-1 -

COMAL 80
SYNTAX DIAGRAMS.

line:

statement:

——*‘(EEEE} file f * varztable
O

label —®

—*{RESTORE} i lineg no

stgned
i&ﬁﬂ? constant
FER
K/

|
!
i

£~
ty
-3

- variable "*~——*£EEEE]
)

.~

MAT r}variabze a————*{EEEEZ
T N\

Note:

:+ may be used with strings, whereas :- may not.

(note

cont'd)

Variable and expression in an assignment must be of the same
type. The only exception to that rule is:

real vartable:=zinteger expression

Variables must not be of type 'file' except where explicitely
mentioned.

—

INPUT

SELECT device codel

.

file -—
USIN string expr expr% l
TAB (—num. emprr’<:}"
- ozpr o
{ N
2/
O
file; ‘eed variable -
7N\
&/
e
{ Nea
2/
o= variable -

string constant——C:}——
{ N
&

-3 -

strings only

variable

DIM

©

num. expr

Lﬁi)a—num. exer——

{ N
NS

strings only

num. ezpr}

(2RO C—

O

') File variable name allowed.

name I

scalar

(77—

name

~{ 8 DPROC)——w{ name |

variable
name

ENDFUN

sealar
var. name

A EZEQ————nane]

Fy GOSUB line no}

a RETURN commend

label
4| (G~ |

label}

. "'—'.——"‘ num. expri-=t r_@
GOSUB

4 STOP commentg

e ———————————

END lcomment}

-1 comment

- (@F)—————{num. cxzpr }——(THER)]

statement!®

!y Only statements marked with 4 may be used here.

ELIF num. expr THEN)

ELSE comment

ENDIF comment'

(REPEAT)

comment[

UNTIL num. expr]

num. expr (D0)
comment
| (ERDWE)| comment }
signed
congtant
OTHERWISE comment |
(ENDCASE) (comment | |
2 Rl S 1

expr

o

DOWNTO

int.

expr|

Do

name

real var.__‘*zziyw
‘_,<:}_

num. expﬁ}-—(§§)

num.

expr

L—(STEP)——{num. expr |

(¥

by

CHAIN

ENDFOR comment |

RANDOM comment}

comment

string expr

ESC =(+)

ERR b (O— |

line no:

-
= comment |

file:

= integer constant (1 - 9399)

label:

file vartable [

num.,

expr

- name

signed consgstant:

string constant 1 St

FALSE -
TRUE

W
- 1 -—{reai constant | -
——@ -—-—-—o{int. constanﬂ -
eommand:
DEL lines | V ﬁ

—*—Istar;t & step%

) S I e BN v WO & e rar W B
~J
LIST -——@ [e P Zc-:namet T -

ENTER f'éZename[

f'i lename W—

filename

NEW

CON : -

512
RUN -%Zine no} ‘
Note:

All statements marked with * may be used as commands.

lines:

line no

line no

Wm—

4*{3)———.4Zine no{

start & step:

- line no ’ | 112 no

filename:

any sequence of characters not starting with a digit, a
comma, a blank, or a colon.

num. expr:

int. expr -

real expr

-g-

(string, int, real, bool) expr:

NOT

——(D=~—

4
- operand -

{operator%—

operator:

IIXTIITTX.

089 ¢ 94

operand:

r

- integer constant

real constant

'-lstring aeonstant

~{ FALSE)

- 10 -

varitable

scalar .
[actual parameter list
var. name

TXTITITLIIT:

]
(num. e.rpr]———@

€ (ﬁf%) R

—-—{file variable_"@ >
L

(LEN) (orDp) (rvacr) (RvAL)

:@-——-- string expr —v@

e N

POS string expr]—"Q—‘—! string expr l_’@———

...@__..@_,. int. expr|)™ int expr—’@ -

- 11 -

vartable:

tvartable name { (num. expr ={2}——7

actual parameter ligt:

T
2/

—r—@ ' expr =@

variable name:

el L EME ={§> {integer)
9 (string)

(file)

. {real)

integer varitable name:

el V1, (111 & —.—@ Lo

real variable name:

!

gt ¥, L 171 €

- 12 -

gecalar vartable name:

S TET G, S—

name:
i letter] —
'<"{ digit }-—
comment:

'

[any character '—t——

string constant:

{_ -—{T
./

-e{dny char. except "k‘”—*———""'

—v——-{:>~h—(:}¢
" integer'constantk‘<:}~——

- 13 -

COMMENTS TO
THE SYNTAX DIAGRAMS

INTRODUCTION

COMAL 80 includes COMAL 75 and a version of BASIC. If two
COMAL 80 versions differ, it will always be on the BASIC
part, since the COMAL extensions are well defined. Only
structured BASIC which includes these extensions may be
called COMAL. The COMAL 80 extensions of COMAL 75 have been
carefully designed to meet the needs of users as observed
through four years work with COMAL 75.

