

o

£

E

“
Q
l

.

™

©
oO

—_
><

”
o

>
ue

o
n
s

6
©

=
.

3
ris

‘se
]

©

w

©

,

S
+
+

2
c
e
c
e

E
5
2

5
+r

O

oO
=

©

RES
£

23
o
o
f

g
&

=oo
8

®
faa)

~~
oO

hen
2)

=
=—_

1)
Q.

O
t

S
C
O
C
C
C
E
O
S

S
O
C
C
C
E
S
E
C
O
O

e
e
e
0
e
e
e

e
e
e
e
e
e
e

e
0
0
e
e
e
e

e
0
e
e
0
e

©
0
0
0
0

0
0
0
0
0
0
0

b
4
4
4
-
d
-
d
-
d
>
d
-
d

©
0
0
0
0

e
e
e

e
e

e
@

e
e

C
O
C
C
O
C
C
R

C
O
C
C
C
C
C
C
C
C
C
S

© conseCe
e
s
c
c
c
c
e

e
e
c
c
c
c
o
o
e

cocce
COCCS

«=
PO D

O
O
C
C
C
S

S
o
o
d
o
e
s
o
o
s
o
n
e
e
e
S

eco
eeoecece

/
e

SSSSSSES
SESTSSTETTSS.

SEESHES
| SEEEETS

©
SERSESEERs

EEEs
SEE

SSSETERSEs
SSSSELSSCE

SSS
S855

35333
:

Soss
| SSES.

Scees
| Sessee.

aseaess
SSSis”

ESSE
SESSe

Sse"
SSeee

SESE SEES
SESS

SSeS
53

"$3
S33

cose
Ssecccceses,

§««— seasesccosososs
cosccccece

*Ssescees,
=»

Se ssenecee
oo

tt
S333

SESSSSESSS
 Seessessessesss

“sesssssez,
©

“Stss®—SERESSESES.
©8660

SEES
:

Sesh
SESES**SSES,

| SSSS SESE
sees

seessassss
S55

sssssssess
558

3
6
6
6
6

e
6
6
6

6
6
6
6
6

S
6
6
6

6
6
6
6
6

6
6
6
0
6

e
e
e
e
e
8

e
e
e
e
e

e
e
e
0
e

e
e
e
e
0
e

e
e
o
0
e

e
e
e
e

e
e

e
e

eccsecce
coscsccococoes

cocces
ses

ssesee
coses

 seses
«ev osese

ceees
_seses

eseecce
coosecosese

0
See

|
+

S
O
O
O
C
O
O
S

C
O
O
O
O
O
C
O
O
S
O
C
O

e
e
o
e
e
0
o

e
e
e

e
0
e
0
0
0
e
0

0
0
0
0
0
0
0
0
0
8
0
0
8

@
0
0
e
e
e
e

8
0
0
0
0
0
9
8
0
0
0
8
8

e
e
e

e
0
e
e
0
e

@
e

e
e
0
@

S
O
C
O
O
C
C
O
S

S
C
O
O
O
S
O
O
O
O
O
O
O

e
e
e
e
e
e

e
e
e
0
e
e
e
e

0
0
0
0
0
8
0
0
0
0
0
8

8
e
0
0
0
0
0

0
0
0
0
0
0
0
8
0
0
0

e
e
e

e
0
e
e
0
e

e
e
e
e

e
8
O
O
O
O
O
S

0
0
0
6
8
0
0
0
0
0
0
0

0
8
0
0
0
0

e
e
s
e
e
e
e

ab
+
-
-
+

0
0
0
0
0
0
0
0

d-$-+-+-+-+-+-td
e

e
e

©
0
0
0
0

e
e

e
e
e

6

First Edition (March 1976)

This edition applies to version 01, modification level 00 of the IBM System/3 Model 12 System

Control Program and to all subsequent versions and modifications until otherwise indicated in

new editions or technical newsletters. Changes are periodically made to the information

herein; before using this publication in connection with the operation of IBM systems, refer to

the latest /BM System/3 Bibliography, GC20-8080, for the editions that are applicable and

current,

Requests for copies of 1BM publications should be made to your 1BM representative or to the

1BM branch office serving your locality.

A Reader’s Comment Form is at the back of this publication. If the form has been removed,

address your comments to IBM Corporation, Publications, Department 245, Rochester,

Minnesota 55901.

©International Business Machines Corporation 1976

This manual provides the programmer with the information

he needs to run programs and to use system utility programs

for doing such jobs as preparing disks for use or updating

system libraries.

This publication contains two parts. Part 1 describes opera-

tion contro! language (OCL) statements; Part 2 describes

system utility programs. For information on the System/3

character sets, see the appendixes.

SYSTEM/3 MODEL 12

System/3 Model 12 is supported by system control program-

ming (SCP) and program products (PPs). The system control

programs and program libraries are resident on the attached

3340 Direct Access Storage Facility.

Two program levels are supported if the dual program

feature (DPF) is present. The scheduling and controlling of

programs in the levels is controlled by operation control

language (OCL) statements.

Model 12 provides a print spool function that enables the

user to group related print jobs on the print queue. Spool-

ing provides greater flexibility in job scheduling and re-

moves many 1/O device conflicts between program levels.

Support for the directly attached 3741 Data Station/Pro-

grammable Work Station is similar to that for a card reader.

or card punch. In this manual, unless otherwise noted,

references to card 1/O also apply to the directly attached

3741.

Preface

RELATED PUBLICATIONS

@ /BM System/3 Model 12 Introduction, GC21-5116

IBM System/3 Model 12 Operator’s Guide, GC21-5144

@ /BM System/3 Model 12 User’s Guide, GC21-5142

@ /BM System/3 Model 12 Halt Guide, GC21-51 45

@ /BM System/3 RPG I! Reference Manual, SC21-7504

e@ /BM System/3 RPG I! Additional Topics Programmer's

Guide, GC21-7567

@ /BM System/3 Subset American National Standard

COBOL Reference Manual, GC28-6452

© /BM System/3 Subset American National Standard

COBOL Compiler and Library Programmer's Guide,

$C28-6459

© /BM System/3 Disk FORTRAN IV Reference Manual,

SC28-6874

@ /BM System/3 Models 6, 8, 10, and 12 System Genera-

tion Reference Manual, GC21-5126

PART 1. OCL STATEMENTS

INTRODUCTION TO OCL STATEMENTS .

Organization of Part 1

CODING RULES

Types of Information

General Coding Rules .

Statements Beginning with //

Statements not Beginning with // .

Continuation

Comments soe

STATEMENT DESCRIPTIONS

BSCA Statement

Function

Placement

Format

Content

CALL Statement

Function .

Placement

Format

Content .

COMPILE Statement

Function .

Placement

Format

Content

Example .

DATE Statement

Function .

Placement

Format

Content

Example . . .

FILE Statement (Disk) .

Function .

Placement

Format

Content

Keyword Parameters for Single Volume Disk Files .

Keyword Parameters for Muttivolume Files .

Examples . soe

File Processing Considerations

FILE Statement (Tape) .

Function .

Placement

Format

Content coe

Multivoltume Tape Files

FORMS Statement .

HALT Statement

Function .

Placement

Format

Content

IMAGE Statement

Function .

Placement

Format

Content

Example .

P
E
W
W
W
W
N
N
D

]A

=
=
 JOB Statement

Function .

Placement

Format

Content

LOAD and LOAD * Statement

Function .

Placement

Format

Content

Example .

LOCKOUT Statement

Function .

Placement

Format

Content

LOG Statement .

Function .

Placement

Format

Content .

NOHALT Statement

Function .

Placement

Format

Content to

PARTITION Statement

Function .

Placement

Format

Content

PAUSE Statement

Function .

Placement

Format

Content .

PRINTER Statement

Function .

Placement

Format

Content

PUNCH Statement

Function .

Placement

Format

Content .

READER Statement

Function .

Placement

Format

Content

RUN Statement .

Function .

Placement

Format

Content

Contents

34

34

34

34

34

34

34

34

34

35

36

36

36

36

36

36

36

36

36

36

37

37

37

37

37

37

38

38

38

38

38

38

38

38

38

38

38

38

39

39

39

40

40

40

40

40

40

40

40

40

41

41

41

41

41

41

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

SIMULATE Statement .

Function .

Placement

Format

Content .

SWITCH Statement .

Function .

Placement

Format

Content

Example .

/& Statement

Function .

Placement

Format

Content

/* Statement

Function .

Placement

Format

Content

*(COMMENT) Statements .

Function .

Placement

Format

Content

PART 2. SYSTEM UTILITY PROGRAMS .

INTRODUCTION TO SYSTEM UTILITY PROGRAMS

OCL Statements

Control Statements .

Coding Rules

END Control Statement

Placement of Control Statements it in the Job Stream

Special Meaning of Capital Letters, Numbers, and

Special Characters .

TAPE INITIALIZATION PROGRAM-STINIT

Contro! Statement Summary

Parameter Summary

OCL Considerations .

Message for Tape Initialization

Printout of Volume Label .

Meaning of Volume Label Information .

TAPE ERROR SUMMARY PROGRAM-S$TVES

Error Logging Format

OCL Considerations

DISK INITIALIZATION PROGRAM. _gINIT

Control Statement Summary

Parameter Summary

Parameter Descriptions .

TYPE Parameter (UIN) .

UNIT Parameter (UIN) .
ERASE Parameter (UIN)

VERIFY Parameter (UIN) .

Surface Analysis .

PACK Parameter (VOL)

ID (Identification) Parameter (VOL) .

NAME360 Parameter (VOL)

OLDPACK Parameter (VOL)

OCL Considerations .

Examples .

Primary Initialization of Two Disks

Messages for Disk Initialization

ALTERNATE TRACK ASSIGNMENT PROG RAM—

SALT

Control Statement Summary

vi

41

41

41

41

41

41

41

42

42

42

42

42

42

42

42

42

42

42

42

42

42

43

43

43

43

43

45

45

45

46

46

46

47

47

47

48

49

49

49

50

50

52

52

53

53

54

55

55

55

56

56

56

56

57

57

57

57

58

58

58

59

59

59

Parameter Summary: AIT (Alternate) Statement

Parameter Descriptions .

PACK Parameter

UNIT Parameter

VERIFY Parameter .

OCL Considerations

Examples. .

Conditional Assignment .

Messages for Alternate Track Assignment

ALTERNATE TRACK REBUILD PROGRAM— $BUILD .

Control Statement Summary oo.

Parameter and Substitute Data Summary

Parameter and Substitute Data Descriptions .

PACK Parameter

UNIT Parameter

TRACK Parameter

LENGTH Parameter

DISP (Displacement) Parameter

Substitute Data .

OCL Considerations

Examples

Correcting Characters onan Alternate Track

FILE AND VOLUME LABEL DISPLAY

PROGRAM—$LABEL.

Control Statement Summary .

Parameter Summary (Cisplay Statement)

Parameter Descriptions .

UNIT Parameter .

LABEL Parameter

SORT Parameter

FORMAT Parameter

Entire Contents of VTOC

Meaning of VTOC Information

File information Only

OCL Considerations

Example. .. .

FILE DELETE PROGRAM— $DELET

Control Statement Summary

Parameter Summary

Parameter Descriptions .

PACK Parameter

UNIT Parameter

LABEL. Parameter

DATE Parameter

DATA Parameter

OCL Considerations

Examples

Deleting One of Several Files Having the Same Name

Freeing Allocated Etut Unused Space ona Disk .

DUMP/RESTORE PROGRAM—$DCOPY

Control! Statement Summary

Parameter Summary

Parameter Descriptions. .

FROM and TO Parameters (COPYPACK)

PACK Parameter (COPYPACK)

SYSTEM Parameter (COPYPACK)

BACKUP Parameter (COPYPACK)

OCL Considerations

FILE Statement Considerations

Statement Entries

Messages for DUMF/R ESTORE

60

60

60

60

60

61

61

61

62

62

62

63

63

63

63

63

63

63

64

64

64

64

66

66

67

67

67

67

67

67

67

69

71

71

72

73

74

75

75

75

75

76

76

76

77

77

77

78

79

79

80

80

80

81

81

81

81

81

82

82

Examples .

FILE Statement: From Disk to Tape .

Control Statements .

FILE Statement: From Tape to 5 Disk .

Control Statement: From Disk to Diskette

Programming Considerations

COPY /DUMP PROGRAM—$COPY

Control Statement Summary

Parameter Summary

Parameter Descriptions .

FROM and TO Parameters (COPYPACK)

OUTPUT Parameters (COPYFILE)

INPUT Parameter (COPYFILE)

LENGTH Parameter (COPYFILE)

DELETE Parameter (COPYFILE) :

REORG (Reorganize) Parameter (COPYFILE)

WOR K Parameter (COPYFILE)

SELECT KEY and SELECT PKY Parameters (SE LECT)

SELECT RECORD Parameters (SELECT)

FILE Parameter (SELECT) .

LENGTH and LOCATION Parameters (KEY)

CYLINDER Parameter (ACCESS)

SECTOR Parameter (ACCESS)

TRACK Parameter (ACCESS) .

RECL Parameter (ACCESS)

FROM Parameter (ACCESS)

DISP Parameter (ACCESS) .

Copying Multivolume Files .

Maintaining Correct Date and Volume Sequence

Nurnbers

Maintaining Correct Relative Record Numbers

Direct File Attributes :

Copy Multivolume Indexed Files .

Card and Diskette Considerations (GCOPY) .
Card or Diskette Input .

Card or Diskette Output

Tape File Considerations

OCL Considerations .

Examples . .

SIMULATION AREA PROGRAM— $SCOPY

Control Statement Summary

Parameter Summary

Parameter Descriptions .

FROM and TO Parameters (COPYAR EA)

PACK Parameter (COPYAREA)

AREA Parameter (COPYAREA)

TONAME Parameter (COPYAREA)

SYSTEM Parameter (COPYAREA)

FROM Parameter (CLEAR)

PACK Parameter (CLEAR)

AREA Parameter (CLEAR)
CLRNAME Parameter (CLEAR)

ID Parameter (CLEAR)

TYPE Parameter (CLEAR)

TO Parameter (NEWNAME)

PACK Parameter (NEWNAME)

AREA Parameter (NEWNAME)

TONAME Parameter (NEWNAME)

PRINT Parameter (NAMES)

FROM and TO Parameters (MOVE)

PACK Parameter (MOVE) .

83
83
83
84
85
85
86
87
89
92
92
92
92
92
93
93
94

94
95
95

95
95
95
95
95
95
95
96

96
96
96

96.1
96.1
96.1
96.1
96.1
96.1

97
. 108.1

109
109
110
110
110
110

114
411
111
111
111
111
111
111
111
111
112
112
112
112
112

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

AREA Parameter (MOVE) .

TONAME Parameter (MOVE) .

(D Parameter (MOVE)

SYSTEM Parameter (MOVE)

CLRNAME Parameter (MOVE)

FROM and TO Parameter (COPYIPL)

PACK Parameter (COPYIPL)

OCL Considerations

Examples

LIBRARY MAINTENANCE PROGRAM—$MAINT

Library Description . . :

Location of Libraries on Disk :

Organization of Library Entries

Organization of this Section

Allocate Function

Uses

Control Statement Summary

Considerations and Restrictions

Parameter Summary

Parameter Descriptions .

Using the Allocate Function

Copy Function

Uses

Control Statement Summary

Parameter Summary

Library Directories .

Naming Library Entries

Retain Types

Using the Copy Function

Delete Function .

Uses .

Considerations and Restrictions

Control Statement Summary

Parameter Summary

Modify Function

Uses

Considerations and Restrictions

Control Statement Summary

Parameter Summary . .

Remove, Replace, Insert Parameters .

Rename Function

Uses

Control Statement Summary

Considerations and Restrictions

Parameter Summary

OCL Considerations

Examples

Reassign Alternate Track Program—$RSALT

Control! Statement Summary

Parameter Summary

Parameter Descriptions .

OCL Considerations

Examples.

RECOVER INDEX PROGRAM— $RINDX

OCL Considerations.

Considerations and Restrictions

Examples .

APPENDIX A. IBM SYSTEM/3 STANDARD

CHARACTER SET

INDEX

112
112
112
112
112
112
113
113
113
116
116
117
117
118
119
119
119
120

"420.1
121
123
126
126
127
131
133
133
133
134
142
142
142
143
144
145
145
145
146
147
148
148
148
148
148
149
149
150
160
160
160
160
160
160

. 160.1

. 160.3

. 160.3

. 160.4

161

163

vii

vill

Introduction to OCL Statements

Operation control language (OCL) is your means of com-

munication with the IBM System/3 Model 12 System

Control Program. You must write a set of OCL state-

ments for each program you want to run. Based on the

information supplied by the OCL statements, the System

Control Program will load and run your programs or

perform system utility functions.

System control programs must be in main storage before

your jobs can be run. These programs are located on disk

and are brought into storage by a procedure called initial

program load (IPL). IPL is performed by the operator when

the system is powered on. For more information on IPL,

see /BM System/3 Model 12 Operator’s Guide, GC21-5142.

The DATE statement is part of the IPL process and must

precede the first LOAD or CALL statement of your pro-

gram. (See DATE Statement under Statement Descriptions

for more information.)

Part 1. OCL Statements

ORGANIZATION OF PART 1

Part 1 is divided into:

Coding Rules. Defines the general contents of the OCL

statements and explains the rules for writing the state-

ments. .

Statement Descriptions. Explains the functions, format,

and contents of each OCL statement, and the places in

the job stream where the statement may be used.

Statement Examples. Presents and explains a job stream

containing most of the OCL statements.

Introduction to OCL Statements 1

Coding Rules

TYPES OF INFORMATION

Operation control language (OCL) statements contain, at

most, three types of information: a name or comment, a

statement identifier, and parameters. A name on the LOAD

or JOB statement supplies a label to the unit of work (a job

or a job group). The comment allows you to assign a state-

ment identifier for ready reference. A statement identifier

distinguishes one statement from another. A parameter is

additional information supplied with the statement identi-

fier. Figure 1 shows the general form of OCL statements.

Comment

// Name or identifier Parameter 1, Parameter 2, ..., Parameter n

Figure 1. General Form of OCL Statements

Name

The name is required only on the JOB statement. It is also

used by the system if given on a LOAD statement.

Statement Identifiers

Every OCL statement needs one of the following identifiers:

BSCA JOB PUNCH

CALL LOAD READER

COMPILE LOCKOUT RUN

DATE LOG SIMULATE

FILE NOHALT SWITCH

FORMS PARTITION /&

HALT PAUSE * (asterisk)

IMAGE PRINTER

LOAD is an example of a statement identifier.

Parameters

Some statements need parameters; others do not. (See

Statement Descriptions for an explanation of the statements

that need parameters.) Parameters can be either codes or

data. A code is a word or group of characters that has a

certain meaning. Data is information such as the names,

locations, and lengths of files on disk. (See Statement

Descriptions for data and code restrictions on parameters.)

In the following example, PROG2 is the name of an RPG II

object program, and F1 is a code that stands for simulation

area F1 on drive 1, PROG2 is a data parameter and F1 isa

code parameter. (For additional information on simulation,

see Simulation on 3340 in the /BM System/3 Model.12

User’s Guide, GC21-5142.)

~

ay

ao

=

N

ay

a

N

Oo

24 28 32 36

Some statements require certain words in parameters to tell

one parameter from another. The words are called key-

words. Parameters containing keywords are called key-

word parameters. |n Figure 2, NAME-MASTER, PACK-

VOL1, and UNIT-Fi1 are keyword parameters. NAME,

PACK, and UNIT are keywords. MASTER and VOL1 are

data parameters. R1 is a code parameter. There should

always be a hyphen between the keyword and the code or

data parameter.

_

ps
y

fee
]

—
_

No

—_

o

N
 Oo

NO

pb

N

0

ie
)

No

Ww

oO

(ATTAIN Wael-Malstrelel [aac d-volcl2

Se

Figure 2. Keyword Parameters

GENERAL CODING RULES

In Part 1 of this manual, the numbers that appear above

statement formats and examples indicate the card columns

or line positions occupied by the statements. In statement

formats, special characters, such as //, and words written in

capital letters are information that must be used exactly as

shown. Words written in small letters, such as code,

program-name, and unit, represent information that you

must supply.

Braces (1) sometimes appear in parameters shown in

statement summaries and parameter summaries. They

are not part of the parameters. They simply indicate that

you must choose one of several values to complete the

parameter. For example, RETAIN- e means you can use

either RETAIN-T or RETAIN-P.

Statements Beginning with //

The rules for coding the statements are as follows (the term

position refers to either card column or line position):

@ Place the // in positions 1 and 2.

@ Leave one or more blanks between the // and the word

that forms the statement identifier (LOAD, RUN, CALL,

etc).

@ Leave one or more blanks between the end of the state-

ment identifier and the first parameter.

@ If you need more than one parameter, use a comma to

separate them. No blanks are allowed within or between

parameters. (For the exception to this rule, see the

description for the HIKEY parameter under F/LE State-

ment (Disk)). Anything following the first blank is con-

sidered a comment (see Comments).

e If you are writing keyword parameters, place the key-

word first and use a hyphen to separate the keyword

from the code or data parameter.

e@ Ifthe parameter is not a keyword parameter, write the

parameters in the order in which they are discussed in

this manual.

Figure 3 illustrates the coding rules. The statement identi-

fiers are LOAD and FILE. The parameters are PROG1, R1,

NAME-MASTER, UNIT-R1, and PACK-VOL1. The last

three parameters are keyword parameters.

Figure 3. Illustration of General Coding Rules

Statements not Beginning with //

* and /& statements do not require // preceding them when

coded. (See Statement Descriptions for * and /& state-

ments.)

Continuation

All OCL statements except FILE, PRINTER, COMPILE,

and FORMS must not exceed 96 characters, including

blanks and comments. (Data for the IMAGE statement re-

quires continuation for the record containing the chain

image characters, but the data follows different continua-

tion rules. See (MAGE Statement under Statement

Descriptions for more information.)

The continuation rules are as follows:

® Place a comma after the last parameter in every record

except the last. The comma, followed by. a blank, tells

the system that the statement is continued in the next

record.

@ Begin each new record with a // in positions 1 and 2.

@ Leave one or more blanks between the // and the first

parameter in the record, (See H/KEY Parameter under

FILE Statement (Disk) for exception to this rule.)

Figure 4 illustrates the continuation rules.

1 4 8 12 16 20 24 28 32 36

Ml / | IMAME|-|MalSITIElR\ |
I/ LlaiBiele|-|4 /|c|e|/|MG |OAliel-7\2\91691,
i\/ UM i|7i-la\ 4), |Aalcla-\iolcit

Figure 4, WMlustration of Continuation Rules

Coding Rules 3

Comments

You can include comments in the following places in your

statements:

@ Following the // in statements beginning with //. Begin

the comment in position 3, immediately following the

//. You can use up to 8 characters without blanks.

Leave one or more blanks between the comment and the

word forming the statement identifier. Figure 5 contains

such a comment. The word BILLING is the comment.

(On a JOB statement the word BILLING is the group-

name, and on a LOAD statement BILLING is the job-

name.)

@ After the last parameter. Leave one or more blanks

between the last parameter and your comment. The

comment can be any combination of characters. If the

statement is continued in subsequent cards or lines, you

can place comments after the last parameter in any of

the cards or lines.

@ After statements without parameters. Leave one or

more blanks between the statement identifier and your

comment. Examples of statements without parameters

are: /&, // PAUSE, and // RUN. (Statements with all

parameters optional and unused cannot contain this

type of comment.)

In addition to writing comments within your OCL state-

ments, you can include whole cards or lines of comments.

The OCL comment statement is provided for that purpose.

(See * (Comment) Statements under Statement Descrip-

tions for more information.)

1 4 8 12 16 20 24 28 32 36

Statement Descriptions

Each OCL statement is described separately in this section.

The following information is given for each statement:

@ The function of the statement.

® The placement of the statement in regard to other state-

ments and the circumstances under which the statement

is needed.

@ The format of the statement.

@ The contents of the statement, explaining the parameters

that can be used in the statement.

Figure 6 gives the function, placement, and restrictions on

use for each OCL statement.

Figure 7 describes the contents of the OCL statements. It is

meant for reference only. If you are not familiar with an

entry, or you do not know when to use or omit it, refer to

the proper statement in the remainder of this section.

When using Figure 7, remember that words written in small

letters (such as filename or value) require a choice on your

part, depending on the functions you want the statement to

perform. Refer ta Figure 7 to see which parameters are

available. Capitalized parameters must be coded along with

the data or code parameter.

 ~~

Figure 5. Comment Following //

Placement

//groupname JOB the spool file. ment for a group.

Statement Function Statement Appears Statement Appears Restrictions On Use

in Job Stream in a Procedure

// BSCA Changes the BSCA line Must follow LOAD or Must follow the LOAD

number. CALL statement and statement and precede

precede the RUN state- the RUN statement (if

ment. RUN is used).

// CALL Identifies procedure to Must precede the Indicates chained Can be no more than nine

be merged into job RUN statement. procedures. levels of nested chained

stream and the simula- procedures.

tion area containing the

source library from

which to read the

procedure.

// COMPILE Tells the system where Must follow LOAD or CALL Must follow the LOAD

the source program to statement and precede the statement and precede the

be compiled is located RUN statement. RUN statement (if RUN is
and where to place the used).

object. program.

//DATE Supplies the system with Must follow LOAD or CALL Must follow the LOAD Must be supplied during the

a date; this date is given statement and precede the statement and precede the initial program load. If

to disk files being created. RUN statement except at RUN statement (if RUN is used after IPL, the effect of

IPL time, when it must used). the statement is for that job

precede the first LOAD only.

or CALL statement.

// FILE Supplies information Must follow LOAD or CALL Must follow the LOAD Required for every new file

about the file to the statement and precede the statement and precede the created and existing files being

system. RUN statement. RUN statement (if RUN used.

is used).

// FORMS Same as the PRINTER Cannot be used to override
statement. the PRINTER statement in

a procedure.

// HALT Instructs system to halt Anywhere among the Must precede the RUN

when program ends; OCL statements. statement (if RUN is

cancels the effect of the used).
NOHALT statement.

// IMAGE Tells the system to re- Anywhere among the Must precede the Required if the printer

place the chain-image OCL statements. RUN statement (if chain has been changed.

area with characters RUN is used).
indicated in the fol-
lowing data statements

or characters keyed in

or read from source

library.

// JOB Allows you to group Must precede the first Cannot be used ina
or print jobs together on LOAD or CALL state- procedure.

Figure 6 (Part 1 of 3). Table of OCL Statements

Statement Descriptions 5

Placement

/{jobname LOAD

// LOAD *

or

//jobname

LOAD *

// LOCKOUT

// LOG

// NOHALT

/f PARTITION

// PAUSE

// PRINTER

// PUNCH

the simulation area that

contains the object

library from which it

is to be loaded.

Indicates that the object

program will be loaded

from the system input

device following the

RUN statement.

Disables the other pro-

gram level to allow

fast job initiation in

the program level in

which the LOCKOUT

statement was read.

Instructs system to start

or stop printing OCL

statements and codes,

indicates the device to

be used to print them,

and controls page eject

at the end of job.

Instructs system to

continue without

stopping when a

program ends.

Causes certain halts

to default.

Guarantees a minimum

size to level 2 for a

program in that level.

Tells the program to stop

in order to give the

operator time to per-

form a function.

Operator must restart

program.

Enables you to describe

the functions performed

by the system print

device and controi

options related to print

spooling.

Enables you to change

the system punch device.

the JOB statement (if

JOB is used).

Must precede the RUN

statement. Must follow

the JOB statement (if

JOB is used).>

Anywhere among the

OCL statements.

Anywhere among the

OCL statements.

Anywhere among the

OCL statements

Anywhere among the

OCL statements.

Anywhere among the

OCL statements.

Anywhere among the

OCL statements.

Anywhere among the

OCL statements.

used), Only one LOAD
statement is allowed in

a procedure.

Must precede the RUN

statement (if RUN is

used). Only one LOAD *

statement is allowed ina

procedure.

Must precede the RUN

statement (if RUN is

used).

Must precede the RUN

statement (if RUN is

used).

Must precede the RUN

statement (if RUN is

used).

Must precede the RUN

statement (if RUN is
used).

Must precede the

RUN statement (if

RUN is used).

Must precede the RUN

statement (if RUN is

used). Cannot be used

to override the FORMS

statement in a procedure.

Must precede the RUN

statement (if RUN is
used).

Statement Function Statement Appears Statement Appears Restrictions On Use

in Job Stream in a Procedure

// LOAD Identifies the program Must precede the RUN Must precede the RUN
or to be run and indicates statement. Must follow statement (if RUN is

LOAD * cannot be used in

program level 2.

Ignored on a non-DPF

system.

Device cannot be

specified in program

level 2.

Cannot be submitted in

program level 2 or when

program level 2 is processing.

Figure 6 (Part 2-of 3). Table of OCL Statements

Placement

// SIMULATE

// SWITCH

/&

* (Comment)

OCL statements for a

program and tetls the

system to run the

program.

instructs the system to

turn simulation ON or

OFF on D2. This also

enables or disables R2

and F2,

Used to set one or more

external indicators on

or off or leave the in-

dicator as it is.

Provides OCL security

from previous job.

Used to explain the job

or give the operator

instructions; does not

affect the program in

operation.

statement.

Must not come between

a LOAD or CALL anda

RUN,

Must follow LOAD or

CALL statement and

precede the RUN

statement.

Recommended as the first

statement of a job.

Anywhere.

Cannot be used ina

procedure.

Must follow the LOAD

statement and precede the

RUN statement (if RUN
is used).

Not allowed ina

procedure,

Anywhere.

Statement Function Statement Appears Statement Appears Restrictions On Use

in Job Stream in a Procedure

// READER Changes the system input Must precede LOAD or Must precede the LOAD In a procedure, OCL state-

device used toread OCL CALL statement or follow statement (if LOAD is ments are not read from

statements. the RUN statement and used). the input device until the

precede the next LOAD procedure is completely

or CALL statement. executed.

// RUN Indicates the end of the Must be the last OCL May be the last statement. Required in the job stream

for each program which is

to be run.

Other program level must

be at end of job. A rollin

cannot be pending.

Can be used in the job stream

only.

Figure 6 (Part 3 of 3). Table of OCL Statements

Statement Descriptions 7

Statement Parameter Code Meaning of Code

// BSCA LINE LINE-1 Change all BSCA DTF line codes to the line number
2 specified.

ff CALL procedure name name Name that identifies the procedure in the source

library.

unit R1 Simulation area containing the procedure (see

R2 note).
F1

F2

// COMPILE SOURCE SOURCE-name Name of source program.

UNIT UNIT-R1 Simulation area that contains the source library (see

R2 note).

Fi

F2

OBJECT OBJECT-R1 Where to place the object program (see note).

R2 Does not apply to object program placement for

F1 COBOL or FORTRAN compilers.

F2

// DATE date mmddyy or System date or date within a set of statements.

ddmmyy

// FILE NAME NAME-filename Name the program uses to refer to the file.
(Disk

Files) UNIT UNIT-R1 Simulation area that contains or will contain the file

R2 (see note].
F1

F2

D1 Location of the main data area that contains or will

D2 contain the file.

PACK PACK-name Name of disk that contains or will contain the file.

LABEL LABEL-filename Name by which your file is identified on disk.

RECORDS or RECORDS-number of Amount of space needed on a disk for a file.

TRACKS TRACKS-number

LOCATION LOCATION-track Number of track on which file begins or is to begin

number (simulation area only).

LOCATION-cylinder Cylinder number on which file begins or is to begin.

number Track assumed zero (main data area only).

LOCATION-cylinder Cylinder number, track number on which file begins

number/track number or is to begin (main data area only).

RETAIN RETAIN-T Temporary file

S Scratch file

P Permanent file

A Reactivate scratch file (simulation area only).

Note: For an explanation of the unit codes, see Simulation Area in the [BM System/3 Model 12 User’s Guide, GC21-5142.

Figure 7 (Part 1 of 5). Table of Parameters

Statement Parameter Code Meaning of Code

DATE DATE-mmddyy The date the file was created.

ddmmyy

HIKEY HIKEY-‘highest List of highest key fields

key fields allowed’ allowed on each pack.

// FILE NAME NAME-filename Name that the program uses to refer to the file.

(Tape File)
UNIT UNIT-T1 Where the tape that-contains or wil! contain the

T2 file is mounted.

T3

T4

REEL REEL-name Name of the tape that contains or will contain the

file.

-NL The tape is not labeled.

-NS The tape contains non-standard labels.

-BLP Bypass label processing of standard labeled tapes.

LABEL LABEL-filename Name by which your file is identified on tape.

or

LABEL-'‘character

string’

DATE DATE-mmddyy Tells the system the date the file was created.

ddmmyy

RETAIN RETAIN-nnn The number of days a file should be retained before

it expires.

BLKL BLKL-block length The number of bytes in a physical block of tape.

RECL RECL-record length The number of bytes in a logical record.

RECFM RECFM-F Fixed length, unblocked records.

-V Variable Jength, unblocked records.

-D Variable length, unblocked, D-type ASCII records.

-FB Fixed length, blocked records.

-VB Variable length, blocked records.

-DB Variable length, blocked, D-type ASCII! records.

END END-LEAVE The tape remains in its present position after the

file is processed.

-UNLOAD The tape is rewound and unloaded after processing.

-REWIND The tape is rewound after processing.

Figure 7 (Part 2 of 5). Table of Parameters

Statement Descriptions 9

Statement Parameter Code Meaning of Code

DENSITY DENSITY-200 The tape will be written at 200 bpi (bits per inch)

density.

-556 The tape will be written at 556 bpi density.

-800 The tape will be written at 800 bpi density.

-1600 The tape will be written at 1,600 bpi density.

ASCII ASCII-YES An ASCII file is being processed.

-NO An EBCDIC file is being processed.

DEFER DEFER-YES The tape volume will be mounted later.

-NO The tape is presently mounted.

CONVERT CONVERT-ON Data read from or written to a 7-track tape file will

be converted,

-OFF Data read from or written to a 7-track tape file will

not be converted.

TRANSLATE TRANSLATE-ON Data read from or written to a 7-track tape file will

be translated.

-OFF Data read from or written to a 7-track tape file will

not be translated.

PARITY PARITY-EVEN The 7-track tape file will be read or written in even

parity.

-ODD The 7-track. tape file will be read or written in odd

parity.

// FORMS Same as PRINTER Same as PRINTER Same as PRINTER statement.
statement. statement.

1 HALT none

// IMAGE format HEX Indicates characters from the system input device

are in hexadecimal form.

CHAR Indicates characters from the system input device

are in EBCDIC form.

MEM Indicates characters are from the source library.

number value Number of new characters.

name name Identifies the characters in the library.

unit R1 Simulation area that contains the library (see note).
R2

F1

F2

Figure 7 (Part 3 of 5). Table of Parameters

10

Statement Parameter Code Meaning of Code

0

a

//groupname JOB PRIORITY PRIORITY- ; Specifies the priority of jobs in the spool file.

Default is 1.
4

5

YES . . . og:
SPOOL SPOOL-< —~ Indicates whether the group of jobs identified by the

N . .
groupname is to be spooled. Default is YES.

{{LCAD asterisk * Program is to be loaded from the system input device.

or

//jobname LOAD

// LOAD
or

//jobname LOAD

// LOCKOUT

//LOG

// NOHALT

// PARTITION

// PAUSE

// PRINTER

program name

unit

none

code

mode

SEVERITY

size

none

DEVICE

LINES

FORMSNO

name

Ri

R2

F1

F2

CONSOLE

PRINTER

OFF

ON

EJECT

NOEJECT

1

2
SEVERITY- 4

8

value

5203

DEVICE-5203L

5203R

LINES-number

FORMSNO-forms

number

Name of program that is to be loaded from disk.

Simulation area that contains the object library (see

note).

Use printer-keyboard as logging device.

Use printer as logging device.

Stop printing.

Start printing.

Eject a page at end of job.

Suppress page eject at end of job.

When you use the spool writer, an eject occurs at the

start of every job, regardless of the mode specified in

the LOG statement.

Tells the system to select default options for error

halts.

Minimum size of program level 2 in decimal bytes.

5203/5203L specifies left carriage 5203 or 1403.
5203R specifies right carriage 5203.

Specifies the number of print lines per page.

Informs the operator which forms type should be

mounted on the printer.

Note: For an explanation of the unit codes, see Simulation Area in the /BM System/3 Model 12 User’s Guide, GC21-5142.

Figure 7 (Part 4 of 5). Table of Parameters

Statement Descriptions 11

Statement Parameter Code Meaning of Code

COPIES COPIES-number With spooling active, allows you to obtain more than

one copy of each job’s printed output.

YES . oe wo
DEFER DEFER-g Allows you to begin printing a job’s spooled output

before the job completes execution (DEF ER-NO).
Default is DEFER-YES.

YES .
ALIGN ALIGN. Allows you to perform forms alignment for spooled

—_ printed output (ALIGN-YES). Default is ALIGN-NO.

// PUNCH system punch device MFCU2 Secondary hopper of MFCU.

MFCU1 Primary hopper of MFCU.

1442 Card Read/Punch.

3741 Data Station/Programmable Work Station.

// READER system input device CONSOLE Printer-key board.

MFCU2 Secondary hopper of MFCU.

MFCU1 Primary hopper of MFCU.

1442 Card Read/Punch

3741 Data Station/Programmable Work Station.

// RUN none

// SIMULATE status ON Enables/disables simulation on drive 2, // SIMULATE

OFF OFF allows offline multivolume files to be processed

on D2.

// SWITCH indicator-settings Refer to SWITCH

Statement under

Statement Descriptions

/& none

* (Comment) none

Figure 7 (Part 5 of 5). Table of Parameters

BSCA STATEMENT

Function

Placement

The BSCA statemerit must follow the LOAD or CALL state-

ment and precede the RUN statement.

The BSCA statement allows you to change all BSCA (binary

synchronous communications adapter) line specifications

in your program; therefore, you can use either BSCA line

without recompiling the program. (The program must have

been compiled on a system that had both BSCA lines speci-

fied during system generation.) If the BSCA statement is

not entered, the line specifications in the program are not

changed.

12

Format

// BSCA parameter.

Content

The parameter is a keyword parameter. The parameter is

LINE-code. The codes are as follows:

Code Meaning

1 Change all BSCA line specifications to BSCA

line 1.

2 Change all BSCA line specifications to BSCA

line 2.

CALL STATEMENT

Function

CALL statements are needed only when you want to merge

procedures into the job stream.

To understand the function of the CALL statement, you

must understand the relationship between the job stream

and procedures. The job stream contains the OCL state-

ments that control the system. The system reads them

from the system input device. Procedures are sets of OCL

statements in a source library on a simulation area. They

have no effect on the system until they are merged into

the job stream.

You can modify the procedure identified by a CALL state-

ment, by providing other OCL statements (procedure over-

ride statements, see Changing Parameters in the /BM

System/3 Model 12 User’s Guide, GC21-5142) after the

CALL statement. These statements temporarily modify the

procedure. The last statement of the CALL sequence must

be a RUN statement. The RUN statement is required, how-

ever, whether or not you supply other OCL statements.

(For further explanations, see Procedures in the /BM

System/3 Model 12 User’s Guide, GC21-5142.)

Placement

CALL statements can be used in the job stream or ina

procedure. They are, in effect, replaced by the procedures

they identify. The last statement of the CALL sequence

must be a RUN statement.

Format

// CALL procedure-name,unit

Content

Procedure-name: The procedure-name is the name that

identifies the procedure in the source library. You supply

the procedure-name in the Library Maintenance control

statements when you use the program to place the pro-

cedure in the library. (See Library Maintenance in Part 2

of this manual for restrictions on procedure-name.)

Unit: The unit parameter is a code indicating which simu-

lation area contains the procedure. The codes are R1, F1,

R2, and F2.

COMPILE STATEMENT

Function

The COMPILE statement tells the system two things: (1)

where the source program to be compiled is located if it is

coming from a source library; (2) where the object program

is to be placed. (An object program is a source program

that has been compiled or translated into machine language.)

Placement

The COMPILE statement must be within the set of QCL

statements that apply to the compilation. The COMPILE

statement must follow the LOAD or CALL statement and

precede the RUN statement.

Format

// COMPILE parameters

Content

All the parameters are keyword parameters (keywords are in

capital letters). The keywords are: SOURCE, UNIT, and

OBJECT.

SOURCE: The SOURCE parameter tells the system the

name of the source program. The keyword SOURCE must

be followed by the name of a source program. The name is

the name by which the source program is identified in the

source library.

Statement Descriptions 13

You can place source programs in a source library by using

the Library Maintenance program. The program name you

supply in Library Maintenance control statements is the

name used to identify the source program in the library.

(For more information, see Library Maintenance in Part 2 of

this manual.)

If the SOURCE parameter is not used, the source program is

assumed to be in the job stream following the RUN state-

ment.

The SOURCE parameter must always be accompanied by

the UNIT parameter.

UNIT: The UNIT parameter is used only when the

SOURCE parameter is used.

The UNIT parameter is a code indicating which simulation

area contains the source library. The codes are R1, F1, R2,

and F2.

OBJECT: The OBJECT parameter tells the system where to

place the object program. The OBJECT parameter may be

specified without using the SOURCE and UNIT parameters.

The codes which are used to indicate the simulation area in

which the object program is to be placed are R1, F1, R2,

and F2.

Note: \|f the OBJECT parameter is omitted, it is assumed

that the object program is to be placed in the same simula-

tion area as the compiler. The OBJECT parameter does not

affect FORTRAN or COBOL object programs.

Example

The following sample COMPILE statement tells the system

that the source program with the name PROGS is located

in the simulation area F1 on drive 1.

40

Nil \clomA cle Islolulacte|-[ARolelzy lua |7]-[Aa] Jollee

The parameter OBJECT-R1 tells the system to place the

object program in the simulation area R17 on drive 1.

14

DATE STATEMENT

Function

The DATE statement gives the system a date, called the

system date. The system date is referred to by RPG II

field names UDATE, UMONTH, UDAY, and UYEAR.

The preceding field names can also be used in a reference

to the date given to the disk files when they were created.

A DATE statement within the set of statements for a pro-

gram changes the system date, but only for that program.

When the program ends, the date supplied in the DATE

statement at IPL time is again used. There can only be one

DATE statement per job.

Placement

A DATE statement is always required before the first LOAD

or CALL statement after initial program load (IPL).

A DATE statement can also appear within any of the sets of

statements for your programs. The DATE statement must

follow the LOAD or CALL statement and precede the RUN

statement.

Format

// DATE date

Content

The system date can be in either of two formats: month-

day-year (mmddyy) or day-month-year (ddmmyy). You

must specify the format at system generation time. (See

IBM System/3 Models 6, 8, 10, and 12 System Genera-

tion Reference Manual, GC21-5126, for more information

on system generation.) The date you specify must be in

that format.

Example

The date can be written with or without punctuation. For

example, February 25, 1976, could be specified in any one

of the following ways:

02-25-76

25-02-76

022576

250276

Month, day, and year must each be two-digit numbers, but

leading zeros in month and day may be omitted when

punctuation is used (2-25-76 or 25-2-76). In the punctuated

format, any characters except commas, quotes, numbers, and

blanks can be used as punctuation.

FILE STATEMENT (DISK)

Function

The FILE statement provides information about the files on

a data module so that disk system management can read and

write records for user programs.

Placement

The 3340 is referenced through OCL statements at execu-

tion time. During operation in a DPF environment on the

Model 12, either or both drives can be addressed by both

program levels, but the same file cannot be addressed by

both program levels at the same time unless:

@ Both program levels are using a file as input only

@ One program level is using a file as input and the other is

using it as update

Files can reside in the main data area or in the simulation

areas. A FILE statement must be provided for each file

used by your programs. It must be between the LOAD and

RUN or CALL and RUN statements for each program using

the 3340. Split cylinder files are not supported on the 3340.

