IBM System/3 Model 15
» System Control Programming

Concepts and Reference Manual

Program Number 5704-SC2

- 6C21-5162-1
. \ File No. $3-36

Preface

This manual provides programmers with the information
needed to run programs on the 1BM System/3 Model 15

1BM System/3 3741 Reference Manual, GC21-5113

and to use the system service programs for doing jobs
such as preparing disks for use or updating system
libraries. See How To Use This Manual for additional
information.

Related Publications

1BM System/3 Model 15 Introduction,GC21-5094

IBM System/3 Disk Concepts and Planning Guide,
GC21-7571

IBM System/3 Model 15 Operator’s Guide, GC21-5075

IBM System/3 Model 15 System Generation Reference
Manual, GC21-7616

IBM System/3 Model 15 System Messages, GC21-5076

1BM System/3 Communications Control Program
Messages Manual, GC21-5170

1BM System/3 Communications Control Program
System Reference Manual, GC21-7620

Second Edition (September 1978)

® |BM System/3 Model 15 User’s Guide to Spooling,
GC21-7632

® /BM System/3 Model 15 System Control Programming
Macros Reference Manual, GC21-7608

® [BM System/3 Overlay Linkage Editor Reference Manual,
GC21-7561

® /BM System/3 Multiline/Multipoint Binary Synchronous
Communications Reference Manual, GC21-7573

Note: Information about the system control program
(Program Number 5704-SC1) is in the /BM System/3
Model 15 System Control Programming Reference Manual,
GC21-5077.

This is a major revision of, and obsoletes, GC21-5162-0 and technical newsletter GN21-5550.
Because the changes and additions are extensive, this publication should be reviewed in its
entirety.

Changes are periodically made to the information herein; before using this publication in
connection with the operation of IBM systems, refer to the latest /BM System /3 Bibliography,
GC20-8080 for the editions that are applicable and current.

Use this publication only for the purposes stated in the Preface.

Publications are not stocked at the address below. Requests for copies of IBM publications and
for technical information about the system should be made to your 1BM representative or to
the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use the Reader’s
Comment Form at the back of this publication to make comments about this publication. |f
the form has been removed, address your comments to |1BM Corporation, Publications,
Department 245, Rochester, Minnesota 55901. IBM may use and distribute any of the infor-
mation you supply in any way it believes appropriate without incurring any obligation what-

ever. You may, of course, continue to use the information you supply.

©Copyright International Business Machines Corporation 1976, 1978

HOW TO USE THIS MANUAL
MODEL 15D INTRODUCTION
PART 1. OCL STATEMENTS

INTRODUCTION TO OCL STATEMENTS
What is OCL?
OCL and the Job Stream
Organization of Part 1
Coding Rules
Types of Informatlon
General Coding Rules
Statement Length .
STATEMENT DESCRIPTIONS
ASSIGN STATEMENT
BSCA STATEMENT
CALL STATEMENT
COMPILE STATEMENT
DATE STATEMENT .
FILE STATEMENT (SINGLE VOLUME DISK FILES)
FILE STATEMENT (MULTIVOLUME DISK FILES)
FILE STATEMENT (SINGLE VOLUME TAPE FILES)
7-Track Considerations
Tape File Statement Summary .
Combinations of 7-Track Spectf:catlons
FILE STATEMENT (MULTIVOLUME TAPE FILES)
FILE STATEMENT (MULTIPLE TAPE VOLUMES)
Prepositioned Tapes (SEQNUM-X on the FILE
Statement) .
Restrictions on the Use of Multlflle Tapes
Standard Labeled Files
Nonstandard Labeled Files
Unlabeled Volumes
REEL Parameter on FILE Statement .
FILE STATEMENT (DEVICE INDEPENDENT FILES)
HALT STATEMENT
IMAGE STATEMENT .
Characters from the System Input Devnce
Characters from the Source Library
INCLUDE STATEMENT
JOB STATEMENT
LOAD AND LOAD * STATEMENT
LOG STATEMENT
NOHALT STATEMENT
PAUSE STATEMENT
PRINTER STATEMENT
PUNCH STATEMENT
READER STATEMENT
RUN STATEMENT
SWITCH STATEMENT
/& STATEMENT
/. STATEMENT
*(COMMENT) STATEMENTS
/* STATEMENT

xi

11

13
1-3
1-3
14
14
14
14
1-6
1-8
1-21
1-23
1-24
1-25
1-27
1-29
1-40
145
1-52
1-63
1-54
1-65

1-57°

1-568
1-68
1-69
1-61
1-61
1-62
1-63
1-65
1-66
1-67
1-67
1-69
1-1
1-75
1-79
1-82
1-84
1-85
1-88
1-91
1-92
1-93
1-95
1-96
1-99
1-100

Page of GC21-5162-1
tssued 28 September 1979
By TNL: GN21-5674

PART 2. SYSTEM CONCEPTS AND FACILITIES

PROGRAM FACILITIES . .
System/3 Mode! 15 Programming Support
Program Concepts
Source Programs
Object Modules
Load Modules
Program and Partition Sizes
Greater Than 48K Programs
External Buffers
FILE FACILITIES
File Definition
File Organization
File Processing
File Creation
File Location
Automatic File Allocatlon
File Services
Scheduler Work Area
File Sharing
Compatible Access Methods for Flle Shanng
DTF (Define the File) .
SDTF (Share Define the File) .
FSQE (File Share Queue Element)
File Share Area .
Doubly-Defined Files
Considerations and Restrictions
General Results When the 2 or 3 Optton is
Selected for a Message
Work Files
Main Storage Requnrements
RPG I}
CcOBOL
FORTRAN
CCP/Disk Sort
Basic Assembler
Overlay Linkage Editor
Large Index Files
Muttivolume Disk Files
Multivolume Tape Files
Multifile Tape Volumes
Null Files on Tape
Programming Considerations
LIBRARY FACILITIES
Library Definition
Source Library
Object Library
Library Locations
Storing Programs
Sample Statements
Procedures
Example
Nested Procedures .
Cataloging to an Active Library
User Considerations
SYSTEM FACILITIES
Initial Program Load (IPL)
Program Execution
Job and Step Processing

Contents

23
23
24
2-4
24
25
28
29
29
211
21
21
211
212
2-13
213
2-15
215
2-16
217
217
217
2-18.1
2-18.1
2-18.1
2-18.2

219
2-20
2-20
2-21
221
2.1
2-22
2-22
2-23
2-23
2-24
2-25
2.25
2-256
2-26
2-26.1
2-26.1
2-26.1
2-27
2-29
2-30
2-31
2-32
2-33
2-35
2-39
241
242
242
243
244

Contents i

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

External indicators
System Severity Codes
Job Stream Example
Multiprogramming

Operating in a Multiprogramming Environment

Multiprogramming Considerations and
Restrictions Coe L
Sharing Access to Added Records
Multiprogramming Examples
Date Support
System Date
Partition Date
Interval Timer
System Input Device
System Log Device
System Print Device
System Punch Device
System History Area
Spooling .o
Checkpoint/Restart
Inquiry Program
System Integrity

Automatic Message Restart (Unit Record Restart)

Unit Record Restart (System Generation
Option)

Extended Restart (System Generation Option)

Main Storage Usage
PART 3. DISK STORAGE

DIRECT ACCESS STORAGE
3340 Direct Access Storage Facility
3344 Direct Access Storage
Simulation Areas N
Interchanging Data Modules (3340)
Accessing Simulation Areas
Assigning Simulation Areas
Simulation Area Reassignment
Number of Simutation Area Assignments
Main Data Areas .
Disk Space Allocation .
Considerations and Restrictions
Alternate Tracks .o
File Processing Considerations
Cylinder 0 Format Lo
Considerations and Restrictions
Initial Program Load {IPL)

PART 4. SYSTEM SERVICE PROGRAMS

INTRODUCTION
Programming Considerations
Control Statements e
Writing Controt Statements for System
Service Programs
Coding Rules .
END Control Statement oL,
Placement of Control Statements in the
Job Stream e e
Special Meaning of Capital Letters, Numbers,
and Special Characters
Device Codes

248
2.48
248
2-52
2-53

2-57
2-59
2-60
2-63
2-63
2-63
2-63
2-64
2-65
2-66
2-66
2-66
2-67
2-68
2-69
2-69
2-70

2.70
2-70
2-71

31

33
3-3
3-4
3-6
36

3-7

39

39
3-10
3-10
3-10
3-11
3-1
3-12
3-13
3-13

41

43
44
44

44
4.5
45

4.5
46

ALTERNATE TRACK ASSIGNMENT
PROGRAM—$ALT .o
Program Description .
Control Statement Summary
Parameter Summary
Parameter Descriptions
PACK Parameter
UNIT Parameter
VERIFY Parameter
ASSIGN Parameter
Unconditional Assignment
Conditional Assignment
OCL Considerations
Examples P
Conditional Assignment
Unconditional Assignment .
Messages for Alternate Track Assignment
ALTERNATE TRACK REBUILD
PROGRAM-—$BUILD
Program Description .
Control Statement Summary ..
Parameter and Substitute Data Summary
Parameter and Substitute Data Descriptions
PACK Parameter
UNIT Parameter
TRACK Parameter
LENGTH Parameter .
DISP (Displacement) Parameter
Substitute Data
OCL Considerations
Examples
CONFIGURATION RECORD PROGRAM—
$CNFIG........
Program Description N
Changing the Configuration Record
Control Statement Summary
Parameter Summary
Parameter Descriptions . e
AUTHORIZE Parameter (QCoPY)
CARD Parameter (DEFCN)
Code-Area Parameter (ASNPx)
CYL Parameter (SPCYL)
D Parameter (TSTAMP)
DATE Parameter (FORMAT) .
DEVICE Parameter (LOGPx, SYINx,
SYPCx,SYPRx) o
EJECT or NOEJECT Parameter (LOGPx)
ERASE Parameter (QCOPY)
EXTENDED Parameter {READY)
FORM Parameter {(DEFFN)
FS Parameter (SIZE)
HALT Parameter (HLTPx)
HALT Parameter (SHA)
| Parameter (TSTAMP) .
IDELETE Parameter (ITYPE) .
M Parameter (SPOPT)
OCL Parameter {(BLANK) .
PACK Parameter (CATLG) ..
PRINT Parameter (AUTST, AUTWT)
PUNCH Parameter (AUTST, AUTWT)
P1 Parameter (S1ZE) . . .o
P2 Parameter {SIZE)

4-7
4.7
4-7
48
4.8
4-8
48
48
48
4-9
49
4-10
4-10
4-10
4-10
4-11

412
412
4-12
413
414
4-14
4-14
4-14
414
414
4-14
415
415

4-17
4-17
4-17
4-18
4-20
4-22
4-22
4-22
4-22
4-22
4.22
4-22.1

4.22.1
4-22.1
4-22.1
4-22.1
4-22.1
4-22.1
4.22.1
4-22.1
4-22.2
4-22.2
4-22.2
4-22.2
4-22.2
4-22.2
4-22.2

4-23

4-23

P3 Parameter (SIZE)
RATIO Parameter (FSHARE)
READ Parameter (AUTST)
RETAIN Parameter (MESSAG)
RQPTY Parameter (QCOPY) .
SEQUENCE Parameter (PRIORITY)
SHARE Parameter (CONSOL)
SHARE Parameter (FSHARE)
SYS Parameter (SIZE) .
TRACKS Parameter (SHA)
TRACKS Parameter {SPEXT)
UNIT Parameter {(SPDSK) .
Considerations and Restrictions
OCL Considerations
Examples .o
COPY/DUMP PROGRAM—$COPY
Program Description
COPYPACK .
COPYFILE
Control Statement Summary
Parameter Summary
Parameter Descriptions .
FROM and TO Parameters (COPYPACK)
PACKIN and PACKO Parameters
(COPYPACK) .
COPYPACK Considerations
OUTPUT Parameter (COPYFILE)
DELETE Parameter (COPYF{LE)
REORG (Reorganize) Parameter (COPYFILE)
LENGTH Parameter (COPYFILE)
KEY and PKY Parameters (SELECT)
RECORD Parameters (SELECT)
FILE Parameter (SELECT) .
LENGTH and LOCATION Parameters (KEY)
DATAMGMT Parameter (QUTDM)
FROM Parameter (ACCESS)
CYLINDER Parameter (ACCESS)
SECTOR Parameter (ACCESS)
TRACK Parameter (ACCESS)
RECL Parameter (ACCESS)
DISP Parameter (ACCESS)
Copying Multivolume Files
Maintaining Proper Volume Sequence
Numbers .
Maintaining Correct Relatlve Record
Numbers .
Direct File Attnbutes .
Copying Multivolume Indexed F|Ies
Tape File Considerations
Diskette File Considerations
Card Input Considerations
Card Output Considerations
File Recovery Considerations
OCL Considerations
Examples
DUMP/RESTORE PROGRAM $DCOPY
Program Description
Control Statement Summary
Parameter Summary
Parameter Descriptions
FROM and TO Parameters (COPYPACK)
PACK Parameter (COPYPACK)
SYSTEM Parameter (COPYPACK}
BACKUP Parameter {COPYPACK)
Dump/Restore Considerations

423
424
4-24
424
424
424
4-24.1
4-24.1
4-24.1
4.24.1
4-24.1
4-24.1
4-24.1
4.24.2
4.25
427
427
427
427
4-29
431
4.34
4-34

434
434
434
4-36
436
436
436
4-37
437
437
4-37
437
4-37
437
4-38
438
438
438

4-38

4-38
4.38
4.38
4-39
4-39
4-40
4-41
4-41
4.41
4-42
4-62
4-62
4-62
4.3
463
463
4-64
464
4-64
465

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

OCL Considerations
FILE Statement Consnderatlons
Messages for DUMP/RESTORE
Examples F
FILE Statement From Disk to Tape
Control Statements
FiLE Statement: From Tape to Dnsk
Control Statement: From Disk to Diskette
Control Statement: From Disk to Tape
Programming Considerations
FILE DELETE PROGRAM—-$DELET
Program Description
Deleting Files
Freeing Space on an Area
Control Statement Summary
Parameter Summary
Parameter Descriptions
PACK Parameter
UNIT Parameter
LABEL Parameter
DATE Parameter
DATA Parameter
OCL Considerations
Examples
Deleting One of Several Flles Havmg the
Same Name
Freeing Allocated But Unused Space on an Area
FILE COMPRESS PROGRAM—$FCOMP
Program Description
Move and Copy Functions
Move Function
Copy Function
Backup and Restore Functuons
Backup Function
Restore Function
Control Statement Summary
Parameter Summary
Parameter Description
FROM and TO Parameters (COPYFILE)
PACKIN and PACKO Parameters (COPYFILES)
COMPRESS Parameter (COPYFILES)
FROM Parameter {TAPEFILES)
TO Parameter (TAPEFILES)
LABEL Parameter (TAPEFILES)
PACK Parameter (TAPEFILES)
SEQNUM Parameters (TAPEFILES)
COMPRESS Parameter (TAPEFILES)
Considerations and Restrictions .
File Statement Considerations and Restnctlons
{Backup and Restore)
OCL Considerations
Examples
SYSTEM H|STORY AREA DISPLAY
PROGRAM-$HIST
Program Description
Control Statement Summary
Parameter Summary
Parameter Descriptions
HISTORY Parameter
OCL Considerations
Examples .
DISK INITIALIZATION PROGRAM $INIT
Program Description
Types of Initialization
Control Statement Summary

465
4.65
466
466
467
467
4-68
469
4-70
4-70
471
4.7
4.71
47
472
4-73
4.74
474
474
4-74
474
4.74
475
475

4-75
4-77
4-78
4-78
4-78
4.78
4-78
4-79
4-79
4-79
4-80
4-80
482
4-82
4-82
4.82
4-82
482
4-82
4-82
4-82
4-83
4-83

483
484
484

4-93
493
494
494
4-94
494
494
497

4-100

4-100

4-100

4-101

Contents v

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

Parameter Summary
Parameter Descriptions
TYPE Parameter (UIN)
UNIT Parameter
VERIFY Parameter
ERASE Parameter (UIN)
Surface Analysis
PACK Parameter (VOL) .
ID (Identification) Parameter (VOL)
NAME360 Parameter (VOL)
OLDPACK Parameter (VoL)
OCL Considerations
Examples
Primary Initialization of Two Volumes
Messages for Disk Initialization Lo
CHAIN CLEANING PROGRAM—$KLEAN
Program Description . . .
OCL Considerations e
FILE AND VOLUME LABEL DISPLAY
PROGRAM—$LABEL
Program Description
Storage Requirements
Control Statement Summary ..
Parameter Summary (Display Statement)
Parameter Descriptions
UNIT Parameter
LABEL Parameter
SORT Parameter
Entire Contents of vVTOC
Meaning of VTOC Information
File Information Only
Example
Printing VTOC Information for Two Files
LIBRARY MAINTENANCE PROGRAM—$MAINT
Program Descriptions e .
Use of Disk Space .
Organization of This Section .
SMAINT—ALLOCATE FUNCTION
Uses e
Control Statement Summary
Considerations and Restrictions
Parameter Summary
Parameter Descriptions
TO Parameter e e
SOURCE and OBJECT Parameters
DIRSIZE Parameter
SYSTEM Parameter }
HISTORY Parameter
WORK Parameter
PACKO Parameter
Using the Aliocate Function e,
Creating a Source Library (SOURCE-number}
Changing the Size of (Reallocating) a Source
Library (SOURCE-number)

Deleting a Source Library (SOURCE-0)
Reorganizing a Source Library (SOURCE-R)
Creating an Object Library (OBJECT-number)
Changing the Size of (Reallocating) an Object
Library (OBJECT-number) .
Deleting an Object Library (OBJECT-0) .
Reorganizing an Object Library (OBJECT-R)

Compress in Place (OBJECT- ; R f)
number

vi

4-102
4-103
4-103
4-104
4-104
4104
4-104
4-105
4-105
4-105
4105
4-106
4-106
4-106
4107
4-108
4108
4-108

4-109
4-109
4-109
4-110
4-110
4-111

4-111
4-111
4-111
4-111

4-113
4-115
4-116
4-116
4117
4-117
4-117
4-117
4-118
4-118
4-118
4-119
4-120
4-121

4121

4-121

4121

4-121

4-122
4-122
4-123
4-124
4-124

4-124
4125
4126
4-126
4127
4127
4127

4-127

SMAINT-COPY FUNCTION
Uses -
Control Statement Summary
Reader-to-Library
File-to-Library
Library-to-File
Library-to-Library ..
Library-'to-Printer-and/or-Card
Considerations and Restrictions
Parameter Summary
Library Directories . e,
Source and Object Library Directories
System Directory
Naming Library Entries
Characters to Use
Length of Name
Restricted Names .
Entries with the Same Name
Retain Types .
Temporary Entries
Permanent Entries
Simulation Area Verification
Using the Copy Function
Reader-to-Library
File-to-Library
Library-to-File
Library-to-Library Lo
Library-to-Printer and/or Card
$MAINT—-DELETE FUNCTION
Uses e,
Control Statement Summary
Considerations and Restrictions
Parameter Summary Lo
SMAINT—MODIFY FUNCTION
Uses N
Considerations and Restrictions
Control Statement Summary
Parameter Surnmary R
Remove, Replace, Insert Parameters
$SMAINT—RENAME FUNCTION
Uses e
Considerations and Restrictions
Control Statement Summary
Parameter Summary
OCL Considerations
SMAINT—-EXAMPLES

SPOOL FILE COPY PROGRAM—$QCOPY

Program Description .
Control Statement Summary
Parameter Summary .o
Parameter Descriptions—COPYSP

FROM and TO Parameters
Parameter Descriptions—COPYPRTQ

UNIT Parameter

FORMSNO Parameter

JOBN Parameter

STEPN Parameter

LENGTH Parameter

REMOVE Parameter

OUTPUT Parameter

FILE Parameter

HEADER Parameter

STOP Parameter

4128
4-128
4129
4129
4-129
4-129
4-130
4131

4131

4-132
4-135
4-135
4135
4135
4-135
4-135
4135
4-135
4-136
4136
4-136
4-136
4-137
4137
4-137
4-138
4-138
4-139
4-146
4-146
4-146
4-147
4-148
4-149
4-149
4-149
4-150
4-151
4-152
4-153
4-153
4-153
4-153
4-154
4-155
4-156
4167
4167
4-168
4171

4176
4-176
4-176
4-176
4-176
4176
4-176
4-176
4176
4-176
4177
4-177
4177

Parameter Descriptions—COPYPCHQ
UNIT Parameter
CARDNO Parameter
JOBN Parameter
STEPN Parameter
REMOVE Parameter
QUTPUT Parameter
FILE Parameter
HEADER Parameter
STOP Parameter
Parameter Descnptnons—COPYRDRQ
UNIT Parameter
RECL Parameter
INPUT Parameter
FILE Parameter
KEY Parameter
LOKEY Parameter
HIKEY Parameter
LOREC Parameter
HIREC Parameter
OUTPUT Parameter
JOBN Parameter
PARTITION Parameter
REMOVE Parameter
Parameter Descriptions— COPYCTRL
FILE Parameter
Parameter Descriptions— DISPLAY
UNIT Parameter
OUTPUT Parameter
FiLE Parameter
Q Parameter .
Parameter Descriptions— RESTORE
FILE Parameter
JOBN Parameter
STEPN Parameter
FORMSNO Parameter
CARDNO Parameter
STOP Parameter
QUTPUT Parameter
UNIT Parameter
Parameter Descnptmns——COPYQ
Q Parameter
FROM Parameter
TO Parameter
JOBN Parameter
STEPN Parameter
REMOVE Parameter
PARTITION Parameter
PRIORITY Parameter
FORMSNO and CARDNO Parameter
Parameter Descriptions—AUTHQORIZE
LIST Parameter . .
Parameter Descruptuons——CLASS|FY .
PROGRAM Parameter .
UNIT Parameter .
CLASS Parameter
LIBRARY Parameter
PACK Parameter
Spoo! File Considerations and Restructlons
FILE Requirements
Partition Size Requirements
Copy the Entire Spool File (COPYSP)
Copy Selected Job Steps from the Print
Queue (COPYPRTQ) .

Copy Selected Job Steps from the Punch

Queue (COPYPCHQ) .

4477
4177
4-177
4177
4177
4177
4178
4178
4-178
4178
4-178
4178
4178
4178
4179
4179
4179
4-179
4-180
4-180
4-180
4-180
4-180
4-180
4-181

4181

4-181

4-181

4.181

4-181

4-181

4-182
4182
4-182
4-182
4-182
4.182
4-182
4-182
4-182
4-183
4-183
4-183
4-183
4-183
4183
4-183
4183
4-183
4-183

4-183

4-183

4-184
4-184

4184
4.184
4184

4.184
4-184
4184
4.184
4184

4-184.1

4-190

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

Copy Jobs To or From the Reader Queue
(COPYRDRQ) .
Read Control Statements from a Fule
(COPYCTRL)
Copy a Display of the Status of the Spool
Queues (DISPLAY) .
Restore Print or Punch Queue Records From a
File (RESTORE) .
Copy Selected Job Steps From One Spool F||e
to Another (COPYQ)
CHANGE THE AUTHORIZ FILE (AUTHORIZE)
Authorization Fields
Create Authorization Record .
Change Authorization Record
Delete Authorization Record .
ASSIGN A CLASS NUMBER TO A
PROGRAM (CLASSIFY)
OCL Considerations
Examples
Using the Spool File Copy Program Under CCP
Program Request
User Authorization .
Using the Spool File Copy Program from a Termmal
Responding to Error Messages
Placing Jobs on the Reader Queue from
a Terminal .
Displaying the Spool Queues
CCP Assignment Set
How to Request $QCOPY From a Termmal
Examples .
Considerations for Termmatlng the Spool Fnle
Copy Program Under CCP . . .
RECOVER INDEX PROGRAM— $RINDX
Program Description
File Identification
OCL Considerations
Considerations and Restnctlons
Examples .
REASSIGN ALTERNATE TRACK
PROGRAM—$RSALT
Program Description
Control Statement Summary
Parameter Summary
Parameter Descriptions
UNIT Parameter
PACK Parameter .
SIMULATION AREA PROGRAM—$SCOPY
Program Description
Control Statement Summary
Parameter Summary
Parameter Descnptlons——COPYAR EA
FROM and TO Parameters
PACK Parameter
AREA Parameter
TONAME Parameter
SYSTEM Parameter
Parameter Descruptlons—CLEAR
FROM Parameter
PACK Parameter
AREA Parameter
CLRNAME Parameter
1D Parameter
TYPE Parameter .
Parameter Descriptions— NEWNAME
TO Parameter
PACK Parameter

4-192

4-194

4-194

4-195

4-195
4-196
4-196
4-196.2
4-196.2
4-196.2

4-196.3
4-196.5
4-196.5
4-202.1
4-202.2

4-202.2

4-202.3
4-203

4-203
4203
4204
4205
4-206

4-206
4-208
4-208
4-209
4-210
4-210
4-211

4.212
4.212
4-212
4-213
4-213
4-213
4-213
4-216
4-216
4-217
4-219
4-222
4-222
4-222
4-222
4-222
4-222
4-222
4-222
4-222
4.222
4-222
4-222
4-223
4-223
4.223
4-223

Contents vii

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

AREA Parameter
ID Parameter .
SYSTEM Parameter
CLRNAME Parameter .
Parameter Descriptions—COPYlPL
FROM and TO Parameters
PACK Parameter
TONAME Parameter .
Parameter Descriptions—NAMES
PRINT Parameter .
Parameter Descriptions—MOVE
FROM and TO Parameters
PACK Parameter
AREA Parameter
TONAME Parameter
OCL Considerations
Examples
TAPE INITIALIZATION PROGRAM—$TINIT
Program Description .
.Control Statement Summary
Parameter Summary
OCL Considerations
Printout of Volume Label
Messages for Tape Initialization
Meaning of Volume Label Information .
TAPE ERROR SUMMARY PROGRAM—$TVES
Program Description
Error Logging Format
OCL Considerations P
VTOC SERVICE PROGRAM—$WVTOC
Program Description .
Control Statement Summary
Parameter Summary
Parameter Descriptions
PACK Parameter
UNIT Parameter
OCL Considerations
Examples

APPENDIX A. IBM SYSTEM/3 STANDARD
CHARACTER SET e,

APPENDIX B. CALCULATING FILE SIZE
Data Area Track Requirements
Index Area Track Requirements
Track Usage for Index Files
Core Index e
Calculating File Sizes (Main Data Area)—
Summary
Determining the Number of Tracks in a
Sequential or Direct File .o
Determining the Number of Tracks in an
Indexed File (Main Data Area) .
Determining the Number of Tracks of Disk
Track Index e
Converting Cylinder/Track to Track Number
Converting Track Number of Cylinder/Track

viii

4223
4223
4-223
4223
4223
4223
4223
4223
4224
4224
4224
4-224
4224
4224
4224
4225
4225
4-233
4-233
4234
4235
4236
4-236
4236
4237
4239
4239
4-240
4240
4241
4241
4241
4241
4241
4241
4241
4-242
4242

B-1
B-1
B4
B4
B-6

B-7
B-7
B-7
B-7

B-7
B-8

APPENDIX C. OPERATOR CONTROL COMMANDS
{occ) S

OCC Summary e

Information About Syntax liustrations

APPENDIX D. SUBR15—-LIBRARY ENTRY
RETRIEVAL SUBROUTINE

Linking SUBR 15 with RPG 1|

Linking SUBR15 with Assembler

Error Identification

APPENDIX E. TRANSACTION LOGGING-
$TRLOG......
Using Transaction Logging
Tape Considerations
Loading $TRLOG
Controlling $TRLOG
*Operating Considerations
Programming Considerations

APPENDIX F. PROGRAM REFERENCE
INFORMATION

C-1
C-1
C-1

D-1
D-2
D-6
D-6

E-1
E-1
E-1
E-1
E-2
E-2
E-2

F-1

This publication contains four parts. Part 1 describes
Operation Control Language (OCL) statements, Part 2
describes the system concepts and facilities, Part 3 describes
the format of a 3340 and 3344 volume, and Part 4 de-
scribes the system service programs.

PART 1

Refer to Part 1 if you want to know:

® What an OCL statement is

® What each OCL. statement is used for (function)

® Where each OCL statement is placed in relation to others
and when it is needed (placement)

® How each OCL statment must be coded (format)

What each OCL statement must contain {contents)

PART 2

Refer to Part 2 if you want to know about:
® Model 15 programming concepts

® Files and file services

® Library facilities and concepts

® System operation overview

® Multiprogramming and spooling overview

® System control program facilities

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

How to Use This Manual

PART 3
Refer to Part 3 if you want to know about:

® The format and storage capacity of a 3340 or 3344
volume

® Simulation areas
® Main data areas
® Alternate tracks

® Cylinder O format

PART 4
Refer to Part 4 if you want to know about:

® Which system service programs are supplied with the
system

® The function of each system service program

® The operational control language (OCL) statements and
control statements applicable to each system service
program

APPENDIXES

Refer to the appendixes if you want information about:

® Standard System/3 character set

® C(Calculation of file sizes

® Qperator contro! commands (OCC)

® How to retrieve library entries with SUBR 15

® How to log transactions

® |Individual programs associated with SCP (system control
programming 5704-SC2)

How to Use This Manual ix

This page is intentionally left blank.

Systern/3 Model 15D features a processing unit that allows
the attachment of a 3340 Direct Access Storage Facility
and a 3344 Direct Access Storage. With a 3340A2 and
3344B2, the maximum online disk storage is approximately
506 megabytes.

When compared to a System/3 Mode! 15A, Model 15B, or
Model 15C, the Model 15D has a faster instruction cycle
time for certain non-1/0 instructions. The purpose of the
faster cycle time is to complement the requirements of the
enhanced programming support.

System/3 Model 15D is supported by a multiprogramming
system control program (Program Number 5704-SC2) that

resides on a simulation area of a direct access storage device.

It provides functions that are not available on other
System/3 models.

Three program partitions are supported. The scheduling
and controlling of programs in the partitions is controlled
by operation controf language (OCL) statements and
operator control commands (OCC). See Appendix C for a
summary of the commands.

Greater online library capacity is available because each
partition can directly access three unique simulation areas
and shares a common simulation area (the IPL area). Simu-
lation areas are assigned by the user; reassignments for
simulation areas other than the IPL area require an appro-
priate OCL statement. (More information about simulation
areas is included in Part 3 of this manual.)

Input job streams are made up of jobs and job steps. A job
is one or more LOAD/RUN or CALL/RUN sequences
grouped together to execute in sequence and perform a
specific function. A job step is one LOAD/RUN or
CALL/RUN sequence. A JOB OCL statement must be
used to group job steps together to form a job. See Part 2
for a discussion of jobs and job steps.

Model 15D Introduction

As the system processes an input stream, jobs are processed
in job mode. Job steps not contained within a specified
job are processed, by the system, in step mode. See Part 2
for a discussion of job and step mode.

Program support provides a spooling function for certain
input and output operations. Spooling places jobs from the
input stream in a special area on disk called a reader queue.
Jobs are transferred from disk by spooling to the partitions
as required for execution.

Printed and/or punched output is placed in queues on disk
during execution of job steps. Printing or punching to the
associated devices is performed by spooling. Spooling pro-
vides greater flexibility during job scheduling and removes
many |/0O device conflicts between partitions. See Part 2
for more information on spooling.

Support for directly attached 3741 Data Station/Program-
mable Work Station is similar to that for a card reader or

card punch. In this manual, unless otherwise noted, refer-
ences to card 1/0 also apply to the directly attached 3741.

Model 15D Introduction xi

xii

Part 1. OCL Statements

OCL Statements 1-1

1-2

WHAT IS OCL?

Operation Control Language {OCL) is one means of com-
municating with the system. Operator control commands
(OCC) are another means of communicating with the
system, See Appendix C for a summary of OCC. You must
provide a set of OCL statements for each program you want
to run. Based on the information supplied in these state-
ments, the system loads and executes your programs or
performs system service functions.

You can supply OCL statements in four ways: (1} by
punching the statements into cards, which are then read by
the system; (2) by using the CRT/Keyboard to key the
statements directly into the system; (3) by keying the
statements onto a diskette, which is then read by the sys-
tem; (4) by using procedures.

After the system reads a set of OCL statements for a pro-
gram, it runs the program. When the program ends, the

system reads the next set of statements and runs that pro-
gram. This cycle is repeated until all OCL statements have
been read and the corresponding programs have been run.

The running of your program is controlled by system con-
trol programs. System control programs must be in main
storage before your jobs can be run. These programs must
be located in simulation areas.

A procedure called initial program load (IPL) initiates the
loading of selected system control programs. IPL must be
performed by the operator after the system power-on
sequence. Other system control programs are brought into
main storage, as required, during program loading and
execution.

Introduction to OCL Statements

OCL and the Job Stream

The OCL statements you supply form the basis of the job
stream. If your program requires data from the system
input device (the device used to read OCL statements), the
data must follow the corresponding OCL. The job stream
can contain programs and program data as well as OCL
statements. (Figure 1-1 shows an input job stream.)

You can also store sets of OCL statements for your pro-
grams outside the job stream in a source library on disk.
These sets are called procedures. You can instruct the
system to merge procedures into the job stream, which
eliminates recoding frequently-used statements. (See
Procedures in Part 2 of this manual.)

Data for Second Program / :

Data

OCL Statements for

Second Program OCL

Program

Data for First

/ - Program

First Program

OCL Statements for First
Program

— DATE Statement {optional if
entered at |IPL or viaa DATE
0OCC).

Figure 1-1. Input Job Stream

Introduction to OCL Statements 1-3

ORGANIZATION OF PART 1
Part 1 is divided into:

® Coding Rules — Defines the general contents of the QCL
statements and explains the rules for writing the state-
ments.

® Statement Descriptions — Explains the functions, format
and contents of each OCL statement, and where each
statement may be used in the job stream.

’

® Statement Examples — Presents and explains a job
stream containing most of the OCL statements.

CODING RULES
Types of Information

OCL statements contain, at most, two types of informa-
tion: a statement identifier and parameters. The statement
identifier distinguishes one statement from another; the
parameters supply additional information. The following
example shows the format of an OCL statement.

ldentifier | Parameter 1, Parameter 2, ..., Parameter n

Statement ldentifiers

Every OCL statement needs one of these statement identi-
fiers:

ASSIGN IMAGE PUNCH
BSCA JOB READER
CALL LOAD RUN
COMPILE LOG SWITCH
DATE NOHALT /&

FILE PAUSE /.

HALT PRINTER * (asterisk)

The word LOAD is an example of a statement identifier.

1 4 8 12 16 20 24 28 32 36

l%gu Ria JIFl2

' ! |

Parameters

Some statements need parameters; others do not (see
Statement Descriptions for an explanation). Parameters
can be either codes or data. A code is a word or group of
characters that has a certain meaning. Data is information
such as the names, locations, and lengths of files on disk.
(See Statement Descriptions for data and code restrictions
on parameters.) In the foillowing example, PROG2 is the
name of an RPG 1l object program, and F1 is a 5444 unit
code that is assigned to a simulation area. PROG2 is a data
parameter and F1 is a code parameter.

I

i

rrTTTrrrriti

Some statements require certain words in parameters to tell
one parameter from another. The words are called key-
words. Parameters containing keywords are called keyword
parameters. (In the following example, NAME-MASTER,
PACK-VOL1, and UNIT-R1 are keyword parameters,
NAME, PACK, and UNIT are keywords. MASTER and
VOL1 are data parameters. R1 is a code parameter.} A
hyphen is always required between the keyword and the
code or data parameter.

36

T AT

T

—

General Coding Rules

In Part 1 of this manual, the numbers that appear above
statement formats and examples indicate the card columns
or line positions occupied by the statements. In statement
formats, special characters (such as //) and words written in
capital letters represent information that must be used
exactly as shown. Words written in small letters {(such as
code, program-name, and unit) represent information that
you must supply.

Special Meaning of Capital Letters, Numbers, and
Special Characters

Capitalized words and letters, numbers, and special charac-
ters have special meanings in OCL and statement descrip-
tions.

Words or letters that are not capitalized indicate that you
must supply a value that applies to the job you are doing.
The values that can be used are listed in the parameter
summaries.

Braces { } and brackets [] sometimes appear in param-
eters shown in statement summaries and parameter sum-
maries. They are not part of the parameter; they simply
indicate a choice of values to complete the parameter. You
must choose one of the values surrounded by braces; you
may choose a parameter surrounded by brackets or omit

that parameter entirely. Underscoring of one value enclosed

by braces indicates the default. If you specify the keyword
of a parameter, you must complete the parameter by
supplying the code or data even though a default is indi-
cated.

For example:

L] [RECL- { gg }:l means that if you do not specify this
- parameter, the system will select
RECL-96. If you specify the keyword
RECL, you must aiso supply one of
the values (80 or 96). -

means that you must specify either

® RETAIN- {T}
RETAIN-T or RETAIN-P.

P

o [,BLKL-block length] means that the block length
parameter may be omitted

entirely.

Statements Beginning with //

The rules for coding the statements are as follows (the term
position refers to either record column or line positipn):

The // must be placed in positions 1 and 2. The * /&,
and /. statements are exceptions and must start in posi-
tion 1. (See Statement Descriptions for *, /&, and /.
statements.)

There must be one or more blanks between the // and
the word that forms the statement identifier (DATE,
RUN, CALL, etc.). Exceptions are the JOB statement,
which must have a jobname immediately following the
//, and the LOAD statement, which may have a stepname
immediately following the //.

There must be one or more blanks between the end of
the statement identifier and the first parameter.

If you need more than one parameter, use a comma to
separate them. No blanks are allowed within or between
parameters. For the exception to this rule, see the des-
cription for the HIKEY parameter under F/LE State-
ment (Multivolume Disk Files). Anything following the
first blank after the last parameter is considered a
comment (see Comments).

If you are writing keyword parameters, place the key-
word first, and use a hyphen to separate the keyword
from the code or data parameter.

If the parameter is not a keyword parameter, write the

parameters in the order in which they are discussed in
this manual.

Introduction to OCL Statements 1-b

(In the following example, the statement identifiers are
LOAD and FILE. The parameters are PROG1, R1,
NAME-MASTER, UNIT-R1, and PACK-VOL1.)

Statement Length

OCL statement length is as follows:

Device Number of Characters
MFCU 96
MFCM 80
1442 80
2501 80
CRT/Keyboard 96
3741 96
Continuation

The only OCL statements that may exceed 80 or 96 charac-
ters, including blanks and comments, are FILE, COMPILE,
PUNCH, and PRINTER. Otherwise, each record you use
must not exceed 80 or 96 characters. (Data for the IMAGE
statement requires continuation for the cards or lines con-
taining the chain image characters, but the data follows
different continuation rules. See IMAGE Statement under
Statement Descriptions for more information.)

16

1 4 8 12 16 20 24 28 32 36 40 44 48
1/ ldAD qu;L
// ArlL WAME= Asren,UUIT-ﬁﬂ,P BmEn

[l T

The continuation rules are as follows:

® There must be a comma after the last parameter in every
record except the last parameter in the OCL statement.
The comma, followed by a blank, tells the system that
the statement is continued in the next record.

® Each new record must begin with a // in positions 1 and
2.

® There must be one or more blanks between the // and
the first parameter in the record. (See H/KEY Parameter
under F/LE Statement [Multivolume Disk Files] for the
exception to this rule.)

The following iltustration is an example of the continuation
rules:

1 4 8 12 16 20 24 28 32 36
/ Ag 11111] MaMA-MalsmeR,| |
/l/ LABEL-B/ILILING, DATE-Ig 712176, |
/ IT-RU, P CkfFOL
I

Comments

Your statements can include comments in the following
places:

¢ Following the // in any statement beginning with //.
The comment must begin in position 3 immediately
following the //. You can use up to 8 characters without
blanks. There must be one or more blanks between the
comment and the word forming the statement identifier.
(In the following example, the word BILLING is the
comment.) Comments of this type, when used in a JOB
or LOAD statement, are treated as jobname and step-
name, respectively.

12 16 20 24 28 32

48

3
X]

o

8
/ /LL/NF /1L\e WaMe-xid1]2 /1M-1R2
I

® After the last parameter. There must be one or more
blanks between the last parameter and your comment.
The comment can be any combination of characters
except dashes. If the statement is continued in sub-
sequent records, you can place comments after the last
parameter in any of the records.

® After statements without parameters. There must be
one or more blanks between the statement identifier and
your comment. Examples of statements without param-
eters are: /&, // PAUSE, and // RUN.

In addition to writing comments within your OCL state-
ments, you can include entire records of comments. The
OCL comment statement is provided for that purpose (there
must be an * in position 1 followed by the comment). For
more information about the comment statement, refer to
*(Comments) Statements under Statement Descriptions.

The following is an example of a comment statement:

12 20 24 28 32 36

16
HDIS] Tils] Ta cdﬂﬂgw SITIAITIEMEM

T

Spooling and Multiprogramming Considerations

All OCL statements can be used in a spooled input job
stream, and all can be used in any partition.

Note: The DATE, IMAGE, LOG, PRINTER, PUNCH,
READER, and /. OCL statements require special considera-
tion when used in a spooled input job stream.

Introduction to OCL Statements 1-7

Statement Descriptions

The following information is given separately for each OCL
statement in this section:

® Function of the statement
® Placement of the statement in regard to other statements

and the circumstances under which the statement is
needed

’

® Format of the statement

® Contents of the statement (explaining the parameters
that can be used in the statement)

® Spooling considerations for each statement

Figure 1-2 gives the function, placement, and restrictions
on use for each OCL statement. Figure 1-3 describes the
contents of the OCL. statements and is meant for reference
only. When using Figure 1-3, remember that words written
in small letters, such as filename or value, require a choice
on your part, depending on the functions you want the
statement to perform. Capitalized parameters must be
coded along with the data or code parameter. (Figure 1-3
shows which parameters are available.)

If you are not familiar with an entry, or you do not know
when to use or omit it, refer to the proper statement in the
remainder of this section.

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

Placement

Statement Appears

Statement Appears

Statement Function In Job Stream In a Procedure Coding Notes

// ASSIGN Allows reassign- Anywhere among the Must precede the RUN System pack
ment of a 5444 OCL statements statement (if RUN is (R1 or F1) cannot
unit code (R1, used). be reassigned.
F1,R2,F2)toa
simulation area.

// BSCA Changes the BSCA | Must follow LOAD or Must follow the LOAD None
line number. CAL.L statement and statement and precede

precede the RUN the RUN statement (if
statement. RUN is used).

// CALL {dentifies pro- Must precede the RUN Must precede the RUN 1. If found in a pro-
cedure to be statement. Must follow statement (if RUN is cedure, indicates
merged into job the JOB statement used). nested procedures.
stream and disk when the system is No more than nine
containing the operating in job levels of nested
source library mode. procedures allowed.
from which to 2. Must not be be-
read the procedure. tween LOAD and

RUN or CALL
and RUN.

// COMPILE Supplies informa- | Must follow LOAD or Must follow the LOAD Only one COMPILE
tion about the CALL statement and statement and precede statement allowed
program to be precede the RUN the RUN statement per job step.
compiled or statement. (if RUN is used).
assembled to the
compiler and the
linkage editor.

// DATE Changes system Must precede the first Not applicable None
date and parti- JOB, CALL, or LOAD
tion dates. statement.

Changes parti- Must follow the JOB Before LOAD statement. None
tion date for statement and precede
job. a LOAD statement

(either before the first

step or between steps).
Changes parti- Must follow the LOAD After LOAD and before Cannot be entered
tion date for or CALL statement and RUN. if DATE was used to
step. precede the RUN. change partition

date for job.
/! FILE Supplies informa- | Must follow LOAD or Must follow the LOAD Required for every

tion about a file
to the system.

CAL.L statement and
precede the RUN
statement,

statement and precede
the RUN statement
(if RUN is used).

new file created and
for existing files
being used.

Figure 1-2 (Part 1 of 5). Table of OCL Statements

Statement Descriptions 19

Statement

Function

Placement

Statement Appears
In Job Stream

Statement Appears
In a Procedure

Coding Notes

// HALT

Instructs system
to halt when
program ends;
cancels the effect
of nohalt mode.

Anywhere among the
OCL statements,

Must precede the RUN
statement (if RUN is
used).

None

// IMAGE

Tells the system
to replace the
chain-image area
with characters
indicated in the
data records that
are read from the
system input de-
vice or read from
the source library.

Anywhere among the
OCL statements.

Must precede the RUN
statement (if RUN is
used).

Required if the
printer chain has
been changed.

/1 INCLUDE

Identifies the
entry in the
source library
that contains
the OCL state-
ments to be
merged into the
job stream.

Anywhere among the
OCL statements.

Must precede the RUN
statement (if RUN is
used).

1. If system service
program control
statements follow
the RUN state-
ment in the source
member, they are
placed in the SWA
and read from
there by the system
service program.

2. Must not be
between CALL
and RUN.

//jobname JOB

Allows you to run
related job steps
together to ensure
they are run
sequentially.

Must precede the first
LOAD or CALL state-
ment for a job.

Cannot be used in a
procedure.

Places a partition
in job mode. Re-
quired whenever

spooling is active.

// LOAD
or
//stepname

LOAD

Identifies the
program to be

run and indicates
the disk that con-
tains the object
library from which
it is to be loaded.

Must precede the RUN
statement. Must follow
the JOB statement when
the system is operating
in job mode.

Must precede the RUN
statement {if RUN is
used).

None

Figure 1-2 (Part 2 of 5). Table of OCL Statements

Placement

Statement Appears

Statement Appears

Statement Function In Job Stream In a Procedure Coding Notes

// LOAD * Indicates that Must precede the RUN Must precede the RUN A LOAD * program

or after the RUN statement. Must follow statement (if RUN is cannot be loaded if

//stepname statement is the JOB statement when used). Object program another LOAD *

LOAD * processed, the the system is operating will be read from the program {with over-
object program in job mode. - system input device. lays) is executing in
will be loaded another partition.
from the system
input device or
from the file
indicated on the
specified unit.

// LOG Changes the device| Anywhere among the Must precede the RUN Applies only to the
used for display- OCL statements. statements (if RUN is partition in which it
ing system used). was entered.
messages and
controls page
ejection before
EJ and ES and
after EJ.

// NOHALT Instructs system Anywhere among the Must precede the RUN None
to continue with- [OCL statements. statement (if RUN is
out stopping used).
when a program
ends and/or sets
the severity level
of halts.

// PAUSE Causes OCL Anywhere among the Must precede the RUN This is the only OCL
processing to stop | OCL statements. statement (if RUN is statement displayed
in order to give used}). on the CRT.
the operator time
to perform a
function. Opera-
tor must restart
OCL processing.

// PRINTER Enables you to Anywhere among the Must precede the RUN None

describe the
functions per-
formed by the
system print
device and
control options
related to print
spooling.

OCL statements.

statement (if RUN is
used).

Figure 1-2 (Part 3 of 5). Table of OCL Statements

Statement Descriptions

1-1

Placement
Statement Appears Statement Appears

Statement Function In Job Stream In a Procedure Coding Notes

// PUNCH Enables you to Anywhere among the Must precede the RUN None
describe the OCL statements. statement (if RUN is
functions per- used).
formed by the
system punch
device and
control options
related to punch
spooling.

// READER Changes the Must precede LOAD Must precede the LOAD If used in a procedure,
system input or CALL statement. statement (if LOAD is the system input de-
device used to used). vice is changed when
read OCL the READER state-
statements. ment is processed; but

OCL statements are
not read from the new
system input device
untit the procedure is
completely executed.

// RUN Indicates the end Must follow the LOAD or If used, must follow the Required in the job
of the OCL state- | CALL statement and be LOAD statement and be stream for each job
ments for a job the last OCL statement the last OCL statement step which is to
step and tells for a job step. in the procedure. be run.
system to run
the program.

// SWITCH Used to set one Anywhere among the Must precede the RUN Only one switch
or more external OCL statements. statement (if RUN is used). | statement allowed
indicators on or between LOAD or
off or to leave the CALL and RUN.
indicator as it is.

/& Acts as a delimiter | Recommended as the Not allowed in a Not allowed in a
between job steps. | last OCL statement of procedure. procedure.

a job step.

Figure 1-2 (Part 4 of 5). Table of OCL Statements

1-12

Statement

Function

Placement

Statement Appears
In Job Stream

Statement Appears
In a Procedure

Coding Notes

1. With spooling
active, acts as
a delimiter
between jobs.
Causes end of
job.

2. With input

spooling active,
two consecutive
/. statements
indicate end of
spooled input.

3. With spooling

inactive, indi-
cates end of
job mode.
Causes end of
job. Next OCL
statement may
start job step
mode.

Recommended as the
last OCL. statement of
a job.

Last two OCL state-
ments in the input
job stream.

Last OCL statement

Not allowed in a
procedure.

Not allowed in a
procedure.

Not allowed in a
procedure.

Not allowed in a
procedure.

Not allowed in a
procedure.

Not allowed in a
procedure.

¥ (Comment)

Used to explain
the job, to write a
time stamp to the
SHA, or to give
the operator
instructions; does
not affect pro-
gram operation.

Anywhere among the
OCL statements.

Anywhere among the
OCL statements.

Comments are not
displayed on the
CRT.

Figure 1-2 (Part 5 of 5). Table of OCL Statements

Statement Descriptions

1-13

Statement Parameter Code Meaning of Code
// ASSIGN R1- D1A, D1B, D1C, D1D, Assign (by partition) a 5444 unit code to a simulation
D2A, D2B, D2C, D2D, area code. (Refer to ASS/GN Statement.)
R2 D3A, D3B, D3C, D3D,
D3E, D3F, D3G, D3H,
F1 D4A, D4B, D4C, D4D,
D4E, D4F, D4G, D4H
F2
AREA AREA-name Name of simulation area to be assigned.
PACK PACK-name Name of main data area associated with simulation area.
// BSCA LINE LINE-1 Change all BSCA DTF line codes to the line number
2 specified.
// CALL procedure name Name that identifies the procedure in the source library.
name
unit Specifies the simulation area that contains the procedure.
5444 unit code Unit code for simulation area. Possible codes are R1, F1,
R2, F2.
switch XXX XX XXX Specifies 8 switch characters that are compared with the
characters eight external indicators. Possible characters are 0, 1,
or X.
// COMPILE SOURCE SOURCE-name Name of source program.
UNIT UNIT-5444 unit code Specifies the simulation area that contains the source
library. Possible codes are R1, F1, R2, F2.
OBJECT OBJECT-5444 unit code | Specifies the simulation area that is to receive the object
program. Possible codes are R1, F1, R2, F2.
LINKADD LINKADD-4000: Linkage Editor: start address (hexadecimal).
8000
ATTR ATTR—MRO Requests that the object program be link-edited to use
REMAP mode, memory resident overlays.
MOV Requests that the object program be link-edited to use
MOVE mode, memory resident overlays.
/! DATE date mmddyy System date or partition date (domestic date format).
ddmmyy System date or partition date (World Trade date format).

Figure 1-3 (Part 1 of 7). Table of Parameters

Statement Parameter Code Meaning of Code
// FILE NAME NAME-filename Name the program uses to refer to the file. .
{disk files) UNIT UNIT-5444 unit code Specifies the simulation area that contains or will con-
tain the file. Possible codes are R1, F1, R2, F2.
UNIT-main data area Specifies the main data area that contains or will con-
code tain the file. Possible codes are D1, D2, D3 or D31, D32,
D33, D34, D4 or D41, D42, D43, D44.
PACK PACK-name Name of area that contains or will contain the file.
LABEL LABEL-filename Name by which your file is identified or will be
identified on disk.
RECORDS RECORDS-number Approximate number of records for the file.
or or
TRACKS TRACKS-number Number of tracks required by the file.
LOCATION LOCATION- Track number on which file begins or is to begin
track number (simulation area only).
LOCATION- Cylinder number on which file begins or is to begin.
cylinder number Track assumed zero {main data area only).
LOCATION- Cylinder number, track number on which file begins
cylinder number/ or is to begin (main data area only).
track number
RETAIN RETAIN-T Temporary file.
S Scratch file.
P Permanent file.
DATE DATE-mmddyy Tells the system the date the file was created.
ddmmyy
HIKEY HIKEY-'highest List of highest unpacked key fields allowed on each
unpacked key fields pack of an indexed multivolume file (main data area
atlowed’ only).
—Or—
HIKEY-P ‘highest List of highest packed key fields allowed on each pack
packed keyed fields of an indexed multivolume file {main data area only).
allowed’
VERIFY VERIFY-YES Verify disk write operations for this file (main data
area only).
NO Do not verify disk write operations for this file.
SHARE SHARE-YES Allow file sharing between partitions if access methods
are compatible.
NO Do not allow file sharing.

Multiple references to the same file within one program
are not allowed if SHARE-NO is specified. |f parameter
is omitted, SHARE-YES is assumed.

Figure 1-3 (Part 2 of 7). Table of Parameters

Statement Descriptions 1-15

Statement Parameter Code Meaning of Code
/l FILE NAME NAME-filename Name the program uses to refer to the file.
(tape file) UNIT UNIT-T1 Where the tape that contains or will contain the file
T2 is mounted.
T3
T4
REEL REEL-nnnnnn Name of the labeled tape that contains or will contain
the file.
NL The tape is not labeled.
NS The tape contains non-standard labels {input only}.
BLP A standard labeled tape is mounted. Bypass label
processing (input only}).
LABEL LABEL-name Name by which your file is identified on tape.
or
LABEL-
‘character string’
DATE DATE-mmddyy The date the file was created.
ddmmyy
RETAIN RETAIN-nnn The number of days a file should be retained before
it expires.
BLKL BLKL-block length The number of bytes in a physical block on tape.
RECL RECL-record length The number of bytes in a logical record.
RECFM RECFM-F Fixed length, unblocked records.
VvV Variable length, unblocked records.
D Variable length, unblocked D-type ASCII records.
FB Fixed length, blocked records.
VB Variable length, blocked records.
DB Variable length, blocked, D-type ASCI!! records.
END END-LEAVE The tape remains in position after the file is processed.
UNLOAD The tape is rewound and unloaded after processing.
REWIND The tape is rewound after processing.
DENSITY DENSITY-200 The tape will be written at 200 bpi (bits per inch) density.
556 The tape will be written at 556 bpi density.
800 The tape will be written at 800 bpi density.
1600 The tape will be written at 1,600 bpi density.
Default for 7-track is 800 bpi.
Default for 9-track is 1,600 bpi.
ASCHI ASCII-YES An ASCII file is being processed or created.
NO An EBCDIC file is being processed or created.
DEFER DEFER-YES The tape volume will be mounted later.
NO The tape is presently mounted.
CONVERT CONVERT-ON Data read from or written to a 7-track tape file will
be converted.
OFF Data read from or written to a 7-track tape file will
T not be converted.
TRANSLATE TRANSLATE-ON Data read from or written to a 7-track tape file will
be translated.
OFF Data read from or written to a 7-track tape file will
not be translated.

Figure 1-3 (Part 3 of 7). Table of Parameters

1-16

Statement Parameter Code Meaning of Code
!/ FILE PARITY PARITY-EVEN The 7-track tape file will be read or written in even
(tape) parity.
(continued) 0obb The 7-track tape file will be read or written in odd
parity.
SEQNUM SEQNUM-nnnn File sequence number can be 0001 to 9999.
X Prepositioned file.
// FiLE NAME NAME-filename Name the program uses to refer to the file.
(device inde-
pendent card, UNIT UNIT-MFCU1 Primary hopper of 5424 MFCU.
diskette, or MFCU2 Secondary hopper of 56424 MFCU.
printer files) MFCM1 Primary hopper of 2560 MFCM.
MFCM2 Secondary hopper of 2560 MFCM,
1442 1442 Card Read Punch.
2501 2501 Card Reader.
3741 3741 Data Station/Programmable Work Station.
1403 1403 Printer.
3284 3284 Printer.
READER Use the partition’s assigned system input device.
PRINTER Use the partition’s assigned system print device.
PUNCH Use the partition’s assigned system punch device.
PRINT PRINT-YES Interpreting is to be done on punch files.
NO Interpreting is not to be done on punch files.
RECL RECL-record length Number of bytes in a logical record (3741 only).
/l HALT None
// IMAGE format HEX Characters from system input device are in hexadecimal
form.
CHAR Characters from system input device are in EBCDIC
form.
MEM Characters are from the source library.
number value Number of new characters.
name name ldentifies the source member containing the characters
in the source library.
unit 5444 unit code Specifies the simulation area that contains the source
library. Possible codes are R1, F1, R2, F2.
// INCLUDE procedure name The name of the procedure that contains the OCL to be
name merged.
unit 5444 unit code Specifies the simulation area that contains the procedure.
Possible codes are R1, F1, R2, F2.
switch XXX XXX XX Specifies 8 switch characters that are compared with the
characters eight external indicators. Possible characters are 0, 1, X.

Figure 1-3 (Part 4 of 7). Table of Parameters

Statement Descriptions

117

Statement Parameter Code Meaning of Code
//iobname JOB | PRIORITY PRIORITY-0 Specifies a job’s priority on the reader queue and on the
a1 output queues unless overridden by a PRIORITY
2 parameter on a PRINTER or PUNCH statement.
3
4
5
CORE CORE-size Specifies amount of main storage required to execute
the largest step of a job.
SPOOL SPOOL-YES Indicates whether spooling can or cannot be used for
NO the job. Default is YES.
PARTITION PARTITION-1 Specifies the partition in which a spooled job should be
2 executed. A means 1 or 2; B means 1 or 3; C means 2
3 or 3; D means 1, 2, or 3.
A
B
C
D
QcorPy OCOPY_Y_E__§ Allows (QCOPY-YES) or disallows (QCOPY-NO) the
NO spool file copy program ($QCOPY) to access this job on
the reader queue.
/! LOAD asterisk * Program is to be loaded from the system input device.
or program-name | name Identifies the file that contains the object program.
//stepname unit main data area code Specifies the main data area that contains the file.
LOAD switch XXXXXXXX Specifies 8 switch characters that are compared with the
characters eight external indicators. Possible characters are 0, 1, X.
// LOAD program-name | name Name of program that is to be loaded from an object
or library on disk.
//stepname unit 5444 unit code Specifies the simulation area that contains the program.
LOAD Possible codes are R1, F1, R2, F2.
switch XXXXXXXX Specifies 8 switch characters that are compared with the
characters eight external indicators. Possible characters aré 0, 1, X.
// LOG device CONSOLE Log to CRT and system history area on system pack.
1403 Log to CRT, the 1403 printer, and the system history
area on the system pack.
3284 Log to CRT, the 3284 printer, and the system history
area on the system pack.
mode EJECT! Eject a page before ES and EJ and after EJ.
NOEJECT! Do not eject a page before ES and EJ and after EJ.

statement.

