
DATO of Tonder.

Bérge R. Christensen

COMAL 80

SYNTAX DIAGRAMS

with

COMMENTS

COMET vil indtil ca. 1. november 1979 blive
leveret med ID-COMAL, udviklet pa Danmarks
Tekniske Højskole.

Herefter erstattes 1ID-COMAL af COMAL 80, som
i øjeblikket er under udvikling efter disse
specifikationer. Udskiftning vil ske uden be-
regning.

Såfremt det under udviklingen skulle vise sig
hensigtsmæssigt for sprogets struktur forbe-
holdes ret til ændringer.

(c) Borge R. Christensen, sept. 1979.

* A

line:

~w line no ———m statement

statement:

~w READ

~w RESTORE

—— DATA

-1-

COMAL 80

SYNTAX DIAGRAMS,

~O

mn II Emm

a

—» file w= vartable —

>

r— label

we Line no aaa

Lp nt

stgned ~~
conetant

-O-

= LET, vartable —-— —— em CDP oe

L_»(¢ 3}

ar ex pr ———_—_—_—_—3= ~we MAT

Note:

—— vartable

G-

~S
me

0

:+ may be used with strings, whereas :- may not.

(note cont'd)

Variable and expression in an assignment must be of the same
type. The only exception to that rule is:

real vartable:=tnteger expresston

 * A PE file ~

“>
pi USING eo string OE TIS

p24 Be (num. expr a())—,

—Q-—

On

A —e~ WRITE —————-w» file toe —

* A —om SELECT men device code

 '

 4 —e INPUT —————w fi Le >= variable gm

 — variable

 | otring constant -m_(:)}——1

O-

-3-

allowed for strings only

mon ge i! LO pun coe , Ol
L Oe nu. cape

foe
AZ

tf string vartable

we OF — —=— num. epr ————

O=

 t

we PROC ——— name —

rane a fas 8" Oe ert — Dr
<=

mii.

== ENDPROC ———m- Name sm

= ENDFUNC funetion om
name

 A EXEC ————» name

4 -~GO0SUB —————-line no

A -m RETURN ———— comment

 —m label

4 - Goro ————
 L—om Line no—

—~LABE L —————Label

A = ON———————= num. expr —}

 A -» STOP -———_»- comment

 — END -—————_™ comment

A eee DP num. expr —

gr

ra

GOTO

line no =
Lm GOSUB——~

a

—eom THE N —

 & LL statement! ———__—___»

1) Only statements marked with A may be used here.

a= ELIF —————» num. expr —\

ae ELSE ————“—“e comment

re THEN

 —e ENDIF ————————- comment

 awe REPEAT —————— comment

 mm UNTIL em num. expr

 we WHILE —————_ num, expr —re DO

 awe ENDWHI LE ————e comment

 ~ EN DWH —— oe Comment

 —— CASE ——————_——e 2@xpr wm OF

stgned

WHEN | ” constant

>=

 ae OTHERWISE ———mcomment

 ~we ENDCASE —————mcomment

. r—(3) TO
—— FOR ede? on int. expr

ar. name | _(=) DOWNTO

| » integer

expr.

STEP tnteger
expr.

—, real © Lge Tim. expr 7
var. name |™ | owners

Lu expr

 LL srer aun. expr

——ee NEXT —$—$ rerio Comment

—e ENDFOR ———-———aom Comment

 A—e CHAIN ————-——w=e string expr

* A—ee RANDOM ————_—»= comment

reEsC— p-G)}—

* Amme TRAP —j~——

Le ERR—! L(-)—

RANDOM ——

Am OPEN —=(H)——e num. expr ——()— str. expr, READ

WRITE —

+ Å —æ CLOSE

L@ men. erpr.

(|) comment

line no:

—_——w integer constant (1 - 93999) —————__»»

file:

——(H)—— num. expr. Te —

Low real expr

label:

——— mension 71117 2 _

signed constant:

 ————— string constant —

 — FALSE -

real constant ———

———(-) ——me int. constant —————~—

command:

—we DEL Lines m

 —— AUTO start & step

—=— RENUM

——=— fine no —()— line no start & step———-—

“ie

 oe LIST my oe LEN! TTT filename

—= ENTER em fi lename me

filename —

 rem SAVE mme fi lename ~

 —im NEW mm

 —— CON …—

 ww SIZE

 RUN line no

Note:

All statements marked with * may be used as commands.

