

IBM System/3
Communications Control Program
System Design Guide

Program Numbers:
5702-SC1 (Models 8 and 10)
5703-SC1 (Model 4)
5704-SC1 (Model 15)
5704-SC2 (Model 15)
5705-SC1 (Model 12)

Featu re 60 1 1 /60 121 60331 607 O | 607 1

Second Edition (September 1980)

This is a major revis ion of , and obsoletes, GC21-5165-O and Technical
News le t t e r s GN21 -5596 , cN21 -7969 . cN2 t -5656 . and GN21 -5288 . Changes o r
addi t ions to the text and i l lustrat ions are indicated bv a vert ical l ine to the lef t of
the change or addi t ion.

This edi t ion appl ies to the System/3 system contro l program vers ions l is ted below
and to a l l subsequent vers ions and modi f icat ions unt i l otherwise indicated in new
edi t ions or technical newslet ters:

Program

Modif icat ion Number Feature Numbers ModelVersion

1 6

t b

06
08
05

00
00
00
00
00

5703-SC1

5702-SC1

5705-SC1

5704-SC1

5704-SC2

6033

6033

6070,6071

6 0 3 3 , 6 0 7 0 . 6 0 7 1

6 0 1 1 . 6 0 1 2

Model 4

Mode ls 8 and 10

Mode l 12

Model 15A, B, C

Mode l 15D

Changes are per iodical ly made to the informat ion herein; these changes wi l l be
reported in technical newslet ters or in new edi t ions of th is oubl icat ion.

Use this publication only for the purposes stated in the pref ace.

Publ icat ions are not stocked at the address below. Requests for copies of IBM
publ icat ions and for technical informat ion about the system should be made to
your IBM representat ive or to the branch of f ice serv ing your local i ty .

This publ icat ion could contain technical inaccuracies or typographical errors. Use
the Reader 's Comment Form at the back of th is publ icat ion to make comments
about th is publ icat ion. l f the form has been removed, address vour commenrs to
IBM Corporat ion, Publ icat ions, Department 245, Rochester , Minnesota bsgol .
IBM may use and dist r ibute any of the informat ion you supply in any way i t
bel ieves appropr iate wi thout incurr ing any obl igat ion whatever. you may. of
course, cont tnue to use the informat ion you supply.

I O Copyright International Business Machines Corporation 1977, 1980

This publication is a guide to designing an IBM
System/3 system that uses the Communications Control
Program (CCP). The manual is primarily intended for
customer system analysts/programmers and IBM
system engineers. This publication is applicable to
System/3 Models 4,8. 10, 12, and 15. The following
subjects are included:

Preface

This publication references several specific terminals in
the 3270 Information Display System. These references
are for i l lustration only and not necessarily
representative of all 3270 devices supported. For a list
ot 3270 devices supported by System/3 CCP, refer to

the IBM System/3 Communications Control Program
Systern Refererrce Manual, GC21 -7620.

Application Design Corrcepts; Describes the This publication is oriented to the typical CCP user: one
considerations for using various CCP program types, who wants to use RPG ll and 3270 terminals with the
programming facil i t ies, and programming concepts in CCP Display Format Facil ity (DFF). The reader who
designing applications to be run under CCP. plans to use 3270 terminals is assumed to have

knowledge of 3270 operation and design, either from
Direct Files: Describes the use of direct f i les in a CCP IBM education, previous reading, or experience.
environment and describes techniques for designing However, usefulness of the manual is not l imited to RPG
direct f i les. l l /3270 users. Most of the design concepts are

applicable regardless of the programming language and
File Sharing: Describes the necessity for file sharing in a terminal type used.
CCP environment, and describes fi le sharing capabil it ies
and restrictions on the various System/3 models. This guide is intended for readers who have had CCP

programming instruction and who have attended, or are
3270 Screen Design; Describes the human factors and attending, the CCP system design class. The reader is

CCP performance aspects of designing screen formats expected to use this manual to refresh his or her
for the IBM 3270 Information Display System. knowledge, as supplementary reading, and for

subsequent reference. The reader is assumed to have

Use of Printers lJder CCP: Describes the system previous experience and/or training in:
design and performance considerations for using the
system printer and terminal (remote) printers with CCP. . Programming and operating System/3 with CCP

Task Chaining; Describes how the System/3 Model 15D . System/3 disk fi le organizations and processing

CCP task chaining facility can be used in CCP system methods
design.

. The particular terminal devices to be used
Sort Under CCP: Describes system design aspects of
using CCP/Disk Sort to sort f i les under CCP.

Related Publications
System Security /lntegrity: Describes the special
considerations involved in maintaining system security in The publications related to CCP and System/3 data
a CCP environment. Describes procedures for ensuring communications are l isted in Appendix B. See lBM
the accuracy of information processed by the system System/3 Bibliography, GC20-8080, for descriptions of
and stored in the system fi les. other System/3 publications.

Queuing Theory: Describes the application of simplified
queuing theory to CCP system design.

Performance fips: Provides miscellaneous tips and
techniques for improving CCP performance.

C H A P T E R I . I N T R O D U C T I O N , 1
S y s t e m P e r f o r m a n c e 1

S y s t e m T h r o u g h p u t 1
T e r m i n a l R e s p o n s e T i m e , , 1
E a s e o f U s e 2
E x p a n d a b i l i t y / C h a n g e a b i l i t y 2
System Secur i ty and In tegr i t y .

S y s t e m D e s i g n 2
B e n e f i t s o f f e r e d b y c c P . : . : : : : : : : : 2
D e s i g n D a t a 3

C H A P T E R 2 . A P P L I C A T I O N D E S I G N C O N C E P T S . . . , . . . , . 7
E s t a b f i s h i n g A p p l i c a t i o n G o a l s 7
C C P A p p l i c a t i o n P r o g r a m T y p e s 8

SRT(S ing leReques t i ngTe rm ina l) P rog ram 8
MRT(Mu l t i p l eReques t i ngTe rm ina l) P rog ram 8
S i n g l e F u n c t i o n a n d M u l t i p l e F u n c t i o n s 9
S i n g l e F u n c t i o n S R T 1 0
S i n g l e F u n c t i o n M R T 1 1
C o m p a r i s o n o f S i n g l e F u n c t i o n S R T a n d M R T 1 1
M u l t i p f e l n d e p e n d e n t F u n c t i o n s R T 1 2
M u l t i p f e l n d e p e n d e n t F u n c t i o n M R T 1 2
M u l t i p l e , D e p e n d e n t F u n c t i o n s R T 1 4
M u l t i p l e , D e p e n d e n t F u n c t i o n M R T 1 5
I n t e r p r o g r a m C o m m u n i c a t i o n 1 5
N E P (N e v e r - E n d i n g P r o g r a m) 1 5

S u m m a r y 1 6
M I F / M R T T e c h n i q u e 1 6

C H A P T E R 3 . D I R E C T F I L E S , . 1 7
D i r e c t F i l e A d v a n t a g e s 1 7

D i s k A c c e s s e s . . . ' 1 7
F i l e R e c o v e r y 1 7
F i l e S h a r i n g 1 7

A c c e s s A l g o r i t h m a n d S y n o n y m s l S
D e t e r m i n i n g a n A c c e s s A l g o r i t h m 1 8
H a n d l i n g S y n o n y m R e c o r d s 1 8

E x a m p l e s 1 9
E x a m p l e l 1 9
E x a m p l e 2 2 3
E x a m p l e 3 2 4

T r a n s a c t i o n F i l e s a s D i r e c t F i l e s 2 5
M a s t e r F i l e s a s D i r e c t F i l e s 2 5

C H A P T E R 4 . F I L E S H A R I N G , . . , . , . , 2 7
F i f e U p d a t e C o n f l i c t 2 7
C C P / D i s k S o r t F i l e s 2 7
A n a f y z i n g F i f e S h a r i n g C o n f l i c t s 2 8

CHAPTER 5 . 3270 SCBEEN DESIGN 29
Human Factors Considerat ionsandTechniques. 29

G e n e r a l G u i d e l i n e s 2 9
Speci f ic Suggest ions by Appl icat ion Type.32
Example: Three Approaches to Screen Design for

F i l e U p d a t e 3 3

Contents

PerformanceConsiderat ionsandTechniques 34
D i s p l a y F o r m a t F a c i l i t y (D F F) 3 4

P r o g r a m R e q u e s t U n d e r F o r m a t (P R U F) 3 5
H e a d i n g s a n d P r o m p t s 3 5
A t t r i bu teCha rac te r s 35
F i e l d D e s c r i o t o r T a b l e (F D T) 3 6
P u t O v e r r i d e 3 6

O v e r l a y a n d S e g m e n t e d S c r e e n s 3 6

C H A P T E R 6 . U S E ' O F P R I N T E R S U N D E B C C P , . 3 9
S y s t e m P r i n t e r 3 9

S p o o l i n g P r i n t e d O u t p u t U n d e r C C P 4 1
T e r m i n a l P r i n t e r s 4 1

Forms Design for Terminal Pr inters. 41
Program Design TechniquesforTerminal Pr inters 44
P r i n t e r B u s y C o n d i t i o n 4 5
Using an NEP for Terminal Pr int ing 46

C H A P T E R T . T A S K C H A I N I N G . . , , . . , . 4 7
B reak ingApp l i ca t i ons in tosma l l P rog rams 48
R u n n i n g B a t c h P r o g r a m s U n d e r C C P 4 8
C h a i n i n g t o R e s o u r c e H a n d l e r s 4 8

T r a n s a c t i o n F i l e W r i t e r P r o g r a m 4 8
Terminal Pr inter Program . , .52

C H A P T E R S . S O R T U N D E R C C P 5 3

C o n s i d e r a t i o n s f o r U s i n g C C P / D i s k s o r t 5 3
Transact ion-Oriented Processingwith CCP/Disk Sort 53

O R D E R S P r o g r a m 5 4
X W R l T E P r o g r a m 5 5
l N V W R T P r o g r a m 5 6
S R T W R T P r o g r a m , , . 5 7
S O R T P r o g r a m 5 8
P l K W R T P r o g r a m . . . , 5 9

CHAPTER 9 . SYSTEM SECURITV / INTEGRITY . . , . 61
T r a n s a c t i o n L o g g i n g 6 1

T r a n s a c t i o n D a t a 6 1
A u d i t T r a i l 6 2

f mp f emen t i ng an Aud i t T ra i l 62
C o n t r o l P r o c e d u r e s 6 3

M a n u a l C o n t r o l P r o c e d u r e s 6 3
P r o g r a m m e d C o n t r o l P r o c e d u r e s 6 3
D a t a P r o c e s s i n g D e p a r t m e n t C o n t r o l s . . , 6 5

D a t a S e c u r i t y 6 6
P h y s i c a l S e c u r i t y M e a s u r e s 6 6
P r o g r a m m e d S e c u r i t y M e a s u r e s 6 7

B a c k u p a n d R e c o v e r y 6 9
H a r d w a r e B a c k u p 6 9
D a t a B a c k u p a n d R e c o v e r y 7 0
Fi fe Becovery Procedures , . . 71

C H A P T E R 1 0 . S I M P L I F I E D O U E U I N G T H E O R Y , 7 3
Simpl i f ied Queuing Theory Equat ions .
Simpl i f ied Oueuing Theory Example .

Step 1. Def ine and Flowchart the Appl icat ion
Step 2. Determine Activity for Each Program Step . . . - .
Step 3. Determine Transact ions per Hour for Each

On l i ns App l i ca t i on
Step 4. Calculate the Average Number of Characters

per Transact ion
Step 5. Calculate L ine Time to Transmit an Average

T r a n s a c t i o n 7 9
S t e p 6 . C a l c u l a t e L i n e U t i l i z a r i o n g O
S t e p 7 . C a l c u l a t e L i n e R e s p o n s e T i m e g O
S t e p 8 . C a l c u l a t e D i s k U t i l i z a t i o n g 2
S t e p 9 . C a l c u l a t e D i s k R e s p o n s e T i m e g 3
Step 10. Calculate Processing Uni t Ut i l izat ion . . . g4
Step 11. Determine Response Time for processing

U n i t a n d T o t a l S y s t e m 9 6
S t e p 1 2 . D e t e r m i n e S y s t e m S i z e 9 9

CHAPTER 11 . PERFORMANCE T IPS 91
C C P - A s s o c i a t e d B u f f e r s 9 1

U s e r R e c o r d A r e a 9 . 1
O u t p u t H o l d A r e a 9 1
T P (T e f e p r o c e s s i n g l B u f f e r 9 2
L i n e B u f f e r 1 O 2

C C P T a s k S i z e s 1 0 2
M i n i m i z i n g s t o r a g e R e q u i r e m e n t s . . . 1 0 4

D F F C o n s i d e r a t i o n s 1 0 4
C C P D i s k A c c e s s e s 1 0 5
P lacemen to f P rog rams , Fo rma ts ,and F i l eson D i sk 107
D i s k U t i l i z a t i o n 1 0 9
Gene ra t i on /Ass ignmen tCons ide ra t i ons . . 108
Cons ide ra t i onsUs ingPRUF . . . 1Og
M i s c e l l a n e o u s C C P T i p s 1 0 9

A P P E N D I X A . G L O S S A R Y . . . 1 1 3

A P P E N D I X B . B I B L I O G R A P H Y 1 1 9

lNDEX

73
74
7 t

t 3

7 7

79

121

A communications-based system like System/3 with
CCP, is made up of dissimilar elements (personnel,

programming, devices) that operate at totally different
speeds. Thesei elements are:

. Terminal operators

. Terminals

. The communication facil i ty

. The system operator

. The processing unit and associated l/O devices

. Application programs

These elements must perform well together to satisfy
user requirements. Good system performance requires
good system design.

SYSTEM PERFORMANCE

Performance requirements vary widely among CCP
users, but there are quantitative and qualitative aspects
of performance that are important to all users.

Quantitative Aspects

. System throughput

. Terminal response time

. Business response time

Qualitative Aspects

. Ease of use

. Expandabil ity/changeabil ity

. System security and integrity

Ghapter 1. Introduction

System Throughput

System throughput is the total volume of work
performed by a computing system over a period of t ime.

Throughput is a primary concern of the CCP user and

should also be the direct concern of the designer.
Throughput is a measurable aspect of performance. The

designer of an online system frequently measures
throughput in terms of the number of transactions per

unit of t ime (hour, day) that the system can handle. The

users of the system may think of throughput as the

number of invoices, orders, or inquiries the system can
process over a period of t ime.

Terminal Response Time

To provide a viable system, the designer must balance

system throughput requirements against terminal
response time requirements. Terminal response time is

the time interval from when the terminal operator enters

data to the system until the keyboard is opened to
permit more data to be entered. Response time

requirements vary greatly among CCP users and even

among applications for a single user. For example, a

1O-second to 3O-second response may be adequate for

an inquiry application that is used occasionally, but a

1-second to 3-second response may be required for

high-volume data entry and order entry applications.

Minimum response time results when there are no
gueues in the system; that is, there are no units of work

waiting to be serviced by the different system facil i t ies:

disk, processing unit, communication l ines. or terminals'

Chapter 10, Simplifid Queuing Theory further describes
response time and queues.

Business Response Time

Business response time is the total duration of t ime

required to satisfy a user (customer) transaction, inquiry,

or request. A complete business response may require

several terminal responses, but the entire response must

be accomplished at one terminal even if other system
resources are idle. lndividual terminal response times

surely contribute to good business response, but good

system design plays the most important part.

ln t roduct ion

Ease of Use

Ease of use is another important aspect of system
performance. lf use of the terminal is easy for the
operator, if screens are carefully designed, if operator
keying is kept to a minimum, if applications are broken
into efficient, logical steps, and if the terminal operator
is shielded from the internal workings of the system, the
terminal operator can be more productive, make fewer
mistakes, and thus contribute to improved system
throughput.

Ease of use is important for other users also, such as
the system operator and the application programmer.
Clear and complete operating procedures should be
defined and documented to govern the system
operator's actions under all conditions. Recovery and
backup procedures should be carefully considered in the
system design and should be clearly documented for the
system operator. Application programs should be
written with clear, straightforward logic and should be
well documented. Standard methods of return code
checking and error handling should be considered
throughout the design of the user application programs.
Careful attention to program design will result in
programs that have fewer errors and are easier to
correct or modify.

Expa nda bility/Changeability

Expandabil ity and changeabil ity are long-term measures
of system performance. lf a system design does not
anticipate future expansion or changes, the system may
initially perform adequately, but require a major redesign
when facil i t ies or functions are added. The system
designer should consider effects on the system of an
increased transaction load, system hardware changes, or
additional applications.

System Security and Integrity

System security and integrity are other long-term
aspects of performance. The concepts of system
security and integrity include requirements such as:

. Transaction logging

. Audit trail

. Control procedures

. Data security

. Backup and recovery

These requirements must be an integral part of the
system design. lf system security and integrity are
lacking, serious problems can occur when an audit is
required, when there is a system failure, when an error
occurs, or when an unauthorized person attempts to
access and perhaps modify data in the system.

SYSTEM DESIGN

Because online applications usually have a significant,
overall impact on the way the user organization is run, it
is vital that the eventual users of the system-
management, programmers, operators. and user
departments-be involved in the design process from the
beginning and that all of their needs and wants are
considered. In many cases, a phased approach to
design and implementation, with simple inquiry being
the first online application, allows a gradual changeover
from current methods, provides early success, and
allows the system designer to gain experience that can
be applied to later applications.

During the system design process, each facil i ty and
application should be justif ied on its own, either
economically or as a necessary part of an integrated
system. Otherwise, the design process can become
unnecessarily complex and costly, and may result in a
system that has more capacity than is required for the
necessary functions and anticipated growth. lt is
sometimes better to use batch processing or manual
methods for certain jobs and to use the online resources
in areas where they are clearly justif ied.

The system design process must be guided by cost
constraints and application requirements. To be
successful, the system designer must understand the
benefits that are expected from the online system and
must gather a great amount of data concerning the
proposed applications.

Benefits Offered by CCP

Online processing with CCP offers benefits that are not
possible in manual or batch data processing systems.
The following benefits might be analyzed differently in
terms of importance to the business, ease of
implementation, cost of facil i t ies, measurabil ity, and
whether the benefits wil l be immediate or in the future.

Fast Access to lnformation

Inquiry applications can provide a fast answer for a
customer who is on the telephone or in the office.
Inquiry applications can provide improved customer
service, reduced look-up time, and fewer computer
printouts. Inquiry applications are a good place to start,
since they are often easy to define and implement.

lmproved W orker Ef ficiency

Because of the necessity for queuing and routing work
through various departments, many manual systems are
inefficient, inaccurate, and time-consuming. Online
applications enable an organization to operate on
information as soon as it is available. which results in
greater worker productivity. Online applications can
result in: less time spent waiting for information, less
time spent transferring information from one area to
another, less time spent restudying information that has
been delayed in processing, fewer requests for
additional information, and improved accuracy.

Reduced Job Complexity

Complex calculations, procedures, and detailed
requirements can make a clerk's task highly subject to
error. Applications such as order entry, pricing, and
accounts receivable can require considerable system
design effort because the system is handling many
complexities, but the benefits of improved accuracy and
improved customer service can be valuable.

lmproved Resource Control

Applications such as inventory control in manufacturing
or distribution industries and reservations in hotels can
enable many interdependent users to access current
information. lmproved control of l imited or
time-dependent resources is often essential to the
functioning of an organization. A well-organized system
design effort is required to redirect the information flow
around the centralized system.

Design Data

The CCP system designer must gather and analyze a
large amount of data, inc luding:

Application descriptions
Messages and line control activit ies
Transaction descriptions
Terminal locations
Computer location
Present communication network lavout and
description
Data security requirements
Man-machine interfaces
Message formats
Message destinations
Traffic statistics
Effective speeds of equipment and operators
Transmission l ine error rates
Rate of system growth
Throughput objectives for both online and batch
processlng

Terminal response time requirements-business
response requirements
Logical f i le information
Type of error recovery required
Other information, determined in part by the
proposed applications

Some of this design data must be particularly detailed
because of the important affect it has on network
design and, therefore, the performance of the system:

Message /transaction types
Message /transaction length
Messages/transactions per given time period
Message/transaction input-output ratios
Message/transaction priority classifications
Response time requirements
Peak traffic determination
Growth projections

lntroduction

Tralfic Peaks

Traffic peaks must be considered; it is not sufficient to
total the work for a day and divide by the number of
hours to get an average. For example, a plotting of the
arrival of orders in a business might look l ike Figure 1.
The system should be designed to handle peak loads. lt
may be possible for certain orders to be held off and
entered during slack periods to level the peaks. For
example, in Figure'l , all mail orders are received at 1O
a.m. Perhaps the mail orders that cannot be processed
in the morning can be held off unti l late in the afternoon
so that telephone and walk-in orders can be processed
on a real-time basis during peak periods. In no case
should the average load be the maximum load capabil ity
of the system.

Regardless of whether design is done manually or with
the assistance of specialized network design aids
provided by lBM, the design data collected is needed to
determine:

. L ine and terminal loading

. Facil ity uti l ization

Response time

Oueues in the system

Queuing Theory

An understanding of queuing theory (Chapter 10) helps
the system designer to use the design data to estimate
how much uti l ization to expect of a system resource and
to evaluate a design at intermediate stages. However,
resource uti l ization in a CCP system is not a simple
consideration and few designers can depend solely on
queuing analys is in designing CCP systems. Ut i l izat ion
of resources can change from minute to minute and
there are so many variables that to pick any set and say
this is my system is usually invalid. Also, reliable data
may not be available early in the design stage.

CCP system design requires some experimentation and
adjustments to the init ial design to improve
performance. Overdesign is often a desirable approach.
For example, the designer can a l low for more d isk
activity or communication l ine activity than he actually
expects, or can purposely overestimate the number of
transactions per hour that wil l be entered from
terminals. Judic ious reduct ions in the areas of
overdesign can be the key to success of the design
project.

IBM Design Aids

The CCP system designer should be aware of the IBM
design aids available (such as performance analysis
programs) and what benefits can be gained from each.

One such design aid for the Model 15D is the System
Measurement Facil ity (program 5799-AYO). When
enabled, this facil i ty assembles status reports of the
operating system and selected l/O devices. This
information is useful for workload balancing within the
CCP system. Contact your IBM representative for
information concerning this and other design aids.

Order Sources:
- - - Telephone Orders
- walk- in orders
- . - M a i l O r d e r s
. . - . . . Cumulat ive Customer Transact ions

500

400

300

200

100

0

Customer Notif ication and
Adminis t rat ive Act iv i ty

Trans-
actions

T i m e +

Figure 1. Transaction Peaks

lntroduction

This chapter presents broad concepts of implementing
applications in an online terminal or work statlon
envi ronment .

ESTABLISHING APPLICATION GOALS

An application designer must establish specific goals for
appl icat ions. In addi t ion to speci f ic appl icat ion goals,
the following general goals should be considered for all
appl icat ions:

. Ease of use

Design decisions should be made in favor of ease of
use, not ease of coding or design. The person who
uses the terminal should see the system as an
easy-to-use tool. He expects to receive guidance
throughout the application in the form of messages
and definit ions of the various options permitted.
However, once an operator understands his task well,
he should not be burdened with replying to repetit ive
messages nor with reading long text to understand
where he is in the application. For example, if a
3270 display is being used and various function keys
are allowed, present the user with a legend of the
functions in a specific area of the screen where the
user can read i t or easi ly ignore i t i f he is fami l iar
with the application. Error messages should also be
confined to one area of the screen. High intensity
and the audible alarm can be used to draw attention
to the message. Use default options where possible
to eliminate repetit ive keying. For example, if special
discounting is allowed but seldom used, let the
operator specify when he wants it, but default to
normal when he specifies nothing. See Chapter 5,
3270 Screen Design for further information
concerning operator ease of use.

. Logical and simple flow

Whether you solve the application problem with one
program or many programs using PRUF (program
request under format), the operator must never have
to understand how the application was coded. lf you
design an application using several programs, lead
the operator through the sequence of programs by
including the name of the next program to be called
on the display.

Ghapter 2. Application Design Concepts

. Concurrent uti l ization of svstem resources

Dedicating most of the resources of the system to
one user at the expense of other concurrent users
can cause dissatisfaction. Some examples of this are:
allowing an application to be written as a large
program, so that other users cannot load their
programs because memory is not available; specifying
NOSHR (no share) for f i les on the PROGRAM
assignment statement so that a long running program
has a fi le dedicated to it at the expense of other
users who need access to the same fi le; running a
program that loops or does complex calculations and
thus makes excessive use of processing unit
instruction c./cles (cycle bound). Consider that
appl icat ions wi l l be run at the same t ime and that
other applications may be added to the system at a
later t ime.

