR"

*DATA’ statements are rion—executable and are skipped
during program execution.

Any number of *DATA’ statements wmay be placed anywhere
in the program.

A ’DATR’ statement may contain as many constants (sepa-
rated by commas) as are allowed by the maximum length of
an input line (159 characters).

The ’REARD’ statement reads the ’*DATAR’ statements in
line number order.

The types of constants may be mixed but must match those
of the corresponding *RERAD’ statements otherwise execu—
tion results in an error message.

Arithmetic expressions are not allowed in a *DATA’
statement, and string constants must be enclosed in
double quotation marks.

The constants may be re-read, partly or wholly, by means
of 'RESTORE’, ’RESTORE <(line number)’, or 'RESTORE
(name)’ statements.

When the last constant is read the system function
EOD()? will return the value of true (= 1).

CORPYRIGHT (C) 1983 METANIC ApS DENMARK FAGE 2-019

Type:

DEL

Command

Purpose?

To delete ore or more program lines.

Syntax:
DEL
DEL.
DEL-

Execution:
The

Examples:
DEL
DEL
DEL
DEL.

Comments1i

1.

2.

CORPYRIGHT (

(start line)([, (end line}]
., {end line)
{start line),

specified line(s) is/are deleted from the program.

25, 100
, 220
95,

40

If (start line) only is specified, this line alone will
be deleted.

If (start line) immediately followed by a comma is
specified, this line and the rest of the program will be

deleted.

If a comma followed by a line number only is specified,
the program is deleted up to and including this line.

Specifying <(start line) comma (end line) deletes the
lines between the two inclusively.

C) 1983 METANIC ApS DENMARK PAGE 2-020

Type:

DELETE

Statement, command

Purpose:

To delete file(s) or the background storage device.

Syntax:

DELETE (file name)

Execution:
The

operating system is called and information on the

file(s) to be deleted is passed to it.

Examples:
100
220
300

Comments:
1.

2.

COPYRIGHT (

DELETE "TEST.CML™
DELETE "DK1:DATA.DAT"
DELETE "DRO:D??27?27?27?272.%"
DELETE PROGRAM. CML
DELETE DK1:C*.CML

In statements (file name) must be a string expression.
(file name) specifies partly or wholly the name(s) which
is/are to be deleted. The characters %' and/or ’*?° can

be used following the CP/M protocol.

The whole file name, including any extension, must be
specified.

If (filename) does not exist then an error message is

given if *DELETE’ has beern used as a command ~— but not
if it has been used as a statement.

C) 1983 METANIC ApS DENMARK PAGE 2-021

(for arithmetic variables) DIM

Type:
Statement

Purpose:
To allocate memory space for arrays and set to the index
limits.

Syntax:
DIM (list of indexed variables)

Execution:
The necessary memory is calculated and allocated according
to the type of variable.

Examples:
10 DIM MONKEY ()
10 DIM NUMBER(7,3), COUNT(7) // SEE NOTE S
10 DIM CARS#(-35:15, 3:8)
10 DIM A%(3:2), B(3) // SEE NOTE €&

Comments:
1. Arrays must be dimensioned.

2. An array may have any number of dimensions limited only
by the memory available and the maximum length of an
input line (159 characters).

3. Each of the elements in (list of indexed variables) is
specified using the syntax:
{(variable name) ({list of index limits))
where (variable name) optionally includes the declara-
tion character ’#’.
The elements are separated using commas.
(list of index limits) contains the lower and upper
limits for each dimension following the syntax:?
C{lower limit):] {upper limit)
The dimensions are separated by commas.
If no lower limit is given, a default of 1 is used.

4. The ’*DIM’ statement assigns the value 0 to each element.
S. Several variables can be dimensioned in the same line.

6. Arithmetic and string variables can be dimensioned on
the same line.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-022

(for string variables) DIM

Type:
Statement

Purpose:
To allocate memory space for strings and arrays of strings
and set the index limits.

Syntax:

DIM (list of indexed variables)

Execution:

The necessary wmemory is allocated according to the dimen—
sions and length of the variable.

Examples:
10
10
10
10
10

Comments:
1.

2.

DIM A% OF 80 // SEE NOTE 9
DIM A%(3) OF 10 // SEE NOTE 7
DIM E$(0:1,3) OF 25 // SEE NOTE 8
DIM A%(3:2) OF 10, B$(S) OF 25 // SEE NOTE S
DIM A%(S) OF 15, C(5) // SEE NOTE €&

Arrays and string variables must always be dimensioned.

Ari array may have any number of dimensions limited only
by the memory available and the maximum length of the
input line (139 characters).

Each of the elements in {list of indexed variables) is
specified using the syntax:

{variable name) [(({list of index limits)>)l OF <(length)
where (variable name) includes the declaration character
TS,

The elements are separated usirng commas.

{list of index limits) contains, for each dimension of
an array, upper and lower 1limits for that dimension
following the syntax:

CL{lower limit) 2] upper limit?

The dimensions are separated by commas.

If no lower limit is given a default value of 1 is used.
{length) indicates the wmaximum length of the string
variable or of each of the elemerts in the string array.
The actual value of a string variable/elemert wmay vary
from zero characters (the empty string) up to and inclu-
ding the stated (length).

The ’DIM’ statement assigns the value "" (empty string)
to each element.

Several variables can be dimensioned in the same line.

Arithmetic and string variables can be dimensioned in
the same line.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-023

7. This array will contain the elements A$(1), A% (Z2) and
A%$(3) each having a maximum length of 10 characters.

8. This array will contain the elements E$(0,1), B$ (0, 2), .
B$ (0, 3), Bs(1,1), B$(1,2) and BE$(1,3) each having a
maximum length of 25 characters.

9. A string variable rneed riot be an array.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-023A

D1V

Type:
Arithmetic operator

Purpose:
To carry out an integer division between two arithmetic
expressions.

Syntax:
(expressionl) DIV (expression2)

Execution:
(expressionl) is divided by <{(expression2) and the result is
rounded to an integer value. :

Examples:
100 A#:=R DIV C
100 NUMBER:=17 DIV NUM

Comments:
1. The result N is defined by the integer value of N which
makes the expression
{(expressionl) — N % {(expression2)
assume its lowest possible rnon—negative value.

2. The type of the result depends upor the type of {expres—
sionl) and <{(expressionzZ) in the following way:

(expressionl) DIV {(expression2) result
real real real
real int real
int real real
int int int

3. Also see the *MOD’ opérétor.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-024

Typet
Command

’ Purpose:

EDIT

To simplify correction of a program held irn working memory.

Syntax:
EDIT C(start?>ll, (end)]
EDIT L{(start),l

Execution:

The specified program area is called from working storage

and displayed on the screen line by line.

The cursor is

placed immediately after the last character and can be
moved backwards and forwards on the line using the cursor

corrected, key in the correction and the cursor will move

. control keys. Flace the cursor over the character to be

orie position to the right.

When the corrections are complete, press "RETURN’. The lirne
undergoes the syntax control and when accepted it is
stored. The rext line is displayed and the sequernce repeats

until (end) is reached.

Examples:
EDIT
EDIT 100
EDIT 100,
EDIT , 100
EDIT 100, 200

Comments:

i. If (start) is omitted, the editing starts at the first

program line.

2. If (erd) is omitted, the editing continues
of the program.

until the end

. 3. Omitting both limits, starts the editing at the first
program line and contirnues to the end of the program

(or until the "ESC’ key is pressed).

4. If only <(start) is used, without a comma,
be restricted to the one line.

S. RAll the correction facilities described in
in chapter 1 are available.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK

editing will

INPUT EDITING

FAGE 2-025

6. The line number itself may be edited causing the line to
be placed in wmemory at the rew line number. Any line
already stored at that rnumber will be deleted. .
The original line will not have beernr deleted from the
program (use the ’DEL’ command).

7. On pressing "RETURN’ the entire line is stored in wmemory
regardless of the position of the cursor.

8. The edit command may be interrupted at any time by pres-—
sing the "ESC’ key. Charnges in the line will be entered
only after pressing *RETURN’.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-025A

END

Type:
Statement

Purpose:
To stop the execution of a program.

Syntax:
END

Executions:
Program execution is terminated and the prompt character
'#’ is displayed to show that the COMAL-80 interpreter is
ready to accept rnew input.

Example:
10 Ki=
20 Ki+l
30 IF K)>100 THEN END
40 PRINT K
50 GOTO 20

Comments:
1. The 'END’ statement does riot give any information as to
where program execution was stopped (see *STOP’).

2. The use of the "END' statement is optional, as COMRL-80
adds an invisible statement to the end of each program.
When this statement is reached, the following message is
displayed:

Frogram execution finished

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-026

ENTER

. Command
FPurpose:

To transfer a file from the background storage device to
working memory in ASCII format.

ENTER (file name)

Execution:

The specified file is opened and transferred one character
at a time.

Following each "RETURN’ ¢the line is syntax—checked and the
line, if accepted, is placed in the working wemory. If an
error occurs then the loading is halted temporarily, the
lire is displayed with an error message and the loading of
the file continues. A line containing a syntax error will
rnot be stored.

Examples:

ENTER DKO:PROGRAM
ENTER POLYND

Comments:

1. Only files stored in ASCII format can be read by the
TENTER’ command. Thus files created by means of ’SAVE’
carnnot be read in this way. Use 'LDAD’ instead.

2. The working memory is not cleared prior to the file
being entered. However, new lirnes having 1line numbers
which match existing lines will replace the old ones.
This overwriting takes place on a 1line basis, with no
consideration of the different lengths of lines, so that
a short line can totally replace a long ore. Frovided
that there are no overlapping line numbers this system
may be used to combine two or more programs.

Normally the working memory would be cleared by using
the *NEW’ command before reading a file with the *ENTER’
command.

3. ASCII files may be read by all versions of COMAL-80 and
this format is recommended for long—-term storage of
files.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-027

EOD

Type:
System function

Purpose:
To determirie whether all data from the *DATA’ statements in
the program has been read.

Syntax:
EOD ()

Execution?
EOD() returns a value of false (= 0) as long as there is
data in 'DATA’ statements still to be read. Having read the
last item of data, TEOD()? will return the value of true
(= 1). After executing a *RESTORE’ statement "EOD()’ will
return the value of false (= 0).

Example:
10 WHILE NOT EOD() DO
20 READ A
30 PRINT A
40 ENDWHILE
50 DATA S5, 2, -15, 35

Comments:

1. During programming *EOD’ and 'EOD()’ are interchange-
able. In program listings EOD()’ is used.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-028

EOF

Type:

System function
Purpose:

To determine whether all data in a data file has been read.
Syntax:

EOF (<{file No.})

Executiont

After execution of an *0OPEN FILE® statement or a 'RERD’
command, the corresponding *EOF ({(file No.>))’ will

return the value false (= 0). After reading the last item
in the file, it will return the value true (= 1).
Example:
10 OPEN FILE O, "TEST", READ
20 REPEAT

30 READ FILE O: A
40 UNTIL EOF (O)

Comments:
1. (file No.)> is an arithmetic expression.

CORYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-029

ERR

Type:
System function

Purpose!
To return the rnumber of a non—-fatal error encountered
during program execution.

Syntax:

ERR ()

Execution:

During riormal program execution, any error will stop the
program and create an error message. However, a number of
errors can subsequently be bypassed.

In such cases program interruption may be avoided by the
use of a "TRAFP ERR-’ statement before the error arises. In
this case, TERR()? will return a value equal to the error
number of the last error and in all tests will be consider-—
ed as true (because it is not 0). Program execution will
then continue.

Example:
10 INIT ™ ¢
20 TRAP ERR-
30 OPEN FILE O, "DK1:DISK_S", READ
40 TRAP ERR+
S50 IF NOT ERR() THEN

60 CLOSE

70 CHAIN "“DK1:PARTS"
80 ELSE

90 CLEAR

100 CURSOR 1,10

110 PRINT "“WRONG DISK IN DRIVE 1*
120 STOP)

130 ENDIF

Comments:

1. At the beginning of the execution of a program the value
false (= 0) is returned if "ERR()’ is called.
When a ’TRAP ERR-' statement has been executed, a non-—
fatal error will not stop program execution. The number
of the error is returned by ERR()’. However, subsequent
calls of ERR()’ will return 0. This way only informa-
tion on the last error that has occured sirce the last
call of 'ERR()? will be retrieved. Since every value
different from O is treated as true in tests, construc-
tions like *IF ERR() THEN...’ will behave normally.
The error numbers are described further in appendix C.

2. By executing a *TRAFP ERR+’ statement, the system returrs
to normal error handling.

3. During programming *ERR’ and ’'ERR()’ are interchange-—
able. In program listings ERR()’ is used.

COPYRIGHT (C) 1983 METANIC ApS DENMARK FPAGE 2-030

ERRTEXT®

Type:
String function

Purpose:
To give access to error descriptions in the COMAL-80 system

Syntax:
ERRTEXT® ({(expression))

Execution?
{expression) is evaluated and rounded if necessary. The
corresponding error description is then returned.

Example:
10 FOR I=1 TO 295
20 PRINT ERRTEXT$(I)
30 NEXT I

Comments:
1. This function is only valid wher error descriptions are
not deleted at the start—up of COMAL-80. If they are
deleted the functiori will return an empty string.