Lines:

——-_ am line Lo —l|ine no —o—

—(;)—— LEME AO nl

start & step:

———-line no +G)—=line no

filename:

any sequence of characters not starting wtth a digit, a
_.e¢omma, a blank, or a colon.

num. expr:

——_——eint. expr ———__—_—_—_»

—_—e- real expr ———____—_»-

-9-

(string, tnt, real, bool) exp

NoTt—_+

j

operator:

re

operand

operator ———_____—_—

operand:

 —————_—~ integer constant

ne LEAL constant -

——— i string constant

TRUE

tie BAT SE

- 10 -

 —= variable -

tion ; funett —— actual parameter list ~ name

i i} } fd dd td td gd
ATN COS SIN TAN LOG EXP SQR CHR STR ABS SGN SPC EOF

[| | | | || | | | | |
nef (am HUM. exzpr —-()) ”

L | | —O—— string expr —+O) -

real expr —~() —

me POS (ms tring expr ——(,)—m string expr —=()) >

oe RND ——b_-o{()—-num. expr ——{, }»—— num. expr —e(Q)—b >

— LEN ——w{()—= string vartable * —()— an

*) not substrings

- 11 -

vartable:

vartable name —m(()—prnun. expr tee

 functton name * om

*) the assigned~to variables in LET, READ and INPUT
statements only.

actual parameter ltst:

awe

QW

—_+(—_L_____~ expr <(D— om

vartable name:

—= name ~(%)- T = (integer)

| -(¢)—_ (string)

o~ (real)

tnteger vartable name:

~——= name

real vartable name:

commana FL LITE merece ATE

- 12 -

name:

 ——letter (~

pom LEE CE meme

—digit ——

—o-—

comment:

 —any character ——!

string constant:

any char. except " ——————+

 (me integer constant (=!

functton name:

—-(f)—(%)- | -G) _

letter —~——

C+.

- 13 -

COMMENTS TO

THE SYNTAX DIAGRAMS

INTRODUCTION

COMAL 80 includes COMAL 75 and a version of BASIC. If two

COMAL 80 versions differ, it will always be on the BASIC
part, since the COMAL extensions are well defined. Only

structured BASIC which includes these extensions may be
called COMAL. The COMAL 80 extensions of COMAL 75 have been
carefully designed to meet the needs of users as observed
through four years work with COMAL 75.

The following exposition will deal mainly with the statements
that define COMAL. BASIC statements will be mentioned only
where they have been subject to changes due to the definition

of COMAL. Since the COMAL statements have been introduced to
facilitate structured programming, the syntax diagrams can
only unveil very little of the true power of these statements
that has to be seen in global contexts. Great care will
therefore be taken to display the structures controlled by
the most important COMAL statements.

LET

For educational purposes assignment in COMAL may be denoted

by the symbol

For reasons of compatibility it is, however, allowed to use
an ordinary sign of equality when typing in the program. The

interpreter will automatically convert this sign to :=.

The symbols

2+ and 27

may be used in assignments where the same variable appears
on both sides. Thus

NUMBER:+1

is equivalent to

NUMBER: =NUMBER+1

A LET statement will take as many assignments as the line

width permits, each individual assignment being separated
from the next one by means of the semicolon (;).

- 14 --

MAT

May be used to assign values to all components in an array.
Thus the statement

MAT ACCOUNT:=0; FOUND%:=FPALSE

where ACCOUNT is an array of reals and FOUND% an array of
integers, will assign a value of 0 to each component of
ACCOUNT and a value of FALSE (=0) to each component of
FOUND$.

SELECT

May be used as command or statement. Device code could be
for example: LPT (lineprinter), TTY (teletype), or PTP
(punch). The statement

SELECT LPT

causes the output from all following PRINT statements to
be sent to the lineprinter. The statement

SELECT TTY

resets the function back to normal teletype output. Output
from string constants in INPUT statements is not affected

by the SELECT.

EXEC, PROC, ENDPROC

If part of a program is initiated with the statement

PROC name

where name is a string formatted as a variable name, and
is terminated with the statement

ENDPROC name

this program may be called as a subroutine by another program
using the statement

EXEC name

When the subroutine has been executed, control is passed
to the statement following the EXEC statement that called

the subroutine.
The program text between the PROC and ENDPROC statements
is indented in the program listing.

eee

PROC name

ENDP ROC

EXEC name

eee Er

FUNC, ENDFUNC

If a subprogram is initiated with the FUNC statement and
terminated with the ENDFUNC statement, it may be used by
another program as a predefined function. All variables
introduced in the lines between FUNC and ENDFUNC are local,
and global variables cannot be accessed from these lines.
Parameters may be simple variables of any type, and they
are all called by value.
The output from the function is returned through the function
name. Thus an assignment like this:

funetton name:=expresston of correct type

must appear somewhere in the body of the function.