The maximum number of files allowed is explained in

Maximum Number of Files in the 1BM System/3 Model 12

User’s Guide, GC21-5142.

Format

// FILE parameters

Statement Descriptions 15

Content

the file name:

Figure 8 summarizes the keywords of the FILE statement.

The following sections provide additional information Program File Name

about the keyword parameters.

Copy/Dump Input COPYIN

Output COPYO
Keyword Required

Keyword Parameter or Optional Disk Sort Input = INPUT

Work WORK (optional)

NAME Filename Required Output OUTPUT

PACK Name Required
Assembler Input $SOURCE

UNIT Code Required Output $WORK

LABEL Filename Optional Work $WORK 2

DATE Date Optional
COBOL Input $SOURCE

RETAIN Code Optional Compiler Work S$WORK

RECORDS or | Number Required for creat- Work $WORKX

TRACKS Number ing files

LOCATION {Cylinder number | Optional FORTRAN Input $SOURCE
(main data area Compiler Work $WORK

only)
- RPG II Input $SOURCE

Cylinder number/ | Optional Compiler Work $WORK

track number

(main data area 1255 Utility Output F1255
only)

Track number Optional RPG I! Auto Input $SOURCE

(simulation Report Work $WORK
area only)

HIKEY (main | Highest allowed Optional Macro Processor Output $SOURCE

data area only) | key fields
Overlay Linkage Input $SOURCE

Figure 8. Description of Parameters on the OCL FILE Statement Editor Work SWORK

for the 3340

Any program Work $INDEX45 (for

using large main data area

Keyword Parameters for Single Volume Disk Files indexed files file)

NAME: The NAME parameter is required for the FILE

statement. It informs disk system management of the name

that your program uses to refer to the file. The filename

can be any combination of characters except commas,

apostrophes, or blanks. The first character must be alpha-

betic and the number of characters must not exceed 8.

16

The following list shows the program, the type of file, and

These files

must be in

a simulation

area

PACK: The PACK parameter is also required for the FILE

statement. It informs disk system management of the name

of the main data area or simulation area that contains or will

contain the file. The management routines check this name

to ensure that it is the same as the name in the volume label

of the area being used. This parameter can consist of from

1 to 6 characters, excluding the apostrophe, comma, and

blank.

UNIT: The UNIT parameter is the last of the required param-

eters in the FILE statement. It supplies the location of the

main data area or simulation area that contains the file. The

possible codes are F1, R1, F2, R2, D1, and D2.

=

b

ise
)

_
 ed

_

oO

N

i=
)

Ls
)

ib

N

wo

je
)

Ny

&

[o>
)

The preceding example shows how the UNIT parameter for

a file located in the main data area on drive 1 would be

coded.

LABEL: The LABEL parameter refers to the filename by

which the file is identified in the VTOC. This parameter is

required only if the filename in a program differs from the

filename on the main data area or simulation area. If a new

file is being created and the LABEL parameter is omitted,

the filename from the NAME parameter is used.

—
_

L

ee
)

=

Ny

=

fp
)

NO

Oo

N

BS
S

N)

eo

[os
]

NO

QW

fo»
)

L

Oo

BA
S

Sb

h

ies
)

ol

NO

N
e

The preceding example shows how the LABEL parameter

for a file named PAYROLL would be coded.

Statement Descriptions 17

DATE: The DATE parameter is required when two or more

files having the same name exist on a main data area or

simulation area and a file with a particular date is desired.

The creation date of the desired file is coded in the DATE

parameter. If two or more files with the same name exist

ona main data area or simulation area and neither the date

nor the location is given, the file having the latest creation

date is selected. The date must be in the format month-

day-year or day-month-year as was specified at system-

generation time. The date must be written as a six-digit

number with three fields of two digits without punctuation,

or three fields of one or two digits with the fields separated

by punctuation. Any characters except numbers, apostro-

phes, commas, or blanks can be used as punctuation.

1 4 8 12 16 20 24 28 32 36 40 44 48 32 56 60 64

AA VANE |MAMel-|Fiilelelal |oalriel-igj2/\05\/|716| ,|AAc UM |7}-lola| \elalaie\z 4 :

AU [evece [MalMel-\Al/\clee, |al7iel-\a2\/|aje/|716| UM? |7|-\0. 11, |AAICIK|- i012 | | |ALE| LE

In the preceding example are the NAME, LABEL, and

DATE parameters for two versions of a file on the same

disk, one written on January 5, 1976, the other on February

6, 1976. Both files have the same label: FOQOO1.

RETAIN: The optional RETAIN parameter indicates the

classification of the file when it is created. The classifica-

tions are:

Code Meaning

S Scratch file. A scratch file is intended for use

by the current program and does not exist after

the completion of the current program. S is

also used to remove a temporary file so that its

space will be available to subsequent programs.

T Temporary file. A temporary file is one that

has short-term usefulness and can be over-

written when this usefulness has ended.

P Permanent file. A permanent file is one that is

expected to be maintained permanently on the

data module.

A Reactivate scratch file. RETAIN-A must be

coded to reactivate a scratch file, which changes

it to a temporary file. This can only be speci-

fied for files in the simulation area.

The file is assumed to be temporary if the RETAIN param-

eter is omitted at file-creation time.

18

1 4 8 12 16 20 24 28 32 36 40 60

MTA cle |MAMel-|/IMVi, |PAlclK|-| /Magalsi7ielet |r 17-1 Al
 ~

The preceding example shows how the RETAIN parameter

is coded for a permanent file.

RECORDS or TRACKS: Either the RECORDS or TRACKS

parameter, but not both, can appear in the FILE statement.

One of these is required for files being created and indicates

the amount of space necessary for the file. If the file is

being referenced, these parameters inform disk system

management of the amount of space that was used for the

file when it was created. The space requirement is specified

as the number of records in the file (RECORDS) or as the

number of tracks (TRACKS). When more than one file on

the same main data area or simulation area has the same

filename, this keyword parameter can be used to identify

the desired file. Two restrictions are applicable when the

space requirement is defined:

@ If RECORDS is used, the number can be up to six digits

long and must be within the range of 1 through 999999.

@ If TRACKS is used, the number can be up to four digits

long and must be within the range of 1 through 3320

when the file is in the main data area or 1 through 398

when the file is in a simulation area.

—

oo

ies
)

=

No

=

[o
>

NO

°o

NO

A

N

fee
)

io
)

No

w

o

48

J

The preceding example shows how the TRACKS parameter

for a file requiring 20 tracks is coded and how the

RECORDS parameter is coded if a file contains 250 records.

Statement Descriptions 19

LOCATION: For the main data area, the optional LOCA-

TION parameter is used to specify the cylinder and track

on which the file is to start; for a simulation area, this

parameter is used to specify the track on which the file is to

start. You can specify either the cylinder number or the

cylinder number and the track number for the main data

area. If the track number is omitted, it is assumed to be

zero. For the main data area, the cylinder number must be

from 1 through 166 and the track number from O through

19. The cylinder number and track number, when specified

together, must be separated by a slash (ccc/tt). For a simu-

lation area, the track number must be from 8 through 405.

When you are accessing an existing file, the LOCATION key-

word parameter must be identical to that used in creating

the file. When you are creating a file, this parameter speci-

fies the beginning position of the file.

When two or more files on the same main data area or simu-

lation area have the same filename, this keyword parameter

can be used to identify the desired file.

Keyword Parameters for Multivolume Files

For online multivolume files, the keyword parameters that

require lists are PACK, UNIT, TRACKS, RECORDS, LOCA-

TION, and HIKEY. These parameters require lists to

describe both data modules containing the file. For offline

multivolume files, lists are also used, but UNIT does not

require a list since all the volumes must be mounted on the

same drive (D2).

You must follow certain rules when indicating the lists for

these parameters:

@ The lists must be enclosed in quotes.

@ The items in the list must be separated by commas.

@ The lists, except for HIKEY, must not contain blanks.

The functions of the keyword parameters have been ex-

plained (except for HIKEY which is explained here); there-

fore, only the considerations for using the lists in these

parameters are explained here.

PACK: The list for this parameter contains the names of

the volumes in the order they are to be used.

UNIT: \f the number of units specified for this parameter

is less than the number of volumes specified for the PACK

parameter, the file is processed as an offline multivolume

file.

20

For online multivolume files, the unit codes must be speci-

fied in the sequence of the two volumes used (specified by

the PACK parameter).

For offline multivolume files, the unit code is D2. All

volumes (specified by the PACK parameter) are processed

on D2.

PACK-‘VOL1,VOL2,VOL3’,UNIT-D2

Unit D1 cannot be used for offline multivolume files. Unit

D2 can be used for offline multivolume files when simula-

tion of R2 and F2 is disabled (via a SIMULATE OCL state-

ment).

TRACKS or RECORDS: The list for these parameters indi-

cates the amount of space occupied by the multivolume

file. The numbers in the list must correspond to the order

of the names listed in the PACK parameter.

LOCATION: The list for this parameter contains the

cylinder number or the cylinder number/track number

parameter for the data modules you use for the file. The

parameters must correspond to the order of the names in

the PACK parameter. If LOCATION is specified for one

volume of a multivolume file, it must be specified for all the

volumes of that file.

HIKEY: The HIKEY parameter is used only for multi-

volume indexed files. HIKEY limits the highest key field

that can be put on each data module of a multivolume file.

For example, in the following HIKEY parameter, three

volumes are used: HIKEY-‘JONES,NICOL,ZZZ2ZZ’'. The

highest key field allowed on the first volumes is JONES.

This means that all the records up to and including JONES

are on this volume. Since HIKEY parameters must be in

ascending order, the next volume contains all of the records

with keys following JONES and including NICOL. The last

volume contains all the records with names that come after

NICOL and through ZZZZZ.

OCL considerations for the HIKEY parameter are:

1. All characters except commas are valid.

2. The list of HIKEY parameters must begin and end

with an apostrophe even if only one parameter is

specified. A single apostrophe in a key field must be

written as a double apostrophe in the HIKEY param-

eter.

3. For each PACK parameter specified, there must be a

corresponding HIKEY key field parameter for that

pack.

4. The HIKEY fields must be equal in length and must

be specified in ascending order.

5. The maximum length of a HIKEY field is 29 charac-

ters.

6. The HIKEY fields must be the same length as the keys

on file.

7. Continuation of HIKEY sublists must begin in column

4 of the continuation record following the // blank.

8. Comments must not follow the last comma ona FILE

statement when the last parameter is an incomplete

HIKEY sublist.

Packed HIKEY: The packed HIKEY parameter has all the

OCL considerations for HIKEY including the following

restrictions:

1. The first character following the HIKEY keyword and

dash (HIKEY-) must be a P to indicate packed

HIKEY.

2. __ All characters in the packed HIKEY must be zoned

numerics (0-9).

3. The number of digits in each packed key must be the

same.

4, The number of zoned numeric characters per packed

HICKEY must not exceed 15, since the maximum

packed key field length is 8.

The following example shows a packed HIKEY parameter.

In the example the key field length of MVFILE is 2. The

HIKEYs are X‘085F’, X‘092F’, and X‘108F’ for VOL1,

VOL2, and VOL3, respectively. The first two packed keys

required a leading zero to make the lengths consistent.

1 4 8 12 20 24 28 32 36 40 44 52

~

~

~

™

=

>

16

MéEl-lMVA Ile! IU |7)-\021 |AAlclA-| “Viole! a] lvldel2
Iai\5|, gla! lz

‘h
e

~ we

Statement Descriptions 21

Examples

The following are examples of FILE statements. In each

example, the file is described first, then the corresponding

FILE statement is shown.

Example 1: Suppose that each week you create a disk file

that contains the records for the transactions you had made

that week. Assume the following facts about that file:

@® The name your program uses to refer to the file is

TRANS, which is also the name you want to use to

identify the file on disk.

@ You are placing the file in a main data area named

VOLOS.

@ You intend to mount the data module on drive 2.

@ You want to save the file for use at the end of the

month.

®@® The file contains 225 records.

@ You are letting the system choose the area that will con-

tain the file.

The following example shows how the FILE statement for

the preceding file is coded:

“
e
e

Example 2: Suppose you had created, on the same data

module (VOLO3), four versions of the transaction file

described in the preceding example—one for each of the

weeks in February, 1976. Assume the following:

@ You had created the files on the following days: 2/6/76,

2/13/76, 2/20/76, and 2/27/76 (these were the system

dates used for each of the files).

® You want to reference the third file (the one created

2/20/76).

-@ You intend to mount the data module on drive 2.

22

The file statement you would need is:

AA AE lt AIME\|-|7\A AIMS bd

mH
 1 ND

~
 Ss

=
 “J

S

vo

>|

io
 { = Q ™
 ry

[w
y

~
—
 | Q
 N

Example 3: Suppose that at the end of the month you

combine the files referred to in example 2, for use in pre-

paring your monthly bills. Further assume the following:

@ Your program uses the name TRANS to refer to the file,

but you want to use the name BILLING to identify the

file on disk.

@ You are expressing the amount of disk space as the num-

ber of tracks required to contain the file (assume the

number is 15), and you want the file to begin on cylinder

8, track 0.

@ You are placing the file in a main data area named

VOLOS.

@ You intend to mount the data module on drive 2.

The following example shows the FILE statement you

would use for this file.

1 4 8 12 16 20 24 28 32 36

Ad Jase MaMel-l7|RAMs|, |dlalelec|-\a [cleat ,
nM UM |7)-l012) |AAlcla ale \al3\,
M/ TIRACIKS|-|215| ld clal7iloM-|8\
‘| Remial-l7) |

Example 4: Suppose you want to create two versions of

two files on disk and later to access one version of each file.

Further assume the following:

@ The names your program uses to refer to the files are AA

and BB, which are also the names you want to use to

identify the files on disk.

@ File AA and BB are being placed on a data module on

drive 2 named D2D2Dz2.

@ One version of each file is created on 1/12/76 and

1/13/76.

Statement Descriptions 23

@ Disk space and location for the files are:

File Version Tracks Location

AA 1/12/76 10 120/0

1/13/76 10 130/0

BB 1/12/76 20 140/0

1/13/76 20 150/0

@ You want to access file AA, version 1/12/76, and file

BB, version 1/13/76.

The following OCL statements are needed to create the

above versions of files AA and BB and to access a version of

each file.

M
I
E

Q
O
}

 M
[
S
a
l

TT

~

™

La
m

W
I
S
T
S
)

S
h
a

ly

mh

|

~
~

YW

[O
o

|W

[r
w

[t
y

Ow

A

S
T
I
S
 [h
e

S
S
S

O
p

10

Fo

ba

[O
E

Ih
e

[5

L
I
N

a

p
S

[
™

[
S
S

D
D
I

db

~

MI
M

[C
o]

[>

t

Ne
w

S
l
o

[>

DY

“
i

r
e

SO

P
O
O
 to

t
T
!

Mo
lt

mn

[S
S
[
t
S

P
S

“
e
p

[
M
e

P
|

* >
 aq

O

rT

Wh
 FLALIE] VEIRS|HIOMS| \OF| [ABOVE |Fi/

~

=~

h
i
m

m
1
 I>

&

,

t

™m

S
I
E
)

YW

e
e

e
e
 e
e

a

a

R
e

e
l

k
R
I
G

TT!
IS

T
h

SC

= =e

24

File Processing Considerations

@ LOCATION and space (TRACKS or RECORDS) must:

be specified when you are reloading an existing tempo-

rary file.

@ If you are referencing a file by the DATE parameter and

space is given, the space must be equal to the space given

when that file was created.

@ if you are accessing a file by the LOCATION parameter

and space is given, the space must be equal to the space

given when that file was created.

@ You can create several versions of a file with a program

by changing the locations of the files and using different

system dates.

@ You can create different versions of a file without LOCA-

TION if the space parameters as well as the system dates

are different.

@ The system assumes that a new file is being created if

space is given without LOCATION or DATE and the

given filename was found but its space does not match.

@ The DATE parameter is only allowed for accessing exist-

ing files.

@ Whenever a load is performed to an existing file, the

system date replaces the previous date for that file.

@ Ifa RETAIN parameter is not specified when an existing

file is reloaded, the existing file classification is retained.

@ When a scratch file is created, it is not entered in the

volume table of contents (VTOC). After the job that

created the file is run, the file is lost. The way that an S

retain type can appear in the simulation area VTOC is to

change a T entry to an S$ by using RETAIN-S in the FILE’

statement, or to change a T or P entry to S by using a

$DELET SCRATCH statement.

FILE STATEMENT (TAPE)

Function

The FILE statement supplies the system with information

about tape files. The system uses this information to read

records from and write records to tape.

Placement

You must supply a FILE statement for each new tape file

that your program creates, and for each existing tape file

that your program uses. (The maximum number of files

allowed is explained under Maximum Number of Files in

the /BM System/3 Model 12 User’s Guide, GC21-5142.)

The FILE statement must follow the LOAD or CALL state-

ment and precede the RUN statement.

Format

// FILE parameters

Statement Descriptions 25

Content

All parameters are keyword parameters. The parameters

are as follows (keywords are in capital letters):

The NAME and UNIT parameters are always required. The

NAME-filename (in program)

UNIT-code

name

NL

NS

BLP

REEL-

filename (on tape)

‘character string’
LABEL- \

DATE-date

RETAIN-code

BLKL-block length

RECL-record length

RECFM-code (record format)

END-position of tape after processing

1600
800 DENSITY- 556

200

YES ASCII- \ NO

YES DEFER- { NO

| OFF CONVERT- { ON

OFF TRANSLATE- \ ON

ODD PARITY- { EVEN

others are required only under certain conditions.

26

NAME: The NAME parameter is required. It tells the

system the name that your program uses to refer to the file.

The NAME parameter must be placed on the first card or

line if two or more cards or lines are used for the FILE

statement. (See General Coding Rules for rules on contin-

uation.)

For the Tape Sort program, you must use specific filenames.

File ; Name

Input INPUT

Output OUTPUT

Work WORK1

WORK2

WORK3

WORK4 (optional)

For the Copy/Dump program, you must use specific file-

names.

File Name

Input COPYIN

Output COPYO

For the Dump/Restore program, you must use the name

BACKUP in the name parameter.

The keyword for the parameter is NAME. It must be fol-

lowed by the filename used by the program. The first

character of the NAME must be alphabetic. The remaining

characters can be any combination of characters except

commas, apostrophes, or blanks. The number of characters

cannot exceed 8. The following example shows how the .

NAME parameter for a file named FICAOUT would be

coded: .

24 28 32 36 40 44

=

py

ies
)

—

V
E
N

=

o

nN

So

“h
e

UNIT: The UNIT parameter is required. It tells the system

the tape unit that contains or will contain the file. The key-

word for this parameter is UNIT. It must be followed by a

code that indicates the unit. The codes are as follows:

T1 Tape unit 1

T2 Tape unit 2

T3 Tape unit 3

T4 Tape unit 4

The previous example shows how the UNIT parameter

would be coded for a file that resides on tape unit 2.

REEL: The REEL parameter is required for tape input files

and optional for output files. It identifies the tape that con-

tains or will contain the file. The system uses this parameter

to ensure that the correct tape is being used. (For informa-

tion about how a tape is initialized and identified, see Tape

Initialization in Part 2 of this manual.)

The REEL parameter can be coded as follows:

This format is used for labeled tape

volumes. The volume is identified

by a code containing a maximum of

6 characters, excluding commas,

apostrophes, and blanks. NS, NL,

and BLP have special meanings and

may not be used as the name of the

reel.

REEL-nnnnnn

REEL-NL This coding indicates a tape file

without a label. The first record of

an unlabeled tape must not be an

80-byte record beginning with

VOL1.

REEL-NS This coding indicates an input tape

file with a nonstandard label. These

labels do not adhere to the IBM

Tape Label Standard. The first

record of a nonstandard labeled

tape must not be an 80-byte record

with VOL1 as the first 4 characters.

REEL-NS is invalid for output files.

REEL-BLP This coding is used to bypass label

processing on standard labeled tapes.

REEL-BLP is invalid for output

files.

If the REEL parameter is not specified for an output file,

the system assumes the output tape contains standard labels.

lf REEL-NS, REEL-NL, or REEL-BLP is used, the LABEL,

DATE, and RETAIN parameters may not be entered.

Note: User labels are file labels that follow standard header

and trailer label conventions (ANSI or IBM). They are a

variation of standard labels with a partially fixed format.

These labels are sometimes provided by other systems. User

labels are not checked by System/3 tape data management

and may not be written as part of the label group.

The example under NAME shows how the REEL parameter

would be coded for a file on a tape named TAPE1.

Statement Descriptions 27

LABEL: The LABEL parameter tells the system the name

(label) of the tape file as it exists in the header label.

For file creation, the name you supply in the LABEL param-

eter is used in the header label. If you omit the LABEL

parameter, the name from the NAME parameter is used

unless REEL-NS, REEL-NL, or REEL-BLP is also specified.

Up to 8 characters may be supplied in the LABEL param-

eter,

For existing files, you must supply the LABEL parameter if

the name in the tape label is different from the name your

program uses to refer to the file (the NAME parameter). If

the header label! contains a name longer than 8 characters,

only the first 8 characters are recognized by the system for

comparison.

The LABEL parameter may not be used with the parameters

REEL-NS, REEL-NL, or REEL-BLP. The LABEL param-

eter can be coded as follows:

LABEL-name The name entry must begin with

an alphabetic character and the

remaining characters must not be

commas, apostrophes, or blanks.

LABEL-‘character

string’

A label may also be identified by

special characters. The character

string must be enclosed in apos-

trophes, may not contain com-

mas, and is restricted to 8

characters in length. If an apos-

trophe is used as a character, it

must be coded as two apostro-

phes.

DATE: The DATE parameter tells the system the creation

date of an input file. It is used to ensure that the proper

version of the file is used. The date specified is compared

with the creation date contained in the file label. No com-

parison is done when DATE is not specified.

For output files, the system date is always used as the crea-

tion date. If the DATE parameter is specified for an output

file, the system compares the specified date with the crea-

tion date of the file already on the tape. If no file exists on

the tape, or a file with a different label exists, or the dates

do not agree, the system halts.

28

The date may be coded in one of two formats: month-day-

year (mmddyy), or day-month-year (ddmmyy). The format

must match the format of the system date chosen at system

generation time.

The DATE parameter may not be specified with REEL-NS,

REEL-NL, or REEL-BLP.

RETAIN: The RETAIN parameter specifies the number of

days a file should be retained before it expires. This num-

ber may be from 0 to 999. After the number of days has

elapsed, the file expires and the system allows the file to be

written over. If the RETAIN parameter is omitted, a value

of zero is assumed. A value of 999 indicates a non-expiring

permanent tape file.

If an attempt is made to write over an unexpired file, the

system halts, allowing the operator to cancel the job or con-

tinue. A tape containing a permanent tape file must be re-

initialized before it can be used for output. The RETAIN

parameter may not be used with REEL-NS, REEL-NL, or

REEL-BLP.

BLKL: The BLKL (block length) parameter specifies the

number of bytes in a physical block on tape. The block

length can be from 18 bytes to 32,767 bytes. The maxi-

mum length is limited to the main storage not occupied by

the program and supervisor. The block length must be an

integral multiple of the record length for fixed (F) and fixed

blocked (FB) files (see RECFM parameter). If an ASCII file

is being used, any existing block prefixes must be included

in the block length.

RECL: The RECL (record length) parameter specifies the

number of bytes in a logical record. The maximum record

length is 32,767 bytes. The minimum record length permit-

ted for F and FB type files is 18 bytes (see RECFM param-

eter). The record length for V, VB, D, and DB type files

must include the 4-byte record descriptor.

RECFM: The RECFM (record format) parameter identifies

the format of the input or output file records. The param-

eter entries are:

F Fixed length, unblocked records. Logical and phy-

sical records are the same size.

V Variable length, unblocked records. Each physical

record contains one logical record; the logical

record can vary in length.

D Variable length, unblocked records in the D-type

ASCII format.

FB Fixed length, blocked records. All records are of

equal length and all blocks are of equal length.

Each physical record contains more than one

logical record.

VB Variable length, blocked records. Each physical

record contains logical records of various lengths.

DB Variable length, blocked records in the D-type

ASCII format.

END: The END parameter specifies the position of the tape

after the file has been processed. The options are as follows:

LEAVE The tape remains in the position it was in

after the last record was read or written.

REWIND The tape is rewound to the load point.

UNLOAD The tape is rewound and unloaded for

removal from the tape drive.

If the END parameter is omitted, REWIND is assumed.

DENSITY: The DENSITY parameter is used to specify the

number of bpi (bits per inch) at which files are to be written

or read. The parameter must specify the density at which

the tape was initialized. See $TINIT (Tape Initialization

Program) description in this manual. For 9-track tapes this

parameter affects only the density of nonlabeled output

files. When standard labeled or nonstandard labeled tapes

are used, the tape hardware automatically determines the

density at which the tape was initialized. When a tape is

initialized at 1,600 bpi with standard labels, any file that is

written on that tape is at 1,600 bpi, regardless of the param-

eter specified for DENSITY. No error halts occur if an in-

correct 9-track density is specified. The parameter entries

are:

1600 _—‘ The file is to be written at 1,600 bpi (valid for

all 9-track tape units).

800 The file is to be written or read at 800 bpi (valid

for 9-track dual density tape units or for all 7-

track tape units).

556 The file is to be written or read at 556 bpi (valid

for all 7-track tape units).

200 The file is to be written or read at 200 bpi (valid

for all 7-track tape units).

If the DENSITY parameter is omitted, 1,600 bpi is assumed

on 9-track tape units, and 800 bpi is assumed on 7-track

tape units.

ASCII: The ASCII parameter (ASCII-YES or ASCII-NO) is

used to indicate to the system when an ASCII file is being

used. If ASCII files are being used, ASCII-YES must be

coded. ASCII-YES is invalid for files on 7-track tape units.

If this parameter is omitted or coded ASCII-NO, an EBCDIC

file is assumed.

Statement Descriptions 29

DEFER: The DEFER parameter (DEFER-YES or DEFER-

NO) tells the system whether the file will be mounted on a

tape drive when the file is allocated and opened. If the tape

volume is not online, DEFER-YES must be coded. If the

parameter is omitted, DEFER-NO is assumed.

Note: For RPG II object programs, this option should only

be used for files that use the same drive as a table file. All

other files are allocated and opened at the beginning of the

program.

Other programs (such as COBOL object programs) that do

not allocate and open all files at the same time, or that do

so conditionally by program logic, should not use the

DEFER-YES option.

DEFER-YES cannot be used if BSCA or devices attached to

SIOC are used in the program.

Multivolume Tape Files -

The FILE statement for processing multivolume tape files

requires that you define and code the UNIT and REEL

parameters differently than you would for single-volume

files. There are two reasons for this:

@ When processing tape files contained on more than a

single volume, the system requires information about

each volume in order to perform all the checking and

protection functions necessary.

@ Additional information is needed to determine and check

the sequence in which the volumes are processed and

when they are to be mounted on the tape drives.

When an end-of-volume condition is reached on a multi-

volume file, that volume rewinds to load point and unload.

The message ‘EOV Tn’ is printed if LOG is on (where n =

1, 2,3 or 4). If the drive that is to contain the next volume

(whether the same drive or another drive), is not in a ready

condition, the system comes to I/O attention. Processing

continues when the drive that is to contain the next volume

is made ready. If you are using alternating drives, and the

next volume is mounted and the drive is ready when end of

volume is reached, the message is printed and processing

continues without stopping.

30

For multivolume tape files, the UNIT and REEL parameters

of the FILE statement may require a list of codes. The fol-

lowing rules apply:

@ The list must be enclosed by apostrophes.

@ The items in the list must be separated by commas.

@ Nine- and seven-track units cannot be intermixed.

The considerations for coding multivolume parameters are

included in the following parameter discussions. The func-

tions of the parameters are explained under F/LE Statement

(Tape). Parameters not mentioned here are used as explained

under F/LE Statement (Tape).

Note: Multivolume tape files cannot be used if BSCA or

other interruptible devices are used in the program.

The maximum number of multivolume files allowed is ex-

plained under Maximum Number of Files in IBM System/3

Model 12 User’s Guide, GC21-5142,

REEL: The names of the tapes that contain or will contain

the multivolume file must follow the keyword REEL (40

names maximum), If the input tapes are not labeled, the

REEL parameter must be coded REEL-‘NL,n’; if the input

tapes contain nonstandard labels, the REEL parameter must

be coded REEL-‘NS,n’. If the input tapes have standard

labels, and label processing is to be bypassed, the code is

REEL-’BLP,n’. The n in each case is the number of volumes

in the file (99 volumes maximum). For output files, the n

in REEL-‘NL,n’ is ignored.

UNIT: The keyword UNIT must be followed by a code or

codes indicating the location of the tape unit that contains

or will contain the file. No UNIT parameter may be re-

peated. The order of codes in the UNIT parameter must

correspond to the order of names in the REEL parameter.

When the number of codes in the UNIT parameter is less

than the number of codes in the REEL parameter, the units

are used alternately.

In the following example, line A) shows a tape multi-

volume file consisting of three reels. The volumes must be

mounted as follows:

INVREELT1 on tape unit T1

INVREEL2 on tape unit T2

INVREELS3 on tape unit T3

Line © shows a three-volume file with nonstandard tape

labels. The volumes must be mounted as follows:

First volume on tape unit T1

Second volume on tape unit T2

Third volume on tape unit T1

Line c) shows a three-volume file with unlabeled reels.

The volurnes must be mounted in sequence on tape unit T1.

Line @© shows the three-volume standard labeled file of line

A] with label! processing bypassed.

~
~
]
 —

~
—

~

cf
~

b

A] ‘ Mel-|/IMVWdals] JRelell-|I/IMvleelele| 21 \/IMViaeleicla| |/MiRleleici3i’| laa i7)-| ‘iil, (721 713)!

we

Se
 | ft

=

—

h
a
l

~

~~

m
 = >
 Ss

(an
) 1 ~
 <=
 = b>

W
 xy

m

ry

~
 J =

C

Ww

°

=

~
 t ~ Lo
d

FORMS STATEMENT The HALT statement is needed only if you want to cancel

the effect of a NOHALT statement.

See PRINTER Statement.

Placement

HALT STATEMENT

A HALT statement can be placed anywhere among the OCL

Function statements. In a procedure it must precede the RUN state-

ment.

‘The HAL.T statement tells the system to halt when a pro-

gram ends. The operator can restart the system when he is

ready, and the system continues reading the next OCL state-

ments.

Statement Descriptions 31

Format

// HALT

Content

None (comments may be entered starting in column 9).

IMAGE STATEMENT

Function

To operate correctly, the printer requires characters match-

ing those on the printer chain to be in a special area of core

storage called the chain-image area. When you replace the

printer chain with one having different characters, you must

also change the contents of the chain-image area.

The IMAGE statement instructs the system to replace the

contents of the chain-image area with the characters indicat-

ed by the statement. The characters can be entered from

the system input device or from a source library. The effect

of the IMAGE statement is temporary, and the system chain-

image is returned to the chain-image area when IPL occurs.

Placement

The IMAGE statement can appear anywhere among the

OCL statements. In a procedure, it must precede the RUN

statement.

Format

// IMAGE parameters

Content

The IMAGE statement tells the system either of two things:

(1) the new chain characters are to be read from the system

input device; or (2) the new chain characters are to be read

from the source library.

32

The IMAGE parameters are:

format-HEX, CHAR, or MEM

number-value

name-name

unit-code

(Coding only HEX, CHAR, or MEM is preferable for format

but HEXADECIMAL, CHARACTER, or MEMBER can be
coded.)

Characters From the System Input Device

If you wish to indicate that the new chain characters are to

be read from the system input device, use the following

parameters:

Format: Use the word CHAR to indicate that the charac-

ters are in EBCDIC form. Use the word HEX to indicate

that the characters are in hexadecimal form.

Number: The number parameter must be used with HEX
and CHAR. It must be a value that is equal to the number

of columns or line positions in the data statements or the

data keyed in following the IMAGE statement that contains
the new characters. This number must not exceed 240 when

the characters are hexadecimal, 120 when characters are

EBCDIC. The narne and unit parameters must not be coded.

Following are the rules for punching or keying the new

characters:

@ The characters must begin in column or line position 1.

@ Consecutive card columns or line positions must be used;
however, only the first 80 columns or line positions of

the card or line can be used. Hexadecimal requires an

even number of columns or line positions, two per

character.

@ To continue the characters on another card or line, begin

the characters in column or line position 1.

Characters from Source Library

To indicate that new chain characters are to be read from

the source library on disk, the format parameter must

specify the word MEM.

The following parameters must also be included:

Name: The name parameter identifies the source member

containing the characters in the library. The only way you

can place the characters in a source library is by using the

Library Maintenance program. The name you supply in

Library Maintenance control statements is the name used to

identify the characters in the source library.

Unit: The unit parameter must be used with the name

parameter. It is used to indicate which simulation area on

disk contains the source library. The codes used are R1, F1,

R2, and F2.

Example

The IMAGE statement in example © tells the system that

the new characters are on data statements or keyed in. The

format parameter indicates that new characters are in hexa-

decimal form; the number parameter indicates that there are

120 colurnns or line positions containing the new characters.

In example ©. the new characters, on data statements or

keyed in, are in EBCDIC. The number parameter indicates

that there are 48 columns or line positions containing the

new characters.

Example tells the system that the new characters are to

be read from the source library. The format parameter indi-

cates that the new chain characters are in the source library.

The name parameter indicates that the characters were

named CHAIN in the source library. The unit parameter in-

dicates that the source library containing them is in the

simulation area R1 on drive 1. Examples of the member

specified in example are the data portions of examples

and . The member itself requires a // IMAGE state-

ment with the characters either in hexadecimal or EBCDIC.

The number of columns or line positions containing the

characters must also be specified.

(See Library Maintenance in Part 2 for restrictions on the

name used in coding MEM.)

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

/\7| \"Malele llelxl, |2/2I101 |
A) A aFlalFiairileisielelrivicie\ioFidelielslelaieizieizielelsiclel¢lri7aleniziriéelai7ieln1Di2inzpi4¢i0\s\p16

DI7\DIBID 96 EIQIADIC!L/Cl2| CIZICIACISICIEICITICISICIFIVIEIM B SIDIG|C|51B|51C| 7/B|5 TICIACISIE|SIFI7/DI6\FIGE

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

NA [alee Iclulale |e! | | | | |
© [asuse7iesgvelSirvwxvielel, Rizk MMdPala-|sdalalclolelAe se |’

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

@ at a EM \CHAL/ IM,

|

Statement Descriptions 33

JOB STATEMENT

Function

The JOB statement provides the user with the following

functions:

@ Allows the user to group related jobs in the spool file by

identifying the group with a common groupname. Each

job is further identified in the spool file by the jobname

from the LOAD statement. If the jobname is not sup-

plied, the program name further identifies the job.

@ Allows the user to specify whether jobs following the

JOB statement are to be spooled.

@ Allows the user to assign priority to jobs in the spool

file. Jobs contained in the spool file are scheduled for

printing in the order of their priority.

Placement

The JOB statement precedes the first LOAD or CALL state-

ment for a group. It cannot be used in a procedure. Whena

rollin is pending for a program level, a JOB statement read

by that level will be ignored.

Format

//groupname JOB parameters

Content

groupname: This is a required entry used to uniquely

identify a group of jobs in the spool file under the same

name. Groupname may not exceed 8 characters in length or

contain embedded blanks or commas. Groupname should

contain only characters that are on the 5471 keyboard when

the 5471 is attached to the system. All keyword parameters

are optional on the JOB statement. When more than one

keyword parameter is specified, they must be separated by

commas.

SPOOL: The SPOOL parameter is used to specify whether

jobs are to be spooled. SPOOL-NO specifies that jobs fol-

lowing the JOB statement are not to be spooled; conse-

quently, print requests from these jobs will not be inter-

cepted. SPOOL-YES indicates that print requests from the

jobs following the JOB statement are to be intercepted by

spool. If the SPOOL parameter is not specified, SPOOL-

YES is assumed.

34

PRIORITY: A priority may be assigned to a job to indicate

its level of importance in the spool file. The priority of the

job in the spool file is that priority assigned by the JOB

statement. A priority of O causes a job to be put in the

spool file in a hold state with a priority of 1. The job put

on hold may be released via an operator control command.

(See /BM System/3 Model 12 User’s Guide, GC21-5142, for

a list of operator control commands.) Priority 5 is the high-

est priority that may be assigned. Within a given priority,

jobs are scheduled on a first-in, first-out basis. If this param-

eter is not specified, priority 1 is assumed.

Note: When keyword parameters are not specified on this

statement, comments may not be given following the JOB

statement identifier.

LOAD AND LOAD * STATEMENT

Function

The LOAD statement identifies the program to be executed

and indicates whether the program is to be loaded from the

system input device for the program level or from an object

library.

Placement

One LOAD statement is required for each program execut-

ed. The only requirement is that the LOAD statement

precede the RUN statement.

Format

The LOAD statement has two formats:

//jobname LOAD * (a blank is mandatory between LOAD
and *)

//jobname LOAD program-name,unit

The first format is used to load object programs from the

system input device. The second format is used to load

object programs from the object library.

Content

Jobname: This optional entry is used to uniquely identify a

job. I¥ specified, the jobname must begin in position 3 of

the statement, must not exceed 8 characters in length, and

may not contain commas, apostrophes, periods, or blanks.

Jobnames should contain only characters that are on the

5471 keyboard when the 5471 is attached to the system.

If no jobname is specified, the system assigns one. If the

jobname is assigned by the system, it is made up of the pro-
gram name from the LOAD statement and a two-digit num-

ber assigned by the system. Jobnames assigned by the

system are incremented by one at the end of the job in

which a jobname is assigned. !f a LOAD * statement with-
out a jobname is encountered, the system assigns a jobname
of ASTRSKnn. The number portion of the jobname is reset
to 01 whenever a JOB statement is encountered. After 99

jobnames have been assigned within one group, the number

is reset to 01. When the print queue is displayed, the job-

name identifies jobs on the queue.

Asterisk: An asterisk is specified when the user wants the
object program loaded from the program level’s system in-
put device. The object program must follow the RUN state-
ment for the program. A /* statement must follow the
object program to indicate the end of the object program
input. The object program is temporarily copied into the
object library on the system pack and then loaded into

main storage for execution. Only level 1 may contain a

LOAD * program.

program-name: The program-name is the name used to
identify the program in the object library on disk and may
be up to 6 characters in length. The name must begin with
one of 29 characters (A-Z, @, #, or $) and may be followed
by up to 5 additional characters. Commas, apostrophes,
periods, and blanks may not be used in the program-name.
The system utility programs and program products are

identified by the following names:

Program

Alternate Track Assignment

Alternate Track Rebuild

Assembler

COBOL

Copy/Dump

Disk Initialization

Disk Sort

Dump Restore

File and Volume Label Display

File Delete

FORTRAN

GANGPUNCH

Library Maintenance

List

Macro Processor

MFCU Sort/Collate

Multileaving Remote Job Entry

Overlay Linkage Editor

Reassign Alternate Track

Reproduce and Interpret

Remote Job Entry

Restart

RPG Linkage Editor

RPG II Auto Report

RPG 11 Compiler

Simulation Area

Spool Writer

Tape Initialization

Tape Sort

Tape Error Summary

1255 Utility

Name

SALT

$BUILD

$ASSEM

$CBLOO

SCOPY

SINIT

$DSORT

$DCOPY

$LABEL

$DELET

$FORT

$GANGP

SMAINT

$CLIST

$MPXDV

$CSORT

$SMRJE

SOLINK

$SRSALT

$REPRO

$$RJE

$$RSTR

$LINKB

$AUTO

$SRPG

$SCOPY

$SSWTR

STINIT

$TSORT

$TVES

$MICR

Statement Descriptions 35

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

unit: The unit parameter is a code indicating which simula-

tion area on disk contains the program. The codes are R1,

F1, R2, and F2. The unit parameter is required because

your programs can be on any of the simulation areas. The

disk area containing your object program is called an object

library. You can create an object library in any of the simu-

lation areas (R1, F1, R2, F2) by using the Library Mainte-

nance program. (See Library Maintenance in Part 2 of this

manual.)

Example

In the following sample LOAD statement, $RPG is the name

that identifies the RPG I| Compiler.

20 24 28 32 36 =

Ae
s

ios
)

=

No

=

io?
)

F1 is the code indicating the simulation area on drive 1

where the compiler is located in this example.

LOCKOUT STATEMENT

Function

The LOCKOUT statement is used only in DPF systems. It

is used to suspend the other program level to allow fast job

initiation in the program level in which it is entered. Job

initiation is slowed if both program levels use the system

transient area and/or disk drive 1. The other program level

remains suspended until job initiation is complete.

Note: This statement should not be used when the active

program level is using time-dependent devices such as BSCA

and serial 1/O channel.

Placement

The LOCKOUT statement can be placed anywhere among

the OCL statements, but must precede the RUN statement.

Format

// LOCKOUT

36

Content

None (comments may be entered starting after the first

blank column).

LOG STATEMENT

Function

OCL statements and message codes are printed on the

printer-keyboard. If your system has no printer-keyboard,

the statements and codes are printed on the printer. The

device used to print OCL statements and message codes is

called the /ogging device. \f you want to change the logging

device, or specify whether or not the statements and codes

are to be printed, you must use a LOG statement.

In a DPF programming environment, the same logging

device is always used in both program levels. Hence, if the

logging device is changed in one program level, the new

logging device will also be used by the other program level.

The LOG statement tells the system to do one of four

things:

@ Use the printer as the logging device

@ Use the printer-keyboard as the logging device

® Stop printing OCL statements and message codes

@ Start printing OCL statements and message codes

In addition it may tell the system whether or not to sup-

press eject at end of job.

Placement

You can use the LOG statement within any of the sets of

OCL statements for your programs. In a procedure it must

precede the RUN statement.

Format

// LOG code,mode

Content

The following four codes and two modes can be used as

parameters:

Code Meaning

CONSOLE Use printer-keyboard as logging device

PRINTER Use printer as logging device

OFF Stop logging

ON Start logging

Mode Meaning

EJECT Eject a page at end of job

NOEJECT Suppress page eject at end of job

Only one code and one mode can be used in each LOG state-

ment. The start of logging is assumed if CONSOLE or

PRINTER is specified.

When the system reads a LOG statement that contains the

OFF code, it stops printing OCL statements and message

codes. The only way you can instruct the system to start

printing them again is by using a LOG statement that con-

tains ON, PRINTER, or CONSOLE. When ON is specified,

printing resumes on the last logging device specified. How-

ever, the system suspends logging during the time that the

log device (excluding the 5471) is allocated to a program in

either program level. Logging resumes when the program

using the log device goes to end of job.

The NOEJECT mode is used to stop the page eject at end of

job. If neither EJECT or NOEJECT is specified, EJECT is

assumed. NOEJECT stays in effect until a LOG statement

without NOEJECT is read or until an IPL is performed.

EJECT stays in effect until a LOG statement with NOEJECT

is read. EJECT is only active when logging to the printer.

NOHALT STATEMENT

Function

Normally the system halts when a program ends. The NO-

HALT statement tells the system to read the next set of

OCL statements without stopping. The effect of this state-

ment lasts until the system reads a HALT statement or an

IPL. occurs. Under certain conditions, the effect of the NO-

HALT statement is ignored temporarily when an abnormal

end of job occurs. The system reverts to the NOHALT

mode after a response.

Placement

A NOHALT statement can be placed anywhere among the

OCL statements. In a procedure it must precede the RUN

statement. The NOHALT statement can be submitted in

program level 1 or 2.

