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A GENERATOR OF RANDOM NUMBERS* 

H. Isaksson 
Telecommunications Research Laboratory 

With a view to the application of the Danish electronic digital computer (DASK) to 
the solution of traffic-theoretical problems, the Telecommunications Research Labora- 
tory of Denmark has developed a generator of random numbers. The present paper gives 
a brief description of the principles of operation of the generator and mentions some of 
the underlying considerations. Utilizing the shot noise effect in a diode, the generator is 
capable of producing 5,000 binary digits per second. The random numbers generated 
have been subjected to various statistical tests for randomness, all of which gave satis- 
factory results. 

Introduction 

In telephone exchanges, the most economical 

arrangement of trunks and switching equipment 

to carry the required volume of traffic can be 

determined on a purely mathematical basis, as 

experience has shown that the frequency and 
duration of the calls follow certain statistical dis- 

tributions. This being so, it is possible to con- 

struct a stochastic model to describe any particular 

switching problem. Applying the classical calculus 

of probability, such a problem in terms of prob- 

abilities is converted into a problem in terms of 

functional equations, the solution of which is a 

purely mathematical problem. 

A mathematical method, based on probability 

calculus, of determining the proportion of lost 

calls in a telephone system was first evolved by 

A. K. Erlang. He derived the fundamental B- 

formula for determining the grade of service of a 

simple or ‘‘full availability’ group of switching 

devices, i.e., a switching stage whose trunks and/ 

or selectors cooperate in such a way that any one 

incoming call has access to any one available 
outlet. 

In modern telephone systems, however, there 

are numerous instances of less perfect coopera- 

tion, in that any one call has access to certain 

outlets only, as is the case e.g. when the number 

of outgoing trunks from a group of selectors is 

greater than the number of selector bank contacts, 

for which reason the trunks are connected to 

the selectors according to a so-called ‘‘grading 

scheme’. Using this term in a wider sense, a 

variety of problems of limited availability groups 

may be collectively referred to as grading prob- 
lems. 

Erlang examined a theoretically very simple 

*) This is a somewhat enlarged version of the original paper 
published in TELETEKNIK (Danish Edition), vol. IX, 1958, 
page 175. 
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grading problem and derived an exact formula 

for determination of the loss of calls, the so- 

called “‘ideal grading formula’’, in which he con- 

siders a group of n trunks being offered a total 

traffic A from selectors with k bank contacts, so 

that the calls from any one selector have access 

only to k particular ones out of the n trunks in 

the group, always assuming that the traffic is 

distributed entirely at random over these n trunks. 

The probability of loss is then determined by 

Erlang’s ideal grading formula. 

The grading scheme commonly employed in 

automatic telephone systems is more complicated, 

involving the use of individual trunks and com- 

mon trunks as shown in Fig. 1. Here, 9 trunks 

are distributed over 2 selector groups such that 

2 Z7 8 9 
° O

w
 

Ay ——Ee O 

A2-———e 8 

K
o
 

Fig. 1. Grading. 

each selector group has access to 3 individual 

trunks (1—2—3 and 4—5—6), while the remaining 

3 trunks (7—-8—9) are shared by the two selector 

groups. The traffic offered by the two groups is 

A, erlang and A, erlang, respectively. C. Palm 

published, in 1936, the results of an exact cal- 

culation of some simple gradings of this type, but 

the formulas are not very well suited for numerical 

computation, for which reason an approximative 

method, suggested by O’ Dell, is resorted to in most 

cases even though the approximation is fairly 

rough. Of course, the more complex the gradings, 

the greater the difficulties and the more incalcul- 

able the consequences of introducing approxima- 

tions; and so it is only natural to seek other ways 

of solving grading problems. 
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A method frequently employed consists in 

making model experiments by means of what is 

known as traffic machines. These contain a 

number of electro-mechanical or electronic units 

which can be combined to form a model of the 

traffic system to be studied, and furthermore some 

means of generating an artificial traffic possessing 

specific statistical properties, supplemented with 

devices for measuring the respective volumes of 

traffic offered, completed, and lost. The desired 

empirical data on the traffic capacity of the tele- 

phone system in question can be obtained through 

a series of experiments with such a model. 
In order to ensure sufficient accuracy it is 

necessary that a large number of calls be made 

for determination of any one point of measure- 

ment. Accordingly the traffic machines always 

operate with a greatly enlarged time scale so that, 

e.g., the amount of traffic handled during one 

hour in the real system will be handled during 

one minute in the model. 
A major problem in the design of a traffic 

machine is how to produce the artificial traffic. 

Some practical solutions are based on purely me- 

chanical methods (throwing of dice, Monte Carlo 

games of chance), while others depend on elec- 

trical phenomena (radioactive disintegration, 

thermionic noise or shot effect) as source of 

artificial traffic. 
Many different traffic machines have been 

built during the last 25 years all over the world. 

These machines are often both large and expen- 

sive, and several of them come short in that they 

are designed for solution of a particular type of 

problem only and cannot readily be applied to 

other types of problems. 
The development, during recent years, of the 

modern electronic digital computing machines 

quite naturally led to the idea of utilizing these 

for traffic experiments. A method of carrying out 

grading calculations according to the Monte Carlo 

system by means of the Swedish electronic com- 

puter BESK was first described by Neovius [1] 

in 1955. By this method, a simulated model of 

the system to be investigated is set up through a 

special programming of the computer, each 

switching device and its possible switching con- 

ditions being represented by memory cells in the 

storage section of the computer. The time inter- 

vals between successive calls are determined by 

means of a sequence of random numbers P,, Ps, 

P,, ... fed into the computer from some outside 

source, or generated by the computer itself. The 

random numbers, which will be uniformly dis- 

tributed within a given interval, e.g. 0< P< 1, 

are transformed in the computing machine into 

another sequence of numbers S,, S,, S3, ... in 

such a way as to produce the desired distribu- 

tion of calls (the Poisson distribution, for example, 

is obtained by the transformation S = — k log,P). 

The holding times may be constant, or another 

sequence of suitably transformed random num- 

bers may be employed to determine the holding 

times in accordance with a given distribution. 

In programming the computer, ‘‘instructions’’ 

can similarly be included as to the order in which 

the various groups of switching devices or trunks 

should be searched over. 

