000000
000 0000600

e IBM System/3 Model 12
System Control Programming
HHH Reference Manual

55 o8t Program Number 5705-SC1

0000

D ¢

DOG OO ¢
[

L L

20000

GC21-5130-0
—
T File No. §3-36

0000

0000
0000

First Edition (March 1976)

This edition applies to version 01, modification level 00 of the IBM System/3 Model 12 System
Control Program and to all subsequent versions and modifications until otherwise indicated in
new editions or technical newsletters. Changes are periodically made to the information
herein; before using this publication in connection with the operation of IBM systems, refer to
the latest /BM System/3 Bibliography, GC20-8080, for the editions that are applicable and
current.

Requests for copies of IBM publications should be made to your IBM representative or to the
IBM branch office serving your locality.

A Reader’s Comment Form is at the back of this publication. If the form has been removed,

address your comments to |1BM Corporation, Publications, Department 245, Rochester,
Minnesota 55901.

©International Business Machines Corporation 1976

This manual provides the programmer with the information
he needs to run programs and to use system utility programs
for doing such jobs as preparing disks for use or updating
system libraries.

This publication contains two parts. Part 1 describes opera-
tion control language (OCL) statements; Part 2 describes
system utility programs. For information on the ‘System/3
character sets, see the appendixes.

SYSTEM/3 MODEL 12

System/3 Model 12 is supported by system control program-
ming (SCP) and program products (PPs). The system control
programs and program libraries are resident on the attached
3340 Direct Access Storage Facility.

Two program levels are supported if the dual program
feature (DPF) is present. The scheduling and controlling of
programs in the levels is controlied by operation control
language (OCL) statements.

Model 12 provides a print spool function that enables the
user to group related print jobs on the print queue. Spool-
ing provides greater flexibility in job scheduling and re-
moves many 1/0 device conflicts between program levels.

Support for the directly attached 3741 Data Station/Pro-
grammable Work Station is similar to that for a card reader
or card punch. In this manual, unless otherwise noted,
references to card 1/0 also apply to the directly attached
3741.

Preface

RELATED PUBLICATIONS

1BM System/3 Model 12 Introduction, GC21-5116

® /BM System/3 Model 12 Operator’s Guide, GC21-5144
® [BM System/3 Model 12 User’s Guide, GC21 -5142

® /BM System/3 Model 12 Halt Guide, GC21-5145

® /BM System/3 RPG Il Reference Manual, SC21-7504

® [BM System/3 RPG 1! Additional Topics Programmer’s
Guide, GC21-7567

1BM System/3 Subset American National Standard
COBOL Reference Manual, GC28-6452

® |BM System/3 Subset American National Standard
COBOL Compiler and Library Programmer’s Guide,
SC28-6459

® |BM System/3 Disk FORTRAN 1V Reference Manual,
SC28-6874

® /BM System/3 Models 6, 8, 10, and 12 System Genera-
tion Reference Manual, GC21-5126

PART 1. OCL STATEMENTS

INTRODUCTION TO OCL STATEMENTS .

Organization of Part 1
CODING RULES
Types of Information
General Coding Rules ..
Statements Beginning with //
Statements not Beginning with // .
Continuation
Comments e
STATEMENT DESCRIPTIONS
BSCA Statement
Function .
Placement
Format
Content
CALL Statement
Function .
Placement
Format
Content .
COMPILE Statement
Function .
Placement
Format
Content
Example .
DATE Statement
Function .
Placement
Format
Content
Example . .
FILE Statement (Disk) .
Function .
Placement
Format
Content

Keyword Parameters for Single Volume Disk Files .
Keyword Parameters for Multivolume Files .

Examples . e e

File Processing Considerations
FILE Statement (Tape) .

Function .

Placement

Format

Content P

Multivolume Tape Files
FORMS Statement .
HALT Statement

Function .

Placement

Format

Content
IMAGE Statement

Function .

Placement

Format

Content

Example .

DWW WWNN = = =

JOB Statement
Function .
Placement
Format
Content e

LOAD and LOAD * Statement
Function .
Placement
Format
Content
Example .

LOCKOUT Statement
Function .
Placement
Format
Content

LOG Statement .
Function .
Placement
Format
Content .

NOHALT Statement
Function .
Placement
Format
Content ..

PARTITION Statement
Function .
Placement
Format
Content

PAUSE Statement
Function .
Placement
Format
Content .

PRINTER Statement
Function .
Placement
Format
Content

PUNCH Statement
Function .
Placement
Format
Content .

READER Statement
Function .
Placement
Format
Content

RUN Statement .
Function .
Placement
Format
Content

Contents

34
34
34
34
34
34
34
34
34
35
36
36
36
36
36
36
36
36
36
36
37
37
37
37
37
37
38
38
38
38
38
38
38
38
38
38
38
38
39
39
39
40
40
40
40
40
40
40
40
40
41

41

41

41

41

a1

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

SIMULATE Statement .
Function .
Placement
Format
Content .

SWITCH Statement .
Function .
Placement
Format
Content
Example .

/& Statement
Function .
Placement
Format
Content

/* Statement
Function .
Placement
Format
Content

*(COMMENT) Statements
Function .
Placement
Format
Content

PART 2. SYSTEM UTILITY PROGRAMS . .
INTRODUCTION TO SYSTEM UTILITY PROGRAMS
OCL Statements
Control Statements .
Coding Rules
END Control Statement
Placement of Control Statements in the .Iob Stream
Special Meaning of Capital Letters, Numbers, and
Special Characters .
TAPE INITIALIZATION PROGRA!VI $TtNlT
Control Statement Summary
Parameter Summary
OCL Considerations .
Message far Tape Initialization
Printout of Volume Label .
Meaning of Volume Label Informatlon .
TAPE ERROR SUMMARY PROGRAM—$TVES
Error Logging Format
OCL Considerations
DISK INITIALIZATION PROGRAM $INIT
Control Statement Summary
Parameter Summary
Parameter Descriptions .
TYPE Parameter (UIN) .
UNIT Parameter (UIN) .
ERASE Parameter (UiN)
VERIFY Parameter (UIN) .
Surface Analysis . .
PACK Parameter (VOL)
ID (ldentification) Parameter (VOL)
NAME360 Parameter (VOL)
OLDPACK Parameter (VOL)
OCL Considerations . e
Examples . . . P
Primary Inmallzatton of Two Dasks
Messages for Disk Initialization
ALTERNATE TRACK ASSIGNMENT PROGRAM—
$SALT
Control Statement Summary

vi

41

41

41

41

41

41

41

42
42
42
42
42
42
42
42
42
42
42
42
42
42
43
43
43
43
43

45
45
45
46
46
46
47

47
47
48
49
49
49
50
50
52
52
53
53
54
55
55
55
56
56
56
56
57
57
57
57
58
58
58
59

59
59

Parameter Summary: AT (Alternate) Statement
Parameter Descriptions .

PACK Parameter

UNIT Parameter

VERIFY Parameter .
OCL Considerations
Examples . .

Conditional Assugnment .
Messages for Alternate Track Asslgnment

ALTERNATE TRACK REBUILD PROGRAM— $BUILD .

Control Statement Summary P
Parameter and Substitute Data Summary
Parameter and Substitute Data Descriptions .
PACK Parameter
UNIT Parameter
TRACK Parameter
LENGTH Parameter
DISP {Displacement) Parameter
Substitute Data .
OCL Considerations
Examples
Correcting Characters onan Alternate Track
FILE AND VOLUME L.ABEL DISPLAY
PROGRAM—$LABEL.
Control Statement Summary
Parameter Summary (Cisplay Statement)
Parameter Descriptions .
UNIT Parameter .
LABEL Parameter
SORT Parameter
FORMAT Parameter
Entire Contents of VTOC
Meaning of VTOC Information
File Information Only
OCL Considerations
Example . . .
FILE DELETE PROGRAM $DELET
Control Statement Summary
Parameter Summary
Parameter Descriptions .
PACK Parameter
UNIT Parameter
LABEL Parameter
DATE Parameter
DATA Parameter
OCL Considerations
Examples
Deleting One of Several Fnles Havmg the Same Name
Freeing Allocated Eiut Unused Space on a Disk .
DUMP/RESTORE PROGRAM—$DCOPY
Control Statement Summary
Parameter Summary
Parameter Descriptions . .
FROM and TO Parameters (COPYPACK)
PACK Parameter (COPYPACK)
SYSTEM Parameter (COPYPACK)
BACKUP Parameter (COPYPACK)
OCL Considerations
FILE Statement Conmderatlons
Statement Entries
Messages for DUMF/R ESTORE

60
60
60
60
60
61

61

61

62
62
62
63
63
63
63
63
63
63
64
64
64
64

66
66
67
67
67
67
67
67
67
69
71

71

72
73
74
75
75
75
75
76
76
76
77
77
77
78
79
79
80
80
&0
81

81

81

81

81

82
82

Examples
FILE Statement: From Dusk to Tape
Control Statements .
FILE Statement: From Tape to D|sk
Control Statement: From Disk to Diskette
Programming Considerations

COPY/DUMP PROGRAM—$COPY

Control Statement Summary

Parameter Summary

Parameter Descriptions .
FROM and TO Parameters (COPYPACK)
OUTPUT Parameters (COPYFILE)
INPUT Parameter (COPYFILE)
LENGTH Parameter (COPYFILE)
DELETE Parameter (COPYFILE)

REORG (Reorganize) Parameter (COPYFILE) .

WORK Parameter (COPYFILE)

SELECT KEY and SELECT PKY Parameters (SFLECT)

SELECT RECORD Parameters {(SELECT)
FILE Parameter (SELECT) .
LENGTH and LOCATION Parameters (KEY)
CYLINDER Parameter (ACCESS)
SECTOR Parameter (ACCESS)
TRACK Parameter (ACCESS) .
RECL Parameter (ACCESS)
FROM Parameter (ACCESS)
DISP Parameter (ACCESS) .
Copying Multivolume Files .
Maintaining Correct Date and Volume Sequence
Nurnbers
Maintaining Correct Relatnve Record Numbers
Direct File Attributes .
Copy Multivolume Indexed Fules .
Card and Diskette Considerations ($COPY) .
Card or Diskette Input .
Card or Diskette Qutput
Tape File Considerations
OCL Considerations .
Examples .
SIMULATION AREA PROGRAM $SCOPY
Control Statement Summary
Parameter Summary
Parameter Descriptions .
FROM and TO Parameters (COPYAR EA)
PACK Parameter (COPYAREA)
AREA Parameter (COPYAREA)
TONAME Parameter (COPYAREA)
SYSTEM Parameter (COPYAREA)
FROM Parameter (CLEAR)
PACK Parameter (CLEAR)
AREA Parameter {CLEAR)
CLRNAME Parameter (CLEAR)
ID Parameter (CLEAR)
TYPE Parameter (CLEAR)
TO Parameter (NEWNAME)
PACK Parameter (NEWNAME)
AREA Parameter (NEWNAME)
TONAME Parameter (NEWNAME)
PRINT Parameter (NAMES)
FROM and TO Parameters (MOVE)
PACK Parameter (MOVE) .

83
83
83
84
85
85
86
87
89
92
92
92
92
92
93
93
94
94
95
95
95
95
95
95
95
95
95
96

96
96
96
96.1
96.1
96.1
96.1
96.1
96.1
97

. 108.1

109
109
110
110
110
110
11
111
111
111
11
111
111
11
111
111
112
112
112
112
112

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

AREA Parameter (MOVE) .
TONAME Parameter (MOVE) .
ID Parameter (MOVE)
SYSTEM Parameter (MOVE)
CLRNAME Parameter {(MOVE)
FROM and TO Parameter (COPYIPL)
PACK Parameter (COPYIPL)
OCL Considerations
Examples
LIBRARY MAINTENANCE PROGRAM—$MAINT
Library Description . .
Location of Libraries on DISk .
Organization of Library Entries
Organization of this Section
Allocate Function
Uses .
Control Statement Summary
Considerations and Restrictions
Parameter Summary
Parameter Descriptions .
Using the Allocate Function
Copy Function
Uses
Control Statement Summarv
Parameter Summary
Library Directories .
Naming Library Entries
Retain Types
Using the Copy Functlon
Delete Function .
Uses
Considerations and Restrlctlons
Control Statement Summary
Parameter Summary
Modify Function
Uses .
Considerations and Restnctlons
Control Statement Summary
Parameter Summary . .
Remove, Replace, Insert Parameters .
Rename Function
Uses .
Control Statement Summary
Considerations and Restrictions
Parameter Summary
OCL Considerations
Examples
Reassign Alternate Track Program—$RSALT
Control Statement Summary
Parameter Summary
Parameter Descriptions .
OCL Considerations
Examples .
RECOVER INDEX PROGRAM $RINDX
OCL Considerations.
Considerations and Restrlctnons
Examples .

APPENDIX A. IBM SYSTEM/3 STANDARD
CHARACTER SET

INDEX

112
112
112
112
12
112
113
113
113
116
116
117
117
118
119
19
119
120

-120.1
121
123
126
126
127
131
133
133
133
134
142
142
142
143
144
145
145
145
146
147
148
148
148
148
148
149
149
150
160
160
160
160
160
160

. 1601
. 160.3
. 160.3
. 160.4

161

163

vii

viii

Introduction to OCL Statements

Operation control language (OCL) is your means of com-
munication with the IBM System/3 Model 12 System
Control Program. You must write a set of OCL state-
ments for each program you want to run. Based on the
information supplied by the OCL statements, the System
Control Program will load and run your programs or
perform system utility functions.

System control programs must be in main storage before
your jobs can be run. These programs are located on disk
and are brought into storage by a procedure called initial

program load (IPL). IPL is performed by the operator when

the system is powered on. For more information on IPL,

see /BM System/3 Model 12 Operator’s Guide, GC21-5142.

The DATE statement is part of the IPL process and must
precede the first LOAD or CALL statement of your pro-

gram. (See DATE Statement under Statement Descriptions

for more information.)

Part 1. OCL Statements

ORGANIZATION OF PART 1

Part 1 is divided into:

Coding Rules. Defines the general contents of the OCL
statements and explains the rules for writing the state-
ments. '

Statement Descriptions. Explains the functions, format,
and contents of each OCL statement, and the places in
the job stream where the statement may be used.

Statement Examples. Presents and explains a job stream
containing most of the OCL statements.

Introduction to OCL Statements 1

Coding Rules
TYPES OF INFORMATION

Operation control language (OCL) statements contain, at
most, three types of information: a name or comment, a
statement identifier, and parameters. A name on the LOAD
or JOB statement supplies a label to the unit of work (a job
or a job group). The comment allows you to assign a state-
ment identifier for ready reference. A statement identifier
distinguishes one statement from another. A parameter is
additional information supplied with the statement identi-
fier. Figure 1 shows the general form of OCL statements.

// Name or - ldentifier Parameter 1, Parameter 2, ..., Parameter n

Comment

Figure 1. General Form of OCL Statements

Name

The name is required only on the JOB statement. It is also
used by the system if given on a LOAD statement.

Statement |dentifiers

Every OCL statement needs one of the following identifiers:

BSCA JOoB PUNCH
CALL LOAD READER
COMPILE LOCKOUT RUN
DATE LOG SIMULATE
FILE NOHALT SWITCH
FORMS PARTITION /&

HALT PAUSE * (asterisk)
IMAGE PRINTER

LOAD is an example of a statement identifier.

Parameters

Some statements need parameters; others do not. (See
Statement Descriptions for an explanation of the statements
that need parameters.) Parameters can be either codes or
data. A code is a word or group of characters that has a
certain meaning. Dlata is information such as the names,
locations, and lengths of files on disk. (See Statement
Descriptions for data and code restrictions on parameters.)
In the following example, PROG2 is the name of an RPG I|
object program, and F1 is a code that stands for simulation
area F1 on drive 1, PROG2 is a data parameter and F1 is a
code parameter. (For additional information on simulation,
see Simulation on 3340 in the I1BM System/3 Model 12
User’s Guide, GC21-5142.)

-
H
5]

12 16 20 24 28 32 36

Some statements require certain words in parameters to tell
one parameter from another. The words are called key-
words. Parameters containing keywords are called key-
word parameters. In Figure 2, NAME-MASTER, PACK-
VOL1, and UNIT-F1 are keyword parameters. NAME,
PACK, and UNIT are keywords. MASTER and VOL1 are
data parameters. R1 is a code parameter. There should
always be a hyphen between the keyword and the code or
data parameter.

-
H

8 12 16 20 24 28 32 36

(T TANdE WaMe

MAlS[TIEIR

h~)
D
[9)
x
]
<
()
o~
Y
S
-~
~
T
£
e,

Figure 2. Keyword Parameters

GENERAL CODING-RULES

In Part 1 of this manual, the numbers that appear above
statement formats and examples indicate the card columns
or line positions occupied by the statements. In statement
formats, special characters, such as //, and words written in
capital letters are information that must be used exactly as
shown. Words written in small letters, such as code,
program-name, and unit, represent information that you
must supply.

Braces (; E) sometimes appear in parameters shown in
statement summaries and parameter summaries. They

are not part of the parameters. They simply indicate that
you must choose one of several values to complete the
parameter, For example, RETAIN- ;;l.- means you can use
either RETAIN-T or RETAIN-P.

Statements Beginning with //

The rules for coding the statements are as follows (the term
position refers to either card column or line position):

® Place the // in positions 1 and 2.

® Leave one or more blanks between the // and the word
that forms the statement identifier (LOAD, RUN, CALL,
etc).

® Leave one or more blanks between the end of the state-
ment identifier and the first parameter.

® [f you need more than one-parameter, use a comma to
separate them. No blanks are allowed within or between
parameters. (For the exception to this rule, see the
description for the HIKEY parameter under F/LE State-
ment (Disk)). Anything following the first blank is con-
sidered a comment (see Comments).

® |f you are writing keyword parameters, place the key-
word first and use a hyphen to separate the keyword
from the code or data parameter.

® |f the parameter is not a keyword parameter, write the
parameters in the order in which they are discussed in
this manual.

Figure 3 illustrates the coding rules. The statement identi-
fiers are LOAD and FILE. The parameters are PROG1, R1,
NAME-MASTER, UNIT-R1, and PACK-VOL1. The last
three parameters are keyword parameters,

1 4 8 12 16 20 24 28 32 36
LnRAERERGELCER

// A/lLlE amel-Malsirlel” i \7-1- 4,
J\/ Alclkl-lnoll 1 |

Figure 3. lllustration of General Coding Rules

Statements not Beginning with //

* and /& statements do not require // preceding them when
coded. (See Statement Descriptions for * and /& state-
ments.)

Continuation

All OCL statements except FILE, PRINTER, COMPILE,
and FORMS must not exceed 96 characters, including
blanks and comments. (Data for the IMAGE statement re-
quires continuation for the record containing the chain
image characters, but the data follows different continua-
tion rules. See IMAGE Statement under Statement
Descriptions for more information.)

The continuation rules are as follows:

® Place a comma after the last parameter in every record
except the last. The comma, followed by. a blank, tells
the system that the statement is continued in the next
record.

® Begin each new record with a // in positions 1 and 2.

® Leave one or more blanks between the // and the first
parameter in the record. (See HIKEY Parameter under

FILE Statement (Disk) for exception to this rule.)

Figure 4 illustrates the continuation rules.

1 4 8 12 16 20 24 28 32 36
il g 11 IMAle]- MaslTelR] |

il L|ABlE|L-|A /||| Ve, | DATIE-1d7|219]619]
/|/ UM/TI-IRIY | AALCIK - IVIOIL

Figure 4. Nlustration of Continuation Rules

Coding Rules 3

Comments

You can include comments in the following places in your

statements:

® Following the // in statements beginning with //. Begin
the comment in position 3, immediately following the
//. You can use up to 8 characters without blanks.
Leave one or more blanks between the comment and the
word forming the statement identifier. Figure 5 contains
such a comment. The word BILLING is the comment.
(On a JOB statement the word BILLING is the group-
name, and on a LOAD statement BILLING is the job-

name.)

® After the last parameter. Leave one or more blanks
between the last parameter and your comment. The
comment can be any combination of characters. If the
statement is continued in subsequent cards or lines, you
can place comments after the last parameter in any of

the cards or lines.

® After statements without parameters. Leave one or
more blanks between the statement identifier and your
comment. Examples of statements without parameters
are: /&, // PAUSE, and // RUN. (Statements with all
parameters optional and unused cannot contain this

type of comment.)

In addition to writing comments within your OCL state-
ments, you can include whole cards or lines of comments.
The OCL comment statement is provided for that purpose.
(See * (Comment) Statements under Statement Descrip-

tions for more information.)

Py
H

20

24

28

32 36

Statement Descriptions

Each OCL statement is described separately in this section.
The following information is given for each statement:

® The function of the statement.

® The placement of the statement in regard to other state-
ments and the circumstances under which the statement
is needed.

® The format of the statement.

® The contents of the statement, explaining the parameters
that can be used in the statement.

Figure 6 gives the function, placement, and.restrictions on
use for each OCL statement.

Figure 7 describes the contents of the OCL statements. It is
meant for reference only. If you are not familiar with an
entry, or you do not know when to use or omit it, refer to
the proper statement in the remainder of this section.

When using Figure 7, remember that words written in small
letters (such as filename or value) require a choice on your
part, depending on the functions you want the statement to
perform. Refer to Figure 7 to see which parameters are
available. Capitalized parameters must be coded along with
the data or code parameter.

N~

Figure 5, Comment Following //

Placement

Statement Function Statement Appears Statement Appears Restrictions On Use

in Job Stream in a Procedure

// BSCA Changes the BSCA line Must follow LOAD or Must follow the LOAD
number. CALL statement and statement and precede

precede the RUN state- the RUN statement (if
ment. RUN is used).

// CALL Identifies procedure to Must precede the Indicates chained Can be no more than nine
be merged into job RUN statement. procedures. levels of nested chained
stream and the simula- procedures.
tion area containing the
source library from
which to read the
procedure,

// COMPILE Tells the system where Must follow LOAD or CALL Must follow the LOAD
the source program to statement and precede the statement and precede the
be compiled is located RUN statement. RUN statement (if RUN is
and where to place the used).
object program.

// DATE Supplies the system with Must follow LOAD or CALL Must follow the LOAD Must be supplied during the
a date; this date is given statement and precede the statement and precede the initial program load. If
to disk files being created. RUN statement except at RUN statement (if RUN is used after IPL, the effect of

IPL time, when it must used). the statement is for that job
precede the first LOAD only.
or CALL statement.

/!l FILE Supplies information Must follow LOAD or CALL Must follow the 'LOAD Required for every new file
about the file to the statement and precede the statement and precede the created and existing files being
system. RUN statement. RUN statement (if RUN used.

is used).

// FORMS Same as the PRINTER Cannot be used to override

statement. the PRINTER statement in
a procedure.

/l HALT Instructs system to halt Anywhere among the Must precede the RUN
when program ends; OCL statements. statement (if RUN is
cancels the effect of the used).

NOHALT statement.

// IMAGE Tells the system to re- Anywhere among the Must precede the Required if the printer
place the chain-image OCL statements. RUN statement (if chain has been changed.
area with characters RUN is used).
indicated in the fol-
lowing data statements
or characters keyed in
or read from source
library.

//JOB Allows you to group Must precede the first Cannot be used in a

or print jobs together on LOAD or CALL state- procedure.
//groupname JOB the spool file. ment for a group.

Figure 6 (Part 1 of 3). Table of OCL Statements

Statement Descriptions

5

Placement

//jobname LOAD

// LOAD *
or

//jobname
LOAD *

/I LOCKOUT

/ LOG

// NOHALT

// PARTITION

// PAUSE

// PRINTER

// PUNCH

the simulation area that
contains the object
library from which it

is to be loaded.

Indicates that the object
program will be loaded
from the system input
device following the
RUN statement.

Disables the other pro-
gram level to allow
fast job initiation in
the program level in
which the LOCKOUT
statement was read.

Instructs system to start
or stop printing OCL
statements and codes,
indicates the device to
be used to print them,
and controls page eject
at the end of job.

Instructs system to
continue without
stopping when a
program ends.
Causes certain halts
to default.

Guarantees a minimum
size to level 2 for a
program in that level.

Tells the program to stop
in order to give the
operator time to per-
form a function.
Operator must restart
program.

Enables you to describe
the functions performed
by the system print
device and control
options related to print
spooling.

Enables you to change
the system punch device.

the JOB statement (if
JOB is used).

Must precede the RUN
statement. Must follow
the JOB statement (if
JOB is used).”

Anywhere among the
OCL statements.

Anywhere among the
OCL statements.

Anywhere among the
OCL statements

Anywhere among the
OCL statements.

Anywhere among the
OCL statements.

Anywhere among the
OCL statements.

Anywhere among the
OCL statements.

used). Only one LOAD
statement is allowed in
a procedure.

Must precede the RUN
statement (if RUN is
used). Only one LOAD *
statement is allowed in a
procedure.

Must precede the RUN
statement (if RUN is
used).

Must precede the RUN
statement (if RUN is
used).

Must precede the RUN
statement (if RUN is
used).

Must precede the RUN
statement (if RUN is
used).

Must precede the
RUN statement (if
RUN is used).

Must precede the RUN
statement (if RUN is
used). Cannot be used
to override the FORMS
statement in a procedure.

Must precede the RUN
statement (if RUN is
used).

Statement Function Statement Appears Statement Appaars Restrictions On Use
in Job Stream in a Procedure
// LOAD Identifies the program Must precede the RUN Must precede the RUN
or to be run and indicates statement. Must follow statement (if RUN is

LOAD * cannot be used in
program level 2.

ignored on a non-DPF
system.

Device cannot be
specified in program
level 2.

Cannot be submitted in
program level 2 or when
program level 2 is processing.

Figure 6 (Part 2.of 3). Table of OCL Statements

Placement

// SIMUL.ATE

/1 SWITCH

&

* (Comment)

OCL statements for a
program and tells the
system to run the
program.

Instructs the system to
turn simulation ON or
OFF on D2. This also
enables or disables R2
and F2,

Used to set one or more
external indicators on
or off or leave the in-
dicator as it is.

Provides OCL security
from previous job.

Used to explain the job
or give the operator
instructions; does not
affect the program in
operation.

statement.

Must not come between
a LOAD or CALL and a
RUN.

Must follow LOAD or
CALL statement and
precede the RUN
statement.

Recommended as the first
statement of a job.

Anywhere.

Cannot be used in &
procedure.

Must follow the LOAD
statement and precede the
RUN statement (if RUN
is used).

Not allowed in a
procedure.

Anywhere.

Statement Function Statement Appears Statement Appears Restrictions On Use
in Job Stream in a Procedure
// READER Changes the system input Must precede LOAD or Must precede the LOAD In a procedure, OCL state-
device used to read OCL CALL statement or follow statement (if LOAD is ments are not read from
statements. the RUN statement and used). the input device until the
precede the next LOAD procedure is completely
or CALL statement. executed.
// RUN Indicates the end of the Must be the last OCL May be the last statement. Required in the job stream

for each program which is
to be run.

Other program level must
be at end of job. A rollin
cannot be pending.

Can be used in the job stream

only.

Figure 6 (Part 3 of 3). Table of OCL Statements

Statement Descriptions

7

Statement Parameter Code Meaning of Code
// BSCA LINE LINE-1 Change all BSCA DTF line codes to the line number
2 specified.
// CALL procedure name name Name that identifies the procedure in the source
library.
unit R1 Simulation area containing the procedure (see
R2 note).
F1
F2
// COMPILE SOURCE SOURCE-name Name of source program.
UNIT UNIT-R1 Simulaticn area that contains the source library {see
R2 note).
F1
F2
OBJECT OBJECT-R1 Where to place the object program (see note).
R2 Does not apply to object program placement for
F1 COBOL aor FORTRAN compilers.
F2
// DATE date mmddyy or System date or date within a set of statements.
ddmmyy
// FILE NAME NAME-filename Name the program uses to refer to the file,
(Disk
Files) UNIT UNIT-R1 Simulaticon area that contains or will contain the file
R2 (see note].
F1
F2
D1 Location of the main data area that contains or will
D2 contain the file.
PACK PACK-name Name of disk that contains or will contain the file.
LABEL LABEL-filename Name by which your file is identified on disk.
RECORDS or RECORDS-number of Amount of space needed on a disk for a file.
TRACKS TRACKS-number
LOCATION LOCATION-track Number of track on which file begins or is to begin
number (simulation area only).
LOCATION-cylinder Cylinder number on which file begins or is to begin.
number Track assumed zero (main data area only).
LOCATION-cylinder Cylinder number, track number on which file begins
number/track number or is to begin {main data area only).
‘RETAIN RETAIN-T Temporary file
S Scratch file
P Permanent file
A Reactivats scratch file {(simulation area only).

Note: For an explanation of the unit codes, see Simulation Area in the IBM System/3 Model 12 User’s Guide, GC21-5142.

Figure 7 (Part 1 of 5). Table of Parameters

Statament Parameter Code Meaning of Code
DATE DATE-mmddyy The date the file was created.
ddmmyy
HIKEY HIKEY-'highest List of highest key fields
key fields allowed’ allowed oneach pack.
// FILE NAME NAME-filename Name that the program uses to refer to the file.
(Tape File)
UNIT UNIT-T1 Where the tape that.contains or will contain the
T2 file is mounted.
T3
T4
REEL REEL-name Name of the tape that contains or will contain the
file.
-NL The tape is not labeled.
-NS The tape contains non-standard labels.
-BLP Bypass label processing of standard labeled tapes.
LABEL LABEL-filename Name by which your file is identified on tape.
or
LABEL-‘character
string’
DATE DATE-mmddyy Tells the system the date the file was created.
ddmmyy
RETAIN RETAIN-nnn The number of days a file should be retained before
it expires.
BLKL BLKL-block length The number of bytes in a physical block of tape.
RECL RECL-record length The number of bytes in a logical record.
RECFM RECFM-F Fixed length, unblocked records.
-V Variable length, unblocked records.
-D Variable length, unblocked, D-type ASCI| records.
-FB Fixed length, blocked records.
-VB Variable length, blocked records.
-DB Variable length, blocked, D-type ASCIH records.
END END-LEAVE The tape remains in its present position after the
file is processed.
-UNLOAD The tape is rewound and unloaded after processing.
-REWIND The tape is rewound after processing.

Figure 7 (Part 2 of 5). Table of Parameters

Statement Descriptions

9

Same as PRINTER
statement.

/l FORMS

// HALT none

// IMAGE format

number
name

unit

-ODD

Same as PRINTER
statement.

HEX

CHAR

MEM
value
name
R1
R2

F1
F2

Statement Parameter Code Meaning of Code
DENSITY DENSITY-200 The tape will be written at 200 bpi (bits per inch)
density.
-656 The tape will be written at 556 bpi density.
-800 The tape will be written at 800 bpi density.
-1600 The tape will be written at 1,600 bpi density.
ASCII ASCII-YES An ASCH file is being processed.
-NO An EBCDIC file is being processed.
DEFER DEFER-YES The tape volume will be mounted later.
-NO The tape is presently mounted.
CONVERT CONVERT-ON Data read from or written to a 7-track tape file will
be converted.
-OFF Data read from or written to a 7-track tape file will
not be converted.
TRANSLATE TRANSLATE-ON Data read from or written to a 7-track tape file will
be translated.
-OFF Data read from or written to a 7-track tape file will
not be translated.
PARITY PARITY-EVEN The 7-track: tape file will be read or written in even

parity.

The 7-track tape file will be read or written in odd
parity.

Same as PRINTER statement.

Indicates characters from the system input device
are in hexadecimal form.

Indicates characters from the system input device
are in EBCDIC form,

Indicates characters are from the source library.
Number of new characters.
Identifies the characters in the library.

Simulation area that contains the library (see note).

Figure 7 (Part 3 of 5). Table of Parameters

10

//jobname LOAD

// LOAD
or
//jobname LOAD

// LOCKOUT

/1 LOG

// NOHALT

/I PARTITION

/I PAUSE

/I PRINTER

program name

unit

none

code

mode

SEVERITY

size

none

DEVICE

LINES

FORMSNO

name
R1
R2
F1
F2
CONSOLE
PRINTER
QFF
ON
EJECT
NOEJECT
1
2
SEVERITY- 4
8
value
5203
DEVICE-5203L
5203R
LINES-number

FORMSNO-forms
number

Statement Parameter Code Meaning of Code
0
1
//groupname JOB PRIORITY PRIORITY- g Specifies the priority of jobs in the spool file.
Default is 1.
4
5
YES . . . ies
SPOOL SPOOL-< === Indicates whether the group of jobs identified by the
N . R
groupname is to be spooled. Default is Y ES.
// LGAD asterisk * Program is to be loaded from the system input device.
or

Name of program that is to be loaded from disk.

Simulation area that contains the object library (see
note).

Use printer-keyboard as logging device.

Use printer as logging device.

Stop printing.

Start printing.

Eject a page at end of job.

Suppress page eject at end of job.

When you use the spool writer, an eject occurs at the

start of every job, regardless of thé mode specified in
the LOG statement.

Tells the system to select default options for error
halts.

Minimum size of program level 2 in decimal bytes.

5203/6203L specifies left carriage 5203 or 1403.
5203R specifies right carriage 5203.

Specifies the number of print lines per page.

Informs the operator which forms type should be
mounted on the printer.

Nota: For an explanation of the unit codes, see Simulation Area in the /IBM System/3 Model 12 User’s Guide, GC21-5142.

Figure 7 (Part 4 of 6). Table of Parameters

Statement Descriptions

11

Statement Parameter Code Meaning of Code
COPIES COPIES-number With spooling active, allows you to obtain more than
one copy of each job’s printed output.
YES . - -
DEFER DEFER-W Allows you to begin printing a job's spooled output
before the job completes execution (DEFER-NO).
Default is DEFER-YES.
YES .
ALIGN ALIGN-I\|0 Allows you to perform forms alignment for spooled
—_— printed output (ALIGN-YES). Default is ALIGN-NO.
//'PUNCH system punch device MFCU2 Secondary hopper of MFCU,
MFCU1 Primary hopper of MFCU.
1442 Card Read/Punch.
3741 Data Station/Programmable Work Station.
// READER system input device CONSOLE Printer-keyboard.
MFCU2 Secondary hopper of MFCU,
MFCU1 Primary hopper of MFCU.
1442 Card Read/Punch
3741 Data Station/Programmable Work Station.
// RUN none
// SIMULATE status ON Enables/disables simulation on drive 2. // SIMULATE
OFF OFF allows offline multivolume files to be processed
on D2,
// SWITCH indicator-settings Refer to SWITCH
Statement under
Statement Descriptions
& none
* (Comment) none

Figure 7 (Part 5 of 5). Table of Parameters

BSCA STATEMENT

Function

Placement

The BSCA statement must follow the LOAD or CALL state-

ment and precede the RUN statement.

The BSCA statement allows you to change all BSCA (binary
synchronous communications adapter) line specifications

in your program; therefore, you can use either BSCA line

without recompiling the program. (The program must have

been compiled on a system that had both BSCA lines speci-

fied during system generation.) If the BSCA statement is
not entered, the line specifications in the program are not

changed.

12

Format

// BSCA parameter.

Content

The parameter is a keyword parameter. The parameter is
LINE-code. The codes are as follows:

Code Meaning
1 Change all BSCA line specifications to BSCA
line 1.
2 Change all BSCA line specifications to BSCA
line 2.
CALL STATEMENT
Function

CALL statements are needed only when you want to merge
procedures into the job stream.

To understand the function of the CALL statement, you
must understand the relationship between the job stream
and procedures. The job stream contains the OCL state-
ments that control the system. The system reads them
from the system input device. Procedures are sets of OCL
statements in a source library on a simulation area. They
have no effect on the system until they are merged into
the job stream.

You can modify the procedure identified by a CALL state-
ment, by providing other OCL statements (procedure over-
ride statements, see Changing Parameters in the /1BM
System/3 Model 12 User’s Guide, GC21-5142) after the
CALL statement. These statements temporarily modify the
procedure. The last statement of the CALL sequence must
be a RUN statement. The RUN statement is required, how-
ever, whether or not you supply other OCL statements.
(For further explanations, see Procedures in the /IBM
System/3 Model 12 User’s Guide, GC21-5142.)

Placement

CALL statements can be used in the job stream or in a
procedure. They are, in effect, replaced by the procedures
they identify. The last statement of the CALL sequence
must be a RUN statement.

Format

// CALL procedure-name,unit

Content

Procedure-name: The procedure-name is the name that
identifies the procedure in the source library. You supply
the procedure-name in the Library Maintenance control
statements when you use the program to place the pro-
cedure in the library. (See Library Maintenance in Part 2
of this manual for restrictions on procedure-name.)

Unit: The unit parameter is a code indicating which simu-
lation area contains the procedure. The codes are R1, F1,
R2, and F2.

COMPILE STATEMENT
Function

The COMPILE statement tells the system two things: (1)
where the source program to be compiled is located if it is
coming from a source library; (2) where the object program
is to be placed. (An object program is a source program
that has been compiled or translated into machine language.)

Placement

The COMPILE statement must be within the set of OCL
statements that apply to the compilation. The COMPILE
statement must follow the LOAD or CALL statement and
precede the RUN statement.

Format

// COMPILE parameters

Content

All the parameters are keyword parameters (keywords are in
capital letters). The keywords are: SOURCE, UNIT, and
OBJECT.

SOURCE: The SOURCE parameter tells the system the
name of the source program. The keyword SOURCE must
be followed by the name of a source program. The name is
the name by which the source program'is identified in the
source library.

Statement Descriptions 13

You can place source programs in a source library by using
the Library Maintenance program. The program name you
supply in Library Maintenance control statements is the
name used to identify the source program in the library.
(For more information, see Library Maintenance in Part 2 of
this manual.)

If the SOURCE parameter is not used, the source program is
assumed to be in the job stream following the RUN state-
ment.,

The SOURCE parameter must always be accompanied by
the UNIT parameter.

UNIT: The UNIT parameter is used only when the
SOURCE parameter is used.

The UNIT parameter is a code indicating which simulation
area contains the source library. The codes are R1, F1, R2,
and F2,

OBJECT: The OBJECT parameter tells the system where to
place the object program. The OBJECT parameter may be
specified without using the SOURCE and UNIT parameters.
The codes which are used to indicate the simulation area in
which the object program is to be placed are R1, F1, R2,
and F2.

Note: |If the OBJECT parameter is omitted, it is assumed
that the object program is to be placed in the same simula-
tion area as the compiler. The OBJECT parameter does not
affect FORTRAN or COBOL object programs.

Example

The following sample COMPILE statement tells the system
that the source program with the name PROG3 is located
in the simulation area F1 on drive 1.

40

N1 |clomMA g Islolv]Rlclel-lARldlel3 JviM/[r-IA4] lolallelc

The parameter OBJECT-R1 tells the system to place the
object program in the simulation area R1 on drive 1.

14

DATE STATEMENT
Function

The DATE statement gives the system a date, called the
system date. The system date is referred to by RPG Il
field names UDATE, UMONTH, UDAY, and UYEAR.
The preceding field names can also be used in a reference
to the date given to the disk files when they were created.

A DATE statement within the set of statements for a pro-
gram changes the system date, but only for that program.
When the program ends, the date supplied in the DATE
statement at IPL time is again used. There can only be one
DATE statement per job.

Placement

A DATE statement is always required before the first LOAD
or CALL statement after initial program load (IPL).

A DATE statement can also appear within any of the sets of
statements for your programs. The DATE statement must
follow the LOAD or CALL statement and precede the RUN
statement.

Format

// DATE date

Content

The system date can be in either of two formats: month-
day-year (mmddyy) or day-month-year (ddmmyy). You
must specify the format at system generation time. (See
IBM System/3 Models 6, 8, 10, and 12 System Genera-
tion Reference Manual, GC21-56126, for more information
on system generation.) The date you specify must be in
that format.

Example

The date can be written with or without punctuation. For
example, February 25, 1976, could be specified in any one
of the following ways:

02-25-76
25-02-76
022576
250276

Month, day, and year must each be two-digit numbers, but
leading zeros in month and day may be omitted when
punctuation is used (2-25-76 or 25-2-76). In the punctuated
format, any characters except commas, quotes, numbers, and
blanks can be used as punctuation.

FILE STATEMENT (DISK)
Function

The FILE statement provides information about the files on
a data module so that disk system management can read and
write records for user programs.

Placement

The 3340 is referenced through OCL statements at execu-
tion time. During operation in a DPF environment on the
Model 12, either or both drives can be addressed by both
program levels, but the same file cannot be addressed by
both program levels at the same time unless:

® Both program levels are using a file as input only

® One program level is using a file as input and the other is
using it as update

Files can reside in the main data area or in the simulation
areas. A FILE statement must be provided for each file

used by your programs. It must be between the LOAD and
RUN or CALL and RUN statements for each program using
the 3340. Split cylinder files are not supported on the 3340.
The maximum number of files allowed is explained in
Maximum Number of Files in the IBM System/3 Model 12
User’s Guide, GC21-5142,

Format

// FILE parameters

Statement Descriptions 15

Content

the file name:
Figure 8 summarizes the keywords of the FILE statement.

The following sections provide additional information Program File Name
about the keyword parameters.
Copy/Dump Input COPYIN
Output COPYO
Keyword Required
Keyword Parameter or Optional Disk Sort Input INPUT
Work WORK (optional)
NAME Filename Required Output OUTPUT
PACK Name Required
- Assembler Input $SOURCE
UNIT Code Required Output $WORK
LABEL Filename Optional Work $WORK 2
DATE Date Optional
- COBOL Input $SOURCE
RETAIN Code Optlonal Compiler Work $WORK
RECORDS or {Number Required for creat- Work $WORKX
TRACKS Number ing files
LOCATION |Cylinder number | Optional FORTRAN Input $SOURCE
(main data area Compiler Work $WORK
only)
T ber/ | Ontional RPG 11 Input $SOURCE
ylinder number ptiona Compiler Work $WORK
track number
(main data area 1255 Utility ~ Output F1255
only)
Track number Optional RPG |l Auto Input $SOURCE
{simulation Report Work $WORK
area only)
HIKEY (main |Highest allowed | Optional Macro Processor Output $SOURCE
data area only) | key fields
Overlay Linkage Input $SOURCE
Figure 8. Description of Parameters on the OCL FILE Statement Editor Work SWORK
for the 3340 .
Any program Work $INDEX45 (for

Keyword Parameters for Single Volume Disk Files

NAME: The NAME parameter is required for the FILE

statement. It informs disk system management of the name

that your program uses to refer to the file. The filename
can be any combination of characters except commas,
apostrophes, or blanks. The first character must be alpha-
betic and the number of characters must not exceed 8.