CORPYRIGHT (C) 1383 METANIC ApS DENMARK PAGE 2-031

ESC

Type:

System function
Purpose:

To flag the use of the *ESC’ key.
Syntax:

ESC ()

Execution:
During normal program execution a check is made to see
whether the ESC’ key has been pressed. If it has been
pressed then program execution is stopped.
If a "TRAP ESC—-’ statement has been executed, this function
is blocked and 'ESC()’ will instead return the value of
true (= 1) when "ESC’ is pressed.

Example:
10 TRAP ESC-
20 REPERT
30 PRINT "THE *ESC’ KEY HAS NOT BREEN PRESSED"
40 UNTIL ESC()
50 TRAR ESC+
60 PRINT “THE 'ESC®' KEY HAS BEEN FPRESSED"

Comments:

1. At the start of program execution ’ESC()’ will return
the value false (= 0). If a "TRAP ESC-’ statement is
executed and the 'ESC’ key pressed after this program
execution continues but the first call of "ESC()’ will
return the value true (= 1). Any subsequent calls will
again return the value false (= 0).

2. The system returns to normal handling of the ’ESC’ key
after a *TRAP ESC+’ statement has been executed.

3. During programming *ESC’ and 'ESCQO)’ are interchange-
able. In program listings 'ESC()’ is used.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-032

EXEC

Type:
Statement

Purpose:
To call a named sub—program and to return to the next line
of the current program on completion.

Syntax:

EXEC {(procedure name) ([(<{actual parameter list}))]

Execution:
The procedure specified by (procedure name) is called, and
{actual parameter list) replaces the formal parameter list
in the procedure heading.
On reaching the *ENDPROC’ statement, program execution is
resumed from the first executeable 1line following the
EXEC’ statement.

Examples:
100 EXEC TEST
100 EXEC FATAL_ERROR("ERROR IN X-PL/0-COMPILER")
100 EXEC ERROR(3(M)
100 EXEC ENTER_(CONSTANT#, LEV#, TX#, DX#)

Comments:
1. The number of actual parameters must be the same as the
number of formal parameters in the 'PROC’ statement.
Each parameter must conform in dimension and type.

2. If a formal parameter is specified by "REF’, a variable
(which may be indexed) must be inserted as an actual
parameter.

3. If a formal parameter is not specified by *REF’ the
actual parameter wmust be an expression of a correspon—
ding type, a variable name alone will suffice.

Actual integer parameters may be inserted in a formal
real parameter.

4. See the section ’*PARAMETER SUBSTITUTION’ in chapter 1
for more information.

CORYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-033

Type:

EXP

Arithmetic function

Purpose:

Returns e to the power of an arithmetic expression.

Syntaxi

EXP ({expression))

Execution:

The base of the natural logarithm e (2.718282) is raised to
the power specified by (expression).

Example:
10
20

Comments:
1.

INFPUT A
PRINT EXP(A)

{expression} is a real or integer arithmetic expression.
The result will always be real.

The value of (expression) wmust be less than or equal to
88. 02968 when using the COMAL-80 7-digit version and
292.4283068102 when using 13-digit version. If these
are exceded COMAL-80 stops program execution and dis-—
plays an error message.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-034

EXTENSION

Type:
Command

Purpose!?

To add user—defineable statements, functions, and operators
to COMAL-80.

Syntax:
EXTENSION <(file name)

Execution:?
{(file name) is opened and transferred to the memory. The
identifiers specified in this file are then 1linked to
COMAL—-80 and become reserved words.

Example:
EXTENSION GRARPHFARC

Comments:
1. This command is only allowed when there is rno program in

memory.

2. See the section *EXTENSION’ in chapter 1 and appendix D
for further information.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-035

FALSE

Type:

System constant
Purpose:

To assign a boolean variable the value of false.
Syntax:

FALSE

Execution:
Returns the value 0.

Example:

10 7/ PRIME

20 //

30 DIM FLAGS# (0:8190)
40 SIZE1:=8190

50 //

60 COUNT:=0

70 MAT FLAGS#:=TRUE

ao v/

90 FOR I:=0 TO SIZEl DO
100 IF FLAGS#(I) THEN
110 PRIME:=I+I+3
120 Ki=I+PRIME
130 WHILE K<(=SIZEi DO
140 FLAGS# (K) :=FALSE
150 K:+PRIME
160 ENDWHILE
170 COUNT z+1
180 ENDIF
190 NEXT I
200 PRINT "TOTAL NUMBER OF PRIMES: ",COUNT

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-036

FOR TO DOWNTO STEP NEXT

Type:
Statement

Purpose!
To delimit a program section and define the number of times
it is to be executed.

Syntax:

FOR (variable) := (start) TO (end) [STEP (step)]

NEXT (variable)

Execution:
On

meeting the ’FOR’ statement, {(variable) :=(start) is

assigned and the truth of:

is

({end)—-<{variable))*SGN ({(step)))= O
tested. If this is false, the ’*FOR...NEXT’ structure,

including this program section, is bypassed and execution
continues from the first executable 1line following the.
"NEXT' statement.

If

true the program continues through the program section

until it meets a NEXT’ statement; it then jJumps back to
the line following *FOR’ adding (step) to (variable) and
checks the truth again using the new value of <(variable).
This is repeated until the test returns false.

Example:
10
20
30
40

Comments:
1.

2.

FOR I=1 TO 100 STEP 5
PRINT I, " *,

NEXT I

sTOP

If "STEP (step)’ is omitted the (step) value defaults to
1.

If "DOWNTD’ is used instead of *T0’, the negative value
of (step) is used as the step value.

Following a FOR...NEXT® execution, (variable) takes the
value not fulfilling the above test.

Up to five ’FOR...NEXT’ statements may be nested, each
of them having their separate (variable).
Each subroutine level is assigned a ’FOR...NEXT® depth
of five, giving the option of any depth through the
'GOSUR’ statement or by use of procedures.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK . PAGE 2-037

S. Each 'NEXT’ statement may contain one only {(variable’,
which must be the samwe one as stated in the correspon—
ding *FOR’ statement. .

6. It is possible to interrupt a *FOR...NEXT’ sequerce by
using ’'6G0OTO’.

7. The start value of the (variable) is assigrned before
{end?.
Corsequernitly program structures of the type:
10 J:=
20 FOR J:i=1 TO J+X
30 PRINT J
40 NEXT J
will be executed X+1 times.

8. Only one ’'NEXT’ statement may be assigred for each *FOR’ .
statement.

7

9. During programming * =’ and ’=’ are interchangeable. In
program listings 7=’ is used.

10. <(variable}) must be an arithmetic variable.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-037A

Type:

FRAC

Arithmetic function

Purpose:

To extract the decimal part of a real number.

Syntax:

FRAC ({(expression))

Executioni

The result is calculated according to the expression:?

Example:

Comments:
1.

(expressior)~INT ((expression))

INPUT A

PRINT FRAC(AR)
PRINT FRAC(S.72)
PRINT FRAC(-S.72)

{expression) must be arithmetic and real. The result
will be real.

If (expression) is positive the result is calculated by
cancelling the digits in front of the decimal point.

If (expression) is negative the result is 1 wminus the
decimal part of (expression’.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-038

FREESTORE

Type:

System function
‘ Purpose?

To return the number of bytes of free memory space.

Syntax:
FREESTORE (?

Execution:?
The available free space is calculated based on the current
use of the memory.

Example:
10 PRINT FREESTORE ()

. Comments:

i. During programming 'FREESTORE' and 'FREESTORE()’ are
interchangeable. In program listings *FREESTORE()’ is
used.

COPYRIGHT (C) 1983 METRANIC ApS DENMARK PAGE 2-039

Typée
Purpose:?

Syntax:

FUNC ENDFUNC
Statement
To define and name a user—defined function.
FUNC <(name) [{formal parameter list)>] [CLOSED]

ENDFUNC <{name)

Execution:

When finding a ’FUNC' statement during program execution,
COMAL—-80 skips this part of the program up to and including
the corresponding ’ENDFUNC® statement and execution is
resumed from the next line.

When the function is called by its name (optionally
followed by a parameter list) in an expression, the func-
tion is calculated and the value is inserted in the ex—
pression and used in the subsequent calculation.

Examples:

10 FUNC X_Y_POWER(X, Y) 10 X1=2

20 RETURN X~3/Y~2 20 Y:=3

30 ENDFUNC X_Y_POWER 30 FUNC X_Y_POWER CLOSED
40 I:i= 40 IMPORT X,Y

50 J:=3 50 RETURN X*3/Y~2

€0 OLE:=X_Y_POWER(I,J) 60 ENDFUNC X_Y_POWER

70 PRINT OLE 70 OLE:=X_Y_POWER ()

80 PRINT OLE

Comments:

1. The *FUNC’ ,statement may not be used within the follow-
ing statements:
- Conditional statements
- Repeating statements
- Other procedure or function declarations

2. (name) must be a legal variable name.

3. A function may call other functions, and may call itself
(recursion). A closed function can only call a closed
function or procedure.

4. {(formal parameter list) contains the names of the forﬁal
parameters which will receive values from the actual
parameters in the function call when called.

S. The changes happening to a parameter in a function are
local unless 'REF’ has been used .to indicate that the
changes are to affect the actual parameter.

6. "REF’ may be stated for simple arithmetic or string
variables, and must be stated for all array variables.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-040

10,

11.

12.

A function type may be either real, integer or string.

Array variables must be followed by a dimension defini-
tion consisting of commas in parentheses corresponding
to the number of dimensions -1, i.e. for 3-dimensional
arrays the parenthesis contains two commas, while a vec-
tor would be followed by an empty parenthesis.

If the function is declared *CLOSED’, all variable names
are local and may be used for other purposes outside
the function. This may be declared irvalid for one or
more variables by use of the ’IMPORT’ statement.

The * INPUT’ and *PRINT USING’ statements are not allowed
in functions.

If the program section between ’FUNC’ and ’ENDFUNC’
contains statements on multiple lines these must all be
contained ir the program section.

The function value is returrned from the function by
the *RETURN’ statement. Otherwise the value of the
function is undefirned.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2~-040R

GETUNIT

Type:

Statement, command
Purpose:

Returns the current background storage device.
Syntax:

GETUNIT [(variable)l

Execution:?

The name of the current default device is assigrned to
{variable) in the form of a 3-character code, two letters
and one digit followed by a colon.

Examples:

100 GETUNIT DISK$
GETUNIT

Comments:

1. When using *GETUNIT' as a command the (variable) must be
omitted, and the result will be displayed on the termi-—
nal.

In statements the (variable) must be specified.

2. The two letters indicate the type of device; DK’ means
floppy disk. The digit indicates the unit number.

3. (variable) is a string variable.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-041

GOSUER RETURN

Typé:
Statement

Purpose:
To call a subroutine at a different part of the program and
then return to the line following the call.

Syntax:
GOSUB (line number)

{line number?’ .
RETURN

Execution: :

On meeting a *GOSUB’ statement, program execution continues
from {(line number} until it reaches the ’RETURN’ statement
when program execution is resumed from the line following
the *GOSUB’ statement.

Example:
10 PRINT “START IN THE MAIN PROGRAM"
20 GOSUB S0
30 PRINT "BACK IN THE MRIN FPROGRAM"
40 STOP
SO PRINT “THIS IS THE SUBROUTINE"
60 RETURN

Comments:
1. A subroutine may be called any number of times.

2. Subroutines may be called from other subroutines, and
such nestings are limited only by the available memory.

3. Following the *RETURN’ statement program execution is
resumed from the line immediately following the ’GOSUB’
executed.

4. A subroutine may include more thar one ’RETURN’ state-
ment.

S. Subroutines may be placed anywhere in the main program,
but clear geparation from the wmain program listing is
recommended.

6. To prevent any inadvertant execution of a subroutine it
is a good idea to put a ’'STOP’, *6G0OT0’, or an ’END’
statement immediately before the subroutine.

7. NOTE. The keyword °’RETURN’ may also be used in proce-

dures and functions. This is described in details on
page 2-098.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-042

GOTO

Type:
Statement

‘ Purpose:

To interrupt rormal sequential program execution and conti-—
nue from the stated lire.

Syntax:
GOTO (livne riumber)
GOTO <{(name)

Execution:
The execution continues at the stated lire or, if this
cannot be executed, from the first following executable

line.

. Examples:
10 PRINT "JO", 10 PRINT "JO",
20 BGOTO 40 20 BOTO REST
30 STOP 30 LABEL FINISH
40 PRINT “HN" 40 STOR
50 BOTO 30 S0 LABEL REST

60 PRINT "“HN"
70 GOTO FINISH

Comments:
1. Statewments such as LAREL’ and 'REM’ are not executable.

CORYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-043

IDENTIFIERLOWER

Type:
System variable

Purpose:
To specify whether identifiers in program listings are to
appear in upper or lower case letters.

Syntax:

IDENTIFIERLOWER

Execution:?
The value of the system variable ’ IDENTIFIERLOWER' cortrols
the format of identifiers in program listings.

Examples:
100 IDENTIFIERLOWER:=0
100 IDENTIFIERLOWER:=
100 IDENTIFIERLOWER:=TRUE
100 PRINT IDENTIFIERLOWER
IDENTIFIERLOWER:=

Comments:

1. On loading COMAL—-80 * IDENTIFIERLOWER’ is assigned the
value of 0. This value can only be changed by an assign-—
ment to * IDENTIFIERLOWER®.