Thanks to the great operating speed of the 

electronic computer, it permits traffic experi- 

ments by the method outlined above to be carried 

out at the same speed, or faster than by means of 

artificial traffic equipment proper. It is a require- 

ment, however, that the random numbers can be 

generated quickly enough and 

quantity. 

in sufficient 

The various available methods of generating 

random numbers can be divided into two funda- 

mental categories: the mathematical and the 

physical methods. 

Mathematical generation of random numbers 

is based on the experience that it is possible, by 

reiterating some simple algebraic operations, to 

produce a set of numbers whose terms may be 

regarded, with good approximation, as constitut- 

ing a random sequence. These numbers will 

obviously be reproducible, a fact which may have 

certain advantages; thus, it enables one to watch 

closely the effects of a change in, say, a grading 

scheme, as the conditions of the experiment can 

otherwise be kept unchanged. Periodicity cannot 

possibly be avoided in these mathematically 

produced numbers, however; that is to say, one 

can only produce a finite quantity of numbers 

satisfying the condition of randomness. 

In generating random numbers by physical 

methods, one utilizes natural phenomena having 

the characteristics of random occurrences. All 

atomic processes take a hap-hazard course as far 

as individual particles are concerned; examples 

are radioactive disintegration of atomic nuclei, and 

kinetic motions of electrons. Physically gencrated 

random numbers will in principle be nonperiodic, 

i.e., it is possible to produce an infinite quantity 

of random numbers. 
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For his traffic experiments on BESK, Neovius 

made use of random numbers generated by the 

computing machine itself according to methods 

that will be described at the end of the present 
paper. Taking cognizance of the Swedish experi- 

ments, the Danish telephone administrations — 

who for some time had been planning the con- 

struction of a traffic machine proper, to serve the 

purpose of solving grading-scheme problems — 

decided to abandon these plans and, instead, go in 

for applying to this purpose the Danish electronic 

digital computer DASK which was then in process 

of construction. At the same time, however, it was 

decided to build a special generator of random 

numbers, based on physical methods. This gener- 

ator will be described in the following, and men- 

tion will be made of some of the considerations 

and experiments that led to the form of construc- 

tion finally chosen. The last part of the paper 

gives the results of various statistical tests for 

randomness, applied to sequences obtained from 

the generator and to sequences obtained from the 

electronic computer utilizing the method em- 
ployed by Neovius. 

Physical Methods of Generating Random Numbers 

Some examples of electronic generators of 

random numbers, as described in the literature, 

may be briefly mentioned here by way of intro- 
duction. 

An electronic traffic analyser, constructed by 

the British G.P.O. and described by Broadhurst 

and Harmston [2], employs a generator of random 

numbers which utilizes the noise voltage from a 

neon tube. The machine contains a number of 

parallel-connected generators of this type, each 

generating 300 binary digits per second. 

For use in connection with the German electron- 

ic computer “Géttinger Maschine G 2”’, a gener- 

ator of random numbers has been designed which 

operates on the basis of radioactive radiation. 

The numbers are generated at the rate of 800 

binary digits per second. Statistical tests, applied 

to sequences of length 710° bits, gave satis- 

factory results [3]. 

In the P.T.T. of Holland, Kosten [4] has de- 

veloped a generator of random numbers with 

electrical noise as source. The operating principle 

deserves a brief mention, as it offers many ad- 

vantages when the rate of speed, at which the 

numbers are to be generated, is a minor consider- 

ation. A free-running blocking oscillator is 

““frequency-modulated”’ by means of the noise 

from a noise diode, a noise voltage being super- 

imposed upon the voltage on the grid of the oscil- 

lator. The moment at which the grid potential 

attains its cut-off value — i.e., at which the valve 

begins to draw current -—- can then be slightly 

accelerated or retarded by the superimposed noise 

voltage, to the effect that the time intervals be- 

tween successive impulses from the blocking 

oscillator will be caused to vary at random about 

a mean value which equals the impulse period as 

for the undisturbed blocking oscillator. A count 

of the impulses from the blocking oscillator during 

a length of time which is great in relation to the 

mean impulse period, will be equally likely to 

reach an odd or an even total. The use of this 

arrangement ensures a certain minimum interval 

between the impulses to be counted, thus render- 

ing the counter non-critical. The rate of output 

was in this case 50 bits per second. 

Finally it may be mentioned that Carl Jacobsen 

[5] in some experiments, made at the Jutland 

Telephone Company with a simple type of traffic 

machine, has used a radioactive substance com- 

bined with a Geiger counter as source of artificial 

traffic. 

Generator Based on Radioactive Disintegration 

In attempting to generate random numbers by 

physical methods, the Telecommunications Re- 

search Laboratory first employed a method based 

on radioactive disintegration. Fig. 2 illustrates the 
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Fig. 2. Generation of random numbers based upon radioactive 
disintegration. 

experimental apparatus, the operating principles 

of which are as follows: The y-rays emitted from 

a radioactive substance are detected and con- 

verted into electric impulses, which are passed 

on to a counter that counts the number of im- 

pulses occurring during a given space of time.
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Since the intervals between successive impulses 

are randomly distributed, it will be a matter of 

pure chance whether the number of impulses re- 

corded by the counter during this space of time 

is even or odd. If the number is even, we shall 

say that the outcome is 0; if odd, the outcome is 1. 

The y-rays from the radioactive substance are 

converted into electric impulses by means of a 
scintillation counter, the impulses subsequently 

being amplified and shaped in a pulse shaper. 

Next, the impulses are routed via Gate 1 to the 

counter, which is a bistable multivibrator whose 

output signal is delivered via Gate 2. The whole 

process is controlled by a control device. Gates 1 

and 2 are closed when the system is at rest. 

When a random number is to be generated, a 

starting impulse is applied to the control device, 

which then causes the following operations to take 

place in the order mentioned: Gate 1 is opened 

and kept open for a well-defined space of time, 

and the number of impulses received during that 

time is counted; on expiration of the counting 

period, a “‘ready’’-signal is passed on to the elec- 

tronic computer, which then reads the position 

of the counter via Gate 2; and finally the binary 

counter is reset. It is necessary to reset the counter 

at the end of each train of impulses so as to ensure 

exactly the same initial conditions for each ran- 

dom number generated, inasmuch as correlation 

between consecutive outcomes might otherwise be 

apt to result. 