Format

/1 NOHALT SEVERITY-code

Content

SEVERITY: This parameter indicates the severity code of

halts that the system is allowed to select default options for.

If the SEVERITY parameter is not specified, the operator

must respond to all halts except EJs. The code must be one

of the following: 1, 2, 4, or 8. If the severity assigned to a

system halt is greater than the severity indicated in the NO-

HALT statement, the system halts and waits for the op-

erator’s response. If the severity assigned to the halt is equal

to or less than the severity indicated in the NOHALT state-

ment, the system selects the default option for the halt and

processing continues. The severity code does not affect

system halts having no default options. Operator interven-

tion is required in those cases.

Statement Descriptions 37

Severity code 1 is the least severe; severity code 8 is the

most severe. In most cases the default option is ignored

when system halts cannot be printed or spooled. In this

case the operator must respond to the halt.

Note: Some halts are defaulted when the system is using the

// NOHALT SEVERITY code statement. When using spool-

ing and the print writer is active, the system halts with a

SPPPEH hait after the print queue is empty. If the operator

responds with a 0 option, the print writer continues to

search the print queue, and the SPPPEH halt is defaulted

until the print writer has started and finished printing the

next job put in the print queue.

PARTITION STATEMENT

Function

The PARTITION statement is used only in DPF systems

and guarantees a minimum size to program level 2 for a pro-

gram in that level.

Placement

The PARTITION statement can be placed anywhere among

the OCL statements preceding the RUN statement. The

PARTITION statement cannot be submitted in program

level 2.

Format

// PARTITION size

Content

Size: The size parameter specifies the number of bytes of

storage needed for program level 2. (See Loading Programs

ina DPF Environment in IBM System/3 Model 12 User’s

Guide, GC21-5142.)

38

PAUSE STATEMENT

Function

The PAUSE statement causes a halt. It usually is used to

give the operator time to prepare for the next program. He

might, for example, have to place a data module on drive 2.

Comment statements that give the operator instructions

usually precede PAUSE statements.

When the operator is ready, he can restart the system. The

system continues reading the OCL statements that follow

the PAUSE statement.

Placement

PAUSE statements can be placed anywhere among the OCL

statements. A // PAUSE statement prior to a // LOAD

statement (between jobs) causes a 90 halt with a continue

option (recovery 0) only. A // PAUSE placed between the

// LOAD and // RUN statements (within the OCL sequence)

causes a 91 halt with a continue (recovery 0) or a cancel

(recovery 2 or 3) option.

Format

// PAUSE

Content

None (comments may be entered starting in column 10).

PRINTER STATEMENT

Function

The PRINTER statement allows you to define the system

print device and coritrol options related to print spooling.

The FORMS statement identifier may be used in place of

the PRINTER statement identifier.

Placement

The PRINTER statement can be placed anywhere among

the OCL statements. In a procedure it must precede the

RUN statement.

Format

// PRINTER parameters

Content

The parameters are as follows (keywords are in capital

letters; defaults are underlined):

5203

DEVICE- 5203L

5203R |

LINES-nnn

FORMSNO-nnn

COPIES-nn

. YES
DEFER- { xe \

YES
ALIGN- 1 NO \

DEVICE: The DEVICE parameter is optional, but if it is

specified it must be followed by the name of the print

device. For an IBM 1403 Printer or a single-carriage IBM

5203 Printer, either 5203 or 5203L is a valid device name.

For a dual-carriage IBM 5203 Printer, either 5203 or 5203L

specifies the left carriage and 5203R specifies the right

carriage. You may omit the DEVICE parameter entirely

(default parameter is 5203L, left carriage).

LINES: The LINES parameter is optional. It is used to alter

the number of print lines (forms length) per page. Possible

range is 1 to 112. However, some system utility programs

require a minimum of 12. The number of lines specified

remains in effect for that level until another PRINTER

statement with LINES parameter is entered or until the

next IPL. This parameter overrides the forms length speci-

fied during system generation; however, a program’s forms

length overrides the LINES parameter. Ifa program’s forms

length is used, it is in effect for the duration of that job only.

At the end of the job, forms length is restored to the pre-

vious value.

FORMSNO: This optional parameter may be used to tell

the operator which forms are to be mounted on the printer.

This parameter can be any combination of 1 to 3 characters,

except commas, apostrophes, or embedded blanks. When

this parameter is used and spool is not intercepting print

requests, the system halts with a CR8LLT (mount forms on

left carriage) or CR8LRT (mount forms on right carriage)

halt. When printing spooled printed output, the print

writer issues a message whenever the forms type for the

current print job is different from that of the previous print

job. The response taken to this message tells the print

writer whether separator pages should be printed between

jobs. See the /BM System/3 Model 12 Operator's Guide,

GC21-5144, for information on separator pages. The

FORMSNO parameter applies only to the job in which the

PRINTER statement is received.

COPIES: This optional parameter allows the user to obtain

from 1 to 99 copies of a job’s spooled printed output. If

this parameter is not specified, only one copy is printed.

When more than one copy is requested, the print writer con-

tinues to produce the number of requested copies before

continuing to the next job. This parameter is ignored when

print spooling is inactive or not supported for the specified

device. The COPIES parameter applies only to the job in

which the PRINTER statement is received.

Statement Descriptions 39

DEFER: The DEFER parameter is optional. It is ignored

when print spooling is inactive or not supported for the

specified device. DEFER-NO allows the spooling user to

begin printing a job’s printed output before the job has

completed execution if the job is the next job to be printed

from the print queue. When DEFER-YES is specified,

printing does not begin until the job has completed execu-

tion. The DEFER parameter applies only to the job in

which the PRINTER statement was received. If the param-

eter is not specified, the system assumes DEFER-YES.

ALIGN: The ALIGN parameter is optional. It aids the

operator in forms alignment for spooled printed output.

This parameter is ignored when print spooling is inactive or

not supported for the specified device. When ALIGN-YES

is specified, the printer stops after printing the first line to

allow forms alignment. A halt is displayed on the message

display unit after the first line is printed. The operator's

response to this message indicates that forms are aligned

(continue printing) or that the line should be printed again

(try alignment again). If more than one copy is requested

(COPIES parameter) and ALIGN-YES is specified, the

printer halts for forms alignment prior to printing each

copy. If ALIGN-NO is specified, the printer does not stop.

The ALIGN parameter applies only to the job in which the

PRINTER statement was received. If the parameter is not

specified, the system assumes ALIGN-NO.

Note: \f logging was assigned to the 1403/5203, forms align-

ment is done on the first OCL statement logged for that job.

For this reason, logging to the 1403/5203 should be sup-

pressed when ALIGN-YES is used.

Spooling Considerations: \WNWhen a PRINTER statement is

encountered and printer output for the job is being spooled,

the effect of the COPIES, DEFER, ALIGN, and/or

FORMSNO parameters is delayed until the print writer is

ready to print the output.

PUNCH STATEMENT

Function

The PUNCH statement enables you to change the system

punch device.

Placement

The PUNCH statement can be placed anywhere among the

OCL statements. In a procedure it must precede the RUN

statement.

40

Format

// PUNCH code

Content

The codes that can be used as parameters are:

Code Meaning

MFCU1 Primiary hopper of the MFCU

MFCU2 Secondary hopper of the MFCU

1442 Card read/punch

3741 Data station (96-byte records) or

programmable work station

READER STATEMENT

Function

The device used to read OCL statements is called the system

input device. The READER statement assigns the system

input device to the device specified.

Placement

The READER statement must not come between the LOAD

or CALL statement and a RUN statement. If a READER

statement is used in a procedure, the system input device is

changed when the READER statement is processed; OCL

statements are not read from the new system input device

until the procedure is completely executed. If you use the

READER statement to change the system input device, the

device you specify is used to read source programs, control

statements, or OCL statements. Changing the system input

device affects the placement of source programs and control

statements as well as OCL statements.

Format

// READER code

Content

The codes are:

Code Meaning

CONSOLE Printer-keyboard

MFCU2 Secondary. hopper of the MFCU

MFCU1 Primary hopper of the MFCU

1442 Card read/punch

3741 Data station (96-byte record) or

programmable work station

RUN STATEMENT

Function

The RUN statement indicates the end of the OCL state-

ments for a program. After the system reads the RUN

statement, it runs the program or merges the procedure into

the job stream.

Placement

A RUN statement is needed for each of the programs you

want the system to run. In the job stream, it must be the

last statement within each of the sets of OCL statements

for your programs. It can also be the last OCL statement in

a procedure. (For more information about procedures, see

Procedures in IBM System/3 Model 12 User’s Guide,
GC21-5142.)

Format

// RUN

Content

None (comments may be entered starting in column 8).

SIMULATE STATEMENT

Function

The SIMULATE statement is used to enable and disable

simulation areas R2 and F2 on drive 2. R2 and F2 are

simulated on D2 at IPL. To allow processing multivolume

files on D2, simulation must be turned off on D2.

Placement

The SIMULATE statement must not come between a

LOAD or CALL and a RUN statement. It cannot be used

in a procedure. It is invalid if the other level is in a nested

procedure or is not at end of job, or if rollin is pending. It

is invalid to turn simulation off if spool is using D2.

Format

ON
// SIMULATE OFF

Content

ON specifies simulation turned on for D2. This enables R2

and F2. Simulation on D2 remains on until a // SIMULATE

OFF statement is read. OFF specifies simulation turned off

for D2. This disables R2 and F2. Simulation for D2 remains

off until IPL or a // SIMULATE ON statement is read.

SWITCH STATEMENT

Function

The SWITCH statement sets one or more external indicators

on or off. The indicators are always off after the operator

uses the IPL procedure to start the system. If a SWITCH

statement is used to set an indicator on, the indicator

remains on until another SWITCH statement sets it off, or

until the operator again uses the IPL procedure to start the

system. There can be only one SWITCH statement per job.

Statement Descriptions 41

Placement

The SWITCH statement can appear within any of the sets

of statements for your programs. The only requirements

for the SWITCH statement are that it must follow the

LOAD or CALL statement and precede the RUN statement.

Format

// SWITCH indicator-settings

Content

Indicator-settings: The indicator-settings parameter is a

code that consists of 8 characters, one for each of the eight

external indicators (U1-U8). The first, or leftmost, charac-

ter gives the setting of indicator U1; the second character

gives the setting of U2; and so on.

The code must always contain 8 characters. For each indi-

cator, one of the following characters must be used:

Character Meaning

0 Set the indicator off

1 Set the indicator on

Xx Leave the indicator as it is

Example

The code 1X0110XX would cause the following results:

Indicator Result

U1 Set on

U2 Unaffected

U3 Set off

U4 Set on

U5 Set on

U6 Set off

U7 Unaffected

U8 Unaffected

42

/& STATEMENT

Function

/& statements are used as a precautionary measure. Placed

in front of your OCL set, a /& statement signals the system

that a new set of OCL statements is coming. It prevents

your statements from being read as a part of the preceding

set of statements or data. Any attempt to read more data

from that device will be blocked.

Placement

/& statements are not required. It is recommended, however,

that you use them as the first statement in each of the sets

of OCL statements for your programs. They are not allowed

in a procedure.

Format

/&

Content

None (comments may be entered starting in column 4).

/* STATEMENT

Function

/* statements are not true OCL statements, but are used to

indicate the end of 4 data file read in from a card reader,

console, or 3741.

Placement

A /* statement should be the last statement of an input data

file or program deck.

Format

/*

Content

None (comments may be entered starting in column 4).

*(COMMENT) STATEMENTS

Function

Comment statements are commonly used either to explain

the jobs or to give the operator instructions. Operator in-

structions are usually given in connection with a PAUSE

statement. Comment statements are printed along with the

other OCL statements. They have no other effect on the

system.

Placement

in OCL statements, you can include special statements that

contain only comments. Comment statements must contain

an asterisk (*) in column 1. They can be placed anywhere

among the OCL statements in either a job stream or a pro-

cedure.

Format

*comment

Content

The comment can be any combination of words and charac-

ters. The only requirement is that an asterisk (*) be in

column 1.

Staternent Descriptions 43

44

Introduction to System Utility Programs

The Model 12 SCP includes a group of system utility pro-

grams that are resident in a simulation area. These programs

perform a variety of functions, such as preparing data

modules for use, reorganizing an indexed file, and deleting

files. Each of the system utility programs is described

separately in this section, with the following information

given for each program:

® Functions performed

® OCL statements required to use the program

@ Parameter explanations

® OCL (operation control language) considerations

@ Examples

OCL STATEMENTS

Each system utility program requires a set of OCL state-

ments. The first statement required within a set of OCL

statements is the LOAD statement. It identifies the pro-

gram to be run and indicates which simulation area the pro-

gram will be loaded from. The statement format used to

load a program from the simulation area is:

// LOAD program-name,unit

The program-name in the LOAD statement specifies the

system utility program you want to run. The following list

contains the system utility programs described in this sec-

tion, the name that must appear on the LOAD statement,

and the main storage requirements for selected SCP pro-

grams (size is the minimum main storage, in bytes, exclud-

ing supervisor requirements):

Program

Part 2.

Tape Initialization

Tape Error Summary

Disk Initialization

Alternate Track Assignment

Alternate Track Rebuild

File and Volume Label

Display

File Delete

Copy/Dump

Dump/Restore

Simulation Area

Library Maintenance

Reassign Alternate Track

Name

$TINIT

$TVES

S$INIT

$ALT

$BUILD

$LABEL

$DELET

$COPY

$DCOPY

$SCOPY

$MAINT

$RSALT

Uses more main storage, if available.

Requires a dedicated system (cannot be used with

dual programming).

Notes:

1.

2.

3. 50

1000

1-1000

1-300

301-500

501-700

701-900

901-1000

File VTOC

File VTOC

Entries unsorted

Entries sorted

Entries sorted

Entries sorted

Entries sorted

Entries sorted

8K

10K

10K

10K

12K

14K

16K

18K

System Utility Programs

Size

8K

8K

8K

8K

8K

8K to 18K

(note 3)

8K

8K (note 1)

8K

8K

8K (notes 1

and 2)

8K

Introduction to System Utility Programs 46

The unit parameter specifies a code that describes the loca-

tion of the simulation area which contains the system

utility program. The codes are F1, R1, F2, and R2.

The RUN statement also is required for each system utility

program. The format of this statement is:

// RUN

The program begins after the system reads this statement.

One or more FILE statements may be required, depending

on the system utility program to be run and the function to

be performed. (See the following system utility program

descriptions for FILE statement requirements.)

CONTROL STATEMENTS

All of the programs require utility control statements

(except $TVES), which you must supply. These statements

give the program information concerning the output you

want the program to produce or the way in which you want

the program to perform its function. The programs read

these statements from the system input device or a proce-

dure. They must be the first input read by the programs.

Every control statement is made up of an identifier and

parameters. The identifier is a word that identifies the con-

trol statement. It is always the first word of the statement.

Parameters are information you are supplying to the pro-

gram. Every parameter consists of a keyword, which identi-

fies the parameter, followed by the information you are

supplying.

Coding Rules

The rules for constructing control statements are as follows:

1. Statement identifier. // followed by a blank should

precede the statement identifier. Do not use blanks

within the identifier.

2. Blanks. Use one or more blanks between the identi-

fier and the first parameter. Do not use them any-

where else in the statement.

3. Statement parameters, Parameters can be in any

order. Use a comma to separate one parameter from

another. Use a hyphen (-) within each parameter to

separate the keyword from the information you sup-

ply. Do not use blanks within or between parameters.

46

4. Statement parameters containing a list of data after

the keyword. Use apostrophes (’) to enclose the items

in the list. Use a comma to separate one item from

another. For example: UNIT-‘R1,R2’ (R1 and R2

are the items in the list).

5. Statement length. All control statements except disk

initialization, simulation area, and library mainte-

nance statements must not exceed 96 characters. The

following library maintenance statements can be con-

tinued on ancther statement. (See Continuation

under Coding Rules in Part 1 of this manual.)

// ALLOCATE

// COPY (not COPY statements read from a file or
ENTRY statements)

// DELETE

// MODIFY (not REMOVE, REPLACE, or

INSERT statements)

// RENAME

The disk initialization statement // VOL can also be contin-

ued. All simulation area control statements may be contin-

ued.

The following is an example of a control statement:

// COPY FROM-F1,LIBRARY-O,NAME-SYSTEM,TO-R1

The statement identifier is COPY. The parameter keywords

are FROM, LIBRARY, NAME, and TO. The information

you supply is F1,0, SYSTEM, and R1.

END Control Statement

The END statement is a special control statement that indi-

cates the end of control statements. It consists of // END

starting in position 1 and must always be the last control

statement for the program (except $TVES).

Placement of Control Statements in the Job Stream

Control statements for utility programs must follow the

RUN statement. The following example shows the use and

placement of utility control statements.

OCL

Statements

Utility Control

Statements

S
T

T
J

B
a
e
"

H
i
M
a
[
e
l

S
M
E
s

Special Meaning of Capital Letters, Numbers, and Special

Characters

Capitalized words and letters, numbers, and special charac-

ters have special meanings in OCL and utility control state-

ment descriptions.

In utility control statements, capitalized words and letters

must be written as they appear in the statement description.

Sometimes numbers appear with the capitalized informa-

tion. These numbers must also be written as shown.

Words or letters that are not capitalized mean you must use

a value that applies to the job you are doing. The values

that can be used are listed in the parameter summaries for

the control statements. For example, 1ID-xxxxxx means you

must supply the value where the xxxxxx appears.

Braces and brackets ([{ }]) sometimes appear in param-
eters shown in control statement summaries and parameter

summaries. They are not part of the parameters. Braces

indicate that you must choose one of several values to

complete the parameter. For example, RETAIN- T means

you can use either RETAIN-T or RETAIN-P. Brackets indi-

cate optional parameters. For example, [,PACK-name] is an

optional parameter that may or may not be used.

Tape Initialization Program—$TINIT

The Tape Initialization program prepares tapes for use. It

writes IBM standard volume labels on tape so that tape data

management can perform IBM standard label processing.

The program is available on either card or disk.

The Tape Initialization program performs these functions at

your request:

@ CHECK labeled tapes for a volume label and an unexpired

file before writing a new volume label.

@ CLEAR labeled or unlabeled tapes by bypassing CHECK

and unconditionally initializing the tape.

@ DISPLAY the volume and header labels.

All tapes must be initialized before use. Tapes that have

been initialized need not be reinitialized unless you want to

write a new volume label or use a tape that contains a per-

manent file for output. This program can either initialize

(CLEAR or CHECK) or DISPLAY one tape per unit during

the same program run.

Tape Initialization Program~$TINIT 47

CONTROL STATEMENT SUMMARY

Use Control Statement

. T1
Check for an expired 12 NL YES

file and a label, then //VOL UNIT- JREEL- | } ZTYPE-CHECK,ASCII-4 \ ,
; T3 XXXXX NO

write a new label.
T4

1600

800
DENSITY: | Fe ID-yy...yy

200

// END

Write volume label 0 NL YES

without checking // VOL UNIT- ,REEL- »TYPE-CLEAR,ASCII- ,
T3 XXXXXX NO

for old label. —
T4

1600

800
DENSITY. | Poe ID-yy...yy

200

// END

Display volume 1 800 pray // VOL UNIT- [TYPE-DISPLAY,DENSITY- < 556
label. T3 200

T4

// END

Notes:

1. If density is not specified, the default for 7-track tape units is 800 bpi, the default for 9-track tape units is 1600 bpi.
2. The DENSITY parameter on display volume label is valid only for 7-track tape units.

3. Valid density for 7-track tape units is 200, 556, and 800 bpi. Valid density for 9-track tape units is 800 bpi (if
dual density feature is installed) and 1,600 bpi.

48

PARAMETER SUMMARY

TYPE-CHECK

TYPE-CLEAR

TYPE-DISPLAY

UNIT-code

REEL-NL

REEL-xxxxxx

ASCII-YES

ASCII-NO

DENSITY-200

DENSITY-556

DENSITY-800

DENSITY-1600

ID-xxxxxxxXXXX

Checks to see if the file has expired, then writes a new label. Do not use this on blank tapes

because the program attempts to read a blank tape, causing tape runaway.

Writes a new volume label without checking for an expired file.

Prints the contents of the volume label and the header labels.

Specifies which tape drive contains the tape to be initialized. Possible codes are T1, T2, T3, and

T4. A separate VOL statement is needed for each tape unit that contains a tape to be initialized.

Specifies that an unlabeled tape is to be generated.

Specifies the volume serial number that the Tape Initialization program writes on tape. Must be

alphabetic A-Z, @, #, $, or numeric 0-9.

The tape is written in ASCII code. This is invalid for 7-track tape.

The tape is written in EBCDIC code. If the ASCII parameter is omitted, NO is assumed.

The tape is written at a density of 200 bpi. The file written on this tape unit must be written at

this density.

The tape is written at a density of 556 bpi. The file written on this tape unit must be written at

this density.

The tape is written at a density of 800 bpi. The file written on this tape unit must be written at

this density.

The tape is written at a density of 1,600 bpi. The file written on this tape unit must be written at

this density.

Provides an additional identification field. This field is not processed by the system. A maximum

of 10 characters can be used if ASCII-NO is specified. If ASCII-YES is specified, 14 characters can

be used. This is an optional parameter.

OCL CONSIDERATIONS MESSAGE FOR TAPE INITIALIZATION

The following OCL statements are needed to load the Tape Message Meaning

Initialization program:

INITIALIZATION This message is printed when

// LOAD $TINIT,code ON xx COMPLETE initialization of a tape is com-

// RUN plete. xx indicates the unit (T1,

T2, T3, or T4) on which the

The code you supply depends on the focation of the simula- initialization is complete.

tion area containing the Tape Initialization program. The

codes are R1, F1, R2, and F2.

_ Tape Initialization Program—$TINIT 49

PRINTOUT OF VOLUME LABEL

The following sample jobs show the format of data printed

by the Tape Initialization program from a 9-track tape

unit and from a 7-track tape unit.

44 LOAD STINIT» FL

4/7 VOL UNIT-I1,TYPE-DISPLAY FE LLES-ALL » DENSITY-200
// VOL UNIT-T2sTYPE-DESPLAY sFILES—ALL» DENSITY-556
// VOL UNIT-13, TYPE-DISPLAY;FILES-ALL
7/7 VOL UNIT-T4, TYPE-DISPLAY sF ILES-ALL
77 END

#** DISPLAY ON UNIT TL ###
LABEL SERIAL OWNER CODE
VOLI SCRTOL

LABEL FILE IDENTIFIER FILE SERIAL VOL SEQ NO CREATE DATE DATE FILE SEQ NO
HDR I FILEOL SérTol 0051 76006 16 00

LABEL REC_FORM BLK LENG REC LENG RECORDING TECH PRIR CNTRL BLK ATTR JOBNAME/ STEPNAME
HDR2 F 00086 66080 /TAPBLOOL

##& DISPLAY ON UNIT T2) ##
LABEL SERIAL OWNER CODE
VOLI SCRTO2

LABEL FILE IOENTIFIER FILE SERIAL VOL S6Q NO CREATE DATE OATE FILE SEQ NO
HDR I FILEOL SCRTO2 0001 76006 16 000

LABEL REC_FORM BLK LENG REC LENG RECORDING TECH PRTITR CNTRL- BLK_ATTR JOBNAME/ STEPNAME
HDR2 F 60866 66080 B /TAPBLOO1

«DISPLAY ON UNIT T3 ##©
LABEL SERIAL OWNER CODE
VOL I SCRTO3

MEANING OF VOLUME LABEL INFORMATION FILE SERIAL The serial number of the tape

volume. This is the same as the

Display of Volume Label SERIAL field in the volume

label.

Heading Meaning

VOL SEO NO The sequence number of this

LABEL VOL1 indicates this is a volume volume is a multivolume file.

label.

CREATE DATE The date this file was created.

SERIAL The volume serial number (from This is a Julian date. The format

the REEL parameter). is yyddd where yy is the last two

digits of the year and ddd is the

OWNER CODE Additional identification (from day in the year. Example:

the ID parameter).

Display of Header 1 Label

Heading Meaning

LABEL HDR_1 indicates this is a header 1

label.

FILE IDENTIFIER The filename of the file on tape.

This is the name from the LABEL

parameter of the OCL FILE state-

ment when the file was created.

50

EXPIRE DATE

76063 = the sixty-third day of

1976, or March 3, 1976.

The date this file expires. This

Julian date is the creation date

plus the number of days speci-

fied by the RETAIN parameter

on the OCL FILE statement.

Display of Header 2 Label

Heading Meaning

LABEL HDR2 indicates this is a header 2

label.

REC FORM The record format of this file.

(From the RECFM parameter on

the OCL FILE statement when

this file was created.) The

formats are:

F Fixed length

V Variable length

U Undefined length

BLK LENG Block length (from the BLKL

parameter on the OCL FILE

statement when this file was

created).

REC LENG Record length (from the RECL

parameter on the OCL FILE

statement when this file was

created).

RECORDING TECH T Odd parity with trans-

lation

C Odd parity with conver-

sion

E Even parity without

translation

ET Even parity with trans-

lation

Blank Odd parity without

translation or conver-

sion

PRTR CNTRL

BLK ATTR

Printer control character. This

field will be blank on tapes creat-

ed on System/3. For tapes creat-

ed on other systems, the charac-

ters are:

A ASCII control charac-

ters

M Machine control

characters

blank No control charac-

ters

Block attributes:

B Blocked records

S Spanned records

R Blocked and spanned

records

blank Neither blocked nor

spanned

Note: Spanned records can-

not be created on System/3.

Tape Initialization Program—$TINIT 51

Tape Error Summary Program—$TVES

The IBM System/3 Disk System keeps track of errors that

occur on the tape drives. This error information is stored in

the customer engineer tracks on drive 1. You should run

the Tape Error Summary program periodically to provide a

summary, by volume and by unit, of temporary read and

write errors.

There are no control statements necessary for this program.

After being loaded from the program or system pack, the

Tape Error Summary program reads the data from the disk

and sorts it by volume and unit. When all the data is read

or the available main storage is filled, the error data is print-

ed. If no tape errors are recorded, the message THERE

ARE NO VALID TAPE ERRORS LOGGED is printed.

ERROR LOGGING FORMAT

SUMMARY MAGNETIC TAPE ERROR STATISTICS BY VOLUME DATE 03/27/72

VOLUME S10 TEMP TEMP WRITE
SERIAL COUNT READ WRITE SKIP

T1 06512 0000 0028 0028
TAPE1 00016 0000 0001 0001
TAPE3 00021 0000 0001 0001

SUMMARY MAGNETIC TAPE ERROR STATISTICS BY TAPE UNIT DATE 03/27/72

TAPE SIO TEMP TEMP WRITE DIAG
UNIT COUNT READ WRITE SKIP TRACK

T1 06528 0000 0029 0029 0000
T4 00021 0000 0001 0001 0000

0 For any file that has more than two volumes on a unit, ,,,,,, is printed as the volume serial for all volumes on that

unit except the last volume. For a tape that is not being used by tape data management, ,,,,,, is printed as the

volume serial. For nonlabeled tapes, ****** is printed as the volume serial. For tapes with nonstandard labels,

NS is printed as the volume serial.

The number of tape operations performed. (SIO means Start I/O.)

Temporary read errors.

Temporary write errors.

Write skips caused by temporary write errors.

Diagnostic track errors. This is used by IBM customer engineers.

OCL CONSIDERATIONS

The following OCL statements are needed to load the Tape

Error Summary program:

// LOAD $TVES,code

// RUN

The code you supply depends on the location of the simula-

tion area containing the Tape Error Summary program. The

codes are R1, F1, R2, and F2.

Disk Initialization Program—$INIT

All data modules must be initialized before use. Data

modules that have been initialized need not be reinitialized

unless you want to erase their contents and rename them.

The Disk Initialization program prepares data modules for

use. It does this by:

® Writing track and record addresses on the data module

® Checking for defective tracks, a process called surface

analysis

® Assigning alternate tracks to any defective tracks found

@ Writing a name on each data module to identify the data

module

@ Formatting the volume table of contents

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

The process is called initialization. The program can initial-

ize up to two data modules during the same program run.

There are five types of initialization: FORCE, PRIMARY,

CLEAR, CYLO, and RENAME. FORCE is used primarily

to initialize new data modules. PRIMARY is used to initial-

ize the main data area if there are no active files on the data

module. CLEAR will initialize the main data area without

checking for active files. CYLO is a fast initialization, initial-

izing only cylinder O on a System/3 formatted data module.

RENAME affects names on cylinder O, track 0, record 3

and cylinder 0, track 3, record 3.

CAUTION

CLEAR and FORCE destroy any files that were previously

on disk. CYLO destroys any VTOC entries that were pre-

viously on disk.

The control statements you supply for the Disk Initializa-

tion program depend on the type of initialization and the

number of disks you are initializing.

Disk Initialization Program—$INIT 53

CONTROL STATEMENT SUMMARY

Type of Initialization

Force

PRIMARY ©

Disk already in use

(reinitialize)

CLEAR @

CYLO @) Disk already
in use

RENAME ©
;

i

Control Statements

// UIN TYPE-FORCE@ UNIT-D2

// VOL PACK-name,|D-characters, NAME360-characters

// END

// UIN TYPE-PRIMARY “UNIT. Jeode | VERIFY-number
| codes {

// VOL PACK-name,!ID-characters, NAME360-characters

// END

// UIN TYPE-PRIMARY,UNIT- {code | VERIFY-number
codes

// VOL PACK-name,!D-characters, NAME360-characters, OLDPACK-name

// END

code j VERIFY-number // UIN TYPE-CLEAR,UNIT-| ;
codes

// VOL PACK-name,!|D-characters, NAM E360-characters, OLDPACK-name

// END

fcode |
| codes f '

// VOL PACK-name,|D-characters, NAME360-characters, OLDPACK-characters

// UIN TYPE-CYLO,UNIT-

// END

// UIN TYPE-RENAME,UNIT-4 CO%# \
) codes f

// VOL PACK-name,|D-characters, NAM E360-characters,OLDPACK-characters

//END

Note: The control statement defaults to TYPE-FORCE if the data module is still in System/370 format and TYPE-CLEAR
or PRIMARY initialization has been specified. If CYLO or RENAME is specified and the data module is still in Systern/370
format, the system halts.

control statements are required in the order they are listed: UIN, VOL, END

@one VOL statement is required for each disk listed in the UNIT parameter of the UIN statement. The PACK parameter in the first VOL
statement applies to the first disk listed in the UNIT parameter. The PACK parameter in the second VOL statement applies to the second
disk tisted in the UNIT parameter.

Oi the TYPE parameter is omitted, TYPE-PRIMARY is assumed.

54

PARAMETER SUMMARY

UIN (Input Definition) Statement

TYPE-FORCE

TYPE-PRIMARY

TYPE-CLEAR

TYPE-CYLO

TYPE-RENAME

UNIT-code

UNIT-’code,code’

VERIF Y-number

ERASE-code

if the TYPE parameter FORCE is

used, the main data area and the

simulation areas are initialized with-

out a check for active files. (This is

invalid for D1; and for D2 if F2 and

R2 are being simulated.)

Primary initialization (main data

area only). Tracks already initial-

ized are reinitialized. The program

will not initialize disks containing

temporary data files or permanent

data files.

Clear initialization (main data area

only). Tracks already initialized are

reinitialized. Active file checking is

bypassed and any data on the tracks

is destroyed.

CYLO is a fast initialization, initial-

izing only cylinder 0 on a System/3

formatted data module. This in-

cludes rewriting the volume label,

the pack ID, and NAME360 fields,

and deleting any VTOC entries that

may be present.

RENAME initialization applies only

to those names on cylinder 0 which

match the PACK, ID, and NAME360

parameters. Parameters are changed

on a System/3 formatted data

module to the parameters specified

on the control statement.

Disk location (one disk). Possible

codes: D1, D2.

Disk location (two disks). Possible

codes: D1, D2.

Surface analysis. Done the number

of times indicated (number can be

1-255). VERIFY-16 is assumed if

you omit the parameter. This param-

eter is only used for TYPE-CLEAR

and TYPE-PRIMARY initialization.

Possible codes are yes and no. Yes

causes retesting of tracks for which

alternates are already assigned.

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

VOL (Volume) Statement

Data module name. Can contain

any of the standard System/3

characters except apostrophes, lead-

ing or embedded blanks, and em-

bedded commas\. Its length must

not exceed 6 characters.

PACK-name

Additional identification. Can con-

tain any of the standard System/3

characters except apostrophes, lead-

ing or embedded blanks, and em-

bedded commas. Its length must

not exceed 10 characters. If you

omit this parameter, no additional

identification is written on the disk.

{D-characters

NAME360-characters Additional identification for data

module. The name will be placed in

the System/360 format 1 DSCB.

Can contain any of the standard

System/3 characters except apos-

trophes, leading or embedded blanks,

and embedded commas. Its

length must not exceed 44 charac-

ters. If you omit this parameter,

the program defaults to

SYSTEM/3.DATA.

OLDPACK-name Current name of the data module to

be initialized. See PACK keyword

(above) for valid entries.

PARAMETER DESCRIPTIONS

TYPE Parameter (UIN)

The TYPE parameter indicates the type of initialization you

want to do: PRIMARY, FORCE, CLEAR, CYLO, or

RENAME. The type of initialization determines which disk

tracks will be initialized.

PRIMARY Initialization

PRIMARY initialization applies to main data areas you have

used but want to initialize again. Tracks that were pre-

viously initialized are initialized again. Any data on the

tracks is destroyed. You can use PRIMARY initialization on

a disk as often as you want. However, the program will not

initialize disks containing temporary data files or permanent

data files. You must delete the files using the file delete

program.

O this is due to their delimiter function.

Disk Initialization Program—SINIT 55

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

FORCE Initialization

FORCE initialization applies to new data modules that are

formatted for System/370. FORCE may also be used to re-

initialize disks that you have used.

Note: The simulation area program, $SCOPY must be used

after a FORCE initialization to reformat the simulation

areas.

CLEAR Initialization

CLEAR initialization applies to the main data area of pre-

viously used data modules that require reinitialization

because of invalid data module labels or an unrecoverable

disk error. Tracks that were previously initialized are re-

initialized.

CAUTION

All temporary data files or permanent data files are com-

pletely erased.

CYLO Initialization

Cylinder zero (CYLO) initialization can be used if you want

to reinitialize only cylinder 0.

RENAME Initialization

RENAME initialization may be used if you want to change

PACK, ID, and NAME360 parameters.

Note: lf an invalid System/3 label is found during RENAME

initialization, the program must reinitialize the disk using .

either FORCE, CLEAR, PRIMARY, or CYLO.

UNIT Parameter (UIN)

The UNIT parameter (UNIT-code) indicates the location of

the data modules you want to initialize. The program can

initialize up to two data modules during one program run.

The form of the UNIT parameter depends on the number of

data modules you are initializing:

@® For one data module, use UNIT-code.

@ For two data modules, use UNIT-‘code,code’.

The codes indicate the locations of the data modules D1,

D2.

56

For all initialization, the order of codes must correspond to

the order of VOL control statements. {f, for example, you

had used the parameter UNIT-‘D1,D2’, the first VOL state-

ment applies to the data module on drive 1, and the second

to the data module on drive 2.

ERASE Parameter (UIN)

The ERASE parameter applies to alternate track assign-

ments on disks that have already been intialized and used,

but you are reinitializing using primary initialization.

The condition of tracks on disks such as these has been

tested at least once before (during the previous initializa-

tion), and the tracks that were found to be defective during

surface analysis were assigned alternates. The ERASE param-

eter allows you to incicate whether you want the program

to 1) retest the tracks to which alternate tracks are already

assigned, or 2) leave the alternate tracks assigned without

retesting the tracks.

To retest the tracks, enter parameter ERASE-YES. The

program then erases any existing alternate track assignments

and tests all tracks as if the disk were new.

To bypass retesting the tracks, enter parameter ERASE-NO.

The program then tests only those tracks to which no alter-

nate tracks are assigned. Alternate tracks previously

assigned remain assigned.

Defective tracks are not retested if the ERASE parameter is

omitted.

VERIFY Parameter (UIN)

The VERIFY parameter (VERIFY-number) concerns sur-

face analysis. It enables you to indicate the number of

times you want the program to do surface analysis before

judging whether or not tracks are defective. The number

can be from 7 to 255.

Surface Analysis

Surface analysis is a procedure for testing the condition of

tracks. It consists of writing test data on tracks, then read-

ing the data to ensure that it was recorded properly.

In judging whether or not tracks are defective, the program

does surface analysis the number of times you specify

in the VERIFY parameter. If you omit the VERIFY

parameter, surface analysis is done 16 times. Tracks that

cause reading or writing errors any time during surface

analysis are considered defective. Defective tracks can be

assigned alternates. The 3340 has 40 alternate tracks

available. If the program finds more than 40 defective

tracks, it considers the disk unusable and stops initializing

it.

Alternate Track Assignment

Alternate track assignment is the process of assigning an

alternate track to a defective track. If the disk initialization

program finds a defective track during surface analysis, it

assigns an alternate track to the defective track. The

alternate is, in effect, a substitute for the defective track.

Anytime a program attempts to use the defective track, it

automatically uses the alternate instead. Each disk has 40

alternate tracks (tracks 3340-3379).

If tracks become defective after a disk is initialized, another

program (see A/ternate Track Assignment Program) is used

to assign alternate tracks. Disks need not be reinitialized to

assign alternate tracks.

Note: During initialization of D1, suspected defective simu-

lation area tracks may be encountered in the suspected

defective track list as a result of previous activity involving

that data module. If so, the system halts at end of job. At

this time the data module should be moved to unit D2 and

$ALT run against it.

PACK Parameter (VOL)

The PACK parameter (PACK-name) applies to all types of

initialization. During initialization, the disk initialization

program writes a name on each disk. It uses the name you

supply in the corresponding PACK parameter. (One VOL

control statement containing a PACK parameter is required

for each disk.)

The name can be any combination of standard System/3

characters except apostrophes, leading or embedded blanks,

and embedded commas (because of their delimiter func-

tion). (See Appendix A for a list of standard System/3

characters.) Its length must not exceed 6 characters.

Examples of valid disk names are 0,FO001, 012, A1B9, and

ABC.

in general, disk names are used for checking. Before a pro-

gram uses a disk, the disk name is compared with a name

you supply (either in OCL statements or control statements

required by the program). If the names do not match, the

program halts and prints a message. In this way, programs

cannot use the wrong disks without the operator knowing

about it.

ID (Identification) Parameter (VOL)

The ID parameter (ID-characters) applies to all types of ini-

tialization. It enables you to include a maximum of 10

characters, in addition to the disk name, to further identify

a disk. The characters can be any combination of standard

System/3 characters (Appendix A) except apostrophes,

leading or embedded blanks, and embedded commas

(because of their delimiter function). The information is

strictly for your use; the system does not use it for check-

ing. If you use the file and volume label display program to

print the disk name, that program will also print the addi-

tional identification for you.

NAME360 Parameter (VOL)

The NAME360 parameter (NAME360-name) is used to

specify a filename for data interchange with System/360-

System/370. System/360-System/370 can use data on a

System/3 data module by treating it like a file. System/3

gives a default filename of SYSTEM/3.DATA. The

NAME360 parameter can be used if you would like to code

a filename of your own.

NAME360 can contain any of the standard System/3

characters except apostrophes, blanks and commas. Its

length must not exceed 44 characters.

OLDPACK Parameter (VOL)

The OLDPACK parameter (OLDPACK-name) is used to

verify that a specific disk is mounted before initialization is

started. If the name of the disk mounted does not match

the name you specify, the program halts.

The specified name can be any combination of standard

System/3 characters except apostrophes, leading or embed-

ded blanks, and embedded commas. Its length must not

exceed 6 characters.

Disk Initialization Program—SINIT 57

OCL CONSIDERATIONS

The following OCL statements are needed to load the disk

initialization program:

// LOAD $INIT,code

// RUN

The code you supply depends on the location of the simu-

lation area containing the disk initialization program. The

codes are R1, F1, R2, and F2.

EXAMPLES

Primary Initialization of Two Disks

Figures 9 and 10 are examples of OCL statements and

utility control statements needed for the primary initializa-

tion of two disks.

1. 4 8 12 16 20 24 28 32 36

ie
/\/| (LOAD ISI /\M/ 17), [Fi
1 IRN

Explanation:

Disk initialization program is loaded from the simulation

area (F1) on drive 1.

Figure 9. OCL Load Sequence for Disk Initialization

58

1 4 8 12 16 20 24 28 32 36

A/\ Wi ri-} 10 4] io!" |, ELAR WA
/I/| Wwlat| \AAicl-|2i22\2

JL WICL| AAICK-lRAIVIAOL| | /ID1- 210121715)
V\/| IED

Explanation:

@ The main data area on both drives is being initialized

(UNIT-‘D1,D2’ in UIN statement).

@ The main data area (D1) is given the name 2222 (PACK-

2222 in first VOL statement).

@ The main data area (D2) is given the name PAYROL

(PACK-PAYROL in second VOL statement). Additional

identifying information, 010275, is to be written on

drive 2 (1ID-010275).

Figure 10. Utility Control Statements for Primary !nitialization of

Two Disks

MESSAGES FOR DISK INITIALIZATION

Message

INITIALIZATION ON

XX COMPLETE

INITIALIZATION ON

XX TERMINATED

**ALTERNATE TRACKS

ASSIGNED**

PRIMARY TRACK XXXX

ALTERNATE TRACK XXXX

ALTERNATE TRACK

XXXX DEFECTIVE

PRIMARY TRACK HAS BEEN

TESTED OK

TRACK-XXXX, UNIT-ZZ

**RECORD WITH DATA

ERROR**

Meaning

This message is printed when initialization of a disk is complete. XX indicates the

unit (D1,D2) on which the initialization is complete.

This message is printed when initialization of a disk must be terminated for one of

the following reasons:

@ Cylinder 0 head 0 is defective.

@ More than forty 3340 tracks are defective.

@ Possible disk hardware error exists.

After this message is printed, halt 33 occurs. XX indicates the unit (D1 or D2) on

which the initialization is terminated.

These two messages are printed when a primary track is defective and an alternate

track is assigned to it. XXXX indicates the tracks involved.

This message is printed when a 3340 alternate track is defective.

This message is printed when it is determined that a primary track is not defective.

XXXX is the primary track number and ZZ is the unit involved. .

This message is printed when an error is encountered during data transfer while

assigning an alternate track. The record that has the error is printed. (See

Alternate Track Assignment Program for additional explanation.)

Alternate Track Assignment Program—$ALT

The alternate track assignment program assigns alternate

tracks to disk tracks that become defective after they are

initialized. When the program assigns an alternate, it trans-

fers the contents of the defective track to the alternate.

Alternate tracks can replace any primary tracks except

cylinder 0 head 0 on the 3340 because they are reserved for

system use.

CONTROL STATEMENT SUMMARY

Use Control Statements U

@
Conditional

Assignment number

// END

OFor each use, the program requires the statements in the order

they are listed: ALT, END.

@ there can be only two ALT statements per job.

Alternate Track Assignment Program—$ALT 59

// ALT ~ PACK-name,UNIT-code, VERIFY-

PARAMETER SUMMARY: ALT (ALTERNATE)

STATEMENT

PACK-name Name of the disk.

UNIT-code Location of the disk. Possible codes

are D1, D2.

VERIFY-number _ In testing the condition of a track, do

surface analysis the number of times

indicated (number can be 1-255). If

VERIFY parameter is omitted, do sur-

face analysis 16 times.

PARAMETER DESCRIPTIONS

PACK Parameter

The PACK parameter (PACK-name) tells the program the

name of the disk containing the defective tracks. This is

the name written on the disk by the disk initialization pro-

gram. (See Disk Initialization Program.)