16

using large
indexed files

main data area
file)

The following list shows the program, the type of file, and

These files
must be in
a simulation
area

PACK: The PACK parameter is also required for the FILE
statement. |t informs disk system management of the name
of the main data area or simulation area that contains or will
contain the file. The management routines check this name
to ensure that it is the same as the name in the volume label
of the area being used. This parameter can consist of from

1 to 6 characters, excluding the apostrophe, comma, and
blank.

UNIT: The UNIT parameter is the last of the required param-
eters in the FILE statement. It supplies the location of the
main data area or simulation area that contains the file. The
possible codes are F1, R1, F2, R2, D1, and D2.

12 16 20 24 28 32 36

-
H
00

N/ | 1A /lcg IMAME-IFidaA | AAlcd-Violdld], [um/I7-lol2

The preceding example shows how the UNIT parameter for
a file located in the main data area on drive 1 would be
coded.

LABEL: The LABEL parameter refers to the filename by
which the file is identified in the VTOC. This parameter is
required only if the filename in a program differs from the
filename on the main data area or simulation area. If a new
file is being created and the LABEL parameter is omitted,
the filename from the NAME parameter is used.

-
H
©
-
N
-
(o]
%]
(=3
N
»

28 32 36

40

44

48

52

N

The preceding example shows how the LABEL parameter
for a file named PAYROLL would be coded.

Statement Descriptions

17

DATE: The DATE parameter is required when two or more
files having the same name exist on a main data area or
simulation area and a file with a particular date is desired.
The creation date of the desired file is coded in the DATE
parameter. If two or more files with the same name exist
on a main data area or simulation area and neither the date
nor the location is given, the file having the latest creation
date is selected. The date must be in the format month-
day-year or day-month-year as was specified at system-
generation time. The date must be written as a six-digit
number with three fields of two digits without punctuation,
or three fields of one or two digits with the fields separated
by punctuation. Any characters except numbers, apostro-
phes, commas, or blanks can be used as punctuation.

-
£~

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

1]
m
-
~
D
>
=

[]

[
i
[\
>
[a)

!
[S)
~
[N
[N
<
~

1
o
[

~
>
™
™~

1

Y
N

/17 1A/]Llg] INAME] , %

/U] |FlILE IMAIME-IF1ILIEB ,|DATIE -1d2)/\d6/ (76|, |UM /! |T1- 1D 1), |BAICIK- VIOILIZ , | LA BE| LI~ A 01

In the preceding example are the NAME, LABEL, and
DATE parameters for two versions of a file on the same
disk, one written on January 5, 1976, the other on February
6, 1€76. Both files have the same label: F00O01.

RETAIN: The optional RETAIN parameter indicates the
classification of the file when it is created. The classifica-
tions are:

Code Meaning

S Scratch file. A scratch file is intended for use
by the current program and does not exist after
the completion of the current program. S is
also used to remove a temporary file so that its
space will be available to subsequent programs.

T Temporary file. A temporary file is one that
has short-term usefulness and can be over-
written when this usefulness has ended.

P Permanent file. A permanent file is one that is
expected to be maintained permanently on the
data module.

A Reactivate scratch file. RETAIN-A must be
coded to reactivate a scratch file, which changes
it to a temporary file. This can only be speci-
fied for files in the simulation area.

The file is assumed to be temporary if the RETAIN param-
eter is omitted at file-creation time.

18

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
/1 1A g IMaMel-[1iMA, [Palclk-| iMMAlsiTiER , [uiM 1| T71-1Di2

b

The preceding example shows how the RETAIN parameter
is coded for a permanent file.

RECORDS or TRACKS: Either the RECORDS or TRACKS
parameter, but not both, can appear in the FILE statement.
One of these is required for files being created and indicates
the amount of space necessary for the file. If the file is
being referenced, these parameters inform disk system
management of the amount of space that was used for the
file when it was created. The space requirement is specified
as the number of records in the file (RECORDS) or as the
number of tracks (TRACKS). When more than one file on
the same main data area or simulation area has the same
filename, this keyword parameter can be used to identify
the desired file. Two restrictions are applicable when the
space requirement is defined:

® |f RECORDS is used, the number can be up to six digits
long and must be within the range of 1 through 999999.

® |f TRACKS is used, the number can be up to four digits
long and must be within the range of 1 through 3320
when the file is in the main data area or 1 through 398
when the file is in a simulation area.

16 20 24 28 32 36 40 44 48

—
H
(=]
-
N

Ne
-

<+~

The preceding example shows how the TRACKS parameter
for a file requiring 20 tracks is coded and how the
RECORDS parameter is coded if a file contains 250 records.

Statement Descriptions 19

LOCATION: For the main data area, the optional LOCA-
TION parameter is used to specify the cylinder and track
on which the file is to start; for a simulation area, this
parameter is used to specify the track on which the file is to
start. You can specify either the cylinder number or the
cylinder number and the track number for the main data
area. If the track number is omitted, it is assumed to be
zero. For the main data area, the cylinder number must be
from 1 through 166 and the track number from 0 through
19. The cylinder number and track number, when specified
together, must be separated by a slash (ccc/tt). For a simu-
lation area, the track number must be from 8 through 405.

When you are accessing an existing file, the LOCATION key-
word parameter must be identical to that used in creating
the file. When you are creating a file, this parameter speci-
fies the beginning position of the file.

When two or more files on the same main data area or simu-
lation area have the same filename, this keyword parameter
can be used to identify the desired file.

Keyword Parameters for Multivolume Files

For online multivolume files, the keyword parameters that
require lists are PACK, UNIT, TRACKS, RECORDS, LOCA-
TION, and HIKEY. These parameters require lists to
describe both data modules containing the file. For offline
multivolume files, lists are also used, but UNIT does not
require a list since all the volumes must be mounted on the
same drive (D2).

You must follow certain rules when indicating the lists for
these parameters:

® The lists must be enclosed in quotes.
® The items in the list must be separated by commas.
® The lists, except for HIKEY, must not contain blanks.

The functions of the keyword parameters have been ex-
plained (except for HIKEY which is explained here); there-
fore, only the considerations for using the lists in these
parameters are explained here.

PACK: The list for this parameter contains the names of
the volumes in the order they are to be used.

UNIT: 1If the number of units specified for this parameter
is less than the number of volumes specified for the PACK
parameter, the file is processed as an offline multivolume
file.

20

For online multivolume files, the unit codes must be speci-
fied in the sequence of the two volumes used (specified by
the PACK parameter).

For offline multivolume files, the unit code is D2. All
volumes (specified by the PACK parameter) are processed
on D2.

PACK-'VOL1,vOL2,VOL3',UNIT-D2

Unit D1 cannot be used for offline multivolume files. Unit
D2 can be used for offline multivolume files when simula-
tion of R2 and F2 is disabled (via a SIMULATE OCL state-
ment).

TRACKS or RECORDS: The list for these parameters indi-
cates the amount of space occupied by the multivolume
file. The numbers in the list must correspond to the order
of the names listed in the PACK parameter.

LOCATION: The list for this parameter contains the
cylinder number or the cylinder number/track number
parameter for the data modules you use for the file. The
parameters must correspond to the order of the names in
the PACK parameter. If LOCATION is specified for one
volume of a multivolume file, it must be specified for all the
volumes of that file.

HIKEY: The HIKEY parameter is used only for multi-
volume indexed files. HIKEY limits the highest key field
that can be put on each data module of a multivolume file.
For example, in the following HIKEY parameter, three
volumes are used: HIKEY-‘JONES,NICOL,ZZZ2ZZ'. The
highest key field allowed on the first volumes is JONES.
This means that all the records up to and including JONES
are on this volume. Since HIKEY parameters must be in
ascending order, the next volume contains all of the records
with keys following JONES and including NICOL. The last
volume contains all the records with names that come after
NICOL and through 2ZZ22.

OCL considerations for the HIKEY parameter are:
1. All characters except commas are valid.

2. The list of HIKEY parameters must begin and end
with an apostrophe even if only one parameter is
specified. A single apostrophe in a key field must be
written as a double apostrophe in the HIKEY param-
eter.

3. For each PACK parameter specified, there must be a
corresponding HIKEY key field parameter for that
pack.

4, The HIKEY fields must be equal in length and must
be specified in ascending order.

5. The maximum length of a HIKEY field is 29 charac-
ters.

6. The HIKEY fields must be the same length as the keys
on file.

7. Continuation of HIKEY sublists must begin in column
4 of the continuation record following the // blank.

8. Comments must not follow the last comma on a FILE
statement when the last parameter is an incomplete
HIKEY sublist.

Packed HIKEY: The packed HIKEY parameter has all the
OCL considerations for HIKEY including the following
restrictions:

1. The first character following the HIKEY keyword and
dash (HIKEY-) must be a P to indicate packed
HIKEY.

2, All characters in the packed HIKEY must be zoned
numerics (0-9).

3. The number of digits in each packed key must be the
same.

4, The number of zoned numeric characters per packed
HICKEY must not exceed 15, since the maximum
packed key field length is 8.

The following example shows a packed HIKEY parameter.
In the example the key field length of MVFILE is 2. The
HIKEYs are X‘085F’, X'092F’, and X‘108F’ for VOL1,
VOL2, and VOLS3, respectively. The first two packed keys
required a leading zero to make the lengths consistent.

-
-

8 12 1 20 24 28 32 36

40

44

48

52

N
J

No

3],

~
~
~
~
=
DD

PERTED
! 5

Ll JuM:i[7]-1Di2]
85, 149)2 /

Statement Descriptions

21

Examples
The following are examples of FILE statements. In each

example, the file is described first, then the corresponding
FILE statement is shown.

Example 1: Suppose that each week you create a disk file

that contains the records for the transactions you had made

that week. Assume the following facts about that file:

® The name your program uses to refer to the file is
TRANS, which is also the name you want to use to
identify the file on disk.

® You are placing the file in a main data area named
VOLO3.

® You intend to mount the data module on drive 2.

® You want to save the file for use at the end of the
month.

® The file contains 225 records.

® You are letting the system choose the area that will con-
tain the file.

The following example shows how the FILE statement for
the preceding file is coded:

1 4 8 12 16 20 24 28 32 36

40

44

48

£i2

60

N

~-

Example 2: Suppose you had created, on the same data
module (VOLO3), four versions of the transaction file
described in the preceding example—one for each of the
weeks in February, 1976. Assume the following:

® You had created the files on the following days: 2/6/76,
2/13/76, 2/20/76, and 2/27/76 (these were the system

dates used for each of the files).

® You want to reference the third file (the one created
2/20/76).

® You intend to mount the data module on drive 2.

22

The file statement you would need is:

-

4 8 12 16 20 24 28 32 36

52

/L Flr|c] 4 [MAME|-|7iRlAMS|, | dalTiEl-Id2]/|2id /716l |AAlc

1%

Example 3: Suppose that at the end of the month you
combine the files referred to in example 2, for use in pre-
paring your monthly bills. Further assume the following:

Your program uses the name TRANS to refer to the file,
but you want to use the name BILLING to identify the
file on disk.

You are expressing the amount of disk space as the num-
ber of tracks required to contain the file (assume the
number is 15), and you want the file to begin on cylinder
8, track 0.

You are placing the file in a main data area named
VOLO03.

You intend to mount the data module on drive 2.

The following example shows the FILE statement you
would use for this file.

Iy
»
[
o
N
S

28 32 36

1 12

NN 1A/ d WMAMe-|r-lams!, ||alslelc]-18 /L] W],
/|7 Ui/ |71-1012] 1PAlCId -IvalLial3],

/l/ TIRACIKIS|-|115], |LIACAITI/ IOM-181,

/7 RETIAM-IT

Example 4: Suppose you want to create two versions of
two files on disk and later to access one version of each file.
Further assume the following:

The names your program uses to refer to the files are AA
and BB, which are also the names you want to use to
identify the files on disk.

File AA and BB are being placed on a data module on
drive 2 named D2D2D2.

One version of each file is created on 1/12/76 and
1/13/76.

Statement Descriptions

23

® Disk space and location for the files are:

File Version Tracks Location

AA 1/12/76 10 120/0
1/13/76 10 130/0

BB 1/12/76 20 140/0
1/13/76 20 150/0

® You want to access file AA, version 1/12/76, and file
BB, version 1/13/76.

The following OCL statements are needed to create the
above versions of files AA and BB and to access a version of
each file.

1 4 8 12 16 20 24 28 32 36
¥ | [clRlelalTiels| [vielRls|/lois] lolA |Alrlclels] [Ala]l TalMD
/17 [0ATE-ld /| /\1l2l/176
/|| (LIOAD [RPE0IBY] IR
/\/| |A/Lle] IMAMEL- 1A, IUM 1T D2, |AACIK-1D21Dj2D12,
/l/ TMC/esl—ifﬂ,Locn-r/ou-12@,./?57 /
/L A/ALE MamMe-|88] [Ud 1|7]-10i2], |AAck-1Dzidl2pl2],
/|1 TIRIAC|KS|-|2id |2 lolclalT]/ [om-12lal/]
AUREER

ClREATIES| |AWOTIHER] [VEIRIS! oM lolFl |Al|Lles
/1] |Ll0AD RIP60BT, IR 1]
/\/| \DATE-d /L1376
/171 |F/ILlEl IMAMEL-1AAL lumiTl-1Di2) |AAcik-IDizl02\pi2),
/|/ TIRACIKS|- |24 ,|L|dclaT) s ow-|2131d/d
1) |F/|LlEl WMAaMe-8a, [uM!|Ti- 2], [Pac|«-IDi2lDjzipiz],
/\/ TIRIACIKS|- 12 ,|LIaCA7)/ lom-|215
/l/1 [RUM

Alcicldsislels| [A1|Lle [VElds] loMs] [ole] |ABolviE] [Ar
/|// |{|aAD [RP4 /M IR 1
/1] |FI/ILIE [MAME|-AA|UM/IT-1DI2], |AACK - D21D]21912]
/ LloclaT|iou-22d
[F1ILIE| IMAME-BA|,IUn1ITI-Di2], |AACIK-\P2\D21D2),
/l/ DAITIEI-|@ 1 /1113 /1716
/|/] IRUM

24

File Processing Considerations

® LOCATION and space (TRACKS or RECORDS) must
be specified when you are reloading an existing tempo-
rary file.

® If you are referencing a file by the DATE parameter and
space is given, the space must be equal to the space given
when that file was created.

® If you are accessing a file by the LOCATION parameter
and space is given, the space must be equal to the space
given when that file was created.

® You can create several versions of a file with a program
by changing the locations of the files and using different
system dates.

® You can create different versions of a file without LOCA-
TION if the space parameters as well as the system dates
are different.

® The system assumes that a new file is being created if
space is given without LOCATION or DATE and the
given filename was found but its space does not match.

® The DATE parameter is only allowed for accessing exist-
ing files.

® Whenever a load is performed to an existing file, the
system date replaces the previous date for that file.

® If a RETAIN parameter is not specified when an existing
file is reloaded, the existing file classification is retained.

® When a scratch file is created, it is not entered in the
volume table of contents (VTOC). After the job that
created the file is run, the file is lost. The way thatan S
retain type can appear in the simulation area VTOC is to

change a T entry toan S by\ using RETAIN-S in the FILE

statement, or to change a T or P entry to S by using a
$DELET SCRATCH statement.

FILE STATEMENT (TAPE)
Function

The FILE statement supplies the system with information
about tape files. The system uses this information to read
records from and write records to tape.

Placement

You must supply a FILE statement for each new tape file
that your program creates, and for each existing tape file
that your program uses. (The maximum number of files
allowed is explained under Maximum Number of Files in
the /BM System/3 Model 12 User’s Guide, GC21-5142.)
The FILE statement must follow the LOAD or CALL state-
ment and precede the RUN statement.

Format

// FILE parameters

Statement Descriptions 25

Content

All parameters are keyword parameters. The parameters
are as follows {(keywords are in capital letters):

The NAME and UNIT parameters are always required. The
others are required only under certain conditions.

26

NAME-filename (in program)
UNIT-code

name
NL
NS
BLP

REEL-

filename (on tape)
‘character string’

LABEL- {
DATE-date
RETAIN-code
BLKL-block length
RECL-record length

RECFM-code (record format)

END-position of tape after processing

1600
800
DENSITY- 556
200
YES
ASCI|- { NO
YES
DEFER- { NG
OFF
CONVERT- { oN
OFF
TRANSLATE- { oN
oDD
PARITY- { EVEN

NAME: The NAME parameter is required. It tells the
system the name that your program uses to refer to the file.
The NAME parameter must be placed on the first card or
line if two or more cards or lines are used for the FILE
statement. (See Gieneral Coding Rules for rules on contin-
uation.)

For the Tape Sort program, you must use specific filenames.

File , Name
Input INPUT
Output OUTPUT
Work WORK1
WORK?2
WORK3

WORK4 (optional)

For the Copy/Dump program, you must use specific file-
names.

File Name
Input COPYIN
Output COPYO

For the Dump/Restore program, you must use the name
BACKUP in the name parameter.

The keyword for the parameter is NAME. It must be fol-
lowed by the filename used by the program. The first
character of the NAME must be alphabetic. The remaining
characters can be any combination of characters except
commas, apostrophes, or blanks. The number of characters
cannot exceed 8. The following example shows how the .
NAME parameter for a file named FICAOUT would be
coded: '

-
H
[o5]
-
N
-
=2}
N
o

24 28 32 36

40 44

U1 [7]-

3
7

N\ A/ |Le] WalMel-|ArlclaldUr, Telelell]- AP|§1

I

UNIT: The UNIT parameter is required. It tells the system
the tape unit that contains or will contain the file. The key-
word for this parameter is UNIT. It must be followed by a
code that indicates the unit. The codes are as follows:

T Tape unit 1
T2 Tape unit 2
T3 Tape unit 3
T4 Tape unit 4

The previous example shows how the UNIT parameter
would be coded for a file that resides on tape unit 2.

REEL: The REEL parameter is required for tape input files
and optional for output files. It identifies the tape that con-
tains or will contain the file. The system uses this parameter
to ensure that the correct tape is being used. (For informa-
tion about how a tape is initialized and identified, see Tape
Initialization in Part 2 of this manual.)
The REEL parameter can be coded as follows:
REEL-nnnnnn This format is used for labeled tape
volumes. The volume is identified
by a code containing a maximum of
6 characters, excluding commas,
apostrophes, and blanks. NS, NL,
and BLP have special meanings and
may not be used as the name of the
reel.
REEL-NL This coding indicates a tape file
without a label. The first record of
an unlabeled tape must not be an
80-byte record beginning with
voL1.

REEL-NS This coding indicates an input tape
file with a nonstandard label. These
labels do not adhere to the IBM
Tape Label Standard. The first
record of a nonstandard labeled
tape must not be an 80-byte record
with VOL1 as the first 4 characters.
REEL-NS is invalid for output files.
REEL-BLP This coding is used to bypass label
processing on standard labeled tapes.
REEL-BLP is invalid for output
files.

If the REEL parameter is not specified for an output file,
the system assumes the output tape contains standard labels.
If REEL-NS, REEL-NL, or REEL-BLP is used, the LABEL,
DATE, and RETAIN parameters may not be entered.

Note: User labels are file labels that follow standard header
and trailer label conventions (ANSI or IBM). They are a
variation of standard labels with a partially fixed format.
These labels are sometimes provided by other systems. User
labels are not checked by System/3 tape data management
and may not be written as part of the label group.

The example under NAME shows how the REEL parameter
would be coded for a file on a tape named TAPE1.

Statement Descriptions 27

LABEL: The LABEL parameter tells the system the name
(label) of the tape file as it exists in the header label.

For file creation, the name you supply in the LABEL param-
eter is used in the header label. |f you omit the LABEL
parameter, the name from the NAME parameter is used
unless REEL-NS, REEL-NL, or REEL-BLP is also specified.
Up to 8 characters may be supplied in the LABEL param-
eter,

For existing files, you must supply the LABEL parameter if
the name in the tape label is different from the name your
program uses to refer to the file (the NAME parameter). [f
the header label contains a name longer than 8 characters,
only the first 8 characters are recognized by the system for
comparison.

The LABEL parameter may not be used with the parameters
REEL-NS, REEL-NL, or REEL-BLP. The LABEL param-
eter can be coded as follows:

LABEL-name The name entry must begin with
an alphabetic character and the
remaining characters must not be
commas, apostrophes, or blanks.

LABEL-‘character
string’

A label may also be identified by
special characters. The character
string must be enclosed in apos-
trophes, may not contain com-
mas, and is restricted to 8
characters in length. If an apos-
trophe is used as a character, it
must be coded as two apostro-
phes.

DATE: The DATE parameter tells the system the creation
date of an input file. It is used to ensure that the proper
version of the file is used. The date specified is compared
with the creation date contained in the file label. No com-
parison is done when DATE is not specified.

For output files, the system date is always used as the crea-
tion date. If the DATE parameter is specified for an output
file, the system compares the specified date with the crea-
tion date of the file already on the tape. If no file exists on
the tape, or a file with a different label exists, or the dates
do not agree, the system halts.

28

The date may be coded in one of two formats: month-day-
year (mmddyy), or day-month-year (ddmmyy). The format
must match the format of the system date chosen at system
generation time.

The DATE parameter may not be specified with REEL-NS,
REEL-NL, or REEL-BLP.

RETAIN: The RETAIN parameter specifies the number of
days a file should be retained before it expires. This num-
ber may be from 0 to 999. After the number of days has
elapsed, the file expires and the system allows the file to be
written over. If the RETAIN parameter is omitted, a value
of zero is assumed. A value of 999 indicates a non-expiring
permanent tape file.

If an attempt is made to write over an unexpired file, the
system halts, allowing the operator to cancel the job or con-
tinue. A tape containing a permanent tape file must be re-
initialized before it can be used for output. The RETAIN
parameter may not be used with REEL-NS, REEL-NL, or
REEL-BLP.

BLKL: The BLKL (block length) parameter specifies the
number of bytes in a physical block on tape. The block
length can be from 18 bytes to 32,767 bytes. The maxi-
mum length is limited to the main storage not occupied by
the program and supervisor. The block length must be an
integral multiple of the record length for fixed (F) and fixed
blocked (FB) files (see RECFM parameter). If an ASCI! file
is being used, any existing block prefixes must be included
in the block length.

RECL: The RECL (record length) parameter specifies the
number of bytes in a logical record. The maximum record
length is 32,767 bytes. The minimum record length permit-
ted for F and FB type files is 18 bytes (see RECFM param-
eter). The record length for V, VB, D, and DB type files
must include the 4-byte record descriptor.

RECFM: The RECFM (record format) parameter identifies
the format of the input or output file records. The param-
eter entries are:

F Fixed length, unblocked records. Logical and phy-
sical records are the same size.

\Y% Variable length, unblocked records. Each physical
record contains one logical record; the logical
record can vary in length.

D Variable length, unblocked records in the D-type
ASCII format.

FB Fixed length, blocked records. All records are of
equal fength and all blocks are of equal length.
Each physical record contains more than one
logical record.

VB Variable length, blocked records. Each physical
record contains logical records of various lengths.

DB Variable length, blocked records in the D-type
ASCII format.

END: The END parameter specifies the position of the tape
after the file has been processed. The options are as follows:

LEAVE The tape remains in the position it was in
after the last record was read or written.

REWIND The tape is rewound to the load point.

UNLOAD The tape is rewound and unloaded for

removal from the tape drive.

If the END parameter is omitted, REWIND is assumed.

DENSITY: The DENSITY parameter is used to specify the
number of bpi {bits per inch) at which files are to be written
or read. The parameter must specify the density at which
the tape was initialized. See $TINIT (Tape Initialization
Program) description in this manual. For 9-track tapes this
parameter affects only the density of nonlabeled output
files. When standard labeled or nonstandard labeled tapes
are used, the tape hardware automatically determines the
density at which the tape was initialized. When a tape is
initialized at 1,600 bpi with standard labels, any file that is
written on that tape is at 1,600 bpi, regardless of the param-
eter specified for DENSITY. No error halts occur if an in-
correct 9-track density is specified. The parameter entries
are:

1600 The file is to be written at 1,600 bpi (valid for
all 9-track tape units).

800 The file is to be written or read at 800 bpi (valid
for 9-track dual density tape units or for all 7-
track tape units).

556 The file is to be written or read at 556 bpi (valid
for all 7-track tape units).

200 The file is to be written or read at 200 bpi (valid
for all 7-track tape units).

If the DENSITY parameter is omitted, 1,600 bpi is assumed
on 9-track tape units, and 800 bpi is assumed on 7-track
tape units.

ASCI/I: The ASCII parameter (ASCII-YES or ASCII-NO) is
used to indicate to the system when an ASCII file is being
used. If ASCII files are being used, ASCII-YES must be
coded. ASCII-YES is invalid for files on 7-track tape units.
If this parameter is omitted or coded ASCII-NO, an EBCDIC
file is assumed.

Statement Descriptions 29

DEFER: The DEFER parameter (DEFER-YES or DEFER-
NO) tells the system whether the file will be mounted on a
tape drive when the file is allocated and opened. If the tape
volume is not online, DEFER-YES must be coded. If the
parameter is omitted, DEFER-NO is assumed.

Note: For RPG Il object programs, this option should only
be used for files that use the same drive as a table file. All
other files are allocated and opened at the beginning of the
program.

Other programs (such as COBOL object programs) that do
not allocate and open all files at the same time, or that do
so conditionally by program logic, should not use the
DEFER-YES option.

DEFER-YES cannot be used if BSCA or devices attached to
SIOC are used in the program.

Multivolume Tape Files

The FILE statement for processing multivolume tape files
requires that you define and code the UNIT and REEL
parameters differently than you would for single-volume
files. There are two reasons for this:

® When processing tape files contained on more than a
single volume, the system requires information about
each volume in order to perform all the checking and
protection functions necessary.

® Additional information is needed to determine and check
the sequence in which the volumes are processed and
when they are to be mounted on the tape drives.

When an end-of-volume condition is reached on a multi-
volume file, that volume rewinds to load point and unload.
The message ‘EQV Tn' is printed if LOG is on (where n =
1,2, 3or 4). If the drive that is to contain the next volume
(whether the same drive or another drive), is not in a ready
condition, the system comes to /O attention. Processing
continues when the drive that is to contain the next volume
is made ready. If you are using alternating drives, and the
next volume is mounted and the drive is ready when end of
volume is reached, the message is printed and processing
continues without stopping.

30

For multivolume tape files, the UNIT and REEL parameters
of the FILE statement may require a list of codes. The fol-
lowing rules apply:

® The list must be enclosed by apostrophes.
® The items in the list must be separated by commas.
® Nine- and seven-track units cannot be intermixed.

The considerations for coding multivolume parameters are
included in the following parameter discussions. The func-
tions of the parameters are explained under F/LE Statement
(Tape). Parameters not mentioned here are used as explained
under FILE Statement (Tape).

Note: Multivolume tape files cannot be used if BSCA or
other interruptible devices are used in the program.

The maximum number of multivolume files allowed is ex-
plained under Maximum Number of Files in |BM System/3
Model 12 User’s Guide, GC21-5142.

REEL: The names of the tapes that contain or will contain
the multivolume file must folow the keyword REEL (40
names maximum), If the input tapes are not labeled, the
REEL parameter must be coded REEL-'NL,n’; if the input
tapes contain nonstandard labels, the REEL parameter must
be coded REEL-'NS,n’. If the input tapes have standard
labels, and label processing is to be bypassed, the code is
REEL-'BLP,n’. The n in each case is the number of volumes
in the file (99 volumes maximum). For output files, the n
in REEL-'NL,n’ is ignored.

UNIT: The keyword UNIT must be followed by a code or
codes indicating the location of the tape unit that contains
or will contain the file. No UNIT parameter may be re-
peated. The order of codes in the UNIT parameter must
correspond to the order of names in the REEL parameter.
When the number of codes in the UNIT parameter is less
than the number of codes in the REEL parameter, the units
are used alternately.

In the following example, line Q shows a tape multi-
volume file consisting of three reels. The volumes must be
mounted as follows:

INVREEL1 on tape unit T1

INVREEL2 on tape unit T2

INVREEL3 on tape unit T3

Line e shows a three-volume file with nonstandard tape
labels. The volumes must be mounted as follows:

First volume on tape unit T1
Second volume on tape unit T2
Third volume on tape unit T1

Line O shows a three-volume file with unlabeled reels.
The volurnes must be mounted in sequence on tape unit T1.

Line Q shows the three-volume standard labeled file of line
Q with label processing bypassed.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
O [1THIIE WAMEWMAS JRea - T W Adeel] 1], MRl IMAREE3] T I -T2]2 I3
© |7/ [F1|ce MAMel-|7vmais] IR "Ws), 3] A |74, |2l I
© [/ 1A1|dd Wawel-|Mvimals] IReii]- W], 3]], i/ (Tl -1714 |]
© 71| A1l IMaMe-[7NvMAS [REe"8LlA, la"] Jui - izl 72l i3l :

FORMS STATEMENT The HALT statement is needed only if you want to cancel
the effect of a NOHALT statement.
See PRINTER Statement.
Placement
HALT STATEMENT
A HALT statement can be placed anywhere among the OCL
Function statements. In a procedure it must precede the RUN state-

ment.
-The HAL.T statement tells the system to halt when a pro-

gram ends. The operator can restart the system when he is
ready, and the system continues reading the next OCL state-
ments.

Statement Descriptions 31

Format

// HALT

Content

None (comments may be entered starting in column 9).

IMAGE STATEMENT
Function

To operate correctly, the printer requires characters match-
ing those on the printer chain to be in a special area of core
storage called the chain-image area. When you replace the
printer chain with one having different characters, you must
also change the contents of the chain-image area.

The IMAGE statement instructs the system to replace the
contents of the chain-image area with the characters indicat-
ed by the statement. The characters can be entered from

the system input device or from a source library. The effect
of the IMAGE statement is temporary, and the system chain-
image is returned to the chain-image area when IPL occurs.

Placement

The IMAGE statement can appear anywhere among the
OCL statements. In a procedure, it must precede the RUN
statement.

Format

// IMAGE parameters

Content

The IMAGE statement tells the system either of two things:
(1) the new chain characters are to be read from the system
input device; or (2) the new chain characters are to be read

from the source library.

32

The IMAGE parameters are:
format-HEX, CHAR, or MEM
number-value
name-name
unit-code

(Coding only HEX, CHAR, or MEM is preferable for format
but HEXADECIMAL, CHARACTER, or MEMBER can be
coded.)

Characters From the System Input Device

If you wish to indicate that the new chain characters are to
be read from the system input device, use the following
parameters:

Format: Use the word CHAR to indicate that the charac-
ters are in EBCDIC form. Use the word HEX to indicate
that the characters are in hexadecimal form.

Number: The number parameter must be used with HEX
and CHAR. [t must be a value that is equal to the number
of columns or line positions in the data statements or the
data keyed in following the IMAGE statement that contains
the new characters. This number must not exceed 240 when
the characters are hexadecimal, 120 when characters are
EBCDIC. The narne and unit parameters must not be coded.

Following are the rules for punching or keying the new
characters:

® The characters must begin in column or line position 1.

® Consecutive card columns or line positions must be used;
however, only the first 80 columns or line positions of
the card or line can be used. Hexadecimal requires an
even number of columns or line positions, two per
character.

® To continue the characters on another card or line, begin
the characters in column or line position 1.

Characters from Source Library

To indicate that new chain characters are to be read from
the source library on disk, the format parameter must
specify the word MEM.

The following parameters must also be included:

Name: The name parameter identifies the source member
coritaining the characters in the library. The only way you
can place the characters in a source library is by using the
Library Maintenance program. The name you supply in
Library Maintenance control statements is the name used to
identify the characters in the source library.

Unit: The unit parameter must be used with the name
parameter. It is used to indicate which simulation area on
disk contains the source library. The codes used are R1, F1,
R2, and F2.

Example

The IMAGE statement in example o tells the system that
the new characters are on data statements or keyed in. The
format parameter indicates that new characters are in hexa-
decimal form; the number parameter indicates that there are
120 colurnns or line positions containing the new characters.

In example e, the new characters, on data statements or
keyed in, are in EBCDIC. The number parameter indicates
that there are 48 columns or line positions containing the
new characters.

Example 0 tells the system that the new characters are to
be read from the source library. The format parameter indi-
cates that the new chain characters are in the source library.
The name parameter indicates that the characters were
named CHAIN in the source library. The unit parameter in-
dicates that the source library containing them is in the
simulation area R1 on drive 1. Examples of the member
specified in example are the data portions of examples

and . The member itself requires a // IMAGE state-
ment with the characters either in hexadecimal or EBCDIC.
The number of columns or line positions containing the
characters must also be specified.

(See Library Maintenance in Part 2 for restrictions on the
name used in coding MEM.)

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
/1T TiMaled e, 142d I I
Q A 1[F12lF |3 FlidF|5iF|6lF | 7|F 8l 9l IdlE 7| 8l6|2|E|2 E(3Elede s|E 6 |4l F| 714 6iDt7| 6|8 7 D1 21Dl 2(p131Di4D)5 D)
gwap%pewvcmcscvcscec7cac9454 Dlolc5185\c|718l51d 7|clicl5\E|5|F| 71Dl | Fl61E]
1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
I/ /?A g [clHAR l4g] | I] []]
Q 112|31456|7/89 /sinuvivixivizie] BTk MMolrlalR- g4 aBIcI DIEl e /1 .|
1 4 8 12 16 20 24 28 32 36 40 44 48 52 656 60 64
OI/IA% EREEEATALE i
|

Statement Descriptions 33

JOB STATEMENT
Function

The JOB statement provides the user with the following
functions:

® Allows the user to group related jobs in the spool file by
identifying the group with a common groupname. Each
job is further identified in the spool file by the jobname
from the LOAD statement. If the jobname is not sup-
plied, the program name further identifies the job.

® Allows the user to specify whether jobs following the
JOB statement are to be spooled.

® Allows the user to assign priority to jobs in the spool
file. Jobs contained in the spool file are scheduled for
printing in the order of their priority.

Placement

The JOB statement precedes the first LOAD or CALL state-
ment for a group. It cannot be used in a procedure. When a
rollin is pending for a program level, a JOB statement read
by that level will be ignored.

Format

//groupname JOB parameters

Content

groupname: This is a required entry used to uniquely
identify a group of jobs in the spool file under the same
name. Groupname may not exceed 8 characters in length or
contain embedded blanks or commas. Groupname should
contain only characters that are on the 5471 keyboard when
the 56471 is attached to the system. All keyword parameters
are optional on the JOB statement. When more than one
keyword parameter is specified, they must be separated by
commas.

SPOOL: The SPOOL parameter is used to specify whether
jobs are to be spooled. SPOOL-NO specifies that jobs fol-
lowing the JOB statement are not to be spooled; conse-
quently, print requests from these jobs will not be inter-
cepted. SPOOL-YES indicates that print requests from the
jobs following the JOB statement are to be intercepted by
spool. If the SPOOL parameter is not specified, SPOOL-
YES is assumed.

34

PRIORITY: A priority may be assigned to a job to indicate
its level of importance in the spool file. The priority of the
job in the spool file is that priority assigned by the JOB
statement. A priority of 0 causes a job to be put in the
spool file in a hold state with a priority of 1. The job put
on hold may be released via an operator control command.
(See /BM System/3 Model 12 User’s Guide, GC21-5142, for
a list of operator control commands.) Priority 5 is the high-
est priority that may be assigned. Within a given priority,
jobs are scheduled on a first-in, first-out basis. If this param-
eter is not specified, priority 1 is assumed.

Note: When keyword parameters are not specified on this
statement, comments may not be given following the JOB
statement identifier.

LOAD AND LOAD * STATEMENT

Function

The LOAD statemient identifies the program to be executed
and indicates whether the program is to be loaded from the
system input device for the program level or from an object
library.

Placement

One LOAD statement is required for each program execut-
ed. The only requirement is that the LOAD statement
precede the RUN statement.

Format

The LOAD statement has two formats:

//iobname LOAD * (a blank is mandatory between LOAD
and *)

/ljobname LOAD program-name,unit
The first format is used to load object programs from the

system input device. The second format is used to load
object programs from the object library.

Content

Jjobname: This optional entry is used to uniquely identify a
job. If specified, the jobname must begin in position 3 of
the statement, must not exceed 8 characters in length, and
may not contain commas, apostrophes, periods, or blanks.
Jobnames should contain only characters that are on the
5471 keyboard when the 5471 is attached to the system.

If no jobname is specif_ied, the system assigns one. If the
jobname is assigned by the system, it is made up of the pro-
gram name from the LOAD statement and a two-digit num-
ber assigned by the system. Jobnames assigned by the
system are incremented by one at the end of the job in
which a jobname is assigned. If a LOAD * statement with-
out a jobname is encountered, the system assigns a jobname
of ASTRSKnn. The number portion of the jobname is reset
to 01 whenever a JOB statement is encountered. After 99
jobnames have been assigned within one group, the number
is reset to 01. When the print queue is displayed, the job-
name identifies jobs on the queue.

Asterisk: An asterisk is specified when the user wants the
object program loaded from the program level’s system in-
put device. The object program must follow the RUN state-
ment for the program. A /* statement must follow the
object program to indicate the end of the object program
input. The object program is temporarily copied into the
object library on the system pack and then loaded into
main storage for execution. Only level 1 may contain a
LOAD * program.

program-name: The program-name is the name used to
identify the program in the object library on disk and may
be up to 6 characters in length. The name must begin with
one of 29 characters (A-Z, @, #, or $) and may be followed
by up to 5 additional characters. Commas, apostrophes,
periods, and blanks may not be used in the program-name.
The system utility programs and program products are
identified by the following names:

Program

Alternate Track Assignment
Alternate Track Rebuild
Assembler

COBOL

Copy/Dump

Disk Initialization

Disk Sort

Dump Restore

File and Volume Label Display

File Delete
FORTRAN
GANGPUNCH
Library Maintenance
List

Macro Processor

MFCU Sort/Collate

Multileaving Remote Job Entry

Overlay Linkage Editor
Reassign Alternate Track
Reproduce and Interpret
Remote Job Entry
Restart

RPG Linkage Editor
RPG Il Auto Report
RPG Il Compiler
Simulation Area

Spool Writer

Tape Initialization

Tape Sort

Tape Error Summary

1255 Utility

Name
SALT
$BUILD
$ASSEM
$CBLOO
$COoPY
$INIT
$DSORT
$DCOPY
$LABEL
$DELET
$FORT
$GANGP
$MAINT
$CLIST
$MPXDV
$CSORT
$SMRJE
$OLINK
$RSALT
$REPRO
$SRJE
$$RSTR
$LINKB
$AUTO
$RPG
$scorPy
$SSWTR
S$TINIT
$TSORT
$TVES
$MICR

Statement Descriptions 35

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

unit: The unit parameter is a code indicating which simula-
tion area on disk contains the program. The codes are R1,
F1, R2, and F2. The unit parameter is required because
your programs can be on any of the simulation areas. The
disk area containing your object program is called an object
library. You can create an object library in any of the simu-
lation areas (R1, F1, R2, F2) by using the Library Mainte-
nance program. (See Library Maintenance in Part 2 of this
manual.}

Example
In the following sample LOAD statement, $RPG is the name

that identifies the RPG |l Compiler.

20 24 28 32 36

-
N
o]
-
N
_-
2]

F1 is the code indicating the simulation area on drive 1
where the compiler is located in this example.

LOCKOUT STATEMENT
Function

The LOCKOUT statement is used only in DPF systems. |t
is used to suspend the other program level to allow fast job
initiation in the program level in which it is entered. Job
initiation is slowed if both program levels use the system
transient area and/or disk drive 1. The other program level
remains suspended until job initiation is complete.

Note: This statement should not be used when the active
program level is using time-depéndent devices such as BSCA
and serial 1/O channel.

Placement

The LOCKOQUT statement can be placed anywhere among
the OCL statements, but must precede the RUN statement.

Format

// LOCKOUT

36

Content

None (comments may be entered starting after the first
blank column).

LOG STATEMENT

Function

OCL statements and message codes are printed on the
printer-keyboard. If your system has no printer-keyboard,
the statements and codes are printed on the printer. The
device used to print OCL statements and message codes is
called the logging device. 1f you want to change the logging
device, or specify whether or not the statements and codes
are to be printed, you must use a LOG statement.

In a DPF programming environment, the same logging
device is always used in both program levels. Hence, if the

logging device is changed in one program level, the new
logging device will also be used by the other program level.

The LOG statement tells the system to do one of four
things:

® Use the printer as the logging device

® Use the printer-keyboard as the logging device

® Stop printing OCL statements and message codes

® Start printing OCL statements and message codes

In addition it may tell the system whether or not to sup-
press eject at end of job.

Placement

You can use the LOG statement within any of the sets of
OCL statements for your programs. In a procedure it must
precede the RUN statement.

Format

// LOG code,mode

Content

The following four codes and two modes can be used as
parameters:

Code Meaning

CONSOLE Use printer-keyboard as logging device
PRINTER Use printer as logging device

OFF Stop logging

ON Start logging

Mode Meaning

EJECT Eject a page at end of job

NOEJECT Suppress page eject at end of job

Only one code and one mode can be used in each LOG state-
ment. The start of logging is assumed if CONSOLE or
PRINTER is specified.

When the system reads a LOG statement that contains the
OFF code, it stops printing OCL statements and message
codes. The only way you can instruct the system to start
printing them again is by using a LOG statement that con-
tains ON, PRINTER, or CONSOLE. When ON is specified,
printing resumes on the last logging device specified. How-
ever, the system suspends logging during the time that the
log device (excluding the 5471) is allocated to a program in
either program level. Logging resumes when the program
using the log device goes to end of job.