2. The value assigrned must be O or 1. Assigned values are
rounded if necessary.

3. If the value of ’IDENTIFIERLOWER’ is equal to O all
identifiers will be listed in upper case. Otherwise they

will be listed in lower case.

4. This ‘keyword can be used as operand or be assigned to.
When used as operand it is of integer type.

5. The *NEW’ command does not change the value of the
system variable * IDENTIFIERLOWER’.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-044

IF THEN

Type:
Statement

Purpose:
To execute or skip a statement depending on a logical
expression being true or false.

Syntax:

IF

Execution?

{logical expression) L[THEN] {(statement)

Only when {logical expression? is true ((0), is (state-—
mernt) executed.

Example:
10
20
30
40
S50
60
70

Comments:
1.

INPUT "FRINT A NUMBER: “: A
IF A THEN PRINT "A (> O"

IF ACO THEN FRINT "ALO"

IF A=0 THEN PRINT "A=0Q"

IF A=1 THEN PRINT "A=1"

IF A=2 THEN PRINT “A=2"

IF A>2 THEN PRINT “A>2"

The following statemernts may be used after an ’IF...
THEN® statement:

CALL, CAT, CHAIN, CLEAR, CLOSE, CURSOR, DELETE, END,
EXEC, EXIT, GETUNIT, GOSuUB, GOTO, INIT, INPUT, LET,
LOGOFF, LOGON, MAT, ON, OPEN, 0UT, PAGE, PORE, PRINT,
QUIT, RANDOM, READ, RECEIVE, RELEASE, RENAME, RESTORE,
RETURN, SELECT, STOF, TRAR, UNIT, WRITE, and statements
defined as *EXTENSIONS’.

A new '"IF...THEN’ statement is also allowed.

During programming *THEN' wmay be omitted as COMAL-80
automatically adds it to program listings.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK FAGE 2-04%5

IF THEN ENDIF

Type:
Statement

Purpose:
To execute a program section if a logical expression is
true. Otherwise the section is skipped.

Syntax:

IF {logical expression) [THENI]

ENDIF

Execution: .
If the {logical expression) is true ((3 O) the program
section within 7 IF...ENDIF’ is executed. If the (logical
expression) is false (= 0) the program is resumed from
the first executable line following the ENDIF’ statement.

Example:
10 IF MEMBER#{(1 OR MEMBER#)>31 THEN
20 EXEC FATALERROR("ERROR IN X—-PL/O-COMPILER")
30 ENDIF :

Comments:

1. During programming ’*THEN’ may be omitted, as COMAL-80
automatically adds it to program listings.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE Z-046

IF THEN ELSE ENDIF

Type:
Statement
Purpose:
To execute one of two program sections depending on a
logical expressior being true or false.
Syntax:?
IF (logical expression) [(THENI]
ELSE
ENDIF

Execution:
If

the (logical expression) is true () O) the program

section surrounded by ’IF...ELSE’ is executed. If the
{logical expression) is false (= 0) the program section
surrounded by ’ELSE...ENDIF’ is executed.

Example:
10
20

Comments?
1.

INPUT "GUESS A NUMBER BETWEEN 1 AND S5": A
E:=RND (1, 5)

IF A=B THEN

PRINT "CORRECT"

ELSE

PRINT "WRONG. THE NUMBER WAS: ": E

ENDIF

sSTOP

During programming ’THEN’ may be omitted as COMAL-80
automatically adds it to program listings.

CORYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-047

Type:

Purpose:

Syntax:

IF THEN ELIF ELSE ENDIF
Statement

To execute one of several program sections depending on one
of several logical expressions being true.

IF (logical expression 1) [THEN

ELIF (logical expression 2} L[THEN]

ELIF (logical expression n) [THEN]

[ELSE
.1
ENDIF

Execution:

Example:

Each (logical expression ..} is checked one by one. If one
is true ((> O) the following program section is executed
until it meets the corresponding *ELIF’, *ELSE’, or ’ENDIF’
statement. The program resumes from the first executable
line following the *ENDIF’ statement.

When all (logical expressions) are false (= 0) the pro-
gram section surrounded by ’ELSE...ENDIF’ is executed and
the program is resumed from the first executable line
following the "ENDIF’ statement.

10 INPUT "FRESS ONE OF THE DIGITS 1, 2, OR 3: ": A,
20 IF A=1 THEN

30 PRINT "THE DIGIT WAS 1"

40 ELIF A=2 THEN

SO PRINT "THE DIGIT WAS 2"

60 ELIF A=3 THEN

70 PRINT “THE DIGIT WAS 3"

80 ELSE

90 PRINT "I ASKED FOR ONE OF THE DIGITS 1, 2, OR 3!"
100 ENDIF

Comments:

1. If several {logical expressions) are true, only the
first one is evaluated.

2. If there is no 'ELSE’ statement, and if norne of tne
{logical expressions}) are true, program execution conti-
nues in the first line after *ENDIF’.

3. During programming *THEN?’ may be omitted, as COMAL-80
automatically adds it to program listings.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE z2-048

IMPORT

Type:
Statement

‘Durpose:

To make variables in the main program or ancther ’FROC’ or
'FUNC’ accessible within a *PROC’ or FUNC’ structure.

Syntax:
IMPORT (list of variable names)

Execution:
The variables listed in (list of variable names) are made
accessible within the *PROC® or *FUNC’ structure containing
the * IMPORT’ statement.

Example:
. 10 PROC ERROR(N#) CL.OSED
20 IMPORT FATAL_ERROR:CC#, ERR_, ERRORS#
30 PRINT "*xxxx': SPCH(CCH-3) 5 "™"3; N#
40 ERR_:=INCLUDE(ERR_, N#+1); ERRORG#:+1
50 ENDPROC ERROR

Comments:
1. The variable rnawes in {list of variable names) must be
separated by commas. Array variaple names snould not be
followed by any subscripts.

Z. Each variable rname in (list of variable names) may be
preceded by a <(closed area name) wnere <(closed area
name) is the name of the closed furnction or procedure
from which the variable is taken.

The <(closed area rname) must be the caller of the
PROC/FUNC’ containing the ' IMPORT’ statement or it must
be the caller of the caller, etc. The variaple is taken
from the most recent call of a (closed area name).

If (closed area name) is omitted, the variable is taken

. from the main program.

3. This statement may be used only within closed ’*FROC® and
'FUNC® structures.

4. The execution of the > IMPORT’® statement does riot affect
the accessibility of the listed variables in any part of
the program other tham the ’PROC or 'FUNC' structure
containing the " IMPORT’ statement.

. All operations allowed on the variables in the main pro-—

gram are also allowed within the *PROC’ or *FUNC’ struc-
ture containing thne *IMPORT’ statement.

6. During programming °Gi.OEAL’ and ’ IMPORT? are inter-—
. changeable. Irn program listings °* IMPORT’ is used.

CORYRIGHT (C) 13983 METANIT ApS DENMARK PAGE 2-049

Type:
String operator

Purpose:
To check whether

Syntax:
{expressionl) IN

Executions:
A check is made t
in {(expression).
be true (=1).
will be false (=

Example:
10 DIm A% OF 19
20 DIM EB% OF 13
30 INPUT "WRITE A
40 INFUT "WRITE A

orie text string is contained in another.

{expressionz)

IN

0 see whether {expressioni)} is contained
If it is, the logical value returned will
If it is not, the logical value returned

Q).

TEXT: ": A%
NOTHER TEXT: B%

S0 IF B$ IN A% THEN

60 FRINT "SECOND
70 ELSE

80 PRINT “SECOND
90 ENDIF

CORYRIGHT (C) 1983 METANI

TEXT IS PART OF FIRST TEXT"

TEXT IS NOT PART OF FIRST TEXT®

C ApS DENMARK PARGE

[
1
o]
4]
<

. Purpose:®

. Examples:

100 INDENTION:=

Type:

INDENTION

System variaonle

To define the number of character positions to be used for
the indent of the internal part of structures in program
listings.

Syntax:?

INDENTION

Execution:

The actual value of the system variable ’INDENTION' corn—
trols the number of character positions the interrnal part
of a structure is indernted in program listings.

100 INDENTION=(A+3)*R
100 PRINT INDENTION

Commernts:
1.

CORYRIGHT

INDENTION:=3

On loading COMAL-80 * INDENTION’ is assigned the value of
2. This wvalue can be changed by assignment of a rew
value to " INDENTION?.

Any assigned value must be an integer number between O
and 10 inclusive. The assigned value will be rounded if
necessary.

Assignments can be made to this keyword and it can also
be used as operand. When used as operand it is of

integer type.

The *NEW’ command does riot change the value of tne
system variable ’ INDENTION?,

(C) 1983 METANIC ApS DENMARK FAGE 2-051

INIT

Type:

Statement, commana
Purpose:?

To prepare a formatted diskette (in a drive) for use.
Syntax:

INIT [{device)]

Execution?
The <{(device) stated is initialized.

Exampies:?
100 INIT "DKO:"
INIT
INIT DK1:

Comments:

1. Under CP/M, all disk drives will be initialized and the
(device) indication is not used. If used, <{(device) must
be the name of a valid disk drive. No disk files may be

open when this statement/command is executed.

2. {(device) must be stated when TINIT’ is
statement, but may be the empty string.

COPYRIGHT (C) 1983 METANIC ApS DENMARK

used as a

PAGE 2-052

INP

Type:
Machine code function

. Purpose:

To read the value at a Z—-80 wmicroprocessor input port.

Syntax:
INF ({expression))

Execution:
The input port, defined by {expressior? is read and the
value found there is returrned.

Example:
10 PRINT INF(17)

Comments:
1. <(expression) must be between O and 255 (inclusive).

2. <{expression) will be rounded to integer form if neces—
Sary.

CORYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-053

INPUT

Type:
Statement

Purpose:
To read and to assigrn to variables the values input through
the terminal during program execution.

Syntax:

INPUT [<{(text):] (variable list>

Execution:
When wmeeting tne *INPUT’ statement, program execution
pauses after displaying an optional {(text). As the user
keys in values, they are assigrned to the stated variables
in (variable list) from left to right. Having irnserted the
last value the user presses ’RETURN? and program execution
continues.

Examples:
100 INPUT MONKEY, JOHN#, NAMES
100 INPUT "WRITE 3 DIGITS: ": A, B, C

Commerits:

1. If the ’'INPUT’ statement contains a <(text), this is
displayed exactly as entered. '?? alone is displayed
when there is rno <(text?, indicating that the computer
expects arn input.

2., If {variable list) ends with a comma, the next output
appears in the following print—-zone. The width of the
print—-zornes is set by using ’ZONE’.

3. If {(variable list) erds with a semicolon, the riext out-
put appears immediately after the last entry.

4. Several rumeric values wmay be entered as long as they
are separated by a character. This character carnnot be
part of a numerical value such as space or comma.

S. 8Btring constants must be entered as a sequence of ASCII

characters. It is only possible to insert values
following a string constant if the RETURN’ key is used
to terminate each one.
When a string constant follows an arithmetic constant,
COMAL~80 corsiders the first character (which may rnot be
part of the arithmetic constant), a delimiter and then
the string constant with the next character.

6. The type of values keyed in must conform to the types
stated in the " INPUT’ statement.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-054

10,

11.

CORPYRIGHT

{variable list) may contain any variable type, but
arrays must be properly indexed and substrings may wnot
be used.

Responding to ° INPUT’ with the wrong type of value leads
to the error message *ERROR IN NUMBER’ and the item must
be corrected. No assigrnrment is made unmtil an acceptable
input is given.

Responding to * INFUT? with too few items, causes a 7?7
to be printed on the terminal and the program awaits
more input.

Responding to * INPUT’ with too many items causes the
error message °TO0O MUCH INPUT’ and the input must then
be corrected.

TINPUT’ statements are not allowed in furnctions.

(C) 1983 METANIC ApS DENMARK FAGE 2-054R

Type:

INPUT FILE

Statement

Purpose:?

To read data from ar ASCII data-file written by the *PRINT
(USING) FILE’ statement.

Syntax:

INPUT FILE (file No.)> [, {(rec. No.)li:<{variable list)

Execution:

The values of tne variables in {(variable list) are read
from the file contairned in (file No.).

Examples:

100 INPUT FILE
100 INPUT FILE

Comments:
1.

CORYRIGHT

(o g &
mD

Before meeting the *INPUT FILE’ statement a file must
be opered and the cornmection established between tne
stated file rname and the <(file No.) of the *INPUT FILE’
statement. This is done using the *OPEN FILE’® statement
or comwand, followed by ’READ’ or *RANDOM’.

Tne {(rec. No.} is used only in ’*RANDOM’ files and is an
arithmetic exoression which 1is rounded to an integer
value if necessary.

{file No.? is an arithmetic expressior.

{variable list) wmay contain all variaple types but
arrays must be properly indexed and substrings may not
be used.

The eiements of {(variable list) are separated by commas.

During programming ’FILE’ and '#’ are interchangeable.
In program liistings ’FILE’ is used.

Comments 4, 5, &, and 11 to thne 'INPUT' statement aonly
here as well.