1When you use the spool print writer, an eject occurs at the start of every job step, regardless of the mode specified in the LOG

Figure 1-3 (Part 5 of 7). Table of Parameters

Statement Parameter Code Meaning of Code
// NOHALT SEVERITY SEVERITYA1 Tells the system to select default options for error
2 halts.
4
8
// PAUSE None
// PRINTER DEVICE DEVICE-1403 1403 Printer is used as the system print device.
3284 3284 Printer is used as the system print device.
LINES LINES-number Specifies the number of print lines per page.
FORMSNO FORMSNO-forms Informs the operator which forms type should be
type mounted on the printer, and determines the forms type
of the spooled printed output.
COPIES COPIES-number With spooling active, atllows you to obtain more than
one copy of each job step’s printed output.
DEFER DEFER-YES Allows you to begin printing a job step’s spooled out-
NO put before the job step completes execution
(DEFER-NO). Defaultis DEFER-YES.
CLOSE CLOSE-YES Allows you to control when print spool will close an
NO intercepted job step on the spool file.
QCOPY QCOPY-YES Allows you to prevent spool file print records from
—N—O— being copied by the spool file copy program.
ALIGN ALIGN-YES Allows you to perform forms alignment for spooled
NO printed output (ALIGN-YES). Default is ALIGN-NO.
PRIORITY PRIORITY-0 Specifies a job step’s priority on the spool print queue.
1 Default is the priority of the job at the time it is
2 executed.
3
4
5
// PUNCH DEVICE DEVICE-MFCM1 Primary hopper of 2660 MFCM.
MFCM2 Secondary hopper of 2560 MFCM.
MFCU1 Primary hopper of 5424 MFCU.
MFCU2 Secondary hopper of 5424 MFCU.
1442 1442 Card Read Punch.
3741 3741 Data Station/Programmable Work Station.
CARDNO CARDNO-card type Tells the operator which card type to use for punching.
COPIES COPIES-number With spooling active, allows you to obtain more than
one copy of each job step’s punched output.
DEFER DEFER-YES Allows you to begin punching a job step’s spooled
NO output before the job step completes execution
(DEFER-NO). Default is DEFER-YES.
QCOPY QCOPY-YES Allows you to prevent spool file punch records from
NO being copied by the spool file copy program.
PRIORITY PRIORITY-0 Specifies a job step’s priority on the spool punch gueue.
1 Default is the priority of the job at the time it is
2 executed.
3
4
5

Figure 1-3 (Part 6 of 7). Table of Parameters

Statement Descriptions

1-19

Statement Parameter Code Meaning of Code
// READER code CONSOLE CRT/keyboard.
MFCU1 Primary hopper of 5424 MFCU.
MFCU2 Secondary hopper of 5424 MFCU.
MFCM1 Primary hopper of 2560 MFCM.
MFCM?2 Secondary hopper of 2560 MFCM.
1442 1442 Card Read Punch.
2501 2501 Card Reader.
3741 3741 Data Station/Programmable Work Station.
// RUN None
// SWITCH indicator- 0 Set external indicator off.
settings 1 Set external indicator on.
X Leave external indicator as it is.
/& None
/. None
* (Comment) None
* TIME Write a time stamp to the SHA (system history area).

Figure 1-3 (Part 7 of 7). Table of Parameters

1-20

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

ASSIGN Statement

Function

Placement

Format

Contents

Examples

The ASSIGN statement allows the reassignment of the 5444 unit codes (F1, R1, F2, R2)
to any of the supported simulation areas. The reassignment(s) applies only to the parti-
tion in which the ASSIGN statement is processed. The system pack cannot be reassigned.
Therefore, a maximum of nine user-assigned simulation areas is allowed (three per parti-
tion). All reassignments remain in effect until another ASSIGN statement is processed or
until another initial program load (IPL) is performed.

The ASSIGN statement can appear anywhere among the OCL statements. In a procedure,
the ASSIGN statement must precede the RUN statement.

// ASSIGN 5444 unit code — simulation area code [,AREA-name] [,PACK-name]
Possible 5444 unit codes are R1, F1, R2, F2.

Possible simulation area codes are:

3340 drive 1 D1A, D18, D1C, D1D
3340 drive 2 D2A, D2B, D2C, D2D
3340 drive 3 D3E, D3A
3340 drive 4 D4E, DAA
3344 drive 3

volume 1 D3E, D3A

volume 2 D3F,D3B

volume 3 D3G, D3C

volume 4 D3H, D3D
3344 drive 4

volume 1 D4E, D4A

volume 2 D4F, D4B

volume 3 D4G, D4C

volume 4 D4H, D4D

AREA-name: This optional parameter is used to verify the name of the simulation area.
The system checks this name against the actual simulation area name to ensure that the
proper simulation area is being assigned. For information about how a simulation area is
given a name, refer to Simulation Area Program ($SCOPY).

PACK-name: This optiona! parameter is used to verify the name of the main data area
associated with the simulation area specified on the ASSIGN statement. The system
checks this name against the actual main data area name to ensure that the proper main
data area is online and in a ready state. For information about how a main data area is
given a name, refer to Disk Initialization Program ($INIT).

// ASSIGN F2-D4C,R1-D3B,R2-D1D

For the partition in which the ASSIGN statement is processed, the following simulation
area assignments are made:

® Simulation area D4C on volume 3 of 3344 drive 4 will be referenced as F2.

® Simulation area D3B on volume 2 of 3344 drive 3 will be referenced as R1.

ASSIGN Statement 1-21

Considerations and
Restrictions

1-22

® Simulation area D1D on 3340 drive 1 will be referenced as R2.

® The simulation area assignment for F1 was made during IPL.
// ASSIGN R1-D3E,PACK-D3D3D3,AREA-D3ED3E

® For the partition in which the ASSIGN statement is processed, simulation area D3E on
drive 3 will be referenced as R1.

® The name of the simulation area is verified as being D3ED3E (AREA-D3ED3E).

® The name of the main data area associated with the simulation area is verified as being
D3D3D3 (PACK-D3D3D3).

The reassignment of the simulation areas is effective immediately after the ASSIGN
statement is processed.

Assume that an IPL is performed with the PROGRAM LOAD SE LECTOR switch setting
at DISK 1 F1. The system will assign F1 to D1A for all partitions; the unit code assigned
to the system pack must not be used in the ASSIGN statement. Two different 5444 unit
codes cannot be assigned to the same simulation area within a partition.

An ASSIGN statement is not processed when it is included among the OCL statements of
a job step that is flushed.

If the PACK and/or AREA parameter is specified, only one simulation area can be re-
assigned on each ASSIGN statement.

The name of the area (main data and/or simulation) is checked only if the appropriate
parameter (PACK and/or AREA) is specified.

BSCA Statement

Function The BSCA statement allows you to change all BSCA line specifications in your program.
Therefore, you can use BSCA line 1 or 2 without recompiling the program. If the BSCA
statement is not entered, the line specifications in the program are not changed.

Placement The BSCA statement must follow the LOAD or CALL statement and precede the RUN
statement,
Format // BSCA parameter
Contents The parameter LINE-code is a keyword parameter. The codes are as follows:
Code Meaning

1 Change all BSCA line specifications to BSCA line 1.

2 Change all BSCA line specifications to BSCA line 2.
Spooling Considerations None

BSCA Statement 1-23

CALL Statement

Function

Placement

Format

Contents

Example

Spooling Considerations

CALL statements are needed only when you want to call a procedure from the source
library.

To understand the function of the CALL statement, you must understand the relationship
between the job stream and procedures. The job stream contains the OCL statements
that control the system. The system reads the job stream from the system input device.
Procedures are sets of OCL statements in a source library on disk. They have no effect

on the stream until they are merged into the job stream.

You can modify the procedure identified by a CALL statement, by providing other OCL
statements (procedure override statements, see Changing Procedure Parameters) after the
CALL statement. These statements temporarily modify the procedure. The last state-
ment of the CALL sequence must be a RUN statement. The RUN statement is required
whether or not you supply other OCL statements, (Procedures are further explained in
Part 2.)

CALL statements can be used in the job stream or in a procedure. They are, in effect,
replaced by the procedures they identify. The CALL statement must precede the RUN
statement. On spooled systems, it must follow the JOB statement. It must not be
between LOAD and RUN or CALL and RUN.

// CALL procedure-name,unit,switch characters (optional)

Procedure-name: The procedure-name is the name that identifies the procedure in the
source library. You supply the procedure-name in the tibrary maintenance control state-
ments when you use that program to place the procedure in the library. (See Library
Maintenance Program in Part 4 of this manual for restrictions on procedure-name.)

Unit: The unit parameter is a required code. The code identifies the simulation area that
contains the procedure. Possible codes are R1, F1, R2, F2.

Switch characters: The switch characters (0, 1, and X) are optional. When you include
them, you must supply 8 characters because they are compared with the eight external
indicators. The system does a comparison for each position if the switch character isa 0
or 1. An X cancels the compare operation for that position only. The first (leftmost)
switch character is compared with external indicator 1, then the second switch character
is compared with external indicator 2; this process continues until the 8 switch characters
and the eight external indicator positions are either compared or bypassed. If an equal
condition exists, the procedure is called. Otherwise, an informational message is displayed
and the job stream is flushed to the next step.

The Procedures section in Part 2 contains CALL statement examples.

None

COMPILE Statement

Function

Placement

Format

Contents

The COMPILE statement tells the system where the source program to be compiled is
located (if it is coming from a source library}, and where the object program is to be
placed. (An object program is the result of compiling or assembling a source program.)
The COMPILE statement also specifies the options to the linkage editor.

The COMPILE statement must be within the set of OCL statements that apply to the
compilation. The COMPILE statement must follow the LOAD or CALL statement and
precede the RUN statement.

// COMPILE parameters
All the parameters are keyword parameters. The keywords are:

SOURCE: The SQURCE parameter tells the system the name of the source program.
The keyword SOURCE must be followed by the name of the source program on disk.
The name is the name by which the source program is identified on disk in the source
library. You can place source programs in a source library by using the library mainte-
nance program. The program name you supply in the library maintenance control state-
ments is the name used to identify the source program in the library. (For more informa-
tion, see Library Maintenance Program in Part 4 of this manual.)

If the SOURCE parameter is not used, the source program is assumed to be in the job
stream following the RUN statement.

The SOURCE parameter must be accompanied by the UNIT parameter.
UNIT: The UNIT parameter is used only when the SOURCE pararreter is used.

The UNIT parameter is a code indicating the simulation area that ccntains the source
program. Possible codes are R1, F1, R2, F2.

OBJECT: The OBJECT parameter tells the system where to place the object program.
The OBJECT parameter may be specified without the SOURCE and UNIT parameters.
The codes used to indicate the simulation area on which the object program is to be
placed are R1, F1, R2, F2.

Note: If the OBJECT parameter is omitted, the object program is placed on the same
simulation area the compiler was loaded from. The OBJECT parameter does not affect
the placement of FORTRAN or COBOL object programs.

LINKADD: This parameter is the link-edit start address. The System/3 compilers

(RPG i1, COBOL, FORTRAN) use the overlay linkage editor to generate object modules.
Normally the starting addresses for these object modules are predetermined. However,
for some applications, such as executing object programs under control of CCP, it is
necessary to alter the starting addresses. The LINKADD parameter can be used for this
purpose (allowable entries are hex addresses 4000 or 8000).

For execution under CCP, LINKADD-8000 must be used for RPG Ii object programs and
should be used for COBOL and FORTRAN object programs. For execution under other
than CCP, LINKADD-4000 must be used for RPG || object programs (or the parameter
must not be specified). For COBOL and FORTRAN object programs, LINKADD-4000
should be specified {(or the parameter should not be specified).

COMPILE Statement 1-25

ATTR: The ATTR-MRO parameter tells the overlay linkage editor to link-edit an object
module for the REMAP technique of memory resident overlays. The ATTR-MOV param-
eter tells the overlay linkage editor to link-edit an object module for the MOVE technique
of memory resident overlays. For additional information about the memory resident
overlays, refer to the /BM System/3 Overlay Linkage Editor Reference Manual,
GC21-7561.

Note: The ATTR parameter should be used only with an O module. (MRO and MOV
program attributes will not be attached to an R module.)

The following sample COMPILE statement tells the system that the source program with
the name PROG3 is located on the simulation area assigned to F1.

12 16 20 24 28 32 36 40 44 48 52 56 60 64

g - HROGE], [V [TA], ci-RU, ¢ [/WKADD- LATTRPIRD]

Spooling Considerations

1-26

[j L I

The OBJECT-R1 parameter tells the system to place the object program on the simulation
area assigned to R1. The LINKADD-4000 parameter tells the linkage editor to link-edit
the program to start at address hex 4000. The ATTR-MRO parameter tells the linkage
editor to link-edit an object module for the REMAP technique of memory resident
overlays.

None

DATE Statement

Function

Placement

Format

Contents

Example

Spooling Considerations

The DATE statement changes the system date or one of the three partition dates.
System Date

To set the system date, the DATE statement is entered during IPL before any JOB, CALL,
or LOAD statements.

Partition Date
The partition date can be changed by use of the DATE statement, as follows:

1. Job Date: |f the DATE statement is entered after the JOB statement and before a
LOAD statement, that date will remain in effect for the remainder of that job. It
is restored to the current system date for the next job. The DATE statement need
not precede the first step; it may be placed prior to any step’s LOAD statement
and will be in effect from that step to the end of that job.

2. Step Date: If the DATE statement is entered after a LOAD or CALL statement
and before the RUN statement for that step (that is, if the DATE statement is
entered within a step}, the partition date is changed for the duration of that step.
It is restored to the current partition date for the next step.

Use of the DATE statement prior to a LOAD statement ensures that the same date is used
for each step in the job. Also, once a DATE statement is entered in this manner, a subse-
quent DATE statement may be entered for the job, but only if it occurs prior to a LOAD
statement,

// DATE date

The system date can be in either of two formats: month-day-year (mmddyy) or
day-month-year (ddmmyy). You must specify the format during system generation.

The date can be written with or without punctuation. For example, July 25, 1993,
could be specified in any one of the following ways:

07-25-93 250793
25-07-93 7-25-93
072593 25-7-93

Any characters except commas, apostrophes, numbers and blanks can be used as
punctuation.

When input spooling is present on the system, the date should be entered during IPL.
This entry can be made via a command or in response to the IPL prompt for DATE. If
the date is not entered during IPL, the first job to execute must have a DATE statement
preceding the first JOB statement.

DATE Statement 1-27

Sample Job Streams //A JOB //B JOB //C JOB
// LOAD // DATE // DATE
// DATE // LOAD // LOAD
// RUN // RUN // RUN
// LOAD // LOAD // LOAD
// RUN // RUN // DATE
/e /e // RUN

/e

In job A, the partition date is changed only for the first step of the job. For the second
step, the date is restored to the system date.

In job B, the partition date is changed for all steps in the job. The date is restored to the
system date for the next job.

In job C, the partition date is changed for all steps in the job. The DATE statement in the
second step is not allowed and will cause a message to be issued.

1-28

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

FILE Statement (Single Volume Disk Files)

Function

Placement

Format

Contents

The FILE statement supplies the system with information about disk files. The system
uses this information to read records from and write records on disk.

You must supply a FILE statement for each of the new disk files that your programs
create, and for each of the existing disk files that your programs use. The maximum
number of files allowed is explained under Scheduler Work Area in Part 2 of this manual.
The FILE statement must follow the LOAD or CALL statement and precede the RUN
statement,
// FILE parameters
All of the parameters are keyword parameters, as follows (keywords are in capital letters):
NAME-filename (in program)
UNIT-5444 unit code or main data area code
PACK-name

LABEL-filename (on disk)

RECORDS-number or TRACKS-number

track number (simulation area only)
LOCATION- cyl{nder number Main data area only
cylinder number/track number

RETAIN-code
DATE-date
VERIFY-code
SHARE-code

The NAME, PACK, and UNIT parameters are always required. The others are required
only under certain conditions.

NAME: The NAME parameter is always needed. It tells the system the name that your
program uses to refer to the file. The NAME parameter must be placed on the first record
or line if two or more records or lines are used for the FILE statement. (See General
Coding Rules for rules on continuation.)

FILE Statement (Single Volume Disk Files} 1-29

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

Programs requiring specific file names for disk files are as follows:

Program File Name

Copy/Dump Input COPYIN
Output COPYO
Output COPYP (Optional)
Work $INDEX45' (Optional)
Work SINDEX40°? (Optional)

Disk Sort Input INPUT or INPUT1

INPUT2 through INPUTS

Work WORK (Optional)
Output OUTPUT

CCP/Disk Sort Input $SOURCE
Work $WORK
Input INPUT or INPUT1 Names

INPUT2 through INPUTS required only

Work WORK for generation
Output OUTPUT (compile)

Dump/Restore Input BACKUP
Output BACKUP

Spool File Copy Output PRINTQ? (Optional)
Output PUNCHQ? (Optional)
Input READERQ? (Optional)
Output READERQ? (Optional)
Input CONTROL? (Optional)
Output DISPLAYQ? (Optional)
Input RESTORE? (Optional)
Input/update AUTHORIZ (Optional)

Assembler Input $SOURCE
Output $WORK
Work $WORK?2

COBOL Input $SOURCE

Compiler Work $WORK
Work SWORKX

FORTRAN Input $SOURCE

Compiler Work $WORK

System History Output $HISTORY

Area Display

System History QOutput $SHAFILE

Area Copy

RPG Il Compiler Input $SOURCE
Work $WORK

RPG Il Auto Input $SOURCE

Report Work $WORK

L you supply a LABEL parameter in the FILE statement, it must be LABEL-$INDEX45.
3The file name can be replaced by the name specified on a control statement parameter.
If you supply a LABEL parameter in the FILE statement, it must be LABEL-$INDEX40.

1-30

Program File Name

Macro Processor Output $SOURCE

Overlay Linkage Input $SOURCE Optional — either both
Editor Work $SWORK present or both absent
Spool (See Note) Work $SPOOL

Any program Work $INDEX45! {Optional)

adding to large {for main data area file)

indexed files or or

loading a large $INDEX40? (Optional)

unordered (for main data area file)

indexed file.

Note: The $SPOOL file is internally generated by spooling and cannot be referenced on
a FILE statement.

The keyword, NAME, must be followed by the filename used by the program. The file-
name can be any combination of characters except commas, apostrophes, or blanks. The
first character must be alphabetic. The number of characters must not exceed 8. The
following example shows how the NAME parameter for a file named FILEA would be
coded:

=
»
[ee]

16 20 24 28 32 36 40 44 48

12
M TTFAIE AM_I;- LEA, c~Oi,L4NT“ !

1 I LI

UNIT: The UNIT parameter is always needed. It tells the system the simulation area or
main data area that contains or will contain the file. The keyword, UNIT, must be
followed by a code that indicates the area. Possible codes are R1, F1, R2, F2, D1, D2,
D3 or D31, D32, D33, D34, D4 or D41, D42, D43, D44.

The previous example shows how the UNIT parameter for a file located on the main data
area D1 would be coded.

PACK: The PACK parameter is always needed. [t tells the system the name of the area
that contains or will contain the file. The system checks this name to ensure that the
proper area is being used. (For information about how an area is given a name, see Disk
Initialization Program or Simulation Area Program in Part 4 of this manual.)

The keyword, PACK, must be followed by the name of the area. The example under

NAME shows how the PACK parameter for a file on an area named VOL1 would be
coded.

Lig you supply a LABEL parameter in the FILE statement, it must be LABEL-$INDEX45.
If you supply a LABEL parameter in the FILE statement, it must be LABEL-$INDEX40.

FILE Statement (Single Volume Disk Files) 1-31

1-32

LABEL: The LABEL parameter tells the system the name by which your file is identified
or will be identified.

If the file is being created, the name you supply in the LABEL parameter is used to
identify the file. If you omit the LABEL parameter from a disk FILE statement, the
name from the NAME parameter is used.

When the name your program uses to refer to an existing disk file differs from the name
by which the file is identified, you must supply a LABEL parameter.

The keyword, LABEL, must be followed by the name of the file. The name can be any
combination of characters except commas, apostrophes, or blanks. The first character
must be alphabetic. The number of characters must not exceed 8. The LABEL param-
eter for a file named PAYROLL is coded in the following example:

—
H
[o]

12 16 20 24 28 32 36 40 44 48 52

A | 1A7LE INamMe-aA/ e [LABELPA n_}gL L [1-D2), PACK VoL |1

IRBER P

TRACKS or RECORDS: The TRACKS or RECORDS parameter is needed for files that
are being created. The parameter tells the system the amount of space needed on disk for
the file.

If you use the TRACKS keyword, you specify the number of disk tracks needed for the
file.

If you use the RECORDS keyword, you specify the approximate number of records for
the file. The total space allocated will be rounded up to full tracks, allowing adequate
space to accommodate at least the number of records indicated. This means the file could
hold more records than specified on the RECORDS keyword, allowing you to add more
records to the file. Therefore, when using the copy/dump program ($COPY) to copy

the file to another disk, you may have to specify more records than were specified in the
RECORDS keyword when the file was created.

Either TRACKS or RECORDS can appear in the FILE statement, but not both. The
keyword must be followed by a number indicating the amount of space needed.

When loading a new file at the same location as an existing file, using the LOCATION
parameter, you must specify the same parameter (TRACKS or RECORDS) that was used
when the existing file was created. (The existing file must be a temporary file.)

Several versions of a file can be created on the same disk and be given the same name. f
the TRACKS or RECORDS parameter you are using in creating a file is the same as the
TRACKS or RECORDS specified for an existing file, you must specify LOCATION. You
can reference each of these files by its name and date, or by its name and location on
disk. Both date and location must be unique for each version. (See Example 2, Example
4, and File Processing Considerations.)

If TRACKS is used, the number must be within the range of 1—398 for a simulation area;
1—-3320 for a main data area on a 3340, and 1—3720 for a main data area on a 3344. The
following example shows how the TRACKS parameter for a file requiring 20 tracks is
coded:

»
[os]
-
N
N
[o2]
N
(=3
N
»
[}
o
w
N
W
[=2]

40 a4 48

/| \Flrild WaAlME]-F L PAlcid-Wiold1], UM/ -3 JrRA 2

I I T 11T

If RECORDS is used, the number can be up to six digits long. The RECORDS parameter
for a file containing 250 records is coded as follows:

1 4 8 12 16 20 24 28 32 36 40 44 48

/| 1A/dd WaMd- 2, W/ [71-1Dd],, [Paicik—viold] 0 DF'F

| I [| T

LOCATION: LOCATION is required when you create a file with the same LABEL (the
date must be unique) and the same size as one that already exists (LOCATION is not
required if sizes differ), load to an existing file, and load an offline multivolume file to
volumes that contain other files.

The LOCATION parameter can be used to specify the first track of a new file. it may
also be used when a file is referenced, for a more specific identification check, and for
identifying one of several files having the same name and same size.

If you are creating a file, this parameter tells the system the number of the track on which
the file is to begin. 1f you omit the parameter, the track is chosen for you. The system
places the file in the smallest available space on the pack, leaving as few empty spaces

as possible.

If you are referencing a file, the parameter tells the system the number of the track on
which the file begins. In this case, the system uses the track number to distinguish one
file from another.

For a simulation area, the LOCATION format is:

LOCATION-track number

L——Track number must be between 8 and 405.
Tracks 0—7 are reserved for the system.

For a main data area, the LOCATION format is:

Slash is needed to separate cylinder number
and track number {(when both are specified)

LOCATION-cylinder number/track number

Track number must be between 0 and 19. Track
number 0 is assumed if track number is not specified.

Cylinder number must be between 1 and 166 (main

data area on 3340) or 1 and 186 (main data area on
a 3344). Cylinder 0 is reserved for the system.

FILE Statement (Single Volume Disk Files) 1-33

1-34

RETAIN: The RETAIN keyword must be followed by a code that indicates the classifi-
cations of the file. The codes are:

Code Meaning
S Scratch file
T Temporary file
P Permanent file

A scratch file is used only once in a program and cannot be retrieved after the program
has ended. To remove a permanent file you must use the file delete ($DELET) system
service program. You can remove a temporary file by using the file delete ($DELET)
system service program or by using a RETAIN-S parameter. A temporary file can be
changed to a permanent file only if the file name is changed or copied as a permanent
file.

A temporary file is usually used more than once. The area containing a temporary file
can be given to another file only under one of the following conditions:

® A FILE statement containing the RETAIN-S parameter is supplied for the temporary
file and the file referenced {opened and closed) by the user program. This statement
removes the file from the VTOC (volume table of contents) when the program with
the FiLE statement goes to end of job. The user must be aware of any external
indicators that condition the use of that file. More information about deleting files
is provided under General Results When the 2 or 3 Option for a Message is Selected
in the /BM System /3 Model 15 System Messages, GC21-50786.

® Another file with the same LABEL name is loaded into the exact area occupied by
the temporary file, but this only changes the data. Space and location parameters
are required. You must specify the same parameter (TRACKS or RECORDS) that
was used when the existing file was created. For example, if the TRACKS parameter
was specified when the FILE was created, you must use the TRACKS parameter when
reloading the same location on the pack.

® The file delete program is used to delete the file.

The area containing a permanent file cannot be used for any other file until the file
delete program has deleted the permanent file.

A disk file is classified as scratch, temporary, or permanent when it is created. If the
RETAIN parameter is omitted from the EILE statement when the file is created, the file
is assumed to be a temporary file. You may omit the RETAIN parameter when accessing
an existing file,

Notes:

1. The output file will be scratched (deleted) if all three of the following conditions
exist at end of job step:

a. A pack containing an input file is not online at the start of the job
(deferred mount).

b. The output file is to be written over the input file (load to old).

¢. RETAIN-S is used on the FILE statement for the input file.

To prevent the deletion of the output file, you should use RETAIN-T for the

input file.

2. You should reload an existing temporary file (load to old) with files of like attributes.
If an existing indexed file is reloaded with a sequential file, the new data will overlay
only the data portion of the indexed file. The index portion of the file will remain
intact but will not be usable,

The RETAIN parameter for a permanent file is coded as follows:

4 8 12 16 20 24 28 32 36 40 44 48 52 56

A/ El-11 MV, PaICKi~Fl/ el 2], i/ [r-Ipia], S-115 IIN-

DATE: The DATE parameter tells the system the creation date of an input file. It is
used to ensure that the proper version of the file is used. The date specified is compared
with the creation date contained in the file label. No comparison is done when DATE is
not specified.

For output files, the partition date is always used as the creation date. |f the DATE
parameter is specified for an output file, the system compares the specified date with the
creation date of the existing file. If no file exists, or if the dates do not agree, the system
halts. (See /nterval Timer for information on the effect of the interval timer on date.)

The date may be coded in one of two formats: month-day-year (mmddyy}, or
day-month-year (ddmmyy). The format must match the format of the system date
chosen during system generation. The date may be coded with or without punctuation.
Blanks, commas, numbers, or apostrophes are not allowed as punctuation. Leading zeros
in month and day may be omitted if punctuation is used.

To illustrate this parameter, assume that two versions of a file are written on the same
main data area. In the next example are the NAME, LABEL, and DATE parameters for
two versions of a file on the same main data area, one written on April 5, 1976, the other
on August 3, 1976. Both files have the same label: F0001.

FILE Statement (Single Volume Disk Files) 1-35

Examples

1-36

12 16 20 24 28 32 36 40 44 48 52 56 60 64

grjg— /‘L@Q{ A7l - Ack-Wol1], v r-Ipizl [lABlElL]-IF il

A e—n% il,lH_ Ll |

-

1D
1
|
N
<
~
~
]
[e]
L
)
D
A
{
<
S
™~

T RN | R IR

VERIFY: The VERIFY parameter is used to specify verification of disk write operations
for this file in this step (main data area only). If VERIFY-YES is specified, verification
takes place. If VERIFY-NO is specified, write verification is bypassed. If VERIFY is not
specified, VERIFY-YES is assumed unless RETAIN-S is coded, in which case VERIFY-NO
is assumed. Verification is always done when a simulation area is accessed.

SHARE: The SHARE parameter is used to allow or disallow file sharing between parti-
tions if the access methods are compatible. If SHARE-YES is specified, file sharing is
allowed between partitions (offline multivolume files cannot be shared); SHARE-NO
does not allow file sharing between partitions. If RETAIN-S is specified on the FILE
statement, file sharing is not allowed. If this parameter is omitted, SHARE-YES is
assumed. For additional information about file sharing, refer to File Sharing in Part 2
of this manual.

The following are examples of FILE statements. In each example, the file is described
first, then the corresponding FILE statement is shown.

Example 1: Suppose that each week you create a disk file that contains the records for
the transactions you had made that week. Assume the following facts about that file:

® The name your program uses to refer to the file is TRANS, which is also the name you
want to use to identify the file on disk.

® You are placing the file in a main data area named VOLO03.
® You intend to mount the data module on drive 2.

® You want to save the file for use at the end of the month.

The file contains 225 records.

You are letting the system choose the area that will contain the file,

The following example shows how the FILE statement for the preceding file is coded:

8

12 16 20 24 28 32 36 40 44 48 52 56 60
E|~TRANS!, VioiL UM/ T~ TAIM-7, R’ 2]

LY

Example 2: Suppose you had created, on the same data module (VOLO03), four versions
of the transaction file described in the preceding example—one for each of the weeks in
February 1976. Assume the following:

® You had created the files on the following days: 2/6/76, 2/13/76, 2/20/76, and
2/27/76 (these were the system dates used for each of the files).

® You want to reference the third file {the one created 2/20/76).
® You intend to mount the data module on drive 2.
The FiLE statement you would need is:

1 4 8 12 16 20 24 28 32

/| A1ldE WaME-[7Rlals], [dalrd- P

1] I

40 44 48 52

k-VOLFF, N [71-D]2

LI I

T 1618

Example 3: Suppose that at the end of the month you combine the files referred to in
example 2, for use in preparing your monthly bills. Further assume the following:

® Your program uses the name TRANS to refer to the file, but you want to use the name
BILLING to identify the file on disk.

® You are expressing the amount of disk space as the number of tracks required to con-
tain the file (assume the number is 15}, and you want the file to begin on cylinder 8,
track 0.

® You are placing the file in a main data area named VOLO03.

® You intend to mount the data module on drive 2.

The following example shows the FILE statement you would use for this file.

1 4 8 12 16 20 24 28 32 36 40 44 48
/| A/ILE NAME-TIRANS!, [CABIElL B/ (Il Wl

/ Ui|/iT-Di2], iPaicid-MaLd3,

// TRAC KIS -115], LlolcalTl/iaN-18]

N/ WRIEITAl M-IT

FILE Statement (Single Volume Disk Files) 1-37

Example 4: Suppose you want to create two versions of two files on disk and later to
access one version of each file. Further assume the following:

® The names your program uses to refer to the files are AA and BB, which are also the
Names you want to use to identify the files on disk.

¢ Files AA and BB are being placed on a data module on drive 2 named D2D2D2.
® One version of each file is created on 1/12/76 and 1/13/76.

® Disk space and location for the files are:

File Version Tracks Location

AA 1/12/76 10 120/0
1/13/76 10 130/0

BB 1/12/76 20 140/0
1/13/76 20 150/0

® You want to access file AA, version 1/12/76, and file BB, version 1/13/76.

The following OCL statements are needed to create the above versions of files AA and BB
and to access a version of each file.

1 4 8 12 16 20 24 28 32 36 40 44 48
C 9 VERISIOWS! DIF Al A land |87
///| (Lioldd 1RPGolBT, IR
/| DATE-d1/114
/17| F/ILiE WAME-AAL ui T-DiZ, [P CK-D2N2D2,
/ TRACIKSI- 1@, |LldcAT) oIN-| 120, Aeria/ W- 1
/| Fl/LiE WAMEL-18B, Ui TI-Di2, IPaciK-Di2n2pl,
// TIRAICIKIS|- 12, lLolclATl/ lol-| 1148/
1/ RUM
ClREATIES K ViERS! bl lolA IFl/ldds] 1A lalwip
/| L0l40 1APeoAT, e
/| DArd-d4/13/76
/| Flricid MAME-1AA) luw1 iT1-[Di2, 1Peicik|- |2 Dl2lD2],
/ TRacsl-11d , L loiclairt/ lo- 113/
V| FlreE@ WAME-BA lun: [T-D2, 1PAc i -pizpl2DiZ],
/] TIRA[K3-12d))\ dclarir om-|715
/| KW
ACCESSES! |FA1llE ViERS /loMs] lolA lldalvie 1A IES
/| ldAd [rAe /N, IR
N\ Fli el WamMe-AAL UM T-Diz), IPlalcid-IDizlbl2iDiz],
/\/] LoclaT om-11)2
V /| FlILE WMAME-BA uiviiT- D2 [Phcld-DiZDZoZ,
/|/] Tld-42/113/|74
/| |4
[

1-38

File Processing Considerations

Spooling Considerations

LOCATION and space (TRACKS or RECORDS) must be specified when you are reload-
ing an existing temporary file. You must specify the same parameter (TRACKS or
RECORDS) that you used when the existing file was created.

If you are referencing a file by the DATE parameter and space is given, the space must
be equal to the space given when that file was created.

If you are accessing a file by the LOCATION parameter and space is given, the space
must be equal to the space given when that file was created.

You can create several versions of a file with a program by changing the locations of the
files and using different partition dates.

You can create different versions of a file without LOCATION if the space parameters as
well as the partition dates are different.

The DATE parameter is allowed only for accessing existing files.

Whenever a load is performed to an existing file (load to old}, the partition date replaces
the previous date for that file.

The only file that can be reloaded is a file that has a RETAIN-T classification.

When a scratch file is created, it is not entered in the volume table of contents (VTOC).
After the job step that created the file is executed, the file cannot be accessed.

None

FILE Statement (Single Volume Disk Files} 1-39

FILE Statement (Multivolume Disk Files)

Function

Placement

Format

Contents

The FILE statement supplies the system with information about disk files. The system
uses this information to read records from and write records on disk.

You must supply a FILE statement for each of the new disk files that your programs
create, and for each of the existing disk files that your programs use. The FILE statement
must follow the LOAD or CALL statement and precede the RUN statement,

// FILE parameters

The FILE statement for multivolume disk files requires special considerations when you
define and code these keyword parameters: PACK, UNIT, TRACKS or RECORDS,
HIKEY, and LOCATION. The maximum number of multivolume files allowed is
explained under Scheduler Work Area in Part 2 of this manual. These considerations
are necessary for the following reasons:

® When processing disk files contained on more than a single volume, the system requires
information about each volume to perform ail the necessary protection and checking

functions.

® Additional information is needed to determine and check the sequence in which the
volumes are processed and when they are to be mounted on the disk drives.

The rules for coding a list of data or codes after a keyword are as follows:
® The list must be enclosed by apostrophes.

® The items in the list must be separated by commas. No blanks are allowed within or
between items (HIKEY can contain blanks).

The following example shows lists in parameters. The file is an online multivolume file
{number of units = number of volumes).

1 4 8 12 16 20 24 32 36 40 44 43

28
VL \AE WaMd-MvE; e Ju T 11,1021, PAlclk -1 Vigdl olel2]”

I 1 1

The PACK, LOCATION, TRACKS or RECORDS, and HIKEY parameters require lists.
The UNIT parameter may require a list. The considerations for using the lists in these
parameters are included in the following parameter discussions. (Parameters not men-
tioned here are used as explained under the F/LE Statement [Single Volume Disk Files].)

PACK: The names of the volumes that contain or will contain the multivolume file must
follow the keyword PACK. (PACK names must be unique for proper functioning.)

When a multivolume file is created, the system writes a sequence number on the disks to
indicate the order of the volumes. The volumes are numbered in the order in which you
list their names in the PACK parameter.

When a multivolume file is processed, the system provides two checks to ensure that the
volumes are used in the proper order:

® It checks to ensure that the volumes are used in the order that their names are listed in
the PACK parameter.

® It checks the sequence numbers of the volumes used to ensure that they are consecu-
tive and in ascending order (01, 02, and so on).

The system stops when it detects a volume that is out of sequence. The operator can do
one of three things:

® Mount the proper volume (if dismount is allowed) and restart the system.

® Restart the system and process the volume that is mounted if the sequence is ascending
{for indexed files processed offline, consecutive input, and consecutive update pro-
cessing).

® End the program.

Consecutive input or update sequence numbers do not exist if the file was not created as

a multivolume file. If a file is created as multivolume and the sequence is ascending but

not consecutive, a diagnostic halt is given.

The following is an example of the PACK parameter for an offline multivolume file that
is contained on three volumes, named VOL1, VOL2, and VOL3:

-

8 12 16 20 24 28 32 36 40 44 48

4
AL PERLNEAACAT AGEREE ACK-’V%. BERII

~
=
[+]
[
»
=
[~

UNIT: The keyword UNIT must be followed by a code or codes indicating the location
on the disk unit that contains or will contain the file. No UNIT parameter may be
repeated. Possible codes for offline multivolume files are D1 and/or D2. (D1 is a possible
code only if the IPL was performed from drive 3). Possible codes for online multivolume
files are D1, D2, D3 or D31, D32, D33, D34, D4 or D41, D42, D43, and D44.

The order of codes in the UNIT parameter must correspond to the order of names in the
PACK parameter.

When the system is processing offline multivolume files and more than one unit is speci-
fied, the unit parameters must be in ascending sequence.

FILE Statement (Muitivolume Disk Files) 1-41

1-42

When you are creating or processing a sequential or indexed file, you can use the same
drive for more than one of the volumes; however, the volumes must then all be removable.
If you do use the same drive, you must not repeat the code for the drive in the UNIT
parameter. When the number of codes in the UNIT parameter is less than the number of
names in the PACK parameter, the system uses the codes alternately.

If you specify a volume on drive 3 or drive 4, the file must be online multivolume.

Assume that your program processes an offline file consecutively. Further assume the
following:

® The disks containing the file are named VOL1, VOL2, and VOL3, respectively.

® You intend to mount VOL1 and VOL3 on 3340drive 1, and VOL2 on 3340 drive 2.
(The IPL must be performed from drive 3.)

In the following, @shows the PACK and UNIT parameters for the file. 1f all three
volumes were used on 3340 drive 2, the UNIT parameter in would have been used.

1 4 8 12 16 20 24 32 36 40 44 48 52

|

28
Y| /104 WaME-Mvid /e PACK-'VF I W2, Vol 3] T N - D, D2
1

| I

1 4 8 12 16 20 24 28 32 36 40 44 43 52

/Ll Wiay e, [PAdK - WloldZ], Mol Mdd A TIAN Tr-

]

| [

TRACKS or RECORDS: These keywords, TRACKS or RECOR DS, must be followed by
numbers that indicate the amount of space needed on each of the volumes that will con-
tain the multivolume file. TRACKS or RECORDS must be specified. Any multivolume
file load requires a TRACKS or RECORDS parameter whether the file previously existed
or not. The order of these numbers must correspond to the order of the names in the
PACK parameter. For example, assume the following:

® The program is creating a sequential (offline) file on three volumes: VOLI1, VOL2, and
VOL3.

® The first 50 records are to be placed on VOL1, the next 500 on VOL2, and the last 200
on VOL3.

The PACK and RECORDS parameters for the file are:

1 4 8 12 16 20 24 28 32 36 40 44 48 52
Al WaME-MVIFL L UM - 3
Q%K-’VOLL,VOQE, ol [,|ReldolaDs |- 151, 51 »2?¢'I
I [I 1 1

LOCATION: The keyword LOCATION must be followed by the numbers of the tracks
on which the file is to begin on each of the volumes you use for the file. The order of the
numbers must correspond to the order of the names in the PACK parameter. For
example, assume the following:

® The volumes containing the file are VOL1, VOL2, and VOL3.

® The file is to begin on cy! 100 in VOL1, cyl 10 in VOL2, and cyl 8 in VOL3.

The PACK and LOCATION parameters for the file are shown in the following example.

1 4 8 12 16 20 24 28 32 36 40 44 48
/| Flricle WaME-MVIF Le IReciolcdns - 151, 5isid., [1151d T,
7l/ UM/ 7-|' DIZ, D13, Dig!’ |
/ PHCK-'VOLI;EOLZ)VO 3]
/l/ olchlTl IoM-1* 11 ,1¢1%;====
I | 1

If you omit the LOCATION parameter, the system chooses the beginning track on each
of the volumes. When an offline multivolume file is created, offline volumes cannot
contain files if the LOCATION parameter is not specified. I1f LOCATION is specified
for one volume, it must be specified for all volumes. If the multivolume file exists,
LOCATION given for all volumes must be identical to the LOCATION parameters speci-
fied when the file was created.

RETAIN: RETAIN-S must not be specified uniess the file is online multivolume.

HIKEY: The HIKEY parameter is used only for multivolume indexed files. HIKEY
limits the highest key field that can be put on each volume of a multivolume file. The
following example contains an example of a HIKEY parameter list. In this case, the
three volumes contain lists of names. The highest keyfield allowed on the first volume is
JONES. This means that alt the records beginning with A and including JONES will be
processed on this volume. Since HIKEY parameters must be in ascending order, the next
volume will contain ali of the records with names following JONES and including
NICHOL. The last volume will contain all the records with names that come after
NICHOL.

1 4 8 12 16 20 24 28 32 36 40 44 48 52
/| Elrlcle] Walre-Mvielr el i 2" LPAklK- " Viollz], Mol [2], Mo]3”
N/ W7 KiE=" VioM ﬁ JM/EHOL)

T I I 1 I

OCL considerations for the HIKEY parameter are:

® Al characters except commas are valid.

® The list of HIKEY parameters must begin and end with an apostrophe even if only
one parameter is specified. A single apostrophe in a key field must be written as a

double apostrophe in the HIKEY parameter.

® For each PACK parameter specified, there must be a corresponding HIKEY key field
parameter for that pack.

FILE Statement (Multivolume Disk Files) 143

Spooling Considerations

144

The HIKEY fields must be equal in length and must be specified in ascending order.
The maximum length of a HIKEY field is 29 characters.
The HIKEY fields must be the same length as the keys on file.

Continuation of HIKEY sublists must begin in column 4 of the continuation record
following the // blank.

Comments must not follow the last comma on a FILE statement when the last parameter
is an incomplete HIKEY sublist.

Packed HIKEY: The packed HIKEY parameter has all the OCL considerations for

H

IKEY, including the following restrictions:

The first character following the HIKEY keyword and hyphen (HIKEY-) must be a P
to indicate packed HIKEY,

All characters in the packed HIKEY must be zoned numerics (0—9).
The number of digits in each packed key must be the same.

The number of zoned numeric characters per packed HIKEY must not exceed 15, since
the maximum packed key field length is 8.

The foliowing example shows a packed HIKEY parameter. In the example the key field
length of MVFILE is 2. The HIKEYs are X'085F’, X'092F°, and X'108F’ for VOL1,
VOL2, and VOL3, respectively. The first two packed keys required a leading zero to
make the lengths consistent.

8 20 24 28 32 36 40 44 48 52 56

1
/
/

v

4 12 16
/| FI/ILE WARE-MYIA Wi -] T2l T TP Moz e d o 37
/| W/ kev-IF diadl, 1A’

[T

None

FILE Statement (Single Volume Tape Files)

Function

Placement

Format

Contents

// FILE parameters

NAME-filename (in program)

UNIT-code
name
NL
REEL- NS
BLP
LABEL- {
DATE-date
RETAIN-code

BLKL-block tength

RECL-record length

F
v
D
RECFM- < Co
VB
DB
LEAVE
END- { UNLOAD
REWIND
200
556
DENSITY- ¢ o0
1600
YES
Ascu-{No

filename (on tape)
‘character string’

FILE Statement (Single Volume Tape Files)

The FILE statement supplies the system with information about tape files. The svstem
uses this information to read records from and write records to tape.

You must supply a FILE statement for each new tape file that your program creates and
for each existing tape file that your program uses. The maximum number of files allowed
is explained under Scheduler Work Area in Part 2 of this manual.

All parameters are keyword parameters. The parameters are as follows (keywords are in
capital letters):

1-45

1-46

YES
DEFER- { NO

OFF
CONVERT- { oN

TRANSLATE { ON

EVEN
PARITY- { oDD

SEQNUM- f x

OFF

} Sequence number

The NAME and UNIT parameters are always required. The others are required only under

certain conditions.

NAME: The NAME parameter is always required. It tells the system the name that your
program uses to refer to the file. The NAME parameter must be placed on the first card
or line if two or more cards or lines are used for the FILE statement. (See General Coding

Rules for rules on continuation.)

Programs requiring specific filenames for tape files are as foliows:

Program

Tape Sort

Copy/Dump

Disk Sort

Dump/Restore

$SHIST

$FCOmMP
(tape support
only)

File
Input

Output
Work

Input
Output

Input
Output

Input
Output

Output

Input
Output

Name

INPUT

OUTPUT

WORK1

WORK2

WORKS3

WORK4 (optional)

COPYIN
COPYOQ

INPUT or INPUT1
INPUT2 through INPUTS
OUTPUT

BACKUP
BACKUP

$HISTORY

BACKUP
BACKUP

Program

Spool File Copy

File

Input
Output
Input
Input
Output
Output
Output
Output

Name

$SPOOL (optional)
$SPOOL (optional)
READERQ! (optional)
RESTORE? (optional)
DISPLAYQ' (optional)
PRINTQ! (optional)
PUNCHQ! (optional)
READERQ! (optional)

The keyword NAME must be followed by the filename used by the program. The first
character of the NAME must be alphabetic. The remaining characters may be any com-
bination of characters except commas, apostrophes, or blanks. The number of characters
must not exceed 8. The following example shows how the NAME parameter for a file
named FICAOUT would be coded:

{02}

12

16 20

2.

4 28 32 36 40 44 48

M

=\Fl/ CA

V]

UNIT: The UNIT parameter is always required. It tells the system the tape unit that
contains or will contain the file. The keyword UNIT must be followed by a code that
indicates the unit. The codes are as follows:

Code

T1

T2

T3

T4

Meaning

Tape unit 1
Tape unit 2
Tape unit 3

Tape unit 4

The previous example shows how the UNIT parameter would be coded for a file that
resides on tape unit 2.

1 The file name can be replaced by the name specified on a control statement parameter.

FILE Statement (Single Volume Tape Files}

1-47

REEL: The REEL parameter is required for tape input files and optional for output
files. It identifies the tape that contains or will contain the file. The system uses this
parameter to ensure that the correct tape is being used. (For information about how a
tape is initialized and identified, see Tape Initialization Program — $TINIT in Part 4 of
this manual.) The keyword REEL must be followed by one of the following codes:

REEL-nnnnnn This format is used for labeled tape files. You identify the volume by
coding a maximum of 6 characters, excluding commas, apostrophes,
and blanks. NS, NL, and BLP have special meanings and may not be
used as the name of the reel,

REEL-NL This coding indicates a tape file without a label. The first record of an
unlabeled tape must not be an 80-byte record with VOL1 as the first
4 characters.

REEL-NS This coding indicates an input tape file with a non-standard label. These
labels do not adhere to the IBM Tape Label Standard. The first record
of a nonstandard labeled tape must not be an 80-byte record with
VOLT1 as the first 4 characters. REEL-NS is invalid for output files.

REEL-BLP This coding indicates that label processing of standard labeled input
tapes should be bypassed.

If the REEL parameter is not specified for an output file, the system assumes that the
output tape contains standard labels. |f REEL-NS or REEL-NL is used, the LABEL,
DATE, and RETAIN parameters may not be entered. REEL-BLP may not be specified
for an output tape.

Note: User labels are file labels that follow standard header and trailer {abel conventions
(ANSI or IBM). They are a variation of standard labels with a partially fixed format.
These labels are sometimes provided by other systems. User labels are not checked by
Model 15 tape data management and may not be written as part of the label group.

The example under NAME shows how the REEL parameter would be coded for a file on
a tape named TAPE1,

LABEL: The LABEL parameter tells the system the name (label) of the tape file as it
exists in the header label.

For file creation, the name you supply in the LABEL parameter is used in the header
label. If you omit the LABEL parameter, the name from the NAME parameter is used
unless REEL-NS, REEL-NL, or REEL-BLP is also specified. Up to 8 characters may be
supplied in the LABEL parameter.

For existing files, you must supply the LABEL parameter if the name in the tape label is
different from the name your program uses to refer to the file (the NAME parameter).
If the header label contains a name longer than 8 characters, only the first 8 characters
are recognized by the system for comparison.

The LABEL parameter may not be used with the parameters REEL-NS, REEL-NL, or
REEL-BLP. The LABEL parameter can be coded as follows: LABEL-name,

The name entry must begin with an alphabetic character and the remaining characters
must not be commas, apostrophes, or blanks.

148

A label may also be identified by special characters. The character string must be
enclosed in apostrophes, may not contain commas, and may not be longer than 8 charac-
ters; for example, LABE L-‘character string’. 1f an apostrophe is used as a character, it
must be coded as 2 apostrophes.

DATE: The DATE parameter tells the system the creation date of an input file. it is
used to ensure that the proper version of the file is used. The date specified is compared
with the creation date contained in the file iabel. No comparison is done when DATE is
not specified.

For output files, the partition date is always used as the creation date. If the DATE
parameter is specified for an output file, the system compares the specified date with the
creation date of the file already on the tape. If no file exists on the tape, or a file with a
different label exists, or the dates do not agree, the system halts. (See /nterval Timer or
DATE Statement for more information about the effect of the interval timer on date.)

The date may be coded in one of two formats: month-day-year (mmddyy) or
day-month-year (ddmmyy). The format must match the format of the system date
chosen during system generation. The date may be coded with or without punctuation.
Blanks, commas, numbers, or apostrophes are not allowed as punctuation. Leading zeros
in month and day may be omitted if punctuation is used.

The DATE parameter may not be specified with REEL-NS, REEL-NL, or REEL-BLP.

RETAIN: The RETAIN parameter specifies the number of days a file should be retained
before it expires. This number may be from 0 to 999. After the number of days has
elapsed, the file expires and the system allows the file to be written over. If the RETAIN
parameter is omitted, a value of zero is assumed. A value of 999 indicates a non-expiring
permanent tape file.

If an attempt is made to write over an unexpired file, the system halts, allowing the
operator to cancel the job or continue. A tape containing a permanent tape file must be
reinitialized before it can be used for output. The RETAIN parameter may not be used
with REEL-NS, REEL-NL, or REEL-BLP.

BLKL: The BLKL (block length) parameter specifies the number of bytes in a physical
block of data on tape. The minimum size fixed length block (FB) that can be specified
is 18, Variable length (VB or DB) blocks are padded with hex 00 (EBCDIC) or hex 5E
{ASCI1) when necessary to meet the 18-byte minimum block length. The maximum size
block that can be specified, regardless of record format, is 32,767. When fixed blocked
(FB) records are used, block length must be an integral muitiple of record length. Fora
file containing blocked EBCDIC variable length (VB) records, the block length must
include the 4-byte biock descriptor and the 4-byte record descriptor(s). For blocked
ASCII variable length (DB) records, the buffer offset length and the 4-byte record des-
criptor(s) must be included in the block length.

RECL: The RECL (record length) parameter specifies the number of bytes in a logical
tape record. The minimum record length for fixed (F) or fixed block (FB) records is 18
bytes. Unblocked variable length (V or D) records are padded with hex 00 (EBCDIC) or
hex BE (ASCII), when necessary, to meet the 18-byte minimum block length requirement.
For files containing variable length (V or D) records, the record length must include the
4-byte record descriptor.

FILE Statement (Single Volume Tape Files} 1-49

1-50

RECFM: The RECFM (record format) parameter identifies the format of the input or
output file records. The parameter entries are:

F Fixed length, unblocked records. Logical and physical records are the
same size,
\Y Variable length, unblocked records. Each physical record contains one

logical record; the logical record can vary in length,
D Variable length, unblocked records in the D-type ASCII format.

FB Fixed length, blocked records. All records are of equal fength and all
blocks are of equal length. Each physical record contains more than one
logical record.

VB Variable length, blocked records. Each physical record contains logical
records of various lengths.

DB Variable length, blocked records in the D-type ASCII format.

END: The END parameter specifies the position of the tape after the file has been pro-
cessed. The options are as follows:

LEAVE The tape remains in the position it was in after the last record was read
or written.

REWIND The tape is rewound to the load point.
UNLOAD The tape is rewound and unloaded for removal from the tape drive.
If the END parameter is omitted, REWIND is assumed.

DENSITY: The DENSITY parameter is used to specify the number of bpi (bits per inch)
at which files are to be written or read.

The parameter must specify the density at which the tape was initialized. See $TINIT
(tape initialization program) description in Part 4 of this manual. For 9-track tapes, this
parameter affects only the density of nonlabeled output files. When standard labeled or
nonstandard labeled tapes are used, the 9-track tape hardware automatically determines
the density at which the tape was initialized. When a tape is initialized to 1600 bpi with
standard lables, any file that is written on that tape is in 1600 bpi, regardless of the
parameter specified for DENSITY. No error halts occur if the wrong 9-track density is
specified. The parameter entries are:

1600 The file is to be written at 1600 bpi (valid for all 9-track tape units).

800 The file is to be written (7- or 9-track tape units) or read (7-track tape
units) at 800 bpi {valid for 9-track dual density tape units or for all 7-track
tape units).

556 The file is to be written or read at 556 bpi (valid for all 7-track tape units).

200 The file is to be written or read at 200 bpi (valid for all 7-track tape units).

If the DENSITY parameter is omitted, 1600 bpi is assumed on 9-track tape units, and 800
bpi is assumed on 7-track tape units.

ASCII: The ASCII parameter is used to indicate to the system when an ASCII file is
being used. If ASCI| files are being used, ASC!I-YES must be coded. ASCII-YES is
invalid for files on 7-track tape units. If this parameter is omitted or coded ASC1|-NO,
an EBCDIC file is assumed.

DEFER: The DEFER parameter tells the system whether the file will be mounted on a
tape drive when the file is allocated and opened. [f the tape volume is not online,
DEFER-YES must be coded. If the parameter is omitted, DEFER-NO is assumed.

Note: For RPG Il object programs, this option should be used only for files that use the
same drive as a table file. All other files are allocated and opened at the beginning of the
program,

Other programs {such as COBOL object programs), which do not allocate and open all

files at the same time or do it conditionally by program logic, should not use the
DEFER-YES option.

CONVERT: The CONVERT parameter tells the system whether the data converter will
be turned on or off. This parameter is valid only for 7-track tape files,. CONVERT-ON
causes 7-track data to be processed in 8-bit binary form. The converter writes three main
storage characters as 4 tape characters and converts the opposite way when reading.
CONVERT-ON must be specified when variable length records are processed on 7-track
tape files. Specifying both CONVERT-ON and TRANSLATE-ON is invalid. If this
parameter is omitted, CONVERT-OFF is assumed.

TRANSLATE: The TRANSLATE parameter tells the system whether the data translator
will be turned on or off. This parameter is valid only for 7-track tape files.
TRANSLATE-ON causes 7-track data to be processed in 6-bit BCD form. The translator
writes 8-bit EBCDIC main storage characters as 6-bit BCD tape characters and translates
the opposite way when reading. Specifying both TRANSLATE-ON and CONVERT-ON
is invalid. [f this parameter is omitted, TRANSLATE-OFF is assumed.

Note: If CONVERT-OFF and TRANSLATE-OFF are specified, only the 6 low-order bits
of the main storage character are written on the tape. When the system is reading with
CONVERT-OFF and TRANSLATE-OFF, the 2 high-order bits of the main storage
characters are set to zeros.

PARITY: The PARITY parameter is used to specify the parity at which tape characters
will be processed. This parameter is valid onty on 7-track tape files. Data conversion
(CONVERT-ON) is invalid with even parity (PARITY-EVEN). If this parameter is
omitted, PARITY-ODD is assumed.

FILE Statement (Single Volume Tape Files} 1-51

Spooling Considerations

1-52

Note: The foliowing are the valid combinations for TRANSLATE, CONVERT, and
PARITY parameters:

PARITY-ODD, TRANSLATE-OFF, CONVERT-OFF
PARITY-ODD, TRANSLATE-ON

PARITY-ODD, CONVERT-ON

PARITY-EVEN, TRANSLATE-OFF, CONVERT-OFF
PARITY-EVEN, TRANSLATE-ON

SEQNUM: The SEQNUM parameter is used to specify the number of the file when the
reel contains more than one file (multifile volume). The number to use is the number
that was assigned when the file was written. The default value is 1.

If SEQNUM-number is used with REEL-BLP, the system will search the tape for a
standard label HDR1 record that contains the same file number. When the record is
found, further processing of the label group is terminated. The system then positions
the tape to the file data.

SEQNUM:-X on the FILE statement indicates that the tape has been previously positioned
to the desired file, and no positioning is done before processing. See F/LE Statement
(Multifile Tape Volumes) for more information on the uses of this keyword.

7-Track Considerations

CONVERT, TRANSLATE, PARITY and/or DENSITY must be specified for an input
file if other than the default parameters were specified for output when the file was built;
otherwise, tape runaway or data check occurs.

If an output file has REEL-NL on the FILE statement, the reel must have been initialized
with REEL-NL by the $TINIT (tape initialization) program; otherwise, tape runaway or
data check occurs.

i an output file has REEL-NL on the FILE statement and there is a file existing on the
tape, tape runaway or data check will occur if TRANSLATE, CONVERT, PARITY,
and/or DENSITY parameters for the new file do not match the characteristics of the old
file. Reinitialize the tape using $TINIT with REEL-NL if this occurs.

None

TAPE FILE STATEMENT SUMMARY

Req = Required
Opt = Optional
N/A = Not Applicable
Defaults are underlined

(Refer to the discussion of a particular parameter to determine whether it is required for your program.)

Applicability
Parameters 9-Track 7-Track Remarks
NAME-filename (in program) Req Reqg 1-8 characters
UNIT- T1 Req Req
T2
T3
T4
REEL-name Req* Req™ NL, NS, and BLP are not used with LABEL, DATE,
NL RETAIN; NS and BLP are invalid for output. If REEL
NS is not specmed for output files, standard labels are
BLP assumed. *REEL optional for output.
LABEL-filename (on tape) Opt Opt 1-8 characters
‘character string’ Not used with REEL-NS, -NL, or -BLP.
DATE-mmddyy Opt Opt Not used with REEL-NS, -NL, or -BLP.
ddmmyy
RETAIN-nnn Opt Opt Code = 0.999; default = 0; not used with
REEL-NS, -NL, or -BLP.
BLKL-block iength Opt Opt Block length 18-32767
RECL-record length Opt Opt Record length 18-32767
RECFM-F FB Opt Opt
V VB
D DB
END-LEAVE Opt Opt Default is REWIND
REWIND
UNLOAD
DENSITY-1600 Opt Opt Default is underlined
800 1600 800
256 800 556
200 200
ASCII-YES Opt N/A Defaultis NO; EBCDIC assumed if ASCII-NO
NO
DEFER-YES Opt Opt Default is NO.
NO
CONVERT-OFF N/A Opt CONVERT-ON is required if processing V, VB;
(6] Default is OFF.
TRANSLATE-OFF N/A Opt Default is OFF.
0]
PARITY-ODD N/A Opt Default is ODD.
EVEN
SEQNUM-X Opt Opt Defaultis 1.
nnnn

FILE Statement {Single Volume Tape Files)

1-563

1-64

Combinations of 7-Track Specifications

Convert
OFF
OFF
OFF
OFF
ON

ON

ON

ON

Translate
OFF
OFF

ON

ON

OFF
OFF

ON

ON

Parity
obD
EVEN
oDD
EVEN
OoDD
EVEN
oDD

EVEN

valid

valid

valid

valid

valid

invalid

invalid

invalid

FILE Statement (Multivolume Tape Files)

Function

Placement

Format

Contents

The FILE statement supplies the system with information about files. The system uses
this information to read records from and write records to tape.