The NOEJECT mode is used to stop the page eject at end of
job. If neither EJECT or NOEJECT is specified, EJECT is
assumed. NOEJECT stays in effect until a LOG statement
without NOEJECT is read or until an IPL is performed.
EJECT stays in effect until a LOG statement with NOEJECT
is read. EJECT is only active when logging to the printer.

NOHALT STATEMENT

Function

Normally the system halts when a program ends. The NO-
HALT statement tells the system to read the next set of
OCL statements without stopping. The effect of this state-
ment lasts until the system reads a HALT statement or an
IPL occurs. Under certain conditions, the effect of the NO-
HALT statement is ignored temporarily when an abnormal
end of job occurs. The system reverts to the NOHALT
mode after a response.

Placement

A NOHALT statement can be placed anywhere among the
OCL statements. In a procedure it must precede the RUN
statement. The NOHALT statement can be submitted in
program level 1 or 2.

Format

// NOHALT SEVERITY-code

Content

SEVERITY: This parameter indicates the severity code of
halts that the system is allowed to select default options for.
If the SEVERITY parameter is not specified, the operator
must respond to all halts except EJs. The code must be one
of the following: 1, 2, 4, or 8. If the severity assigned to a
system halt is greater than the severity indicated in the NO-
HALT statement, the system halts and waits for the op-
erator’'s response. If the severity assigned to the halt is equal
to or less than the severity indicated in the NOHALT state-
ment, the system selects the default option for the halt and
processing continues. The severity code does not affect
system halts having no default options. Operator interven-
tion is required in those cases.

Statement Descriptions 37

Severity code 1 is the least severe; severity code 8 is the
most severe. In most cases the default option is ignored
when system halts cannot be printed or spooled. In this
case the operator must respond to the halt.

Note: Some halts are defaulted when the system is using the
// NOHALT SEVERITY code statement. When using spool-
ing and the print writer is active, the system halts with a
SPPPEH halt after the print queue is empty. If the operator
responds with a 0 option, the print writer continues to
search the print queue, and the SPPPEH halt is defaulted
until the print writer has started and finished printing the
next job put in the print queue.

PARTITION STATEMENT

Function

The PARTITION statement is used only in DPF systems
and guarantees a minimum size to program level 2 for a pro-
gram in that level.

Placement

The PARTITION statement can be placed anywhere among
the OCL statements preceding the RUN statement. The
PARTITION statement cannot be submitted in program
level 2.

Format

/I PARTITION size

Content

Size: The size parameter specifies the number of bytes of
storage needed for program level 2. (See Loading Programs
in a DPF Environment in IBM System/3 Model 12 User’s
Guide, GC21-5142.)

38

PAUSE STATEMENT
Function

The PAUSE statement causes a halt. It usually is used to
give the operator time to prepare for the next program. He
might, for example, have to place a data module on drive 2.
Comment statements that give the operator instructions
usually precede PAIJSE statements.

When the operator is ready, he can restart the system. The
system continues reading the OCL statements that follow
the PAUSE statement.

Placement

PAUSE statements can be placed anywhere among the OCL
statements. A // PAUSE statement prior to a // LOAD
statement (between jobs) causes a 90 halt with a continue
option (recovery 0) only. A // PAUSE placed between the
// LOAD and // RUN statements (within the OCL sequencs)
causes a 91 halt with a continue (recovery 0) or a cancel
(recovery 2 or 3) option.

Format

// PAUSE

Content

None (comments may be entered starting in column 10).

PRINTER STATEMENT
Function

The PRINTER statement allows you to define the system
print device and control options related to print spooling.
The FORMS statement identifier may be used in place of
the PRINTER statement identifier.

Placement

The PRINTER statement can be placed anywhere among
the OCL statements. In a procedure it must precede the
RUN statement.

Format

// PRINTER parameters

Content

The parameters are as follows (keywords are in capital
letters; defaults are underlined):

5203
DEVICE- 5203L

5203R
LINES-nnn
FORMSNO-nnn
COPIES-nn

. YES

DEFER- {NO }

YES
ALIGN- {N_Q_ }

DEVICE: The DEVICE parameter is optional, but if it is
specified it must be followed by the name of the print
device. For an IBM 1403 Printer or a single-carriage I1BM
5203 Printer, either 5203 or 5203L is a valid device name.
For a dual-carriage 1BM 5203 Printer, either 5203 or 5203L
specifies the left carriage and 5203R specifies the right
carriage. You may omit the DEVICE parameter entirely
(default parameter is 5203L, left carriage).

LINES: The LINES parameter is optional. It is used to alter
the number of print lines {forms length) per page. Possible
range is 1 to 112. However, some system utility programs
require a minimum of 12. The number of lines specified
remains in effect for that level until another PRINTER
statement with LINES parameter is entered or until the

next IPL. This parameter overrides the forms length speci-
fied during system generation; however, a program’s forms
length overrides the LINES parameter. If a program’s forms
length is used, it is in effect for the duration of that job only.
At the end of the job, forms length is restored to the pre-
vious value.

FORMSNO: This optional parameter may be used to tell
the operator which forms are to be mounted on the printer.
This parameter can be any combination of 1 to 3 characters,
except commas, apostrophes, or embedded blanks. When
this parameter is used and spool is not intercepting print
requests, the system halts with a CR8LLT (mount forms on
left carriage) or CR8LRT (mount forms on right carriage)
halt. When printing spooled printed output, the print
writer issues a message whenever the forms type for the
current print job is different from that of the previous print
job. The response taken to this message tells the print
writer whether separator pages should be printed between
jobs. See the /BM System/3 Model 12 Operator’s Guide,
GC21-5144, for information on separator pages. The
FORMSNO parameter applies only to the job in which the
PRINTER statement is received.

COPIES: This optional parameter allows the user to obtain
from 1 to 99 copies of a job’s spooled printed output. If
this parameter is not specified, only one copy is printed.
When more than one copy is requested, the print writer con-
tinues to produce the number of requested copies before
continuing to the next job. This parameter is ignored when
print spooling is inactive or not supported for the specified
device. The COPIES parameter applies only to the job in
which the PRINTER statement is received.

Statement Descriptions 39

DEFER: The DEFER parameter is optional. It is ignored
when print spooling is inactive or not supported for the
specified device. DEFER-NO allows the spooling user to
begin printing a job’s printed output before the job has
completed execution if the job is the next job to be printed
from the print queue. When DEFER-YES is specified,
printing does not begin until the job has completed execu-
tion. The DEFER parameter applies only to the job in
which the PRINTER statement was received. |f the param-
eter is not specified, the system assumes DEFER-YES,

ALIGN: The ALIGN parameter is optional. 1t aids the
operator in forms alignment for spooled printed output.
This parameter is ignored when print spooling is inactive or
not supported for the specified device. When ALIGN-YES
is specified, the printer stops after printing the first line to
allow forms alignment. A halt is displayed on the message
display unit after the first line is printed. The operator’s
response to this message indicates that forms are aligned
{continue printing) or that the line should be printed again
(try alignment again). If more than one copy is requested
(COPIES parameter) and ALIGN-YES is specified, the
printer halts for forms alignment prior to printing each
copy. If ALIGN-NO is specified, the printer does not stop.
The ALIGN parameter applies only to the job in which the
PRINTER statement was received. If the parameter is not
specified, the system assumes ALIGN-NO.

Note: If logging was assigned to the 1403/5203, forms align-
ment is done on the first OCL statement logged for that job.
For this reason, logging to the 1403/5203 should be sup-
pressed when ALIGN-YES is used.

Spooling Considerations: When a PRINTER statement is
encountered and printer output for the job is being spooled,
the effect of the COPIES, DEFER, ALIGN, and/or
FORMSNO parameters is delayed until the print writer is
ready to print the output.

PUNCH STATEMENT

Function

The PUNCH statement enables you to change the system
punch device.

Placement

The PUNCH statement can be placed anywhere among the

OCL statements. In a procedure it must precede the RUN
statement.

40

Format

// PUNCH code

Content

The codes that can be used as parameters are:

Code Meaning

MFCU1 Primary hopper of the MFCU
MFCU2 Secondary hopper of the MFCU
1442 Card read/punch

3741 Data station (96-byte records) or

programmable work station

READER STATENMENT
Function

The device used to read OCL statements is called the system
input device. The READER statement assigns the system
input device to the device specified.

Placement

The READER statement must not come between the LOAD
or CALL statement and a RUN statement. If a READER
statement is used in a procedure, the system input device is
changed when the READER statement is processed; OCL
statements are not read from the new system input device
until the procedure is completely executed. If you use the
READER statement to change the system input device, the
device you specify is used to read source programs, control
statements, or OCL statements. Changing the system input
device affects the placement of source programs and control
statements as well as OCL statements.

Format

// READER code

Content

The codes are:

Code: Meaning

CONSOLE Printer-keyboard

MFCU2 Secondary hopper of the MFCU
MFCU1 Primary hopper of the MFCU
1442 Card read/punch

3741 Data station (96-byte record) or

programmable work station

RUN STATEMENT
Function

The RUN statement indicates the end of the OCL state-
ments for a program. After the system reads the RUN
statement, it runs the program or merges the procedure into
the job stream.

Placement

A RUN statement is needed for each of the programs you
want the system to run. In the job stream, it must be the
last statement within each of the sets of OCL statements
for your programs. It can also be the last OCL statement in
a procedure. (For more information about procedures, see
Procedures in 1BM System/3 Model 12 User’s Guide,
GC21-5142.)

Format

// RUN

Content:

None (comments may be entered starting in column 8).

SIMULATE STATEMENT
Function

The SIMULATE statement is used to enable and disable
simulation areas R2 and F2 on drive 2. R2 and F2are
simulated on D2 at IPL. To allow processing multivolume
files on D2, simulation must be turned off on D2.

Placement

The SIMULATE statement must not come between a
LOAD or CALL and a RUN statement. It cannot be used
in a procedure. It is invalid if the other level is in a nested
procedure or is not at end of job, or if rollin is pending. It
is invalid to turn simulation off if spool is using D2.

Format

oN
// SIMULATE OFF

Content

ON specifies simulation turned on for D2. This enables R2
and F2. Simulation on D2 remains on until a // SIMULATE
OFF statement is read. OFF specifies simulation turned off
for D2. This disables R2 and F2. Simulation for D2 remains
off until IPL or a // SIMULATE ON statement is read.

SWITCH STATEMENT
Function

The SWITCH statement sets one or more external indicators
on or off. The indicators are always off after the operator
uses the IPL procedure to start the system. If a SWITCH
statement is used to set an indicator on, the indicator
remains on until another SWITCH statement sets it off, or
until the operator again uses the IPL procedure to start the
system. There can be only one SWITCH statement per job.

Statement Descriptions 41

Placement

The SWITCH statement can appear within any of the sets
of statements for your programs. The only requirements
for the SWITCH statement are that it must follow the

LOAD or CALL statement and precede the RUN statement.

Format

// SWITCH indicator-settings

Content

Indicator-settings: The indicator-settings parameter is a
code that consists of 8 characters, one for each of the eight
external indicators (U1-U8). The first, or leftmost, charac-
ter gives the setting of indicator U1; the second character
gives the setting of U2; and so on.

The code must always contain 8 characters. For each indi-
cator, one of the following characters must be used:

Character Meaning

0 Set the indicator off

1 Set the indicator on

X Leave the indicator as it is
Example

The code 1X0110XX would cause the following results:

Indicator Result
U1 Set on
U2 Unaffected
u3 Set off
U4 Set on
us Set on
ué Set off
u7 Unaffected
us Unaffected

42

/& STATEMENT

Function

/& statements are used as a precautionary measure. Placed
in front of your OCL set, a /& statement signals the system
that a new set of OCL statements is coming. It prevents
your statements from being read as a part of the preceding
set of statements or data. Any attempt to read more data
from that device will be blocked.

Placement

/& statements are not required. It is recommended, however,
that you use them as the first statement in each of the sets
of OCL statements for your programs. They are not allowed
in a procedure.

Format

/&

Content

None (comments may be entered starting in column 4).

/* STATEMENT

Function

/* statements are not true OCL statements, but are used to
indicate the end of & data file read in from a card reader,
console, or 3741.

Placement

A /* statement should be the last statement of an input data
file or program deck.

Format

/*

Content

None (comments may be entered starting in column 4),

*(COMMENT) STATEMENTS
Function

Comment statements are commonly used either to explain
the jobs or to give the operator instructions. Operator in-
structions are usually given in connection with a PAUSE
statement. Comment statements are printed along with the
other OCL statements. They have no other effect on the
system.

Placement

In OCL statements, you can include special statements that
contain only comments. Comment statements must contain
an asterisk (*) in column 1. They can be placed anywhere
among the OCL statements in either a job stream or a pro-
cedure.

Format

*comment

Content

The comment can be any combination of words and charac-
ters. The only requirement is that an asterisk (*) be in
column 1.

Statement Descriptions

43

44

Introduction to System Utility Programs

The Model 12 SCP includes a group of system utility pro-
grams that are resident in a simulation area. These programs
perform a variety of functions, such as preparing data
modules for use, reorganizing an indexed file, and deleting
files. Each of the system utility programs is described
separately in this section, with the following information
given for each program:

® Functions performed

® OCL statements required to use the program

® Parameter explanations

® OCL (operation control language) considerations

® Examples

OCL STATEMENTS

Each system utility program requires a set of OCL state-
ments. The first statement required within a set of OCL
statements is the LOAD statement. It identifies the pro-
gram tc be run and indicates which simulation area the pro-
gram will be loaded from. The statement format used to
load a program from the simulation area is:

// LOAD program-name,unit

The program-name in the LOAD statement specifies the
system utility program you want to run. The following list
contains the system utility programs described in this sec-
tion, the name that must appear on the LOAD statement,
and the main storage requirements for selected SCP pro-
grams (size is the minimum main storage, in bytes, exclud-
ing supervisor requirements):

Part 2. System Utility Programs

Program Name Size
Tape Initialization $TINIT 8K
Tape Error Summary $TVES 8K
Disk Initialization SINIT 8K
Alternate Track Assignment S$SALT 8K

Alternate Track Rebuild $BUILD 8K

File and Volume Label $LABEL 8K to 18K
Display (note 3)
File Delete $DELET 8K
Copy/Dump $COPY 8K (note 1)
Dump/Restore $DCOPY 8K

Simulation Area $SCOPY 8K

SMAINT 8K (notes 1

and 2)

Library Maintenance

Reassign Alternate Track $RSALT 8K

Notes:
1. Uses more main storage, if available.

2. Requires a dedicated system (cannot be used with
dual programming).

3. 50 File VTOC 8K
1000 File VTOC 10K
1-1000 Entries unsorted 10K
1-300 Entries sorted 10K
301-500 Entries sorted 12K
501-700 Entries sorted 14K
701-900 Entries sorted 16K
901-1000 Entries sorted 18K

Introduction to System Utility Programs 45

The unit parameter specifies a code that describes the loca-
tion of the simulation area which contains the system
utility program. The codes are F1, R1, F2, and R2.

The RUN statement also is required for each system utility
program. The format of this statement is:

// RUN

The program begins after the system reads this statement.
One or more FILE statements may be required, depending
oh the system utility program to be run and the function to
be performed. (See the following system utility program
descriptions for FILE statement requirements.)

CONTROL STATEMENTS

All of the programs require utility control statements
(except $TVES), which you must supply. These statements
give the program information concerning the output you
want the program to produce or the way in which you want
the program to perform its function. The programs read
these statements from the system input device or a proce-
dure. They must be the first input read by the programs.

Every control statement is made up of an identifier and
parameters. The identifier is a word that identifies the con-
trol statement. It is always the first word of the statement.
Parameters are information you are supplying to the pro-
gram. Every parameter consists of a keyword, which identi-
fies the parameter, followed by the information you are
supplying.

Coding Rules
The rules for constructing control statements are as follows:

1. Statement identifier. // followed by a blank should
precede the statement identifier. Do not use blanks
within the identifier.

2. Blanks. Use one or more blanks between the identi-
fier and the first parameter. Do not use them any-
where else in the statement.

3. Statement parameters. Parameters can be in any
order. Use a comma to separate one parameter from
another. Use a hyphen {-) within each parameter to
separate the keyword from the information you sup-
ply. Do not use blanks within or between parameters.

46

4, Statement parameters containing a list of data after
the keyword. Use apostrophes {’) to enclose the items
in the list. Use a comma to separate one item from
another. For example: UNIT-‘R1,R2’ (R1and R2
are the items in the list).

5. Statement length. All control statements except disk
initialization, simulation area, and library mainte-
nance statements must not exceed 96 characters. The
following library maintenance statements can be con-
tinued on ancither statement. (See Continuation
under Coding Rules in Part 1 of this manual.)

// ALLOCATE

// COPY (not COPY statements read from a file or
ENTRY statements)

// DELETE

// MODIFY (not REMOVE, REPLACE, or
INSERT statements)

// RENAME

The disk initialization statement // VOL can also be contin-
ued. All simulation area control statements may be contin-
ued.

The following is an example of a control statement:

// COPY FROM-F1,LIBRARY-O,NAME-SYSTEM,TO-R1
The statement identifier is COPY. The parameter keywords
are FROM, LIBRARY, NAME, and TO. The information
you supply is F1, O, SYSTEM, and R1.

END Control Statement
The END statement is a special control statement that indi-
cates the end of control statements. It consists of // END

starting in position 1 and must always be the last control
statement for the program (except $TVES).

Placement of Control Statements in the Job Stream

Control statements for utility programs must follow the
RUN statement. The following example shows the use and
placement of utility control statements.

1 4 8 12 16 20 24
ocL /\/| 104D 8lcoAY,|F
Statements ORETT,
Utility Control } I/|/| |CIOIPYVIAAICIK] |FRIOM-|F|1|,|TIO-|RIZ
Statements /| |EMD .

Special Meaning of Capital Letters, Numbers, and Special
Characters

Capitalized words and letters, numbers, and special charac-
ters have special meanings in OCL and utility control state-
ment descriptions.

In utility control statements, capitalized words and letters
must be written as they appear in the statement description.
Sometimes numbers appear with the capitalized informa-
tion. These numbers must also be written as shown.

Words or letters that are not capitalized mean you must use
a value that applies to the job you are doing. The values
that can be used are listed in the parameter summaries for
the control statements. For example, ID-xxxxxx means you
must supply the value where the xxxxxx appears.

Braces and brackets ([{ }]) sometimes appear in param-
eters shown in control statement summaries and parameter
summaries. They are not part of the parameters. Braces
indicate that you must choose one of several values to
complete the parameter. For example, RETAIN- ; means
you can use either RETAIN-T or RETAIN-P. Brackets indi-
cate optional parameters. For example, [,PACK-name] is an
optional parameter that may or may not be used.

Tape Initialization Program—$TINIT

The Tape Initialization program prepares tapes for use. It
writes IBM standard volume labels on tape so that tape data
management can perform IBM standard label processing.
The program is available on either card or disk.

The Tape Initialization program performs these functions at
your request:

® CHECK labeled tapes for a volume label and an unexpired
file before writing a new volume label.

® CLEAR labeled or unlabeled tapes by bypassing CHECK
and unconditionally initializing the tape.

® DISPLAY the volume and header labels.

All tapes must be initialized before use. Tapes that have
been initialized need not be reinitialized unless you want to
write a new volume label or use a tape that contains a per-
manent file for output. This program can either initialize
(CLEAR or CHECK) or DISPLAY one tape per unit during
the same program run.

Tape Initialization Program—$TINIT 47

CONTROL STATEMENT SUMMARY

Use

Check for an expired
file and a label, then
write a new label.

Write volume label
without checking
for old label.

Display volume
label.

Notes:

1. If density is not specified, the default for 7-track tape units is 800 bpi, the default for 9-track tape units is 1600 bpi.

Control Statement

T1

// VOL UNIT- ,F!EEL-{NL

1600

800
DENSITY- {556 } AD-yy...yy

200
// END

T1

T2 NL
T ,REEL-{
T4

// VOL UNIT-

1600
800

DENSITY- {556} AD-yy...yy
200

// END

T1
// VOL UNIT- T2

T4

// END

XXXXX

XXXXX

,TYPE-DISPLAY,DENSITY-{

« } ,TYPE-CHECK,ASCI I-{YES } .

NO

x} ,TYPE-CLEAR,ASCII- {YES } ,

NO

800
556
200

2. The DENSITY parameter on display volume label is valid only for 7-track tape units.

3. Valid density for 7-track tape units is 200, 556, and 800 bpi. Valid density for 9-track tape units is 800 bpi (if

dual density feature is installed) and 1,600 bpi.

48

PARAMETER SUMMARY

TYPE-CHECK

TYPE-CLEAR

TYPE-DISPLAY

UNIT-code

REEL-NL

REEL-xxxxxx

ASCII-YES

ASCII-NO

DENSITY-200

DENSITY-556

DENSITY-800

DENSITY-1600

ID-XXXXXXXXXX

OCL CONSIDERATIONS

The following OCL statements are needed to load the Tape

Checks to see if the file has expired, then writes a new label. Do not use this on blank tapes
because the program attempts to read a blank tape, causing tape runaway.

Writes a new volume label without checking for an expired file.
Prints the contents of the volume label and the header labels.

Specifies which tape drive contains the tape to be initialized. Possible codes are T1, T2, T3, and
T4. A separate VOL statement is needed for each tape unit that contains a tape to be initialized.

Specifies that an unlabeled tape is to be generated.

Specifies the volume serial number that the Tape Initialization program writes on fape. Must be
alphabetic A-Z, @, #, $, or numeric 0-9.

The tape is written in ASCII code. This is invalid for 7-track tape.
The tape is written in EBCDIC code. If the ASCII parameter is omitted, NO is assumed.

The tape is written at a density of 200 bpi. The file written on this tape unit must be written at
this density.

The tape is written at a density of 556 bpi. The file written on this tape unit must be written at
this density.

The tape is written at a density of 800 bpi. The file written on this tape unit must be written at
this density.

The tape is written at a density of 1,600 bpi. The file written on this tape unit must be written at
this density.

Provides an additional identification field. This field is not processed by the system. A maximum

of 10 characters can be used if ASCII-NO is specified. If ASCII-YES is specified, 14 characters can
be used. This is an optional parameter.

MESSAGE FOR TAPE INITIALIZATION

Message Meaning

Initialization program:

// LOAD $TINIT,code

// RUN

The code you supply depends on the location of the simula-

" INITIALIZATION
ON xx COMPLETE

This message is printed when
initialization of a tape is com-

plete. xx indicates the unit (T1,

T2, T3, or T4) on which the
initialization is complete.

tion area containing the Tape Initialization program. The
codes are R1, F1, R2, and F2.

Tape Initialization Program—$TINIT 49

PRINTOUT OF VOLUME LABEL

The following sample jobs show the format of data printed
by the Tape Initialization program from a 9-track tape
unit and from a 7-track tape unit.

74 LOAD STINIT,F1
/7 VOL UNIT-T1,TYPE-DISPLAYFILES—ALL,DENSITY=-200
77 VOL UNIT-T2,TYPE-DISPLAY.FILES-ALL,DENSITY-556
/7 VOL UNIT-T3,TYPE-DISPUAY,FILES-ALL
/7 VOL UNIT-Ta,TYPE-DISPLAY,FILES-ALL
/7 END
#%% DISPLAY ON UNIT T1 #%#
LABEL SERIAL OWNER CODE
VoLl SCRTOIL
ABE FILE IDENTIFIER FILE SERIAL VOL SEQ ND CREATE DATE EXPIRE DATE FILE NO
HOAT" FILEGL € SCRTO1 0351 76006 6016 0351
LABEL REC _FORM BLK LENG REC LENG RECORDING TECH PRTR CNTRL BLK ATTR JOBNAME/STEPNAME
HDR2Z F 060080 60080 7TaPBLDOIL
%% DISPLAY ON UNIT T2 #*%
LABEL SERIAL OWNER CODE
VoLl SCRT02
LABEL EILE IDENTIFIER FILE SERIAL VOL _SEQ NO CREATE DATE DATE FILE_SEQ NO
HDRI FILEGL SCRT02 0363 88506 16 0361
LABEL REC_FORM BLK LENG REC LENG RECORDING TECH PRTR CNTRL BLK_ATTR JOBNAME/ STEPNANE
HDR2 F 60800 066080 8 /TAPBLDOL
##% DISPLAY ON UNIT T3 %
LABEL SERIAL OWNER CODE
VoLl SCRT03
MEANING OF VOLUME LABEL INFORMATION FILE SERIAL The serial number of the tape
volume. This is the same as the
Display of Volume Label SERIAL field in the volume
label.
Heading Meaning
VOL SEQ NO The sequence number of this
LABEL VOL1 indicates this is a volume volume is a multivolume file.
label.
CREATE DATE The date this file was created.
SERIAL The volume serial number (from This is a Julian date. The format
the REEL parameter). is yyddd where yy is the last two
digits of the year and ddd is the
OWNER CODE Additional identification (from day in the year. Example:

the ID parameter).
Display of Header 1 Label

Heading Meaning

LABEL HDR1 indicates this is a header 1
label.

FILE IDENTIFIER The filename of the file on tape.
This is the name from the LABEL
parameter of the OCL FILE state-
ment when the file was created.

60

EXPIRE DATE

76063 = the sixty-third day of
1976, or March 3, 1976.

The date this file expires. This
Julian date is the creation date
plus the number of days speci-
fied by the RETAIN parameter
on the OCL FILE statement.

Display of Header 2 Label
Heading

LABEL

REC FORM

BLK LENG

REC LENG

RECORDING TECH

Meaning

HDR2 indicates this is a header 2
label.

The record format of this file.
(From the RECFM parameter on
the OCL FILE statement when
this file was created.) The
formats are:

F Fixed length
\) Variable length
V) Undefined length

Block length (from the BLKL
parameter on the OCL FILE
statement when this file was
created).

Record length (from the RECL
parameter on the OCL FILE
statement when this file was
created).

T Odd parity with trans-
lation

C Odd parity with conver-
sion

E Even parity without
translation

ET Even parity with trans-
lation

Blank Odd parity without
translation or conver-
sion

PRTR CNTRL

Printer control character. This
field will be blank on tapes creat-
ed on System/3. For tapes creat-
ed on other systems, the charac-
ters are:

A ASCII control charac-
ters

M Machine control
characters

blank No control charac-
ters

Block attributes:

B Blocked records

S Spanned records

R Blocked and spanned
records

blank Neither blocked nor
spanned

Note: Spanned records can-
not be created on System/3.

Tape Initialization Program—$TINIT 51

Tape Error Summary Program—$TVES

The IBM System/3 Disk System keeps track of errors that
occur on the tape drives. This error information is stored in
the customer engineer tracks on drive 1. You should run
the Tape Error Summary program periodically to provide a
summary, by volume and by unit, of temporary read and
write errors.

There are no control statements necessary for this program.
After being loaded from the program or system pack, the
Tape Error Summary program reads the data from the disk
and sorts it by volume and unit. When all the data is read
or the available main storage is filled, the error data is print-
ed. If no tape errors are recorded, the message THERE
ARE NO VALID TAPE ERRORS LOGGED is printed.

ERROR LOGGING FORMAT

SUMMARY MAGNETIC TAPE ERROR STATISTICS BY VOLUME

VOLUME SIO TEMP TEMP WRITE
SERIAL COUNT READ WRITE SKIP

T1 06512 0000 0028 0028
TAPE1 00016 0000 0001 0001
TAPE3 00021 0000 0001 0001

DATE 03/27/72

SUMMARY MAGNETIC TAPE ERROR STATISTICS BY TAPE UNIT DATE 03/27/72

TAPE SIO0 TEMP TEMP WRITE DIAG
UNIT COUNT READ WRITE SKIP TRACK
T1 06528 0000 0029 0029 0000
T4 00021 0000 0001 0001 0000

0 For any file that has more than two volumes on a unit, ,,,.,, is printed as the volume serial for all volumes on that
unit except the last volume. For a tape that is not being used by tape data management, ,,,,,, is printed as the

volume serial. For nonlabeled tapes, ******

NS is printed as the volume serial.

The number of tape operations performed. (SIO means Start 1/0.)
Temporary read errors.

Temporary write errors.

Write skips caused by temporary write errors.

Diagnostic track errors. This is used by IBM customer engineers.

is printed as the volume serial. For tapes with nonstandard labels,

OCL CONSIDERATIONS

The following OCL statements are needed to load the Tape
Error Summary program:

// LOAD $TVES,code
// RUN

The code you supply depends on the location of the simula-
tion area containing the Tape Error Summary program. The
codes are R1, F1, R2, and F2.

Disk Initialization Program—S$INIT

All data modules must be initialized before use. Data
modules that have been initialized need not be reinitialized

unless you want to erase their contents and rename them.

The Disk Initialization program prepares data modules for
use. It does this by:

® Writing track and record addresses on the data module

® Checking for defective tracks, a process called surface
analysis

® Assigning alternate tracks to any defective tracks found

® \Writing a name on each data module to identify the data
module

® Formatting the volume table of contents

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-6413

The process is called initialization. The program can initial-
ize up to two data modules during the same program run.

There are five types of initialization: FORCE, PRIMARY,
CLEAR, CYLO, and RENAME. FORCE is used primarily
to initialize new data modules. PRIMARY is used to initial-
ize the main data area if there are no active files on the data
module. CLEAR will initialize the main data area without
checking for active files. CYLO is a fast initialization, initial-
izing only cylinder 0 on a System/3 formatted data module.
RENAME affects names on cylinder O, track O, record 3

and cylinder 0, track 3, record 3.

CAUTION

CLEAR and FORCE destroy any files that were previously
on disk. CYLO destroys any VTOC entries that were pre-
viously on disk.

The control statements you supply for the Disk Initializa-

tion program depend on the type of initialization and the
number of disks you are initializing.

Disk Initialization Program—$INIT 53

CONTROL STATEMENT SUMMARY

Type of Initialization Control Statements®

FORCE® // UIN TYPE-FORCE@,UNIT-DQ
// VOL PACK-name,|D-characters, NAME360-characters
/{ END

pPrIMARY D // UIN TYPE-PRIMARY@UNIT- {gggzs} VERIFY-number

// VOL PACK-name,|D-characters, NAME360-characters
// END

Disk already in use // UIN TYPE-PRIMARY,UNIT--

code
(reinitialize) le

},VER!FY-num!ber
odes

// VOL PACK-name,}D-characters, NAME360-characters,O LDPACK-name

// END

code }(VERIFY-number

CLEAR@ // UIN TYPE-CLEAR,UNIT-{ ,
codes

// VOL PACK-name,|D-characters, NAME360-characters, OLDPACK-name

// END
cyLo® Disk already | TvpE-cYLO,UNIT. S C0% | ,
in use [codesf
/I VOL PACK-name,|D-characters, NAME360-characters, LDPACK-characters
// END
rRename @ // UIN TYPE-RENAME, UNIT.J €od€ ! ,
| codes |

// VOL PACK-name,ID-characters, NAME360-characters,O LDPACK-characters
// END

Note: The control statement defaults to TYPE-FORCE if the data module is still in System/370 format and TYPE-CLEAR
or PRIMARY initialization has been specified. If CYLO or RENAME is specified and the data module is still in System/370
format, the system halts.

®Contr0l statements are required in the order they are listed: UIN, VOL, END

@One VOL statement is required for each disk listed in the UNIT parameter of the UIN statement. The PACK parameter in the first VOL

statement applies to the first disk listed in the UNIT parameter. The PACK parameter in the second VOL statement applies to the second
disk listed in the UNIT parameter.

@If the TYPE parameter is omitted, TYPE-PRIMARY is assumed.

54

PARAMETER SUMMARY

UIN (Input Definition) Statement

TYPE-FORCE

TYPE-PRIMARY

TYPE-CLEAR

TYPE-CYLO

TYPE-RENAME

UNIT-code

UNIT-‘code,code’

VERIFY-number

ERASE-code

If the TYPE parameter FORCE is
used, the main data area and the
simulation areas are initialized with-
out a check for active files. (This is
invalid for D1; and for D2 if F2 and
R2 are being simulated.)

Primary initialization (main data
area only). Tracks already initial-
ized are reinitialized. The program
will not initialize disks containing
temporary data files or permanent
data files.

Clear initialization (main data area
only). Tracks already initialized are
reinitialized. Active file checking is
bypassed and any data on the tracks
is destroyed.

CYLO is a fast initialization, initial-
izing only cylinder 0 on a System/3
formatted data module. This in-
cludes rewriting the volume label,
the pack ID, and NAME360 fields,
and deleting any VTOC entries that
may be present.

RENAME initialization applies only
to those names on cylinder O which
match the PACK, ID, and NAME360
parameters, Parameters are changed
on a System/3 formatted data
module to the parameters specified
on the contro! statement.

Disk location {one disk). Possible
codes: D1, D2.

Disk location {two disks). Possible
codes: D1, D2.

Surface analysis. Done the number
of times indicated (number can be
1-255). VERIFY-16 is assumed if
you omit the parameter. This param-
eter is only used for TYPE-CLEAR
and TYPE-PRIMARY initialization.

Possible codes are yes and no. Yes
causes retesting of tracks for which
alternates are already assigned.

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

VOL (Volume) Statement

PACK-name

ID-characters

NAME360-characters

OLDPACK-name

Data module name. Can contain
any of the standard System/3
characters except apostrophes,lead-
ing or embedded blanks, and em-
bedded commas‘~. lts length must
not exceed 6 characters.

Additional identification. Can con-
tain any of the standard System/3
characters except apostrophes, lead-
ing or embedded blanks, and em-
bedded commas\~/. Its length must
not exceed 10 characters. If you
omit this parameter, no additional
identification is written on the disk.

Additional identification for data
module. The name will be placed in
the System/360 format 1 DSCB.
Can contain any of the standard
System/3 characters except apos-
trophes, leading or embedded blanks,
and embedded commas'\~. |ts
length must not exceed 44 charac-
ters. If you omit this parameter,
the program defaults to
SYSTEM/3.DATA.

Current name of the data module to
be initialized. See PACK keyword
(above) for valid entries.

PARAMETER DESCRIPTIONS

TYPE Parameter (UIN)

The TYPE parameter indicates the type of initialization you
want to do: PRIMARY, FORCE, CLEAR, CYLO, or
RENAME, The type of initialization determines which disk
tracks will be initialized.

PRIMARY Initialization

PRIMARY initialization applies to main data areas you have
used but want to initialize again. Tracks that were pre-
viously initialized are initialized again. Any data on the
tracks is destroyed. You can use PRIMARY initialization on
a disk as often as you want. However, the program will not
initialize disks containing temporary data files or permanent
data files. You must delete the files using the file delete

program.

®This is due to their delimiter function.

Disk Initialization Program—$INIT 55

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

FORCE |Initialization

FORCE initialization applies to new data modules that are
formatted for System/370. FORCE may also be used to re-
initialize disks that you have used.

Note: The simulation area program, $SCOPY must be used
after a FORCE initialization to reformat the simulation
areas.

CLEAR Initialization

CLEAR initialization applies to the main data area of pre-
viously used data modules that require reinitialization
because of invalid data module labels or an unrecoverable
disk error. Tracks that were previously initialized are re-
initialized.

CAUTION

All temporary data files or permanent data files are com-
pletely erased.

CYLO Initialization

Cylinder zero (CYLO) initialization can be used if you want
to reinitialize only cylinder O.

RENAME Initialization

RENAME initialization may be used if you want to change
PACK, ID, and NAME360 parameters.

Note: If an invalid System/3 label is found during RENAME

initialization, the program must reinitialize the disk using .

either FORCE, CLEAR, PRIMARY, or CYLO.

UNIT Parameter (UIN)

The UNIT parameter (UNIT-code) indicates the location of
the data modules you want to initialize. The program can

initialize up to two data modules during one program run.

The form of the UNIT parameter depends on the number of
data modules you are initializing:

® For one data module, use UNIT-code.
® For two data modules, use UNIT-‘code,code’.

The codes indicate the locations of the data modules D1,
D2.

56

For all initialization, the order of codes must correspond to
the order of VOL control statements. If, for example, you
had used the parameter UNIT-'D1,D2’, the first VOL state-
ment applies to the data module on drive 1, and the second
to the data module on drive 2.

ERASE Parameter (UIN)

The ERASE parameter applies to alternate track assign-
ments on disks that have already been intialized and used,
but you are reinitializing using primary initialization.

The condition of tracks on disks such as these has been
tested at least once before (during the previous initializa-
tion), and the tracks that were found to be defective during
surface analysis were assigned alternates. The ERASE param-
eter allows you to inclicate whether you want the program
to 1) retest the tracks to which alternate tracks are already
assigned, or 2) leave the alternate tracks assigned without
retesting the tracks.

To retest the tracks, enter parameter ERASE-YES. The
program then erases any existing alternate track assignments
and tests all tracks as if the disk were new.

To bypass retesting the tracks, enter parameter ERASE-NO.
The program then tests only those tracks to which no alter-
nate tracks are assigned. Alternate tracks previously
assigned remain assigned.

Defective tracks are not retested if the ERASE parameter is
omitted.

VERIFY Parameter (UIN)

The VERIFY parameter (VERIFY-number) concerns sur-
face analysis. It enables you to indicate the number of
times you want the program to do surface analysis before
judging whether or nat tracks are defective. The number
can be from 1 to 255.

Surface Analysis
Surface analysis is a procedure for testing the condition of

tracks. It consists of writing test data on tracks, then read-
ing the data to ensure that it was recorded properly.

In judging whether or not tracks are defective, the program
does surface analysis the number of times you specify

in the VERIFY parameter. If you omit the VERIFY
parameter, surface analysis is done 16 times. Tracks that
cause reading or writing errors any time during surface
analysis are considered defective. Defective tracks can be
assigned alternates. The 3340 has 40 alternate tracks
available. If the program finds more than 40 defective
tracks, it considers the disk unusable and stops initializing
it.

Alternate Track Assignment

Alternate track assignment is the process of assigning an
alternate track to a defective track. If the disk initialization
program finds a defective track during surface analysis, it
assigns an alternate track to the defective track. The
alternate is, in effect, a substitute for the defective track.
Anytime a program attempts to use the defective track, it
automatically uses the alternate instead. Each disk has 40
alternate tracks (tracks 3340-3379).

If tracks become defective after a disk is initialized, another
program (see Alternate Track Assignment Program) is used
to assign alternate tracks. Disks need not be reinitialized to
assign alternate tracks.

Note: During initialization of D1, suspected defective simu-
lation area tracks may be encountered in the suspected
defective track list as a result of previous activity involving
that data module. If so, the system halts at end of job. At
this time the data module should be moved to unit D2 and
$ALT run against it.

PACK Parameter (VOL)

The PACK parameter (PACK-name) applies to all types of
initialization. During initialization, the disk initialization
program writes a name on each disk. It uses the name you
supply in the corresponding PACK parameter. (One VOL
control statement containing a PACK parameter is required
for each disk.)

The name can be any combination of standard System/3
characters except apostrophes, leading or embedded blanks,
and embedded commas (because of their delimiter func-
tion). (See Appendix A for a list of standard System/3
characters.) lts length must not exceed 6 characters.
Examples of valid disk names are 0,F0001, 012, A1B9, and
ABC.

In general, disk names are used for checking. Before a pro-
gram uses a disk, the disk name is compared with a name
you supply (either in OCL statements or control statements
required by the program). If the names do not match, the
program halts and prints a message. In this way, programs
cannot use the wrong disks without the operator knowing
about it.

ID (ldentification) Parameter (VOL)

The ID parameter (ID-characters) applies to all types of ini-
tialization. It enables you to include a maximum of 10
characters, in addition to the disk name, to further identify
adisk. The characters can be any combination of standard
System/3 characters (Appendix A) except apostrophes,
leading or embedded blanks, and embedded commas
(because of their delimiter function). The information is
strictly for your use; the system does not use it for check-
ing. If you use the file and volume label display program to
print the disk name, that program will also print the addi-
tional identification for you.

NAME360 Parameter (VOL)

The NAME360 parameter (NAME360-name) is used to
specify a filename for data interchange with System/360-
System/370. System/360-System/370 can use data on a
System/3 data module by treating it like a file. System/3
gives a default filename of SYSTEM/3.DATA. The
NAME360 parameter can be used if you would like to code
a filename of your own.

NAMES360 can contain any of the standard System/3
characters except apostrophes, blanks and commas. Its
length must not exceed 44 characters.

OLDPACK Parameter (VOL)

The OLDPACK parameter (OLDPACK-name) is used to
verify that a specific disk is mounted before initialization is
started. |f the name of the disk mounted does not match
the name you specify, the program halts.

The specified name can be any combination of standard
System/3 characters except apostrophes, leading or embed-
ded blanks, and embedded commas. |Its length must not
exceed 6 characters.

Disk Initialization Program—$INIT 57

OCL CONSIDERATIONS

The following OCL statements are needed to load the disk
initialization program:

// LOAD $INIT code

// RUN
The code you supply depends on the location of the simu-
lation area containing the disk initialization program. The
codes are R1, F1, R2, and F2.
EXAMPLES
Primary Initialization of Two Disks

Figures 9 and 10 are examples of OCL statements and

utility control statements needed for the primary initializa-

tion of two disks.

14 8 12 16 20 24 28 32 36
|t I

/|/] 1L0AD 18/IM/(T],1FIY

/|/] |RUNM

Explanation:

Disk initialization program is loaded from the simulation
area (F1) on drive 1.

Figure 9. OCL Load Sequence for Disk Initialization

68

1 4 8 12 16 20 24 28 32 36
A/ M UM [11=171004, (02!’ |, IT1Y1PEL- |ARL MA
/| VioLl 1AAcik-1212212
/| WOL| PAICK-|PAYIROL, |/ \D - 21@217|5)
/ 1/ [EMD
Explanation:

® The main data area on both drives is being initialized
(UNIT-'D1,D2’ in UIN statement).

® The main data area (D 1) is given the name 2222 (PACK-
2222 in first VOL statement).

® The main data area (D2) is given the name PAYROL
(PACK-PAYROL in second VOL statement). Additional
identifying information, 010275, is to be written on
drive 2 (ID-010275).