The impulses that are counted by the bistable 

multivibrator have different amplitudes, corre- 

sponding to the different amounts of energy of 

the several y-particles, and the interval between 

any two impulses may sometimes be infinites- 

imally short. Since the bistable multivibrator 

inevitably has a certain relaxation period — i.e., 

it is insensitive to any disturbance for some time 

after it has counted an impulse — there will 

necessarily be instances of an impulse not being 

counted because it occurs too soon after the pre- 

ceding one. 

We shall now investigate theoretically how the 

relaxation period of the binary counter and the 

length of the counting period will affect the dis- 
tribution of the numbers generated by this meth- 

od, recognizing that, in order for these numbers 

to be random numbers proper, an equal distri- 

bution of 0 and 1 must be the first condition; or 

in other words, the outcomes 0 and 1 must be 

equally probable, as expressed by the equation 

P(O) = PC) = 1/2. 

Theoretical Study of the Distribution of 0 and 1 as 

for the Counting Method 

For this purpose we set up a statistical model 

which represents, in principle, the generator of 

random numbers shown in Fig. 2. The under- 

lying assumptions are: 

1. That the mean distance between any 2 suc- 

cessive impulses from the scintillation count- 

er is constant. 

2. That the binary counter is reset to zero after 

each reading. 

3. That the relaxation times of the binary count- 

er on changing from Position 0 to Position 1, 

and from Position 1 to Position 0, are con- 

stant and equal to b and ¢ times the mean 

impulse period, respectively. 

4, That the interval from the time of resetting 

to zero until the time of reading (the counting 

period) is constant. 
5. That impulses occurring during a relaxation 

period cannot operate the counter. 

Without causing any change in the subsequent- 

ly calculated probabilities, the requirements as to 

constant relaxation time and counting period may 

be replaced with a stipulation to the effect that 

they may follow distributions having the mean 

values b, c, and T, if only these distributions are 

independent of time. 

If the mean impulse period is used as unit of 

time, the probability of no impulses occurring 

during the time interval di will be 

edt (1) 

Let us now consider the time interval T, ex- 

tending from the resetting of the counter at time 

t = 0 until the next reading of the counter at 

time f = T; and let us suppose that the multi- 

vibrator has been triggered altogether n times, viz. 
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Fig. 8. Counting period with triggering times and relaxation 
periods. 

the first time at time ¢,, the second time at time 

f,, and so on. These triggering times and the 

corresponding relaxation periods a, dg, ... Q, 

are marked off along the time axis shown in 

Fig. 3. 

The probability of just this course of events, 

pty, te,..., t,, T), is the product of the following 

probabilities: 
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that the Ist impulse pe- 
riod is ¢, 

that the 2nd impulse pe- 

riod is fg — ty — a, 

that the 8rd impulse pe- } a, 

riod is tj — tz — a, 

a, = b for v odd 

== c for v even 

that the nth impulse pe- 

riod is t,—t, 4—@,_4 

and that no impulse occurs from time ¢, + a, 
until time 7. 

For t, = T—a,, this last-mentioned proba- 
bility is 1, and for t, < T —a, it is 

a 
‘o 

et dt =e~T-4,-4) (2) 
(T— tn a, 

Thus we have 
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The probability p(n) of the flip-flop being 
triggered n times within time T is then obtained 
by integrating p(t,, t,,..., t,, J’) over the interval 
of possible values of the n variables (t,, ..., t,,): 
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The resulting n-tuple integral reduces to the 
simple integral 
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Using (2) we obtain 
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Finally, expanding e~* in a series and integrat- 
ing term by term, we obtain 
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Now letting A denote the event of ‘‘an even 

number of changes’’ during the time T, the prob- 

ability of a zero reading — i.e., ‘outcome 0” 

will be P(A). Assuming that the relaxation period 

is the same for either direction of triggering, which 
means that c = b = a, we find
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P(A) = 

tf v 

where 

a is the relaxation time in terms of mean im- 

pulse periods, and 
T is the interval from the time of resetting until 

the time of reading (the counting period). 

By means of formula (8), P(A) has been cal- 

culated for different values of T and a, and the 

values of the quantity (P(A) — 1/2) x 108 eval- 

uated on the basis thereof are listed in the follow- 

ing table: 

  

  

  

  

  

PN 0 | 0.10} 0.20 | 0.30 | 0.40 | 0.50 

2 9158] 5607 

4 167, 62) 11) 0) —10|—237 

8 0.056, 1) 1 —1t} —1f 0 

12 1               

(P(A) — 1/2)10® = f(a, T) 
  

In judging the worth of the above figures il 

should be borne in mind that the numerical eval- 

uation of the separate terms of the summation 

was continued to six decimal places only. 

The binary counter, as employed in the experi- 

mental apparatus under consideration, had a re- 

laxation period of 0.4 microsecond. With a mean 

impulse period of 4 microseconds, the correspond- 

ing a-value is 0.1. It appears from the table that 

for this a-value, a counting period T= 8 will 

give a skewness of less than 10-8 in the distribu- 

tion of outcomes 0 and 1, which may be regarded 

as satisfactory. 

For T = 8 and a = 0.1, there will be a skew- 

ness of 10-§ in favour of an even number of 

changes. Omission of resetting the binary counter 

to zero after each reading would cause the prob- 

ability of the counter’s position at the expiration 

of a counting period being the same as its initial 

position, to be different from 1/2; in fact, the 

probability would be 1/2 + 10~§, ie., there would 

result a correlation between any two consecutive 

outcomes. Such correlation between the numbers 

      

   

          

   

            

   

                                              

   

         

produced is inconsistent with the second funda- 

mental requirement in order for the numbers to 

be proper random numbers, viz., that any num- 

ber in the sequence must be independent of all 

previous numbers. 
If, on the other hand, the binary counter is 

reset to zero before each new counting period, 

the relaxation time will not give rise to any cor- 

relation; there will merely be a difference between 

the frequencies of 0 and 1, which, however, can 

be rendered insignificant by means of the artifice 

mentioned below (double game). 

By way of verifying the above theory experi- 

mentally, an apparatus was built up in the laho- 

ratory as illustrated by the block diagram in Fig. 