Concurrent uti l ization of resources may increase the
response time of the terminal. But response time is
not the most important indicator of performance. For
example, consider the fo l lowing:

An application is designed using two methods. The
first method uses one large program that remains in
memory. Two operators are employed and response
t ime averages 1.5 seconds each t ime the enter key is
pressed. One hundred characters are keyed for every
enter key operation.

The second method of design uses a series of three
programs, each small. The programs are loaded as
required. The average response time is 2.5 seconds
because program loads must take place. With the
first method, there is no memory remaining for other
concurrent applications; in the second, there is. Since
all keying is done offl ine, that is, between program
loads, the processing unit has processing time and
main storage available to service other users. Hence,
the total work accomplished may very well be greater
in the second case.

Application Design Concepts

. Minimum scheduling

The main advantage of online applications is that the
system can be responsive to the end user-it can do
work when he has work to do. lf there are fewer
terminals than operators or more applications than
operators, obviously scheduling has to be done.
However. an application design where there are
sufficient operators and terminals available, but
because of the design they cannot all have access to
the system, should be considered unacceptable.

. Efficient design

When the first application is designed for a system,
the probabitity that more applications will be added
later-some known and some unforeseen-must be
considered. This requires writing efficient code,
designing files for the fastest processing. and using
as little main storage as possible. A batch program
is usually judged by whether it does the job and
produces accurate results. Online jobs must be
judged by those factors but also by size, modularity,
function, flexibility and response time. The key to
efficient design is that the system resources must be
shared, and rationing the resources from the
beginning will ensure that the maximum potential for
system growth can be realized.

CCP APPLICATION PROGRAM ryPES

ln order to use CCP most efficiently, the application
designer must understand the CCP application program

types, classified on the basis of :

. The number of requesting terminals the program can
handFone, or more than one.

. The number of different kinds of functions or
transactions the program can handle--one, or more
than one. (A transaction is defined as the entry of
some unit of data, the processing of that data, and
the return of some response or answer.)

Specific coding examples of each type of program are
avaifabfe in the CCP Programmer's Reference Manual,
GC21 -7579.

SRT (Single Requesting Terminal) Program

An SBT program is one that can service only one
requesting terminal on each execution of the program.

Each time the program is requested, CCP must load that
program into main storage. lf two terminals request the
same program, each wil l have its own duplicate copy of
the program in main storage.

An SRT program can communicate with other terminals
while servicing a requesting terminal, but these would
be data terminals and would be attached to the
executing program either by being specified in the
assignment set or by being acquired by the program

using an acquire terminal operation code. In most
cases, an SRT program handles one terminal, which is
the requester.

MRT (Multiple Reguesting Terminal) Program

An MRT program can service more than one requesting
terminal on each execution of the program. An MRT
program, l ike an SRT program, is init iated by a
requesting command terminal. However, any
subsequent requests for the program by other terminal
users cause the additional requesting terminals to be
attached to the program already in main storage, rather
than to a separate copy. The maximum number of users
of the program is specified in the assignment set. Thus,

CCP controls the number of concurrent users of the

MRT program.

When a terminal attached to an MRT program is

finished processing. it is released from the program

under either program or operator control. lf other
terminals are attached, they continue to process. lf

there are no other terminals attached at this time, the
program ends (the program logic must set on LR in

RPG ll). Another request for the program causes it to

be again loaded from the object l ibrary.

The system designer should consider using an MRT
program to minimize the impact of program loading

when a program is called often and must be loaded into

main storage frequently during the course of a CCP run.

Program load time is dependent on the access time of
the specific disk drives used with the system; for

example, a program load from 2 $Q-Q{ is slower than
from a 3340. See Chapter 10, Simplitid Queuing
Thary for further information about how to determine
when program residence in main storage is high enough
that an MRT approach should be considered.

Single Function and Multiple Functions Summary of CCP Program Types

In addition to the SRT/MRT distinction, the system Combining these concepts-number of requesters;
designer must understand the distinction between single number and relationship of functions-yields the
function and multiple function programs. following breakdown of CCP program types:

lf a program can only handle one kind of function, the . Single function SRT (SF/SRT)
program is a single function program. The
characteristics of a single function program are: . Multiple independent function SRT (MIF/SRT)

. Program logic determines when the program . Multiple dependent function SRT (MDF/SRT)
termrnates.

. S ingle funct ion MRT (SF/MRT)
. Coding is straightforward and efficient.

. Multiple independent function MRT (MlF/MRT)
. There is duplicate code if more than one copy resides

in main storage. . Mul t ip le dependent funct ion MRT (MDF/MRT)

lf a program can handle multiple functions, the program
is a multiple function program. The characteristics of a
multiple function program are:

. Either the operator or program logic can determine
when the program terminates.

. Some coding logic is required to determine which
function is to be performed.

. There is unused code in the processing cycle (code
for functions not performed sti l l takes up main
storage space).

When multiple functions are performed, the functions
are either irdeperdent of each other or dependent on
each other.

Application Design Concepts 9

Single Function SRT

The single function SRT program type is the easiest to
write. A terminal operator requests a program (for
example, an inquiry), the program performs the function
and terminates. CCP attaches the terminal to the
program at program init iation and automatically releases
it at program termination. No code is needed in the
application program to perform either of these functions.

Figure 2. Receiving Program Data in an SRT Program

PRUF (Program Request Under Format)

Figure 2 shows two methods of receiving data from a
terminal in an SRT program: with the program request
or after the program has been init iated. Where possible,
the data should accompany the program request.
Putting a format and waiting for the operator to respond
ties up parts of main storage during the keying
operation. Another operator's response time can be
adversely affected if main storage is not available.
However, in order to enter data with the program
request, the terminal operator must know exactly what
data format is acceptable. This contradicts one of the
basic CCP system design guidelines: ease of use. But
because CCP has the PRUF facil i ty, good uti l ization of
storage and ease of use at the terminal can be achieved.
The program now becomes two programs with the flow
described in Figure 3.

Program 1 Program 2

This could be a specia l PRUF Vr l
put operat ion that prepares

the screen for another t rans-

act ion, Thus, Program 1

would be cal led only when

the ooerator does not have

the appropr iate screen format.

In i t iate program

with data

1 0

Figure 3. PRUF Concept-Single Function SRT Program

Single Function MRT

A single function MRT requires minor additional code
compared to the previous example. The additional code
is required because an MRT must not go to end of job
unless all users are finished with the program.
Therefore, rather than simply terminate, the program
must release the requester and ask CCp if there are any
other terminals requesting the program. lf there are. the
cycle must be performed again. Sti l l using the pRUF
approach, the program logic shown in Figure 3 would be
modified as shown in Figure 4.

Program 1 * Program 2

Program 1 would l ikely
remain an SRT.

Comparison of Single Function SRT and MRT

The major considerations in choosing between an SRT
or an MRT approach are use of main storage and
response times. (The terminal operator does not do
anything differently between the two approaches.) The
advantage of the SRT approach is the ability to have
multiple copies in main storage concurrently. The
advantage of the MRT approach is the potential for
reduced response time. since the program does not
have to be loaded for each request. Each approach also
has a disadvantage: the SRT must always include a
program load in its response time, and the MRT allows
only a single terminal to process through its code at one
time. (Terminals that are queued to an MRT have a
correspondingly greater response time.l The decision for
either approach is examined further later in this chapter.

I n i t iate program

with data

Figure 4. PRUF Concept-Single Function MRT program

Application Design Concepts 11

Multiple Independent Function SRT

Combining the programs in Figure 3 results in the logic
shown in Figure 5.

This logic represents a multiple, independent function
SRT program or MIF/SRT. This complicates the code
somewhat, but cuts down by one the number of
programs needed. In Figure 5, a small amount of code
has been added to one program while doing away with
another. (The program must check for a 02 return code,
which indicates that init ial input was not received with a
previously put PRUF format.)

A logical question would be: if i t is good in some
instances to combine two functions, why not more?
Although the program in Figure 5 is performing two
functions, the terminal operator works in the same way
as with the single function SRT and the increase in
response time is minimal. lf, on the other hand, more
functions are added as shown in Figure 6, the program
must monitor input and determine which subroutine to
follow. Since CCP is itself a monitoring program, it
seems redundant for an application program to do this.
lf the functions are quite similar and all use the same
file, then the effect on performance may not be
significant. However, if the program becomes quite
large due to code or additional f i les, then the user is
affected by the reduction in available storage. ln some
cases, f i le uti l ization could be affected as well. Finally,
the program takes longer to load than the smaller, single
function SRT.

Multiple Independent Function MRT

MIF/MRT programs di f fer f rom MIF/SRT programs only

in the method of releasing terminals and terminating the
program. However, in some situations, MIF/MRT
programs provide advantages. For example, main

storage in System/3 Models 8, 10, and 12 is more
limited than in Model 15. Also, for any of these models,

one program level can be devoted to batch work while

the other level is used for online processing with CCP'

An MIF/MRT may be useful in this environment
because the l imited main storage available for CCP tasks

may make it impossible to load multiple copies of an

SRT program.

Figure 5. Mult iple, Independent Function SRT Program

12

Because the program can perform
several independent functions. it
must contain logic to determine
which function to perform,

Figure 6. MIF/SRT Program with More than Two Functions

Application Design Concepts 13

Multiple, Dependent Function SRT

Figure 7 is an example of MDF/SRT program logic.
This type of program is straightforward, but results in
large programs that remain in main storage unti l the
entire process is completed. Main storage is occupied
even though there is no processing being done by the
system. Each process could be done in a separate
program: by using PRUF PUTs to prepare the terminals
for the next step, storage wil l be used only when there
is data to process, and not during the keying time of the
terminal operator. The effect on the operator of using
many single function SRTs to perform the same
functions would be to increase the response time for
each step by the program load time. This increase in
response time must be weighed against the delay that
could occur if MDF/SRT programs are used and main
storage is not available when another operator requests
a program. Except for response time, the user should
not know which type of program (MDF/SRT or single
function SRTs) the programmer chose to implement. lf
the number of users is small, the MDF/SRT would give
a better response; however, the programmer should be
advised that a growth in number of work stations wil l
probably lead to a redesign.

1 4

Figure 7. MDF/SRT Program Logic

Mul t ip le Dependent Func t ion MRT

The MDF/MRT is the most compl ica ted s t ruc tu re to
code. Not only must the program keep track of which
step is next, but i t must f i rst identi fy the terminal and
then determine what processing is next for that specif ic
te rmina l . Whereas type MDF/SRT is more l i ke ba tch
programming, type MDF/MRT adds a leve l o f
complexity that may not be desirable in the System/3

env i ronment .

An a l te rna t ive to the MDF/MRT wou ld be a
combina t ion o f s ing le func t ion SRT and MRT programs.
The avai labi l i ty of PRUF makes these types very useful
fo r so lv ing app l ica t ion des ign ; however , us ing them
involves some special considerations of interprogram
communica t ion .

I nterprogram Communication

MDF/MRT program in fo rmat ion can be passed be tween
various processes within the program. With a
combina t ion o f s ing le func t ion SRTs and MRTs, on the
other hand, in te rprogram communica t ion must be
accomplished by writ ing and reading the information
e i ther to d isk o r to the te rmina l . Us ing the te rmina l to
pass information between programs adds characters to
a busy resource, the transmission l ine. For this reason,
i t is usually better to use the disk as a holding area for
messages between dif ferent programs, since this faci l i ty
is no t usua l ly as heav i l y u t i l i zed as the t ransmiss ion l ine .
However, this choice is not an absolute; i f the
instal lat ion has 3270 screens attached to the system via
d isp lay adapter on ly , then the te rmina ls p rov ide an
exce l len t ho ld ing area , s ince the d isp lay adapter ' s
transmission rate is verv fast.

The Mode l 15D (5704-SC2 on ly) por t l ine func t ion can
suppor t task- to - task communica t ions . Thus , a p rogram

wr i t ten to communica te w i th a p rogram in another 15D
(via the port l ine statement) can communicate with a
program in the same 15D. Data is passed to the o ther
program ent i re ly w i th in the CCP communica t ions
manager .

A lso un ique to 5704-SC2, task cha in ing prov ides an
easy method of passing data between programs. Refer
to Chapter 7 in th is manua l fo r add i t iona l in fo rmat ion
concern ing task cha in ing w i th da ta .

Another consideration in choosing a method of passing

data between single function programs is the overhead

in the user task tha t i s requ i red . DFF
program-appended s to rage and ou tpu t ho ld a rea

requirements add to the size of the user task i f the

termina l i s used fo r in te rprogram communica t ion .

However, i f the disk is used there is an overhead of

add i t iona l d isk l /O. The sys tem des igner shou ld

careful ly evaluate the advantages and disadvantages of

each technique in his part icular circumstances before

choosing a method of interprogram communication.

NEP (Never-Ending Program)

A never -end ing program is a user app l i ca t ion program

which , once in i t ia ted , normal ly remains in memory un t i l

CCP is shut down. The never-ending attr ibute can be

ass igned to bo th SRT and MRT programs (PROGRAM

assignment statement). The same general

considerations described previously in this chapter for

SRTs and MRTs also apply when these programs are

N E P s .

On the Sys tem/3 Mode ls 4 , 8 , 10 , and 12 , the main

s torage occup ied by an NEP is unava i lab le to o ther

tasks, even i f the NEP terminates abnormally. On the

Mode l 15 , the main s to rage is ava i lab le aga in when an

NEP te rmina tes .

There are severa l reasons fo r us ing an NEP:

. Program usage shou ld be h igh enough so there is a

rea l advantage to keep ing a p rogram in ma in s to rage

to save program load t ime.

. The NEP may be a mon i to r p rogram per fo rming

repeti t ive functions and may not communicate with a

command te rmina l a t a l l . Two bas ic examples are :
- A program tha t mon i to rs a d isk p r in t f i l e , check ing

for documents to be sent to terminal orinters. This

use o f an NEP is d iscussed in de ta i l in Chapter 6 .
- A program that forwards messages to another

system and may also receive responses, which i t
posts to f i les for later inquiry by terminal

operators. This is a common approach in

distr ibuted systems where, for example, inventory

may be al located or ordered from a central si te

when the local si te cannot f i l l an order. The

advantage in this case is that an operator need not

cal l the NEP but merely needs to post the request

to a d isk f i le tha t the NEP is mon i to r ing . Task

cha in ing (Mode l 15D) may a lso be used to

communica te w i th the NEP.

Application Design Concepts 15

S U M M A R Y

The pr imary cons idera t ion in choos ing be tween the SRT
and MRT approaches is the amount o f t ime tha t a
program wi l l res ide in ma in s to rage. l f a p rogram rs
used infrequently, the program probably has to be
loaded when ca l led and the MRT advantage is los t . A t
what point is the use of a prograrn frequent enough to
ga in the MRT advantage? S impl i f ied queu ing theory
(Chapter 10) can be used as an a id in th is eva lua t ion ,
bu t the f ina l dec is ion res ts w i th the user .

Why no t code every p rogram as an MRT? In manv
cases , th is wou ld p resent no prob lem. However , i f the
program does extensive ci isk work between operator
interactions, a response advantage is gained by having
mul t ip le cop ies o f SRT programs runn ing concur ren t ly .
Th is advantage is no t poss ib le w i th the MRT approacn
unless the user can have several copies of the same
MRT program, each w i th a un ique name. l f the cop ies
can be assigned by terminal, the effect of mult iple
cop ies can be ach ieved.

As more users are added to the svstern, the serial use
of a program becomes more of a problem. l f several
users are queued wait ing to be serviced by an MRT
program, the last user must wait for the preceding
termina ls to be serv iced; th is wa i t t ime can become
excessive.

MIF/MRT Techn ique

The fol lowing technique may be useful in some cases:

1 . Wr i te every p rogram as an MIF/MRT. The
func t ions are a l l s im i la r and the te rmina l i s
re leased upon comple t ion o f any func t ion .

2 . On the PROGRAM ass ignment s ta tement fo r each
program, ass ign an MRTMAX va lue equa l to the
number o f te rmina ls .

Now, by ass ignment se t man ipu la t ion , the program can
be made to react in dif ferent ways. For example, with
low u t i l i za t ion and no change to the ass ignment se t , the
program acts l ike an SRT. Should two requests occur at
approximately the same t irne, the response t ime of the
second is equa l to the serv ice t ime p lus the wa i t t ime o f
the f irst to complete rather than the wait t ime to load
anotner copy.

As the ut i l izat ion of the program increases, the chances
of f ind ing the program in memory inc rease, thus
improv ing response t ime whenever serv ice t ime is less
than program load t ime. At some level of ut i l izat ion, the
lvait t ime for preceding terminals may exceed the wait
t ime fo r load . l f th is leve l i s reached, then the
assignment set can be altered to remove the MRTMAX
keyword from the PROGRAM statement. and the
program reverts to an SRT with no change to the
program itself .

There is one d isadvantage to th is approach. l f an SRT
re leases a te rmina l ra ther than jus t te rmina t ing ,

add i t iona l load is p laced on the CCP d isk d r ive s ince
t rans ien ts must be used. Remov ing the code tha t
re leases the te rmina l improves the response t ime.

1 6

Disk fi le organization can affect system throughput and
terminal response t ime in an onl ine envi ronment . Since
much of the fi le processing is random, the choice of f i le
organization is usually between indexed and direct^
Indexed organization offers a wide variety of processing
methods and ease of programnring; however, direct f i le
organization provides some key advantages that can
contribute to an efficient CCP system design:

. Fewer accesses to the disk can greatly improve
resoonse time.

. File recovery in the event of a system failure is easier
than for indexed fi les.

. Sharing fi les between programs is simplif ied.

These advantages can be crit ical to the performance of
the system, especially for f i les that are heavily used
(many accesses to the fi le). However, this does not
mean that sequential and indexed fi les should never be
used in an online system. Sequential organization is
useful for f i les that are not processed randomly, such as
some logging fi les. Indexed organization may be
satisfactory for master f i les if the fi le is not too active, if
terminal response time is not crit ical, or if high
performance disk drives (such as 3344 on the System/3
Model 15D) are avai lable.

DIRECT FILE ADVANTAGES

To appreciate the advantages of direct f i les over indexed
files for random processing in an online environment, it
is necessary to understand how indexed and direct f i les
are organized, loaded, and processed as described in
the following publications :

. IBM System/3 RPG ,l Disk File Processing
Progr ammer's Guide. GC21 -7566

. IBM System/3 Disk Concepts aN Planning Guide,
GC21-7571

. IBM System/3 Model 12 User's Guide, GC21-5142

Chapter 3. Direct Files

Direct f i le advantages are especially important for f i les
that are accessed (read, updated, added to) frequently,
require random processing, and must be accessed by
more than one program concurrent ly .

Disk Accesses

Direct f i les may require fewer accesses to the fi le than
indexed fi les for equivalent types of processing. This is
imoortant because disk access arm contention can be a
major cause o{ poor response time.

For example, adding records to indexed f i les requi res (1)
scanning the index, inc luding added index entr ies, to
ensure the record does not already exist; (2) reading the
data area where the new record wil l reside; (3) writ ing
the record; (4) writ ing the new index entry. Adding a
record to a direct f i le requires reading the record to
verify one does not exist there already and writ ing the
new record.

Depending on how a direct f i le is organized for synonym
records, a direct f i le can require additional accesses.
See Access Algorithm and Synonyms and Examples in
th is chapter for techniques of handl ing synonyms.

File Recovery

No fi le recovery is needed for direct f i les. lf all f i les in a
system are direct, the system can simply be restarted
and processing can cont inue. Some method of
determining the last successful update may be
necessary. (For more discussion on fi le recovery
procedures, see Chapter 9.)

F i le Shar ing

File sharing between programs is simplif ied when direct
fi les are used. Only two direct f i le access methods,
d i rect input (DG) and d i rect update (DU), are requi red
for processing direct f i les. Programs that process a fi le
in these ways are not rest r ic ted in shar ing the f i le .

Direc t F i les 17

ACCESS ALGORITHM AND SYNONYMS

The key to implementing a direct f i le is defining an
access a lgor i thm and synonym handl ing technique that
satisfies the processing requirements for the fi le while
preserving the advantages of direct f i les.

Determining an Access Algorithm

An access algorithm is whatever fixed (programmed)
method is used to dictate the position to be occupied by
each record. The algorithm can be simple or complex.
ln any case, the algorithm must yield a positive, whole
number as a relative record number.

In the simplest case, the input to the program (the
control field) is used directly as the relative record
number. For example, loan number 3456 could be used
without change as relative record number 3456. Another
example of a direct technique is using direct f i les to
store large arrays of data. lf element X(1O) is desired,
then the tenth record in the fi le X is read. A control
f ield should be used directly as a relative record only if
there is not an excessive number of unused values
within the range of values for the control f ield. lf there
are too many unused values (and, therefore, unused
record positions), an algorithm should be defined to
reduce the size of the fi le.

A formula can be used as an algorithm to determine the
record number. For example, if loan numbers start with
1001, then loan number 3456 wil l be relative recoro
number 2456 (3456 minus 1000). The formula can be
as complex as you need to make it. See Examples. in
this chapter, for more information and examples.

The control f ield containing alphameric data could also
be used as a basis for an access algorithm. The
algorithm must convert the alphameric data to a relative
record number. See Hadling Synonym Records for an
example of using a customer name as the control f ield.

The choice of an access algorithm and, ult imately, the
decision whether or not to use a direct f i le is usually
based on how well synonym records can be handled. A
synonym record is a record in a direct f i le whose control
f ield yields the same relative record number as another
record. lf the handling of synonyms requires a
significant number of additional disk accesses, one of
the important direct f i le advantages is lost. Also,
because access algorithm and synonym code must
reside in each program that uses a direct f i le, a risk is
involved: if the algorithm and synonym handling are
ever revised, it may be necessary to rebuild fi les and
modify all the programs that use those fi les.

Handling Synonym Records

Synonyms can be handled in many ways. Some of the
common ways are:

. Place synonyms in a separate part of the fi le,
following the home locations, the area used for home
records. A home record is a record that is stored in
the location indicated by its relative record numoer.

Home Locations Synonyms

Fi le Space

Place synonyms in the next avai lable b lank locat ion,
closest to the home location.

Synonyms

Rela t ive / \

Record Numbers
t
ua , uo t@,so

I
b7 t@lbg

lo0

Recordposit ions f f i

. Place synonyms in an area, next to the home
location, that is reserved for synonyms.

I
Home

,
Synonyms

,
Home

'
Synonyms

,
Home

,
Synonyms

,

F i le Space

In the first two methods, the record in the home
location must contain a pointer (record location) to the
synonym record. lf there are two or more synonyms for
a home location, then the first synonym contains a
pointer to the second synonym, and so forth.

l 8

In the third method, synonyms are close to the home
location. For example, assume the control field for a file
is the first five characters of the customer's name. The
file contains space for 40,000 records and allowance for
three synonyms for each home record. The customer
name is converted to a decimal value as follows:

S M I T H

Example 1

In the example used here, the major goals are to build a
fi le in which (1)the records can be accessed with an
average of slightly more than one disk access, (2) the
amount of disk space used for the fi le does not contain
excessive unused space, and (3) there is room for
growth within the fi le to easily accommodate new
records.

Defining the Algorithm

In this example, an item fi le, currently indexed, is to be
converted to a direct f i le for an online order entry
application. The key field is a five-digit item
number-four digits assigned by the user and the fifth
being a check digit. The four digits employed start with
1001, and the user merely assigns the next sequential
number to new items. Deleted item numbers are not
reused unti l number 9999 has been taken.
Approximately 20 new items are added per month, while
four items are dropped. Highest current number is
4317, but the fi le contains only 2,812 items. The
11O-track allocation assumes 12 months growth.

As a first approach, the algorithm could be stated: The
direct f i le position for each record shall be equal to the
four-digit item number. Assume that the new record wil l
be a few bytes larger than the old record, and that the
fi le wil l also accommodate 12 months of growth before
reorganization. The algorithm would require a fi le of 161

tracks containing 4.557 record positions. The mapping

of items to direct f i le positions would appear as follows:

Item Number File Position

1s t

1 000th
1001 . .+ 1001st
1002 - 1002nd
'1003 - 1003rd

E2

l
F 2

D4 C9 E3 C8

I t l l
F4 F9 F3 F8

\ l / /
2 4 9 3 8

|
,",,,0

1 2
Months
Growth

4317 e 4317th

, / / t r \
(EBCDIC code)

(zoned decimal)

(decimal)

The decimal value is then divided by 9999:

24938 + 9999 =2.4940

lgnoring the whole number of the quotient, the home
location is calculated as follows:

(4 9 2 1 0 x 4) + 1 = 1 9 7 6 1

Since there may be many Smiths in the fi le, the program
may have to read records 19761 ,

'19762, 19763, and
19764 to find the correct Smith. lf extra synonyms are
required. the third synonym could point to the next
available space in the file (possibly the next home
location will not require all of its synonym locations).
Another possibility. to reduce the number of synonyms.
would be to accept six or more characters from the
customer name.