You must supply a FILE statement for each new tape file that your program creates and
for each existing tape file that your program uses. The FILE statement must follow the
LOAD or CALL statement and precede the RUN statement.

// FILE parameters

The FILE statement for processing multivolume tape files requires that you define and
code the UNIT and REEL parameters differently than you would for single volume files.
There are two reasons for this:

® When processing tape files contained on more than a single volume, the system requires
information about each volume in order to perform all the necessary checking and pro-
tection functions.

® Additional information is needed to determine and check the sequence in which the
volumes are processed and when they are to be mounted on the tape drives.

For multivolume tape files, the UNIT and REEL parameters of the FILE statement may
require a list of codes. When you code a list of codes, the following rules apply:

® The list must be enclosed by apostrophes.
® The items in the list must be separated by commas.
® |Intermixing 7- and 9-track units is not allowed.

The considerations for coding multivolume parameters are included in the following
parameter discussions. The functions of the parameters are explained under F/LE State-
ment (Single Volume Tape Files). Parameters not mentioned here are used as explained
under FI/LE Statement (Single Volume Tape Files).

The maximum number of multivolume files allowed is explained under Scheduler Work
Area in Part 2 of this manual.

REEL: The names of the tapes that contain or will contain the multivolume file must
follow the keyword REEL. If the input tapes are not labeled or contain nonstandard
labels, or if labe!l processing is to be bypassed, the REEL parameter must be coded
REEL-'NL,n", REEL-‘NS,n’, or REEL-'BLP,n’, where n is the number of volumes in the
file (99 volumes maximum). For output files, the n in REEL-NL,n’ is ignored.

UNIT: The keyword UNIT must be followed by a code or codes indicating the location
of the tape unit that contains or will contain the file. No UNIT parameter may be
repeated. The order of codes in the UNIT parameter must correspond to the order of
names in the REEL parameter. When the number of codes in the UNIT parameter is less
than the number of codes in the REEL parameter, the units are used alternately.

FILE Statement (Multivolume Tape Files) 1-55

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-56674

Examples

In the following examples, @shows a tape multivolume file consisting of three reels.
The volumes must be mounted as follows:

INVRL1 on tape unit T1
INVRL2 on tape unit T2
INVRL3 on tape unit T3

shows a three-volume file with nonstandard tape label. The volumes must be mounted
as follows:

First volume on tape unit T1
Second volume on tape unit T2
Third volume on tape unit T1

©shows a three-volume file with unlabeled reels. The volumes must be mounted in
sequence on tape unit T1.

@shows the three-volume standard labeled file used in line @ but with label pro-
cessing bypassed.

Spooling Considerations

1-56

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68
@ /ILIE £/ IMAMAS|, L{-] 1, TMVRILA, TNVIRLIA | ol 7]~ ral, [TI2)] 73]’
VI/| FI/LIE INAME- Mlvnns EEL-|'NS, B, Wi iT- Il 2"
© Ve e S|, REEL- W, 3k i
(©) V7 Le NAe- TS, EeLH"Tacp, B o m i i) i
None

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

FILE Statement (Multifile Tape Volumes)

Function

Placement

Format

Contents

The FILE statement supplies the system with information about tape files. The system
uses this information to read records from and write records to tape.

You must supply a FILE statement for each new tape file that your program creates and
for each existing tape file that your program uses, The FILE statement must follow the
LOAD or CALL statement and precede the RUN statement.

// FILE parameters

More than one file can exist on a reel of tape. If this is the case, each file has an associated
file number. The SEQNUM parameter indicates the file number and must be specified on
the tape FILE statement. The system positions the tape to the desired file using this
parameter. Only the parameters that pertain to multifile tape volumes are discussed. All
other tape FILE parameters are described in F/LE Statement (Single Volume Tape Files).

The SEQNUM keyword for multifile volume tape files has the following parameters:

SEQNUM-nnnn
-X

where nnnn = file sequence number, assigned when the file was written. Default value
is 1. The number indicates the relative position of the file in a volume
of files and is incremented by one from one file to the next.

X = prepositioned file. A user routine or END-LEAVE has prepositioned
the tape to the desired place for input or output.

END-LEAVE, when coded on the FILE statement, causes tape to be left {(not rewound)
at the place where processing was completed.

If several files are to be processed from a single volume, the user can decrease file alloca-

tion time by (1) coding END-LEAVE on the FILE statement for each of the files that are
to be accessed, and (2) processing the files in the order in which they reside on tape.

FILE Statement (Multifile Tape Volumes) 1-57

1-58

Prepositioned Tapes (SEQNUM-X on the FILE Statement)

The user can preposition a file for input or output and, in a subsequent job or job step,
begin file processing at the prepositioned point. The prepositioning can be accomplished
several ways. For example:

® An RPG Il program can process an input tape and, at some point, set on the LR indi-
cator to force end of job.

® The same technique can be used by object programs produced by other compilers
{or the assembler), that is, force (or call) end of job before the input file has been
processed to end of file.

END-LEAVE would have to be coded on the tape FILE statement, or else the tape wouid
be rewound at end of job.

When tape has been prepositioned, for input or output, SEQNUM-X must be coded on
the tape FILE statement.

If a standard labeled tape has been prepositioned, label verification will not be performed
by the system. That is, the file label, date, and volume sequence information in the HDR1
label will not be checked nor will the record format, block length, record length, and
recording technique (translate, convert, parity) information in the HDR?2 label be checked.
These fields are normally compared to the FILE statement and/or program DTF. Label
verification will be performed, however, if the tape was prepositioned to the start-of-a-file
{before the HDR 1) record.

Restrictions on the Use of Multifile Tapes

The following restrictions must be adhered to when multifile tape volumes are used:

® All files in the volume must be labeled in the same manner, that is, all standard labeled
files or all unlabeled files.

® All files in the valume must be recorded in the same density.
® All files must be recorded in the same mode (translate, convert, and parity).

® |f the last file on a multifile reel is continued on a subsequent reel, the two reels con-
stitute an aggregate. The preceding three restrictions apply to all volumes of the
aggregate. In addition, all volumes of the aggregate must be either 7- or 9-track.

® Standard labeled 7-track tapes, if prepositioned, should be prepositioned to a point
just before a HDR1 record. Otherwise tape data checks or runaway may occur.

Note: |f standard labeled tapes {7-track, primarily) have been prepositioned to any point
other than the label, you can access the data, without the above errors, by coding
SEQNUM-X, REEL-NL on the FILE statement. You should not, however, output a file
on a standard labeled tape in this manner because the file would not be accessible by the
system (there cannot be a mixture of labeled and unlabeled files on the volume).

The following sections describe the use of standard labeled, nonnstandard labeled, and
unlabeled multifile tape volumes.

Standard Labeled Files
Standard labeled multifile tape volumes have the following format:

VLG HLG TM DATA TM TLG T™M
HLG TM DATA TM TLG TM T™M

where
VLG = volume label group VOL.1 label is processed; others, if present, are ignored.
HLG = header label group HDR1, HDR2 records are processed; other header records,
if present, are ignored.
™ = asingle tape mark
DATA = the data file
TLG = trailer label group EOF 1, EOF2 records, when processed, indicate the end

of a file. EQV1, EOV2 records indicate the end of volume of a multi-
volume file. The final volume of the file will have EOF 1, EQF2 trailer
records; other trailer labels, if present, are ignored.

Two tape marks indicate the end of volume if the preceding TLG consisted of EOF1,
EOF2 records.

One tape mark indicates end of volume if the preceding TLG consisted of EOV1,
EOV2 records.

Each file is preceded by a header label group and a tape mark, and is followed by a
trailer label group and a tape mark.

The HDR1 record contains a field in which the file sequence number is recorded when the
file is written. The number indicates the relative position of the file in the volume, and it
increments by one from one file to the next.

The user selects the desired input file by specifying on the FILE statement:
SEQNUM-number

where number = the file sequence number in the HDR1 record of the desired file. Default
value is 1.

For output files, SEQNUM-number specifies where the file is to be written on the volume.
The number specified should be one greater than the last file on the volume, unless you
want to overlay a file. A system message occurs if the SEQNUM value is two or more
greater than the value in the HDR1 record of the last file on the volume. Once a file has
been written, any files that existed on the volume beyond the new output file are no
longer accessible for input. Two tape marks are written after the new file, indicating the
end of volume.

FILE Statement (Multifile Tape Volumes) 1-59

For output files, the tape is positioned per the SEQNUM parameter, then the trailer label
of the preceding file is read. If the label group is EOV (end of volume) instead of EOF
(end of file), a diagnostic halt message is issued; a file cannot be written after a multi-
volume file,

If a file exists where the new output file is to be written, the HDR1 label of the file is
read. The expiration data is checked; if the file has not expired, a diagnostic halt is issued.

If a series of files is being built on one output tape in one job stream, you can code
SEQNUM-1, END-LEAVE on the FILE statement for the first file. Code SEQNUM-X
and END-LEAVE on the FILE statement for the second and subsequent files. When the
job stream is run, the system assigns the SEQNUM value for files built after the first file.
The value assigned will be one greater than that used for the previous file.

Notes:

1. If files exist on the tape beyond the one being written, they cannot be accessed after
the file is written.

2. If unexpired (or permanent) files exist beyond the file being written, they are not
detected and are lost,

3. For input files, a system message occurs if a file having the specified SEQNUM value
cannot be found.

4. For output files, if the tape has been positioned within the boundaries of an existing
file, a diagnostic message occurs.

If the tape has been prepositioned for input, SEQNUM-X should be coded on the FILE
statement. The system then determines where the tape is positioned as follows:

1. If at load point, the volume and file header labels are read and verified. The tape
then is positioned to the start of the data.

2. If at the start of a file, the file header labels are read and verified. The tape is
positioned to the start of the data. The volume label is not read.

3. If the tape was prepositioned to any other point, the volume or file header labels
are not checked. The tape is not positioned to any other point; it is assumed that
the data area starts where the tape is currently positioned.

Note: File allocation time can be decreased when several files on one volume are to be
processed by a job by (1) coding END-LEAVE on the FILE statement for each file refer-
enced on the volume and (2) by processing the files in the order in which they reside on
tape.

1-60

Nonstandard Labeled Files

The REEL parameter on the tape FILE statement indicates a nonstandard labeled file
when REEL-NS is used. Nonstandard label groups cannot be written but are accepted in
input files. A nonstandard label group is one in which the first record is not an 80-byte
record beginning with VOL1. The label group is followed by a tape mark.

For single-file volumes, the system positions the tape past the tape mark that follows the
label group. This is done after the first record on the reel has been verified as not being
an 80-byte VOL1 record. The label group is not read or processed. Trailer iabels, if
present, are not read or checked when the file is closed.

Multifile nonstandard labeled volumes must be prepositioned before the job is run if the
file to be processed is not the first file on the volume. If the tape file has been pre-
positioned, it is indicated by coding SEQNUM-X on the tape FILE statement. The
system does not check the tape; the file is allocated. It is the user’s responsibility to
position the tape properly.

Unlabeled Volumes

Unlabeled multifile tape volumes have the following format:
DATA TM DATA TM DATA TM TM

where TM = a single tape mark denoting the end of a file.

Two tape marks denote the end of a volume unless the last file is a multivolume file, in
which case there is only one tape mark.

A single tape mark may precede the first file of an input volume. The first file on an
output volume does not have a leading tape mark.

The tape can be positioned to any file on the reel, for input or output, by use of
SEQNUM-number on the tape FILE statement. The number indicates the relative posi-
tion of the file on the tape. If SEQNUM-X is used for an output file, the system ensures
that the tape is positioned at the start of a file before writing. (The tape is backspaced to
the start of the file if necessary.) When SEQNUM-X is used for an uniabeled input file,
the system does not move the tape before it is read.

For output files the SEQNUM value should be one greater than the number of files on
the reel, unless you wish to overlay a file.

For input or output files, specifying a SEQNUM value two or more greater than the num-
ber of files on the reel will cause either {1) a message to be issued if the last file on the
tape is not a multivolume file or (2) unpredictable results if the last file on the tape is a
multivolume file.

FILE Statement {Multifile Tape Volumes) 1-61

Spooling Considerations

1-62

Allocation time can be reduced when several files on a reel are to be accessed during a job
by (1) processing the files in the order in which they reside on the tape and (2) coding
END-LEAVE on the FILE statement for each file. Then the tape is not rewound for each
allocation. However, if SEQNUM-X is coded on one FILE statement and a subsequent
FILE statement has SEQNUM-number coded for the same tape volume, the volume is
rewound by the system before being positioned to the desired file.

Note: Standard labeled tapes can inadvertently be destroyed when SEQNUM-X and
REEL-NL are used for an output file. If the tape is not at load point, a check for a
standard labeled tape is not performed.

REEL Parameter on FILE Statement

The REEL parameter, for standard labeled tapes, is the name of the volume containing
the file.

REEL-name
If a multifile multivolume aggregate is used, REEL-name is the name of the first volume
of the aggregate, regardless of which volume actually contains the file, when a single-
volume file is accessed.
The parameters used for multivolume files are:

REEL-‘name1,name2,namex’

where name1 is the name of the first volume of the aggregate (as described above)

and name2 and namex are the volume names of the additional volumes containing
the file.

’

The names to use in this case are the actual volume names of each volume.

None

FILE Statement {Device Independent Files)

Function

Placement

Format

Contents

The device independent FILE statement allows you to assign 1/0 devices used by a
program. This statement supplies the system with information about |/O devices used in
the program. This information is used to read records from and/or write records to the
1/0 devices used.

You must supply a device independent FILE statement for each device independent file
used in your program. The device independent FILE statement must follow the LOAD
or CALL statement and precede the RUN statement.

// FILE parameters

Note: 1f device independent files are using disk or tape units for input or output, then
the disk or tape FILE statement format must be used.

All parameters are keyword parameters. The parameters are as follows {keywords are in
capital letters):

NAME-filename (in program)

Unit-code

PRINT-code

RECL-record length
The NAME and UNIT parameters are always required on the device independent FILE
statement. This FILE statement format is used when device independent files are being
read from or written to unit record devices.
Programs requiring specific filenames for device independent files are:

Program File Name

Disk Sort Input INPUT or INPUT1
INPUT2 through INPUTS8

Copy/Dump Input COPYIN

Output COPYO
COPYP

System History Output $HISTORY

Area Display

Spool File Input READERQ! (optional)

Copy Input RESTORE!? (optional)
Output DISPLAYQ! (optional)
Qutput PRINTQ! (optional)
Qutput PUNCHQ! (optional)
Output READERQ! (optional)

L The file name can be replaced by the name specified on a control statement parameter.
2The RESTORE file must be either tape or disk.

FiLE Statement {Device Independent Files) 1-63

Spooling Considerations

1-64

NAME: The NAME parameter is required on the device independent FILE statement.
It tells the system the name the program uses to refer to the file. The name can be any
combination of characters except commas, apostrophes, or blanks. The first character
must be alphabetic, and the name used may not exceed 8 characters in length.

UNIT: The UNIT parameter is required on the device independent FILE statement. It
tells the system the unit record device from which the file will be read or to which the file
will be written. The UNIT parameter must be one of the following:

MFCU1 Primary hopper of the 5424 (input and output files)

MFCU2 Secondary hopper of the 5424 (input and output files)

MFCM1 Primary hopper of the 2560 (input and output files)

MFCM2 Secondary hopper of the 2560 (input and output files)

1442 1442 Card Read Punch (input and output files)

2501 2501 Card Reader (input files only)

1403 1403 Printer {output files only)

3284 3284 Printer (output files only)

3741 3741 Data Station/Programmable Work Station (input and output files)

READER Use the partition’s assigned system input device (input files only).

Note: You cannot use this parameter if the system input device is
assigned to the console.

PRINTER Use the partition’s assigned system print device (output files only)
PUNCH Use the partition’s assigned system punch device (output files only)
Note: This parameter cannot be used if the system has no punch device.

PRINT: The PRINT parameter is used to specify whether interpreting is to be done on
punch files. 1t is ignored when the file is not being punched or when the punch device
does not support printing. If PRINT-YES is specified, the data being punched is also
printed on the card. When PRINT-NO is specified, the data is not printed. 1f this param-
eter is not specified and the device is capable of printing, PRINT-YES is assumed.

RECL: The RECL parameter is used to specify the number of bytes in a logical record
on the 3741, It can be any number from 1 through 128. If a device other than the 3741
is used, the parameter is ignored. If this parameter is not specified for the 3741, a record
length of 96 is assumed (unless overriden by the program).

None

HALT Statement

Function

Placement

Format
Contents

Spooling Considerations

The HALT statement is used to override the system nohalt mode established at IPL or
the nohalt mode established by a NOHALT statement (see NOHALT statement or

or NOHALT command). The system normally does not stop at the end of job or job step
in a partition. The HALT statement causes the partition in which it was received to stop
whenever a system message is issued or when end of job or job step occurs, and requires
the operator to select the recovery option. The operator must restart the partition by
responding to the system message issued. The system remains in halt mode until a
NOHALT statement is issued, IPL occurs, or end of job is reached. It then returns to the
IPL nohalt mode or the mode established by the last HALT/NOHALT command received
by the system. When a HALT OCL statement is received in a partition, the severity code
for halts is reset so all system halts including end-of-step and end-of-job halts must be
responded to. See NOHALT Statement for a description of severity codes.

A HALT statement can be placed anywhere among the OCL statements. In a procedure
it must precede the RUN statement.

// HALT
None (comments may be entered after the blank position following HALT).

None

HALT Statement 1-65

IMAGE Statement

Function

Placement

Format

Contents

1-66

To operate correctly, the printer requires characters matching those on the printer chain
or train to be in a special area of main storage called the chain-image area. When you
replace the printer chain or train with one having different characters, you must also
change the contents of the chain-image area.

The IMAGE statement instructs the system to replace the contents of the chain image
area with the characters indicated by the data records entered from the system input
device or contained in a source library. The effect of the IMAGE statement is temporary,
and the system chain image is returned to the chain image specified during system genera-
tion if the system IPL procedures is performed again.

The IMAGE statement can appear anywhere among the OCL statements. In a procedure,
it must precede the RUN statement.

// IMAGE parameters
The IMAGE statement tells the system one of two things: (1) the new chain characters
are to be read from the system input device, or (2) the new chain characters are to be
read from the source library.
The IMAGE parameters are:
HEX
format- < CHAR
MEM
number-value
name-name

unit-code

Note: The words format, number, name, and unit are not coded as part of the parameters
for the IMAGE statement.

(Coding only HEX, CHAR, or MEM is preferable for format, but HEXADECIMAL,
CHARACTER, or MEMORY can be coded.)

Characters from the System Input Device

If you wish to indicate that new characters are to be read from the system input device,
use the following parameters:

format: Use the word CHAR to indicate that characters are in EBCDIC form. Use the
word HEX to indicate that the characters are in hexadecimal form.

number: The number parameter must be used with HEX and CHAR. [t must be a value
that is equal to the number of columns or line positions in the data records or the data
keyed in following the IMAGE statement that contains the new characters. This number
must not exceed 240 when the characters are hexadecimal or 120 when characters are
EBCDIC. The name and unit parameters must not be coded. The rules for punching and
keying the new characters are as follows:

® The characters must begin in position 1.
® Consecutive card columns or line positions must be used; however, only the first 80
columns or line positions of the card or line can be used. Hexadecimal requires an

even number of columns or line positions, two per character.

® Characters continued on another card or line must begin in position 1.

Characters from the Source Library

To indicate that new chain characters are to be read from the source library, the MEM
parameter must be specified. The following parameters must also be included:

Name: The name parameter identifies the source member containing the characters in
the library. You can place the characters in a source library by using the library mainte-
nance program. The name you supply in the library maintenance control statement is the
name used to identify the characters in the source library.

Unit: The unit parameter must be used with the name parameter. It tells the system
which simulation area contains the source library. Possible codes are R1, F1, R2, F2.

IMAGE Statement 1-67

Examples

Spooling Considerations

1-68

©

The IMAGE statement in@ tells the system that the new characters (from the system
input device) are in hexadecimal form; the number parameter indicates that there are 120
positions (60 characters) containing the new characters.

In , the new characters (from the system input device) are in EBCDIC. The number
parameter indicates that there are 48 columns or line positions containing the new
48-character image.

@tells the system that the new characters are in the source library. The name param-
eter indicates that the characters were named CHAIN in the source library. The unit
parameter indicates that the source library containing them is on the simulation area
assigned to R1. Examples of the entry specified in © are@ and . The entry itself
must contain an IMAGE statement with the characters in either hexadecimal or EBCDIC.
The number of columns containing the characters must also be specified. (See Library
Maintenance Program in Part 4 for restrictions on the name used in coding MEM.)

1 4q 8 12 16 20 24 28 32 36 40 44 48 52 56 60
V/ [TMAGE HEX T2 111 [|
FUFZIF3IFAIFSIFGIF|TFlF A AdETIE Bl 1 El2]F 3 Eldle s B daiF |7l 7F eB 7 ED DZD3 4ipsDle)
74 Ci2ic O 71C8CITEMBSDGICISBIAC!T 7c EBF7D6IFs

| I i
1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
/| 1MAGE ICHAR Jdd | | | |
712 78 SITUVMXYZ] ZTJKL OPGIR- DEFGH] 1. |?

T 1 1T I !

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
V| YMAGE MaMlc | 1M ,R

{

No support is provided by spooting for changing the chain image for printed output.

Print records that are spooled are printed with the currently loaded chain image. If a
special print chain or train is required for a job step on the print queue, it is the operator’s
responsibility to load the chain image before the print writer starts printing the output.

If you want to change your chain image in a spooling environment, use one of the follow-
ing methods:

® Supply an IMAGE statement in a partition. This changes the chain image for the print
writer but not for the job being loaded in the partition. The print writer must be
stopped with a STOP command before the chain image is changed.

® Bypass spooling, allowing the partition to use the printer directly by using the
START SPOOL and STOP SPOOL command in the partition and START PRT and
STOP PRT command.

INCLUDE Statement

Function

Placement

Format

Contents

The INCLUDE statement identifies the entry {procedure) in the source library that con-
tains the OCL statements to be merged into the job stream. When printed, the merged
OCL statements are identified by an X/ preceding the statement identifier. The source
member to be included into the job stream cannot contain a CALL statement.

The INCLUDE statement can appear anywhere among the OCL statements. It must
precede the RUN statement (if RUN is used) in a procedure. Nested INCLUDE state-
ments are not allowed.

// INCLUDE procedure-name,unit[,switch characters]

Procedure-name: This name identifies the procedure in the source library. |t must be
the same name that was supplied in the library maintenance control statement when the
procedure was entered in the source library.

Unit: The unit parameter is a required code. The code identifies the simulation area that
contains the procedure. Possible codes are R1, F1, R2, F2,

Switch characters: The switch characters {0, 1, and X) are optional. When you include
them, you must supply 8 characters, because they are compared with the eight external
indicators. The system does a comparison for each position if the switch character isa 0
or 1. An X cancels the compare operation for that position anly. The first (leftmost)
switch character is compared with external indicator 1; then the second switch character
is compared with external indicator 2; this process continues until the 8 switch characters
and the eight external indicator positions are either compared or bypassed. |f an equal
condition exists, the INCLUDE statement is accepted. Otherwise, an informational
message is displayed and the INCLUDE statement is not accepted.

INCLUDE Statement 1-69

Example

Spooling Considerations

1-70

B B B8R

None

// SWITCH 10101010

// LOAD ABC,F1

// INCLUDE X,R1,10101010

// INCLUDE Y,R1,01010011

// INCLUDE Z,R1,X0X0X010
// RUN

This INCLUDE statement is accepted, and the OCL statements in procedure X are
merged into the job stream.

This INCLUDE statement is not accepted, and an informational message is
displayed.

This INCLUDE statement is accepted, and the OCL statements in procedure Z are
merged between procedure X OCL statements and the RUN statement. The job
stream is changed as follows:

// SWITCH 10101010
/' LOAD ABC,F1
/' INCLUDE X,F1,10101010
X/ DATE 051077 l
X/ FILE NAME-A,UNIT-D1,PACK-D1D1D1 ; Procedure X
X/ FILE NAME-B,UNIT-D1,PACK-D1D1D15
/' INCLUDE Y,F1,01010011
CRFLSH I ABCO1
** THIS INCLUDE BYPASSED ** INDICATORS-10101010**
/' INCLUDE Z,F1,X0X0X010
X/ FILE NAME-D,UNIT-D2,PACK-D2D2D2
X/ FILE NAME-E,UNIT-D2,PACK-D2D2D2 > Procedure Z
X/ FILE NAME-F,UNIT-D2,PACK-D2D2D2
// RUN

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

JOB Statement

Function

Placement

Format

Content

The JOB statement aliows you to group related job steps together to ensure that they are
run sequentially, The system does not initiate the next step of a job until the previous
job step has been completed successfully. It is required on systems that have active
spooling or on nonspooling systems running in job mode.

The JOB statement must precede the first LOAD or CALL statement. It cannot be
used in a procedure.

//iobname JOB parameters

Jobname: This is a required entry used to uniquely identify a job. It must begin in
position 3, may not exceed 8 characters in length, and may not contain a comma. When
the last two characters of a jobname are asterisks (**), the system replaces them with a
sequence number. The assigned number (from 01 through 99) is included in an informa-
tional message.

Job (and step) names should contain only characters that are on the 3277 Display Station
keyboard. If the jobname contains characters that are not on the 3277 keyboard, that
job cannot be referenced by its jobname by using commands. These nondisplayable
characters may also cause display problems when written to the 3277 display. The job-
name is displayed on the display screen with system messages and halts associated with
the job. It is also the name by which jobs are identified on the spooling queues.

All parameters are optional. They are as follows (defaults are underlined):

PRIORITY-

o b wN|= O

CORE-nnn (can be 1, 2, or 3 digits)

SPOOL- ‘ YES }

NO
1
2
3
PARTITION- { A
B
Cc
D
YES |
QCOPY- _"o}

JOB Statement 1-71

1-72

PRIORITY: A priority may be assigned to a job to indicate its level of importance on the
reader or output queues. The priority of the job steps for a job on the output queues is
the priority assigned to that job on the reader queue unless overridden by a PRIORITY
parameter on a PRINTER or PUNCH statement. Priority 0 indicates a priority 1 job,
which is to be held on the reader queue until released via an operator control command.
{See Appendix C for a summary of operator control commands.) Priority 5 is the highest
priority that may be assigned. Within a given priority, jobs are scheduled on a first-in,
first-out basis. If this parameter is not specified, priority 1 is assumed.

CORE: This parameter specifies the amount of main storage required to execute the
largest step in a job and establishes a minimum partition size for the duration of that job.
(It does not assign main storage to the partition; a SET command must be used for this
purpose.) When this parameter is not specified, the system assumes that the job is
scheduled in a partition with adequate main storage and uses the present partition size as
the minimum for the job. Eight is the minimum value that may be specified; 238 is the
maximum value that may be specified. Anything less than 8K is treated as 8K. This can
be increased in 2K increments up to a maximum of 238K. If the parameter is not a 2K
increment, it is rounded up to the next 2K increment. When the CORE parameter is
specified, the partition must have the requested amount of main storage available before
the job can be executed.

Note: if more than 128 files are to be processed in a partition, minimum partition size
is 10K.

SPOOL: SPOOL-NO ensures that the job will not be loaded if spooling is active in that
partition. If SPOOL-NO is specified, the system prevents the job from being executed
when spooling is active. It is your responsibility to ensure that 1/0 devices for the job
are available and spooling has been stopped for the partition. You may free a device
required by a job and stop spooling in a partition by using a STOP command. (See
Appendix C for a summary of operator control commands.) SPOOL-NO should be used
when a job requires dedicated use of one or more devices being used by spooling.
SPOOL-YES specifies a job that may be run with spooling active. If this parameter is not
given, SPOOL-YES is assumed.

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

PARTITION: This parameter is used to specify the partition in which the job must be
executed. If this parameter is not specified and input spooling is not used, the system
assumes the job can be executed in any partition. 1f PARTITION is not specified and
input spooling is being used, the job is scheduled for execution in partition 1. Once a job
is placed on the reader queue, its partition assignment can be changed thrcugh use of the
CHANGE partition commands.

The meaning of each partition code is:
Code Meaning

1 Execute job in partition 1
Execute job in partition 2
Execute job in partition 3
Execute job in partition 1 or 2
Execute job in partition 1 or 3

Execute job in partition 2 or 3

O O W Pp W N

Execute job in partition 1, 2, or 3

Note: When keyword parameters are not specified on this statement, comments may not
be given following the JOB statement identifier.

QCOPY: This optional parameter (QCOPY-NQ) prevents the spool file copy program

{$QCOPY) from accessing the job on the reader queue. If QCOPY-YES either is specified
or is the default, the spool file copy program can copy the job from the reader queue.

JOB Statement 1-72.1

This page intentionally left blank.

1-72.2

16 20 24 28 32 36 40 44 438

=y
H
[++]
-
N

The preceding JOB statement causes the following:

® Statement read by the spooled reader:
— Priority 1 is assigned to the job on the reader queue and output queues (see note).

— Job is executed in partition 1.
— EXAMPLE1 is the jobname on the reader and output queues.

® Statement is not read by the spooled reader:
— The partition the job executes in is the partition into which the operator loads

the job.
— If spooling is active for the partition into which the job is loaded, priority 1 is

assigned to the output queues (see note).

12 16 20 24 28 32 36 40 44 48

/V/IEX gzl Wlo Rl IORY TY -5

-
H
o]

-

(]
i

H

The preceding JOB statement causes the following:

® Statement read by the spooled reader:
— Priority 5 is assigned to the job on the reader queue and output queues {see note).

~ Job is executed in partition 1.
— EXAMPLEZ2 is the jobname on the reader and output queues.
— Prior to the job being initiated, 48K of main storage must be available in partition 1.

® Statement not read by spooled reader:
— The partition the job executes in is the partition into which the operator loads

the job.
— The job is executed if 48K of main storage is available in the partition into which

the job was loaded.
— |If spooling is active for the partition into which the job is loaded, priority 5 is

assigned to the output queues (see note).

Note: The priority on the output queues can be different for a.job step within the job
if the PRIORITY parameter is specified on the PRINTER and/or PUNCH statement.

JOB Statement 1-73

Spooling Considerations

1-74

ey
FS
o]
-
N
-
=2}
[N)
o

24 28 32 36 40 44 48

1 I I !
The preceding JOB statement causes the following:

® System with spooling
— The job must be loaded into partition 2.
— Spooling may not be active in partition 2.
— At least 10K of main storage must be available in partition 2.

® System without spooling
— The job must be loaded into partition 2.
— At least 10K of main storage must be available in partition 2.

If spooling is active in a partition, the JOB statement must be used in that partition.
When jobs are being read onto the reader queue, any errors on the JOB OCL statement
cause that job to be assigned a priority of 5. If the jobname is missing or invalid, the
default jobname, JOB, is assigned to that job on the reader queue.

LOAD and LOAD * Statement

Function

Placement

Format

Contents

The LOAD statement identifies the program to be executed and indicates whether the
program will be loaded from the system input device for the partition, from an ébject
library, or from a file on a main data area.

One LOAD statement is required for each program executed. On systems being run in
step mode, the only requirement is that the LOAD statement precede the RUN state-
ment. The LOAD statement must follow the JOB statement, and precede the RUN
statement when operating in job mode. Any number of job steps (LOAD/RUN com-
binations) may follow a JOB statement. For a complete description of job mode and
step mode see Part 2 of this manual.

The LOAD statement has the following formats:

//[stepname] LOAD * [,program-name1,unit1}
[,switch characters] (a blank is mandatory between LOAD and *.)

//[stepname] LOAD program-name2,unit2
[,switch characters]

The first format is used to load object programs from the system input device or from a
file on a main data area. The second format is used to load object programs from an
object library.

stepname: This optional entry is used to uniquely identify a job step. If specified, the
stepname must begin in position 3 of the statement, must not exceed 8 characters in
length, and must not contain a comma. Stepnames (and jobnames) should contain only
characters that are on the 3277 Display Station keyboard. If the stepname contains
characters not on the 3277 keyboard, that step cannot be referenced by its stepname by
using commands. These nondisplayable characters may also cause display problems when
written to the 3277 display. The stepname is displayed on the display screen with system
messages associated with the job step. If a stepname is not specified, the system assigns

a stepname to each step. The stepname assigned by the system is made up of the program
name from the LOAD statement and a 2-digit number assigned by the system. Stepnames
assigned by the system are incremented by one at end of job step in which a stepname is
assigned. If a LOAD * statement without a stepname is encountered, the system assigns
a stepname of ASTRSKnn. The number portion of the stepname is reset to 1 at end of
job. After 99 stepnames have been assigned within one job, the number is reset to 1.
When the print and punch queues are displayed, the stepname identifies job steps on the
gueues.

Asterisk: An asterisk is specified when the user wants the object program loaded from
the partition’s system input device or from a file on a main data area. The object pro-
gram must follow the RUN statement if the program is loaded from the partition’s system
input device, and a /* statement must follow the object program to indicate the end of
the object program input. The object program is temporarily copied into the object
library on the system pack and then loaded into main storage for execution. LOAD *
programs are accepted in any partition; however, while a LOAD * program with overlays
is running, no other LOAD * programs can be loaded. When a subsequent LOAD * pro-
gram is received, the system issues a diagnostic, which allows the user either to wait for
completion of the LOAD * program or to cancel the subsequent LOAD * program.

LOAD and LOAD * Statement 1-75

1-76

Program-name1: This entry identifies the file that contains the object program to be
loaded. The program-name1 can be any combination of characters except commas,
apostrophes, or embedded blanks. The first character must be alphabetic. The length
must not exceed 6 characters.

unitl: This entry specifies the main data area that contains the file from which the
object program is to be loaded. Possible codes are those for the main data areas.

Note: Although the user does not specify an OCL FILE statement, the LOAD * from
file function requires an F1 entry in the SWA. The system produces a simulated FILE
statement to protect the file from which the program is being loaded. Therefore, the
number of available file statements that can be used when a program is loaded from a file
is reduced by 1. The program-name1 parameter must identify the file which contains the
program being loaded.

Switch characters: The switch characters (0, 1, and X) are optional. When you include
them, you must supply 8 characters because they are compared with the eight external
indicators. The system compares each position if the switch character isa0or 1. An X
cancels the compare operation for that position only. The first (leftmost) switch character
is compared with external indicator 1; then the second switch character is compared with
external indicator 2. This process continues until the 8 switch characters and the eight
external indicator positions are either compared or bypassed. If an equal condition exists,
the program is loaded. Otherwise, an informational message is displayed and the job
stream is flushed to the next step.

The program-name1 and the unit1 parameters are positional parameters. Therefore, if
you include the switch characters without these parameters, you must separate the * and
the switch characters with either 1 or 3 commas. For example:

// LOAD ™ xxxxxxxx
or
// LOAD *,, xxXXxXXX

program-name2: The program-name2 is the name used to identify the program in the
object library. Program-name2 may be up to 6 characters in length. The name must begin
with one of the 29 alphabetic characters (A—2Z, @, #, or $) and may be followed by up to
5 characters. Commas, apostrophes, periods, and blanks may not be used in the name.
The system service programs and program products are identified by the following names:

Program Name
Restart $$RSTR
Alternate Track Assignment SALT
Basic Assembler $ASSEM
RPG 1| Auto-Report $AUTO
Alternate Track Rebuild $BUILD
COBOL Compiter $CBLOO
Communication Control Program $CccP
Card List $CLIST
Configuration Record $CNFIG
Copy/Dump $COPY
Card Sort/Collate $CSORT
Dump/Restore $DCOPY
File Delete $DELET
CCP/Disk Sort $DGSRT

Program Name

Disk Sort $DSORT
File Compress $FCOMP
FORTRAN $FORT
Gangpunch $GANGP
System History Area Display $HIST
Disk Initialization SINIT
Chain Cleaning $KLEAN
Fite and Volume Label Display $LABEL
Library Maintenance SMAINT
Macro Processor $MPXDV
Overlay Linkage Editor $OLINK
Spool File Copy $QCOPY
Card Reproduce and Interpret $REPRO
Recover Index $RINDX
RPG It Compiler $RPG
Reassign Alternate Track $RSALT
Simulation Area $SCOPY
Tape Initialization STINIT
Tape Sort $TSORT
Tape Error Summary Program $TVES
VTOC Service SWVTOC

Unit2: The unit2 parameter is a required code. It indicates the simulation area that
contains the program. Possible codes are R1, F1, R2, F2.

The disk area containing your object program is called an object library. You can create
an object library on any of the simulation areas by using the library maintenance program.
(See Library Maintenance Program in Part 4 of this manual.)

Example In the following sample LOAD statement, $RPG is the name that identifies the RPG 1|
compiler.
14 8 12 16 20 24 28 32 36 40 44 48

F1is the code indicating the simulation area where the compiler is located.

The system would assign a stepname of $RPGO1, because a stepname is not specified on
the LOAD statement.

The following example shows a stepname assigned by the user:
1 4 8 16 20 24 28 32 36 40 44 48

12
//RPF LOAF $|['Te G, |Fl
T |

-

The system would use the stepname RPGF1.

LOAD and LOAD * Statement 1-77

Spooling Considerations

1-78

The following example shows how the switch characters can be used to determine whether
or not a job step will be executed. Assume that a program has just completed executing
successfully and has set the external indicators to 10101010. The OCL statements
following the completed program are:

1 4 8 12 16 20 24 28 32 36 40 44 48

| ABCHIFLLL, DLLICLIOW O

B O 8 B
m
m
»
n

Step 1 is not executed because the external indicators do not agree with the switch
characters. An informational message with the value of the external indicators is
issued. The system then flushes to the next step (step 2).

(N

Step 2 is executed because the external indicators agree with the switch characters.
{The switch character X tells the system to cancel the compare operation with the
relative external indicator.)

B Step 3 is executed after step 2 is completed.

The following example shows the OCL statements and parameters needed to load a
program from a file:

1 4 8 12 16 20 24 28 32 36 40 44 48

r-
9]

&nhb Dy

The LOAD * identifies the requested function. The program is processed as a LOAD *
type program. The same rules and restrictions that apply to a program loaded from the
system input device also apply to a program that is loaded from a file.

The program-name (MNQ)} must be the name of the file that contains the program.

The program is contained in a file that is located on a main data area (D42). The program
is copied to the object library on the system pack before being loaded into main storage
for execution. The system pack becomes the program pack for all LOAD * programs

regardless of whether they are loaded from disk or from the system input device.

None

LOG Statement

Function The LOG statement is used to perform two functions:
® Change the system log device for a partition.

¢ Control end-of-job page ejection on the log device.

System Log Device

During system generation, a system log device is established for each partition. When a
LOG statement is used, the device specified as the system log device remains in effect for
the partition until another LOG statement is read or until IPL is performed. The log
device applies only to the partition in which the LOG statement is processed.

The following information is not logged on the printer, but it is logged in the system
history area (SHA):

® Responses to ERP {error recovery procedures) messages

® Responses to EJ/ES messages

® Spooling messages and responses

® Volume recognition facility messages

® OCC

® QCC diagnostics

® Any ERP message received while a printer ERP message is active

® Partition identification on OCL statements and control statements for system service
programs.

If logging of the above information is required, you should assign the log device only to
the CRT and periodically print the contents of the system history area using the system
history area display program ($HIST). See System Service Programs in Part 4 for a de-
scription of $HIST.

Logging to the SHA

All system messages and OCL statements are logged to an area on the system pack called
the SHA (system history area).

Note: You may print the SHA or copy the SHA to a device independent file using

$HIST. Also, you may display the SHA on the display screen using the DISPLAY
command. See System Service Programs in Part 4 for a description of $HIST, or Appendix
C for a summary of the operator control commands.

LOG Statement 1-79

Placement

Format

1-80

Logging to the CRT

System messages that require a response and informational messages are logged to the
CRT independent of the assigned log device. The only effect of a // LOG CONSOLE
statement is that logging to the printer is stopped.

Logging to the 3284

If the 3284 is assigned as the log device and is not assigned to a partition, system messages
OCL, and control statements are logged to the 3284.

’

Logging to the 1403

System messages, OCL, and control statements are logged to the 1403 if the 1403 is
assigned as the system log device, if the 1403 is not assigned to a partition, and if one of
the following conditions is met:

® Print spooling is neither active nor using the 1403. In this case, OCL statements and
messages are logged directly to the 1403.

® Print spooling is active {intercepting print requests). In this case, OCL statements and
system messages are logged to the printer queue.

Controlling Page Ejection

The LOG statement is used to control page ejection that occurs before ES and EJ and
after EJ. The EJECT and NOEJECT modes remain in effect for any log device until
another LOG statement is read, or until an IPL is performed.

You can use the LOG statement within any of the sets of OCL statements for your job
steps. In a procedure, it must precede the RUN statement.

// LOG device[,mode]
or
// LOG ,mode

Contents The following codes can be used as parameters.

Device Meaning

CONSOLE Log to the CRT and the system history area.

1403 Log to the CRT, the 1403 printer, and the system history area.
3284 Log to the CRT, the 3284 printer, and the system history area.
none The log device is not changed.

Mode Meaning

EJECT Eject a page before ES and EJ and after EJ. If no mode is specified,

EJECT is assumed.
NOEJECT Do not eject a page before ES and EJ and after EJ.

Spooling Considerations When 1403 printed output is being spooled, and the system log device has been assigned
to the 1403 printer, all system messages that would normally be logged on the 1403 are
placed in the spooled print file. When the spooled output is printed, the system messages
are printed, along with the job steps’ output. When spooling 1403 output, a page eject
occurs at the start of every job step’s printed output, regardless of the mode specified on
the LOG statement.

LOG Statement 1-81

NOHALT Statement

Function

Placement

Format

1-82

The NOHALT OCL statement is used to cancel the halt mode established by a HALT OCL
statement. [t can also be used to establish a severity code for system messages to allow
the system to select default options for system messages. The NOHALT OCL statement
does not override the halt mode established by the HALT command. Command halt
mode is always prevalent (see chart below).

The NOHALT OCL statement changes the halt mode for the partition in which it was
received. A NOHALT OCL statement takes effect immediately and lasts until a HALT
OCL statement is received, another NOHALT OCL statement modifies the severity code,
IPL is performed, or end of job occurs. (At IPL the system defaults to nohalt mode, with
no severity code.) When the nohalt mode is reset at end of job, the system returns to the
IPL nohalt mode or the mode established by the last HALT or NOHALT command re-
ceived by the partition. The following chart shows the conditions resulting when both
OCL and commands are used:

NOHALT HALT
ocL OCL

NOHALT NOHALT HALT
command

HALT HALT! HALT
command

1Halts for end of job messages, end of job
step messages, and system messages with
no severity defaults or with severity
codes greater than the current severity
setting.

For a summary of Operator Control Commands, see Appendix C.

A NOHALT statement can be placed anywhere among the OCL statements. if a proce-
dure it must precede the RUN statement.

// NOHALT SEVERITY-code

Contents

Spooling Considerations

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

The NOHALT statement, with or without the SEVERITY parameter, suppresses the
message at end of job step and/or end of job.

SEVERITY: This parameter is used to indicate the severity code of messages that the
system is allowed to select default options for. |f the SEVERITY parameter is not speci-
fied, the operator must respond to all system messages, except informational, end of job
step and/or end of job messages. The code must be one of the following:

1, 2, 4, 8 — The system selects the default option for system messages of a severity less
than or equal to the code indicated. Severity codes and defaults are assigned to most
system messages and cannot be altered. If the severity assigned to a system message is
greater than the severity indicated in the NOHALT statement, the system stops, waiting
for your response. |f the severity assigned to the message is equal to or less than the
severity indicated in the NOHALT statement, the system selects the default option for
the system message and processing continues. If the default option selected by the system
isa 2 or a 3, the end of job message is suppressed. The severity code does not affect
system messages having no default options or requiring operator intervention. Severity
code 1 is the least severe, severity code 8 is the most severe. Severity codes are reset to
no severity at end of job. For more information on system messages and severity codes,
see /BM System/3 Model 15 System Messages, GC21-5076.

Note: Halts displayed in the message display unit are not affected by the SEVERITY
parameter.

None

NOHALT Statement 1-83

PAUSE Statement

Function

Placement

Format
Contents

Spooling Considerations

The PAUSE statement causes a system message (message 90 if before a LOAD or CALL
statement; message 91 if between a LOAD or CALL and a RUN statement). It is usually
used to give the operator time to prepare for the next program: for example, mount a
different data module or insert special forms into the printer. Comment statements that
give the operator instructions usually precede PAUSE statements (see Comment
Statement),

When the operator is ready, the partition in which the PAUSE statement was received is
restarted by responding to the message. The system then continues reading the OCL

statements that follow the PAUSE statement.

The PAUSE statement is the only OCL statement logged on the display screen; therefore,
it may be used to supply information to the operator.

PAUSE statements can be placed anywhere among the OCL statements. In a procedure,
a PAUSE statement must precede the RUN statement.

// PAUSE
None (comments may be entered after the blank foliowing PAUSE)

None

PRINTER Statement

Function

Placement

Format

Contents

During system generation, a system print device is established for each partition. The

PRINTER statement enables you to change the system print device for the partition in
which the statement is processed. The new system print device remains in effect until
changed by another PRINTER statement or until another IPL occurs.

The PRINTER statement can be placed anywhere among the OCL statements. In a
procedure it must precede the RUN statement.

// PRINTER parameters

The parameters are as follows (keywords are in capital letters; defaults are underlined):

{ 1403 |
DEVICE- 132 }

R

LINES-nnn
FORMSNO-nnn
COPIES-nn

_JYES|
DEFER]\NO ’
({YES‘(

ALIGN- | NO {

PRIORITY-

A HwWwNN -0

CLOSE-

<
m
w

QCOPY-

PR N
Zl'(

m

© w

N —

2
O
\—\/-.—

DEVICE: The device parameter is optional. If not specified, 1403 is assumed. Spool
does not support the 3284.

LINES: The LINES parameter is optional. It is used to alter the number of print lines
(forms length) per page. Possible range is 12 to 112. The number of lines specified
remains in effect for that partition until another PRINTER statement with LINES param-
eter is entered or until the next IPL. This parameter overrides the forms length specified
during system generation; however, a program’s forms length overrides the LINES
parameter. If a program’s forms length is used, it is in effect for the duration of that job
step only. At the end of the job step, forms length is restored to the previous value.

PRINTER Statement 1-85

186

FORMSNO: This optional parameter, which applies only to the job step in which the
PRINTER statement was used, may be used to inform the operator which forms are to be
mounted on the printer. This parameter can be any combination of 1 to 3 characters,
except commas, apostrophes, or blanks. When this parameter is used, the system halts
with a message to the operator indicating the forms type to be used. When printing
spooled printed output, the print writer issues a message whenever the forms type for the
current print step is different from that of the previous print step. The response taken to
this message informs the print writer if separator pages should be printed between jobs
and job steps. See the /BM System/3 Mode! 15 User’s Guide to Spooling, GC21-7632, for
information on separator pages. If the forms type operand is given in the START PRT
command, the print writer will print only those job steps whose forms type matches that
given in the START command. You can start the print writer with a different forms type
by entering the STOP PRT command, followed by the START PRT command with a
forms type operand. Starting the print writer without the forms type operand causes the
print writer to print job steps in the order they appear on the print queue.

COPIES: This optional parameter, which applies only to the job step in which the
PRINTER statement was used, allows the user to obtain 1—99 copies of a job step’s
spooled printed output. If this parameter is not specified, only one copy is printed.
When more than one copy is requested, the print writer continues to produce the number
of requested copies before continuing to the next step on the print queue. All copies
produced by the print writer allow for forms alignment if ALIGN-YES is specified. This
parameter is ignored when print spooling is inactive or not supported for the specified
device.

DEFER: The DEFER parameter is optional. It is ignored when print spooling is inactive
or not supported for the specified device. DEFER-NO allows the spooling user to begin
printing a job step’s printed output before the job step has completed execution if the
job step is the next step to be printed from the print queue. When DEFER-YES is speci-
fied, printing does not begin until the job step has completed execution. The DEFER
parameter applies only to the job step in which the PRINTER statement was received. If
the parameter is not specified, the system assumes DEFER-YES.

ALIGN: The ALIGN parameter is optional. It aids the operator in forms alignment for
spooled printed output. This parameter is ignored when print spooling is inactive or not
supported for the specified device. When ALIGN-YES is specified, the printer stops after
printing the first line to allow forms alignment. A message is displayed on the CRT after
the first line is printed. The operator’s response to this message indicates that forms are
aligned (continue printing) or that the line should be printed again (try alignment again).
If more than one copy is requested (COPIES parameter) and ALIGN-YES is specified, the
printer halts for forms alignment prior to printing each copy. If ALIGN-NO is specified,
the printer does not stop. The ALIGN parameter applies only to the job step in which
the PRINTER statement was received. If the parameter is not specified, the system
assumes ALIGN-NO.

Note: If logging was assigned to the 1403, forms alignment is done on the first OCL
statement logged to the 1403 for that job step. For this reason, logging to the 1403
should be suppressed when ALIGN-YES is used.

Spooling Considerations

PRIORITY: The PRIORITY parameter is optional. A priority can be assigned to a job
step to indicate its order of printing on the print queue. Priority O indicates a priority 1
job step that is to be held on the print queue until released via an operator control
command. (See Appendix C for a summary of operator control commands.) Priority 5 is
the highest priority that can be assigned. If this parameter is not specified, the priority

of the job at the time of execution is assigned to the job steps on the print queue. This
parameter is ignored when print spooling is inactive or not supported for the specified
device. The PRIORITY parameter applies only to the job step in which the PRINTER
statement was used.

CLOSE: This aptional parameter is used to group multiple print steps of a job under one
stepname. If CLOSE-NO is specified, no print steps are closed at end of step, only at end
of job. If CLOSE-YES is specified, a print step is closed at end of step. |f the parameter
is not specified, CLOSE-YES is assumed. The CLOSE parameter is ignored when print
spooling is not active.

If a previous print step specified CLOSE-NO, a PRINTER statement with an ALIGN,
COPIES, DEFER, FORMSNO, PRIORITY, or QCOPY parameter is ignored and causes an
informational message to be issued.

QCOPY: This optional parameter {QCOPY-NO) is used to prevent the spool file copy
program from copying a job step that is on the print queue. QCOPY-YES allows the
spool file copy program to copy the job step. If the parameter is not specified,
QCOPY-YES is assumed.

The QCOPY parameter applies only to the job step in which the PRINT statement is
included.

You can change your system print device in a spooled job stream; however, if the new
device is the 3284, printed output for the system print device (for example, from the
overlay linkage editor or library maintenance program) is not placed on the print queue.
To resume spooling of this printed output, you must change the system print device back
to the 1403.

When a PRINTER statement is encountered and printer output for the job step is being

spooled, the effect of the COPIES, DEFER, ALIGN and/or FORMSNO parameters is
delayed until the print writer is ready to print the output.

PRINTER Statement 1-87

PUNCH Statement

Function The PUNCH statement enables you to define the system punch device for the partition
in which the statement was received.

The new system punch device remains in effect until changed by another PUNCH state-
ment or until another IPL occurs.

During system generation of a default system punch device is established for each
partition.

Placement The PUNCH statement can be placed anywhere among the OCL statements. In a proce-
dure, it must precede the RUN statement.

Format // PUNCH keyword parameters
Contents The keyword parameters are as follows:
DEVICE-device
CARDNO-nnn

COPIES-nn

<
wn

|

f
DEFER- |

o |

P

QCOPY-

l-<
m
7]

.

PR
=z

PRIORITY-

A HhWN =0 ©

DEVICE: This parameter is optional and can be any of the following:
MFCU1 Primary hopper of the 5424
MFCU2 Secondary hopper of the 5424
1442 1442 Card Read Punch
MEFCM1 Primary hopper of the 2560
MFCM2 Secondary hopper of the 2560

3741 3741 Data Station/Programmable Work Station
{not supported for punch spooling)

1-88

CARDNQ: This parameter is optional and may be used to inform the operator which

card type to use for output punching. When the punched output is spooled, the card

type used for punching can be identified in the PUNCH statement. This parameter may
be any combination of 1 to 3 characters, except commas, apostrophes, or blanks. The
CARDNO parameter applies only to the job step in which the PUNCH statement was used.

When the CARDNO parameter is used, the system halts and issues a message on the CRT
indicating the card type to be used for the job or job step.

When punching spooled output on a 1442 Card Read Punch or 2660 MFCM, blank cards
may be inserted between decks to cause all cards of the deck just punched to be fed into
the stacker. On the MFCU, the last card is stacked without the extra blank cards.

COPIES: This optional parameter allows the user to obtain from 1 to 99 copies of job
step’s spooled punch output. If this parameter is not specified, only one copy is punched.
When more than one copy is requested, the END OF PCH STEP message must be re-
sponded to before the punch writer will start punching the next copy. Once started, the
punch writer punches the entire number of requested copies before continuing to the next
job step on the punch queue. The COPIES parameter is ignored when punch spooling is
inactive or not supported for the specified device. The COPIES parameter applies only

to the job step in which the PUNCH statement was used.

DEFER: The DEFER parameter is optional. [t is ignored when punch spooling is
inactive or not supported for the specified device. DEFER-NO allows the spooling user
to begin punching a job step’s punched output before the job step has completed execu-
tion (if the job step is the next step to be punched from the punch queue). When
DEFER-YES is specified, punching will not begin until the job step has completed execu-
tion. The DEFER parameter applies only to the job step in which the PUNCH statement
was received. If the parameter is not specified, the system assumes DEFER-YES.

QCOPY': This optional parameter (QCOPY-NO} is used to prevent the spool file copy
program from copying a job step that is on the punch queue. QCOPY-YES allows the
spool file copy program to copy the job step. If the parameter is not specified,
QCOPY-YES is assumed.

The QCOPY parameter applies only to the job step in which the PUNCH statement is
included.

PRIORITY: The PRIORITY parameter is optional. A priority can be assigned to a job
step to indicate its order of punching on the punch queue. Priority 0 indicates a priority
1 job step that is to be held on the punch queue until released via an operator control
command. (See Appendix C for a summary of operator control commands.) Priority 5
is the highest priority that can be assigned. If this parameter is not specified, the priority
of the job at the time of execution is assigned to the job steps on the punch queue. This
parameter is ignored when the punch spooling is inactive or not supported for the speci-
fied device. The PRIORITY parameter applies only to the job step in which the PUNCH
statement was used.

PUNCH Statement 1-89

Example

Spooling Considerations

1-90

PUNCH DIEVI/ Clel-MFiclu 2, DMOI—

{ I

In this example, prior to punching, the system halts and displays on the display screen,
the partition's CARDNO parameter (50) informing the operator that card type 50 is to
be placed in the secondary hopper of the MFCU.

During punching, no check for blank cards is made. If the system punch device is also
the partition’s system input device and neither device is being used by spooling, a halt is
issued to inform the operator that the system punch device should be readied for
punching.

You can change your system punch device in a spooled job stream; however, if the new
system punch device is not the spooled punch device, punched output from the overlay
linkage editor and the library maintenance program, for example, is not placed on the
punch queue. To resume spooling of this punched output, you must change the system
punch device to the device designated as the spooled punch device during system genera-
tion.

The punch writer issues a message whenever the card type (CARDNO) for the current
punch step is different from that of the previous punch step.

When a PUNCH statement is encountered and punch output for the job step is being
spooled, the effect of the COPIES, DEFER and/or CARDNO parameters is delayed until
the punch writer is ready to punch the output.

READER Statement

Function

Placement

Format

Contents

Spooling Considerations

The device used to read OCL statements is called the system input device. A default
system input device is established for each partition during system generation. You can
use a READER statement if you want to change your system input device.

The READER statement must not come between the LOAD and RUN or CALL and
RUN. If you use the READER statement in a procedure, the system input device is
changed when the statement is processed, but, OCL statements are not read from the new
system input device until the procedure is completely executed. If you use the READER
statement to change the system input device, the device you specify is used to read
source programs, control statements, and OCL statements. Therefore, changing the
system input device affects the placement of source programs and control statements as
well as OCL statements,

The READER statement must be read from the current system input device or a proce-
dure,

// READER code (system input device)
Codes for the system input device can be as follows:
Code Meaning

CONSOLE CRT/keyboard (can be shared by partitions)

MFCU1 Primary hopper of the 5424

MFCU2 Secondary hopper of the 5424

MFCM1 Primary hopper of the 2560

MFCM2 Secondary hopper of the 2560

1442 1442 Card Read Punch

2501 2501 Card Reader

3741 3741 Data Station/Programmable Work Station

You may change your system input device in a spooled job stream; however, if the new
system input device is different from the spooled input device, jobs are not scheduled for
execution from the reader queue. To resume scheduling jobs for execution from the
reader queue, you must change the new system input device back to the system input
device that is accepting spooled input.

READER Statement 1-91

RUN Statement

Function

Placement

Format
Contents

Spooling Considerations

1-92

The RUN statement indicates the end of the OCL statements for a job step. After the
system reads the RUN statement, it executes the program specified on the LOAD state-
ment or calls the procedure specified on the CALL statement.

A RUN statement is needed for each of the programs you want the system to run. In the
job stream, it must be the last statement within each of the sets of OCL statements for
your job steps. It can also be the last OCL statement in a procedure. (For more informa-
tion about procedures, see Procedures in Part 2)

// RUN

None (comments may be entered after the blank following RUN})

None

SWITCH Statement

Function

Placement

Format

Contents

The SWITCH statement allows you to modify the external indicators for the partition in
which the statement was received. Eight external indicators are assigned to each partition.
External indicators allow you to influence the execution of your programs from an
external source. The eight external indicators, for each partition, are set off during I1PL.

If a SWITCH statement sets an indicator on in a partition, it remains on until one of the
following occurs:

® Another SWITCH statement sets it off.

® A JOB statement is received in the partition.

® A /. statement is received in the partition, in job mode.
® An IPL is performed again.

The SWITCH statement can be placed anywhere among the OCL statements. Only one
SWITCH statement is allowed between the LOAD or CALL and RUN statements.