2. With the counting period T as variable quantity, 

a number of counts were then made at different 

mean impulse periods, and the experimentally de- 

termined skewnesses were compared with the 

theoretical values. 
The results showed agreement between theoret- 

ical and experimental values for small values of 

T; for T = about 5, however, the experimentally 

determined skewness did not decrease as T was 

increased, but assumed a constant value of about 

10-*. This indicates that the laboratory apparatus 

in some respects differed essentially from the sta- 

tistical model. The actual causes of this discrep- 

ancy were not investigated in detail, but it may 

have been due to any of the following circum- 

stances: different sensitivity of the binary counter 

in the two directions of triggering, different periods 

of relaxation in the two directions of triggering, or 

different impulse lengths, all of which are circum- 

stances that cannot possibly be kept under com- 

plete control in a practical model apparatus. 

  

Double Game 

However, the undesirable effects of the inevit- 

able non-symmetry in the binary counter can be 

eliminated — providing that the non-symmetry 

is constant — by considering the generated digits 

two by two and stipulating that the combination 

10 shall mean 0, and that 01 shall mean 1, while 

the combinations 00 and 11 shall be disregarded 

entirely. , 
If the probability of the outcome 1 in the simple 

game is P(1) = 1/2 + 8, and the probability of 0 

consequently is P(0) = 1/2 — 54, then the prob- 

abilities of outcomes P(01) and P(10) in the. 

double game will always be equally great, viz., 

P(01) = P(10) = P(0) x P(A) 
= (1/2 —8) (1/2 + 8) = 1/4— 8%. 
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Application of the double game will reduce the 
number of generated random bits to at most 1/4 

of the corresponding number obtainable in the 

simple game, as the outcomes of the latter are 
combined in pairs, and as at least one half of 

these pairs are to be left out of consideration. 

No double-game experiments were carried out 

in connexion with the above-described generator 

based on radioactive disintegration, as the rather 

highly radioactive substance that was necessary 

in order to ensure a sufficiently high impulse fre- 

quency called for such elaborate safety measures 

that it was decided to abandon this method in 

favour of using electrical noise as basis for the 

generation of random numbers. 

Generator Based on Electrical Noise 

Now, a more handy and harmless form of 

random physical phenomena is the electrical 

noise occurring either as thermal agitation noise 

in passive networks, or as shot effect in thermionic 

valves. 

The thermal agitation noise in passive networks 

is due to the fact that electrons moving in electric 

conductors according to the kinetic theory have 

randomly distributed velocities, whose mean value 

depends on the absolute temperature. The shot 

effect in thermionic valves is due to the quantum- 

wise emission of electrons from the heated cath- 

20v 

  

Fig. 4. Noise amplifier output voltage. 

ode, and the fact that the separate electrons are 

emitted from the cathode at randomly distributed 

time intervals, in consequence of which the anode 

current will be subject to random variations. Jn 

Fig. 4 is shown, by way of example, the noise 

voltage from a diode after it has been amplified 

in a wide-band amplifier whose upper limiting 

frequency is about 400 ke/s. Of these two kinds 

of electrical noise, the valve noise is the more 

advantageous, since it is more powerful and ac- 

cordingly requires less amplification. 

We shall now see how the noise voltage can be 

utilized as a source of random numbers. Several 
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Fig. 5. Principle of the summation method. 

Gate 2 

      

methods are available, but we shall assume the 

following two methods to be representative of 

them all. 

By the first, or summation, method we count 

the number of times that the noise voltage curve 

crosses the zero line in an upward direction 

(i.e., passes from a negative to a positive value) 

within a given time interval. If this number is 

even, we shall say that the outcome is 0; if odd, 

the outcome is 1. In order for the numbers thus 

obtained to be random numbers, it is necessary 

that the length of the given interval be great in 

comparison with the mean distance between the 
zero passages. 

By the second, or sampling, method the signs 

of the noise voltage are read out at regular inter- 

vals. After amplification, the noise voltage is a 

pure a.c. voltage which varies about zero. The 

lengths of the intervals between the zero passages 

vary at random and are exponentially distributed ; 

i.e., provided that the reading-out, or sampling, 

frequency is small as compared with the mean 

frequency of zero passages, it is a matter of pure 

chance whether the noise voltage will be positive 

or negative at the time of sampling. 

The summation method can be applied in prac- 

tice by means of the arrangement shown in Fig. 5. 

The noise voltage is amplified and changed into 

a voltage of square waveform, which is then dif- 

ferentiated. In accordance with the properties of 

the noise voltage, the positive (or negative) im-
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pulses thus obtained will be randomly distributed 

and are consequently suitable for use in generat- 

ing random numbers in exactly the same manner 

as described in the case of the radioactivity 

method. 

A practical adaption of the sampling method 

is outlined in Fig. 6. Here, too, the noise voltage 

is amplified and changed into a voltage of square 
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Fig. 6. Principle of the sampling method. 

waveform. The polarity of the noise voltage is 

read out by means of a gate, controlled by a 

series of periodical sampling pulses, the period 

being 7. If the noise voltage is negative at the 

time of sampling, the square-wave voltage will 

also be negative, and the gate circuit will be 

blocked. If the noise voltage is positive, the square- 

wave voltage will be positive, and the gate circuit 

will be open, permitting the sampling pulse to 

pass through the gate and trigger the monostable 

multivibrator. The latter will thus produce a well- 

defined impulse every time the noise voltage is 

read out as being positive, while no impulse will 

appear when the noise voltage is read out as 

being negative. The two possible outcomes — im- 

pulse or no impulse — are taken as representing 

the two binary digits 1 and 0, respectively. In 

order for the condition P(0) = P(1) to be satis- 

fied, the conversion of the noise voltage into a 

voltage of square waveform should be quite ideal. 

Such ideal conversion not being achievable in 

actual practice, however, it is necessary to em- 

ploy the double-game procedure in the case of 

the sampling method, too, so as to ensure an even 

distribution of the random numbers. 

The first two devices involved in converting the 

noise voltage, viz., the noise amplifier and the 

square-wave generator, are thus common to the 

sampling method and the summation method. 

We shall therefore discuss in detail certain cir- 

cumstances which are of consequence to the de- 

sign of these devices. 

Autocorrelation of the Noise Voltage 

Let us first consider the sampling method. As 

previously mentioned, it is a condition for the 

randomness of the numbers generated that there 

should exist no significant correlation between 

the signs of the noise voltage as read out at any 

two consecutive times of sampling. Correlation 

will inevitably arise in the noise amplifier due to 

the finite bandwidth of the latter, and so it is 

necessary to determine the relationship between 

the frequency response of the noise amplifier and 

the ensuing autocorrelation. 