EXAMPLES

The general steps in building a direct f i le are as follows:

1. Define an access algorithm.

2. Decide how to handle synonym records.

3. Evaluate the direct file, perhaps by using a test
program.

4. Refine the algorithm and/or synonym handling.

The following examples i l lustrate direct f i le approaches
to some online fi le reouirements.

4557 - 4557th

Direct Fi les 19

This first approach, while yielding no synonyms, uses
only two-thirds of the record positions and most of the
unused space is at the beginning of the fi le.

Assume the algorithm is revised to state: The direct file
position for each record shall be equal to the four-digit
item number minus 10O0. The fi le requires 126 tracks
containing 3,557 positions with the following mapping:

Item Number File Position

l s t
2nd
3rd

1001
1002
1003

4317

:

4557

281 9th

3023rd

This approach uses 99% of the record positions and the
fife size is only 1Yo larger than the indexed data. lt has,
however, introduced the possibility of synonym records;
item number 1OO4 (if i t exists) wil l also be assigned to
direct file record position number 3 (same as 1003).
Similarfy, item numbers 4316 and 4317 conflict, as do
4556 and 4557. Thus, the refinement of the algorithm
to meet the second major goal (minimum fi le space)
may now have impacted the first goal (minimum disk
accesses) since synonym records will take a minimum of
two accesses.1001

1002
1003

33 1 7th

455 3557th

This approach, also yielding no synon.!/ms, uses 85% of
the record positions-the unused portion is embedded
randomly within the file where items have been
dropped. Although each record only requires one disk
access, the file size still is 2O% larger than the data
portion of the former file. The algorithm can be further
revised.

Now assume the algorithm states: The direct file
position for each record shall be found by subtracting
10O0 from the four-digit item number, multiplying the
difference by 0.85. and half-adjusting the result. The file
will occupy 107 tracks with 3,023 positions under the
following mapping:

Item Number File Position

1s t
2nd
3rd

20

Handling Synonyms

Various methods of handling synonyms are described in
IBM System/3 Disk Concepts aN Planning Guide,
GC21-7571, or IBM System/3 Model 12 User's Guide,
GC21-5142. Whatever method is used. it must
accomplish two overall goals: minimum accesses and
minimum fi le space. The more immediate goal is to
define (program) the manner in which a record wil l f ind
an alternate position when its f irst location choice is
f i l led.

Further analysis of the item fi le example might offer
some suggestions for synonym handling. Note that a
synonym can only occur about once in seven records.

The previous algorithm causes the following mapping
(asterisks identify synonyms):

Item

1001

Position I tem

1OO2 +
't 003 '
1004 +
1005-

1006 '
1 007
1008*

Recall that approximately one in seven item numbers is
unused due to deleted items-the fi le is only 86% full.
Thus, you might expect to find an unused position in the
direct f i le with about the same frequency as the
synonyms occur.

Assume the method of handling synonyms can be
stated: A synonym record wil l be placed in the next
higher numbered position that is unused. Since the fi le
uses only 85o/o of the range of numbers, 15% of the
numbers wil l not be used because thev are deleted.
However, the deleted numbers are randomly distributed
through the entire range of numbers. Thus, there wil l be
some positions available in the fi le for synonym records.
(About every seventh number wil l be a synonym or
14%). Let's assume that of the first 40 item numbers.
i tems 10O7, '1008, 1015, 1017, 1020 and 1039 are
among those deleted numbers.

1
2
3 *
3 *
4
5
6
7

Position

1009* 8
1 0 1 0 - 9 *
1 0 1 ' l - 9 *
1 0 i 2 - 1 0
1013."..............- 11
1 0 1 4 - 1 2
1015 -...........................* 13
1016"..-.".............._ 14*

Item Position

1017 - 14*
1019- 15
1 0 1 9 + 1 6
1020 - 17
1 0 2 1 - 1 8
1 O 2 2 , 1 9
1O23 - 2O*
1024 _ 20*

Direct Fi les 21

Item Position Item Position Item

1001 , 1
1002 - 2
1003 - 3
1004 ..- 6
1005 - 4
1006 + 5
1009 - g

1 0 1 0 + g

1 0 1 1 + 1 3
1 0 1 2 _ 1 0

Note the following:

1013 . . _ 11
1O14 - 12
1 0 1 6 - 1 4
1 0 1 8 - 1 5
1 0 1 9 ' 1 6
1 0 2 1 - 1 8
1022 _ 19
1023 + 20
1024 - 33
1025 + 21

. ltem number 1031 wil l occupy some position
numbered greater than 34.

. ltem number 1037 wil l occupy a higher numbered
position than wil l i tem number ,|031.

. Record positions 7 and 17 are unused.

. After accessing a record, the program will have to
verify that the record is the one that the program
really wants; if i t is not, the program must access a
synonym.

. There will not be more than two items with the same
relative record number; thus, most records requtre no
more than two disk accesses.

Note: This assumes that records are loaded into
home locations before synonym records are loaded in
a second run; this also assumes that there wil l be
few added records. lf records are added after the
home records and synonyms are loaded, the home
locations for the added records may be occupied by a
synonym. Thus. the added record becomes a pseudo
synonym. lf many records are added, it is likely that
most wil l have to be handled as synonyms. ln this
situation. the technique described here may be less
useful, because performance tends to degrade as
records are added.

In this synonym-handling technique the average
synonym should be close to the first position searched.
Thus, a second access is necessary approximately 1|o/o
of the time, and this access, hopefully, f inds the record
not too distant from the home location.

1036 + 31
1037 - * *

1038 ' 32
1 0 4 0 - 3 4

At this point, the fi le should be loaded (home positions
only) and the synonyms added in a second pass. As the
synonyms are added in the next available higher
numbered position, a synonym pointer in the nome
record wil l have to be updated to point to the synonym
record position.

Evaluating the Direct File

At this point, a program should be written to assess the
fi le organization in l ight of the goals for the fi le. The
program might measure factors such as:

. Number of accesses for the average record

. Which records require two accesses

. Distance between record locations for synonyms

. Where the unused positions are in the fi le

. Which records require three accesses (if any), four
accesses, etc

The data reported by the program should be analyzed in
terms of the user's requirements. lt may not be
sufficient just to report that records require 1.17
accesses on the average. Perhaps most of the
synonyms are on one end of the fi le rather than
randomly spaced. lt could occur that the second access
for synonyms was averaging 41 tracks, and half the
synonyms were among the top 10%o in fi le activity.
Such a condition might necessitate putting all synonyms
together in the middle of the fi le or in a separate fi le for
faster access. Perhaps the most active records should
be loaded first to guarantee that they wil l not be
synonyms.

Position

1026 - 22
1027 _ 23
1028 - 24
1029 + 25
1030 ' 26
1 0 3 1 - * *

1032 - 27
1033 . 28
1034 ' 29
1035 - 30

Item Position

22

Refining the Algorithm arf,/or Synonym Hardling

To further meet the needs of your system, refinements
to the algorithm and/or synonym handling might be
added. For example:

. Load items 1024, 1377, and 18214 in a preliminary
pass so they wil l be found on the first access
(because they are the more active items).

. Subtract 3024 from each fi le position and change the

result to a positive number so the newer items wil l
appear at the front of the fi le.

. Chain to another fi le on a separate drive for
synonyms.

Example 2

Assume a customer master f i le contains three types of
records (A, B, and C) for three types of customers.
These records are in an indexed fi le where type A
records have keys (customer numbers) from 10OO0 to
49999, type B are numbered from 60000 to 79999, and
type C from 9000O to 99999. Each type of record is
arranged alphabetically by customer name.

The file was first loaded with approximately 500
alphabetized type C records, followed by 1,O0O
alphabetized type B records, and finally about 3,OO0
alphabetized type A records.

Additions have been made at the end of the fi le in the
following manner: f irst, the added record Vpe is
determined (A, B, or C); then it is assigned an unused
customer number that corresponds to the alpha
sequence of the customer name according to a l isting of
the fi le. When first loaded. the contents of the fi le were
as follows:

Record +0001 Customer'190000) -
Record #0002 c,;i;;;; ffi;;; I]uo'

c (arphabetical

Record #0003 customer #90040)
oy customer name'

Record #(,467 Customer #60020) -
Record #0468 r,;;;ff i ;;; l]to'?

(aleha?eli:al

Record #0409 customer #00060)
Dy customer namer

Record #1592 Customer #10000)
Record #1 593 Customer #1 00131 Type A (a lphabet ica l
Record #1594 Customer #10026 [bv customer name)
Record #1 595 Customer #1 0039 t

The fi le originally contained 4.725 records (space was

allowed for 6,000). Eighteen months later, the fi le

contains 5,638 records.

An analysis of the fi le indicates the following

. The fi le is experiencing about 12o/o ?nnual growth

and should probably be planned for about 6,600

records to meet one year's requirements.

. Customer numbers 10000-50000 are 8%o used, while

the other numbers are 5% used.

. Synonym records should be kept as close as possible

to the home location.

. The best f i le design solution might be more than one
file and more than one type of f i le organization.

. l f a l l the customer numbers wi l l res ide in one f i le , an

algorithm must take into account the necessity of
loading the type C customers at the front of the fi le'

followed by the types B and A.

. The rat io of A:B:C types is about 6:2:1.

A trial algorithm might try to accomplish the following

mapping:

Customer
Number

90000-99999
60000-79999
1 0000-49999

Type File Record Number

C 0001'0733 (1/9 x 6600 = 733)
B 0734 2200 \219 x 6600 = 14671
A 2201-6600 (6/9 x 6600 = 4400)

In order to accompl ish the mapping, the a lgor i thm must :

. Convert the customer numbers 90000 to 99999 into a

set of relative record numbers from 1 to 733

. Convert the customer numbers 60000 to 79999 into a

set of relative record numbers from 734 to 22OO

. Convert the customer numbers 1OOO0 to 49999 into a

set of relative record numbers from 22O1 to 6600

') i . ,

.! i!-.*. '. :

'ii :

:

Direct Fi les 23

One method of doing these conversions is as follows:

. lf the customer number is greater than g9999.
subtract 89999 from it, then multiply the difference
by .0733 (the ratio of 733 positions to 10.000
numbers), and use the half-adjusted product for the
record position.

. lf the customer number is less than SO0O0, subtract
9999 from it, then multiply the difference by 0.11 (the
ratio of 4,400 record positions to 40,OOO record
numbers), add the half-adjusted product to 2200. and
use the sum for the record position.

. For all other customer names (60000 to Tgggg),
subtract 59999 from the number, multiply it by
0.0733 (the ratio of 1,467 record positions to 2O,OOO
numbers), add the half-adjusted product to 733, and
use the sum for the record position.

The synonym handling technique might be the same as
in Example 1.

The test of success, as with Example I. is to implement
the algorithm/synonym handling technique by loading
the fi le. Then the success can be measured by another
program which attempts to retrieve all records ano
counts the number of accesses necessary. The results
of the second program dictate whether modifications are
necessary or desirable. To further test the fi le, a sampre
program can be run in an online environment to see
whether response times at the terminals are acceptable.

Example 3

Other master f i les might have altogether different uses
and for that reason use different techniques. Consider a
rate fi le in a telephone revenue accounting application
wherein one record exists for every from_to location in
the United States. A call made from number (507)
286-5688 to (518) 392-5536 would require the retrieval
of a rate record from the master f i le that would have a
key of 507286518392. How can such a number be
equated to a relative record position on a direct f i le?

One algorithm might be to multiply the numbers 5072g6
and 518392 together and use the second, fourth, sixth,
eighth, and tenth digits of the product as the relative
record position. This technique might yield a ranoom
distribution across a fi le for approximately 1O0,O0O
records. Another algorithm might be to take the second,
fourth, sixth, eighth, and tenth digits from the 12_digit
key. Thus, the first algorithm might locate the rate
record in relative position 69301 (202979004112), while
the second might place the same record in position
02613. Some records, for a given bil l ing location, would
be far more active than the majority of the records.
These very active records might be placed in a separate
fi le which may or may not be direct.

The techniques described in the previous paragrapn are
randomizing techniques. Many randomizing techniques
are employed by users of direct f i les. Regardless of
which technique is used, the concept and approach
should be well documented in each program that uses
the technique.

24

TRANSACTION FILES AS DIRECT FILES MASTER FILES AS DIRECT FILES

Typically, transaction fi les (order records, deleted Jhe nraster f i les irr online clperations are also often
invoices, purchase records, and other transaction becoming direct f i les. In many instances, the user may
records) are the first in an online environment to be converting from a batch system and already have
become direct f i les. The reason for this is that the indexed nraster f i les. Changing these fi les from indexed
operator usually must page back and forth through these to direct could cause problems for the existing batch
fi les, add new records, delete old records, review all or applications that must also continue to use them. The
part of a fi le due to an inquiry and rely on very fast following paragraphs describe some compromise
response time at the terminal. solutions to satisfy the requirements of both the batch

Another reason for using direct organization for
and the online applications

transaction fi les is that they can be updated easily by A master f i le tfrat has served a batch design for a period
multiple programs (a fi le that is processed as of t ime rnay have nrore information in it than is needed
consecutive output cannot be shared). Another program for an online applicalinn. A new fi le could be created to
can access the data and do further processing on the contain a subset of the information in the batch master
data just as soon as the data is put into the fi le by an fi le; only those fields that are needed by the online
update program. Communication between the programs application would be retained. There may be other
can be accomplished by the update program inserting a deficiencies in tire lratch master f i le that can also be
special character in each record that contains valid data, corrected wherr a sef)arate fi le is created for the online
and the following program deleting that character as it applications. In acldit ion to eliminating the unneeded
processes that data. Thus two or more programs can fields, the desigrrer mav want to add new fields that are
loop through a direct f i le, f i l l ing it with data and needed. In effect, a specialrzed master f i le is created to
processing the data, because the updated information is serve very specific design needs--no extra fields, smaller
available immediately to other programs. For more fi le, faster retrieval of information, and faster response
discussion on the use and design of transaction fi les, t imes at the ternrinals" There are some potential
see Chapter 9, System Security/lntegrity. problems with fi le integrity, since the same information

rs now in two or more different f i les. There may also be
some addi t ional f i le rnaintenance.

Can the benefits of this approach possibly outweigh the
disadvantages? The major consideration is whether or
not the online version of the master f i le contains fields
that wil l be uodated and thus differ from the true master
f i le va lues. Wi th carefu l p lanning and design, the
technique described in the following paragraph can solve
th is problem.

Once a day, run a program that passes through the true
master f i le and creates the online version. Process
against the onl ine vers ion dur ing the onl ine run as i f i t is
the true master f i le, updating fields as required, or.
perhaps, creating a separate transaction fi le of updated
records. At the end of the online execution, or
concurrent with it, run a batch program against the
online master f i le or the separate transaction fi le to
update the indexed master f i le. At the end of the CCP
run there should be agreement between the indexed
master and the online master f i les, or reconcil iation
between these fi les and the transaction records created
during the online execution. Further attempts to
reconci le f ie ld values among the f i les might be done
through a t ransact ion log f i le .

Direct Fi les 25

26

Programs that are executing concurrently under CCp can
share the use of f i les. With some restrictions, f i les can
even be shared among programs that are running
concurrently in different partit ions of the System/3
Model 15D. The system designer should give careful
attention to fi le sharing, because it can have a
significant effect on system throughput and terminal
response time. lt is especially important to consider the
effects of f i le sharing in a transaction-oriented
processing environment, because multiple copies of the
same SRT program may be running concurrently using
the same fi les.

The purpose of this chapter is to describe how fi le
sharing affects CCP performance and to provide some
system design recommendations. The reader should
refer to the CCP Programmer's Reference Manual lor
specific f i le sharing guidelines and restrictions on vanous
System/3 models.

FILE UPDATE CONFLICT

When two programs are updating the same fi le and the
first program accesses a particular sector or block of
sectors of that f i le, CCP prevents other programs from
updating that data unti l the first program completes the
update. This is known as sector protect. The conflict
caused by this situation can result in a noticeable delay
in the execution of the second program; this delay might
show up as a degradation in response time at a
terminal. lf the application is designed so that multiple
terminals call SRT programs that may update the same
records of a fi le, this confl ict situation must be
considered.

The seriousness of f i le update conflicts can be greatly
reduced through proper design. The likelihood of
conflict can be reduced by using a minimum block size.
This reduces the probabil ity that two programs wil l try
to access the same block of sectors at the same time.

Ghapter 4. File Sharing

Another way to reduce the l ikelihood of confl ict is to
avoid using control records that are updated frequently
by different programs. Contention for access to a
control record becomes particularly noticeable if your
programs do considerable processing between reading
and updating the control record. Programs that update
control records should be designed to read the record,
do minimum edit-type processing, update the record,
and then perform any extensive processing that is
required.

CCP/DISK SORT FILES

CCP/Disk Sort f i les should not be shared. The sort
work fi les and output f i les cannot be shared, and the
input f i le should not be shared with a program that adds
or updates the fi le while the sort program is in process.
In an online order entry transaction processing
application, where records entered into a transaction fi le
are to be sorted for each order, the records should be
written from the transaction file to a nonshared sort
input f i le (see Chapter 8, Sort Urder CCP). lf the
transaction fi le is used as the sort input f i le, the
terminals should not be allowed to add to or update the
transaction fi le while the sort program is in operation. In
most cases, this would be an unacceptably long lockout
time for the transaction fi le.

File Sharing 27

ANALYZING FILE SHARING CONFLICTS

Fr le shar ing considerat ions are qui te conrplex. perhaps
the best way to start analyzing potential confl icts in
appl icat ions is to make a char t l is t ing a l l programs
(inc luding maxirnum possib le number of copies of SRTs)
across the top of the chart and all f i les down the side.
The f i les used by each program should be ident i f ied on
the chart. In this way, the fi les that are used by many
programs are identif ied and can be concentrated on for
f i le shar ing considerat ions. Possib le ser ious conf l ic ts
can be ident i f ied by answer ing quest ions such as:

. Which programs must be operat ing at the same t ime?

. Can mul t ip le copies of the f i le be used?

. Will different programs access the same records at
the same t imeT

. Do some programs requi re that the f i le not be
shared?

. ls response t ime a considerat ion in programs using
th i s f i l e?

. Does appl icat ion logic requi re that the f i le not be
modified while the program is executing?

. Can a program using th is f i le be run in batch mode?

l f f i le shar ing is not real ly needed for cer ta in programs,
make sure that NOSHR is speci f ied for those programs
in the assignment set. Letting the parameter default to
SHR wi l l cause addi t ional processing overhead, because
each add or update record must be written out
individually instead of being written out when the buffer
is fu l l .

By analyz ing f i le shar ing requi rements carefu l ly , the
system designer can reduce or perhaps e l iminate f i le
shar ing conf l ic ts . Wi th an understanding of what the
potential confl icts are, the system designer can design
appl icat ions to avoid the more l ike lv t rouble areas.

In onl ine appl icat ions us ing d isplay terminals, the key
objective is to service the terminal operator; therefore,
the system must be designed to service the terminal.
Good screen design can improve operator productivity
and improve the performance of the system.

This chapter focuses on the screen design
considerat ions re lated to us ing 3270 d isplay terminals
with CCP. The reader should consult IBM 3270 Screen
Design Student fext, SR20-4441 , for a comprehensive
discussion of the human factors asoects of 3270 screen
design, the various types of formats, relationships
between application types and screen types, and other
screen design considerations for the 3270 that are not
specifically related to CCP.

The screen design guidelines presented in this chapter
fa l l in to two general categor ies:

. Human factors considerat ions: operator ease of use

. Per formance considerat ions: ef f ic ient use of main
storage, processing time, and transmission facil i t ies
for maximum throughput and satisfactory response
t ime

These two categories are interrelated: operator ease of
use affects system throughput and performance; a
proper interval of response time from the system
contributes to operator productivity and satisfaction.

HUMAN FACTORS CONSIDERATIONS AND
TECHNIOUES

Before very many screen design decisions can be made,
certain questions about the terminal operators must be
answereo:

. What type of operators wil l be used? Are they
dedicated to th is job and t ra ined in the appl icat ion, or
are they occasional operators? What is their aptitude
or sk i l l level?

. How do the operators receive their input? By
telephone? From a handwritten order form?

. What is the previous experience of the operators?
Wi l l they be wi l l ing to change thei r method of doing
the job? What wil l be the turnover rate?

Chapter 5. 3270 Screen Design

. What is the best response time for the operator?
Response t ime should be nei ther too fast nor too
slow. lf the response time of the system is too slow,
the program can give a preliminary response or
acknowledgment to assure the operator that the
system is working. lf response time is too fast, an
intent ional delay can be bui l t in to the program to
prevent harassing the operator.

. What kind of keyboard are operators experienced
wi th?

. How will the system respond to operator errors?

General Guidel ines

In general , input screens should be designed for ease of
key entry; output screens should be designed for ease
of reading. Keep in mind that the requi rements of
application-trained operators are different from the
requirements of occasional operators.

Application-trained operators should require fewer
prompts and headings and can make more use of
short-form data and abbreviations. They also usually
require shorter response time for maximum productivity.

Occasional operators need more prompt ing and
assistance, but can usually tolerate longer response
t imes. Remember that operators who are prof ic ient in
entering data do not look at the screen often and may
require the audib le a larm to a ler t them to errors.

The fo l lowing paragraphs should serve as a guide to the
screen designer.

3270 Screen Design 29

Display a Small Anpunt at One Time

The screen should be kept uncluttered and include only
meaningful information, For example, do not display the
entire record on an inquiry if the normal use is to look at
one or two fields. Instead. display only the necessary
fields and, perhaps, provide a function that allows the
operator to display the entire record when it is required.

The 1,920-character screen is not intended only for
displaying more data; part of the advantage of large
screens is that they allow more flexibil i ty for designing
readable scr€ens. In some applications, it may be
desirable to skip l ines between each line of displayed
material and to limit the lines to 4O characters.
However, in applications where the user has large
volumes to display on a screen, these rules would be
unacceptable. For example. when providing order entry
screens for drug applications, one finds an item such as
toothpaste results in a large screen because of the many
different brands and sizes. In this kind of application,
l imited l ine length and skipping of l ines would l ikely not
be used.

Certain applications result in screens where data is
accumulated from screen to screen. Up to a point this
may be desirable; however, if the designer is not
careful, the screen gets too cluttered and eventually
contains useless information. The screen designer may
wish to use nondisplay fields for information that is not
needed by the operator. (The designer should be aware
that transmitting several screens can cause excessive
transmission time in a remote l ine environment.)

Clarity of Format

Clarity of format can be partly achieved by displaying a
small amount of data at one time to prevent a cluttered
screen. Format clarity can be improved by organizing
information in columns, avoiding unnecessary
indentations (left justifying), or eliminating unnecessary
punctuation.

The screen text must be clear to the operator. There
should be no questions as to the information desired.
yet the text should not be wordy. The designer should
avoid difficult words, symbols, abbreviations, and
contractions. lf special codes or abbreviations are
necassary, the designer should include a means of
explaining them to the operator; for example. a program
function key could be used to request a help screen.

One ldea Per Display

Whenever possible, screen formats should contain
information concerning only a single aspect of an
application. For example, a format should not be used
to query a fi le and perform an update at the same time.
By concentrating on a single idea at a time, there is less
chance for error, faster entry of data, and easier screen
maintenance.

Shorter Operator Responses

Whenever possible, keep operator responses short.
These responses can include codes, mnemonrcs. or
abbreviations as long as the operator is trained to use
them. Cursor positioning by the operator should be kept
to a minimum. Instead, autoskip should be used,
formats should be designed that do not require the
operator to space over unused fields, and the cursor
should be positioned under program control.

Always Acknowledge Operator lnput

Operator interaction with a display screen is always
conversational; therefore, the designer must always be
concerned about how long an operator waits for a
response. lf the response wil l be slow in reaching the
operator, the program should immediately acknowledge
the receipt of the input. Always try to avoid a situation
where the operator is sitt ing at the terminal wondering
whether the input was ever received.

A good technique to use with large-volume output
screens to reduce operator wait t ime is to transmit the
screen in small blocks. This does not shorten the overall
response time, but it reduces the time the ooerator has
to wait before output begins to appear. In order to
transmit a screen in blocks, the application program can
issue an acquire terminal operation specifying an
attribute set that has a block length of 512 with DFF. A
disadvantage of this technique is that the screen blinks
as each block of data is received by the terminal. lf
blinking is excessive, it may become irritating to the
operator.