// SWITCH indicator-settings

Indicator-settings: The indicator-settings parameter is a code that consists of 8 characters,
one for each of the eight external indicators. The first, or leftmost, character gives the
setting of external indicator 1; the second character gives the setting of external indicator
2; and so on.

The code must always contain 8 characters. For each external indicator, one of the
following characters must be used:

Character Meaning
0 Set the external indicator off.
1 Set the external indicator on.
X Leave the external indicator as it is.

SWITCH Statement 1-93

Example The code 1X0110XX would cause the following results:

External
Indicator Result
1 Set on
2 Unaffected
3 Set off
4 Set on
5 Set on
6 Set off
7 Unaffected
8 Unaffected
Spooling Considerations None

1-94

/& Statement

Function /& statements are used as a precautionary measure. Placed at the end of your OCL for a
job step, a /& statement signals the system that OCL statements for a new job tep
are coming. It prevents OCL for the next job step from being read as a part of the pre-
ceding set of statements or data. Any attempt to read more data from that device will
be blocked. This statement terminates a step mode flush.

Placement /& statements are not required. It is recommended, however, that you use them as the
last statement in each of the sets of OCL statements for your programs. They are not
allowed in a procedure.

Format /&

Contents None (Comments may be entered starting in column 3; however, this statement requires
special consideration when used with the copy/dump program ($COPY). For more
information regarding these special considerations, refer to Card /nput Considerations,
under Copy/Dump Program}.

Spooling Considerations None

/& Statement 1-95

/. Statement

Function

Placement

Format
Contents

Spooling Considerations

1-96

This statement is a job stream delimiter that has the following three functions:

A /. acts as a delimiter between jobs. It causes end of job and prevents the reading of
more OCL for the job.

With spooling active, two consecutive /. statements indicate the end of the spooled input
job stream.

With spooling inactive, this statement can be used to end job mode and return to step
mode. It causes end of job in the partition in which the statement was received.

How this statement is used determines where it is placed in a job stream (see examples).
Itis not allowed in a procedure.

/.
None (comments may begin in position 3.)

Two consecutive /. statements must be used to indicate the end of the spooled input job
stream.

A /. statement may be used to delimit jobs in a job stream. When a job being placed in
the reader queue is not delimited by a /. statement, the input spooling routine generates
a /. statement as the last statement for the job in the queue. This statement may contain
extraneous characters following the /. when the system history area is displayed or
printed, or when the statement is fogged on the log device for the partition.

Some system service programs (3COPY for example) do not recognize a /. statement with
comments or extraneous characters as an end of file indicator unless the statement is read
from the system input device. Also, because /. statements in the reader queue may have
extraneous characters following the /. delimiter, these programs should not attempt to
read data from the reader queue unless the spooled reader is also the system input device
for the partition in which that program is executing.

The following examples show how the /. statement can be used.
1. When used as a delimiter between jobs:

//JOB1 JOB
//STEPA LOAD PROGA,R1

// RUN

Data

/*

/&

//STEPB LOAD PROGB,R1

// RUN

Data

/-lr

/&

/. This indicates the end of JOB1 and prevents the reading of more OCL for
JOB1. If any job steps in JOB1 had been canceled, the /. indicates the end of
the job. If this statement were not in a job stream, the following invalid JOB
statement, the LOAD statement, and all other statements up to the next /. or
valid JOB statement would have been read as part of the OCL for JOB1.

//J0B2JOB

//STEPA LOAD PROGC,R1

// RUN

2. When used to indicate end of spooled data:

//J0B1 JOB
//STEPA LOAD PROGA,R1

// RUN

Data

/-l-

/&

//STEPB LOAD PROGB,R1

// RUN

Data

/*

/.

//JOB2 JOB

//STEPA LOAD PROGC,R1
// RUN

Data

/*

/&

//STEPB LOAD PROGD,R1

// RUN
Data

/*
/.

/ } Indicates end of spooled input

/. Statement 1-97

3. When used to end job mode and return to step mode (nonspooled systems only}:

//J0B1JOB SPOOL-NO,PARTITION-1,CORE-12
//STEPA LOAD PROGA ,R1

// RUN

Data

/*

/&

//STEPB LOAD PROGB,R1

// RUN

Data

/*

/. Ends job mode. Begin step mode.
// LOAD PROGC,R1

// RUN

1-98

*(Comment) Statements

Function

Placement

Format

Contents

Spooling Considerations

Comment statements are commonliy used to explain the jobs or give the operator instruc-
tions. A comment statement can also be used to cause a second record to be written to
the SHA following the comment. This record, called a time stamp, contains the system
date and the time of day (if timer support was generated). Comment statements are
printed along with the other OCL statements.

You can include, among OCL statements, special statements that contain only comments.
Comment statements must contain an asterisk (*) in column 1. If you include the word
TIME with an * (*TIME), the system writes the comment statement plus a time stamp in
the system history area.

Comment statements can be placed anywhere among the OCL statements in either a job
stream or a procedure. Comment statements are never displayed on the CRT but are
printed if LOG is assigned to a printer (1403 or 3284) for the partition in which the
comment statement was used and the printer is not allocated to a partition.

* comment, or *TIME comment

The comment can be any combination of words and characters. The requirements are
that the asterisk (*) be in column 1, and if specified, TIME must start in column 2.

The following example shows the format of the *TIME statement and the time-stamp
record as it appears in the SHA.

(D 2 *TIME COMMENT FROM PARTITION 2
@ 2 04/26/78 00.00.54

@ This statement was generated by the user.
@ This statement was inserted into the SHA by the system.

None

*(Comment) Statements 1-99

/* Statement

Function

Placement

Format

Contents

Spooling Considerations

1-100

The /* statement is not a true OCL statement but is used to indicate the end of a data
file.

One /* should be used as the last card of an input data file or program deck. With the
exception of card utilities, two consecutive /* statements will cause an error message.

/*

None (Comments may be entered starting in column 3; however, this statement requires
special consideration when used with the copy/dump program ($COPY). For more infor-
mation regarding these special considerations, refer to Card Input Considerations, under
Copy/Dump Program.)

None

Part 2. System Concepts and Facilities

Part 2. System Concepts and Facilities 2-1

SYSTEM/3 MODEL 15 PROGRAMMING SUPPORT

System/3 Model 15 programming support inciudes system
control programming (SCP) and program products (PP).
These facilities allow a user to prepare and maintain disks
and tapes, and perform basic functions necessary for the
operation of a system.

SCP consists of disk system management programs and
system control and service programs that are fundamental
to the operation and maintenance of the system. Disk
system management provides its support through the
following:

® |Initial Program
Loader

Starts operation of the system by
loading the supervisor into storage.
® Supervisor Controls overall system operations
and provides general function
required by the scheduler and all
processing programs.

® Scheduler Initiates the execution of each new
program and establishes the system
facilities which are to be evoked
while that program is running.

® Spool Reduces processing unit depen-
dence on the relatively slow speeds
of unit record input/output devices,
and reduces contention for the
devices.

® Data
Management

Provides routines to interface
between a user program and the
required data files. Interfaces are
provided for files on disk, tape,
cards, or diskette, and for the
printer, CRT, BSCA, or SIOC; also,
a device-independent access method
is supported.

Program Facilities

System control and service programs enable the user to
service the program libraries, data files, application pro-
grams, and input/output units. Following are some of the
programs included in this group:

® Library
Maintenance

Allows the user to produce, main-
tain, and service the source and
object program libraries

® Copy/Dump Supports file-to-file and volume-to-
volume copies

® File and Volume
Label Display

Displays information about the
contents of a disk
® File Delete Deletes data files from a disk

The following program products are available to satisfy
specific application requirements:

e RPG I

® Subset ANS COBOL
e FORTRAN IV

® Basic Assembler

® Disk Sort

® Tape Sort

® CCP/Disk Sort

® Card Utilities

Program Facilities 2-3

PROGRAM CONCEPTS

Any set of user instructions for processing data must go
through several phases before itcan be used by the system
to actually process data, User-written instructions form a
source program; the source program is processed by a
language translator to form an object module; the object
module is formatted by the overlay tinkage editor into a
load module; the load module can be executed by the
system. The following discussion describes these steps

in greater detail,

Source Programs

A source program is a set of user instructions that can be
compiled and used for processing data. To write a source
program, a user must analyze the input data, decide what
must be done to it, and determine the format of the
output.

After this analysis, the user writes instructions according

to the conventions of a programming language (such as
RPG 11} to process the data. These instructions taken
together are called a source program and the user can punch
it into cards, write it on a diskette, store it on disk prior

to compilation or assembly, or enter it into the system
directly from the console/keyboard.

Object Modules

An object module is a source program converted into
instructions that can be link-edited. To obtain an object
module, a source program is processed by a compiler {such
as the RPG Il compiler) or an assembler. The resulting
object module contains the necessary machine instructions
required to perform the desired processing of data. From
the compiler or assembler, the object module can be stored
on disk, punched into cards, or written on a diskette.

The following examples show typical OCL used to compile
source programs.

24

Job stream for compiling a source program punched in
cards.

Note: Depending on

the compiler used, more
than two FILE statements
may be required.

Job stream for compiling a source program located on
dick in a source library.

// RUN

4(// COMPILE ~—)
(// FILE —~——

/I FILE —~—~

// LOAD —~—

Note: Depending on the
compiler used, more
than two FILE statements

may be required.

Load Modules

A foad module consists of at {east one object module that
has been changed by the overlay linkage editor into a
module that can be loaded for execution.

Linkage editor processing is necessary following the assem-
bly or compilation of any program. The output of a
language translator (assembler or compiler), called an
object module, cannot be run as a program until it is
link-edited into a load module. Object modules and load
modules can reside on cards, on diskette, or in an object
library on disk.

Source
Program

D[".—_]\
O
l

Language
Translator

Overlay Linkage Editor

The overlay linkage editor provides services to the language
translators. The following section provides an overview of
these services; for detailed information on the overlay
linkage editor and its uses, see /BM System/3 Overlay
Linkage Editor Reference Manual, GC21-7561.

The overlay linkage editor can be requested by a user or
directly by a language translator such as FORTRAN,
COBOL, RPG 1, and Basic Assembler.

The following OCL statements show how to load the over-
lay linkage editor:

// LOAD $OLINK,unit

// FILE NAME—$SOURCE, . ..
// FILE NAME—$WORK, . ..
/l RUN

ments, which are

by the compilers.)

optional, are standard
FILE statements used

Object
Module

Linkage
Editor

S

The overlay linkage editor provides the following functions
for the language translators:

® Punches the object module into cards, writes it to a
diskette, and/or catalogs it into an object library on disk.
These modules are also referred to as R modules,
routines, or nonexecutable object programs. They are
programs and/or subroutines that still need to be link-
edited into load modules.

e Link-edits the object module(s) into a load module;
punches this load module into cards, writes it on
diskette, and/or catalogs it into an object library on
disk. These modules are also referred to as O modules
or object programs. They are programs and/or sub-
routines that can be loaded for execution.

(These two FILE state-

Program Facilities 2-5

When the overlay linkage editor link-edits one or more
object modules, it attempts to fit the resulting load module
into the user-specified Program size or the current program
partition size. If this cannot be done, the overiay linkage
editor assigns some modules to overlay segments. Main
storage for an object program with overlays is divided into
four areas: root area, user overlay area, system area, and
co-resident area. Not al programs need all four areas.

The root area of an overlay program contains the parts of
the program that are never overlaid. The root area always
contains the mainline module, overlay fetch routine, fetch
table, and transfer vectors. The remaining parts of the root
area depend on the program being linked.

26

The user overlay area contains user modules that call
system 1/O modules. Each overlay (known as a segment)
loaded into the user overlay area can contain modules of
different category values. Category values determine what
modules reside in the various areas. If the COBOL seg-
mentation feature has been used, the COBOL segments
appear as overlays in the user overlay area. The presence
of COBOL segments forces any non-COBOL modules that
normally would have been assigned to the user area to the
root area {category 0).

A system overlay segment contains system modules with
the same category value. Each system overlay segment is
independent of other system overlay segments. System
modules are assigned to overlay segments solely by category
value. A system module can call only another module with
either the same category or a category 0 module. The
co-resident area is actually a part of the system overlay
area.

The following example shows overlay areas.

Supervisor

— GLOBAL
— COMMON

— Mainline Module
— Category 0 Modules (user)
— Other Modules Included (if space

System Modules

User 1/0 Independent Modules

The maximum number of overlay segments in a program
is 2b4. A storage map provided by the overlay linkage
editor indicates overlay area addresses and the segments
each overlay area can contain.

The following OCL statements are an example of a language
translator requesting the overlay linkage editor:

// LOAD $RPG, unit (unitcan be R1, F1, R2,
or F2)

// COMPILE SOURCE-PROG1,UNIT-unit,
OBJECT-unit,ATTR-MRO

/l FILE NAME-$SOURCE, . ..
/!l FILE NAME-$WORK, . ..
// RUN

) — Root Area
available)
— Overlay Fetch Routine, Fetch Table,
and Transfer Vectors
User {/O Dependent Modules ; — User Overlay Area
System Modules™ ~ — -— ﬁ — System Overlay Area

— Co-resident Area

Memory Resident Overlays

Memory resident overlays is a technique designed to
increase the performance of large overlay programs by
allowing certain overlay segments to remain in main storage
after the initial segment fetch. The two types of memory
resident overlay programs are MOVE and REMAP, which
differ as follows:

® When ATTR-MOVE (MOVE technique) is specified in
the OPTIONS statement of the overlay linkage editor,
the user program retains the segment in the resident
area but executes the segment in the conventional
overlay fetch area.

® When ATTR-MRO (REMAP technique) is specified in
the OPTIONS statement of the overlay linkage editor,
the program executes the segments in the resident area
itself.

Program Facilities 2-7

The ATTR parameter is to be used only with load modules;
the MRO and MOV program attributes will not be attached
to R modules (nonexecutable object programs).

For more information, see /BM System/3 Overlay Linkage
Editor Reference Manual, GC21-7561.

To be used, the memory resident overlay feature must be
selected as an option during system generation. However,
load modules may be link-edited with this attribute on
any system.

The overlay fetch routine generated for the MOVE tech-
nique is identical to the fetch routine generated for
conventional overlay programs.

The CATEGORY statement controls which overlay seg-
ments are candidates for memory resident overlays. Any
overlay segment containing a category 125 module is not
a candidate for memory residence.

With the two memory resident overlay techniques (MOVE
and REMAP), large programs can reside in primary storage
throughout execution if the partition is large enough and

if the program can be link-edited within the maximum
program size. These techniques may improve performance
for overlay programs that require a large number of overlay
fetches.

The REMAP technique requires that the overiay segments
be link-edited to 2K boundaries. The MOVE technique
does not have this restriction. For large overtay segments,
REMAP generally executes faster than MOVE.

Throughput degradation for memory resident overlay
programs with RLDs (relocation dictionary records) is not
as severe as for conventional overlay programs with RLDs,
because each resident overlay segment is relocated only
the first time it is fetched from disk.

2-8

PROGRAM AND PARTITION SIZES

Program size is the amount of main storage (excluding
external buffer requirements) required for a program to
execute. Partition size is the amount of main storage
available for executing a program. Program and partition
sizes are related items because the partition size must be
large enough to accommodate the program. When the
program size {plus external buffer requirements) is larger
than the partition, either the partition size can be increased
or the program can be structured with overlays.

The partition sizes that best meet the needs of an installa-
tion depend upon such factors as the total amount of
storage available, the size and characteristics of the user
programs, their balance among job streams, and the operat-
ing environment.

Partition sizes are specified in 2K increments; the minimum
size in which to execute a program is 8K. There is no
upper limit, except as determined by the system. The
maximum program size is 48-56K. A program to execute
under CCP can range from 4K to 32K. The maximum
program size is dependent on the system configuration
chosen during system generation. Generally, the more
system generation options selected, the smaller the maxi-
mum program size. For example, the maximum configura-
tion that also includes CCP allows only 48K programs;
whereas the minimum system configuration, without CcCP,
supports 56K program size. Also, canceling spool can
potentially increase the maximum allowed program size

by one 2K increment. The increased size allows more
programs to run without overlays and, therefore, may
reduce execution time.

Since partition sizes are specified in 2K increments, care
must be taken when a program is changed. A program size
exceeding a 2K boundary by as little as 1 byte requires the
partition size to increase another 2K. See the following
example:

Program Size Partition Size

Original program 8,100 bytes 8K

Changed program 8,193 bytes 10K

The partition size is initially set during system generation;
later it may be reset with a SET command. The program
size can be specified by the user either when writing a
program {via programming language specifications) or when
link-editing the program (via the CORE parameter on the
OPTIONS statement).

The DISPLAY STATUS command provides system infor-
mation on the CRT. Included in this information are the
partition sizes. The display also provides the maximum
program size that can be executed on that particular
system,

Greater Than 48K Programs

DISPLAY STATUS on the system display screen specifies
the maximum program size available (MAX PROG SIZE =
XXK). Possible values are 48K, 50K, 562K, 54K, or 56K
depending on the options chosen during system generation.
The user can direct the overlay linkage editor to generate

a load module with a specified maximum limit; this
information (object core size) is specified as follows:

RPG RPG control card (H)
FORTRAN CORE statement

COBOL OBJECT-COMPUTER paragraph
$OLINK OPTIONS control statement

The value specified should never be larger than the maxi-
mum allowable program size (48K-56K). If the desired
execution size is not specified, the overlay linkage editor
assumes the current partition size (used for compilation/
assembly) or 48K, whichever is less.

A link-edit address of X'4000’ should be specified in the
COMPILE statement (LINKADD) for all programs to be
executed in a partition (this is the compiler’s default
value). If the program is to run as a CCP task, X’8000’
should be specified. (Maximum program size for CCP
tasks is 32K.)

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

EXTERNAL BUFFERS

An external buffer is an area located outside the user
program but within the user partition. An external buffer
contains the disk buffers for the user program. When a
user program requests external buffers during compilation,
the disk buffers are moved out of the user program area
and located after the last user program byte. These disk
buffers are now located between the end of the program
and the end of the partition. Processing of data in these
buffers is done in move mode. This removal of disk buffers
from the root areas of a program allows more executable
code to be included in the root area. This can have the
effect of increasing the maximum program size.

External buffers are supported by System/3 COBOL,
FORTRAN, RPG I, and Basic Assembler. External buffers
are requested as follows:

e COBOL Two parameters, EXTBUF and
NOEXTBUF, are supported on the
PROCESS statement. EXTBUF provides
external buffers for all disk files;
NOEXTBUF provides buffers within the
program. NOEXTBUF is the default.
For further considerations in using the
SAMEAREA clause with EXTBUF, see
IBM System/3 Subset ANS COBOL
Reference Manual, GC28-6452.

e FORTRAN Two parameters, EXTBUF and
NOEXTBUF, are supported on the
*PROCESS statement. EXTBUF pro-
vides external buffers for all direct disk
files; NOEXTBUF provides buffers within
the program. NOEXTBUF is the default.
For further considerations in using
EXTBUF and SHRBUFF, see /IBM
System/3 FORTRAN |V Reference
Manual, SC28-6874.

e RPG I An E is specified in column 48 of the
Header Specification to provide external
buffers for all disk files; not specifying

an E in column 48 provides buffers within
the program. The default is no external
buffers.

Program Facilities 2-9

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

® Basic The parameters, XBUF-n and NOXBUF,
Assembler are supported on the OPTIONS state-
ment; n is a one- to five-digit decimal
number specifying the size of the external
buffer required. NOXBUF is the default.

External buffers are intended for very large programs that
previously required a severe reduction in the disk buffer
sizes to enable programs to fit within a partition. Specify-
ing external buffers for these programs can improve per-
formance because larger buffers can be utilized. Small
programs, however, may experience performance degrada-
tion due to the extra processing required for external
buffers. The maximum size for external buffers is 64K.
Therefore, as an example, a 56K program plus 64K of
external buffers would require a partition size of 120K.

2-10

File Facilities
FILE DEFINITION

A file is a collection of related records to be treated as a
unit and contained on cards, disk, diskette, tape, printer,
BSCA, or SIOC.

This chapter describes file organization and processing in
general. These subjects are discussed in greater detail in

the /BM System/3 Disk Concepts and Planning Guide,
GC21-7571, and /BM System /3 Magnetic Tape Program
Planning Manual, GC21-5040. For more information on
file processing with respect to programming languages, see
IBM System/3 RPG Il Reference Manual, SC21-7504,

IBM System/3 ANS COBOL Reference Manual, GC28-6452,
and /BM System/3 FORTRAN 1V Reference Manual,
SC28-6874.

File Organization

Three types of file organizations are defined based on the
arrangement of the records within a file: sequential,
indexed, and direct.

A sequential file is a file in which the position of a record
is determined by the order in which records are put in the
file. For example, the tenth record put in the file occupies
the tenth record position. Files on cards, diskette, and
tape are always sequential files; disk files may be sequential
files.

An indexed file is a disk file in which the location of a
record is stored in a separate but adjacent portion of the
file called an index. The index has a record key and record
location for every record contained in the file. An index
enables a program to process only required records; it is
not necessary to access all the records of the file.

Note: Indexed processing is not allowed on the simulation
areas of the 3340 and 3344.

A direct file is a type of sequential disk file in which records
are assigned specific record positions by the user. Direct

file organization enables accessing any record in the file
without examining other records or searching an index.

Records are assigned specific locations, independent of the
order they are put into the file. A user defined control

field on the record determines the record’s specific location
in the file. Therefore, records can actually be scattered
throughout the file, depending on the control field. Unused
record locations contain blanks.

File Processing

Files can be processed by three basic methods: consecutive,
sequential, and random.

The consecutive method processes records in the order in
which they physically appear in a file. The consecutive
method can be used for sequential, indexed, and direct
fites. The contents of spaces left for missing records in
direct files are read as blank records. Records are read
until either the end of the file is rearhed or the program
terminates the reading of records.

Sequential processing applies only 1o indexed files. When
an indexed file is processed sequentially, the record keys
are processed one after another in ascending order. 1f the
records are not in order in the file, they can be processed
in order by means of the keys in the file index. There are
two ways to sequentially process an indexed file: by key
and within limits. Sequential-by-key processes all records
in the order of their key fields. Processing continues until
all records have been read or the program terminates the
processing. Sequential-within-limits aliows a section of the
file (group of records) to be processed. Each section is
identified by lower limit {starting) and upper limit {ending)
record keys.

Note: COBOL supports lower limit proces ing only; the
upper !imit must be provided within the CuBOL program.

Random processing atlows disk records to be processed in
an ordered or unordered manner; a particular record can
be processed independently of its relation to other records.
Sequential and direct files can be processed with a relative
record riumber to identify the record. The relative record
number indicates the position of the record within the file
in relation to the beginning of the file. It is not a disk
address, but a positive, whole number that is converted by
disk data management to the disk address of the record.

File Facilities 2-11

The relative record numbers can be contained in an
ADDROUT file (record address file) created by the Disk
Sort program. ADDROUT files are comprised of binary
3-byte relative record numbers that indicate the relative
position of records in the file to be processed. To process
indexed files randomly, the user must use the record keys
in the file index to identify the records.

File Creation

Data is placed in a file according to user specifications.
When disk or tape files are created, a FILE statement for
each file must be included in the OCL for the program.

When creating a disk file, the FILE statement supplies the
name of the file, the retention of the file, the file size,

the area (simulation or main data area) to contain the file,
and (optionally) the location within the area.

The name given to a file is the hame a program will use in
referencing that file. Some programs require specific file
names to be used, such as $SWORK for compiler work files,
(FILE statement descriptions in Part 1 contain a list of
the reserved file names.) Several versions of a file can be
created on the same disk and be given the same name, but
the date must always be unique. Each version can be
referenced by its location, size, or unique date.

The retention of a file is classified as scratch, temporary,
Or permanent. A scratch file may be used only in one job
step and cannot be retrieved after that job step has ended.
The first time the Model 15 allocates new space on a
simulation area that has scratch files created by another
System/3 model, all scratch files are removed. A message
is issued before removal, allowing the job step to be
terminated or continued.

A temporary file is usually used more than once; however,
the space containing the file can be reused under one of
the following conditions: '

® A FILE statement specifying scratch is later supplied for
the temporary file. This removes the file from the VTOC
(volume table of contents).

® Another file with the same LABEL name is loaded into
the exact area occupied by the temporary file; this only
changes the data. Space and location parameters are

required.

® The file delete program is used to delete the file,

212

The space containing a permanent file cannot be used for
any other file until the file delete program has deleted the
file. If the use of a file is not specified when created,

the file is classified as temporary. A temporary file can be
changed to a permanent file only if the file name is changed
and it is copied as a permanent file.

The output file is scratched at end of job step {just as if
RETAIN-S has been specified for the output FILE state-
ment) when all of the following conditions exist:

® A pack containing an input file is not online at the start
of the job (deferred mount).

® The output file is to be written over the input file
(load to old).

® RETAIN-S is used on the FILE statement for the input
file.

An existing temporary file should be reloaded (load to old)
with files of like attributes. If an existing indexed file is
reloaded with a sequential file, the new data overlays only
the data portion of the file: the index portion of the file
remains intact but unusable.

The amount of disk space for a file depends on the size of
the records, the number of records (both current and to be
added in the future), and the file organization.

The size of the file can be specified by either the number
of tracks needed or the approximate number of records for
the file. When the number of records is given, the system
calculates the required disk space by converting number

of records to number of tracks.

The total space allocated is rounded up to full tracks,
allowing adequate space to accommodate at least the num-
ber of records indicated. This means the file could hold
more records than specified, allowing additional records to
be added to the file. Therefore, if the copy/dump program
($COPY) is used to copy the file to another disk, more
records may have to be specified than were specified when
the file was created.

File Location

After the size of a file has been determined, disk space to
contain the file can be allocated. A main data area can
contain up to 1000 files; a simulation area can contain up
to 50 files. A location may be specified on the FILE state-
ment indicating the beginning of the file: for a simulation
area, it is specified via a track number; for a main data area,
it is specified via cylinder/head. Allocation of space for a
file on either a main data area or a simulation area begins
at the specified location and extends toward the high
cylinder end of the area.

Note: When using the COPYPACK function of $COPY
and $DCOPY to copy an entire 3344 pack, files located on
cylinders 167—186 of a 3344 main data area will be copied
to another 3344 main data area or tape, but they will not
be copied to a 3340 main data area.

The system requires a location to be specified on the FILE
statement when creating a file with an identical label and
the same size as a file that already exists in the area, when
reloading over an existing file, or when loading an offline
multivolume file to disks that contain other files. When a
file is referenced, the location is used for a more specific
identification check and for identifying one of several files
having the same iabel and same size.

A device independent FILE statement for card, diskette,
and printer files allows 1/O devices to be assigned when a
program is executed. Thus, a program need not be rewritten
when a different device is to be used. (For example, input
originally read from the MFCU1 can be read from the 3741
without any change in the file description specifications in
the RPG il program.} The F{LE statement supplies the
system with information about 1/0 devices used in the
program. This information is used to read records from
and/or write records to the specified /O device. A device
independent FILE statement must be supplied for each
device independent file used in a program. |f device inde-
pendent files use disk or tape units for input or output,
then the disk or tape FILE statement is used.

A system service program ($FCOMP) is used to remove gaps
between files. The program can reorganize the files on a
specified main data area or copy {add) an entire main data
area file by file to another main data area. LOCATION
parameters may have to be changed in OCL statements
after SFCOMP is used. (See File Compress Program—
$FCOMP in Part 4 for more information.)

Automatic File Allocation

When the location of a new file is not specified on the
FILE statement, the location is determined by disk system
management. The process is known as automatic file
allocation.

When allocating file space, disk system management cal-
culates the length of the file and, for a simulation area,
checks the volume label to determine which tracks are avail-
able for allocation. (The volume labe! contains the status
of each track and indicates which tracks are available for
use.) File space is first allocated for permanent files, then
temporary files, and finally scratch files, if multiple files

are being allocated.

Disk system management places the file on the smallest
contiguous string of available tracks that can contain the
file, leaving as few empty spaces as possible. For example,
if the file is 10 tracks long and there is one string of 12
available tracks and another of 15 tracks, the file is placed
in the string of 12 tracks because the 12-track string is
closer to the length of the file.

If disk system management, while searching a simulation
area, finds two strings having the same number of available
tracks, the file is placed at the highest numbered available
location. Also, if the file is the first file placed on a disk,
the system allocates space for the file beginning at the
highest numbered track. The system allocates space begin-
ning at the highest location to allow as many available
tracks as possible next to the object library (the libraries

are usually located at the lowest numbered tracks) to enable
the object library to expand if necessary.

File Facilities 2-13

If the area found for a new file contains more tracks than
required, disk system management determines the type of
file to the left (lower numbered track) of the available
tracks. [f the file to the left is of the same retain type,
the new file is left-adjusted; if the file to the left is not
similar, the new file is right-adjusted as shown in the
following example:

New
Part A | Permanent| Permanent Available [Temporary
File File Tracks File
New
Part B | Temporary| Available Permanent Temporary
File Tracks File File

Part A: The file is left-adjusted since both files are
permanent.

Part B: The file is right-adjusted since one file is temporary
and the other is permanent.

When disk system management is allocating space on a main
data area, the search for space begins at cylinder 1 and
extends toward the high cylinder end of the disk. When a
file is classified as temporary or permanent, all disk space

is searched to find the available space that best fits the file.
The file is adjusted toward the cylinder 1 end of the avail-
able space. For a scratch file being placed on a 3340 main
data area, the entire main data area is searched for the best
fit; the file is adjusted toward the cylinder 166 end of the
available space. For a scratch file being placed on a 3344
main data area, the disk space between cylinders 167—186
is searched for the best fit. If sufficient space exists, the
file is adjusted toward the cylinder 186 end of the available
space. If space cannot be found within cylinders 167—186,
the entire main data area is searched for the best fit; the
file is adjusted toward the cylinder 186 end of the available
space.

2-14

Although it is easier to let disk system management allocate
file space, the following are some advantages in the user
determining file allocation. More efficient file locations
may be determined by a user than by disk system manage-
ment. Disk system management may leave a string of
available tracks between files that is unusable because the
string is not long enough to contain another file. The user
can determine the location of all files by using the file and
volume label display program.

Automatic file allocation considers effective use of file
space, but not the usage of the files. It does not consider
file planning for multiple input files in a program or job-to-
job transitions. When a user plans file locations, files used
together can be placed near one another on disk; thus,
processing time may be improved.

A function known as auto-allocate provides automatic
allocation of space for work files. This function can be
used by system programs such as library maintenance and
disk sort. Using the auto-allocate function of the disk sort
program generally increases the time needed to run a sort
job; auto-allocate does not always provide the work file
arrangement needed for a fast sort run. When a user is
concerned with minimizing sort run time, a work file should
be specified by means of a FILE statement, rather than
allowing the system to automatically allocate work space.
An advantage of using auto-allocate with disk sort is, if
sufficient contiguous space is not available, the system

will find work space that may be located in different
noncontiguous spaces of the same volume or on different
volumes.

FILE SERVICES

The following system service programs are provided for
servicing files:

® The file and volume label display program ($LABEL),

has two uses:

— Print the entire volume table of contents {(VTOC) for
an area {main data or simulation)

— Print the VTOC information for only certain data
files

In both cases, the program also prints the name of the

area.

The printed VTOC information is a readable, up-to-date
record of the contents of the area. This information
may have a number of uses, such as:

— Check the contents of an area to ensure that it con-
tains no libraries, permanent data files, or temporary
data files before reinitializing

— Locate space that is available for libraries or new files

— Obtain specific file information, such as the file
name, designation (permanent or temporary), or the
space reserved for the file

— Determine the amount of space available in a particu-
lar file

— Provide file location for use of the $COPY recovery
function

The control statements for the program depend on the

program use. For more information see File and Volume

Label Display Program—$LABEL in Part 4 of this

manual.

® The copy/dump program ($COPY) performs only one

of the following functions per execution:

— Copy an entire volume

— Copy a data file

— Copy and print a data file

— Copy a data file, but print only a part of the file

— Print an entire data file

— Print only a part of a data file

— Print and copy a part of a data file

— Build a direct file from any file type, except
REORG-YES may not be specified for an indexed
file

— Build an indexed file from a sequential file

— Recover a file

— Copy a file with the output record length different
than the input length

The control statements used depend on the desired

results. For more information, see Copy/Dump

Program—3COPY in Part 4 of this manual.

® The file delete program ($DELET) can be used to:

— Remove all files from the VTOC and optionally
remove their associated data from the area.

— Remove a specific file by name from the VTOC and
optionally remove their associated data from the area.

— Remove file references in the VTOC only. This frees
the space they occupy for use by new files but does
not remove the data from the area.

— Free space that has been allocated but, due to
abnormal circumstances, is not associated with a file
or library.

® The recover index program {$RINDX) recovers indexed

files by providing the following functions:

— Recover records added to indexed files lost because
of abnormal termination

— Update the format-1 label in the scheduler work area
with new end-of-data and end-of-index pointers

— Call the system key sort program and update the
VTOC at end of job

® The file compress program ($FCOMP) has two primary
functions:
— Place all files (except $SPOOL) in a main data area
together at the cylinder one end of the disk
— Copy each file in a main data area to another disk

SCHEDULER WORK AREA

The scheduler work area (SWA) is a work space located

on the system pack. One use is to temporarily save file
label (F1) information during the processing of a program.
The library maintenance program is used to create a
scheduler work area for each partition. Space for this area
is assigned immediately preceding the object library.

The space for file label information is 48 sectors, and it can
contain a maximum of 192 entries, each 64 bytes in length.
A maximum of 192 entries {files, volumes of a multivolume
file, or a combination) may be specified for one program.
In some cases, however, the maximum will be less than

192. When all files are indexed multivolume files, the
maximum is 96 files. A 10K partition must be available to
process 192 entries; a partition of 8K can process up to

128 entries.

File Facilities 2-15

The auto-allocate function may require an F1 entry in the
SWA even though it is not specified by the user. For
example, the Disk Sort program has an auto-allocate
function wherein the system, not the user, locates work
space for the sort. Also, some of the system service
Programs use the auto-allocate routines,

Generally, one format-1 label is required for each file. One
F1 label represents one FILE statement for disk, tape, or
device independent data management (DIDM). For multi-
volume files, there is one F1 label for each PACK or REEL
name. In addition, one F7 label is used for each volume

of an indexed multivolume file to contain HIKEY
information.,

The following chart can be used to determine the number
of SWA entries required for each program execution. A
direct file requires the same number of entries as a sequen-
tial file.

Number Number
of Applicable of SWA
Type of File Volumes Devices Entries
Sequential 1 Disk, Tape, 1
DIDM?
Sequential (MVF) 3 Disk, Tape, 3
DIDM?
Indexed {created 1 Disk 1
as single volume)
Indexed 1 Disk 2
(created as MVF)
Indexed 3 Disk 6
{created as MVF)
Auto-allocate:
$DSORT Upto4 Disk Up to 4
SMAINT 1 Disk 1!
! Not including files specified for the file-to-library or
library-to-file functions.
Device independent data management.

2-16

For example, when the $COPY program is used to copy a
multivolume indexed file on five volumes to another five
volumes, 10 entries are required for the input file and

10 entries are required for the output file. Thus, by
summing these requirements, it can be determined whether
the maximum allowable number of SWA entries (192)

has been exceeded.

FILE SHARING

File sharing allows a disk file to be shared by two or more
programs executing at the same time. Programs can read
from, update, or add to the file.

File sharing allows:

® Programs executing in batch mode in different parti-
tions to input from, update, and add to the same file

® A program in a partition to access a record added by
another program in a partition while both are executing.
(For more information, see Sharing Access To Added
Records chart under File Share in Mu/tiprogramm/'ng
Considerations and Restric tions.)

® A CCP-defined file to be processed by a batch program
without requiring CCP to suspend processing or
shutdown

Sharing a file reduces the need to have more than one

copy of a file online, and it reduces file contention between
programs. File sharing is at the block level (one block of
records) rather than at the file level. Thus, two or more
programs can be processing records from the same file,

but simultaneous accesses to the same block are queued.

Compatible Access Methods for File Sharing

Different file types can be accessed by the different types
of disk data management. For example, an indexed file
can be accessed by consecutive input data management.
The following chart shows the data management access
methods allowed to access the different file types.

File Type!
Consecutive | Direct | Indexed
Consecutive YES YES? YES?
Access .
Method Direct YES YES YES
indexed NO NO YES

1, . o .
Indicates the type of file organization used to create the file.
2 Except consecutive add.

Figure 2-1 shows the compatible disk data management
access methods allowed with file sharing. The access
methods on the left indicate the data management accessing
the file.

CAUTION:

If you use consecutive or direct data management to
update an indexed file, you should exercise care to prevent
destroying the key field portion of the record.

The data management access method is indicated by 2, 3,
or 4 character codes as follows:

® The first position—C, D, or 1—corresponds to the file
organization—consecutive, direct, and indexed.

® The 2nd, 3rd, and 4th positions can contain these
characters: R and S correspond to file access—random,
sequential. L refers to processing sequentially within
limits. O, A, U, G refer to function—output, add,
update, and get.

Example:

1. A file is open as consecutive input (CG).

2. An attempt is made to open the same file with
indexed random input, update, and add (IRUA). The

file is allowed to open if it was created as an indexed
file.

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

DTF (Define the File)

A DTF (define the file) is a file control block generated by
the compiler. It resides in the object program, can vary in
size from 30 to 150 bytes (depending on the file organiza-
tion and access method), and is used by data management
to communicate with the user program. At least one DTF
exists for each file, including printer, tape, disk, card, 3741,
console, or device independent files.

As part of opening files for program execution, the system’s
allocation and open routines store VTOC information about
the file in the DTF. This information includes file name,
device code, file attributes, pointers to input/output blocks,
command code, and |/O completion code.

For file sharing (disk files only), the DTF also contains a
pointer to the file share DTF (SDTF).

SDTF (Share Define the File)

When a disk file is being shared, an additional control biock,
called the SDTF (file share DTF}, is used. It resides in

main storage outside the program partition in a common
area called the file share area. There is one SDTF for each
physical, open, shared disk file; the SDTF is created when
that file is opened the first time, and it is removed when

the file is closed for the last time.

The SDTF contains information that reflects the status of
the file at any particular moment. Within the SDTF are

file attributes, addresses of disk data extents, a counter that
indicates the number of times the file was opened, and a
pointer to file share queue elements (FSQE). Data manage-
ment uses the SDTF to obtain and update the status and
pointers of shared files.

The SDTF varies in size depending on the type of disk file
it describes. The basic SDTF size consists of a block of 64
bytes. SDTF requirements are:

Number Number Number
of of of
SDTFs Blocks Bytes
Single volume file
Sequential or direct 1 1 64
indexed 1 2 128

File Facilities 2-17

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

Number Number Number
of of of
SDTFs Blocks Bytes
Multivolume file
Sequential or direct
1 volume 1 2 128
2 volumes 2 4 256
3 volumes 3 6 384
4 volumes 4 8 512
Indexed
1 volume 1 3 192
2 volumes 2 6 384
3 volumes 3 9 576
4 volumes 4 12 768

FSQE (File Share Queue Element)

An FSQE is used to record what portions of the file are
currently locked {enqueued) and to indicate if contention
for those locked portions exists,

The FSQE portion of the file share area is a work area used
during disk file processing. An FSQE is created for each
reference (for exampie, GET or PUT) to a physical, shared
disk file that is opened for update or add. There can be
more than one FSQE for each SDTF.

File Share Area

File sharing requires an area at the high end of main storage
to contain the SDTFs, FSQEs, and a common area. The
user specifies the size of the entire area during system gen-
eration. This size can later be changed with the SET com-
mand in increments of 2K (all partitions must be at end of
job before the SET command can be used).

The file share area is specified as a multiple of 2K; 2K is
required as a minimum, The system divides this area for
starage of the SDTFs and FSQEs in a predetermined ratio.
For example, in a 4K file share area, there is space for 52
SDTFs and 35 FSQEs.

If the user decides (through an analysis of his applications)
that the file share area would be better utilized with a
different ratio of SDTFs and FSQEs, the $CNFIG (config-
uration record) program can be used to assign a different
proportion. (See the FSHARE statement in the $CNFIG
system service program.)

2-18

Doubly-Defined Files

In a single user program, you can define one physical disk
file with two different names and file descriptions. Such
a doubly-defined file requires certain user conventions in
order to avoid file contention problems,

File contention occurs when the same records in a file are
being accessed for update by different users at the same
time. Contention for a doubly-defined file occurs when the
user simultaneously processes the same records.

Data management routines ensure that shared update files
are protected during the update. As the file is being proc-
essed, the record to be updated is read into main storage.
The disk biock that contains the record, and any other
records in the block, is then protected from any other up-
date access. Requests for information in that block are
focked; that is, the request waits until the updated record
is written back to disk, at which time the original request
is unlocked, and the new request can be processed,

{(Note: For System/3, the lock/unlock mechanism is cailed
enqueue/dequeue.)

During random processing, this rewrite/unlock/dequeue
occurs after each update of the record. During sequential
processing, this rewrite/unlock/dequeue does not occur
until the entire block of records has been processed. In
either case {and especially when processing sequentially),
programs that use doubly-defined files are susceptible to
lockouts,

For further explanation, consider the following example,
Assume that an indexed file has been defined in one pro-
gram with two different definitions:

File Name Access Method
FILEA1 Direct update (DU)
FILEA2 Indexed random update and add

(IRUA)

If the user has retrieved a record from the file using the
FILEA2 (IRUA) definition, and then attempis to retrieve
that record (or one that is in the same block) using the
FILEA1 (DU) definition, the latter access will be locked
out until the record is written back to disk for the FILEA2
definition,

If the sequence of events is such that the rewrite to FILEA2
does not occur until the successful completion of the read
request to FILEA1, then the program will stay in this wait-
ing state; the CANCEL operator control command must be
entered to free the partition.

Considerations and Restrictions

To avoid file contention problems when using doubty-
defined files, write the changed records to disk after each
update.

When the system is executing a program with a file that
can be shared, the parameter SHARE-YES can be included
on the FILE statement. SHARE-YES allows file sharing
between programs executing at the same time if the access
methods used are compatible (see Figure 2-1). SHARE-NO
disaliows file sharing. If this parameter is not given and
RETAIN-S was not specified, SHARE-YES is assumed.
(Scratch files are not shared.)

Several restrictions apply to file sharing. For programs
specifying double buffering for a file to be shared, the
double buffering request is ignored; single buffering is used.
Offline multivolume files cannot be shared.

A maximum of four online multivolumes can be shared.
Random and sequential access methods are supported
under batch; only random access is supported under CCP.
The default on multivolume OCL is SHARE-YES.

When a particular file is referenced more than once within
a job step, SHARE-NO cannot be specified.

Disk file sharing is also supported by device independent
data management disk files.

A display of the system status (via DISPLAY STATUS
command) includes the size of the file share area.

For additional information on file sharing, see Mu/ti-
programming Considerations and Restrictions.

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

File Facilities

2-18.1

Attempt To Open As
<

= <
813|5/8|8|3|8|2|=|2|2|2|<||2|3|2|3|3
co NINININ[N|N[N|[NININ NEN| N[NNI N[NNI N Consecutive
Output
Consecutive
CA NINIYIYIN|YIY|ININ N{NIN|NIN[N[N[N|N N Add
Consecutive
Ccu NITY[Y]IY|IN]Y]YIN YIYIYI Y| Y|Y|Y|]Y]Y YI'Y Update
CG NIYTYLYIN|[Y|YIN YIYIY[Y]lYIY]Y]VY!Y Y|Y gzssecutwe
DO NININ[N|N[N[NIN|N NI N NI N|IN|N[N|NIN[N 83:;;
' 1 Direct
DU NIYIY[Y|IN|[Y|[YIN|Y YOYIY|LY|YLYly]ylvyly Update
Direct
DG NAYIYIYINEY Y IN[Y Py vyl vyl v vy vl vy Y Get
Indexed
10 NINININ{N|IN[NIN NYN[N|NIN|[N|N|N|N|N N Output
IR NINIYTYINTY[YIN[YIYIYlY]lyly YIY]Y[Y'Y? Indexed
Random Input
L Indexed Random
IRU NINJY[Y|IN[Y]Y|N]Y YIY|Y[Y[Y|Y|Y]YIY.Y Input Update
IRUA NINIYIY|IN[Y]IYIN]Y YIY|I Y[Y[Y]Y]Y? VY NIN ndexed Random Input
Update and Add
b4 IRA NNy Ly 2| wa Indexed Random
€ YIY|INIY(Y|Y|Y|[Y]Y!Y Y'Y* N| N Input Add
o°' Indexed
e IA NINIYLYINIY Y IN Yy v vy vl vy vz nl N Add
w Indexed
IS NINTYIYIN|[Y|Y|N|Y YIY Yl Y|[Y|lY|lY]Y]Y]y! Sequential Input
ISL NINJYIY|IN|Y|Y|N]|Y YIYILY|lYIY[Y[Y]|Y]Y]Y! indexed Sequential
Input with Limits
ISU NINIYIYINIY Y INIY|Y|Y]Y|vyly Y| Y |YHy! Indexed Sequential
Input Update
ISUL NINJYIYIN]Y|Y[N]Y YIY!ILY|[Y[(Y|Y|lY]| YV ¥ Indexed Sequential Input
Update with Limits
ISA NINFYIYINIY Y [N[Y Y N NNy |yt Y[Y|N|N indexed Sequential
Input Add
Indexed Sequential Input
ISUA NINFY Y IN Y LY IN|Y Y N NN Y vty Y|IN|N

Update and Add

1Index Sequential Adds may be used one time as the first add access to the file.

has not occurred, only random access methods may be used to add to the f

2If random add has taken place, the added records are not accessed.

Notes:

ile,

1. Above access methods indicate the data management accessing the file, not the file type.
s included under Multiprogramming Considerations and

2. Additional information about the availability of added records i
Restrictions in Part 2 of this manual.

If any adds have previously been performed and key sort

3. If you are using the pseudo tape access method {PTAM), no file sharing is allowed between partitions. (PTAM is the

access method used for FORTRAN sequential files.)

Figure 2-1, Compatible Disk Access Methods for 5704-SC2 File Sharing

2-18.2

General Results When the 2 or 3 Option is Selected
for a Message

For most messages where option 2 or 3 is selected, the job
or job step is cancelled with no further action being taken.
Exceptions are noted in the message list contained in the
/BM System/3 Model 15 System Messages, GC21-5076.
The reason for the message indicates the corrective action
that must be taken before the job or job step can be resub-
mitted. In some cases, it may be necessary to contact a
service representative to correct the problem.

If a 2 or 3 option is taken to a message during a SMAINT
run, the library or library entries involved in the function
might be destroyed.

Considerations When Selecting the 2 Option

When the 2 option is selected to an OCL diagnostic issued
before the LOAD statement is read, the 2 option is treated
as a 0 option.

When the 2 option is selected to a system message and the
partition is in job mode, all remaining steps in the job are
also cancelled. On systems that have input spooling, job
processing in the partition will resume with the next job
on the input queue. On systems that do not support input
spooling, the job stream will be read but not processed
until a JOB or /. statement is read. If output spooling is
supported on the system, spooled output created by the
job will be saved.

When the 2 option is selected to a system message and the
partition is in step mode, only the current job step will

be cancelled. The job stream will be read but not pro-
cessed until a JOB, LOAD, CALL, /., or /& statement is
read.

When a message occurs during the execution of a job step
and the 2 option was selected, the disk files will reflect

all activity up to the point when the message occurred

and the 2 option was selected. However, if the message
occurs during a SMAINT run, the selection of the 2 option
will not cause the library or library entries involved in the
function to be retained.

Note: The 2 option cannot be taken when messages are
issued during RPG |l last record (LR) time.

Considerations When Selecting the 3 (or D) Option

When the 3 option is selected to a system message and the
partition is in job mode, all remaining steps in the job are
cancelled. On systems that have input spooling, job pro-
cessing in the partition will resume with the next job ..
the input queue. On systems that do not support input
spooling, the job stream will be read but not processed
until a JOB or /. statement is read. If output spooling is
supported on the system, spooled output created by the
job will be saved.

When the 3 option is selected to a system message and
the partition is in step mode, only the current job step
will be cancelled. The job stream will be read but not
processed until a JOB, LOAD, CALL, /., or /& statement
is encountered.

When a message occurs during the execution of a job step
and the 3 option is selected, the status of the disk files
being used by the program depends on the operations
being performed. The possible disposition of the disk
files are:

New files being created will not be retained.
® Old files being deleted will be retained.

® Oid files being added to will not reflect the additions
unless opened as SHARE-YES. If the file is shared,
the additions will be refiected in the VTOC.

® Qld files being updated will reflect the updates to the
point at which the message occurred. (Updated records
residing in main storage buffers at this time will not
be reflected in the data file.)

® Shared files will reflect all activity up to the point when
the message occurred, similar to the 2 option.

File Facilities 2-19

WORK FILES

A work file is space required by the language transiators
{RPG 11, COBOL, FORTRAN, CCP/Disk Sort, and Basic
Assembler) and several system programs (macro processor
and overlay linkage editor). A work file may be used in
processing large indexed disk files (see Large Index Files
in this section). A work file can be specified viaa FILE
statement or can be obtained by auto-allocate.

The Model 15 language translators require work files for
compilation. If an object program is required, work files
for the overlay linkage editor are also required. The
following estimates of work file space requirements can
be used for planning purposes; they may not be valid in
all circumstances.

The number of tracks for each work area depends on the
area of the disk used. A simulation area has 24 sectors
(6,144 bytes) per track; the main data area has 48 sectors
(12,228 bytes) per track. Ejther area can be used for all
components.

2-20

Main Storage Requirements

Minimum
Main Storage
Requirements>

Work File
Component Names Compile | Execute
RPG I $SOURCE 10K 2K
Compiler $WORK
COBOL $SOURCE 12K! 8K
Compiler SWORK
SWORKX
FORTRAN $SOURCE 10K 8K
Compiler $SWORK
CCP/Disk Sort $SOQURCE 12K 12K
$WORK
Basic $SOURCE 10K 2K
Assembler $WORK
$WORK?2
Macro $SOURCE n/a 12K
Processor
Overlay $SOURCE n/a 10K
Linkage Editor $WORK

l14K if braille output is required.
Minimum partition that can be used is 8K.

RPG I

The RPG Il compiler (Program Number 5704-RG2)
requires two work files. The size of these files depends

on the number of source statements (excluding comments)
and the type of statements in the program. For the follow-
ing table, a compressed source statement length of 50 bytes
is assumed.

Number of Tracks for
$SOURCE/$WORK
Number of Source Simulation Main Data
Statements Area Area
50 3 2
100 3 2
150 4 2
200 4 2
300 5 3
400 6 3
500 6 3
700 8 4
1000 1 6
1500 14 7
2000 18 9

To generate an object program, the requirements for the
overlay linkage editor must also be met. The size of
$SOURCE and $WORK must be large enough to accom-
modate both the RPG |l compiler and the overlay linkage
editor.

CcoBOL

COBOL (Program Number 5704-CB2) requires disk space
for each of its three work files. The amount of space
required depends on the number of statements in the
source program. The following chart shows requirements
for each of the three work files.

Number of Tracks for
$SOURCE, $WORK,
or SWORKX
Number of Source Simulation Main Data
Statements Area Area
50 1 1
100 2 1
150 3 2
200 4 2
300 6 3
400 8 4
500 10 5
1000 20 10
2000 40 20

In addition, to generate an object program, the require-
ments for the overlay linkage editor must be met.

FORTRAN

FORTRAN (Program Number 5704-F0O2) requires disk
work space for SWORK during compilation. This space
varies according to the size and complexity of the program
and, generally, 10 tracks for a simulation area or 5 tracks
for a main data area are sufficient.

$SOURCE is not used by the compiler, but it is allocated
so that the overlay linkage editor will have the space
available. (The requirements for the overlay linkage editor
must be met.) If linking is not required, at least 1 track
must be specified for $SOURCE.

File Facilities 2-21

CCP/Disk Sort

CCP/Disk Sort (Program Number 5704-SM7) requires

disk work space for $WORK during program generation.
SWORK is used to store the object program, and its size

is therefore relative to the size of the object program—not
to that of the source program. Each object record requires
64 bytes, and four entries are stored per sector. Because
each simulation area track can contain 96 records, 2 tracks
are usually sufficient for most sort generations.

$SOURCE is not used by the generator, but it is allocated
so that the overlay linkage editor will have the space
available. (The $WORK and $SOURCE files must reside
on a simulation area for CCP/Disk Sort.)

In all cases, the overlay linkage editor requirements for
$SOURCE and $WORK must be met.

Basic Assembler

The Basic Assembler {Program Number 5704-AS2) requires
work space for assembly as shown below. (For more
information, refer to System/3 Basic Assembler Reference
Manual, SC21-7509.) Number of Source S tatements
includes source statements generated (expanded) by the
macro processor.

To generate an object module, the requirements for the
overlay linkage editor must also be met. If macros are
used, the macro processor is executed before the Basic
Assembler, but the requirements are still as shown in the
preceding estimates.

$WORK is used to store the object program, and its size

is therefore relative to the size of the object program—not
to that of the source program. Each object record requires
64 bytes, and four entries are stored per sector. Because
each simulation area track can contain 96 records and

each main data area track can contain 192 records, 2 tracks
are usually sufficient for most assemblies.

Number of Tracks Number of Tracks Number of Tracks
for $SOURCE for SWORK2 for SWORK
Number of Main Main Main
Source Simulation Data Simulation Data Simulation Data
Statements Area Area Area Area Area Area
100 2 1 2 1 (see below)
200 4 2 4 2
300 5 3 6 3
400 7 4 7 4
500 8 4 9 5
600 10 5 1 6
700 1 6 12 6
800 13 7 14 7
900 15 8 16 8
1000 16 8 18 9

2-22

Overlay Linkage Editor

The overlay linkage editor (SOLINK program) can be

invoked automatically by the compilers or by the assembler.

It requires work space as shown below. The size of the
work areas depends on the amount of storage available
{partition size) rather than on the number of statements.

Number of Tracks for
$SOURCE/$WORK
Simulation Main Data
Partition Size Area Area
10K 4 2
12K 4 2
16K 5 3
20K 6 3
24K 6 3
28K 7 4
32K 8 4
36K 8 4
40K 9 5
44K 10 5
48K 10 5
>48K 10 5

As an example in the use of this information, assume that
a 200-statement RPG Il program is to be compiled in a
32K partition. Work files are to be on a simulation area.
RPG 1l requires 4 tracks, and the overlay linkage editor
requires 8 tracks. Therefore, 12 tracks should be specified
for $SOURCE, and 12 tracks should be specified for
SWORK.

Large Index Files

Work files are also used in processing large indexed disk
files. With a large indexed file, the amount of time needed
to sort the keys at end of job step may be excessive; this
amount of time is most significant when adding a large
number of records to the file, performing an unordered
load, or executing $COPY with REORG-NO and with
OMIT or DELETE specified. This sort time can be
reduced if a work file is used. The optional work file

can either be allocated by the user or be automatically
allocated by the system.

The user allocates the work space by supplying a

SINDEX45 or a $INDEX40 FILE statement. Or, the system
attempts to allocate the work space if either of the follow-
ing conditions exists:

® Neither a SINDEX45 nor a $INDEX40 FILE statement
is supplied.

® The space requested via a SINDEX45 or a SINDE X40
FILE statement is not large enough.

To automatically allocate the work space, the system
always checks for sufficient space on the main data area
of D1 first; if sufficient space is not available on D1, the
system then checks the main data area on D2; if the space
on D2 is insufficient, the search continues on the available
main data areas until either sufficient space is found or a
message is issued to indicate that the system cannot auto-
matically allocate the work space.

The restriction on the maximum number of files allowed
by the system applies to all files automatically allocated

by the system as well as the files allocated by the user.
Therefore, in order to use the work file, you must not have
previously specified the maximum number of files allowed.

If you wish to provide the work space with a $INDEX45

or a SINDEXA0 FILE statement, the following informa-
tion will aid you in determining the required size.

File Facilities 2-23

The work file, called $INDEX 45 or SINDEX40 is used to
sort the added keys and then merge the added keys into

the index and must be large enough to contain all of the
keys added to the file. If the program adds records to more
than one indexed file, the work file must be large enough

to contain all the keys for the file whose added keys occupy
the greatest key index area. The work file should be as
close as possible to the beginning of the file whose keys

are being sorted or on a different disk drive. This arrange-
ment minimizes the disk seek time.

The work file must be named $INDEX45 or $INDEX40 and
be located on a main data area. To determine the number
of tracks required for the work file, use the following
formula:

Number of adds + i— + 48 = Tracks for
{key length + 4) .

main data
area

After dividing 256 by key length + 4, the remainder should
be dropped. After the other divisions, round the quotient
to the next highest whole number.,

The work file can be used with multivolume files. However,
it cannot be located on an area that contains one of the
offline volumes of a multivolume file. The data module
containing the work file must remain online while the
program is run. The work file must be RETAIN-S. |f
RETAIN-T or RETAIN-P is specified, the system forces
itto RETAIN-S.

For small indexed files of 10 tracks or less where the sort
time is negligible, a work file does not improve performance
and shouid not be used.

For this performance option, no change to the source
program is needed. Also, programs need not be recom-
piled to use this option: only one additional FILE OCL
statement is needed.

The system allocates disk space for the $INDE X45 or
$INDEX40 work file prior to allocating space for any

other file(s) used by the program. Therefore, if you specify
a location for any file(s) used by the program, you should
also specify a location for the $INDE X45 or $INDE X40
work file. This procedure prevents the system from
attempting to assign the same disk space to two different
files.

For additional considerations on when to specify $SINDEX45
or SINDEXA40, see File Share under Multiprogramming Con-
siderations and Restrictions.

2-24

MULTIVOLUME DISK FILES

When a file is too large for one main data area, it can be
continued on one or more subsequent main data areas;

such files are called multivolume files. (A volume is one
main data area.) Multivolume files are not supported on
simulation areas. Multivolume files can be online or offline.
A file is online if all volumes are mounted when the program
begins. An online file has an equal number of UNIT and
PACK parameters; an offline file has fewer UNIT param-
eters (shares same unit). Offline multivolume files can

only be used on drives 1 (when an [PL s performed from
3344 drive 3) and 2.

The way in which a disk multivolume file is created depends
on the file type. For a sequential or indexed file, the
records are stored in consecutive locations, in the order
they are read. One main data area is filled at atime. For
sequential files, each volume must be filled before the next
volume is allocated and loaded. For indexed files, each
volume need not be filled. Each indexed volume is loaded
until a key field is reached that is higher than the HIKEY
for that volume; then the next volume is allocated and
loaded. Indexed files must be loaded in key field sequence.
A message occurs if a volume is filled and there is no record
with a key field equal to the HIKEY for that volume.