Example.

FUNC FNGCD$ (X%,Y¥%)

eee

eee

FNGCD$: =A%
ENDFUNC FNGCD$%

This function is used in the statement:

IF FNGCD3 (A%,B%)=l1 THEN PRINT "A AND B ARE REL. PRIMES."

ooo

GOTO, LABEL

Adresses for GOTO may be given by labels in COMAL. Also
the RESTORE statement may use a label. Thus the statement:

RESTORE NAMES 'OF 'PERSONS

will set the data pointer to the first element in the queue

- 16 -

defined by the DATA statements following the statement:

LABEL NAMES 'OF' PERSONS

The first of the DATA statements refered to must follow

imediately after the LABEL statement.

IF. ELIF, ELSE. ENDIF

Note: A numerical expression is in proper context considered
false, if it has a value of 0, and true in all other cases.

The four statements provide the following:

a. IF .. ENDIF

IF expr THEN

If the expression has a value equivalent to true, program
section A is executed. If the expression evaluates to false,
program section A is ignored.

The program text between IF and ENDIF is indented in the
program listing (cf. FOR .. NEXT i most BASIC versions).

b. IF .. ELSE .. ENDIF

IF expr THEN

If the expression evaluates to true, program section A is
executed. If the expression has a value equivivaient to
false, program section B is executed.
The program text between the control statements is indented
in the program listing.

c. IF .. ELIF .. ELIF ELSE .. ENDIF

(diagram on next page).

The keyword ELIF is an abbreviation of ELSE IF. As the
flowchart that accompanies the diagram will show, only
one of the processes described in the structure is exe-
cuted. Note that if more than one of the expressions may
be evaluated to a value of true, only the first one will

- 17 -

trigger off a process.

IF expr THEN

[== |] Soy tt

f
! I I !

m
t

he
| t |

C
l
 e

t

»
on

 expr A

 Ae cee tr a ce a tee ant a ss ak ene

If the final alternative ELSE is left out, you get

d. IF .. ELIF .. ELIF ENDIF

IF expr THEN

a] Goa
ELIF expr, THEN

t un Ste A [|
ELIF expr, THEN <> t A,

A |
[|

eee t

ene Srp AL

ELIF expr, THEN

[td r mm mmm mm me noe

- 18 -

REPEAT, UNTIL

The REPEAT and UNTIL statements provide the following
structure:

REPEAT

[3d
UNTIL expr

Program section A is executed repetitively until the expres-
Sion following UNTIL has a value equivalent to true.
When this happens, control passes to the statement following
the UNTIL statement.
The program text between REPEAT and UNTIL is indented in the
program listing.

WHILE, ENDWHILE, ENDWH

The WHILE and ENDWHILE (ENDWH) statements provide the following
structure:

WHILE expr DO

ENDWHILE (ENDWH)

Program section A is executed repetitively while the expres-
Sion following the WHILE keyword is evaluated to true. When
the expression evaluates to false, control passes to the
statement following ENDWHILE (ENDWH).
The program text between WHILE and ENDWHILE (ENDWH) state-

ments is indented in the program listing.

CASE. WHEN, OTHERWISE, ENDCASE

(diagram on next page)

When the expression following CASE has been evaluated, the
list following the first WHEN is examined. If one of the
constants in this list is equal to the value of the expres-
sion, program section A, is executed, and control is then
passed to the statement following ENDCASE. If no such item
is found, the list following the second WHEN is examined.
If the value of the expression is found, Ay is executed,

- 19 -

and control is then passed to the statement following ENDCASE.
If the value still has not been found, the interpreter starts
on the third list etc.
A default case (program section B) may be inserted and is
executed if the value of the expression is not found in any
of the lists following the WHEN keywords. The default case
is indicated by the keyword OTHERWISE.

CASE expr OF

WHEN list

ENDCASE

The OTHERWISE case may be left out, but the interpreter will
then stop the execution of the program with an error message
if no constant corresponding to the value of the expression.
has been found in the WHEN lists.
Note that at most one of the cases is executed. If it so
happens that the value of the expression may be found in
more than one of the lists, only the first of these lists

will trigger off its process.
The program texts Ave Ass …, Aur B are indented in the
program listing.