An expression of the correlation arising be- 

tween two consecutive readings taken at an in- 

terval of time + is obtainable by means of the 

autocorrelation function 

b(r) =a(be(t+7)= lim + \ a(t) (t+ 7)dt, 
T>0 27 — T 

where x(t) is a function of value + 1 when the 

noise voltage is positive, and of value — 1 when 

the noise voltage is negative. 

Assuming the noise voltage of the diode to be 

ideal white noise, the autocorrelation in the am- 

plified noise voltage will be determinable on the 

basis of our knowledge of the transfer function 

A(w) of the amplifier. We have the following ex- 

pression for the normalized autocorrelation [6] 

\ | A@) |? costw dw 

£(7)o = : ms ———— 
\ | A(w)| 2 dew 

  

First we consider an amplifier whose transfer 

characteristic at high frequencies is given by 

|A@)|?=— a 

(+()) 
i.e., a four-stage amplifier with the same time- 

1 
constant — = RC in all four stages. In this case 

Wo 

the normalized autocorrelation will be 

_ esp 7\ 7, 
b(t)o= e {i+ z+ 04( aa) +007(z) 

For small values of the autocorrelation, the latter 

will decrease exponentially as 7 decreases. 

In the second place we consider an amplifier 

of ideal band-pass filter qualities, its lower and 

   



        

1959 TELETEKNIK 33 
  

upper limiting frequencies being fi,, and flup- 

Here, the normalized autocorrelation function is 

given by the expression 

sin ar Cfaup — fine) 

WT Cfeup ~~ fine) 

For increasing values of 7, this function will pass 

through a succession of positive maxima and 

negative minima, the values of which will be 
1 

WT (Cfsup ~ fine) 

ip (7)o = COS TT (fing Fup) 

  nearly equal to ie, inversely 

proportional to 7. 

Hence it appears that the RC type of amplifier 

offers the greatest advantage with respect to the 

autocorrelation of the amplified noise voltage, 

since #(7)9 here decreases much more rapidly as 
7 increases. 

To illustrate this point, the maximum values 

of (7), for 7= 5 psec and += 50 psec are tabul- 

ated below as for a four-stage RC-characteristic 

amplifier with RC = 3.1 x 10~-’, correspond- 

ing to an upper limiting frequency (3 db down) 

of about 250 ke/s, and as for an ideal band-pass 

filter amplifier having a bandwidth of 70—400 
ke/s. 

  

  

  

T RC-Amplifier Band-Filter Amplifier 

psec RC=3.1X 1077 — [fgup == 400 ke/s, fing = 70 ke/s 

5 4x 10-5 2x 10-4 

50 3 xX 10-6 2x 10-7       
Normalized Autocorrelation for two Types of Amplifier. 

It will appear from the table that the auto- 

correlation of the amplified noise voltage will be 

negligibly small in the case of the RC amplifier 

at 7 = 50 psec, while in the case of the band- 

filter amplifier it will be impermissibly great. In 

recognition hereof, an RC amplifier of the said 

RC value, and with 7 = 50 psec corresponding 

to a sampling-impulse frequency of 20 ke/s, was 

employed in the final construction of the generator 

of random numbers. 

When the correlation between two consecutive 

readings-out is too great to be disregarded, the 

following relations can be shown [7] to be appli- 

cable in the case of the sampling method: 

PO~0)=PU1) =F td @o 

1 1 PA —0) = P(O—1) =F —F-Ho, 
where P(0 — 0), P(1 — 1), etc., are the probabil- 

ities that the outcomes of two consecutive read- 

ings-out will be 0,0, 1,1, etc., respectively. The 

expressions are valid only for #(7)> <1 and 

P(O) = P(). [If P(O) # P(1), the relations 
P(O--0) = P(i — 1) and P(1 — 0) = P(O — 1) 

will still hold good, but the deviation of the P- 

values from } will be greater]. In other words, a 

positive correlation between two consecutive read- 

‘ ings-out will manifest itself in a tendency for one 

outcome to be the same as the preceding outcome. 

In consequence of the fact that it is necessary, as 

already mentioned, to apply the double-game 

procedure and discard the outcomes 0 — 0 and 

1 — 1, the correlation will not give rise to non- 

symmetry in the outcomes 1—0O and 0—1, 

which are written 0’ and 1’, respectively. 

It can further be shown that 

P(1—0—1—0) = P(O—1—0—1) = 

1 1 3 

(5g) 
and 

P(O—1—1—0) = P(i—0—0—1) = 

1 1 2/1 1 (i —gg He) (E+ gehen) 

i.e., the probabilities P(0’—0') = P(1’—1’) 

will be different from the probabilities P(1’ — 0’) 

= P(0’—1’). In the event of a significantly great 

positive correlation there will thus be a tendency 

for a double-game outcome (0’ or 1’) to be differ- 

ent from the preceding outcome. A significant 

correlation can accordingly be ascertained by 

applying a frequency test to groups of two bits 

each, for the binary digits 0’ and 1’. 

Correspondingly it can be shown [7] that when 

the summation method is employed, there will 

arise a similar correlation between the correla- 

tion in the noise and the outcomes of the counts, 

so that the correlation arising in the noise ampli- 

fier will influence the distribution of the random 

numbers equally much whether the sampling 

method or the summation method is used in 

producing the random numbers from out of the 
noise voltage. 

With a view to the design of the various de- 

vices which are to “‘process’’ the noise voltage,
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it is necessary to know how closely upon one 

another the zero passages may occur in the am- 

plified noise voltage. An expression has been for- 

mulated [7] for the probability that the noise- 

voltage curve will cut the zero line while ascend- 
ing, both during the interval 0 <t< dt and during 

the interval 7 < ¢<7+-+ dt. This expression is a 

function of 7 and is dependent on the frequency 

response of the amplifier. If the amplifier works 

as an ideal band-pass filter with upper limiting 

frequenc , this expression will be equal to q Y Tsup Pp q 

    
Blocking 
  

            

Gate 7 

may occur one after another in arbitrarily rapid 

succession. As previously shown, considerations 

of autocorrelation necessitate the use of an ampli- 

fier of RC cut-off characteristics, and it is thus 

impossible to avoid having zero-passages occur- 

ring at infinitely short intervals. The rise time of 

the square-wave voltage should therefore be made 

as short as at all possible. 