30

Stardards Between Screens

Every application has its own particular requirements.
but it is good practice to maintain certain standards
across applications, such as similar screen formats and
similar dialogue, abbreviations, codes, and mnemonics.
This is particularly important when the same operator is
performing more than one application. lt is a poor
procedure to be constantly switching the op€rator
between different types of dialogue and screen formats.
The standards established within an application are even
more important than those betwaen applications.

Use of PA and PF keys should be standardized between
formats and applications. For example, avoid having
PFl perform a specified function for one screen and PF2
perform the same function for another screen. Of
course, it may be necessary to use a key in an
application-unique function, but a legend should then be
used to tell the operator about the nonstandard use of
the key.

Ease of Correction

The operator must be instructed in use of the ERASE
EOF key and ERASE INPUT key to correct input before
entry to the system. A procedure should also be
programmed whereby the operator can request a cleared
screen (that is, a format with no data in the variable
fieldsl or a menu screen.

Programmed procedures must also be established for
ease of correction after the data has been entered. such
as :

. Use high intensity for fields that are in error.

. Sound the audible alarm.

. Place the cursor at the field that is in error.

. Allow retrieval of previously entered data for
correction-especially important for data collection
applications.

Clarity of lnstructions to Operator

The messages to the operator must be clearly
recognizable on the screen and be short but
understandable. The instructions can be displayed in
high intensity and set apart from the rest of the
information on the screen to attract the operator's
attention. The audible alarm is useful to alert the
operator to a message

The location of messages on the screen should be
standardized across all applications. Frequently,
operator messages are placed at the bottom of the
screen. They can be set off from the other information
on the screen with special characters such as asterisks
or minus signs; however, this adds to the amount of
transmission required.

Provide Means for Help

Not only must the operator be told of problems, but he
or she should know what actions to take. These actions
must be included in the written operator's procedures

for the application. lt may be desirable to program

certain routines that assist the operator when help is
required. This help can be obtained by entering special
commands in a specified field on the screen or pressing

a predefined PF or PA key.

Make the Operator Feel Comfortable

Most of the preceding guidelines can be summed up
with this one guideline. The operator is using the
terminal as a tool to do a job. As with any tool, the
terminal should be easy to use, make the job easier for

the user, and enable the user to do a better job. At the

same time, application programming and screen design
should take advantage of the operator's intell igence and
make the operator feel important; they should not bore,
scare, or harass the operator. Be sure to employ as
many features of the terminal as necessary to assure the
best possible job.

Whenever possible, give the well-trained operator the

opportunity to init iate shortcuts in going from one
screen to another. For example, do not always force the
operator back to a menu screen to select the next
screen to be displayed. PF keys can be used to
implement this facil i ty.

3270 Screen Design 31

Specific Suggestions by Application Type

Some specific screen design suggestions for inquiry, f i le
update, and data entry types of applications are given
here. Relationships between application types and
screen types are described in the IBM 3210 Screen
Design Student fext. The reader is urged to refer to that
publication for information on those relationships.

lnquiry Applications: The following suggestions apply to
inqui ry appl icat ions:

. Show only the data that is normally sought; provide
the option to the operator to look at more data if
necessary.

. Make limited use of headings on output screens.
Arrange fields so that the information returned stands
out wi thout numerous headings.

. Avoid extraneous information on output screens, sucn
as asterisks that are used to outl ine information.
Avoiding unnecessary information improves the
readabil ity of the screen, reduces the size of the
format that must be stored on disk, and reduces the
amount of data transmitted.

File Update Applications: The followirig suggesrions
apply to f i le update appl icat ions:

. l f the f i le is being updated only (no records are being
added) the screen should contain only the item being
updated.

. l f records are being added to the f i le , i t mav oe
useful to retain previous adtl it ions on the screen.

. The operator should always enter data on the same
line, such as the bottotn or a rniddle l ine. lf error
conditions occur, the item irr error is reclisplayed with
high in tensi ty and the audib le a larnr .

Order Entry and Data Entry Applications: The following
suggestions apply to order entry and data entry
appl icat ions:

. The screen format should be compatible with the
anput document used by the operator. The sequence
of fields on the input document should be the same
as the sequence on the screen. Either the screen
should be designed to conform to the document, or
the document should be designed to conform to the
screen format.

. Errors on the screen should be highlighted in some
way for the operator, such as by using the audible
alarm and high intensity.

. Fields on input screens should be laid out so that the
most frequently used fields are entered first, followed
by less frequently used fields. ln this way. operator
productivity can be improved because the operator
wil l not have to tab across infrequently used fields.

. lf operators wil l enter data based on verbal
(telephone) conversation, design the screen in the
sequence the operator usually directs the
conversatron.

. In order entry applications, either the whole order is
kept on the screen as it is entered, or only the
previous entry is displayed to enable the operator to
keep his or her place. lf only the previous entry is
displayed, a separate program (init iated by a function
key) should be available to display the entire order for
review. In data entry type applications such as
entering data into a fi le, one line of data should be
on the screen at a time to reduce the amount of data
transmitted and improve operator efficiency.

. Be aware, when transferring an operator keying job
from a batch keying device (such as 3741) to an
online keying device (such as 32771, that the online
operator will always take longer to do the job due to
resoonse time.

32

Example:. Three Approaches to Screen Design for
File Update

This example compares three different methods of
screen design for a fi le update application. Comparisons
are made from the following viewpoints:

. Operator keystrokes

. Number of characters transmitted

. Amount of editing and updating that the application
program must do

Assume the following data fields:

Length

5
25

5
5
o

6
o

1 0

Keystrokes: To change a field, the operator must:

. Tab (except to change balance on hand)

. Key data

. Press ERASE EOF

. Press ENTER

For example, 1O keystrokes are required to change the

cost f ield (two tabs, six characters, ERASE EOF, and
ENTER).

Characters Transmitted: All output/input fields are
returned to the program. Therefore, 92 characters are
transmitted (68 total data characters for the eight f ields
plus three control characters per field).

Editing aN U$ating; All fields must be edited and

updated.

Second Methd

In this method, the data fields are output f ields and
updates are keyed into input f ields. The terminal
operator moves the cursor to the beginning of the
appropriate input f ield and enters the change.

Output Fields J
I

Input F ie lds

Field

I tem number
Descr ipt ion
Balance on hand
Balance on order
Cost
Sel l ing pr ice
Warehouse location
Vendor (suppl ier)

First Method

In this method, all data fields are output/input f ields.
The terminal operator moves the cursor to the beginning
of the field that is to be changed and enters the new
data over the old. The cursor is init ially positioned at the
balance on harrd field, because the item number and
description are rarely changed.

I T E M 9 8 6 0 2
D E S C W I D G E T S ' 1 , 0 - I N
B A L O H 9 3
B A L 0 0 1 0 7
c o s T 1 ' . e 2
S E L L 3 . L 4
W H L O C 9 8 / 2 6
V E N D O R I B M

L Output / lnput F ie lds

I T E M 9 8 6 0 2
D E S C ! I I D G E T S T] ' O - I N
B A L O H 9 3
B A L O O L O 1
c o s T 1 , . 9 2
) t L L J r i +

f d H L 0 C 9 8 / 2 6
V E N D O R i B I ' 4

3270 Screen Design

Keystrokes: To change a field, the operator must:

. Tab

. Key data

. Press ENTER

For example, nine keystrokes are required to change the
cost f ield (two tabs, six characters, and ENTER). ERASE
EOF is not required because data is being entered into
input f ie lds.

Characters Transmitted: Only the changed fielcls are
returned to the program. For example, nine characters
are transmitted if the cost f ield is updated (six data
characters and three control characters); 16 characters
are transmitted if balance on hand and balance on order
fields are updated.

Editing and Updating: Only the fields that are actually
changed must be edi ted and updated.

Third Method

In this method, the data fields are output f ields and
changes are entered into one free-form input f ield. The
cursor is in i t ia l ly posi t ioned at the input f ie ld.

Code L inks Output F ie lds

Keystrokesr To change a field, the operator must:

. Key the code link (followed by a slash)

. Key changed data

. Press ENTER

For example, nine keystrokes are required to change the
cost f ield (code link, slash, six characters, and ENTER).

Characters Transmitted: Only one field is returned to
the program. For example, 1 1 characters are transmitted
if the cost f ield is updated (code link, slash, six data
characters, and three control characters). lf more than
one field must be changed, a separate transmission and
separate disk access are required for each.

Editing and Updating: Only rhe field that is changed
needs edi t ing and updat ing.

PERFORMANCE CONSI DERATIONS AND
TECHNIOUES

The screen design techniques described in this section
can help to improve the performance of the system in
one or more of the following ways:

. Reduce the overall main storage requirement of CCp
user tasks

Reduce the amount of data transmitted

Reduce operator t ime, errors, and keystrokes

Make fu l l use of avai lable CCP fac i l i t ies

Display Format Faci l i ty (DFFI

Despi te the addi t ional main storage requi rement in CCP
for DFF, DFF should be used to design and generate
display formats. The benefits of DFF, ease of format
description and ease of programming, usually outweigh
the costs in terms of additional CCP overhead. DFF
offers the additional benefit of allowing formats to be
tested using the display format test routine prior to
using them in an appl icat ion.

A I T E I q 9 8 6 0 2
B D E S C I ^ J I D G E T S T] ' O - ' I N
C B A L O H 9 3
D B A L O O 1 0 7
E C O S T L . 9 2
F S E L L 3 . \ 4
G f , ' t H L o c 9 8 / 2 6
H V E N D O R I B I ' 1 .

?

+ f I T
t

Free -Fo rm Inpu t F ie ld

34

Program Request Under Format (PRUF)

One of the primary advantages of PRUF is that a
program does not have to be in main storage during a
lengthy operator keying operation. The following are
some screen design considerations when using PRUF:

. lf the terminal receiving the PRUF format is also the
terminal that requested the program issuing the PRUF
format, ENDMSG-NO should be specified in the
PROGRAM assignment statement for the program.
This prevents positions 82 through 160 of the screen
from being cleared by an ending message when the
program terminates.

. Always keep positions 82 through 160 of the screen
open to receive system messages. This is required
because messages from the system, such as a
system operator shutdown request, can be sent to
the terminal while the terminal is not under user
program control (while the operator is keying into the
screen). In order to keep positions 82 through 160
open, do not define any fields for those positions at
display format generation time.

. In some cases, the screen provides a convenient
buffer for passing control information and other data
from program to program in a PRUF string. This
technique can eliminate some disk fi le accesses for
temporary transitional data storage. There is a hazard
in passing information in nondisplay form, however,
since the operator can unknowingly destroy the data
by pressing the CLEAR key. lf the operator should
not see the information, it is better to keep the data
in a disk fi le. In no case should the operator have to
repeat previous steps in the application and reenter
the input because of pressing the CLEAR key.

Headings and Prompts

Keep the wording in headings and prompts to a
minimum. Use common abbreviations; for example, use
OTY instead of OUANTIW. Also, use abbreviations
unique to the applications; for example, use ORD for
ORDERED OUANTIry and SHPD for SHIPPED
OUANTITY. In some instances, headings can be
omitted; for example, SOLD TO NAME & ADDRESS.
Standardize headings and prompts among formats.

lf a series of screens with common headings is used,
consider transmitting the headings as a separate screen
format. This reduces the total amount of transmission.
since headings need only be transmitted once. Reducing
transmission time is especially important for remote
terminals, where transmission time is more crit ical than
for local terminals that are attached via the display
adapter. Headings can be transmitted separately by
means of the overlay screen technique. Subsequent
screens must not erase the init ial heading screen.

Attribute characters

Minimize the number of attribute characters on a screen.
Each attribute written to the screen requires five
transmission characters {two characters if the attribute is
being written to the present screen position). Attribute
characters are generated by the display format generator
routine, DFGR, based on the display format
specification.

To reduce the number of attributes on a screen, heading
lines should be used with the data entered below the
headings. ln this way, only one attribute is used for
heading l ine' Avoid the sequence:
heading/data/heading/data on the same row since
each heading requires its own attribute.

3270 Screen Design 35

Field Descriptor Table (FDTI

The FDT, as created by the format generator, must be
available in main storage during the execution of a user
task. The size of the largesr FDT associated with a
program is specified in the PROGRAM statement during
the assignment run. The size specified is rounded up to
the next multiple of 256 bytes and that amount of
storage is allocated at program load time (plus an
additional amount, based on the number of terminals
and number of formats). The smaller the FDT, the
smaller is the main storage requirement for the task.
(See Chapter 11, Performance fips for further
information about the FDT.)

The screen designer can reduce the size of the FDT in
the following two ways:

. The number of f ields defined in the screen format
can be reduced by eliminating unnecessary fields,
such as headings and prompts that are not essential,
or by combining two or more fields into a single field.
ln order to know when it is advantageous to reduce
the number of f ields, the designer should be aware
that 17 field description entries can fit into the first
256 bytes of the FDT and 18 entries can fit into each
succeeding 256 bytes. Therefore, it is advantageous
to reduce the number of f ields defined if, by so
doing, an entire 256 bytes of FDT can be eliminated.
For example, if 37 fields are defined, three 256-byte
increments of storage are required for the FDT.
Eliminating two field definit ions reduces the srze
required for the FDT by 256 bytes. Thirty-five fields
(17 plus 18) wil l f i t into two 256-byte increments of
storage.

. Output f ields can be defined with an F specified in
column 16 (data source) of the DFF field definit ion
form. lf F is specified in this column, CCP does not
build an FDT entry for a field. The F designation
should be used when output data is defined at
generation time and the field wil l not be used in put
override operations.

Put Override

Appropriate use of the put override operation can
improve system performance by reducing the amount of
data transmitted and by reducing the number of disk
accesses for formats. In many instances. especially in
error situations, use of a put override operation can
make retransmitting a full screen unnecessary. Some
suggested uses for the put override operation are:

. Put error messages to the screen.

. Highl ight f ie lds in error .

. Position the cursor at the next f ield after an error.

. Change the status of an existing format, such as
restoring the display to its original condition.

. Highl ight error messages on the screen. In some
applications, error messages can be kept on the
screen in nondisplay status. In case of error, a put
override operation can be used to change the
attributes of the message to display it, perhaps using
high intensity.

Overlay and Segmented Screens

Overlay screens can be used to reduce the amount of
data transmitted. Overlay screens can be used when
some data is to remain on the screen and a part of the
data is to be replaced. Screens can also be segmented,
with different parts used for the different steps in a
process. Figure 8 i l lustrates the use of overlay and
segmented screens.

lf overlay or segmented screens are used in a PRUF
environment, Program A might terminate leaving a
screen that is composed of several different segments
from separate formats. lf Program B, the PRUF read
program, is to receive the entire screen as input,
Program B must use a single format that defines all the
fields it needs, using identical f ield locations. The
format used by Program B can have a different name
from the formats used by Program A.

36

Overlay Screen

Program A transmits
format @ to tfre terminal
and then repeatedly
transmits and receives
information using
format

O.

Segmented Screen

Program A transmits
three formats (segments),
each from a different
step in its processing.

Figure 8. Overlay and Segmented Screens

Format

Format

Format

3270 Screen Design

38

Using printers in programs that run under CCP requires
special program design considerations. Two types of
printers can be used in CCP programs: the system
printer and terminal printers. The system printer is a l ine
pr inter on System/3 Models 8, 10, 12, and 15; and a
serial (matrix) printer (115 characters per second) on the
System/3 Model 4. Terminal printers are from the 327O
famify (3284,3286,3288) with maximum rated speeds
of zlo cps, 66 cps, and 12O lines per minute,
respectively.

SYSTEM PRINTER

Coding for a system printer under CCP is identical to
coding for the printer in a batch program. However, the
following should be noted:

. On System/3 Models 4, 8, 1O, or 12, special print
modules are available with the compilers. These are
used when creating an object program to be run
under CCP so that other tasks running under CCP are
not degraded because a print program is being
executed. These print modules also prevent an l/O
attention from occurring if the printer is not ready.
An l/O attention would stop the system. In order to
have only one copy of the compiler, $MAINT can be
used, as shown in Figure 9, to rename the print
modules (and other unit record modules) before
compiling a program. lt may be convenient to call an
appropriate procedure before compiling a program, as
shown in Figure 9. (See Compilation aN Link Editing
in the CCP Programmer's Reference Manual,
GC21 -7 57 9, for details.)

. Only one program may use the system printer at a
time, with the following exceptions:
- lf spooling is used by the CCP program level on

Mode l 12
- lf spooling is used by the CCP partit ion on

Mode l 15
- l f PRINTER-SHR is speci f ied in the PROGRAM

assignment statement for Model 15 only, even if
there is no spooling

. The system printer may be made available to the
other programming level (Models 8, 10, and 12)
through a system operator command.

Ghapter 6. Use of Printers Under CCP

Use of Printers Under CCP 39

/ / / LoAD
I z/ null
| // coPv

Procedure , / / COPY

RPGBCH \ / / COPY

| // coPv
| // coPv
\ / / rNn

Run $MAINT as fol lows after CCP generat ion (assume F1 is the RpG l l compi ler pack):

/ / roao $MATNT,F'I
// RUN
/ / c o P y F R O M - F I , L I B R A R Y - R , N A I V I E - $ $ a n F r ' , I ' I E W N A M E - $ $ x n r r , T o - F I , R E T A I N - P (1 q 4 2)
/ / c o p y F R O M - F I , L r B R A R Y - R , N A M E - $ $ r , p n t , N E W N A M E - $ $ x p n t , T o - F I , R E T A r N - p (p r i n t e r)
/ / copv FROM-F 1, LTBRARY-R, NAME- g $tur . ar,r , , NEWNAME- $ $ xr, To-F 1, RETATN_P (MFCU)
/ / C] P Y F R o M - F l , L I B R A R Y - R , N A M E - $ $ c p . A L L , N E W N A M E - $ $ X P , T o - F l , R E T A I N - P (3 7 4 1)
/ / FND

Thereafter, to compile RPG programs for batch use:

/ / C A L L R P G B C H , F l

// RUN

$MAINT , F 1

FROM- F 1 , L I BRARY- R , NAME- $ $UAT
"

NEWNAME- $ $ANr r , TO-F '1 , RETAIN- P
FROM-F 1 , L IBRARY-R, NAI, IE- $ $Upnr , NEWNAME- $ $r ,pnt , TO-F' , l , RETATN- p
FROM-F ' I , L I BRARY-R, NAME- $ $UT . AT ,T , , NEWNAME- $ $MF, TO- F 1 , RETAIN- P
FROM-F 1 , LTBRARY-R,I , IAME- $ $Uprp , NEWNAME- $ $Cprp , TO-F 1 , RETATN- p
FROM-F 1 , L I BRARY- R , NAME- $ $ UPOP, NEWNAI4E- $ $ CPOP, TO- F 1 , RETAIN- P

To compile RPG programs for CCP use:

/ / CALL RPGCCP,F l
// RUN

$MAINT , F 1

FROI " I -F 1 , L r BRARY- R , NAME- $ $Xnrn , NEWUAME- $ $anFr , TO-F 1 , RETArN- .P
FROM-F 1 , L I BRARY- R , NAME- $ $Xpnr , NEWNAME- $ $ r -pn r , TO-F ' , I , RETATN- . p
F Rol , { - F '1, Lr BRARY- R, NAME- $ $ xr ' . ar , r . , NEWNAME - $ $MF, To- F 1, RETAI N-. p
F R O M - F 1 , L T B R A R Y - R , N A M E - $ $ X p r p , N E W N A M E - $ $ C p r p , T O - F 1 , R E T A T N - P
FROM- F 1 , L I BRARY- R , NA l , lE - $ $XpOp, NEWNAME- $ $CpOp, TO- F 1 , RETATI . t r - p

Figure 9. Renaming Unit Record Data Management Modules for Compil ing CCP or Batch programs

/ // rceo
| // p.UN

| // coPv
Procedure | // COpy
RPGccP

\ // copy

| // coPv
| // coPv
\ // END

40

Spoo l ing Pr in ted Output Under CCP

Output from print programs directed to the system
pr in te r may be spoo led on Sys tem/3 Mode ls 12 and 15 .
The advantage o f th is i s tha t the sys tem pr in te r can be

concurrently used by programs in the batch part i t ion.

There are some cons idera t ions :

. l f on ly one task may use the pr in te r a t a t ime
(P R I N T E R - Y E S) , a n d t h e D E F E R - N O p a r a m e t e r w a s

spec i f ied rn the OCL a t s ta r tup , the spoo l ing rou t ines

c lose tne spoo l p r in t f i i e when the CCP te rmina t ion

rou t ine is ca l led fo r the task . . Th is means tha t another
program request ing the pr in te r w i l l be re fused un t i l

the f irs,t task ends. This prevents mixing report l ines

f rom mul t ip le tasks .

. l f the pr in te r i s to be used as a logg ing dev ice or fo r

debugg ing purposes dur ing tes t ing , concur ren t tasks

are a l lowed to p r in t i f DEFER-NO is spec i f ied on the

/ / P R I N T E R O C L s t a t e m e n t a n d P R I N T E R - S H R i s

spec i f i r - 'd on the PROGRAM ass ignment s ta tements .

Pr in t l i r res w i l l appear in the order they were pu t to

the spoo l f r le ; the ou tpu t wr l l be mixed.

T E R M I N A L P R I N T E R S

Coding fo r te rmina l p r in te rs i s more l i ke cod ing fo r a

3277 d ispr lay te rmina l than cod ing fo r a sys tem pr in te r .

The te rmina l p r in te rs work as fo l lows: A da ta s t ream is

sent to the buffer of the printer. The data stream

rnc ludes such cont ro l charac tens as NL (new l ine) and

EM (end o f message) . When the user p rogram g ives the

order to s;tart print ing by means of WCC (write control

character) ' , the buffer contents are printed. The program

that sends the ou tpu t to the pr in te r can e i ther remain in

mernory {o r iu r ther p rocess ing or te rmina te . The

pr in t ing i t se l f i s an o f f l ine fu r rc t ion .

The programmer can use PFGR (pr in te r fo rmat genera tor

rou t ine) and DFF to fo rmat p r in ted ou tpu t , ca ta log the

format in an object l ibrary, and access the format from

an appliciat ion program. (See CCP Programmers

Reterence: Manual for detai ls.)

The programmer can a lso use the te rmina l p r in te rs in a
program wi thout us ing DFF. However , a l l the cont ro l

characters required by the 3270 system must be

inc luded in the da ta s t ream the app l ica t ion program

bui lds .

Forms Design for Terminal Printers

Forms design for terminal printers is cr i t ical for good

performance. Since print irrg is done one character at a

t ime on serial (matr ix) printers, the print heads must

move to the appropriate posit ion on a print l ine. This

head movement takes t ime. Print ing as far to the left as

possible reduces head movement. In addit ion, because

sk ipp ing to a new l ine is done w i th car r iage re tu rns , a

large form with l i t t le print ing is ineff icient. For this

reason, forms should be as short as possible.

F igure 1O is an example o f an ine f f i c ien t fo rm des ign fo r

a terminal printer. Figure 1 1 shows how the form could

be designed for better performance.

Use of Pr inters Under CCP 41

The prepr in ted company

logo is on the le f t , The
pr in t head must space over
i t o n e a c h l i n e .

r
SOLD TO:

_lr-
SHIP TO:

-l

A B C
{ n a n r e)

(a d c l r e s s i

l na me l

(add ress)

(c i t y 1

{ s ta te)

C o .
(c i t y)

1 (s r a t c)
t_

V t A : l t t o r *

il
J L J

S A L E S M A N

I

I

1
I

I T E M O T Y - O R D , O T Y . S H P . o lY BO. I oeSC i L ts r

Four l ines are used fo r to ta ls ,
caus ing ex t ra car r iage re tu rns .
A lso , to ta ls a re p r in ted on
the r igh t , caus ing unnecessary
pr in t head spac ing .

G R O S S

TAX

D I S C .

N E T

Quant i ty back ordered
is no t a lways pr in ted ,

so i t wou ld be be t te r
to pu t i t on the r igh t .

Put t ing a l l
f ie lds on one
l i n e w o u l d

shor ten the
form and

speed pr in t ing .

Figure 10. Example of Ineff icient Form Design for a Serial printer

r - t - - l'
SOLD TO: SHIP TO:

(n a m e) (n a m e) A B C
(address) (address)

CO.
(c i t y) (c i tY)

L
(state)

JL
(state)

J

I
cusT. No. I VtA T E R M S

I
I SLSMAN

I
I

I
I

ITEM D ESCR IPT ION Lrsr I o-v. sHe. AMT.
I
;

o rY . ORDER OTY. B/O

GROSS TAX DISCOUNT N E T

Figure 11. Example of Eff iciont Form Design for a Serial Printer

Use of Printers Under CCP 43

Program Design Techniques for Terminal printers

Assume an appl icat ion requi res enter ing and edi t ing
data, validating by the operator, and printing a single
document. Figure 12 shows the flow of the application.