FOR, ENDFOR

The FOR .. NEXT loop structure from BASIC has been extended.
As seen from the syntax diagram, you may use a statement
like this:

FOR I%:=10 DOWNTO 1

- 20 -

The "stepvalue" is then automatically set to -1. FOR loops
with integers are very fast.
ENDFOR may used for NEXT. The countervariable may or may
not occur after NEXT and ENDFOR. The interpreter will in
any case look upon it as a comment.

TRAP, ESC, ERR

Two dedicated flags ESC and ERR may be set or reset using
the TRAP statement. A + will set the flag, and a - will
reset it. When the interpreter starts, the two flags are
set, and that means that the ESC key will cause a break
whenever striked, and that errors will cause an error mes-
sage and a program stop. If, however, one of the flags is
reset, the interpreter will not react to the said conditions
unless this has been defined explicitely in the program.
This may be done by statements like:

IF ESC THEN EXEC TESTO2

or

WHILE NOT ERR DO

COMMENTS

Since comments are allowed after any statement, directely |

or by using !, the REM statement is left out. It may of
course be introduced in the BASIC part for compatibility
if wished. This has nothing to do with the definition of
COMAL.

TRUE, FALSE

To improve the readability of the programs two constants
TRUE and FALSE are predefined. TRUE is equvalent to l,
and FALSE is equivalent to 0.

AND, OR, NOT

In COMAL you have full Boolean algebra at your disposal.
As mentioned before a numerical expression is in proper
context considered false, if it has a value of 0, and true
in all other cases. A Boolean expression like

NUMBER>MAX'NUMBER OR NOMORE

- 21 -

will output a value of 1, if it is true, and a value of 0,
if it is false. A statement like this:

FOUND: = (NAME $=STUDENT'NAME$ (I))

will assign a value of 1 to FOUND, if the condition to the
right of the := is met, and a value of 0, if not. Thereafter
FOUND may be used as if it were a Boolean variable. The "pseudc
Boolean" values 0 and 1 are represented as integers (2 bytes)
so it may speed up the program, if integer variables are
used for "Boolean purposes".

IN

The expression:

NAME$ IN TEXT$

will output a value of 1, if NAME$ is found as a substring
in TEXT$, and a value of 0, if it is not found.

Example

IF CH$ IN VOWELS$ THEN VOW%:=TRUE

ooo

NAMES

Variable names may contain as many as sixteen characters.
The first character must be a letter, the following may be
letters, digits, or the sign '

Example.

NUMBER'OF'STUDENS, MAXNUMBER, NUMBER, NAME$, NAME'OF'STD$

000

APPENDIX 01 - 22 -

Survey of the data types which the different operators
may work on, and the resulting type.

left right operator
operand

+ / * DIV +- IN AND
MOD OR

str str str*® int

int int | real real int int int int

int real {real real real real real int

real int | real real real real real int

real real | real real real real real int

The relational operators: < <= > >= = <>

may work on any pair of strings and any pair of numerical
expressions. The output will be an integer 1 or an integer 0.
("pseudo true" and "pseudo false").

The blank positions in the table mean that the correspon-
ding operator may not be used with the set of operands.

*) Not -

Standard functions.

ATN, COS, SIN, TAN, LOG, EXP, SQR, FRAC, RVAL: real

CHR, STR: string

SGN, LEN, ORD, IVAL, INT, POS: int

EOD, ESC, ERR, EOF: int

ABS: same type as argument

without arguments: real

RND: a

with arguments: int (arg. gives limits).

SPC: outputs a string which consists of as many blanks as

the argument gives.

APPENDIXO1 - 23 -

The priority of the operators is the following:

highest: (monadic)

/ * DIV MOD

+ - (dyadic)