The following exposition will deal mainly with the statements
that define COMAL. BASIC statements will be mentioned only
where they have been subject to changes due to the definition
of COMAL. Since the COMAL statements have been introduced to
facilitate structured programming, the syntax diagrams can
only unveil very little of the true power of these statements
that has to be seen in global contexts. Great care will
therefore be taken to display the structures controlled by
the most important COMAL statements.

LET

For educational purposes assignment in COMAL may be "denoted
by the symbol

» -
b
3

For reasons of compatibility it is, however, allowed to use
an ordinary sign of equality when typing in the program. The
interpreter will automatically convert this sign to :=.
The symbols

s+ and =

may be used in assignments where the same variable appears
on both sides. Thus

NUMBER:+1
is equivalent to
NUMBER :=NUMBER+1
A LET statement will take as many assignments as the line

width permits, each individual assignment being separated
from the next one by means of the semicolon (;).

- 14 -

MAT

May be used to assign values to all components in an array.
Thus the statement

MAT ACCOUNT:=0; FOUND#:=FALSE
where ACCOUNT is an array of reals and FOUND# an array of
integers, will assign a value of 0 to each component of

ACCOUNT and a value of FALSE (=0) to each component of
FOUND#.

SELECT
May be used as command or statement. Device code could be
for example: LPT (lineprinter), TTY (teletype), or PTP
(punch). The statement

SELECT LPT

causes the output from all following PRINT statements to
be sent to the lineprinter. The statement

SELECT TTY
resets the function back to normal teletype output. Output

from string constants in INPUT statements is not affected
by the SELECT. '

EXEC., PROC., ENDPROC

If part of a program is initiated with the statement
PROC name

where name is a strincg formatted as a variable name, and
is terminated with the statement

ENDPROC name

this program may be called as a subroutine by another program

using the statement
EXEC name

When the subroutine has been executed, control is passed
to the statement following the EXEC statement that called
the subroutine.

The program text between the PROC and ENDPROC statements
is indented in the program listing.

- 15 -

—= PROC name

A o —— - W —

o g . . s

ENDPROC name

-

—— EXEC name

-« e

FUNC., ENDFUNC

If a subprogram is initiated with the FUNC statement and
terminated with the ENDFUNC statement, it may be used by
another program as a predefined function. All variables
introduced in the lines between FUNC and ENDFUNC are local
and global variables cannot be accessed from these lines.
Parameters may be simple variables of any type, and they
are all called by value.

The output from the function is returned through the functions
name (i.e. the scalar variable name immediately following the

FUNC keyword). Thus an assignment like this:
function name:=zexpression of eorrecr type
must appear somewhere in the body of the function.

ExamEle.
FUNC GCD# (X#,Y#)

LY

GCD# : =A#
ENDFUNC GCD#
This function is used in the,statement:

IF GCD# (A#,B#)=1 THEN PRINT "A AND B ARE REL. PRIMES."
ooo

GOTO, LABEL

Adresses for GOTO may be given by labels in COMAL. Also
the RESTORE statement may use a label. Thus the statement:

RESTORE NAMES'OF ‘PERSONS

will set the data pointer to the first element in the queue

- 16 -

defined by the DATA statements following the statement:
LABEL NAMES'OF'PERSONS

The first of the DATA statements refered to must follow
imediately after the LABEL statement.

IF, ELIF., ELSE. ENDIF

Note: A numerical expression is in proper context considered
false, if it has a value of 0, and true in all other cases.

The four statements provide the following:

a. I¥ .. ENDIF

IF expr THEN

If the expression has a value equivalent to true, program
section A is executed. If the expression evaluates to false,
program section A is ignored.

The program text between IF and ENDIF is indented in the
program listing (cf. FOR .. NEXT i most BASIC versions).

b. IF .. ELSE .. ENDIF

IF expr THEN

If the expression evaluates to true, program section A is
executed. If the expression has a value eguivivalent to
false, program section B is executed.