For example, suppose the HIKEY for a volume is 166, and
arecord with the key field 162 is loaded. It is less than the
HIKEY, so it is loaded on the volume. Next, a record with
the key field 170 is loaded. Record 170 is loaded on the
next volume, and an error message occurs. The reason for
the error message is that a key field record equal to 166
was not loaded before loading records to a new volume.
This error message can be bypassed. A record can be
loaded on the next volume, and at some future time a key
field record less than or equal to the HIKEY can be inserted.
A random add is required to add a record higher than the
highest key on the volume but lower than or equal to the
HIKEY.

Indexed and sequential files may be either online or offline.

Removable data modules can be used when sequential or
indexed files are created. A data module is mounted, the
system indicates when it is full or the high key is reached,
and then the next data module is mounted. When two
drives are available, two data modules can be mounted.
When the first one is completed, it can be replaced with a
third while the program processes the second data module.
In either case, no more than 192 volumes (96 for indexed
files} can be used per program.

Space can be allocated on all volumes of a multivolume file
if the volumes are online at the time of the ailocation.
Space can also be allocated for an offline file, other than
the initial volume, but the volumes must be empty or space
known to be available. Both fixed and removable data
modules can be used with any online multivolume file.
Space for a volume of a multivolume file is reserved after
one or more records are placed in that volume.

Direct files must be online. The maximum number of
volumes, therefore, is two on a two-drive 3340 system, or
four on a four-drive 3340 system.

Processing offline multivolume files depends on the access
method a program uses. If records are read from a sequen-
tial or indexed file, a data module is mounted; when all the
records have been read from the data module, the next data
module is mounted. With two drives, two data modules
are mounted; when all the records have been read from the
first data module, that data module may be replaced with
the third while the program reads from the second data
module. When online, any combination of fixed and
removable data modules is acceptable, but all must be
mounted and must remain mounted. Only four volumes
will be used during online random processing (direct or
indexed random accesses) regardless of the number speci-
fied in the OCL.

MULTIVOLUME TAPE FILES

A tape file may also be too large for one tape and can be
continued on one or more tapes. Such files are called
multivolume tape files. (A volume is one tape.)

When end of volume is reached on a multivolume tape file,
that volume rewinds to load point and unloads. If the drive
that is to contain the next volume (whether the same drive
or another drive) is not in a ready condition, an error
message is issued.

Processing continues when the drive that is to contain the
next volume is made ready. When using alternating drives,
if the next volume is mounted and the drive is ready when
end of volume is reached, processing continues without
stopping.

MULTIFILE TAPE VOLUMES

Just as a disk normally contains more than one file, more
than one file can exist on a reel of tape. If this is the case,
each file has an associated file number. The system uses
the SEQNUM parameter on the tape FILE OCL statement
to indicate the file number and position the tape to the
desired file.

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674
The sequence number indicates the relative position of the
file on the tape volume and is incremented by one from
one file to the next.

Null Files on Tape

A null file is a file on disk that has no data records in it;
for example, a null file may occur if a user’s error or excep-
tion file has no records on some days but does have some
records on other days. If the user has a procedure that
always backs up that file to tape, it is important to know
what happens to null files on a multifile tape volume.

Unlabeled Tapes
A multifile tape volume can contain all unlabeled files.
When a file is copied to tape, it is followed by two tape
marks (TM):

FILE1 TM T™M
If a second file is added to this tape and a SEQNUM-2
parameter is specified, and if that file contains data, it will
result in:

FILET TM FILE2 TM T™

But if the second file {FILEZ2) contains no data, the result
is:

FILET TM TM TM

And if a third file (FILE3) is added to this tape, SEQNUM-2
must be specified and the result is:

FILET TM FILE3 TM T™M
In this example, if the third file is added, and SEQNUM-3
is specified instead of SEQNUM-2, a halt will be issued un-
less END-LEAVE had been specified for the second file.

In any event, with uniabeled tapes, a null file is not saved.

File Facilities 2-25

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

Labeled Tapes

With labeled tapes, however, null files can be saved on tape
and later restored to disk. {f one file containing data is
written to tape, it looks like this:

VOL HDR T™ FILE1 TM TL T™M TM

where VOL represents the volume label, HDR represents
the header labels, TL represents the trailer labels, and TM
represents a tape mark.

If a second file is added to this tape and a SEQNUM-2
parameter is specified, and if that file contains data, it will
result in:

VOL HDR TM FILE? TM TL TM HDR TM
FILE2 TM TL ™M TM

But if the second file contains no data, the resuit instead is:

VOL HDR TM FILE1 TM TL TM HDR TM ™
TL TM TM

And if a third file is added to this tape (SEQNUM-3), the
result is;

VOL HDR T™ FILE1 TM TL TM HDR ™ T™
TL TM HDR TM FILE3 TM TL TM TM

If the third file (FILE3) is added and SEQNUM-2 is speci-
fied instead of SEQNUM-3, then the result is as follows:

VOL HDR TM FILE1 TM TL TM HDR ™
FILE3 TM TL T™M TM™

Note that in any case if a file is added to a multifile tape,
it is assumed to be the last file on the tape and all subse-
quent files on the tape are not accessible.

2-26

PROGRAMMING CONSIDERATIONS

If the root segment of a program is too large, the system
may issue an error message while attempting to open a disk
file. This message indicates that certain fields are located
at a main storage address above logical 40K (in a batch
partition) or above 24K (for a CCP task). Normally, this
message occurs only if the program has large 1/0 areas.
Following are some actions that may be tried in attempting
to circumvent this message:

® Specify SHARE-NO for files used in a batch partition.
® Reduce the block size of files in the program.

® Remove double buffer specifications.

® Reduce the size of the core index.

® Recompile the program specifying a smaller execution
size (for example, 40K for a batch program; 24K for a
CCP program).

For additional information, see Disk Device Support in the
System/3 Model 15 System Control Programming Macros
Reference Manual, GC21-7608.

Using Program Number 5704-SC2, any open file is closed
when end of job occurs or a 2 or 3 option is taken to a
message. Using Program Number 5704-SC1, open files are
closed at end of job or when a 2 option is taken to a
message; open files are not closed when a 3 option is taken
10 a message.

COBOL, FORTRAN, and assembler users can control file
open and close; RPG |1 users cannot control open and
close. As a result, each program or subprogram must
explicitly close any file that is opened.

Library Facilities
LIBRARY DEFINITION

A library is a space on disk used for storing programs and
procedures. There are two types of libraries: source and
object. Source libraries contain source programs and proce-
dures of QCL statements; object libraries contain executable
object programs (load modules) and nonexecutable object
programs (routines). Libraries are only located on simula-
tion areas, not on main data areas.

The System/3 library maintenance program is used to:
® Create libraries

® Enter source programs, OCL statements, and object
programs into libraries

® Maintain libraries
® (Create files containing library entries

The library maintenance program creates a separate direc-
tory for each library. Every library entry has a correspond-
ing entry in its library directory. The directory entry con-
tains such information as the name and location of the
library entry. The program also creates a system directory
that contains information about the size and available space
in libraries and their directories.

SOURCE LIBRARY

A source library is a disk space for storing source programs,
specifications, and procedures. Source programs are sets of
user instructions, the most common of which are RPG |1
source programs and disk sort sequence specifications.
Procedures are groups of OCL statements used to load
programs and may be followed by input data for the pro-
grams. (Procedures for system service programs can, for
example, contain control statements.)

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

The following illustration shows the relative location of a
source library with respect to the user area and object

library:

Source Library Directory

Source Library containing:

® Source program
statements

® Procedures

Object Library Directory

Object Library

A~ TN

Source statements and procedures are two logically differ-
ent types of entries. When these entries are copied into
source libraries, they are given different source library
designations. Source programs are given an S library desig-
nation; procedures are given a P library designation. The
following illustration shows the logical entries within the
source library:

Source Library

S Library Entries

and

P Library Entries

The S library entries are source programs. Procedures
cannot be executed from this library.

The P library entries are procedures which can be executed.

File Facilities 2-26.1

This page intentionally left blank.

2-26.2

Physical Characteristics
A source library has the following physical characteristics:
® Size: The minimum size of a source library is one track.

® Directory: The directory acts as a table of contents and
contains the name and location of each source library
entry. The first two sectors of the first track are always
assigned to the directory, with additional sectors used
as needed.

® Organization of Entries: Entries (source statements and
procedures) within the source library need not be stored
in consecutive sectors. An entry can be stored in widely
separated sectors. Within each sector is a pointer to the
sector that contains the next part of the entry.

The boundary of the source library cannot be expanded;
therefore, an entry must fit within the available library
space. The system provides maximum space within the
prescribed limits of the source library by compressing
entries. That is, all duplicate characters are removed
from the entries. Later, if the entries are printed or
punched, written to diskette, or copied to a file, the
duplicate characters are reinserted.

® Location: A source library can only be located on a
simulation area, not on a main data area. There is only
one source library per simulation area; however, source
libraries may reside on several simulation areas.

Note: When the size of the source library is changed or
the source library is reorganized, all temporary entries
are deleted.

OBJECT LIBRARY

An object library is a disk area used for storing object
programs and routines. Object programs (also known as
load modules or executable programs) are programs and
subroutines that can be loaded for execution. Routines
{or nonexecutable programs) are programs and subroutines
that need to be link-edited before they can be loaded for
execution. Routines are used by compilers and (except
for FORTRAN) must be on the same simuiation area as
the compiler using it.

The following illustration shows the relative location of

the object library with respect to the source library and
user area:

\/\/\/\/\/

Source Library (optional)

Object Library Directory

Object Library containing:

1. Executable object
programs

2. Routines (nonexecutable
object programs)

Upper Boundary ———+f— — — — — — — — —
User Area

PV VYV arsa Ve

l.ibrary Facilities 2-27

The object library contains two logically different types
of entries: object programs and routines. When these
entries are copied into the object library, they are given
different object library designations. Object programs are
given an O library designation; routines are given an R
library designation. The following illustration shows the
logical library entries within the object library.

Object Library

O Library Entries
Permanent Entries and

R Library Entries

O Library Entries
Temporary Entries and

R Library Entries

\/\/\/\J

The O library entries are executable programs. They are
loaded by the LOAD statement,

The R library entries are nonexecutable routines used by
the compiler.

Physical Characteristics
An object library has the following physical characteristics:

® Size: The size of the object library depends on whether
or not the library is on a system pack {a simulation area
containing the system programs). An object library can
be created on any simulation area, but one library con-
taining the system programs must be online. The
minimum size of an object library is 3 tracks.

The disk area for an object library consisting of system
programs must also be large enough to contain a scheduler
work area for disk system management and a system
history area. The number of tracks for the scheduler
work area and the system history area are not included

in the number of tracks specified for the library; the
library maintenance program calculates and assigns the
additional space. (See Scheduler Work Area under

File Facilities.)

2-28

® Directory: The directory acts as a table of contents and
contains the name and location of the object library
entries. If the object library is on a system pack, three
of the requested tracks are reserved for the directory.
If not, only the first track is reserved for the directory.
The user may override these directory sizes by specifying
the DIRSIZE parameter on the ALLOCATE statement
of the library maintenance program.

® Upper Boundary: When copying temporary entries
into the object library, the upper boundary of the library
automatically expands as additional tracks are needed if
the space following the object library is available. The
upper boundary of the library is extended to the end of
the simulation area or to the first temporary or perma-
nent file. At the successful completion of the copy,
the upper boundary is returned to the track boundary
at the end of the last temporary entry.

If the copy was not completed successfully, the upper
boundary may remain extended. When a permanent
entry is placed in the library or the library is reorganized,
all temporary entries are deleted and the upper boundary
returns to its original location. Permanent entries
cannot exceed the original upper boundary.

To make efficient use of this feature, the area next to
the upper boundary of the object library should be kept
free of data files. When disk system management auto-
matically allocates file space, the area next to the object
library is probably free because the files are placed as
close to the high end of the simulation area as possible.
Users should also allocate files toward the high end of
the simulation area. This leaves room for object library
expansion.

® Organization of Entries: Entries are stored in the object
library serially; that is, a 20-sector program occupies 20
consecutive sectors. Temporary entries follow all
permanent entries in the object library.

Maintaining an Object Library

Gaps can occur in the object library when entries are
deleted. The associated directory entries point to these
gaps. When the library maintenance program places a new
permanent entry in the library, it searches the directory

for a gap that has the same number of sectors, or the fewest
sectors over the number required by the new entry. If the
entry is smaller than the gap, the last part of the gap is not
pointed to by a directory entry. Since this gap has no
directory entry, it cannot be used until the library is
reorganized.

The library maintenance program should be used to reor-
ganize the library when a great number of additions and
deletions have been done (creating an excessive number of
unavailable sectors), or when there is no apparent room.

In reorganizing entries, the library maintenance program
deletes temporary entries and shifts entries so that gaps do
not appear between them. This reorganization makes more
sectors available for use.

By printing the system directory_ the library maintenance
program can be used to determine how many sectors are
available.

LIBRARY LOCATIONS

Libraries can be located by the system anywhere on a simu-
lation area. However, the location of a source library with
respect to an object library is always the same:

User Area Source Library System Checkpoint/
Data files ® Procedures History restart
® Source Area Area
statements
LTracks 0-7
- Scheduler Obiject Library I User Area
Work Area ® Object : Data Files
programs |
® Routines |
L Extendable
Upper

If space is allocated for only a source or object library, the
library maintenance program places the library in the first
available disk area large enough to contain the library. When
allocating space for a source library on a simulation area
containing an object library, an area large enough for the
source library must immediately follow the object library.

Boundary

The library maintenance program moves the object library
to allow space for the source library to precede it. If an
object library is being allocated on a simulation area with a
source library, space for the object library must immediately
follow the source library.

Library Facilities 2-29

STORING PROGRAMS

Three methods are available for storing programs into
libraries: the library main* “ance program, a specification
on the RPG 1i Control Ca , and the COMPILE OCL
staternent.

Library Maintenance Program: Depending on user specifi-
cations, the library maintenance program can store pro-
grams by copying entries from one location to another
(giving new names) within a library; copying entries from
one library to another giving new names if required; copy-
ing entries from the system input device to a library; or
copying entries from a file to a library.

(See Part 4 for additional information on the library
maintenance program.)

2-30

RPG /1 Controf Card: RPG I can indicate the type of
object program output after the system compiles a source
program. The compiled program can be stored in an object
library, punched into cards, or written to a diskette. A
program written as a temporary entry in the object library
is deleted by the next program written permanently in the
object library or by the next program of the same name
written as a temporary entry in the object library. The
object program is written in the object library that contains
the compiler, unless a COMPILE statement indicates
otherwise.

Column 10 on the RPG I Control Card is used to specify
the object output. Columns 7580 are used to name the
object program. When a name is not assigned, RPGOBJ
is assumed. For detailed information on these specifica-
tions, see the /BM System/3 RPG I/ Reference Manual,
SC21-7504.

COMPILE OCL Statement: The COMPILE OCL statement
tells the system to:

® Compile a source program from a source library and
store the object program in an object library, or

® Compile a source program from the system input device
and store the object program in an object library

For the format of this statement, see COMP/LE statement
in Part 1 of this manual.

Sample Statements

1 4 8 12 16 20 24 28 32 36 40 44 48
/e

/| IdALlL] [RPG), [Fl1

] CIOMPI|LIE VRCIEI-SIALIES, UN I T-F UL, OB JEICTI-RI

V| RN,

This sample job stream tells the system that the source
program named SALES is located on F1. The OBJECT-R1
keyword parameter tells the system to place the object
program on R1.

1 4 8l 12 16 20 24 28 32 36 40 44 48 52 56 60
/| ILOAD BRPG|, [F12

V| COMP el oBJlECT-R1
V| FILILE] NAMEL-BiWloRlk . U 1171~ 11|, PAICIK-FI2IFLLIF 12| RETIAl V-S| [TIRAICKS - 2
V| FI1LE] INAME] URC £], UN/ITHFILI, PACIK-IFLIFLLAT) RETIAL NS, [TIRIAICKS]- |2
/| RUN

(SolvRcE] DiEICI)
/¥

This sample job stream compiles a source program from the
system input device and stores it in an object library on R1.
If the OBJECT parameter was not coded, the program
would be compiled and placed into the same object library
as the compiler (F1).

Library Facilities 2-31

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

PROCEDURES

Procedures are sets of OCL statements in a source library.
Procedures are stored in the source library via the library
maintenance program. Since the records in the source
library are compressed, a nested procedure containing a
CALL statement should not be modified by a program run
as part of that nested procedure. A procedure cannot
contain more than one LOAD statement and cannot con-

tain any JOB statements. All other OCL statements, except

/&, /*, and /., are allowed in procedures. The CALL state-
ment is allowed only in nested procedures. LOAD * state-
ments are allowed in procedures; however, the object
program must be read from the system input device,

A maximum of 31 control statements can be included in
procedures for the system service programs. The control
statements must follow the OCL statements in the proce-
dure. A RUN statement must be the last OCL statement
in the procedure to separate the OCL statements from the
control statements. The RUN statement in the job stream,
rather than the one in the procedure, causes the system

to run the program.

The following example shows how to create a procedure
with the library maintenance program (SMAINT). The
procedure name is PROC1 (NAME-PROC1 in COPY state-
ment). This name identifies the procedure in the source
library. The procedure is placed in the source library on
F1 (TO-F1in COPY statement). This procedure is referred
to in all of the following examples.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

/| LOAD $MA T, \FLL

/| RIUN

COPY| FROP-READER [T0-|Fl1], /Ll BRAR -P, E-PROC|, RETA I M-P,

OCL being NV LOAD END”ON,RZ
copied to the) i/} Fi/ LIE| NAMEI-DALITOT], UNITI-F12,, PAICK-V oL pdl, RIECIORDS- 11588 . RETAl N-P
source library < YI/L IFI/ILEL INAME-ACCITIOT], L ABEY HTIDIALL], M1 T R\, PACK-VIoL 2|, DATIE]- /76
as a procedure /| SWITCH IXIXIXEBXIX -

//| RUN

/\/| CEND ol

V| |END

§

To merge the procedure (unchanged) into the job stream,
two statements are used in the job stream: this is the
normal procedure call.,

1 a 8 12 16 20 24 28 32 38
I/l CALL] BROI] [FT
V| R

2.32

Parameters in any of the statements (except the INCLUDE
statement} in a procedure for the first job step can be
changed by procedure override statements placed between
the CALL and RUN statements. Procedure override state-
ments modify the procedure for the first job step. For
example, the following changes can be made to procedure
PROC1:

® In the first FILE statement (NAME-DALTOT), change
the RECORDS parameter from RECORDS-1500 to
RECORDS-1750.

@ Change the parameter in the SWITCH statement from
XXX01XX0 to XXX10XX1.

The following statements are needed in the job stream to
call and modify PROC1. Note that the NAME parameter

is also supplied in the FILE statement. This is necessary

to identify the FILE statement to which the change applies.
Therefore, the NAME parameter cannot be changed.

1 4 8 12 16 20 24 28 32 36
CALIL 11,1
A 11 FE MAME-DiAL o, REC 175
1 s ITicH Xxixizigixix(1
/|| RUN

Note: If avalid override statement is used to change a
statement which contains an OCL error, an OCL error
message will still be issued.

Besides changing a parameter, a parameter in a procedure
statement can be entirely deleted if it is a keyword param-
eter. To delete a parameter in any of the statements, the
keyword and hyphen are coded followed immediately with
acomma. A PACK or REEL parameter (which is to be
deleted by a procedure override statement) must precede
the parameter that is to replace it. The procedure override
statement in the following example deletes the RETAIN
parameter completely.

1 4 8 12 16 20 24 28 32 36
caLy FINGERRE

/ /\LiE| RETAIIN -, INAME|-DALITOT]

/| RUN

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

Statements can be added to a procedure by placing the
added statements between the CALL and RUN statements.
For example, to add a NOHALT statement to the proce-
dure, the following statements are needed in the job
stream:

1 4 8 12 16 20 24 28 32 36
clalL Cl2, Fil
OHAL[T
/| RUN

Parameters can be omitted from all OCL statements in a
procedure and then supplied between the CALL and RUN
statements. For example, assume the procedure contained
the LOAD statement shown.

T
1 [

TTT

1 4 8 12
P I

[TE

1

7

l;
P

I IR

To run the ENDMON program, the entire LOAD statement
did not have to be supplied; only the missing parameter
was included in the job stream.

1 4 8 12 16 20 24 28 32 36
/1T 1] ChLe] | PR, I

/ LOAD | ENDMON

A 11T RUN

Example

Procedure override statements are logged on the system
log device along with the statements in the job stream.

1 4 8 12 16 20 24 28 32 36
AL RO AL 1]

/71 F1ILIE] IMAME]- DlA Lo, RECORDS -117

/Sl ricH XX 2igXXL

//| MOHALT

// Ul i

Library Facilities 2-33

The statements from the procedure are merged with the
preceding statements and printed.

// CALL PROC1,F1

XX LOAD ENDMON,R2

// FILE NAME-DALTOT,RECORDS-1750

XX SWITCH XXXO0LXXO
// SWITCH XXXLOXX1
XX RUN

// NOHALT

// RUN

XX FILE NAME—DALTOT,UNIT—FZyPACK—VOLO4,RECORDS—1500,RETAIN—P

XX FILE NAME-ACCTOT,LABEL—TOTAL,UNIT—RL,PACK—VOLOZyDATE—l2/4/76

Statements preceded by XX represent the procedure state-
ments as they appear in the source library. The CALL and
RUN statements and any statements intended as overrides
to procedure statements or additions to the procedure
begin with //.

Switch characters can be used to determine whether or
not a job step will be executed. The following example
shows how they are used to call a procedure based on the
results of a previous program.

Assume that a program has just completed executing

successfully and has set the external indicators to 10101010,

The OCL statements following the completed program are:

1 4 8 12 16 20 24 28 32

n L FlL, { L

2-34

n Step 1 is not executed because the external indicators
do not agree with the switch characters, An infor-
mational message with the value of the external
indicators is issued. The system then flushes to the
next step.

Step 2 is executed because the external indicators
agree with the switch characters. (The switch charac-
ter X tells the system to cancel the compare operation
with the relative external indicator.)

Step 3 is executed after step 2 is completed.

Nested Procedures

Some procedures are done in the same order every time a
job is performed. Nesting procedures is a convenient
way to link the procedures and requires a call to only the
first procedure. Each procedure calls the next procedure
until the job has been completed.

Nested procedures provide several benefits:
® Programs are always run in the correct sequence.

® Operator intervention {and chance of operator error)
is decreased.

® Files are less likely to be destroyed as a result of running
nonrelated programs between steps of a job.

Here is an example of how nested procedures might be
used to back up a main data area containing files that will
be used in the future. The OCL statements and control
statements to be entered from the system input device to
copy one main data area (D3) to another main data area
(D2) would look like this if nested procedures were not

used:

1 4 8 12 16 20 24 28 32 36 40 44 48
T lldA DielLIElT], IFl

/

/L | REMAVE! | NI [T-DZ], [PAICK-XxxXbix], I lalgiEl |-)iriod

/6

/| LoD | idomY, IF

A/ | RuN

// | lcoAYPlACKK] | [FRIoM-D3,[Ti0-Dz

Assume that the preceding OCL statements were placed in
the source library as procedures with the names DEALD?2
and CYD3D2, respectively. The use of nested procedures
allows building a procedure to call other procedures. The
following example shows how a nested procedure is built to
call the procedures DEALD2 and CYD3D2:

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56
/1 lLioalD BIMAlINTL 2

Placed in A/ RUIN .

the source L/l Icoiplyl [FROM-RERDIER, TOI-FIL L]/ [BRARY|-P|, MAME-ICAYIDB 2, [RETAlI M-

library as a) | A/ |clalt] IDlEaiLipz], Flz

procedure N dALL iICYiD3D2|, FUI

named NV ICIENVD

CPYD32 /| END

Library Facilities 2-35

To call the two procedures needed to perform the copy job
described, only one CALL statement is required in the
job stream from the system input device.

System Input Device Level 1

// CALL CPYD32,F1 CPYD32

// RUN

/I CALL DEALD2,F1

~ - // CALL CYD3D2,F1

This CALL statement links the job stream to the nested
procedure {CPYD32) used to call the procedures necessary
to perform the copy job. CPYD32 contains two CALL
statements that call the two procedures necessary to copy
D3 to D2.

Notice that CPYD32 contains only CALL statements. Any
procedure within nested procedures can consist entirely

of CALL statements and does not need a RUN statement
to indicate the end of the procedure. Nested procedures
allow an unrestricted number of CALL statements in a
procedure. Therefore, CPYD32 could have more than two

CALL statements if it were necessary to add any procedures.

2-36

Level 2

DEALD2

/I LOAD $DELET,F1
// RUN

// REMOVE . ..

// END

CYD3D2

// LOAD $COPY,F1
// RUN

// COPYPACK ...
// END

For example, a company issues daily reports on goods
bought and sold by calling the DAY procedure. By nesting
procedures together, // CALL WEEK can be used to write
a daily report and a weekly report. Once a month // CALL
MONTH is used to write out daily, weekly, and monthly
reports. Finally, daily, weekly, monthly, and yearly

reports are written once a year by the YEAR procedure,
which nests all of the other procedures together.

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

// CALL YEAR // CALL MONTH /| CALLWEEK // CALL DAY
YEAR
// CALL MONTH ~1{ MONTH
// CALL END1 \\\\ ~ // CALL WEEK -1 | WEEK
\ §\ // CALL MONSUM | ¥au // CALL DAY —11| DAY
N NN
\ N N [/ CALL WEKSUM \\\\ Daily
\\ END1 \ \\ N X\ | Report
N Year End \\ MONSUM \\ \
Report \N [Monthly \\ WEKSUM
\ | Report \N | Weekly
\| Report

No more than nine levels of CALL procedures can be nested
together. Levels of procedures are determined by the
number of CALL statements away from the system input
device a procedure is located. In this example, when

// CALL YEAR is given in the system input device, the
YEAR procedure would be one level away from the system
input device. MONTH and END1 procedures are two levels
away from the system input device when // CALL YEAR
is given.

With nested procedures, fewer OCL statements and control
statements for system service programs are needed in the
job stream from the system input device. However, certain
rules must be followed to make nested procedures work:

® No more than nine levels of procedures are permitted.

® Each procedure may have an unrestricted number of
CALL statements to the next level of procedures.

® Only control statements for system service programs
and specifications for disk sort can follow a RUN
statement; 31 control statements can be included in a
procedure.

® Procedure additions or overrides supplied between the
CALL and RUN statements in the job stream are merged
only between the first LOAD and RUN statements
encountered in the procedures.

® Procedure overrides are merged with the first similar
(same identifier) statement before the RUN of the first
LOAD and RUN encountered in the procedures, except
for FILE statements, which are merged based on the
NAME parameter.

| ® Any OCL statements permitted before the RUN state-
ment in the job stream are also permitted anywhere
before the RUN statement in a procedure.

Example of Nesting Procedures

As an example of nesting procedures, assume the NOHALT
statement is to be used to decrease operator intervention.
in the illustration of nested procedures, the NOHALT
statement could be placed between the CALL and RUN
statements in the system input device. In this case, it
would be read as an additional QCL statement for the
DEALD?2 procedure. However, it could be placed anywhere
in the master procedure, CPYD32, or anywhere before

the RUN statement in the DEALD2 or CYD3D2 proce-
dures. The rule would still be followed no matter what
procedure contained the additional OCL statement.

Library Facitities 2-37

Example of Nested Procedure Restart

Changing the value of SWITCH statement 0 permits the
following procedure to be restarted from any of the steps
within the nested procedure. In this example, the proce-
dure will begin executing at step F because the SWITCH
statement sets the externat indicators to agree with the
switch characters on the // CALL E and // CALLF
statements.

0 // SWITCH 00100001

/I CALL A,R1
// RUN
A
// CALL B,R1,0001XXXX _— B
// CALL E,R1,0010XXXX — | //cALL c,R1,00010001 —_— ¢
// CALL G,R1,0011XXXX — // CALL D,R1,00010010 // LOAD AA,R1
// SWITCH 00010010
// RUN
D
// LOAD BB,R1
// SWITCH 00100001
// RUN
- E
// CALL F,R1,00100001 —_ F
// LOAD CC,R1
// SWITCH 00110001
// RUN
S G
// CALL H,R1,00110001 —_ H
// CALL 1,R1,00110010 // LOAD DD,R1
// SWITCH 0011001C
// RUN
i
// LOAD EE,R1
// RUN

2-38

CATALOGING TO AN ACTIVE LIBRARY

Program Number 5704-SC2 enables entries {permanent or
temporary) to be stored (cataloged) in an object library
located on an active program pack (a simulation area con-
taining a program currently loaded for execution in another
partition).

An object program can be cataloged to an active library,
but in some cases, a program executing in another partition
may be adversely affected. An active library is one from
which a program is loaded for execution. That library
becomes /inactive after end-of-job step for that program.
(Note, however, that a CCP library is always considered
active.)

If an object program does not have overlays, once it is
loaded into a partition for execution, there is no further
need to access that library. However, if an object program
requires subsequent library accesses (after the program
has been loaded for execution), then an access to that
library from another partition may cause problems.

Figure 2-2 shows what can happen to another partition
when cataloging to an active library.

Some examples of a program requiring subsequent accesses
to a library are:

® A program which requires an overlay from disk during
execution, for example, an RPG Il object program.

® A program which requires phase overlays during execu-
tion, for example, a system service program.

® A FORTRAN program which invokes another program
from that library.

If all object library entries are permanent entries, then
the only conflict arises when cataloging an entry of the
same name as the program executing in another partition.
(For either permanent or temporary entries, the overlay
linkage editor does not allow cataloging a module with
the same name as an active program running in a batch
partition.)

Cataloging to an active library is an option chosen during
system generation. The configuration record program

may also be used to change the support selected for catalog-
ing to an active library (see Configuration Record Program—
SCNFIG in Part 4 of this manual). The following three
levels of catalog support are available:

® Disallow catalog to all active libraries. This support is
identical to the 5704-SC1 support for cataloging to a
program pack. With this level of support, any attempt
to catalog an object library entry to an active program
pack results in an F/ message. (The overlay linkage
editor will issue a message only if the program executing
isa LOAD * or a temporary entry.)

® Allow catalog to active CCP libraries but not to other
active libraries. This support is identical to 5704-SC1
support for all active libraries except the CCP libraries.
No message will be issued when attempting to catalog
an object library entry to an active CCP library.

® Allow catalog to all active libraries. No message will be
issued when attempting to catalog an object library

entry to any program pack.

Cataloging to an active library is supported by both the
overlay linkage editor and the library maintenance program.

Library Facilities 2-39

Activity in this partition:
Cataloging to an active library
Temporary Permanent
Activity in Another Partition Entry Entry
Has a program been load- Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
ed! into another partition
from the active library?
Does the program being No No No Yes Yes No No No Yes Yes
cataloged have the same
name?
Does the program in the No Yes Yes No Yes No Yes Yes No Yes
other partition require
subsequent accesses to
that library?

Is the program executing
in the other partition a
LOAD! program?

Yes

Is the program executing
in the other partition a
temporary program?

Is the other partition No Yes No Yes Yes No Yes Yes Yes Yes
affected?
Overlay Overlay
segments segments
How is the other partition could be could be
affected? changed changed
unexpect- unexpect-
edly. edly.
The old version The old version
of the program, of the program,
rather than the rather than the
new version, is new version, is
executed. executed.
Overlay segments could be
changed unexpectedly.
Overlay segments couid be changed Overlay segments could be changed
unexpectedly. unexpectedly.

! All of the OCL for this program was processed and the program was fetched into storage for execution.

Figure 2-2, Cataloging to an Active Library

240

The following example shows the use of the option to
catalog to the active CCP libraries:

A user program updating a parts master file is initiated
in partition 1 under control of CCP. This program was
loaded from the CCP library on F2. While the parts
master file is being updated, RPG Il (in partition 2)
compiles a program to order replacement parts; the
object program is cataloged by the overlay linkage editor
to the CCP library on F2. (F2 for partitions 1 and 2 is
assigned to the same simulation area.) After the parts
master file has been updated, the program to order
replacement parts can now be executed in partition 1
under control of CCP.

Without the capability to catalog to an active CCP
library, it would be necessary to catalog the object
program to order replacement parts to a non-CCP
library, shut down CCP, copy the object program from
the non-CCP library to the CCP library, and start up
CCP again before executing the program.

Following is another example showing the use of the option
to catalog to the active CCP libraries:

CCP is executing in partition 1, batch programs are
executing in partition 2, and programs are being com-
piled in partition 3. All three partitions use the same
program pack. While the batch partition {P2) is execut-
ing, programs being compiled (in P3) can be stored in
the object library on the simulation area in use as the
program pack for the three partitions.

Use of the option to catalog to all active libraries is illus-
trated by the following example:

A user program performing an inventory analysis was
loaded from R1 and is currently executing in partition 2.
While the program is printing the report, the library
maintenance program, executing in partition 3, can be
used to copy the program that calculates a monthly
summary analysis into the object library on F2. R1 for
partition 2 and F2 for partition 3 are assigned to the
same simulation area.

User Considerations

® |f you catalog a CCP module for which the program
find or format find option was not selected at CCP
startup, the old version of the module {or a different
module than the one intended) may be used if the new
version is placed in a different location in the library.

® |f you need to catalog an object module for which a
conflict exists (see Figure 2-2), change the other parti-
tion to HALT mode, and then perform the catalog
operation when the other partition comes to end-of-job
step. After the catalog operation, change back to
NOHALT mode and continue.

Library Facilities 241

System Facilities
INITIAL PROGRAM LOAD (IPL)

System operation begins with an initial program load (IPL)
which clears main storage and transfers the supervisor

(a component of the system control program) from disk
into main storage.

IPL should be performed every time the system power s
turned on, the system pack is changed, or a recovery
procedure requires it. It is initiated from one of the
following five sources: a card reader (alternate), the F1
simulation area on drive 1, the R1 simulation area on
drive 1, the F1 simulation area on drive 3 (3344 only),
or the R1 simulation area on drive 3 (3344 only).

IPL from drive 3 provides operation of the system entirely
from fixed media. Also, it enables drives 1 and/or 2 to be
used as offline devices when there are no simulation areas
on drives 1 and 2 currently in use. In this case, it is recom-
mended that all 5444 unit codes (F1, F2, R1, R2) be
assigned to simulation areas on drives 3 and 4,

Choosing any of the disk program load positions results in
a specific simulation area being assigned the F1 or R1 unit
code. This assignment overrides any assignment made for
that unit code during system generation. The assignment

of this unit code is made for all partitions; this provides a

common system pack for all partitions. Following are the
simulation areas assigned to the four switch positions:

Switch Position Area Assigned

Disk 1 F1 D1A
Disk 1 R1 D18
Disk 3 F1 D3A
Disk 3 R1 D3B

Note: On a 2-, 3-, or 4-drive 3340 system, IPL is performed
only from drive 1.

242

After the IPL device is selected and the Program Load
button is pressed, the date prompt appears on the CRT
screen. The date is entered in the format chosen during
system generation (either mm/dd/yy or dd/mm/yy). If the
system date is not given, it must be supplied before any
program execution is initiated. The date is then supplied
with a DATE OCL statement or a DATE command. The
system date is used for time stamping certain messages by
the time-of-day macro instructions, the RPG 1l TIME
operation code, and by the COBOL and FORTRAN CFTOD
modules. The system date can be changed by the operator
only with the DATE command and only when all partitions
are at end of job. If the interval timer is specified at system
generation, the system date is changed at midnight, when
the timer changes from 23.59.59 to 00.00.00.

After the response to the system date has been processed,
the CRT display contains EJ messages for all the partitions.
At this point, there are three possible actions:

® |f spooling was not chosen during system generation,
the operator can now initiate program execution by
responding to the EJ message for the partition in which
the program is to execute.

® When spooling is chosen at system generation, the
spooling support is foaded with the supervisor during
IPL. If spool is not going to be used, the operator has
the option to cancel spooling support at this point.
The CANCEL SPOOL command causes the spooling
routines to be removed from main storage, making addi-
tional main storage available to any partition. (You
must perform another IPL when spooling support is
desired.} The operator can now initiate program execu-
tion by responding to the EJ message for the partition
in which the program is to execute.

® When spooling is to be used, the operator can start
spooling either by responding to an EJ message for a
partition or by entering a START SPOOL command.

Activating spool automatically by initiating execution
in a partition causes space for the spool file to be
obtained on a main data area according to the disk unit
and size specified during system generation. Any exist-
ing spooled data remains in the spool file and is not lost.

Activating spool with a START command is required
only to override the disk unit and/or size of the spool
file specifications made during system generation or to
remove any existing spooled data. After the START
command has been entered and processed, the CRT
display contains SPOOL IS ACTIVE messages for each
partition being spooled. After jobs have been placed
on the spool reader queue, the operator can initiate
program execution by responding to the program
message for the partition in which the program is to
execute. (See /BM System/3 Model 15 User’s Guide to
Spooling, CG21-7632.)

On 5704-SC2, there are generally more messages on the
CRT than on 5704-SC1. If all active messages do not

fit one CRT screen, it may be necessary to scroll through
all messages by repeatedly pressing the PF12 key.

At this point, it may be helpful for the operator to display
the system status to determine that the system is set up

as desired. The DISPLAY STATUS command provides
the system status on the CRT screen.

PROGRAM EXECUTION

A minimum of two OCL statements are required to load a
program into the system for execution. LOAD and RUN
are the two basic OCL statements needed to load and
execute programs; for those programs in which no disk
files are used, they may be the only OCL statements. The
LOAD statement identifies the program to be executed
and indicates whether the program is to be loaded from

an object library or from the partition’s system input
device. One LOAD statement is required for each program
executed.

The following examples show the OCL statements needed
to load two system service programs: disk initialization
and file delete.

// RUN

~
// LOAD $DELET,F1

The file delete program is
loaded.

// RUN)

// LOAD $INIT,F1

The disk initialization program
is loaded.

System Facilities 2-43

To load an object program from the system input device,
an * must follow the word LOAD. (The * tells the system
that an object deck foliows the RUN statement.) A /*
statement must follow the object deck; any data will
follow the /*. The following exampie illustrates the state-
ments required to load a program from the system input
device:

OBJECT
DECK

The object program is temporarily copied into the object
library on the system pack and then loaded into main
storage for execution. LOAD * programs will be accepted
in any partition; 5704-SC2 permits several partitions to
execute non-overlay LOAD * program simultaneously.

244

Job and Step Processing

The input stream (programs to be processed) is made up
of two different units of work: jobs and job steps. To
support these two units of work, the system provides two
processing modes: job mode and step mode. Job mode is
indicated to the system by the presence of JOB statements
in the input stream, Step mode is indicated by the absence
of JOB statements in the input stream (see Figure 2-3).
Both modes can be used in the multiprogramming environ-
ment {two or more partitions running concurrently) or
when only one partition is in use. One partition can be
running in job mode while another is in step mode. Only
job mode can be used in partitions with spooling active.

Job Step Mode

A job step is a request for execution of a program and
includes a description of the system resources required by
the program. A job step may or may not be part of a job.
When a job step is part of a job, the system is in job mode
(indicated by the presence of a JOB OCL statement}. When
o JOB OCL statements have been encountered in the
input stream in which job steps are running, the system

is in step mode. In step mode, each set of LOAD/RUN
statements is processed independently. The system input
device is released after the RUN statement has been
processed and the program is executing. Step mode is not
supported in partitions that have spooling support active.

Note: Some programs, such as the RPG 11 compiler and
disk sort, require system input device dedication while
executing, in which case, the system input device remains
assigned to that partition until those programs release it.
An attribute bit in the object library directory entry
indicates whether or not a program requires system input
dedication,

When a 2 or 3 option is selected for a system message and
the system is in step mode, only the current job step is
canceled. The system flushes the input stream until a
JOB, LOAD, CALL, /., or /& statement is encountered.

If a JOB, LOAD, or CALL statement terminates the flush,
the system input device stays assigned to the partition.

The LOAD statement is usually the beginning of a job
step’s OCL; however, the beginning may be indicated by
one of the following:

® The first record of a job's OCL.

® |f the previous job step was canceled and the flush
ended on a /. or /&, the record after the /. or /&.

® |f the previous job step was canceled and the fiush did
not end on the /. or /&, the statement that ended the
flush.

® [f the previous job step was not canceled and the parti-
tion is not in a nested procedure, the record after the

last record read for the previous job step.

® If in a nested procedure, the statement after the CALL

to a procedure with a LOAD statement {end of procedure

goes to the statement after the CALL in a nested proce-
dure or, if at the end of a procedure nest, the next
record in the input stream).

The statements following this record (the beginning of a
job step’s OCL), through the next RUN statement and any
records read from the input stream by this step, are asso-
ciated with this job step. In job mode, any immediately
following /. or /& statement is also included. If the step is
canceled in job mode, the end of the step’s OCL is the end
of the OCL for the job in which it is contained. If the step
is canceled in step mode, the end of the step’s OCL is the
statement before the next /., /&, CALL, LOAD, or JOB
statement (the /. or /& statement is included in this step).

Job Mode

A job is a group of related job steps that must be executed
in sequence. Each job step must be successfully completed
before the next job step can be executed. A job includes
ali the programs, files, and OCL statements necessary to
complete the task. The beginning of a job is usually indi-
cated by the JOB OCL statement in the input stream for a
partition. However, the beginning of a job’s OCL may be
indicated by one of the following:

® The first record in an input stream after IPL.

® With input spooling, the first record of the spooled
records for a job.

® The first record from the input stream after the last
record of the previous job (if the previous processing
mode was job mode) or job step (if the previous process-
ing mode was step mode).

All OCL statements that follow this record or the JOB
statement but precede the next JOB statement are associ-
ated with the job. Any number of LOAD/RUN combina-
tions and/or CALL/RUN combinations can be included in
a job. The job name from the JOB OCL statement is used
to identify, monitor, and control jobs when spooling.

When job mode is used, JOB OCL statements must be
included in the input stream to define the jobs. They
indicate to the system that job mode is active and that the
system input device assigned to the partition will not be
released until job mode is terminated. Processing in job
mode ensures that a group of programs are executed
sequentially, in the correct partition, and in a partition
that has sufficient main storage to accommodate all steps
of the job. When a job is initiated, the system checks the
PARTITION and CORE parameters, if specified, in the
JOB OCL statement to ensure that the job is initiated in
the correct partition and that enough main storage is
allocated to the partition to satisfy the CORE parameter.
If either of these conditions is not met, the system issues
a message and the job must be canceled. The system input
device, unless it is the CRT/keyboard, must be dedicated
to the partition being run in job mode on nonspooling
systems, or on systems that do not have input spooling.

To end job mode and return to step mode, a /. OCL state-
ment is placed in the input stream. This statement indi-
cates to the system that job mode is to be terminated and
the system input device is no longer dedicated to that job.
Job mode will resume when another JOB statement is
processed.

Job mode must be used when spooling is active. The spool-
ing routines handle job scheduling and job initiation. Jobs
are scheduled for execution based upon the priority speci-
fied in the JOB statement. Spooling ensures that jobs are
executed in the requested partition, and that all job steps
are executed sequentially in the same partition. Jobs that
cannot be scheduled for initiation because the required main
storage is not available are bypassed until the required

main storage is available.

When a 2 or 3 option is selected to a system message and
the system is in job mode, all remaining job steps in the

job are canceled. On systems that have input spooling,

job processing in the partition resumes with the next job
on the reader queue. On systems that do not support input
spooling, the job stream is flushed until a JOB or /. state-
ment is encountered. If output spooling is supported on
the system, spooled output that has been created by the
job are saved. If a JOB statement terminates the flush, the
system input device stays assigned to the partition.

System Facilities 245

Without Procedure

Input Stream OCL Job and Step Input Stream OCL Job and Step
Classification (with cancellation Statements Read From Classification (without cancella-
of a Job or Job step as indicated) the Input Device tion of a Job or Job step)
// DATE
// NOHALT
Step 1 // JOB Step 1
// LOAD

/I RUN
Job 1 L/& Job 1
r// HALT

Step 2 // LOAD Step 2 Job
cancellation flush // RUN __J Mode
i | 7 Loao :' Step 3
! /I RUN
: L__// PRINTER_] Step 4
Step 1 ‘ [—// JOB]
canceltation flush // LOAD Step 1 Job 2

// RUN -
L.]
!"'// HALT]

-———

L

// LOAD
Job (step} 3 // RUN Job (step) 3
cancellation flush {data)

re

// PRINTER

-——— .

Step
// LOG Job (step) 4
— ° P Mode
Job (step)4 [~/ LoAD

cancellation flush // RUN

p L]
// NOHALT
Job (step) 5 // LOAD Job (step) 5

// RUN |

Figure 2-3. (Part 1 of 2). Job and Job Step Classification

246

With Nested Procedures

Run with Cancellation
of a Job or Job Step

Statements Read from the Input Stream or Procedures

Run without Cancellation

as Indicated of a Jab or Job Step
Procedure Procedure Procedure
Input Stream (Level 1) (Level 2} {Level 3)
[/ LoG ‘j
// CALL A A
// CALLB B
Job (step} 1 // LOAD Job (step} 1
// RUN
// FILE
// RUN
End of
S Procedure B 1
- // CALLC c]
// CALLD D
// HALT
Job (step) 2 End of Job {step) 2
Procedure D
// LOAD
Cancellation // RUN
End of
Procedure C — 1
I // PRINTER]
| End of
: Procedure A
Flush | | // PUNCH
\ [// CALLE E
// CALLF F
Job {step) 3 // LOG Job (step) 3
End of
Procedure F
/I CALL G G
// LOAD
// SWITCH
// SWITCH
// RUN
// RUN
End of
L Procedure G —
[// LOAD]
Job (step) 4 // RUN Job {step) 4
Cancellation End of
: Procedure E ——
Flush : L_// HALT 'j
Job 5 Y [/ Jo8 Job 5
etc.

Figure 2-3 (Part 2 of 2). Job and Job Step Classification

System Facilities

247

EXTERNAL INDICATORS

External indicators enable a user to influence the execution
of a program from a source outside the program itself.
Eight external indicators are assigned to each partition;

all external indicators are set off during IPL. The SWITCH
OCL statement is provided to modify the external indi-
cators for the partition in which the statement is received,
When a SWITCH statement sets an indicator, that indicator
remains on until one of the following occurs:

® Another SWITCH statement sets it off.

® A JOB statement is received in the partition.

® A/ statement is received in the partition, in job mode.
® Another IPL is performed.

Eight characters in the SWITCH statement correspond to
the eight external indicators.

In the following example, a program using one disk file

(INVMSTR, an inventory master file) uses the SWITCH

statement to set on one external indicator and set off all
others.

1 4 8 12 16 20 24 28 32 36
/| LOAT 4 [TTTTT] | l

/L FITILEL NAMEL-IIINVIMSITIR, PlaicidViolL 2], UiNTiT=R]
V] ITICH |/

/| RUN

SYSTEM SEVERITY CODES

A severity code is an indicator to the system specifying
when the default option can be used for a system message.
When a severity code is not specified on the NOHALT OCL
statement, the operator must respond to all system mes-
sages except informational messages; this includes informa-
tional end-of-step and end-of-job messages.

248

The severity code can be 1,2, 4, or 8. The system selects
the default option for system messages of a severity less
than or equal to the code indicated. Severity codes and
defaults are assigned to most system messages and cannot
be altered. If the severity assigned to a system message is
greater than the severity indicated in the NOHALT state-
ment, the system stops, waiting for the operator’s response.
If the severity assigned to the message is equal to or less
than the severity indicated in the NOHALT statement, the
system selects the default option for the system message
and processing continues. The severity code does not affect
system messages having no default options or requiring
operator intervention. Severity code 1 is the least severe;
severity code 8 is the most severe, Severity codes are reset
to no severity at end of job., For more information on
system messages and severity codes, see /8M System/3
Model 15 System Messages, GC21-5076.

Note: Halts displayed in the message display unit are not
affected by the SEVERITY parameter.

JOB STREAM EXAMPLE

The example in Figure 2-4 illustrates the processing of a
job stream and some uses of OCL statements (part 1). The
example consists of two jobs with each job containing
related job steps. The jobs involve three files: customer,
inventory, and transaction. The customer file contains
such information as customer names and addresses, total
amounts of charges over a period, and total amounts of
payments over the same period. The inventory file contains
such information as item numbers and descriptions, prices
of the items, and the numbers of items in stock. The
transaction file contains such information as orders for
items, refund orders for items returned, and customer
payments. The transaction file is used to update the
inventory and customer files.

The OCL statements for the jobs are shown in Figure 2-4,
Sets of statements in the figure are numbered. The expla-
nations corresponding to those numbers are given in the
following section. Separate job streams are indicated by
statements 4 through 7 and 9 through 13.

@ The LOG statement assigns the 1403 printer as the
log device for partition 1. The DATE statement
supplies the system date, 10/20/76. The operator can
enter the system date by responding to the IPL
prompt for DATE or by entering a DATE OCC or
OCL before the first JOB, LOAD, or CALL statement
after initial program load.

@ The JOB statement places the system in job mode.
The job must be submitted in partition 1 (PARTITION
parameter).

There must be 32K of main storage available in parti-
tion 1 to execute the job (CORE parameter).

Spooling must not be active (SPOOL parameter).
The JOB statement assigns the name BUILD to the
job.

@ In the first job, three programs are being compiled
and executed. One transfers the customer file from
cards to disk, one transfers the inventory file from
cards to disk, and one transfers the transaction file
from cards to disk. The OCL statements for the
RPG Il compiler are in a procedure called RPG. A
CAL L statement, therefore, is used to instruct the
system to read the procedure each time the compiler
is run. The procedure is located on the F1 simulation
area.

@ In each of these job steps, the RPG 1l compiler is
executed and creates a program with the name
RPGOBJ. This program is placed in the object library
on F1.

In each of these job steps, a disk file is created. The
names that identify the files on disk are:

Customer file CUST
Inventory file INV
Transaction file TRANS

The date for all files is 10/20/76.

The cards containing the records to be transferred
to disk are being read from the same device as the
OCL statements. In each case, the cards follow the
OCL statements that load the program.

To help identify each job step, a unique name has
been placed in each of the LOAD statements. This
name follows the // in the LOAD statement.

/& statements are used as a precautionary measure
in case the /* statements had not been placed after
the source and data cards.

The /. statement ends job mode and acts as a delimiter
between jobs.

The second job uses files created in the first job.
The first job step compiles a program. The second
job step executes the program compiled in the first
job step. The third job step sorts a data file.

The JOB statement places the system back in job
mode. The name assigned to this job is INVENTORY.
Spooling must not be active. The job must be sub-
mitted in partition 1. There must be 32K of main
storage available in partition 1 to execute the job.

The RPG 1 compiler is called to compile a program
designed to update the inventory file. The program
is placed in the object library on F1.

This job step loads the program compiled in step 10
and updates the inventory file. This program can also
print the transaction file records. The printer file is
conditioned by external indicator 1. The SWITCH
statement sets external indicator 1 on, which prevents
the printing of the records.

The last job step sorts the newly updated inventory
file and writes the sorted file back to the same area

on disk.

A /. statement ends job mode.

System Facilities 2-49

o
()
3
\, 1
o < [+ X
~ [X
< ~ <)
~ | ~ ~ 24
@ X WJ << (@) o
273 ~ ~ 4
— - D E o T
[&) 79 [+ | \
3 ~N Q -® P
[8)] ~ [y W -~
~ (73] 1 ~J
N X W (75 ~ |
? [1s) \a) () ~) X XY \Y]
' -~ < ~
LX) - [+ 4 u, < a
[+9 L =~ [+
Q Q &+ S | ~
2 [¢4 L) [+ -~ N [
&Y 1) [=) Q ol 9] !
1 ~ £)
>] ~ QO (2] ~
~ -~ W I~ -
-~) D < ~ 4 W
& = J ~ L) V)) [18) ~J
~ [1 I |~ I 4> ~]] T 1 ~J ~|
1 1= <3 W] T N~ ~[T IE%) S Y
& S ~ 8] 1 ~[] Wi 7 [v4 >
g <] W YIRS W 7 Q [W) ~ 4 2
QK] [s~ T Wi S > 7] W [Ty (&)
It (1] WX [0) | LI1[2 [+< | 7] -~
L) 4 L1Y] [+4 =2] 4X Q3 [SYH) =
5 [< Wl] <i) | (SN a
T 473 A [e N T[T & LKy
~J/ ~ Ql & Q[| ~ QA J Wi 7 ~ [iG) [73)
QL | W =~ W~ = (Gl I~ >] S Q=
© Q [Ny U) | 2 AISTS < 1 1 by | <
g) > < = ~ [1 < I X
| IO] (W) © ™~ K ~I~ N e 24 | ~
[[\B] a1 I I & 1] 7] W) [G) 1 N
o o™ 1Q] < Uy] n WD <Y + O]
O TR 1 [} [44 () 23 [45) [24 ~J
AT (A ~<T (& T A a ~I <T| 2] L d 2§ a <
& 1] <] I =z (W) < <
© [[] | [N g V] [¥W] < L]
V=) ¢J [V IRV ~J (W] > WY (=5 ~ (W] <</
G] 24 DL ~) < NI.UIW ~ ~[LS
<[~ > OIS~ DD >~ DD N M~
< ch [«Y | WE<T W]+ @] AL QXA J Q O Y
|) R ~)) ~J [72) ~J
SNINININ] CUANENAN NN ANERNANAN NN ANANAN hd
~INDN N NININTNS SN N N NN N\ ANAN N
S - N o S~

®

®

®

®

®

®

[@

Figure 24 (Part 1 of 2). Job Stream Example

2-50

60

56

52

48

44

40

[19]
i
<
Y
~
W
[«"4
AS)
o
~ i
o [¥p)
1 N
W))
W [~
Q ~J| &
$J ~ i ~
% v} u, v}
i [N
] > | T Q
2 [+4 [all]
SIQ [=) 1 [~ ~
- =~ T~ -
=~ = e
-~ V] =| =
IS > DN L
= 4J ~
[—~— N[O ~]
~N[> [«)
s[4 1)) [N >
.m) X 1
T Wl tiy
e
=3 -
(@) a w. 1 AR (S}
()) QAN S+~ -~
[« W Nl O o= XA |
© = AS< XL <T|
<< [V [a) (S YRR
D~y X ~[~ [2) Q[~ -~
(<IN ENEL) Q1 Ry 1 [W
o= 4 1Q <\ [W M.E < —
[U O EI- (V)
>R < <[<C Q (Y]
B Ty 22X Ol ~J) 1.
o= W) W () ~J
J) | SRATVIATVH S Wy
S <[~[~[— KN -
S IDD DI/W._U«K/// >
< SO [\ NETNAY [S]EEWAN [T4Ke)
-) > V))
~ NININGSN RNANANAN
- NN SINKSNIN ~ N

%%EL-Tk NS, PAICII--IVALl], VN1 T-Di2], TiRlAlCKiS] {114,

-\ INPT [LABELL -TIRIANS,, PlACK- VoL 3] U 1 Ti-Di3l). TRAlciKs] 1115

@

1

®

Figure 2-4 (Part 2 of 2). Job Stream Example

2-51

System Facilities

MULTIPROGRAMMING

One of the prime measures of a system’s efficiency is the
throughput; that is, the amount of work handled in a
certain period of time. CPU processing time and its usage
are major factors that influence system throughput.
Mu/t/'programming, the concurrent execution of more than
one program, provides efficient use of the CPU time by
allowing programs to share the CPU facilities, thus reducing
the time the system is in an unproductive wait state.

With multiprogramming, control is transferred from one
task {for example, a user program or a system function such
as spool) to another whenever the executing task must
await completion of an input or output operation. For
example, when a program requests a print operation but
the printer js still busy with a previous request, control is
transferred to another program. Similarly, when a program
requests a record to be read, it must wait until reading has
been completed before it €an process the data. During the
wait, control is transferred to another task. Control is also
transferred when a system message occurs. Since most
programs wait a significant amount of time for 1/0 com-
pletion, sharing the system facilities reduces unproductive
wait time,

With multiprogramming, a disk file may be shared by two
Or more programs executing concurrently, see Figure 2-1
under Compatible Access Methods for File Sharing. This
enables programs of various functions to use the same disk
file without being concerned about iob scheduling. When
a particular program requires exclusive use of a disk file,
SHARE-NO may be specified on the FILE statement.

Three program partitions are supported by 5704-SC2:

Supervisor Area

Partition 1

Partition 2

Partition 3

File Share Area

2-52

Each partition can contain a separate program, thus allow-
ing concurrent execution of up to three programs. Each
program is logically independent, but shares the CPU
facilities with the other programs. When CCP is executing
in a partition, that partition can have up to 15 tasks execut-
ing. For sizes of partitions, see Program and Partition

Sizes under Program Facili ties.

The supervisor controls priority for CPU pProcessing. When
spool is active, it is assigned the highest priority, with
partition 3 second priority, partition 2 third priority, and
partition 1 the lowest priority. This priority sequence is
set at IPL time but may be changed via a PTY command.
The PTY command enabies a different priority order to be
assigned (such as P2, P1, SP, P3), or one or more of the task
can be assigned equal priority (such as SP = P3,P2,P1). A
request for equal priorities causes the priority of the speci-
fied tasks to be cycled each time the system wait task gets
control. For example, when the request is P1 = P2 = p3,
the cycle would be P3, P2, P1,P2 PI1, P3, P1, P3, P2, etc.
A request for equal priorities does not guarantee exactly
equal priorities since process bound programs will not
relinquish control to the system wait task very frequently,
but it could have an equalizing effect over a period of

time. If one of the partitions contains the communications
control program (CCP), it cannot be given equal priority to
another task.

When an interrupt occurs, the supervisor gains control,
processes the interrupt, and gives control to the highest
priority task that is ready to gain control. Control is given
up by the high priority task when it encounters a condition
that prevents further processing. Control is taken away
from a low priority task at the completion of the event

for which the high priority task is waiting.

Operating in a Multiprogramming Environment

A job or job step can be executed in any partition. The
operator loads a program into a partition by pressing the
PF12 key on the keyboard. This moves the cursor on the
CRT to the EJ (end of job) message for a partition. When
the cursor is positioned for the desired partition, the ENTER
key on the keyboard is pressed.

Whenever the EJ message for a partition is responded to,
OCL statements are read from the system input device
assigned to that partition.

When the system is operating in step mode without spool-
ing support, the system input device assigned to a partition
is available for use by any partition after the OCL state-
ments for the current program have been processed. Some
programs have input following the OCL and require dedica-
tion of that system input device while processing. In this
case, the input device is not available until it is released

by the program. The following points summarize step
mode operation:

® All partitions can share the same system input device;
however, only one partition can receive OCL statements
and data from the device at any one time.

® |nput and output devices required by the programs that
are executing must be available. Only the simulation
areas, main data areas, and the CRT/keyboard (used as
the system input device) can be shared, so careful
scheduling of jobs is important.