Two key points are i l lustrated in this example. First, the
terminal operator is free to do other work as soon as
the print program (program C) has issued a retease
terminal operation. This means the operator can return
to program A and overlap the next operation with the
printing of the previous. Second, the number of buffer
loads to be put to the printer determines how long the
pr int program wi l l be in main storage. l f more than one
buffer load wil l be sent to the printer, the following
coding/design t ip should be considered.

Assume that a form to be printed includes 3,OOO
characters of data, including control characters. Assume
the buffer size is 1,920 positions. Obviously the entire
form cannot be sent in one put operation. The second
put must occur after the first buffer load is printed.

lf 1,900 characters were sent f irst, then 1,100. the
second put would be done after waiting for all the data
within the 1,9O0 to be printed. This would not De
efficient. The first put should be as short as possible,
perhaps 1,100 characters. After this is printed, the
second put of 1,9O0 can be done and the program can
immediately terminate. The 1,90O characters are printed
offl ine without using processing unrt t ime.

Opera tor keys da ta

a n d p r e s s e s E N T F R

Program B

is loaded

Program B

ed i ts da ta

Program B
d i s p l a y s
v a l i d a t i o n
screen and
t e r m i n a t e s

I
I
L _ _ _ _ _ _ _

Figure 12 . Pr in t ing a S ing le Form

-
I

I
I
I

I
I
I
I
I

I
I

I
I
I
i
I
I
I

I
{
I

I
I

I
I
I
i

I
I
I
I
I

I

I

I
I
I
I
I
I

J

l) p e r a t o r v e r r l i e s

d a t a a n d

r e q u e s t s l) r i n l

Proqranr C

rs ioadr :d

Progranr C

r e l e a s e s t n e

r e q u e s t r n c l

t e r m l n a l

/ P , o o . a m C

/ u,,, or,u I
/

s t r eam to
I

t he p r I n t e r /

Printer Busy Condition

Figure 13 shows the logic of a program that is us ing a
terminal or in ter .

lf the program requests a print operation, but a previous
print operation is not completed, CCP informs the
program that the printer is busy via a return code. lt is
the user's responsibil i ty to try the operation again. lf the
data sent to the buffer on the first put is being printed

and the program has a second buffer to send, the
program loops between trying to put the second buffer,
getting a printer busy return code, and trying to put the
second buffer again. This prevents CCP from regaining
control and allowing another concurrent task to do work.

There are several methods of preventing CCP from
being shut out :

. Design the application so that forms are printed one
at a time and are short enough to fit into the buffer.
This is ideal but obviously for some applications
cannot be done.

Use terminal printers for short reports and print long
reports or documents on the system printer.

On Models 4, 8, 10, and 12, when generating a CCP
system, specify BSYPRT-YES in the $EBSC macro.
This enables CCP to detect the busy printer

condition. After the printer completes the print

operation, your program regains control. This option
enables your program to execute properly without
testing for the busy printer return code, and it allows
other tasks within the system to use system
resources while the matrix printer is busy.

On Model 15D CCP (57O4-SC2), when generat ing a
CCP system, specify BSYPRT in the $EFAC
statement. This includes the same support as
explained above for Models 4, 8, 10, and 12.

On Model 15 CCP, use the WAIT operation code.
This facil i ty, together with the interval t imer

{hardware feature), allows an application program to
issue a wait of some seconds after determining the
printer is busy. This causes CCP to regain control,
service other tasks, and return to the print program

after the specified time interval.

On Models 8, 10, or 12, when BSYPRT-YES has not
been specified in the $EBSC nracro, the user
program should contain code that forces a CCP
transient load so that CCP regains control. One way
to do this is to assign a dummy terminal name to a
terminal in the assignment set. After obtaining a
return code indicating the printer is busy, an acquire
terminal operation can be issued to the dummy
terminal with new attributes. When operation fails,
CCP takes control and allows another task to obtain
service. When CCP returns control, the print program

can retry the printer operation.

(nonp r i n t l og i c)

A/ote. Not required t l

BSYPRT-YES i s

speci f ied dur ing

CCP gene ra t i on .

Figure 13. Logic of a Program that Usos a Terminal

Printer

(nonp r i n t l og i c)

l s p r i n t i ng

requ i red

Put data to
p r i n t bu f f e r

Use of Pr inter Under CCP 45

Using an NEP for Terminal Printing

On a system with enough memory, a print program
could be implemented as an NEp. The program would
have the following characteristics:

It would interrogate a direct disk file for documents
to be printed.

A header record in the direct file for each set of
transactions would designate the terminal printer to
which that f i le should be sent.

The program would use the WAIT operation code or
one of the other techniques described previously to
allow concurrent tasks to operate without
degradation.

The advantage of this approach is that a terminal
operator need not request a print program. The queue
for documents becomes a function of this program
rather than having multiple SRT print programs waiting
to be loaded. ln effect, this simulates a print spool
function.

46

The task chaining facil i ty of System/3 Model 15D CCP
allows user tasks to init iate other user tasks by means
of a task chain operation, without system operator or
terminal operator action. CCP handles a task chain
operation in a manner similar to a program request. A
program that is loaded by a task chain operation passes
through program load, resource allocation, open, close,
and terminate functions, l ike any other user task.

The requirements for using the task chaining facil i ty are
as follows:

. The requesting program must issue a task chain
request (an output type operation) and identify an
output record area for the operation.

. The requesting program must place the requested
program's name in the output record area. Data may
accompany the program name.

. The requested program must issue an accept input
operation to receive data if data is passed from the
requesting program.

The task chaining facil i ty is similar to the PRUF
(program request under format) facil i ty: data may be
passed between programs through a record area, and
the requested program must issue an accept input
operation to receive the data. With PRUF, however, the
screen buffer is used as the record area for passing

data, and therefore, all programs must communicate
with a terminal. The requirement for operator
intervention is a disadvantage of using the PRUF facil i ty
to request one program from another.

Chapter 7. Task Chaining

The task chain operation (with data) works as follows:
CCP moves the data from the outgut record area of the
requesting program to the get (invite) input area (see

index entry) of the TP buffer, and loads the program

named in the terminal name field of that output record

area. When the requested program issues an accept
input operation, the data is moved from the TP buffer to
the input record area of the requested program. This
passed data could be the name of the next program in
the chain and would be moved by the requested
program to its output record area and used to chain to
the next task. In this way, many programs could be
chained together, and the sequence of execution can be
determined in advance by the first task, or even
determined by program logic within each task in the

chain.

A chained task can communicate with the command
terminal that requested the first task in the chain by
issuing an acquire command mode terminal operation
for that terminal. However, the terminal must be either
in init ial mode. or in command mode and not formatted
by a PRUF display.

Task chaining lends itself to online transaction-oriented
processing applications in the following ways:

. Task chaining is useful for breaking an application
into small, single function programs.

. Batch programs can be run under CCP without

operator intervention, because a chained task need

not communicate with a terminal.

. MRT/NEP (never-ending MRT) programs can be

chained and used as resource handlers.

Task Cha in ing 47

BREAKING APPLICATIONS INTO SMALL
PROGRAMS

Task chain ing is a usefu l technique for d iv id ing the
funct ions of an appl icat ion among smal l , e f f ic ient
programs. For example, a small, simple program can
gather order entry information from terminals; and,
when an order is completed, that program can chain to
another program that wil l process the information. This
processrng program may chain to a sort program which
in turn chains to a final program that prints out the
order. This allows an online application to be truly
oriented toward transaction processing, completely
handling one order at a time with small. efficient
programs that are loaded only when required. An
example of this use of the task chain operation is given
in Chapter 8, Sort Under CCp.

Before using task chaining in this way, the sysrem
designer should assess the crit ical needs of the
application and the effect of task chaining on system
resources. Additional program loads with task chaining
may Increase response time at the terminal. lf fast
response time is the crit ical need of the application, then
task chaining probably should not be used. lf. on the
other hand, the crit ical application requirement is that
several applications must operate concurrently in an
online transaction processing environment, then task
chaining may be a good technique to use. The concepts
of simplif ied queuing theory (Chapter 10) can be useful
in analyzing the effect of task chaining on system
resou rces.

RUNNING BATCH PROGRAMS UNDER CCP

Another use of the task chain facil i ty is to run batch
programs under CCP. There are advantages to doing
this: for example, a batch job stream (cataloged
procedurel has five programs to be executed rn
sequence. Four of these programs are gK programs
while the fifth program is 22K and the largest program
In any other job stream is 12K. The batch partit ion size
must be large enough for the largest program (22K);
therefore, this main storage space must be reserved for
long periods of t ime even though the large program
executes for only a short t ime.

This same application could be rewritten to run under
CCP, with each program chaining to the next logical
step. The programs would then be in main storage only
while they are executing, and, because IOK of the 22K
partit ion can be assigned to the CCp partit ion, more
program tasks can execute concurrently under CCp.

48

CHAINING TO RESOURCE HANDLERS

Another use of task chain ing is to code MRT/NEp
programs as resource handlers with other programs
chaining to these programs, passing data along with the
request. Two instances of this use are:

. A program that writes records to the transaction fi le

. A program that performs write operations to the
terminal printers

Transaction File Writer Program

The first example of a resource handler program ts a
program that writes records to a transaction fi le
(assumed to be a direct f i le). Since the program is an
NEP, it is always in main storage when CCp is running,
and therefore it can be coded to maintain record
address pointers within the program logic. Because
there are no forward and backward pointer records in
the transaction fi le to be accessed or updated, only one
disk access is required for each transaction record
added to the fi le. By reducing the number of disk seeks,
this way of using task chaining can significantly reduce
disk activity, thereby improving terminal response time
and system throughput.

Example

An MRT/NEP program that is used to control the
writing of records to a direct transaction fi le is serving
several terminals that are entering transaction records
into the same transaction fi le. lt is desirable to tie
together all entries for a particular terminal. This is
accomplished by having each transaction record from a
terminal l inked to the other transaction records from that
terminal .

There are various ways of l inking records together. In
this example, reserved fields in each record are used as
linkage pointers. These pointers are the relative record
numbers of other records in a chain or queue that came
from the same terminal.

The first record in the transaction fi le is a master pointer

record that retains the status of all the terminal queues

in the t ransact ion f i le . When the MRT/NEP program is
loaded, it f irst loads this pointer record into a control
array so that the program can determine the status of
the f i le . When the MRT/NEP goes to end of job (at the

end of the CCP run), the final action it performs is to
update this pointer record from the control array.

The master pointer record contains the following entries
for each terminal:

Symbolic terminal name

Relative record number of the first record of an order

Relative record number of the next available record to
be written into

A flag byte that indicates whether this is the first,
middle, or last record of an order

Figure 14 shows how the master pointer record would
appear when the transaction fi le is created.

The first record from each of the terminals wil l be
written into record 2 through n + 1, where n is the
number of terminals to be served by the program. The
next available record (n * 2) is reserved for the first
terminal to enter data. The relative record numb@r fi + 2

will be written into the forward pointer f ield of the first
record from the terminal and the next available record

counter wil l be increased to n + 3. By this method,
record locations are reserved in advance, because the
forward pointers are established when the current record
is written.

Rela t ive Record Number o f th is Record

Figure 14. Content of the Mastor Pointer Record wh€n the Transaction File is Created

000001 T E R M O l000002 000002 F T E R M O 2000003 000003 F ITERMO3\

l ag Ind ica t ing F i rs t Record o f an Order

I n" la t ive Record Number Where Next Record f rom th is
I

I T"rminal wi l l be Wri t ten

I
Relat ive Record Number of F i rs t Record f rom th is Terminal

Symbol ic Termina l Name

Task Cha in ing 49

The pointer values are contained in an array that has an
element for each terminal, as shown in the following
diagram:

Array

Symbol ic
Terminal
Name

Relat ive
Record
Number
of F i rs t
Record of
th is Order

Relat ive
Record
Number
Where Next
Record wi l l
be Wri t ten

Flag

Byte

The program maintains a counter that always points to
the next available record location. This counter is used
to update the next record field in the array. The array
element associated with a terminal is then written into
the transaction record when that record is written to the
file. In effect. the relative record number for the next
record from this terminal is reserved at this time.
Records are reserved in sequence. but are not
necessarily written in sequence.

For records other than first records, the first record field
points to the first record of the current order. For the
first records of an order, this field points to the first
record address of the previous order, so that records are
linked forward by record within an order and backward
by first records of all orders.

The logic of the program is i l lustrated in Figure 1S.

T E R M O l Firs t Record Next Record F lM IL

TERM02 Fi rs t Record Next Record F lMIL

TERMO3 First Record Next Record F lM IL

TERMO4 First Record Next Record FlM/L

TERM05 First Record Next Record F/M/L

TERMO6 First Record Next Record FlM/L

50

Read l r om
dummy
pr ima ry
i n p u t { i l e

Read

record l

I n t o c o n t r o l

a r r a y

Set nex t

reco ro

Po i n te r

t o N + 2

Do tab le
l ookup
o i l I e r m l n a l

n a m e

M o v e n e x t

r e c o r d f i e l d

to chatn

a d d r e s s f i e l d

Move nex t

record

p o i n t e r t o n e x t

record f ie ld

Add I to

nex t record

po in te r

C h a n g e f l a g

b y t e f r o m

L r o F

Move nex t

record f ie ld

to f i rs t record f ie ld

Move f i rs l

record

f i e l d t o

o u ! p u r

Figure 15. Logic of a Transaction Fi le Writer Program

Task Chaining 51

Terminal Printer Program

A second resource handler technique is using an
MRT/NEP program to perform the write operations to
the terminal printers. A single program of this kind can
take care of all the programming required to make
efficient use of these devices. One factor that has
made efficient use of these printers somewhat diff icult
is that a program is notif ied when the printer receives a
message, but is not notif ied when the printer has
completed printing the message. A negative return code
is returned from an output operation to the printer if i t is
sti l l busy, but l ine activity is increased if a program
repeatedly retries the operation without an intervening
wai t . By chain ing to a s ingle MRT/NEp for a l l terminal
printing, the user tasks can keep printers busy, reduce
pauses between messages, and yet not burden the
communication l ine by testing for busy conditions. The
following example describes a way to implement a
resource handler program for terminal printers.

Example

A program needing to make use of a printer chains to
the MRT/NEP printer task, passing the record to be
printed along with the request, including, if needed, an
identif ication of the terminal printer. The printer program
is residing in main storage with an accept input
operation pending.

The program uses the TP buffer as the storage medium
for the print queue by processing one message
completely before accepting input on the next message
waiting in the TP buffer.

CAUTION
lf there is a backlog of messages queued in the Tp
buffer using up all available space, subsequent task
chain requests are rejected and the request is not
queued by CCP. Terminal requests to the Tp buffer are
queued and honored immediately when space becomes
available. Therefore, even when the requesting program
retries the request, space sti l l may not be available and
the system may be l imited to the speed of the terminal
printers.

The program accomplishes the task of keeping the
printer busy by performing variable waits. With the
timer support and the use of the wait op code, the
printer program puts a message to a printer and issues
a variable wait, dependent upon the number of
characters to be printed. One way to determine
message length in RPG l l programs when SUBR92 is
not used is to load the record from the requesting
program into an array with enough one-position
elements defined to hold the longest record and then to
scan backward through the array to find the first
nonblank element, thereby determining the number of
characters to be sent to the orinter. This value
determines the output length value for the put operation
to the printer and is used as an algorithm to set the
value for the wait operation code. Number of characters
divided by characters per second plus time for printer
carraage return and line spacing equals seconds of wait.

Coding must be in the program to handle the -14 return
code, but the occurrence of this should be infrequent
wi th proper design.

In many cases, more than one printer is in the system,
and messages from a terminal are sent to a specific
terminal printer. Either the to printer name will have to
be passed with the task chain data or the f rom terminal
name will have to be passed with the program using an
array and a lookup operation to match a f rom terminal
name to the proper output printer.

The CCP/Disk Sort program is a program product that
is used to sort disk files according to user specifications.
The functions of CCP/Disk Sort are similar to the
functions of the System/3 Disk Sort Program, except
that a user of CCP/Disk Sort can generate a sort object
program that can be executed as a user task under CCP
control. Multiple sorts, each having a unique program
name, can be run concurrently under CCP. CCP/Disk
Sort object programs must be generated offline from
ccP.

Sort programs can be requested by the syst€m operator,
a terminal operator, or by another program through a
chain task command (System/3 Model 15D only-see
Chapter 7, Task Chainingl. The requested sort program
issues an accept input operation (PGMDATA-YES must
be specified on the PROGRAM assignment statement)
and then releases the requesting terminal, if the
requester was a terminal. Thus, a roqu€sting terminal is
free for other work while the sort is running. The sort
program cannot communicate with a terminal while the
program is running. lf the sort program is running when
a shutdown command is entered, the program is
allowed to complete before the shutdown process
begins.

For each sort program, the input file(sl must have
consecutive input (CG) access type, the work file must
have consecutive add (CA) access type, and the output
file must have consecutive output (CO) access type
(PROG RAM assignment statement).

The sort input file(s) may be shared, but the sort work
fi le and output f i le cannot be shared (NOSHR on the
PROG RAM assignment statement).

lf task chaining is specified in the CCP/Disk Sort header
specification, a chain task request is issued by the
generated sort module for a task to follow the sort task.
The name of the task to be chained to by the sort
program must be passed to the sort program as
program data with the sort program r6quest.

Chapter 8. Sort Under CCP

CONSIDERATIONS FOR USING CCPIDISK SORT

With CCP/Disk Sort, as with all other system facil i t ies,
tradeoffs must be made to make the operating
performance of the system fit your requirements. For
example. using CCP/Disk Sort may increase processing
unit uti l ization; nonshareable fi les may conflict with other
program requests; response time may increase; and
main storage availabil ity may cause program requests to
be rejected. These are performance factors that must be
considered when using CCP/Disk Sort. Some of the
benefits you may realize are: workloads in using
departments can be spread throughout the day; master
fi le status can be current to the latest transaction; batch
run time requirements can be reduced; and the need to
shut down CCP may be reduced.

TRANSACTION-ORIENTED PROCESSING WITH
CCPIDISK SORT

The sort program can be used in online
transaction-oriented processing applications. For
example, the input items making up one order can be
sorted for that order. Sorting for each order will, of
course, increase the system time required for each order
and may well take more total t ime for one day's
processing than if one sort were run to process all
orders at the end of the dav.

Therefore, the decision whether or not to incorporate
sort programs into a transaction-oriented processing

application is not always an easy one to make. Order
entry applications are an obvious place to start using
CCP/Disk Sort, but the number of transactions (orders)

per day must be considered. lf the system is near its
l imit of transaction capabil it ies using batch sort
procedures, then CCP/Disk Sort programs probably

should not be used in an application. lf. however, the
application bottleneck is that picking ticket slips are sent
to the warehouse twice a day with a resultant rush in
the warehouse workload, then perhaps full
transaction-oriented processing may be a wise course to

follow.

Figure 16 describes a transaction-oriented order entry
application using the facil i t ies of task chaining and
CCP/Disk Sort.

Sort Under CCP 53

ORDERS Program

ORDERS is an SRT program that collects orders entered
by an operator at a 3277 termind. The ORDERS
program accesses the customer master and shipping
master f i les and updates the inventory master f i le. For
each item, the ORDERS program chains to the XWRITE
program, passing the transaction information with the
chain task request. The terminal operator presses a pF
key when the last item for an order has been entered;
this causes ORDERS to pass a last record flag to the
XWRITE program.

Assignment Statement

/ / pRocRAM NAME-ORDERS, PGMDATA-YES,
F r L E S - ' C U S T M A S T / r R l S H R , S H T P M A S T / r R / S H R ,
INVENTRY/IRU/SHR ' , DFFMTERM- 1 , DFFNDF-N ,
DFFSFDT-n

Figure 16 (Part 1 of 6|. Exampte of Using CCplDisk Sort and Task Chaining (Model 15D Onlyt

Accept
orders
and pass to
resource
hand ler

Data with XWRITE chain task request

XWRITE terminal
name

I ast
record
f lag

invoice
number

customer
number

warehouse
location

item information

54

XWRITE Program

XWRITE is a never-ending program that accepts
transaction information from the ORDERS program and
writes transaction records to the transaction file
(XACTION). When XWRITE receives a last record flag
from the ORDERS program, XWRITE issues two chain
task requests. The first request is for the INVWRT
program. which prints the bil l ing invoice on the system
printer. The second request is for the SRTWRT
program, which writes order items from the transaction
fi le to a sort input f i le.

XWRITE

a-

Accept

Update
poi nters
and write
records

Transactiorr
F i l e

Chain INVWRT

Transaction Record

relat ive
record

next
recoro
or last

i nvo ice

numDer

customer
number

warehouse

location i tem in fo rmat ion
terminal
name

Data with SRTWRT chain task request

INVWRT
f i rs t
record

tnvo tce

number

customer
number

Data with SRTWRT chain task request

SRTWRT
f i r s t I invo ice
record I number

Assignment Statement

/ / PROGRAM NAME-XWRITE , NEVEREND-YES , PGMDATA-YES ,
FILES- ' XACTION /DO/SHR'

Figure 16 (Part 2 of 61. Example of Using CCPlDisk Sort and Task Chaining (Model 15D Onlyl

Sort Under CCP 55

INVWRT Program

INVWRT is an SRT program that reads order items from
the transaction fi le, reads shipping information from the
shipping master f i le, and prints bil l irrg invoices on the
system printer. INVWRT also updates the customer
master f i le.

Assignment Statement

/ / pRocRAM NAME-rNVwRT, PRTNTER-YES, PGMDATA-YES,
ENDMSG-NO, F ILES- I CUSTMAST/ IRU/SHR,
sHr PMAST / rP./ SHR, XACT r ON / DG / SHR'

Figure 16 (Part 3 of 61. Example of Using CCp/Disk Sort and Task Chaining (Model 15D Onlyl

Write
invoice
and update
customer

56

SRTWRT Program

SRTWRT is an SRT program that writes records from
the transaction fi le to the sort program input f i le, chains
to the sort program, then goes to end of job. Because
SRTWRT uses the sort input f i le as CO (consecutive

output) access Wpe, old data in the fi le is written over,
and the fi le can be reused.

Data wi th SORT chain task request

SORT66 PIKWRT i nvo ice

number

customer
number

Assignment Statement

, / / PROGRAM NAME-SRTWRT, PGMDATA-YES, ENDMSG-NO,
FILES- I XACTION /DG/SHP*, SORTIN/CO,/NOSHR'

Figure 16 (Part 4 of 61. Example of Using CCPlDisk Sort and Task Chaining (Model 15D Only)

SRTWRT

Retrieve
transaction
records and
wr i te in to
sor t input

Sort Input Record

i nvo ice

number

customer
number

warehouse
location

item information

Sort Under CCP 57

SORT Program

SORT is an SRT program that sorts transaction recoros
into warehouse location sequence and then charns to a
terminal pr in t program (PIKWRT). Warehouse locat ion
information is inserted into the transaction records bv
the ORDERS program.

Data wi th PIKWRT chain task reouest

P I K W R T
I nvo lCe I CuS tOmer

number I number

Assignment Statement

/ / PROGRAM NAIIE-SORT, PGMDATA-YES , ENDMSG-NO , SORT-YES ,
F r L E S - ' S O R T T N / C G l N O S H R , S O R T O U T / C O I N O S H R ,
SORTWORK,/CA,/NOSHR '

Figure 16 {Part 5 of 6}. Example of Using CCP,/Disk Sort and Task Chaining (Model 15D Only)

58

PIKWRT Program

PIKWRT is an SRT program that pr in ts a p ick ing t icket
wi th a mai l ing label header on a remote terminal pr in ter
at the warehouse location. ltems are printed in
warehouse location sequence, as they appear in the sort
outout f i le .

Ass ignment S ta tement

/ / PROGRAM NAME-PIKWRT, PGMDATA-YES, ENDMSG-NO,
F r L E S - ' S O R T O U T / C G I N O S H R , C U S T M A S T / r R l S H R ,
S H I P M A S T / r R l S H R r , D F F M T t r R I ' I - ' , 1 , D F F N D F - n ,
D F F S F D T - n , T E R M S - ' P R I N T '

F igu re 16 (Pa r t 6 o f 6) . Examp le o f Us ing CCP/D i sk So r t and Task Cha in i ng (Mode l 15D On l y)

P I K W R T

Wri te the
p i c k i n g

t icke t

P i c k i n g

T icke t

Sor t Unde r CCP 59

60

This chapter presents system security/integrity
considerations for an online system using local or
remote terminals. Some of the information applies
specifically to operating 3270 terminals under CCP, but
most of the information is applicable regardless of the
terminal type used.