The program text between the control statements is indented
in the program listing.

c. IF .. ELIF .. ELIF ELSE .. ENDIF

(diagram on next page).

The keyword ELIF is an abbreviation of ELSE IF. As the
flowchart that accompanies the diagram will show, only
one of the processes described in the structure is exe-
cuted. Note that if more than one of the expressions may
be evaluated to a value of true, only the first one will

trigger off a process.

If the final alternative ELSE is left out, you get

d.

IF expr THEN

ELIF expr, THEN

o o o o —— —————

_____ i
ELSE
[=]
ENDIF

IF .. ELIF .. ELIF

- 17 -

ENDIF

IF expr THEN

ELIF expr, THEN
F'““-;-_"'W
Lo 2 __

L ORI ——

Y

- 18 -

REPEAT., UNTIL

The REPEAT and UNTIL statements provide the following
structure:

UNTIL expr

Program section A is executed repetitively until the expres-—
sion following UNTIL has a value equivalent to true.

When this happens, control passes to the statement following
the UNTIL statement.

The program text between REPEAT and UNTIL is indented in the
program listing.

WHILE, ENDWHILE, ENDWH

The WHILE and ENDWHILE (ENDWH) statements provide the following
structure:

WHILE expr DO

ENDWHILE (ENDWH)

Program section A is executed repetitively while the expres-
sion following the WHILE keyword is evaluated to true. When
the expression evaluates tc¢ false, control passes to the
statement following ENDWHILE (ENDWH).

The program text between WHILE and ENDWHILE (ENDWH) state-
ments is indented in the program listing.

CASE., WHEN. OTHERWISE. ENDCASE

(diagram on next page)

When the expression following CASE has been evaluated, the
list following the first WHEN is examined. I1f one of the
constants in this list is equal to the value of the expres-
sion, program section A, is executed, and control is then
passed to the statement following ENDCASE. If no such item
is found, the list following the second WHEN is examined.
If the value of the expression is found,,A2 is executed,

- 19 -

and control is then passed to the statement following ENDCASE.
If the value still has not been found, the interpreter starts
on the third list etc.

A default case (program section B) may be inserted and is
executed if the value of the expression is not found in any
of the lists following the WHEN keywords. The default case

is indicated by the keyword OTHERWISE.

CASE expr OF
WHEN list

"WHEN list

s o o s e s s s — - 2~

ENDCASE _

The OTHERWISE case may be left out, but the interpreter will
then stop the execution of the program with an error message
if no constant corresponding to the vilue of the expression
has been found in the WHEN lists.

Note that at most one of the cases is executed. If it so
happens that the value of the expression may be found in
more than one of the lists, only the first of these lists
will trigger off its process.

The program texts Al' Az, cees An' B are indented in the
program listing,.

FOR, ENDFOR

The FOR .. NEXT loop structure from BASIC has been extended.
As seen from the syntax diagram, you may use a statement
like this:

FOR I#:=10 DOWNTO 1 DO

- 20 -

The "stepvalue" is then automatically set to ~l. FOR loops
with integers are very fast.

ENDFOR may used for NEXT. The countervariable may or may
not occur after NEXT and ENDFOR. The interpreter will in
any case look upon it as a comment.

TRAP., ESC., ERR

Two dedicated flags ESC and ERR may be set or reset using
the TRAP statement. A + will set the flag, and a - will
reset it. When the interpreter starts, the two flags are
set, and that means that the ESC key will cause a break
whenever striked, and that errors will cause an error mes-
sage and a program stop. If, however, one of the flags is
reset, the interpreter will not react to the said conditions
unless this has been defined explicitely in the program.
This may be done by statements like:

IF ESC THEN EXEC TESTO02
or

WHILE NOT ERR DO

COMMENTS

Since comments are allowed after any statement, directely
or by using **, the REM statement is left out. It may of
course be introduced in the BASIC part for compatibility
if wished. This has nothind to do with the definition of
COMAL.

TRUE., FALSE

To improve the readability of the programs two constants
TRUE and FALSE are predefined. TRUE is equvalent to 1,
and FALSE is equivalent to 0.