(C) 1983 METANIC ApS DENMARK PAGE Z-0535

Type:
Arithmetic function

Purpose:
Returns the largest
specified expression.

integer

Syntax:
INT ({expressiaor))

Execution:?
The largest
calculated.

integer

Example:
10
20
30
40
50

INFUT A
Bi=INT(A)

PRINT B

PRINT INT(S.72)
PRINT INT(-5.72)

Comments:
1. <{expressiorn’
of real type.

is of

2. See also the *ROUND? and

COPYRIGHT (C) 1983 METANIC ApS DENMARK

less than or equal to

real type.

* TRUNC?

egual to

The result is an

functions.

PAGE

or less than

{expression’

INT

t he

2-0

S

1s

integer

=1

IVAL

Type:
Arithmetic function

Purpose:
To convert an integer, from a string to an irnteger of
integer type.

Syntax:
IVAL ({(string expressior))

Execution:
The characters in (string expressiory, whicn must represent
a valid integer rumber, are converted to integer riuweric
form. '

Txample:
10 DIM A% OF 4
20 INPUT A%
30 PRINT IVAL (A%)
40 PRINT IVAL("3215")

Comments?
1. If the string in <(string expression)’ contains other
characters than digits (including a sign), program
execution is stopped and an error message is displayed.

2. Also see the VAL’ function.

CORYRIGHT (C) 1983 METANIC ApS DENMARK FAGE Z2-0357

Type:
Sys

Purpose:
To
app

Syntax:
REY

Executiont
The
con

Examples:
100
100
100
100

Covments:
1.

COPYRIGHT (

KEYWORDLOWER

tem variabple

specify whether keywords in program listings snhould
ear in upper or lower case letters.

WORDLOWER

current value of the system variaple ’KEYWORDLOWER®
trols the format of keywords in program listings.

KEYWORDLOWER =0
KEYWORDLOWER: =R
KEYWORDLOWER:=TRUE
FRINT KEYWORDLOWER
REYWORDLOWER:=1

Orn loading COMAL-80 *KEYWORDLOWER’ is assigred the value
of 0. This value can be changed by an assignment to
*REYWORDLOWER’ only.

The value assigned must be O or 1. Assigred values are
rounded if necessary.

If the value of *KEYWORDLOWER' is equal to O, then all
keywords will be listed irn upper case. Otherwise they
will be listed in lower case.

Assigrments can be made to tnis keyword and it carn be
used as operand. Wher used as operand it is of integer
type.

The 'NEW’ command does not change the value of tne
system variable *KEYWORDLOWER?’.

C) 1983 METANIC ApS DENMARK PAGE 2-058

LABEL

Type:
Statement

.f-"i.n*pose=

To name a point in a COMAL-80 program for reference by tne
'GOTO’ and *RESTORE' statements.

Syntaxi
LABEL <(rame)

Execution?
The ’LABEL' statement is non—executable arnd serves only to
mark a point in the program.

Example:

10 LABEL START

‘ 20 INPUT "WRITE A NUMBER: ": NUMBER
30 PRINT NUMBER
40 GOTD START

Comments:
1. A "LABEL’ statement used inside a procedure or function
carn only be referenced inside this local area.

CORYRIGHT (C) 1983 METANIU ApS DEMMARK PAGE 2-0579

Type:

Arithmetic function.

Purpose:

Returns the length of a string variaole.

Syntax?

LEN{{variable))

Execution?

The number of characters in (variable) is counted.

Example:?
10
20
30
4¢

S0

Comnvments:
1.

DIM A%(1:10) OF 15
INFUT A% (3)
B#:=LEN(A%(3))
PRINT A%(5)

PRINT B#

The current contents of the

{variaple) are used to

determine its lerngth. The dimensioned length only is of
importance, since it is the maximum value of the result.

CORYRIGHT (C) 1983 METANIC ApS DENMARK

PAGE 2~060

Type:

LET

Statement

Furpose:
To

Syntax:

assign the value of an expression to a variaole.

[LET] <(variaple) 1= (expression)

Execution?

(expression? is calculated and the result is stored in the
space allocated for that (variable).

Example:
10
20
30
40
350
&0
70
80

Comments:
1.

[

COFPYRIGHT

LET A
LET B
LET SuMm :
A:+R
DIFFERENCE := A~k
PRINT SumM

PRINT A

PRINT DIFFERENCE

0w

A+B

The use of thne word LET’ is optional, it may be omitted
as shown in line 40 of the example. In program listings
'LET? is omitted.

During prograwming ’=' and ’':=' are interchangeanle. In
program listings ’:i=" is used.

{variable) = (variable) + <{(expression) may be written
as {(variable) :+ (expressior).

(variable) = (variable) - (expressiorn) may be expressed
{(variable) :- (expression), thougn the latter may riot be
used for string variables.

The types used for {(expression) and {variable? must be
the same. Integer values can be assigned to a real
variable.

For string variables having {expression’ longer tnan
{(variable), {(expression’ will be truncated from the
rignt.

For string variables having (expression) shorter than
{(variable), <(variable) takes the actual lerngth onrly.

Whern assigning to substrings, {expression) and {vari—
able’> must be of the same length.

Several assigrmments may be performed on a single line
separated by semicolons, and the reserved word 'LET’
(which is optional) may orily appear in front of tne
first assigrnment.

(C) 1982 METANIC ApS DENMARK PAGE 2-0&1

LIST

Type:
Command

Furpose:
To list a program in ASCII, in full or in part.

Syntax:
LIST [{(start)l(, {end)1l{file name)]
LIST [{(start),Il{file name)l

Execution:
The specified part of of the program is converted from its
interrnal format to a string of ASCII characters and listed
on the specified file (or device).

Examples:
LIST
LIST 10
tIST 10,100
LIST , 100
LIST 100,
LIST TEST
LIST 10,100 TEST
LIST , 100 DK1:TEST
LIST LPO:

Comments:

1. If (file nawe) is omitted all listings are displayed on
the terminal carrying the device name *DS0:’,
If the specified 1listing contains more lines than the
device is able to show in one screen, only the first
page is shown and the COMAL-80 interpreter waits for the
'SPACE BAR’ to be pressed before displaying the rext
page, or the ’*RETURN’ key to display the rext line.
Pressing the ESC’ key will end the listing.

2. Omitting both <(start line)> and {(end line’ lists the
entire program. Omitting only <(start line), causes the
listing to start at the first program line. Leaving <{(era
lire) out continues the listing to the end of the pro-
gram. Specifying only (start line), without the comma,
lists only the specifiea line.

3. The ’LIST’ cowmand considers all 1listings as being a
transfer of characters from the memory to a file. Con-—
sequently, a listing on a cornected printer is obtained
by stating "LP:’ for a (file name), obtionally followed
by the unit riumber of the printer. Wher o unit number
is specified it defaults to LPOEL,

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-062

4. Listings may rnot riecessarily have the same form as when
originally keyed in since automatic indenting takes
place in order to clarify the program structure. ’LABEL’
statements are not indented making them easy to find.
Whern several keywords have identical meanings, only one
of them is used for all listings.

S. If (file name) does not contain arn extension it defaults
to ".CML?.,

&. Programs stored using the ’LIST’ cowwmand may be read
later using the ENTER’ command.

7. Programs intended for storage for a longer period of
time, and programs intended for exchange, stould be
stored using "LIST’ cowmand as this format is cowmpatible
with all COMAL-80 versions and future versions will
attempt to follow this.

8. If (file name) is already on the device in question this
is reported and the user is offered the option of conti-
nuing and having the old file deleted, or of stopping
(* RETURN/ESC’).

9. The amount of indent can be selected by means of
> INDENTION’ .

CORYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-06ZRA

Type:

LOARD

Command

Furoose:

To

Syrntax?

read a binary file from the background storage device.

LOAD (file rname)

Execution:?

The working memory of the computer is cleared, the opera-—
ting system 1s called arna trne file is read.

Examples:

LOAD TEST
LOAD DK1:FROGRAM

Comments:
1.

3]

CORPYRIBGHT

Ornly bpinary files can be read by the ’'LOAD’ command,
i.e. files stored by tne ’SAVE' command. In catalog
listings these files can be identified by the extension
'.CsE’.

The extension ’.CSRE’ is always supplied by the COMAL-8C
system and carnnot be entered by the user.

Any TEXTENSION? which was present when the program was
*SAVE’d must also be present when thne program is

'LOAD’ed agair.

Before 'LOAD’ing, an implicit *NEW’' command is automavi-—
cally executed.

(CY 1983 METANIC ApS DENMARK FAGE 2-063

LOG
Type:
. Arithmetic function
Purpose!?
Returns the natural logarithm of am arithmetic exbressior.

Syntax:
LOG ({expression’?)

Execution?
The natural logarithm of {(expression) is calculated.

Examples:

10 INFUT A
20 PRINT LOG(R)

' Comments:

1. (expression) may be an aritmmetic expression of real or
integer type. The result will always be real.

2. If (expression) is less than or equal to O, program exe-—
cution is stopped and followed by an error message.

CORYRIBHT (C) 1983 METANIC ApS DENMARK PAGE 2-064

LOGOFF

Type:
. Statement, command
Furpose:!
To terminate logging mode and close the log file.
Syntax:

LOGOFF

Execution:
The logging mode is terminatea and the file is closed.

Examples:

100 LOGOFF

LOGOFF

COFRFYRIGHT (C) 1983 METANIC ApS DEMMARK PAGE 2-065

LOGON

Type:

Statement, commana
Purpose:

To produce a log of everything displayed on the screen.
Syntax:

LOGON (file nrame)

Execution:
A file with the givern (file rname) is operned and everything
which COMRL-80 sends to the screen is written to this file.

Examples:
100 LOGON "LOGFILE.LOG"
LLOGON LOGFILE
LOGON LFP:

Comments:
1. When the log is stored in a disk file it can be display-—
ed on the screen by the program

10 DIM A% OF 160

20 OREN FILE O, "LOGFILE.LOG", RERD
30 REPEAT

40 INPUT FILE O: A%

S0 PRINT A%

€0 UNTIL EOF (0)

70 CLOSE

2. If logging is stoppea tnrough a ’*LOGOFF’ statement and
then restarted under the same (file name)} the new infor-
mation is appernded to the file.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-0€6

<

LOOP EXIT ENDLOOF

Type:
Statement

Purpose:
To repeat execution of a program section until an internal
condition has been fulfilled.

Syntax:?
LOOP

ENDLOOF

Execution:
The program section enclosed by ’LOOP...ENDLOOR’ is execu-—
ted repeatedly until an EXIT’ statement is erncountered.
Program execution resumes at the first executable line
following the *ENDLOOP’ statement.

Example:
10 NUMBER:=0
20 LOoOr
30 NUMBER:+1
40 PRINT NUMEBER
50 IF NUMBER=8 THEN EXIT
60 ENDLOOPR

Covmments:
1. The execution of tne ’LO0OP...ENDLOOPR’ section wmay be
interrupted by a 'GOTO’ statement.

2. If 7LO0OF...ENDLOOP’ statements are nested, execution of
an 'EXIT’ statement will abandon execution of the inner-—
most *LOOP...ENDLOOR’ statement containing the 'EXIT?
statement only.

CORYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-067

Type:
Statement

Furpose:
To assign values to all elements in an array.

Syntax:
MAT {(variable) i=(expression)

Execution:

Each element in <(variable) is assigned tne
{expression).

Example:
10 DIM ARRAY (S50)
20 MAT ARRAY:=

Comments:
i. (variable)> and {expression? must be of the

MAT

value of

same type.

However, an integer expression may be assigned to the

elements in a real array.

2. For string variables having {expression)
{variable), (expression? will be truncated
right.

longer than

from the

3. For string variables having {expressior) storter than
{(variable), {(variable) takes the current length only.

4. Several assigrments may be made on a single line (sepa-

rated by semicolons), but the keyword 'MAT’

appear irn front of the first assigrment.

5. During programming '=’ and ’
* ?

program listings is used.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK

may only

=’ are interchangeable. In

FAGE Z2-068

Type:

MOoD

. Arithmetic operator
FPurpose:

To

Syntax?

return the remainder following an integer divisior.

{expressionl}) MOD {(expressionz)

Execution:

{expressionl) is irnteger divided by <{(expressionz). The re-
mainder is <{(expressionl) minus the result, multiplied by
{expressionz).

Example:
10
20
30

Comments:
1.

3.

CORYRIGHT

INPUT A
B:=Q MOD 7
PRINT B

The result N is defined by the lowest rorn—negative value
which the expressioni

{expressionl}) — N * (expressionz)
can assume for integer N.

The type of the result depends upon the type of {(expres-—
sionl) and (expressionZ) in the following way:

{expressionl) MOD <(expressionz) result
real real real
real int real

s int real real
int int int

.
Also see the DIV’ operator.

(C) 1983 METANIC ApS DENMARK PAGE Z2-069

NEW

Type:
Command

Purpose:
To clear the computer’s memory and prepare the COMAL-80
system for a new program.

Syntax:

NEW

Execution?