Systern security is defined as protection of computer
data, programs, and devices against damage, loss,
unauthorized access. or unauthorized use. The scope of
system security also includes protection of other assets
against damage or loss through misuse of computer
facil i t ies.

System integrity is defined as preservation of the
accuracy and completeness of data and programs. The
scope of system integrity includes the capabil ity to
prove the accuracy and completeness of data and the
capabil ity to restore the system and fi les after an
unscheduled interruption in processing.

In a batch environment, system security/integrity is

usually maintained by keeping copies of master f i les,
batch balancing and editing input transactions before
update, and keeping a control book. Source documents
are accompanied by transmittal slips and, since the
whole data processing operation takes place in a central
location. procedures for maintaining system
security/integrity can be relatively uncomplicated.

ln an online environment with local or remote terminals,

the requirements are somewhat more complex. This

chapter covers the following five aspects of maintaining

system security/integrity in an online environment:

Transaction logging
Audit trail
Control procedures
Data security
Backup and recovery

In each of these areas, plans should be developed
concurrently with the application and should be an

integral part of the overall operating plan.

Chapter 9. System Security,/lntegrity

TRANSACTION LOGGING

In a batch system, input data that is used to update f i les

is normally recorded in cards or on diskettes. The

system reads the data in these records (transactions),

edits i t , and writes i t to disk. The result ing disk f i le

might then be sorted and used to update master f i les. l f

a system fai lure occurs during the master f i le update,

the procedure is to copy master f i les back from backup

fi les, and then rerun the job. Effect ively, input

transactions are being logged to disk before using the

data for update purposes.

In an on l ine sys tem, a somewhat s imi la r approach can

be used; that is, transactions received from remote

terminals can be writ ten to a transaction f i le (or

transaction log f i lel on disk. However, master f i les

would not usually be updated with this data in batch

mode, because an inquiry to a master f i le would provide

only information as of the most recent master f i le

update, and transaction-oriented processing could not

be done. Logging transactions to disk is a good

procedure because i t al lows rerunning a job, i f

necessary, and thus restoring system integri ty after a

fa i lu re . Th is i s one o f the reasons fo r logg ing a l l

transactions in an onl ine system. Another reason is that

the d isk f i le can be used to p rov ide an aud i t t ra i l

through the system (see Audit Trail and Controll.

The $TRLOG program on the Mode l 15D can be used to

ass is t the user in app l i ca t ions requ i r ing t ransac t ion

logging. This program provides both batch and CCP

programs with the abi l i ty to log data to tape. The data

logged can be used to create tape audit trai ls,

transaction logs, program use stat ist ics, terminal use

stat ist ics, and debug information.

Transaction Data

What data shoutd be logged in the transaction f i le? This

question can only be answered by the requirements of

the system, and for this reason, recovery, restart, and

aud i t requ i rements shou ld be kept in mind when

des ign ing a sys tem or new app l ica t ion . Not on ly do

master f i les have to be restored after a fai lure but

terminal operators must be able to start again from the

point at which the system fai led; that is, they need to

know what transactions i f any have to be reentered.

Svstem Secur i ty / Integr i tY 61

A checklist of data fields that can be contained in each
transaction record is given below. This l ist is a
suggested minimum for restart and audit purposes; the
actual f ields depend on the needs of the application:

. Record code

. Date andf or t ime of transaction (if t imer support ts
avai lable)

. Reference numbers, for example, account numbers
and order numbers

. Amount or value of transaction

. Content of master f i le f ields before update

. Terminal name or identif ication code

. Operator name or identif ication

. Program name

. Master f i le name

The record code (if used) should be unique because it
can be used as an indication of what program created it,
and which master f i le was updated by that transactton.
To ensure that the record codes are unique, a register
should be kept of all the codes allocated; this register
should be cross-referenced to program and master f i les.

The transaction fi le could be shared by all tasrs running
in the system, and records could be added to rt
whenever changes or updates are made to master f i les.
A benefit of logging all transactions to one fi le as they
occur is that it is possible to reproduce the sequence of
all transactions, whereas if separate fi les were kept for
each application, the entries would have to be time
stamped in order to establish this relationship. lf t imer
support is available, better performance may be possible
if each application has its own transaction fi le, because
the potential for disk access conflicts is reduced.

When you establish a record length for your transaction
fi le, make sure that you allow for new applications that
may require a longer record.

AUDIT TRAIL

An audi t t ra i l is a general ized recording of who d id whal
to whom, when, and in what sequence. For erample, i t
may be necessary to trace a receipt in an accounrs
receivable application backwards from the master record
it updated to its point of origination.

An audi t t ra i l should prov ide the in format ion that would
be used by someone outside of a data processlng
department to prove that the system is doing the job
correctly. The audit trail additionally should provide this
person with sufficient information as to who, what, when,
aN why so that errors can be identif ied and corrected.
lf errors are discovered, it must be possible to isolate
the conditions that gave rise to the error; for example, it
may have been a program failure, a combination of
events, or even fraudulent action by someone in the
organization. After the reason for the error is identif ied,
the next question that must be answered is: Has this
occurred before and who or what was affected by the
error?

lmplementing an Audit Trail

A good way to start planning rhe implementation of an
audit trail system is to discuss the system with the
financial controller, accountant, and perhaps a
representative of the company's external auditor. Find
out what information they need to perform their function
and how they want the information presented. perhaps
they would l ike to be able to put test transactions
through the system to verify the audit trail. There are
many different ways to handle an audit and eacn
company has its own specific needs.

The transaction logging fi le discussed earlier in this
chapter is a good place to start, since some of the
information stored there for restart purposes is also
required for the system audit function. Based on the
uses recommended for it so far, the transaction logging
fi le may be very large, but a transaction logging fi le is
the type of f i le that can be purged each day, and the
data contained in this fi le can be split into historical f i les
by application. For example, all transactions related to
accounts receivable could be written into a history fi le
for this application. Only the data required to
reconstruct the sequence of events by account need be
copied into this fi le. These application history fi les need
not be online at all t imes, but only when required for
audi t purposes.

62

An audit trail can be a method of controll ing or ensuring
system integrity after the eyent and, as such, can make
it possible to prove or check that transactions generated
by the day-to-day operations of your company have
been processed correctly. However, an audit trail alone
does not provide adequate control in a company's daily
operations. Control procedures are also required that
wil l prevent errors.

CONTROL PROCEDURES

The objectives of control procedures are to ensure
accuracy and to prevent accidental or intentional
modification or loss of data. Control must be exercised
in two areas: manual procedures and programmed
procedures.

Manual Control Procedures

Manual control procedures apply in all areas of a
company operation. Discussion in this manual is l imited
to control within the data processing department in an
online environment.

Manual control procedures are best achieved by the
division of duties among employees. One employee
should not be solely responsible for, or have full control
over, critical aspects of the business without some
counter check over which the employee does not have
control.

Programmed Gontrol Procedures

In a batch environment, the conventional control
function of punch/verify, batch balance/edit of input
works well because of the centralized operation. The
accuracy of input is proved before being used to update
fi les and prepare reports. In an online system, the
source input is randomly entered at the terminals, and
data is not necessarily accumulated into batches before
submission to the computer system, so the control
function has to be slightly different.

This is not to say that online processing precludes the
use of batch control methods. On the contrary, if local
or remote 3741 data entry terminals were used for
remote data capture, the data submitted for processing
to the central system would still, in fact, be batched,
and the conventional control and error correction
procedures could be used to advantage.

lnteractive Control

However, if the terminal is operating in an interactive
manner in which the program must accept input,
perform an edit, and update (if accepted), the control is
then more diff icult to impose. For example. what
assurance do we have that the amount entered by the
terminal operator was the amount paid by the customer
in an accounts receivable application? There is l i tt le
point in asking the terminal operator to enter the
amount twice, since errors may be repeated. The
program could compare the amount entered with the
customer balance from the master record and, if equal,
accept the amount as correct. lf the balances are
unequal, the program could issue a query to the
operator and allow the operator to either correct or
confirm the balance. As a final check, perhaps the
overall receipting operation could accumulate totals by
terminal and, in this manner, make any discrepancy
traceable to any one terminal operator.

The reconcil iation of control totals with the actual
amounts taken should not be done by the terminal
operator who entered the amounts. Part of the
reconcil iation statement should reflect all receipts where
the amount entered is confirmed, but less than the
outstanding balance. The supervisor then is able to
establish whether or not a pattern exists in the
nonbalance situations. The pattern would be that check
payments that can be verif ied were recorded accurately
but cash payments are less than the balance owing on a
fairly regular basis. Do not display the balance
outstanding to the receipting operator; simply display an
indication that the amounts differ, and display the
amount entered by the operator. lf a customer requests
his outstanding balance, he could be referred to another
operator who can make the inquiry but is not able to
update the record.

Methods of control in an online terminal environment
depend upon circumstances. When determining
methods of control, the system designer must anticipate
the error situations that the terminal operator may
encounter and take appropriate precautions. An operator
working under pressure cannot be relied upon to do a
visual verif ication of every entry made. Check-digit
verif ication can be used for account numbers, and
related names and addresses can be displayed to ensure
posting to the correct account. Use of modulus 10 and
modulus 1 1 to calculate self-check digits is explained in
the following text.

System Secur i ty / Integr i ty 63

using Modulus l0 to calculate self-check Digit; The lJsing Modulus II to calculate self-check Digit: The
subroutine: subrOutine:

1' Multiplies each digit of the account number by the 1. Multiplies each digit of the account number by its
corresponding digit of a weighting factor. A corresponding digit of the weighting factor.
f ive-digit weighting factor is used in this
example-the X could be shifted to any digit of the Account number S 2 O 6 g 2accountnumber.

weight ingfactor 6 s 4 g z x

Accoun tnumber 5 2 O 5 6 3
Weight ingfactor 2 1 2 X 1 2

3 0 1 0 0 1 8 6

2. Adds the products:

3 0 + 1 0 + 0 + 1 8 + 6 = i l

3. Determines the next number divisible by 11 that is
higher than the sum computed in step 2.

From the number 64, 66 is the next higher
multiple of 1 1.

From the sum 15, 20 is the next higher multiple 4. Subtracts the sum computed in step 2 from the
of 10' number determined by step 3. The difference is

the self-check digit.

6 6 - 6 4 = 2

The number 2 is the self-check digit.

1 0 2 0 6 6

2. Adds each digit of the products:

1 + 0 * 2 * O + 6 + 6 = 1 5

3. Determines the next number divisible by 10 that is
higher than the sum computed in step 2.

4. Subtracts the sum computed in step 2 from the
number determined by step 3. The difference is
the self-check digit.

2 O - 1 5 = 5

The number 5 is the self-check digit.

Online Batclt Control

lf a system requires that a terminal operator enter data
in a batch mode using source documents for reference,
the method of control could be very similar to the
method of control for a batch operation. The control
could take the form of requiring the operator to enter
first a batch header record that contains a count of the
number of records to be entered and a total of the value
of these records. Each data record entered would be
edited against master f i le records, and error messages
would be displayed at the terminal, allowing corrective
action to be taken. No master f i le update is done at this
time. As each data record is accepted by the system, it
is written to the transaction fi le.

The count and value fields in the header record are
reduced for each transaction. When the operator
indicates the end of the batch by pressing a PF key on
the 3270 terminal , rather than the ENTER key, the
program updates the master f i les if these control f ields
are zeto. lf. however, the header control f ields are not
zero, the program displays the record entered and the
balance in the control f ields. The operator can then
make the necessary correction$ and again indicate the
end of the batch. lf the net effect of the changes now
satisfies the imbalance value, then the program performs
the uodate task.

In effect, the balance ahd edit Iunction has been
removed from the data processing department, and the
responsibil i ty for accurate data entry has been placed in
the user departments. The terminal operator in the user
department must be provided with sufficient data to
enable the ooerator to make the necessary corrections.

Data Processing Department Controls

In addition to the control within user departments,
procedures must be adhered to within the data
processing department. The data processing department
should not generate any input transactions to the
system. All transactions should originate from outside
the department. The responsibil i ty of the computer
department should be l imi ted to ensur ing that
information entrusted to its care is not lost. destroved or
distorted.

When CCP is shut down, the normal batch-type controls
should be appl ied for processing f i les updated or
created by the online system. For example, before
purging the transaction log fi le, extract from it totals by
record type and application. These totals should be
reconciled with master f i le opening and closing balances
before making backup copies of master f i les for
security. The reason for doing this is to make sure that
all updates have been made to master f i les; there may
have been a system failure during the day and, if the
recovery procedures were not done correctly, there may
be some records in the transaction fi le that have not
updated their corresponding master records. As far as
user departments are concerned, they have entered their
data correctly, so it is up to the data processing
department to process it correctly.

System Secur i ty / Integr i ty 65

DATA SECURITY

Data security can be defined as the protection of data
aginst damage, loss, unauthor ized access. or
unauthorized use. Two basic aspects of data secuntv
are considered here; they are (1) physical secur i tv
measures and (2) programmed security measures.

Physical Security Measures

Physical secur i ty measures t radi t ional ly inc lude locks on
doors, alarms, guards, f ireproof safes, and off_site
storage. These measures are concerned with protecting
tapes, disk fi les, printed reports, and programs agatnsr
destruction, such as by fire, and against access Dv
unauthorized people. Most organizations recognize that
fire can destroy data fi les, and they protect against this
by storing copies of master f i les in fireproof safes or in
vaults that are remote from the data processing center.
It must also be recognized that it can be just as
damaging to an organizat ion 's operat ion i f conf ident ia l
in format ion fa l ls in to the wrong hands as i f th is
information is physically destroyed.

All of these security considerations are as imponant rn
an onl ine envi ronment as they are in a batch
envi ronment . However, in an onl ine envi ronment , there
are some addi t ional areas of concern. The d is t r ibuted
nature of a terminal network makes the control of
access more diff icult. The person using a terminal may
not be visible to the system operator, and therefore it is
more diff icult to verify that the person is authorized to
use the terminal . Data secur i ty in th is k ind of
envrronment requrres a combinat ion of physical and
programmed securitv measures.

Risk Versus Cost

When evaluating physical securitv measures. two
quest ions must be asked: What i s the r i sk o f a
part icular event occurring? What would the cost be to
the company i f the event did occur? The answers to
these ques t ions shou ld be assessed by management
outs ide the da ta p rocess ing depar tment . Abso lu te
security is impractical, i f not impossible, to achieve,
therefore, the security budget should be al located to
cove! ' the r i sks where the th rea t o f loss is the grea tes t .

For example , the loss o f cer ta in da ta due to f i re migh t
cost the company $40,000. The probabil i tv that this f i re
might occur i s once in 20 years . On the o ther hand, an
event that causes a $20 loss and is l ikely to occur everv
work ing day is a g rea ter r i sk . Ca lcu la t ing the cos t per
year o f a par t i cu la r loss can be a use fu l way to es tab l i sh
the relat ive importance of the loss.

Types of security threats are:

. Phys ica l hazard : f i re , water damage, power ross ,
w ind , exp los ions , c iv i l d isorder

. Hardware /program fa i lu re

. Care lessness : te rmina l opera tor , sys tem opera tor

. Ma l ic ious damage: p rogrammer , opera tor , te rmina l
user

. Cr ime: f raud, embezz lement

The above l i s t can be expanded in to a tab le tha t g ives
year ly r i sk p robab i l i t y and es t imated do l la r loss to your
opera t ion . The probab i l i t y t imes the do l la r loss prov ides
the yearly weighted r isk values. The sum of the
weigh ted r i sk va lues is the es t imated loss i f no secur i ty
measures are taken. l t i s then reasonab le to assume
that annua l opera t ing expenses (inc lud ing deprec ia t ion o f
cap i ta l equ ipment) equa l to the aggregate es t imated
iosses cou ld be jus t i f ied fo r secur i tv measures .

66

Fraud Protection

A final aspect of physical security that should recetve
close attention is that of fraud protection. The following
are suggested measures to protect the system against
f raud:

. Balance cash and accountable i tems f requent ly .

. Apply strict validitv checks.

. Control access to tape and disk l ibraries.

. Batch balance and contro l onl ine f i les.

. Log and review computer operator actions.

. Thoroughly test and review new programs or changes
to existing programs before including them in the
system program.

. Allow only official operators into the computer area.

. Control access to data and terminals.

. Div ide user and staf f responsib i l i t ies.

. Restrict the knowledge of how the total system
works to the fewest possible people.

. Set up an internal audit group whose function is to
continuously review the system for securitv breaches.

. Maintain an orderly operation. Do not leave tapes,
d isks, and l is t ings ly ing around the computer area.

. Keep a high standard of documentation but make
sure that this documentation is kept in a secure
locat ion.

Programmed Security Measures

In a batch environment. control of access to information
in fi les is a function of the data processing department
staff. lf a printout of sensitive information is required by
management, a request is submitted, usually to the data
processing manager, who perhaps retains control of the
only copy of the program to do the job. The resulting
printout and any carbon paper used are then handed to
the person reguesting the printout. ln a remote terminal
operation, where all f i les are online, access controls
must be built into a system, otherwise sensitive
information could be available to any person who had
access to a terminal.

When designing a system or application in a remote
terminal environment, the designer should look at the
data to be stored in the fi les and decide:

. What level of security must be applied to this data?

. Which group of people needs access to this data?

. To what extent is modification allowed and by
whom?

The information stored in computer fi les can be
classified according to the degree of security required to
prevent unauthorized access. For example, the following
classifications might be used:

Top secret
Secret
Company confidential
Unclassified

The type of data that might be allocated to these
categories depends upon an organization's security
policy. Some information may be of such a sensitive
nature that management would never allow the data to
be stored in computer fi les.

SystemSecurity/ lntegri ty 67

Besides being classified by degree of security, data can
be classified departmentally. For example, production
planning information should be of l i tt le interest to
anyone in the payroll and personnel departments. The
reverse situation, however, is not necessarily true.
Payroll and personnel information is generally of interest
to anyone in the company. lt is necessary. therefore, to
inhibit access to data on the basis of a need to know.
Data access can also be inhibited on the basis of what
the terminal operator should be allowed to do with the
data. Even within one department employees have
different responsibil i t ies: some may be allowed to
access only parts of a data file and not be permitted to
make any changes, while others in the same department
are allowed to access greater portions of the data and in
some cases make changes to, add to, or delete records
from the fi le.

Sign-On Security

The password used for CCP sign-on must be considered
the lowest level of security; it provides, at best,
protection against the casually interested outsider. lt
would not be diff icult for a more determined individual
to discover the password and sign on to the system.

The user security interface to CCp ($CCPAU) allows
sophisticated techniques to be used and allows the
passwords to be changed as frequently as required.
Changing a password provides better security and the
more frequently it is changed, the greater the protection.
However, frequent changes give rise to other problems,
such as the need to advise authorized users more
frequently of the new password and the possibility of
confusing the passwords. lf an operator writes down
the password instead of memorizing it, security is
immediately compromised.

Sign-on security, whatever the method used. has a
limitation in that too many people need to know the
current password(s) and the more people who know it,
the lower is the level of security.

Access to Data Files

Three general methods of l imiting access to data fi les
are described here:

. Using another password, in addition to the sign-on
password

. Using CCP symbol ic f i le support

. Manipulat ing terminal names

Using Additional Password(s): An easy way to limit
access to data fi les is to use another password that is
checked by the program as the first data field entered
from the terminal with the program request. lf this
password is coded in the program, then it is necessary
to recompile the program whenever the password needs
to be changed. A better way to check passwords would
be to have the passwords recorded in an execution-time
table of valid passwords that are related to employee
numbers within a department. Each employee would
then be given a unique password that he should
memorize and not divulge to anyone.

The operator should not enter password data with the
program request, since this data would be displayed on
the screen. Rather, a first t ime routine should be
included in the program to prompt the operator with a
brief message to ENTER PASSWORD. The input f ields
for this screen format would be coded as nondisplay
field types (type 7 or 8). The operator, after being
prompted, would enter department number, employee
number, and unique password. The program would then
use the combined department number/employee
number as an argument to look up the table of
passwords for a password that corresponds to the
operator's entry. lf the operator's entry was not the
password assigned to the operator in the table, the
program could put an appropriate message to the screen
and allow the operator to try again. lf, on the second
attempt, the passwords do not match, the program
should release the terminal, put a message to the
system operator, and record the event on a sign-on type
log record.

68

The log records should contain as much information as
possible within the constraints of log record size. These
records should be analyzed regularly for frequency of
occurrence by type, location, terminal, employee
number, and time, in order to pick up patterns as soon
as possible. lf a pattern does emerge. it could indicate
that someone is attempting to enter the system without
authorization.

In order to establish departmental security where
information can only be accessed by authorized
personnel in that department, individual password table
fi les have to be set up for each data fi le. As a further
precaution, the terminal names or lDs could be included
in these table fi les.

Some individuals within the company may need
authorized access to fi les and programs that cross
departmental boundaries. These people would have
their employee numbers and passwords included in
more than one table fi le.

In order to protect against unauthorized modification of
data or deletion of records, another byte could be added
to the table entry and coded according to type of access
allowed. This byte value could then be used to set an
indicator that conditions execution of portions of the
program code. An update type program could then be
selectively restricted to allow inquiry only.

A l imitation in these security procedures is the fact that
if someone were to gain access to the disk containing
the password table fi les, then this individual would have
complete access to all data in the system until the
passwords were changed. For this reason, the disk
containing the password tables should be protected as
well as possible.

Symbolic File Technique: An easy way to secure files
accessed by SRT programs is to write the programs to
use SYMFILE support, so that the operator must use the
/FILE command to reference the fi le. To change the
password (actual f i le name), the user needs only to
change the assignment set and the OCL.

Manipulating Terminal Narnes; The following technique
can be used to allow a certain kind of transaction to be
done by only one operator using one of a selected
group of terminals: Al ternate TERMNAMES can be
supplied to the selected terminals and the TERMS
parameter of the PROGRAM assignment statement can
be used to require that the requesting terminal's
symbolic name be its alternate name. This requires that
(1) tne operator know the alternate name and enrer a
/NAME command to change the doing business as
name of terminal , and (2) that only one terminal at a
time can be used to run the transaction.

BACKUP AND RECOVERY

The goal of system backup plans and procedures should
be to minimize the impact of any breakdown in the
system and to recover from this breakdown as quickly
and economically as possible.

Most backup procedures used for batch systems also
apply to online systems. However, there are additional
backup considerations in online systems. In online
applications, the entire business can become dependent
upon the system; therefore, the system must have
reliable backup and recovery procedures.

Hardware Backup

Mutual hardware backup plans between users with
similar equipment have long been used for batch
oriented systems. However, this type of arrangement is
generally not practical in an online environment. Even if
an identically configured system could be located, the
delays and diff iculty of establishing the necessary data
links would preclude relying on this approach to
hardware backup.

Online system hardware backup plans can vary
according to the business requirements and the cost of
implementing those plans. Hardware backup can range
from having a spare terminal or a standby modem to
completely duplicating the central system. The actual
level of hardware backup provided must be determined
by weighing the cost against the possible business loss
if the backup is not there when it is needed.

System Secur i ty / Integr i ty 69

Data Backup and Recovery

Damaged or destroyed hardware can be replaced,
sometimes quickly, but lost data may be impossible to
replace or prohibit ively expensive to replace.
Installations have had the central data processing facil i ty
completely destroyed by fire and, because there was
good data backup, have recovered so quickly that their
customers were not aware of any disruption in service.
Other installations without data backup have had minor
programming failures that caused them to lose the
pointers to their transaction fi les, resulting in a great
financial loss and immeasurable loss in customer
satisfaction. The data in this case was not lost. but it
could not be read or recreated because of inaoequate
data backup and recovery procedures.

The level of data protection can vary greatly without a
significant difference in cost of implementation. The
development of a backup plan and the testing of that
plan can provide a potential return far greater than the
time and effort involved. Developing a backup plan
includes analyzing the effect of a system failure on each
step of an application, defining appropriate recovery
procedures, and testing those procedures. lt is
important that the procedures be tested. A crisis
situation is not the time to find the shortcomings of a
backup p lan.

For backup and recovery purposes, data can be divided
into different categories. These are:

. Historical data

. Master f i les

. Data processed but not distributed

. Data logged but not processed

. Data received but not logged

Historical Data

Historical or archives data is not used in day-to-day
processing and is retained on some media (such as
cards, magnetic media, or microfi lm) in some secure
location, preferably off site. Any audit of the backup
plans should include trying to reconstruct current f i les
from these historical f i les. The audit should verify such
considerations as:

. Are the fi les a/ways available?