Figure 10. Utility Control Statements for Primary Initialization of
Two Disks

MESSAGES FOR DISK INITIALIZATION

Message

INITIALIZATION ON
XX COMPLETE

INITIALIZATION ON
XX TERMINATED

**ALTERNATE TRACKS
ASSIGNED**

PRIMARY TRACK XXXX
ALTERNATE TRACK XXXX

ALTERNATE TRACK
XXXX DEFECTIVE

PRIMARY TRACK HAS BEEN
TESTED OK
TRACK-XXXX, UNIT-ZZ

**RECORD WITH DATA
ERROR™*

Alternate Track Assignment Program—$ALT

Meaning

This message is printed when initialization of a disk is complete. XX indicates the
unit (D1,D2) on which the initialization is complete.

This message is printed when initialization of a disk must be terminated for one of
the following reasons:

® Cylinder 0 head 0 is defective.
® More than forty 3340 tracks are defective.
® Possible disk hardware error exists.

After this message is printed, halt 33 occurs. XX indicates the unit (D1 or D2) on
which the initialization is terminated.

These two messages are printed when a primary track is defective and an alternate

track is assigned to it. XXXX indicates the tracks involved.

This message is printed when a 3340 alternate track is defective.

This message is printed when it is determined that a primary track is not defective.
XXXX is the primary track number and ZZ is the unit involved.

This message is printed when an error is encountered during data transfer while
assigning an alternate track. The record that has the error is printed. (See
Alternate Track Assignment Program for additional explanation.)

CONTROL STATEMENT SUMMARY

The alternate track assignment program assigns alternate Use Control Statements®

tracks to disk tracks that become defective after they are @

initialized. When the program assigns an alternate, it trans- Conditional // ALT “PACK-name ,UNIT-code,VERIFY-
fers the contents of the defective track to the alternate. Assignment number

Alternate tracks can replace any primary tracks except

cylinder Q0 head 0 on the 3340 because they are reserved for // END

system use.

®For each use, the program requires the statements in the order
they are listed: ALT, END.

@There can be only two ALT statements per job.

Alternate Track Assignment Program—$ALT 59

PARAMETER SUMMARY: ALT (ALTERNATE)
STATEMENT

PACK-name Name of the disk.

UNIT-code Location of the disk. Possible codes
are D1, D2.

VERIFY-number In testing the condition of a track, do
surface analysis the number of times
indicated (number can be 1-255). If
VERIFY parameter is omitted, do sur-
face analysis 16 times.

PARAMETER DESCRIPTIONS
PACK Parameter

The PACK parameter (PACK-name) tells the program the
name of the disk containing the defective tracks. This is
the name written on the disk by the disk initialization pro-
gram. (See Disk Initialization Program.)

The alternate track assignment program compares the name
in the PACK parameter with the name on the disk to ensure
they match. In this way, the program ensures that it is us-
ing the right disk.

UNIT Parameter

The UNIT parameter (UNIT-code) indicates the location of
the disk containing defective tracks. Codes for the possible
locations are D1 and D2.

VERIFY Parameter

The VERIFY parameter (VERIFY-number) enables you to
indicate the number of times you want the program to do
surface analysis before judging whether or not the track is
defective. The number can be from 1 to 255. If you omit
the parameter, the program does surface analysis 16 times.

Conditional Assignment
Conditional assignment consists of testing the condition of

a track (surface analysis) and, if the track is defective,
assigning an alternate track to replace it.

60

Situation: Conditional assignment applies to tracks that
cause reading or writing errors during a job. Any time a
track causes such errors, the system does the following:

1. Stops the program currently in operation.
2. Writes the track address in a special area on the disk.

3. Halts with a halt code indicating a permanent disk
1/0 error.

You can then run the alternate track assignment pro-
gram.

When you use the alternate track assignment program to do
conditional assignment, the program locates the tracks by
using the addresses in the special area on disk. All disks
have such an area. The program will do conditional assign-
ment for all tracks identified in the area (one at a time) as
long as there are alternate tracks available for assignment.

Surface Analysis: Surface analysis is a procedure the pro-
gram uses to test the condition of tracks. It consists of
writing test data on a track, then reading the data to ensure
that it was written properly.

Before doing surface analysis, the alternate track assignment
program transfers any data from the track to an alternate
track. This is the alternate that will be assigned if the track
proves to be defective.

In judging whether or not the track is defective, the program
does surface analysis the number of times you specify in the
VERIFY parameter. |f you omit the parameter, the pro-
gram does surface analysis 16 times. If the track causes
reading or writing errors any time during surface analysis,
the program considers the track defective.

Assignment of Alternate Tracks: |f a track proves to be
defective, the program assigns an alternate track. The alter-
nate becomes, in effect, a substitute for the defective track.
Any time a program attempts to use the defective track, it
automatically uses the alternate instead.

Each data module has 40 alternate tracks. The program will
not do conditional assignment if all alternate tracks are in
use.

Note: If the alternate track assignment program is being
run against D1 and suspected defective tracks from the
simulation area are encountered, a halt occurs at end of job.
At this time, the data module should be moved to D2 and
$ALT run against it again.

Incorrect Data: |f a track is defective, some of the data
transferred to the alternate track could be incorrect. There-
fore, when reading data from the defective track, the
program prints all track records containing data that caused
reading errors. Characters that have no print symbol are
printed as two-digit hexadecimal numbers.

The following is an example:

ABCDE GH123 56...
B A
6 4

Appendix A lists the characters in the standard character
set and their corresponding hexadecimal numbers.

To correct errors on the alternate track, use the alternate
track rebuild program.

OCL CONSIDERATIONS

The following OCL statements are needed to foad the alter-
nate track assignment program:

// LOAD $ALT code
// RUN

The code you supply depends on the location of the simula-
tion area containing the alternate track assignment program.
The codes are as follows: R1, F1, R2, and F2.

EXAMPLES
Conditional Assignment

Figures 11 and 12 are examples of the OCL statements and
utility control statements needed for a conditional assign-
ment as described in the following situation.

Situation

The system cancels a job if a defective track is found on the
main data area on drive 2. {The name of the disk is
BILLNG.) Before doing more jobs, the operator wants to
use the alternate track assignment program to check the
condition of the track and assign an alternate to the track
if it is defective.

16 20 24 28 32 36

Explanation:

Alternate track assignment program is loaded from the
simulation area F1 on drive 2,

Figure 11. OCL Load Sequence for Alternate Track Assignment

-

\
~

[IENES
[
>
[
1

- 10
~
'\
'\
[6)
(3
=
[
N

Explanation:

® The name of the disk (BILLNG) and its location (main
data area on drive 2) are indicated by the PACK and
UNIT parameters in the ALT statement.

® Because we omitted the VERIFY parameter from the
ALT statement, the program does surface analysis 16

times when it tests the condition of the tracks.

Figure 12. Utility Control Statements for a Conditional Assignment

Alternate Track Assignment Program—$ALT 61

MESSAGES FOR ALTERNATE TRACK ASSIGNMENT
Message Meaning

ALTERNATE TRACK ASSIGNED

This message is printed when an alternate track has been assigned to a defec-

tive track and the data has been transferred to the alternate track.

PRIMARY TRACK HAS BEEN TESTED

This message is printed when it is determined that a primary track is not

OK defective. xxxx is the primary track number and zz is the unit involved.

TRACK xxxx,UNIT-zz

**RECORD WITH DATA ERROR™*

This message is printed when the alternate track assignment program found

an error when transferring data. The record that has the error is printed out.

PRIMARY TRACK xxxx ALTERNATE
TRACK yyyy,UNIT-zz
involved.

Alternate Track Rebuild Program—$BUILD

The alternate track rebuild program enables you to correct
data that could not be transferred correctly to an alternate
track. One or more alternate tracks can be corrected during
a program run.. You must supply the control statements
and data used to correct the errors.

In writing control statements for this program, you will
need the information printed by the alternate track assign-
ment program when it assigned the alternate track. The
printed information tells you the name of the disk and
numbers of the track and records suspected of containing
incorrect data. It also includes the data from these records,
which you can use to locate incorrect data. On the 3340,
fixed record refers to a physical 256-byte record.

62

This message is printed after ALTERNATE TRACK ASSIGNED. xxxx is the
primary track number, yyyy is the alternate track number, and zz is the unit

CONTROL STATEMENT SUMMARY ®

// REBUILD PACK-name,UNIT-code, TRACK-location,
LENGTH-number,DISP-position

Substitute data

// END

®To replace characters 1-12 and 75-78 of a record, you can use
either of the following:

® Use one REBIJILD statement to replace all the characters
with a LENGTH parameter of 78.

® Use one REBUILD statement for every set of positions you
correct.

The data you want to substitute must follow the REBUILD
statements to which it applies. The order of the statements and
data in the preceding example would be:

// REBUILD statement data
// END

For positions 1-78

// REBUILD statement data
// REBUILD statement data
/!l END

For positions 1-12
For positions 75-78

PARAMETER AND SUBSTITUTE DATA SUMMARY
REBUILD Statement
PACK-name Name of the disk.

Location of the disk. Possible codes
are D1 and D2.

UNIT-code

3340 Disk Unit—Number of track and
fixed record containing incorrect data.
Number is printed by alternate track
assignment program. Track number
must be four digits; fixed record
number must be two digits. (TRACK-
011109 means track 111, fixed record
9.)

TRACK-location

Number of characters being réplaced.
Number can be 2-256 and must be a
multiple of 2 (2, 4, 6, etc).

LENGTH-number

DISP-position Position of the first character being re-
placed in the record. Position can be

1-256,

Substitute Data: Code each character in hexadecimal form.
Follow every second character, except the last, with a com-
ma. Example: The numbers 123456 would be coded as
F1F2,F3F4,F5F6. (Appendix A lists the hexadecimal
codes for System/3 characters.)

PARAMETER AND SUBSTITUTE DATA DESCRIPTIONS
PACK Parameter

The PACK parameter (PACK-name) tells the program the
name of the disk that contains the alternate track being
corrected. This name is the one written on the disk by the
disk initialization program.

The alternate track rebuild program compares the name in
the PACK parameter with the name on the disk to see if
they match. In this way, the program ensures that the pro-
gram is using the right disk.

UNIT Parameter

The UNIT parameter (UNIT-code) indicates the location of
the disk that contains the alternate track being corrected.
Codes for the possible locations are D1 and D2.

TRACK Parameter

The TRACK parameter (TRACK-location) identifies the
track and record containing the data being corrected. The
defective track, not the alternate track, is the one you refer
to. Referencing the defective track is the same as referenc-
ing the alternate track.

For the main data area, the possible track numbers are
0001-4184. Always use four digits. The possible fixed
record numbers are 01-48. Always use two digits. The
track number must precede the fixed record number. For
example, the parameter TRACK-111019 means track 1110,
record 19.

Track and record numbers are printed by the alternate track
assignment program when it prints data from records that
contain incorrect data.

LENGTH Parameter

The LENGTH parameter (LENGTH-number) tells the pro-
gram how many characters you are replacing in the fixed
record. You must replace characters in multiples of 2 (2,
4, 6, and so on), "The maximum is 256, which is the
capacity of a fixed record.

Length applies to characters that occupy consecutive posi-
tions in the fixed record. If the characters you want to re-
place do not occupy consecutive positions, you must either
replace all intervening characters or use more than one
REBUILD statement. For example, to replace characters
10-11 and 24-25 in a fixed record, you can do either of the
following:

® Use one REBUILD statement to replace characters 10-
25 (LENGTH-16).

® Use two REBUILD statements to replace characters 10-
11 (LENGTH-2) and 24-25 (LENGTH-2).

DISP (Displacement) Parameter

The DISP parameter (DISP-position) indicates the position
of the first character being replaced in the fixed record.
The position of the first character is 1; the position of the
second character is 2, and so on. The maximum position
you can specify is 255.

Beginning at the position you indi'cate, the alternate track

rebuild program replaces the number of characters you in-
dicate in the LENGTH parameter.

Alternate Track Rebuild Program—$BUILD 63

Substitute Data

After each REBUILD statement, you must code the substi-

tute characters that apply to that statement. The characters
must be in hexadecimal form. Appendix A shows the hexa-
decimal codes for the System/3 character set.

Include a comma after every second character. For
example, the data F1F2,F3F4,F5F6 represents 123456.
F1 is the hexadecimal form of 1; F2 is the hexadecimal
form of 2, and so on.

Code only the number of characters you indicated in the
LENGTH parameter in the REBUILD statement.

Note: If the LENGTH parameter of the REBUILD state-
ment exceeds 38, at least two substitute data statements
are required. Each substitute data statement, except the
last one, must be completely filled with data and must have
a comma in column 95 and a blank in column 96. If the
1442 is the only input device, it is possible to have only one
substitute data statement.

OCL CONSIDERATIONS

The following OCL statements are needed to load the
alternate track rebuild program.

// LOAD $BUILD, code
// RUN

The code you supply depends on the location of the simu-
lation area contining the alternate track rebuild program.
The codes are R1, F1, R2, and F2.

EXAMPLES
Correcting Characters on an Alternate Track
Figures 13 and 14 are examples of the OCL and utility con-

trol statements needed for correcting characters on an alter-
nate track.

Explanation:

Alternate track rebuild program is loaded from the simula-
tion area F1 on drive 1.

Figure 13. OCL Load Sequence for Alternate Track Rebuild

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

N~

Explanation:

® The name of the main data area (BILLNG) and its location (drive 2) are indicated in the PACK and UNIT parameters in
the REBUILD statement.

® The record containing the incorrect characters is record 1 of the alternate track assigned to track 200 (TRACK-020001).

The character in position 120 is the first character being replaced (DISP-120).
® The characters in positions 120 through 123 in record 1 are being replaced (LENGTH-4).

® The substitute characters follow the REBUILD statement. They are G (C7), H (C8), | (C9), and 1 (F1).

Figure 14. Utility Control Statements for Correcting Characters on an Alternate Track

Situation

Assume that the alternate track assignment program printed
the following information:

%RECORD WITH DATA ERRORX%
TRACK leessooelOvacsoees20ecsvsosaa30esasceseéOcccvocse500cencaosb0ocascseeTlecenccee8lecccsacdt

002001 .
0000000000000000111111111111111122222222222222223333333333333333 44444444444444455555555
0123456789ABCOEF0123456789ABCDEFQ0L23456789ABCDEFOL23456789ABCDEF 123456789ABCDEF 01234567

555555556666666666666666TT77TTT177777777888888688888888889999999999999999AAAAAAAAAAAAAAAA
89ARCDEFN123456739ABCDEF0123456789ABCDEF0123456789ABCOEFOL23456789ABCDEF0123456789ABCDEF
ABCDEFGHI JKLMNOPQR STUVWXYZ 0123456789
888BRBRRABARRARBEBAC ccecceo NDODDDEF EEEEEE FFFFFF
0123456T89ABCDEFO ABCDEFO ABCDEFO1 ABCDEF ABCDEF

It means that errors were detected in record 1 of track 200.
(Assume the name of the disk is BILLNG.)

In checking the characters printed by the program, you
found that the characters in positions 120-123 in the record
are incorrect and you want the operator to run the alter-
nate track rebuild program to correct them.

Alternate Track Rebuild Program—$BUILD

65

File and Volume Label Display Program—$LABEL
The file and volume label display program has two uses:

® Print the entire volume table of contents (VTOC) from a
disk.

® Print only the VTOC information for certain data files.
In both cases, the program also prints the name of the disk.

The printed VTOC information is a readable, up-to-date
record of the contents of the disk. There can be any num-
ber of reasons why you might need the information. Some
of the more common ones are as follows:

® Before reinitializing a disk, you might want to check its
contents to ensure that it contains no libraries, perman-
ent data files, or temporary data files.

® You want to find out what disk areas are available for
libraries or new files.

® You want specific file information, such as the file name,
designation (permanent, temporary, scratch), or the space
reserved for the file.

The control statements you supply for the program depend

on the program use.

CONTROL STATEMENT SUMMARY

Uses Control Statement®
Print entire // DISPLAY UNIT-code,LABEL-VTOC,SORT-NAME,FORMAT- {—g‘-}
vTOC
// END
Print only file // DISPLAY UNIT-code, LABEL-{ filename U=y oy nr JA
. K | filenames B
information
from VTOC // END

@ For each use, the program requires the statements in the order they are listed: DISPLAY, END.

@ The number of filenames you list for a program run may not exceed 20. (VTOC is considerecl as one filename.)

66

PARAMETER SUMMARY (DISPLAY STATEMENT)

UNIT-code

LABEL-VTOC
LABEL-filename
LABEL-‘filename,filename,...”
SORT-NAME

FORMAT-A

FORMAT-B

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

Location of the disk containing the VTOC information being printed. Possible codes are
R1, F1, R2, F2, D1, and D2.

Print entire contents of VTOC.

Print VTOC information for one file.

Print VTOC information for more than one file.cD

VTOC information is sorted by filename into alphabetical order.
To be used when 120 print positions are available.

To be used when 96 print positions are available; prints two lines for each VTOC entry.

®The number of filenames you list for a program run may not exceed 20. (VTOC is considered as one filename.)

PARAMETER DESCRIPTIONS

UNIT Parameter

The UNIT parameter (UNIT-code) indicates the location

of the disk containing the VTOC information being printed.

Codes for the possible locations are R1, F1, R2, F2, D1,
and D2.

LABEL Parameter

The LABEL parameter indicates the information you want

printed: the entire contents of the VTOC or only the infor-

mation for certain files. The VTOC is an area on disk that
contains information about the contents of the disk.

SORT Parameter
The SORT parameter can be specified only when LABEL-

VTOC is specified. If SORT-NAME is specified, the VTOC
information is sorted by filename into alphabetical order.

This function applies only to 1,000-file VTOCs and requires

additional main storage for sorting, as shown below:

Storage Required for
Execution With Sort

Number of
VTOC Entries

1-300 10K
301-500 12K
501-700 14K
701-1000 16K

FORMAT Parameter

If the system you are using has at least 120 print positions,
FORMAT-A is the default and only acceptable option. If

the system has a printer with 96 print positions, FORMAT-A
truncates the print line to omit NEXT AVAIL REC and
NEXT AVAIL KEY. FORMAT-B causes the NEXT AVAIL
REC and NEXT AVAIL KEY to be printed on the next line.

ENTIRE CONTENTS OF VTOC

The parameter LABEL-VTOC means to print the entire
contents of the VTOC. The meaning of the information the
program prints is given in the following chart. Headings that
are listed are the ones printed by the program to identify
the information. Figures 15 and 16 are examples of VTOC
printouts.

If the program needs more than one page to list the file

information, it prints the headings for the file information
at the top of each new page.

File and Volume Label Display Program—$LABEL 67

NEXT AVAIL
KEY

10—

DATE-0Q7/10/75

UNIT-F2

DEVICE CAPACITY=-400

PACK~-F2F2F2

Ot A O PN O Ot
FOOTOONNOOK OO0
NS AN O ot O et e =t O i O
ANNNRNNSNNN#E NSNS N
OO N N et =t O 34 O OO
O e OO OCO# 0000
SUONANNNANN NN E NSNS
FRLOFOCT—OU DM
NOMONOICON Fonme
MNAMAEANINN -~ NN

Aok ok ok ok
wkkkok &

b= - b O fom b
. DVOINOONO VNNV ~OND
NN ot P

Nt Pl PP OO Ot

3* % OV BN D AP0 ¥ OO
* R OMN O SNF
*% ® m o * [+]
»* % +*
* 3 #*
* ¥ *

PP O Nt DN T OV QO P =i O N O
CARNNANN ORI~ ™
ey ~

O OONOONODM=NMOD AN
OCONMANMN~AOO~OQO~ON
(slalalalofelvlalo]olelelsfolale o)

OFFOOCF TV OGN @
OO OMNINCCING TN O
el T Al LAV IGN IR el TN TN TN TN TN TN

NN AN O NFT OO
NN QMY = NNNONO—~OC
et S QU A O U e ek et D et A N O O
CO0OO0COCCOOOOOCON
[elelelelololalelelolololeloloTola]

OONNANNNNNONVIQVIVINV

O NN A N 0 DN I NN
e S L Y SN SN AN Sy
B e e e e Bt
COOD0000CO~0O000A0
A
NN ANANNNNNSSNNNNNN
TP P NP P P P e O OR- e e P
OOCO0OTOOCA~DOCOO00

=000 Aa0a0a0 ko0 -k

NS ECOLOVLOOLNROC
NN OINC A A ADNO DO~
L~"AOOCOOQO—~—miO— U WU U
d. 4dalalc/alaleieclcvial.dals (wla)
e ZZUWZZ UL WUZ e Z W Z Z
Ot et et N Nt D e) ot

NN OO G O AN F N0 P
COOCOO OO DO et ke e s ook i md
[sizlelolelalslololelolololalololo)

NEXT AVAIL
KEY

ID-FIRSTPACK

DATE-Q7/09 /75

ON PACK
TRACKS

UNIT-D1
OF ALTERNATE TRACKS AVAILABLE-40
0364
0821
0756
0599
otl12

Figure 15. VTOC Printout Example
LOCATION
002/00
021719
063702
101/01
131710
vToC SIZE L1000 FILES

PACK-D1D1D1
AVAILABLE SPACE

NO.

e b b b b 0

NOVOnN
COONMO
[elelelelele]
[elalelelels)

FFreano
NAINA OO
ekt ol © et
[elololole el
[elolelelolelo)

[=Talal Tolo N

=
["alTaltalTallollabun]
R

NN~
—_aNNOO O

[alwlal dol o)

AN O
[elelolelele]
[elelololely)

1
HIKEY-0000008

420
3894

et ot D ND N 0

=l A G V=0 O 0 vt ND i Ot O] e wd €0 O TN ot VU il O ot vk omed (N
O+ T OOCONMINCNNVOOC QO ~NNNNOMOONOOON
QA NN == O ANNONO OO OO OO e QO OCO—OO0 ~
B e S e e N
e Lakialaal 4 O\ el (O N~ Undmbind
Qe OO0 0000000000000 00OCONNOO
B N TSSSNSsSSSSSSsoss Ny
Ll gdcilel=lolelololololelolololelolelololelolelaly P TN
[slelelololollelolololololelalololelolololololelolalo T PR To TN
N R AR AR N S AR R N NN NN NN S NSNS NSNS NS NN N
O OO OV P D DN T F O AN et OO N O O et Pe ey P 0y N
T O O IN ORI O D IAN F DN N F N 0

e e o b b e e e o e o e e e e e e e
noOoONNMMOOCO00000CCOOCOOCOOOONTOVY
NG T S NN NN NN NN N L NT NN NN N TN P i

NAONO RTINSO TONGTCT TR OINT OO
OMAMMR DD PN =t DM O NN LA N 0l d (A 0 F U P P
A OONNDONCFINANNEE NFBCRONODNO —~eitn 3

et N e BN it o
. + N
~N
CRONNTE ~——O
PN AT [NV

NOONMMOO0ODCOR0C00000O0O0ONOOVY
FANNMNOONANNN NN NN NN N NN NN e = C O
[elelalelololololololnlolelalololololololslalolalolololalo Jalola)
[elelalelololelalelalololalelslollolclolelololololoTolololalele)

Dol lnlullelelolelololololololelololalololelelololsdo Loy I
DOOmOOVOCO00000OOTOOOOODOOOCO~O~
e S ek e e i]
OO DI =D DN ST ONNNAA OO PO QAN it PO
N FFAF OO OO DN DN OIN DN TN T N F e

[elelololelolo]

Dndalalealeala In}
oODONNOO

O AN DN =N OUNOM 0 O OM DT AFNT NN DO
CNMODOORN=T OO NN OO NN IO =4 N e = N
O it OO OO ONINOMOONNC Ot O ot md ek QO O N A LA i el
Elzl=lololololololololalololololk folelelolelol loleTolololalale)
(elelolololalaleololslolelololalolololelalolelolelolole lalelolo la]

NNV ANNNVIRINNNNNANWV

WA BB NN DN LA D IR AN I AN EVO NN AN LA AN
Il e A e S e i e I
R R R S R R R N AN R RN RS NSNS AN NSNS NSNS AN NN
oyl oo e ¥e ¥e e Xe Mo e Yo No N ¥ Yo Yo o N e Lol oo oo e e e N
0ODO00C0OCOD0000000CCOC000D00000
R S S e N N N N N N S s
e L S
000000000000 COOOO0000OCOCDO0D0CD

OO OO e b b b b o b e b b b b b b b b e - L. 8. Q0L O

<

OCOCLIIO) Qi OO
—HEOMNND D= NAT IO D P O—ANOFTN O TR O Ot
L OOOOCOOOOOOOODD mirdrt mdad med sk sl el e L U O O ot
OCOOOO O b ko b o o b ot b e b e b b e e o b e I F X
ZZZZZZZDODODIODDIDIDDIDIDIDSDDOIDDIWWUHLWIW
et et e T O O OO D OCACO00CCCOONNNIVIN

S NAFNODTO—~AMIFNONORO~NAT OO0~
et ot ok el e ot e e et AN NN AN TN NP N N IO D A M M O F
[e]tolelolololelololololololeloloYolololotolelololololololo l)

Figure 16. 3340 Main Data Area VTOC Printout

68

MEANING OF VTOC INFORMATION

Heading Meaning

PACK-name Name of the disk.

Unit-code Location of the disk containing the VTOC information
DATE-xx/xx/xx Program level date.

ID-characters

NUMBER OF ALTERNATE TRACKS
AVAILABLE-number

TRACKS WITH ALTERNATE
ASSIGNED

DEFECTIVE ALTERNATE TRACKS
DEVICE CAPACITY-number

LIBRARY EXTENT

START

END

EXTENDED END

AVAILABLE SPACE ON PACK

LOCATION

TRACKS

50 FILES
VTOCSIZE {1000 FILES}

SEQ NUM
FILE NAME

RETAIN

FILE DATE

Additional disk identification (if any).

Number of alternate tracks available for assignment. Main data area only.
Address of primary tracks that have been assigned an alternate. Main data
area only.

Address of the alternate tracks that are defective. Main data area only.
Disk capacity (number of tracks). Simulation area only.

Boundary of libraries on the disk. (If the simulation area contains no libraries,
these headings are not printed.)

Track on which library begins. If the simulation area contains both source
and object library, START refers to begin-
Track on which library ends. ning of source library and END refers to

end of object library.
Object library only (simulation area only). Track on which extension to library
ends. When object library is full, temporary entries can be placed in space follow-
ing end of library, provided that space is available.

Available disk areas.

First track in available area (simulation area). First cyclinder/track in available
area (main data area).

Number of tracks available.
Maximum number of entries in VTOC.
Line number.
Name that identifies file in VTOC.
File designation:

P = Permanent

T = Temporary

S = Scratch (simulation area only)

Date given the file when file was placed on disk.

File and Volume Label Display Program—$LABEL 69

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

70

Heading Meaning
FILE TYPE File type:
| = indexed
S = sequential
D = direct
¥ = file used by spooling
REC LEN Number of characters in each record in file.
KEY LEN Number of characters in each record key (indexed file only).
KEY LOC Position in record occupied by last character of record key (indexed files only).
DATA Disk area reserved for indexed files only. DATA START is the first main data
START area cylinder/track of the area. This refers to the data portion of the file.
FILE LOC First track used by the file. For simulaticn area files, refers to a track number.
For main data area files, refers to a cylinder/track number.
FILE TRACKS Number of tracks allocated to the file.
RECORD COUNT Total number of records currently in the file.

RECORDS AVAIL

OCL SIZE PARAMETER

Number of records that can be added to the file. For indexed files, more records
may be added than the number indicated in this field.

Parameter used on OCL statement when file was created.

T = tracks
R records

1t

Heading

Meaning

NEXT AVAIL RECORD

NEXT AVAIL KEY

VOL SEQ NUM

Beginning location of next avdilable record in file. For simulation area, location
is track, sector, and position within sector. For main data area, location is cylin-
der, track, fixed record, and position within record.

Example: 099/18/006 = track 99, sector 18, positions 6.(D

050/02/12/006 = cylinder 50, track 2, fixed record 12,
position 6.\ .

Indexed files only. Beginning location of next available record key in index
portion of file. For simulation area, location is track, sector, and position
within sector. For main data area, location is cylinder, track, fixed record,
and position within record. Main data area only.

Example: 090/10/006 = track 90, sector 10, positions 6@

052/03/10/006 = cylinder 562, track 3, fixed record 10,
position 6.

VOL SEQ NUM applies to multivolume files only. It indicates the order of the
disk as it relates to the other disks containing the remaining portion of the file.
Main data area only.

LOKEY The high key from the previous volume. This field will be blank for the first
volume of a multivolume file. Main data area only.

HIKEY The highest key that can be put on the multivolume indexed file. Main data

area only.

®If the first byte of the next available record occurs in the next track after the end track of DATA START END or if there is no room for

additional index area, then this field will contain ****,

®If the first byte of the next available key occurs in the next track after the end track of INDEX START END, or there is no room for

additional index area, then this field will contain ****,

FILE INFORMATION ONLY

The parameter LABEL-filename or LABEL-'filenames’
means to print certain file information from the VTOC.
For one file, use LABEL-filename; for two files, use
LABEL-'filename,filename’; and so on. {(Use the names
that identify the files in the VTOC.) You can list 20 file-
names for a program run. The statement length, however,
is restricted to 96 characters.

The program prints the file information for each of the files
you list. This is the information described for the headings
PACK name and FILE LABEL under Meaning of VTOC
Information.

If the program needs more than one page to list the file
information, it prints headings for the file information at the
top of each new page.

OCL Considerations

The following OCL statements are used to load the file and
volume label display program.

// LOAD $LABEL,code
// RUN

The code you supply depends on the location of the simula-

tion area containing the utility program. The codes are R1,
F1, R2,and F2.

File and Volume Label Display Program—$LABEL 71

EXAMPLE

Printing VTOC Information for Two Files

Figures 17 and 18 are examples of the OCL statements and
utility control statements needed to print VTOC information

for two files.

14 8 12 16 20 24 28 32 36
/ I

//] 1ldAD gLla8ad], |A

/|| (RUM

Explanation:

The file and volume label display program is loaded from
simulation area F1 on drive 1.

Figure 17. OCL Load Sequence for File and Volume Label Display

[o+]
-
N
-
=2}
N
o

24 28 32 36 40 44 48 52 56 60

<

<

Explanation:

The files for which information is printed are named
BILLNG and INVO1 (LABEL-‘BILLNG, INVO1’in
DISPLAY statement). They are located on main data area
D1 on drive 1 (UNIT-D1).

Figure 18. Utility Control Statements for Printing VTOC
Information for Two Files

72

File Delete Program—$DELET
The file delete program has four uses:
® Removing all files from a disk.

® Removing only the files you name.

® Scratching file references in the volume table of contents
(VTOC). Deleting files frees the space they occupy for
use by new files.

® Formatting a simulation or main data area.

The program may be used on temporary, scratch and per-
manent files. To delete permanent files, you must use the
file delete program. You can scratch temporary files by
using the file delete program or by changing the file desig-
nation from temporary to scratch (using the OCL keyword
RETAIN) when you use the file.

The control statements you supply for the file delete pro-
gram depend on the function to be performed.

When the REMOVE statement is used, files are erased from
the VTOC. The REMOVE statement can also be used to
erase files from the disk. When the SCRATCH statement is
used for a file in the main data area, it performs the same
function as REMOVE. The SCRATCH statement does not
erase files from the simulation areas. It changes their desig-
nation to scratch (S) in the VTOC. By doing this, the pro-
gram makes the areas that contain the files available for
other files or for system programs,

The FORMAT statement is used to free all allocated space
that does not contain files, libraries, or system areas. This
statement is used when you suspect that a system failure
or an inadvertent re-IPL might have left space allocated,
but not actually being used, on the data module.

File Delete Program—$DELETE

73

CONTROL STATEMENT SUMMARY

Use Control Statements®

Scratch all // SCRATCH PACK-name, UNIT-code, LABEL-VTOC
files in the
VTOC. // END

Scratch only // SCRATCH PACK-name, UNIT-code, LABEL-filename, DATE-dateGD
one file in
the VTOC. // END

Scratch // SCRATCH PACK-name, UNIT-code, LABEL- {ff':fe":a"r:fes,}

multiple

files in

the VTOC // END

Remove all // REMOVE PACK-name, UNIT-code, LABEL-VTOC, DATA- {ggs}'*

files from

disk // END

Remove // REMOVE PACK-name, UNIT-code, LABEL- {ff':fe"naa"r:fes,} DATE-date, D(/?TA- {'}'—gs}
only the '

files named

from disk // END
Free allocated // FORMAT PACK-name, UNIT-code

but unused
space // END

®For each use, the program requires the statements in the order they are listed: SCRATCH, END, or REMOVE, END, or FORMAT, END.
@Use this form of the SCRATCH or REMOVE statement when two or more files have the same name and you want to delete one of them.

®Use this control statement when you suspect that a system failure or an-inadvertent re-IPL may have left space allocated, but not actually
being used, on the disk.

74 -

PARAMETER SUMMARY
PACK-name

UNIT-code

LABEL-VTOC

LABEL-filename

LABEL-'filename,filename,...

DATE-date

NO
DATA - {YES}

Name of the disk.

Location of the disk. Possible codes are R1, F1, R2, F2, D1, D2.

Scratch or remove all files from the VTOC.

Scratch or remove only the file
named in the VTOC.

identify files
Scratch or remove only the files in VTOC!

named in the VTOC.

Use names that

Date of the file being deleted. Date must be a 6-digit number.

Example: DATE-032076 means March 20, 1976.

Delete files from disk as well as VTOC.

®These are the names you gave the files when you placed them on disk.

PARAMETER DESCRIPTIONS

PACK Parameter

The PACK parameter (PACK-name} tells the program the
name of the disk that contains the files being deleted. The
name you supply in this parameter is the one written on
the main data area by the disk initialization program.

For a simulation area it is the name assigned by the simula-

tion area program $SCOPY.

The file delete program compares the name in the PACK
parameter with the name on the disk to ensure they match.
In this way, the program ensures that it is using the right

disk.

UNIT Parameter

The UNIT parameter (UNIT-code} tells the program the
location of the disk containing the files being deleted. Codes
for the possible locations are R1, F1, R2, F2, D1, and D2.

File Delete Program—$DELETE

76

LABEL Parameter

The LABEL parameter identifies the files you want to delete
from the disk. Its form depends on the files you are deleting:

Form Files Deleted

LABEL-VTOC All of them,

LABEL-filename

Only the file that is named. The name can apply to more than one file. If it does, all of

those files are deleted unless you use a DATE parameter to identify a particular one.

LABEL-'filename,filename,...’

Only the files that are named. A name can apply 1o more than one file. If it does, all

of those files are deleted. You can list as many filenames as the statement can hold;
the statement length, however, is restricted to 96 characters. Additional REMOVE or
SCRATCH statements may be used for additional filenames.

DATE Parameter

The DATE parameter can be used only with LABEL-file-
name. The DATE parameter (DATE-date) applies to two
or more files that have the same name. It tells the program
the date of the one you want to delete.

Every file on disk has a date, which is given to the file at
the time it is created. When two or more files have the
same name, the dates are used to distinguish one file from
another.

If the pack has more than one file with the name you list
in the LABEL parameter, they will all be deleted unless
you use the DATE keywordiand parameter to indicate a
particular file. If the DATE keyword is used, only one
filename can be given in the LABEL parameter for that
control statement.

The date is a 6-digit number: two digits for day, two for
month, and two for year. Day, month, and year can be in
one of two formats as specified at system generation time:
(1) month, day, year, and (2} day, month, year. For example,
021676 and 160276 both mean February 16, 1976.

In the DATE parameter, be sure to specify day, month,

and year in the same order as they were specified when
you placed the file on disk.

76

DATA Parameter

The DATA parameter lets you remove the files specified
directly from the disk as well as from the VTOC.

If YES is coded in this parameter, the file specified is re-
moved from the disk and any reference to it in the VTOC

is removed. In addition, a message is printed on the system
log device for each file removed from the disk in this format:

‘DATA REMOVED FOR FILE XXXXXX
DATE 000000’

DATA-YES should be used only if file security is required.
The time needed to remove the data is much greater than
the time needed to remove the VTOC entry.

If NO is'coded in this parameter, the file specified is not
removed from the disk. However, any reference to it in the
VTOC is removed. If this parameter is not used, DATA-NO
is assumed.

OCL CONSIDERATIONS

The following OCL statements are needed to load the file
delete program:

// LOAD $DELET,code
// RUN

The code you supply depends on the location of the simu-
lation area containing the utility program. The codes are
R1, F1, R2, and F2.

EXAMPLES

Deleting One of Several Files Having the Same Name

Figures 19, 20, and 21 are examples of the OCL statements
and utility control statements needed to delete one of several
files having the same name as described in the following
situation. i

Situation

Assume that three files in the main data area have the same

name: INVO1. The dates of these files are 2/16/76, 2/18/76,
and 1/15/76. You want to delete the version dated 2/16/76.

NN
~[~T1"]
=~

[

2>

Explanation:

File delete program is loaded from simulation area F1 on
drive 1.

Figure 19. OCL Load Sequence for File Delete

File Delete Program—$DELETE

77

-

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

76

™~
{
S
=
<
Q
[N
~
]
~
>
I
N
=
~4
o

4
SIARATIH (A= 1,14 A7
£ ’ Jé!’ 4'

Explanation:

Main data area that contains the file being deleted is named 00001 (PACK-00001 in SCRATCH statement).

Because two other files have the name INVO1, the date (021676) is needed to cornplete the identification of the

file you want to delete (LABEL-INVO1 and DATE-021676).

® The main data area containing the file to be deleted is on drive 1 (UNIT-D1).

Figure 20. Utility Control Statements to Delete One Version of a File

4 8 12 16 20 24 28 32 36 40 44 48 £i2 56 60 64 68 72

76

N

Rlemolviel 1PAICIK- FRALE L-/NV‘@!,U (|7 1.0[5—'@%%7@
!

Explanation:

® A REMOVE statement is used instead of a SCRATCH statement.

® Main data area that contains the file being deleted is named 00001 (PACK-00001 in REMOVE statement).

® Because two other files have the name INVO01, the date (021676) is needed to complete the identification of the
file you want to delete (LABEL-INVO1 and DATE-021676).

® The main data area containing the file to be deleted is on drive 1 (UNIT-D1).

® The YES specification in the DATA parameter deletes all data from the disk containing information on the

specified file.

Figure 21. Utility Control Statement to Delete One Version of a File Using a REMOVE Statement

Freeing Allocated But Unused Space on a Disk

Figure 22 shows the FORMAT control statement. The fol-
lowing will free any areas.on the simulation area (R1) that
have been allocated but are not being used. This condition
may exist following the abnormal termination (such as a

power failure or re-IPL) of a program that was creating a file.

14 8 12 16 20 24 28 32 36
/17]AD UM Tl- 1R], |AACld- | addd 1
/|/] [EMD
l FTTT
Explanation:

Free any allocated but unused space on the simulation area (R1) named 00001 (UNIT-R1).

Figure 22. Control Statements to Free Allocated But Unused Space on a Simulation Area

78

Dump/Restore Program—$DCOPY

The dump/restore program ($DCOPY) is a utility program
used with the IBM System/3 Model 12 system control pro-
gram. The $DCOPY program allows the user to copy or
dump the entire contents of a disk onto tape. The tape
then serves as a backup copy in case something happens to
the information on the disk.

The program can restore the disk to its original contents

at any time by transferring information back from the tape.

Important disks, such as those containing libraries and per-
manent data files, are normally the ones copied. The tape
contains a copy of the data on all tracks.

The program can also dump or restore the simulation areas
using a 3741 diskette.

CONTROL STATEMENT SUMMARY

Uses Control Statements®

, ® {TO-code
C.opy an entire // COPYPACK FROM-code
disk to tape or
restore an entire // END®

disk. from tape.

TO-code
// COPYPACK {FROM-code

// END

®Contml statements are required in the order they are listed.

®There can be only one COPYPACK statement in a program.

@END statement must appear only once in a program since it is a delimiter indicating end of job.

} [,PACK-name]

} [,PACK-name] [SYSTEM-

3741

] [,BACKUP- IAEE]

Dump/Restore Program—$DCOPY

79

PARAMETER SUMMARY

COPYPACK Statement
Parameter Meaning
FROM-code Location of disk to be copied. Possible

TO-code

PACK-name

SYSTEM-NO

SYSTEM-YES

codes are F1, R1, F2, R2, D1, D2.

Location of disk to receive the copy.
Possible codes are F1, R1, F2, R2, D1,
D2. See Figure 21 for relationship of
FROM and TO locations.

Name of the main data area or simula-
tion area being used.

The SYSTEM-NO parameter does not

allow cylinder O IPL areas to be dumped

or restored.

SYSTEM-YES specifies that the IPL
areas on cylinder 0 are to be dumped
or restored along with the specified
simulation area.

BACKUP-TAPE The BACKUP-TAPE parameter speci-
fies that magnetic tape (3410-3411)
is to be used for dump/restore.

BACKUP-3741 BACKUP-3741 specifies that the 3741
diskette is to be used to dump or re-
store the specified simulation area.

PARAMETER DESCRIPTIONS

FROM and TO Parameters (COPYPACK)

The COPYPACK statement is used to copy information
from disk to tape, tape to disk, disk to diskette, or diskette
to disk.

The FROM parameter (FROM-code) indicates the location
of the disk being copied. The TO parameter (TO-code) in-
dicates the location of disk to receive the copy.

Codes for possible locations of FROM and TO parameters
are R1, F1, R2, F2, D1, and D2.

See Figure 23 for the relationship of FROM and TO loca-
tions.

Simulation areas

data files.

(F1, R1, F2, or R2)

DUMP COPY TO 3410/3411 tape
ﬁ’: (T1, T2, T3, or T4
and as indicated on // FILE

statement) or 3741
RESTORE COPY TO diskette

DUMP COPY TO

>

Main data area and 3410/3411 tape
(D1 or D2) (T1, T2, T3,0r T4
< RESTORE COPY TO as indicated on // FILE
N statement)
Notes:
1. When you copy disk to tape (dump), you may specify any simulation area or main data area as input,

including the system simulation area or program simulation area.