The stored program (if any) and any variables left over
from a previous program execution are deleted and the
space is recovered for use by & new program.
In addition, the equivalent to the following program is
executed:

10 CLOSE

20 SELECT OUTRUT "Dg:"

30 TRAP ERR+

40 TRAFP ESC+
and the system functions ’'ERR()' and 'ESC()' will sub-
sequently return O.

Example:
NEW

Comments: }
1. The "NEW’ command should always be used before keying in
a new program.

2. System variables (" KEYWORDLOWER®, *IDENTIFIERLOWER’,
"INDENTION’ , 7’ PRAGEWIDTH' , *PAGELENGTH’ and *ZONE') are
not affected by this command.

3. Also see note 2 to the ENTER’ command.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-070

NOT

Type:
Logic operator

Purpose!
To perform the logical "NOT’ operation.

Syntax:
NOT (expression)

Execution;
The logical value of {(expression) is logically negated.

Example:
100 IF NOT ERR() THEN EXEC READ_OK

Comments:
1. The operator has the following truth tabple

{(expression) result
true false
false t rue

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-071

ON GOTO ON GOSUB

Type:
Statement

Purpose:
To transfer execution to a program line number resulting
from the evaluation of an expression.

Syntax:

ON <(expression) GOTO (list of line ndmbers)
ON <{(expression) GOSUEB (list of line numbers)

Executioni
(expression) is evaluated and rounded to integer if neces-—
sary. The corresponding line rnumber is chosen from (list of
line numbers). (expression}=1 corresponds to the first line
rnumber from the left; (expression)=2 corresponds to the
second lirne numper from the left and so on.

Example:
10 INPUT "WRITE A NUMBER BETWEEN 1 AND 3 INCL: “: NUMBER
20 ON NUMBER GOTO 40,60, 80
30 60OTO 10
40 PRINT "YOU WROTE 1"
S50 GOTO FINISH
60 PRINT "YOU WROTE 2"
70 GOTO FINISH
80 PRINT "YOU WROTE 3"
90 LABEL FINISH

Comments:
1. Unlike the ’'GOTO’ statement, names may not be used in
the *ON...GOTO’ statement.

2. If the rounded value of {(expression) does not fulfil the
test:
1 (= (expression) (= items in (list of line. riumbers)
the statement is skipped and the program is resumed from
the next executable statement.

3. For 'ON...GOSUR’' statements each line number in (list of
line rnumbers) must be the first statement in a subrouti-
ne erded by a 'RETURN' statement.

On meeting this, the program execution resumes at the
first executable line after the ’*GOSUB’ statement.

4. See also the *GOSUB’ statement.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2Z-072

Type:

Purpose:

Syntax:

OPEN FILE

Statement, command

To open a data file on the background storage device.

OPEN FILE (file No.), (file name), {(type) [, {record size)]

Execution:

First, a file with name (file name) is searched for on the
background storage device.

If it is found and *WRITE® (type) was stated, or if it is
not found and 'READ’ (type) was stated, program execution
is stopped and an error message is displayed.

In the case of ’APPEND’ or ’RANDOM’ (type) being stated,
the file is created if not found; otherwise the existing
file is used.

Then (file name) and (file No.?> are coupled so that all
references to (file name) are done by (file No.) until the
file is closed with a *CiLOSE’ statement or command.

Examples:

100 OPEN FILE 2, "TEST",WRITE
100 OPEN FILE O, "DK1:DATA. RAN", RANDOM, 40

Comments:

1. (file No.) is an arithmetic expression which must be one
of the integer values 0 to 9 irnclusive.

2. (file name) must be a string expression. Please note
that not all operating systems allow all possible cha-—

racters in file names. For example, CP/M allows only 8
characters, and only 8 characters are transferred to the
disk.

3. (type) specifies how the file is wused. The following
options are available:

READ Reads sequentially from the file.
WRITE Writes sequentially to the file.
RANDOM Reads from and writes to the file.
RPPEND Appends new information to an existing

file created using *WRITE® <(type).

4. (record size) is used only for ’'RANDOM’' files and ex—
presses the total rnumber of bytes to be written to each
record. The recessary size is calculated as follows
(assuming that READ’ and ’WRITE’ statements are used
when the file is read from and written to):

- Integers take 2 bytes

- Reai figures take 4 bytes at 7-digit precision,
and 8 bytes at 13-digit precision.

- Strings take Z bytes plus orne byte per character
of the string.

CORYRIGHT (C) 1983 METANIC ApS DENMARK FAGE 2-073

9. Up to 8 disk files may be oper at ore time. This leaves
room for arnother 2 rnon—disk files to be oper at tihne same
time. If disk files are used in connection with *LORAD?, .
'SELECT OUTRUT?, TLISTY, 'SAVE? , *CAT?, or TENTER?,
fewer than 8 disk files may be opered by *0OFEN'.

A file may be open on several file rnumbers at the same
time provided that the same (type) is used.

€. A RANDOM’ file must always be re-operned using the same
(record size) with which it was originally opered.
(record size) can be recovered using the program:

10 DREN FILE 0, "<(file name).RAN", READ
20 READ FILE ©: RECORD_SIZE#
30 PRINT RECORD_SIZE#

40 CLOSE .

COPYRIGHT (C) 1983 METANIC ApS DENMARK FAGE 2-073R

OR

Type:

Logical operator
Purpose?

Performs the logical 'OR’ operation betweeri two expressions
Syntax:

{(expressionl) OR (expressionz)

Execution?

(expressionl} and (expression2) are evaluated and if equal
to zero considered false, otherwise true. {(expressionl) is
then ORed with (expression2).

Example:
100 IF END_DATA1 DR END_DATAZ THEN EXEC END_DATA

Comments:
1. The operator has thne following truth table:

{(expressionl) (expressionz? result
true t rue t rue
true false t rue
false true true
false false false

COPYRIGHT (C) 1983 METANIC ApS DENMARK FAGE 2-074

ORD

Type:
. Arithmetic function
Purpose:
To convert the first character in a string into its ASCII
value.

Syntax:
ORD({string expression))

Execution:
Returns the ASCII value of the first character in (string
expression’.
Example:
10 DIM A% OF 1
. 20 INPUT A%
30 PRINT ORD(A%$)

Comments:
1. The result is an integer between 0 and 2335.

CORYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-075

Type:

Purpose:

Syntax:

ouT

Machirne language function

To send a byte to a Z80 output port.

DUT (expressionl), {expressionz)

Executiont

Example:

The values of {(expressionl) and {(expressioni) are evaluated
and rounded if nriecessary. The value of (expressionz) is
sent to the machirne output port corresponding to {expres-—
sionl).

10 INPUT A
20 OUT 15,A

Comments:

1. The value of <(expressionl) and {(expression) must be a
real or integer rumber between O and 2355.

2. Also see 'INRP’.

COPYRIBHT (C) 1983 METANIC ApS DENMARK FAGE 2-076

PAGE

Type:
Statement, command

Purpose:
To advance the paper on a printer to the top of the rext
page.

Syntax:
PRGE

Execution:
If "PAGELENGTH® = 0, a form feed character is transmitted
to the line printer. Otherwise, the line feed character
(0AH) is transmitted until the top of the next page is
reached.

Examples:
100 PAGE

PAGE

Comments:

1. Form feed is controlled by a counter within COMAL-80
when * PAGELENGTH? > O. In this case, it is important
that the paper is inserted correctly in the printer and
that it is riot fed manually.

2. The lergth of a page can be charged by the 'PARGELENGTH’
statement or command.

COPYRIGHT (C) 1983 METANIC ApS DENMARK FRGE 2-077

PAGELENGTH

Type:
System variable
Purpose:
To specify the number of lines per page on an attacned
printer.
Syntax:
PAGELENGTH

Execution:

An internal counter irn COMAL-80 keeps track of the number
of lines printed on the current page on the printer. This
number is used when a 'PAGE’ statement or command is execu-
ted arnd a form feed character is sent to the printer whicn
together with the value of ’PAGELENGTH’® determines thne
number of line feed characters to be substituted for the
form feed character. Thus, * PAGELENGTH’ determines the
riumber of lines on a page.

Examples:
100 PAGELENGTH:=72
100 PRINT PAGELENGTH
100 PAGELENGTH::=MAX_LINES
FPAGELENGTH=88

Comments:

1. On loading COMAL-80 ’PAGELENGTH’ is assigned the value
of 72. This value can be changed by an assignment to
* PAGELENGTH? .

2. An assigred value must lie between 0 and 254 (inclusive)

3. This keyword can be used as operand or may be assigned
to. When used as operand it is of integer type.

4. The current value of *PRABGELENGTH’ is valid for both pos—
sible printers.

S. The value 0 stops the internal counter and disables the
translation of form feed into line feed characters. Thus

form feed characters can be sent to the printer as such.

E&. The *NEW’ command does not change the value of the
system variable *PAGELENGTH’.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-078

J

Type:

‘ System variable
Purpose:

To specify the rnumber of characters per line
printer.

Syntax:
PAGEWIDTH

Execution:
An internal counter in COMAL-B0 keeps track
print position and issues a carriage return
command when the maximum allowed number of
been printed.

. Examples:

100 PAGEWIDTH:=40

100 PRINT PAGEWIDTH

100 PAGEWIDTH:=MAX_CHARACTERS
PAGEWIDTH:=80

Comments:

1. On loading COMAL-80 ’PAGEWIDTH’ is assigned

PAGEWIDTH

orn an attacned

of the current
and line feed
characters has

a value

of 80. This value can be changed by an assigrment to

'PAGEWIDTH’ .

2. An assigned value must lie between O arnd 234 (inciusive)

3. This keyword can be used as operand or may be assigned

to. When used as operand it is of integer

type.

4., The current value of *PAGEWIDTH’ is valid for both pos—

sible printers.

S. The value 0O irhibits the automatic issuing of carriage

. return and line feed.

6. The ’NEW' command does not change the

system variable *PAGEWIDTH’.

COPYRIGHT (C) 1983 METANIC ApS DENMARK

value of the

PAGE

2-079

Type:

Purpose:

Syntax:

PEEK

Machirne language function

To determine the value of a memory location determinea by
an arithmetic expression.

PEEK ((expression))

Execution:

Example:

The value of (expression’ is evaluated and rounded if
necessary. The value of the corresponding memory address 1s
returned.

10 DIM B$ OF 1

20 TRAP ESC-

30 EXEC GET_CHR_ESC (B%$)

40 PRINT B$

50 PROC GET_CHR_ESC (REF A%)

60 // BET KEYBOARD INPUT WITHOUT ECHO TO SCREEN
70 // THE 'ESC’ KEY IS TREATED LIKE ANY OTHER
80 // CHARACTER.

90 // THE 'TRAP ESC-’ STATEMENT MUST BE EXECUTED BEFORE
100 // THIS PROCEDURE IS CALLED.

110 POKE 256, 255

120 REPEAT

130 IF ESC() THEN POKE 256, 27

140 UNTIL PEEK(256) O 255

150 A%:=CHR$ (FEEK(256))

160 ENDPROC GET_CHR_ESC

Comments:

1. The value of (expression)> must be a real or integer num-
ber between 0 and 6553S5. The result will be of integer
type between O and 255.

2. Also see *POKE’.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-080

Type:

Purpose:

Syntax:

Machine language function

To set the contents of a memory location to
mined by an arithmetic expression.

POKE(expressionl}), (expression2)

Execution?
The values of {(expressionl) and {(expressionZ) are evaluated
The memory address corresponding
to {(expressionl) is loaded with the value of {(expressionz).

. Example:

and rounded if necessary.

10 DIM B OF 1
20 EXEC GET_CHARACTER (B%)
30 PRINT B%

40 PROC GET_CHARACTER(REF A%)
S0 // GET KEYBOARD INPUT WITHOUT ECHO ON THE SCREEN
60 // THE *ESC’ KEY WORKS IN THE NORMAL WAY

70 POKE 256, 255

80 REPEAT

90 UNTIL PEER(256) () 255
100 A%$:=CHR$ (PEEK(256))
110 ENDPROC GET_CHARACTER

Comments:

1. The value of {expressionl) must be a
number between 0 and 6553S. The value of
must lie between O and 2353.

CORPYRIGHT (O)

2. Also see 'PEEK’.

1983 METANIC ApS DENMARK

POKE

a value deter-—

real or integer
{expressionz)

FAGE 2-081

POS

Type:
Arithmetic function

Purpose:
To determine whether orne string is contained within arother
and, if so, whereabouts.

Syntax:

POS{(string expressionl), (string expression2))

Execution:
A character by character test is made to see if (string
expressionl) igs contained in (string expressionz). If it
is, the result of the function is an integer returning the
character position of (string expression2) at which (string
expressionl) starts.

Example:
10 DIM A% OF 25
20 DIM Bs OF 25
30 INPUT "FIRST STRING: ":A$
40 INPUT “"SECOND STRING: ":B$
S50 C#:=P0OS (A%, B%)
60 PRINT C#

Covmments:
i. If (string expressionl) is a null string, the function

returns the value 1.

2. If (string expressionl) is not contaired in (string ex-
pressionz), the function returns the result O.

3. The result of the function is always an integer.

CORPYRIBGHT (C) 1983 METANIC RApS DENMARK PAGE 2-082

Type:

PRINT

Statement, command

Purpose:

To display data on an output device.

Syntax:

PRINT [(list of expressions)l

Executiont

The (list of expressions) consists of variables, constants,
and literals, the values of which are output to the assig-—
ned output device.