AND, OR., NOT

In COMAL vou have full Boolean algebra at your disposal.
As mentioned before a numerical expression is in proper
context considered false, if it has a value of 0, and true
in all other cases. A Boolean expression like

*

NUMBER>MAX 'NUMBER OR NOMORE

-7] -

will output a value of 1, if it is true, and a value of 0,
if it is false. A statement like this: '

FOUND:= (NAME$=STUDENT 'NAME$ (I))

will assign a value of 1 to FOUND, if the condition to the
right of the := is met, and a value of 0, if not. Thereafter
FOUND may be used as if it were a Boolean variable. The "pseudo
Boolean" values 0 and 1 are represented as integers (2 bytes)
so it may speed up the program, if integer variables are

used for "Boolean purposes".

IN
The expression:
NAME$ IN TEXTS$

will output a value of 1, if NAME$ is found as a substring
in TEXT$, and a value of 0, if it is not found.

ExamBle
IF CH$ IN VOWELS$ THEN VOW§:=TRUE

gao

NAMES

Variable names may contain*as many characters as you wish.
The first character must be a letter, the following may be -
letters, digits, or the sign '.

Example.
NUMBER'OF 'STUDENS, MAXNUMBER, NUMBER, NAME$, NAME'OF'STD$

[=]s}s]

APPENDIX 01

Survey of the data types which the different operators
may work on, and the resulting type.

left right operator
operand
4 / * DIV B IN AND
MOD OR

str str str* int
int int | real real int int int int
int real | real real real real real int
real int | real real real real real int
-real real | real real real real real ' int
The relational operators: < <= > > = <>

may work on any pair of strings and any pair of numerical
expressions. The output will be an integer 1 or an integer 0.
("pseudo true" and "pseudo false").

The blank positions in the table mean that the correspon-
ding operator may not be used with the set of operands.

*¥} Not -

Standard functions.

ATN, COS, SIN, TAN, LOG, EXP, SQR, FRAC, RVAL: real
CHR, STR: string

SGN, LEN, ORD, IVAL, INT, POS: int

EOD, ESC, ERR, EOF: int

ABS: same type as argument

[without arguments: real
{ with arguments: int (arg. gives limits).

SPC: outputs a string which consists of as many blanks as
the argument gives.

SAMPLE PROGRAM

0010 #% THE SIMULATOR: MULTI-CASING #»

0020 *s URITTEN IN COMAL 80 »»

0030 *= BY BORGE R. CHRISTENSEN »»

0040 *s AT “DATO-, TONDER, DENMARK »»

0050 ss DATE OF THIS VERSION: JUNE 22, 1979 4=
0040 s232 B
0070 8- nm—— L1

0080 ssan

0110 RANDON

0120 FUNC BADBOYH(X#)

0130 BADBGY#:=(Xi>=4)

0140 ENDFUNC BADBOY#

0150 - ermemccccccw *»

0160 »» ATTRIBUTES OF CASING ARE INITIALIZED »»
0120 ENPTY:=TRUE; FULL1»FALSE

0180 »»

0190 »& ATTRIBUTES OF GAMBLERS ARE INITIALIZED »e
0200 DIM ACTIVE¥(10), GOINBH(10), REALBADR(10)
0210 DIM UARNINGSH(10), BET(10}, ACCOUNT(10)
0220 MAT ACTIVEN:=FALSE; SOINGH:=FALSE; REALBAD#:=FALSE
0230 MAT UARNINGSHE:=0; BET:=0; ACCOUNT:={

0250 ss8ae

0260 *x UTILITY STRINGS ARE DECLAREL =

0270 DINM ANSUS OF 5, COLOURS(10) OF 4

0275 DIM DUTCOMES OF 5, NAMES(10) 0OF 20

0280 %% ~~vermrmcne—nn a4

0290 s* ENDINIT »=

Q310 *s»%a

0320 +s HAINPROGRAN s»