® The system input device assigned to a partition is avail-
able for use by any partition once the current program
has released it.

When the system is operating in job mode without spooling
support, the following points must be considered:

® OCL statements for all partitions must be entered from
separate system input devices (one for partition 1, one
for partition 2, and one for partition 3), unless the
system input device is the CRT/keyboard.

® |nput and output devices required by the programs must
be available. Only the simulation areas, main data areas,
and the CRT/keyboard {used as the system input
device) can be shared by the partitions. Therefore,
careful scheduling of jobs is important. The following
chart shows what devices can be shared:

Shared by
Device All Partitions
5424 MFCU No
2560 MFCM No
2501 Card Reader No
1442 Card Read Punch No
1403 Printer No
Simulation Area Yes!
Main Data Area Yes!
3410/3411 Tape No
CRT/Keyboard Yes?
BSCA No
3741 Data Station/ No
Programmable Work Station

! The device may be shared; however, there are restrictions
on disk files that must be considered.
There are three interfaces to the CRT/Keyboard: system
input device, data management, and system log device.
The CRT/Keyboard is shared between partitions when
the system log device and system input device interfaces
are used. The CRT/keyboard is unavailable as the
system input device only when it is being used by data
management. Otherwise, it is available to any partition
requesting input from the system input device.

® The system input device assigned to a partition, except
for the CRT/keyboard, remains assigned to that parti-
tion for the duration of the job, even if the job step
that is executing does not use the system input device.
(See Systemn Input Device later in this chapter.)

When the system is operating with spool support, job mode
is required. Spooling schedules the jobs to be executed

in each partition according to the priority assigned to the
various jobs and produces the output from the jobs on a
priority basis. The priority of a job on the input queue

or the priority of the output of a job step can be changed
through use of the CHANGE command.

System Facilities 2-53

When the system is operating in a spooled environment,
the following considerations should be made:

® The operator may schedule jobs for execution in all
partitions from the same system input device by supply-
ing the PARTITION parameter on the JOB OCL state-
ment. Once a job has been placed on the spool reader
queue, its partition assignment can be changed through

use of the CHANGE partition command. (See Part 1 for

a description of the JOB statement.)

® The spooled reader, punch, and printer devices may be
shared by all partitions when using spooling.

Operator Control Commands for Mu/ tiprogramming

The following operator control commands (OCC) provide
the user a means to control multiprogramming. {Appendix
C contains the format of the commands; for a complete
description of the commands, see /BM Systemn/3 Model 15
Operator’s Guide, GC21-5075.)

® CANCEL

® CHANGE

2-54

The CANCEL command terminates the
job executing in the specified partition.

If the canceled program is a job step in a
job or a part of a chained procedure, all
remaining steps in the job or procedure
are also canceled. Processing can continue
with the next job.

One function of the CHANGE command
is to alter the partition assignment of the
job on the spool reader queue when spool

is active. This is done via the PTN operand.

Another function of CHANGE is to alter
the main storage requirements of a job on
the spool reader queue (spoot must be
active). The CORE parameter plus a size
specifies the minimum amount of main
storage required to execute the largest step
in the job. It does not assign main storage
to the partition; the SET command is used
for this purpose.

The PTY operand of the CHANGE com-
mand allows the priority of a job on a
spool queue to be altered. (Spool must be
active.) The priority of a job determines
when it is executed and when its output

is printed or punched.

® DISPLAY

® DUMP

® HALT

The DISPLAY STATUS command formats
the CRT screen with the status of the
system. Each page (display) is the status of
a partition, the system, or the volume IDs.
An ENTER response to each page causes
the next partition, system status, or volume
I1Ds to be displayed in sequence: system
status, P1, P2, P3, volume IDs, system
status, P1, etc. The operator may request
a particular page by placing the partition
number, an S, or an N under the cursor or
by specifying the partition or N on the
DISPLAY STATUS command.

The system display includes the maximum
program size (maximum size of a program
that can be executed) and the size of the
file share area. The partition display
includes the location of the simulation
areas assigned to that partition.

The volume ID display includes the names
of all the disk areas (main data areas and
simulation areas).

The DISPLAY command also allows the
system history area (HISTORY) and the
contents of the spooling queues (RDRQ,
PRTQ, or PCHQ) to be formatted on the
CRT screen.

The DUMP command enables the storage
allocated to a partition to be dumped.
DUMP can also provide a dump of the
total storage area of the system.

The HALT command temporarily suspends
processing in a specified partition after the
current job step is complete and whenever
a system message (except an informational
message} is issued in that partition. The
HALT command can also cause an informa-
tional message when unprinted entries in
the system history area are about to be
overlaid by additional entries. The HALT
command overrides the nohalt mode
established at IPL or by a NOHALT OCL
statement. Processing resumes when the
system message is responded to.

® NOHALT

® PTY

® READER

When a NOHALT command for a partition
is specified, the partition does not stop
when an end of job or end of step occurs.
NOHALT changes the processing mode

for the partition from halt to nohalt. It
overrides the halt mode established by a
HALT command; however, it does not
override a HALT OCL statement.

The PTY command alters the priority order
of spooling and partitions 1, 2, and 3 in
the system control program. At IPL, the
priority of these tasks is spool, P3, P2, P1,
with spool (if active) having the highest
priority. The priority of these tasks deter-
mines the order in which they receive the
services of the system control program.
The PTY command also enables one or
more of these tasks to have equal priority.
Changing the priority may increase the
performance of one task; however, it may
be at the expense of another task.

The READER command changes the
system input device assigned to a partition.
When this command is entered, the speci-
fied partition must be at end of job or
end-of-job step, and must not have a system
input device dedicated to it. The assigned
device remains as the system input device
until changed by another READER
command or READER OCL statement,

or until an IPL is performed. The system
input device can be changed in a spooled
job stream; however, jobs are scheduled
for execution from the reader queue only
when the system input device is also the
spooled reader.

® SET

The SET command overrides the partition
and file share area sizes set during system
generation or set by a previous SET
command.

Supervisor

Partition 1

Partition 2

Partition 3

File Share Area

Before a SET command

Supervisor

Partition 1

Unused Area

Partition 2

Partition 3

File Share Area

After a SET command that
changed the size of partition 1.
The unused area could be
assigned to either partition 2

or 3 with another SET command.

When the SET command is entered to
change a partition size, CAN NOT ACCEPT
is displayed if the specified partition is
not at end of job or end-of-job step. Parti-
tions 2 and 3 both must be at EJ before
the size of partition 3 can be changed. If
the specified partition is at end-of-job step
but not end of job, the partition size may
not be decreased to less than:
— The size specified in the CORE param-
eter of the JOB OCL statement.
— The size of the partition at the start of
the job, if the CORE parameter is not
specified in the JOB OCL statement.

System Facilities 2-55

® START

2-56

The minimum partition size for partition 1
is 8K. Partitions 2 and 3 can be set at zero
to run the system with only one partition
active (dedicated system operation). When
partitions 2 and/or 3 are set to zero, the
CANCEL and DUMP commands are not
accepted for partitions 2 and/or 3. When
a partition is set to zero during system
generation, the CT £/ message will not be
displayed for that partition. Both parti-
tions can be reactivated with another SET
command specifying 8K or more. The
maximum partition size that can be speci-
fied is the system storage size minus the
size of the supervisor (if partitions 2 and 3
are set to 0) and the size of the file share
area (a minimum of 2K). In all other cases,
the maximum partition size is the system
main storage size minus the supervisor size,
the other two partition sizes, and the file
share area size. When the size of one
partition is decreased to increase the other,
the decrease operation must be done first,

When the SET command is entered to
change the size of the file share area, all
partitions must be at end of job. The
minimum file share area size is 2K larger
sizes are specified in increments of 2K.

A START command with a specified parti-
tion indicates execution can be started in a
partition in which execution was previously
stopped by a STOP command. This com-
mand can be entered at any time and takes
effect immediately.

A START SPOOL command with a speci-
fied partition indicates the partition in
which spooling is to be initiated. The
START SPOOL command specifying a
partition may only be entered after the
spooling function has been activated at
IPL. START is used to reactivate spooling
for a partition after the STOP command.
I entered at the end of a job when the
system input device has been released,
spooling for the partition begins immedi-
ately. If entered during the execution of
a job, it takes effect at the end of the next
job that releases the system input device.
Once spooling is activated by the START
command, it remains active until a STOP
command is entered.

e STOP The STOP command with a partition speci-
fied indicates to stop execution in that
partition. This command cannot be entered
for a partition in which the communica-
tions control program {CCP) is executing
or when a partition is using certain system
resources such as system interlocks. This
command takes effect immediately. A
START command is required to resume
program execution after it has been
stopped.

Note: This command can also cause the
spool writers to stop execution if they are
printing or punching DEFER-NO data
from the job step when it is stopped. They
will resume printing or punching when
execution has been started again in the
partition.

The STOP SPOOL command with a parti-
tion specified indicates the partition in
which spooling is to be terminated. This
command can be entered anytime follow-
ing initiation of spooling at IPL: however,
it does not take effect until the end of the
next job that releases the system input
device. If this command is entered at end
of job or when the system input device is
released, it takes effect immediately. A
START SPOOL command is required to
reactivate spool support for that partition.

Multiple Partition Support

The three-partition support provides the capability of
operating in the following typical environments:

® CCP—batch—limited application development

® CCP-—batch—batch

® CCP—MRJE —batch

® Batch—batch—batch

® Batch—batch—limited application development
Batch processing is the execution of programs such that
each program is completed before the next program is
initiated. Limited application development refers to the

compilation and debugging of programs in a batch environ-
ment.

Multiprogramming Considerations and Restrictions
Library Maintenance Program

The fibrary maintenance program can execute in one parti-
tion while any other nondedicated program, including
library maintenance, is executing in another partition.

All of the library maintenance functions can be performed
in a multiprogramming environment except copying or
renaming system entries on the simulation area from which
the system is loaded. These functions require the other
partitions to be inactive.

Restrictions exist on the functions that can be performed
by the library maintenance program if a simulation area is
specified that is already in use by another partition. These
restrictions are:

® Any delete or rename function (LIBRARY-O,
LIBRARY-R, or LIBRARY-ALL) or allocate function
that specifies the simulation area from which a program
executing in another partition is ioaded, will not be
performed.

® Based upon the option selected at system generation
time or during execution of the configuration record
program, the following support applies for the copy
function (LIBRARY-O, LIBRARY-R, LIBRARY-ALL,
or file-to-library):

For catalog to no program packs, any copy function that
specifies a simulation area from which a program execut-
ing in another partition is loaded, will not be performed.

For catalog to CCP program pack, any copy function
that specifies a simulation area which is currently in use
as a CCP program pack, will be performed. If that simu-
lation area is also in use as a program pack for the third
partition, the copy function will still be performed.
However, if the program executing in the third partition
is loaded from a different simulation area, the copy
function will not be performed.

For catalog to all program packs, any copy function
that specifies a simulation area from which a program
executing in another partition is loaded {including the
CCP program pack), will be performed.

@ Any copy function that specifies a simulation area that
is also being used by a system service program in another
partition for library purposes will not be performed
unless both the copy function and the system service
program are performing read only functions.

e If alibrary function can change the extents of the
library (that is, the allocate function, LIBRARY-O,
LIBRARY-R, or LIBRARY-ALL copy function, file-
to-library function, or LIBRARY-O, NAME-ALL,
RETAIN-T delete function), a system service program
in another partition cannot use that same area, and files
cannot be allocated in that area until the library function
is completed.

® Any delete, rename, or modify function that specifies a
simulation area that is also being used by a system
service program in another partition for library purposes
will not be performed.

® Any function that specifies a simulation area that is
dedicated to another partition for use by a system service
program or for an offline multivolume file or a deferred
mount file will not be performed.

Any simulation area that is not in use by a system service
program in another partition or has a use not previously
described as a restriction can be used by the library mainte-
nance program.

File Share

Program Number 5704-SC2 allows sharing of a disk data
file between two or more partitions, tasks, or access of a
file in a single program whenever it is logically possible.
Disk data management monitors file usage at a block level
and allows access for disk writes or potential disk writes to
any portion of the file not in use by another program for
the same purpose. /nput only operations are allowed with-
out regard to block usage by another program. Since
potential write operations are block protected when file
sharing, the greater the block size specified, the greater

the portion of the file that cannot be shared at any given
period with another potential write program.

A potential disk write occurs during input/update type
operations. When the input block is read, it is protected
for a possible update operation. The block is released on an
update or the next input request. During sequential and
consecutive processing, the block is released when all
records in the block are processed. During random
processing, the block is released after every record.

System Facilities 2-57

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

Add blocks have considerations similar to input/update
type operations. Random adds are protected during the
actual add and released so another random add program
may access that record. Sequential and consecutive adds
are protected during the entire add run and are not avail-
able for processing until that program has been completed.

A user may gain exclusive use of a file by specifying
SHARE-NO in the FILE statement. SHARE-NO excludes
other programs from using a file including input only access
methods. When files are not shared between partitions or
tasks, SHARE-NO should be used to decrease the disk
Processing time, especially if large amounts of random

adds are to be performed.

When two or more programs are sharing a file, a lockout
condition can occur if one of the programs fails to release
a block of records and a second program attempts to access
a record within the same block. A fockout can also occur
when a program is executed in such a manner that another
program cannot gain control.

Example A:
1. Program X begins and reads a record to update from
file A.

2. Program Y begins and reads a record from file B.

3. Program X attempts to read the same part of file B
without updating or refeasing file A. It must now
wait for program Y to release its block.

4, Program Y attempts to read a portion of file A in the
same block as program X without releasing the file
B block. Program Y is now waiting on program X
and both programs are locked out.

Example B:

1. Program Y performs updates until at some condition
it issues a halt after inputing a record.

2. Program X attempts to read and update a record
within the same block owned by program Y. Program
X will wait for program Y to release the block.
Once the halt in program Y is responded to, process-
ing will continue,

2-58

Example C:

1. Program Y is reading and updating records randomly
from file A. Program Y is coded to loop on a chain
operation when the record is not found. Itisalsoa
high priority program level.

2. Program X is randomly adding and updating records.
It is lower in priority than program Y.

3. Program Y chains for a record higher than any
previous records in the file. It loops on the chain
operation waiting for program X to add the record.
Since data management detects the high key request,
no disk operations occur and, therefore, control is
not passed to program X, so no further processing is
done and the partition must be canceled.

Example D:

1. Filename A and filename B define the same physical
file in program Y.

2, Program Y uses filename A to perform updates. The
records within the 1/0 block of filename A are pro-
tected until released by program Y.

3. Program Y then uses filename B in an attempt to
read and update a record within the same /0O block
used by filename A. However, program Y cannot use
filename B until the 1/O block used by filename A
is released.

Because of these considerations, programs that will be
sharing files should not be coded to do consecutive reads
from different disk fites without doing intervening writes.
Programs that will potentially hold up usage of a block of
records because of length calculations or halts should
release the block before the action and reread the block
for any update. When this type of coding cannot be avoid-
ed, the user must be aware of the possible lockout condi-
tions and schedule jobs accordingly.

Page of GC21-5162-1

Issued 28 September 1979
By TNL: GN21-6674

During index add processing, if a program executing in one

partition is sharing a file with an add program executing in

another partition, the key sort is deferred until the last

user of the file goes to end of job. If the last user of the

file does not have a $INDEX45 or $INDEX40 FILE state-

ment to allocate space for the work file (which is used to

sort the keys), the system will attempt to automatically

allocate the space. However, the system may not be able

to automatically allocate the space. Therefore, if the work

file is required, if there is a possibility that the key sort

will be deferred, and if sufficient space will not be avail-

able for the system to automatically allocate the work file,

then the user should include a $INDEX45 or $INDEX40

FILE statement for the sharing program even though it

may not be an add program.

During random adds to an indexed file, it is possible for
two programs to attempt to add the same record. If both
programs do so together, the first program will add the
record and the second will get an ATTEMPT TO ADD
DUPLICATE RECORD message.

System Facilities 2-58.1

2-58.2

This page intentionally left blank.

Programs coded to perform two random updates to the
same disk file without an intervening read will receive disk
error messages. Once a record update is issued, an input
operation must be performed before another update is
attempted.

When adding records to a file, the availability of the added
records to another program depends on the access method
adding the record and the access method retrieving the
record. The most permissive access method is indexed
random add. In order to retrieve records added by another
partition, random add access must be used by the retrieving
program even though no actual adds will be performed by
the program. The following chart indicates record
availability.

Sharing Access to Added Records

Record
Availability
To Access: IS
Records Cl DI ISL IR
Added by CcuU DU ISU IRU
Access: ISUL

CA ®

IRA
IRUA

® L
ISA/ISUA ® ® ® ®
®

IA/IRA/IRUA O)

@ Added records immediately available

@ Record added prior to open available

@ Added records available after close of adding program

@ Added records available after key sort at end of job or CCP close
@ Access method not available until add access has completed

CA Consecutive add

ISA Indexed sequential add or input add

ISUA Indexed sequential update add

IRA Indexed random input add
IRUA Indexed random input update add

System Facilities 2-59

Multiprogramming Examples

The following sample job streams assume four jobs are to
be executed (Figure 2-4). The system configuration con-
sists of a processing unit with 256K, 5424 MFCU, 1403
printer, 3340 disk drives, and a CRT/keyboard. The
system input devices are the 5424 MFCU for partition 1
and the CRT/keyboard for partitions 2 and 3. Before exe-
cuting these jobs, the operator must decide whether to
execute them in job mode or step mode. If job mode is
chosen, spool or nonspool must be chosen. When the
system is operating in step mode or in job mode without
spool, all 1/0 devices used by the job steps must be avail-

able. Careful planning and scheduling of job steps is neces-

sary to make maximum use of multiprogramming and to
avoid 1/0 device conflicts between partitions.

Assuming a nonspooled environment, jobs 1, 3, and 4
{which use the MFCU for reading and punching cards) are
scheduled in the same partition to avoid conflict with the
MFCU. Since job 3 does not require the printer, it is
scheduled as the first job in partition 1 to avoid a conflict
with job 2 in partition 2. Job 1 is scheduled as the second
job in partition 1: however, to avoid a conflict with the
printer, step 2 of job 1 cannot be started until job 2 is
finished executing. Any subsequent jobs scheduled in
partition 2 would have to avoid using the printer or MFCU
because job 4 uses both these devices. Partition 3 is not
used in this example.

2-60

The OCL statements required for partition 1 would be as
follows:

// DATE 10/20/76

//JOB3 JOB SPOOL-NO
//HISTORY LOAD PHIST,F1
// FILE . ..

// RUN

//PUNCH LOAD PHORD,F1
/l FILE ...

// RUN

/.

//JOB1 JOB SPOOL-NO
//UPDATE LOAD UPDATE,F1
/l FILE ...

// RUN

/I PAUSE START NEXT STEP OF JOB1 AFTER JOB2 EJ

//WRITE LOAD ORDRS,F1
// FILE ...

// RUN

/.

//30B4 JOB SPOOL-NO
// LOAD $RPG,F1

// FILE ...

// FILE ..,

// RUN

source statements

/*

// LOAD RPGOBJ, F1
// FILE. ..

// RUN

/.

The OCL statements required for partition 2 would be as
follows:

//J0B2 JOB SPOOL-NO
//ICHECKS LOAD PAYROL,F1
/I FILE . ..

// RUN

/.

If the same jobs were run in job mode with spooling active,
all jobs couid be read by one input device (see Figure 2-5).
Assume that the system date was entered at IPL. After
IPL, the following operator control commands would be
entered (see Appendix C for a summary of operator control
commands):

START RDR (Spooling begins reading the input job
stream and placing jobs in an area of the spool file
called the reader queue.)

START PRT

START PCH (Can be entered after the spool reader has
terminated.)

The following OCL statements would be placed in the
spooled reader:

//JOB1 JOB PARTITION-1, PRIORITY-3
//UPDATE LOAD UPDATE,F1
// FILE ...

/I RUN

//WRITE LOAD ORDERS,F1
// FILE ...

// RUN

/.

//JOB2 JOB PARTITION-2,CORE-20,PRIORITY-4
//CHECKS LOAD PAYROL,F1
// FILE ...

// RUN

/.

//JOB2 JOB PRIORITY-2
//HISTORY LOAD PHIST,F1
// FILE ...

/l RUN

//PUNCH LOAD PHORD,F1

/l FILE ...

// RUN

/.

//J0B4 JOB CORE-16

// LOAD $RPG,F1

/I FILE ...

// FILE ...

// RUN
source statements

/*

/{ LOAD RPGOBJ,F1
// FILE...

// RUN

/.

/.

Jobs would be executed in the partitions as follows:

JOB1 Partition 1, as specified by the PARTITION
parameter in the JOB OCL statement

JOB2 Partition 2, as specified by the PARTITION
parameter in the JOB OCL statement

JOB3 Defaults to partition 1 because no PARTITION

JOB4 parameter is specified in the JOB OCL state-

ment

Since spooling schedules the use of the spooled /O devices
scheduling of jobs in the partitions is made easier. Also,
more efficient use of the multiprogramming capability of
the system is realized when operating in a spooled environ-
ment,

,

Systém Facilities 2-61

IS S s St

i g e graTeeA A 3 AR, PO,

Job 1: Inventory Job 3: Detail Punch
Step: 1 Update inventory file Step 2: Punch history file
® Read cards ® Read disk
® Write disk records ® Punch cards
Step 2: Write orders Step 2: Punch order file
® Read disk ® Read disk
® print orders ® Punch cards
Job 2: Payroll Job 4: Compile
Step 1: Print checks Step 1: Compile program
® Read disk ® Read cards
® Print checks ® Write Disk

® Print listing

Step 2: Execute program

® Read cards

® Write disk records

JOB4
JoB1
JOB3
Partition 1
Assigned
Systern In-
put Device
Supervisor Supervisor
Assigned Spooling Routines
Partition 1 Spooled N
JOB2 Reader Partition 1
/ ..
Partition 2 Partition 2
Partition 2
Assigned
System In- Partition 3 Partition 3
put Device
L File Share Area File Share Area
Non Spooled System Spooled System

Figure 2-5, Scheduling Jobs in a Multiprogramming Environment

2-62

DATE SUPPORT

The System/3 Model 15 uses four date fields: a system
date and three partition dates (one for each partition).

The dates can be changed by a DATE statement or a DATE
command.

System Date

The system date is used for time stamping certain messages
by the time-of-day macro instructions, the RPG Il TIME
operation code, and by the COBOL and FORTRAN CFTOD
modules. The system date is set at IPL when the operator
responds to the DATE prompt or when the operator enters
a DATE command. Itis also set when an OCL statement

is entered at IPL before any JOB, CALL, or LOAD state-
ment. The system date can be changed by the operator
only with the DATE command and only when all partitions
are at end of job.

If the interval timer is specified during system generation,
the system date is changed at midnight—when the timer
changes from 23.59.569 to 00.00.00.

Partition Date

There is a date field for each partition. The partition date
is used by programs running in that partition, and it may
be different from the system date or from the date in
another partition. The partition date is used by the RPG 1|
UDATE field and when creating files.

The partition dates are established initially from the system
date; whenever the system date is entered, the three parti-
tion dates are also set. The partition date is always restored
to the system date at the start of the next job (after EJ).

The partition date can be changed by use of the DATE
statement, as follows:

® Job Date: If the DATE statement is entered after the
JOB statement and before a LOAD statement, that date
will remain in effect for the remainder of that job. It is
restored to the current system date for the next job.
It is not necessary that the DATE statement precede
the first step; it may be placed prior to any step’s LOAD
statement and will be in effect from that step to the end
of that job.

® Step Date: If the DATE statement is entered after a
LOAD or CALL statement and before the RUN state-
ment for that step (that is, if the DATE statement is
entered within a step), the partition date is changed for
the duration of that step. It is restored to the current
system date for the next step.

If the interval timer is supported, and if the system date is
updated at midnight, then, when the partition date is
restored after EJ or ES, it may be different from when the
step was started. However, the partition date is changed
by the system only after ES or EJ, never during execution
of a step.

Use of the DATE statement prior to a LOAD statement
ensures that the same date is used for each step in the job.
Also, once a DATE statement is entered in this manner,

a subsequent DATE statement may be entered for the
job, but only if it occurs prior to a LOAD statement.

INTERVAL TIMER

The interval timer provides time-of-day (TOD) support,
which maintains the time of day and system date. This
information is used to do the time stamping for jobs and
job steps and for jobs executed using checkpoint/restart.
The time of day is given in hours (00—23), minutes (00—59)
and seconds (00—59).

’

For time stamping jobs and job steps, the system date and
time of day (mmddyy or ddmmyy and hh.mm.ss) are used
to time stamp the CTEJ and CTES messages. The system
date and time of day are saved when the job or job step
starts, and the time of day is saved when the job or job
step ends. The start time of a job or job step is:

® In halt mode, the response to the EJ or £S message.

® In nohalt mode, after the EJ or ES message is logged in
the system history area, but before an attempt is made
by the system to read the first record of the next job

or job step.

If time of day is not specified during system generation,
neither the date nor the time is included in the messages.

System Facilities 2-63

Time stamping for checkpoint/restart is as follows:

® When a checkpoint request is received and accepted,
the system date and time are saved. This information
is put into the CC HY message that is given at a check-
point.

® When a restart request is received, the system date and
time are saved. This information is then put into the
CC HB message that is given at a restart,

If time of day support is not specified during system gen-
eration, the date and time are not included in the check-
Point/restart messages.

The system date is automatically incremented to the next
day at midnight (when the time changes from 23.59.59 to
00.00.00). The partition date, used as the creation date
for the disk and tape files, is not updated at midnight until
the start of the next job or job step. The partition date is
changed by the system only after ES or EJ occurs, never
during the execution of a jobstep. Asa result, files created
in two adjacent job steps could have different dates. Also,
as a result, the CCP date will not change during one execu-
tion, even though it may stay up for over a day.

Full interval timer Support provides time of day support
and also allows the user to set time intervals and to deter-
mine elapsed time by using system control programming
macro instructions. The five macros—$DATE, $TIOB,
$SIT, $TOD, and $RIT—are available and provide the
following functions:

® Retrieve the system date and time of day.

® Set the interval timer to cause an interrupt after a speci-
fied amount of elapsed time.

® Choose a format for specifying the time intervals,

® Specify the type of intervals to be timed.

® Return the remaining amount of time in an interval.
® Cancel an unexpired time interval.

For information on these macro instructions, see /BM

System/3 Model 15 Systern Control Programming Macros
Reference Manual, GC21 -7608.

2-64

SYSTEM INPUT DEVICE

During system generation, a system input device is assigned
to each partition. When program loading is initiated in a
partition, OCL statements are read from the system input
device assigned to that partition. (The system input device
is often referred to as sysin.)

The following devices can be assigned as the system input
device: 5424 MFCU, 2560 MFCM, 1442 Card Read Punch,
2501 Card Reader, CRT/keyboard, or 3741 Data Station/
Programmable Work Station.

When the system is running in step mode, the system input
device is assigned to a partition while the OCL statements
are being processed, unless the system input device is the
CRT/keyboard. After the OCL statements are processed,
the system input device may be allocated to another parti-
tion. When an error condition occurs during a program and
a 2 or 3 option is taken, the job stream in the system input
device is read but not processed until a LOAD, CALL,
JOB, /&, or /. OCL statement is found. Unlessa /. or a /&
OCL statement is found, the system input device is not
released.

Note: Some programs, such as the RPG |} compiler and
disk sort, require system input device dedication while
executing, in which case the system input device remains
assigned to the partition until those programs release it.

When the system is running in job mode and spooling is
inactive, the system input device is assigned to a partition
for the duration of a job, unless the system input device is
the CRT/keyboard. Once a JOB OCL statement is pro-
cessed in a partition, that partition’s assigned input device
is assigned to the partition until the job is terminated by

a /. statement or a 3 option is taken to a reader hardware
error message.

When the system is running in job mode with spooling
active, one input device is assigned as the spooled reader
from which all input can be read for all spooled partitions,
The spooled reader should be the same device as that
assigned as a partition’s system input device.

Job mode does not cause the system input device to be
dedicated when it is the CRT/keyboard,

When nohalt mode is used with job mode, the system input
device is not released until halt mode is established and
end of job occurs.

The assigned device remains the system input device until
changed by a READER OCL statement, a READER
command, or until an IPL is performed. The READER
OCL statement is read by the current system input device
and specifies the new system input device. The READER
command specifies not only the new system input device,
but also the partition it is assigned to. When the READER
command is entered, the specified partition must be at end
of job or end of job step, and, if executing in job mode,
the partition must have released its current system input
device.

The system input device can be changed in a spooled job
stream; however, jobs are scheduled for execution from
the reader queue only when the system input device is
the same as the spooled reader device.

The system control program support for sysin is used by
most of the system functions that read input. This includes
the system service programs and the language translators.
The user may use sysin via the ACCEPT verb in COBOL or
a macro statement with the basic assembler. Spooling
support does not use sysin.

SYSTEM LOG DEVICE

The system log device, specified during system generation,
is used by the system to communicate with the operator
and to record messages, OCL statements, and OCC
commands.

The device specified as the system log device remains in
effect until a LOG OCL statement alters it; the new system
log device remains in effect until another LOG statement
is processed or another IPL is performed. A system log
device is assigned for each partition; for example, the 1403
printer may be the log device for partitions 1 and 2, and
the CRT/keyboard may be the log device for partition 3.

In selecting the system log device, the user should consider
the following points:

® System messages (informational and decision type) are
logged to the CRT independent of the assignment of
the log device. The only effect of a LOG CONSOLE
statement is to stop logging to a printer.

® System messages, OCL statements, and control state-
ments are logged directly to the 1403 when the 1403 is
assigned as the system log device, and print spooling is
neither active (intercepting print requests) nor using the
1403 (printing spooled output) and the 1403 is not
being used by a program in another partition.

® System messages and control statements are logged to
the 3284 when the 3284 is assigned as the system log
device and is not being used by a program in a partition.

® When 1403 printed output is being spoole&, spooling is
active (intercepting print requests for this partition),
and the system log device has been assigned to the 1403
printer, all system messages that would normally be
logged on the 1403 are placed on the spool print queue.
When the spooled output is printed, the system messages
are printed along with the job step’s output.

® All system messages and OCL statements are logged to
the system history area (SHA) on the system pack.

Note: The SHA may be printed or copied to a device
independent file by the system history area display
program ($HIST), or displayed on the CRT by use of

the DISPLAY command. See Part 4 for a description

of $HIST or Appendix C for a summary of the DISPLAY
command.

The following information is not logged on the printer
but is logged in the system history area (SHA):

® Responses to ERP (error recovery procedures) messages
® Responses to EJ/ES messages

® Volume recognition facility messages and responses

® Spooling messages and responses

e OCC

® OCC diagnostics

® Any ERP message received while a printer ERP message
is active.

@ Partition identification on OCL statements and control
statements for system service programs.

If logging of the above information is required, the log

device is assigned only to the CRT, and the contents of
the system history area are periodically printed by $HIST.

System Facilities 2-65

SYSTEM PRINT DEVICE

The system print device, specified at system generation,
is used by various system functions, such as the library
maintenance program, to print their output.

The PRINTER statement is used to change the system
print device or provide information about printer output
that has been spooled.

The PRINTER statement defines the system print device
for the partition in which the statement is processed.
Either the 1403 or 3284 printer can be defined as the sys-
tem print device; however, spool supports only the 1403.
The system print device may be changed in a spooled job
stream; however, if the new device is the 3284, printed
output for the system print device is not placed on the
print queue. Spooling of system printed output resumes
when the system print device is reassigned to the 1403,
For more information on the PRINTER statement, see
Part 1,

SYSTEM PUNCH DEVICE

The system punch device is used to provide optional output
from system functions such as the overlay linkage editor
and output from the library-to-punch function of the
library maintenance program. A default system punch
device may be established for each partition during system
generation.

The following devices can be assigned as the system punch
device: 5424 MFCU, 2560 MFCM, 1442 Card Read Punch,
or 3741 Data Station/Programmable Work Station. The
PUNCH statement is used to change the system punch
device or provide information about punch output that

has been spooled.

The system punch device may be changed in a spooled job
stream; however, if the new system punch device is not the
spooled punch device, punched output for the system punch
device is not placed on the punch queue. Spooling of this
punched output resumes when the system punch device is
reassigned to the device designated as the spooled punch
device.

2-66

SYSTEM HISTORY AREA

The system history area (SHA\) is a space on the system
pack that contains a log or audit trail of the following
information:

® OCL statements logged by the system
® OCL diagnostics issued

® Control statements logged by the system for system
service programs

® Operator control commands entered

® Diagnostics issued for operator control commands
® System messages issued

® Volume recognition facility (VRF) messages

® Operator responses to system messages

® Unit record restart and 3340 restart messages

® Program product messages

® Display screen images {optional)

A system history area is created on the system pack during
system generation; a size option with a minimum of two
tracks (48 sectors) is provided. The allocate function of
the library maintenance program reserves space for the
system history area when altocating libraries on a pack that
will be used as a system pack—there is only one system
history area per simulation area.

The library maintenance program is the only means to
change the size of the system history area (HISTORY
parameter of the allocate function) after system generation.
The minimum size is 2 tracks; the maximum is the number
of contiguous tracks avaiiable on the pack following the
object library. The following are considerations for deter-
mining the size of the system history area:

® Each record in the area is 40 bytes; this is the length
of one line on the CRT.

® FEach operator control command and each OCC diag-
nostic requires one record.

® Each OCL statement and each control statement require
no more than three records, but generally require only
one record.

® Each message and each message response generally
require only one record.

The following can be used to determine the number of
tracks required:

Number of Tracks Number of Records

2 {(minimum) 233
3 377
4 521
5 665
10 1385
15 2105
20 2825

The system history area is a reusable area. When the space
is filled, the oldest entries are overlaid by the newest
entries, a process called SHA wraparound. To prevent data
from being lost, the HALT command with the SHA param-
eter is used. HALT SHA causes a decision-type message to
be issued when the SHA wraparound warning point is
reached. (The SHA wraparound warning point is defined
as a specific number of tracks that remain in the SHA be-
fore unprinted entries are overlaid.) The message is not
issued again until either $HIST or $HACCP has been exe-
cuted. The HALT SHA, CCP command automatically in-
vokes SHACCP when the SHA wraparound warning point
is reached. The HALT SHA command remains in effect
until a NOHALT SHA command is entered, an IPL is per-
formed, or the SHA is full message is responded to without
subsequently executing $HIST or SHACCP.

Note: The system history area copy program ($HACCP)
can be used to copy the current portion of the SHA to a
disk file. This program can be automatically invoked if
the communications control program (CCP) is executing.
For information about the system history area copy pro-
gram, see the /BM System/3 Communications Control
Program System Reference Manual, GC21-7620.

The library maintenance program {SMAINT) is used to
change the size of the system history area. The SHA wrap-

around warning point in the configuration record is reduced

during IPL if it exceeds one-half the new size of the SHA.

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

Information in the system history area can also be lost
when the library maintenance program is used to reor-
ganize an object library (unless compress in place is used),
or when the program allocates or changes the size of a
source library. Therefore, it is advisable to print the
contents of the system history area on a regular basis—as
the last step of a job, for instance.

The system history area can be printed or written to a
device independent data management file by the system
history area dispiay program ($HIST), written to a disk file
by the system history area copy program ($HACCP) under
CCP, or displayed on the CRT by use of the DISPLAY
command. A copy of the system history area can aid in
troubleshooting problems and can provide an audit trail of
system activity. See Part 4 for a description of $HIST

and Appendix C for a summary of the DISPLAY command.

SPOOLING

Spooling support for Model 15 is an optional facility of

the system control program for handling unit-record input
and output at disk 1/0 (input/output) speed, thereby
increasing total system throughput. Spooling support must
be specified during system generation; various options
enable spool to be tailored to the user environment.

To handle a system’s unit-record |/O without being depen-
dent on 1/0O device speeds, spooling support builds a file
on one of the main data areas and uses this file for inter-
mediate storage. This area is logically divided into queues
for reader input and print and punch output data.

As job streams (including OCL statements, programs, and
data) for the individual partitions are read, the spool reader
routine stores each job on the reader queue. After a job
has been completely read and stored in the reader queue,

it is ready to be transferred to the appropriate partition

{1, 2, or 3} for execution.

When the operator initiates execution in a partition by
responding to the EJ message, spooling support presents all
the records for a job to the partition as though they were
just read from the physical input device. When all job
steps for a job have been executed, the spooling support
removes the job from the reader queue.

Systemn Facilities 2-67

As a job executes, its printed and/or punched output is
stored temporarily in the spool file on print and punch
Queues. The output may be printed or punched later while
other jobs are executing, thus allowing a job to execute
without having to wait for the unit-record devices.

Whenever a spooled reader, card punch, or printer becomes
inoperative, the system continues processing jobs already
on the reader queue. When the 1/0 unit becomes operative
again, reading, punching, or printing continues without a
loss of output or processing time.

With spooling, jobs can be executed in all three partitions

without the need for separate unit-record devices for each
partition. For example, one card reader can be the system
input device for all three partitions; three card readers are

not necessary. Also, one printer can service all three parti-
tions without device contention.

Execution of the spooling functions is controlled with
operator control commands and operation control ianguage.
For further information on spool support, see /IBM System/3
Model 15 User’s Guide to Spooling, GC21-7632.

CHECKPOINT/RESTART

Checkpoint is a means of recording the status of a user
program at desired intervals. Restart is a means of resuming
the execution of the program from the tast checkpoint
rather than from the beginning, when processing is termi-
nated for any reason (with the exception of a controlled
cancel) before the normal end of job, such as when a power
failure occurs and causes an interruption.,

When checkpoint/restart is used, the following program-
ming considerations should be kept in mind;

® Checkpoint/restart enables the user to restart a check-
pointed program from the last checkpoint taken pro-
vided no intervening program executions have taken
place.

® The checkpoint/restart support was selected during
system generation,

® Checkpoint requests are accepted only in partition 1.
Checkpointed programs must be restarted in partition 1.
If partitions 2 or 3 are used to execute a checkpoint
program, the checkpoint requests are ignored.,

2-68

® Only programs 48K or less may be checkpointed. A
diagnostic is issued when attempting to checkpoint a
program larger than 48K .

® Programs using file sharing or external buffers cannot
be checkpointed.

® A LOG statement may be required to reestablish the
partition’s logging device.

® Ifany 1/0 requests from partition 1 are being handled
by spooling, checkpoint requests are ignored; therefore,
spooling should be stopped in partition 1 usinga STOP
command. See Appendix C for a summary of the STQOP
command.

® Any I/0 devices being used by spooling that will be used
by the checkpoint program must be released by operator
control commands, (See Appendix C for a summary of
operator control commands,)

® If CCP is active in the partition being checkpointed,
the checkpoint request is ignored.

® |f the interval timer is being used to time intervals for
the partition being checkpointed, the checkpoint request
is ignored.

® A PRINTER statement may be required to establish the
3284 as the printer. Multifile tape volumes that have
been prepositioned and left there by tape atlocate
(SEQNUM-X parameter on FILE statement) will not
be checkpointed or repositioned during restart,

® A READER and/or PUNCH statement(s) may be re-
quired to reestablish the spooled reader and punch
devices.

® Compilers and the overlay linkage editor should not run
in partition 1 as intervening programs with a LOAD *
or temporary checkpoint program. When a program is
cataloged by the overlay linkage editor, if the check-
point program is terminated (immediate cancel), the
checkpoint program may be deleted before the restart.

Preceding the initiation of the checkpoint program when
spooling support is active, a STOP SPOOL command must
be entered to terminate spooling in partition 1.

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

Assume the following job stream was submitted:

//JOBCHKPT JOB PARTITION-1,SPOOL-NO

//CHKPT1 LOAD CHKPT,unit

// PAUSE STOP THE SPOOL READER AND PRINT
AND PUNCH WRITERS

// RUN

The JOB statement includes PARTITION-1 and SPOOL-NO.
These parameters prevent the checkpoint job from being
run in partitions 2 or 3 or, if spooling is active, in partition
1. If spooling is active, it is the operator’s responsibility

to stop spooling in partition 1 and resubmit the checkpoint
job.

The PAUSE statement is a technigue to inform the operator
that the checkpoint program will be initiated. This state-
ment is not required if spooling is not active.

The following operator control commands should be
entered at this time:

STOP PRT
STOP PCH or STOP RDR

This releases the spooled devices for the checkpoint
program.

System Facilities 2-68.1

This page intentionally left blank.

2-68.2

Restart also requires spooling support to be inactive in
partition 1, and the devices (same devices as used by the
checkpoint program) must be released by using operator
control commands.

The following OCL. is required:

//JOBRSTR JOB SPOOL-NO,PARTITION-1
/1 LOAD $$RSTR,unit
// RUN

SPOOL-NO is required to prevent the job from being run

if spooling is active in partition 1. PARTITION-1 is
required because $3RSTR can only be executed in partition
1.

Programs can be executed prior to the restart of a check-
point program; however, the following items should be
observed since no system protection is provided:

® The checkpoint program has been permanently cata-
loged. Also, LOAD * must not be used.

® If any tapes are processed by the basic tape access
method (BTAM) or by direct call to tape 10S in the
checkpoint program, they are dismounted to allow the
intervening program to use the tape units. The user’s
restart routine must reposition the tapes to the status
at the active checkpoint.

® SMAINT is not executed during the time between
failure and restart of the checkpoint program.

® The RPG Il, FORTRAN, and COBOL compilers and
the assembler can be executed if the object program is
punched or cataloged to a pack other than the program
(load) pack of the checkpoint program. Anything with
the same name as the checkpoint program cannot be
cataloged on the program pack of the checkpoint
program.

® [ntervening programs must not access disk volumes in
use by the active checkpoint program for new or scratch
files.

® Disk files being used by the checkpoint program should
not be modified by an intervening program if the user’s
restart routine stores selected records in the fites. This
destroys the updates of the intervening program.

® The disk packs online at restart are the same packs as
those used by the checkpoint program, at the last
checkpoint.

® Intervening and active checkpoint programs must not
add to the same file.

Note: The checkpoint must be deactivated before load-
ing a checkpoint program into partition 1.

® The $DELET function (FORMAT statement) is not
used to deallocate space which does not contain files,
libraries, or system areas on any packs used by the
checkpoint program.

Checkpoints can be taken via linkage provided by COBOL
and the basic assembler. See the appropriate reference
manual for more information.

INQUIRY PROGRAM

An inquiry program is a program that is identified as an
I-type program; it can be either an RPG or FORTRAN
program. The program will have attributes of X‘4000’
after it has been compiled and link edited. I-type programs
can only be executed by an inquiry request (pressing the
PA1 key on the keyboard). An I-type program cannot be
interrupted. |-type programs are most efficient in a multi-
programming environment but can also be used on a dedi-
cated system. Spooling cannot be used for an |-type
program.

For more information on executing an inquiry program,
see /BM System/3 Model 15 Operator’s Guide, GC21-5075,
18M System/3 RPG 11 Reference Manual, SC21-7504, and
1BM System/3 FORTRAN 1V Reference Manual,
SC28-6874.

SYSTEM INTEGRITY

System integrity and security of user data is provided in
several ways:

Data File Security: File labels and volume labels protect
data files from accidentally being destroyed when a wrong
data module is mounted, a wrong program is loaded, or an
attempt is made to write over a valid data file.

Every disk data file is protected by a file label containing
file characteristics. Some typical fields in the file label

are the file name, creation date, retention status of the file,
and file type. The user cannot access or change the file
without first checking the file label.

System Facilities 2-69

The volume label record defines the characteristics of a
main data area or a simulation area. A typical field in the
volume label is the pack name.

To use a particular disk file required in a program, the user
must provide the necessary specifications by means of OoCcL
statements. The system uses the information given in these
statements to verify that the correct pack is mounted and
that the required disk file or area is available.

Volume Security: There are times when an entire volume
(a main data area and its associated simulation areas) is
dedicated to one partition’s use. During these periods, any
request from another partition for any of these areas will
be denijed (F/message). Conditions which require volume
dedication are:

® Offline Multivolume File active

® SINIT (Type-Force)

® Deferred Mounts

® Dismount pending situations (WP message is on the CRT)

5704-SC2 provides a volume recognition facility (VRF)
for Maintaining disk integrity and providing ease of use for
3340/3344 attention situations. Primary functions of the
VRF are:

® Diagnose improper pack changes and request that the
original pack be placed back online.

® Diagnose improper state change (write to write
inhibited). Changing the state of the drive to write
inhibited cannot be allowed (0B message) if any activity
exists on the entire drive.

® Automatic restart for 3340/3344 diagnostic messages
and pack change messages. Messages which qualify for
automatic restart are listed in the 1BM System/3
Model 15 System Messages Manual, GC21 -5076.

The VRF maintains a table of pack names for each disk
area (main data areas and simulation areas). This table
exists in resident storage, is initialized at IPL and updated
any time a valid pack change occurs or a system service
program changes the pack name {$SCOPY, $DCOPY,
$COPY, and $INIT). Read/Write state of each drive is also
maintained in this table,

Note: Changing a pack name by any other means is not

allowed and may cause unpredictable results unless
immediately followed by an IPL.

2-70

AUTOMATIC MESSAGE RESTART (UNIT RECORD
RESTART)

Automatic message restart eliminates the need for system
operator intervention in responding (with a 1 option) to
certain system messages.

This function of the SCP can be included during system
generation by the user specifying the unit record restart
and/or the extended restart option(s). Regardless of the
option selected, certain messages are automatically restarted
for the 3340 Direct Access Storage Facility and the 3344
Direct Access Storage. For more information about auto-
matic message restart, refer to the I1BM System /3 Model 15
System Messages, GC21-5076.

For automatic restart, the message response is placed in
the system history area with an R in the response position
(indicating automatic restart and implicitly meaning a 1
option response). If the response is logged to a printer,
the response position will contain a 1.

The configuration record program (SCNFIG) can disable or
enable the extended restart function if the user previously
selects the extended restart and/or the unit record restart
function(s) during system generation.

All messages that apply to the automatic restart function
are included in the /1BM System/3 Mode/! 15 System
Messages, GC21-5076 publication.

Unit Record Restart (System Generation Option)

Unit record device error recovery messages can be auto-
matically restarted for the following devices: 2501 Card
Reader, 1442 Card Read Punch, 5424 MFCU, 2560 MFCMm,
3741 Data Station, 3741 Programmable Work Station,

first 1403 Printer, and second 1403 Printer.

Extended Restart (System Generation Option)

The following messages are automatically restarted when
the appropriate resource is available:

Component Halt Subhalt Resource
ID ID ID Needed
F/ Px Disk
WA Px Disk
SP uT NI Job available on
reader queue
SP uT RE Job available on
reader queue
82 02 Tape

MAIN STORAGE USAGE

CPU main storage is logically structured (carved up) during
system generation according to specified options describing
the user’s operating environment. The following illustra-
tion shows the logical structure.

Supervisor
Partition 1 User program
T T T External buffeTs—-]
Partition 2 User program
T T E)EnalTuffers]
Partition 3 User program
T T _&tembums T
File Share Area

The supervisor contains the system control programs that
perform the functions necessary for the operation of a
system. The size of the supervisor is based on the options
chosen at system generation. The approximate main
storage requirements for each of the functions is as follows:

Base supervisor 23.07
(includes 3340/
3344 support and
and minimum 2K
file share
common area)

Options:
File Sharing—additional 0-14K
common area
Tape support 1.16
3741 support 0.50
3284 support 0.50
2501 support 0.21
1442 support 0.25
MFCU support 0.65
MFCM support 0.69
1/0 storage protection 0.49
Unit record restart 0.34
Support for MLTA/BSCA/LCA/DA 1.41
Support for SIOC 1.81
Memory resident overiays 0.50
Interval Timer:
Time of day only 0.47
Full timer support 2.00
Spooling:
Minimum 7.11
Maximum 20.79
CCP:
Minimum 1.90
Maximum 6.64

System Facilities 2-71

2-72

LIS

Part 3. Disk Storage

Part 3. Disk Storage 3-1

3-2

Direct Access Storage

Disk storage is provided by one of the following configura-
tions: 3340 Model A2; or 3340 Model A2 and 3340 Model
B1; or 3340 Model A2 and 3340 Model B2; or 3340 Model
A2 and 3344 Model B2.

3340 DIRECT ACCESS STORAGE FACILITY

A 3340 Model A2 or 3340 Model B2 consists of two drives.
A 3340 Model B1 consists of one drive. Each drive utilizes
a removable data module (referred to as a volume) as the
storage medium. Each volume consists of a main data area
and its associated simulation areas. The following illustra-
tion shows the format of a data module (volume) mounted
on drive 1 or 2,

/',::\\\
/7/ SO
=)

Xy
) NEEEEZY

/
/ 1
/ !
/
, /
/ /
(R B T T |
Main Data Area ! Lo
LIRS S D I
N~

Simulation Areas

Direct Access Storage 3-3

3344 DIRECT ACCESS STORAGE

A 3344 Model B2 consists of two drives. The storage
medium on each drive is fixed and cannot be removed. The
storage medium on each drive is divided into four volumes.
The format of each volume is simifar to a 3340 volume.
One exception is that only two simulation areas are associ-
ated with each main data area. Also, the main data area on
a 3344 (single volume) has a larger capacity (45.7 miilion
bytes) than the main data area on a 3340 volume (40.8
million bytes).

The following illustration shows the storage medium divided

into four volumes. (A volume is one main data area and its
associated simulation areas.)

Four Volumes

—“

One Volume
e, NS

Main Data
Area

.
~ Simulation
~

~ . Areas
~
~
.
~
~
~
~

34

The three parts of Figure 3-1 show the capacity and format
for each storage medium used on the disk storage devices.
Part 1 shows the byte capacity for each division of the
storage medium. Part 2 shows the byte capacity, by model,
for the main data areas. Part 3 shows the byte capacity and
the cylinder designation for each division of a volume.

3348 Data 3348 Data 3344 3344
DISK Module Module Direct Direct
CAPACITY (3340) (3340) Access Access
IN BYTES Drives 1 and 2 | Drives 3and 4 Storage! Storage?
User data area 40,796,160 40,796,160 45,711,360 182,845,440
Simulation area 9,830,400 4,915,200 4,915,200 19,660,800
Subtotal 50,626,560 45,711,360 50,626,560 202,506,240
Cylinder O
(reserved) 245,760 245,760 245,760 983,040
Subtotal 50,872,320 45,957,120 50,872,320 203,489,280
Alternate tracks
(reserved) 491,520 491,520 491,520 1,966,080
Other use
(reserved) 98,304 98,304 245,760 983,040
Total physical
capacity 51,462,144 46,546,944 51,609,600 206,438,400
1One volume.
One drive; four volumes.

Figui: 3-1 (Part 1 of 3). Byte Capacity of Each Storage Medium

Configurations Storage in Millions of Bytes
3340!

One Model A2 81.6

One Model A2 and one Mode! B1 1224

One Model A2 and one Model B2 163.2
3340/3344!

One 3340 Model A2 and

one 3344 Model B2 4472

1Storage size is for main data areas only and does not include simulation areas
or reserved areas.

Figure 3-1 (Part 2 of 3). Byte Capacity (Main Data Area) for Each Model

Direct Access Storage

3-5

System Use User Data Area Simulation Areas Other Use
Million Million Million Million
Cylinder | Bytes Cylinder | Bytes Cylinder | Bytes Cylinder | Bytes Total
3348 Data 0 0.25 1-166 40.80 | 169-208' | 9.83! 167-168 0.49 51.47
Module (4) 209 0.10
3344 Direct
Access
Storage
Each Volume 0 0.25 1-186 45,71 189-208 4.91 187-188 0.49 b1.61
(2) 209 0.25
4 Volumes — 0.98 — 182.85 - 19.66 — 2.95 206.44
it the data module is mounted on drive 3 or drive 4, only two simulation areas are accessible. The starting cylinder is 189 and the
capacity is 4.91 million bytes. Total capacity is 46.56 million by tes.

Figure 3-1 (Part 3 of 3). Byte Capacity and Cylinder Assignment for Each Volume

SIMULATION AREAS

System control program 5704-SC2 requires the simulation
of a 5444 disk storage drive. All libraries (for example, user
programs, system programs, and procedures) are located in
an area on disk called a simulation area. The contents of
the simulation area are then used in the same way as a 444
disk storage drive.

Four simulation areas, each having a unique code, can be
accessed on each of the volumes mounted on disk drives 1
and 2. Each simulation area is contained within 10 contig-
uous cylinders of a volume. (A volume is one main data area
and its associated simulation areas.) Therefore, a total of 40
cylinders, 169 through 208, are reserved for the simulation
areas on these drives. Disk drives 3 and 4 can be a 3340 or
3344. However, regardless of the type of disk drive, each
volume on drive 3 or 4 contains only two simulation areas.
These areas, having unique codes, occupy cylinders 189
through 208.

3-6

Interchanging Data Modules (3340)

You can interchange1 any data modules on any drives.
However, to access the correct simulation area when a data
module is mounted on drive 3 or drive 4 requires special
considerations. Refer to Figure 3-2 and note the unique
simulation area codes (D3E, D3A, D4E, and D4A) and their
location assigned to the simulation areas on drives 3 and 4.
Also notice that only two simulation areas can be accessed
on each drive.

Simulation areas D3E (drive 3) and D4E (drive 4) occupy
the same relative cylinders {189 through 198) as simulation
areas coded D1C (drive 1) and D2C (drive 2). Also, simula-
tion areas coded D3A (drive 3) and D4A (drive 4) occupy
the same relative cylinders (199 through 208) as simulation
areas coded D1D (drive 1) and D2D (drive 2). Therefore,
when you move a data module from drive 2 to drive 3 and
the system accesses the simulation area coded D3A, the data
retrieved is actually from simulation area D2D. This same
logic is true for simulation area codes D3E, D4E, and D4A.

The machine will not access cylinders 169 through 188 in
the main data area when the data module is mounted on
drive 3 or drive 4. Therefore, when you move a data
module from drive 1 or 2 to drive 3 or 4, the system cannot
retrieve the data located in simulation areas coded D1A,
D2A, D1B, D28B.

! You must perform an IPL anytime you change the system pack or
the pack that contains the active $SPOOL file.

Figure 3-2 shows the format and the unique code for each
simulation and main data area when the system has four
3340 disk drives.

D1 D2

Main Data Area Main Data Area

D3 or D31

Main Data Area

D4 or D41

Main Data Area

D1A D2A » =
D1B D28 o e

D1C @ D2C @ D3E @ D4E @
D1D D2D D3A D4A

Drive 1 (3340} Drive 2 (3340) Drive 3 {3340} Drive 4 {3340)

@ Denotes simulation areas associated with each volume.

Figure 3-2. Main Data Area and Associated Simulation Areas

Accessing Simulation Areas

Depending on the disk configuration, the number of avail-
able simulation areas can be 8 (two 3340 disk drives), 10
(three 3340 disk drives), 12 (four 3340 disk drives), or 24
(two 3340 disk drives and two 3344 disk drives); they are
all directly accessible. However, before a simulation area
can be directly accessed, it must first be assigned to a 5444
unit code. The 5444 unit codes are F1, R1, F2, and R2.
(The system service program $SCOPY provides access to a
simulation area even though it is not assigned to a 5444
unit code.)

Assigning Simulation Areas

Assignment of the simulation areas to the 5444 unit codes
must occur during system generation. Assignment occurs
when a unique simulation area code, such as D1C, is assigned
by partition to a 5444 unit code such as R2. Then, after an
IPL is performed, the simulation area D1C is directly acces-
sible when 5444 unit code R2 is specified in the correct
partition. For example, assume simulation area D1C is
assigned to unit code R2. The following OCL statement
causes the system to access simulation area D1C and load
the program named $COPY:

// LOAD $COPY,R2

During system generation, each 5444 unit code (F1, R1,
F2, R2) must be assigned by partition to a simulation area
code. The simulation area assignment must be unique with-
in a partition. The 5444 unit codes must be assigned in the
following sequence during system generation:

F1, R1, F2, R2
Figure 3-3 shows the format and code for each simulation
and main data area when the system has two 3340 disk

drives and two 3344 disk drives.

If you do not assign simulation areas, system generation
provides the following default assignments:

F1-D1A, R1-D18, F2-D2A, R2-D2B (all partitions)
For more information about assigning simulation areas,

refer to the /1BM System/3 Model 15 System Generation
Reference Manual, GC21-7616.

Direct Access Storage 3-7

D1 D2 D3/D31 D4/Da1
Main Data Area Main Data Area Main Data Area Main Data Area
D1A D2A
D1B @ D28B @
p1cC D2C D3E D4E
D1D D2D D3A D4A
D32 D42
Drive 1 (3340) Drive 2 (3340)

Main Data Area

Main Data Area

Main Data Area

D3F D4F
D3B D4B
D33 D43

Main Data Area

Main Data Area

D3G D4G
D3C D4C
D34 D44

Main Data Area

D3H D4H
D3SD D4D
Drive 3 {3344) Drive 4 {3344)

@ Denotes simulation areas associated with each volume.

Figure 3-3. Main Data Area and Associated Simulation Areas

3-8

The following considerations and restrictions apply when
you assign simulation areas during system generation.

® F1 may be assigned to any simulation area except D18
and D3B. However, when the IPL is performed, if the
system pack is on drive 1 or drive 3 and the PROGRAM
LOAD SELECTOR switch position is either DISK1 F1
or DISK3 F1, the system overrides the previous assign-
ment and assigns F1 to D1A or D3A in all partitions.

® R1 may be assigned to any simulation area except D1A
and D3A. However, when the IPL is performed, if the
system pack is on drive 1 or drive 3 and the PROGRAM
LOAD SELECTOR switch position is either DISK1 R1
or DISK3 R1, the system overrides the previous assign-
ment and assigns R1 to D1B or D3B in all partitions.

® F2 may be assigned to any simulation area except D1A,
D18, D3A, or D3B.

® R2 may be assigned to any simulation area except D1A,
D1B, D3A, or D3B.

Simulation Area Reassignment

Simulation areas can be reassigned (by partition) by use of
the ASSIGN statement. This statement cannot be used in a
procedure; it cannot be placed between a CALL and a RUN
statement; and it is effective immediately after being
processed.

The format of the ASSIGN statement is as follows:
// ASSIGN 5444 unit code-simulation area code

One, two, or three simulation areas can be reassigned on
each ASSIGN statement unless the PACK and/or AREA
parameter is used. In this case, only one simulation area
can be reassigned for each ASSIGN statement.

The new assignment remains in effect until another ASSIGN
statement is processed or until an IPL is performed, at
which time the simulation area assignments revert to those
made during system generation, or during the execution of
the configuration record program.

Simulation areas can also be reassigned by means of the
configuration record program $CNFIG. This program
reassigns, by partition, the 5444 unit codes to the simula-
tion areas by changing the configuration record on the
system pack from which the IPL was performed. For more
information about this program, see Configuration Record
Program—8CNFIG in Part 4 of this manual.