The alternate track assignment program compares the name

in the PACK parameter with the name on the disk to ensure

they match. In this way, the program ensures that it is us-

ing the right disk.

UNIT Parameter

The UNIT parameter (UNIT-code) indicates the location of

the disk containing defective tracks. Codes for the possible

locations are D1 and D2.

VERIFY Parameter

The VERIFY parameter (VERIFY-number) enables you to

indicate the number of times you want the program to do

surface analysis before judging whether or not the track is

defective. The number can be from 1 to 255. If you omit

the parameter, the program does surface analysis 16 times.

Conditional Assignment

Conditional assignment consists of testing the condition of

a track (surface analysis) and, if the track is defective,

assigning an alternate track to replace it.

60

Situation: Conditional assignment applies to tracks that

cause reading or writing errors during a job. Any time a

track causes such errors, the system does the following:

1. Stops the program currently in operation.

2. Writes the track address in a special area on the disk.

3. Halts with a halt code indicating a permanent disk

1/O error.

You can then run the alternate track assignment pro-

gram.

When you use the alternate track assignment program to do

conditional assignment, the program locates the tracks by

using the addresses in the special area on disk. All disks

have such an area. The program will do conditional assign-

ment for all tracks identified in the area (one at a time) as

long as there are alternate tracks available for assignment.

Surface Analysis: Surface analysis is a procedure the pro-

gram uses to test the condition of tracks. It consists of

writing test data on a track, then reading the data to ensure

that it was written properly.

Before doing surface analysis, the alternate track assignment

program transfers any data from the track to an alternate

track. This is the alternate that will be assigned if the track.

proves to be defective.

In judging whether or not the track is defective, the program

does surface analysis the number of times you specify in the

VERIFY parameter. If you omit the parameter, the pro-

gram does surface analysis 16 times. If the track causes

reading or writing errors any time during surface analysis,

the program considers the track defective.

Assignment of Alternate Tracks: \f a track proves to be

defective, the program assigns an alternate track. The alter-

nate becomes, in effect, a substitute for the defective track.

Any time a program attempts to use the defective track, it

automatically uses the alternate instead.

Each data module has 40 alternate tracks. The program will

not do conditional assignment if all alternate tracks are in

use.

Note: \f the alternate track assignment program is being

run against D1 and suspected defective tracks from the

simulation area are encountered, a halt occurs at end of job.

At this time, the data module should be moved to D2 and

$ALT run against it again.

Incorrect Data: \f a track is defective, some of the data

transferred to the alternate track could be incorrect. There-

fore, when reading data from the defective track, the

program prints all track records containing data that caused

reading errors. Characters that have no print symbol are

printed as two-digit hexadecimal numbers.

The following is an example:

ABCDE GH123 56...

B A

4

Appendix A lists the characters in the standard character

set and their corresponding hexadecimal numbers.

To correct errors on the alternate track, use the alternate

track rebuild program.

OCL CONSIDERATIONS

The following OCL statements are needed to load the alter-

nate track assignment program:

// LOAD $ALT,code

// RUN

The code you supply depends on the location of the simula-

tion area containing the alternate track assignment program.

The codes are as follows: R1, F1, R2, and F2.

EXAMPLES

Conditional Assignment

Figures 11 and 12 are examples of the OCL statements and

utility control statements needed for a conditional assign-

ment as described in the following situation.

Situation

The system cancels a job if a defective track is found on the

main data area on drive 2. (The name of the disk is

BILLNG.) Before doing more jobs, the operator wants to

use the alternate track assignment program to check the

condition of the track and assign an alternate to the track

-if it is defective.

Explanation:

Alternate track assignment program is loaded from the

simulation area F1 on drive 2.

Figure 11. OCL Load Sequence for Alternate Track Assignment

1. 4 8 12 16 20 24 28 32 36

/\/| Valul7| |AAlclK-\gsiciclaal lays 71- (D2) | |
Jr lelo TTY |

me

Explanation:

@® The name of the disk (BILLNG) and its location (main

data area on drive 2) are indicated by the PACK and

UNIT parameters in the ALT statement.

@ Because we omitted the VERIFY parameter from the

ALT statement, the program does surface analysis 16

times when it tests the condition of the tracks.

Figure 12. Utility Control Statements for a Conditional Assignment

Alternate Track Assignment Program—$ALT 61

MESSAGES FOR ALTERNATE TRACK ASSIGNMENT

Message Meaning

ALTERNATE TRACK ASSIGNED This message is printed when an alternate track has been assigned to a defec-

tive track and the data has been transferred to the alternate track.

PRIMARY TRACK HAS BEEN TESTED _ This message is printed when it is determined that a primary track is not

OK defective. xxxx is the primary track number and 2z is the unit involved.

TRACK xxxx,UNIT-zz

RECORD WITH DATA ERROR This message is printed when the alterriate track assignment program found

an error when transferring data. The record that has the error is printed out.

PRIMARY TRACK xxxx ALTERNATE This message is printed after ALTERNATE TRACK ASSIGNED. xxxx is the

TRACK yyyy,UNIT-zz primary track number, yyyy is the alternate track number, and zz is the unit

involved.

Alternate Track Rebuild Program—$BUILD CONTROL STATEMENT SUMMARY ©

The alternate track rebuild program enables you to correct // REBUILD PACK-name,UNIT-code,T RACK-location,

data that could not be transferred correctly to an alternate LENGTH-number,DISP-position

track. One or more alternate tracks can be corrected during

a program run. You must supply the control statements Substitute data

and data used to correct the errors.

// END
In writing control statements for this program, you will

need the information printed by the alternate track assign- Or, replace characters 1-12 and 75-78 of a record, you can use

ment program when it assigned the alternate track. The either of the following:

printed information tells you the name of the disk and

numbers of the track and records suspected of containing e Use one REBUILD statement to replace all the characters

incorrect data. It also includes the data from these records, with a LENGTH parameter of 78.

which you can use to locate incorrect data. On the 3340, e Use one REBUILD statement for every set of positions you
fixed record refers to a physical 256-byte record. correct.

The data you want to substitute must follow the REBUILD

statements to which it applies. The order of the statements and

data in the preceding example would be:

// REBUILD statement data For positions 1-78

// END

// REBUILD statement data For positions 1-12
// REBUILD statement data For positions 75-78

// END

62

PARAMETER AND SUBSTITUTE DATA SUMMARY

REBUILD Statement

PACK-name Name of the disk.

Location of the disk. Possible codes

are D1 and D2.

UNIT-code

3340 Disk Unit—Number of track and

fixed record containing incorrect data.

Number is printed by alternate track

assignment program. Track number

must be four digits; fixed record

number must be two digits. (TRACK-

011109 means track 111, fixed record

9.)

TRACK-location

Number of characters being replaced.

Number can be 2-256 and must be a

multiple of 2 (2, 4, 6, etc).

LENGTH-number

DISP-position Position of the first character being re-

placed in the record. Position can be

1-255.

Substitute Data: Code each character in hexadecimal form.

Follow every second character, except the last, with a com-

ma. Example: The numbers 123456 would be coded as

F1F2,F3F4,F5F6. (Appendix A lists the hexadecimal

codes for System/3 characters.)

PARAMETER AND SUBSTITUTE DATA DESCRIPTIONS

PACK Parameter

The PACK parameter (PACK-name) tells the program the

name of the disk that contains the alternate track being

corrected. This name is the one written on the disk by the

disk initialization program.

The alternate track rebuild program compares the name in

the PACK parameter with the name on the disk to see if

they match. In this way, the program ensures that the pro-

gram is using the right disk.

UNIT Parameter

The UNIT parameter (UNIT-code) indicates the location of

the disk that contains the alternate track being corrected.

Codes for the possible locations are D1 and D2.

TRACK Parameter

The TRACK parameter (TRACK-location) identifies the

track and record containing the data being corrected. The

defective track, not the alternate track, is the one you refer

to. Referencing the defective track is the same as referenc-

ing the alternate track.

For the main data area, the possible track numbers are

0001-4184. Always use four digits. The possible fixed

record numbers are 01-48. Always use two digits. The

track number must precede the fixed record number. For

example, the parameter TRACK-111019 means track 1110,

record 19.

Track and record numbers are printed by the alternate track

assignment program when it prints data from records that

contain incorrect data.

LENGTH Parameter

The LENGTH parameter (LENGTH-number) tells the pro-

gram how many characters you are replacing in the fixed

record. You must replace characters in multiples of 2 (2,

4,6, and so on). ‘The maximum is 256, which is the

capacity of a fixed record.

Length applies to characters that occupy consecutive posi-

tions in the fixed record. If the characters you want to re-

place do not occupy consecutive positions, you must either

replace all intervening characters or use more than one

REBUILD statement. For example, to replace characters

10-11 and 24-25 in a fixed record, you can do either of the

following:

@ Use one REBUILD statement to replace characters 10-

25 (LENGTH-16).

@ Use two REBUILD statements to replace characters 10-

11 (LENGTH-2) and 24-25 (LENGTH-2).

DISP (Displacement) Parameter

The DISP parameter (DISP-position) indicates the position

of the first character being replaced in the fixed record.

The position of the first character is 1; the position of the

second character is 2, and so on. The maximum position

you can specify is 255.

Beginning at the position you indicate, the alternate track

rebuild program replaces the number of characters you in-

dicate in the LENGTH parameter.

Alternate Track Rebuild Program—SBUILD 63

Substitute Data

After each REBUILD statement, you must code the substi-

tute characters that apply to that statement. The characters

must be in hexadecimal form. Appendix A shows the hexa-

decimal codes for the System/3 character set.

Include a comma after every second character. For

example, the data F1F2,F3F4,F5F6 represents 123456.

F1 is the hexadecimal form of 1; F2 is the hexadecimal

form of 2, and so on.

Code only the number of characters you indicated in the

LENGTH parameter in the REBUILD statement.

Note: \f the LENGTH parameter of the REBUILD state-

ment exceeds 38, at least two substitute data statements

are required. Each substitute data statement, except the

last one, must be completely filled with data and must have

acomma in column 95 and a blank in column 96. If the

1442 is the only input device, it is possible to have only one

substitute data statement.

OCL CONSIDERATIONS

The following OCL statements are needed to load the

alternate track rebuild program.

// LOAD $BUILD, code

// RUN

The code you supply depends on the location of the simu-

lation area contining the alternate track rebuild program.

The codes are R1, F1, R2, and F2.

EXAMPLES

Correcting Characters on an Alternate Track

Figures 13 and 14 are examples of the OCL and utility con-

trol statements needed for correcting characters on an alter-

nate track.

Explanation:

Alternate track rebuild program is loaded from the simula-

tion area F1 on drive 1.

Figure 13. OCL Load Sequence for Alternate Track Rebuild

Se

~~

Explanation:

© The name of the main data area (BILLNG) and its location (drive 2) are indicated in the PACK and UNIT parameters in

the REBUILD statement.

@ The record containing the incorrect characters is record 1 of the alternate track assigned to track 200 (TRACK-020001).

The character in position 120 is the first character being replaced (DISP-120).

® The characters in positions 120 through 123 in record 1 are being replaced (LENGTH-4).

© The substitute characters follow the REBUILD statement. They are G (C7), H (C8), | (C9), and 1 (F1).

Figure 14, Utility Control Statements for Correcting Characters on an Alternate Track

Situation

Assume that the alternate track assignment program printed

the following information:

RECORD WETH DATA ERROR

TRACK LewccecelOve cece selQecccsen eed accccee cs ecevnsce Maven esate cosccenlIeccsss eS woe ee AS

002001 .

NOADDODOOOOOOCOOOILLLLILLILILIL 112222222222 2222223333333333333333 44444444444 444455555555

0123456 789ABCDEFO1L234567689A8CDEFOL23456789ABCDEFOL2Z3456789ABCDEF 123456789ABCDEF 01234567

555555 556666666666 66666677 77777777777777888888 88388888 8899999999999999 IDAAAAARAA AAAAAAAA

BIABCDEFN] 23456739ABCDEFO1L 23456 789ABCDEF 012345678 9ABCDEFO1L23456789A8CDEFO1 234567 89 ABCDEF

ABCDEFGHI JKLMNOPQR STUVWXYZ 0123456789

BBBBSBRBBABBBBBBBC ccoceccb NDDDDDEF EEE EEE FFFFFF

0123456 789ABCOEFO ABCDEFO ABCDEFOL ABCDEF ABCDEF

It means that errors were detected in record 1 of track 200.

(Assume the name of the disk is BILLNG.)

In checking the characters printed by the program, you

found that the characters in positions 120-123 in the record

are incorrect and you want the operator to run the alter-

nate track rebuild program to correct them.

Alternate Track Rebuild Program—$BUILD 65

File and Volume Label Display Program—$LABEL

The file and volume label display program has two uses:

@ Print the entire volume table of contents (VTOC) from a

disk.

@ Print only the VTOC information for certain data files.

In both cases, the program also prints the name of the disk.

The printed VTOC information is a readable, up-to-date

record of the contents of the disk. There can be any num-

ber of reasons why you might need the information. Some

of the more common ones are as follows:

@ Before reinitializing a disk, you might want to check its

contents to ensure that it contains no libraries, perman-

ent data files, or temporary data files.

@ You want to find out what disk areas are available for

libraries or new files.

@ You want specific file information, such as the file name,

designation (permanent, temporary, scratch), or the space

reserved for the file.

The control statements you supply for the program depend

on the program use.

CONTROL STATEMENT SUMMARY

Uses Control Statement

Print entire // DISPLAY UNIT-code, LABEL-VTOC,SORT-NAME, FORMAT- 1a
VTOC

// END

Print only file // DISPLAY UNIT-code, LABEL- (rename } ,FORMAT- {al
. . ‘filenames B
information

from VTOC //END

® For each use, the program requires the statements in the order they are listed: DISPLAY, END.

® The number of filenames you list for a program run may not exceed 20. (VTOC is considered! as one filename.)

66

PARAMETER SUMMARY (DISPLAY STATEMENT)

UNIT-code

LABEL-VTOC

LABEL-filename

LABEL-‘filename,filename,...’

SORT-NAME

FORMAT-A

FORMAT-B

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

Location of the disk containing the VTOC information being printed. Possible codes are

R1, F1, R2, F2, D1, and D2.

Print entire contents of VTOC.

Print VTOC information for one file.

Print VTOC information for more than one file ©

VTOC information is sorted by filename into alphabetical order.

To be used when 120 print positions are available.

To be used when 96 print positions are available; prints two lines for each VTOC entry.

Othe number of filenames you list for a program run may not exceed 20. (VTOC is considered as one filename.)

PARAMETER DESCRIPTIONS

UNIT Parameter

The UNIT parameter (UNIT-code) indicates the location

of the disk containing the VTOC information being printed.

Codes for the possible locations are R1, F1, R2, F2, D1,

and D2.

LABEL Parameter

The LABEL parameter indicates the information you want

printed: the entire contents of the VTOC or only the infor-

mation for certain files. The VTOC is an area on disk that

contains information about the contents of the disk.

SORT Parameter

The SORT parameter can be specified only when LABEL-

VTOC is specified. If SORT-NAME is specified, the VTOC

information is sorted by filename into alphabetical order.

This function applies only to 1,000-file VTOCs and requires

additional main storage for sorting, as shown below:

Storage Required for

Execution With Sort

Number of

VTOC Entries

1-300 10K

301-500 12K

501-700 14K

701-1000 16K

FORMAT Parameter

If the system you are using has at least 120 print positions,

FORMAT-A is the default and only acceptable option. If

the system has a printer with 96 print positions, FORMAT-A

truncates the print line to omit NEXT AVAIL REC and

NEXT AVAIL KEY. FORMAT-B causes the NEXT AVAIL

REC and NEXT AVAIL KEY to be printed on the next line.

ENTIRE CONTENTS OF VTOC

The parameter LABEL-VTOC means to print the entire

contents of the VTOC. The meaning of the information the

program prints is given in the following chart. Headings that

are listed are the ones printed by the program to identify

the information. Figures 15 and 16 are examples of VTOC

printouts.

lf the program needs more than one page to list the file

information, it prints the headings for the file information

at the top of each new page.

File and Volume Label Display Program—$LABEL 67

NEXT AVAIL
KEY

[b- DATE-O7T/10/75 UNTT-F2

DEVICE CAPACITY-400

PACK-F2F2F2

A
N

e
t
e
 et

OR
CN

dl
Ch

et

L
T
O
O
L
T
C
O
N
N
G
O
C
H
D
O
O
O

A
N
G

A
N
S

e
t

O
w
t

H
O

M
I
O

A
S
S

S
A
R
S

A
N

H
E
R
R

F
A
N
N

S
N
S

A
H
O

M
O
O
D

A
H
O

H
A
H

O
O
O
C
O
F

C
O
O
N

s
S
N
A

R
S

R
A
N

F
A
R
P
L
A
S
T
T
O
B
O
M

G
e
m

P
O
M
O
M
O
O
A
A
I
N

e
e
e

P
A
P
A

ROIRINR
A
L

N
R
I
O
L

RH RH KK
KEKKEE

Im
bee

Fr
bea

ae be
bem fre

fe
fae fae fem fe”

fa
bem

»
O
O
O
W
O
O
M
O
O
E
A
N
G
O

O
N
G

N
e
a
t

A
G

a
t

=

[a
k

eo

e
t

Ph
e
l

R
O
P

C
O
A
L

at O
A
 ed

K
T
H
H
O
M
A
O
N
O
M
H

O
F
M

S
H
O
N

D
N

H
A
N

e
t

t
e
t

t
e

7”
D
e

fea
*
e

+
H
e

*
e
e

*

Pe
O
A
S

O
N
A
R

O
O
M

tO
FOO

P
A
N
N
O
N
A
O
A
A
A
A
A
E

n
e
n

a
N

N

W
O
O
N
R
O

G
W
O
O
M
A
B
O
A
N
I
O
M
O

D
O
N
M
A
N
M
A
O
O
R
O
D
O
R
O
N

o
o
o
0
o
c
o

e
o
c
e
o
c
e
9
d
e
0
c
o
e
s

O
P

P
A
A
A
P
I
E
D
O
O
A
G
E
M

S
O

D
A

M
A
N

O
M

D
M
N
O
A
A
S

E
M
O
a
O

N
F
E
R

E
S

O
U
I

et B
I
A
I
A
I
Q
I
Q
I
A
I
A
T

F
L
P
M
A

O
N

M
A
N
D

O
D
A
N
T
O
N
N
O

N
A
O

A
M
O

R
O
A
N
N
O
N
O
A
H
O
O

A
S
A
I
O

H
O
W

S
e
e

O
A
H
A
N
O
O

o
l
a

lole]

a
l
e

e
l
o
l
e
l
e
l
 o
l
a
l
e
l
o
l
s
l

o
l
a

e
o
c
c
o
c
d
o
0
c
c
c
9
0
0
c
c
e
c
0
o

B
A
N
M
M
N
N
A
A
A
M
N
M
A
A
M
Q
M
M
M
Y
M

I
L
D

UN
LO

UN
L
A
L

LAU
et

U
S

LA
U
E

L
O
S

PSP
Re

fee
R
e

fee
Pe
R
N

fine ft
Be

fine
Pe

~
S

S
S

,

D
O
O
O
C
O
V
O
C
S
C
O
A
O
O
C
O
S
T
O
O

O
d

et
eed

eed
coed

cred
pet

ret
OO

OO
ed

eed
raed

ad
ed

et

~
s
S

A
S
e

C
R
E

SE
E
E
E

R
O
O
R

M
E

R
E
D

l
e
l
e
l
e
l
e
l
e
l
e
l
e
l
e
l
e
r
e

Ta
l
w
l
a
l
e
l
e
l
o
l
e
)

e
h

O
A
h
A
A
M
A
A
R
A
k
r
r
A
O
R
e

N
I
E

G
O
O

V
O
U
O
U
E

B
O
O

A
N
A

O
A
D

a
a
A

O
N
I
O

D
O

L
H

O
O
C

C
O
C
O

F
e
A
H
O
R
U
L
I
L
I
L
U

S
Y
x
r
o
a
c
v
o
n
e
e
¢
e
e
a
r
¢
a
y
g
a
c

e
e

Z
S
Z
W
I
S
Z
U

S
e
e

C
D

t
A

St
M
A

A
U

St
O
t

4
e
t

P
H
O
T

A
E
D

O
M

00
SF

OD
I
A

S
U
N

O
P

0
0
0
0
0

0
0
9
0

S
e
t

t
e
t

p
i
e

l
o
l
e
l
e
l
e
l
e
l
e
l
e
l
e
*
l
e
l
e
l
e
l
e
l
e
l
e

lela)

NEXT _ AVAIL
KEY

ID-FIRSTPACK DATE-07/09/75

ON PACK

TRACKS

UNIT-DL

OF ALTERNATE TRACKS AVAILABLE-40

0364

0821

0756

0599

Olle

Figure 15. VTOC Printout Example

LOCATION

002/00

921/19

063/02

LOL/OL

131/10

VTOC SIZE LOOO FILES

PACK-DIDIDL

AVAILABLE SPACE

NO.

e
l

ad oad
4

N
O
O
C
O
M
A

C
O
O
N
M
S

e
0
0
c
e
o

a
s
o
0
o
0
0
o

t
e
t
r
a
m
e

N
A
I
N
A
 O

dl
t
t

ot
O
d

q
o
o
0
c
e
c
e

o
q
o
o
0
0
e
c
c
o

O
0
0

1

=

U
R
N
A

L
u
n

A
A
I
N
D
O
O

l
HIKEY-9000008

420
3894

s
s

R
S

S
S

S
S

E
L
V
E
N

OS
CO

rad
rend

ead
peed

CN
eed

Ogee
med

N
E
Y

[PS
ad

med
ped

ene
ered

et
LI

se
pl

sed
em

ne
fee

pert
OO

O
a
t

H
O
O
O
T
O
O
C
S
O
S
C
S
O
S
O
S
C
O
a
m
O
C
T
C
O
C
O
C
O
O
S
C
O
O
N
N
A
G

~
~

S
R

R
R

R
R

P
O
F

P
F
O
N
T
S
C
O
S
C
O
S
O
O
C
S
S
S
O
C
O
S
S
S
C
S
O
S
S
C
S
C
O
S
C
O
A
D

a
t
m

D
O
O
C
S
C
S
C
O
H
O
O
D
O
S
C
O
O
S
O
C
C
O
D
S
C
O

O
O
O
O

C
C
C
C
O
M
m
A
O
m

~
~

S
R
S

S
S

S
S
S

t
O

O
L
D

O
E

DO
O
L
A

S
E
O

A
I
N

SHH
O
O

R
D

M
O
M

et
eg

hh
r
h

P
P
S

AT
A
S

O
D

E
I
N

OIA
O
L
A

B
I
N
D

OCIA
S
H

S
I
M
S

E
M
E

e
d
 red

ned
eed

st
rend eel

ad mt
nh rel

pd
yet

one
rd

em
pr

ered
ef

pen)
ml

gard
wet

wnat ed
gmat

ene
yo

sa
gene

emt

(oad gad selanal aclagel
olmad

undLwalased
sud

selene
atdeed

edad
onl onl

ehetdand
od

unload
soLenl olan

od on
W
I
C
M
H
M
N
M
A
M
O
G
O
S
C
O
C
O
O
C
C
O
O
D
O
C
O
O
N
M
C
O
N
G
O
L
N
S

m
e
e
n

R
N
I
R
I
R
I
N
I
N
I
R
Q
I
R
I
N
I

AI
A
I
N
A

CI AINICIOI
QIN

a
ott

nal

N
U
B
I
A

A
A
P

F
H
A
I
V
A
R
A
M
A
A
O
P

A
O
N

A
R
A
A
A
C
O
N
A
O
O
M

D
D
E

OY
T
R
S

U
9

et
CO

LA
EN

ES
U
U

Bs
9

n
t

O
B

U
S

B
S

A
D
O
A
N
A
N
D
O
N
E
S
P
I
A
M

A
I
N
A

M
P
A
A

R
A
N
O
O
N
O

S
A
A
S

r
e
a

P
P
O

N

w
m

W
a
A
l
t
d
e
s
t
e
s

m
m

a

-_
X
a

N

O
O
O
N
A
S
 Pa

e
t
d
e
t
e
t
e
t
e
e
e
n
i
a
d

od
eed

ered
CD

Pe
ewe

mt
D
O

A
I
N
A

P
O
O

oO

H
O
O
M
M
M
M
O
O
Q
O
C
S
O
S
C
O
S
C
I
D
C
S
C
I
N
S
S
C
C
O

C
O
C
O

O
N
C
O
V
M
N

A
N
A
M

M
O

O
N
I
A
I
N
N
I
N

A
N
N

A
I
N
A
I
N
A
I
N
N

A
I
N
A

AN
e
t
e

O
O

e
o
o
o
c
o
c
e
s
o
o
s
s
o
s
o
o
e
o
c
c
o
o
c
o
S
s
o
s
e
c
c
o
s
o
o
c
0
s
s
s

H
S
O
O
M
O
S
O
T
O
V
O
C
C
S
S
S
O
S
O

9
S
e
o

e
c
c
o

o
o
c
a
c
o
o
o
o
e
o

D
O
V
N
S
I
M
M
O
M
B
O
O
C
O
O
O
C
O
C
S
C
O
C
O
S
C
O
S
S
O
C
S
V
O
S
O
S
C
O
S
O
D
V
O
D
A
L
R

M
H

e
l
o
l
e
l
 l
o
l
e
l
e
l
e
o
l
e
l
e
l
e
l
e
l
e
l
e
l
a
l
e
l
e
l
e
l
e
l
e
l
e
l
s
l
o
l
e
l
e
l
a
l
e
l
w
l
e
l

lore!
o
S

R
R

R
R
S
,

A
D
G
O
F

O
S
E

O
O
S

I
O
M
N
N

SR
H
O
O
O

R
O
O

A
E

M
E
O

S
P
P

P
O

P
O
A

OU
OLD

BIN
OI

OIA
O
L
A

S
A
F
I
N

M
S
S

od
md

red
raed

ed
meet emt

Red
ed

el
ed

rd
pred

rm
ah

od
ed

ed
ad

ed
ed

red
d
d

A
P
o
O
r
F
r
o
N
n
e

o
o
o
0
c
d
o
-

e
o
o
c
o
o
c
e
o

M
O
A
R

A
Q

O
C
O
a
n
n
a
o
o
d

O
A

A
A
R

OLA
S
O
M

O
W
N

O
M

D
H
O
O
M

M
O
S
N
E
N

T
A
I
N
O

O

B
A
A
D

D
O
O
A
N
W
A
P

O
N

O
D
M
R

O
O

A
N
N

A
I
A
G

DO
a
N

et
A
N
I
A

SD
R
A
C
V

O
D
O
N

O
M

O
O
D
N
N
G

O
H
O

A
A

H
O
C
O
I
N

R
I
A
U

onl
el

P
F
O
S
C
S
T
O
M
O
O
M
C
O
S
C
O
C
S
S
C
S
S
C
O
L
T

O
O
S
C
O
O
M
O
B
O
O
C
O
O
S
O

C
M
V
S
S
C
A
D
O
S
C
O
C
O
S
O
T
C
O
S
H
A
G
C
S
O
O
C
S
A
N
S
6
T
O
C
C
0
O
S
C
S
O
O
S
O

amt
Prat

set
et

pe
tet

tet
I
A
A
I

Y
A

P
A
A

A
A
A

A
L
A
A

A
I
M

A
V
I
A

A
I
A

a
l
a
t
a

atrar
allaltaltalrattal

ala!
altel

altatral
alraltal

allalvaltalrattaltallall
altel’ a

TS
De

ae Pe
fe

m
e

fhm fe
Pe fe P

f

e
f

P
Pe

fe
Pf

P
P

f
f

Fe f
Pne f

fe
Pe

R
R
A

R
A

R
A
R

R
R

R
R

S
R
A

R
R
R

R
O
D
B
A
H
A
A
D
H
A
A
O
H
M
A
A
A
A
G
H
A
A
A
A
A
A
A
A
B
R
A
A
A
C
A
A
A
K
A
H

D
O
D
P
O
D
D
O
C
O
S
O
S
T
O
T
V
O
C
D
S
C
S
C
O
S
C
C
O
S
C
O
O
O
D
D
C
O
O
C
O

A
N
A
N
S
I
 R
N

R
R
R

R
R
R

R
R

R
R
R

R
R

R
R
R

I
R

R
R
R

R
R
R

fe
Be

A
M
A
O
N
M
D
C
O
D
C
C
O
C
O
C
C
O
C
O
O
C
C
C
O
C
O
O
C

O
C
C
A

C
R
e
A
0
o

e
e

d
d

a

a
e
d

ed
ee

ad
lat

e
e
e

a Om
d
o
d
t
u
o
d
y

Q
a
e
t
o
d
o

E
T

E
A
L

0.00
S
A
S
L

OP
O
O

O
R
R

FIN
OM

O
R

O
R

Qetod
L
O
D

O
C
O
D

D
D

O
C
D
0
9
0

0
0
D

t
e

e
t

i
t

led
L
L
U

O
O

tent
C
O
D
O
R
O
O
K

>
R
e

e
R
e

R
r

e
e

e
e
e

e
e
e

O
O
O
C
O
R

FJ
Z
Z
Z
S
Z
Z
Z
D
D
I
A
M
D
D
I
I
I
D
I
D
D
A
S
D
I
B
I
I
D
I
W
w
W
u
w

w
w

bet
el

eet
Pt

et ete
II
M
O
M
A
D
O
O
S
C
C
O
O
C
C
C
O
O
M
M
M
U
M
N

D
M
N

C
A
S
I

O
M

O
R
O

S
A
I
D

S
I
A

O
M

O
R
O
R
M
N
M
F
A

O
M

O
R
O

nkenhenlonhenimelen
i
n
l
a
n
d

L
N

U
y

Dy
h
k

ks
a

2
a
A

C
O
M
A
M
M
A
O
O
S
C
C
V
D
C
S
O
S
O
B
.
O
M
S
V
E
V
C
O
O
C
C
C
e
C
O
e
9
0
0
o

Figure 16. 3340 Main Data Area VTOC Printout

68

MEANING OF VTOC INFORMATION

Heading Meaning

PACK-name Name of the disk.

Unit-code Location of the disk containing the VTOC information

DATE-xx/xx/xx

|D-characters

NUMBER OF ALTERNATE TRACKS

AVAILABLE-number

TRACKS WITH ALTERNATE

ASSIGNED

DEFECTIVE ALTERNATE TRACKS

DEVICE CAPACITY-number

LIBRARY EXTENT

START

END

EXTENDED END

AVAILABLE SPACE ON PACK

LOCATION

TRACKS

50 FILES
VTOC SIZE 150 rs

SEQ NUM

FILE NAME

RETAIN

FILE DATE

Program level date.

Additional disk identification (if any).

Number of alternate tracks available for assignment. Main data area only.

Address of primary tracks that have been assigned an alternate. Main data

area only.

Address of the alternate tracks that are defective. Main data area only.

Disk capacity (number of tracks). Simulation area only.

Boundary of libraries on the disk. (If the simulation area contains no libraries,

these headings are not printed.)

Track on which library begins. If the simulation area contains both source

and object library, START refers to begin-

Track on which library ends. ning of source library and END refers to

end of object library.

Object library only (simulation area only). Track on which extension to library

ends. When object library is full, temporary entries can be placed in space follow-

ing end of library, provided that space is available.

Available disk areas.

First track in available area (simulation area). First cyclinder/track in available

area (main data area).

Number of tracks available.

Maximum number of entries in VTOC.

Line number.

Name that identifies file in VTOC.

File designation:

P = Permanent

T = Temporary

S = Scratch (simulation area only)

Date given the file when file was placed on disk.

File and Volume Label Display Program—$LABEL 69

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

70

Heading Meaning

FILE TYPE File type:

| = indexed

S = sequential

D = direct

* = file used by spooling

REC LEN Number of characters in each record in file.

KEY LEN Number of characters in each record key (indexed file only).

KEY LOC Position in record occupied by last character of record key (indexed files only).

DATA Disk area reserved for indexed files only. DATA START is the first main data

START area cylinder/track of the area. This refers to the data portion of the file.

FILE LOC First track used by the file. For simulation area files, refers to a track number.

For main data area files, refers to a cylinder/track number.

FILE TRACKS Number of tracks allocated to the file.

RECORD COUNT

RECORDS AVAIL

OCL SIZE PARAMETER

Total number of records currently in the file.

Number of records that can be added to the file. For indexed files, more records

may be added than the number indicated in this field.

Parameter used on OCL statement when file was created.

T = tracks

R records

Heading

Meaning

NEXT AVAIL RECORD

NEXT AVAIL KEY

Beginning location of next available record in file. For simulation area, location

is track, sector, and position within sector. For main data area, location is cylin-

der, track, fixed record, and position within record.

Example: 099/18/006 = track 99, sector 18, positions 6

050/02/12/006 = cylinder 50, track 2, fixed record 12,

position 6. .

Indexed files only. Beginning location of next available record key in index

portion of file. For simulation area, location is track, sector, and position

within sector. For main data area, location is cylinder, track, fixed record,

and position within record, Main data area only.

Example: 090/10/006 = track 90, sector 10, positions 6®

052/03/10/006 = cylinder 52, track 3, fixed record 10,

position 6.

VOL SEQ NUM VOL SEQ NUM applies to multivolume files only. It indicates the order of the

disk as it relates to the other disks containing the remaining portion of the file.

Main data area only.

LOKEY The high key from the previous volume. This field will be blank for the first

volume of a multivolume file. Main data area only.

HIKEY The highest key that can be put on the multivolume indexed file. Main data

area only.

Or the first byte of the next available record occurs in the next track after the end track of DATA START END or if there is no room for

additional index area, then this field will contain ****.

@ir the first byte of the next available key occurs in the next track after the end track of INDEX START END, or there is no room for

additional index area, then this field will contain ****.

FILE INFORMATION ONLY

The parameter LABEL-filename or LABEL-’filenames’

means to print certain file information from the VTOC.

For one file, use LABEL-filename; for two files, use

LABEL-’filename,filename’; and so on. (Use the names

that identify the files in the VTOC.) You can list 20 file-

names for a program run. The statement length, however,

is restricted to 96 characters.

The program prints the file information for each of the files

you list. This is the information described for the headings

PACK name and FILE LABEL under Meaning of VTOC

Information.

If the program needs more than one page to list the file

information, it prints headings for the file information at the

top of each new page.

OCL Considerations

The following OCL statements are used to load the file and

volume label display program.

// LOAD $LABEL,code

// RUN

The code you supply depends on the location of the simula-

tion area containing the utility program. The codes are R1,

Fi, R2, and F2.

File and Volume Label Display Program—$LABEL 71

EXAMPLE

Printing VTOC Information for Two Files

Figures 17 and 18 are examples of the OCL statements and

utility control statements needed to print VTOC information

for two files.

1 4 8 12 16 20 24 28 32 36

/ |
/\/| |QOAD |SiLiAlBelci, |Al2
/\/| IRUN

Explanation: -

The file and volume label display program is loaded from

simulation area F1 on drive 1.

Figure 17. OCL Load Sequence for File and Volume Label Display

fee
]

—
_

N —
_

op)

NO

° No

ans

N {os
}

Q NO

w&

o>)

Ay

Oo

44 48 52 56 60

~~

he

Explanation:

The files for which information is printed are named
BILLNG and INVO1 (LABEL-‘BILLNG, INVO1’ in
DISPLAY statement). They are located on main data area

D1 on drive 1 (UNIT-D1).

Figure 18. Utility Control Statements for Printing VTOC

information for Two Files

72

File Delete Program—$DELET

The file delete program has four uses:

@ Removing all files from a disk.

@ Removing only the files you name.

@ Scratching file references in the volume table of contents

(VTOC). Deleting files frees the space they occupy for

use by new files.

@ Formatting a simulation or main data area.

The program may be used on temporary, scratch and per-

manent files. To delete permanent files, you must use the

file delete program. You can scratch temporary files by

using the file delete program or by changing the file desig-

nation from temporary to scratch (using the OCL keyword

RETAIN) when you use the file.

The control statements you supply for the file delete pro-

gram depend on the function to be performed.

When the REMOVE statement is used, files are erased from

the VTOC. The REMOVE statement can also be used to

erase files from the disk. When the SCRATCH statement is

used for a file in the main data area, it performs the same

function as REMOVE. The SCRATCH statement does not

erase files from the simulation areas. It changes their desig-

nation to scratch (S) in the VTOC. By doing this, the pro-

gram makes the areas that contain the files available for

other files or for system programs,

The FORMAT statement is used to free all allocated space

that does not contain files, libraries, or system areas. This

statement is used when you suspect that a system failure

or an inadvertent re-IPL might have left space allocated,

but not actually being used, on the data module.

File Delete Program—$DELETE 73

CONTROL STATEMENT SUMMARY

Use Control Statements

Scratch all // SCRATCH PACK-name, UNIT-code, LABEL-VTOC

files in the

VTOC. // END

Scratch only // SCRATCH PACK-name, UNIT-code, LABEL-filename, DATE-date

one file in

the VTOC. // END

Scratch // SCRATCH PACK-name, UNIT-code, LABEL- | fienarses'y
multiple

files in

the VTOC = // END

Remove all // REMOVE PACK-name, UNIT-code, LABEL-VTOC, DATA- {Es}

files from

disk // END

Remove // REMOVE PACK-name, UNIT-code, LABEL- {"ttsnarnes'f DATE-date, Ora, Vest
only the |
files named

from disk // END

Free allocated // FORMAT PACK-name, UNIT-code

but unused

space // END

Oror each use, the program requires the statements in the order they are listed: SCRATCH, ENI), or REMOVE, END, or FORMAT, END.

@use this form of the SCRATCH or REMOVE statement when two or more files have the same name and you want to delete one of them.

use this control statement when you suspect that a system failure or an-inadvertent re-IPL may have left space allocated, but not actually

being used, on the disk.

74

PARAMETER SUMMARY

PACK-name

UNIT-code

LABEL-VTOC

LABEL-filename

LABEL-’filename,filename....

DATE-date

NO DATA - {res}

. Name of the disk.

Location of the disk. Possible codes are R1, F1, R2, F2, D1, D2.

Scratch or remove all files from the VTOC.

Scratch or remove only the file |
named in the VTOC.

identify files

Scratch or remove only the files in VTOC!

named in the VTOC. =

Use names that

Date of the file being deleted. Date must be a 6-digit number.

Example: DATE-032076 means March 20, 1976.

Delete files from disk as well as VTOC.

© these are the names you gave the files when you placed them on disk.

PARAMETER DESCRIPTIONS

PACK Parameter

The PACK parameter (PACK-name} tells the program the

name of the disk that contains the files being deleted. The

name you supply in this parameter is the one written on

the main data area by the disk initialization program.

For a simulation area it is the name assigned by the simula-

tion area program $SCOPY.

The file delete program compares the name in the PACK

parameter with the name on the disk to ensure they match.

In this way, the program ensures that it is using the right

disk.

UNIT Parameter

The UNIT parameter (UNIT-code) tells the program the

location of the disk containing the files being deleted. Codes

for the possible locations are R1, F1, R2, F2, D1, and D2.

File Delete Program—$DELETE 76

LABEL Parameter

The LABEL parameter identifies the files you want to delete

from the disk. Its form depends on the files you are deleting:

Form Files Deleted

LABEL-VTOC All of them.

LABEL-filename Only the file that is named. The name can apply to more than one file. If it does, all of

those files are deleted unless you use a DATE parameter to identify a particular one.

LABEL-’filename,filename,...’ Only the files that are named. A name can apply to more than one file. If it does, all

of those files are deleted. You can list as many filenames as the statement can hold;

the statement length, however, is restricted to 96 characters. Additional REMOVE or

SCRATCH statements may be used for additional filenames.

DATE Parameter

The DATE parameter can be used only with LABEL-file-

name. The DATE parameter (DATE-date) applies to two

or more files that have the same name. It tells the program

the date of the one you want to delete.

Every file on disk has a date, which is given to the file at

the time it is created. When two or more files have the

same name, the dates are used to distinguish one file from

another.

If the pack has more than one file with the name you list

in the LABEL parameter, they will all be deleted unless

you use the DATE keyword! and parameter to indicate a

particular file. If the DATE keyword is used, only one

filename can be given in the LABEL parameter for that

control statement.

The date is a 6-digit number: two digits for day, two for

month, and two for year. Day, month, and year can be in

one of two formats as specified at system generation time:

(1) month, day, year, and (2) day, month, year. For example,

021676 and 160276 both mean February 16, 1976.

In the DATE parameter, be sure to specify day, month,

and year in the same order as they were specified when

you placed the file on disk.

76

DATA Parameter

The DATA parameter lets you remove the files specified

directly from the disk as well as from the VTOC.,

If YES is coded in this parameter, the file specified is re-

moved from the disk and any reference to it in the VTOC

is removed. In addition, a message is printed on the system

log device for each file removed from the disk in this format:

‘DATA REMOVED FOR FILE XXXXXX

DATE 000000’

DATA-YES should be used only if file security is required.

The time needed to remove the data is much greater than

the time needed to remove the VTOC entry.

If NO is coded in this parameter, the file specified is not

removed from the disk. However, any reference to it in the

VTOC is removed. If this parameter is not used, DATA-NO

is assumed.

OCL CONSIDERATIONS

The following OCL statements are needed to load the file

delete program:

// LOAD $DELET,code

// RUN

The code you supply depends on the location of the simu-

lation area containing the utility program. The codes are

R1, F1, R2, and F2.

EXAMPLES

Deleting One of Several Files Having the Same Name

Figures 19, 20, and 21 are examples of the OCL statements

and utility control statements needed to delete one of several

files having the same name as described in the following

situation.

Situation

Assume that three files in the main data area have the same

name: INVO1, The dates of these files are 2/16/76, 2/18/76,

and 1/15/76. You want to delete the version dated 2/16/76.

OAID |S\OE\LIEIT| ,|Fi4

S
T
S
]

~
M

H
Y

G
S

[a

=

Explanation:

File delete program is loaded from simulation area F1 on

drive 1.

Figure 19. OCL Load Sequence for File Delete

File Delete Program—$DELETE 77

1 4 8 12 16 20 24 28 32 36 40 44 48 §2 56 60 64 68 72 76

AA IslcRaricld [AalclK- 4}, |dalalelcl-[Ndla, We 7]-lold a alziel-laialalelzie
[1 JEIMD

Explanation:

@ Main data area that contains the file being deleted is named 00001 (PACK-00001 in SCRATCH statement).

@ Because two other files have the name INVO1, the date (021676) is needed to cornplete the identification of the

file you want to delete (LABEL-INVO1 and DATE-021676).

@ The main data area containing the file to be deleted is on drive 1 (UNIT-D1).

Figure 20. Utility Control Statements to Delete One Version of a File

76

 be

/\/| IREMOVIel |PlAicK|-\agadt| \clalBlel|-|/ Mya 2) | I7i-[14\ ANE eae ri Dal7\4\-\viels

Explanation:

@® A REMOVE statement is used instead of a SCRATCH statement.

@ Main data area that contains the file being deleted is named 00001 (PACK-00001 in REMOVE statement).

@ Because two other files have the name INVO1, the date (021676) is needed to complete the identification of the

file you want to delete (LABEL-INV0O1 and DATE-021676).

@ The main data area containing the file to be deleted is on drive 1 (UNIT-D1).

@ The YES specification in the DATA parameter deletes all data from the disk containing information on the

specified file.

Figure 21, Utility Control Statement to Delete One Version of a File Using a REMOVE Statement

Freeing Allocated But Unused Space on a Disk

Figure 22 shows the FORMAT control statement. The fol-

lowing will free any areas.on the simulation area (R1) that

have been allocated but are not being used. This condition

may exist following the abnormal termination (such as a

power failure or re-IPL) of a program that was creating a file.