2. When you copy tape to disk (restore), the disk must not be the system simulation area, the program
simulation area, or another simulation area containing libraries, temporary data files, or permanent

3. The disk receiving the copy at restore time must be the same type as the original disk.

Figure 23. Relationship of Disk to Tape Drives When Using $DCOPY

80

PACK Parameter (COPYPACK)

The pack name specified is checked against the actual name
of the main data area or simulation area. A halt occurs if

they are not the same. If the parameter is'not used, no check-

ing occurs.

SYSTEM Parameter (COPYPACK)

The SYSTEM parameter is an optional parameter used to

specify whether cyclinder O IPL information is to be dumped

or restored with the specified simulation area. SYSTEM-YES
allows cylinder 0 to be dumped or restored to either tape or

diskette. SYSTEM-NO does not allow cylinder 0 to be dumped

or restored. The default is SYSTEM-NO.

BACKUP Parameter (COPYPACK)

The BACKUP parameter specifies which device (tape or disk-
ette) is to be used for backup. Tape may be used to back up |
the main data,area, simulation areas, and cylinder 0. The 3741
diskette can be used only to back up the simulation areas and

cylinder 0. Also, the 3741 data set must be set for 128 byte
records.
OCL CONSIDERATIONS
The $DCOPY utility requires the following OCL statements:
// LOAD $DCOPY, code
// FILE parameters
// RUN

The code identifying the location of the $DCOPY program
can be R1, F1, R2, or F2,

FILE Statement Considerations
® The name of the file must always be BACKUP.

® When a 7-track tape is used for the dump/restore pro-
gram, CONVERT-ON must be specified.

® The record format is always fixed length.

® The END position of the tape after processing always de-
faults to UNLOAD.

® The density parameter when restoring must be the same
number as specified for the dump.

® The record length, if specified, is ignored since $DCOPY
makes the record length equal to the block length.

For a detailed description of the FILE statement param-
eters, see Fijle Statement (Tape) in Part 1 of this manual.

Notes: ‘

1. The FILE statement is not required when copying
from disk to diskette.

2. For multivolume tapes, see Multivolume Tape Files
under FILE Statement (Tape) in Part 1 of this manual.

Dump/Restore Program—$DCOPY 81

Statement Entries

Statement Entry Considerations

// LOAD None
$DCOPY Name of dump/restore program.
code Location of simulation area containing

dump/restore program. Can be R1,
F1, R2, or F2.

// FILE None
NAME-filename Filename entry must be BACKUP.

BLKL-block length Block length and record length must
be equal and one of the following
values:

Note: The tape record created is 2
bytes longer than specified since a 2-
byte logical record number is appen-
ded to the tape record. Defaults are
underlined.

Disk Length Number of
in Bytes Tracks

Simulation 3072 1/2 track

area 6144 1 track
12288 2 tracks
Main 3072 1/4 track
data 6144 1/2 track
area 12288 1 track

24576 2 tracks
// RUN None

For a detailed description of the OCL statements, see Part 1
of this manual.

Note: The rest of the FILE statement parameter is de-
scribed by the TAPE FILE OCL statement.

82 |

Messages for DUMP/RESTORE

Note: The following messages are printed if the 1403 or
5203 is the logging device and is not allocated to the other

program level.
Message

COPYPACK IS
COMPLETE

N TRACKS NOT
RESTORED AT
cc/ss |

CCC/HH/RR)

NN TAPE ERRORS
OCCURRED
PACK IS NOT COM-

PLETELY RESTORED.

Meaning

This message is printed when
the specified pack has been
dumped to tape or when the
tape has been restored to disk.

This message is printed when
tracks have not been restored
on the simulation area or
main data area. N = the
number of tracks not restored.
CC/SS is the disk address for
a simulation area. CCC/HH/
RR is the disk address for a
main data area.

This message is printed when
tape errors have occurred or
the restored pack has missing
data. NN = the number of
tape errors. See.previous
messages for location of
tracks not restored.

EXAMPLES

The parameters of the FILE statement vary depending upon
whether the copy is to or from the tape.

FILE Statement: From Disk to Tape

Only required parameters are included in this example. See
OCL Considerations for a listing of possible parameters.

Control Statements

The following control statements show the use of all pos-
sible parameters:

14 8 12 16 20 24 28 32 36
/
/11 1LlcAD 18DicldAY] A4
/|| Al LIE] IMAIMEL-(BlA kUP;UM/T-T
/| RUM
Explanation:

® The dump/restore program is loaded from simulation
area F1 ondrive 1.

® The file name is always BACKUP.
® The copy goes to tape unit 2.

® Tape unit 2 is a 9-track drive.

1 4 8 12 16 20 24 28 32 36
/\/| IcloPviAacld [ARoM-IFl2]|PlalcK-|| /x|l

/|/| |EMD

Explanation:

® The COPYPACK statement tells the program to copy an
entire disk to tape.

® The copy is from the simulation area F1 on drive 1
(FROM-F1).

® FIXED1 is the name of the simulation area being used

(PACK-FIXED1). The program verifies that the speci-
fied data module is mounted.

Dump/Restore Program—$DCOPY 83

FILE Statement: From Tape to Disk

All possible parameters are included in this example.

76

—

D [himtS

™~
IR
\h}b
sl
N e)
N

S
e
~J
(13

1
(«<IIR3
B!

=T~

NS SIS IS s,
n
~
~

Explanation:

® The dump/restore program is loaded from the simulation area R1 ondrive 1.
® The file name is always BACKUP.

® Tape unit 2 contains the disk copy.

® Tape unit 2 is a 7-track drive.

® TAPE2 is the label of the tape volume.

® KEEPS5 is used in the header label.

® The date is March 11, 1976.

® Biock length is 6144,

® CONVERT-ON indicates data conversion.

L] E;VD, PARITY, and TRANSLATE parameters given are the same as the default values.

The following control statements show the use of all possible parameters:

76

<

Explanation:
® The COPYPACK statement tells the program to copy an entire tape to simulation area F1 (TO-F1).
® The statement restores cylinder 0 IPL of the data module along with simulation area F 1 on drive 1.

® FIXED1 is the name of the simulation area being used (PACK-FIXED1). The program verifies that the proper pack is
mounted.

84

Control Statement: From Disk to Diskette

1 4 8 12 16 20 24 28 32 36
/7] |LloAlD i8IDicloAY] 1A 1

/11| |RUM ’

/1| IClOAYIAACIA |AROM-F2|,|18AKCIkWA-31714 1

/] lEmo ’

Explanation:

® The dump/restore program is loaded from the simulation
area F1 ondrive 1.

® The COPYPACK statement tells the program to copy the
simulation area F2 (FROM-F2) to the 3741 (BACKUP-
3741).

® |t will take approximately 11 diskettes to contain the
copy from simulation area F2.

® The record length on the 3741 diskette must be 128.

Programming Considerations

When dumping from one of the simulation areas to diskette,
it is recommended that you put the 3741 online in Mode 3.
(Modes 1, 2, and 5 will result in extent error conditions at
the end of each diskette.) See note.

When restoring from diskette to one of the simulation areas,
it is recommended that you put the 3741 online in Mode 3
or Mode 5. If the 3741 is put online in Mode 1, $DCOPY
will go to end of job at the end of the first diskette. If the
3741 is put online in Mode 2, the operator will have to put
the 3741 online after each diskette is read. See note.

The COPYPACK IS COMPLETE message will be logged at
successful completion of $DCOPY. If this message is not
logged after restoring to disk, the simulation area copied to
will not be usable.

Note: Refer to IBM System/3 3741 Reference Manual,

GC21-5113, for further explanation of the 3741 modes of
operation,

Dump/Restore Program—$DCOPY 85

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

Copy/Dump Program—$COPY

The copy/dump program has three general uses. The con-
trol statements you must supply depend on the program
use.

Program Use Situation
Copy the entire contents Provide a reserve disk in case
of a simulation area to something happens to the
another simulation area, original disk. Important
or copy the entire disks, such as those containing
contents of a main data your libraries and permanent
area to another main data files, are normally the
data area. ones you would copy.

Copy all or part of a
data file from disk,
diskette, tape, or cards, ® Provide a reserve (backup)
to disk, diskette, tape, file in case something

or cards. (See note.) happens to the original file.

Any of the following:

Note: A diskette file ® Move a file to a larger disk

cannot be copied to area.

another diskette.

® Reorganize the data por-

tion of an indexed file.
(Data in the copy of the
file is reorganized; the
original file is unchanged.)

® Delete records from a file.
(Records are omitted from
the copy of the file; the
original file remains un-
changed.)

® Create disk, diskette, card,
or tape files.

® (Create indexed disk files
from sequential files.

® Copy card decks to disk,
diskette, or tape.

Provide a printed copy of the
records in a file, perhaps for
use in checking the records
for errors.

Print all or part of a
data file.

Provides a way to recover
data lost due to abnormal
termination of a job.

Recover data by means
of physical address.

86

The OCL sequence usad to load the program describes the
disk or tape file being copied or printed. If you are copying
the file to disk or tape, the file being created must also be
described in the OCL sequence.

No OCL FILE statements are required for card, printer, or
diskette files. {When you are copying card, printer, or disk-
ette files, you describe the input and output in the

// COPYFILE control statement.)

Note: When you‘are copying large indexed files, you may
realize a time savings by specifying reorganization if the
data records are not in the same sequence as the keys in the
index portion of the file.

CONTROL STATEMENT SUMMARY

Uses® Control Statements@
Copy an entire disk // COPYPACK FROM-code, TO-code,PACKIN-name,PACKO-name
// END
FILE
DISK MFCU
i MFCU MFCU1
Copy a data file // COPYFILE {83;5?;}» MFCU1 3 INPUT- < MFCU2 » LENGTH-number &
| MFCU2 3741
1442 1442
3741
DELETE-| , .. , NO YES |(®
{OMIT- } position,character’, REORG- {YES} WORK- {_NQ }
// END
BOTH
‘PRINT,MFCU’ 35231
. OUTPUT- ‘PRINT,MFCU1’ _ @
Copy ar.\d print // COPYFILE {OUTPTX-} PRINT MFCU2" JNPUT- < MFCU2) ,LENGTH-number,
a data file X 3741
‘PRINT,1442 1442
‘PRINT,3741"
DELETE-{ , .. , YES ®
{OMIT- } position,character’, REORG-YES,WORK- {N_O }
// END
BOTH
‘PRINT,MFCU’ migg ,
OUTPUT- ‘PRINT,MFCU1"
(;opy a dat.a // COPYFILE {OUTPTX-} PRINT MFCU2’ JNPUT- { MFCU2 ,LENGTH-number,@
file, but print only . , 3741
a part of the fil PRINT, 1442 1442
part o ¢ ‘PRINT,3741’
DELETE-{ , .. . ® YES ®
{OMIT- } position,character’, REORG-YES ,WORK-{M }

// SELECT KEY,FROM-key’ [, TO-"key’]

// SELECT RECORD,FROM-number [, TO-number]

//SELECT PKY,FROM:-‘key’[,TO-'key’]

// END

OUTPUT-

Print an entire OUTPTX-

// COPYFILE {
data file .

} PRINT,INPUT-

// END

Note: MFCU and MFCU1 refer to the MFCU hopper 1 (primary).

Only one S‘E LECT
statement for each
COPYFILE statement

MFCU
MFCU1

MFCU2 %, LENGTH-number®
3741

1442

Copy/Dump Program—$COPY 87

Uses

"Print only a part
of a data file

Print and copy a
part of a data file

Copy partof a
data file

Notes:

Control Statements

MFCU
MFCU1
11 copvEILE {OUTPUT-L oo Nt INPUT- < MFCU2'> LENGTH-number®
OUTPTX-
3741
1442
// SELECT KEY,FROM-‘key’ [,TO-'key’]
// SELECT RECORD,FROM-number [, TO-number] Only one SELECT
statement for each
// SELECT PKY,FROM-‘key’ [,TO-‘key’] COPYFILE statement
// END
BOTH .
‘PRINT,MFCU’ <’ M£gbj1
OUTPUT- ‘PRINT ,MFCU1’ @
// COPYFILE {OUTPTX-} ‘PRINT MECU2" JINPUT- < :|\3/|7|Z(iU2 ,LENGTH-number
‘PRINT,1442' ‘ 1442
‘PRINT,3741’ .
YES ®
WORK- { NO }
// SELECT KEY,FROM-'key’ [, TO-key’] ,FILE-YES
// SELECT RECORD,FROM-number [,TO-number] ,FILE-YEES Only one SELECT
statement for each
// SELECT PKY,FROM-'key’ [,TO-'key’] ,FILE-YES COPYFILE statement
// END
FILE
DISK MFCU
MFCU MFCU1
// COPYFILE {g‘dlﬁg;z} MFCU1 INPUT- { MFCUZ ,LENGTH-numberQwoaK-{;(E)S}@
MFCU2 3741
1442 1442
3741
// SELECT KEY,FROM-‘key’ [,TO-'key’] ,FILE-YES
// SELECT RECORD,FROM-number [, TO-number] ,FILE-YES Only one SELECT
statement for each
// SELECT PKY,FROM-‘key’ [,TO-'key’] ,FILE-YES COPYFILE statement.

// END

1. MFCU and MFCU1 refer to the MFCU hopper 1 (primary).
2, MFCU defaults to MFCU1.

88

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

Uses Control Statements
MFCU
FILE MFCU1
Build an indexed // COPYFILE {83;‘2;{;} DISK » ,INPUT- < MFCU2 ,LENGTH-number®
file from a BOTH 3741
sequential file 1442

// KEY LENGTH-number, LOCATION-number

// END

1 The program uses include the possible combination of copying and printing files.

FILE
TPUT-
Recover data // COPYFILE 831_'3.‘#)(_ DISK
by physical BOTH
address
(simulation area) // ACCESS FROM-code,CYLINDER-number,SECTOR-number,
DISP-number,RECL-number
// SELECT RECORD,FROM-number,TO-number,FILE-YES
// END
FILE
UTPUT-
Recover data by // COPYFILE 8UTPTX- DISK
physical address BOTH

(main data area)
// ACCESS FROM-code,CYLINDER-number, TRACK-number,
SECTOR-number,DISP-number,RECL-number
// SELECT RECORD,FROM-number, TO-number,FILE-YES

// END

@The program uses include the possible combination of copying and printing files.

®For each use, the program requires the control statements in the order they are listed: COPYPACK,END; COPYFILE,END;
COPYFILE,SELECT,END; COPYFILE,KEY,END; and COPYFILE,SELECT,KEY ,END.

@Applies only to indexed files, When QUTPUT-BOTH is specified, REORG-YES is required.
®Optional — the record length defaults to 96 when the 3741 is used for input or output if LENGTH is not specified.

®Optional — must have simulation turned off on D2, then copies from one data module on D2 to a different data module on D2.

Note: MFCU defaults to MFCU1.

Copy/Dump Program—$COPY

89

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

PARAMETER SUMMARY

COPYPACK Statement
FROM-code Location of disk to be copied. Possible codes are R1, F1, R2, F2, D1, and D2.
TO-code Location of disk to contain the copy. Possible codes are R1, F1, R2, F2, D1, and D2.
PACKIN-name Volume identification (name) of FROM disk.
PACKO-name Volume identification (name) of TO disk.
COPYFILE Statement
OUTPUT-FILE Copy the file to the device (tape or disk) defined in the COPYO FILE statement.®
{Interchangeable with OUTPUT-DISK.)
OUTPUT-DISK Same as OUTPUT-FILE.
MFCU
MFCU1
OUTPUT- < MFCU2 Copy the file to the device specified. When this parameter is used, a COPYQ FILE
1442 statement must not be used.
3741

90

OUTPUT-PRINT

ouTPUT-BOTH®

‘PRINT,MFCU’
‘PRINT,MFCU1’
OUTPUT- < ‘PRINT,MFCU2’
‘PRINT, 1442’
‘PRINT, 3741’

PRINT

BOTH

‘PRINT,MFCU’
OUTPTX- < ‘PRINT,MFCU1’

‘PRINT,MFCU2’

‘PRINT, 1442'

‘PRINT,3741’

MFCU
MFCU1
INPUT- < MFCU2
3741
1442

LENGTH-number

DELETE-‘position,character’
-or-
OMIT-'position,character’

REORG-NO®
REORG-YESO®

WORK-YES

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

Print the entire file or only part of the fi|e.®

Copy the file from one device to another or from one area to another on the same
disk. Also print the entire file or only part of it.

Copy the file to the device specified. Also print the entire file or only part of it. When
this parameter is used, a COPYO FILE statement must not be used.

Printed output will be displayed in hexadecimal values. If one of the card devices or
3741 is used, then a COPYO FILE statement must not be used.

Copy the file from the device specified. If this keyword is used, then a COPYIN file
statement must not be used.

Identifies the record length of a file on a diskette. Number must be an integer from
1 to 128. If this keyword is not specified, the record length defaults to 96. If used
with a device other than a 3741, this keyword is ignored.

These parameters are optional. |t means that all records with the specified character in
the specified record position are deleted. DELETE causes deleted records to be printed.
DELETE cannot be used with direct files. OMIT causes deleted records not be printed.
Position can be any position in the record (the first position is 1, second 2, and so on).
The maximum position is 65535,

Indexed files only. Copy records in the same way as they are organized in the original
file (the file from which the records are copied).

Indexed files only. Reorganize the records so that the records in the data portion of
the file are in the same order as their keys are listed in the index.

This parameter is required when a file is copied from one data modute on drive 2 to
another data module to be placed on drive 2.

Copy/Dump Program—$COPY 90.1

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

SELECT Statement

jKEY

1PKY},FROM-key

JKEY

lPKY} ,FROM-"key’, TO-"key

RECORD,FROM-number

RECORD,FROM-number,
TO-number

FILE-YES

FILE-NO

90.2

Indexed files only. Print and copy only the part of the file from the record key that is
specified in the FROM parameter to the end of the file.

Indexed files only. Print and copy only the part of the file between the two record keys
that are specified in the FROM and TO parameters (including the records indicated by
the parameters}). To print and copy only one record, make the FROM and TO record
keys the same.

Print and copy only the part of the file from the relative record number specified in
the FROM parameter to the end of the file.

Print and copy only the part of the file between the relative record numbers indicated
by the parameters (including the records indicated by the parameter). To print and
copy only one record, the FROM and TO relative record numbers should be the same.
Record number may be from 1 to 16777215.

Only selected records are copied to the files named in the COPYO FILE statement, or
the device specified in the OUTPUT keyword parameter of the // COPYFILE control
staterment, when selected records are to be copied to the 3741 or a card device. The
file is sequential if no // KEY statement is provided. When // KEY statement is used,
the output is an indexed file if the device on the COPYO FILE statement is a disk.

Only selected records are printed. If copying, all records are copied. OUTPUT-PRINT
or OUTPUT-BOTH must be specified if FILE-NO is specified. If OUTPUT-BOTH is
specified, selected records are printed and the entire file is copied to the file named in
the COPYO FILE statement, or the device specified in the OUTPUT keyword param-
eter of the // COPYFILE control statement, when selected records are to be copied to
the 3741 or a card device. If OUTPUT-PRINT is specified, selected records are printed
only.

KEY Statement
LENGTH-number

"LOCATION-number

ACCESS Statement
FROM-code

CYLINDER-number

TRACK-number

SECTOR-number

DISP-number

RECL-number

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

Identifies the length of the key field. Key length may be 1-29.

The starting location in the input record that the key field is to be extracted from.
LLocation may be from 1 to 65525.

Location of data to be copied. Possible codes are R1, F1, R2, F2, D1, and D2.

Cylinder location of start of data; for a main data area it may be a number from
0-166. For a simulation area copy, it may be a number from 0-202.

Track location of start of data. It is a number from 0-19.

Sector number of start of copy. For a simulation area it may be a number from
0-47, for main data areas it may be a number from 1-48.

Displacement into sector of first good data to be recovered.

Record length of data to be recovered. Number may be between 1-65536.

@!n the OCL load sequence, you indicate which file is to be copied or printed. For files being copied, you must also indicate whether the file
is being copied from one device to another or from one location to another on the same disk, using the COPYIN and COPYO FILE state-
ments. COPYIN and COPYO FILE statements are invalid for the 3741 printer and card devices. The INPUT and OUTPUT keywords in the
// COPYFILE statements are used for the 3741 printer and card devices.

®REORG-NO is assumed if you omit the REORG parameter. When OUTPUT-BOTH is used for indexed files, REORG-YES is required.

®If halt UC3CCS occurs, indicating that there is not enough main storage available to execute the job, consider the following:

1. If you have OUTPUT-BOTH, change to OUTPUT-DISK or OUTPUT-FILE.

2. If you have REORG-YES, change to REORG-NO.

3. If running on a DPF system, use a larger program level if possible.

Copy/Dump Program—$COPY 91

PARAMETER DESCRIPTIONS
FROM and TO Parameters (COPYPACK)

The FROM and TO parameters are used when the entire
contents of one disk are copied onto another. They tell the
program the locations of the two disks.

The FROM parameter (FROM-code) indicates the location
of the disk you are copying. The TO parameter (TO-code)
indicates the location of the disk that is to contain the
copy. The FROM and TO codes must be for the same type
of disk drive. You cannot copy a simulation area from or
to a main data area.

Codes for the possible locations are R1, F1, R2, F2, D1,
and D2.

Copying Entire Disk

When copying a disk, the copy/dump program transfers the
contents of the disk to another disk. The contents of the
two disks will be the same except for the disk names and
alternate track information, which may be different.

The disk you are copying can contain libraries or data files
or both. The disk that is to contain the copy must not
contain libraries, temporary files, or permanent data files.

Until the entire contents of the disk are copied onto the
new disk, portions of the new disk are changed to prevent
accidental usage of a partially filled disk. Therefore, if the
copying process is stopped before it is completed, the data
module area is unusable. You can restart the copying pro-
cess by reloading the copy/dump program, or you can
restore the disk by reinitializing.

After successfully copying a disk, the copy program prints
the message:

COPYPACK IS COMPLETE

Note: If you copy a disk containing an active checkpoint,
that checkpoint exists on both the FROM and TO disks.
When one of the two active checkpoints is used to restart
the checkpointed program, care must be taken to avoid re-
starting the job a second time. To ensure that this will not
occur, you can perform IPL and load Restart ($$RSTR)
from the simulation area containing the second active
checkpoint. If you then select the controlled cancel option
when the Hbnn halt occurs (nn is the last requested check-
point number), the checkpoint is deactivated.

92

OUTPUT Parameters (COPYFILE)

The OUTPUT parameter is used for copying and printing
card, tape, diskette or disk data files. It indicates whether
you want the prograrn to copy, print, or copy and print a
file. The OUTPTX parameter can be used to display print-
ed output in hexadecimal values. Definitions of the various
OUTPUT parameters follow:

OUTPUT-DISK Copy the file to disk or
OUTPUT-FILE tape.

OUTPUT-PRINT Print the file.

OUTPUT-BOTH Copy the file to disk or
tape, and print the file.

OUTPUT-MFCU
OUTPUT-MFCU1
OUTPUT-MFCU2
OUTPUT-1442
OUTPUT-3741

Copy the file to the device
named.

OUTPUT-PRINT MFCU’
OUTPUT-PRINT MFCU1’
OUTPUT-PRINT MFCU2’
OUTPUT-PRINT 1442’
OUTPUT-'PRINT 3741’

Copy the file to the device
named, and print the file.

INPUT Parameter (COPYFILE)

The INPUT parameter is used for copying from either the
3741 or a card device. INPUT-MFCU, INPUT-MFCU1,
INPUT-MFCU2, INPUT-1442, and INPUT-3741 indicate
that the input file is on the device named in the keyword
parameter.

LENGTH Parameter (COPYFILE)

This parameter identifies the record length for the 3741

and is any number from 1 to 128. This keyword is optional
whether the 3741 is being used as input or output. [f this
parameter is not specified, the record length defaults to 96.

When the 3741 is used, the LENGTH parameter must be
equal to the record length in the HDR 1 label on the 3741
and is any number from 1 to 128.

When the 3741 is used as output and the input is disk, card,
or tape, the LENGTH parameter can be any number from 1
to 128 regardless of the record length of the disk, card or
tape file being copied. If the record length specified on the
3741 is greater than the record length from the input file,
the remainder of the record is filled with blanks (X‘40°). If
the record length from the disk, card, or tape file is greater
than the LENGTH specified, the record is truncated.

This keyword is ignored if used with a device other than a
3741.

Copying Files

The copy/dump program can copy a file from disk, tape,
cards or diskette to disk, tape, cards or diskette or from one
area to another on the same disk.

The OCL load sequence for the copy/dump program indi-
cates (1) the name and location of the disk or tape file
being copied, and (2) the name and location of the disk or
tape file being created. (See OCL Considerations in this
section.)

In copying a file, the program can omit records. (See the
description of the DELETE parameter for more informa-
tion.)

In copying an indexed file, the program can reorganize
records in the data portion in the order their keys appear in
the index. (See the description of the REORG parameter
for more information.)

Printing Files

The program can print all or part of a data file. To print
only part, the program needs a SELECT control statement.
(See the description of the SELECT control statement
parameters in this section.) If you do not use a SELECT
statement, the entire file is printed.

If you use SELECT KEY (PKY) or REORG-YES, records
from indexed files are printed in the order their keys appear
in the index portion of the file; otherwise, they are printed
as they appear in the file. For each record, the program
prints the record key followed by the contents of the
record.

Records from sequential and direct files are printed in the
order they appear in the file. For each record, the program
prints the relative record number followed by the contents
of the record.

The program uses as many lines as it needs to print the con-
tents of a record. Appendix A lists the hexadecimal repre-
sentation for characters in the standard character set.

The following example shows how the program prints
hexadecimal numbers using OUTPTX:

ABCDE GHIJ1L2345
CCCCCBCCCDFFFFF 4444444
1234567891123450000000

The hexadecimal number B6 represents a character that has
no print symbol.

After printing the last record, the printer triple spaces and
prints the following message:

{number) RECORDS PRINTED

DELETE Parameter (COPYFILE)

In copying a data file, the copy/dump program can omit
records of one type. The DELETE parameter identifies the
type of record. Use of the DELETE parameter is optional;
if you do not use it, no records are deleted. DELETE can-
not be used with direct files.

The form of the parameter is DELETE-'position, character’.
Position is the position of the character in the records.
Character is the character, except for apostrophes, blanks,
or commas, that identifies the record. For example, with
the parameter DELETE-100,R" all records with an R in
position 100 are deleted. By specifying the hexadecimal
code for the character, you can use any character {including
apostrophes, blanks, commas, and packed data) to identify
the records to be deleted. For example, with the parameter
DELETE-100,X40’, all records with a blank (hexadecimal
40) in position 100 are deleted.

Deleted records are always printed. If you are both copying
and printing a data file, deleted records are printed with the
other records. The deleted records are preceded by the
word DELETED.

The OMIT keyword can be used instead of DELETE. The
deleted records are not printed if OMIT is used.

REORG (Reorganize) Parameter (COPYFILE)

In copying an indexed file, the program can reorganize the
file, so that the records in the data portion are in the same

order as their keys in the file index. The REORG parameter
tells the program whether or not to reorganize the file.

Copy/Dump Program—$COPY 93

REORG-YES means reorganization; REORG-NO means no
reorganization. REORG-NO is assumed if you omit the
parameter.

If you tell the program to reorganize the file, the reorganiza-
tion applies to the copy of the file rather than the original
file. The original file is not affected.

Reorganization (REORG-YES) is required when you are
both copying and printing an indexed file (QOUTPUT-
BOTH).

WORK Parameter (COPYFILE)

The WORK parameter applies to copying a data file from a
data module mounted on drive 2 to another data module

mounted on drive 2. It tells the program to use a work area.

on simulation area R1 on drive 1.

The parameter WORK-YES means that a work area is to be
used. WORK-NO means no work area is used. WORK-NO
is assumed if you.omit the WORK parameter.

When you are copying on drive 2, the work area on R1
must contain a minimum of 198 contiguous unused tracks.
If possible, R1 should not contain files or libraries because
the number of data module changes on drive 2 decreases as
R1 work space increases.

In copying the file, the program fills the work area with
records from the file you are copying. Then it prints a mes-
sage telling the operator to mount the other data module
(the one to contain the copy) on drive 2. After transferring
the records from the work area to the data module, the pro-
gram prints another message telling the operator to remount
the data module containing the file you are copying. The
program repeats this procedure until all records have been
transferred.

When WORK-YES is used, the input and output files must
have different data module names. It is good practice to
have different data module names on all data modules in an
installation.

94

SELECT KEY and SELECT PKY Parameters (SELECT)

The SELECT KE'Y and SELECT PKY parameters apply to
selecting part of an indexed file. The SELECT PKY param-
eter applies to selecting part of an indexed file that contains
packed keys. The parameters are FROM and TO.

The FROM parameter (FROM-‘key’) gives the key of the
first record to be selected. The TO parameter (TO-'key’)
gives the key of the last record to be selected. The record
keys between those two in the file index identify the re-
maining records to be selected. If you want to select only
one record, use the same record key in both the FROM and
TO parameters.

For example, the parameters FROM-‘000100’ and TO-
‘000199’ mean that records identified by keys 000100
through 000199 are to be selected.

If the file index daes not contain the key you indicate in a
FROM parameter, the program uses the next higher key in
the index.

You can omit the TO parameter. If you do, the program
assumes that the last key in the index is the TO key.

You can use fewer characters in the FROM or TO param-
eter than are contained in the actual keys; when keys are
packed, however, you must use the same number of charac-
ters as contained in the actual keys. If you use fewer
characters, the program ignores the remaining characters in
the record key. The number of characters used in the
FROM and TO parameters need not be the same.

For example, assume that the following are consecutive
record keys in an index: A1000, A1119, A1275, A1900, A
A1995, A2075, and 99999. The parameters FROM-‘A1’
and TO-'‘A199’ refer to record keys A1000 through A1995,

If none of the keys in the file index begins with the charac-
ters you indicate in a FROM parameter, the program uses
the key beginning with the next higher characters in the
FROM parameter.

For example, assume that four consecutive record keys in
an index begin with these characters: A1, A2, A8, and B1.
The parameters FROM-'A3’ and TO-‘A9’ would refer to
keys beginning with the characters A8.

SELECT RECORD Parameters (SELECT)

The SELECT RECORD parameters can apply to any file,
but are normally used for sequential and direct files. These
parameters use relative record numbers to identify the
records to be selected.

Relative record numbers identify a record’s location with
respect to other records in the file. The relative record
number of the first record is 1, the number of the second
record is 2, and so on.

The SELECT RECORD parameters are FROM and TO.
The FROM parameter (FROM-number) gives the relative
record number of the first record to be selected. The TO
parameter (TO-number) gives the number of the last record
to be selected. Records between those two records in the
file are also selected.

For example, the parameters FROM-1 and TO-30 mean
that the first 30 records (1-30) in the file will be selected.

You can omit the TO parameter. If you do, the program
assumes that the number of the last record in the file is the
TO number. If you want to select only one record, use the
same number in the FROM and TO parameters.

FILE Parameter (SELECT)

This parameter allows only selected records to be copied to
a disk, tape, cards, diskette, or printer.

LENGTH and LOCATION Parameters (KEY)

The KEY statement is used when building an indexed file
from a sequential file. The LENGTH parameter specifies
the length (1-29) of the key field. The LOCATION param-
eter specifies the starting location (1-65525) of the key field
in the input record. When the KEY statement is used, the
file described in the COPYOQ file statement must be a disk
file and QUTPUT-DISK, OUTPUT-FILE, or QUTPUT-
BOTH must be specified in the COPYFILE control state-
ment.

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

CYLINDER Parameter (ACCESS)

This parameter identifies the cylinder number for start of
file; the number can be between 0 and 202. For 5444, the
number is the quotient obtained from dividing the file
location by 2. For 5445, the number is indicated by the
file location.

SECTOR Parameter (ACCESS)

This parameter is used to specify the sector on which the
data to be copied is located. For a simulation area, it can
be 0-47. For main data areas, it can be 1-48.

TRACK Parameter (ACCESS)

This parameter is used for 5445. The value can range from
0-19 and is specified by the file location.

RECL Parameter (ACCESS)

This parameter identifies the record length of the data in
the file to be recovered. It can be 1-656536.

FROM Parameter (ACCESS)

This parameter identifies the unit on which the input data
is located.

DISP Parameter (ACCESS)
This parameter specifies the displacement, in bytes, from

the start of a sector to the beginning of a record in that
sector. The number can be between 0 and 255.

Copy/Dump Program—$COPY 95

COPYING MULTIVOLUME FILES

When multivolume files are copied, the first volume of the
input file has to be online when the job is initiated. The
output file must be a new file. If either condition is not
satisfied, a halt occurs.

Maintaining Correct Date and Volume Sequence Numbers

To maintain the correct data and volume sequence numbers
you must:

® Copy all the volumes of the file in one execution of
$COPY, or

® Copy only one volume of the file in each execution of
$SCOPY.

For example, if you copy a 3-volume file one volume at a
time (volume 1 in the first execution, volume 2 in the
second execution, and volume 3 in the third execution), the
output file volumes will retain the original input date and
volume sequence numbers. Or, if you copy all the volumes
(1, 2, and 3) in the same execution, the system will assign
the current system date and new volume sequence numbers
in the output file. However, if you copy only volumes 2
and 3 in one execution, the output file volumes will be
assigned the current system date and volume sequence
numbers 1 and 2.

96

Maintaining Correct Relative Record Numbers

To maintain correct relative record numbers when copying
one volume of a multivolume direct file, you must keep the
output volume and the input volume equal in size. (If you
want to increase the size of a file, you must copy the entire
file.) If you copy the first volume of a 2-volume file and
increase the number of records on that volume, you are also
increasing relative record numbers of all the records on the
next volume. Therefore, to maintain the correct relative
record numbers, output and input volume extents (records
or tracks) must be equal if you are copying only one
volume of a multivolume direct file.

Direct File Attributes

If you copy an entire multivolume direct file in one run, the
output file is given sequential attributes in the volume table
of contents (VTOC). However, this does not affect file
processing. A file with either sequential or direct attributes
can be accessed by a consecutive or random access method.
If only one volume is copied, the direct attribute is main-
tained.

Copying Multivolume Indexed Files

If you want to copy an indexed multivolume file, REORG-
YES must be given in the COPYFILE statement. Since an
unordered load to a multivolume indexed file is not per-
mitted, a REORG-NO causes a halt. |f you prefer not to
reorganize the file, it must be copied one volume at a time.
When you copy one volume at a time, the HIKEY on the
output volume must be the same as the HIKEY on the input
volume. If they are not equal, a halt occurs. Making the
HIKEYs the same ensures that both the input and output
volumes are the same length and no records will be lost.
When you copy one volume of a multivolume indexed file,
either REORG-YES or REORG-NO may be specified.

CARD AND DISKETTE CONSIDERATIONS ($COPY)
Card or Diskette Input

For card or diskette input files, end of file is determined by
the presence of a record with /* in positions 1 and 2, and
positions 3 through 80, 3 through 96 or 3 through 128
blank. This allows a card or diskette input file to contain /*
records, assuming that at least one character is in columns 3
through 80, 3 through 96, or 3 through 128. A /& is han-
died the same as a /* record unless the input device is the
system READER. The presence of a record with /& in posi-
tions 1 and 2 from the system READER is regarded as
absolute end of file.

Card or Diskette Output

If the input record size (in bytes) is greater than the size of
the card or diskette record, the input record is truncated.
If the input record size is less than the size of the card or
diskette record, the remaining portion of the card or
diskette record contains blanks. For example, if the input
file contains 60 byte records, the card is blank in columns
61 through 80 or 61 through 96. The diskette is blank in
the remaining portion of the record length specified.

TAPE FILE CONSIDERATIONS

When copying or printing tape data files, you must describe
the tape file being copied or printed and describe the file
being created. The various tape record formats and labels
are supported. (See F/LE Statement (Tape) in Part 1 of
this manual.) The tape file can be ASCIl or EBCDIC.
Default for record format (RECFM) is fixed length. On an
unlabeled tape, record length (RECL) and block length
(BLKL) must be specified.

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

Be careful when you copy a tape file with variable length
records to disk or tape. The resulting file contains fixed-
length records with a record length equal to the longest
record length of the file copied from. Records copied with
short record lengths have invalid information in the unused
portion of the output record.

OCL CONSIDERATIONS

The following OCL statements are needed to load the copy/
dump program if you are using the program to copy an
entire disk:

// LOAD $COPY code
// RUN

The code you supply depends on the location of the simu-
lation area containing the copy/dump program. The codes
are R1, F1, R2, and F2.

The following OCL statements are needed to do COPYFILE
functions for disk and tape:

// LOAD $COPY ,code
// FILE NAME-COPYIN,
parameters

(Required statement for
input from disk or tape)

// FILE NAME-COPYO,
parameters

(Required statement for
output to disk or tape)

// RUN

For information on the FILE statement parameters, see
OCL Statements in Part 1 of this manual.

The UNIT parameter is required on each entered FILE state-
ment. The allowable UNIT codes are R1, F1, R2, F2, D1,
D2, T1, T2, T3, and T4 for COPYIN and COPYQO file state-
ments.

A FILE OCL statement is not required for a card, diskette,

or printer file. The INPUT or OUTPUT keyword in the
COPYFILE control statement must be used.

Copy/Dump Program—$COPY 96.1

96.2

EXAMPLES

Figures 24 through 29 are examples of the OCL statements
and control statements needed to (1) copy an entire disk,
(2) copy a file from one disk to another, and (3) print part
of a file.

Figures 30 through 41.1 are examples of the OCL state-
ments and control statements needed to:

10.

11.

Copy a file from disk to tape.

Copy a file from tape to disk, printing part of the file.

Copy a file from tape to tape, selecting records to be
copied.

Copy a card file to tape.

Copy a disk file to cards.

Copy a disk file to diskette.

Copy a tape file to diskette, printing part of the file.

Copy and print a portion of a file from diskette to
disk.

Copy a card file to a diskette, printing the entire file.

Copy and print a portion of a file from diskette to
cards.

Copy a card file to another card file.

Recover data from a main data area.

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

4 8 12 16 20 24 28 32 36

N~ IS
~ [>T
[0

Explanation:

The copy/dump program is loaded from simulation area F1
on drive 1.

Figure 24. OCL Load Sequence for Copying an Entire Disk

Copy/Dump Program—$COPY 97

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

/|11 ICloAVIAAlClK |HRoM-IFl2l,ITid-|Rl2l , PACI(/N-F2F2F2,, PACIKIO-1RI12|1RZIR'2

/| |EMO
Explanation:
The COPYPACK statement copies the contents of simulation area F2 {(FROM-F2) with volume identification F2F2F2
(PACKIN-F2F2F2) onto simulation area R2 (TO-R2) with volume identification R2ZR2R2 (PACKO-R2R2R2).
Figure 25, Control Statements for Copying an Entire Disk
1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
/
/\/| |LiaAlD $1CaAY], 1AL
/) |ALIE IMAME[-CloAv M U IT-F.ZI —AI,,L BIEIL|- MASITIER
N |F1LIE WAMEl-lcoavial, WM |71 R.'Il, AACIK- 82,. LIABIEIL|-|BAICIKUP| | TIRAICIKIS|-|5] ; RETAL IM-A
[/ RIUN
Explanation:

® Copy/dump program is loaded from simulation area F1 on drive 1.
® Input file (OCL sequence):
1. Name that identifies file on disk is MASTER (LABEL-MASTER).
2. Disk that contains the file is simulation area F1 on drive 1 (UNIT-F1). lts name is A1 (PACK-A1).
® OQOutput file (OCL sequence):
1. Name to be written on disk to identify the file is BACKUP (LABEL-BACKUP).
2. Disk that is to contain the file is the simulation area R1 on drive 1 (UNIT-R1). Its name is B2 (PACK-B2).
3. The file is to be permanent (RETAIN-P).
4. Thesize of the file is 50 tracks (TRACKS-50).

Figure 26. OCL Load Sequence for Copying a File from One Disk to Another

98

=y

Explanation:

The COPYFILE statement tells the program to create the output file using all the data from the input file. The output file
using all the data from the input file. The output file is a copy of the input file.

Figure 27. Control Statements for Copying a File from One Disk to Another

14 8[12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
/1€
/|/] ILIOAID 1BICIOP, AL
/1] |ALILE NAIMIE-COP‘YIN,.UNIT-DI,.FACI(-B‘ZI,LAJQEL-BMCA’UP
/] 1R |
Explanation:

® Copy/dump program is loaded from simulation area F1 on drive 1.
® Input file (OCL sequence):
1. Name that identifies the file on disk is BACKUP (LABEL-BACKUP).
2. Disk that contains the file is the main data area on driye 1 (UNIT-D1). Its name is B2 (PACK-B2).

Figure 28. OCL Load Sequence for Printing Part of a File

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
/T dAYA g ToldrAut ARl T | | || RERRRRE!
/1/] slelielcT) Ke, |FrioM-|"|alolAMs|’ | Iridl-|* |8lAklElr]”] NARRER
/1] D i L
II}III
RERRRE
Explanation:

® The file is being printed (COPYFILE statement).

® The file is an indexed file. The part being printed is identified by the record keys from ADAMS to BAKER in the index
(SELECT statement).

Figure 29. Control Statements for Printing Part of a File

Copy/Dump Program—$COPY 99

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
/1/] 1lolAld IgicldAvi JA4 [1] | | LLLL
N/ 1ALl IMaIMel-Icalelvl I, luwdIT-10ie], |Palcld-pt2ioL 0t 4]l EL-MAST%&
A 1A!Le WaMé-IdolAyid, M/ Ir-I7i4], [Rlelelc]- |7l 474|741, 12 | AdElL - BalckKUA IR ECIFM- 1A,
/|l| |RIEq -8, BlLKL-18
/| RIUN
/1] IclolplviF|/|Lle] [auriplutT]-|F{s|clg
IRRGTY
Explanation:

® Copy/dump program is loaded from simulation area F1 on drive 1.
® input file (OCL sequence):
1. Name that identifies the file on disk is MASTER (LABEL-MASTER).
2. Disk that contaips the file is main data area on drive 1 (UNIT-D1). Its name is D1D1D1 (PACK-D1D1D1).
® Qutput file (OCL sequence):
1. Name to be written on tape to identify the file is BACKUP (LABEL-BACKUP).
2. Tape unit that is to contain the file is tape unit 1 (UNIT-T1). Its name is T1T1T1 (REEL-T1T1T1).
3. Record format used is fixed length, unblocked records (RECFM-F). The record length is 80 (RECL-80).
® Control statement explanation:
The entire disk file named MASTER is copied to tape unit 1 (OUTPUT-FILE).