Examples:

100 PRINT "“THE RESULT IS: "3 A
100 FRINT TRE(15); A, R

Comments:
1.

5.

CORPYRIGHT

The single elements of {list of expressions) must be
separated by commas or semicolons. If two elements are
separated by a semicolon, the second element is printed
immediately after the first one, while a space is
inserted after an arithmetic expression. Separating two
elements with a comma causes the second element to be
printed at the start of the next print-zone.

The width of the print-zones wmay be cnanged using
TZONE:= (arithmetic expression)’ executed as a state-—
ment or a command for which [(arithmetic expression) is
rounded to an integer greater than or equal to 0 and
less than or equal to 160.

The rules for semicolon and comma are also valid after
the last element in (list of expressions), as the effect
is carried onto the first element of the next ’FRINT’
statement.

When (list of expressions) ends without a cowmma or semi-
colon, the execution of the statement ends with a linre
feed.

This also happens if (list of expressions) is omitted.

If the remaining space on thne actual line is too short
to contain the next print element, it is printed from
the start of the following lire.

Execution of a 'SELECT OUTRUT' statement switches be-
tween output devices.

{(expression) is arithmetic and represents the number of
character positions from the left margin, the function
'TAE ({expression))’ tabulates to the required character
position.

For more details see 'TAR’.

During programming ’PRINT’ may be replaced by ’;’. In
program listings ’FRINT’ is used.

(C) 1983 METANIC ApS DENMARK PAGE 2—-083

Type:

PRINT FILE PRINT FILE USING

Statement

Purpose:

To write data in ASCII format to a data file.

Syntax:

PRINT FILE <{(file No.)>[, {rec. No.)>J2{list of exofessions)

Execution:

The values of the expressions in (list of expressions) are
written to the file indicated by (file No.).

Examples:

100
110
120
130

Comments:
1.

100 PRINT FILE O, RECNO: A%, B, C+D

DIM A% OF S

ASi="##. H#"

PRINT FILE 3: USING "##.##": A, B, C"2
FRINT FILE 4% USING A$: D

Before wmeeting the ’PRINT FILE (USING)’ statement, a
file must be opened and cornnection between the (file
name) and the <(file Mo.?> wused in the ?’PRINT FILE
(USING)®’ statement must be established with an *"OPEN
FILE? statement or command, and a type: ’APPEND’,
"WRITE® or " RANDOM’.

{rec. No.) is only needed for *RANDOM’ files and is an
arithmetic expression which will be rounded to integer
if necessary and which designates the number of the lo-
gical record of the file to be used.

{(file No.}) is an arithmetic expression.

The eiements in (list of expressions) should be separa-
ted by commas or semicolons, similar to the syntax of
TPRINT’ and *FRINT USING’.

"PRINT FILE’ and ’*PRINT FILE USING? perform similar

furictions to 'FRINT’ and *PRINT USING’, the only diffe-

rerce being the destination of the output.

The syntax for PRINT FILE USING’ is obtained by substi-

tuting (list of expressions) in the above syntax with:
USING (string expression?:{list of expressions)?

During programming *FILE’ and ’#’ are interchangeable.
In program listings "FILE’ is used.

During programming *PRINT’ may be replaced by ’3°. In
program listings *PRINT’ is used.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK FPAGE 2-084

. Purpose:

CORYRIGHT (C) 1983 METANIC ApS DENMARK FAGE =-

PRINT USING
Statement
To print text strings and/or rnumbers in a specifiea format.

PRINT USING (string expression):(list of expressions)

Execution:

The text string specified in (string expression) is trans—
ferred character by character onto the output device.
String expressions and/or arithmetic expressions from (list
of expressions) are used to replace the '#' characters.

Examples:

100 PRINT USING "THE RESULT IS ###.##": A

10 DIM A% OF 6
20 ASI="H#4#. #HuH"
30 PRINT USING A%$: B

Commnents:

1. The individual characters in {(string expression’ have
the following significance:
'#’ character position ard sign.
’.? decimal point if surrounded by *#’.
'+’ preceding plus, wnen followed by *#°.
’=' preceding minus, when followed by "#’.
All other characters are transferred unchanged.

2. A format starting witn "+’ will assign a space for sign
which will be printed for both negative ana positive
values.

3. A format starting with -’ will assign space for signs
but it will be printed for riegative values only.

4. For text strings & preceding ’+’ or -’ will be treated
as "#’.

S. If an arithwetic value contains too wmany digits to be
printed in the specified format, the position is filled
with %, If an arithwmetic value contains more decimals
than specified in the format, rounding takes place auto-
matically.

€. Text strirngs always start at the extreme left within the
format. If a string is too long, the rnecessary number of
characters is deleted from the right. When a text strirg
is too srort, the rest of the format is filled with
spaces.

as

(=)

7. When tnere are rno more expressions in (list of exores—
sions), execution of trne "FRINT USING' statemernt is ter-—
minated. If (list of expressions: . Mtains more expres—
sions than stated in (string expression’, the formats
within are again used from tne left.

8. If the *FRINT USING’ statement ernds with a semicolion,
the next printout will start imvnediately after thne out-—
put produced by the ’PRINT USING' statement. If it enas
with a comma the rnext printout will start at the be-
girming of the next print zorne. Otherwise the execution
of the ’FRINT USING’ statement will cause a change to a
new lire.

9. The 7PRINT USING’ statement may be used for writing in
a data file following exactly the sawme rules as descri-
bed for the *FRINT FILE® statement.

’

10. During programming *PRINT’ may be replaced by 7;’. In

program listings *FRINT’ is used.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2—-08SA

PROC ENDPROC CiOSED

Type:
Statement

Purpose!
To define and rname a sub—program (a procedure)

Syntax:
PROC <(rname) [{formal parameter list)>] CCLOSEDI]

ENDPROC <{name)

Execution:
On encountering a *PROC’ statement, the program section is
skipped up to and including the corresponding ’ENDFROC’
statement. It will be executed only when the procedure is
called by name using arn *EXEC® statement.

Examples:
10 PROC ERROR(N#) CLOSED
20 IMPORT CC#, ERR_, ERRORS#
30 FRINT “"#%%%“:SPC(CCH~I) ;""" N#
40 ERR_:=INCLUDE (ERR_,N#+1); ERRORS#:+1
50 ENDFROC ERROR

PROCEDURE HEADINGS ONLY:

10 PROC XYZ (A, B, REF C%) CLOSED

10 PROC ZYX(REF A#(,,), REF CO), D%$)

10 PROC YZX(REF D%(,,), REF E#, REF C) CLOSED

Comments:
i. The *PROC’ statement wmay riot be used within:
- Conditional statements
- Repeating statements
-~ Other procedure or function declarations

k2

. {(name) must be a legal variable name.

u

A procedure may call other functions, and even itself
(recursion). A closed procedure can only call a closed
furnctiorn or procedure.

4. {(formal parameter list) contains the names of the formal
parameters which will receive values frowm the current
parameters in the procedure call when called.

3. The changes to a parameter within a procedure remain
local unless ’'REF’ iz used to indicate that the changes

should affect the actual parameter.

6. "REF' may be stated for simple arithmetic or string
variables, and must be stated for all array variables.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-086

7.

11.

CORYRIGHT

A procedure type may be either real, integer or string.

Array variables must be followed by a dimernsion defini-
tion consistirng of cowmmas in parentheses corresponding
to the rnumber of dimensiorns -—1. I.e. for 3-dimensional
arrays, the parenthesis contains two cowmmas, while a
vector would be followed by an ewpty parenthesis.

If the procedure is declared *CLOSED” variable rnames re-—
main local and may be used for other purposes outside
the procedure. This may be declared invalid for one or
more variables using the *IMPORT' statement.

If the program sectior betweeri ’~FROC’ and *ENDFROC’
contains statements of multiple lires these must all be
contairned in the program section.

As well as using an "ENDFPROC (riame)’ statement to return
from the procedure, it is also possible to use the
"RETURN’ statement.

The sections *FPROCEDURES’ and 'PARAMETER SUBSTITUTION’

in chapter 1 give a wore detailed description of these
keywords.

(C) 1983 METANIC ApS DENMARK PAGE 2-08€ER

QUIT

Type:
Statement, command
' Purpose:
To stop the COMAL-80 interpreter and return to the environ-
ment from which it was called.

Syntax:
QUIT

Execution:
Under CP/M a warm boot is performed.

Examples:
100 QUIT

‘ QuIT

CORPYRIGHT (C) 1983 METANIC ApS DENMARK FAGE Z-087

\ RANDOM RANDOMIZE

Type:

Statement, command
Purpose:

To set a random startpoint for the *RND’ functon.
Syntax:

RANDOM

RANDOMIZE

Execution:
The Z-80 CPU has a built—in counter which is read and the

value found is used as the seed for the algorithm whnich
calculates the random value.

Examples:
100 RANDOM
RANDOM

Comments:
1. The counter works constantly when the the CPU is active.

Its clock frequercy is around S00 KHz at a CPU clock
frequency of 2.5 MHz.

2. If "RANDDM’ is not found in a program calling the ’RND’
furnction, any execution of the program will give the

same seguerice of random numbers.

3. RANDOM’ and *RANDOMIZE’ are interchangeable. In program
listings 'RANDOM’ is used.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK FAGE z-088

Type:
Statement

Purpose:
To assign values to variables from a data list.

Syntax:
REARD (variable list>

Execution:
The single elements of (variable list) are assigned values
from the data list. This is done in sequence from left to

right.

Examples:
10 DIM FIRST_NAMES OF 10
20 DIM FAMILY_NAME$ OF 10
30 DATA "JOHN", "DOE", 10
40 READ FIRST_NAMES$, FAMILY_NAMES
S0 PRINT FIRST_NAMES$+" "+FAMILY_NAMES
60 READ AGE
70 PRINT AGE; "YERAR"

Comments:
1. If the type of value does not correspond to that of the
stated variable, or if the data list is ewmpty, program
execution is stopped with an error message.

+2

. Assigning values to a string variaole follows tne same
rules as given for LET’ statements.

3. See the DATA’ statement.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-089

READ FILE

Type:
Statement

Purpose:
To read data from a binary data file written wusing the
WRITE FILE’ statement.

Syntax:

RERD FILE (file No.)> [, (rec No.>J:{(variable list)

Execution:
The values of the variables in (variable list) are read
from the file connected to (file No.>.

Examples:
100 READ FIiLE S,REC_ND: R
100 RERAD FILE 3: A, B, C

Comments:

1. Before ercountering the *READ FILE® statement, a file
must be opened ard the connection must be established
between the file name and the <(file No.) of the *READ
FILE’® statement. This is done with the ?*O0OPEN FILE®
statement or command and type *READ’ or *RANDOM’.

2. The {(rec No.) is only used in ’*RANDOM’ files and is an
arithmetic expression which will be rounded to integer
if necessary. It indicates the number of the 1logical
record to be utilized.

3. (file No.) is an arithmetic expression.

4. (variable list) may contain any variable type. Arrays
are read in total if no indices are specified.

5. The elements of (variable list) are separated by commas.

6. During programming ’FILE’ and '#' are interchangeable.
In program listings 'FILE® is used.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-090

RECEIVE

Statement

To transfer variables from the current program to a program
called using the 'CHAIN’ statement.

RECEIVE (list of variables)

Execution?

When the ’CHAIN' statement, which loads the program corn-—
taining the *RECEIVE’ statement, is executed, the current
values of the variables listed in the *CHARIN’ statement
are saved.

The *RECEIVE’® statement is used to enter these values to
the new program. After its execution, the variable rnames in
the (list of variables) have been dimensioned appropriate-—
priately if necessary and have been assigrned tne values
which were saved.

Examples:

100 RECEIVE A,B,C
100 RECEIVE As$,B#,C

Comments:

1. The type of variables specified in (list of variables)
in the *RECEIVE’ and *CHRIN’ statements must correspond.

2. Variaples representing arrays and strings carry their
dimension from the old to the new program part and must
not be re-dimensioned.

CORYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-091

Type:
Statement, commana

Furpose:
To check that all disk files are closed.

Syntax:
RELEASE ({(device)l

Execution:
All disk files are checked to see that they are

Examples:
100 RELERSE "*"
100 RELERSE "DK1:"
100 RELEASE "DK"+DISK$+":"
RELLEASE
RELEASE DK1:

Comments:

RELERSE

closed.

1. Under CP/M, the <(device) indication is not used but, if
it is given, it must be the name of a disk drive.

2. If a disk file is open, execution is terminated and an

error message is displayed.

3. {device) must be given when ’RELEASE’
statemert but may be the empty string.

CORPYRIGHT (L) 1983 METANIC ApS DENMARK

is used as a

PAGE 2--092

Type:

REM // !

Statement

Purpose:!
To

allow for insertion of explanatory text in a COMAL-80

program.

Syntax:
//

REM

Execution:

The *REM’ statement is ignored during program execution.

Examples:
10
20
30
40

Comments :

1.

2.

CORPYRIGHT

//PROGRAM TO CALCULATE

REM POLYNOMIAL

! 30/10/1980

OPEN FILE 4,"TEST",READ //0FEN DATA FILE

During programming °*REM’, *//7, and !’ are inter—
changeable. In program listings *//’ is used.