1 4 8 12 16 20 24 28 32 36

//| JAdaMaltt lu Tiiagoddavaadag
A EWD

| ITT |

Explanation:

Free any allocated but unused space on the simulation area (R1) named 00001 (UNIT-R1).

Figure 22, Control Statements to Free Allocated But Unused Space on a Simulation Area

78

Dump/Restore Program—$DCOPY

The dump/restore program ($DCOPY) is a utility program

used with the IBM System/3 Model 12 system control pro-

gram. The $DCOPY program allows the user to copy or

dump the entire contents of a disk onto tape. The tape

then serves as a backup copy in case something happens to

the information on the disk.

The program can restore the disk to its original contents

at any time by transferring information back from the tape.

Important disks, such as those containing libraries and per-

manent data files, are normally the ones copied. The tape

contains a copy of the data on all tracks.

The program can also dump or restore the simulation areas

using a 3741 diskette.

CONTROL STATEMENT SUMMARY

Uses Control Statements

. (2) recode
Copy an entire /1 COPYPACK FROM-code

disk to tape or

restore an entire I END

disk. from tape.

TO-code
// COPYPACK eee ae

// END

control statements are required in the order they are listed.

@ there can be only one COPYPACK statement in a program.

@eno statement must appear only once in a program since it is a delimiter indicating end of job.

\ [,PACK-name]

\ [,PACK-name] [sysTeM. | | BACKUP. Har |
3741

Dump/Restore Program—$DCOPY 79

PARAMETER SUMMARY

COPYPACK Statement

Parameter Meaning

FROM-code Location of disk to be copied. Possible

codes are F1, R1, F2, R2, D1, D2.

TO-code Location of disk to receive the copy.

Possible codes are F1, R1, F2, R2, D1,

D2. See Figure 21 for relationship of

FROM and TO locations.

PACK-name Name of the main data area or simula-

tion area being used.

SYSTEM-NO The SYSTEM-NO parameter does not

allow cylinder 0 IPL areas to be dumped

or restored.

SYSTEM-YES SYSTEM-YES specifies that the IPL

areas on cylinder O are to be dumped

or restored along with the specified

simulation area.

BACKUP-TAPE The BACKUP-TAPE parameter speci-

fies that magnetic tape (3410-3411)

is to be used for dump/restore.

BACKUP-3741 BACKUP-3741 specifies that the 3741

diskette is to be used to dump or re-

store the specified simulation area.

PARAMETER DESCRIPTIONS

FROM and TO Parameters (COPYPACK)

The COPYPACK statement is used to copy information

from disk to tape, tape to disk, disk to diskette, or diskette

to disk.

The FROM parameter (F ROM-code) indicates the location

of the disk being copied. The TO parameter (TO-code) in-

dicates the locaticn of disk to receive the copy.

Codes for possible locations of FROM and TO parameters

are R1, F1, R2, F2, D1, and D2.

See Figure 23 for the relationship of FROM and TO loca-

tions.

Simulation areas 3410/3411 tape

(F1, R1, F2, or R2)

and

DUMP COPY 7 >
(T1, T2, T3, or T4
as indicated on // FILE

 statement) or 3741

diskette

Creston COPY TO

data files.

DUMP COPY >

Main data area and 3410/3411 tape

(D1 or D2) (T1, T2, T3, or T4

< RESTORE COPY TO as indicated on // FILE

statement)

Notes:

1. When you copy disk to tape (dump), you may specify any simulation area or main data area as input,

including the system simulation area or program simulation area.

2. When you copy tape to disk (restore), the disk must not be the system simulation area, the program

simulation area, or another simulation area containing libraries, temporary data files, or permanent

3. The disk receiving the copy at restore time must be the same type as the original disk.

Figure 23. Relationship of Disk to Tape Drives When Using $DCOPY

80

PACK Parameter (COPYPACK)

The pack name specified is checked against the actual name>

of the main data area or simulation area. A halt occurs if

they are not the same. If the parameter is not used, no check-

ing occurs.

SYSTEM Parameter (COPYPACK)

The SYSTEM parameter is an optional parameter used to

specify whether cyclinder 0 IPL information is to be dumped

or restored with the specified simulation area. SYSTEM-YES

allows cylinder 0 to be dumped or restored to either tape or

diskette. SYSTEM-NO does not allow cylinder 0 to be dumped

or restored. The default is SYSTEM-NO.

BACKUP Parameter (COPYPACK)

The BACKUP parameter specifies which device (tape or disk-

ette) is to be used for backup. Tape may be used to back up .

the main data, area, simulation areas, and cylinder 0. The 3741

diskette can be used only to back up the simulation areas and

cylinder 0, Also, the 3741 data set must be set for 128 byte

records.

OCL CONSIDERATIONS

The $DCOPY utility requires the following OCL statements:

// LOAD $DCOPY, code

// FILE parameters

// RUN

The code identifying the location of the $DCOPY program

can be Rt, F1, R2, or F2.

FILE Statement Considerations

The name of the file must always be BACKUP.

When a 7-track tape is used for the dump/restore pro-

gram, CONVERT-ON must be specified.

The record format is always fixed length.

The END position of the tape after processing always de-

faults to UNLOAD,

The density parameter when restoring must be the same

number as specified for the dump.

The record length, if specified, is ignored since $DCOPY

makes the record length equal to the block length.

For a detailed description of the FILE statement param-

eters, see File Statement (Tape) in Part 1 of this manual.

Notes:

1.

2.

The FILE statement is not required when copying

from disk to diskette.

For multivolume tapes, see Mu/tivolume Tape Files

under FILE Statement (Tape) in Part 1 of this manual.

Dump/Restore Program—$DCOPY 81

Statement Entries

Statement Entry Considerations

// LOAD None

$DCOPY Name of dump/restore program.

code Location of simulation area containing

dump/restore program. Can be Ri,

F1, R2, or F2.

// FILE None

NAME-filename Filename entry must be BACKUP.

BLKL-block length Block length and record length must

be equal and one of the following

values:

Note: The tape record created is 2

bytes longer than specified since a 2-

byte logical record number is appen-

ded to the tape record. Defaults are

underlined.

Disk Length

in Bytes

Simulation 3072

area 6144

12288

Main 3072

data 6144

area 12288

24576

// RUN None

Number of

Tracks

1/2 track

1 track

2 tracks

1/4 track

1/2 track

1 track

2 tracks

For a detailed description of the OCL statements, see Part 1

of this manual.

Note: The rest of the FILE statement parameter is de-

scribed by the TAPE FILE OCL statement.

82 .

Messages for DUMP/RESTORE

Note: The following messages are printed if the 1403 or

5203 is the logging device and is not allocated to the other

program level.

Message

COPYPACK IS

COMPLETE

N TRACKS NOT
RESTORED AT

CC/SS |

CCC/HH/RR)

NN TAPE ERRORS

OCCURRED

PACK IS NOT COM-

PLETELY RESTORED.

Meaning

This message is printed when

the specified pack has been

dumped to tape or when the

tape has been restored to disk.

This message is printed when

tracks have not been restored

on the simulation area or

main data area. N = the

number of tracks not restored.

CC/SS is the disk address for

a simulation area. CCC/HH/

RR is the disk address for a

main data area.

This message is printed when

tape errors have occurred or

the restored pack has missing

data. NN = the number of

tape errors. See previous

messages for location of

tracks not restored.

EXAMPLES

The parameters of the FILE statement vary depending upon

whether the copy is to or from the tape.

FILE Statement: From Disk to Tape

Only required parameters are included in this example. See

OCL Considerations for a listing of possible parameters.

Control Statements

The following control statements show the use of all pos-

sible parameters:

1 4 8 12 16 20 24 28 32 36

/
//| |LIGA0 ISIDC\o AY ,|F|2
A VAIL) AME! (BA dui| IAM /l7\-I712

[| |RIUN

Explanation:

@ The dump/restore program is loaded from simulation

area F1 on drive 1.

@ The file name is always BACKUP.

@ The copy goes to tape unit 2.

@ Tape unit 2 is a 9-track drive.

1 4 8 12 16 20 24 28 32 36

AL ICOPYAAIcIK \elRiol-lrig| |PialclA\-[él/|x\e10\4
Af |EWD

Explanation:

@ The COPYPACK statement tells the program to copy an

entire disk to tape.

@ The copy is from the simulation area F1 on drive 1

(FROM-F1).

@ FIXED1 is the name of the simulation area being used

(PACK-FIXED1). The program verifies that the speci-

fied data module is mounted.

Dump/Restore Program—$DCOPY 83

FILE Statement: From Tape to Disk

All possible parameters are included in this example.

 “

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Né |
(i \ddald |glocioAy,|A4
JV NAVNLIE, IMAME|- AICKKIUP| JIN IT|-[712) AEE Q-i7|A AEN LA EIL\-|K\EEIPS|, AA TIE-\G311111716,

/V/ LMA-la ddd |RelclAM-iF |EMOI-|UNZO\A)D), ICIOMMEIRITI-IOM ,
/\/ Ade l7lv\-lo Do, |7iRAlMsiciAirie'- Ole
mM

Explanation:

@ The dump/restore program is loaded from the simulation area R71 on drive 1.

@ The file name is always BACKUP.

@ Tape unit 2 contains the disk copy.

@ Tape unit 2 is a 7-track drive.

@ TAPE2 is the label of the tape volume.

@ KEEPS is used in the header label.

@ The date is March 11, 1976.

® Block length is 6144.

® CONVERT-ON indicates data conversion.

END, PARITY, and TRANSLATE parameters given are the same as the default values.

The following control statements show the use of all possible parameters:

1. 4 8 12 16 20 24 28 32 36 40 44 48 2 56 60 64 68 72 76

/\/| CO\AYIP O\-1A Ll AAICIK|-\F|/IXE1 21 ISIYIS|7|EM-\VIES
/| \EIND

Explanation:

© The COPYPACK statement tells the program to copy an entire tape to simulation area F1 (TO-F 1).

© The statement restores cylinder 0 IPL of the data module along with simulation area F1 on drive 1.

@ FIXED1 is the name of the simulation area being used (PACK-FIXED1). The program verifies that the proper pack is

mounted.

84

Control Statement: From Disk to Diskette

1 4 8 12 16 20 24 28 32 36

N/ |LIOAIO, siDColAy 47
[IL \RUN
NI ICIOAYIAACA |AKOM-IF/2| |BaciKuia-l3i74 s
A elo °

Explanation:

@ The dump/restore program is loaded from the simulation

area F1 on drive 1.

@ The COPYPACK statement tells the program to copy the

simulation area F2 (FROM-F2) to the 3741 (BACKUP-

3741).

@ [lt will take approximately 11 diskettes to contain the

copy from simulation area F2.

@ The record length on the 3741 diskette must be 128.

Programming Considerations

When dumping from one of the simulation areas to diskette,

it is recommended that you put the 3741 online in Mode 3.

(Modes 1, 2, and 5 will result in extent error conditions at

the end of each diskette.) See note.

When restoring from diskette to one of the simulation areas,

it is recommended that you put the 3741 online in Mode 3

or Mode 5. If the 3741 is put online in Mode 1, $DCOPY

will go to end of job at the end of the first diskette. If the

3741 is put online in Mode 2, the operator will have to put

the 3741 online after each diskette is read. See note.

The COPYPACK IS COMPLETE message will be logged at

successful completion of $DCOPY. If this message is not

logged after restoring to disk, the simulation area copied to

will not be usable.

Note: Refer to /BM System/3 3741 Reference Manual,

GC21-5113, for further explanation of the 3741 modes of

operation.

Dump/Restore Progran—$DCOPY 85

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

Copy/Dump Program—$COPY

The copy/dump program has three general uses. The con-

trol statements you must supply depend on the program

use.

Program Use

Copy the entire contents

of a simulation area to

another simulation area,

or copy the entire

contents of a main data

area to another main

data area.

Copy all or part of a

data file from disk,

diskette, tape, or cards,

to disk, diskette, tape,

or cards. (See note.)

Note: A diskette file

cannot be copied to

another diskette.

Print all or part of a

data file.

Recover data by means

of physical address.

86

Situation

Provide a reserve disk in case

something happens to the

original disk. Important

disks, such as those containing

your libraries and permanent

data files, are normally the

ones you would copy.

Any of the following:

@® Provide a reserve (backup)

file in case something

happens to the original file.

@ Move a file to a larger disk

area.

@ Reorganize the data por-

tion of an indexed file.

(Data in the copy of the

file is reorganized; the

original file is unchanged.)

@ Delete records from a file.

(Records are omitted from

the copy of the file; the

original file remains un-

changed.)

@ Create disk, diskette, card,

or tape files.

@ Create indexed disk files

from sequential files.

@ Copy card decks to disk,

diskette, or tape.

Provide a printed copy of the

records in a file, perhaps for

use in checking the records

for errors.

Provides a way to recover

data lost due to abnormal

termination of a job.

The OCL sequence used to load the program describes the

disk or tape file being copied or printed. If you are copying

the file to disk or tape, the file being created must also be

described in the OCL sequence.

No OCL FILE statements are required for card, printer, or

diskette files. (When you are copying card, printer, or disk-

ette files, you describe the input and output in the

// COPYFILE control statement.)

Note: When you are copying large indexed files, you may

realize a time savings by specifying reorganization if the

data records are not in the same sequence as the keys in the

index portion of the file.

CONTROL STATEMENT SUMMARY

Uses) Control Statements

Copy an entire disk // COPYPACK FROM-code,TO-code,PACKIN-name,PACKO-name

// END

FILE

DISK MFCU

MFCU MFCU1
Copy a data file // COPYFILE \ourprrct MFCU1 >,INPUT- < MFCU2 |LENGTH-number ©

) MFCU2 3741

1442 1442

3741

DELETE-| ,_.. , NO YES (®
ee \ position,character’, REORG- \vest WORK- \\o ;

//END

BOTH

‘PRINT,MFCU’ WECUt

. OUTPUT- ‘PRINT,MFCU1’ ® Copy and print // COPYFILE jourerx} /PRINT.MFCU2! »INPUT- < MFCU2 ,LENGTH-number,
a data file 3741

‘PRINT,1442’ 1442

‘PRINT,3741’

DELETE-) ,_.. , YES ®
{Our \ position,character’,REORG-YES,WORK- {x6 \

//END

BOTH

‘PRINT,MFCU’ ECU

OUTPUT- ‘PRINT,MFCU1’
Copy a data // COPYFILE \oureecy ‘PRINT.MFCU2" ,INPUT- < MFCU2 ,LENGTH-number,©
file, but print only ; , 3741
a part of the fil PRINT, 1442 1442 P ° ‘PRINT,3741'

DELETE-{ ,_... ' @) YES oe)
{ DELE \ position,character’,REORG-YES WORK. 4 Ne \

// SELECT KEY,FROM-‘key’ [,TO-‘key’] ~

// SELECT RECORD,FROM-number [,TO-number]

//SELECT PKY,FROM-‘key’[,TO-’key’]

 / END 4

MECU
MFCU1

Print an entire // COPYFILE \ourprey PRINT, INPUT-
data file ; 3741

// END 1442

Note: MFCU and MFCUt refer to the MFCU hopper 1 (primary).

Only one SELECT
statement for each

COPYFILE statement

MFCU2 \,.LENGTH-number ®

Copy/Dump Program—$COPY

Uses Control Statements

MFCU

MFCU1

‘Print only a part // COPYFILE OUTPUT- PRINT,INPUT- < MFCU2 JLENGTH-number®
OUTPTX-

of a data file 3741

1442

// SELECT KEY,FROM-‘key’ [,TO-‘key’]

// SELECT RECORD,FROM-number [,TO-number]

// SELECT PKY,FROM-‘key’ [,TO-’key’]

Only one SELECT

statement for each

COPYFILE statement

// END

BOTH |
‘PRINT,MFCU’ \ vecu

Print and copy a // COPYFILE SQUTPUT-| J ‘PRINT.MFCUT., put. J MeECU2 S ,LENGTH-number©
art of a data file OUTPTX- PRINT, MFCU2 3741

P ‘PRINT,1442' (i442
‘PRINT,3741' .

YES WORK- { NO \

// SELECT KEY,F ROM-'key’ [,TO-’key’] ,FILE-YES _

// SELECT RECORD,FROM-number [,TO-number] ,FILE-YES

// SELECT PKY,FROM-‘key’ [,TO-‘key’] ,FILE-YES

Only one SELECT

statement for each

COPYFILE statement

// END -

FILE

DISK MFCU

MFCU MFCU1

Copy part of a 1 COPYFILE SOUTPUT-\ J mecur S inpuT- 2 MECUZ § ,LENGTH-number®worK-2¥ 5° ®
OUTPTX- NO

data file MFCU2

1442

3741

// SELECT KEY,FROM-‘key’ [,TO-’key’] ,FILE-YES =

// SELECT RECORD,FROM-number [,TO-number] ,FILE-YES Only one SELECT

statement for each

// SELECT PKY,FROM.-‘key’ [,TO-’key’] ,FILE-YES COPYFILE statement.

//END aon

Notes:

1.

2.

88

MECU and MFCU1 refer to the MFCU hopper 1 (primary).

MFCU defaults to MFCU1.

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

Uses Control Statements

MFCU

FILE MFCU1

Build an indexed // COPYFILE {eurewet DISK > ,INPUT- <MFCU2 'LENGTH-number ©

file froma BOTH 3741

sequential file 1442

// KEY LENGTH-number, LOCATION-number

// END

1 The program uses include the possible combination of copying and printing files.

FILE TPUT-
Recover data // COPYFILE oor Ty. DISK

by physical BOTH

address

(simulation area) // ACCESS FROM-code,CYLINDER-number,SECTOR-number,

DISP-number, RECL-number

// SELECT RECORD,FROM-number,TO-number,FILE-YES

// END

FILE UTPUT-
Recover data by // COPYFILE Surry. DISK

physical address BOTH

(main data area)
// ACCESS FROM-code,CYLINDER-number, TRACK-number,

SECTOR-number,DISP-number, RECL-number

// SELECT RECORD,FROM-number,TO-number,FILE-YES

// END

Othe program uses include the possible combination of copying and printing files.

@ For each use, the program requires the control statements in the order they are listed: COPYPACK,END; COPYFILE,END;

COPYFILE,SELECT,END; COPYFILE,KEY,END; and COPYFILE,SELECT,KEY,END.

@) applies only to indexed files. When OUTPUT-BOTH is specified, REORG-YES is required.

® Optional — the record length defaults to 96 when the 3741 is used for input or output if LENGTH is not specified.

® optional — must have simulation turned off on D2, then copies from one data module on D2 to a different data module on D2.

Note: MFCU defaults to MFCU1.

Copy/Dump Program—$COPY 89

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

PARAMETER SUMMARY

COPYPACK Statement

FROM-code

TO-code

PACKIN-name

PACKO-name

COPYFILE Statement

OUTPUT-FILE

OUTPUT-DISK

MFCU

MFCU1

OUTPUT- < MFCU2

1442

3741

90

Location of disk to be copied. Possible codes are R1, F1, R2, F2, D1, and D2.

Location of disk to contain the copy. Possible codes are R1, F1, R2, F2, D1, and D2.

Volume identification (name) of FROM disk.

Volume identification (name) of TO disk.

Copy the file to the device (tape or disk) defined in the COPYO FILE statement.)

(Interchangeable with OUTPUT-DISK.)

Same as OUTPUT-FILE.

Copy the file to the device specified. When this parameter is used, a COPYO FILE

statement must not be used.

OUTPUT-PRINT

OUTPUT-BOTH®

‘PRINT,MFCU’

‘PRINT,MFCU1’

OUTPUT- < ‘PRINT,MFCU2’

‘PRINT, 1442’

‘PRINT,3741’

PRINT

BOTH

‘PRINT,MFCU’

OUTPTX- < ‘PRINT,MFCU1’

‘PRINT,MFCU2’

‘PRINT, 1442’

‘PRINT,3741°'

MFCU

MFCU1

INPUT- < MFCU2

3741

1442

LENGTH-number

DELETE-‘position,character’
-Or-

OMIT-‘position,character’

REORG-NO@)

REORG-YESO®

WORK-YES

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

Print the entire file or only part of the file ©

Copy the file from one device to another or from one area to another on the same

disk. Also print the entire file or only part of it.

Copy the file to the device specified. Also print the entire file or only part of it. When

this parameter is used, a COPYO FILE statement must not be used.

Printed output will be displayed in hexadecimal values. If one of the card devices or

3741 is used, then a COPYO FILE statement must not be used.

Copy the file from the device specified. If this keyword is used, then a COPYIN file

statement must not be used.

Identifies the record length of a file on a diskette. Number must be an integer from

1 to 128. If this keyword is not specified, the record length defaults to 96. If used

with a device other than a 3741, this keyword is ignored.

These parameters are optional. It means that all records with the specified character in

the specified record position are deleted. DELETE causes deleted records to be printed.

DELETE cannot be used with direct files. OMIT causes deleted records not be printed.

Position can be any position in the record (the first position is 1, second 2, and so on).

The maximum position is 65535.

Indexed files only. Copy records in the same way as they are organized in the original

file (the file from which the records are copied).

Indexed files only. Reorganize the records so that the records in the data portion of

the file are in the same order as their keys are listed in the index.

This parameter is required when a file is copied from one data module on drive 2 to

another data module to be placed on drive 2.

Copy/Dump Program—$COPY 90.1

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

SELECT Statement

{KEY) nos \PKY f ,FROM-‘key Indexed files only. Print and copy only the part of the file from the record key that is

specified in the FROM parameter to the end of the file.

sKEY
\ ,F ROM-‘key’, TO-’key’ Indexed files only. Print and copy only the part of the file between the two record keys

that are specified in the FROM and TO parameters (including the records indicated by

the parameters). To print and copy only one record, make the FROM and TO record

keys the same.

UPKY

RECORD,FROM-number Print and copy only the part of the file from the relative record number specified in

the FROM parameter to the end of the file.

RECORD,FROM-number, Print and copy only the part of the file between the relative record numbers indicated

TO-number by the parameters (including the records indicated by the parameter). To print and

copy only one record, the FROM and TO relative record numbers should be the same.

Record number may be from 1 to 16777215.

FILE-YES Only selected records are copied to the files named in the COPYO FILE statement, or

the device specified in the OUTPUT keyword parameter of the // COPYFILE control

statement, when selected records are to be copied to the 3741 or a card device. The

file is sequential if no // KEY statement is provided. When // KEY statement is used,

the output is an indexed file if the device on the COPYO FILE statement is a disk.

FILE-NO Only selected records are printed. If copying, all records are copied. OUTPUT-PRINT

or OUTPUT-BOTH must be specified if FILE-NO is specified. If OUTPUT-BOTH is

specified, selected records are printed and the entire file is copied to the file named in

the COPYO FILE statement, or the device specified in the OUTPUT keyword param-

eter of the // COPYFILE control statement, when selected records are to be copied to

the 3741 or acard device. If OUTPUT-PRINT is specified, selected records are printed

only.

90.2

KEY Statement

LENGTH-number

‘ LOCATION-number

ACCESS Statement

FROM-code

CYLINDER-number

TRACK-number

SECTOR-number

DISP-number

RECL-number

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

Identifies the length of the key field. Key length may be 1-29.

The starting location in the input record that the key field is to be extracted from.

Location may be from 1 to 65525.

Location of data to be copied. Possible codes are R1, F1, R2, F2, D1, and D2.

Cylinder location of start of data; for a main data area it may be a number from

0-166. For a simulation area copy, it may be a number from 0-202.

Track location of start of data. It is anumber from 0-19.

Sector number of start of copy. For a simulation area it may be a number from

0-47, for main data areas it may be a number from 1-48.

Displacement into sector of first good data to be recovered.

Record length of data to be recovered. Number may be between 1-65536.

On the OCL load sequence, you indicate which file is to be copied or printed. For files being copied, you must also indicate whether the file

is being copied from one device to another or from one location to another on the same disk, using the COPYIN and COPYO FILE state-

ments. COPYIN and COPYO FILE statements are invalid for the 3741 printer and card devices. The INPUT and OUTPUT keywords in the

// COPYFILE statements are used for the 3741 printer and card devices.

@REORG-NO is assumed if you omit the REORG parameter. When OUTPUT-BOTH is used for indexed files, REORG-YES is required.

Oi halt UC3CCS occurs, indicating that there is not enough main storage available to execute the job, consider the following:

1. If you have OUTPUT-BOTH, change to OUTPUT-DISK or OUTPUT-FILE.

2. If you have REORG-YES, change to REORG-NO.

3. If running on a DPF system, use a larger program level if possible.

Copy/Dump Program--$COPY 91

PARAMETER DESCRIPTIONS

FROM and TO Parameters (COPYPACK)

The FROM and TO parameters are used when the entire

contents of one disk are copied onto another. They tell the

program the locations of the two disks.

The FROM parameter (F ROM-code) indicates the location

of the disk you are copying. The TO parameter (TO-code)

indicates the location of the disk that is to contain the

copy. The FROM and TO codes must be for the same type

of disk drive. You cannot copy a simulation area from or

to a main data area.

Codes for the possible locations are R1, F1, R2, F2, D1,

and D2.

Copying Entire Disk

When copying a disk, the copy/dump program transfers the

contents of the disk to another disk. The contents of the

two disks will be the same except for the disk names and

alternate track information, which may be different.

The disk you are copying can contain libraries or data files

or both. The disk that is to contain the copy must not

contain libraries, temporary files, or permanent data files.

Until the entire contents of the disk are copied onto the

new disk, portions of the new disk are changed to prevent

accidental usage of a partially filled disk. Therefore, if the

copying process is stopped before it is completed, the data

module area is unusable. You can restart the copying pro-

cess by reloading the copy/dump program, or you can

restore the disk by reinitializing.

After successfully copying a disk, the copy program prints

the message:

COPYPACK IS COMPLETE

Note: \f you copy a disk containing an active checkpoint,

that checkpoint exists on both the FROM and TO disks.

When one of the two active checkpoints is used to restart

the checkpointed program, care must be taken to avoid re-

starting the job a second time. To ensure that this will not

occur, you can perform IPL and load Restart ($$RSTR)

from the simulation area containing the second active

checkpoint. !f you then select the controlled cancel option

when the Hbnn halt occurs (nn is the last requested check-

point number), the checkpoint is deactivated.

92

OUTPUT Parameters (COPYFILE)

The OUTPUT parameter is used for copying and printing

card, tape, diskette or disk data files. It indicates whether

you want the prograrn to copy, print, or copy and print a

file. The OUTPTX parameter can be used to display print-

ed output in hexadecimal values. Definitions of the various

OUTPUT parameters follow:

OUTPUT-DISK Copy the file to disk or

OUTPUT-FILE tape.

OUTPUT-PRINT Print the file.

OUTPUT-BOTH Copy the file to disk or

tape, and print the file.

OUTPUT-MFCU

OUTPUT-MFCU1

OUTPUT-MFCU2

OUTPUT-1442

OUTPUT-3741

Copy the file to the device

named.

OUTPUT-’PRINT,MFCU’
OUTPUT-’PRINT,MFCU1’
OUTPUT-’PRINT,MFCU2’
OUTPUT-‘PRINT 1442’
OUTPUT-’PRINT,3741’

Copy the file to the device

named, and print the file.

INPUT Parameter (COPYFILE)

The INPUT parameter is used for copying from either the

3741 or a card device. INPUT-MFCU, INPUT-MFCU1,

INPUT-MFCU2, INPUT-1442, and INPUT-3741 indicate

that the input file is on the device named in the keyword

parameter.

LENGTH Parameter (COPYFILE)

This parameter identifies the record Jength for the 3741

and is any number from 1 to 128. This keyword is optional

whether the 3741 is being used as input or output. If this

parameter is not specified, the record length defaults to 96.

When the 3741 is used, the LENGTH parameter must be

equal to the record length in the HDR1 label on the 3741

and is any number from 1 to 128.

When the 3741 is used as output and the input is disk, card,

or tape, the LENGTH parameter can be any number from 1

to 128 regardless of the record length of the disk, card or

tape file being copied. If the record length specified on the

3741 is greater than the record length from the input file,

the remainder of the record is filled with blanks (X‘40’). If

the record length from the disk, card, or tape file is greater

than the LENGTH specified, the record is truncated.

This keyword is ignored if used with a device other than a

3741.

Copying Files

The copy/dump program can copy a file from disk, tape,

cards or diskette to disk, tape, cards or diskette or from one

area to another on the same disk.

The OCL load sequence for the copy/dump program indi-

cates (1) the name and location of the disk or tape file

being copied, and (2) the name and location of the disk or

tape file being created. (See OCL Considerations in this

section.)

In copying a file, the program can omit records. (See the

description of the DELETE parameter for more informa-

tion.)

In copying an indexed file, the program can reorganize

records in the data portion in the order their keys appear in

the index. (See the description of the REORG parameter

for more information.)

Printing Files

The program can print all or part of a data file. To print

only part, the program needs a SELECT control statement.

(See the description of the SELECT control statement

parameters in this section.) If you do not use a SELECT

statement, the entire file is printed.

If you use SELECT KEY (PKY) or REORG-YES, records °

from indexed files are printed in the order their keys appear

in the index portion of the file; otherwise, they are printed

as they appear in the file. For each record, the program

prints the record key followed by the contents of the

record.

Records from sequential and direct files are printed in the

order they appear in the file. For each record, the program

prints the relative record number followed by the contents

of the record.

The program uses as many lines as it needs to print the con-

tents of a record. Appendix A lists the hexadecimal repre-

sentation for characters in the standard character set.

The following example shows how the program prints

hexadecimal numbers using OUTPTX:

ABCDE GHIJ12345
CCCCCBCCCDFFFFF4444444
1234567891123450000009

The hexadecima! number B6 represents a character that has

no print symbol.

After printing the last record, the printer triple spaces and

prints the following message:

(number) RECORDS PRINTED

DELETE Parameter (COPYFILE)

In copying a data file, the copy/dump program can omit

records of one type. The DELETE parameter identifies the

type of record. Use of the DELETE parameter is optional;

if you do not use it, no records are deleted. DELETE can-

not be used with direct files.

The form of the parameter is DELETE-‘position, character’.

Position is the position of the character in the records.

Character is the character, except for apostrophes, blanks,

or commas, that identifies the record. For example, with

the parameter DELETE-‘100,R’ all records with an R in

position 100 are deleted. By specifying the hexadecimal

code for the character, you can use any character (including

apostrophes, blanks, commas, and packed data) to identify

the records to be deleted. For example, with the parameter

DELETE-‘100,X40’, all records with a blank (hexadecimal

40) in position 100 are deleted.

Deleted records are always printed. !f you are both copying

and printing a data file, deleted records are printed with the

other records. The deleted records are preceded by the

word DELETED.

The OMIT keyword can be used instead of DELETE. The

deleted records are not printed if OMIT is used.

REORG (Reorganize) Parameter (COPYFILE)

In copying an indexed file, the program can reorganize the

file, so that the records in the data portion are in the same

order as their keys in the file index. The REORG parameter

tells the program whether or not to reorganize the file.

Copy/Dump Program—$COPY 93

REORG-YES means reorganization; REORG-NO means no

reorganization. REORG-NO is assumed if you omit the

parameter.

If you tell the program to reorganize the file, the reorganiza-

tion applies to the copy of the file rather than the original

file. The original file is not affected.

Reorganization (REORG-YES) is required when you are

both copying and printing an indexed file (OUTPUT-

BOTH).

WORK Parameter (COPYFILE)

The WORK parameter applies to copying a data file from a

data module mounted on drive 2 to another data module

mounted on drive 2. It tells the program to use a work area.

on simulation area R1 on drive 1.

The parameter WORK-YES means that a work area is to be

used. WORK-NO means no work area is used. WORK-NO

is assumed if you.omit the WORK parameter.

When you are copying on drive 2, the work area on R1

must contain a minimum of 198 contiguous unused tracks.

If possible, R1 should not contain files or libraries because

the number of data module changes on drive 2 decreases as

R1 work space increases.

In copying the file, the program fills the work area with

records from the file you are copying. Then it prints a mes-

sage telling the operator to mount the other data module

(the one to contain the copy) on drive 2. After transferring

the records from the work area to the data module, the pro-

gram prints another message telling the operator to remount

the data module containing the file you are copying. The

program repeats this procedure until all records have been

transferred.

When WORK-YES is used, the input and output files must

have different data module names. It is good practice to

have different data module names on all data modules in an

installation.

94

SELECT KEY and SELECT PKY Parameters (SELECT)

The SELECT KEY and SELECT PKY parameters apply to

selecting part of an indexed file. The SELECT PKY param-

eter applies to selecting part of an indexed file that contains

packed keys. The parameters are FROM and TO.

The FROM parameter (FROM-‘key’) gives the key of the

first record to be selected. The TO parameter (TO-‘key’)

gives the key of the last record to be selected. The record

keys between those two in the file index identify the re-

maining records to be selected. If you want to select only

one record, use the same record key in both the FROM and

TO parameters.

For example, the parameters FROM-’000100’ and TO-

‘000199’ mean that records identified by keys 000100

through 000199 are to be selected.

If the file index daes not contain the key you indicate ina

FROM parameter, the program uses the next higher key in

the index.

You can omit the TO parameter. If you do, the program

assumes that the last key in the index is the TO key.

You can use fewer characters in the FROM or TO param-

eter than are contained in the actual keys; when keys are

packed, however, you must use the same number of charac-

ters as contained in the actual keys. If you use fewer

characters, the program ignores the remaining characters in

the record key. The number of characters used in the

FROM and TO parameters need not be the same.

For example, assume that the following are consecutive

record keys in an index: A1000, A1119, A1275, A1900, A

A1995, A2075, and 99999. The parameters FROM-’A1’

and TO-‘A199’ refer to record keys A1000 through A1995.

If none of the keys in the file index begins with the charac-

ters you indicate in a FROM parameter, the program uses

the key beginning with the next higher characters in the

FROM parameter.

For example, assume that four consecutive record keys in

an index begin with these characters: A1, A2, A8, and B1.

The parameters FROM-’A3’ and TO-’AQ’ would refer to

keys beginning with the characters A8.

SELECT RECORD Parameters (SELECT)

The SELECT RECORD parameters can apply to any file,

but are normally used for sequential and direct files. These

parameters use relative record numbers to identify the

records to be selected.

Relative record numbers identify a record’s location with

respect to other records in the file. The relative record

number of the first record is 1, the number of the second

record is 2, and so on.

The SELECT RECORD parameters are FROM and TO.

The FROM parameter (F ROM-number) gives the relative

record number of the first record to be selected. The TO

parameter (TO-number) gives the number of the last record

to be selected. Records between those two records in the

file are also selected.

For example, the parameters FROM-1 and TO-30 mean

that the first 30 records (1-30) in the file will be selected.

You can omit the TO parameter. If you do, the program

assumes that the number of the last record in the file is the

TO number. If you want to select only one record, use the

same number in the FROM and TO parameters.

FILE Parameter (SELECT)

This parameter allows only selected records to be copied to

a disk, tape, cards, diskette, or printer.

LENGTH and LOCATION Parameters (KEY)

The KEY statement is used when building an indexed file

from a sequential file. The LENGTH parameter specifies

the length (1-29) of the key field. The LOCATION param-

eter specifies the starting location (1-65525) of the key field

in the input record. When the KEY statement is used, the

file described in the COPYO file statement must be a disk

file and OUTPUT-DISK, OUTPUT-FILE, or OUTPUT-

BOTH must be specified in the COPYFILE control state-

ment.

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

CYLINDER Parameter (ACCESS)

This parameter identifies the cylinder number for start of

file; the number can be between 0 and 202. For 5444, the

number is the quotient obtained from dividing the file

location by 2. For 5445, the number is indicated by the

file location.

SECTOR Parameter (ACCESS)

This parameter is used to specify the sector on which the

data to be copied is located. For a simulation area, it can

be 0-47. For main data areas, it can be 1-48.

TRACK Parameter (ACCESS)

This parameter is used for 5445. The value can range from

0-19 and is specified by the file location.

RECL Parameter (ACCESS)

This parameter identifies the record length of the data in

the file to be recovered. It can be 1-65536.

FROM Parameter (ACCESS)

This parameter identifies the unit on which the input data

is located.

DISP Parameter (ACCESS)

This parameter specifies the displacement, in bytes, from

the start of a sector to the beginning of a record in that

sector. The number can be between 0 and 255.

Copy/Dump Program—$COPY 95

COPYING MULTIVOLUME FILES

When multivolume files are copied, the first volume of the

input file has to be online when the job is initiated. The

output file must be a new file. If either condition is not

satisfied, a halt occurs.

Maintaining Correct Date and Volume Sequence Numbers

To maintain the correct data and volume sequence numbers

you must:

® Copy all the volumes of the file in one execution of

$COPY, or

@ Copy only one volume of the file in each execution of

$COPY.

For example, if you copy a 3-volume file one volume at a

time (volume 1 in the first execution, volume 2 in the

second execution, and volume 3 in the third execution), the

output file volumes will retain the original input date and

volume sequence numbers. Or, if you copy all the volumes

(1, 2, and 3) in the same execution, the system will assign

the current system date and new volume sequence numbers

in the output file. However, if you copy only volumes 2

and 3 in one execution, the output file volumes will be

assigned the current system date and volume sequence

numbers 1 and 2.

96

Maintaining Correct Relative Record Numbers

To maintain correct relative record numbers when copying

one volume of a multivolume direct file, you must keep the

output volume and the input volume equal in size. (If you

want to increase the size of a file, you must copy the entire

file.) If you copy the first volume of a 2-volume file and

increase the number of records on that volume, you are also

increasing relative record numbers of all the records on the

next volume. Theretore, to maintain the correct relative

record numbers, output and input volume extents (records

or tracks) must be equal if you are copying only one

volume of a multivolume direct file.

Direct File Attributes

lf you copy an entire multivolume direct file in one run, the

output file is given sequential attributes in the volume table

of contents (VTOC). However, this does not affect file

processing. A file with either sequential or direct attributes

can be accessed by a consecutive or random access method.

If only one volume is copied, the direct attribute is main-

tained.

Copying Multivolume Indexed Files

If you want to copy an indexed multivolume file, REORG-

YES must be given in the COPYFILE statement. Since an

unordered load to a multivolume indexed file is not per-

mitted, a REORG-NO causes a halt. If you prefer not to

reorganize the file, it must be copied one volume at a time.

When you copy one volume at a time, the HIKEY on the

output volume must be the same as the HIKEY on the input

volume. If they are not equal, a halt occurs. Making the

HIKEYs the same ensures that both the input and output

volumes are the same length and no records will be lost.

When you copy one volume of a multivolume indexed file,

either REORG-YES or REORG-NO may be specified.

CARD AND DISKETTE CONSIDERATIONS ($COPY)

Card or Diskette Input

For card or diskette input files, end of file is determined by

the presence of a record with /* in positions 1 and 2, and

positions 3 through 80, 3 through 96 or 3 through 128

blank. This allows a card or diskette input file to contain /*

records, assuming that at least one character is in columns 3

through 80, 3 through 96, or 3 through 128. A /& is han-

died the same as a /* record unless the input device is the

system READER. The presence of a record with /& in posi-

tions 1 and 2 from the system READER is regarded as

absolute end of file.

Card or Diskette Output

If the input record size (in bytes) is greater than the size of

the card or diskette record, the input record is truncated.

If the input record size is less than the size of the card or

diskette record, the remaining portion of the card or

diskette record contains blanks. For example, if the input

file contains 60 byte records, the card is blank in columns

61 through 80 or 61 through 96. The diskette is blank in

the remaining portion of the record length specified.

TAPE FILE CONSIDERATIONS

When copying or printing tape data files, you must describe

the tape file being copied or printed and describe the file

being created. The various tape record formats and labels

are supported. (See F/LE Statement (Tape) in Part 1 of

this manual.) The tape file can be ASCII or EBCDIC.

Default for record format (RECFM) is fixed length. On an

unlabeled tape, record length (RECL) and block length

(BLKL) must be specified.

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

Be careful when you copy a tape file with variable length

records to disk or tape. The resulting file contains fixed-

length records with a record length equal to the longest

record length of the file copied from. Records copied with

short record lengths have invalid information in the unused

portion of the output record.

OCL CONSIDERATIONS

The following OCL statements are needed to load the copy/

dump program if you are using the program to copy an

entire disk:

// LOAD $COPY,code

// RUN

The code you supply depends on the location of the simu-

lation area containing the copy/dump program. The codes

are R1, F1, R2, and F2.

The following OCL statements are needed to do COPYFILE

functions for disk and tape:

// LOAD $COPY,code
// FILE NAME-COPYIN,

parameters
(Required statement for

input from disk or tape)

// FILE NAME-COPYO,

parameters

(Required statement for

output to disk or tape)

// RUN

For information on the FILE statement parameters, see

OCL Statements in Part 1 of this manual.

The UNIT parameter is required on each entered FILE state-

ment. The allowable UNIT codes are R1, F1, R2, F2, D1,

D2, T1, T2, T3, and T4 for COPYIN and COPYO file state-

ments.

A FILE OCL statement is not required for a card, diskette,

or printer file. The INPUT or OUTPUT keyword in the

COPYFILE control statement must be used.

Copy/Dump Program—$COPY 96.1

96.2

EXAMPLES

Figures 24 through 29 are examples of the OCL statements

and control statements needed to (1) copy an entire disk,

(2) copy a file from one disk to another, and (3) print part

of a file.

Figures 30 through 41.1 are examples of the OCL state-

ments and contro! statements needed to:

1. Copy a file from disk to tape.

2. Copy a file from tape to disk, printing part of the file.

3. Copy a file from tape to tape, selecting records to be

copied.

4, Copy a card file to tape.

5. Copy a disk file to cards.

6. Copy a disk file to diskette.

7. Copy a tape file to diskette, printing part of the file.

8. Copy and print a portion of a file from diskette to

disk.

9. Copy a card file to a diskette, printing the entire file.

10. Copy and print a portion of a file from diskette to

cards.

11. Copy acard file to another card file.

12. Recover data from a main data area.

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

4 8 12 16 20 24 28 32 36

e
l

b
e
d

e
e

~
—

[
~

Explanation:

The copy/dump program is loaded from simulation area F1

on drive 1.

Figure 24. OCL Load Sequence for Copying an Entire Disk

Copy/Dump Program—$COPY 97

1 4 3 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
AM ICIOAVIAAIC|K, LAROM-IFIZI I7O-|R21,|Aalcid/iM-lA2iAaiAal lAlalcled- lala’

EWO

Explanation:

The COPYPACK statement copies the contents of simulation area F2 (FROM-F2) with volume identification F2F2F2
(PACKIN-F2F2F2) onto simulation area R2 (TO-R2) with volume identification R2ZR2R2 (PACKO-R2R2R2).

Figure 25. Control Statements for Copying an Entire Disk

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
/
AULILIGAID COPAY |Af

AW AAVILIE] IMA MIE|-ICIOALY| JIM IU) UTI-\F\4 -AlLl LABIEIL|- | MASITIER
AI AFULIEL MAME!-iCOAYO, Wis -|Ri21, IAA A\- 1812), |LAIBEIL|~|BAIC|KIUP| I7/RALCIK|S|- REZ LIN-|P
/\/| IRIUN

Explanation:

®@ Copy/dump program is loaded from simulation area F1 on drive 1.