. ls the storage media compatible with present
hardware?

. ls the media protected against modification or
deterioration?

. Are copies of the programs that process this data
protected in the off-site location also? ls program
documentation available?

. How current are master f i les that are reconstructed
directly from these archives? What would be the cost
of making the reconstructed fi les more current?

. Are operating procedures and run books available?

. ls the data stored the right data?

Master Files

Master f i les are those fi les used in day-to-day
operations. Many users keep backup copies of all
master f i les on site and update them on a daily basis.
In this way, no more than one day's processing can be
lost and the transactions for that day are logged in the
transaction log fi le. The transaction log fi le is retained
until the daily update run has been completed
successfully.

70

Data Processed but not Distributed

lf a system failure occurs during the day's processing,
then data that has been processed but not distributed
must be considered. Master f i les have been updated,
but the output of the application is stored within the
system and is not recoverable. The transactions cannot
simply be rerun or the master f i les would reflect double
activity. A method that can be used is to. have the
application programs that process the transaction fi le
flag the header record of all orders processed. The
recovery program would be designed to begin
processing at the last order printed or distributed to
terminals and to process all the following transaction
records, but not actually update master f i les on flagged
orders.

Data Loggd but not Processed

When the recovery program has processed all the
flagged orders, another category of data must be
recovered: the records in the transaction file that have
been received from the terminals but have not been
processed. lf a system failure occurs, these recoros
must not be reentered by the terminal operators. The
operators must be notif ied as quickly as possible not to
enter more data because a recovery is in process. The
recovery program must scan the transaction fi le and
identify for the terminal operator the last record correctly
entered in the transaction fi le. lf transactions are l inked
together by terminal within the transaction fi le, the logic
of the recovery program can be much more
straightforward. The example in Chapter 7, Task
Chaining i l lustrates this type of l inkage.

Data Receivd but not Logged

Data that has been received but not logged must be
reentered by the terminal operators. This data was in
main storage at the time of the failure and is now lost.

Loss of Transaction File Data

In many instances, the transaction fi le is the key factor
in a successful recovery from a system failure.
Transaction fi le data that is lost or unusable wil l have to
be reentered from terminals. lf tape support is available,
the effect of losing transaction fi le data can be reduced
by running a program in the batch partit ion to copy the
transaction fi le to tape on a regular basis. lf tape is not
available, transaction fi le data can be made less crit ical
if master f i les are backed up on a daily basis. lf a
failure occurs in this case, a maximum of one day's
input has to be reentered. lf the master f i les are backed
up twice a day, then a maximum of one-half day's input
has to be reentered. Even orders that have been
processed and printed have to be reentered so that
master f i les can be correctly updated. The printing of
the output can be bypassed for the duplicates to
prevent wasting forms.

Whichever method is used, the time required to reenter
records should be balanced against the time required to
back up fi les.

File Recovery Procedures

In the event that the CCP partit ion is abnormally
terminated, the system operator should have predefined
procedures available to assist in recovering fi les. lf none
of the fi les used with CCP are add or output (load) fi les,
no special procedures are needed except to start the
CCP partit ion again. However, if add or output f i les are
used, the fi le recovery programs provided with the
system ($CCPRB or $RINDX) and $COPY can be used
to recover the fi le.

System Security/ lntegri ty 71

$CCPRB

The $CCPRB program works only on fi les defined for
the last CCP execution. lt does not require any fi le OCL
statements. $CCPRB designates a new fi le (ourput or
load) as an existing fi le, and indicates that a consecutrve
fi le is full. For each consecutive fi le, a user_written
program should be run after $CCpRB is run to search
the fi le for the last add or output record and copy all the
valid records to a temporary fi le. lf the consecutive fi le
is defined to CCP as an add fi le, the temporary fi le
should then be copied back on top of the fi le CCp wil l
use, so that the fi le pointers reflect the last valid added
record. For an output f i le, the existing fi le should be
deleted after it has been copied, so that the CCp
start-up OCL will create another output f i le. At the end
of the day the last built f i le should be merged with the
temporary fi le from before the abnormal termination.
Add fi les or direct f i les should be used instead of
consecutlve output f i les because less system operator
intervention is required to recover fi les.

For indexed fi les, gCCpRB sorts the keys and indicates
the location of the last data record entered into the fi le.
For indexed add fi les, $CCpRB sorts the added keys
into the existing keys.

For further information concerning $CCPRB, see lgM
System/3 Models 8, 10, and 12 CCp Systern Operator,s
Guide, GC21-7581.

$R,NDX and $COPY

For systems that are supported by $RttrtOX and the
ACCESS and SELECT statements of $COpy, different
procedures should be defined. $RINDX can be used to
recover batch fi les and CCp fi les. File OCL is needed for
this program. $RINDX ignores fi le OCL statements that
do not refer to an indexed fi le; therefore, a copy of CCp
start-up OCL could be used as input to this program.
Because this program only works on existing indexed
files (load to an old empty fi le also), it is suggested that
an empty indexed fi le be defined before CCp start_uo
(by using $COPY or by writ ing a program that creates a
fi le but does not output records to the fi le). lf an
indexed fi le must be created under CCp, the fi le should
be defined as an add fi le in the CCp program instead of
an output f i le. Then, when an abnormal termination
does occur . $RINDX should be run (us ing f i le OCL
statements) to recover the added records. CCp can then
be started again and the application programs can
continue to add to the existing fi le.

To restore consecutive add fi les, $COpy should be used
and the location and number of records paramerers In
the CCP start-up OCL must be used. After an abnormal
termination of the partit ion, this location and number of
records must be used in a $COPY run to copy the fi le to
a temporary fi le. A user-written program should then be
run to search for valid records and copy those records
back over the original f i le used with CCp. Then CCp
can be started up again. lt is suggested that the add
access be used instead of the output or load access,
sance system design is easier and less operator
intervention is required for recovery. In all cases, the
fi les should be predefined (create a dummy or empty
fi le) before CCP start-up so the location and size of the
fi le is known if $COPY is needed to restore the fi le or
parts of it.

For further information concerning $RlNDX, see one of
the following publications:

IBM System/3 Model 12 System Control
Programming Reference Manual, GC21 -51 30

IBM System/3 Model 15 Systern Control
Programming Ref erence Manual, GC21 -5077

IBM System/3 Model I5 System Control
Programming Concepts and Ref erence Manual,
GC21 -51 62

72

Aqueue is a wa i t ing l ine or l i s t fo rmed by i tems in a sys tem
that a re wa i t ing fo r serv ice . Oueu ing theory equat ions
descr ibe what happens in a sys tem when queues deve lop
and the result ing effects on system performance; these
equat ions are qu i te complex . However , a bas ic knowledge
of queu ing theory he lps the des igner o f a CCP sys tem to
determine sys tem requ i rements and to unders tand the
effects of queues on the performance of the system. For
th is reason, th is chapter descr ibes a s imp l i f ied method o f
us ing queu ing theory .

S I M P L I F I E D O U E U I N G T H E O R Y E O U A T I O N S

The response t ime for one transaction is a function of the
ar r iva l ra te (A) o f a l l l i ke t ransac t ions and the serv ice
time (S) required to process these transactions. Response
t ime to depos i t money in a bank is a func t ion o f how many
deposits must be made and how long a deposit takes. Both
A and S must be in the same t ime un i ts . For te le -
process ing messages, th is i s usua l ly g iven in seconds. The
ut i l i za t ion (U) o f a fac i l i t y by a t ransac t ion is the produc t

o f the ar r i va l ra te and serv ice t imes:

U (%) = ar r i va l ra te x serv ice t ime

o r

U (%) = A x S

Ut i l i za t ion may a lso be de f ined as the ra t io o f the ac tua l

transactions serviced to the total transactions that could
be serv iced:

u (%)=actual transactions serviced

to ta l t ransac t ions poss ib le

The u t i l i za t ion o f a fac i l i t y i s l im i ted to 100%. l f the
product of the arr ival rate and the service t ime is greater

than 100%, more than one fac i l i t y i s requ i red to hand le

the ar r i v ing t ransac t ions .

Chapter 10. Simplif ied Oueuing Theory

The nex t s tep conta ins the s imp l i f y ing assumpt ions wh ich

make th is an es t imate ra ther than an equat ion . l f a fac i l i t y

is used, t ransac t ions want ing to use tha t fac i l i t y w i l l have

to wa i t . The number o f t ransac t ions wa i t ing , o r queued
(Q) , can be es t imated to be the u t i l i za t ion d iv ided by 1
m i n u s t h e u t i l i z a t i o n :

/ . . r _ u t i l i za t ion
v -

1 -Tiiiiz;ti;;

or

o=- l -
1 - u

The u t i l i za t ion o f a fac i l i t y w i l l be be tween 0% and 100%

or be tween 0 and 1 . l f a fac i l i t y had a u t i l i za t ion o f 75o/o ,

the O = .75 / (1 - .75) , wh ich means the queue conta ins on
the average th ree t ransac l ions .

Before a t ransac t ion can use a fac i l i t y , i t must wa i t fo r the
fac i l i t y to serv ice a l l t ransac t ions in the queue ahead o f
i t se l f . Th is wa i t t ime (W) is the produc t o f the number on
the queue (Q) and the serv ice t ime (S) :

W a i t = q u e u e x s e r v i c e

o r

W = O x S

Fina l l y , the response t ime fo r a t ransac t ion is equa l to the

wai t t ime (W) p lus i t s serv ice t ime (S) :

Response = wa i t + serv ice t ime

o r

R = W + S

l f a t ransac t ion must use severa l fac i l i t i es ser ia l l y , then the

total response t ime for that transaction is the sum of the

response t imes fo r each fac i l i t y .

Simpl i f ied Oueuing Theory 73

S I M P L I F I E D O U E U I N G T H E O R Y E X A M P L E

The remainder o f th is chapter ou t l ines how the in fo rmat io r . r
above can be used to s tudy a sys tem tha t inc ludes the
fo l low ing app l ica t ions : o rder en t ry , inventory , casn
app l ica t ion and produc t ion inqu i ry .

The sys tem requ i rements o f an on l ine sys tem (fo r exanrp le ,
how much process ing un i t ma in s to rage is requ i red) a re a
func t ion o f the number o f t ransac t ions tha t must be
hand led dur ing a user 's peak hour work load. S imp l i f ied
queu ing theory i s a method o f a r r i v ing a t these requ i re -
ments . Do ing a vo lume s tudy to de termine sys tem s ize
invo lves the fo l low ing s teps :

1 . Def ine and f lowchar t the app l ica t ion to be done.
Use t ranSact ion-or ien ted program s teps .

2 . For each program s tep or t ransac t ion , de termine:
a . How much key en t ry t ime.
b . How many d isk accesses .
c . How many charac ters w i l l be passed be tween

the te rmina l and the process ing un i t .

3 . Ca lcu la te the number o f t ransac t ions per hour (a t
peak load hour , i f app l i cab le) fo r each app l ica t ion .

Determine the to ta l number o f t ransac t ions and
the to ta l number o f charac ters invo lved in the on l ine
app l ica t ions . Ca lcu la te the average number o f
characters that make up a transaction.

For each l ine speed, ca lcu la te the l ine t ime requ i red
to transfer an average transaction between a 327O
termina l and the process ing un i t .

Based on the to ta l number o f t ransac t ions to be
h a n d l e d i n a n h o u r , d e t e r m i n e t h e l i n e u t i l i z a t i o n
for d i f fe ren t l ine speeds.

Ca lcu la te l ine response t ime.

Based on the to ta l number o f t ransac t ions to be
hand led in an hour , the average number o f d isk seexs
per t ransac t ion , and the d isk seek t imes fo r d i f fe ren t
d isk d r ives , de termine d isk u t i l i za t ion .

Ca lcu la te d isk response t ime.

Based on the to ta l number o f t ransac t ions to be
hand led in an hour and the average process ing un i t
serv ice t ime fo r each t ransac t ion , de termine the
process ing un i t u t i l i za t ion .

Ca lcu la te p rocess ing un i t response t ime.

Based on the to ta l number o f t ransac t ions in an hour
by program and the process ing un i t t ime requ i red
to process that load by program, determine the
number o f user task areas needed and there fore ,
the requ i red process ing un i t s ize .

6.

8 .

7 .

9.

1 0

1 1 .

1 2

4 .

5.

74

Step 1. Define and Flowchart the Application

Def ine the app l ica t ions in te rms o f t ransac t ion-or ien ted
program s teps . The fo l low ing is a sample order en t ry

app l ica t ion . The f lowchar ts fo r the o ther app l i ca t ions are

shown in the descr ip t ions fo r s tep 2 .

Step 2. Determine Activi ty for Each Program Step

For each program s tep , de termine:

" Key en t ry t i rne (es t imate , us ing th ree keys t rokes per

second) .

Number o f charac ters to be sent be tween the te rmina l

and the process ing un i t . Th is number shou ld represent

the to ta l charac ters in and ou t , inc lud ing bo th da ta and

cont ro l charac ters . The number o f con t ro l charac ters

can be es t imated a t .20 t imes the number o f da ta

cn aracte rs.

Number o f d isk accesses .

Order Entry

Prograrn Step 1 (Sold To): Enter and validate customer

i n f o r m a t i o n .

" Key t ime = 12 seconds

. L ine = 400 charac ters

' One d isk read indexed and one d isk wr i te d i rec t = 4

seeks

Program Step 2 (Ship To): Same as sold to program.

Program Srep 3 (Miscellaneousi.' Enter and validate

misce l laneo, . rs in fo rmat ion .

" Key t ime - 20 seconcis

. L ine = 400 charac ters

. D i s k (w r i t e) = 2 s e e k s

Program Step 4 (ltems) '

a l loca te inventory .

" Key t ime = 6 seconds

" L ine = 100 charac ters

. D i s k = B s e e k s

Enter and va l ida te i tems, and

Order Entry

P r i n t

Simpli f ied Queuing Theory 75

Program Step 5 (Print) : print invoices; sort invorces into
warehouse sequence; update accounts receivable.

" Key t ime = 0 seconds

" L ine = 1,900 characters

" Disk = 26 seeks

I nventory

Program Step | (tnquiry/: Retrieve vendor orders.

. Key t ime = 10 seconos

' Line = 1,200 characters

" D i sk = 12 seeks

Program Step 2 (lnventory Update): Validate and update
inventory; c lose orders; pr in t warehouse rout ing.

' Key time = 40 seconos

' Line = 200 characters

" Disk = 30 seeks

Cash Application

Program Step | (lnquiry): Retrieve open items.

" Key t ime = 3 seconds

' L ine = 1 ,500 charac ters

' D i s k = 8 s e e k s

Program Step 2 (Apply Cash):

. Key time = 20 seconds

' L ine = 100 characters

' Disk = 12 seeks

Production lnquiry

Edi t and update open i tems.

Parts
Inqu i r y

Program Step | (lnquiry): Retrieve parts information.

' Key time = 3 seconds

' Line = 200 characters

' D i s k = 2 s e e k s

Cash Receipts

Stock Receipts

76

Step 3. Determine Transactions per Hour for Each Online
Application

Using (1) the tota l number of t ransact ions requi red to
accompl ish an appl icat ion, (2) the appl icat ion volumes, and
(3) the tota l hours avai lable to handle the load, determine
how many transactions must be processed in an hour to
complete the job. The total for all applications represents
the workload the system must be able to handle.

Example: Order Entry

" Transactions per order:

Sold to 1
Ship to 1
Miscel laneous 1
I t ems 12
Pr int 1

16- Transactions required to do
one average order

. Volumes:

Local 1.500 orders
Remote 750 orders

Total 2,250 orders

' Orders per hour (convert to peak hourly load):

60% of dai ly vo lume done in f i rs t 4 hours

.60 x 2,250 orders/day = 4 hours = 337.5 orders/hour

Simpli f ied Queuing Theory 77

Summary Chart

The fo l lowing char t summarizes the tota l t ransact ions oer
hour for the system.

Volume Transactions Totar Hours to Transactions
Application per Day per Application per Day Complete per Hour

Order entry 2,250 16 36,000 g 60% processed in 4 hoursl

Stock receipts 450 2

Cash receipts 600 2

Product ion
inqui ry 2,250 j

21,600 4

900 8

1,200 8

2,250 8

5,4001

112

225

60% processed in 4 hoursr

1.350 4 338

System transaction total 6,07b

l 60%o f
t hese t ransac t i onsmus tbep rocessed ina4 -hou rpe r i od . Use thesenumbers tocompu te

the t ransact ions per hour.

78

Step 4. Calculate the Average Number of Characters per Step 5. Calculate Line Time to Transmit an Average
Transaction Transaction

The fo l lowing char t summarizes the number of characters For each l ine speed, calculate the l ine t ime requi red to
per transaction and the total characters per hour for each transfer an average transaction to (or from) the processing
appl icat ion program step. uni t . This example does not consider l ine turnaround t imes.

Turnaround times should be considered in actual use of
Number of queuing theory.

Transactions Characters on Total
(Peak Load) TP Line per Characters Line Speeds in Equivalent Time in Seconds
per Hour Transaction per Hour Bits per Second Characters per to Transfer 293

(bps) Second {cps) Characters/Transaction
337.5 sold to 400 135.000

2,400 300 .98
337.5 ship to 400 135,000

4,800 600 .49
337.5 miscel laneous 400 135,000

7,200 900 .33
4,050.0 i tems {12 x 337.5) 100 405.000

9,600 1,200 .25
337.5 print 1,900 647 ,25O

Direct attacht 5,000 .06
56.0 inventory inqui ry 1,2OO 67 ,2OO

56.0 inventory update 200 1 1,200 lTh" d i ru" t at tach t ine speeds vary f rom 1,0o0 to b,ooo characters
per second depending upon the length of the data. The shorter

1 1 2 . 5 c a s h i n q u i r y 1 . 5 0 0 1 6 8 , 7 5 0 t h e m e s s a g e b e i n g s e n t t o t h e t e r m i n a l t h e l o w e r t h e e f f e c t i v e d a t a
rate wi l l be.

112.5 cash appl icat ion 100 11,25O

338.0 production inquiry 200 67.600
6,075.0 1,777,250

1,777,250 characters per hour _ o^c ̂ L^__^.
6 P @

= : o " c n a r a c r e r s P e r

transaclton averaqe
(rounded)

Simpli f ied Oueuing Theory 79

Step 6. Calculate Line Utilization lJtitization

lf the transaction volume per hour of the system is known, Assuming two balanced 4,g00 bps l ines (each line handlingthe l ine speed that provides optimal uti l ization can be one-half of the transaction volume), l ine uti l ization canchosen. be calculated as folfows:

' Transactions/hour x average/characters/transaction = 1 /2 x 4g4characters/second (see step 6) = 247cha racte rs/h ou r cha racte rs/second

6,075 x 293 = 1,779,975 U = actuat used * total available

' Characters/hour + 3,600 = characters/second = characters/second * 600 characters/second
'1,779,975 + 3,600 = 494 __ .41 or 4 l% ut i l izat ion

' Uti l ization (U) = characters/second - l ine speed in
characters per second Wait Time

or = actual used - total available wait t ime is def ined as the time a transaction must soend in
. oueue = u/1 -, lff [::fi:iiil',::ff,1.J]illl;J,,H:,il.,::fflon (1)

are pending, and (2) the serv ice t ime; that is . the l ine t imeLtne upeeds to send or receive a transaction.
bps cps Util ization Oueue

Wa i t=queuexse rv i ce
4.800 600 .829 4.65

O = U = (1 _ U)
7,200 900 .549 1.22

= . 4 1 + (1 - . 4 1)
9,600 1,200 .412 .70

= .70 transactions pending on the averageDisplay adapter 5,000 .0gg .11

W = O x S
Display adapter 1,000 .494 .98

= .70 x (293 character average i- 600
characters/second)

Step 7. Calculate Line Response Time
= .34 second average wait t ime

Line response times can be calculated as follows:

Service Time

Service time is defined as the l ine time required to send or
receive a transaction. Service time for an average transaction
(293 characters-see step 4) can be calculated as follows,
assuming a 4,800 bps l ine (600 characters/second):

Service time = 293 characters average/transaction +
600 characters/secono

S = .49 second line time required to send/receive
293 characters

80

Line Response Time

Line response t ime for onl ine appl icat ion t ransact ions
(using two 4,800 bps l ines) is shown in the fo l lowing char t :

Program
Steps

Sold to

Ship to

Miscel laneous

I tems

Pr int

Inventory inqui ry

Inventory update

Cash inqui ry

Cash application

Product ion inqui ry

Characters/
Transaction

400

400

400

100

1,900

1,200

200

1,500

100

204

Average
Average Response
Wait (Secondsl

. 34 1 .00

.34 1.00

.34 1.00

.34 .51

.34 3.50

.34 2.34

.34 .67

.34 2.84

.34 .51

.34 .67

Actual
Service

.66

.66

.66

. 1 7

3 . 1 6

2.00

.33

2 .50

. 1 7

.33

Simpli f ied Oueuing Theory 8 1

step 8' calculate Disk uti l ization ' Disk uti l ization is a function of how many seeks and how

Disk utirization can be determined based on the number of
much time is required for each seek:

transactions per hour, the number of disk seeks per trans- Total transactions/hour xaction, and the disk seek time for the disk drive, as follows: average seeks/transactions = total seeks/hour

' Calculate transactions per hour and seeks per hour: 6,075 x g.3 = b0,503

Disk Seeks/ Total Seeks Total seeks/hour = 3,600 seconds/hour =
Transactions per Hour Transaction per Hour total seeks/second

337.5 sotd to 4 1,3b0 s0,503 + 3.600 = 14.o

337'5 ship to 4 1,350 Disk ut i l izat ion = tota l seeks/second x d isk t ime in

337.5 misceilaneous 2 l,3so
seconds/seek (for 3340)

4 , 0 5 0 . 0 i t e m s g 3 2 . 4 0 0
U = A x S

= 14.O x .0358
337.5 pr int 26 g,775

= .501 or 50. 1% ut i l izat ion
56.0 inventory inquiry 12 672

O u e u e = U - (1 _ U)
56.0 inventory update 30 1,6g0

= .501 ; (1 - . 501)112.5 cash inqui ry g 900
= 1.0 seeks pending on the average1 12.5 cash appl icat ion 12 l ,3SO

338.0 production inquiry 2 AIA

6.075.0 transactions per hoursystem totals 50,503 seeks per hour

. Calculate seeks per transaction:

Total seeks/hour r total transactions/hour =
average num ber of seeks/transaction

5 0 , 5 0 3 + 6 . 0 7 5 = 8 . 3

' Determine average disk seek times:

3340 Seek ZS ms
Rotational delay ,0., rn,

35.8 ms

5445 Seek 60 ms
Rotat ional delay 12.5 ms

5444 Seek
Rotational delay

72.5 ms

126 ms (high speed)
20 ms

82

146 ms

Step 9" Ca lcu la te D isk Response T in re

' Wai t t in ie - queue x serv ice

W = Q x S

=. 1 .0 seeks x .0358 seconds/seek

= C}.036 seconds

Response t inre = wai t t ime + 'serv ice

R - - t l / + S

= .036 seconds + .0358 se,conds

= .072 seconds

The f o l l<-rwrng char t sumnrar izes d isk response t i rnes for
t ransacr iorrs in each prograrn step:

Frograms

Sc ld to

S h i p t o

M isce l laner . rus

I t e m s

P r i n t

I n v e n i o r y i n q u i r y

I nventory e rpdate

C a s h i n q u i r y

Cash app l ica t ion

Produc t ion inqu i ry

Seeks/
Transaction

4

A

Z t l

t z

'li.r

tl

l t l

z

Average

Response/Seek
(Seconds)

.o72

.o72

. u t l

. v J z

.o72

.o72

.072

. v t l

.072

.o72

Average Total Disk
Response/Transaction
(Seconds)

.288

.288

.144

.576

1 .872

.864

2 . r60

. 576

.864

.144

Simpli f ied Queuing Theory

Step 10. Calculate Processing Unit Uti l ization

Processing uni t u t i l izat ion is a funct ion of the average
processing unit service time per transaction and the peak
hour t ransact ion volume.

' Processing uni t serv ice t ime:

Transactions per
Peak Hour

337.5 ship to

337.5 sold to

337.5 miscel laneous

4.050.0 i tems (12 x 337.b)

337.5 pr int

56.0 inventory inquiry

56.0 inventory update

112 .5 cash i nqu i r y

1 12.5 cash appl icat ion

338.0 production inquiry

6,075.0 total transactions

Average time to process a

Processing Unit Timer to
Process per Transaction
(in Secondsl

. 1

. 1

. 1

.5

.8

. 1

. 8

. 1

.8

. 1

Processing Unit Time
in Seconds per Hour

33.75

33.75

33.75

2,025.OO

270.O0

5.60

44.80

11.25

90.00

33.80

transaction =

2,581 .70 seconds of processing uni t t ime

tota l processing uni t t ime
total transactions

2,581 .7 seconds + 6,075 transactions

.4 seconds per transaction

'The processing uni t serv ice t ime is an est imate. Programs using mul t ip ly and/or d iv ide tend to run longer because
these calculat ions may take up to .15 seconds to execute. Use an average of 25 microseconds to execute one l ine
of RPG l l code.