NOT

AND

lowest: OR

SAMPLE PROGRAM - 24 -

0010 | * THE SIMULATORs MULTI-CASING +a
0020 | #* URITTEN IN CORAL 80 eo

0030 ! ## BY BORGE KR. CHRISTENSEN x+5
0040 | #8 AT “DATO’, TONDER, DENMARK xx
0050 | ss DATE OF THIS VERSION: JUNE 22, 1979 #*
0060 |
0070 I //ommenemneeme= == II
0080 !
0110 RANDOM
0120 FUNC FNBADBOYZ(X2)
0130 FNBADBOYX:=(KX>=4)
0140 ENDFUNC FNBADBOYZ
0150 | //---=----------- 11
0160 ! s* ATTRIBUTES OF CASINO ARE INITIALIZED sa
0170 EMPTY:=TRUE; FULL =FALSE
0180 9s
0190 ! #8 ATTRIBUTES OF GAMBLERS ARE INITIALIZED +»
0200 DIM ACTIVEZ(10), GOINGZ(10), REALBADZ(10)
0210 DIM WARNINGSZ(10), BET(10), ACCOUNT(10)
0220 MAT ACTIVEZ:=FALSE; GOINGZI=FALSE; REALBADZs=FALSE
0230 MAT UARNINGSZ1=0; BET2=0; ACCOUNT s=0
0250 }
0260 ! ## UTILITY STRINGS ARE DECLARED ++
0270 DIM ANSWS OF 5, COLOURS(10) OF 6
0275 DIM OUTCOMES OF 6, NAHES(10) OF 20
0280 1 //-----~--------- 11
0290 ! 25 ENDINIT +
0319 I
0320 | #8 HAINPROGRAM +e
0330 |!
0340 REPEAT
0350 IF NOT FULL THEN
0360 PRINT
0370 PRINT
0380 INPUT “NEU GAMBLERS? “: ANSUS
0390 IF ANSUS(1)="Y" THEN EXEC INREG
0400 ENDIF
0410 FOR 1X:=1 TO 10 BO
0420 PRINT
0430 IF ACTIVEZ(IX) THEN PRINT "YOUR TURN “SNAME$(IZ)
0440 IF ACTIVEZ(IZ) THEN EXEC GUESS
0450 IF ACTIVEZ(IZ) THEN EXEC BET
0460 IF GOINGZ(IZ) THEN EXEC BYEBYE
0470 = ENBFOR
0480 IF NOT EMPTY THEN
0490 EXEC WHEEL
6500 FOR I%:=1 TO 10 BO
osto IF ACTIVEX(IZ) THEN EXEC STATUS
0520 "IF GOINGZ(1Z) THEN EXEC BYEBYE
0530 ENDFOR
0540 ENDIF
0550 UNTIL ENPTY
0560 PRINT "NO MORE GAMBLERS."
0570 PRINT "CASINO WILL BE OFF, UNTIL NEW GAMBLERS ARRIVE."
0580 PRINT "BYE - BYE !°
0590 ENB OF MAIN

~ 25 -

0670 PROC GUESS
OK s*FALSE
REPEAT

0680
0690
0700
0710
0720
0730
0740
9750
0760
0770
0780
0790
0800
0810
0820
0830
0840
0845
0850
0860
0870
0880
0890
0910
0920
0930
0940
0950
0960
0970
0980
0990
1000
1010
1020
1030
1040
1050
1060
1070

1080
1090
1100
1119
1120
1130
1140
1150
1160
1170
1180

UN

PRINT
PRINT “WHAT COLOUR BO BET ON? ”
INPUT “BLUCE) /GRECEND/YEL(LOW)/BLA(CK)/RED os COLOURS(I2)
CASE COLOURE(I,1,3) OF
WHEN "NON"

GOINGZCIZ) s=TRUES ACTIVER(IZ) s=FALSE
WHEN "BLU", "GRE", "YEL", "BLA", “RED”

OKs =TRUE
OTHERWISE

PRINT
PRINT “OPERATING ERROR ! IMPOSSIBLE SITUATION !”
INPUT “WANT INSTRUCTION? (YES/RETUKN) “: ANSUS
IF WOT ANSWG="" THEN EXEC INSTR

ENDCASE
TIL OK OR GOING IA)

ENDPROC GUESS
!
j
!
!

i

2»

dh
a
ae
+

PROC
RE

se

+4

BANKER“S TASKS #2
sg

ACCOUNT
PEAT

OK =F ALSE
PRINT
INPUT "HOW MUCH BO YOU WANT TO INVEST? "s INVEST
IF INVEST<O THEN

PRINT
PRINT “KEEP YOUR FALSE MONEY ~ YOU i”
WARNINGSZ (12) 241

ELIF JNVEST=0 THEN
PRINT
PRINT “I HAD THE IMPRESSION, YOU MEANT BUSINESS |"
WARWINGSZ(IZ) 241

ELIF INVEST<1t THEN
PRINT
PRINT "NO SIK |! 3 NOT THAT CENT STUFF. REAL MONEY PLEASE !"
WARMINGSZ(1Z) 241

ELIF INVEST<OINTCINVEST) THEN
PRINT
PRINT “TIPS | YOU AR E GENEROUS SIR? *
INVEST S=INT CINVEST)
OK =TRUE

ELSE
OK 2 =TRUE

ENDIF
IF OK THEN ACCOUNT(IZ)s+INVEST
GOINGT (12) a=F NBADBOYX(WARNINGSZ(IZ))

UNTIL OK OR GOINGZ(IZ)
1190 ENBPROC ACCOUNT