@ Input file (OCL sequence):

1. Name that identifies file on disk is MASTER (LABEL-MASTER).

2. Disk that contains the file is simulation area F1 on drive 1 (UNIT-F1). Its name is Al (PACK-A1).

© Output file (OCL sequence):

1. Name to be written on disk to identify the file is BACKUP (LABEL-BACKUP).

2. Disk that is to contain the file is the simulation area R1 on drive 1 (UNIT-R1). Its name is B2 (PACK-B2).

3. The file is to be permanent (RETAIN-P),

4. The size of the file is 50 tracks (TRACKS-50).

Figure 26. OCL Load Sequence for Copying a File from One Disk to Another

98

=
 52

Explanation:

The COPYFILE statement tells the program to create the output file using all the data from the input file. The output file

using all the data from the input file.

Figure 27. Control Statements for Copying a File from One Disk to Another

The output file is a copy of the input file.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

/\g
//| {LIOIAID| ISIClOPl| AZ
/{/l Teliel WaMel-lCoy\ IM, lumei7\-lol| \Aalcle-\6i2|, clalaelcl- lala
{/| Riv 7

Explanation:

® Copy/dump program is loaded from simulation area F1 on drive 1.

@ Input file (OCL sequence):

1. Name that identifies the file on disk is BACKUP (LABEL-BACKUP).

2. Disk that contains the file is the main data area on drive 1 (UNIT-D1). Its name is B2 (PACK-B2).

Figure 28. OCL Load Sequence for Printing Part of a File

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

AA Keldavaricld loli7(auiz|-leels wiz] | |
/\| Islelleici7| Mev, lFieiom-|'lalolamisi'| Irid-|' BlAMelR|' ;
[1 \EIND 7

Explanation:

@ The file is being printed (COPYFILE statement).

@ The file is an indexed file. The part being printed is identified by the record keys from ADAMS to BAKER in the index

(SELECT statement).

Figure 29. Control Statements for Printing Part of a File

Copy/Dump Program—$COPY 99

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

A Telolaldl Telcld Ay Aa | | |
Af lAriclel |NalmMe|-lcddlaviil ju sirl-lolt| [palcld-lozioi slog [zlaeleldl-\malsi7ieia
//| [Adlclel Wamel-Idolavid, dm iri-i7i4i, iRlelelcl-I7Li7izizit] Z\A@ele-lBAiclMiUe, IReClF-IA
MM Recia-lsi laluidci-B

[| RYAN
(\r| IcloleMelclel lourieuit|-lel ilcle
(| lel

Explanation:

® Copy/dump program is loaded from simulation area F1 on drive 1.

© Input file (OCL sequence):

1. Name that identifies the file on disk is MASTER (LABEL-MASTER).

2. Disk that contains the file is main data area on drive 1 (UNIT-D1). Its name is D1D1D1 (PACK-D1D1D1).

@ Output file (OCL sequence):

1. Name to be written on tape to identify the file is BACKUP (LABEL-BACKUP).

2. Tape unit that is to contain the file is tape unit 1 (UNIT-T1). Its name is T1T1T1 (REEL-T1T1T1).

3. Record format used is fixed length, unblocked records (RECFM-F). The record length is 80 (RECL-80).

® Control statement explanation:

The entire disk file named MASTER is copied to tape unit 1 (OUTPUT-FILE).

Figure 30. OCL.and Control Statements to Copy a Disk File to a Tape File

100

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Af {clowlol Wsiclory| leit : | | |
Al JV icle MAMEl-ICloayiw luima|ri-iri4) [Melee |-\7izizizi7isl \ReiclelM-lel iclalelcl-idlalcKiue

(| IFI/Iclel MAME! -ICOFYVIO AM IT!-|DI2\ |laicl«-[Dialnia|p2|, Iclalglelc!- Malsirielal ,I7iRlaiclesi- Bi,
/\/| REA /- 15. | |

/\ IRIGN
(il Ieldelyalrlele lauiziadri-leolrid
(\/| \slelelell7|_lRelcoleia |Fivom-l 1 |7id-\100
/\/_ Ea f f

Explanation:

@ Copy/dump program is loaded from simulation area F1 on drive 1.

@ Input file (OCL sequence):

1. Name that identifies the file on tape is BACKUP (LABEL-BACKUP).

2. Tape that contains the file is tape unit 1 (UNIT-T1). Its name is T1T1T1 (REEL-T1T1T1).

3. Record format of the file is fixed length, unblocked records (RECFM-F).

® Output file (OCL sequence):

1. Name to be written on disk to identify the file is MASTER (LABEL-MASTER).

2. Disk that is to contain the file is the main data area on drive 2 (UNIT-D2). Its name is D2D2D2 (PACK-D2D2D2).

3. The file is to be permanent (RETAIN-P).

4. The size of the file is 30 tracks (TRACKS-30).

® Control statement explanation: |

1. The entire file is copied from tape to disk (OQUTPUT-BOTH).

2. Records 10 through 100 are printed (RECORD, FROM-10, TO-100).

Figure 31. OCL and Control Statements to Copy a Tape File to a Disk File and Print a Part of the File

Copy/Dump Program—$COPY 101

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

/\f\ [dolald lgicldlAyl Alt | Litt | | |
AA TAile IMAMEl-\Corlyisi luwtel7i-l7|2| |Relelcl-Wicl |Relcleld-leia |Aeicic|-lalal lalclKic|-lalelal

FINLIE NIAME!-ICOPAYIO WIM IT|-I7 12 IRIEIEIL- Ml, IRIECIFIM-|F

JL [RIVA
AL ICIP AIILIE| JOUTIAUIT|-IFI/ILIE

/\ (sieidielcl7] RECORD FROM -201, TOR OB A/C Eels
‘| leo

Explanation:

®@ Copy/dump program is loaded from simulation area F1 on drive 1.

® Input file (OCL sequence):

1. Tape that contains the file is tape unit 1 (UNIT-T1).

2. Tape being copied is an unlabeled tape (REEL-NL); therefore, record format (RECFM-FB), record length

(RECL-96), and block length (BLKL-960) are specified.

® Output file (OCL sequence):

1. Tape unit that is to contain the file is tape unit 2 (UNIT-T2).

2. No label is used on the output tape (REEL-NL).

3. The record format is fixed length, unblocked (RECFM-F).

® Control statement explanation:

1. Records 20 to 200 are copied (FILE-YES).

2. | Norecords are printed (OQUTPUT-FILE).

Figure 32. OCL and Control Statements to Copy a Tape File to a Tape File and Select Records to be Copied

"102

1 4 8 12 16_ 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

M7 [elaaio igicloryi lial | | | | LET Lt
//L II ICE! IMAMEl-IClOIAYiOL IM I71- a\,lRleleld-Irlalrialri al [elaleelcl-le ace Ik cle
A/| |Rec\U-I416|,|BL{KIc|-1916
A/LARION
[LL CIOPYANLIE |OUITIAUTI-[FL/ICIE! LIM PUI7I- FIC

At EMD

Explanation:

®@ Copy/dump program is loaded from simulation area F1 on drive 1.

® Output file (OCL sequence):

1. Name to be written on tape to identify the file is BACKUP (LABEL-BACKUP).

2. Tape unit that is to contain the file is tape unit 1 (UNIT-T1). Its name is T1T1T1 (REEL-T1T1T1).

3. Record format used is fixed length, blocked records (RECFM-FB). The record length is 96 (RECL-96); the block

length is 960 (BLKL-960).

@ Control statement explanation:

The entire card file from the MFCU1 (INPUT-MFCU1) is copied to tape unit 1 (OUTPUT-FILE).

Figure 33. OCL and Control Statements to Copy a Card File to a Tape File

1. 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

A/| ldo \giclojryi ,|Fi4 LT TTT
AA ALLE INAMEI-(COPR YIM, WIA ITI- 1) IAAKIA-ID 11D, 11D.) ILIA E\L|- MAISITIEIR’

AL RUIN
AM ICOPMANLIE IOlUNPRUT-\ 1442

AA EMD

Explanation:

© Copy/dump program is loaded from simulation area F1 on drive 1.

@ Input file (OCL sequence):

1. Name that identifies the file on disk is MASTER (LABEL-MASTER).

2. Disk that contains the file is the main data area on drive 1 (UNIT-D1). Its name is D1D1D1 (PACK-D1D1D1).

® Control statement explanation: .

The entire disk file named MASTER is punched into cards by the 1442 (OUTPUT-1442).

Figure 34. OCL and Control Statements to Copy a Disk File to a Card File

Copy/Dump Program—$COPY 103

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

MA \ldalo| [siclolelv, [Flt | HT
ALICE MAME!-Icloey iM lumi lod [Adcld-lo 2 tos \clAgelc|-balsielR
A/| WR
[I ICOPRYFINCIE OUITIPUIT-|3I7H4 11 ILIEIMGTIH-| 11213
/\/| Jeo

Explanation:

® Copy/dump program is loaded from simulation area F1 on drive 1.

® Input file (OCL sequence):

1. | Name that identifies the file on disk is MASTER (LABEL-MASTER).

2. Disk that contains the file is main data area on drive 1 (UNIT-D1). Its name is D1D1D1 (PACK-D1D1D1).

® Control statement explanation:

The entire disk file named MASTER is copied to the 3741 (OUTPUT-3741). The record length of the file on the 3741
is 128 (LENGTH-128).

Figure 35. OCL and Control Statements to Copy a Disk File to the 3741

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

//| luld ald |gicld Av, |r| | |
All lFiilele MAME CORY IM JuMiIrI-I7d Jace cl-lAaYinacl lMecem-lA [cael SITIER
LU IRON
AI ICOPMAILIE OUITIPUTI-|"1AR IMT [3I7HAM’ LENG TIM -|716
l/l Islelcieid7| RelcoRIo, |ARoM-|4 |\7i0l-| 1210
| \EIND

Explanation:

® Copy/dump program is loaded from simulation area F1 on drive 1.

@ Input file (OCL sequence):

1. Name that identifies the file on tape is MASTER (LABEL-MASTER).

2, Tape that contains the file is tape unit 1 (UNIT-T1). Its name is PAYROL (REEL-PAYROL).

3. Record format of the file is fixed length, unblocked records (RECFM-F).

® Control statements explanation:

1. The entire file is copied from tape to the 3741 (OUTPUT-‘PRINT,3741'). The record length of the file on the 3741
is 96 (LENGTH-96).

2. Records 4 through 120 are printed (RECORD,FROM-4,TO-120).

Figure 36. OCL and Control Statements to Copy a Tape File to a Diskette File and Print a Part of the Fite

104

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

Ni (lolald siclday |A2 | | | |
/Te\lcle WAlMel-lCloavid wl (7i-|pil, lelalcla\-(pizidalpi2 Ic AlBele|-IS\AZlelsl, ITIRVALCIKIS|- [151 [RETA -17
LM RUN -
Hil cloleviesiclel loli A7i- |BOWr i | IMAUITI-WBI7 At) ILIEIMG 7 | -15)
/V/|ASIEILIEIC|7| [RECORD |FIRIOM-I5I \710\- [2/510 |FI/ IL€\-IVieis
(EW

Explanation:

® Copy/dump program is loaded from simulation area F1 on drive 1.

® OUTPUT file (OCL sequence):

1.

2.

3.

4.

Name to be written on disk is SALES (LABEL-SALES).

Disk that is to contain the file is main data area on drive 2 (UNIT-D2). Its name is D2D2D2 (PACK-D2D2D2).

The file is to be temporary (RETAIN-T).

The size of the file is 15 tracks (TRACKS-15).

® Control statements explanation:

1.

2.

Records 5 to 250 are copied (FILE-YES) and printed (OUTPUT-BOTH).

Input is the 3741 (INPUT-3741) and the record length in the HDR1 label on the 3741 is 50 (LENGTH-50).

Figure 37. OCL and Control! Statements to Copy a Diskette File to a Disk File and Print Only the Copied Records

1 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

Al A CO ;

Al N
a AYAMLIE |OUT AUT - PIRIIINIT| 13\7 414 ‘hy IM PUT|- FIC\UI| LIEINGTIH-|96

[D

Explanation:

® Copy/dump program is loaded from simulation area F1 on drive 1.

® Control statement explanation:

The entire card file from the MFCU1 (INPUT-MFCU1) is copied to the 3741 and printed (OUTPUT-’PRINT,3741').

The record length of the output file on the 3741 is 96 (LENGTH-96).

Figure 38. Control Statement to Copy a Card File to a Diskette and Print the Entire File

Copy/Dump Program—$COPY

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

A/| \LlalAlD ISiCOlPlY) , Fi 4
A1| \RUIN

AM COPY ANCIE! OUITIAUITI-|PRV WIT) 21" | LIN PIUIT ITAL ILIEIMG TIM 212
A ASIEIECIT] IRIECIOIRID | FIRIOM-|116 ITO-1617|, |FI/ LIE|-IYEIS
A/LIEMD

Explanation:

@ Copy/dump program is loaded from simulation area F1 on drive 1.

® Control statement explanation:

1. Records 16 through 67 are copied (FILE-YES) to the 1442 and printed (OQUTPUT-‘PRINT,1442’).

2. Input is the 3741 (INPUT-3741), and the record length in the HDR1 label on the 3741 is 128 (LENGTH-128).

Figure 39. Control Statements to Copy and Print a Portion of a File on a Diskette to a Card Device

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

AL ALIA ISCIOFRY(,
[VL |RUN

HL ACIORYIAIILIE! OUTPUT WM FICIU2Z| | IMAIUTI- | 214

(JEW D

Explanation:

® Copy/dump program is loaded from simulation area F1 on drive 1.

@ Control statement explanation:

1. The entire file is copied to the MFCU2 (OUTPUT-MFCU2).

2. Input is the 1442 (INPUT-1442).

Figure 40. Control Statement to Copy a Card File to Another Card File

106

14 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

NZ \uolAld IgiciolP\y\ ,\Fi4 |
AVA AVWLIE MAMEI-\CIOIPIVIIM VIM IIT|-|R4) |AAICKI- RIA TIAL LABEL ICOM SIVIF 14

[V/| \AVILIE, IMA El-CO\PIVIO,|VININIT|-|Dit|,|PIAICIK|-ID D112) 718 C|K\S|- A LAB EIL-|/IMDSIAF 4

[IL IRIN

JI ICOWPMALIE JOUITIPIUIT|-|D1/|S|A | fd

/\1\ \KiElY LIEMG 7-123), ,|LOICIAIT|/OW|-\2:28 2

[LEWD

Explanation:

© Copy/dump program is loaded from simulation area F1 on drive 1,

@ Input file (OCL sequence):

1. Name that identifies file on simulation area is CONSVF (LABEL-CONSVF).

2. Disk that contains the file is the simulation area R1 on drive 1 (UNIT-R1). Its name is RIR1R1 (PACK-R1R1R1).

@ Output file (OCL sequence):

1. Name to be written on main data area to identify the file is INDSVF (LABEL-INDSVF).

2. Disk that is to contain the file is the main data area on drive 1 (UNIT-D1). Its name is D1D1D1 (PACK-D1 D1D1).

3. The size of the file is 100 tracks (TRACKS-100).

@ The COPYFILE statement tells the program to create the output file using all the data from the input file.

© The KEY statement tells the program to create an index for the output file consisting of 23-byte keys (LENGTH-23)

which are located 128 bytes into the record (LOCATION-128).

Figure 41. Control Statements to Copy a Sequential File From a Simulation Area to a Main Data Area and Create an Indexed Output File

Copy/Dump Program—$COPY 107

Page of GC21-5130-0

tssued 19 November 1976

By TNL: GN21-5413

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Ai iolalo| |siclolely|, lel! |
AA FU bie] WiAMIE!-iciolPlylo}, luinllt|T|-lo2), |Plaici«|-lojziojz|ol2|,|71Rlalc k/s\-|/lolol, Ieeiriaiswi-|clalatela|-(adalsirlele
“t| lew | | | PEELE LEELEL L f
/\4| ICOlAYIENLIEl plu7elv|7|-|0 six f
A/| \aleleieisis FROMM D! ICinel WOER-//5171, TIRACIA- \SieiciT/olR-|/| ol sl-lal Rielcie|-|2|516
AH SKIER] RECO RID, FRIolM-|/|,Iro\-| 31419] lei [elel-|ylels f
‘|| \EWo

Explanation:

© Copy/dump program is loaded from simulation area F1 on drive 1.

@ Output file (OCL sequence):

1. Name to be written on main data area to identify the file is MASTER (LABEL-MASTER).

2. Disk that is to contain the file is the main data area on drive 2 (UNIT-D2). Its name is D2D2D2 (PACK-D2D2D2).

3. The size of the file is 100 tracks (TRACKS-100),

The COPYFILE statement tells the program to create the output file using all the data from the input file.

© The ACCESS statement identifies the location of the data to be copied as being on D1 (FROM-D1), at cylinder, track,
sector, displacement 159/0/1/0 (CYLINDER-159,TRACK-0,SECTOR-1,DISP-0), and that the records are 256 bytes
long (RECL-256).

Note: // SELECT RECORD with FILE-YES must be specified when using // ACCESS.

Figure 41.1. Control Statements to Recover Data From Main Data Area D1

108

Simulation Area Program—$SCOPY

The simulation area program has the following six functions:

@e COPYAREA: Copies the entire contents of one simula-

tion area or simulation backup area to another simula-

tion area or simulation backup area.

@® CLEAR: Clears all the data from a simulation area or

simulation backup area and builds a simulated cylinder O

(optionally gives volume ID and owner ID).

@ NEWNAME: Changes the name (volume ID) of a simu-

lation area or simulation backup area.

@® NAMES: Prints the name (volume ID) of each available

simulation area, simulation backup area, and main data

area.

@ MOVE: Copies the entire contents of one simulation

area or simulation backup area to another simulation

area or simulation backup area, clears the area from

which the contents were copied, and builds a simulated

cylinder 0 in the area copied from.

@ COPYIPL: Copies IPL records from one 3340 data

module to another 3340 data module.

The use of any of these functions requires that the simula-

tion area referenced be dedicated to program level execut-

ing $SCOPY. The data module, on which the simulation

area is being referenced, cannot be dedicated to the other

level.

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

Four contiguous areas of 10 cylinders each (starting at

cylinder 169) are reserved on each of the 3340 data

modules to simulate 5444 drives. The first two areas on D1

are reserved for F1 and R1; the first two areas on D2 are

reserved for F2 and R2. These four areas are accessible via

normal data management (except multivolume and indexed

files) and Model 12 system utility programs except $ALT,

$BUILD, $INIT, and $RSALT. $SCOPY provides access to

simulation areas and simulation backup areas for mainten-

ance purposes.

The simulation areas are designated a7 follows:

Area Start End

(CCC/HH/RR) (CCC/HH/RR)

A First simulation 169/00/01 1178/19/48

area

B Second simulation 179/00/01 1188/19/48

area

C First simulation 189/00/01 198/19/48

backup area

D Second simulation 199/00/01 208/19/48

backup area

Simulation Area Program—$COPY 108.1

108.2

CONTROL STATEMENT SUMMARY

Function Control Statements

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

COPYAREA — // COPYAREA FROM-code,TO-code,PACK-name, AREA-name[, TONAME-name] | system-tig: |

CLEAR // CLEAR FROM-code,PACK-name[,AREA-name] [,CLRNAME-name] [1D-namel| TYPE. cones} |

NEWNAME // NEWNAME TO-code,PACK-name, AREA-name, TONAME-name

NAMES // NAMES [PRINT]

MOVE // MOVE FROM-code,TO-code,PACK-name,AREA-name[, TONAME-name] .1D-namel| system {¥E°t

[,CLRNAME-name] 7

COPYIPL // COPYIPL FROM-D1,TO-D2,PACK-name

// END

PARAMETER SUMMARY CLEAR

COPYAREA FROM-code Identifies the data module and simu-

lation area or simulation backup area

FROM-code Identifies the data module and the being cleared (see COPYAREA FROM-

simulation area or simulation backup code for possible codes).

area being copied. Possible codes are

D1A, D1B, DiC, D1D, D2A, D2B, PACK-name Specifies the data module containing

D2C, and D2D. the area to be cleared.

TO-code Identifies the data module and the AREA-name Specifies the area to be cleared. Can-

simulation area or simulation backup not be specified if AREA has no

area receiving the copy (see FROM- assigned name. PIDOO1 must be spec-
code description for possible codes). ified to clear an area used for distribu-

tion of programs from the IBM program

PACK-name Identifies the name of the data module library/PID. The name P!IDOO1 should

receiving the copy. only be used for this purpose.

AREA-name Identifies the name of the simulation CLRNAME-name_ Specifies the name to be given to the

area or simulation backup area being area being cleared. If no parameter is
copied. specified, the name of the area is the

name previously defined.
TONAME-name Specifies a name change for the area

receiving the copy. ID-name Enables you to use a 10-character

YES name in addition to the area name to

SYSTEM- NO Specifies whether IPL information is further identify a disk.

— to be copied.

TYPE-CHECK Tells the program to check for active

files or libraries and halt if any are

found before clearing the area.

TYPE-FORCE Tells the program to clear the area

without checking for active files or

libraries.

Simulation Area Program—$SCOPY 109

NEWNAME

TO-code

PACK-name

AREA-name

TONAME-name

NAMES

PRINT

MOVE

FROM-code

TO-code

PACK-name

AREA-name

TONAME-name

110

Specifies the name of the data

module and the simulation area or

simulation backup area being re-

named. (See COPYAREA FROM-

code for possible codes.)

Specifies the name of the data

module containing the area being re-

named.

Specifies the existing name of the

simulation area or simulation backup

area being renamed.

Specifies the new name being given

to the simulation area or simulation

backup area.

Specifies that the names of all online

simulation areas and simulation back-

up areas are to be printed on the

system print device.

Identifies the data module and the

simulation area or simulation backup

area being moved. Possible codes are

D1A, 0D1B, D1C, D1D, D2A, D2B,

D2C, and D2D.

Identifies the data module and simu-

lation area or simulation backup area

receiving moved information (see

FROM-code for possible codes).

Identifies the name of the data

module containing the simulation

area or simulation backup area re-

ceiving the moved information.

Specifies the name of the simulation

area or simulation backup area being

moved.

Specifies a name change for the simu-

lation area or simulation backup area

receiving the moved information.

ID-name Specifies the owner ID.

SYSTEM- YES NO Specifies whether IPL information

is to be moved.

CLRNAME-name_ Used to assign a name to the area

from which the information has

been moved.

COPYIPL

FROM-D1 Identifies the data module containing

the IPL records to be copied.

TO-D2 Identifies the data module receiving

the IPL records.

PACK-name Identifies the name of the data

module receiving the IPL records.

PARAMETER DESCRIPTIONS

FROM and TO Parameters (COPYAREA)

The FROM parameter (FROM-code) identifies the data

module and the simulation area or simulation backup area

that contains the information to be copied. The TO param-

eter (TO-code) identifies the data module and the simula-

tion area or simulation backup area that is to receive the

copy. Possible codes are D1A, D1B, D1C, D1D, D2A, D2B,

D2C, and D2D.

PACK Parameter (COPYAREA)

The PACK parameter (PACK-name) identifies the name of

the data module containing the simulation area or simula-

tion backup area receiving the copy. This is the name as-

signed by the disk initialization program ($INIT).

AREA Parameter (COPYAREA)

The AREA parameter (AREA-name) identifies the name of

the simulation area or simulation backup area that is to be

copied.

Note: Usinga COPYAREA or MOVE statement, the re-

ceiving area is assigned the owner ID of the area being

copied from.

TONAME Parameter (COPYAREA)

The TONAME parameter (TONAME-name) is used to

change the name of the simulation area or simulation back-

up area that is to receive the copy. The name may contain

up to 6 characters (see CLRNAME Parameter (CLEAR) for

explanation of valid names), If the TONAME parameter is

omitted, the name of the simulation area or simulation

backup area that is to be copied is used.

SYSTEM Parameter (COPYAREA)

The SYSTEM parameter is used to copy IPL information.

lf SYSTEM-YES is specified, the IPL information from

cylinder 0 of the system data module on drive 1 is copied

to cylinder 0 of the data module receiving the copied infor-

mation. If SYSTEM-NO is specified, the IPL information

is not copied. If no parameter is specified, SYSTEM-NO is

assumed.

FROM Parameter (CLEAR)

The FROM parameter (FROM-code) identifies the data

module and the simulation area or simulation backup area

to be cleared. Codes that may be used are D1A, D1B, D1C

D1D, D2A, D2B, D2C, and D2D.
f

PACK Parameter (CLEAR)

The PACK parameter (PACK-name) specifies the name of

the data module containing the simulation area or simula-

tion backup area that is to be cleared. This is the name

assigned by the disk initialization program ($INIT),

AREA Parameter (CLEAR)

The AREA parameter (AREA-name) specifies the name of

the simulation area or simulation backup area that is to be

cleared. This parameter cannot be specified if the area has

no assigned name. The AREA parameter must be specified

as PIDOO1 in order to clear an area used for distribution of

programs from the IBM program library/PID. The name

P!DO0O1 should be used only for this purpose.

Page of GC21-5130-0

issued 19 November 1976

By TNL: GN21-5413

CLRNAME Parameter (CLEAR)

The CLRNAME parameter (CLRNAME-name) specifies the

name to be given to the area that is to be cleared. The

name may be up to 6 characters in length and contain any

combination of standard System/3 characters except apos-

trophes, embedded blanks, and commas (due to their de-

limiter function). (See Appendix A for a list of standard

System/3 characters.) Valid area names are 0, FOOO1, 012,

A1B9, and ABC. If no parameter is specified, the name of

the area is the name previously defined. If no name has

been previously defined, CLRNAME must be specified.

ID Parameter (CLEAR)

The ID parameter (ID-name) enables you to include a maxi-

mum of 10 characters, in addition to the area name, to fur-

ther identify a simulation area or simulation backup area.

(See CLRNAME Parameter (CLEAR) for explanation of

valid names.) The information is strictly for area identifi-

cation. (It is not used by the system for checking purposes.)

lf no parameter is specified, the owner 1D area in the

volume label is left blank.

TYPE Parameter (CLEAR)

The TYPE parameter specifies the type of clear that is to be

done. If TYPE-CHECK is specified, a check is made for

active files or libraries. If any are found, the system halts.

If TYPE-FORCE is specified, the area is cleared without a

check for active files or libraries. (All libraries and data

files are deleted.)

TO Parameter (NEWNAME)

The TO parameter (TO-code) identifies the data module

and the simulation area or simulation backup area that is to

be renamed. The possible codes are D1A, D1B, D1C, D1D,

D2A, D2B, D2C, and D2D.

PACK Parameter (NEWNAME)

The PACK parameter (PACK-name) specifies the name of

the data module containing the simulation area or simula-

tion backup area being renamed. This is the name assigned

by the disk initialization program ($INIT).

Simulation Area Program—$SCOPY 111

AREA Parameter (NEWNAME)

The AREA parameter (AREA-name) specifies the existing

name of the simulation area or simulation backup area that

is to be renamed.

TONAME Parameter (NEWNAME)

The TONAME parameter (TONAME-name) specifies the

new name to be given to the simulation area or simulation

backup area. The new name may be up to 6 characters in

length. (See CLRNAME Parameter (CLEAR) for an

explanation of valid names.)

PRINT Parameter (NAMES)

The PRINT parameter indicates that all online simulation

area names or simulation backup area names are to be print-

ed on the system print device. !f no parameter is specified,

the simulation area names or simulation backup area names

are printed. If an area is unavailable or being used by the

other program level, its volume ID is left blank and an

exception line is printed, giving the reason.

FROM and TO Parameters (MOVE)

The FROM parameter (F ROM-code) identifies the data

module and the simulation area or simulation backup area

that is to be moved. The TO parameter (TO-code) identi-

fies the data module and simulation area or simulation

backup area that is to receive the moved information. Pos-

sible codes are D1A, D1B, D1C, D1D, D2A, D2B, D2C, and

D2D.

PACK Parameter (MOVE)

The PACK parameter (PACK-name) identifies the name of

the data module containing the simulation area or simula-

tion backup area that is to receive the moved information.

The name was assigned by the disk initialization program

(SINIT).

AREA Parameter (MOVE)

The AREA parameter (AREA-name) specifies the name of

the simulation area or simulation backup area to be moved.

112

TONAME Parameter (MOVE)

The TONAME parameter (TONAME-name) is used to

change the name of the simulation area or simulation back-

up area that is to receive the information. If no parameter

is specified, the name of the simulation area or simulation

backup area that is to be moved is used. (See CLRNAME

Parameter (CLEAR) for an explanation of valid names.)

1D Parameter (MOVE)

The ID parameter (1D-name) specifies the owner ID that is

to be given to the area from which information was moved.

If no parameter is specified, the owner ID in the volume

label is left blank.

Note: Usinga COPYAREA or MOVE statement, the

receiving area is assigned the owner ID of the area being

copied from. The owner 1D name may be up to 10 charac-

ters in length. (See CLRNAME Parameter (CLEAR) for an

explanation of valid names.)

SYSTEM Parameter (MOVE)

The SYSTEM parameter is used to move IPL information.

lf SYSTEM-YES is specified, the IPL information from

cylinder 0 of the system data module on drive 1 is moved

to cylinder O of the data module receiving the moved in-

formation. If SYSTEM-NO is specified, the [PL informa-

tion is not moved. !f no parameter is specified, SYSTEM-

NO is assumed.

CLRNAME Parameter (MOVE)

The CLRNAME parameter (CLRNAME-name) is used to

assign a name to the area from which the information has

been moved. The name may be up to 6 characters. (See

CLRNAME Parameter (CLEAR) for an explanation of valid

names.) If no pararneter is specified, the area is cleared and

the name previously assigned is used.

FROM and TO Parameter (COPYIPL)

The FROM parameter (F ROM-D1) identifies the data

module containing the IPL records that are to be copied.

The TO parameter (TO-D2) identifies the data module that

is to receive the IPL. records.

Note: COPYIPL can only be from D1 to D2.

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

PACK Parameter (COPYIPL)

The PACK parameter (PACK-name) identifies the name of

the data module that is to receive the IPL records. The

name assigned by the disk initialization program ($INIT).

OCL CONSIDERATIONS

The following OCL statements are needed to load the simu-

lation area program:

// LOAD $SCOPY ,code

// RUN

The code you supply depends on the location of the simu-

lation area containing the simulation area program. The

codes are R1, F1, R2, and F2.

EXAMPLES

Figures 42 through 48 are examples of control statements used to perform specific functions of the simulation area program.

 ‘N
ee

a

Explanation:

After a check for active files and libraries (default is TYPE-CHECK), the first backup area on drive 2 is cleared. It is givena
volume ID of D2CD2C and an owner ID of BACKUPF1. This is an example of the CLEAR that is to be run after the entire
data module has been initialized by $INIT.

Figure 42. CLEAR Example: Clearing a Simulation Backup Area

Explanation:

After verification that the volume ID on the third area of drive D1 is PIDOO1, the area is cleared and given a volume ID of
D1CD1C. The owner ID is all blanks and the check for active files and libraries is bypassed. This is an example of the
control statement needed to clear an area containing programs from the IBM program library/PID.

Figure 43. CLEAR Example: Clearing an Area Containing 18M Programs

Simulation Area Program—$SCOPY 113

Explanation:

After verification that the volume ID of area D1A is F1F1F1, the area (D1A) is copied! to the first backup area on drive 2.

The entire simulation area is copied including cylinder 0, the volume ID, and the owner ID if it was present on DIA.

Figure 44. COPYAREA Example: Copy an Entire Simulation Area

Explanation:

The entire R1 simulation area on drive 1 is copied to the second backup area on drive 2 and the D2D area is given a volume

ID of BKUPR1 and an owner ID of the R11 area if one exists. After the copy is complete, the R1 simulation area is cleared

of all data, its owner |D field is blank, and it retains its volume ID of R1R1R1. The F1 simulation area is now ready to be

the receiving area of aCOPYAREA or another MOVE.

Figure 45. MOVE Example: Copy an Entire Simulation Area With New Volume ID

Explanation:

The IPL (initial program load) records and the 3340 microcode are copied from cylinder O of the data module on drive 1 to

cylinder O of the data module on drive 2. A check is made before the copy to ensure that the volume ID of the data module

on drive 2 is D2D2D2.

Figure 46. COPYIPL Example: Copy Cylinder 0- From Drive 1 to Drive 2

114

1 4 8 12 16 20 24 28 32 36 40 44, 48 52 56 60 68 72 76

/| MAMEIS! |PIRI NIT]

Explanation:

This control statement enables you to print on the system print device the volume ID of all online and available data modules
and simulation and backup areas. All simulation and backup areas on a data module are considered by the simulation area
program as unavailable if the data module is dedicated to the other program level, if the other program level has a rollin
pending, or if the data module has not been initialized by System/3 $INIT. This control statement also provides the capability
to print an exception line, if needed, giving the reason for any unavailable simulation or backup area.

Figure 47. PRINT Example: Print ID Information

1 4 | ' 12 16 20 24 28 32 36 40 44 rn 52 56 60 68 72 76

|
Vi/\ | WIEWMAMIE! |7I0|-(D)21B ARIEIA 78 112121R21, [acid -[palpizina| IriomaMel-lBalckive
AM | EME

Explanation:

After verifying that the name (volume ID) of the data module on D2 is D2D2D2 and that the name (volume ID) of the second
backup area on D2 is R1R1R1, the program changes the name (volume !D) of the backup area from R1R1R1 to BACKUP.

Figure 48. NEWNAME Example: Changing Volume ID

The following diagram shows the location of data modules and backup areas on the 3340:

Cyi 0 Cyl 1-166 Cyl 167-168 Cyl 169-178 Cyl 179-188 Cyl 189-198 Cyl 199-208 Cyl 209 heads 1-7

Drive 1 System | Main data Alternate Simulation Simulation Simulation Simulation Error logging
area area D1 tracks area A area B area C area D and CE tracks

D1A F1 area D1B R11 area DiC D1D

Cyl 0 Cyl 1-166 Cy! 167-168 Cyl 169-178 Cyl 179-188 Cyl 189-198 Cyl 199-208 Cyl 209 heads 1-7

Drive 2 System | Main data Alternate Simulation Simulation Simulation Simulation
area area D2 tracks area A area B area C area D Reserved

D2A F2 area D2B R2 area D2c D2D

if simulation if simulation

is on is on

Simulation Area Program—$SCOPY 115

Library Maintenance Program—SMAINT

The library maintenance program has five functions:

Function Meaning

Allocate Create (reserve space for), delete, re-

organize, and change the sizes of libraries;

create the scheduler work area and rollout/

rollin area on a system simulation area.

Copy Place entries in and display the contents of

libraries. Create a file from library entries.

Delete Delete library entries.

Modify Modify source library entries.

Rename Change the names of library entries.

The control statements you must supply depend on the

function you are using.

All simulation areas referenced by the control statements

must remain online during the library maintenance run.

116

LIBRARY DESCRIPTION

The source library is an area on disk for storing procedures

and source statements. Procedures are groups of OCL state-

ments used to load programs. The statements can be fol-

lowed by input data for the programs. (Procedures for utility

programs can, for example, contain utility control state-

ments.) Source statements are sets of data, the most com-

mon of which are RPG II source programs and disk sort

sequence specifications.

The object library is an area on disk for storing object pro-

grams and routines. Object programs are programs and sub-

routines in such a form that they can be loaded for execu-

tion. (They are sometimes called executable object pro-

grams.) Routinés are programs and subroutines that need to

be link-edited into object programs before they can be

loaded for execution. (They are sometimes called non-

executable object programs.)

Location of Libraries on Disk

Libraries cannot exist in the main data area; only R1, F1,

R2, and F2 can contain libraries that may be referenced by

the library maintenance program.

The location of a source library with respect to an object

library is always the same:

User Area Source Library Scheduler Work

e Data Files e@ Procedures Area

@ Source

Statements

Rollout/Rollin Object Library User Area

Area e@ QObject e Data Files

Programs

e Routines

| racks 0-7

The boundaries of a source library are fixed. They can be

changed only by the allocate function of the library main-

tenance program. The upper boundary of an object library,

however, can be moved as additional space is needed when

entries are placed in the library. This happens only if space

is available following the library and if the entries being

placed beyond the normal boundary are not permanent

entries.

Organization of Library Entries

Object Library

Entries are stored in the object library serially; that is, a 20-

sector program occupies 20 consecutive sectors. Temporary

entries follow all permanent entries in the object library.

lf necessary, the upper boundary is changed to allow more

space for temporary entries. The upper boundary of the

library is extended to the end of the pack or to the first

temporary or permanent'file, allowing the maximum

amount of space for the temporary library entry. At the

successful completion of the copy, the upper boundary is

returned to the track boundary at the end of the last tem-

porary entry. If the copy was not completed successfully,

the upper boundary may remain extended. When a per-

manent entry is placed in the library or the library is re-

organized, all temporary entries are deleted and the upper

boundary returns to its original location. Permanent entries

cannot exceed the original upper boundary.

p
t
+
—
-
-
—

Upper Boundary

Gaps can occur in the object library when an entry is

deleted. The associated directory entries point to these

gaps. When the library maintenance program places a new

entry in the library, it searches the directory for a gap that

has the same number of sectors, or the fewest sectors over

the number required by the new entry. If the entry is smal-

ler than the gap, the last part of the gap is not pointed to

by a directory entry. Since this gap has no directory entry,

it cannot be used until the library is reorganized.

If the number of unusable sectors becomes excessive, the

library should be reorganized. In reorganizing entries, the

library maintenance program deletes temporary entries and

shifts entries so that gaps do not appear between them.

This makes more sectors available for use.

_ Library Maintenance Program—SMAINT 117

Source Library

The source library differs from the object library in that

entries within the source library need not be stored in con-

secutive sectors. An entry can be stored in many widely

separated sectors with each sector pointing to the sector

that contains the next part of the entry. When an entry is

placed in the source library, it is placed in as many sectors

as required regardless of where the sectors are located with-

in the library.

The boundary of the source library cannot be expanded;

therefore, an entry must fit within the available library

space. To provide as much space as possible within the pre-

scribed limits of the source library, the system compresses

entries. That is, all duplicate characters are removed from

entries. Later, if the entries are printed or punched, the

duplicate characters are reinserted.

When the size of the source library is changed or the source

library is reorganized, all temporary entries are deleted.

Library Directories

The program creates a separate directory for each library.

Every library entry has a corresponding entry in its library

directory. The directory entry contains such information

as the name and location of the library entry. The program

also creates a system directory, which contains information

about the size and available space in the libraries and their

directories.

118

Organization of this Section

The five functions of the library maintenance program are

described separately. Every description contains the

following:

@ List of specific uses

® Control statement summary indicating the form of

control statement needed for each use

® Parameter descriptions explaining, in detail, the contents

and meanings of the parameters

@ Function descriptions explaining the details of each

function

Following the function descriptions are:

® OCL considerations

@ Examples

ALLOCATE FUNCTION

Uses

®@ Create (reserve space for) libraries, scheduler work area,

and rollout/rollin area.

@ Change the sizes of libraries.

@ Delete libraries.

@ Reorganize libraries.

Control Statement Summary

// ALLOCATE TO-code, SOURCE: { mumber\ opsecr-{ mre 'SYSTEM- Vest ,DIRSIZE-number, WORK-code

Use) Parameter Needed 2)

Create TO-code,SOURCE-number,WOR K-code®

Source Change Size TO-code,SOU RCE-number,WOR K-code

Library

Delete TO-code,SOURCE-0

Reorganize TO-code,SOU RCE-R,WORK-code

NO
Create TO-code,OBJECT-number,SYSTEM- YES

Object Change Size TO-code,OBJECT-number,WOR K-code

Library

Delete TO-code,OBJECT-O

Reorganize TO-code,OBJECT-R,WOR K-code)

Ovou can indicate a source library use, any object library use, or uses involving both libraries (for example, deleting the source library and

changing the size of the object library).

@) If you are indicating uses for both libraries, use only one TO parameter. (The libraries must be in the same simulation area.) Also, use only

one WORK parameter if both uses require a WORK parameter.

@ the WORK parameter is needed only if the simulation area contains an object library that you are not deleting.

© the WORK parameter is not required if this is a compress in place.

Library Maintenance Program—SMAINT 119

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

Considerations and Restrictions

This program has restrictions and operating conditions that

the user must be aware of when maintaining libraries.

Allocation of Disk Space

The library maintenance program allocates disk space for

each of the following functions:

Creating a library.

Increasing the size of a library.

Reorganizing a library.

Dynamically extending an object library to copy

temporary entries to the library.

Sorting a directory before it is printed.

Modifying a source library entry.

The space allocated by the program is the first contiguous

space large enough for the function to be performed. The

library maintenance program uses as much space as is avail-

able to the end of the simulation area or to the first tem-

porary or permanent data file, removing all scratch files in

this area. If, within a single load of the program, there are

functions performed requiring more than four disk areas

to be allocated, a halt occurs. The library maintenance

program must be reloaded to continue.

Removing Temporary Entries

When a library is reorganized, changed in size, or moved,

all temporary entries in that library are deleted. This applies

to both the source and object libraries.

120

Library Restrictions

The allocate function cannot reference the libraries on the

simulation area from which the library maintenance pro-

gram or the system was loaded. For example, if the system

was loaded (IPL) from F1 and the library maintenance

program was loaded from R11, the source or object libraries

on F1 and R1 cannot be referenced on an ALLOCATE

statement.

Moving the Object Library

When the user creates or changes the size of the source

library in a simulation area that contains an object library,

the object library is moved and reorganized, and all temp-

orary entries are deleted.

Control Statement Festrictions

The SOURCE or OBJECT parameter must be specified on

the ALLOCATE statement. If the SYSTEM or DIRSIZE

parameter is specified, the OBJECT parameter must also

be specified.

Procedure Restrictions

lf nested procedures are used, information contained in the

scheduler work area can become invalid when a source

library is reorganized or changed in size. Therefore, if a

procedure is used to reallocate or reorganize libraries, any

further procedures contained within that nested procedure

should not be called from the source library that is being

reallocated or reorganized.

Parameter Summary

TO-code

SOURCE-number (no

source library in simu-

lation area)

SOURCE-number

(source library already

in simulation area)

SOURCE-R

OBJECT-number (no

object library in simu-

lation area)

Location of simulation area that

contains or will contain the

library. Possible codes are R1, F1,

R2, and F2.

Create a source library. Number

indicates the number of tracks

you want to assign.

Delete or change the size of the

source library. Use depends on

number:

Number Use

0 Delete

Any number Change

but zero size

Reorganize the source library.

Create an object library. Num-

ber indicates the number of

tracks you want to assign.

OBJECT -number

(object library already

in simulation area)

OBJECT-R

DIRSIZE-number

SYSTEM-NO

SYSTEM-YES

WOR K-code

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

Delete or change the size of

the object library. Use depends

on number:

Number Use

0 Delete

Any number Change

but zero size

Reorganize the object library.

Number of tracks you want for

the directory when creating,

reallocating, or reorganizing the

object library.

Do not create a scheduler work

area. This will be a program

simulation area.

Create a scheduler work area.

This will be a system simu-

lation area.

Location of simulation area

containing space the program

can use as a work area. Possible

codes are R1, F1, R2, or F2.

Library Maintenance Program—$MAINT 120.1

120.2

Parameter Descriptions

TO Parameter

The TO parameter (TO-code) indicates the location of the

simulation area that contains, or will contain, the library.

If the program use involves both libraries, the libraries must

be on the same simulation area. The TO parameter cannot

be the same unit from which the library maintenance pro-

gram or system is loaded. Possible codes are R1, F1, R2,

and F2,

SOURCE and OBJECT Parameters

These parameters identify library uses:

Parameter Use

SOURCE-number ® Create a library (if the simu-

OBJECT-number lation area contains no li-

(number is not zero) brary). Number is the number

of tracks you want to assign

to the library.

@® Change the library size (if the

simulation area contains a li-

brary). Number is the number

of tracks you want to assign

to the library.

SOURCE-O Delete the library.

OBJECT-O

SOURCE-R Reorganize the library.