In the matter of choice of operating principle 

for the generator of random numbers it was 

finally decided to prefer the sampling method to 

  

    

              

  

        

  

      

  

        
        

    

    

  
  

  

  

      
  

©) ‘multiply”- gate Cand"gate) 

ae ‘add gate C'or-gate) 
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DASK 

27 Lk il pulse generator 

Fig. 7. Generator of random numbers. Block diagram. 

1 
0 for 0 << r<.——;} L.e., the noise voltage will not 

sup 

ascend through zero level at shorter intervals than 

1 
min= =~ This is highly desirable with a view 

houp 
to the other devices in the set-up. On the other 
hand, if the frequency response of the amplifier 

corresponds to an RC cut-off curve, we arrive at 

another expression for the interval between zero- 

passages which is not equal to zero in the neigh- 

bourhood of the point 7 0; ie., the impulses 

the summation method, as the former permits 

one of the noise-voltage-processing devices to be 

dispensed with, viz., the differentiation unit; be- 

sides, the problem of the relaxation period of the 

counter is thus disposed of, inasmuch as the im- 

pulses to the monostable multivibrator by the 

sampling method will arrive at intervals which 

are whole multiples of +. 
The logical lay-out of the generator of random 

numbers will appear from the logical block dia- 

gram in Fig. 7 and the impulse diagram in Fig. 8. 
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e  
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The noise voltage is first amplified and then, in 
the Schmitt trigger, converted into a square- 
wave voltage, which is passed on to Gate 1. The 
sampling pulse, which is generated by means of 
a free-running blocking oscillator and a pulse 
shaper, is also passed on to Gate 1. Now if the 
output voltage from the Schmitt trigger is high, 
Gate 1 will be open to the sampling pulse which 
is positive, and a pulse will appear on the output 
terminals of Gate 1 (a multiply-gate). If, on the 
other hand, the square-wave voltage is low at the 

time when the sampling pulse occurs, the latter 
will find Gate 1 closed. The output pulse from 

Start-stop signal 

Sampling pulse 

Square wave 

Gate 7 

MMV- signal a 

Delayed pulse 

Gate 2 

Gate 3 

Flip-flop 1. b 

Gate 4 

Flip-flop 2, b 

Gate 5 

Gate 6 

(T2475) 

sampled, the monostable multivibrator will be 
triggered, and the two inverse output signals will, 
for a period of 30 microseconds, hold Gate 2 
open and Gate 3 closed, respectively. An impulse 
is applied to these two gates 20 microseconds after 
the sampling, and as only Gate 2 is open, this 
will have the effect of triggering Flip-Flop 1 into 
its 0-state if it is not already resting in that state. 
If the next sampling takes place at a time when 
the noise voltage is negative, the monostable 
multivibrator will not be triggered; i.e., only Gate 

3 is open now, so that Flip-Flop 1 will be triggered 
into its 1-state by the delayed impulse appearing 

  
Fig. 8. Pulse diagram. 

Gate 1 triggers a monostable multivibrator which 
remains triggered for 30 microseconds, i.e., for a 
shorter period than the interval between sampling 
pulses which is 50 microseconds. Thus the mono- 
stable multivibrator will be triggered only when 
the noise voltage is positive at the time of sampling. 

As previously mentioned, it takes two consec- 
utive samplings to generate one random number. 
The outcome of one sampling must therefore be ” 
stored in a memory until the outcome of the next 
sampling is available. This memory consists of 
Flip-Flop 1, whose two states of rest represent the 
two possible outcomes. The outcome of a sampling 
is passed on to Flip-Flop 1 by means of Gate 2 
and Gate 3. If the noise voltage is positive when 

20 microseconds after the sampling. Flip-Flop 1 
is thus caused to change its state each time a 
sampling outcome is different from the one im- 
mediately preceding it. The two inverse output 
signals from Flip-Flop 1, which of course are d.c. 
signals, are converted into impulses by the pulse- 
forming networks PO and P1; that is to say, PO 
will generate a pulse when Flip-Flop 1 assumes 
its O-state, while correspondingly P1 will generate 

a pulse when Flip-Flop 1 assumes its 1-state. 

The sampling outcomes are to be combined in 

pairs, but in such a way as to prevent overlapping 
of the pairs. This is realized by the introduction 
of two multiply-gates, Gate 5 and Gate 6, which 
are controlled by Flip-Flop 2. The latter is trig-
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gered by the sampling pulses, so that Gate 5 and 

Gate 6 will be open only in every second interval 

between sampling pulses. Gate 5 will pass a pulse 

when and if the generator has produced a random 

number; if, and only if, this random number is a 

zero, Gate 6 will pass a pulse, too. 

The random numbers are to be fed into DASK 

in series of 40 bits each, and the generator as- 

sembly therefore incorporates a 40-counter which 

passes a signal to DASK each time a total of 40 

digits has been generated. A starting signal from 

DASK will start the blocking oscillator, and when 

40 random numbers have been generated, another 

signal from DASK will stop it. 

Practical Construction of the Generator 

All component circuits such as monostable and 

bistable multivibrators, gate circuits, Schmitt 

trigger, blocking oscillator, et cetera, were con- 

structed on the usual general principles and di- 

mensioned so as to satisfy the tolerances normally 

specified for computer circuits. The correct per- 

formance of the circuits will remain unaffected 

under conditions of -- 10% resistance variations 

and a 50% reduction of the thermionic emission 

in the valves. 

Fig. 9 shows the generator in its final form of 

construction, consisting of three panels mounted 

on a standard 19” vertical rack. A total of 55 

valves (not including those for the power supply 

unit) were used, most of which are of the types 

E90 CC, E 80 L, and E 180 F. 

The noise diode (K 81 A) and its associated 

amplifier are placed uppermost on the rack so 

as to render the shielding as effective as possible. 

In the frequency range of 70—250 kc/s the noise 

amplifier has a gain of 50.000, or 94 db, and the 

noise level is controlled by adjusting the filament 

current of the noise diode. Since it is essential 

that the noise voltage should not drop below a 

certain level, the panel is fitted with a diode volt- 

meter which directly indicates the noise level. 

The Schmitt trigger and Gate 1 are also mounted 

on the upper panel. The logical circuits are all 

mounted on the centre panel, while the lower 

panel carries a stabilized power supply unit which 

feeds all the sensitive circuits located on the upper 

panel. The remaining circuits are voltage-fed 

from DASK. Filament voltage for the noise diode 

is obtained from a 2-volt secondary cell. 