0130 sx4a

0340 REPEAT

0350 IF HOT FULL THEN

0360 PRINT

0370 PRINT

0380 INPUT “NEW GAMBLERS? “: ANSUS$
0390 IF ANSUS$(1)="Y" THEN EXEC IMREG
0400 ENDIF

0410 FOR IN:;=t TO 10 DO

0420 PRINT

0430 IF ACTIVEHCIN) THEN PRINT "YOUR TURN ";NAMES(I#)
0440 IF ACTIVER(IN) THEN EXEC GUESS

0450 IF ACTIVES(I#) THEN EXEC BET

0460 IF GOINGH(IN) THEN EXEC BYEBYE

1470 ENDFOR

0480 IF NOT EMPTY THENW

2490 EXEC WHEEL

3500 FOR I#:=1 [0 10 DO

0510 1F ACTIVE#(I#) THEN EXEC STATUS
4520 IF GOINGN(IH) THEN EXEC BYEBYE
0330 ENDFOR

0340 ENDIF

9550 UNTIL EMPTY

0360 PRINT "NO MORE GAMBLERS.®

0570 PRINT “CASINO WILL BE OFF, UNTIL NEW GAMBLERS ARRIVE.*
0580 PRINT “BYE - BYE!" ‘

0590 END OF MAIN

0470
05689
0690
0700
0710
0720
0730
0740
0730
0760
0770
0780
0790
0800
o810
0820
0830
0840
0845
0850
0840
0870
0889
0890
0910
0920
0930
0940
0950
0760
0970
0980
0990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
110
1120
1130
1140
1150
1160
1170
1180
1190

PROC GUESS
0K :=F ALSE
REPEAT
PRINT
PRINT “WHAT COLOUR DO BET ON? *
INPUT "BLUCE)/GRE(EN)/YEL(LOW) /BLA(CK)/RED *: COLOURS (I#)
CASE COLOURS(I,1,3) OF
WHEN “NON"
GOINGH(IN):=TRUE; ACTIVEN(IN):sFALSE
WHEN “BLU*,*“GRE“,"YEL“,"BLA*,"“RED"
0Kz =TRUE
DTHERVISE
PRINT
PRINT "OPERATING ERROR! INPOSSIBLE SITUATION!®
INPUT "WANT INSTRUCTION? (YES/RETURN) 1 ANSU$S
IF NOT ANSUs$="" THEN EXEC INSTR
ENDCASE
UNTIL OK OR GOINGN(IN)
ENDPROC GUESS
&% 4%
B o o e L £]
% 3
#s BANKER’S TASKS #+
*% ks
PROC ACCOUNT
REPEAT
OK : =FALSE
PRINT
INPUT "HOW MUCH DU YOU UANT TO INVEST? ": INVEST
IF INVEST<O THEN
PRINT
PRINT *KEEP YOUR FALSE MONEY - YOU!™
VARNINGSH(IN) :+1 .
ELIF INVEST=0 THEN
PRINT .
PRINT "I HAD THE INPRESSION, YOU MEANT BUSINESS!®
WARNINGSH (TH) s +1
ELIF INVEST<! THEN
PRINT
PRINT *NO SIR!{ NOT THAT CENT STUFF. REAL MONEY PLEASE!"
WARNINGSH (IN) s 41
ELIF INVEST<>INT(INVEST) THEN
PRINT
PRINT “TIPS! YOU A R E GENEROUS SIR! “
INVEST:=INT(INVEST)
0K:=TRUE
ELSE
OK: =TRUE
ENDIF
IF OK THEN ACCOUNT (I#):+INVEST
GOINGH(IN):=BADBOYM(VARNINGSN (IN))
UNTIL OK OR GOINGH(IN)
ENDPROC ACCOUNT

APPENDIX02

XCOMAL 80
SYNTAX DIAGRAMS

VAR JTﬂ variablef—- num. expr|)
: num. exprkj

O

atrings only

OF num. expr -

N
2/

= PROC J—= name l-—-——-—*—@ —@_}—{Eﬁm ! 'F@—"

e

——w— gctual parameter list |

actual parameter list:

a
O

+ vartitable

. { O

APPENDIX 02 -2 -

VAR

The VAR statement may be used in stead of the DIM statement.
Variables, declared by means of the VAR statement within

the body of a procedure, are local to that procedure. There-
fore simple variables may occur in the list following the
keyword VAR.

Examgle
If the statement

VAR I,J,NUMBER,NAME$ (40) OF 30

appears in the body of a procedure, the variables I and J,
and the array NAME$ will be local to that procedure.

aaa

PARAMETERS

Parameters for procedures may be called by value or by refe-

rence. If a parameter name begins with the character +, it is
called by reference and otherwise it is called by value.

If an array is refered to by a parameter, its dimension must

be indicated by means of parentheses and commas. Thus

tNUM{(,)

indicates a parameter that refers to a two dimensional
array of nwabers and is called by reference.

Example
PROC SORT (+ACCOUNT () ,MAX)

The first parameter must be called by reference and the
second one must be called by value. The first one will
refer to a one dimensional array of numbers, the second
one will be assigned the value of a number.

aan

Procedures may be called recursively.