OBJECT-R

DIRSIZE Parameter

The DIRSIZE parameter allows the user to specify the size

of the object library directory. The number of tracks spec-

ified (1-9) overrides the SYSTEM parameter in determining

directory size. Each track can contain 288 directory entries.

One entry is needed for the directory, so the formula for the

number of entries in a directory is (t x 288)-1, where t is the

number of tracks. If the DIRSIZE parameter is omitted, the

SYSTEM parameter determines the directory size.

Page of GC21-5130-0

issued 19 November 1976

By TNL: GN21-5413

SYSTEM Parameter

The SYSTEM parameter applies when you create, change

the size of, and reorganize object libraries. It tells the pro-

gram whether you intend to include system programs in

the library and create a system simulation area that can be

used to perform initial program load. If system programs

are to be included, a scheduler work area must be assigned.

See Library-to-Library under Using the Copy Function for

information about creating a system simulation area.

Space for the scheduler work area is assigned immediately

preceding the object library. If the simulation area contains

a source library, the scheduler work area is between the

source and object libraries. For information about the size

of the scheduler work area, see index entry: scheduler

work area size.

The following charts show the results of coding the

SYSTEM parameter for different allocate uses.

Creating an Object Library:

Parameter Scheduler Work Area Directory Size!

SYSTEM-YES Created Three tracks

SYSTEM-NO Not created One track

Not coded Not created One track

‘The directory size is overridden if the DIRSIZE parameter

is coded.

_ Library Maintenance Program—$MAINT 121

Changing the Size of or Reorganizing an Object Library on

a Simulation Area that Contains a Scheduler Work Area:

Parameter Scheduler Work Area Directory Size!

SYSTEM-YES Retained Not changed

SYSTEM-NO Removed Not changed

Not coded Retained Not changed

Changing the Size of or Reorganizing an Object Library on

a Simulation Area that Does Not Contain a Scheduler Work

Area:

Parameter Scheduler Work Area Directory Size!

SYSTEM-YES Created Not changed

SYSTEM-NO Not created Not changed

Not coded Not created Not changed

WORK Parameter

The WORK parameter (WORK-code) indicates the location

of the simulation area that contains a work area. Library

entries are temporarily stored in the work area while the

program moves and reorganizes libraries. Possible codes

are R1, F1, R2, and F2.

When the WORK parameter is coded on an ALLOCATE

statement, an additional allocation of disk space may

result (see index entry: allocation of disk space).

Size of the Work Area: The work area must be large

enough to hold the directory and the permanent entries of

the source library, object library, or both libraries depending

on the program use. If you are combining uses, such as

changing the sizes of both libraries, the work area must be

large enough to hold the contents of both libraries.

! The directory size is overridden if the DIRSIZE parameter

is coded.

122

Use Contents of Work Area

Create a source Object library

library (simulation

area contains an object

library)

Source library and object

library

Change source

library size (simu-

lation area contains

an object library)

Change source Source library

library size (simu-

lation area does not

contain an object

library

Reorganize source Source library

library

Change object Object library, if not com-

library size press in place (see Compress

in Place under Using the

Allocate Function)

Reorganize Object library, if not com-

press in place (see Compress

in Place under Using the

Allocate Function)

object library

Location of Work Area on Disk: The program uses the

first available disk area large enough to hold the library, or

libraries.

Location of Simulation Area Containing the Work Area:

The work area can be on either simulation area on either

drive. However, it cannot be the same simulation area as the

one you specified in the TO parameter. The only require-

ment is that the sirnulation area have an available area large

enough for the work area. The program works faster if the

simulation area containing the libraries is not on the same

drive as the one containing the work area.

Using the Allocate Function

Creating a Source Library (SOURCE-number)

Source Library Size:

@® Minimum: One track.

@ Maximum: Number of tracks in the available area.

@ Regardless of the number of tracks you specify, the first

two sectors of the first track are assigned to the library

directory. Additional sectors are used as needed for the

directory.

Placement of Source Library (Simulation Area with an

Object Library):

@ The source library must immediately preceed the object

library. A disk area large enough for the source library

must follow the object library because the program

moves the object library to make room for the source

library (Figure 49). To do this, it needs a work area.

(See WORK Parameter.) The object library is reorganiz-

ed, and all temporary entries are deleted.

@ If you allocate a source library after deleting it, the pro-

gram automatically moves the object library to make

room for the source library. The starting location of the

source library is the previous starting location of the

object library.

Placement of the Source Library (Simulation Area without

an Object Library): The program assigns the source library

to the first available disk area large enough for the library.

If you allocate a source library after deleting it, the source

library is assigned the same way.

Changing the Size of (Reallocating) a Source Library

(SOURCE-number)

Any time the program changes the source library size, it

reorganizes both the source and object libraries and deletes

all temporary entries. (See Reorganizing a Source Library

under Using the Allocate Function.) To do this, it needs a

work area. (See WORK Parameter.)

Making the Source Library Larger:

@ If the simulation area contains an object library, space

must be available immediately following the object

library. The program moves the object library to make

tracks available at the end of the source library (Figure

50).

@ {f the simulation area does not contain an object library,

space must be available immediately following the

source library.

Disk Space Before Tracks Are Added to Source Library

Disk Space Before Creating Source Library

Object Library Available Space Customer

(30 tracks) (15 tracks) Files

| 0-7 L_ 8-37 | 38-52 __,|

Tracks

Disk Space After Creating Source Library

Source Object Library Available Customer

Library (30 tracks) Space Files

(5 tracks) (10 tracks)

| 0.7 | 8-12 |-— 13.42 +l 43.52
Tracks

Figure 49. Moving Object Library to Insert Source Library

Source Object Available Customer

Library Library Space Files

(10 tracks)}| (30 tracks) (15 tracks)

 0.7| 8-17 = 18-47 —-|— 48-62 __|
Tracks

Disk Space After 5 Tracks Are Added to Source Library

Source Object Available Customer

Library Library Space Files

(15 tracks)}| (30 tracks) (10 tracks)

0-7| 8-22 [23-52 —L 53-62 —|
Tracks

Figure 50. Increasing Source Library Size

Library Maintenance Program—$MAINT 123

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

Making the Source Library Smaller: Deleting a Source Library (SOURCE-O)

@ |f the simulation area contains an object library, the

program moves the end location of the source library

to make the library smaller. The object library is moved

and space becomes available following the object library

The program makes the disk area occupied by the source

library available for other use (disk files). (See Figure 52.)

(Figure 51). | Disk Space Before Source Library Deleted

@ If the simulation area does not contain an object library, Source Object Customer

the program moves the end location of the source li- Library Library Files

brary to make the source library smaller. (15 tracks) (30 tracks)

| 0-7 |— 8.22 — ee 23-52 —————

. ; ; Tracks
Disk Space Before Source-Library Size was Decreased

Source Object Customer Disk Space After Source Library Deleted
Library Library Files

(15 tracks) (30 tracks)
Available Object Customer

| 0-7 | 8-22 ; | . 23-52 | Space : Library Files

Tracks (15 tracks) | (30 tracks)

| 0-7 | 8-22 —-|.—— 23-52 —-

Track

Disk Space After 5 Tracks Were Taken From Source Library ras

Figure 52. Deleting Source Library

Source Object Available Customer

Library Library Space Files

10 track 30 track 5 track - -
(10 tracks) | (30 tracks) (5 tracks) Reorganizing a Source Library (SOURCE-R)

| 0-7 3.1 pele 18-47 —-|.— 48-52—>|
Tracks Reason for Reorganizing the Library: Areas from which

source library entries are deleted are completely reused

for new entries. If an entry exceeds the space in such an

area, the program puts as much of the entry as will fit

in the area and continues the entry in the next available

area. In this way, the program efficiently uses library

space. This can, however, decrease the speed at which

those entries can be read from the library. Therefore,

if you frequently add and delete source library entries,

you should reorganize your source library periodically.

Figure 51. Decreasing Source Library Size

Reorganizing the Library: The program relocates entries

so that no entry is started in one area and continued in

another. All temporary entries are deleted. The program

needs a work area. (See WORK Parameter.)

124

Creating an Object Library (OBJECT-number)

Object Library Size:

® Minimum: Three tracks including the directory tracks.

@ Maximum: Number of tracks in available area.

@ Library directory: The first 3 tracks in the library are

reserved for the library directory if the library is to con-

tain system programs; otherwise, only the first track is

used. If the DIRSIZE parameter is entered, the directory

size specifed is used.

@ Scheduler Work Area: The scheduler is a component of

the System/3 SCP that reads and processes OCL state-

ments. It uses a work area on the simulation area called

the scheduler work area (SWA), to temporarily save OCL

file label information during the processing of a program.

The area is allocated when SYSTEM-YES is specified.

The work space is not included in the number you

specify in the OBJECT parameter; the space is calcu-

lated and assigned by the library maintenance program.

The amount of space needed depends on whether DPF

(dual program feature), checkpoint/restart and/or the

inquiry capability is supported. For non-DPF systems,

2 tracks are needed; for DPF systems, 4 tracks are

needed. The inquiry and checkpoint/restart features

require additional tracks for a rollout/rollin area. The

number of tracks needed depends on the main storage

size of the system.

Main Storage Size Rollout/Rollin Tracks

32K 7

48K 9

64K 12

The SWA contains simulation area usage information, F1

and F7 label information, an initiator table, utility control

statement area, and miscellaneous work areas. There is one

SWA for each program level. (See Maximum Number of

Files, IBM System/3 Model 12 User’s Guide, GC21-5142.)

Placement of Object Library (Simulation Area With a

Source Library): Space for the object library must be

available immediately following the source library.

Placement of Object Library (Simulation Area Without a

Source Library): The program assigns the object library

to the first available disk area that is large enough.

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

Changing the Size of (Reallocating) an Object Library

(OBJECT-number)

Making the Library Larger: The number of tracks you

want to add must be available immediately following the

object library. The program assigns the additional tracks

to the library. (The starting location of the library remains

unchanged.)

Making the Library Smaller: The program moves the end

location of the object library to decrease the library size.

Tracks, therefore, become available following the library.

Reorganizing the Library: Any time the program changes

the library size, it also reorganizes the library and deletes

all temporary entries. (See Reorganizing an Object Library.)

A work area is needed if other functions are being perform-

ed with the reorganization. (See WORK Parameter.) \f not,

a work area is not used. (See Compress in Place under

Using the Allocate Function.)

Deleting an Object Library (OBJECT-O)

The program makes the disk area occupied by the object

library (and the scheduler work area if this was a system

simulation area) available for other use.

Reorganizing an Object Library (OBJECT-R)

Gaps can occur between object library entries when you

add and delete entries. By reorganizing the library, these

gaps are removed. When the library is reorganized, all

temporary entries are deleted. A work area is needed if

other functions are being performed with the reorgani-

zation. (See WORK Parameter.) \f not, a work area is not

used. (See Compress in Place under Using the Allocate

Function.)

Compress in Place oss CT - AR } |
number

If an object library is to be reorganized, or the size is to be

changed and this is the only function to be performed, the

object library is compressed in place. This means that the

library is reorganized with all gaps removed and all tem-

porary entries deleted without the use of a work area.

The WORK parameter is ignored if supplied.

If, however, a source library function is to be performed

or if the directory size (DIRSIZE parameter) or the sim-

ulation area type (SYSTEM parameter) is to be changed

in conjunction with an object library function, a work

area will be used. (See WORK Parameter.)

Library Maintenance Program-—$MAINT 125

COPY FUNCTION

Uses

Reader-to-Library Add or replace a library entry. The reader is the system input device.

File-to-Library Add or replace one or more library entries. A disk file is the input.

Library-to-File Copy one or more library entries to a disk file.

Copy one library entry (or those entries with the same name from all libraries).

Copy library entries that have names beginning with certain characters.

Library-to-Library

Copy ail library entries.

Copy minimum system.

Print one library entry (or those entries with the same name from all libraries).

Print library entries that have names beginning with certain characters.

Print all library entries of a certain type.

Library-to-Printer

Print directory entries for library entries of a certain type.

Print entries from all directories including system directory.

Print system directory only.

Punch one library entry (or those entries with the same namie from all libraries).

Library-to-Card Punch library entries that have names beginning with certain characters.

Punch all library entries of a certain type.

Print and punch one library entry (or those entires with the same name from all libraries).

Library-to-Printer

and-Card

Print and punch library entries that have names beginning with certain characters.

Print and punch all temporary or permanent library entries of a certain type.

126

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

Control Statement Summary

Reader-To-Library

Add or Replace a Library Entry:

//COPY FROM-READER,LIBRARY- ,NAME-name,TO-code,RETAIN-

z
D
a
o
n
v
.
M
m
M

a

V
I
A

Library Entry

// CEND Must always follow the source or object entry being placed into the source or object library.

/* or /& statements cannot be present in the entries being copied into the libraries.

File-To-Library

Add or Replace One or More Library Entries:

R
// COPY FROM-DISK,FILE-filename,RECL- \o6 | TO.code RETAIN: |p }

Example of Data in Disk File:

// COPY FROM-READER LIBRARY-O,RETAIN-P,NAME-DECK01©

load module

// CEND

// COPY LIBRARY-S,NAME-DECK02)

source module

// CEND

// END®

©) onty the LIBRARY and NAME parameters are required. Other parameters are ignored.

@)The // END statement read from the file is optional, It causes the next statement to be read from the system input device or procedure.

A // END statement must still be read from the system input device or procedure to indicate the end of the library maintenance control

statements,

Library Maintenance Program—$MAINT 127

Library-To-File

Copy One or More Library Entries to a File:

80
// COPY FROM-code,T0-DISK,FILE-filename,RECL-} \

Control Statements Following // COPY:

S

P name

// ENTRY LIBRARY-< O /NAME-< characters. ALL Oo)

R ALL

ALL

// NEND (Required to terminate the copy to file.)

GQ) any number of // ENTRY statements may precede the // NEND statement.

128

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

Library-To-Library

Copy One Library Entry (or Entries with the Same Name from All Libraries):

S
P T

// COPY FROM-code,LIBRARY-< O ,NAME-name,TO-code,RETAIN- P NEWNAME-name®

R R

A LL

Copy Library Entries that Have Names Beginning with Certain Characters:

.NEWNAME-characters ®

yn

U
|
4

S
P

// COPY FROM-code,LIBRARY-< O ,NAME-characters.ALL ,TO-code,RETAIN-

R

A

Copy All Library Entries:

// COPY FROM-code,LIBRARY- WNAME-ALL,TO-code,RETAIN-

r
m
o
V
T
M
!
M

xy

V
I
S

LL

Copy Minimum System:

// COPY FROM-code,LIBRARY-O,NAM E-SYSTEM,TO-code@)

@) NEWNAME parameter is needed in any of the following cases:

e@ Ifyou want the copy to have a different name than the original entry.

e@ If you want to replace an entry on the TO unit with an entry from the FROM unit, but the entries have different names.

e If you want the names of the copies to begin with different characters than the names of the original entries. The same number of

characters must be in the NEWNAME parameter as in the NAME parameter.

® (f the FROM and TO units are the same.

Note: NEWNAME cannot be DIR,ALL, or SYSTEM.

@ From and TO parameters cannot be the same unit.

Library Maintenance Program—$MAINT 129

Library-To-Printer-and/or-Card

Print and/or Punch One Library Entry (or Entries with the Same Name from All Libraries):

S

P PUNCH
// COPY FROM-code,LIBRARY-< O /NAME-name,TO-< PRINT

R PRTPCH

ALL

Print and/or Punch Temporary and Permanent Library Entries that Have Names Beginning with Certain Characters:

S

P PUNCH
// COPY FROM-code,LIBRARY-< O *NAME-characters.ALL,TO-< PRINT

R PRTPCH
ALL

Print and/or Punch All Temporary and Permanent Library Entries of a Certain Type:

PUNCH
“NAME-ALL,TO-< PRINT

.PRTPCH

// COPY FROM-code,LIBRARY-

z
m
D
o
n
v
n

Print Directory Entries for Library Entries of a Certain Type:

// COPY FROM-code,LIBRARY- “/NAME-DIR,TO-PRINT

P
p
O
U
N
M

Print Entries from All Directories Including System Directory:

// COPY FROM-code,LIBRARY-ALL,NAM E-DIR,TO-PRINT

Print System Directory Entries Only:

// COPY FROM-code,LIBRARY-SYSTEM,NAME-DIR,TO-PRINT

Print Directory Entries, Omitting Selected Entries:

// COPY FROM-code,LIBRARY- name \ “NAME-DIR,TO-PRINT,OMIT- \cherecters-AL L

r
P
m
o
O
V
T
M
N

130 LL

Parameter Summary

FROM-READER

FROM-code

FROM-DISK

FILE-filename

LIBRARY-

z
a
o
n
v
.
M
m
N
n

LIBRARY-ALL

LIBRARY-SYSTEM

name

NAME- ¢ characters. ALL

{ALL

NAME-SYSTEM

Entry to be placed in library is to be read from system input device.

Location of simulation area containing library entries being copied, printed, or
punched. Possible codes are R1, F1, R2, and F2.

The entry or entries to be placed into a library or libraries reside in a disk file.
The disk file must be described by an OCL FILE statement.

For a file-to-library or library-to-file copy, this parameter is needed to identify
the file on disk. The filename must match the filename on the OCL FILE
statement.

For a file-to-library or library-to-file copy, this parameter gives the size of the
disk records. Only 80- or 96-column card image records are allowed. If this
parameter is omitted, 96 is assumed.

Type of library entries involved in copy use. Possible codes are:

Code Meaning

S Source statements (source library)

P OCL procedures (source library)

O Object programs (object library)

R Routines (object library)

All types of entries (S, P, O, and R) from both libraries are involved in copy use.

Only system directory entries are being printed.

Specific library entries on the FROM unit, of the type indicated in LIBRARY
parameter, involved in copy use. Possible information is:

Information Meaning

name Name of the library entry involved.

characters.ALL Only those entries beginning with the indicated char-

acters. For example, $MA.ALL means the library

maintenance program ($MAINT).

ALL All entries. (The type indicated in LIBRARY parameter).

System programs that make up the minimum system and IPL information con-
tained on cylinder 0 are copied. The minimum system is made up of system pro-
grams necessary to load and run programs. System programs necessary to gen-
erate and maintain the system such as utilities are not included in the minimum
system.

Library Maintenance Program—SMAINT 131

NAME-DIR

RETAIN-

x27

V
I
S

TO-code

TO-PRINT

TO-PUNCH

TO-PRTPCH

TO-DISK

NEWNAME-name

NEWNAME-characters

OMIT-name

OMIT-characters. ALL

132

Directory entries for all library entries of the type indicated in the LIBRARY

parameter are involved in the copy use. Ii the LIBRARY parameter is

LIBRARY-ALL, system directory entries are also printed.

Adding Entry to Library. RETAIN gives designation of the TO entry:

Code Meaning

T Temporary

Por R Permanent

Replacing Existing Library Entry. RETAIN gives designation of the TO entry

and tells program whether to halt before replacing entry:

Code Meaning

T Temporary designation. Halt before replacing entry.

P Permanent designation. Halt before replacing entry.

R Permanent designation. Do not halt before replacing

entry.

Printing or Punching Entries. Tne RETAIN parameter is ignored.

Location of simulation area that is to contain the copies of the entries.

Possible codes are R1, F1, R2, and F2.

Entries are printed.

Entries are punched.

Entries are printed and punched.

The entry or entries are to be copied to a disk file. The disk file must be

described by an OCL FILE statement.

Name you want used on the TO unit to identify the entries put on that

simulation area. If you omit this parameter, the program uses the NAME para-

meter in naming the entries.

Beginning characters you want to use in names identifying entries being put

on the TO unit. You must use the same number of characters as in the NAME

parameter (NAME-characters.ALL). If you omit this parameter, the program

uses the NAME parameter in naming the entries.

When printing directory entries, omit the entry specified by name.

When printing directory entries, omit all entries with these beginning

characters.

Library Directories

Source and Object Library Directories

@ The source and object libraries have separate library di-

rectories, Every library entry has a corresponding entry

in its library directory. The directory entry contains

such information as the name and location of the |i-

brary entry (see Figures 53 through 55).

@ The library maintenance program makes entries in the

directories when it puts entries in the libraries.

System Directory

® Every simulation area that contains libraries contains a

system directory. The system directory contains infor-

mation about the sizes of and available space in libraries

and their directories (see Figures 53 through 55).

@ The library maintenance program creates and maintains

the system directory.

Naming Library Entries

Characters to Use

Use any combination of System/3 characters except blanks,

commas, quotes, and periods. (Appendix A lists the char-

acters.) The names of most IBM programs begin with a dol-

lar sign ($). Therefore, to avoid possible duplication, do not

use a dollar sign as the first character in the names you use

for your entries. The first character must be alphabetic.

Length of Name

The name can be from 1 to 6 characters long.

Restricted Names

Do not use the names ALL,DIR, and SYSTEM. They have

special meanings in the NAME parameter.

Entries with the Same Name

For each of the two physical libraries, source and object,

there are two types of entries. The source library has type

P and type S entries. The object library has type O and type

R entries. Entries of the same type cannot have the same

name, but entries of different types may. For example, two

procedures in a source library cannot have the same name,

but a procedure and a set of source statements can.

Retain Types

Temporary Entries

@ Temporary entries are entries you do not intend to keep

in your libraries. They are normally used only once or a

few times over a short period.

@ In the object library, temporary entries are placed to-

gether following the permanent entries. Any time a

permanent entry is added to the library, all temporary

entries are deleted. Temporary entries are also deleted

when you replace one permanent entry with another.

@ Inthe source library, temporary and permanent entries

can be in any order. One entry is placed after another

regardless of their designations. Temporary entries, there-

fore, are not automatically deleted every time you add a

permanent entry. However, when the source library is

reallocated or reorganized, only permanent entries

remain.

@ You can use temporary entries as often as you like until

they are deleted.

@ A temporary entry cannot replace a permanent entry.

Permanent Entries

@ Permanent entries are entries you intend to keep in your

libraries. They are normally entries you use often or at

regular intervals (once a week, once a month, and so on).

@ The program does not delete permanent entries unless

you use the delete function of library maintenance to

delete them, or the allocate function to delete the entire

library.

Library Maintanance Program—$MAINT 133

Using the Copy Function

Reader-to-Library

Input: The program reads one library entry. It can be any

one of the following types:

Source statements

Procedure

Object program

Routine

The entry is read from the system input device.

The header card on an object deck (H in column 1) con-

tains the date the deck was punched. This date is in col-

umns 58-63 and is in the format of the system date, either

mmddyy or ddmmyy.

Output:

e@ Duplicate characters are removed from source state-

ments and procedures before they are put in the source

library. The program does not check them for errors.

® Object programs and routines are placed in the object

library after sequence and checksum information is

removed.

Adding Entires: The program can add a new entry to a

library. The name of the entry is taken from the NAME

parameter. See Naming Library Entries for valid names.

The RETAIN parameter specifies whether the entry will

be temporary or permanent. If the RETAIN parameter is

omitted, RETAIN-T is assumed (See Retain Types.)

134

Replacing Existing Entries:

@ The program can replace an existing library entry with

the entry you are putting in the library. The RETAIN

paramater specifies the new retain type. If the RETAIN

parameter is omitted, RETAIN-T is assumed. A tempo-

rary entry cannct replace a permanent entry.

@ The program can halt before replacing an existing entry.

Whether it does depends on the RETAIN parameter you

use (See RETAIN Parameter.)

® Before the new entry is added, the duplicate entry is

deleted. Additional library space is not needed unless

the new entry is larger than the old one.

File-to-Library

Input: The disk file can contain one or more library

entries. The entries must be in the format put out by the

library-to-card function or by the linkage editor. The

// COPY statement at the beginning of each entry con-

tains the name of the entry and the type of library (S, P,

O, R). A// CEND statement must follow each entry in

the file.

The disk file must be a sequential file and be defined by

a FILE statement in the OCL for the library maintenance

program. Multivolume files are not supported.

Output: The output from the file-to-library function is the

same as for the reader-to-library function except that tem-

porary entries are not allowed.

Library-to-File

Input: The program can copy one or more library entries

from a library to a disk file. The types of entries can be:

Source statements

Procedures

Object programs

Routines

All of the preceding types

The NAME and LIBRARY parameters on the // ENTRY

statements specify which entries to copy. A single library-

to-file function must be the only valid function performed

within a LOAD-RUN of the library maintenance program.

Output: The output from the library-to-file function has

the same format as for the library-to-card function. The

output is written to a sequential disk file defined by an

OCL FILE statement and created by the library mainte-

nance program. Multivolume files are not supported.

Library-to-Library

Input: The program can copy one or more library entries

from one simulation area to another. The types of entries

can be:

Source statements

Procedures

Object programs

Routines

All of the preceding types

Minimum system

The NAME and LIBRARY parameters specify which

entries to copy.

Output:

@ The entries, regardless of their type, are copied from one

simulation area to the other without change.

® The NEWNAME parameter is used to copy and rename

entries on the same simulation area. (See VEWNAME

Parameter and Naming Library Entries.)

@ The RETAIN parameter specifies whether the entries

are to be temporary or permanent. If the RETAIN

parameter is omitted, RETAIN-T is assumed. When the

parameters LIBRARY-ALL and NAME-ALL or

LIBRARY-O and NAME-SYSTEM are used,’RETAIN-P

is assumed and RETAIN.-T is invalid.

@ Copying a minimum system (LIBRARY-O, NAME-

SYSTEM) or copying all of the types (LIBRARY-ALL,

NAME-ALL) are the functions used to create a system

simulation area that can be used to perform initial

program load. (Copying LIBRARY-ALL, NAME-ALL

creates a system simulation area only if the FROM area

is a system simulation area.) Because of this use, the

object library on the simulation area you specify in the

TO parameter must be empty. (It cannot contain any

entries or deleted entries.) Also the object library on the

TO area must have been allocated with a scheduler work

area and a rollout/rollin area at least as large as those on

the FROM simulation area.

Adding Entries:

@ You can omit the NEWNAME parameter. If you do, the

name used for the copy is taken from the NAME para-

meter. (The copy has the same name as the original

entry.)

@ If NAME-ALL is specified, the names by which the

entries are identified on the FROM simulation area are

also used on the TO simulation area to identify the

entries.

Library Maintenance Program—$MAINT 135

Replacing Existing Entries:

@ The program can replace existing entries with the

entries you are putting in the library. If the entry you

are copying (the entry in the simulation area you identi-

fy in the FROM parameter) has the same name as the

entry you are replacing (the entry in the simulation area

you identify in the TO parameter), you must omit the

NEWNAME parameter because the NEWNAME para-

meter cannot be the same as the NAME parameter. If

the names are not the same, you must use the

NEWNAME parameter to give the name of the entry

being replaced.

@ The program can halt before replacing an existing entry.

Whether it does depends on the RETAIN parameter.

(See RETAIN Parameter.)

@ Atemporary entry cannot replace a permanent entry.

Library-to-Print and/or Card

Types of Entries that Can be Printed or Punched:

@ The program can print or punch one or more fibrary

entries. They can be any one of the following types:

Source statments

Procedures

Object programs

Routines

All of the preceding types (limited to entries having

the same name or entries beginning with the same

characters)

@ The program can print (but not punch) the following

types of directory entries:

Source statements

Procedures

Object programs

Routines

System directory

All of the preceding types

136

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

The program sorts directory names before printing them

only if there is available work space on the FROM simu-

lation area. This causes an allocation of disk space. (See

Allocation of Disk Space under Using the Allocate

Function.)

Printed or Punched Library Entires:

@ Duplicate characters are reinserted into source state-

ments and procedures to make them readable.

@ Object programs and routines are printed and punched

after sequence information and checksum information

(punch only) has been added.

@ The library entries when punched, are preceded by a

// COPY statement of the reader-to-library format

and followed by a // CEND statement.

Printout of Directory Entries

@ The format of the source library directory printout is

described in Figure 53. If there is no source library in

the simulation area, the message NO SOURCE LIBRARY

EXISTS is printed. If a source library exists but is empty,

the NO SOURCE DIR ENTRIES EXIST message is

printed.

@ The format of the object library directory printout Is

described in Figure 54. If there is no object library in

the simulation area, the message NO OBJECT LIBRARY

EXISTS is printed. If an object library exists but is empty,

the NO OBJECT DIR ENTRIES EXIST message is

printed.

@ Asample system directory printout is described in

Figure 55. If there is no source library in the simulation

area, the message NO SOURCE LIBRARY EXISTS

ON THIS PACK is printed. If there is no object library

in the simulation area, the message NO OBJECT

LIBRARY EXISTS ON THIS PACK is printed.

SOURCE DIRECTORY FROM XX VOL. ID XXXXXX MM/DD/YY

ADDRESS

TYPE NAME FIRST@ LAST@ ATTRI #SECTORS

X XMXXXXX XXX-XX XXX-XX X XXXX

Explanation:

Heading Meaning

TYPE S = source statements

P = procedure

ATTRI T = temporary

P = permanent
NAME Name of library entry (up to 6 characters)

ADDRESS Addresses of first and last sectors that contain the library entry.

(FIRST and LAST) Addresses are expressed by track and sector numbers.

Example: 008-03 means track 8, sector 3.

#SECTORS Total number of sectors for the library entry.

Figure 53. Source Library Directory Printout

Library Maintenance Program—$MAINT 137

OBJECT DIRECTORY FROM XX VOL. ID XXXXX MM/DD/YY

DSK CYL/ TXT- LINK RLD ENTRY CORE TOT

TYPE NAME ADD SEC CAT ADDR DISP PNT SEC ATTR LEVEL SEC

X X XXXXXX TTT/SS CC/SS XXX XXXX XX XXKXK RKXK XXXKX XXX XXXX

Explanation:

Heading Meaning

TYPE The first character printed indicates the attributes of the entry as follows:

P = permanent

T = temporary

The second character printed indicates the type of module the entry is. Its

meaning is as follows:

O = Object program

R = routine

NAME Name of library entry (up to 6 characters)

DSK ADD Address where library entry begins on disk. Example: 015/10 means track 15,

sector 10 (in decimal). T = track, S = sector.

CYL/SEC Address where library entry begins on disk (in hexadecimal). C = cylinder,

S = sector.

TXT-CAT For object programs, this number indicates the number of sectors used for the

text portion of the library entry. Object programs consist of two parts: text

and RLD. Text is the program; RLD is information used in loading the program

for execution.

For routines, this number is the category of the routine. This number is used

by the overlay linkage editor for determining overlays.

LINK ADDR Object programs only. Assigned core hexadecimal address of this library entry.

RLD DISP Object programs only. It indicates the hexadecimal position in which RLD in-

formation begins in the last text sector. If the last text sector contains no RLD

information, the RLD displacement is 0, indicating the information starts in the

next sector.

ENTRY PNT Object programs only. Main storage address (hexadecimal) where program

execution begins before relocations.

CORE SEC Core size, given in sectors, required to run the program.

Figure 54. (Part 1 of 2). Object Library Directory Printout

138

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

Heading Meaning

ATTR Byte 1:

Bit O=1 Permanent entry.

O Temporary entry.

Bit 1=1 Inquiry. This program requires that the Request key be pressed to

start processing.

Bit 2=1 Inquiry invoking. This program runs in program level 1 and can be

rolled out to allow an Inquiry program to run,

Bit 3=1 Dedicated. Ina DPF system, this program must run with the other

program level inactive.

Bit 4=1 Source required. This program requires the allocation of the $WORK

and $SOURCE files. $SOURCE must be filled either from the

system input device or a source library.

Bit 5=1 Deferred mount. This program accepts mounting of data modules

during its execution.

Bit 6=1 PTF applied. A program temporary fix (PTF) has been applied to

this program.

Bit 7=1 Overlay object program.

Byte 2:

Bit O=1 System input dedication. The system input device must be dedicat-

ed to this program. The device may be released when no longer

needed.

Bit 1=1 Checkpoint/restart program.

Bit 2=1 Direct source read. This program can have a // COMPILE statement

and a no source required attribute (byte 1, bit 4=0). The program

accesses the source library itself.

Bit 3=1 Macro processor allowed. This program can be preceded by the

macro processor. If the source required attribute is present and a

// SWITCH 1XXXXXXxX statement was processed, the $$SOURCE

file is opened as input instead of output.

Bit 4 Reserved.

Bit 5=1 Program common. This program requires that a new load address be

calculated at load time to place it in main storage beyond its own

program common region.

Bit G=1 Model 12 compile.

Bit 7 Reserved.

LEVEL Release level of system programs. For user programs this can be assigned by the

overlay linkage editor.

TOT SEC Total number of disk sectors occupied by the library entry.

Figure 54, (Part 2 of 2). Object Library Directory Printout

Library Maintenance Program-—$MAINT 139

RLRIR1 03/04/76 SYSTEM DIRECTORY FROM R1 VCLUME ID

SOURCE LIBRARY SECTION

Q
n

O
A
N
A

P
P
i
n
a
m
n
n
o
a

O
n
m
~

m
m
M
m
a
o
r
m
s

O
O
M

we)
C
O
O

Mm
Ww

re
eX

Co
V
E

W
e
r

WW
O
u
.

ot
M
h

Cc
W

kr
U
4

LU
>

UO
e
x
y
u
v
i
e

fm
med

OF
OF

OS
PR

ENS
0

<
T
l
L
U
O

p
e
e

W
i
t

x
O
A

<
<

Oo
I
o

tant bot
bet
L
L

LL.
be

CO
a
a
d

w
0
O
O
o
c

o
w

>
-~

L
u
t

lb
or

ot
or

ot
<o

O

C
W
w
w
w
o

C
e

C
m
a
n
c

D
M
O
A
D
S
S
S
E

D
W
S
m
D
D
T
H

Sra
Lid

a

e
T

OBJECT LIBRARY SECTINN

a
m
a
n

D
e
a
t
h
 eo

O
a
n
a

O
n
t
e
i
A
i

O
l
e

P
R
O
!

|
|

e
c
e
m
a
c
o

D
e
t
e
t
<
O

F
O
S

A
A
C
O
M
,
I
N
O

L
A
U
R

LA
S
I
A

L
A
O

C
A
A

A
U

t
O

O
m
e

O
O
H

et
LA

LD
e
t
t

052-00

2
A

W
g

O
r

h
a
e

a

a
A

f
e
e
 ¢

e
e

eet
,

Ol
ox

x
e
e
e
c
o

7

w
i
e

O
O
O

r
e
M
a
w

C
O
P
F
R
U
M
L
U
O
r
L
S

M
O

C
A
L

o
S

<f
fem

D
e
b

LL
o
O

b
e

2
~
“
~
2
e
r
0
c

O
a

>

CLE
TLL

tt
fore

face
See

Soe
LL

te
LL

aad
2
e

O
A
O
O
Y
r
w
U
A

P
O
;

I
C
>

W
u
i
N
e
t
<

cg
>

T
e
e

E
O
N
S

>

f
u
e

a
)

Y
e

o
S

O
o

o
t

ot
ke

fre
L
t

RT
Cae

LL
LTS

fee
oT

ee
See

beet
beet

eT
CD

e
t
y
”

“
Y
e

C
D
T
O
R
r
O
C
Y
Y
U
U
I
Y
W
e
E

O
e

c
o
x

W
O

<a
<f

a
D

C
O
S

we
M
W
W
v
A

y
e
w

O
o
U

LL
we

T
O
O

CO
LJ

et
=

2
OD

u.
~
O
R
W

Kft
P
o
u
t

t
w
w
W
o

YY
C
O
W

I
L

a

>

>
O
w

<
r

m
t

met
OS

LL
LL

LIL
met

bred
beneet

pemnat
rman

LJ

R
N

S
t
e
t

d
o
e

Re
R
a

Q
a

Q
R
Z
O
>
r
>
>

Y
O
N
M
M
>

P
O
W

W
e
s

M
d

SL
OO.

weed
ad

col
L
L

e
t

L
L
L

L
L
L

P
e

a
e

O
O
O

O
w

re
M
L
L

>

>
>

e
e
t

S
O
Y

a
a
a
n
t
e
r
e
a
d

U
U

R
O
S
W
W
E

W
L

L
c

W
O
C
O
K
W
R
M
N
e
R
e
e

O
M
I
M

M
O

A
t

J
e

E
E
X

M
E
S
S
E

E
Y

O
w

be
IOS

D
e

LU
LULU
D
D
D

O
t
N
d
M
w
W
w
S
e
l
u
w
e

e
e
e

S
e

S
e
z

Q

o
 i
N

O
e
m

a
t

Q

038-00

Figure 55. (Part 1 of 2}. System Directory Printout

140

Using the System Directory to Determine if the Object Library Should Be Reorganized

Number of available directory entries.

Next available directory entry.

Next available library sector.

Number of available library sectors.

zation of Library Entries.)

1. Determine the object library

size in sectors

2. Determine the number of perm-

anent object library sectors

3. Determine the number of contig-

uous sectors that will be available

at the end of the library if the

library is reorganized to remove

all gaps and temporary library

entries

4. Compare the number of available

sectors calculated to the number

of available library sectors for

permanents

The following are not updated when an object library entry is deleted:

Allocated size of library

Allocated size of directory

Object library size (tracks)

Object library size (sectors)

Number of active object

permanent library sectors

Number of active routine

permanent library sectors

Number of permanent

object library sectors

Object library size (sectors)

from step 1

Number of permanent

object library sectors from

step 2

Number of available sectors

Number of available sectors

from step 3

Number of available library

sectors for permanents

Difference in sectors

These reflect only contiguous space that can be used, therefore, gaps are not included. (See Object Library under Organi-

To calculate the total number of sectors that could be made available for permanent entries if the object library is
reorganized, perform the following procedure. Take values from Figure 55 (Part 1 of 2).

7128

5598

—5458

140

This difference (140) represents the amount of contiguous space that can be gained by reorganizing the object library.

Figure 55. (Part 2 of 2). System Directory Printout

Library Maintenance Program—-$MAINT

141

DELETE FUNCTION

Uses

Delete a temporary of permanent entry from a library (or

entries with the same name from all libraries).

Delete temporary or permanent library entries that have

names beginning with certain characters.

Delete all temporary or permanent library entries of a

certain type.

Considerations and Restrictions

System modules cannot be deleted from the active

system simulation area (the simulation area the system

was loaded from at IPL time).

Library maintenance program modules cannot be de-

leted from the active program simulation area.

When all temporary entries are deleted from the object

library using LIBRARY-O,NAME-ALL,RETAIN-T, the

temporary routines (LIBRARY-R) are also deleted.

The RETAIN parameter must match the attribute of the

entry in the library. Otherwise, the entry is considered

not found. RETAIN-T is assumed if the RETAIN para-

meter is omitted.

142

Control Statement Summary

Delete a Temporary or Permanent Library Entry (or Entries with the Same Name from All Libraries)

S

P T
// DELETE FROM-code,LIBRARY-< O INAME-name,RETAIN-4 \

R

ALL

Delete Temporary or Permanent Entries with Names Beginning with Certain Characters

S

P T
// DELETE FROM-code,LIBRARY-< O NAME-characters ALL,RETAIN-J 5 t

R

ALL

Delete Ali Temporary or Permanent Entries of a Certain Type

// DELETE FROM-code,LIBRARY- NAM E-ALL,RETAIN-{5 |

v,
ao

Oo
O7

uT
7T

.%

ae
s

Library Maintenance Program—$MAINT 143

Parameter Summary

R1

F1 . . . ar . .
FROM- R2 Location of simulation area that contains library entries you are deleting. Pos-

E92 sible codes are R1, F1, R2, and F2.

+S)
P

LIBRARY-<O Type of entries being deleted. Possible codes are:

R

ALL Code Meaning

S Source statements (source library)

P Procedures (source library)

O Object programs (object library)

R Routines (object library)

ALL All types of entries (S, P, O, and R) are being deleted

name

NAME-< characters. ALL Particular entries, of type indicated in LIBRARY parameter, being deleted.

ALL These entries are further identified by the RETAIN parameter. Possible codes

are:

Code Meaning

name Name of the library entry, or entries, being deleted.

characters. ALL Entries that have names beginning with the indicated

characters. You can use up to 5 characters.

Example: NAME-INV.ALL refers to the entries having

names that begin with INV.

ALL All entries (of the type indicated in LIBRARY para-

meter). NAME-ALL cannot be used with LIBRARY-

ALL.

RETAIN-45 | Designation of entries being deleted:

Code Meaning

T Temporary

P Permanent

144

MODIFY FUNCTION

Uses

Maintain source statements and procedures by using a

card reader.

Reserialize a source library entry.

List the statements in a source library entry.

Remove statements from a source library entry.

Replace source library statements.

Insert statements into a source library entry.

Considerations and Restrictions

Sequence numbers are a physical part of the source re-

cord and must be placed where they cannot conflict

with other data in the record. In a procedure they should

be placed near the end of the record beyond the OCL

and utility control statements’ keywords and para-

meters. The sequence numbers should be placed in

source statements where they do not overlay data. For

example, data could be destroyed if sequence numbers

were placed in RPG II source statements that contain-

ed compile-time tables.

At least three control statements must be entered to

modify the source library. A // MODIFY statement

is needed to describe the library entry. A // REMOVE,

// REPLACE, or // INSERT statement describes the

type of modification. A // CEND statement indicates

the end of the modify control statements.

The simulation area specified by the WORK parameter

on the // MODIFY statement must contain a work area

large enough to hold the modified source library entry.

The sequence numbers specified by the FROM-seqno,

TO-seqno, and AFTER-seqno parameters on the

// REMOVE, // REPLACE, and // INSERT statements

must be valid numbers and exist in the source library

entry. There are no default values for these parameters.

The number of digits entered must be the same as the

number of positions specified by the SEQFLD para-

meter.

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

@ All statements in a source library entry must have ascend-

ing sequence numbers in the positions specified by the

SEQFLD parameter.

Multiple operations (REMOVE, REPLACE, INSERT)

may be performed within the same MODIFY run if they

are done in an ascending sequential order. That is, the

FROM sequence number ina REMOVE or REPLACE

statement must be greater than the last sequence num-

ber in the preceding statement. The AFTER sequence

number of an INSERT statement must be equal to or

greater than the last sequence number of the preceding

statement. Consecutive INSERT statements must not

have the same sequence number.

When modification is complete, the directory entry is

written back with a permanent attribute.

The control statements following the // MODIFY

statement are read from the system input device.

Since the REMOVE control statement is valid for both

the $DELET system utility and S$MAINT system utility,

care should be used when modifying a $DELET proce-

dure. The program attempts to determine whether the

REMOVE statement is data or a control statement. If

a determination cannot be made, the program halts

and waits for further instructions.

If LIST-YES is specified and a printer error (causing a

halt) occurs during the listing of the source library

entry, responding to the halt with a 2-option causes the

listing to stop. The moditied entry is then placed back

in the library before the function is terminated with a

controlled cancel.

Library Maintenance Program—$MAINT 145

Control Statement Summary

(nitiate Modification

YES
// MODIFY NAME-name,FROM-code,LIBRARY-3°¢ woRK-code,RESER-2NO $ List-J YES)

ep ONLY NO

SEQFLD-xxyy,INCR-number

Control Statements Following // MODIFY

Delete all statements between and including the FROM and TO sequence numbers.

// REMOVE FROM-seqno, TO-seqno

Replace all statements between and including the FROM and TO sequence numbers with the statements supplied:

// REPLACE FROM-segno, TO-seqno

1 -nstatements to replace those removed

/nsert the supplied statements after the statement indicated by the AFTER parameter:

// INSERT AFTER-seqno

1 -nstatements to be inserted

// CEND must follow the control statements to terminate the modify function.

146

Parameter Summary

NAME-name

FROM-code

Liarary.45|

WORK-code

(YES

RESER- NO

ONLY

YES
LIST 6 \

SEQFLD-xxyy

INCR-number

Name of the entry you are modifying. This is the name that identifies the entry

in the library directory.