On the panels, and accessible from the front of 

the rack, there is furthermore fitted a number of 

test jacks for use in making adjustments and con- 

trol measurements, and an auxiliary device for 

checking the functioning of the logical circuits is 

also incorporated. Normally, however, no ad- 

justments are needed in starting up the generator 

  

    
Fig. 9. Generator of random numbers. 

which is done quite simply by closing the mains 

switch and turning on the noise-diode filament 

current. It is intended to publish a follow-up 

report in a later issue of TELETEKNIK when 

the generator has been used for a prolonged 

period of time. 

Mathematically Produced Random Numbers 

So as to make it possible to form an opinion 

of the ‘‘quality’’ of the random numbers obtained 

from the generator described in the foregoing, a 

~ 

6: 
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statistical investigation of two types of mathemat- 

ically produced random numbers was carried 

out part passu with an investigation of the num- 

bers generated by the generator. From among the 

many well-known mathematical methods avail- 

able, two methods were chosen which had pre- 

viously been employed in connexion with some 

traffic experiments on BESK, the Swedish elec- 

tronic computer [1]. 

These mathematical methods are both based 

upon the following modification of the Fibonacci 

sequence: 

Ray, = CR, + R,_;) mod 2%, 

In the case of the first of the methods under 

consideration, two independent number-sequen- 

ces A and B are developed in accordance with 

the above formula. Every second number in the 

A-sequence is used in making up the random 

sequence proper, some of the digits at the be- 

ginning of the numbers however being omitted. 

The number of binary digits to be omitted is de- 

fined by 6, = the number consisting of the first 

four binary digits of every second B-number. The 

first 0 up to 15 digits of A can thus be omitted. 

The remaining digits are moved b,, places to the 

left so that, at any rate, the first 25 out of the 40 

positions are occupied by random digits. Only 

the first 20 of these are used, the remaining po- 

sitions being discarded. By repeating this pro- 

cedure we fill up the last 20 positions, thereby 

obtaining a pseudo-random number of 40 digits. 

This modification may be expressed in terms 

of the following formulas: 

Any, = (A, + Ap_y) mod 27° 

B = (B, + B,_,) mod 2* n+i 

== the number censisting of the 

first four digits of B,, 

R, = 2°2(A,) mod 24°—'n 

n = an even number 

Method b: 5b, 

The second method under consideration is 

based upon 17 random numbers of 40 digits, 

Cy, €y, Co, ... Cyg, which are renewed gradually 

as the random numbers are produced. The initial 
values of the C-numbers may be taken from, e.g., 

a table of random numbers. 

As in the case of the modification described 

above, two mutually independent sequences of 

random numbers, A-numbers and B-numbers, 

are developed. The first four binary digits a, of 

every second A-number (n even) are used to 

define two consecutive C-numbers,C, and C, ,,. 
n 

If, say, a, = 0110 = 6, the two C-numbers cho- 

sen will thus be C, and C,. 

These two numbers of the C-sequence are then 

replaced with Cg and Cj): 

Cy = (Cg + Cz) mod 27° 

Cy = (€, + Cg) mod 2%, 

and C, is chosen to be the next random number 

R,, after omission of the first b, binary digits, 

where 6, is the number consisting of the first 

four binary digits of every second B-number. 

Expressed in terms of formulas, the second 

modification may be written thus: 

A, 107" (A, “Fh A,—-t) mod 249 

By sy ~ (By + By_y) mod 2 ntl 

Method e: CJ =(C, + €, 41) mod 2% 
n n rm 

Choa, = (CQ 44 + CZ) mod 2% 
n nr nr 

{ R, = 2° (C) ,,) mod 240~'n 
n 

| n = an even number 

a, = the number consisting of the 

first four digits of A, 

by == the number consisting of the 

first four digits of B, 

Thus, two out of the 17 C-numbers will be re- 

placed each time a random number is produced. 

In the experiments made with the aid of DASK, 

method b occupied storage space in the computer 

corresponding to 28 orders, and it took from a 

minimum of 37 and up to a maximum of 41 

“addition times’ (1 addition time = 56 micro- 

seconds) to produce 40 random digits, correspond- 

ing to 1 binary digit per 50 microseconds, approxi- 

mately. Method ¢ required storage space as for 

72 orders, and a 40-digit number could be pro- 

duced in from 59 to 63 “‘addition times’ at a 

minimum and at a maximum, respectively. 

It should be noticed that the mathematical 

methods here employed deviate from the methods 

described in [1], as Neovius only utilizes the first 

fotr binary digits of each of the 20-digit numbers 

used here. 

Results of Statistical Investigations of Random 

Numbers as Obtained from the Generator Described, 

and as Produced Mathematically by Two Different 

Methods 

The statistical investigations consist in applica- 

tion of the following four tests which were sug-
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gested by Kendall and Smith [8], and which are 

commonly used as standard tests for the random- 

ness of random numbers: 

1. Frequency test 

2. Frequency test on groups 

3. Poker test 

4, Gap test 

These four tests will be described in detail 

below, the theoretical distributions will be stated, 

and the results of the tests will be compared with 

the theoretical distributions by means of the Chi- 

square test. A sequence of random numbers is 

said to fail a test when the x?-value corresponds 

to a probability which falls outside the interval 

0.025 < P(> x?) < 0.975. 

These are the limits usually specified, but they 

are otherwise arbitrarily fixed. With this 5 per 

cent level of significance one will, in five out of 

a hundred cases on an average, in the event of 

agreement between the experimental and the 

theoretical distribution, be willing erroneously 

to reject a correct distribution. 

1. Frequency Test 
In the frequency test, the distribution of 0 and 

1 is determined. In a sequence of N bits the 

number n of figures 1 are counted. The non- 

symmetry may then be expressed in terms of per 

mille of 7 = 4 Nas 

2n—WN 
a= 103, 

N 

Now we produce A sequences of N bits each, 

wishing to determine the distribution of a. The 

theoretical value of the standard deviation in this 

distribution is 

103 

VN 
as a will follow the binomial distribution. The 

experimental value of the standard deviation is 

determined from the expression 

> ai D; 
i 

A 
es   , 

where p; denotes the number of times that a 

assumes the value a,;, and A is the total number 

of sequences, 

Chi-square is determined from the expression 

2 Siam" 

i TW; 

where p; denotes the experimental frequencies, 

and 7; the ideal frequencies. The chi-square dis- 

tribution is tabulated in the form of x? = x? (P, 
f), where P is the probability of x? assuming a 

value greater than a given x?-value, and where 

f is the number of degrees of freedom equal to 

the number of classes minus the number of re- 

straints imposed upon the theoretical frequencies 

a; in fitting them to the observed frequencies. 