Figure 30. OCL and Control Statements to Copy a Disk File to a Tape File

100

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
A/ (oAl lcldAy] A1 ‘ | RERERN
111 FlrICle] IMAMe]-ICiolAy| /i lunts[rl-Ir4] |delel -ir 27l airl 1l [Rlelelrm -7 | A8l - glalclduA
(| A\l Wialel-lcolAyia, o1 (7)- 12!, | Alalclk- plalplz|pta|, 2 |AlgelL - alsiTle)rch sl-24,
/| |RETA M-
/] RIUM
/] lclaAldA1|LlE ladriAuzi-lBolrH
(/] SlElleldT] Ikielcloleld ,IFrRiom- |1 |70 -| 40
[/ WD ' ’
Explanation:

® Copy/dump program is loaded from simulation area F1 on drive 1.

® Input file (OCL sequence):
1. Name that identifies the file on tape is BACKUP (LABEL-BACKUP).
2, Tape that contains the file is tape unit 1 (UNIT-T1). Its name is T1T1T1 (REEL-T1T1T1).
3. Record format of the file is fixed length, unblocked records (RECFM-F).

® Output file (OCL sequence):

1. Name to be written on disk to identify the file is MASTER (LABEL-MASTER).

2, Disk that is to contain the file is the main data area on drive 2 (UNIT-D2). Its name is D2D2D2 (PACK-D2D2D2).

3. The file is to be permanent (RETAIN-P).
4. The size of the file is 30 tracks (TRACKS-30).
® Control statement explanation: |
1. The entire file is copied from tape to disk (OUTPUT-BOTH).
2. Records 10 through 100 are printed (RECORD, FROM-10, TO-100).

Figure 31. OCL and Control Statements to Copy a Tape File to a Disk File and Print a Part of the File

Copy/Dump Program—$COPY

101

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
A4 1ddAd TlcldAY] A1 I | LT |]
/1ALl INAME]-|clolptvti I Juii[7i-1711], IRl |- [Rlelcl M-Il |Relcle - el |allkic |- i
Fl11L (el IMalel-IcloiAvid JuM:Imi-Irial |Rlelelcl W], [Rlelc]FM-|A
/] RV
clolPviAr|Lle loltrlPlr-lFirlle
/| Isieitleelr RECORD,FRO:M-M;TO-MQ;F/LE- Ylels
/1] lEWD
Explanation:

® Copy/dump program is loaded from simulation area F1 on drive 1.
® [nput file (OCL sequence):
1. Tape that contains the file is tape unit 1 (UNIT-T1).

2. Tape being copied is an unlabeled tape (REEL-NL); therefore, record format (RECFM-FB), record length
(RECL-96), and block length (BLKL-960) are specified.

® OQutput file (OCL sequence):
1. Tape unit that is to contain the file is tape unit 2 (UNIT-T2).
2. No label is used on the output tape (REEL-NL).
3. The record format is fixed length, unblocked (RECFM-F).
® Control statement explanation:
1. Records 20 to 200 are copied (FILE-YES).
2. Norecords are printed (OUTPUT-FILE).

Figure 32. OCL and Control Statements to Copy a Tape File to a Tape File and Select Records to be Copied

©102

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
/1] TddAd 1giciapvi,lFal 1111 L [

1ALl MAMEl-{Clolptviollui/In-I7id), [Rieie d-174 71474, /L asElL- Balclkaa 1R ClE-

[/ 1Rec|C-l9le],|8LlK -l

/1] 1RIUN

(1] ClORY\ALILE [OUITIAUT- AL e | IMAUTI-IMFACIUL

/1] 1D

Explanation:

® Copy/dump program is loaded from simulation area F1 on drive 1.
® Output file (OCL sequence):
1. Name to be written on tape to identify the file is BACKUP (LABEL-BACKUP).
2, Tape unit that is to contain the file is tape unit 1 (UNIT-T1). Its name is T1T1T1 (REEL-T1T1T1).

3. Record format used is fixed length, blocked records (RECFM-FB). The record length is 96 (RECL-96); the block
length is 960 (BLKL-960).

® Control statement explanation:
The entire card file from the MFCU1 (INPUT-MFCU1) is copied to tape unit 1 (OUTPUT-FILE).

Figure 33. OCL and Control Statements to Copy a Card File to a Tape File

1 4 8 12 6 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
/1 1aAlD glcioRyl, Fl1 HEERRRRENE

[T AL e IMAMEl-[clolpivir M, luindI-Ipia] |Palc|d- oDl 4Dl 1] | |48 elLl- MalsiTlER

A1 R

/1] IcloPvid|Lle] lolutrauri-14

/] e

Explanation:

® Copy/dump program is loaded from simulation area F1 on drive 1.
® Input file (OCL sequence):
1. Name that identifies the file on disk is MASTER (LABEL-MASTER).
2. Disk that contains the file is the main data area on drive 1 (UNIT-D1). Its name is D1D1D1 (PACK-D1D1D1).
® Control statement explanation: .
The entire disk file named MASTER is punched into cards by the 1442 (OUTPUT-1442).

Figure 34, OCL and Control Statements to Copy a Disk File to a Card File

Copy/Dump Program—$COPY 103

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 7&‘;
A4 1L T8iclolPV], 1A | | L
AL FTILEL WAMEL-1COP1I W WL TE D], |A4CK-0 1 101, 1Ll AB el -MAS TR
/] 1Ry
/|11 IclolPvilr|c e lotrlplulri- 37k 1], |cleweliH- 128
/[lewd
Explanation:

® Copy/dump program is loaded from simulation area F1 on drive 1.
® [nput file (OCL sequence):

1. Name that identifies the file on disk is MASTER (LABEL-MASTER).

2. Disk that contains the file is main data area on drive 1 (UNIT-D1). Its name is D1D1D1 (PACK-D1D1D1).
® Control statement explanation:

The entire disk file named MASTER is copied to the 3741 (OUTPUT-3741). The record length of the file on the 3741
is 128 (LENGTH-128).

Figure 35. OCL and Control Statements to Copy a Disk File to the 3741

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
/1] 1Al TEclaAY] T[4 | | L
A1\ 1F1|UE WMAMEL-IClolAY]/IM, i1 71|74 |Relec]-IAAYdLl |delciFM-A,|LlalB elL]- Ials|ie
11| RN ’
/11l |A0PVIA/L] puiTiAUTI-|'|AR IMT] 31714], |1 M6l TIA-|9l6
SEILIEIAT] RIEICORD,|AROM- 14 70| 12
/1] lEwdp
Explanation:

® Copy/dump program is loaded from simulation area F1 on drive 1.

® Input file (OCL sequence):
1. Name that identifies the file on tape is MASTER (LABEL-MASTER).
2. Tape that contains the file is tape unit 1 (UNIT-T1). Its name is PAYROL (REEL-PAYROL).
3. Record format of the file is fixed length, unblocked records (RECFM-F).

® Control statements explanation:

1. The entire file is copied from tape to the 3741 (OUTPUT-‘PRINT,3741°). The record length of the file on the 3741
is 96 (LENGTH-96).

2. Records 4 through 120 are printed (RECORD,FROM-4,TO-120).

Figure 36. OCL and Control Statements to Copy a Tape File to a Diskette File and Print a Part of the File

104

1 4 8 12 i6 20 24 28 32 36 40 a4 48 52 56 60 64 68 72 76
/] TClolAld] TélcldAY JAz I Ll ! | i
1/ FlILlE WAMEL-(clopvid, Wiul: Ti=pt2], [Plalc|Ki- [plzoi2o}a] e LalBielL|-s|alL els], iRl dlids - Lis |/ eirial M7 |
A/ RIUM SRRs
/1] IcloAviAilclel loidTiAuT-|BaTHLINAUT- Bl ILEWGTIH-I5 |
/| 1Sl lecT |RelCarD ,|FROM-15],1TI0- 12151, |F|/ L€ -IY|Els :

/| lEWD |
Explanation:

® Copy/dump program is loaded from simulation area F1 on drive 1.
® OUTPUT file (OCL sequence):
1. Name to be written on disk is SALES (LABEL-SALES).
2. Disk that is to contain the file is main data area on drive 2 (UNIT-D2). Its name is D2D2D2 (PACK-D2D2D2).
3. The file is to be temporary (RETAIN-T).
4. The size of the file is 15 tracks (TRACKS-15).
® Control statements explanation:
1. Records 5 to 250 are copied (FILE-YES) and printed (OUTPUT-BOTH).
2. Input is the 3741 (INPUT-3741) avnd the record length in the HDR1 label on the 3741 is 50 (LENGTH-50).

Figure 37. OCL and Contro! Statements to Copy a Diskette File to a Disk File and Print Only the Copied Records

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
/| |L|JAD 1#ICl0AY A

[R B

I ICIOIAYAYILIE UTPUT-’PR/NT,S?#I')INPUT- FCUI,.LE G TIH- 196

11{] |EMD

Explanation:

® Copy/dump program is loaded from simulation area F1 on drive 1.
® Control statement explanation:

The entire card file from the MFCU1 (INPUT-MFCU1) is copied to the 3741 and printed (OUTPUT-'PRINT,3741).
The record length of the output file on the 3741 is 96 (LENGTH-96).

Figure 38. Control Statement to Copy a Card File to a Diskette and Print the Entire File

Copy/Dump Program—$COPY 1056

14 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
/7] (LlaAD 18ColPIv, A 4
N RUM
/1] CIORY\A/LIE |ouiT|AUT-| PRIWT,. FICI LI , LINMPUITI-13[1AL, L}_EIVGTH- 12
/71 SlElLlE RIECIORD ,IFIROM-|116] |TIO- |67, IFl/ |LIE-|Y|ELS
{l/| |[EMD
Explanation:
® Copy/dump program is loaded from simulation area F1 on drive 1.
® Control statement explanation:
1. Records 16 through 67 are copied (FILE-YES) to the 1442 and printed (QUTPUT-'PRINT,1442’).
2. Input is the 3741 (INPUT-3741), and the record length in the HDR1 label on the 3741 is 128 (LENGTH-128).
Figure 39. Control Statements to Copy and Print a Portion of a File on a Diskette to a Card Device
14 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
/] ILlolAlg 18clolAy] |4
/1] R
1/ \ICIOAY\ALIE oUTAUTE FCUZ,, 1IN PUTI- | 21444
/] EMD
Explanation:

® Copy/dump program is loaded from simulation area F1 on drive 1.
@ Control statement explanation:
1. The entire file is copied to the MFCU2 (OUTPUT-MFCU2).
2. Inputis the 1442 (INPUT-1442),

Figure 40. Control Statement to Copy a Card File to Another Card File

106

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
/11 1daAd TdldalPivl, AL ||

/1L |FILILIE] IMAMEL-ICIOPLY|/ M, JUWL11T]-1R 4, 1PAICKI- IR AR IRIL | LIABIEILI- ICIONSIVF] i
/1AL Wamel-clolPvial, uiwie T]-1ol2) |PAICIK - IDIZIDADLLL L ITIRACIKIS| 119\, L ABEL- 1/ N DSWIE 4

/|| RN

/11 ColPYIF|ILIE (OUITIAUITI-D1/|S|A i BREN
/7] Kleyl |LlElMaTiH-1213],|Lo|ciAlT| oM -111288

/|| |EWD

Explanation:

® Copy/dump program is loaded from simulation area F1 on drive 1.
® |nput file (OCL sequence):
1. Name that identifies file on simulation area is CONSVF (LABEL-CONSVF).
2 Disk that contains the file is the simulation area R1 on drive 1 (UNIT-R1). Its name is RTR1R1 (PACK-RT1R1R1).
® Qutput file (OCL sequence):
1. Name to be written on main data area to identify the file is INDSVF (LABEL-INDSVF).
2. Disk that is to contain the file is the main data area on drive 1 (UNIT-D1). Its name is D1D1D1 (PACK-D1 D1D1).
3. The size of the file is 100 tracks {TRACKS-100).
® The COPYFILE statement tells the program to create the output file using all the data from the input file.

® The KEY statement tells the program to create an index for the output file consisting of 23-byte keys (LENGTH-23)
which are located 128 bytes into the record (LOCATION-128).

Figure 41. Control Statements to Copy a Sequential File From a Simulation Area to a Main Data Area and Create an Indexed Output File

Copy/Dump Program—$COPY 107

Page of GC21-5130-0
tssued 19 November 1976

By TNL: GN21-5413
1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
/12] Lelolalol Téiclole] JET T | | | l
/17| F|1ILIEl NiAMIEl-Icio YO}IIN 1T~ DZ,, PlalciK|- DZDLDZ)TRACKS-IDO,QG 7'4]IN-L"3£L-MAS 7l€lR
11| RN, NERENNENRN N L -
L] ICOIPIYIElLILIE pluTPv|TI-|0]|s|K
/|7] |alclelelsis| FiRlolm~ipl1 \ICNLl WoiElR- /519, TRAuc-¢,sec-rore-/ 510l 751P1-1d), 1Rl€|Cle |- |2I516
/] ISELIERIT] RIELLIRID, IFIROM-(/ Nu=hill 39190, |F1 1L €]~ 1Y€l S|
/|| |EMD
Explanation:
® Copy/dump program is loaded from simulation area F1 on drive 1.
® Output file (OCL sequence):
1. Name to be written on main data area to identify the file is MASTER (LABEL-MASTER).
2. Disk that is to contain the file is the main data area on drive 2 (UNIT-D2). its name is D2D2D2 (PACK-D2D2D2).
3. The size of the file is 100 tracks (TRACKS-100).
® The COPYFILE statement tells the program to create the output file using all the data from the input file.
°

The ACCESS statement identifies the location of the data to be copied as being on D1 (FROM-D1), at cylinder, track,
sector, displacement 159/0/1/0 (CYLINDER-159, TRACK-0,SECTOR-1,DISP-0), and that the records are 256 bytes
long (RECL-256).

Note: [/ SELECT RECORD with FILE-YES must be specified when using // ACCESS.

Figure 41.1. Control Statements to Recover Data From Main Data Area D1

108

Simulation Area Program—$SCOPY
The simulation area program has the following six functions:

® COPYAREA: Copies the entire contents of one simula-
tion area or simulation backup area to another simula-
tion area or simulation backup area.

® CLEAR: Clears all the data from a simulation area or
simulation backup area and builds a simulated cylinder O
(optionally gives volume 1D and owner ID).

® NEWNAME: Changes the name (volume ID) of a simu-
lation area or simulation backup area.

® NAMES: Prints the name (volume ID) of each available
simulation area, simulation backup area, and main data
area.

® MOVE: Copies the entire contents of one simulation
area or simulation backup area to another simulation
area or simulation backup area, clears the area from
which the contents were copied, and builds a simulated
cylinder 0 in the area copied from.

® COPYIPL: Copies IPL records from one 3340 data
module to another 3340 data module.

The use of any of these functions requires that the simula-
tion area referenced be dedicated to program level execut-
ing $SCOPY. The data module, on which the simulation
area is being referenced, cannot be dedicated to the other
level.

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

Four contiguous areas of 10 cylinders each (starting at
cylinder 169) are reserved on each of the 3340 data
modules to simulate 5444 drives. The first two areas on D1
are reserved for F1 and R1; the first two areas on D2 are
reserved for F2 and R2. These four areas are accessible via
normal data management (except multivolume and indexed
files) and Model 12 system utility programs except $ALT,
$BUILD, SINIT, and $RSALT. $SCOPY provides access to
simulation areas and simulation backup areas for mainten-
ance purposes.

The simulation areas are designated a- follows:

Area Start End
(CCC/HH/RR) (CCC/HH/RR)

A First simulation 169/00/01 178/19/48
area

B Second simulation 179/00/01 188/19/48
area

C First simulation 189/00/01 198/19/48
backup area

D Second simulation 199/00/01 208/19/48

backup area

Simulation Area Program—$COPY 108.1

108.2

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

CONTROL STATEMENT SUMMARY

Function Control Statements
COPYAREA // COPYAREA FROM-code, TO-code,PACK-name,AREA-name [, TONAME-name] [SYSTEM-{,:SS]
CHECK
CLEAR // CLEAR FROM:-code,PACK-name[,AREA-name] [,CLRNAME-name] [,ID-namel| TYPE- _——FORCE
NEWNAME // NEWNAME TO-code,PACK-name,AREA-name, TONAME-name
NAMES // NAMES [PRINT]
MOVE // MOVE FROM-code, TO-code,PACK-name,AREA-name [, TONAME-name] [,ID-name][,SYSTEM-{;ES}]
[,CLRNAME-name] o
COPYIPL // COPYIPL FROM-D1,TO-D2,PACK-name
// END
PARAMETER SUMMARY CLEAR
COPYAREA FROM-code ldentifies the data module and simu-
lation area or simulation backup area
FROM-code Identifies the data module and the being cleared (see COPYAREA FROM-
simulation area or simulation backup code for possible codes).
area being copied. Possible codes are
D1A, D1B, D1C, D1D, D2A, D2B, PACK-name Specifies the data module containing
D2C, and D2D. the area to be cleared.
TO-code Identifies the data module and the AREA-name Specifies the area to be cleared. Can-
simulation area or simulation backup not be specified if AREA has no
area receiving the copy (see FROM- assigned name. PID001 must be spec-
code description for possible codes). ified to clear an area used for distribu-
tion of programs from the IBM program
PACK-name Identifies the name of the data module library/PID. The name PID0O01 should
receiving the copy. only be used for this purpose.
AREA-name Identifies the name of the simulation CLRNAME-name Specifies the name to be given to the
area or simulation backup area being area being cleared. If no parameter is
copied. specified, the name of the area is the

name previously defined.

TONAME-name Specifies a name change for the area

receiving the copy. ID-name Enables you to use a 10-character
YES . o name in addition to the area name to
SYSTEM- NO Specifies whether IPL information is further identify a disk.
—_— to be copied.

TYPE-CHECK Tells the program to check for active
files or libraries and halt if any are
found before clearing the area.

TYPE-FORCE Tells the program to clear the area
without checking for active files or
libraries.

Simulation Area Program—$SCOPY 109

NEWNAME

TO-code

PACK-name

AREA-name

TONAME-name

NAMES

PRINT

MOVE

FROM-code

TO-code

PACK-name

AREA-name

TONAME-name

110

Specifies the name of the data
module and the simulation area or
simulation backup area being re-
named. (See COPYAREA FROM-
code for possible codes.)

Specifies the name of the data
module containing the area being re-
ngmed.

Specifies the existing name of the
simulation area or simulation backup
area being renamed.

Specifies the new name being given
to the simulation area or simulation
backup area.

Specifies that the names of all online
simulation areas and simulation back-
up areas are to be printed on the
system print device.

Identifies the data module and the
simulation area or simulation backup
area being moved. Possible codes are
D1A, D1B, D1C, D1D, D2A, D2B,
D2C, and D2D.

ldentifies the data module and simu-
lation area or simulation backup area
receiving moved information (see
FROM-code for possible codes).

Identifies the name of the data
module containing the simulation
area or simulation backup area re-
ceiving the moved information.

Specifies the name of the simulation
area or simulation backup area being
moved.

Specifies a name change for the simu-
lation area or simulation backup area
receiving the moved information.

ID-name Specifies the owner ID.

SYSTEM- VES

NO Specifies whether IPL information

is to be moved.

CLRNAME-name Used to assign a name to the area
from which the information has

been moved.
COPYIPL
FROM-D1 Identifies the data module containing
the IPL records to be copied.
TO-D2 Identifies the data module receiving
the IPL records.
PACK-name Identifies the name of the data

module receiving the IPL records.

PARAMETER DESCRIPTIONS
FROM and TO Parameters (COPYAREA)

The FROM parameter (FROM-code) identifies the data
module and the simulation area or simulation backup area
that contains the information to be copied. The TO param-
eter (TO-code) identifies the data module and the simula-
tion area or simulation backup area that is to receive the
copy. Possible codes are D1A, D1B, D1C, D1D, D2A, D28B,
D2C, and D2D.

PACK Parameter (COPYAREA)

The PACK parameter (PACK-name) identifies the name of
the data module containing the simulation area or simula-
tion backup area receiving the copy. This is the name as-
signed by the disk initialization program ($INIT).

AREA Parameter (COPYAREA)

The AREA parameter (AREA-name) identifies the name of
the simulation area or simulation backup area that is to be
copied.

Note: Using a COP'YAREA or MOVE statement, the re-
ceiving area is assigned the owner ID of the area being
copied from.

TONAME Parameter (COPYAREA)

The TONAME parameter (TONAME-name) is used to
change the name of the simulation area or simulation back-
up area that is to receive the copy. The name may contain
up to 6 characters (see CLRNAME Parameter (CLEAR) for
explanation of valid names). |f the TONAME parameter is
omitted, the name of the simulation area or simulation
backup area that is to be copied is used.

SYSTEM Parameter (COPYAREA)

The SYSTEM parameter is used to copy IPL information.
If SYSTEM-YES is specified, the IPL information from
cylinder O of the system data module on drive 1 is copied
to cylinder O of the data module receiving the copied infor-
mation. If SYSTEM-NO is specified, the IPL information
is not copied. If no parameter is specified, SYSTEM-NO is
assumed.

FROM Parameter (CLEAR)

The FROM parameter (FROM-code) identifies the data
module and the simulation area or simulation backup area
to be cleared. Codes that may be used are D1A, D1B, D1C
D1D, D2A, D2B, D2C, and D2D.

’

PACK Parameter (CLEAR)

The PACK parameter (PACK-name) specifies the name of
the data module containing the simulation area or simula-
tion backup area that is to be cleared. This is the name
assigned by the disk initialization program ($INIT).

AREA Parameter (CLEAR)

The AREA parameter (AREA-name) specifies the name of
the simuiation area or simulation backup area that is to be
cleared. This parameter cannot be specified if the area has
no assigned name. The AREA parameter must be specified
as PID0OO1 in order to clear an area used for distribution of
programs from the IBM program library/PID. The name
PID001 should be used only for this purpose.

Page of GC21-5130-0
issued 19 November 1976
By TNL: GN21-5413

CLRNAME Parameter (CLEAR)

The CLRNAME parameter (CLRNAME-name) specifies the
name to be given to the area that is to be cleared. The
name may be up to 6 characters in length and contain any
combination of standard System/3 characters except apos-
trophes, embedded blanks, and commas (due to their de-
limiter function). (See Appendix A for a list of standard
System/3 characters.) Valid area names are 0, F0001, 012,
A1B9, and ABC. If no parameter is specified, the name of
the area is the name previously defined. 1f no name has
been previously defined, CLRNAME must be specified.

ID Parameter (CLEAR)

The ID parameter {(ID-name) enables you to include a maxi-
mum of 10 characters, in addition to the area name, to fur-
ther identify a simulation area or simulation backup area.
{See CLRNAME Parameter (CLEAR) for explanation of
valid names.) The information is strictly for area identifi-
cation. (It is not used by the system for checking purposes.)
If no parameter is specified, the owner 1D area in the
volume label is left blank.

TYPE Parameter (CLEAR)

The TYPE parameter specifies the type of clear that is to be
done. If TYPE-CHECK is specified, a check is made for
active files or libraries. If any are found, the system halts.
If TYPE-FORCE is specified, the area is cleared without a
check for active files or libraries. (All libraries and data
files are deleted.)

TO Parameter (NEWNAME)

The TO parameter {TO-code) identifies the data module
and the simulation area or simulation backup area that is to
be renamed. The possible codes are D1A, D1B, D1C, D1D,
D2A, D2B, D2C, and D2D.

PACK Parameter (NEWNAME)

The PACK parameter (PACK-name) specifies the name of
the data module containing the simulation area or simula-
tion backup area being renamed. This is the name assigned
by the disk initialization program ($INIT).

Simulation Area Program—$SCOPY 111

AREA Parameter (NEWNAME)

The AREA parameter (AREA-name) specifies the existing
name of the simulation area or simulation backup area that
is to be renamed.

TONAME Parameter (NEWNAME)

The TONAME parameter (TONAME-name) specifies the
new name to be given to the simulation area or simulation
backup area. The new name may be up to 6 characters in
length. (See CLRNAME Parameter (CLEAR) for an
explanation of valid names.)

PRINT Parameter (NAMES)

The PRINT parameter indicates that all online simulation
area names or simulation backup area names are 1o be print-
ed on the system print device. If no parameter is specified,
the simulation area names or simulation backup area names
are printed. If an area is unavailable or being used by the
other program level, its volume ID is left blank and an
exception line is printed, giving the reason.

FROM and TO Parameters (MOVE)

The FROM parameter (FROM-code) identifies the data
module and the simulation area or simulation backup area
that is to be moved. The TO parameter (TO-code) identi-
fies the data module and simulation area or simulation
backup area that is to receive the moved information. Pos-
sible codes are D1A, D1B, D1C, D1D, D2A, D2B, D2C, and
D2D.

PACK Parameter (MOVE)

The PACK parameter (PACK-name) identifies the name of
the data module containing the simulation area or simula-
tion backup area that is to receive the moved information.
The name was assigned by the disk initialization program
(SINIT).

AREA Parameter (MOVE)

The AREA parameter (AREA-name) specifies the name of
the simulation area or simulation backup area to be moved.

112

TONAME Parameter (MOVE)

The TONAME parameter (TONAME-name) is used to
change the name of the simulation area or simulation back-
up area that is to receive the information. If no parameter
is specified, the name of the simulation area or simulation
backup area that is to be moved is used. (See CLANAME
Parameter (CLEAR) for an explanation of valid names.)

ID Parameter (MOVE)

The ID parameter (ID-name) specifies the owner ID that is
to be given to the area from which information was moved.
If no parameter is specified, the owner ID in the volume
label is left blank.

Note: Usinga COPYAREA or MOVE statement, the
receiving area is assigned the owner D of the area being
copied from. The owner ID name may be up to 10 charac-
ters in length. (See CLRNAME Parameter (CLEAR) for an
explanation of valid names.)

SYSTEM Parameter (MOVE)

The SYSTEM parameter is used to move IPL information.
If SYSTEM-YES is specified, the IPL information from
cylinder 0 of the system data module on drive 1 is moved
to cylinder O of the data module receiving the moved in-
formation. If SYSTEM-NO is specified, the IPL informa-
tion is not moved. If no parameter is specified, SYSTEM-
NO is assumed.

CLRNAME Parameter (MOVE)

The CLRNAME parameter (CLRNAME-name) is used to
assign a name to the area from which the information has
been moved. The name may be up to 6 characters. (See
CLRNAME Parameter (CLEAR) for an explanation of valid
names.}) If no parareter is specified, the area is cleared and
the name previously assigned is used.

FROM and TO Parameter (COPYIPL)

The FROM parameter (FROM-D1) identifies the data
module containing the IPL records that are to be copied.
The TO parameter (TO-D2) identifies the data module that

is to receive the IPL. records.

Note: COPYIPL can only be from D1 to D2.

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

PACK Parameter (COPYIPL)

The PACK parameter (PACK-name) identifies the name of
the data module that is to receive the IPL records. The
name assigned by the disk initialization program ($INIT).

OCL CONSIDERATIONS

The following OCL statements are needed to load the simu-
lation area program:

// LOAD $SCOPY code
// RUN
The code you supply depends on the location of the simu-

lation area containing the simulation area program. The
codes are R1, F1, R2, and F2.

EXAMPLES

Figures 42 through 48 are examples of control statements used to perform specific functions of the simulation area program.

N
N

Explanation:

After a check for active files and libraries (default is TYPE-CHECK), the first backup area on drive 2 is cleared. It is given a
volume ID of D2CD2C and an owner ID of BACKUPF 1. This is an example of the CLEAR that is to be run after the entire
data module has been initialized by $INIT.

Figure 42, CLEAR Example: Clearing a Simulation Backup Area

Explanation:
After verification that the volume ID on the third area of drive D1 is PIDOO1, the area is cleared and given a volume ID of
D1CD1C. The owner ID is all blanks and the check for active files and libraries is bypassed. This is an example of the

control statement needed to clear an area containing programs from the IBM program library/PID.

Figure 43. CLEAR Example: Clearing an Area Containing IBM Programs

Simulation Area Program—$SCOPY 113

Explanation:

After verification that the volume ID of area D1A is FTF1F1, the area (D1A) is copied to the first backup area on drive 2.
The entire simulation area is copied including cylinder 0, the volume 1D, and the owner ID if it was present on D1A.

Figure 44. COPYAREA Example: Copy an Entire Simulation Area

I
o|-027,[Pacld-D2ln2) Dz, 710 ﬂME-Bkupkf
|

Explanation:

The entire R1 simulation area on drive 1 is copied to the second backup area on drive 2 and the D2D area is given a volume
ID of BKUPR1 and an owner ID of the R1 area if one exists. After the copy is complete, the R1 simulation area is cleared
of all data, its owner 1D field is blank, and it retains its volume ID of R1R1R1. The R1 simulation area is now ready to be
the receiving area of a COPYAREA or another MOVE.

Figure 45. MOVE Example: Copy an Entire Simulation Area With New Volume 1D

Explanation:

The IPL (initial program load) records and the 3340 microcode are copied from cylinder 0 of the data module on drive 1 to

cylinder O of the data module on drive 2. A check is made before the copy to ensure that the volume ID of the data module
on drive 2 is D2D2D2.

Figure 46. COPYIPL Example: Copy Cylinder O0-From Drive 1 to Drive 2

114

Explanation:

This control statement enables you to print on the system print device the volume ID of all online and available data modules
and simulation and backup areas. All simulation and backup areas on a data module are considered by the simulation area
program as unavailable if the data module is dedicated to the other program level, if the other program level has a rollin
pending, or if the data module has not been initialized by System/3 $INIT. This control statement also provides the capability
to print an exception line, if needed, giving the reason for any unavailable simulation or backup area.

Figure 47. PRINT Example: Print ID Information

1 4 8 12 16 20 24 28 32 36 40 44 48]52] 56 60 64 68 72 76
LI []] I !

/171 | WEWMAMEL [TI0-IDI2IB, AlRIElA 1R 11 21R 1] |AAicd-Dlalpl2ini2! [7idMAME!-1BAlclkiuiA

/] 1emo

Explanation:

After verifying that the name (volume ID) of the data module on D2 is D2D2D2 and that the name {volume ID) of the second
backup area on D2 is R1R1R1, the program changes the name (volume ID) of the backup area from R1R1R1 to BACKUP.

Figure 48, NEWNAME Example: Changing Volume ID

The following diagram shows the location of data modules and backup areas on the 3340:

Cyl 0 Cyl 1-166 Cyl 167-168 Cyl 169-178 Cyl 179-188 Cyl 189-198 Cyl 199-208 Cyl 209 heads 1-7

Drive 1 System | Main data | Alternate Simulation Simulation Simulation Simulation Error logging
area area D1 tracks area A area B area C area D and CE tracks
D1A F1 area D1B R1 area D1C D1D

Cyl 0 Cyl 1-166 Cyl 167-168 Cyl 169-178 Cyl 179-188 Cyl 189-198 Cyl 199-208 Cyl 209 heads 1-7

Drive 2 System | Main data Alternate Simulation Simulation Simulation Simulation
area area D2 tracks area A area B area C area D Reserved
D2A F2area D2B R2 area D2C D2D
if simulation if simulation
is on is on

Simulation Area Program—~$SCOPY 115

Library Maintenance Program—$MAINT

The library maintenance program has five functions:

Function Meaning

Allocate Create (reserve space for), delete, re-
organize, and change the sizes of libraries;
create the scheduler work area and rollout/
rollin area on a system simulation area.

Copy Piace entries in and display the contents of
libraries. Create a file from library entries.

Delete Delete library entries.

Modify Modify source library entries.

Rename Change the names of library entries.

The control statements you must supply depend on the
function you are using.

All simulation areas referenced by the control statements
must remain online during the library maintenance run.

116

LIBRARY DESCRIPTION

The source library is an area on disk for storing procedures
and source statements. Procedures are groups of OCL state-
ments used to load programs. The statements can be fol-
lowed by input data for the programs. (Procedures for utility
programs can, for example, contain utility control state-
ments.) Source statements are sets of data, the most com-
mon of which are RPG Il source programs and disk sort
sequence specifications.

The object library is an area on disk for storing object pro-
grams and routines. Object programs are programs and sub-
routines in such a form that they can be loaded for execu-
tion. (They are sometimes called executable object pro-
grams.) Routinés are programs and subroutines that need to
be link-edited into cbject programs before they can be
loaded for execution. (They are sometimes called non-
executable object programs.)

Location of Libraries on Disk

Libraries cannot exist in the main data area; only R1, F1,
R2, and F2 can contain libraries that may be referenced by
the library maintenance program.

The location of a source library with respect to an object
library is always the sama:

User Area
® Data Files

Source Library Scheduler Work

e Procedures Area

e Source
Statements

Rollout/Rollin Object Library User Area
Area o Obiject e Data Files
Programs
® Routines

t-Tracks 0-7

The boundaries of a source library are fixed. They can be
changed only by the allocate function of the library main-
tenance program. The upper boundary of an object library,
however, can be moved as additional space is needed when
entries are placed in the library. This happens only if space
is available following the library and if the entries being
placed beyond the normal boundary are not permanent
entries.

Organization of Library Entries
Object Library

Entries are stored in the object library serially; that is, a 20-
sector program occupies 20 consecutive sectors. Temporary
entries follow all permanent entries in the object library.

If necessary, the upper boundary is changed to allow more
space for temporary entries. The upper boundary of the
library is extended to the end of the pack or to the first
temporary or permanentfile, allowing the maximum
amount of space for the temporary library entry. At the
successful completion of the copy, the upper boundary is
returned to the track boundary at the end of the last tem-
porary entry. If the copy was not completed successfully,
the upper boundary may remain extended. When a per-
manent entry is placed in the library or the library is re-
organized, all temporary entries are deleted and the upper
boundary returns to its ariginal location. Permanent entries
cannot exceed the original upper boundary.

————-

Upper Boundary

Gaps can occur in the object library when an entry is
deleted. The associated directory entries point to these
gaps. When the library maintenance program places a new
entry in the library, it searches the directory for a gap that
has the same number of sectors, or the fewest sectors over
the number required by the new entry. If the entry is smal-
ler than the gap, the last part of the gap is not pointed to
by a directory entry. Since this gap has no directory entry,
it cannot be used until the library is reorganized.

If the number of unusable sectors becomes excessive, the
library should be reorganized. In reorganizing entries, the
library maintenance program deletes temporary entries and
shifts entries so that gaps do not appear between them.
This makes more sectors available for use.

. Library Maintenance Program—$MAINT 117

Source Library

The source library differs from the object library in that
entries within the source library need not be stored in con-
secutive sectors. An entry can be stored in many widely
separated sectors with each sector pointing to the sector
that contains the next part of the entry. When an entry is
placed in the source library, it is placed in as many sectors
as required regardless of where the sectors are located with-
in the library.

The boundary of the source library cannot be expanded;
therefore, an entry must fit within the available library
space. To provide as much space as possible within the pre-
scribed limits of the source library, the system compresses
entries. That is, all duplicate characters are removed from
entries. Later, if the entries are printed or punched, the
duplicate characters are reinserted.

When the size of the source library is changed or the source
library is reorganized, all temporary entries are deleted.

Library Directories

The program creates a separate directory for each library.
Every library entry has a corresponding entry in its library
directory. The directory entry contains such information
as the name and location of the library entry. The program
also creates a system directory, which contains information
about the size and available space in the libraries and their
directories.

118

Organization of this Section

The five functions of the library maintenance program are
described separately. Every description contains the
following:

® List of specific uses

® Control statement summary indicating the form of
control statement needed for each use

® Parameter descriptions explaining, in detail, the contents
and meanings of the parameters

® Function descriptions explaining the details of each
function

Following the function descriptions are:

® OCL considerations

® Examples

ALLOCATE FUNCTION
Uses

® Create (reserve space for) libraries, scheduler work area,
and rollout/rollin area.

® Change the sizes of libraries.
® Delete libraries.

® Reorganize libraries.

Control Statement Summary

// ALLOCATE TO-code, SOURCE- {’;{”mbe’} ,OBJECT—{;umber} ,SYSTEM- {\N((E)S} ,DIRSIZE-number, WORK-code
Use® Parameter Needed®
Create TO-code,SOURCE-number,WORK-code®

Source Change Size TO-code,SOURCE-number, WORK-code

Library
Delete TO-code,SOURCE-0
Reorganize TO-code,SOURCE-R,WORK-code
NO
Create TO-code,OBJECT-number,SYSTEM- YES

Object Change Size TO-code,OBJECT-number, WOR K-code®
Library
Delete TO-code,OBJECT-0

Reorganize TO-code,OBJECT-R,WOR K-code®

®You can indicate a source library use, any object library use, or uses involving both libraries (for example, deleting the source library and
changing the size of the object library).

@ If you are indicating uses for both libraries, use only one TO parameter. (The libraries must be in the same simulation area.) Also, use only
one WORK parameter if both uses require a WORK parameter.

@The WORK parameter is needed only if the simulation area contains an object library that you are not deleting.

®The WORK parameter is not required if this is a compress in place.

Library Maintenance Program—$MAINT 119

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-56413

Considerations and Restrictions

This program has restrictions and operating conditions that
the user must be aware of when maintaining libraries.

Allocation of Disk Space

The library maintenance program allocates disk space for
each of the following functions:

Creating a library.

Increasing the size of a library.

Reorganizing a library.

Dynamically extending an object fibrary to copy

temporary entries to the library.
Sorting a directory before it is printed.
Modifying a source library entry.

The space allocated by the program is the first contiguous
space large enough for the function to be performed. The
library maintenance program uses as much space as is avail-
able to the end of the simulation area or to the first tem-
porary or permanent data file, removing all scratch files in
this area. If, within a single load of the program, there are
functions performed requiring more than four disk areas
to be allocated, a halt occurs. The library maintenance
program must be reloaded to continue.

Removing Temporary Entries
When a library is reorganized, changed in size, or moved,

all temporary entries in that library are deleted. This applies
to both the source and object libraries.

120

Library Restrictions

The allocate function cannot reference the libraries on the
simulation area from which the library maintenance pro-
gram or the system was loaded. For example, if the system
was loaded (IPL) from F1 and the library maintenance
program was loaded from R1, the source or object libraries
on F1 and R1 cannot be referenced on an ALLOCATE
statement.

Moving the Object Library

When the user creates or changes the size of the source
library in a simulation area that contains an object library,
the object library is moved and reorganized, and all temp-
orary entries are deleted.

Control Statement Restrictions

The SOURCE or OBJECT parameter must be specified on
the ALLOCATE statement. If the SYSTEM or DIRSIZE
parameter is specified, the OBJECT parameter must also
be specified.

Procedure Restrictions

If nested procedures are used, information contained in the
scheduler work area can become invalid when a source
library is reorganized or changed in size. Therefore, if a
procedure is used to reallocate or reorganize libraries, any
further procedures contained within that nested procedure
should not be called from the source library that is being
reallocated or reorganized.

Parameter Summary

TO-code

SOURCE-number (no
source library in simu-
lation area)

SOURCE-number
(source library already
in simulation area)

SOURCE-R

OBJECT-number (no
object library in simu-
lation area)

Location of simulation area that
contains or will contain the
library. Possible codes are R1, F1,
R2, and F2.

Create a source library. Number
indicates the number of tracks
you want to assign.
Delete or change the size of the
source library. Use depends on
number:

Number Use

0 Delete

Any number Change
but zero size

Reorganize the source library.
Create an object library. Num-

ber indicates the number of
tracks you want to assign.

OBJECT-number

(object library already
in simulation area)

OBJECT-R

DIRSIZE-number

SYSTEM-NO

SYSTEM-YES

WORK-code

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

Delete or change the size of
the object library. Use depends
on number:

Number Use
0 Delete

Any number Change
but zero size

Reorganize the object library.

Number of tracks you want for
the directory when creating,
reallocating, or reorganizing the
object library.

Do not create a scheduler work
area. This will be a program
simulation area.

Create a scheduler work area.
This will be a system simu-
lation area.

Location of simulation area
containing space the program
can use as a work area. Possible
codes are R1, F1, R2, or F2.

Library Maintenance Program—$MAINT 120.1

120.2

Parameter Descriptions
TO Parameter

The TO parameter (TO-code) indicates the location of the
simulation area that contains, or will contain, the library.

If the program use involves both libraries, the libraries must
be on the same simulation area. The TO parameter cannot
be the same unit from which the library maintenance pro-
gram or system is loaded. Possible codes are R1, F1, R2,
and F2,

SOURCE and OBJECT Parameters
These parameters identify library uses:
Parameter Use

SOURCE-number ® Create a library (if the simu-

OBJECT-number lation area contains no li-

(number is not zero) brary). Number is the number
of tracks you want to assign
to the library.

® Change the library size (if the
simulation area contains a li-
brary). Number is the number
of tracks you want to assign
to the library.

SOURCE-0 Delete the library.
OBJECT-0
SOURCE-R Reorganize the library.
OBJECT-R

DIRSIZE Parameter

The DIRSIZE parameter allows the user to specify the size
of the object library directory. The number of tracks spec-
ified (1-9) overrides the SYSTEM parameter in determining
directory size. Each track can contain 288 directory entries.
One entry is needed for the directory, so the formula for the
number of entries in a directory is (t x 288)-1, where t is the
number of tracks. If the DIRSIZE parameter is omitted, the
SYSTEM parameter determines the directory size.