Location of the simulation area that contains the entry you are modifying. Pos-

sible codes are R1, F1, R2, and F2.

Type of library entry you are modifying. Possible codes are:

Code Meaning

S Source statements (source library)

P Procedures (source library)

Location of the simulation area containing space the program can use as a work

area. Possible codes are R1, F1, R2, and F2.

Specifies whether reserialization should be done when the entry is placed back

in the source library. Possible information is:

Information Meaning

YES Reserialization is done.

NO | Reserialization is not done. NO is assumed if the RESER

parameter is omitted.

ONLY Reserialize only; no other maintenance is done. When

this is coded, no REMOVE, REPLACE, INSERT, or

CEND statements can be entered.

Specifies whether the source library entry should be listed as the modified entry

is placed back in the source library. NO is assumed if the LIST parameter is

omitted.

The starting and ending positions of the field that contains the sequence number.

The sequence number can be up to 8 digits long. The starting position is entered

first (xx) and then the ending position (yy). If this parameter is not entered,

9296 is assumed.

Increment value for sequence field if reserialization (RESER-YES or RESER-

ONLY) is specified. The value can be up to 5 digits. If this parameter is not

entered, a value of 10 is assumed.

Library Maintenance Program--SMAINT 147

Remove, Replace, Insert Parameters

FROM-seqno The sequence number of the

first statement to be used in the

operation.

TO-seqno The sequence number of the .

last statement to be used in the

operation.

AFTER-seqno The sequence number of the

statement after which the new

statements are to be added.

RENAME FUNCTION

Uses

@ Change the name of a library entry.

@ Change the name of library entries that have names

beginning with certain characters.

Control Statement Summary

// RENAME FROM-code,LIBRARY- INAME-name,NEWNAME-name

,
»
O
o
O
v
V
.
M
m

// RENAME FROM-code,LIBRARY- INAME-characters. ALL,NEWNAME-characters

w
z
w
a
o
u
v
.
m

Considerations and Restrictions

@ System modules should not be renamed on the active

system simulation area (the simulation area the system

was loaded from during IPL).

@ Library maintenance modules should not be renamed on

the active program simulation area.

148

Parameter Summary

FROM-code Location of the simulation area that contains the entry you are renaming. Pos-

sible codes are R1, F1, R2, and F2.

S
P

LIBRARY- O Type of library entry you are renaming. Possible codes are:

R .
Code Meaning

S Source statements (source library)

P Procedures (source library)

O Object programs (object library)

R Routines (object library)

NAME-name Current name of the entry you are renaming. This is the name that identifies

the entry in the library directory.

NAME-characters.ALL Only those entries beginning with the indicated characters. (You can use up to

5 characters.)

NEWNAME-name New name you want to give the entry. Follow these rules to construct the name:

@ You can use any System/3 characters except blanks, commas, quotes, and

periods. (Appendix A lists the characters.) However, the names of most IBM

programs begin with a dollar sign ($). Therefore, to avoid possible dupli-

cation, do not use a dollar sign as the first character in the names you use

for your entries. The first character must be alphabetic.

@ You can use up to 6 characters, but you cannot use the names ALL, DIR,

and SYSTEM. They have special meanings in the NAME parameter.

NEWNAME-characters Beginning characters you want to use in names identifying the copies. (You can

use up to 5 characters.)

OCL CONSIDERATIONS

The following OCL. statements are needed to load the

library maintenance program.

// LOAD $MAINT ,code

// RUN

The code you supply depends on the location of the simu-

lation area containing the library maintenance program.

The codes are R1, F1, R2, and F2.

If the copy file-to-library or library-to-file function is used

in this run of the $MAINT program, the necessary disk

FILE OCL statements must be supplied. They must follow

the LOAD statement and precede the RUN statement.

Library Maintenance Program—$MAINT 149

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

EXAMPLES

Figures 56 through 73 illustrate the functions of the library

maintenance program. Figure 56 is an example of the OCL

needed to load the utility program. The other figures are

examples of the control statement necessary to carry out

the specified function.

1 4 8 12 16 20 24 28 32 36
/
(\f \LIOAD ISIMAlt M7}, |A4
/{/| RUIN

Explanation:

Library maintenance program is loaded from the simu-

lation area F1 on drive 1.

Figure 56, OCL Load Sequence for Library Maintenance

1 4 8 12 16 20 24 28 32 36 40 44 48 2 56 60 64 68 72 76
Af |AUcioclalne T|O\-|R\41 15 URCIE!~|712) OBJECT 45], ISYISITIE -lYIEIS
/\/|_\EMD

Explanation:

@ Libraries are being created in the simulation area R1 on drive 1 (TO-R1 in ALLOCATE statement).

@ Source library space is 12 tracks (GSOURCE-12).

@ Object library space is 45 tracks (OBJECT-45). The object library will contain system programs (SYSTEM-YES). Thus,
the disk area also includes space for the scheduler work area.

@ Directory size will be 3 tracks.

Figure 57, Allocate Example. Creating Both Source and Object Libraries on a Disk

150

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

{| lalelcloclariel Irldl-let |, Islolulelclel-[2s1 WolelKl-1A 2 +L
AA IEIMD

Explanation:

@ Source library is located in the simulation area R1 on drive 1 (TO-R1 in ALLOCATE statement).

@ Size of the source library is being changed to 15 tracks (SOURCE-15).

@ Any time the program changes the size of a library, it reorganizes the library. To do this, it needs a work area. This area is
on the simulation area F1 on drive 1 (WORK-F1).

Figure 58. Allocate Example: Changing the Size of a Source Library

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
/\/| JAILILIOCIATIE TIO -IR\4| JOB VTIECITI-

A IEIMD
fo

Explanation:

® Object library is located in the simulation area R1 on drive 1 (TO-R1 in ALLOCATE statement).

@ OBJECT-O parameter tells the program to delete the object library. If a scheduler work area precedes the object library,
it is also deleted.

Figure 59. Allocate Example: Deleting the Object Library from a Disk

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

A/} ICOPY! IFIRIOM- (Fit! |LV/IBIRARY-IO NAME. |S\VisiTiEW ITiol- led
/\/| |EIMD a

Explanation:

® System programs are in the object library in the simulation area F1 on drive 1 (LIBRARY-O and FROM-F1 in COPY
statement).

@ The NAME parameter (NAME-SYSTEM) tells the program to copy the system programs.

@ The disk that is to contain the copy is the simulation area R1 on drive 1 (TO-R1).

Figure 60. Copy Example: Copying Minimum System from One Disk to Another

Library Maintenance Program—$MAINT 151

Page of GC21-5130-0

{ssued 19 November 1976

By TNL: GN21-5413

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Ni ICOAY| |AROM-IRi4| [LBIRAIRY|-lAILZ| IMAMEL-IDIIIRL ITIO-IPIRI/INIT| JOM! 7-19) «ILI
/H |EMD

Explanation:

@ All library directories and the system directory in simulation area R1 on drive 1 are printed (COPY statement):

FROM identifies the disk containing the directories.

LIBRARY indicates which directories are to be printed.

NAME and TO indicate that the program is to print directories.

OMIT indicates that all entries beginning with a $ are not printed.

Figure 61. Copy Example: Printing Library Directories

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

/|/| \clony [riko ie\4} |e eRaleiy|-lol, WiAMel-lalciciri ,I7I0}-|F|41, [REITIA\/IA-
/ULIEIND

Explanation:

@ LIBRARY-O, NAME-ACCT, and FROM-R1 in the COPY statement tell the prograrn to read the object program named

ACCT from the simulation area R1 on drive 1.

@ TO-F1 tells the program to copy the object program to the simulation area F1 on drive 1. There is no NEWNAME

parameter in the COPY statement. Therefore, the name the program uses in the simulation area F1 is ACCT (NAME-

ACCT). Since the old version of the program already exists in the simulation area F'1 under that name, the old version is

replaced.

@ The library maintenance program normally halts before replacing a library entry. The RETAIN-R parameter, however,

tells the program to omit that halt.

Figure 62. Copy Example: Copying Object Program to F1

152

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

[| \G0 RIOM-IRIEIAIDIER! ITIO|-\F | 2), |LI/|5 AIRIY| -|P| |MIAIME}-ICIOPIY| Fi 7

Li/| ILIAD Igiclarly| , |i
LIL IRIUN L a
/\L_ICIOPIVIPIAICIK| IFIRO “IF|4| ,I7|O-\R\

[/_IEINID

[I IC\EIND 7
AL \EIND

|

Explanation:

@ FROM-READER tells the library maintenance program to read the statements from the system input device.

@ To procedure (LIBRARY-P) is written to the source library on F1 (TO-F1), named COPYF1 (NAME-COPYF 1), and

given the default attribute of temporary.

@ All statements following the // COPY statement are entered into the library until the // CEND statement is read to ter-

minate the COPY.

e@ // END following the // CEND statement is optional here. If used it terminates the library maintenance program. If it is

not used, more control statements may be entered following the // CEND statement.

Figure 63. Copy Example: Copying Procedure from System Input Device

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

/|/| DIEWEITIE| \FiRIOM-IRi4\ L/L RIY-(S| IAlMel- lala 444
I IEW

Explanation:

The program deletes a set of source statements (LIBRARY-S in DELETE statement) named PAYROL (NAME-PAY ROL)

from the simulation area R1 on drive 1 (FROM-R1) that has a temporary attribute.

Figure 64, Delete Example: Deleting an Entry from a Library

Library Maintenance Program—$MAINT 153

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

1 4 3 12 16 20 24 28 32 36 40 44 48 52 56

/\ \elolaloy [sale Mri, \Al2 Lt tt | | |
/\/| lelelele WWalmel-|Bisiclale|siclel, vias (7i-lri 41, |Palcl-Bisiclal, Iz\alelelc!- lpriogalal From System Input
/\/\ \RIUM ° f Device or Procedure

ALLICOIPRY FIROM-IDI'S1K| TIO, -\Fit) IRIEIIAWIM-|P)_|FI/ILIE|-IBSICIAIF| /| Lie

AA con LINBIRIARY-|P, IMAIME|-|PIAVIRIEIC

PIRIOCIE DIURIE

/\1| IClEINID

NU COPY IL) IBIRARY|-IO_|MAME-iPAVIREIC From Disk File
5

OBJIEICIT| IDEICIK

/|_CIEIND
nee, -

; rom System Input

AN END Device or Procedure

Explanation:

@ The OCL for a file-to-library copy must contain a FILE statement for the disk file.

@ The filename on the // COPY statement (FILE-BSCAFILE) matches the filename on the OCL FILE statement (NAME-

BSCAFILE). .

@ The // COPY statement does not contain a RECL parameter, so a record length of 96 is assumed.

@ All source and object decks in the disk file must have a // COPY statement as the first card image and a // CEND state-

ment as the last card image to indicate the end of the copy for each deck. These // statements (including the // END

statement) are logged with XX replacing the // to indicate they were read from disk rather than from the system input

device or a procedure.

Note: The // CEND statement is not printed.

@ The // END statement read from the file (printed XX END), causes the next statement to be read from the system input

device or procedure. A // END statement must still be read from the system input device or procedure to indicate the end

of the library maintenance control statements.

Note: The // END statement in the file is optional because the system recognizes the physical end of the data file and

terminates the copy.

Figure 65. Copy Example: Disk File to Library

154

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

[iL \LIOAD, IS WAAL liN7| 1FI4 |
A ANCIE MAME|-iBACIKIUP! JUN ITI-IDI2!, PACKI-D1ID1\012| ILiclal7 oN -20/a_ \neAciKsI-B0
L/|_ RUN
A/| (COM FIRIOM- |R\ 4, TIO} ID SIK, |REGLI- 1810) ,1FI/|L El -|BACKUA |
Hi \EMTIRY (LIBRARY -IALIC! MAIME|-|AAly| .|ACIL |
(| elie (e/a ARY |S], IAlMel-lalcic
‘11 IEMTIRY, |L|/1BRIARY-I0, MAME] -1/ VEIN 7
LL MEIND
(\| |eIMD

Explanation:

@ The OCL for a library-to-file copy must contain a FILE statement for the disk file.

@ The filename on the // COPY statement (FILE-BACKUP) matches the filename on the OCL FILE statement (NAME-

BACKUP).

® A sequential file with record length of 80 (RECL-80) is created on D1.

@ The file will contain entries from all libraries with names beginning with the characters PAY, all source library entries, and

object entry INVENT.

@ The copy to file BACKUP is terminated by the // NEND statement.

@ The // END statement following the // NEND is required. It terminates the library maintenance program.

Figure 66. Copy Example: Library-to-Disk File

1 4 8 12 16-20 2428 32. 36S 40 Ags 52 56 60 64 68 #72 76
ML DelCelrel WFieloo-lels] [els aaa lacie], Walmel-\/ M7 lal HHH ELH
(7 lel | HHH |

L : WHT
Explanation:

@ The entries being deleted are in the simulation area R1 on drive 1 (FROM-R1 in DELETE statement).

@ The program deletes al! entries from both source and object libraries (LIBRARY-ALL) that have names beginning with the

characters INV (NAME-INV.ALL), with temporary attributes.

Figure 67. Delete Example: Deleting All Entries with Names that Begin with Certain Characters

Library Maintenance Program—$MAINT 155

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

A/| |De\Llelie| FROM-ieI2| Ic\/|eaaiRly lA, Mamel-lalcicl |ael7al/lA-|7
{\1| \EIND

Explanation:

@ The entries being deleted are in the simulation area R1 on drive 1 (FROM-R1 in DELETE statement).

@ All temporary procedures are being deleted from the source library (LIBRARY-P,NAME-ALL).

Figure 68. Delete Example: Deleting All Library Entries of One Type

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

//| WMOIDIAY, |MAlMel-|IMeuizi4! Iellom-liait! \l/laeadyi-lslwoee-lRiti |eelsielel-lvieisl|\/\si71-lol,
/\/ SIEIFILID-18 10151, |/IMCIA-|4
[\/| RIEMOVIE! FROM 42 Oto

/\/|_ICIEIMD

Explanation:

@ The source module named INPUT1 in simulation area R1 on drive 1 is being modified (NAME-INPUT1,FROM-R1,

LIBRARY-‘S in the MODIFY statement).

@ The work space is on R1 (WORK-R1).

@® The sequence numbers are in positions 1-5 of the statements (SEQFLD-0105).

@ Sequence numbers 00124-00156 are being deleted from the module (F ROM-00124,TO-00156 in the REMOVE statement).

@ The module is reserialized with increments of one (RESER-YES,INCR-1).

@ The module isnot listed (LIST-NO).

Figure 69. Modify Example: Removing Source Statements from a Module

156

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Ai| Midd Malel-|doc\a2| \FlRolM-|R2},\c\c alaaleyi-1A,MolRia-|Ai 4, RIeIsIele|-IMO |e|/[si7i-Iviels} |} 1 1 Ld
/|1\ IRlelPiiaicle| |Firiom-laa tia) 1| |710-laa 1142 : im
AZ \FUNLIEL MAWEl-|MV, PIAICIK|-[VIO\L|2|, |W ITI-|R|2| |RIEICIO.RIDS|-|3110 RIE ITIA/IM-|4 || Tit] gta) |
J \Flaicle| AlMel- Wholeix], |Palcle-lviolel2| jal |r}-le\: | A102! |

/|_IC\EIND 7

Explanation:

@ The procedure named POCO1 in simulation area R2 on drive 2 is being modified (NAME-POC01,F ROM-R2,LIBRARY-P

in the MODIFY statement).

® The work space is on R1 (WORK-R1).

@ The sequence numbers are in default positions 92 through 96.

@ Statements with sequence numbers 00101 and 00102 are being replaced (F ROM-00101,TO-00102 in the REPLACE

statement).

@® The module is not reserialized (RESER-NO).

@ The module is tisted (LIST-YES).

Figure 70. Modify Example: Replacing Statements in a Procedure

52 56 60 64 68 72 76

~
 b>

BA

Explanation:

@ The simulation area R1 on drive 1 contains the entry being renamed (FROM-R1 in RENAME statement).

@ The entry is a set of source statements in the source library (LIBRARY-S). Its name is ACCT (NAME-ACCT).

@ The entry name is being changed to ACCT1 (NEWNAME-ACCT1).

Figure 71. Rename Example: Renaming a Set of Source Statements in a Source Library

Library Maintenance Program—$MAINT 157

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Al WMO AY, \elRloM-lF| 4], lWoleixi-\Fid| wialmel-|clasi7), |e\/laRlAaaiyl-|s! ,
nn Rlelslelal-lviels|, Islel@leicla-lsigigl, |z\lsl71-lylels
‘\/| {lmslelal7|_\alei7ielal-lagig7

AOOBIOT 3 | | Bl aie
/l/| |clelMoD

Explanation:

@ The source module COST in simulation area F1 on drive 1 is being modified (FROM-F1,NAME-COST,LIBRARY-S in the

MODIFY statement).

The work space is on F1 (WORK-F1).

The sequence numbers are in position 80 through 84 of the statements (SEOFLD-8084).

@ Astatement is being inserted after statement number 00070 (AFTER-00070 in the INSERT statement).

® The module is reserialized with the default increment value of 10 (RESER-YES).

® The module is listed (LIST-YES).

Figure 72. Modify Example: Inserting a Statement in a Source Module

158

; 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

/\/| [LIOlA|o; |i als iz} |Fl2 |
/I/| [RIUM
/\/\ Walelclotclalrie| rio |e] Idalvieclr|-I0 |slolriclel- a
‘/| Aldicioclalrial \7i0l- Writ), lolalieici7|- eid, |siolueiclel-|zi2|slvisirielm-lvlels|, i/leisi/lzlel- |e

EB 7 IclaAy lrieom-lFi4), Iriol- lei 2l, ici laealyi-lalcle|, IMalmel-lalcle
/\ |EWID ,

Reload System (IPL) from R1

N/| \LOlAID, \SIMAUIIMT| 1A 4
AH |RUN

a | lalciclolclalrie TOBE DavEC TO SOURCE
//| AlLCIOIClAII€| I710}-\F12), Ola vielci7|- Bia, sioviriclel-|zlal, IslvisizieWd-lViels},, ID/|As\/lelel-|4

Ea //1 clay lFiroim-iA4| Inol-llt| icileigaleyi-lalcle| \almel-lalcle
//| \EWM |

Reload System (IPL) from F1 |

Explanation:

The system and $MAINT are both loaded from F1.

EB The libraries on R1 are deallocated (if present).

New library space is allocated on R1.

4 | The libraries are copied from F1 to R1. The object library is reorganized as it is copied. Temporary entries become

permanent when copied.

The system and $MAINT are now loaded from R1.

[a] The libraries on F1 are deallocated.

New library space is allocated on F1.

8 | The libraries are copied back to F1. The simulation area R1 could be used as a backup pack. It contains the same

libraries as F1.

Figure 73. Reorganizing the System Simulation Area

Library Maintenance Program—$MAINT 159

REASSIGN ALTERNATE TRACK PROGRAM-SRSALT

When it is necessary to transport a 3340 data module from

System/3 to System/360 or System/370, you must run the

reassign alternate track program (SRSALT) before you run

the DOS/OS initialization program.

On a 3340 data module initialized on System/3, there are

40 alternate tracks on cylinders 167 and 168. On a System/

360 or System/370 3340 data module, there are 24 alter-

nate tracks from cylinders 167 and 168 to cylinders 208

and 209. Consequently, if a 3340 data module initialized

on System/3 has more than 24 defective primary tracks,

it cannot be initialized by System/360 or System/370.

Note: Data interchange is not supported between the

System/3 and the System/360 or System/370, so this

program cannot be used for that purpose. System/3 data

existing on the data module before $RSALT is run will be

lost.

Control Statement Summary

// ALTA UNIT-D2,PACK-name

// END

Parameter Summary

UNIT-D2 Specifies the location of the data

module that you want to modify.

PACK-name Specifies the name of the data

module you want to modify.

Parameter Descriptions

UNIT Parameter

The UNIT parameter (UNIT-D2) specifies the location of

the data module that you want to modify. The program can

modify only data module D2 during a program run.

$RSALT cannot be run on D2 if the simulation areas (R2

and F2) are active. The OCL statement, // SIMULATE OFF,

must be used before $RSALT is executed.

160

PACK Parameter

The PACK parameter (PACK-name) tells the program the

name of the data module to be modified. The parameter

length must not exceed 6 characters. It can contain any

of the standard System/3 characters except apostrophes,

commas, or leading or embedded blanks.

The reassign alternate track program compares the name in

the PACK parameter with the name on.the data module to

ensure that they match. If the names do not match, the

program halts with an error message. In this way, the pro-

gram ensures that it is using the right data module.

OCL Considerations

The following OCL statements are needed to load the re-

assign alternate track program:

// LOAD $RSALT ,code

// RUN

The code you supply depends on the location of the simu-

lation area containing the reassign alternate track program.

The codes are R1 and F1.

Example

The following illustration shows an example of the control

statements required to execute the $RSALT program:

1 4 8 12 16 20 24 28 32 36

Ail | \claAlp IsiAslacl7| Ala
//_| VAIN
AA | ALI7IAl (UM /|71-|012| Acie - \Di2\D12/ID/2

/\ | JED :

Explanation:

The 3340 data module on drive 2 is to be modified to

System/360—System/370 format.

Page of GC21-5130-0

issued 19 November 1976

By TNL: GN21-5413

Recover Index Program—$RINDX

The Recover Index (S$RINDX) program is used to recover

the records added to an indexed file if, for any reason, the

program adding the records is terminated before end of job.

The Recover Index program should be:

@ Executed as soon as possible after the abnormal

termination, and

@ Executed in a dedicated system

Each indexed file for which records are to be recovered

must be described by an OCL FILE statement. The descrip-

tion must include the filename, unit code, and pack ID.

You may also include OCL FILE statements for other than

indexed files; however, the Recover Index program will not

attempt to recover records in other file organizations. The

following example shows a FILE statement for each file to

be checked for record recovery:

1 4 8 12 16 20 24 28 32 36 40 44 48 52

| Iclolalol Kelair Iwlolx!, Iele ls
A IV ice] WAME|-|$| Wiole|xivis|, wis |7|-lol2||Plalelk|-lolzioleloi2| ,|71R AIC A|S|- 314
/V/ JILIE| WA MIE! ICON SIE(C|, UN IT I-|O/1 IAACKI- 101! [01 O\/

A2)_ FV KE WIA MNE|-|Di/ RIEICIT| IW IT|-101/|, PIC IK] - 1017 [O70 L

Ar\ Nel lela Wiabmel-|/imaisial/| lwwisi7\-los|, lelalck|-lols|ol, lol
‘| Flcieiel WaAmel-/witisidiel luiac|7i-iol/) lelaleK|-iov O|/ al
“| elle Walmel-\/ sila lol i7|-lol7|, lelalalx|- lols lol jo\r
| eViciel Wael-l/ivisiae, luiwieir|-lov|, (alekKl-lo|/|ol7 ol
| Fcclel Wame- lV Wwisids! vwieizi-lov|, lene k|-lolsiol joy Ld
77) lelriclel wianel-i visa low izi-lo!, [elalelel-lols oir bol |
el elelclel Wladel-le Wiyisiai7\ julie i7i-iolv | lelalelxl-lolv lols loli | Iriealelelg/-\eiat | | |
/c_\elol ‘ , ? :

The $INDEX45 file is a work file used to decrease the

processing time for sorting the indexes of large indexed

files.

Recover Index Program—-$RINDX 160.1

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

The functions of the Recover Index program for each file

organization are:

@ /ndexed File:

— If added keys exist for the file when the abnormal

termination occurs, $RINDX updates the end-of-

index and end-of-data pointers. File information—

defined as file label, file type, pack label, and file

date—is printed. The last added key for this file is

also printed.

— If keys had not been added when the abnormal

termination occurred, only the file information is

printed.

@ If a consecutive file is detected, only the file information

is printed.

@ \f adirect file is detected, only the file information is

printed.

@ |f the Recover Index program cannot find the file

described by the OCL FILE statement, the file informa-

tion and the message FILE NOT AVAILABLE is

printed.

The following printout is a result of processing each FILE

statement shown in the previous example:

$RINDX- FILE RECOVERY PROGRAM

FILE PILE PACK FILE
LABEL TYPE LABEL DATE

CUNSEC C DLDLDL 021976
LIRECT LD DivLoL 021976
TH4501 I DLDLDL 021976
TN+502 ! DLDLDL 021976
Tii4503 I DLDLDL O2L97E
T4504 I DLDLDL O24976
IN45u5 I DLDLDL OC21976
IWw4506 I DLDLDL O214976
T4507 DLDLVL O2L676

ALL FILES PROCESSED After all OCL FILE statements have been processed, an

ALL FILES PROCESSED message is printed. The index

is then sorted and the VTOC (volume table of contents)

updated.

Note: After the ALL FILES PROCESSED message is

printed, do not cancel or start the next job prior to actual

end of job. Processing continues with sorting the index

and updating the VTOC.

160.2

DATE-XX/XXK/ XX

LAST ADD KEY
INCLUDED

00971
CO2031
0004131
00005194
9090072441
0000007211
FILE NOT AVAILABLE

OCL CONSIDERATIONS

The following OCL statements are needed to load and

execute the Recover Index program:

// LOAD $RINDX,code

// FILE NAME-xxxxxxxx,UNIT-xx,PACK-xxxxxx

// RUN

The code you supply depends on the location of the disk

containing the Recover Index program. Possible codes are

R1, F1, R2, F2.

Considerations and Restrictions

If a disk 1/O error occurs during the execution of $RINDX,

the file information.and error message DISK |/O ERROR

is printed. A halt then occurs; options are:

@ Continue processing with the next file

@ Cancel the job

If halt DD*P (keysort duplicate key) occurs during the

execution of $RINDX, it may indicate that the program

was abnormally terminated during the process of sorting

the index. Continue processing until end of job for

$RINDX. If the file is not known to have duplicate keys,

use the Copy/Dump program ($COPY) with REORG-NO

and an OMIT or DELETE parameter to rebuild the index.

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

Recover Index Program—$RINDX 160.3

Page of GC21-5130-0

Issued 19 November 1976

By TNL: GN21-5413

EXAMPLES

In the following example, the Recover Index program is

loaded from R2. The printout shows that keys were added

to each of the files except IN4403 before the abnormal

termination.

// LOG PRINTER
f/f LOAD SRINDX,R2
f/f FILE WARE-SINDEX4S5S »UNIT-D2,PACK-b2D2D2,TRACKS~30
// FILE WAKE-STNDEX44,ULIT-R2,;PACK-R2R2R2,TRACKS—20
f/f FILE NAME~IN4501,UNTT-DL,PACK-LLDLDI
// FILE WAKC-IN4502 ,UNTT-DL,PACK-DLDIDI
// FILE NAME-TiH4503,UhIT-DL,PACK-DLDIDIL
// FILE NAME-IN4S40L,URTT-RiyPACK-RLRLAL
f/ FILE NAME-TN4402 ,UNIT-RL,PACK-RLRIRI
// FILE KAKME-IN4403,UNTT-RL,PACK-RIRLRL

$RINLX - FILE RECOVERY PROGRAM DATE-XX/SXX/KX

FILE FILE PACK FILE LAST ADD KEY
LABEL TYPE LADEL DATE INCLUDED

Tiv4403 I RLRURL 022676 OON0d0000900000000000002871,
Lii4402 I RURLRL 022676 O00CO0000G000000000002031,
T4403 I RLRLRL 022676
LW4564, I DIiVLLL O22676 OO0971
Ti4502 I YVIDLDL O22676 002031
1Tiv4503 I BULLDL O22676 0004131

ALL FILES PROCESSED
L UD KS i: SRINDXOL

DEGIiN KEY SORT/MERGE - IN4401
L uD KS i SRINDXOL

wEGIN KEY SOGRT/MERGE - IN4402
Lb KS ds SRINDXOL

bCGIN KEY SGRT/MERGE ~- IN4403
L DD KS 4s SRINDXOL

BEGIN KEY SORT/MERGE - IN4501,
1 DD KS i, $RINDXOL

BEGIN KEY SORT/HERGE - IN4502
4 DL KS af $RINDXOL

BEGIN KEY SORT/MERGE - IN4503

1 CT EJ 1, $RINDXOL
02/26/76 00.00.19 00.02.47

160.4

Appendix A. IBM System/3 Standard Character Set

Hexadecimal Hexadecimal Hexadecimal
Character Equivalent Character Equivalent Character Equivalent

Blank 40 # 7B . Q D8

¢ 4A @ 7C R D9

. 4B " (apostrophe) 7D S E2

< 4C = 7E T E3

(4D ” 7F U E4

+ 4E A C1 V E5

| 4F B C2 Ww E6

& 50 C C3 X E7

| 5A D C4 Y E8

$ 5B E C5 Z EQ

* 5C F C6 0 FO

) 5D G C7 1 F1

; 5E H C8 2 F2

7 5F ! C9 3 F3

- (minus) 60 } DO 4 F4
/ 61 J D1 5 F5
, 6B K D2 6 F6

% 6C L D3 7 F7

— (underscore) 6D M D4 8 F8

> 6E N D5 9 FQ

? 6F 0 D6

7A P D7

IBM System/3 Standard Character Set 161

162

* parameter for load statement 35

/* statement 42

/& statament (OCL) 42

*(comment) statement (OCL) 43
SALT (see alternate track assignment program) 59
SBUILD (see alternate track rebuild program) 62
$COPY (see copy/dump program) 87
$DCOPY (see dump/restore program) 79
$DELET (see file delete program) 73
SINIT (see disk initialization program) 53
$LABEL (see file and volume label display program) 66
$MAINT (see library maintenance program) 116
$RSALT (see reassign alternate track program) 160
$SCOPY (see simulation area program) 108
STINIT (see tape initialization program) 47
$TVES (see tape error summary program) 52

adding library entries 134, 135

ALLOCATE statement (SMAINT) 119
allocate considerations and restrictions 120
allocation of disk space 120

control statement summary 119

DIRSIZE parameter 121

OBJECT parameters 121

SOURCE parameters 121

SYSTEM parameter 121
TO parameter 121

WORK parameter 122
alter track assign prog control statement summary ALT
statement (SALT) 60

alternate track assignment program (SALT) 59
examples 61

messages 62

PACK parameter 60

UNIT parameter 60

VERIFY parameter 60

alternate track rebuild (SBUILD) 62
examples 1

OCL considerations 64

program 62

program REBUILD statement (see REBUILD statement)
substitute data 64

BSCA statement 5, 12

CALL statement 5,13

changing a scratch file to a temporary file 18
changing the size of a source library 124

character set 161

codingrules 2

parameters 2

statement identifiers 2

types of information 2

‘comments 4

COMPILE statement 5, 13

continuation statements 3

control statement summary

ALLOCATE statement (SMAINT) 119

ALT statement ($ALT) 59
ALTA statement (SRSALT) 160
CLEAR statement ($SCOPY) 109
COPY statement ($MAINT) 127

COPYAREA statement ($SCOPY) 109

COPYFILE statement (SCOPY) 87

COPYIPL statement ($SCOPY) 109

COPYPACK statement ($COPY) 87

COPYPACK statement (SDCOPY) 79

DELETE statement (SMAINT) 143

DISPLAY statement ($LABEL) 66
MODIFY statement (SMAINT) 146
MOVE statement ($SCOPY) 109
NAMES statement ($SCOPY) 109

NEWNAME statement ($SCOPY) 109

REBUILD statement ($BUILD) 62
REMOVE statement ($DELET) 74
REMOVE statement (SDELETE) 74
RENAME statement ($MAINT) 148
SCRATCH statement ($DELET) 74

VOL statement ($INIT) 54
VOL statement ($TINIT) 48

control statements 46

coding rules for control statements 46
END control statement 46

COPY statement (SMAINT) 126
file-to-library 127

function 126

function control statement summary 127

library directories 133

library-to-file 128

library-to-library 129

library-to-printer 130

reader-to-library 127

retain types 133

copy/dump program ($COPY) 86
card and diskette considerations 96

card or diskette output 96

contro! statement summary 87

copying files 93

examples 97

OCL considerations 96

parameter descriptions 92

Parameter summary 89

printing files 93

tape file considerations 96

COPYFILE statement ($COPY) 988
DELETE parameter 93

REORG parameter 93

WORK parameter (COPYFILE) 94

Index

index

163

copying multivolume files 95

copying multivolume files and maintaining correct date and

volume sequence numbers 95

copying multivolume files maintaining correct relative

record numbers 95

copying multivolume indexed files 96

creating a source library 121

creating an object library 121, 124

DATE parameter (disk file) 18

DATE statement 5,15

delete permanent library entry 142

DELETE statement ($MAINT) 142
control statement summary 144

FROM parameter 144

function 142

LIBRARY parameter 144

NAME parameter 144

restrictions 142

RETAIN parameter 144

delete temporary library entries 142

direct file attributes 95

disk initialization program ($INIT) 53
alternate track assignment 57

CLEAR 54
CYLO 54
FORCE 54
parameter descriptions (initialization) 56
parameter summary initialization 55

PRIMARY 54

RENAME 54

dump/restore program ($DCOPY) 79
BACKUP parameter (COPYPACK) 81

COPYPACK statement 80

examples 83

FILE statement considerations 81

FROM and TO parameters (COPYPACK) 80

messages for DUMP/RESTORE 82
OCL considerations 81

SYSTEM parameter 81

TO parameter 80

example

COPYPACK from disk to diskette 85

COPYPACK from tape to disk 83

delete one version of afile 78

delete one version of a file usinga REMOVE statement 78

free allocated but unused space ona simulation area 78

OCL considerations 77

parameter descriptions 75

printing VTOC information for two files 72

examples

changing the size of a source library 151

copy a card file toa tape file 103

copy a card file to another card file 106

copy a disk file to a tape file 100

copy a disk file to the 3741 104

copy a sequence file from a simulation area to a main data

area 107

164

examples (continued)

copy a tape file to a disk file and print a part of the file 101

copying a file from one disk to another 98

copying an entire disk 97

copying minimum system from one disk to another 151

copying object program to F1 152

creating both source and object libraries ona disk 150

deleting all library entries of one type 156

deleting an entry from a library 153

deleting the object library from a disk 151

disk file to library (COPY) 154

library to disk file (COPY) 155
printing library directories 152

printing part of afile 98

removing source statements from a module

reorganizing the system pack 159

replacing statements in a procedure 157

file and volume label display program ($LABEL)

examples 72

FORMAT parameter 67

LABEL parameter 66

meaning of VTOC information 69

OCL considerations 71

SORT parameter 67

file delete program ($DELET) 73
control statement summary 74

DATA parameter 76

DATE parameter 77

examples 77 —
LABEL parameter 76

OCL considerations 77

PACK parameter 75

UNIT parameter 75

FILE parameters (tape)
ASCII 29
BLKL 28
DATE 28
DEFER 30
DENSITY 29
END 29
LABEL 28
NAME 26
RCFM 29
RECL 28
REEL 27
RETAIN 28
UNIT 27

file processing considerations (disk file) 25

FILE statement 5, 15

FILE statement (disk} 15

content 16

function 15

placement 15

FILE statement (tape) 25

content 26

format 25

function 25

placement 25

FILE statement considerations ($DCOPY) 81

FILE statement OCL. 15

156

66

format of OCL statements 12

*(comment) statement 43
/& statement 42
/* statement 42
BSCA statement 12

CALL statement 13

COMPILE statement 13

DATE statement 15

FILE statement (disk) 15
FILE statement (tape) 25
HALT statement 31

IMAGE statement 32

JOB statement 34

LOAD * 34

LOAD statement 34

LOCKOUT statement 36

LOG statement 36

NOHALT statement 37

PARTITION statement 38

PAUSE statement 38

PRINTER statement 39

PUNCH statement 40

READER statement 40

RUN statement 41

SIMULATE statement 41

SWITCH statement 42

FORMS statement 5, 31

FROM parameter

COPY statement 131

COPYPACK statement 92

DELETE statement 144

MODIFY statement 147

RENAME statement 149

general codingrules 3

HALT statement 5, 31

HIKEY parameter (disk file) 21

IMAGE statement 5, 32

initializing disk ($INIT) 53

initializing tape ($TINIT) 47

INSERT statements source library 145

inserting library entries 134

introduction to OCL statements 2

introduction to system utility programs 45

JOB statement 5, 34

keyword parameter for single volume disk files 16
keyword parameters for multivolume files 20

LENGTH KEY parameter 95

library directories 118
library maintenance program 116

ALLOCATE function (see ALLOCATE statement) 119
library description 116

LOAD statement 6, 34

LOCATION KEY parameter 95
LOCATION parameter (disk file) 21
LOCKOUT statement 6, 36

log 6,36

maintaining correct date and volume sequence numbers 95
maintaining correct relative record numbers 95
meaning of VTOC information 69
message 49

message for tape initialization 49
message printout of volume label (tape) 50
messages for disk initialization 59
messages for dump/restore 82
MODIFY statement ($MAINT) 145

control statement summary 146

functions 145

Parameter summary 146

moving the object library 120, 123

multivolume tape files 30

NOHALT statement 6, 37

OCL considerations for system service programs 58

OCL considerations for system service programs disk

initialization program 58

OCL statement

*(comment) statement 43
/& statement 42

/* statement 42

BSCA statement 12

CALL statement 13

COMPILE statement 13

DATE statement 15

FILE statement (disk) 15
FILE statement (tape) 25

HALT statement 31

IMAGE statement 32

JOB statement 34

LOAD* 34

LOAD statement 34

LOCKOUT statement 36

LOG statement 36

NOHALT statement 37

PARTITION statement 38

PAUSE statement 38

Index 165

OCL statement (continued)

PRINTER statement 38

PUNCH statement 40

READER statement 40

RUN statement 41

SIMULATE statement 41

SWITCH statement 41

OCL statements 12

OCL statements for utility programs 45

OCL statements, introduction to 1

operation control language (OCL) 1

packed HIKEY 21

PARTITION statement 6, 38

PAUSE statement 6, 38

placement of control statements in the job stream 47

print VTOC 66

PRINTER statement 6, 38

printout of volume label (tape) 50
PUNCH statement 6,40

READER statement 7,40

reassign alternate track program ($RSALT) 160

control statement summary 160

example 160

OCL considerations 160

PACK parameter 160

parameter descriptions 160

parameter summary 160

REBUILD statement 62

DISP (displacement) parameter 63

LENGTH parameter 63

PACK parameter 63

TRACK parameter 63

UNIT parameter 63

RECORDS parameter (disk file) 19

RENAME statement ($MAINT) 148

considerations and restrictions 148

control statement summary 148

OCL considerations 149

parameter summary 149

reorganize libraries 119

reorganizing a source library 124

replace source library entry 145

replacing library entries 134, 136

RESER parameter of MODIFY statement 147

reserialize a source library entry 145

restrictions library maintenance

ALLOCATE 120

COPY 133

DELETE 142

MODIFY 145

RENAME 148

RETAIN parameter

COPY 133

DELETE 142

FILE statement disk 18

FILE statement tape 28

RUN statement 7, 41

166

scratching files 73

scratching volume table of contents 73

scratching VTOC 73

SELECT KEY parameter 94

SELECT PKY parameter 94

SELECT RECORD parameter 95

SIMULATE statement 7, 41

simulation area program ($SCOPY) 108

AREA parameter (CLEAR) 111

AREA parameter (COPYAREA) 110

AREA parameter (MOVE) 112

AREA parameter (NEWNAME) 112

changing volume ID 1 15

clearing a simulation backup area 113

clearing an area containing IBM programs 113

CLRNAME parameter (CLEAR) 111

CLRNAME parameter (MOVE) 112

contro! statement summary 109

copy an entire simulation area 114

copy cylinder 0 from drive 1 to drive2 114

examples 113

FROM and TO parameter (COPYIPL) 112

FROM and TO parameters (MOVE) 112

FROM parameter (CLEAR) 111

ID parameter (CLEAR) 111

iD parameter (MOVE) 112

OCL considerations 113

PACK parameter (CLEAR) 111

PACK parameter (COPYAREA) 110

PACK parameter (COPYIPL) 113

PACK parameter (MOVE) 112

PACK parameter (NEWNAME) 111

parameter descriptions 110

parameter summary 109

print 1D information 115

PRINT parameter (NAMES) 112

SYSTEM parameter (COPYAREA) 111

SYSTEM parameter (MOVE) 112

TO parameter (NEWNAME) 111

TONAME parameter (COPYAREA) 111

TONAME parameter (MOVE) 112

TONAME parameter (NEWNAME) 112

TYPE parameter (CLEAR) 111

source library 119

adding entries 135

changing size 123, 124

creating 119

deleting 119

inserting statements 146-148

listing entries 132

location 123

organization 119, 124

special meaning of capital letters, numbers, and special

characters 47

- standard character set 161

statement descriptions 4

statements beginning with // 3

statements not beginning with // 3

summary of OCL parameters 8

summary of OCL statements 5

SWITCH statement 7, 41

system directory printout 140

system utility programs 45

System/3 character set 161

tape error summary program ($TVES) 52
error logging format 52

OCL considerations 53

tape initialization program (STINIT) 47
control statement summary (tape) 48
OCL considerations (tape) 49
parameter summary (tape) 49

TRACKS parameter (disk file) 19

volume label information (tape) 50
VTOC 73

WORK parameter (COPYFILE) 94

Index 167

168

READER’S COMMENT FORM

IBM System/3 Model 12

System Control Programming GC21-5130-0
Reference Manual

YOUR COMMENTS, PLEASE...

Your comments assist us in improving the usefulness of our publications; they are an important
part of the input used in preparing updates to the publications. All comments and suggestions
become the property of IBM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response, Instead, direct your inquiries or requests to your IBM
representative or to the IBM branch office serving your locality.

Corrections or clarifications needed:

Page Comment

| would like a reply. CT]

Name

Address

© Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC21-5130-0

—
_

S
o
u
r

Bu
rp
y

IQ

—

>

Soe ee ee ee ee eee ee ae ee a eae creer TOT Teese sees TS TT Tome

FIRST CLASS

PERMIT NO. 387

ROCHESTER, MINN.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES
POSTAGE WILL BE PAID BY...

IBM Corporation

General Systems Division

Development Laboratory

Publications, Dept. 245

Rochester, Minnesota 55901

O
-
O
E
L
S
1
Z
I
D

“V
'S
'N

Ul

pa
Iu
lg

(9
E-
ES

“O
N

af
l4
)

eu
e1
9j
9y

Bu
yw
ie
sB
or
g

JO
1}
U0
D

Wa
sS
hS

ZL

|@
PO
W

€/
S

ee eee eee eee eae sas secs sa ST TT TT ee Teme

International Business Machines Corporation

General Systems Division

5775D Glenridge Drive N.E.

Atlanta, Georgia 30301

(USA Only)

{BM World Trade Corporation

821 United Nations Plaza, New York, New York 10017

(International)

GC21-5130-0

International Business Machines Corporation

General Systems Division

5775D Glenridge Drive N.E.

Atlanta, Georgia 30301

(USA Only)

IBM World Trade Corporation

821 United Nations Plaza, New York, New York 10017

(International)

O
-
O
E
L
G
L
Z
I
D

“V
'S
'N

Ul

Pa
IU
ul
g

(9
E-
ES

“O
N

dI
!4
)

89
U2
10
j0
4

Gu
rm
uu
es
bo
rg

[o
4W
UO
D

Wa
Is
Ag

ZL

[
P
P
O

£/
S

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090.0
	090.1
	090.2
	091
	092
	093
	094
	095
	096.0
	096.1
	096.2
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108.0
	108.1
	108.2
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120.0
	120.1
	120.2
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160.0
	160.1
	160.2
	160.3
	160.4
	161
	162
	163
	164
	165
	166
	167
	168
	replyA
	replyB
	xBack