All statements may be followed by a comment.

(C) 1983 METANIC ApS DENMARK FAGE 2-093

RENAME

Type:
Statement, cowmwmana

Purpose:
To change the name of a file on the backgrourd storage
device.

Syntaxi

RENAME (old file name), {new file name)

Execution:
The operating system of the computer is called and the file
named (old file name) is renamed to (new file name).

Examples:
220 RENAME "DW1:FIL.CML", "DK1:FIi.BRK"
RENAME DK1:FIL.CML,DK1:FIL.BRK
RENAME FIL.CML,FIL.BAK

Comments:
1. (old file name) must exist on the stated device.

2. If rno device is stated, the statement/commard is carried
out on the current default device.

3. If the (rew file name) is already in use, this is repor-
ted and the statement/cowmmand is terminated.

4. If a device description is contained in one of the

names, the same device indicatien wmust be part of the
other name.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-094

Type:
Command

Purpose:
To renumber program lires
tures.

Syntax:
RENUM [L(start line): (end

Execution:

If only a part of a program is to be renumpered,
whether there is sufficient

made to see

using the intervals specified.

RENUM RENUMBER

arnd to re—arrange program struc-—

line),l(start) [, (step?]]

a check 1is
room to renumber

If rnot, execution is stopped

followed by an error message.

If there is eriough room,

the new line numbers

are calcu-—

lated and stored. The program is checked and ail referen-—
ces (*60TO’, *'GOSUR’, etc.) are updated.
Finally, the old lirne nuwbers are deleted.
Examples:
RENUM
RENUM 15
RENUM 15,3
RENUM 20:90,310,1
Comments:
1. If (step) is not given, default 10 is used.
2. If (start) is not given, default 10 is used.
3. (start lirne)> and (end line} are used when only a section

of a program is
last line rumbers to

between line numbers.

be moved to any place in

free line numbers. No

possible.

If

gram is renumbered.

CORPYRIGHT ()

reriumbered.
renumber.
cifies the first rew line riumber and

(start line): (erndline),

1983 METANIC ApS DENMARK

They specify the first and
In this case ({(start) spe-—
{step) the new step
program section can
if there are eviougn
and no mixing is

In this way a
a program
overwriting

is rnot given the whole pro-~

PAGE 2-09S

Type:
Statement

Purpose:

REPEAT UNTIL

To repeat the execution of a program section urntil the con-—
dition contairned in the *UNTIL’ statement is fulfilled.

Syntax:
REPEAT

UNTIL <(logical

Execution:
On meeting the
expression) is
from the first
statement. If
continiues from

expression’

TUNTIL’ statement the value of the {logical
calculated. If it is true, execution resumes
executable statement following the ’*UNTIL?

{logical expressior) is false the program
the first executable statement following the

'REPEAT’ statement.

Example:
10 DIm A% OF 1

20 DIM B% OF 25

30 PRINT “THE

PROGRAM IS STOPPED BY"

40 PRINT “PRESSING THE *ESC’ KEY"

S0 TRAP ESC-
60 REPEAT

70 INPUT “WRI
80 B#i=B$+A%
90 UNTIL ESC()
100 PRINT "YOU

Comments:
i. A program

TE A LETTER: ": A%,

WROTE: ": B$

section surrounded by ’REPEAT...UNTIL® is

always executed at least once.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE Z-096

+ RESTORE

Type:
Statement

. Purpose:

To move the data list pointer to allow it to be partially
or wholly re-read.

Syntax:
RESTORE <(line number)
RESTORE <{(name’
RESTORE

Execution:
The pointer of the data list is set to the first data item
in the stated line, or to the first data item declared if

. ro line is specified.

Example:

10 LABEL AGARIN
20 RESTORE DARTARZ
30 READ X

40 PRINT X

50 DATA 47

60 RESTORE SO
70 READ X

80 PRINT X

90 GOTO AGAIN
100 LABEL DATAZ
110 DATA -47

Comments:
1. If the ’*RESTORE’ statement contains a line number, the
corresponding line must contain a 'DATAR’ statement.

2., If the 7’RESTORE’ statement contains a name, the state—
ment immediately following the ’LABEL® statement de-—

. fining that label must contain a 'DATAR’ statement.
3. If the ’RESTORE’ statement contains wneither a line

number nor a name, the pointer is set to trne first
item of the first 'DATA’ statement.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-097

RETURN

Types:’
Statement

Purpose:
To terminate a subroutine or a procedure, or to terminate a
user defined function and return the function value.

Syntax:
RETURN (for procedures and subroutines)
RETURN <{(expression) (for functions)

Execution:
Execution of procedures and subroutines is terminated and
resuves from the line following the calling line. For func-
tions, execution is terminated and the function value is
inserted in the expression which caused execution of the
furiction.

Examples:
10 FUNC X_Y_POWER(X,Y? 10 FPRINT "MAIN FROGRAM"
20 RETURN X"3/Y"2 20 BOSUB SO
30 ENDFUNC X_Y_POWER 30 STOP
40 =z 50 PRINT "SUBROUTINE"
50 Ji= 60 RETURN

60 OLE:=X_Y_POWER(I,J)
70 PRINT OLE

10 EXEC OPEN_FILE

20 PROC OPEN_FILE

30 IF A%$="DEFAULT" THEN RETURN
40 OPEN FILE 3, "DK1:"+A%, READ
SO ENDPROC OPEN_FILE

Comments:

1. In user defined functions, the function value can only
be returned using the *RETURN’ statement. If this is not
included, the function value will be undefined and an
error message will be displayed.

2. {expression’ in the *RETURN’ statement must of be the
same type as the function name. The only exception is
that an integer expression will be accepted in a func-—
tion of real type.

3. Within a procedure a *RETURN’ statement without <(expres-
sion) carmot be used to return from a subroutine. In the
main proegram a *RETURN’ statement can only be used to
return from a subroutine.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-098

Type:

Arithmetic function.
Purpose:

To return & pseudo-random number.
Syntax:

RND C()1
RND (expressionl), (expression2)

Execution:
A random number is generated based on the seed (which can
be changed with the *RANDOM’ statement/command) or on the
most recently generated random number.

Example:
100 A:=RND ()
100 B:=RND(~5,17)

Comments:
1. Any execution of a program will give the same sequence
of random figures unless a 'RANDOM’ statement has first
been executed.

2. Omitting the two limits (expressionl) and (expression)
creates a random real number in the range ¢ to 1.

3. If {(expressionl) and/or <{(expression2) is not an integer,
then rounding takes place.

4. If limits are stated, the result will always be an inte-—
ger between <{(expressionl) and (expression2) inclusive.

S. During programming the parenthesis after ’RND’ may be
omitted if empty. Thus, instead of *RND()’, °*RND’ may be
used. In program listings *RND()’ will be used.

CORYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-099

ROUND

Type:
Arithmetic function

Purpose:
To convert a real expression to an integer type.

Syntax:
ROUND ({expression))

Execution:
The arithmetic {expression) is rounded and the result is
converted to integer type.

Example:
10 INPUT A
20 B#:=ROUND (A)
30 C:=ROUND (R)
40 PRINT B#, C
50 PRINT ROUND(5.72)
60 PRINT ROUND(-5.72)

Comments:
1. Rounding is carried out to the nearest integer. If the
number lies evenly between two integers, the one with
the highest absolute value is chosen.

2. {(expression) is of real type. The result is an integer
type. Note that an integer can be assigned to a real
variaole.

3. See the "INT’ and *TRUNC® functions.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PABGE 2-100

RUN

Type:
. Command
Purpose:
To start execution of a program.
Syntax:

RUN L[{lire number)]l

Execution:

COMAL-80 is brought to a defined start position wnich,
among other things, closes all files 1left open from any
previous execution, performs a *SELECT QUTRUT "DS:"’ and
initializes the variable area.
After this a special prepass module checks to see whether
the program contains structures (FOR...NEXT, LOOF...ENDLOOP

. etc.) and references (EXEC, LABEL, etc.) and tne internal
representation of these statements is extended to irncrease
the working speed.
Finally, program execution is started at the given line
number.

Examples:

RUN

RUN 230
Comments:

1. Omitting {(line number) starts the program at the lowest
line number.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-101

SAVE

Type:
Command

Purpose:
To store programs orn the background storage device in the
internal (binary) format.

Syntax:

SAVE (file name)

Execution:
The operating system of the computer is called and infor-
mation on (file mname) and the area of memory to be trans-—
ferred is passed to it for the ’*SAVE’ operation.

Examples:
SAVE TEST
SAVE DK1:TEST

Comments:
1. If a program is to be called by the 'CHRIN’ statement it
must have beern stored using the "SAVE’® command.

2. Programs stored using the ’SAVE’ command may be re-read
by the ’*LOAD’ command.

3. The internal format may be different or different ver—
sions of COMAL-B80. Consequently, a program cannot always
be stored using the ’SAVE’ command in one version and
read using the *LOAD’ command in an other version.
Programs to be exchanged or stored for longer periods of
time should be stored using the LIST’ command.

4. If (file name) already; exists on the current device,
this 1is reported and the user may continue, thus
deleting the old file, or stop (°RETURN/ESC’).

5. The extension ’.CSB’ is always supplied by the COMAL-80
system and not by the user.

6. Information on the ’*EXTENSIONS’ loaded at the time of
execution of ’SAVE’ is also stored in the file. This
information is checked wher ’LOAD’ or 'CHAIN’ is -used
and any discrepancy from the *EXTENSIONS’® loaded at that
time is an error.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2~102

SELECT OUTPUT

Type:
' Statement, command
Purpose: .
To specify a new default device/file for printout by the
"PRINT’ and 'FPRINT USING’ statements.
Syntax:

SELECT L[OUTPUT] (string expression)

Execution:
Internal pointers in the COMAL-80 system are switched to
select the specified printout device/file.

Examples:
220 SELECT OUTPUT “"LPO:"
‘ 220 SELECT OUTPUT “DKI:TEXT"

220 SELECT OUTPUT “TEXT"
220 SELECT OUTPUT "DS:"
SELECT OUTPUT "LP:"

Comments:

1. Whenever the program execution is started using the
"RUN’ command, the console is chosen as default output
file.
During program execution a new default file may be cho-
sen by specifying the name of the peripheral or a file
using a {(string expression).
When program execution is terminatead, either by use of
the ESC’ key, or because it is finished, the terminal
again defaults as the output file.

CORYRIGHT (C) 1983 METANIC RpS DENMARK PAGE 2-103

SGN

Type:

Arithmetic function
Purpose:

Returns the sign of an arithmetic expression.
Syntax:

SGN((expression))

Execution:
Arithmetic (expression) is calculated ard if the result is
greater than O the function returns the value 1. If the
result equals 0, O is returned, and if the result is less
than 0, -1 is returned.

Examples:
10 INFUT "WRITE A NUMBER: ": A
20 ON SGN(A)+2 BOTO 30,50,70
30 PRINT "A<O"

40 STOPR
50 PRINT "R=Q"
60 STOP
70 PRINT "“A)O"
80 STOP

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-104

SIN

Type:
Trigonometric function

Purpose:?
Returns the sine of an expression.

Syntax:
SIN({(expression})

Execution:
The sine of (expression), in radians, is calculated.

Example:
10 INPUT R
20 PRINT SIN(A)

. Comments:

1. {(expression) is an arithmetic expressiorn of real or
integer type. The result will always be real.

CORYRIGHT (C) 1983 METANIC ApS DENMQ?K PAGE 2-105

SI1ZE

Type:
Command

‘ Purpose:

To display the size of the used memory area.

Syntax:
SIZE

Execution:
The amount of memory used for storage of the user’s program
with *EXTENSIONS? is displayed on the terminal, together
with the amount remaining and the amount used by variables.

Example:

. SIZE

Comments:
1. The figures displayed indicate the number of bytes used
or remaining.
2. The figure shown as space used for variables refers only
to variables dimensioned or used during the last program
executionr.

3. The size of COMRL-80 itself is not displayed.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PRAGE 2-106

e o SPC$

I3

Type:
String function

Purpose!?
To create a string consisting of spaces, the nrumber of
these being defined by an arithmetic expression.

Syntax:

SPC% ((expression))

Execution?
The arithmetic (expression) is calculated (and rounded if
necessary) then a string containing that number of soaces
is created.

Example:
10 INPUT A
20 PRINT SPC$(3%5),A

Comments:
1. {(expression) must be equal to, or greater than, 0.

CORYRIGHT (C) 1983 METANIC ApS DENMARK FAGE 2-107

Typé:
Arithmetic function

Purpose:
To calculate the square root of an arithmetic expressior.

Syntax:
SR ((expression))

Execution:

The sguare root of an {(expression) equal to or greater than
0 is calculated.

Example:
10 INPUT A
20 PRINT S@R(A)

Comments:

1. {(expression? is aritimetic and may be real or integer.
The result will always be real.

2. If {(expression} is less than 0O, execution is stopped
with an error message. If these have been inhibited
using the ’*TRAF ERR-’ statement, the system function
TERR()? will subsequently return the error number, and
the square root is calculated from the expression:t

SER(ABS { {expression))

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-108

STOP

Type:
Statement

‘ Purpose:

To stop execution of a program.