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

SYSTEM Parameter

The SYSTEM parameter applies when you create, change
the size of, and reorganize object libraries. It tells the pro-
gram whether you intend to include system programs in
the library and create a system simulation area that can be
used to perform initial program load. If system programs
are to be included, a scheduler work area must be assigned.

See Library-to-Library under Using the Copy Function for
information about creating a system simulation area.

Space for the scheduler work area is assigned immediately
preceding the object library. If the simulation area contains
a source library, the scheduler work area is between the
source and object libraries. For information about the size
of the scheduler work area, see index entry: scheduler
work area size.

The following charts show the results of coding the
SYSTEM parameter for different allocate uses.

Creating an Object Library:

Parameter Scheduler Work Area Directory Size'
SYSTEM-YES Created Three tracks
SYSTEM-NO Not created One track

Not coded Not created One track

! The directory size is overridden if the DIRSIZE parameter
is coded.

~ Library Maintenance Program—$MAINT 121

Changing the Size of or Reorganizing an Object Library on
a Simulation Area that Contains a Scheduler Work Area:

Parameter Scheduler Work Area Directory Size'
SYSTEM-YES Retained Not changed
SYSTEM-NO Removed Not changed
Not coded Retained Not changed

Changing the Size of or Reorganizing an Object Library on
a Simulation Area that Does Not Contain a Scheduler Work
Area:

Parameter Scheduler Work Area Directory Size'

SYSTEM-YES Created Not changed

SYSTEM-NO Not created Not changed

Not coded Not created Not changed
WORK Parameter

The WORK parameter (WORK-code) indicates the location
of the simulation area that contains a work area. Library
entries are temporarily stored in the work area while the
program moves and reorganizes libraries. Possible codes
are R1, F1, R2, and F2.

When the WORK parameter is coded on an ALLOCATE
statement, an additional allocation of disk space may
result (see index entry: allocation of disk space).

Size of the Work Area: The work area must be large

enough to hold the directory and the permanent entries of
the source library, object library, or both libraries depending
on the program use. If you are combining uses, such as
changing the sizes of both libraries, the work area must be
large enough to hold the contents of both libraries.

! The directory size is overridden if the DIRSIZE parameter
is coded.

122

Use Contents of Work Area

Create a source

library (simulation
area contains an object
library)

Obiject library

Change source
library size (simu-
lation area contains
an object library)

Source library and object
library

Change source
library size (simu-
lation area does not
contain an object
library

Source library

Reorganize source Source library

library

Change object Obiject library, if not com-

library size press in place (see Compress
in Place under Using the
Allocate Function)

Reorganize Object library, if not com-

press in place (see Compress
in Place under Using the
Allocate Function)

object library

Location of Work Area on Disk: The program uses the
first available disk area large enough to hold the library, or
libraries.

Location of Simulation Area Containing the Work Area:
The work area can be on either simulation area on either
drive. However, it cannot be the same simulation area as the
one you specified in the TO parameter. The only require-
ment is that the sirnulation area have an available area large
enough for the work area. The program works faster if the
simulation area containing the libraries is not on the same
drive as the one containing the work area.

Using the Allocate Function

Creating a Source Library (SOURCE-number)

Source Library Size:

Minimum: One track.
Maximum: Number of tracks in the available area.

Regardless of the number of tracks you specify, the first
two sectors of the first track are assigned to the library
directory. Additional sectors are used as needed for the
directory.

Placement of Source Library (Simulation Area with an
Object Library):

The source library must immediately preceed the object
library. A disk area large enough for the source library
must follow the object library because the program
moves the object library to make room for the source
library (Figure 49). To do this, it needs a work area.
(See WORK Parameter.) The object library is reorganiz-
ed, and all temporary entries are deleted.

If you allocate a source library after deleting it, the pro-
gram automatically moves the object library to make
room for the source library. The starting location of the
source library is the previous starting location of the
object library.

Disk Space Before Creating Source Library

Object Library Available Space Customer
(30 tracks) (15 tracks) Files
l 0-7! 8-37 38-52
Tracks

Disk Space After Creating Source Library

Source Object Library Available Customer
Library (30 tracks) Space Files
(5 tracks) (10 tracks)
| 0-7 I 8-12 ! 13-42 ! 43-52 ——l
Tracks

Figure 49. Moving Object Library to Insert Source Library

Placement of the Source Library (Simulation Area without
an Object Library): The program assigns the source library
to the first available disk area large enough for the library.

If you allocate a source library after deleting it, the source
library is assigned the same way.

Changing the Size of (Reallocating) a Source L ibrary
(SOURCE-number)

Any time the program changes the source library size, it
reorganizes both the source and object libraries and deletes
all temporary entries. (See Reorganizing a Source Library
under Using the Allocate Function.) To do this, it needs a
work area. (See WORK Parameter.)

Making the Source Library Larger:

® |f the simulation area contains an object library, space
must be available immediately following the object
library. The program moves the object library to make
tracks available at the end of the source library (Figure
50).

® [f the simulation area does not contain an object library,

space must be available immediately following the
source library.

Disk Space Before Tracks Are Added to Source Library

Source Object Available Customer
Library Library Space Files
(10 tracks)| (30 tracks) {15 tracks)
O-7| 8-17 ‘4——18-47—44— 48-62———'
Tracks

Disk Space After 5 Tracks Are Added to Source Library

Source Object Available Customer
Library Library Space Files
(15 tracks)] (30 tracks) (10 tracks)
0-7| 8-22 I-<—— 23-52 ——l-— 53-62 -——!
Tracks

Figure 50. Increasing Source Library Size

Library Maintenance Program—$MAINT 123

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

Making the Source Library Smaller:

If the simulation area contains an object library, the
program moves the end location of the source library
to make the library smaller. The object library is moved
and space becomes available following the object library
(Figure 51).

If the simulation area does not contain an object library,
the program moves the end location of the source li-
brary to make the source library smaller.

Disk Space Before Source-Library Size was Decreased

Source Object Customer
Library Library Files
(15 tracks) (30 tracks)

0-7 8-22 ! 23-62

Tracks

Disk Space After 5 Tracks Were Taken From Source Library

Deleting a Source Library (SOURCE-0)

The program makes the disk area occupied by the source
library available for other use (disk files). (See Figure 52.)

Disk Space Before Source Library Deleted

Source Object Customer
Library Library Files
(15 tracks) (30 tracks)
0-7 8-22 23-52
Tracks
Disk Space After Source Library Deleted
Available Object Customer
Space Library Files
(15 tracks) (30 tracks)
0-7 || 8-22 'E 23-52
Tracks

Figure 52. Deleting Source Library

Source Object Available Customer
Library Library Space Files
(10 tracks) | (30 tracks) (5 tracks)
| 0-7 I-—8-1 7 ! 18-47 ! 48-52 —>l
Tracks

Figure 51. Decreasing Source Library Size

124

Reorganizing a Source Library (SOURCE-R)

Reason for Reorganizing the Library: Areas from which
source library entries are deleted are completely reused
for new entries. If an entry exceeds the space in such an
area, the program puts as much of the entry as will fit

in the area and continues the entry in the next available
area. In this way, the program efficiently uses library
space. This can, however, decrease the speed at which
those entries can be read from the library. Therefore,

if you frequently add and delete source library entries,
you should reorganize your source library periodically.

Reorganizing the Library: The program relocates entries
so that no entry is started in one area and continued in
another. All temporary entries are deleted. The program
needs a work area. (See WORK Parameter.)

Creating an Object Library (OBJECT-number)

Object Library Size:

® Minimum: Three tracks including the directory tracks.
® Maximum: Number of tracks in available area.

® Library directory: The first 3 tracks in the library are
reserved for the library directory if the library is to con-
tain system programs; otherwise, only the first track is
used. If the DIRSIZE parameter is entered, the directory
size specifed is used.

® Scheduler Work Area: The scheduler is a component of
the System/3 SCP that reads and processes OCL state-
ments. It uses a work area on the simulation area called
the scheduler work area (SWA), to temporarily save OCL
file label information during the processing of a program.
The area is allocated when SYSTEM-YES is specified.
The work space is not included in the number you
specify in the OBJECT parameter; the space is calcu-
lated and assigned by the library maintenance program.
The amount of space needed depends on whether DPF
(dual program feature), checkpoint/restart and/or the
inquiry capability is supported. For non-DPF systems,
2 tracks are needed; for DPF systems, 4 tracks are
needed. The inquiry and checkpoint/restart features
require additional tracks for a rollout/rollin area. The
number of tracks needed depends on the main storage
size of the system.

Main Storage Size Rollout/Rollin Tracks

32K 7
48K 9
64K 12

The SWA contains simulation area usage information, F1
and F7 label information, an initiator table, utility control
statement area, and miscellaneous work areas. There is one
SWA for each program ltevel. (See Maximum Number of
Files, IBM System/3 Model 12 User’s Guide, GC21-5142.)

Placement of Object Library (Simulation Area With a
Source Library): Space for the object library must be
available immediately following the source library.

Placement of Object Library (Simulation Area Without a
Source Library): The program assigns the object library
to the first available disk area that is large enough.

Page of GC21-6130-0
Issued 19 November 1976
By TNL: GN21-5413

Changing the Size of (Reallocating) an Object Library
{OBJECT-number)

Making the Library Larger: The number of tracks you
want to add must be available immediately following the
object library. The program assigns the additional tracks
to the library. (The starting location of the library remains
unchanged.)

Making the Library Smaller: The program moves the end
location of the object library to decrease the library size.
Tracks, therefore, become available following the library.

Reorganizing the Library: Any time the program changes
the library size, it also reorganizes the library and deletes

all temporary entries. (See Reorganizing an Object Library.)
A work area is needed if other functions are being perform-
ed with the reorganization. (See WORK Parameter.) If not,
a work area is not used. (See Compress in Place under
Using the Allocate Function.)

Deleting an Objfect Library (OBJECT-0)

The program makes the disk area occupied by the object
library (and the scheduler work area if this was a system
simulation area) available for other use.

Reorganizing an Object Library (OBJECT-R)

Gaps can occur between object library entries when you
add and delete entries. By reorganizing the library, these
gaps are removed. When the library is reorganized, all
temporary entries are deleted. A work area is needed if
other functions are being performed with the reorgani-
zation. (See WORK Parameter.) |f not, a work area is not
used. (See Compress in Place under Using the Allocate
Function.)

Compress in Place I:OBJECT - { A }]
number

If an object library is to be reorganized, or the size is to be
changed and this is the only function to be performed, the
object library is compressed in place. This means that the
library is reorganized with all gaps removed and all tem-
porary entries deleted without the use of a work area.

The WORK parameter is ignored if supplied.

If, however, a source library function is to be performed
or if the directory size (DIRSIZE parameter) or the sim-
ulation area type (SYSTEM parameter) is to be changed
in conjunction with an object library function, a work
area will be used. (See WORK Parameter.)

Library Maintenance Program—$MAINT 125

COPY FUNCTION

Uses

Reader-to-Library
File-to-Library

Library-to-File

Library-to-Library

Library-to-Printer

Library-to-Card

Library-to-Printer
and-Card

126

e — — O A . I —n . __cti——

Add or replace a library entry. The reader is the system input device.

Add or replace one or more library entries. A disk file is the input.

Copy one or more library entries to a disk file.

Copy one library entry (or those entries with the same name from all libraries).
Copy library entries that have names beginning with certain characters.

Copy all library entries.

Copy minimum system.

Print one library entry (or those entries with the same name from all libraries).
Print library entries that have names beginning with certain characters.

Print all library entries of a certain type.

Print direc';ory entries for library entries of a certain type.

Print entries from all directories including system directory.

Print system directory only.

Punch one library entry (or those entries with the same name from all libraries).
Punch library entries that have names beginning with certain characters.

Punch all library entries of a certain type.

Print and punch one library entry (or those entires with the same name from all fibraries).
Print and punch library entries that have names beginning with certain characters.

Print and punch all temporary or permanent library entries of a certain type.

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

Control Statement Summary
Reader-To-Library

Add or Replace a Library Entry:

// COPY FROM-READER,LIBRARY- ,NAME-name, TO-code, RETAIN-

T O TW!
o w4

Library Entry
// CEND Must always follow the source or object entry being placed into the source or object library.

/* or /& statements cannot be present in the entries being copied into the libraries.

File-To-Library
Add or Replace One or More Library Entries:

R
// COPY FROM-DISK, FILE-filename,RECL- {gg },To-code,RETAtN- {P }

Example of Data in Disk File:

// COPY FROM-READER,LIBRARY-O,RETAIN-P,NAME-DECKO1 ®

lcad module

// CEND

// COPY LIBRARY-S,NAME-DECK02(

source module

// CEND

// END®

@Only the LIBRARY and NAME parameters are required. Other parameters are ignored.
@The // END statement read from the file is optional. It causes the next statement to be read from the system input device or procedure.

A // END statement must still be read from the system input device or procedure to indicate the end of the library maintenance control
statements,

Library Maintenance Program—$MAINT 127

Library-To-File

Copy One or More Library Entries to a File:

80
// COPY FROM-code,TO-DISK,FILE-fiIename,RECL~{ }

Control Statements Following // COPY :

S
P name
// ENTRY LIBRARY-< 0 NAME-< characters.ALL @
R ALL
ALL

// NEND (Required to terminate the copy to file.)

@Any number of // ENTRY statements may precede the // NEND statement

128

Page of GC21-56130-0
Issued 19 November 1976
By TNL: GN21-5413

Library-To-Library

Copy One Library Entry (or Entries with the Same Name from All Libraries):

T
// COPY FROM-code,LIBRARY- /NAME-name, TO-code, RETAIN- P ,NEWNAME-name@
R

> OOW®”

LL

Copy Library Entries that Have Names Beginning with Certain Characters:

S
P
// COPY FROM-code,LIBRARY-<{O /NAME-characters.ALL, TO-code, RETAIN-
R
ALL

 NEWNAME-characters @

T O+

Copy All Library Entries:

S
P
// COPY FROM-code,LIBRARY-{ O /NAME-ALL,TO-code, RETAIN-
R
ALL

o Ui
®

Copy Minimum System:

// COPY FROM-code,LIBRARY-O,NAM E-SYSTEM,TO-code@

@NEWNAME parameter is needed in any of the following cases:
e |f you want the copy to have a different name than the original entry.
e |f you want to replace an entry on the TO unit with an entry from the FROM unit, but the entries have different names.
e If you want the names of the copies to begin with different characters than the names of the original entries. The same number of
characters must be in the NEWNAME parameter as in the NAME parameter.
e |If the FROM and TO units are the same.

Note: NEWNAME cannot be DIR,ALL, or SYSTEM.

@FROM and TO parameters cannot be the same unit.

Library Maintenance Program—$MAINT 129

Library-To-Printer-and/or-Card

Print and/or Punch One Library Entry (or Entries with the Same Name from All Libraries):

S

P PUNCH
// COPY FROM-code,LIBRARY-{ O ,NAIVIE-name,TO-{PRINT

R PRTPCH

ALL

Print and/or Punch Temporary and Permanent Library Entries that Have Names Beginning with Certain Characters:

PUNCH
// COPY FROM-code,LIBRARY- ,NAME-characters.ALL,TO-{PRINT }

PRTPCH

>3O vvw®w

LL

Print and/or Punch All Temporary and Permanent Library Entries of a Certain Type:

PUNCH
NAME-ALL,TO-< PRINT
.PRTPCH

// COPY FROM-code,LIBRARY-

TOOW

Print Directory Entries for Library Entries of a Certain Type:

/{/ COPY FROM-code,LIBRARY- NAME-DIR,TO-PRINT

'S
2]
(0]
R

Print Entries from All Directories Including System Directory:

// COPY FROM-code,LIBRARY-ALL,NAME-DIR,TO-PRINT

Print System Directory Entries Only:

// COPY FROM-code,LIBRARY-SYSTEM,NAME-DIR,TO-PRINT

Print Directory Entries, Omitting Selected Entries:

// COPY FROM-code,LIBRARY-

'NAME'D'R.TO-PRINT,OMW.{"ame }

characters.ALL
130

>IDTOTOTWL

LL

Parameter Summary
FROM-READER

FROM-code
FROM-DISK

FILE-filename

80
RECL-{ 96 }

LIBRARY-

DO v Ww

LIBRARY-ALL

LIBRARY-SYSTEM

name

NAME- ¢ characters.ALL

{ALL

NAME-SYSTEM

Entry to be placed in library is to be read from system input device.

Location of simulation area containing library entries being copied, printed, or
punched. Possible codes are R1, F1, R2, and F2.

The entry or entries to be placed into a library or libraries reside in a disk file.
The disk file must be described by an OCL FILE statement.

For a file-to-library or library-to-file copy, this parameter is needed to identify
the file on disk. The filename must match the filename on the OCL FILE
statement.

For a file-to-library or library-to-file copy, this parameter gives the size of the

disk records. Only 80- or 96-column card image records are allowed. If this
parameter is omitted, 96 is assumed.

Type of library entries involved in copy use. Possible codes are:

Code Meaning
S Source statements (source library)
P OCL procedures (source library)
0] Object programs (object library)
R Routines (object library)

All types of entries (S, P, O, and R) from both libraries are involved in copy use.

Only system directory entries are being printed.

Specific library entries on the FROM unit, of the type indicated in LIBRARY
parameter, involved in copy use. Possible information is:

Information Meaning
name Name of the library entry involved.
characters. ALL Only those entries beginning with the indicated char-

acters. For example, SMA.ALL means the library
maintenance program ($MAINT).

ALL All entries. (The type indicated in LIBRARY parameter).

System programs that make up the minimum system and IPL information con-
tained on cylinder 0 are copied. The minimum system is made up of system pro-
grams necessary to load and run programs. System programs necessary to gen-
erate and maintain the system such as utilities are not included in the minimum
system.

Library Maintenance Program—$MAINT 131

NAME-DIR

RETAIN-

T oI+

TO-code

TO-PRINT

TO-PUNCH

TO-PRTPCH

TO-DISK

NEWNAME-name

NEWNAME-characters

OMIT-name

OMIT -characters. ALL

132

Directory entries for all library entries of the type indicated in the LIBRARY
parameter are involved in the copy use. If the LIBRARY parameter is
LIBRARY-ALL, system directory entries are also printed.

Adding Entry to Library. RETAIN gives designation of the TO entry:

Code Meaning
T Temporary
Por R Permanent

Replacing Existing Library Entry. RETAIN gives designation of the TO entry
and tells program whether to halt before replacing entry:

Code Meaning
T Temporary designation. Halt before replacing entry.
P Permanent designation. Halt before replacing entry.
R Permanent designation. Do not halt before replacing
entry.

Printing or Punching Entries. The RETAIN parameter is ignored.

Location of simulation area that is to contain the copies of the entries.
Possible codes are R1, F1, R2, and F2.

Entries are printed.
Entries are punched.
Entries are printed and punched.

The entry or entries are to be copied to a disk file. The disk file must be
described by an OCL FILE statement.

Name you want used on the TO unit to identify the entries put on that
simulation area. |f you omit this parameter, the program uses the NAME para-
meter in naming the entries.

Beginning characters you want to use in names identifying entries being put
on the TO unit. You must use the same number of characters as in the NAME
parameter (NAME-characters.ALL). If you omit this parameter, the program
uses the NAME parameter in naming ths entries.

When printing directory entries, omit the entry specified by name.

When printing directory entries, omit all entries with these beginning
characters.

Library Directories
Source and Object Library Directories

® The source and object libraries have separate library di-
rectories. Every library entry has a corresponding entry
in its library directory. The directory entry contains
such information as the name and location of the li-
brary entry (see Figures 53 through 55).

® The library maintenance program makes entries in the
directories when it puts entries in the libraries.

System Directory

® Every simulation area that contains libraries contains a
system directory. The system directory contains infor-
mation about the sizes of and available space in libraries
and their directories (see Figures 53 through 55).

® The library maintenance program creates and maintains
the system directory.

Naming Library Entries

Characters to Use

Use any combination of System/3 characters except blanks,

commas, quotes, and periods. (Appendix A lists the char-

acters.) The names of most IBM programs begin with a dol-

lar sign ($). Therefore, to avoid possible duplication, do not

use a dollar sign as the first character in the names you use

for your entries. The first character must be alphabetic.

Length of Name

The name can be from 1 to 6 characters long.

Restricted Names

Do not use the names ALL,DIR, and SYSTEM. They have
special meanings in the NAME parameter.

Entries with the Same Name

For each of the two physical libraries, source and object,
there are two types of entries. The source library has type

P and type S entries. The object library has type O and type
R entries. Entries of the same type cannot have the same
name, but entries of different types may. For example, two
procedures in a source library cannot have the same name,
but a procedure and a set of source statements can.

Retain Types

Temporary Entries

Temporary entries are entries you do not intend to keep
in your libraries. They are normally used only once or a
few times over a short period.

In the object library, temporary entries are placed to-
gether following the permanent entries. Any time a

permanent entry is added to the library, all temporary
entries are deleted. Temporary entries are also deleted
when you replace one permanent entry with another.

In the source library, temporary and permanent entries
can be in any order. One entry is placed after another
regardless of their designations. Temporary entries, there-
fore, are not automatically deleted every time you add a
permanent entry. However, when the source library is
reallocated or reorganized, only permanent entries
remain.

You can use temporary entries as often as you like until
they are deleted.

A temporary entry cannot replace a permanent entry.

Permanent Entries

Permanent entries are entries you intend to keep in your
libraries. They are normally entries you use often or at
regular intervals (once a week, once a month, and so on).

The program does not delete permanent entries unless
you use the delete function of library maintenance to
delete them, or the allocate function to delete the entire
library.

Library Maintanance Program—$MAINT 133

Using the Copy Function
Reader-to-Library

Input: The program reads one library entry. It can be any
one of the following types:

Source statements
Procedure
Object program
Routine
The entry is read from the system input device.

The header card on an object deck (H in column 1) con-
tains the date the deck was punched. This date is in col-
umns 58-63 and is in the format of the system date, either
mmddyy or ddmmyy.

Output:

e Duplicate characters are removed from source state-
ments and procedures before they are put in the source
library. The program does not check them for errors.

® Object programs and routines are placed in the object
library after sequence and checksum information is
removed.

Adding Entires: The program can add a new entry to a
library. The name of the entry is taken from the NAME
parameter. See Naming Library Entries for valid names.
The RETAIN parameter specifies whether the entry will
be temporary or permanent. If the RETAIN parameter is
omitted, RETAIN-T is assumed (See Retain Types.)

134

Replacing E xisting Entries:

® The program can replace an existing library entry with
the entry you are putting in the library. The RETAIN
paramater specifies the new retain type. If the RETAIN
parameter is omitted, RETAIN-T is assumed. A tempo-
rary entry cannct replace a permanent entry.

® The program can halt before replacing an existing entry.
Whether it does depends on the RETAIN parameter you
use (See RETAIN Parameter.)

® Before the new antry is added, the duplicate entry is
deleted. Additional library space is not needed unless
the new entry is larger than the old one.

File-to-Library

Input: The disk file can contain one or more library
entries. The entries must be in the format put out by the
library-to-card function or by the linkage editor. The

// COPY statement at the beginning of each entry con-
tains the name of the entry and the type of library (S, P,
0, R). A // CEND statement must follow each entry in
the file.

The disk file must be a sequential file and be defined by
a FILE statement in the OCL for the library maintenance
program. Multivolume files are not supported.

Output: The output from the file-to-library function is the
same as for the reader-to-library function except that tem-
porary entries are not allowed.

Library-to-File

Input: The program can copy one or more library entries
from a library to a disk file. The types of entries can be:

Source statements

Procedures

Object programs

Routines

All of the preceding types
The NAME and LIBRARY parameters on the // ENTRY
statements specify which entries to copy. A single library-

to-file function must be the only valid function performed
within a LOAD-RUN of the library maintenance program.

Output: The output from the library-to-file function has
the same format as for the library-to-card function. The
output is written to a sequential disk file defined by an
OCL FILE statement and created by the library mainte-
nance program. Multivolume files are not supported.
Library-to-Library
Input: The program can copy one or more library entries
from one simulation area to another. The types of entries
can be:

Source statements

Procedures

Object programs

Routines

All of the preceding types

Minimum system

The NAME and LIBRARY parameters specify which
entries to copy.

Output:

® The entries, regardless of their type, are copied from one
simulation area to the other without change.

® The NEWNAME parameter is used to copy and rename
entries on the same simulation area. (See NEWNAME
Parameter and Naming Library Entries.)

® The RETAIN parameter specifies whether the entries
are to be temporary or permanent. If the RETAIN
parameter is omitted, RETAIN-T is assumed. When the
parameters LIBRARY-ALL and NAME-ALL or
LIBRARY-O and NAME-SYSTEM are used,"RETAIN-P
is assumed and RETAIN-T is invalid.

® Copying a minimum system (LIBRARY-O, NAME-
SYSTEM) or copying all of the types (LIBRARY-ALL,
NAME-ALL) are the functions used to create a system
simulation area that can be used to perform initial
program load. (Copying LIBRARY-ALL, NAME-ALL
creates a system simulation area only if the FROM area
is a system simulation area.) Because of this use, the
object library on the simulation area you specify in the
TO parameter must be empty. (It cannot contain any
entries or deleted entries.) Also the object library on the
TO area mpst have been allocated with a scheduler work
area and a rollout/rollin area at least as large as those on
the FROM simulation area.

Adding Entries:

® You can omit the NEWNAME parameter. If you do, the
name used for the copy is taken from the NAME para-
meter. (The copy has the same name as the original
entry.)

® |[f NAME-ALL is specified, the names by which the
entries are identified on the FROM simulation area are
also used on the TO simulation area to identify the
entries.

Library Maintenance Program—$MAINT 135

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

Replacing E xisting Entries: The program sorts directory names before printing them
only if there is available work space on the FROM simu-

® The program can replace existing entries with the lation area. This causes an allocation of disk space. (See

entries you are putting in the library. If the entry you

Allocation of Disk Space under Using the Allocate

are copying (the entry in the simulation area you identi-
fy in the FROM parameter) has the same name as the
entry you are replacing (the entry in the simulation area
you identify in the TO parameter), you must omit the
NEWNAME parameter because the NEWNAME para-

Function.)

Printed or Punched L.ibrary Entires:

meter cannot be the same as the NAME parameter. If ® Duplicate characters are reinserted into source state-

the names are not the same, you must use the ments and procedures to make them readable.

NEWNAME parameter to give the name of the entry

being replaced. ® Object programs and routines are printed and punched
after sequence information and checksum information

® The program can halt before replacing an existing entry. {punch only) has been added.
Whether it does depends on the RETAIN parameter.
(See RETAIN Parameter.) ® The library entries when punched, are preceded by a

® A temporary entry cannot replace a permanent entry.

Library-to-Print and/or Card

// COPY statement of the reader-to-library format
and followed by a // CEND statement.

Printout of Directory Entries

Types of Entries that Can be Printed or Punched: ® The format of the source library directory printout is
described in Figure 53. If there is no source library in
® The program can print or punch one or more library the simulation area, the message NO SOURCE LIBRARY
entries. They can be any one of the following types: EXISTS is printed. If a source library exists but is empty,
the NO SOURCE DIR ENTRIES EXIST message is
Source statments printed.
Procedures ® The format of the object library directory printout is
described in Figure 54. If there is no object library in
Object programs the simulation area, the message NO OBJECT LIBRARY
EXISTS is printed. If an object library exists but is empty,
Routines the NO OBJECT DIR ENTRIES EXIST message is
printed.
All of the preceding types (limited to entries having
the same name or entries beginning with the same ® A sample system directory printout is described in

characters)

® The program can print (but not punch) the following
types of directory entries:

Source statements
Procedures
Object programs
Routines

System directory

All of the preceding types

136

Figure 55. |f there is no source library in the simulation
area, the message NO SOURCE LIBRARY EXISTS

ON THIS PACK is printed. If there is no object library
in the simulation area, the message NO OBJECT
LIBRARY EXISTS ON THIS PACK is printed.

SOURCE DIRECTORY FROM XX VOL. ID XXXXXX MM/DD/YY

ADDRESS
TYPE NAME FIRST@ LAST@ ATTRI #SECTORS
X XXXXXX XXX-XX XXX-XX X XXXX
Explanation:
Heading Meaning
TYPE S = source statements

P = procedure

ATTRI T = temporary
P = permanent

NAME Name of library entry (up to 6 characters)
ADDRESS Addresses of first and last sectors that contain the library entry.
(FIRST and LAST) Addresses are expressed by track and sector numbers.

Example: 008-03 means track 8, sector 3.

#SECTORS Total number of sectors for the library entry.

Figure 53. Source Library Directory Printout

Library Maintenance Program—$MAINT

137

OBJECT DIRECTORY FROM XX VOL. ID XXXXX MM/DD/YY

DSK CYL/ TXT- LINK RLD ENTRY CORE TOT
TYPE NAME ADD SEC CAT ADDR DISP PNT SEC ATTR LEVEL SEC
X X XXXXXX TTT/SS CC/SS XXX XXXX XX XXXX XXX XXXX XXX XXXX

Explanation:

Heading Meaning

TYPE The first character printed indicates the attributes of the entry as follows:

P = permanent

T = temporary
The second character printed indicates the type of module the entry is. Its
meaning is as follows:

O = Object program

R = routine

NAME Name of library entry (up to 6 characters)

DSK ADD Address where library entry begins on disk. Example: 015/10 means track 15,
sector 10 (in decimal). T = track, S = sector.

CYL/SEC Address where library entry begins on disk (in hexadecimal). C = cylinder,

S = sector.

TXT-CAT For object programs, this number indicates the number of sectors used for the
text portion of the library entry. Object programs consist of two parts: text
and RLD. Text is the program; RLD is information used in loading the program
for execution.

For routines, this number is the category of the routine. This number is used
by the overlay linkage editor for determining overlays.

LINK ADDR Object programs only. Assigned core hexadecimal address of this library entry.

RLD DISP Object programs only. It indicates the hexadecimal position in which RLD in-
formation begins in the last text sector. | the last text sector contains no RLD
information, the RLD displacement is O, indicating the information starts in the
next sector.

ENTRY PNT Object programs only. Main storage address (hexadecimal) where program
execution begins before relocations.

CORE SEC Core size, given in sectors, required to run the program.

Figure 54. (Part 1 of 2). Object Library Directory Printout

138

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

Heading Meaning
ATTR Byte 1:
Bit 0=1 Permanent entry.
0 Temporary entry.

Bit 1=1 Inquiry. This program requires that the Request key be pressed to
start processing.

Bit 2=1 Inquiry invoking. This program runs in program level 1 and can be
rolled out to allow an Inquiry program to run.

Bit 3=1 Dedicated. In a DPF system, this program must run with the other
program level inactive.

Bit 4=1 Source required. This program requires the allocation of the SWORK
and $SOURCE files. $SOURCE must be filled either from the
system input device or a source library.

Bit 5=1 Deferred mount. This program accepts mounting of data modules
during its execution.

Bit 6=1 PTF applied. A program temporary fix (PTF) has been applied to
this program.

Bit 7=1 Overlay object program.

Byte 2:

Bit 0=1 System input dedication. The system input device must be dedicat-
ed to this program. The device may be released when no longer
needed.

Bit 1=1 Checkpoint/restart program.

Bit 2=1 Direct source read. This program can have a // COMPILE statement
and a no source required attribute (byte 1, bit 4=0). The program
accesses the source library itself.

Bit 3=1 Macro processor allowed. This program can be preceded by the
macro processor. |If the source required attribute is present and a
// SWITCH TXXXXXXX statement was processed, the $SSOURCE
file is opened as input instead of output.

Bit 4 Reserved.

Bit 5=1 Program common. This program requires that a new load address be
calculated at load time to place it in main storage beyond its own
program common region.

Bit 6=1 Model 12 compile.

Bit 7 Reserved.

LEVEL Release level of system programs. For user programs this can be assigned by the

overlay linkage editor.

TOT SEC Total number of disk sectors occupied by the library entry.

Figure 54. (Part 2 of 2). Object Library Directory Printout

Library Maintenance Program—$MAINT 139

RIR1IR1 03/04/776

SYSTEM DIRECTORY FROM R1 VOLUME ID

SOURCE LIBRARY SECTION

QN

Qi

P11 oeineno
WM~ NN
oOn o
[olelw]

OI>
OEYEMIIE
b o O O O e <IN
(O X Tt LI o et
W<T a0 <T <N
[s ST, 5}
et et e UL UL UL WL O
NI a00C oW

> -
Wl ol ool <
X @oomnC
ODXOQOTTETZT
CWZTODD
NZWZZZZ<T

OBJECT LIBRARY SECTIDN

Q Omm it 0

C o O i\

1Ol 1 1—O | || | SO
N Ne=-A O T ONT AN OOMNO
W NN TININOIN G NP
< OmMmmn QO v med UL ok 7t

IV Wt Ok

(2RI 1N} e bz
L b

bt et NI OW

Yo oSO -
= OO ZIW
COoO>Fu oLl Z
X WO Z<<
[el V2= Go Vel Val g~ & 2
ZXZx G0 [} ¥4
> L T LL) bt o e D D LS X UL
=4 Zo DU wvIa
- o] <IC> WUl a >
T > EQ>NNXoed> i
-0 X>@€xE O CL T
=l T LI e o D Do bt bt (D i £
<X XSO PFOXY dad W
L= o LI =T I et by o L]
OO0 =W Xl WW—S Gl
- e e F N S AT
[~EROUI—— DO .
>TrxU <d b= JJICWULIIC
DUt Ot ot O U UL L bt et bt bt bt L)
NYOQ I T T b
Q=N ZO>D>OOEAD)
WNm= U Z <O T I <T T L I <IN
o W Q e
0 QO L E e LWL L WL
DEFFDDDEAAADODODE
—OW e>>>
_-< SO0 o AAARRRRRA
QOO UL WL LI
WOX oW —ooaoad
VAL I T E XXX EEZTET
O X DD WD DD DD
OINAWWZZUZZZZ2Z22ZT2<4D

040-00
12
038-00

14

ol

Figure 55, (Part 1 of 2). System Directory Printout

140

Using the System Directory to Determine if the Object Library Should Be Reorganized

The following are not updated when an object library entry is deleted:
Number of available directory entries.
Next available directory entry.
Next available library sector.
Number of available library sectors.
These reflect only contiguous space that can be used, therefore, gaps are not included. (See Object Library under Organi-
zation of Library Entries.)
To calculate the total number of sectors that could be made available for permanent entries if the object library is
reorganized, perform the following procedure. Take values from Figure 55 (Part 1 of 2).
1. Determine the object library Allocated size of library = 300
size in sectors Allocated size of directory = - 3
Object library size (tracks) = 297
x24
Object library size (sectors) = 7128
. Determine the number of perm- Number of active object
anent object library sectors permanent library sectors = 1172
Number of active routine
permanent library sectors = +3568
Number of permanent
object library sectors = 1530
. Determine the number of contig- Object library size (sectors)
uous sectors that will be available from step 1 = 7128
at the end of the library if the Number of permanent
library is reorganized to remove object library sectors from
all gaps and temporary library step 2 = —1530
entries Number of available sectors = 5598
. Compare the number of available Number of available sectors
sectors calculated to the number from step 3 = 5598
of available library sectors for Number of available library
permanents sectors for permanents —5458
Difference in sectors = 140
This difference (140) represents the amount of contiguous space that can be gained by reorganizing the object library.

Figure B5. (Part 2 of 2). System Directory Printout

Library Maintenance Program—$MAINT 141

DELETE FUNCTION

Uses

Delete a temporary of permanent entry from a library (or
entries with the same name from all libraries).

Delete temporary or permanent library entries that have
names beginning with certain characters.

Delete all temporary or permanent library entries of a
certain type.

Considerations and Restrictions

System modules cannot be deleted from the active
system simulation area (the simulation area the system
was loaded from at IPL time).

Library maintenance program modules cannot be de-
leted from the active program simulation area.

When all temporary entries are deleted from the object
library using LIBRARY-O,NAME-ALL,RETAIN-T, the
temporary routines (LIBRARY-R) are also deleted.

The RETAIN parameter must match the attribute of the
entry in the library. Otherwise, the entry is considered
not found. RETAIN-T is assumed if the RETAIN para-
meter is omitted.

142

Control Statement Summary

Delete a Temporary or Permanent Library Entry (or Entries with the Same Name from All Libraries)

S
P T
// DELETE FROM-code,LIBRARY-< O ,NAME-name,RETAIN-{~}
R

ALL

Delete Temporary or Permanent Entries with Names Beginning with Certain Characters

s
P T
// DELETE FROM-code,LIBRARY-{ O ,NAME-characters.ALL,RETAlN-{F}
R
ALL

Delete All Temporary or Permanent Entries of a Certain Type

// DELETE FROM-code,LIBRARY-

o

NAM E-ALL,RETA|N-{I}

IO v W;w

Library Maintenance Program—$MAINT

143

Parameter Summary

R1
F1
R2
F2

FROM-

S

P
LIBRARY-<O

R

ALL

name
NAME-< characters.ALL
ALL

RETAIN-{g—}

144

Location of simulation area that contains library entries you are deleting. Pos-
sible codes are R1, F1, R2,and F2.

Type of entries being deleted. Possible codes are:

Code

S

ALL

Meaning

Source statements (source library)
Procedures {source library)
Object programs (object library)
Routines (object library)

All types of entries (S, P, O, and R) are being deleted

Particular entries, of type indicated in LIBRARY parameter, being deleted.
These entries are further identified by the RETAIN parameter. Possible codes

are:

Code

name

characters.ALL

ALL

Meaning
Name of the library entry, or entries, being deleted.

Entries that have names beginning with the indicated
characters. You can use up to 5 characters.

Example: NAME-INV.ALL refers to the entries having
names that begin with INV.

All entries (of the type indicated in LIBRARY para-
meter). NAME-ALL cannot be used with LIBRARY-
ALL.

Designation of entries being deleted:

Code

T

P

Meaning
Temporary

Permanent

MODIFY FUNCTION

Uses

Maintain source statements and procedures by using a
card reader.

Reserialize a source library entry.

List the statements in a source library entry.
Remove statements from a source library entry.
Replace source library statements.

Insert statements into a source library entry.

Considerations and Restrictions

Sequence numbers are a physical part of the source re-
cord and must be placed where they cannot conflict
with other data in the record. In a procedure they should
be placed near the end of the record beyond the OCL
and utility control statements’ keywords and para-
meters. The sequence numbers should be placed in
source statements where they do not overlay data. For
example, data could be destroyed if sequence numbers
were placed in RPG |1 source statements that contain-
ed compile-time tables.

At least three control statements must be entered to
modify the source library. A // MODIFY statement

is needed to describe the library entry. A // REMOVE,
// REPLACE, or // INSERT statement describes the
type of modification. A // CEND statement indicates
the end of the modify control statements.

The simulation area specified by the WORK parameter
on the // MODIFY statement must contain a work area
large enough to hold the modified source library entry.

The sequence numbers specified by the FROM-seqno,
TO-seqgno, and AFTER-seqno parameters on the

// REMOVE, // REPLACE, and // INSERT statements
must be valid numbers and exist in the source library
entry. There are no default values for these parameters.
The number of digits entered must be the same as the
number of positions specified by the SEQFLD para-
meter.

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-6413

® All statements in a source library entry must have ascend-

ing sequence numbers in the positions specified by the
SEQFLD parameter.

Multiple operations (REMOVE, REPLACE, INSERT)
may be performed within the same MODIFY run if they
are done in an ascending sequential order. That is, the
FROM sequence number in a REMOVE or REPLACE
statement must be greater than the last sequence num-
ber in the preceding statement. The AFTER sequence
number of an INSERT statement must be equal to or
greater than the last sequence number of the preceding
statement. Consecutive INSERT statements must not
have the same sequence number.

When modification is complete, the directory entry is
written back with a permanent attribute.

The control statements following the // MODIFY
statement are read from the system input device.

Since the REMOVE control statement is valid for both
the $DELET system utility and $MAINT system utility,
care should be used when modifying a SDELET proce-
dure. The program attempts to determine whether the
REMOVE statement is data or a control statement. If

a determination cannot be made, the program halts

and waits for further instructions.

If LIST-YES is specified and a printer error (causing a
halt) occurs during the listing of the source library
entry, responding to the halt with a 2-option causes the
listing to stop. The moditied entry is then placed back
in the library before the function is terminated with a
controlled cancel.

Library Maintenance Program—$MAINT 145

Control Statement Summary
Initiate Modification

YES

// MODIFY NAME«name,FROM-code,LIBRARY-JS},WORK-code,RESER- NQO ,LIST-{YES} ,
\P ONLY NO

SEQFLD-xxyy,INCR-number

Control Statements Following // MODIFY
Delete all statements between and including the FROM and TO sequence numbers.

// REMOVE FROM-segno, TO-seqno

Replace all statements between and including the FROM and TO sequence numbers with the statements supplied:

// REPLACE FROM-segno, TO-segno
1 - nstatements to replace those removed

Insert the supplied statements after the statement indicated by the AFTER parameter:
// INSERT AFTER-seqno

1 - nstatements to be inserted

// CEND must follow the control statements to terminate the modify function.

146

Parameter Summary

NAME-name

FROM-code

LIBRAR'Y-{?}

WORK-code

(YES
RESER-{ NO
ONLY

YES
LIST-{NO }

SEQFLD-xxyy

INCR-number

Name of the entry you are modifying. This is the name that identifies the entry
in the library directory.

Location of the simulation area that contains the entry you are modifying. Pos-
sible codes are R1, F1, R2, and F2,

Type of library entry you are modifying. Possible codes are:

Code Meaning
S Source statements (source library)
P Procedures (source library)

Location of the simulation area containing space the program can use as a work
area. Possible codes are R1, F1, R2, and F2.

Specifies whether reserialization should be done when the entry is placed back
in the source library. Possible information is:

Information Meaning
YES Reserialization is done.
NO Reserialization is not done. NO is assumed if the RESER

parameter is omitted.

ONLY ' Reserialize only; no other maintenance is done. When
this is coded, no REMOVE, REPLACE, INSERT, or
CEND statements can be entered.

Specifies whether the source library entry should be listed as the modified entry
is placed back in the source library. NO is assumed if the LIST parameter is
omitted.