There is one restraint here, viz., the total number 

of outcomes. 
The test was applied to A = 200 sequences, of 

N = 105 bits each, of the electronically generated 

numbers, and of the numbers produced mathe- 

matically by method b. The yx? value was deter- 

mined as for a grouping into 16 class intervals. 

Good agreement with the theoretical distribution 

was found in both cases. 

2. Frequency Test on Groups 

A frequency test on groups is carried out by 

determining the relative frequencies of the 2” 

different n-digit numbers. Thus, for groups of 
n = 2, 3, 4, 8 bits, respectively, the frequen- 

cies of the 4, 8, 16, ... 256 possible combina- 

tions of n bits are to be determined. For example, 

if n = 2, the possible outcomes are 00, 01, 10, 

and 11, each having the theoretical relative fre- 

quency of 0.25; in this case there are three de- 

grees of freedom. 

The procedure of testing was as follows: x? was 

computed for N groups of n bits each, 30 times 

for each N- and n-value. The test was carried 

through for four N-values per n, with n assuming 

the values 2, 3, 4, . 8, and with the ratio of 

nto N being so adjusted as to ensure that the 

theoretical number of outcomes within a group 

never is less than 10. 
The physically generated numbers invariably 

showed good agreement with the theoretical dis- 

tributions, whereas either type of mathemati- 

cally produced numbers in one case (viz., for n== 

8 and N = 4000) deviated substantially from the 

theoretical distribution, in that x? departed from 

the 5 per cent level of significance inthe case of 

7 values out of 30 under Method.b and . 

out of 30 under Method e.     
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Frequency tests on groups were also applied to 
longer sequences, y? being computed for the cu- 
mulated groups. The chi-square value was de- 
termined each time the total number of groups 
of n bits was increased by 50,000, n = 2, 3, 4, 
... 8; for each n-value, the test was continued as 
far as to a total number of groups of approximate- 
ly 10%. Both the physically generated numbers 
and those produced mathematically by Method b 
showed good agreement with the theoretical dis- 
tribution, while the numbers produced by Meth- 
od e€ in one case (viz., for n = 2) exhibited a 
significant deviation. 

3. Poker Test 

The poker test is applied to groups containing 
5 consecutive 4-digit binary numbers. These are 
divided into 6 classes: 

AAAAA + AAAAB 
AAABB 

AAABC 

AABBC 

AABCD 

ABCDE 

where A, B, C, D, and E each can assume values 
ranging from 0000 to 1111, and where the order- 
ing of the numbers within the group is indifferent. 
The first class is made up of two subgroups, 
whose respective probabilities are too small for 
the chi-square test to be applicable to them 
separately. The respective theoretical probabil- 
ities of the 6 classes are: 76s) 4, 150G's)4, 
2100(75) 4,3150(74) 4, 27300(75)4, and 32760(7'5) 4. 

The poker test procedure employed was the 
same as described for the frequency test on 
groups. x? was determined 30 times for N groups 
of 5 x 4 bits, N = 2400 and N = 5000. Neither 
in the case of the physically generated numbers 
nor in the cases of the two types of mathematically 
produced numbers did x? depart from the 5 per 
cent level of significance in more than 3 instances 
out of 30, 

The poker test was also applied to longer se- 
quences, x* being computed for the cumulated 
numbers each time the total number of groups 
was increased by 5000. Altogether 2 x 105 groups 
of the three types of numbers were subjected to 
the test. The physically generated numbers and 
the mathematically produced numbers of Type ¢ 
passed the test, while the mathematically pro- 
duced numbers of Type b gave significant y2- 
values. 

4. Gap Test 
By the gap test, the distances between consec- 

utive identical 4-digit binary numbers are de- 
termined. Different intervals ranging from 0 to 46 
and intervals = 47 are counted as for the 16 
different 4-digit numbers, corresponding to a total 
of 48 classes. 

The theoretical probability that consecutive 
identical 4-digit numbers will occur at intervals 
of n, is 2-4(2-4 x 15)", 

The gap test was likewise applied to 30 groups 
of N 4-digit numbers each, with N equal to 1700, 
5000, and 10,000. For all three types of random 
numbers, x? did not depart from the 5 per cent 
level of significance in more than 3 instances out 
of 30. 

Finally, the gap test was applied to cumulated 
sequences, y? being computed each time the 
number was increased by 10,000. The physically 
generated numbers exhibited significant chi-square 
values in one instance, as y? dropped below the 
lower limit of significance. The terminal value of 
x? was within the permissible limits, however. 
Repeated tests revealed no significant chi-square 
values. Method b yielded no significant chi-square 
values, while Method e gave significant values 
above and below the critical region for x7. 

The above-mentioned results of tests applied 
to the mathematically produced numbers were 
all obtained by investigating the same random 
numbers; in other words, the initial values in the 
Fibonacci sequences were the same at the outset 
of all the tests. (The initial values were taken 
from a table of random numbers). 

Conclusion 
By a series of statistical tests it has been 

proved possible to design a generator of random 
numbers on the basis of electrical noise, the tests 
not having revealed any kind of systematism or 
periodicity in the numbers obtained from the 
generator. Similar tests concurrently applied to 
some pseudo-random numbers, produced mathe- 
matically by two different methods, revealed no 
correlation of any importance in these numbers, 

either. 
However, as the mathematically produced ran- 

dom numbers are systematic in principle, even 
though this systematism was not disclosed by 
the tests, the situation may be envisaged that in 
the case of certain applications of the numbers, 
a result may issue which is fundamentally differ- 
ent from the result one would obtain by em-
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ploying random numbers produced by some non- 

systematical method; and in actual practice it 

will be impossible to make sure that the system- 

atism of the mathematically produced random 

numbers will not manifest itself in the results. 

The fact that the mathematically produced 

numbers — unlike those generated by the physi- 

cal method — are reproducible, is of minor im- 

portance now that the use of magnetic-tape mem- 

ories in connexion with electronic computers 

permits very large quantities of bits to be stored. 

The conclusion from this is therefore that in 

many cases the random numbers obtained from 

the generator are to be preferred to the various 

types of pseudo-random numbers produced by 

mathematical methods. 
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