Syntax:
STOP

Execution:
Program execution stops and the following mwessage is dis-—
played on the screent
STOF IN LINE nrmn

. nhrn is the line number containing the STOR’ statement.

Example:
540 STOP

Comments:
1. The *STOP’ statement is normally used to stop execution
of a program other than at the end.

2. Program execution may be resumed by using the *CON’
command.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PFAGE 2-109

STRS

Type:

String function
Furpose:

To convert an arithmetic expression into a string.
Syntax:

STR$ ((expression))

Execution:
The arithmetic expression is converted to a string con—
taining the characters which would be output if the value
were printed by a 'PRINT’ statement.

Example:
10 DIM B$ OF 7
20 INPUT "WRITE A NUMBER": A
30 B$ 1= STR$(A*1.35)
40 PRINT B$

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-110

TAB

Type:
Print function

Purpose:
To tabulate to the next character position in cormection
with a 7'PRINT’ statement.

Syntax?

TAB({expression))

Executiont
The arithmetic expression is evaluated and if necessary
rounded. The result defines the start position of the next
printout. :

Example:
100 PRINT TAB(10),"THE RESULT IS: ", RESULT

Comments:

1. TAB({expression)) can only be used in cornection with
’PRINT’ statements.

2. {(expression) is an absolute value counted from the left
hand margin of the output unit.

3. If the last printout before the ’TAB({expression))’ has
already passed the specified position, program execution
is stopped with an error message.

4. The arithmetic {(expression) must evaluate as greater
than or equal to 1, and less than or equal to the maxi-—
mum number of cnhnaracters allowed in the width of the
output device.

CORYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-111

TAN

Type:

Trigonometric function
Purpose:

To calculate the tarigent of an arithmetic expression.
Syntax:

TAN({expression))

Execution:

The tangent of (expression), given in radians, is calcula-
ted.

Example:
10 INPUT A
20 PRINT TAN(A)

Comments:

1. The arithmetic (expression) may be real or integer. The
result will always be real.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-112

Type:

‘ Purpose:

Syntax:

TRAP ERR

Statement, command

To change the rnormal system response to a non—fatal error.

- TRAP ERR-

TRAP ERR+

Execution:

Example:

During normal program execution any error will stop the
program and will create an error message. However, a numwber
of errors can be bypassed in a well-defined manner.

In these cases program interruption may be avoided by use
of a ’*TRAP ERR-’ statement before the error arises. In
this case, the system function 'ERR()’ will return a value
equal to the error number next time it is called (in all
tests this will be considered true because it is not 0).
Program execution will then continue.

10 INIT """, FILENAMES

20 TRAP ERR-

30 OPEN FILE O, "XPLOCOMM", READ

40 TRAP ERR+

S50 IF NOT ERR() THEN

60 INPUT FILE O: DEFAULT_FILENAMES$
70 ELSE

80 DEFAULT_FILENAMES:="XPLOPROG"
90 ENDIF

100 CLOSE

Comments:

1. Execution of a program starts by assigning tne value
false (= 0) to the system variable ’ERR()’. Wnen a
'TRAP ERR-' statement has been executed, a non—fatal
error assigns its error numoer to 'ERR()’ whnich retains
this value until its status is checkeda. Immediately
after a such check, ERR()’ is again assigned tne value
of false.

Normally COMAL-B0 sets a variabple true by assigning it
the value of 1, but here the error number is used.
The error numbers are described further in appendix C.

2. After executing a *TRAF ERR+’ statement, the system
returns to normal error handling.

3. During programming ’ERR’ and ’ERR()’ are interchange-—
aole, but in program listings ERR()’ is used.

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-113

TRAP ESC

Type:

Statement, command
Purpose:

To change the system response to tne ’ESC’ key.
Syntax:

TRAP ESC-

TRAP ESC+

Execution:
During normal program execution a check is made before each
statement, to see whether the *ESC’ key has been pressed.
If it has the program execution is stopped.
If a *TRAFP ESC-’ statement has been executed, this function
is blocked and the system function 'ESC()’ will instead
return the value of true (= 1) when 'ESC’ is pressed.

Example:
10 TRAP ESC~—
20 REPERAT .
30 PRINT "THE *ESC® KEY IS NOT PRESSED"
40 UNTIL ESC()
S50 TRAP ESC+
60 PRINT “THE *ESC® KEY WARS FPRESSED"

Comments:

1. At the start of program execution, the system variable
TESC()? is assigned the value of false (= 0). If a
'TRAFP £ESC-’ statement is executed and the YESC® key is
pressead after that, program execution continues but the
system variable ’ESC()’ is assigned the value of true
(=1) and retains this value until its status has been
checked.
Immediately after the value 1is wused, *ESC()’ is again
assigned the value of false (= 0).

ha

. The system returns to normal handling of the *ESC’ key
after a *TRAP ESC+’ statement has been executed.

3. During programming ’ESC’ and ’ESC()’ are interchange-
abple, but in program listings ESC()’ is used.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2z-114

v TRUE

Type:
. System constant
FPurpose:
To assign the value of true to a boolean variable.
Syntax:

TRUE

Execution:
Returns the value 1.

Example:

10 // PRIME

20 //

30 DIM FLAGS#(0:8190)

. 40 SIZE1:=8190

S0 //

60 COUNT :=0

70 MAT FLAGS#:=TRUE
80 //

90 FOR I:=0 TO SIZE1 DO
100 IF FLAGS# (1) THEN
110 PRIME:=I+I+3

120 (i=I+PRIME

130 WHILE K<{(=SIZE1 DO
140 FLAGS# (K) : =FRLSE
150 K:+PRIME

160 ENDWHILE

170 COUNT 2 +1

180 ENDIF

190 NEXT I

200 PRINT "TOTAL NUMBER OF PRIMES: ", COUNT

CORPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-115

TRUNC

Type:
. Arithmetic function

Purpose:
To convert a real expression to an integer.

Syntax:
TRUNC ((expression})

Execution:

The arithmetic (expression) is evaluated and the result is
converted to integer type, decimals are disregarded.

Examples:
100 A=TRUNC (5. 72)
‘ 100 A:=TRUNC(R/B)

Comments:
1. <(expression) is real.

The result is integer.

2. See also the "ROUND’ and ? INT* functions.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PRGE 2-116

Type:
Command

Purpose:
To assign the backgrouno storage device wnich is to be the
the default device.

Syrntax:
UNIT {(device}

Executions:
The internal pointers are updated to point at the stated
device.

Examples:
100 UNIT “DK1s®
UNIT DK1:

Comments:
1. (device) is defined as 2 letters describing the type of
background storage device followeda by the unit number
and a colon.

CORYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-117

Type:
String function

Purpose:
To convert a real number
type.

Syntax:
VAL ({(string expression))

Execution?
The real number in
number of real type.

Example:
10 DIM A% OF S
20 A$:="32. 34"
30 PRINT VAL (A%)

Commernts:
1. If
formed real or

(string expressiorn’

{string expression)
integer

VAL

of string type to a rumber of real

is converted to a

stopped with an error message.

2. See the *IVAL’

COPYRIGHT (C)

1983 METANIC ApS DENMARK

function.

does not contain a correctly-
number, program execution is
PAGE Z-118

~ VARPTR

Type:
Machine code function

Purpose:
To find the absolute address in the wmemory at which a
variable is stored.

Syntax:
VARPTR (<{variable))

Execution:
The decimal, absolute address in memory at which tne first
byte of the variable (variable) is stored, is returned.

Example:
10 INPUT R
20 PRINT VARPTR(A)

Comments:

1. The result states where the first byte of the variaole
is stored. The remaining bytes are in the immediately
following locations.

Integers are stored in 2 bytes with the lower part of
the number first.

Real numbers are stored in 4 bytes in tne 7-digit
version.

Real numbers are stored in 8 bytes in the 13~digit
version.

For string variables the first 2 bytes define the length
and the string is then stored contiguously.

2. The result is of real type.

3. The variable may be an array with or without indices. If
no indices are given, the aadress of the first element
of the array is returned.

4. WARNING: In one situation a variable is movead after it
has been allocated storage, thus changing its address.
This happens, on exit from a non-closed procedure, to
all variables encountered and allocated storage for
the first time during the current call of the procedure.

COPYRIGHT (C) 1983 METANIC ApS DENMARK FAGE 2-119

WHILE ENDWHILE

Type:
Statement
Purpose:
To repeat the execution of a program section until the
condition contairned in the *WHILE® statement is fulfilled.
Syntax:

WHILE <(logical expression}

ENDWHILE

Execution:

On meeting the "WHILE’® statement the value of the (logical
expression) is calculated. If this is true, execution
resumes from the first executable statement following the
"WHILE® statement. When *ENDWHILE’ is reached execution
continues with the *WHILE® statement and the (logical
expression) is evaluated again. If the (logical expression}
is false the program contirues from the first executable
statement following the *ENDWHILE® statement.

Example:*
10 OPEN FILE 0O, "DATA", READ
20 WHILE NOT EOF(0O) DO

30 READ FILE O: INDEX, NUMBER#, TEXTs$
40 ENDWHILE

COPYRIGHT (C) 1983 METANIC ApS DENMARK PABGE 2-120

<~

Type!

WRITE FILE

Statement

Purpose:

To write data in binary format to a data file.

Syntax:?

WRITE FILE (file No.) [, {rec. No.»l: {(variable list)

Execution:

The values of the variables in (variable list) are written
to the file coritained in (file No.’.

Examples:

100 WRITE FILE 7,REC_NO: A, B, C
100 WRITE FILE 3t A%, B#, C

Comments:
1.

Z.

CORPYRIGHT

Before encountering a ’'WRITE FILE’ statement, a file
must be operied and cormection between (file name) and
the (file No.> used in the ’WRITE FILE’ statement must
be establishea through the 'OPEN FILE’ statement (or
command), and type *WRITE’, °RANDOM’, or ’APPEND’ must
be established.

{rec. No.) is only used with ’*RANDOM’ files and is an
arithmetic expression which will be rourdea to integer
if necessary.

(file No.) is an arithmetic expression.

{variable list) may contain all variable types. If an
array variable 1is given witthout indices, the whole
array will be written.

The elements in (variable list) are separated by commas.

During programming 'FILE® and °#° are interchangeable.
In program listings *FILE’ is used.

(C) 1983 METANIC ApS DENMARK PAGE 2-121

ZONE

Type:
System variable

Purpose:
To establish a new print—zore widtn by assignirng this value
to the system variable *ZONE’.

Syntax:

ZONE:=<(arithmetic expression)

Execution:
The system variable ’ZONE®’ is assigried the value of (arith-
metic expression) which is rounded if necessary.

Examples:
100 ZONE:=
100 ZONE=X*Y+3
ZONE=12
CURRENT : =ZONE

Comments!:
1. On loading COMAL-80, *ZONE’ is assigned the value of O.

Q. This value can only be.changed by an assigrment to
*ZONE” .

2. The ’NEW’ command does mnot change the value of the
system variable *ZONE’.

3. See 'FPRINT?

4. During programming ’:=’ and ’=’ are interchangeable. In
program listings ’:!=’ is used.

COPYRIGHT (C) 1983 METANIC ApS DENMARK PAGE 2-122

	_0001
	_0003
	_0004
	_0005
	_0007
	_0008
	_0009
	_0011
	_0013
	_0015
	_0017
	_0019
	_0021
	_0023
	_0024
	_0025
	_0026
	_0027
	_0029
	_0030
	_0031
	_0032
	_0033
	_0034
	_0035
	_0037
	_0038
	_0039
	_0040
	_0041
	_0042
	_0043
	_0044
	_0045
	_0046
	_0047
	_0048
	_0049
	_0050
	_0051
	_0053
	_0055
	_0057
	_0059
	_0061
	_0063
	_0065
	_0067
	_0069
	_0070
	_0071
	_0073
	_0075
	_0077
	_0079
	_0081
	_0083
	_0085
	_0087
	_0089
	_0091
	_0093
	_0095
	_0097
	_0098
	_0099
	_0101
	_0102
	_0103
	_0105
	_0107
	_0109
	_0111
	_0113
	_0115
	_0117
	_0119
	_0121
	_0123
	_0125
	_0126
	_0127
	_0129
	_0131
	_0132
	_0133
	_0135
	_0137
	_0139
	_0141
	_0143
	_0145
	_0147
	_0149
	_0151
	_0153
	_0155
	_0157
	_0159
	_0160
	_0161
	_0163
	_0165
	_0167
	_0169
	_0171
	_0173
	_0175
	_0176
	_0177
	_0179
	_0181
	_0183
	_0185
	_0187
	_0189
	_0191
	_0193
	_0195
	_0197
	_0198
	_0199
	_0201
	_0203
	_0205
	_0207
	_0209
	_0211
	_0213
	_0215
	_0217
	_0219
	_0221
	_0222
	_0223
	_0224
	_0225
	_0227
	_0229
	_0231
	_0233
	_0235
	_0237
	_0239
	_0241
	_0243
	_0245
	_0247
	_0249
	_0251
	_0253
	_0255
	_0257
	_0259
	_0261
	_0263
	_0265
	_0267
	_0269
	_0271
	_0273
	_0275
	_0277
	_0279
	_0281
	_0283
	_0285
	_0287
	_0289
	_0291
	_0293
	_0295