The starting and ending positions of the field that contains the sequence number.
The sequence number can be up to 8 digits long. The starting position is entered
first (xx) and then the ending position (yy). If this parameter is not entered,
9296 is assumed.

Increment value for sequence field if reserialization (RESER-YES or RESER-

ONLY) is specified. The value can be up to 5 digits. |f this parameter is not
entered, a value of 10 is assumed.

Library Maintenance Program—$MAINT 147

Remove, Replace, Insert Parameters

FROM-seqno The sequence number of the
first statement to be used in the
operation.

TO-seqno The sequence number of the
last statement to be used in the
operation.

AFTER-segno The sequence number of the
statement after which the new
statements are to be added.

RENAME FUNCTION

Uses

® Change the name of a library entry.

® Change the name of library entries that have names

beginning with certain characters.

Control Statement Summary

// RENAME FROM-code,LIBRARY- /NAME-name, NEWNAME-name

DO oW

// RENAME FROM-code,LIBRARY- JNAME-characters.ALL NEWNAME-characters

DO vWw

Considerations and Restrictions
® System modules should not be renamed on the active
system simulation area (the simulation area the system

was loaded from during IPL).

® Library maintenance modules should not be renamed on
the active program simulation area.

148

Parameter Summary

FROM-code Location of the simulation area that contains the entry you are renaming. Pos-
sible codes are R1, F1, R2, and F2.

LIBRARY-

”movw

Code

S

P

0]

R

Type of library entry you are renaming. Possible codes are:

Meaning

Source statements (source library)
Procedures (source library)
Object programs (object library)

Routines (object library)

NAME-name Current name of the entry you are renaming. This is the name that identifies
the entry in the library directory.

NAME-characters. ALL Only those entries beginning with the indicated characters. (You can use up to

5 characters.)

NEWNAME-name New name you want to give the entry. Follow these rules to construct the name:

® You can use any System/3 characters except blanks, commas, quotes, and
periods. (Appendix A lists the characters.) However, the names of most IBM
programs begin with a dollar sign ($). Therefore, to avoid possible dupli-
cation, do not use a dollar sign as the first character in the names you use
for your entries. The first character must be alphabetic.

® You can use up to 6 characters, but you cannot use the names ALL, DIR,
and SYSTEM. They have special meanings in the NAME parameter.

NEWNAME-characters Beginning characters you want to use in names identifying the copies. {You can
use up to b characters.)

OCL CONSIDERATIONS

The following OCL. statements are needed to foad the
library maintenance program.

// LOAD $MAINT ,code

// RUN

The code you supply depends on the location of the simu-
lation area containing the library maintenance program.
The codes are R1, F1, R2, and F2.

If the copy file-to-library or library-to-file function is used
in this run of the SMAINT program, the necessary disk
FILE OCL statements must be supplied. They must follow
the LOAD statement and precede the RUN statement.

Library Maintenance Program—$MAINT 149

Page of GC21-56130-0
Issued 19 November 1976
By TNL: GN21-5413

EXAMPLES

Figures 56 through 73 illustrate the functions of the library
maintenance program. Figure 56 is an example of the OCL
needed to load the utility program. The other figures are
examples of the control statement necessary to carry out
the specified function.

1 4 8 l1 2 16 20 24 28 32 36
/

/] [LloAlD |$MAl/IMT], 1A 1

[1/] RN,

Explanation:

Library maintenance program is loaded from the simu-
lation area F1 on drive 1.

Figure 56. OCL Load Sequence for Library Maintenance

1 4 8 12 16 20 24 28 32 36 40 44 48 £2 56 60 64 68 72
MM ALCaCATE ITIa- R4, ISOIURCIE|-112],101BJEICT- 115, IslylsITEM-lYlels

/11| |EMD

Explanation:

® Libraries are being created in the simulation area R1 on drive 1 (TO-R1 in ALLOCATE statement).

Source library space is 12 tracks (SOURCE-12).

Object library space is 45 tracks (OBJECT-45). The object library will contain system programs (SYSTEM-YES). Thus,
the disk area also includes space for the scheduler work area.

® Directory size will be 3 tracks.

Figure 57. Allocate Example. Creating Both Source and Object Libraries on a Disk

160

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
/[1AL Oc]ATle] Trlo]-[R], ISloluldclel-Tals], ol k-T7 2 T
RNGTR

Explanation:

® Source library is located in the simulation area R1 on drive 1 (TO-R1 in ALLOCATE statement).
® Size of the source library is being changed to 15 tracks (SOURCE-15).

® Any time the program changes the size of a library, it reorganizes the library. To do this, it needs a work area. This area is
on the simulation area F1 on drive 1 (WORK-F1).

Figure £8. Allocate Example: Changing the Size of a Source Library

14 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
/\/| AlLLloclATIE [Ta-[Rl4] lolal7ielc]T]-

[/ EM i
Explanation:

® Obiject library is located in the simulation area R1 on drive 1 {TO-R1 in ALLOCATE statement).

® OBJECT-0 parameter tells the program to delete the object library. If a scheduler work area precedes the object library,
it is also deleted.

Figure 59. Allocate Example: Deleting the Object Library from a Disk

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
/i/] ICI0AY! FPOM~F1,.L/3EARY-OI, AMEL- [S]YISITIE /,TO-' {

/|| |EMD L N
Explanation:

® System programs are in the object library in the simulation area F1 on drive 1 (LIBRARY-O and FROM-F1 in COPY
statement).

® The NAME parameter (NAME-SYSTEM) tells the program to copy the system programs.

® The disk that is to contain the copy is the simulation area R1 on drive 1 (TO-R1).

Figure 60. Copy Example: Copying Minimum System from One Disk to Another

Library Maintenance Program—$MAINT 151

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

14 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
N1 1dd Ay [ARoM-IR 4]l /[8RARY- ||, IMAMEl-Dli IR ITid - |PR N7 loM [TI-18] . ALIL
/|| |EMD
Explanation:
® All library directories and the system directory in simulation area R1 on drive 1 are printed (COPY statement):
FROM identifies the disk containing the directories.
LIBRARY indicates which directories are to be printed.
NAME and TO indicate that the program is to print directories.
OMIT indicates that all entries beginning with a $ are not printed.
Figure 61. Copy Example: Printing Library Directories
14 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
/1 \ClaPv [FiRiom-1R4]ILl/|BRARY-10], WAME-1Alciclr) ITiol-|Fla], RETAl M-
/|l EIND |
Explanation:

® LIBRARY-O, NAME-ACCT, and FROM-R1 in the COPY statement tell the prograrn to read the object program named
ACCT from the simulation area R1 on drive 1.

® TO-F1 tells the program to copy the object program to the simulation area F1 on drive 1. There is no NEWNAME
parameter in the COPY statement. Therefore, the name the program uses in the simulation area F1is ACCT (NAME-
ACCT). Since the old version of the program already exists in the simulation area F1 under that name, the old version is
replaced.

® The library maintenance program normally halts before replacing a library entry. The RETAIN-R parameter, however,
tells the program to omit that halt.

Figure 62. Copy Example: Copying Object Program to F1

162

1 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
/| [caPv! |FRloiM REIAIDIEIR ,|Ti01-F|4], |L|/ |BRAIRIY|-|A, IMAIME|-IcloiPlY| 1
[/ oAl dclapivl,|Fie
/] IRIUM |
/|/] (ClOPlY|PAICIK] IFIRIOM-|F 4 ,|TI0-|R| 4
[i/] |END
[/ CIENMD L
[l |EIMD
1
Explanation:

® FROM-READER tells the library maintenance program to read the statements from the system input device.

® To procedure (LIBRARY-P) is written to the source library on F1 (TO-F1), named COPYF1 (NAME-COPYF1), and
given the default attribute of temporary.

® All statements following the // COPY statement are entered into the library until the // CEND statement is read to ter-
minate the COPY.

® // END following the // CEND statement is optional here. If used it terminates the library maintenance program. If it is
not used, more control statements may be entered following the // CEND statement.

Figure 63. Copy Example: Copying Procedure from System Input Device

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
(| DIElLlElTIE] [FRIOM- Rl |l |BRIARIY|-IS|, IMAME]-|AAY|RIOIL BRE
/7] EWD

Explanation:

The program deletes a set of source statements (LIBRARY-S in DELETE statement) named PAYROL (NAME-PAYROL)
from the simulation area R1 on drive 1 (FROM-R1) that has a temporary attribute.

Figure 64, Delete Example: Deleting an Entry from a Library

Library Maintenance Program—$MAINT 153

Page of GC21-56130-0
Issued 19 November 1976
By TNL: GN21-5413

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56
/] lLlolAiD [8MAl M1 (L1 [T11] l I
/| |1lLe IMAIMel- 185\l el [l 1 /{1, [P Alclki- Blsiclal, |2|al8le|Ll- [PRloleiklal From System Input
/171 RIUW] ' Device or Procedure
[I/] ICloAY FRO)V-DISKI,TO-F!I,RETAIN-P)FILE‘B‘SCAF/LG
Jir COfY LI IBRIAR Y- P,,NAjME-PAVREC
PRIOCIEIDURIE
/i!| |CIENID
(|l |CIOPY] |L|!|BIRARIY|-|O ,IMAME-PAYIREIC From Disk File
S 7
OBJIEICIT| [DEICIK
/| CIEND
LI] END From S
¢ ystem Input
1/ END Device or Procedure
Explanation:

® The OCL for a file-to-library copy must contain a FILE statement for the disk file.

® The filename on the // COPY statement (FILE-BSCAFILE) matches the filename on the OCL FILE statement (NAME-
BSCAFILE).

® The // COPY statement does not contain a RECL parameter, so a record length of 96 is assumed.

® All source and object decks in the disk file must have a // COPY statement as the first card image and a // CEND state-
ment as the last card image to indicate the end of the copy for each deck. These // statements (including the // END

statement) are logged with XX replacing the // to indicate they were read from disk rather than from the system input
device or a procedure,

Note: The // CEND statement is not printed.
® The // END statement read from the file (printed XX END), causes the next statement to be read from the system input
device or procedure. A // END statement must still be read from the system input device or procedure to indicate the end

of the library maintenance control statements.

Note: The // END statement in the file is optional because the system recognizes the physical end of the data file and
terminates the copy.

Figure 65. Copy Example: Disk File to Library

154

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72) 76
A 1oTA D I8 IMALN T JF i I
AriLle WAME|-1BAKlkviPL luwl iTI-IDi2], IPAcld-Io Dot |ldclalTi o) -120/d |7elAlclks| -8
/|/] 1R
/1 |COPY IFIRoM- 1R 4 ,|Tio- (D 11|, |REAL!- 1814 1A/ 1L 8- |8ACKUA |
I1] |EMriRY L|78lRARY-lALl|, IMaME - Aaly| .| ALIL] |
/1] |EnlrlRvl |Ll/18/ARY]-IS], IMAMel-|4ldd i
/1] |ENTIRl cl/|BlRlalRY]-], M AME -/ el 7
/I{] MEWD
(] [EMD
Explanation:

® The OCL for a library-to-file copy must contain a FILE statement for the disk file.

® The filename on the // COPY statement (FILE-BACKUP) matches the filename on the OCL FILE statement (NAME-
BACKUP).

® A sequential file with record length of 80 (RECL-80) is created on D1.

® The file will contain entries from all libraries with names beginning with the characters PAY, all source library entries, and
object entry INVENT.

® The copy to file BACKUP is terminated by the // NEND statement.
® The // END statement following the // NEND is required. It terminates the library maintenance program.

Figure 66. Copy Example: Library-to-Disk File

—

8 12 i6 20 24 28 32 36 40 44 a8 52 56 60 64 68 72 76

~
~
[SESIES
15
~
m
x
Q
1
=3
=
—
(8]
X
D
X
<
'
>
~
~
b
X |
m
t
~
S
=
>
~
™

Explanation:
® The entries being deleted are in the simulation area R1 on drive 1 (FROM-R1 in DELETE statement).

® The program deletes all entries from both source and object libraries (LIBRARY-ALL) that have names beginning with the
characters INV (NAME-INV.ALL), with temporary attributes.

Figure 67. Delete Example: Deleting All Entries with Names that Begin with Certain Characters

Library Maintenance Program—$MAINT 155

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
/|| DelLlelTe] (FRloM-1R12]\Ll/|BRARLYL- 1A, WaMel-lalLiL] RElTlAl/M-|7)

/1/] [EMD '

Explanation:

® The entries being deleted are in the simulation area R1 on drive 1 (FROM-R1 in DELETE statement).

® All temporary procedures are being deleted from the source library (LIBRARY-P,NAME-ALL).

Figure 68. Delete Example: Deleting All Library Entries of One Type

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
A/ Mopl/IAY. WAME - (INAITIZ],IFRIOM-lel4, Il 8RRy -ls|, ol K- 1R 1, [Reste R- 4gs,. L]/]gl7]-

i S|ElGIFLI01-1d 1l |/IMC|R-|1

/1] (Rlewavie [FirloM-ldd 124, irid-lad 15t

/|/] ICIEM

Explanation:

® The source module named INPUT1 in simulation area R1 on drive 1 is being modified (NAME-INPUT1,FROM-R1,

LIBRARY-S in the MODIFY statement).
® The work space is on R1 (WORK-R1).

® The sequence numbers are in positions 1-5 of the statements (SEQF LD-0105).

® Sequence numbers 00124-00156 are being deleted from the module (FROM-00124,TO-00156 in the REMOVE statement).

® The module is reserialized with increments of one (RESER-YES,INCR-1).
® The module is.not listed (LIST-NO).

Figure 69. Modify Example: Removing Source Statements from a Module

166

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
/| Mdd]Av] [MalMel-|Adcid], [FiRioM-R 2], ||/ |BlRIAIRIY|-|A, lWloiRK|-1R 1], RIS IElRl-IMa Icl/isizl-Ivias] | | |)| 1L E L
/|11 IRIE|PlLlAlcle] |FlRlolM-lAd 110 1] |i0l-|dd 1a2) IRRERNAN | |
N/ |ATILIE] IMAMEL-/IMV|, IPIAICIK-IVIOIL|2, IUM! IT1- 1R, IRIEICIORIDIS|- |20, |REITIAlI/ W-1A | | | 11112 lg;'““
1l MalMel- Wolrlkl, |Palclki-lviol 2], w1 |T]- 1R ; ajtz_‘
/i |CEMD | i
Explanation:

® The procedure named POCO1 in simulation area R2 on drive 2 is being modified (NAME-POCO1,FROM-R2,LIBRARY-P
in the MODIFY statement).

® The work space is on R1 (WORK-R1).
® The sequence numbers are in default positions 92 through 96.

e Statements with sequence numbers 00101 and 00102 are being replaced (FROM-00101,TO-00102 in the REPLACE
statement).

® The module is not reserialized (RESER-NO).
® The module is listed (LIST-YES).

Figure 70. Modify Example: Replacing Statements in a Procedure

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
N 1REWAME TERIOM-TR 4[]/ [BRARY]-1s] Ialdel-Talc], el ng- cle[l4 L
/|/| |EWD

| l
Explanation:

® The simulation area R1 on drive 1 contains the entry being renamed (FROM-R1 in RENAME statement).
® The entry is a set of source statements in the source library (LIBRARY-S). Its name is ACCT (NAME-ACCT).
® The entry name is being changed to ACCT1 (NEWNAME-ACCT1).

Figure 71. Rename Example: Renaming a Set of Source Statements in a Source Library

Library Maintenance Program—$MAINT 157

Page of GC21-56130-0
Issued 19 November 1976
By TNL: GN21-5413

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
1] oDl 1AY] |FiRloM- 1L 4, lwldlRlkl- (Fl1] IWAlmel-IclasiTl, e 1/ 18Rl ARl s] ,
N/ Rleis|elRl-Mels| Islear - lglaigld L1/ Is|ri-|v]els
/] |1 WsieRlT) AlFITIER-lda7Id]
a7 3| | | 18 [PaTE
/] Icle
Explanation:

® The source module COST in simulation area F1 on drive 1 is being modified (FROM-F1,NAME-COST,LIBRARY-S in the
MODIFY statement).

The work space is on F1 (WORK-F1).

The sequence numbers are in position 80 through 84 of the statements (SEQFLD-8084).

® A statement is being inserted after statement number 00070 (AFTER-00070 in the INSERT statement).
® The module is reserialized with the default increment value of 10 (RESER-YES).

® The module is listed (LIST-YES).

Figure 72. Modify Example: Inserting a Statement in a Source Module

158

. 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
/111 (oAl |8iMals Wi, [A 2
[/ [RUN
/|7 Aldlclolclalrie] |riol- o] |aalrglc]r|-d slolikicle- 1
/\/| AlLiLioclaTlel [Tiol-iRl21, l08lTelclTl- 18, Isiolueicle]- 112!, 1SVis|Tlel -VIEls], o]/ |as)/ 2]l |
B |/, \coAY (FiReom-IF 4, [rol- R4, 1|/ |alealrly-lalc]L], IMalmel-lalcle
/| |EMD
Reload System (IPL) from R1 |
/1/) |LOIAID| I$IMAl/IMT], IR 1
/|/] |RIUM
/7] lAlicloiclalTel To-FI,OBiJEC%g’.SOURCE-
/2] lalelclolcldre TO-FI}OBLMCT-,J@,SOURCG-IZ,SYSTE -Yiels], [0t/ |Rsl/ 2lel- |4
B /] cidAY| |ARoM- R4, 1T0- A4, |l |BlkalRly - lalele], malEl-|alLle
/|/| EM ! :
Reload System (IPL) from F1
Explanation:

The system and SMAINT are both loaded from F1.
B The libraries on R1 are deallocated (if present).
New library space is allocated on R1.

n The libraries are copied from F1 to R1. The object library is reorganized as it is copied. Temporary entries become
permanent when copied.

The system and $MAINT are now loaded from R1.
B The libraries on F1 are deallocated.
New library space is allocated on F1.

ﬂ The libraries are copied back to F1. The simulation area R1 could be used as a backup pack. It contains the same
libraries as F1.

Figure 73. Reorganizing the System Simulation Area

Library Maintenance Program—$MAINT 159

REASSIGN ALTERNATE TRACK PROGRAM-$RSALT

When it is necessary to transport a 3340 data module from
System/3 to System/360 or System/370, you must run the
reassign alternate track program ($RSALT) before you run
the DOS/OS initialization program.

On a 3340 data module initialized on System/3, there are
40 alternate tracks on cylinders 167 and 168. On a System/
360 or System/370 3340 data module, there are 24 alter-
nate tracks from cylinders 167 and 168 to cylinders 208
and 209. Consequently, if a 3340 data module initialized
on System/3 has more than 24 defective primary tracks,

it cannot be initialized by System/360 or System/370.

Note: Data interchange is not supported between the
System/3 and the System/360 or System/370, so this
program cannot be used for that purpose. System/3 data
existing on the data module before $RSALT is run will be
lost.

Control Statement Summary

// ALTA UNIT-D2,PACK-name

// END

Parameter Summary

UNIT-D2 Specifies the location of the data
module that you want to modify.
PACK-name Specifies the name of the data

module you want to modify.

Parameter Descriptions
UNIT Parameter

The UNIT parameter (UNIT-D2) specifies the location of
the data module that you want to modify. The program can
modify only data module D2 during a program run.
$RSALT cannot be run on D2 if the simulation areas (R2
and F2) are active. The OCL statement, // SIMULATE OFF,
must be used before $RSALT is executed.

160

PACK Parameter

The PACK parameter (PACK-name) tells the program the
name of the data module to be modified. The parameter
length must not exceed 6 characters. It can contain any
of the standard System/3 characters except apostrophes,
commas, or leading or embedded blanks.

The reassign alternate track program compares the name in
the PACK parameter with the name on .the data module to
ensure that they match. If the names do not match, the
program halts with an error message. In this way, the pro-
gram ensures that it is using the right data module.

OCL Considerations

The following OCL statements are needed to load the re-
assign alternate track program:

// LOAD $RSALT code

// RUN
The code you supply depends on the location of the simu-
lation area containing the reassign alternate track program.
The codes are R1 and F1.

Example

The following illustration shows an example- of the control
statements required to execute the SRSALT program:

1 4 8 12 16 20 24 28 32 36
N/ | 1LloalD (8lRslalelT] A4
/10 | I”uM
/\/1 | ALITIAL (UM T]-D2], |PAlclk |- 1D121Di2iDi2
/1| lewip ’
Explanation:

The 3340 data module on drive 2 is to be modified to
System/360—-Systern/370 format.

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

Recover Index Program—$RINDX

The Recover Index ($RINDX) program is used to recover
the records added to an indexed file if, for any reason, the
program adding the records is terminated before end of job.

The Recover Index program should be:

® Executed as soon as possible after the abnormal
termination, and

® Executed in a dedicated system

Each indexed file for which records are to be recovered
must be described by an OCL FILE statement. The descrip-
tion must include the filename, unit code, and pack 1D.
You may also include OCL FILE statements for other than
indexed files; however, the Recover Index program will not
attempt to recover records in other file organizations. The
following example shows a FILE statement for each file to
be checked for record recovery:

1 4 8 12 16 20 24 28 32 36 40 44 48 52
11| clolalp] 81l wlolx], [z I
/) 1FY |eig] WiAme|-I3|/ Wiole|x4ls|, lviNls |7]-Ip|2] |Plalelk|- olzlolz|ole| , | 7iRiAle KiS|~ 314 |
/| 1A I le] Wiamlel-Iclols|ele, [l iTl-d/|, Pakl- ol ol ol

/1 el e Malmel-lol lelelelr, luwlr iTi- o1, lelalelk]- Lol o]/ ol il
U A ld] Ivlamlel-|/ Imsisld] luwle 7110l |plalelkl-lolr o] ol

1]l clel Wialvel - wldsiglel [uime|7l=l0lr | lelaleil-lol bl ol

/| el plmel-|r wdisigis] v [7i-ols], lelalelk-lolr ol lolr | | |

71|l \cle] Ivamel-| s Wilsldle], oWz iTl-l0 [, |Aalelkl- ol ol bols

/| Flrllel Wialmel-I Wiisidls) luwlr ir)-lol [, lelaiek]- 1o 7o) o)y L
/11 el i le| Wiamel-lr Insdside (ol /| 71-1d 1], lelalelkl- ol bl bls

eIl Ll Imalmel-le Wig|sid 2| ol [71- 1ol |y lelaleik]-lole ol o)t |, iRk lelkig]-| /14 | | | |
/| leluim ’ ! ’

The $INDEXAS5 file is a work file used to decrease the
processing time for sorting the indexes of large indexed
files.

Recover Index Program—$RINDX 160.1

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

The functions of the Recover Index program for each file
organization are:

® /ndexed File:

— If added keys exist for the file when the abnormal
termination occurs, $RINDX updates the end-of-
index and end-of-data pointers. File information—
defined as file {abel, file type, pack label, and file
date—is printed. The last added key for this file is
also printed.

— If keys had not been added when the abnormal
termination occurred, only the file information is
printed.

® |f a consecutive file is detected, only the file information
is printed.

® |f adirect file is detected, only the file information is
printed.

® |f the Recover Index program cannot find the file
described by the OCL FILE statement, the file informa-
tion and the message FILE NOT AVAILABLE is
printed.

The following printout is a result of processing each FILE
statement shown in the previous example:

$RINDX- FILE RECOVERY PROGRAM DATE-XX/ XX/ XX

FILE FILE PACK FILE LAST ADD KEY
LABEL TYPE LALEL DATE IMCLUDED
CUNSEC C DILDIDL 021976

LIRECT D D1IDLVL 021976

Ir450% I DILDLDL 021976 00971

4502 ! N1LDLDL 021976 (602031
144503 I DLDLDL 021976 0004131
I64504 I DLB1LDL 024976 00005191
InN4505 I D1D1LDL 021976 000007211
Th4506 1 D1DLPL 021976 0000007211
14507 H1PLUL 021676 FILE NOT AVAILADLE

ALL FILES PROCESSED

After all OCL FILE statements have been processed, an
ALL FILES PROCESSED message is printed. The index
is then sorted and the VTOC (volume table of contents)
updated.

Note: After the ALL FILES PROCESSED message is
printed, do not cancel or start the next job prior to actual
end of job. Processing continues with sorting the index
and updating the VTOC.

160.2

OCL CONSIDERATIONS

The following OCL statements are needed to load and
execute the Recover Index program:

// LOAD $RINDX,code
// FILE NAME-xxxxxxxx,UNIT-xx,PACK-xxxxXx
// RUN

The code you supply depends on the location of the disk
containing the Recover Index program. Possible codes are
R1, F1, R2, F2.

Considerations and Restrictions

If a disk 1/0 error occurs during the execution of SRINDX,
the file information and error message DISK |/O ERROR
is printed. A halt then occurs; options are:

® Continue processing with the next file
® Cancel the job

If halt DDBP (keysort duplicate key) occurs during the
execution of $RINDX, it may indicate that the program
was abnormally terminated during the process of sorting
the index. Continue processing until end of job for
$RINDX. If the file is not known to have duplicate keys,
use the Copy/Dump program ($COPY) with REORG-NO
and an OMIT or DELETE parameter to rebuild the index.

Page of GC21-56130-0
Issued 19 November 1976
By TNL: GN21-5413

Recover Index Program—$RINDX

160.3

Page of GC21-5130-0
Issued 19 November 1976
By TNL: GN21-5413

EXAMPLES

In the following example, the Recover Index program is
loaded from R2. The printout shows that keys were added
to each of the files except IN4403 before the abnormal
termination.

// LOG PRINTER
/7 LOAL SRINDX,R2Z
// FILE HNARE-S$SINDEX45,UNIT-D2,PACK-D2D2D2,TRAZKS-30C
// FILE LAME-$INDEX44,UNIT-R2,PACK-R2RZR2,TRAZKS-20
// FILL NAME-TIN4501L,UNIT-DL,PACK-L1DLDL
// FILE HARL-IN4502,UNIT-D1L,PACK~DLDLDIL
// FILE MAME-TH4503,ULIT-DL,PACK~-DLDIDL
// FILE NAME-IN440L,UNIT-RL,PACA~RLRLIRL
// FILE RAME-IN&402,UNIT-R1L,PACK-RIRLRL
// FILE KAME-IN4403,UNIT-RL,PACK-RLRLRL
/7 RUN
$RINLX - FILE RECOVERY PROGRAM DATE-XX/ XX/ XX
FILE FILE PACK FILE LAST ADD KEY
LABEL TYPE LAZE DATE INCLUDED
134404 I FLRLIRL 022676 000000000000000C000002TL
1114402 I RLRLRL 022676 000C0O00000000000000002031L
TH4403 I RLRLRL 02267¢
14500 I VLDLDYL 022676 00974
14502 I LU1TD1DL Q22676 002031
14503 I LLDILDL 022676 0004131%
ALL FILES PROCESSED
L DD KS it SRINDXOL
DEGIN KEY SORT/MERGE IN440L
1 DD KS 1 SRINDXOL
SEGIN KEY SORT/MERGE I[N4402
1 Db KS 1 SRINDXOL
oCGIN KEY SCRT/MERGE 114403
1 DD KS 3 SRINDXQOL
BEGIKN KEY SORT/MERGE 14501
1L DD KS 1 $RINDXOL
LDEGIN KEY SORT/HMERGE IN4502
1 DD KS 1 $RINDXOL
BEGIN KEY SORT/MERGE 145032
1 CT EJ 1 S$RINDX0L

02/26/76 00.00.19 00.02.47

160.4

Appendix A. IBM System/3 Standard Character Set

IBM System/3 Standard Character Set

Hexadecimal Hexadecimal Hexadecimal
Character Equivalent Character Equivalent Character Equivalent
Blank 40 # 78 Q D8
¢ 4A @ 7C R D9
. 4B ' (apostrophe) 7D S E2
< 4c = 7E T E3
(4D " 7F U E4
+ 4E A C1 \ E5
| 4F B c2 w E6
& 50 c C3 X E7
! 5A D C4 Y E8
$ 5B E C5 z E9
* 5C F C6 0 FO
) 5D G c7 1 F1
; 5E H Cc8 2 F2
7 5F l 2¢) 3 F3
- (minus) 60 } DO 4 F4
/ 61 J D1 5 F5
. 6B K D2 6 F6
% 6C L D3 7 F7
— (underscore) 6D M D4 8 F8
> 6E N D5 9 F9
? 6F o) D6
7A P D7

161

162

* parameter for load statement 35

/* statement 42

/& statsment (OCL) 42

*(comment) statement (OCL) 43

$ALT (see alternate track assignment program) 59
$BUILD (see alternate track rebuild program) 62
$COPY (see copy/dump program) 87

$DCOPY (see dump/restore program) 79

$DELET (see file delete program) 73

$INIT (see disk initialization program) 53
$LABEL (see file and volume label display program) 66
$MAINT (see library maintenance program) 116
$RSALT (see reassign alternate track program) 160
$SCOPY (see simulation area program) 108
$TINIT (see tape initialization program)- 47

$TVES (see tape error summary program) 52

adding library entries 134, 135
ALLOCATE statement (SMAINT) 119
allocate considerations and restrictions 120
allocation of disk space 120
control statement summary 119
DIRSIZE parameter 121
OBJECT parameters 121
SOURCE parameters 121
SYSTEM parameter 121
TO parameter 121
WORK parameter 122
alter track assign prog control statement summary ALT
statemant ($ALT) 60
alternate track assignment program ($ALT) 59
examples 61
messages 62
PACK parameter 60
UNIT parameter 60
VERIFY parameter 60
alternate track rebuild ($BUILD) 62
examples 1
OCL considerations 64
program 62
program REBUILD statement {see REBUILD statement) 62
substitute data 64

BSCA statement 5, 12

CALL statement 5,13

changing a scratch file to a temporary file 18
changing the size of a source library 124
character set 161

coding rules 2
parameters 2
statement identifiers 2
types of information 2

‘comments 4

COMPILE statement 5, 13

continuation statements 3

control statement summary
ALLOCATE statement ($MAINT) 119
ALT statement (3ALT) 59
ALTA statement (SRSALT) 160
CLEAR statement ($SCOPY) 109
COPY statement {$MAINT) 127
COPYAREA statement ($SCOPY) 109
COPYFILE statement ($COPY) 87
COPYIPL statement ($SCOPY) 109
COPYPACK statement ($COPY) 87
COPYPACK statement ($DCOPY) 79
DELETE statement (SMAINT) 143
DISPLAY statement (SLABEL) 66
MODIFY statement ($MAINT) 146
MOVE statement ($SCOPY) 109
NAMES statement ($SCOPY) 109
NEWNAME statement ($SCOPY) 109
REBUILD statement ($BUILD) 62
REMOVE statement ($DELET) 74
REMOVE statement ($DELETE) 74
RENAME statement ($MAINT) 148
SCRATCH statement ($DELET) 74
VOL statement {$INIT) 54
VOL statement ($TINIT) 48

control statements 46
coding rules for control statements 46
END control statement 46

COPY statement (SMAINT) 126
file-to-library 127
function 126
function control statement summary 127
library directories 133
library-to-file 128
library-to-library 129
library-to-printer 130
reader-to-library 127
retain types 133

copy/dump program ($COPY) 86
card and diskette considerations 96
card or diskette output 96
control statement summary 87
copying files 93
examples 97
OCL considerations 96
parameter descriptions 92
parameter summary 89
printing files 93
tape file considerations 96

COPYFILE statement ($COPY) 88
DELETE parameter 93
REORG parameter 93
WORK parameter (COPYFILE) 94

Index

Index

163

copying multivolume files 95

copying multivolume files and maintaining correct date and
volume sequence numbers 95

copying multivolume files maintaining correct relative
record numbers 95

copying multivolume indexed files 96

creating a source library 121

creating an object library 121, 124

DATE parameter (disk file} 18
DATE statement 5, 15
delete permanent library entry 142
DELETE statement (SMAINT) 142
control statement summary 144
FROM parameter 144
function 142
LIBRARY parameter 144
NAME parameter 144
restrictions 142
RETAIN parameter 144
delete temporary library entries 142
direct file attributes 95
disk initialization program ($INIT) 53
alternate track assignment 57

CLEAR 54
CYLO 54
FORCE 64

parameter descriptions (initialization) 56
parameter summary initialization 55
PRIMARY 54
RENAME 54

dump/restore program ($DCOPY) 79
BACKUP parameter (COPYPACK) 81
COPYPACK statement 80
examples 83
FILE statement considerations 81
FROM and TO parameters (COPYPACK) 80
messages for DUMP/RESTORE 82
OCL considerations 81
SYSTEM parameter 81
TO parameter 80

example
COPYPACK from disk to diskette 85
COPYPACK from tape to disk 83
delete one version of a file 78
delete one version ofa file using a REMOVE statement 78
free allocated but unused space on a simulation area 78
OCL considerations 77
parameter descriptions 75
printing VTOC information for two files 72
examples
changing the size of a source library 151
copy a card file to a tape file 103
copy a card file to another card file 106
copy a disk file to a tape file 100
copy a disk file to the 3741 104
copy a sequence file from a simulation area to a main data
area 107

164

examples (continued)

copy a tape file to a disk file and print a part of the file 101
copying a file from one disk to another 98

copying an entire disk 97

copying minimum system from one disk to another 151
copying object program to F1 152

creating both source and object libraries on a disk 150
deleting all library entries of one type 156

deleting an entry from a library 153

deleting the object library from a disk 151

disk file to library (COPY) 154

library to disk file (COPY) 155

printing library directories 152

printing part of a file 98

removing source statements from a module 156
reorganizing the system pack 159

replacing statements in a procedure 157

file and volume label display program ($LABEL) 66
examples 72
FORMAT parameter 67
LABEL parameter 66
meaning of VTOC information 69
OCL considerations 71
SORT parameter 67
file delete program ($DELET) 73
control statement summary 74
DATA parameter 76
DATE parameter 77
examples 77
LABEL parameter 76
OCL considerations 77
PACK parameter 75
UNIT parameter 75
FILE parameters (tape)

ASCll 29
BLKL 28
DATE 28
DEFER 30
DENSITY 29
END 29
LABEL 28
NAME 26
RCFM 29
RECL 28
REEL 27
RETAIN 28
UNIT 27

file processing considerations (disk file) 25
FILE statement 5, 15
FILE statement (disk} 15
content 16
function 15
placement 15
FILE statement (tape) 25

content 26
format 25
function 25

placement 25
FILE statement considerations ($DCOPY) 81
FILE statement OCL. 15

format of OCL statements 12
*(comment) statement 43
/& statement 42
/* statement 42
BSCA statement 12
CALL statement 13
COMPILE statement 13
DATE statement 15
FILE statement (disk) 15
FILE statement (tape) 25
HALT statement 31
IMAGE statement 32
JOB statement 34
LOAD * 34
LOAD statement 34
LOCKOUT statement 36
LOG statement 36
NOHALT statement 37
PARTITION statement 38
PAUSE statement 38
PRINTER statement 39
PUNCH statement 40
READER statement 40
RUN statement 41
SIMULATE statement 41
SWITCH statement 42

FORMS statement 5, 31

FROM parameter
COPY statement 131
COPYPACK statement 92
DELETE statement 144
MODIFY statement 147
RENAME statement 149

general coding rules 3

HALT statement 5, 31
HIKEY parameter (disk file) 21

IMAGE statement 5, 32

initializing disk ($INIT) 53

initializing tape ($TINIT) 47

INSERT statements source library 145
inserting :library entries 134

introduction to OCL statements 2
introduction to system utility programs 45

JOB statement 5, 34

keyword parameter for single volume disk files 16
keyword parameters for multivolume files 20

LENGTH KEY parameter 95

library directories 118

library maintenance program 116
ALLOCATE function (see ALLOCATE statement) 119
library description 116

LOAD statement 6, 34

LOCATION KEY parameter 95

LOCATION parameter (disk file) 21

LOCKOUT statement 6, 36

log 6,36

maintaining correct date and volume sequence numbers 95
maintaining correct relative record numbers 95
meaning of VTOC information 69
message 49
message for tape initialization 49
message printout of volume label (tape) 50
messages for disk initialization 59
messages for dump/restore 82
MODIFY statement (SMAINT) 145

control statement summary 146

functions 145

parameter summary 146
moving the object library 120, 123
multivolume tape files 30

NOHALT statement 6, 37

OCL considerations for system service programs 58
OCL considerations for system service programs disk
initialization program 58
OCL statement
*(comment) statement 43
/& statement 42
/* statement 42
BSCA statement 12
CALL statement 13
COMPILE statement 13
DATE statement 15
FILE statement (disk) 15
FILE statement (tape) 25
HALT statement 31
IMAGE statement 32
JOB statement 34
LOAD * 34
LOAD statement 34
LOCKOUT statement 36
LOG statement 36
NOHALT statement 37
PARTITION statement 38
PAUSE statement 38

Index

165

OCL statement (contirued)
PRINTER statement 38
PUNCH statement 40
READER statement 40
RUN statement 41

SIMULATE statement 41

SWITCH statement 41
OCL statements 12
OCL statements for utility programs 45
OCL statements, introduction to 1
operation control language (OCL) 1

packed HIKEY 21

PARTITION statement 6, 38

PAUSE statement 6, 38

placement of control statements in the job stream
print VTOC 66

PRINTER statement 6, 38

printout of volume label (tape) 50

PUNCH statement 6, 40

READER statement 7, 40
reassign alternate track program ($RSALT) 160
control statement summary 160
example 160
OCL considerations 160
PACK parameter 160
parameter descriptions 160
parameter summary 160
REBUILD statement 62
DISP (displacement) parameter 63
LENGTH parameter 63
PACK parameter 63
TRACK parameter 63
UNIT parameter 63
RECORDS parameter (disk file) 19
RENAME statement (SMAINT) 148
considerations and restrictions 148
control statement summary 148
OCL considerations 149
parameter summary 149
reorganize libraries 119
reorganizing a source library 124
replace source library entry 145
replacing library entries 134, 136
RESER parameter of MODIFY statement 147
reserialize a source library entry 145
restrictions library maintenance
ALLOCATE 120
COPY 133
DELETE 142
MODIFY 145
RENAME 148
RETAIN parameter
COPY 133
DELETE 142
FILE statement disk 18
FILE statement tape 28
RUN statement 7,41

166

47

scratching files 73
scratching volume table of contents 73
scratching VTOC 73
SELECT KEY parameter 94
SELECT PKY parameter 94
SELECT RECORD parameter 95
SIMULATE statement 7, 41
simulation area program {$SCOPY) 108
AREA parameter (CLEAR) 111
AREA parameter (COPYAREA) 110
AREA parameter (MOVE) 112
AREA parameter (NEWNAME) 112
changing volume ID 115
clearing a simulation backup area 113
clearing an area containing IBM programs 113
CLRNAME parameter (CLEAR) 111
CLRNAME parameter (MOVE) 112
control statement summary 109
copy an entire simulation area 114
copy cylinder O from drive 1todrive2 114
examples 113
FROM and TO parameter (COPYIPL) 112
FROM and TO parameters (MOVE) 112
FROM parameter (CLEAR) 111
1D parameter (CLEAR) 111
{D parameter (MOVE) 112
OCL considerations 113
PACK parameter (CLEAR) 111
PACK parameter (COPYAREA) 110
PACK parameter (COPYIPL) 113
PACK parameter (MOVE) 112
PACK parameter (NEWNAME)} 111
parameter descriptions 110
parameter summary 109
print 1D information 1156
PRINT parameter (NAMES) 112
SYSTEM parameter (COPYAREA) 111
SYSTEM parameter (MOVE) 112
TO parameter (NEWNAME) 111
TONAME parameter (COPYAREA) 111
TONAME parameter (MOVE) 112
TONAME parameter (NEWNAME) 112
TYPE parameter (CLEAR) 111
source library 119
adding entries 135
changing size 123,124
creating 119
deleting 119
inserting statements 146-148
listing entries 132
location 123
organization 119, 124

special meaning of capital letters, numbers, and special

characters 47
standard character set 161
statement descriptions 4
statements beginning with // 3
statements not beginning with // 3
summary of OCL parameters 8
summary of OCL statements 5
SWITCH statement 7, 41
system directory printout 140
system utility programs 45
System/3 character set 161

tape error summary program ($TVES) 52
error logging format 52
OCL considerations 53

tape initialization program ($TINIT) 47
control statement summary (tape) 48
OCL considerations (tape) 49
parameter summary (tape) 49

TRACKS parameter (disk file) 19

volume label information (tape) 50
VTOC 73

WORK parameter (COPYFILE) 94

Index

167

168

READER’S COMMENT FORM

IBM System/3 Model 12
System Control Programming GC21-5130-0
Reference Manual

YOUR COMMENTS, PLEASE . ..

Your comments assist us in improving the usefulness of our publications; they are an important
pert of the input used in preparing updates to the publications. All comments and suggestions
become the property of |BM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response, Instead, direct your inquiries or requests to your IBM
representative or to the |BM branch office serving your locality.

Corrections or clarifications needed:

Page Comment

I would like a reply. D

Name
Address

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC21-5130-0

_— — — — — —aunbuoy Iy — — — — -

FIRST CLASS

bod
23
Fod
I =z
I
m oz
® 5
z o
(-]
zZ 9

’

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY . . .

1BM Corporation

General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

International Business Machines Corporation
General Systems Division

5775D Glenridge Drive N.E.

Atlanta, Georgia 30301

(USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

0-0ELG-1Z0D 'V'S'N ul pajulld (9E-€S "ON 2|ld) adualasay Bunuweibold j0u0Y WIASAS Z1 [9PON €/S

GC21-5130-0

International Business Machines Corporation
General Systems Division

5775D Glenridge Drive N.E.

Atlanta, Georgia 30301

(USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

0-0E1G-129D "V'S'N Ul pajulid (9€-ES "ON 3lid) 30uaIs4ay SuiwweiBoid |01U0Y WaAAsAS Z| [PPON €/

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090.0
	090.1
	090.2
	091
	092
	093
	094
	095
	096.0
	096.1
	096.2
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108.0
	108.1
	108.2
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120.0
	120.1
	120.2
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160.0
	160.1
	160.2
	160.3
	160.4
	161
	162
	163
	164
	165
	166
	167
	168
	replyA
	replyB
	xBack