The following considerations and restrictions apply to
reassignments:

® The simulation area from which an IPL is performed
cannot be reassigned.

® Duplicate assignments are not allowed within a partition.

Number of Simulation Area Assignments

The maximum number of simulation areas that can be
directly accessed is: 10 in a three-partition system; 7 in a
two-partition system; 4 in a single-partition system. When
an IPL is performed, the system overrides any previous
assignments to either F1 or R1 and assigns the simulation
area containing the system pack to all partitions. The
following example shows how a maximum of 10 simulation
areas could be assigned:

F1 assigned to D1A
R1 assigned to D4E
F2 assigned to D2A
R2 assigned to D3A

System Pack

Partition 1

F1 assigned to D1A
R1 assigned to D1D
F2 assigned to D4A
R2 assigned to D1B

System Pack

Partition 2

F1 assigned to D1A
R1 assigned to D2D
F2 assigned to D3E
R?2 assigned to D2C

System Pack

Partition 3

The same assignment is allowed in more than one partition.
For example, R2 could be assigned to D2B in all partitions.
The following example shows the default assignments and
also shows how a minimum of four simulation areas can be
assigned:

F1 assigned to D1A
R1 assigned to D1B
F2 assigned to D2A
R2 assigned to D2B

System Pack

Partition 1

F1 assigned to D1A
R1 assigned to D1B
F2 assigned to D2A
R2 assigned to D2B

System Pack

Partition 2

F1 assigned to D1A
R1 assigned to D1B
F2 assigned to D2A
R2 assigned to D2B

System Pack

Partition 3

Direct Access Storage 3-9

MAIN DATA AREAS

A main data area is a portion of a volume that is used to
store data files. (It is not used for library storage.)

Main data areas for each volume start at cylinder 1 and
extend through cylinder 166 (3340) or 186 (3344).

Each main data area is accessed by means of a specific code.
If the main data area that you want to access is located ona
3340 data module, the disk drive that the data module is
mounted on determines the code. For example, if a data
module is mounted on drive 1, the code to access the main
data area is D1, on drive 2 the code is D2, on drive 3 the
code is D3 or D31, on drive 4 the code is D4 or D41,

The storage medium for a 3344 is fixed, and the main data
area of each volume is assigned a unigue code. The follow-
ing illustration shows the unique code and the relative loca-
tion for each 3344 volume:

Drive 3

o3 [
or |p32{pa3
D31

Drive 4

D42 § D43\ D44 O

3-10

Disk Space Allocation

For the main data areas on a 3340 or 3344, the allocation of
disk space begins at cylinder 1 and extends toward cylinder
166 or 186. If the LOCATION parameter is specified on
the FILE statement, file allocation begins at the specified
location and extends toward cylinder 166 or 186.

Temporary or Permanent Files

When the LOCATION parameter is not specified, the entire
main data area is searched to find the optimum space avail-
able for the file. The file is adjusted toward the cylinder 1
end of the space. This procedure is also used to allocate the
spool file.

Scratch Files

® Main data area on a 3344:

— The disk space between cylinders 167 and 186 is
searched to find the optimum space available for the
file. If sufficient space is found, the file is adjusted
toward the cylinder-186 end of the space.

— If sufficient space cannot be found within cylinders
167 and 186, the entire main data area is searched for
the optimum available space. The file is adjusted
toward the cylinder-186 end of the space.

® Main data area on a 3340:
— The entire disk is searched for the optimum space,
and the file is adjusted toward the cylinder-166 end
of the space.

Considerations and Restrictions

® Use the file compress program ($FCOMP) periodically to
remove existing gaps between files.

® To decrease the amount of seek time, group all files
associated with a specific job together on the same
volume.,

® To decrease the amount of seek time, fill all disk space on
a main data area of a 3344 to capacity before using a new
volume.

ALTERNATE TRACKS

An alternate track is a substitute track selected to accept
the contents of a defective track. Forty alternate tracks are
available on each volume. For a 3340 volume, they are
contained in cylinders 167 and 168. For a 3344 volume,
they are contained in cylinders 187 and 188.

An alternate track can be assigned to any track except
cylinder 0, head O on the following main data areas: D1,
D2, D3, D31, D4, and D41, Whenever a program attempts
o use a track that has been assigned an alternate, the
alternate is used automatically.

When programs encounter permanent reading or writing
errors, the system automatically halts the current operation.
The alternate track assignment program can then be exe-
cuted to test suspected defective tracks; alternates will be

assigned as needed. Some of the data might not be recovered

when the alternate track assignment program is used. If the
data cannot be recovered without an error condition, the
record or records are read under reduced hardware checking
conditions and are written on the alternate track. The
record or records that contain the error are printed in a form
that completely identifies the data written on the alternate
tracks. This printout should be retained. |t is required for
running the alternate track rebuild program.

File Processing Considerations

System performance is degraded if an alternate track is
assigned for one or more tracks of a file index. It is recom-
mended that the file be moved so that the alternate track
contains the data portion of that indexed file.

Direct Access Storage 3-11

CYLINDER 0 FORMAT

On each volume, cylinder 0 is reserved for system support
of the main data area. It also contains the necesary micro-

program and data to perform an IPL for the system. The

following illustration shows the format of cylinder 0 and
the type of information contained in each record:

Head 0
1PL .
§/370 EC level of
IPL) IMPL. code
S/370 IPLBOT IPL
vol! for D3 ‘] BOT
¥ §
Records 4-24 are not written. This meets ~
the direct access storage device {(DASD) System/3 Reserved System/3 Reserved
label standard requirements. IMPL code IMPL code
R1 R2 R3 R24 R25 R29 R30 R32 R33 R37 R38 R46 R47 R48
Head 1
Records 1-20 contain the same type of data on . CEFE/supervisor
both the 3340 and the 5445, IPLNIP | CEFE dump to disk CEFE rollout
R1 R20 R21 R24 R25 R32 R33 R40 R41 R48

Head 2

3340 functional microcode

R1 R48
Head 3

System/370 VTOC has a 44-byte key length and a 96-byte data

length, with one entry allocating the entire data module asa Remaining track area is not formatted

nonexpiring data file.
R1 R22 R23 R48
Head 4

Reserved
Rt R48
Heads 5-18

System/3 1000-file VTOC Reserved
R1 R20 R21 R48
Head 19

System/3 1000-file VTOC Reserved Transient save area

R1 R10 R11

R40 Ra1 R48

lThese areas are written in count-key-data format (standard data format) readable to System/3 and System/370. Other areas

are written in compressed data format.

3-12

Considerations and Restrictions

® When using the dump/restore program ($DCOPY) to
provide backup for the system pack and cylinder 0, the

SYSTEM-YES parameter is specified to dump cylinder 0.

® If you specify SYSTEM-YES when the dump function is
performed, you must also specify SYSTEM-YES when
the restore function is performed.

INITIAL PROGRAM LOAD (IPL)

The position of the PROGRAM LOAD SELECTOR switch
determines which simulation area will be accessed during an
IPL. An IPL can be performed from drive 1. An IPL can
also be performed from drive 3, provided that drive 3 is a
3344 direct access storage.

The system pack must occupy one of the following simula-
tion areas: D1A (F1) or D1B (R1) on drive 1; or D3A (F1)
or D3B (R1) on drive 3.

Figure 3-4 shows the relationship between the position of
the PROGRAM LOAD SELECTOR switch and the accessed

simulation area.

For more information about IPL, see /nitial Program Load
in Part 2 of this manual.

Direct Access Storage 3-13

"SOALIP SIP
OVEE 40 AJUO $1S15U0D UOEINBIJUOD Byl
usym ajqe|ieae Jou ae suosod mmmr_._.@

*3WN|OA YOBa Y1iM
Pa1BIDOSSE SBAIR UOIIRINWIS S310Ua(] @

(PPEE) ¥ oA (YPEE) € oA1Q
ara aesq
HYQ @A HEQ
Baly e1e UlBN ealy eleQg Ui
v v€Q
ova Oed
5t @A 5eq
(a0su00 s101e19d0 UO Paled0]) HOLIMS AVOT WVHDOHd
ealy 1 UlBW ealy eieqg ulepy
eva €ed m————=—-=—) L EXSIa
1
1
ava FT(u] S—
va @A J5a £ £NsI1a
|
I 1y isia JLVYNYILIV
|
- ! 14 19SIa
ealy el UIBN eaiy eieq wiepy| "n
| —
Zva zeal | (ovee) T anug (ovee) L anug 4
|
! i
vva @A veaf- aza aa] !
3va 3€0 ® Jza ® oial !
gza a1a -
vza vid

ealy eleQ Ulepy

LvQ/va

Raly B1R(Q WIBN

ted/ed

ealy eleQq ulepy ealy el UIRY

[44] La

Figure 3-4. Main Data Area and Associated Simulation Areas

3-14

Part 4. System Service Programs

Part 4. System Service Programs 4-1

The Model 15 SCP {5704-SC2) includes a group of disk-
resident system service programs. These programs do a
variety of jobs, from preparing disks and tapes to maintain-
ing the system libraries. The following is a list of the system
service programs discussed in this section and their

function(s):
Program

Alternate
Track
Assignment

Alternate
Track
Rebuild

Configura-
tion Record

Copy/
Dump

Dump/
Restore

File
Delete

File
Compress

System
History
Area

Display

Disk
Initialization

Name

$ALT

$BUILD

$CNFIG

$COPY

$DCOPY

$DELET

$FCOmMP

$HIST

$INIT

Program Function

Assigns an alternate track in
place of a defective track and
prints the data content of the
area in error,

Corrects data on the assigned
alternate track.

Changes certain information in
the configuration record.

Copies a file, an entire main
data area, or an entire simula-
tion area.

Provides backup for a main
data area or simulation area on
magnetic tape, or a simulation
area on diskette.

Deletes temporary or permanent
data files.

Moves files for the purpose of
removing gaps between files.
This program also copies all
files from a main data area.

Displays the contents of the
system history area.

Performs surface analysis on
disks and formats disks accord-
ing to disk system management
requirements.

Program

Chain
Cleaning

File and
Volume
Label

Display

Library
Maintenance

Spool File
Copy

Recover
Index

Reassign
Alternate
Track

Simulation
Area

Tape
Initialization

Tape
Error
Summary

vVTOC
Service

Name

$KLEAN

SLABEL

$SMAINT

$QCOPY

$RINDX

$RSALT

$SCOPY

STINIT

$TVES

$SWVTOC

Introduction

Program Function

Exercises the IBM 1403 Printer
for the purpose of cleaning the
print chain (train).

Prints the information from
VTOC pertaining to a single file
or to all files.

Allows you to produce, main-
tain, and service libraries.

Copies an entire spool file;
copies all or part of a spool
print, spool punch, or spool
reader queue; copies to the
spool reader, spool print, or
spool punch queue; copies the
status of the spool file queues.

Sorts the file index and updates
the VTOC entry of an indexed
file to reflect added records in
case of abnormal termination.

Relocates the alternate track
area on a 3340 data module so
that the data module can be
used on a System/360 or
System/370.

Supports the simulation areas
of a 3340 or 3344 volume.

Creates or deletes standard tape
volume labels, checks for un-
expired files, and displays exist-
ing volume and data file labels.

Prints tape error statistics that
have been accumuiated during

processing.

Removes the gaps between
entries in a VTOC.

Introduction 4-3

The information for most programs is divided into six
sections:

® Program description

® Control statement summary

® Parameter summary

® Parameter descriptions

® OCL (operation control language) considerations

® Examplés

PROGRAMMING CONSIDERATIONS

For information and reference, the following is a list of SCP
system service programs and the minimum partition sizes
required for execution:

$$RSTR Checkpoint Restart 8K
SALT Alternate Track Assignment 8K
$BUILD Alternate Track Rebuild 8K
SCNFIG Configuration Record 8K
$COPY Copy/Dump 10K
$DCOPY Dump/Restore 8K
$DELET File Delete 8K
$FCOMP File Compress 10K
$HIST System History Area Display 8K
SINIT Disk Initialization 8K
SKLEAN Chain Cleaning 8K
SLABEL File and Volume Label Display
Simulation area VTOC
1000-file VTOC 8K
1-1000 entries unsorted 10K
1-300 entries sorted 10K
301-500 entries sorted 12K
501-700 entries sorted 14K
701-900 entries sorted 16K
901-1000 entries sorted 18K
SMAINT Library Maintenance 10K
$SMPXDV Macro Processor 12K
$OLINK Overlay Linkage Editor 10K
$QCOPY Spool File Copy 10K
$RINDX Recover Index 10K
$RSALT Reassign Alternate Track 8K
$scory Simulation Area 10K
STINIT Tape Initialization 8K
$TVES Tape Error Summary 8K
SWVTOC VTOC Service 8K

4-4

CONTROL STATEMENTS

All system service programs except $TVES, $RINDX, and
SKLEAN require that you supply control statements.
These statements give the program information concerning
the output you want the program to produce or the way in
which you want the program to perform its function. The
programs read these statements from the system input
device. They must be the first input read by the program.

Every control statement is made up of an identifier and
parameters. The identifier is a word that identifies the
control statement. It is always the first word of the state-
ment. Parameters are information you are supplying to the
program. Every parameter consists of a keyword, which
identifies the parameter, followed by the information you
are supplying.

WRITING CONTROL STATEMENTS FOR SYSTEM
SERVICE PROGRAMS

To write control statements, use the sections in the follow-
ing ways:

1. Look at the Control Statement Summary to determine
which control statements and parameters apply to the
program functions you are interested in. {The program
function(s) is stated in the text preceding the Contro/
Statement Summary .)

2. If you need information about the contents or mean-
ings of particuiar parameters, look at the Parameter
Summary.

3. If you need more detailed information about param-

eters, read the Parameter Descriptions following the
Parameter Summary .

4, If you need examples of specific jobs, look at the
Example section. All examples show the OCL state-
ments and control statements for specific jobs.

5. To find information concerning the use of the system
service programs, refer to OCL Considerations for the
necessary OCL statements.

Coding Rules
The rules for coding control statements are as follows:

1. Statement identifier. // followed by a blank should
precede the statement identifier. Do not use blanks
within the identifier.

2. Blanks. Use one or more blanks between the identifier
and the first parameter. Do not use them anywhere
else in the statement.

3. Statement Parameters. Parameters can be in any
order. Use a comma to separate one parameter from
another. Use a hyphen (-) within each parameter to
separate the keyword from the information you
supply. Do not use blanks within or between
parameters.

4. Statement parameters containing a list of data after
the keyword. Use apostrophes (') to enclose the
items in the list. Use a comma to separate one item
from another. Example: UNIT-'R1,R2’ (R1 and R2
are the items in the list),

b. Statement length. No control statements, except for
some disk initialization, library maintenance, and
spool file copy statements may exceed 80 to 96
characters. The following library maintenance state-
ments can be continued on another statement (see
Continuation under Coding Rules in Part 1 of this
manual):

// ALLOCATE

// COPY (not ENTRY statements or COPY statements
read from a file)

// DELETE

// MODIFY (not REMOVE, REPLACE, or INSERT
statements)

// RENAME

The disk initialization statement // VOL and the spool
file copy statements // COPYRDRQ, // COPYPRTQ,
// COPYPCHQ, // CHAIN, // RESTORE, // COPYQ,
and // DISPLAY can also be continued.

The following is an example of a contro! statement:
// COPY FROM-F1,LIBRARY-O,NAME-SYSTEM,TO-R1
The statement identifier is COPY. The parameter keywords

are FROM, LIBRARY, NAME, and TO. The information
you supply is F1, O, SYSTEM, and R1.

END Control Statement

The END statement is a special control statement that indi-
cates the end of control statements. It consists of // END
starting in position 1 and must always be the last control
statement for the programs.

Placement of Control Statements in the Job Stream
Control statements for system service programs must follow

the RUN statement. The following example shows the use
and placement of control statements.

ocL { // LOAD $COPY,F1
statements | // RUN
// COPYPACK Contro! Statements
FROM-F1,TO-R1 for the $COPY
// END program

Special Meaning of Capital Letters, Numbers, and Special
Characters

Capitalized words and letters, numbers, and special charac-
ters have special meanings in control statement descriptions.

In control statements, capitalized words and letters must be
written as they appear in the statement description. Some-
times numbers appear with the capitalized information.
These numbers must also be written as shown.

Words or letters that are not capitalized mean you must use
a value that applies to the job you are doing. The values
that can be used are listed in the parameter summaries for
the control statements.

Braces { } and brackets [] sometimes appear in parameters
shown in statement summaries and parameter summaries.
They are not part of the parameter; they simply indicate a
choice of values to complete the parameter. You must
choose one of the values surrounded by braces; you may
choose a parameter surrounded by brackets or omit that
parameter entirely. Underscoring of one value enclosed by
braces indicates the default. (f you specify the keyword of
a parameter, you must complete the parameter by supply-
ing the code or data even though a default is indicated.

Introduction 4-5

For example:

* [reet{ae]

means that if you do not specify this
parameter, the system will select
RECL-96. If you specify the keyword
RECL, you must also supply one of the
values (80 or 96).

° RETAIN-{T} means that you must specify either
RETAIN-T or RETAIN-P.

® [,BLKL-block length] means that the block fength

parameter may be omitted

entirely.

46

DEVICE CODES

System service programs use parameters that require a code
to indicate the unit being referenced. A unit code can refer
to a main data area, simulation area, tape drive, or other
device, depending on the function being performed.

Figure 4-1 shows the codes used for the main data areas and
simulation areas. The simulation area codes are used in the
ASSIGN statement, configuration record program {$CNFIG),
and in the simulation area program ($SCOPY). In all other
programs, a 5444 unit code (F1, R1, F2, R2) is used instead
of the simulation area code. Before using these codes, you
should be familiar with the format of each volume and the
assignment of the codes as described in Part 3 of this manual.

Disk Drive Main Data Simulation Area

Type and Area Codes | Codes

Designation

3340 drive 1 | D1 D1A,D1B, D1C,D1D
3340 drive 2 | D2 D2A, D28, D2C, D2D
3340 drive 3 | D3 or D31 D3k, D3A

3340 drive 4 | D4 or D41 D4E, D4A

3344 drive 3

Volume 1 D3 or D31 D3E, D3A

Volume 2 D32 D3F, D3B

Volume 3 D33 D3G, D3C

Volume 4 D34 D3H, D3D

3344 drive 4

Volume 1 D4 or D41 D4E, D4A

Volume 2 D42 D4F, D48

Volume 3 D43 D4G, D4C

Volume 4 D44 D4H, D4D

Figure 4-1. Main Data Area and Simulation Area Codes

Alternate Track Assignment Program—$ALT
PROGRAM DESCRIPTION

The alternate track assignment program has the following
function:

Assign alternate tracks to disk tracks that become
defective after they are initialized.

When the program assigns an alternate, it transfers the
contents of the defective track to the alternate. Alternate
tracks can replace any primary tracks except cylinder 0,
head 0, on D1, D2, D3 or D31, D4 or D41. The cylinder O
head 0, track is reserved for system use.

’

CONTROL STATEMENT SUMMARY

The control statements you must supply depend on the
desired results.

Function Control Statements @

Conditional Assignment // ALT@ PACK-name,UNIT-code, VERIFY-number
// END

Unconditional Assignment // ALT® PACK-name,UNIT-code, VERIFY-number, ASSIGN-track
// END

@ There can be ten ALT statements per job.

@ For each use, the program requires the statements in the order they are listed: ALT,END.

Alternate Track Assignment Program—$ALT

47

PARAMETER SUMMARY

VERIFY-number

ASSIGN-track

Parameter Description
PACK-name Name of the main data area.
UNIT-code Location of the disk. Possible codes are those for the main data areas.

In testing the condition of a track, do surface analysis the number of times
indicated (number can be 1-255). If VERIFY parameter is omitted, do
surface analysis 16 times. The VERIFY parameter applies only to tracks
in the suspected defective track list,

The specified track is unconditionally assigned an alternate. Only one track
can be assigned for each ALT statement. Valid track numbers are: 1-4187
for each volume on a 3340; 1-4199 for volumes D3 or D31 and D4 or D41

on a 3344; 0-4199 for volumes D32, D33, D34, D42, D43, D44 on a 3344.

PARAMETER DESCRIPTIONS
PACK Parameter

The PACK parameter (PACK-name) tells the program the
name of the area to be processed. This is the volume label
written by the disk initialization program. (See Disk
Initialization Program.)

The alternate track assignment program compares the name
in the PACK parameter with the volume label to ensure
that they match.

UNIT Parameter

The UNIT parameter (UNIT-code) indicates the location of
the area‘containing suspected defective tracks. Codes for
the possible locations are those for the main data areas.

VERIFY Parameter

The VERIFY parameter (VERIFY-number) enables you to
indicate the number of times you want the program to do
surface analysis before judging whether or not the track is
defective. The number can be from 1 to 255. If you omit
the parameter, the program does surface analysis 16 times.
This parameter applies only to tracks in the suspected
defective track list.

48

ASSIGN Parameter

The ASSIGN parameter {ASSIGN-track) provides uncondi-
tional assignment of the specified track to the next avail-
able alternate track.

You can assign alternates for all tracks except 0 when the
volume is on a 3340 (D1, D2, D3 or D31, D4 or D41).
Valid track numbers are 1 through 4187.

You can assign alternates for all tracks except 0 on volumes
D3 or D31 and D4 or D41 on a 3344. Valid track numbers
are 1 through 4199.

You can assign alternates for all tracks on volumes D32,
D33, D42, D43, and D44. Valid track numbers are 0
through 4199,

You can assign an alternate for only one track for each
ALT statement you supply.

UNCONDITIONAL ASSIGNMENT

Unconditional assignment applies to tracks that occasionally
cause read or write errors. Such tracks might not cause
errors when tested by the alternate track assignment program
{$ALT) during conditional assignment. If they do not, the
program will not assign alternate tracks to them. If you

still want to assign alternates to these tracks, use uncondi-
tional assignment. In doing unconditional assignment, the
program assigns an alternate without first testing the condi-
tion of the track(s) suspected of being defective.

After a track has an assigned alternate, the only way to
retest the track is to execute the disk initialization program
(SINIT) with parameters TYPE-FORCE and ERASE-YES.

CONDITIONAL ASSIGNMENT

Conditional assignment consists of testing the condition of a
track (surface analysis) and, if the track is defective, assign-
ing an alternate track to replace it.

Situation: Conditional assignment applies to tracks that
cause reading or writing errors during a job. Any time a
track causes such errors, the system does the following:

1. Stops the program currently in operation

2. Writes the track address in the main data area defec-
tive track table

3. Halts with a halt code indicating a permanent disk 1/0
error

You can then run the alternate track assignment program.

When you use the alternate track assignment program to do
conditional assignment, the program locates the tracks by
using the addresses from the defective track table. The
program will do conditional assignment for all identified
tracks (one at a time) as long as there are alternate tracks
available for assignment.

Surface Analysis: Surface analysis is a procedure the
program uses to test the conditon of tracks. It consists of
writing test data on a track, then reading the data to ensure
that it was written properly.

Before doing surface analysis, the alternate track assignment
program transfers any data from the track to an alternate
track. This alternate is assigned if the track proves to be
defective.

In judging whether or not the track is defective, the program
does surface analysis the number of times you specify in the
VERIFY parameter. |If you omit the parameter, the pro-
gram does surface analysis 16 times. If the track causes
reading or writing errors any time during surface analysis,
the program considers the track defective.

Assignment of Alternate Tracks: |If a track proves to be
defective, the program assigns an alternate track. The
alternate becomes, in effect, a substitute for the defective
track. Any time a program attempts to use the defective
track, it automatically uses the alternate instead.

Each volume (a main data area and its associated simulation
areas) has 40 alternate tracks. The program does not do
conditional assignment if all alternate tracks are in use.

Note: $ALT does not process suspected defective tracks in
any area that is currently being used. A message is used if
suspected defective tracks are not procassed.

Incorrect Data: 1f a track is defective, some of the data
transferred to the alternate track could be incorrect.
Therefore, when reading data from the defective track, the
program prints all track records containing data that caused
reading errors. Characters that have no print symbol are
printed as two-digit hexadecimal numbers.

The following is an example:
ABCDE GH123 56...

B A

6 4

Appendix A lists the characters in the standard character
set and their corresponding hexadecimal numbers.

To correct errors on the alternate track, use the alternate
track rebuild program.

Alternate Track Assignment Program—$ALT 49

OCL CONSIDERATIONS

The following OCL statements are needed to load the
alternate track assignment program:

// LOAD $ALT code
// RUN

The code you supply depends on the location of the simula-
tion area containing the alternate track assignment program.

Possible codes are R1, F1, R2 and F2.

EXAMPLES
Conditional Assignment

Figures 4-2 and 4-3 are examples of the OCL statements
and control statements needed for a conditional assignment
as described in the following situation.

Situation

The system cancels a job if a defective track is found on the
main data area on drive 2. (The name of the disk is
BILLNG.) Before doing more jobs, the operator wants to
use the alternate track assignment program to check the
condition of the track and assign an alternate to the track
if it is defective.

1 4 8 12 16 20 24 28 32 36
/] AT PAlcK-1B/1LlcMe], N/ T-IDiZ]
V £|N+D
I
Explanation:

® The name of the disk (BILLNG) and its location {(main
data area on drive 2) are indicated by the PACK and
UNIT parameters in the ALT statement.

® Because the VERIFY parameter was omitted from the
ALT statement, the program does surface analysis 16
times when it tests the condition of suspected defective
tracks.

Figure 4-3. Control Statements for a Conditional Assignment

Unconditional Assignment

Figure 4-4 is an example of the OCL statements and control
statements needed for an unconditional assignment.

1 4 8 12 16 20 24 28 32 36

P
—

-

A
R
/ fﬁ PAICIKI- [BITILILIN
ND

1 4 8 12 16 20 24 28 32 36 '3
/& l
/| LIOAD BAILITI, IF
/| RUN
Explanation:
Explanation: ® The name of the disk (BILLNG) and its location (main

Alternate track assignment program is loaded from the F1.

Figure 4-2. OCL Load Sequence for Alternate Track Assignment

4-10

data area on drive 2) are indicated by the PACK and
UNIT parameters in the ALT statement.

® Because of the ASSIGN parameter, the program assigns
track number 4120 an alternate without testing its
condition.

Figure 4-4. OCL and Control Statements for an Unconditional
Assignment

MESSAGES FOR ALTERNATE TRACK ASSIGNMENT

Message

ALTERNATE TRACK
ASSIGNED

PRIMARY TRACK
HAS BEEN TESTED OK
TRACK xxxx,UNIT-zzz

**RECORD WITH
DATA ERROR™*

PRIMARY TRACK

xxxx ALTERNATE
TRACK yyyy,UNIT-zzz

Meaning

This message is printed when an
alternate track has been assigned
to a defective track and the data
has been transferred to the
alternate track.

This message is printed when the
program determines that a
primary track is not defective.
xXxX is the primary track
number and zzz is the volume
involved.

This message is printed when the
alternate track assignment pro-
gram found an error when trans-
ferring data. The record that has
the error is printed out.

This message is printed after
ALTERNATE TRACK
ASSIGNED. xxxx is the
primary track number, yyyy is
the alternate track number, and
zzz is the volume involved.

Alternate Track Assignment Program—$ALT

411

Alternate Track Rebuild Program—$BUILD
PROGRAM DESCRIPTION

The alternate track rebuild program has the following
function:

Enable you to correct data that could not be transferred
correctly to an alternate track.

One or more alternate tracks can be corrected by the
system during one execution of this program. You must
supply the data to correct the errors.

To write control statements for this program, you need the
information printed by the alternate track assignment pro-
gram when it assigned the alternate track. The printed in-
formation tells you the name of the area and numbers of
the track and records suspected of containing incorrect
data. It also includes the data from these records that you
can use to locate incorrect data. Fixed record refers to a
physical 256-byte record.

CONTROL STATEMENT SUMMARY

The control statements you must supply depend on the
desired results.

Function

Control Statements and Substitute Data

To replace characters 1-12 and 75-78 of a sector, you can
use either of the following:

® Use one REBUILD statement and replace all the
characters specifying a LENGTH parameter of 78.

® Use one REBUILD statement for every set of posi-
tions you correct.

The data you want to substitute must follow the REBUILD
statements to which it applies. The order of the control
statements and data in the preceding example would be:

// REBUILD statement
data for positions 1-78
/! END

// REBUILD statement for positions 1-12
data

// REBUILD statement for positions 75-78
data

// END

// REBUILD PACK-name,UNIT-code, TRACK-
location, LENGTH-number,DISP-position

Substitute data

// END

PARAMETER AND SUBSTITUTE DATA SUMMARY

REBUILD Statement

Parameter Description

PACK-name Name of the area.

UNIT-code Location of the disk. Possible codes are those for the main data areas.

TRACK-location Number of track and fixed record containing incorrect data. Number is
printed by alternate track assignment program. Track number must be
four digits; fixed record number must be two digits. (TRACK-011109
means track 111, fixed record 9.)

LENGTH-number Number of characters being replaced. Number can be 2-256 and must be
a multiple of 2 (2, 4, 6, etc).

DISP-position Position of the first character being replaced in the record. Position can be

1-2565.

Substitute Data: Code each character in hexadecimal form.
Follow every second character, except the last, with a
comma. Example: The numbers 123456 would be coded
as F1F2,F3F4,F5F6. (Appendix A lists the hexadecimal
codes for System/3 characters.)

Alternate Track Rebuild Program—$B8UILD 4-13

PARAMETER AND SUBSTITUTE DATA DESCRIPTIONS
PACK Parameter

The PACK parameter (PACK-name) tells the program the
name of the area that contains the alternate track being
corrected. This is the volume label written by the disk
initialization program.

The alternate track rebuild program compares the name in
the PACK parameter with the volume label to see if they
match.

UNIT Parameter

The UNIT parameter (UNIT-code) indicates the location of
the area that contains the alternate track being corrected.
Possible codes are those for the main data areas.

TRACK Parameter

The TRACK parameter {TRACK-location) identifies the
track and record containing the data being corrected. The
defective track, not the alternate track, is the one you refer
to. Referencing the defective track is the same as referenc-
ing the alternate track.

For the main data area, the possible track numbers are
0001-4184. Always use four digits. The possible fixed
record numbers are 01-48. Always use two digits. The
track number must precede the fixed record number. For
example, the parameter TRACK-111019 means track 1110,
record 19,

Track and record numbers are printed by the alternate
track assignment program when it prints data from records
that contain incorrect data.

LENGTH Parameter

The LENGTH parameter (LENGTH-number) tells the pro-
gram how many characters you are replacing in the fixed
record. You must replace characters in multiples of 2 (2, 4,
6, and so on). The maximum is 256, which is the capacity
of a fixed record.

Length applies to characters that occupy consecutive posi-
tions in the fixed record. If the characters you want to
replace do not occupy consecutive positions, you must
either replace all intervening characters or use more than
one REBUILD statement. For example, to replace charac-
ters 10-11 and 24-25 in a fixed record, you can do either of
the following:

® Use one REBUILD statement to replace characters
10-25 (LENGTH-16).

® Use two REBUILD statements to replace characters
10-11 (LENGTH-2) and 24-25 (LENGTH-2).

DISP (Displacement) Parameter

The DISP parameter (D ISP-position) indicates the position
of the first character being replaced in the fixed record.
The position of the first character is 1; the position of the
second character is 2, and so on. The maximum position
you can specify is 255.

Beginning at the position you indicate, the alternate track
rebuild program replaces the number of characters you
indicate in the LENGTH parameter.

Substitute Data

After each REBUILD statement, you must code the sub-
stitute characters that apply to that statement. The charac-
ters must be in hexadecimal form. Appendix A shows the
hexadecimal codes for the System/3 character set.

Include a comma after every second character. For
example, the data F1F2,F3F4,F5F6 represents 123456.
F1 is the hexadecimal form of 1; F2 is the hexadecimal
form of 2, and so on.

Code only the number of characters you indicate in the
LENGTH parameter in the REBUILD statement.

Note: If the LENGTH parameter of the REBUILD state-
ment exceeds 38, at least two substitute data statements
are required. Each substitute data statement, except the
last one, must be completely filled with data and must have
acomma in column 95 and a blank in column 96. For an
80 column input device, it is possible to have only one
substitute data statement.

OCL CONSIDERATIONS

The following OCL statements are needed to load the
alternate track rebuild program.

// LOAD $BUILD,code
// RUN

The code you supply depends on the location of the simula-

tion area containing the alternate track rebuild program.
Possible codes are R1, F1, R2, F2,

EXAMPLES
Correcting Characters on an Alternate Track
Figures 4-5 and 4-6 are examples of the OCL and control

statements needed for correcting characters on an alternate
track.

Explanation:

Alternate track rebuild program is loaded from F1.

Figure 4-5. OCL Load Sequence for Alternate Track Rebuild

Alternate Track Rebuild Program—$BUILD 4-156

Situation

Assume that the alternate track assignment program ($ALT)
printed the following information:

TRACK IL......-LO........20........30........40........50........60........70........80......88
020001

0OOOOOOOOOOOOOOOLLLLLLLLLLLLLLLLZZ222222222222223333333333333333 4444464444444444555555655
0123456789ABCDEFOL23456789ABCDEFO.‘LZ3456789ABCDEFOL23456789ABCDEF L23456789ABCDEF 01234567

5555555566666666666666667777777777777?7788888888888888889999999999999999AAAAAAAAAAAAAAAA
89ABCDEF0123456789ABCDEF0123456789ABCDEF01.23456789ABCDEF0123456789ABCDEF0123456789ABCDEF
ABCDEFGHI JKLMNOPQR STUVWXYZ 0123456789
BBBBBBBBBBBBBBBBC CCCCCCD DDDDDDEF EEEEEE FFFFFF
01L23456789ABCDEFQ ABCDEFO ABCDEFOL ABCDEF ABCDEF

It means that errors were detected in record 1 of track 200.
(Assume the name of the area is BILLNG.)

In checking the characters printed by the alternate track
assignment program, you found that the characters in
positions 120-123 in the record are incorrect, and you want
the operator to run the alternate track rebuild program to
correct them.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
/| REBU LD PAIK-Bl/LIUNG, WIN [T, TRAICK- JLENGTH-14, 11/ |SP|-1112
d7as, claAL
/\/ £

I
Explanation:

® The name of the main data area (BILLNG) and its loca-
tion (drive 2) are indicated in the PACK and UNIT
parameters in the REBUILD statement.

e The record containing the incorrect characters is record 1
of the alternate track assigned to track 200 (TRACK-
020001). The character in position 120 is the first
character being replaced (DISP-120).

® The characters in positions 120 through 123 in record 1
are being replaced {LENGTH-4).

® The substitute characters follow the REBUILD state-
ment. They are G (C7), H (C8), 1 (C9), and | (F1).

Figure 4-6. Control Statements for Correcting Characters on an
Alternate Track

Configuration Record Program—$CNFIG
PROGRAM DESCRIPTION

The configuration record program has the following
functions:

Change the assignment of the 5444 unit codes.

® Set the automatic start for spooling functions on or off.

® Set the automatic write for spooling functions on or off.

® Allow or disallow the blank OCL function.
® Change the support for cataloging to a program pack.

® Allow or disallow sharing among partitions of the con-
sole as a system input device.

® Change the spooling card type, forms type, or track
group size.

® Change the system date format.

® Change the halt status for a partition.

® Change the halt status for the system history area.

® Change the system IDELETE status.

® Change the log device and eject status for a partition.

® Delete or retain |-type messages that are on the console
at EJ.

® Format and print the configuration record.

® Change the priority of partitions and spool during IPL.

® Allow or disallow $QCOPY to erase the display screen
before writing the next message to the terminal.
($QCOPY must be executing under CCP.)

® Change the requirement for §QCOPY authorization.

® Change the limit of the priority of jobs placed on the
active spool file reader queue by $QCOPY. ($QCOPY

must be executing under CCP.)

® Allow messages to be displayed while ENTER READER
DATA or ENTER DATA is prompted on the console.

® Change the extended restart function.

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

® Change the warning point for SHA overlay.

e Change the size of main storage, selected partitions, and
file share area.

o Change the spool file cylinder size.
e Change the spool file location,

® Include the page/card count and the form/card type in-
formation on the spoo! time messages that are entered
in the system history area.

® Change the system input, punch, or print device assigned
to a partition.

® Allow or disallow time stamping of |-, D-, and R-type
messages that appear on the system console.

® Change the ratio of share DTFs and FSQEs in the file
share area.

® Change the file share default option.

Note: Before executing this program, you should be
familiar with the information about simulation areas in
Part 3 of this manual and also the information presented
under Considerations for Program Pack Protection in the
I1BM System/3 Model 15 System Generation Reference
Manual, GC21-7616.

Changing the Configuration Record

The parameter that you specify on the control statement
changes the configuration record on the system pack from
which the IPL was performed. Therefore, it is not neces-
sary to do a system generation for the purpose of changing
any part of the configuration record that can be changed
by the SCNFIG program.

Although the configuration record on the system pack is
changed at the time $CNFIG is executed, the change is not
effective until another IPL is performed. The change to the
configuration record remains in effect until another system
generation or until it is changed by SCNFIG.

Configuration Record Program—$CNFIG 4-17

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

CONTROL STATEMENT SUMMARY

The control statements you must supply depend on the

desired results.

Function

Control Statements

Assign 5444 unit codes to
partition 1, 2, or 3 simulation
areas

Set automatic start for
spooling functions on
or off

Set automatic write for
spooling functions on
or off

Blank OCL

Catalog to a program pack

Specify whether the system
console can be shared by
the partitions as a system
input device

Change spooling card type

Change spooling forms type

Change system date format

Change ratio of share DTFs
to FSQEs and/or file share
default option

Halt partition 1, 2, or 3 on
system messages

Set the delete I-messages
function

1
// ASNP {2
3

// AUTST [PRINT-

O

/I AUTWT

ves(] [YES
[PRINTé NG {] ,PUNCH- { *° J

code-area

,PUNCH-

YES
NO

Il

YES
NO

=

YES
// BLANK OCL-{NO }
NONE
// CATLG PACK-{ CCP
ALL
YES
// CONSOL SHARE- { NO }
// DEFCN CARD-xxx
// DEFFN FORM-xxx
MMDDYY
// FORMAT DATE‘{DDMMYY}
® 1 5
2 YES
// FSHARE RATIO- 3 ,SHARE-)NO
4 AN
HLTP1
/1 HLTP2 S HALT- {;gs}
HLTP3
/I ITYPE

YES
IDELETE-{NO }

YES
NO

®

You must specify at least one parameter.

4-18

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-56674

Function

Control Statements

Reassign partition 1, 2, or
3 log device and set eject
status

Specify whether {-type
messages on the screen at
EJ are to be retained

Print configuration record

Specify the priority of
partitions and spool
during IPL

Specify whether $QCOPY is to
erase the screen before

writing the next message;
change the authorization
requirement for $§QCOPY ;
change the limit of the
priority of jobs placed on

the active spool file reader
queue by $QCOPY

Set extended restart
function on or off

Halt system or invoke
$HACCP when the SHA

is xx tracks from overlaying
unprinted records

Change the size of main
storage, partitions 1, 2,
and 3, and/or the file
share area

Change the spool file
cylinder size

Change the location of
the spool file

3277)
, § EJECT

L OGP1 |
403+ A
//{LOGPQ }DEVICE- 1403 | NOEJECT}
LOGP3 / §,EJECT |
\3284?,NOEJECT1
YES |
// MESSAG RETAIN- NO |
// PRINT
" SPOOL |)
//PRIORITY SEQUENCE-< P1 Y \ ’

Iz Ly

@[C@

YES YES
. N PTY-
// QCOPY | ERASE {NO }} [,AUTHORIZE {NO }J , RQPTY

O WN =0

// READY [EXTENDED-{ YES}] [,MESSAGE- J VES l_J

NO |NO
® YES

// SHA | HALT-<{ NO
CCPAUTO

, TRACKS-xx

//SlgE)[SYS—xxx:l [,PLXXX] [,P2-xxx:} [,P3—xxx] [,FS-xxx]

// SPCYL CY L-xxx

// SPDSK UNIT-code

@You must specify at least one parameter.
This parameter does not perform any function unless $QCOPY is being executed under control of the communica-

tions control program (CCP).

Configuration Record Program-—-$CNFIG 4-18.1

Page of GC21-5162-1
issued 28 September 1979
By TNL: GN21-5674

Function

Control Statements

Change spooling track
group size

Include page/card count and
form/card type information
on the spool time message

Reassign partition 1, 2, or
3 system input device

Reassign partition 1, 2, or
3 system punch device

Reassign partition 1, 2, or
3 system print device

Time stamp I-messages, or
D- and R-messages and their
responses

// SPEXT

TRACKS-

NO

//SPOPT M- { YES }

1
1 SYIN{Z}
3

1
/! SYPC{2}

3

1
// SYPR< 2

3

/l TSTAMP

DEVICE-

DEVICE-

DEVICE-{

. INO
YES{ '

o, hA N =

MFCuU1
MFCU2
MFCM1
MFCM2
1442
2501
CONSOLE
3741

MFCU1
MFCU2
MFCM1
MFCM2
1442
3741
NONE

1403
3284

NO
D'{YES}

4-18.2

This page intentionally left blank.

Configuration Record Program—$CNF1G

4-19

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

PARAMETER SUMMARY

Parameter

Description

AUTHORIZE-YES
-NO

CARD-xxx

code-area

CYL-xxx

DATE-MMDDYY
-DDMMYY

D-NO
-YES

DEVICE-MFCM1
-MFCM2
-MFCU1
-MFCU2
-1403
-14432
-2501
-CONSOLE
-3284
-3741

-NONE

EJECT/NOEJECT

Specifies whether authorization is required for $QCOPY.,

XXx can be a maximum of three valid IBM System/3
characters except commas, leading or embedded bianks,
or apostrophes.

Possible 5444 unit codes are
F1, R1, F2, R2
Possible simulation area codes are
D1A, D1B, D1C, D1D,
D2A, D2B, D2C, D2D,
D3A, D3B, D3C, D3D, D3E, D3F, D3G, D3H,
D4A, D4B, D4C, D4D, D4E, D4F, D4G, D4H

Specifies the new total number of cylinders for the spool file. The
number (xxx) must be from 1 through 166 (3340) or 1 through
186 (3344).

Month-day-year
Day-month-year

If D-YES is specified, D-(decision) and R-(reply) type
messages that appear on the system console and their
responses are time-stamped when entered in the SHA (system
history area). I1f D-NO is specified or assumed, D-type
messages are not time-stamped.

Primary hopper of 2560

Secondary hopper of 2560

Primary hopper of 5424

Secondary hopper of 5424

1403 Printer

1442 Card Read Punch

2501 Card Reader

3277 Display Station

3284 or 3287 Printer

Directly attached 3741 Data Station/Programmable Work
Station

No punch device assigned

Specifies whether a page is to be ejected before ES and EJ
and after EJ.

4-20

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

Parameter Description
ERASE-YES Specifies whether $QCOPY (when executed under CCP) is to
-NO erase the terminal screen after information has been entered on

EXTENDED-YES
-NO

FORM-xxx

FS-xxx

HALT-YES
-NO

-NO
-YES

IDELETE-YES
-NO

M-YES
-NO

OCL-YES
-NO

PACK-NONE
-CCP
-ALL
PRINT-YES
-NO

PUNCH-YES
-NO

P1-xxx

P2-xxx

the terminal.

Specifies whether the extended restart function is to be used.

xxx can be a maximum of three valid IBM System/3 characters
except commas, leading or embedded blanks, or apostrophes.

Specifies the new size (a multiple of 2) of the file share area. The
number (xxx) cannot be less than 2.

Specifies whether the system is to halt, not halt, or invoke $HACCP
when a predetermined number of tracks remain in the SHA before
unprinted entries are overlaid.

If I-YES is specified, |-type (informational) messages that
appear on the system console are time-stamped when entered in
the SHA (system history area}. If I-NO is specified or assumed,
I-type messages are not time-stamped.

Specifies whether I-type messages are to be deleted.

Specifies whether to include the page/card count and the form/card
type information on the spool message in the system history area.

Specifies whether the blank OCL function is supported.

No cataloging to any program pack.
Cataloging to the CCP program pack.
Cataloging to all program packs.

Specifies whether the print writer is to automatically start during
IPL (AUTST). Or, specifies whether the print writer is to auto-
matically start when output is available on the print queue (AUTWT).

Specifies whether the punch writer is to automatically start during
IPL. (AUTST). Or, specifies whether the punch writer is to auto-
matically start when output is available on the punch queue (AUTWT).

Specifies the new size (a multiple of 2) of partition 1. The minimum
size of P1 is 8K.

Specifies the new size {a multiple of 2) of partition 2. The minimum
size of P2 (if other than zero) is 8K.

Configuration Record Program—-$CNFIG

4-20.1

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

Parameter Description

P3-xxx Specifies the new size {a multiple of 2) of partition 3. The minimum
size of P3 (if other than zero) is 8K.

RATIO-1 Specifies the ratio of share DTFs to FSQEs in the share area.
-2
-3
-4
READ-YES Specifies whether the spooled reader is to automatically start after
-NO an IPL is performed.
RETAIN-YES Specifies whether to retain the I-type messages that are on the
-NO console at EJ.
RQPTY-0 Specifies the priority limit for the jobs that are placed on the active
-1 spool file reader queue by $QCOPY. This function is effective only
-2 when $QCOPY is executed under control of CCP.
-3
-4
-5
SEQUENCE-" { P1 T(r - Specifies the priority of partitions and spool.
(TR
P3
SPOOLS
. SP
SHARE-YES Specifies whether file sharing is allowed between partitions
-NO (FSHARE). Or, specifies whether the console can be shared
among partitions as an input device (CONSOL).
SYS-xxx Specifies the main storage capacity of the system. Possible
values for xxx are 96, 128, 160, 192, 224, 256, 384, or 512.
TRACKS-1 The size of track groups within the spooling disk area.
-2
-4
-5
-10
TRACKS-xx Specifies the number of tracks in the SHA between the SHA warning
point and the first unprinted entry. Possible values for xx are
0 through 10.
UNiT-code Specifies the main data area that is to contain the spool file.

Possible codes are those for the main data areas.

4-20.2

This page intentionally left blank.

Configuration Record Program—$CNFIG 4-21

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

PARAMETER DESCRIPTIONS
AUTHORIZE Parameter (QCOPY)

The AUTHORIZE parameter is associated with the authori-
zation function of the Spool File Copy program ($3QCOPY}).
When AUTHORIZE-YES is specified and SQCOPY is
executed under CCP, certain functions of $OCOPY cannot
be executed unless the user is properly authorized, When
AUTHORIZE-NO is specified, no authorization is required.
For more information about granting authorization to a
user, refer to the Spoo/ File Copy program, $QCOPY.

CARD Parameter (DEFCN)

The CARD parameter {CARD-xxx) redefines the card type
that the operator loads into the punch device for the next
Job. xxx can be any three valid System/3 characters (see
Appendix A) except commas or leading or embedded
btanks. The CARDNO parameter of a PUNCH OCL state-
ment can temporarily override this definition.

Code-Area Parameter (ASNPx)

Simulation area codes are unique to the type and designa-
tion of each disk drive. After assignment, the 5444 unit
code is used to identify the simulation area to be accessed.
The foliowing chart shows the relationship of the type and
designation of a disk drive and the simulation area codes.

Disk Drive Simulation Area

Type and Designation Codes

3340 drive 1 D1A, D1B,D1C,D1D
3340 drive 2 D2A, D2B, D2C, D2D
3340 drive 3 D3E, D3A

3340 drive 4 D4E, D4A

3344 drive 3

Volume 1 D3E, D3A

Volume 2 D3F, D3B

Volume 3 D3G, D3C

Volume 4 D3H, D3D

3344 drive 4

Volume 1 D4E, D4A

Volume 2 DA4F, D4B

Volume 3 DAG, D4AC

Volume 4 D4H, D4D

Restrictions for Assigning Simulation Areas

Unit codes (F1, R1, F2, and R2) are assigned by partition
to any of the supported simulation areas. Each unit code
for a given partition must be assigned to a simulation area.
Simulation area assignments are set in the configuration
record during system generation and remain in effect until
either another system generation is performed that has
different simulation area assignments or until the configura-
tion record program ($CNFIG) is used to change the
simulation area assignments. An ASSIGN statement
temporarily reassigns the simulation areas for the partition
in which it is processed until another IPL is performed or
another ASSIGN statement is processed.

Refer to the following chart for invalid simulation area
assignments.

5444 Unit Simulation areas that cannot be
Codes assigned the 5444 unit codes.
F1 D18, D3B

R1 D1A, D3A

F2 D1A, D1B, D3A, D3B

R2 D1A,D1B,D3A, D3B

CYL Parameter (SPCYL)

The CYL parameter {CYL-xxx) specifies the new total
number of cylinders assigned to the spool file. The number
{xxx) must be from 1 through 166 if the spool file is on a
3340 Direct Access Storage Facility or from 1 through 186
if the spool file is on a 3344 Direct Access Storage.

D Parameter (TSTAMP)

The D-YES parameter specifies that decision and reply type
messages that appear on the system console and their
responses are to be time-stamped when entered in the
system history area. |f D-NO is specified or assumed, the
messages and their responses are not time-stamped.

The time-stamp record immediately follows the message
and response. The following example shows the format of
the time-stamp record:

2 /7 LOAD $MAINT,F1

2 // RUN

2 // COPY F

2 - 2 LM 6A ST D 123 $MAINTO1
2 04/26/78 00.00.59

22 2 LM 6A ST D 123 $MAINTO1
2

04/726/78 00.01.072

DATE Parameter (FORMAT)

The DATE parameter redefines the system date format to
either month-day-year (DATE-MMDDYY) or day-month-
year (DATE-DDMMYY).

DEVICE Parameter (LOGPx, SYINx, SYPCx, SYPRx)

The DEVICE parameter redefines a partition’s assigned log
device, system input device, system punch device, or system
print device.

Valid codes for the partition log device are 3277, 1403,
3284. An EJECT or NOEJECT parameter can be specified
with the 1403 or 3284. A LOG OCL statement can over-
ride this definition.

Valid codes for the system input device are MFCM1,
MFCM2, MFCU1, MFCUZ2, 1442, 2501, 3277, 3741. A
READER command or READER OCL statement can over-
ride this definition.

Valid codes for the system punch device are MFCM1,
MFCM2, MFCU1, MFCUZ2, 1442, 3741, or NONE. A
PUNCH OCL statement can override this definition.

Valid codes for the system print device are 1403 or 3284.
A PRINTER OCL statement can override this definition.

EJECT or NOEJECT Parameter (LOGPx)

The EJECT or NOEJECT parameter, when included with
the DEVICE-1403 or DEVICE-3284 parameter of the
LOGPx statement, specifies whether a page is to be ejected
before end of step, before end of job, and after end of job.
A LOG OCL statement can override this specification.

ERASE Parameter (QCOPY)

When ERASE-YES is specified and $QCOPY is executed
under CCP, the screen on the requesting terminal is erased
before each message is written. When ERASE-NO is speci-
fied, the information entered on the terminal remains on

the screen. The operator can erase the screen by pressing
the ERASE EOF key.

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

EXTENDED Parameter (READY)

The EXTENDED parameter (EXTENDED-YES or
EXTENDED-NO) specifies whether the automatic message
restart function is to be used. This parameter applies only
to the extended restart function and not to the unit record
restart function. If used, the system operator need not
respond with a 1 option to certain system messages.

Note: This parameter is valid only if the unit record restart
and/or the extended restart option(s) was selected during
system generation.

FORM Parameter (DEFFN)

The FORM parameter (FORM-xxx) redefines the forms
type that the operator mounts on the printer for the next
job. xxx can be any three System/3 characters (see
Appendix A) except commas or leading or embedded
blanks. The FORMSNQO parameter of a PRINTER OCL
statement or a CHANGE FRM command can temporarily
override this definition.

FS Parameter (SIZE)

The FS parameter (FS-xxx) specifies the new size {in multi-
ples of 2K) of the file share area. The size (xxx) cannot be
less than 2 or greater than the size of main storage minus
the sum of the amount of main storage assigned to the
supervisor, partition 1, partition 2, and partition 3.

HALT Parameter (HLTPx)

The HALT parameter {(HALT-YES or HALT-NO) specifies
whether the system is to halt a partition for system
messages (HLTPx). A HALT OCL statement or a HALT

command can override this definition.

This HALT parameter functions as an OCL halt and cannot
be overridden by an OCC NOHALT command.

Configuration Record Program—$CNFIG 4-22.1

Page of GC21-6162-1
Issued 28 September 1979
By TNL: GN21-5674

HALT Parameter (SHA)

The HALT-YES parameter specifies that the system is to
issue a message and stop when a predetermined number of
tracks remain in the system history area before overlay of
unprinted records occurs. The HALT-NO parameter causes
no action to be taken when unprinted records in the system
history area are about to be overlaid. The HALT-CCPAUTO
parameter specifies that the system is to invoke the SHACCP
program (if CCP is executing) when a predetermined
number of tracks remain in the system history area before
overlay of unprinted records occurs.

| Parameter (TSTAMP)

The |-YES parameter specifies that informational type
messages that appear on the system console are to be time-
stamped when entered in the system history area. If I-NO
is specified or assumed, the messages are not time-stamped.

The time-stamp record immediately follows the message.
The following example shows the format of the time-stamp
record:

2 - 2 SP UT FA I
SPOOL FILE STARTED - 0OLD,D43,50,5
2 05/08/78 00.00.17

IDELETE Parameter (ITYPE)

The IDELETE parameter (IDELETE-YES or IDELETE-NO)
specifies whether the system is to automatically delete
information-type messages that have not been responded

to. Normally, a response is required to delete these
messages. An IDELETE or NOIDELETE command can
override this specification.

4-22.2

M Parameter (SPOPT)

When M-YES is specified, the page count and the forms
type for print queue job steps are included on the spool
time message in the system history area. Also, the card
count and the card type for punch queue job steps are in-
cluded on the spool time message in the system history
area. When M-NO is specified, this additional information
is not included on the spool time message.

The format of the messages is shown in the following
examples.

S SP UT TM | JOBA IODRVRO1
12/08/78 00.01.37 00.01.45 PR
FORM TYPE-10A PAGES-2

S SPUT TM or | JOBB IODRVR02
12/08/78 00.01.46 00.01.59 PC
CARD TYPE-XYZ CARDS-10

OCL Parameter (BLANK)

The OCL parameter (OCL-YES or OCL-NO) specifies
whether the blank OCL function is to be used. If the
function is used, all statements entered via the system input
device {when that device is the system console) are erased
from the screen when the ENTER key is pressed.

PACK Parameter (CATLG)

The PACK-NONE parameter prevents cataloging of an
object library entry to any simulation area that contains a
program which another partition has loaded and is currently
executing.

The PACK-CCP parameter allows cataloging of an object
library entry to a CCP program pack even though another
partition (in addition to the CCP partition) has loaded and

is currently executing a program from the CCP program pack.

The PACK-ALL parameter allows cataloging of object
library entries to all program packs even though one or more
partitions have loaded programs from them and are currently
executing those programs.

For other restrictions, see Library Maintenance Program
under Multiprogramming Considerations and Restrictions in
Part 2 of this manual.

PRINT Parameter (AUTST, AUTWT)

The PRINT parameter (PRINT-YES or PRINT-NO), when
used with AUTST, specifies whether the print writer auto-
matically starts when an IPL is performed. This option
relieves the operator of having to initially enter an operator
control command to start the printer when spooling is
specified.

The PRINT parameter, when used with AUTWT, specifies
whether the print writer is to automatically start whenever
output is available on the print queue. When output is
not available on the queue, the print writer waits for out-
put without issuing a message or requiring operator
interaction.

PUNCH Parameter (AUTST, AUTWT)

The PUNCH parameter (PUNCH-YES or PUNCH-NO),
when used with AUTST, specifies whether the punch
writer is to automatically start when an |PL is performed.
This option relieves the operator of having to initially enter
an operator control command to start the punch when
spooling is specified.

The PUNCH parameter, when used with AUTWT, specifies
whether the punch writer is to automatically start when-
ever output is available on the punch gueue. When output
is not available on the queue, the punch writer waits for
output without issuing a message or requiring operator
interaction.

Note: Punch autostart (// AUTST PUNCH-YES) is valid
only if reader autostart is not in effect.

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

P1 Parameter (SIZE)

The P1 parameter (P1-xxx) specifies the new size (a multi-
ple of 2) of partition 1. The number {xxx) cannot be less
than 8 or greater than the size of main storage minus the
sum of the sizes of the supervisor, partition 2, partition 3,
and the file share area.

P2 Parameter (SIZE)

The P2 parameter (P2-xxx) specifies the new size (a multi-
ple of 2) of partition 2. The number (xxx) cannot be less
than 8 (if other than zero) or greater than the size of main
storage minus the sum of the sizes of the supervisor, parti-
tion 1, partition 3, and the file share area.

P3 Parameter (SIZE)

The P3 parameter (P3-xxx) specifies the new size (a multi-
ple of 2) of partition 3. The number (xxx) cannot be less
than 8 (if other than zero) or greater than the size of main
storage minus the sum of the sizes of the supervisor, parti-
tion 1, partition 2, and the file share area.

Configuration Record Program—$CNFIG 4-23

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-56674

RAT1O Parameter (FSHARE)
When an IPL is performed or the file share area size is set

via an OCC command, the share area is initialized according
to the following specified ratio.

Share Number

Area Number of

Size of SDTF
Ratio {K bytes) FSQEs Blocks’
1 2 23 24

4 35 52

6 39 83

8 49 108
2 2 23 24

4 51 47

6 71 73

8 97 93
3 2 39 19

4 67 42

6 86 68

8 113 88
4 2 39 19

4 83 37

6 119 58

8 145 78

! Refer to File Sharing for a description of SDTFs and
FSQEs.

Note: If the RATIO parameter is not specified, a ratio of
1 is assumed.

READ Parameter (AUTST)

The READ parameter (READ-YES or READ-NO) specifies
whether the spool reader is automatically started when an
IPL is performed. This option relieves the operator of
having to initially enter certain operator control commands
when spooling is specified. (Reader autostart (// AUTST
READ-YES) is valid only if punch autostart is not in
effect.)

RETAIN Parameter (MESSAG)

When RETAIN-NO is specified, |-type messages are erased
from the system console screen at EJ. When RETAIN-YES
is specified, |-type messages are not erased from the system
console screen at EJ.

4-24

RQPTY Parameter (QCOPY)

The RQPTY parameter (RQPTY-0 through 5) specifies the
priority limit of the jobs placed on the active spool file
reader queue by $QCOPY. (This parameter is effective
only when $QCOPY is executed under control of CCP.)
The HIPTY OCC command can be used to temporarily
override this parameter. For more information about
reader queue priority, refer to the Spoo/ File Copy program
(gQCory).

SEQUENCE Parameter (PRIORITY)

The SEQUENCE parameter specifies the priority of the
partitions and spool.

The order of the code parameters specifies the priority.
The leftmost code parameter has the highest priority; the
rightmost code parameter has the lowest. Two or more
tasks have equal priority if an equal sign (=) or a hyphen
(-} is specified between the parameters.

The following rules apply to the code parameters that can
be supplied with the SEQUENCE keyword.

® Each code parameter can be specified only once.

® SPOOL (SP) is an invalid code parameter if spooling is
not supported.

® All code parameters must be specified; there are no
defaults,

The following examples illustrate these rules:

SEQUENCE-'P1,P2,P3,SP’
SEQUENCE-'P1,P2,P3’
SEQUENCE-"P1=P2=P3'
SEQUENCE-'P1-P2-P3’
SEQUENCE-'SP P2,P1,P3’
SEQUENCE-'P1,P2=P3-SP’

® Only one group of code parameters can be equated.
For exampile:

SEQUENCE-'SP=P3,P2=P1’
is not valid, but
SEQUENCE-'SP-P3-P2-P1’
and
SEQUENCE-'SP,P3=P2=P1’
are valid.

SHARE Parameter (CONSOL)

The SHARE parameter (SHARE-Y ES) specifies that the
console can be shared by the partitions as a system input
device. When SHARE-NO is specified, the console cannot
be shared by the partitions.

SHARE Parameter (FSHARE)

The SHARE parameter (SHARE-YES or SHARE-NO)
specifies whether the system will default to allow file
sharing between partitions.

'SYS Parameter (SIZE)

The SYS parameter {SYS-xxx) specifies the new main
storage size for the system. Possible values for xxx are:
Group 1 Group 2

96 384

128 512

160

192

224

256

The configuration record program will issue an error mes-
sage when a value is specified that is not within the same
group as the current system size. This is because group 1
and group 2 require different modules to be included in the
generated supervisor. Therefore, a system generation is re-
quired when it is necessary to change the system size to a
value that is not within the same group as the current
system size.

TRACKS Parameter (SHA)

The TRACKS parameter (TRACKS-0 through 10) defines
the SHA warning point. The xx value specifies the number
of tracks that remain in the SHA between the warning
point and the first unprinted entry. When xx tracks re-
main and HALT-YES is specified on the SHA statement,
the system stops and a message is displayed. When xx
tracks remain and HALT-NO is specified on the SHA
statement, the system is not stopped and no message is
displayed. When xx tracks remain (xx must not be 0) and
HALT-CCPAUTO is specified on the SHA statement, the
$HACCP program is invoked (if CCP is executing). For
information about the $HACCP program, refer to the /BM
System/3 Communications Control Program System Ref-
erence Manual, GC21-7620.

Page of GC21-5162-1

Issued 28 September 1979

By TNL: GN21-5674
The number xx must not be greater than one-half the
number of tracks in the SHA.

If TRACKS-0 is specified, the system assumes a warning
point of approximately 50 40-byte SHA records. (There
are 144 40-byte SHA records per track.)

TRACKS Parameter (SPEXT)

The TRACKS parameter {TRACKS-nn) changes the size of
the track groups within the spooling disk area. nn can be
1,2,4,5, or 10. The START command can override this
definition.

UNIT Parameter {SPDSK)

The UNIT parameter (UNIT-code) specifies the new main
data area to be used for the spool file. Possible codes are
D1, D2, D3, D31, D32, D33, D34, D4, D41, D42, D43,
and D44.

CONSIDERATIONS AND RESTRICTIONS

® This program must be executed on a dedicated system
except when printing the configuration record.

® The changes are not effective until an IPL is performed.

® The new configuration record remains in effect until
another system generation or until it is changed by
SCNFIG.

® The ASSIGN OCL statement can be used to temporarily
reassign the 5444 unit codes (the configuration record is
not changed).

® All restrictions that apply to the assignment of 5444
unit codes and simulation areas during system genera-
tion also apply for $CNFIG. For these restrictions, see
Assigning Simulation Areas in Part 3 of this manual.

® Only the 5444 unit codes and simulation areas included

in the control statement are reassigned. All other pre-
vious assignments remain the same.

Configuration Record Program—$CNFIG 4-24.1

OCL CONSIDERATIONS

The following OCL statements are needed to load the con-
figuration record program:

1 4 8 12 16 20 24 28 32 36

The code you supply depends on the location of the simu-
lation area containing the configuration record program.
Possible codes are F1, R1, F2, R2.

4-24.2

EXAMPLES

Figures 4-7 through 4-14.2 are examples of the control
statements needed for various $CNFIG functions.

1 4 8 12 16 20 24 28 32 36
/I/1 W 2-D28.\Fl2-D2a, R1-D1B, |Fl1[-D1lA
/11 AISINPLL| [F11-Dl2i4)s [Rl2l-Dl2Bl, [Fi2l-IDizla , Rl1]-pliB
/| RsNPa] [RUI-IDi1IR, IF12 1 plalal, R2-D2R , IFl2|-Dlz
/| EWD

Explanation:

® The 5444 unit codes are reassigned for partition 2
(ASNP2).

® The 5444 unit codes are reassigned for partition 1
(ASNP1).

® The 5444 unit codes are reassigned for partition 3
(ASNP3).

Figure 4-7. Reassign All 5444 Unit Codes for Three Partitions

SN =

SRS
D
A
=
)
™
n
£
)

4f—'IWD

Explanation:
® The current configuration record is printed (PRINT).

® The 5444 unit code F2 is reassigned to simulation area
D2C (F2-D2C) for partition 2 (ASNP2}.

® The revised configuration record is printed (PRINT).

Figure 4-8. Print the Current Configuration Record (PRINT),
Reassign a Single 5444 Unit Code in Partition 2
(ASNP2), and Print the Revised Configuration Record
(PRINT)

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

14 8 12 16 20 24 28 32 36
/\/} IS Ti-{YE[s|,(D|-

/\/| [EIND;

Explanation:

® All informational messages that appear on the system
console are time-stamped when they are entered into the
system history area (I-YES). Decision and reply
messages and responses are not time-stamped (D-NO).
The D-NO parameter can be specified or assumed.

Figure 4-9. Time-Stamp Only Informational Type Messages

LA

[
>

™ [
<
\w}

Explanation:

® No informational, decision, or reply messages and
responses are time-stamped when entered into the system
history area.

Figure 4-10. No Messages or Responses are Time-Stamped

1 4 8 12 16 20 24 28 32 36
114 R2-D2D

/| IdAlTiLG [PlAc|d-MonéE

//| END

Explanation:

® The 5444 unit code R2 is reassigned to simulation area
D2D (R2-D2D) for partition 3 {ASNP3).

® The PACK-NONE parameter specifies that cataloging is
not allowed to a simulation area being used as a program
pack for another partition.

Figure 4-11. Reassign a 5444 Unit Code and Change the Support
for Cataloging to a Program Pack

Configuration Record Program—$CNFIG 4-25

14 8 12 16 20 24 28 32 36
/] 744G [PadK-clc

/v END

Explanation:

® The PACK-CCP parameter specifies that cataloging is
allowed to a CCP program pack.

Figure 4-12. Change the Support for Cataloging to a Program Pack

14 8 12 16 20 24 28 32 36
SIYIPCILU DEWVITICE|~ C
/ EFCNl CIARIDI-IBIC 1
RMAT| DATIE|- YlY L
/| BlYlp Va - Y .
/| DEFIFN FiORM-|SITIN
A Ti-INO
Explanation:

® The system punch device for partition 1 (SYPC1) will be
the 5424 secondary hopper (DEVICE-MFCU2).

® Card type 96C will be the spool default.

® The system date is to be entered in the format 24-08-77
(24 August 1977).

® The system print device for partition 1 {SYPR1) will be
the 3284 Printer (DEVICE-3284).

® Form type STN will be the spool default.

® The system will no longer halt when the system history
area is full.

Figure 4-13. Reassign System Devices and Output Media
for Partition 1

4-26

1 4 8 12 16 20 24 28 32 36
5 2l IDEVITICE|~[3]74

/] Siyplc) QEVI - E
0GP2l IDIEVILCIE-13R2 Y| INOEITIEICT
TIYIPE| [TIDIEILIEITIEL- YIE |
LT P2l HAL[T|- N .
EAIDY] EIXITEN -|YEIS

!
Explanation:

® The system input device for partition 2 (SYIN2) will be
the 3741 Data Station (DEVICE-3741).

® No system punch device {(DEVICE-NONE) will be
assigned to partition 2 (SYPC2).

® The log device for partition 2 (LOGP2) will be the 3284
Printer (DEVICE-3284). The printer page will not eject
(NOEJECT) at end of step and end of job.

® With IDELETE-YES, HALT-NO, and EXTENDED-YES
the system operator is not required to respond to all
system messages.

’

Figure 4-14. Reassign System and Log Devices for Partition 2 and
Do Not Require Operator Intervention

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

The input spooling routine {READ-YES) automatically
starts during an IPL {(operator control commands are

not required). The punch writer (PUNCH-NO) and the
print writer (PRINT-NO) will not start until the operator
control commands are entered.

The punch writer (PUNCH-YES) and the print writer
(PRINT-YES) automatically start (without operator

control commands) when there is output on the queues.

QCOPY information that is entered at a terminal under

CCP is not erased from the terminal screen (ERASE-NO).

Authorization (AUTHORIZE-YES) is required for those
users who execute $QCOPY under control of CCP. The
priority limit (RQPTY-2) of jobs placed on the active
spool file reader queue by $QCOPY is 2 ($QCOPY must
be executed under control of CCP).

The number of cylinders assigned to the spool file is
25 (CYL-25).

The spool file is located on the main data area coded
D3 (UNIT-D3).

The main storage size of the system is 512K (SYS-512);
partition 1 size is 196K (P1-196); file share area size is
4K (FS-4); partition 3 size is zero (P3-0). Partition 2 is
not specified and remains unchanged.

The SHA warning message is issued and the system halts
(if the system is in halt SHA mode) when 2 tracks re-
main in the system history area before unprinted entries
are overlaid.

Figure 4-14.1. Change Spooling Status, QCOPY Options, System

and Partition Sizes, and SHA Warning Point

1 a 8 12 16 20 24 28 32 36 14 8 12 16 20 24 28 32 36
N Al EAD-1Yieisl, 1Pl Wi-Inldl PR Wizl Al | /%OPT -Ylels
N RiT w7t Pomdc-YIELS!, PR/ IMTI- YiElS N Clowisiol] SIHARIE- W
/|/| 1800 RY| ERASIE- Wl A/ MESSIAGL RETAl -IMo
/\/| ACopPy| \AviriHoe) Ze-Mes| [RARTIY- /\/| READY | MESSIASE- Mo
A/ 1SPCY\L CYLl- I8 /\/\ \PR1oBI TN S EQUIENCE-| P, IPR-|F3=S|A”
/| ISPOSIK (ol l7]-1Di3 /| SW -G CPAVTA ITRACKS!-
/A Sz | ISVISI-S11R, Pa- L1194 1Fsl 9] [P13-
/|/ S 7 mlcz -) ’
Explanation:
Explanation: ® The page/card count and the form/card type are inctuded
in the spool time messages that are entered in the system
]

history area (M-YES).

The console cannot be shared as a system input device
among partitions (SHARE-NO).

All I-type messages on the system console at end of job
will be deleted (RETAIN-NO).

Messages are not displayed on the console while ENTER
READER DATA or ENTER DATA are prompted on
the console (MESSAGE-NO).

The priority of the partitions and spool is as follows:
partition 1 (P1) has the highest priority, partition 2
(P2), partition 3 (P3), and SPOOL (SP) all have equal
priority.

The system will invoke SHACCP (HALT-CCPAUTO)
when 1 track remains in the system history area
(TRACKS-1) before unprinted entries are overlaid.

Figure 4-14.2. Change Console Sharing as System Input Device,

System Messages, System Task Priority, and SHA
Halt Status

Configuration Record Program—$CNFIG 4-26.1

This page intentionally left blank.

4-26.2

Copy/Dump Program—$COPY

PROGRAM DESCRIPTION

The copy/dump program has the following functions:
® Copy an entire main data area or simulation area
® Copy a data file

® Copy and print a data file

® Copy a data file, but print only a part of the file
® Print an entire data file

® Print only a part of a data file

® Print and copy a part of a data file

® Build an indexed file from a sequential file

® Build a direct file from a sequential file

® Recover a file

This program performs only one function during one execu-
tion.

The input file must be described in an OCL FILE statement
except when the file recovery function is used. The name
that you supply with the NAME keyword in the FILE
statement must be COPYIN (NAME-COPYIN). Likewise,
the output file (except printer output} must be described

in an OCL FILE statement. The name that you supply

with the NAME keyword must be COPYO (NAME-COPYO).

The output file for the 1BM 1403 Printer does not require
an OCL FILE statement. However, if the output is printed
on an 1BM 3284 Printer, you must supply an OCL FILE
statement. The name of the file must be COPYP (NAME-
COPYP).

COPYPACK

The COPYPACK function copies the contents of a main
data area to another main data area or copies a simulation
area to another simulation area.

COPYFILE

The COPYFILE functions:

Process a single input file and write a single output file
in one execution of the program.

Copy a file from a simulation or main data area to
another simulation or main data area. Sequential files
can be copied consecutively and an index created, thus
effectively copying a sequential file to an indexed file.
Also, a sequential file can be copied and a direct file
created.

Copy a file to or from magnetic tape, cards, or diskette.

Print all or part of a file whether it is being copied to
another file or not.

Print and/or copy selected records from a file based on
either the relative record number or a key value.

Recover a file by using the physical address obtained
from the VTOC listing.

Copy a file and change the output file record length.

Copy/Dump Program~$COPY 4-27

The selection of input and output device is as follows:

Output
Disk File Tape Card File Diskette || Printer File

Input Seq. | Ind. | Dir. FiIe@ MFCU1|MFCU2|MFCM1|MFCM2]1442 File (1403,3284)
Disk File

Sequential X X X X X X X X X X X

Indexed X X X X X X X X X

Direct@ X X X X X X X X X
Tape File@ X X X X @ X X X X X X X
Diskette File @ X X X X X X X X X X
Card File

MFCU1 X X X X X X X X

MFCU2 X X X X X X X X

MFCM1 X X X X X X X X

MFCM2 X X X X X X X X

1442 X X X X X X X X X X

2501 X X X X X X X X X X X

@ Tape can be 7- or 9-track; 200, 558, 800, or 1600 bpi.
@ A direct file is considered a sequential file; therefore, the sequential disk file considerations apply.
@' The output tape file must be on a different drive than the input tape file.

@ Record length can be from 1 to 128 bytes but must be the same for all records in the file.

4-28

CONTROL STATEMENT SUMMARY

The control statements you must supply depend on the desired results.

Functions® Control Statements®

Copy an Entire Area // COPYPACK FROM-code, TO-code[,PACKIN-packname]
// END

Copy a Data File .
/] COPYFlLE{OUTPUT_ DISK.{ \OMIT- } positio

[,LENGTH-number]

OUTPTX-}{FILE,} {DELETE-

// END

Copy and Print a
Data File OUTPUT- OMIT-

[,LENGTH-number]

// COPYFILE {OUTPTX'} BOTH, {DELETE.

} 'position,c

// END

Copy a Data File, OUTPTX- DELETE-
But Print Only a /I COPYFILE {OUTPUT- }BOTH' {OMIT-

Part of the File [,LLENGTH-number]

KEY FROM-'key’ | [,TO-'key’
SELE
/ cT {PKY} {TO-’key’ } [,FROM-’key’:I

// SELECT RECORD, {FROM-number}[TO-number

~I

KEY FROM-'key’{ [.TO-'key’
// SELECT {PKY} {TO_.key, } [FROM_,key]
- T R b
// SELECT RECORD, 4 ROM number}[O-number

// END

TO-number ,FROM-numbe

Build an Indexed
File from a / COPYFILE{

OUTPTX-} FILE
Sequential File

DISK 7 [,LENGTH-number]
QUTPUT- BOTH
// KEY LENGTH-number, LOCATION-number
// END

}'position,character’, REORG-YES @

TO-number ,FROM-numbe
// END
Print an Entire OUTPTX-
Data File /! COPYFILE{OUTPUT_}PRINT
// END
Print Only a Part OUTPTX-
of a Data File // COPYFILE {OUTPUT-}PRINT
KEY FROM-'key’| [.TO-'key’
// SELECT {PKY} {TO-’key' f [FROM-'key']
FROM-number | [, TO-number
//' SELECT RECORD, {TO»number }I:,FROM-numbe
// END
Print and Copy a FILE
Part of a Data OUTPTX- DISK
File 1/ COPYFILE{OUTPUT_} BOTH [,LLENGTH-number]
PRINT

[,PACKO-packname]

YES

NO }@

n,character’, REORG- {

haracter’, REORG-YES @

Oniy one SELECT

statement for

each COPYFILE
r] statement

Only one SELECT

statement for

each COPYFILE
r] statement

@ (LREORG-YES]

Only one
SELECT statement
for each COPYFILE

] .FILE-YES
r statement

Copy/Dump Program—$COPY 4-29

Functions

Control Statements

Build a Direct
File from a
Sequential File

File Recovery
from Physical
Address-Simulation
Area

File Recovery
from Physical
Address — Main
Data Area

Change the
Output File
Record Length

FILE

88;%’{} DISK » [,LENGTH-number]
BOTH

// OUTDM DATAMGMT-DIRECT

// END

// COPYF|LE{

DISK) [,LENGTH-number]
OUTPUT- BOTH
/" ACCESS FROM:-unit,CYLINDER-number,SECTOR-number,DISP-number, RECL-number
// SELECT RECORD,FROM-number, TO-number,FILE-YES
// END

FILE
7 COPYFILE{OUTPTX-}

FILE
831;?;:} DISK 0 [,LENGTH-number]
BOTH
// ACCESS FROM-unit,CYLINDER-number, TRACK-number,SECTOR-number,DISP-number,
RECL-number
// SELECT RECORD,FROM-number, TO-number, FILE-YES
// END

// COPYFILE{

FILE
OUTPTX-
OUTPUT-} DISK 2,LENGTH-number

1/ COPYFILE{
BOTH

/!l END

@ The program uses include the possible combinations of copying and printing files.

@ For each use, the program requires the control statements in the order they are listed: COPYPACK, END;
COPYFILE, END; COPYFILE,SELECT,END; COPYFILE,KEY,END; and COPYFILE,SELECT,KEY,END.

@ Applies only to indexed files. When QUTPUT-BOTH is specified, REORG-YES is required.

@ LENGTH parameter is not valid if OUTPTX-PRINT or OUTPUT-PRINT is specified.

4-30

PARAMETER SUMMARY

Parameter

Description

COPYPACK Statement

FROM-code
TO-code
PACKIN-packname
PACKO-packname

COPYFILE Statement

OUTPUT-FILE

OUTPUT-DISK

OUTPUT-PRINT

OUTPUT-BOTH @
FILE
DISK

PRINT
BOTH

OUTPTX-

DELETE-'position,
character’

or
OMIT-'position,
character’

REORG-NO@

REORG-YES ®®

LENGTH-number

Location of the area to be copied. Possible codes are R1, F1, R2, F2, and
those for the main data areas.

Location of the area to contain the copy. Possible codes are R1, F1, R2, F2,
and those for the main data areas.

Name of the area to be copied, optionally provided to check for pack ID.
Verify that correct pack is mounted.

Name of output area, optionally provided to check for pack ID. Verify that
correct pack is mounted.

Copy the file to the device (tape, cards, diskette, or disk) defined in the
COPYO FILE statement. @

Same as OUTPUT-FILE (allowed for Models 10 and 12 compatibility).®
Print the entire file or only part of the file.®

Copy the file from one device to another or from one location to another
location on the same area. @ Also print the entire file or only part of it.

Printed output is to be displayed in hexadecimal values.

These parameters are optional. All records with the specified character in
the specified record position are deleted. DELETE causes deleted records
to be printed; DELETE cannot be used with direct files. If OMIT is used,
delete records are not printed. Position can be any position in the record
(the first position is 1, second 2, and so on). The maximum position is
65535.

Indexed files only. Copy records as organized in the original file (the file
from which the records are copied).

Indexed files only. Reorganize the records so that the records in the data
portion of the file are in the same order as their keys are listed in the index.

Used to specify the length of the output file record(s). Length value may be
any number from 1 through 65535.

Copy/Dump Program—$COPY

4-31

Parameter

Description

SELECT Statement

{KEY
PKY

KEY ,
{PKY} ,TO-'key

{PKIE:} ,FROM-"key’,
TO-'key’

},FROM-’key’

RECORD,FROM:-
number

RECORD,TO-number

RECORD,FROM-
number, TO-number

FILE-YES

FILE-NO

KEY Statement

LENGTH-number

LOCATION-number

Indexed files only. Print or copy only the part of the file from the record
key that is specified in the FROM parameter to the end of the file.

Indexed files only. Print or copy only that part of the file from the first record
key to the key specified in the TO parameter.

Indexed files only. Print or copy only the part of the file between the two
record keys that are specified in the FROM and TO parameters (including

the records indicated by the parameters). To print only one record, make

the FROM and TO record keys the same.

Print or copy only the part of the file from the relative record number specified
in the FROM parameter to the end of the file.

Print or copy only that part of the file from the first record to the relative record
number specified in the TO parameter.

Print or copy only the part of the file between the relative record numbers
indicated by the parameters {including the records indicated by the parameter).
To print only one record, the FROM and TO relative record numbers should
be the same.

Only selected records are copied to the files named in the COPYOQO FILE
statement.

Only selected records are printed. If copying, alt records are copied.
OUTPUT-PRINT or OUTPUT-BOTH must be specified if FILE-NO is
specified. If OUTPUT-PRINT is specified, selected records are printed.

If OUTPUT-BOTH is specified, selected records are printed and the entire
file is copied to the file named in the COPYO FILE statement. When a KEY
statement is used, the output will be an indexed file if the device on the
COPYO FILE statement is a main data area.

Identifies the length of the key field. Key length may be 1-29.

The starting location in the input record from which the key field is to be extracted:

Location may be from 1 to 65535.

Parameter Description

OUTDM Statement

DATAMGMT-DIRECT Specifies that the output file is to be a direct file.

ACCESS Statement

FROM-unit Specifies the simulation area or main data area that contains the file to be
recovered.
CYLINDER-number Identifies the cylinder number (1-202) for the beginning of the file. For a

simulation area, the number is the quotient obtained by dividing the file
tocation (from the $LABEL VTOC printout) by 2. For a main data area,
the number is given in the file location.

SECTOR-number For a simulation area, the number can be 0-47. For a main data area, the
number can be 1-48.

DISP-number Specifies the displacement, in bytes, from the start of a sector to the beginning
of a record in the same sector. Number can be 0-255.

TRACK-number For a main data area. This number can be 0-19.

RECL-number Record length of file to be recovered.

@ In the OCL load sequence, you indicate which file is to be copied or printed. For files being copied, you must
also indicate whether the file is being copied from one device to another or from one location to another on the
same area, using the COPYIN and COPYO FILE statements.

@ REORG-NO is assumed if you omit the REORG parameter. When QUTPUT-BOTH is used for indexed files,
REORG-YES is required.

@ If message UC3CCS occurs, indicating that there is not enough main storage available to execute the job, consider
the following:

¢ If you have OUTPUT-BOTH, change to OUTPUT-DISK or OUTPUT-FILE.
® |f you have REORG-YES, change to REORG-NO.

® Set a larger partition size if possible.

Copy/Dump Program—$COPY 4-33

PARAMETER DESCRIPTIONS
FROM and TO Parameters (COPYPACK)

The FROM and TO parameters are used when the copy/
dump program is copying the entire contents of one area to
another. They indicate the locations of the two areas.

The FROM parameter (FROM-code) indicates the location
of the area you are copying. The TO parameter (TO-code)
indicates the location of the area that is to contain the
copy. The FROM and TO codes must be for the same type
of area (simulation or main data). You cannot copy a
simulation area from or to a main data area.

Possible codes are R1, F1, R2, F2, and those for the main
data areas (D1, D2, D3 or D31, D32, D33, D34, D4 or D41,
D42, D43, D44).

Copying Entire Area

When copying an area, the copy/dump program transfers
the contents of the area to another area. The contents of
the two areas will be the same, except for the volume labels
and alternate track information, which may be different.

The area you are copying can contain libraries or data files
or both. The area that is to contain the copy must not
contain libraries, temporary data files, or permanent data
files.

Until the contents of the area are completely copied,
portions of the new area are changed to prevent accidental
usage of a partially filled area. Therefare, if the copying
process is stopped before it is completed, the area is un-
usable. You can restart the copying process by reloading
the copy/dump program, or you can restore the area by
reinitializing.

After a successful copy, the copy program prints a message:
COPYPACK IS COMPLETE

Note: If you copy a simulation area containing an active
checkpoint, that checkpoint will exist on both the FROM

and TO simulation areas. When one of the two active check-

points is utilized to restart the checkpointed program, care
must be taken to ensure that the job is not restarted a
second time. |t is recommended that you perform an IPL
and load Restart ($$RSTR) from the pack containing the
second active checkpoint. If you then select the controlled
cancel option when the HBnn message occurs (nn is the last
requested checkpoint number), the checkpoint will be
deactivated.

4-34

PACKIN and PACKO Parameters (COPYPACK)

These two optional parameters are used if you want the
system to check the volume label of the areas. Either one
or both may be specified. They are useful if you want to
verify that the correct area(s) are being used.

COPYPACK Considerations

The following considerations apply when you use the
COPYPACK statement:

® |f you are copying files from a main data area on a 3344
to a main data area on a 3340, an |S message occurs if
files are allocated on cylinders 167—186 of the 3344.
Only cylinders 0—166 are copied to the 3340.

® If you are copying files from a main data area on a 3340
to a main data area on a 3344, only cylinders 0—166 are
copied to the 3344.

® $COPY cannot copy an area that has active files unless
they are files being accessed for input only.

OUTPUT Parameter (COPYFILE)

The OUTPUT parameter is used when the program is copy-
ing and printing card, tape, diskette, or disk data files. It
indicates whether you want the program to copy, print, or
copy and print a file. The OUTPTX parameter can be used
to display printed output in hexadecimal values.

The parameter OUTPUT-DISK or QUTPUT-FILE is used to
copy the file; OUTPUT-PRINT is used to print the file; and
OUTPUT-BOTH is used to copy and print the file.

Copying Files

The copy/dump program can copy a file from one device to
another. These devices can be disk, tape, card, or diskette.
The copy/dump program can also copy a file from one loca-
tion to another location on the same volume,

The OCL load sequence for the copy/dump program indi-
cates (1) the name and location of the file being copied, and
(2} the name and location of the copy being created. (See
OCL Considerations in this section.)

In copying a file, the program can omit records. (See the
description of the DELETE parameter for more informa-
tion.)

In copying an indexed file, the program can reorganize
records in the data portion such that they are in the same
order as their keys are listed in the index. {See the descrip-
tion of the REORG parameter for more information.)

In copying an indexed file, the copy/dump program will:

® Copy the data and the entire index intact if you supply
only the COPYFILE control statement and only the
parameter OUTPUT-DISK or OUTPUT-FILE.

® Copy the data and create a new index if you supply
more than one control statement (COPYFILE must be
included and REQRG-NO specified or assumed).

® Copy the data and create a new index if you supply only
the COPYFILE control statement and the following
parameters: OUTPUT-DISK or OUTPUT-FILE,
REORG-NO {(can be supplied or assumed), and one or
more parameters that are applicable to the COPYFILE
statement.

If you suspect that a problem exists with an index and the
problem can be corrected by the COPYFILE control
statement, you should code the control statement(s) so that
the desired function is performed.

Printing Files

The program can print all or part of a data file. To print
only part, the program needs a SELECT control statement.
(See the description of the SELECT control statement
parameters in this section.) |f you do not use a SELECT
statement, the entire file is printed.

If the output is to be printed on the 3284 Printer, a
COPYP FILE statement must be entered. If the COPYP
FILE statement is not entered, the output will be printed
on the 1403 Printer.

If you use SELECT KEY (PKY), or REORG-YES, records
from indexed files are printed in the order their keys appear
in the index portion of the file; otherwise, they are printed
as they appear in the file. For each record, the program
prints the record key followed by the contents of the
record.

Records from sequential and direct files are printed in the
order they appear in the file. For each record, the program
prints the relative record number followed by the contents
of the record.

The program uses as many lines as it needs to print the
contents of a record. Appendix A lists the hexadecimal
representation for characters in the standard character set.

The following is an example of the way the program prints
hexadecimal numbers using OUTPTX:

ABCDE GHIJ12345
CCCCCBCCCDFFFFF4444444
1234567891123450000000

The hexadecimal number B6 represents a character that has
no print symbol.

After printing the last record, the printer triple spaces and
prints the following message:

(number) RECORDS PRINTED

Copy/Dump Program—$COPY 4-35

DELETE Parameter {COPYFILE)

In copying a data file, the copy/dump program can omit
records of one type. The DELETE parameter identifies the
type of record. Use of the DELETE parameter is optional.
If you do not use it, no records are deleted. DELETE can-
not be used with direct files.

The form of the parameter is DELETE-‘position,character’.
Position is the position of the character in the records.
Character is the character, except for apostrophes, blanks,
or commas, that identifies the record. For example, with
the parameter DELETE-"100,R’ all records with an R in
position 100 are deleted. By specifying the hexadecimal
code for the character, you can use any character (including
apostrophes, bianks, commas, and packed data) to identify
the records to be deleted. For example, with the parameter
DELETE-"100,X40’, all records with a blank (hexadecimal
40) in position 100 are deleted.

Deleted records are always printed. If you are both copy-
ing and printing a data file, deleted records are printed with
the other records that are printed. The deleted records are
preceded by the word DELETED.,

The OMIT keyword can be used instead of DELETE. The
deieted records are not printed if OMIT is used.

The records are deleted only from the copied file. The
original file is not affected.

REORG (Reorganize) Parameter (COPYFILE)

In copying an indexed file, the program can reorganize the
file so that the records in the data portion are in the same
order as their keys in the file index. The REORG param-
eter indicates whether the file should be reorganized. If you
want a file reorganized, use REORG-YES. Otherwise, use
REORG-NO. REORG-NO is assumed if you omit the
parameter.

If REORG-YES is specified, the reorganization applies to
the copy of the file rather than the original file. The

original file is not affected.

Reorganization (REORG-YES) is required when you are

both copying and printing an indexed fite {(OUTPUT-BOTH).

4-36

LENGTH Parameter (COPYFILE)

This parameter is used to specify the length of the output
records when a file is copied or the file type is changed.
The resulting records will contain blanks or be truncated on
the right. This parameter cannot be specified if the output
is only printed.

KEY and PKY Parameters (SELECT)

The SELECT KEY and SELECT PKY parameters apply to
selecting part of an indexed file. The SELECT PKY param-
eter applies to selecting part of an indexed file that contains
packed keys. The parameters are FROM and TO.

The FROM parameter (FROM-'key’) gives the key of the
first record to be selected. The TO parameter (TO-'key’)
gives the key of the last record to be selected. The record
keys between those two in the file index identify the
remaining records to be selected. If you want to select only
the one record, use the same record key in both the FROM
and TO parameters.

For example, the parameters FROM-'‘000100’ and
TO-'000199’ mean that records identified by keys 000100
through 000199 are to be selected.

If the file index does not contain the key you indicate in a
FROM parameter, the program uses the next higher key in
the index.

If the key in the FROM parameter is higher than the highest
key in the indexed file, the highest key and record in the
file will be printed {(print-only function). For example,
assume the following statement:

/{ SELECT KEY,FROM-'7000’, TO-'7000’

If the highest key in the indexed file is 6955, then record
6955 is printed.

If the TO parameter is omitted, the program assumes that
the last key in the index is the TO key.

If the FROM parameter is omitted, the program assumes
that the first record key is the FROM key.

You can use fewer characters in the FROM or TO parameter
than are contained in the actual keys; when keys are packed,
however, you must use the same number of characters as
contained in the actual keys. If you use fewer characters,
the program ignores the remaining characters in the record
key. The number of characters used in the FROM and TO
parameters need not be the same.

For example, assume that the following are consecutive
record keys in an index: A1000, A1119, A1275, A1900,
A1995, A2075, and 99999. The parameters FROM-'A1’
and TO-'A199’ refer to record keys A1000 through A1995.

If none of the keys in the file index begin with the charac-
ters you indicate in a FROM parameter, the program uses
the key beginning with the next higher characters in the
FROM parameter.

For example, assume that four consecutive record keys in
an index begin with these characters: A1, A2, A8, and B1.
The parameters FROM-'A3’ and TO-'A9’ refer to keys
beginning with the characters AS8.

RECORD Parameters (SELECT)

The SELECT RECORD parameters can apply to any file
but are normally used for sequential and direct files. These
parameters use relative record numbers to identify the
records to be selected.

Relative record numbers identify a record’s location with
respect to other records in the file. The relative record
number of the first record is 1, the number of the second
record is 2, and so on.

The SELECT RECORD parameters are FROM and TO.
The FROM parameter (FROM-number) gives the relative
record number of the first record to be selected. The TO
parameter {TO-number) gives the number of the last record
to be selected. Records between those two records in the
file are also selected.

For example, the parameters FROM-1 and TO-30 mean
that the first 30 records (1-30) in the file will be selected.

If the TO parameter is omitted, the program assumes that
the number of the last record in the file is the TO number.
If the FROM parameter is omitted, the program assumes
that the first record in the file is the FROM number. If you
want to select only one record, use the same number in the
FROM and TO parameters.

Both parameters, FROM and TO, are required when the
ACCESS statement is specified.

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-56674

During a single execution of $COPY, the records of an
indexed file cannot be both reorganized (REORG) and
selected by relative record number (SELECT).

FILE Parameter (SELECT)

This parameter allows only selected records to be copied to
a disk, tape, cards, diskette, or printer.

LENGTH and LOCATION Parameters (KEY)

The KEY statement is used when the program is to build an
indexed file from a sequential file. The LENGTH param-
eter specifies the length (1—29) of the key field. The
LOCATION parameter specifies the starting location
(1—65535) of the key field in the input record. When the
KEY statement is used, the file described in the COPYO
FILE statement must be a disk file and OUTPUT-DISK,
OQUTPUT-FILE, or OUTPUT-BOTH must be specified in the
COPYFILE control statement. A $INDEX45 or SINDEX40
work file can be included if the KEY statement is used.

DATAMGMT Parameter (OUTDM)

This parameter allows the creation of a direct file (disk)
from sequential input (card, tape, disk, diskette).

FROM Parameter (ACCESS)

This parameter identifies the area (simulation or main data)
that contains the file to be recovered. Possible unit codes
are R1, F1, R2, F2, and those for the main data areas.

CYLINDER Parameter (ACCESS)

The cylinder number specified in this parameter indicates
the starting location of the file. For a simulation area, the
number can be 1—202 and is the quotient obtained by divid-
ing the file location! by 2. For a main data area, the
number can be 1—166 (186 for 3444) and is indicated by the
file location® .

SECTOR Parameter (ACCESS)

This parameter specifies the sector that contains the first
record to be copied (recovered). For a simulation area, the
number can be 0—47. For a main data area, the number

can be 1—48.

LRile location is obtained from the $LABEL printout of the VTOC.

Copy/Dump Program—$COPY 4-37

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-56674

TRACK Parameter (ACCESS)

This parameter is used for a main data area. The number
can be 0—19 and is specified by the file location®.

RECL Parameter (ACCESS)

This parameter identifies the record length of the data in
the file to be recovered.

DISP Parameter (ACCESS)

This parameter specifies the displacement from byte 0 of a
sector to the first byte of a record. Displacement is counted
in bytes from the first byte (byte 0) of the sector. Because
a sector contains 256 bytes, the displacement number

must be 0—255.

COPYING MULTIVOLUME FILES

When you copy multivolume files, the first volume of the
input file has to be online when the job is initiated. The
output file must be a new file. If either condition is not
satisfied, a message occurs.

Maintaining Proper Volume Sequence Numbers

To maintain proper volume sequence numbers when copy-
ing a multivolume file, you must either copy all the volumes
of the file in one run or copy only one volume for each run
of SCOPY. For example, if you copy a three-volume file
one volume at a time (volume 1 in the first run, volume 2 in
the second run, and volume 3 in the third run), the volumes
will retain their original sequence numbers in the output
file. Or if you copy all the volumes (1, 2, and 3) in the
same run, the volume sequence numbers in the new file will
be the same as in the original file. However, if you copy
only volumes 2 and 3 in one run, their volume sequence
numbers will be changed to 1 and 2 in the output file.

$COPY ensures that all volumes of a multivolume file have
the same date in the following manner. If only one volume
of a multivolume file is copied for each run of $COPY, the
new file will assume the same date as the input file. 1If all
volumes or, as in the example above, volumes 2 and 3 of a
three-volume file are copied in a single run, the new file
will assume the current partition date,

1File location is obtained from the $SLABEL printout of the VTOC.

4-38

Maintaining Correct Relative Record Numbers

To maintain correct relative record numbers when copying
one volume of a multivolume direct file, you must keep the
size of the output volume the same as the size of the input
volume. (If you want to increase the size of a file, you
must copy the entire file.) If you copy the first volume of
a two-volume file and increase the number of records on
that volume, you are also increasing relative record numbers
of all the records on the next volume. Therefore, to main-
tain the correct relative record numbers, output and input
volume extents (records or tracks) must be equal if you are
copying only one volume of a multivolume direct file.

Direct File Attributes

If you copy an entire multivolume direct file in one run,
the output file will be given sequential attributes in the
volume table of contents (VTOC). However, this does not
affect file processing. A file with either sequential or direct
attributes can be accessed by a consecutive or random
access method. If only one volume is copied, the direct
attribute will be maintained.

Copying Multivolume Indexed Files

If you want to copy an indexed multivolume file, REQORG-
YES must be specified in the COPYFILE statement. Since
an unordered load to a multivolume indexed file is not
permitted, a REORG-NO causes a system message to be
issued. If you would prefer not to reorganize the file it
must be copied one volume at a time. When you are copy-
ing one volume at a time, the HIKEY on the output volume
must be the same as the HIKEY on the input volume. If
they are not equal, a system message occurs. Making the
HIKEYs the same ensures that both the input and output
volumes are the same length and no records will be lost.
When you are copying one volume of a multivolume
indexed file, either REORG-YES or REORG-NO may be
specified.

TAPE FILE CONSIDERATIONS

When copying or printing tape data files, you must describe
the tape file being copied or printed and describe the file
being created. The various tape record formats and labels
are supported.

$COPY supports single volume tape files, multivolume tape
files, and multifile tape volumes. For a detailed description
of the FILE statement parameters, see the appropriate
FILE statement in Part 1 of this manual.

The tape file can be ASCH or EBCDIC. Default for record
format (RECFM) is fixed length. On a nonlabeled tape,
record length (RECL) and block length (BLKL) must be
specified.

$COPY will not copy any data records from a null file to
an unlabeled tape. Therefore, when files are added to a
multifile tape and a null file is detected, the sequence
number for the next file(s) added to the tape is 1 less than
the value specified. See Null Files On Tape for additional
information.

You must be careful when copying a tape file with variable
length records to disk or tape. The resulting file will
contain fixed length records with a record length equal to
the longest record length of the file copied from. Records
copied with short record lengths will have invalid informa-
tion in the unused portion of the output record.

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-5674

DISKETTE FILE CONSIDERATIONS

When copying or printing diskette data files, you must
describe the diskette file being copied or printed and the
file being created. (See F/LE Statement [Device Indepen-
dent Files] .)

The RECL parameter identifies the record length for the
diskette file and is any number from 1 to 128. If this
parameter (RECL) is not used, the default is 96.

When the 3741 is used as an input or output device, the
number specified in the RECL parameter must be equal to
the record length in the data set label on the diskette and
may be any number from 1 through 128.

When the 3741 is used for output and the input is from
disk, card, or tape, the number specified in the RECL
parameter can be any number from 1 to 128 regardless of
the record length of the disk, card, or tape file being
copied. However, if the record length from disk, card, or
tape is less than the record length specified, the remainder
of the record is filled with blanks (X‘40’). If the record
length from disk, card, or tape is greater than the record
length specified in the RECL parameter, the record is
truncated on the right.

Note: The following card input considerations also apply
for the 3741.

Copy/Dump Program—$COPY 4-39

CARD INPUT CONSIDERATIONS

For card input files, end-of-file is determined by the pres-
ence of a card with /* in columns 1 and 2, and with the
remaining columns blank. This allows a card input file to
contain /* cards, assuming that at least one punch is in
columns 3—80 or 3—96. A /& or /. is handled the same as a
/* card, unless the input device is the system reader.

The following chart shows the results obtained from having
acard with a /*, /&, or /. in columns 1 and 2.

Input Device
Card Not Card Does
Columns | Partition | Partition Not Card Has Not Have
1and 2 Reader Reader Spooled Spooled Comments Comments Results
r* X X X Card is processed as a data card
/* X X X End of file occurs
/* X X X Card is processed as a data card
/* X X X End of file occurs
/* X X X Card is processed as a data card
/" X X X End of file occurs
/* X X X Card is processed as a data card
/" X X X End of file occurs
/& X X X Card is accepted as data but end
of file occurs (additional
data cards are not processed)
/& X X X End of file occurs
/& X X X Card is accepted as data but end
of file occurs (additional
data cards are not processed)
/& X X X End of file occurs
/& X X X Card is accepted as data card
/& X X X End of file occurs
/& X X X Card is accepted as data card
/& X X X End of file occurs
/. X X X Card is accepted as data but end
of file occurs (additional
data cards are not processed)
/. X X X End of file occurs
/. X X X Card is accepted as data but end
of file occurs (additional
data cards are not processed)
/. X X X End of file occurs
/. X X X Card is accepted as data card
/. X X X End of file occurs
/. X X X Card is accepted as data card
/. X X X End of file occurs

Note: Reading from the spool reader queue that is not the
partition reader is not recommended.

440

CARD OUTPUT CONSIDERATIONS

If the input record size (in bytes) is greater than the size of
the card (80 or 96 columns}, the input record will be
truncated. Only the first 80 or 96 positions of the record
will be punched. If the input record size is less than the
size of the card, the unused part of the card will contain
blanks. If the input file contains 60-byte records, the card
will be blank in columns 61—80 or 61—-96. With punched
output, the entire card contains user data; control informa-
tion is not punched.

FILE RECOVERY CONSIDERATIONS

The ACCESS and SELECT control statements are used to
recover indexed, direct, and sequential files. Information
regarding the record count, record length, file location, and
start of data (indexed files only) for each file to be re-
covered is obtained from the current VTOC printout. For
information regarding the VTOC printout, refer to File and
Volume Label Display Program—$LABEL.

The method for determining the first recoverable record
location is generally trial and error. You should always
attempt to recover the first record of the file. 1f unsuccess-
ful, proceed to the next record. Repeat this procedure
until the first recoverable record is found.

When records are added to a sequential disk file, the VTOC
is updated at end of job with a new end-of-file pointer. If,
for some reason, the program adding the records is abnor-
mally terminated, the VTOC is not updated and the added
records are lost. However, you can use the copy/dump
program to retrieve the added records as follows:

® Use the ACCESS control statement to specify the begin-
ning of the file, and

® Use the SELECT control statement to specify the
number of records in the original file plus the number
of added records.

This procedure causes the original records plus the retrieved
records to be copied to a new file and a new VTOC entry
created.

Note: Do not include a FILE statement with NAME-
COPYIN specified when the ACCESS statement is used.

For information about how to copy a file index or create a
new file index, refer to Copying Files under Copy/Dump
Program.

Page of GC21-5162-1
Issued 28 September 1979
By TNL: GN21-56674

OCL CONSIDERATIONS

The following OCL statements are needed to load the copy/
dump program, if you are using the program to copy an
entire area:

// LOAD $COPY code
// RUN

The code you supply depends on the location of the simula-
tion area containing the copy/dump program. Possible
codes are R1, F1, R2, F2,

The following OCL statements are needed to do COPYFILE
functions:

// LOAD $COPY, code

// FILE NAME-COPY N, parameters (required except
when the
ACCESS state-
ment is used)
(optional
statement)
(optional
statement)

// FILE NAME-COPYOQ,parameters
// FILE NAME-COPYP,parameters
// RUN

For information on the FILE statement parameters, see
OCL Statements in Part 1 of this manual.

The UNIT parameter is required on each entered FILE
statement. The allowable UNIT codes are:

FILE Statement
Unit Code COPYIN | COPYO | COPYP
3741 X X
MFCU1 X X
MFCU2 X X
MECM1 X X
MFCM2 X X
1442 X X
2501 X
1403 X
3284 X
R1, F1, R2, F2 X X
D1, D2, D3 or D31 X X
D32, D33, D34 X X
D4 or D41 X X
D42, D43, D44 X X
T1,T2, T3, T4 X X

Note: During execution of $COPY, the 3741 or 1442 can-
not be assigned both input and output.

Copy/Dump Program—$COPY 4-41

EXAMPLES

Figures 4-15 through 4-20 are examples of the OCL state-
ments and control statements needed to copy an entire
area, copy a file from one area to another area, and print
part of a file.

Figures 4-21 through 4-37 are examples of the OCL state-
ments and control statements needed to:

Copy a file from disk to tape
Copy a file from tape to disk, printing part of the file

Copy a file from tape to tape, selecting records to be
copied

Copy a card file to tape

Copy a disk file to cards

Copy a disk file to diskette

Copy a tape file to diskette, printing part of the file
Copy and print a portion of a file from diskette to disk
Copy a card file to a diskette, printing the entire file
Copy and print a portion of a file from diskette to cards
Copy a card file to another card file

Print a disk file on the 3284

Copy a card file to a disk file and change the output
record length

Build a direct disk file from sequential tape input
Recover a disk file from a simulation area
Recover a disk fite from a main data area

Copy a sequential file from a simulation area to a main
data area and create an indexed output file

442

36

Explanation:

The copy/dump program is toaded from F1.

Figure 4-15. OCL Load Sequence for Copying an Entire Area

4 38 12 16 20 24 28 32 36 40 44 48 52
|/ iCopVAAIdA ~F2,, IN0-R2), Placikl M-IFZFlZFlz],/PAdKd-TR2IRZ[R2
/1 END
A a
Explanation:
The COPYPACK statement copies the contents of simula-
tion area F2 (FROM-F2) with volume identification
F2F2F2 (PACKIN-F2F2F2) onto simulation area R2
{TO-R2) with volume identification R2R2R2 (PACKO-
R2R2R2).
Figure 4-16. Control Statements for Copying an Area
1 4 8 [12 16 20 24 28 32 36 40 44 48 52 56 60 64
/
/\/| ILloAD BiCoAY!. A
/Ll L NAME-CoPYi W, WIN1iTI=Di1], Plalcid-Al1] I dBleL A I
//| F/LE WAME-CldpYiol, luwl ri-IDiZ, -182), LABEL-BACIKUP, TIRACKS-Sig], RETAl M-
/| RU
Explanation:

® Copy/dump program is loaded from F1.

® Input file {OCL sequence):
— The name that identifies file is MASTER
(LABEL-MASTER).
— Main data area D1 contains the file (UNIT-D1). Its
name is A1 (PACK-A1).

® Output file (OCL sequence):
— The name to be written to identify the file is BACKUP
(LABEL-BACKUP).
— The area that is to contain the file is the main data
area D2 (UNIT-D2). The pack name is B2 (PACK-B2).
— The file is to be permanent (RETAIN-P).
— The size of the file is 50 tracks (TRACKS-50).

Figure 4-17. OCL Load Sequence for Copying a File from One Area
to Another

Copy/Dump Program—$COPY

4-43

Explanation:

The COPYFILE statement tells the program to create the
output file using all the data from the input file. The out-
put file is a copy of the input file.

Figure 4-18. Control Statements for Copying a File from One Are

to Another
1é 4 8 12 16 20 24 28 32 36 40 44 48
I
/// ILoAD coirv, Az
/17 FlIILIE WAME-ICoRPY! NLWINI TI-D ;PACK- 2/, 1L CIKUP,
/l/] RUM
Explanation:

® Copy/dump program is loaded from F1.

® Input file (OCL sequence):
— The name that identifies the file is BACKUP
(LABEL-BACKUP).
— The area that contains the file is the main data area
on drive 1 (UNIT-D1). Its name is B2 (PACK-B2).

Figure 4-19. OCL Load Sequence for Printing Part of a File

1 4] 12 16 20 24 28 32 36
/I/1 IcloPlYiF/ el ol -PRINT 11

/| SELIECT] Kiel], FRoM-|"|aDiApMs| |, 70l "BIAKER”
/17| END
Explanation:

® The file is being printed (COPYFILE statement).

® The file is an indexed file. The part being printed is
identified by the record keys from ADAMS to BAKER
in the index (SELECT statement).

Figure 4-20. Control Statements for Printing Part of a File

444

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
/I/| LIOAD BiCloPh],[F1 l | [

/| FILLEL NAMEISClorty i M Jun/(71-TT41] 1PlAlcid-p2iDlz plt], [ABEL FMAlSTER

/| FIILE INAME-COPYO,UN ! IT-IT1 RE el -[TmalTl i aBel -Blalc kvl REECEH- 1],
/| RECL-IBE BY KLl

//| RUN

/| ICOPYF|/ILIE| OUTIPWTI-IFI/ LIE]
/Y| END

1

Explanation:

® Copy/dump program is loaded from F1.

® Input file {OCL sequence):
— The name that identifies the file is MASTER
(LABEL-MASTER).
— The area that contains the file is the main data area
on drive 1 (UNIT-D1). Its name is D1D1D1
(PACK-D1D1D1).

® Output file (OCL sequence):

— The name to be written on tape to identify the file is
BACKUP (LABEL-BACKUP).

— The tape unit that is to contain the file is tape unit 1
(UNIT-T1). Its name is TIT1T1 (REEL-T1T1T1).

— The record format used is fixed length, unblocked
records (RECFM-F). The record length is 80
(RECL-80).

® Control statement explanation:

The entire file named MASTER is copied to tape unit 1
(OUTPUT-FILE).

Figure 4-21. OCL and Control Statements to Copy a Disk File to a
Tape File

Copy/Dump Program—$COPY 4-45

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
/| LDAD $ICOPY], Il !

/| FI/ILE| NAMEI-CIoPY! ML, VN i1l IREEL =TT], RECFIM-IF L\ ARl |- BAICKUP
|/ Fl/ILEL MAMEL-cloPpvia . DN T -ID2]. Blakcik-1plZ] ABELI-MASITER, ITRAICKS]-
/1 RlaTalilN-P ’)]

/\/| RIUM

/\/| CIOPYFI|LE plUTHUT-BOTH

/l/| SEILECTT| RiElcomrD, FiROM-1d, [T -

/| E]

Explanation:

® Copy/dump program is loaded from F1.

® |nput file (OCL sequence):
— The name that identifies the file on tape is BACKUP

(LABEL-BACKUP).

The tape that contains the file is tape unit 1
(UNIT-T1). Its name is T1T1T1 (REEL-T1T1T1).
The record format of the file is fixed length, un-
blocked records (RECFM-F).

® Qutput file (OCL sequence):

The name to be written to identify the file is
MASTER (LABEL-MASTER).

The area that is to contain the file is the main data
area on drive 2 (UNIT-D2). Its name is D2D2D2
(PACK-D2D2D2).

The file is to be permanent (RETAIN-P).

The size of the file is 30 tracks (TRACKS-30).

® Control statement explanation:

The entire file is copied from tape to disk
(OUTPUT-BOTH).

The records 10 through 100 are printed (RECORD,
FROM-10, TO-100).

Figure 4-22. OCL and Control Statements to Copy a Tape File to a

4-46

Disk File and Print a Part of the File

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

/T LoD Biclopiv, i I Ll
/\/| FILLE) NAMEI-Ciory | N UINLT-ITUL RiElel N, RECFM-IFBI, [REC-Ale] BIUKL-1Fleld] |
I/ FlLEL NAME-COPIYIO UNY T-IT1Z], REEELL - L, REICFM- |7

/\/| IR ’ -)

/|/| CIOPYIFLIILIE] JowTIPVIT]-IFl/|LlE]

/1] SELECT] RECORD, FROM-21, To-1204 |F/L/d-ViES]

///| EIND

Explanation:

® Copy/dump program is loaded from F1.

® |nput file (OCL sequence):

— The tape that contains the file is tape unit 1
(UNIT-T1).

— The tape being copied is an unlabeled tape
(REEL-NL); therefore, record format (RECFM-FB),
record length (RECL-96), and block length
(BLKL-960) are specified.

Output file (OCL sequence):

— The tape unit that is to contain the file is tape unit 2
(UNIT-T2).

— No label is used on the output tape (REEL-NL).

— The record format is fixed length, unblocked
(RECFM-F).

Control statement explanation:
— Records 20 to 200 are copied (FILE-YES).
— No records are printed (OUTPUT-FILE).

Figure 4-23. OCL and Control Statements to Copy a Tape File to a
Tape File and Select Records to be Copied

Copy/Dump Program—$COPY 447

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
/| LioaD $iclorly,
/| FIHILEL WAME-CloPY| My WIN TI-MEIC
/17| FI1ILE| INAMEI-ICOPYIOL, VNI TI-ITL, REELI-TUTAITLL, I lAlBELI-BIA P RECIFM-IFIB,
//| RIEICILI-196 BILKIL-1916 i . ’
/| RUNM
/| COPYF|I|LIE] uiTiPUirHAL LE
/1] EIND
|
Explanation:

® The copy/dump program is loaded from F1.

® [nput file {OCL sequence)

The primary hopper of the 5424 MFCU contains the
input file (UNIT-MFCU1).

® Qutput file (OCL sequence):
— The name to be written on tape to identify the file is

BACKUP (LABEL-BACKUP).

— The tape unit that will contain the file is tape unit 1

(UNIT-T1). Its name is TIT1T1 (REEL-T1T1T1).

— The record format used is fixed length, blocked

records {RECFM-FB). The record length will be 96
(RECL-96); the block length will be 960 (BLKL-960).

® Control statement explanation:

The entire card file will be copied to tape unit 1
(OUTPUT-FILE).

Figure 4-24. OCL and Control Statements to Copy a Card File to a

448

Tape File

1 4 8 12 16 20 24 28 32 36 40 44 48 52
/1 Lioa Y], IFlL I L]

/i FILLEL INAMEI-COPY (1NN (TR [Paicid- IR R 1Rl L laiBlel - MAls TR
//| FIlILIE] IWAME[-ICloPY(ol, UM -] 241 :

//| RuR ’

/\/| ICIoPYIFI/ LE] olurPur-FlilE

/ 1/ [END

Explanation:

® The copy/dump program is loaded from F1.

® Input file (OCL sequence):
— The name that identifies the file is MASTER
(LABEL-MASTER).
— The area that contains the input file is R1 (UNIT-R1).
The area name is R1R1R1 (PACK-R1R1R1).

® OQOutput file (OCL sequence):
The 1442 will contain the output file (UNIT-1442).
® Control statement explanation:

The entire disk file named MASTER will be punched
into cards by the 1442 (OUTPUT-FILE),

Figure 4-25. OCL and Control Statements to Copy a Disk File to a
Card File

Copy/Dump Program—$COPY 4-49

1 4 8 12 16 20 24 28 32 36 40 44 48 52
Y/
/Y| LioaD BCi0AY], A1
A/ FI/LE| WAME -ClolpiY] I, Win 7 imi-DlE] iPlaicid-pi1p 1, ILABEL -MASTIER
/\/| IF1ILIEl INAMeL- o], N iri-i3i7l1] R cl
/| RUN
V| COPYF|!\LIE OVTIPYIT-Fl1L]E
/| END
f
Explanation:
® The copy/dump program is loaded from F1.
® Input file {OCL sequence):
— The name that identifies the file is MASTER
(LABEL-MASTER).
— The area that contains the file is D1 (UNIT-D1). Its
name is D1D1D1 (PACK-D1D1D1).
°

Output file (OCL sequence):

— The output file is contained on diskette (UNIT-3741).

— The record length specified in the 3741 data set label
is 100 (RECL-100).

Control statement explanation:

The entire disk file named MASTER will be copied to
the 3741 diskette (OUTPUT-FILE).

Figure 4-26. OCL and Control Statements to Copy a Disk File to a

4-

3741 Diskette

50

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
/T LI0AD] RPN, IFz |

/| FI/ILEL WAMEL-Cop/IN, Wi T-T], REEL FPAY RO RIECIFM=F, gL{-MalsTIER
V| FlIILIEL INAMEI-COPYOD , U [T-31714l1] REICILI-19 i

7/ RUN .

/\/| \COPYIA!LE idvTiPulr-BloTH!

/\/| SiElLleci CORD ,FROM-4 ,[TI0~112

/171 lEND !

Explanation:

® The copy/dump program is loaded from F1.

® Input file {OCL sequence):
— The name that identifies the file on tape is MASTER
(LABEL-MASTER).
— The tape that contains the file is tape unit 1
(UNIT-T1). Its name is PAYROL (REEL-PAYROL).
— The record format of the file is fixed length,
unblocked records {RECFM-F).

® Qutput file (OCL sequence):
— The output file is contained on diskette {(UNIT-3741).
— The record length specified in the 3741 data set label
is 96 (RECL.-96).

® Control statements explanation:
— The entire file is copied from tape to the 3741
(OUTPUT-BOTH).
— Records 4 through 120 are printed
{(RECORD,FROM-4,T0O-120).

Figure 4-27. OCL and Control Statements to Copy a Tape File to a
Diskette File and Print a Part of the File

Copy/Dump Program—$COPY

451

1 4 8 12 16 20 24 28 32 36 60
/M Ildlall [$icdAY], I L]

y\/| 1A1\LE INAME-ClomY] N v [7-B7lal , REcL - Isid

/] FI/LIEL NAMEL-ComlYio, LN -2, PAK b -DiziDiz) N
/| RIUN

V| COPYFY/\LIE DUTPUTH-BOTH

// 7| REICORD, FIROM-5l, 710 - 1215, F|/ LIE|-Yé]

V| END i ’

Explanation:

® The copy/dump program is loaded from F1.

® Input file (OCL sequence):
— The input file is contained on diskette (UNIT-3741).
— The record length specified in the 3741 data set label
is 50 (RECL-50).

® Output file {(OCL sequence):

— The name of the output file is SALES
(LABEL-SALES).

— The area that is to contain the file is main data area
on drive 2 (UNIT-D2). Its name is D2D2D2
(PACK-D2D2D2).

— The file is to be temporary (RETAIN-T).

— The size of the file is 15 tracks (TRACKS-15).

® Control statements explanation:

Records 5 to 250 are copied (FILE-YES) and printed
(OUTPUT-BOTH).

Figure 4-28. OCL and Control Statements to