84

' Processing uni t u t i l izat ion:

Total transactions/hour x average time/transaction =
total processing unit t ime in seconds required per hour

6 , 0 7 5 x . 4 = 2 , 4 3 0

Processing unit uti l ization = total t ime in seconds
divided by 3,600

= 2,430 + 3,600

= .67 or 67% ut i l izat ion

Oueue = U+ (1 - U)

= .67 + (1 - . 67)

= 2.0 transactions pending processing

Wai t t ime = queue x serv ice

= 2 . O x . 4

= .8 seconds average wait

Simplified Oueuing Theory 85

Step 11. Determine Response Time for processing Unit
and Total System

Average processing unit response time (service time plus
wait t ime) for each program step is shown in the following
chart :

Programs

Ship to

Sold to

Miscel laneous

I tems

Pr int

Inventory inquiry

lnventory update

Cash inqui ry

Cash application

Product ion inqui ry

Service
Time
(Seconds)

. 1

. 1

. 1

.5

.8

. 1

.8

Average Wait
Time
(Seconds)

.8

.8

.8

.8

.8

.8

.8

.8

. 8

.8

Average Total
Processing Unit
Response Time
(seconds)

.9

.9

.9

1 . 3

1 . 6

.9

1 . 6

.9

1 . 6

.9

. 1

.8

. 1

86

The average system response time per transaction is shown
in the following chart (load and termination times are added
to those response times determined previously):

Response Time in Seconds

Program

Sold to

Ship to

Miscellaneous

I tems (MRT)

Pr int

Inventory inqui ry

Inventory update

Cash inqui ry

Cash application

Product ion inqui ry

Line + Disk +

1.00 .288

1.00 .288

1 .00 .144

.51 .576

3 .50 1 .872

2.34 .864

.67 2 .160

2.84 .576

.51 .864

.67 .144

Processing
Uni t + Loadl

. 9 1 . 0

. 9 1 . 0

. 9 1 . 0

1 . 3 J 2

1 . 6 1 . 0

. 9 1 . 0

1 . 6 1 . 0

. 9 1 . 0

1 . 6 1 . 0

. 9 1 . 0

* Terminat ion

E

. 5

. 5

.052

E

. 5

. 5

. 5

. 5

.5

Total
System
Response

= Time

3.688

3.688

3.544

2.536

8.472

5.604

5.930

5 . 8 1 6

4.474

3.214

'Load
t ime for SRT programs on 3340 disk systems is est imated as 1.0 second (for 5444s i t would be

^2.0 and 1.0 respect ively l ; terminat ion t ime is est imated as .5 seconds.
-At tachment

t ime to a resident MRT program is est imated as .1 seconds; re lease t ime is est imated as .05 seconds.

Simpl i f ied Oueuing TheorY

Step 12. Determine System Size

The s ize of the processing uni t requi red is based on how
many user task areas are needed to handle the programs.
When a user program is resident in main storage, it occupies
a tasking area. Each tasking area can be uti l ized 0%to lO}yo.
To compute the ut i l izat ion of a task ing area for a speci f ic
program, use the formula:

transactions per hour x system response= ut i l izat ion

Comput ing the ut i l izat ion for each program using th is
formula y ie lds the fo l lowing resul ts :

Programs

Sold to

Ship to

M iscel laneous

I tems (MRT)

Pr int

Inventory inqui ry

Inventory update

Cash inqui ry

Cash application

Product ion inqui ry

Transactions
per Hour

337.5

337.5

337.5

4,050.0

337.5

s6.0

56.0

112.5

112.5

338.0

Average System
Response (Seconds)

3.688

3.688

3.544

2.536

8.472

5.604

5.930

5 . 8 1 6

4.474

3.214

Program Residency
per Hour (in Secondr)

1,245

1,245

1 , 1 9 6

10,271

2,859

3 1 4

332

654

503

1,086

Utilization of a
Tarking Area

.35

.35

.33

2.85

.79

.09

.09

. 1 8

. 1 4

.30

5.47 Total

A s imple way to determine the min imum number of areas
required is to add the uti l ization for all programs and round
uP to the nearest whole number:

Number of user task areas requi red = 5.47

(or rounded up) = 6

Programs u t i l i z ing a task area less than 100% can share a
task area w i th o ther p rograms tha t do no t requ i re a
ded ica ted task area (less than 100% ut i l i za t ion) . When the
task area u t i l i za t ion computa t ion resu l ts in g rea ter than
100% ut i l i za t ion (l tems in th is ana lys is has a u t i l i za t ion
oI 285o/o l , mu l t ip le task areas w i th dup l i ca te cop ies o f the
program are needed. In th is case, th ree cop ies o f l tems
are requ i red to hand le the t ransac t ion vo lumes.

The user task areas cou ld be u t i l i zed as fo l lows:

MRT MRT MRT SRT

Uti l izat ion: 95o/o 95Yo 95% 91Yo

l f a task s ize o f 14K by tes fo r each program is assumeo,
th is ana lys is wou ld ind ica te a sys tem tha t wou ld have a
min imum of 84K by tes ava i lab le fo r user tasks . The
to ta l u t i l i za t ions fo r each task area are h igh and wou ld
not a l low fo r g rowth in t ransac t ion vo lumes or fo r
add i t iona l app l i ca t ions . A la rger sys tem shou ld be
cons idered in th is case.

Your IBM representa t ive has add i t iona l des ign and
per fo rmance ana lys is fac i l i t i es . Contac t your representa t ive
for a more comple te and de ta i led ana lys is .

SRT SRT

79%92uh

I tems 1 I tems 2 I tems 3

o So ld To
o Misce l laneous

a Inventory

I n q u i r y
o Cash

A p p l i c a t i o n

a

c

Ship To
Product ion
l r rqu i r y
I nventory
I l n d a t e

Cash

I n q u i r y

o

o

P r i n t

Simpl i f ied Oueuing Theory 89

This chapter conta ins speci f ic t ips and techniques that
can be used to improve the performance of a CCP
SVStEM.

CCP-ASSOCIATED B U FFERS

Al l CCP input and ou tpu t da ta passes th rough severa l

buffer areas. There are four buffer areas associated with

a user task :

. The user record area described with the f i le

. The output hold area used by the display format

f a c i l i t v (D F F) 1

. The TP buf fe r (TPBUF) spec i f ied a t s ta r tuo l

. The l ine buffers

The lengths of these areas can affect the performance

of a CCP sys ten l and, in some cases , chang ing the

length of an area can improve performance. Each of

these areas is descr ibed in the fo l low ing paragraphs to

a id the user in de termin ing the bes t leng th to use fo r

these areas to achieve maximum performance.

User Record Area

An input/output area is reserved for each f i le in a
program. The length of this area is determined by the

record length of a f i le and is specif ied in the user
program. This area is part of the user program after

compi la t ion . Outpu t da ta i s p laced in th is a rea by the

user p rogram; input da ta i s p laced in th is a rea by an

input opera t ion .

Output Hold Area

The ou tpu t ho ld a rea is a l loca ted by CCP on ly i f the

termina ls in the ass ignment se t use DFF (DFF3270-YES

spec i f ied on the TERMATTR ass ignment s ta tement) .

CCP uses th is a rea to merge ou tpu t tex t and user da ta

fo r a l l DFF outpu t opera t ions .

rOn the Model 15, the TP buf fer funct ions as the output hold

a rea .

Chapter 11. Per formance Tips

On Sys tern /3 Mode ls 4 ,8 , 10 , o r 12 , CCP a l loca tes a

ho ld a rea fo r each BSCA ! ine {n rax in - ru rn oJ 1wo areas) .

The ho ld a reas are appended to the Df rF rnodu le tha t

executes in the user p rogram area.

On a Mode l 15 , the ho ld a rea is dynamica i l y a l loca ted

by CCP. Program 5704-SC1 uses a loca t ion in the TP

buffer for the hold area. Program 5704-SC2 uses an

area in e i ther the TP buf fe r o r an op t iona l 2K DFF buf fe r
(one fo r each BSC l ine) , as spec i f ied by the DFFBUF

parameter o f the BSCALINE ass ignment s ta tement . The

ho ld a rea fo r a Mode l 15 is usec i c ln ly fo r user DFF put

operations (see the paragraphs that cjescribe the TP

buf fe r use fo r the Mode l 15 and 15D in th is sec t ion fo r

add i t iona l in fo rmat ion) .

The length o f the ou tpu t ho ld a rea is spec i f ied on the

BLKL (b lock length) parameter o f the TERMATTR

assignment statement. For best performance, the size of

the area shou ld be la rge enough to ho ld the la rges t

ou tpu t d isp lay fo rmat in th is ass ignment se t . However ,

on the Mode l 15 , i f the to ta l bu f fe r a rea is too smal l to

hand le the t ra f f i c , decreas ing the s ize o f the pu t a rea

shou ld he lp improve to ta l th roughput . To de termine the

BLKL va lue , f ind the length o f the la rges t ou tpu t d isp lay

fo rmat (the s izes are pr in ted by the d isp lay fo rmat

genera tor rou t ine) and round tha t s ize up to the nex t

.25K. l f mu l t ip le TERMATTR s ta tements a re spec i f ied ,

the la rges t BLKL va lue rs used fo r the ou tpu t ho ld a rea

s ize .

Spec i fy ing a va lue (512 min imum) smal le r than the

length o f the la rges t ou tpu t d isp lay fo rmat causes the

format to be sent to the te rmina l i r r b locks . B lock ing

usua l lv causes the screen to b l ink as each b lock o f tex t

i s d isp layed on the te rmina l . The advantage to b lock ing

is tha t par t o f the fo rmat can be d isp layed on a te rmina l

in about ha l f the t ime requ i red to d isp lay an en t i re

(unb locked) message. The to ta l t ime to d isp lay the

ent i re fo rmat i s about the same fo r bo th b locked and

unb locked fo rmats .

l f the majori ty of the forntats require about 500 bytes

and on ly a few requ i re 1 ,000 to 1 ,500 by tes , then a

BLKL va lue o f 512 shou ld be spec i f ied to more

ef f i c ien t lv use the TP buf fe r . As an a l te rna t ive , the la rge

formats cou ld be d iv ided in to smal le r fo r rna ts . On the

Mode l 15D (5704-SC2) wr th DFF buf fe r suppor t

specif ied, the hold area is 2,048 bytes (2K) for each

BSC l ine tha t suppor ts DFF buf fe rs .

Per fo rmance T ips 91

TP {Teleprocessing) Buffer

The TP buf fe r i s an area o f ma in s to rage used by CCp
tasks as a te rnporary bu f fe r to i io lc l the pararne ter l i s t
and input o r ou tpu t dara . The mrr r imurn s rze o t the

, l p
bu f fe r i s spec i f ied on the MlN l pBUF parameter o f the
SYSTEM ass ignment s ta tement .

TP Buffer for Models 4, g, iO, and 12

The TP buf fe r fo r Mode ls 4 , g , 10 , and 12 is log ica l l y
one area as shown in F igures 17 and 1g .

Output Opera t ions : For ou tpu t opera t ions (F igure 17) ,
th is a rea is used on ly fo r pu t -no_wai t opera t ions (fo r
DFF put opera t ions , the ou tpu t ho ld a rea is used; fo r
non-DFF p l r t wa i t opera t ions , the da ta i s movec l d i rec t l v
f rom the user record area to the l ine bu f fe r) When a
pLr t -no*war t opera t ion is spec i f ied , the parameter t rs t and
outpu t da ta s t ream are moved f rom the user a rea { l /O
area in the user p rogram) to the Tp bu f fe r un t i l the l ine
buffer for that operation is freed. l f the Tp buffer does
not have su f f i c ien t space to conta in the parameter l i s t
and da ta , the pu t -no-wa i t opera t ion is hand leo as a pu t
wa i t opera t ion .

lnput Opera t ions For input opera t ions (F igure 1g) . the
TP buffer receives terminal and console data from the
l ine bu f fe r (s) . For inv i te input and DFF get opera lons ,
CCP f i rs t examines the input parameter l rs ts to
deter rn ine the la rges t requ i red bu f fe r space. l f su f f i c ien t
space is ava i lab le in the bu f fe r , the space is a l loca ted
and CCP proceeds to po l l the te rmina ls fo r da ta . l t da ta
is rece ived f rom one te rmina l and da ta i s to be rnv i ted
f rom o ther te rmina ls , another a rea in the Tp bu f fe r i s
a l loca ted be fore po l l ing the o ther te rmina ls fo r rnput .

l f CCP determines tha t su f f i c ien t Tp bu f fe r space is no t
ava i lab le , CCF wa i ts un t i l space is re leased be fore
po l l ing the te rmina ls . Buf fe r space is re leased a f te r an
accept input operation moves data frorn the Tp buffer to
t h e u s e r l / O a r e a .

The TP buf fe r i s a lso used to s to re commands and
program requests rece ived f rom a te rmina l . The space
a l loca ted f rom the Tp bu f fe r be fore po l l ing a command
termina l inc ludes space fo r the la rges t p rogram
charac ter is t i cs tab le (pCT) en t ry and the amount o f da ta
expec ted f rom a te rmina l . l f the space a l loca ted fo r the
input data is more than that required for the data
rece:ved, the excess space is f reed. po l l ing is no t
in r t ra ted on a l ine un t i l su f f i c ien t Tp bu f fe r space ts
ava i lab le .

The ca lcu la t ions fo r de termin ing the min imum va lue fo r
the TP buffer are described in IBM System/3 Models g,
10, and 12 CCP System Reference Manual, GC21_75gg.

An estimated operating size for the Tp buffer can be
ca lcu la ted us ing the fo rmula g iven be low. The oo t ima l
value can then be determined by varying the size of the
TP buffer unti l optimal performance is achieved. The
o p e r a t i n g v a l u e f o r M I N T p B U F i s :

M I N T P B U F v a t u e = i . 2 x l l T * t l x L)

w h e r e :

T is the number o f tasks genera ted in vour CCp
svstem.

t- is the average length of the fol lowing two values:

. The maximum length of text to be put by the user
programs

. The maximum length of text to be received bv the
user p rograms

Tf re va lue fo r MINTPBUF is a lways rounded up to the
next .25K boundary at startup; therefore, the value for
the buffer area calculated at startup is always equal to
or la rger than the va lue spec i f ied a t ass ignment o r
sta rtu o.

Line Buf fer
Line 112

r lf suff icient room does not exist in the TP buffer, put no-wait operations
are changed to put wait operations,

Figure 17. TP Buffer Usage for Output Operations on the System,/3 Models 4, 8, 10, and 12

Performance Tios

Line
Buffer
L ine 1

Figure 18. TP Buffer Usage for Input operations on the system/3 Models 4, a, f i , and 12

94

TP Butfer for the Model 15 _ PRUFLNG + PCT + ' I1

The following section describes the TP buffer for pRUFLNG is the largest PRUFLNG value specified
Models 15 (5704-SC1)and 15D (57O4-SC2) not us ing on a pROGRAM assignment s tatement . PCT is
DFF buffer support. calculated the same as in the preceding formula.

The TP buffer for a Model 15 is logically separated into
- CoMMANDL + 4

three areas as shown in Figure 19: COMMANDL is the value specified on the

SYSTEM assignment statement.
. Put data area: Used for put parameter lists and for

output data. The area required for program requests from the

system operator console is calculated as follows:
. Put/get area: Used for put parameter l ists and get or

put data. 1O4 + pCT

. Invite parameter l ist area: Used for invite parameter pCT is calculated the same as in the preceding
lists. formula.

At CCP startup, the TP buffer is automatically allocated The above calculation is the minimum value accepted
into the three areas. The following steps show the by CCp for the put/get area. The estimated
calculation of the lengths of these areas: operating size can be calculated using the formula

given below. The optimal value can then be
. Put data area: The length of this area is determined 6etermined by varying the size of the put/get area

as follows: unti l optimal performance is achieved. The estimated
- lf all terminal attributes in this assignment set are operating size is:

DFF, then the area is 516 bytes long.
- lf all terminal attributes in this assignment set are Size = 1.2 x ({N + 1)x L)

non-DFF. then the length is the greater of
MAXRECL + 4 or BLKL + 23. where:

- lf the terminal attributes in this assignment set are
both DFF and non-DFF. then the length is the N is the number of CCP tasks generated into the
greater of the traro preceding values. DSM system. lf there is the probability that many

MRT programs wil l be executing concurrently,
. Put/get area: CCP requires as a rninirnurn that this increasing this number by one for each MRT may

area be large enough to handle the largest yield improved throughput.
system-initiated invite input or program request from
the system operator console. L is the average of {1}the minimum put/get area

size calculated above and (2) the average length of
The length of the largest system-initiated invite input text expected to be sent to or returned from a
is the largest of the following values: terminal.
_ PGMREOL + PCT + 4

. Invite parameter l ist area: The length of this area is
PGMREOL is the length of the longest possible calculated as follows:
program request as specified on the SYSTEM
assignment statement. The size of the largest PCT (N x 23) + 4 tor 57O4-SC1
is calculated using the following formula: (N x 20) + 4 for S7O1-SC2

p C T = 3 4 + 1 4 x N F) + (2 x N T)

NF is the number of disk fi les used by the
program.

NT is the number of terminals specified on the
TERMS parameter of the PROGRAM
assignment statement.

N is the number of input capable terminals.

Performance Tips 95

Output
Record
Area

Tui-_- Put
Data
Areal

Line
Buffer
Line 1/2

Output

3270

Put

.-+
\ Invtte

Put/Ger
Area

Put

User
Program

i Accept Input

Console
tlo
Buffer

^, llo
Console

Input
Record
Area

i
-lnnite-lnput Line

Buffer
Line 1/2

Input
3270

lnvite
Parameter
List Area

I lf on put operations the putdata area is not availabla, the output d€ta ir
placed in the put/get area.

Figurc 19' TP Euftor Urage for InpuVoutput opcrrtionr on $3 syi.m/3 Modcl lE or Model lsD without DFF Buffer support

Remember that the total TP buffer size is obtained by
CCP f rom the MINTPBUF keyword on the SYSTEM
assignment statement. Thus, the values calculated for
put area, put/get area, and the invite parameter l ist area
should be added together and the result should be used
for this keyword.

All input data must pass tlrrough the TP buffer; that is,
the data is moved from the l ine buffer into the put/get
area of the TP buffer. The input data remains in the TP
buffer unti l the task for which it is destined indicates
that the area is free. User tasks free this area by issuing
an accept input operation. The amount of TP buffer
needed by the input data depends upon the status of
the terminal . For example, a terminal in command,
non-PRUF mode requi res less TP buf fer (PCT +
program data) than a terminal in command, PRUF mode
(PCT + format data).

The Model 1 5 does not have separate output hold
areas; the put and put/get areas function as the output
hold area for all l ines. The put data area of the TP
buffer insures only that eventually an area wil l be free
such that a put operation can be performed. The BLKL
value given should be large enough to handle the largest
put operation to assure the immediate handling of an
output operation. lf the TP buffer is only large enough
for one put operation at a time, and two lines are being
used, system performance is degraded.

For DFF put operations, CCP attempts to get main
storage equal to the output text length of the DFF
format. Assuming the output text is larger than the area
available, CCP again requests main storage using the
previous length (rounded up to a multiple of 256 bytes)
minus 256 bytes. lf the request is successful on the
second or succeeding try, the output text is blocked. lf
the length is reduced to 512 bytes and the request sti l l
fails, the program requesting the put operation is placed
in a wait state unti l main storage becomes available.
(This usually means that the put area is currently being
used and wi l l be avai lable soon.)

516 Bytes

1000 Bytes

516 Bytes

100 Bytes

768 Bytes

Put Data Area

Put/Get Area

Inv i te
Parameter
List Area

Put Data Area

Put/Get Area

Inv i te
Parameter
List Area

For example, a user program issues a DFF put with a
length of 950 bytes. The buffer is allocated as follows
(areas not shaded are available):

I
i

I
\

The total output text (950 bytes) does not f it into the
put data area. The put/get area does contain sufficienl
space for the output text and the put operation is
performed.

Suppose the buffer is allocated as follows:

Performance TiPs 97

In th is case, the buf fer is f ragmented in such a wav thal
there is not sufficient buffer space to contain the entire
text, and the text is blocked using the 76g bytes in the
Put /get area.

Suppose the buffer is allocated as follows:

516 By tes

150 Bytes

400 Bytes

The number o f te rmina ls i s a lsc l a fac to r in de termin ing
the s ize o f the Tp bu f fe r : the s ize o f the inv r te
pararneter l ist area is calcir lated at startrrp t ime ustnq trtcr
number o f inpu t capab le te rmina ls .

- fhe
nro |e i€ rn1 ;q615

spec i f ied , the la rger the inv t te parameter l i s t a rea wr l l be .
Bes ides th is a rea , the number o f te rmina ls a f fec ts the
overal l size of the Tp brtf fer.. Fclr exampte. , tssume th. i
pu t /ge t a rea is la rge enough to ho l t j on ly iwo input
messages, there are more than two input_capab le
te rmina ls on the sys tem, and the probab i l i t ies a re such
(Ctje t(] traftsaction arr i , tal rate) ihat tvr.o tra.:si :ctrnns wii l
a lways be pend ing (wh ich is to say the pu t /ger a rea o f
the TP buf fe r w i l l a lways be in use) ; in th is case. a t l
ou tpu t w i l l be funne led th rough the pu t a rea o f the
buf fe r " Sys tem per fo rmance w i l l be degraded t lecause
outpu t regues ts a re p rocessed ser ia l l y ra ther than
concurreni lv"

l f , in th rs example , two BSC l ines are usec j . bo th mav
not be ac t ive a t the same t ime because o f the funne l ing
effect. Better performance rnay be achieved in this case
by spec i fy ing a s ize fo r the Tp bu f fe r la rge enougn ro
hand le bo th the max imum number o f concur ren t inou t
rnessages and two rnax imum outpu t da ta s t reams. Th is
wou ld a l low put reques ts fo r each BSC i ine to oe
operateo on concurrentlv.

As a min imum va lue , i f two BSC l ines are used, the Tp
buf fe r shou ld be la rge enough to ho ld tw ice the
maxtmum input da ta s t rea in . l f the

- l p bu f fe r c loes no t
have enough ava i lab le space fo r two input da ta s r reams,
then on ly one l ine is po l led .

On the Mode l 15D (S7O4-SC2) , when the sysrem
operator issues a display terminals command or a
secondary display user's command, the word WAIT wil l
appear on the terminal name l ine i f at that point in t ime
a program operation is wait ing for the Tp buffer in order
to complete. The wait indication on the display does not
necessari ly mean that a performance problem exrsts
regarding the TP buffer. However. i f the frequency of
wait indications increases as terminal response t imes
increase, the TP buffer size coulci be the l imitrng
resource causing the longer response ttrnes.

Put Data Area

Put/Get Area

Inv i te
Pa rameter

L is t Area

In th is case, the la rges t a rea ava i lab le fo r ou tpur tex t rs
in the put data area. The output text is sent in blocks
us ing the pu t da ta a rea .

For non-DFF put operations, a get storage requesr ts
performed using the length of the output text. l f the
output text does not f i t in the avai lable area, the
program requesting the put operation is placed in a wait
state unti l suff icient Tp buffer becomes avai lable.

98

TP Buffer for the Model 15D (5704-SC2) with DFF
Buffer Support

The TP buffer for a Model 15D with DFF buffer support
is logically separated into the areas shown in Figure
1 9 . 1 :

. Put data area: Used for put parameter l ists, non-DFF
output data, and DFF output data for BSC lines
without a DFF buffer.

. Put/get area: Used for put parameter l ists, get data,
non-QFF output data, and DFF output data for BSC
lines without a DFF buffer.

. Invite parameter l ist area.

. DFF buffers (one for each BSC line with DFF buffer
support): Used for DFF output data.

Note; The DFF buffers are not included in the Tp
buffer size.

At CCP startup, the TP buffer and the DFF buffers are
automatically allocated. The following steps show the
calculation of the lengths of these areas:

. Put data area: The length of this area is determined
as follows:
- lf all terminal attributes in this assignment set are

DFF, then the area is 516 bytes long.
- lf all terminal attributes in this assignment set are

non-DFF. then the length is the greater of
M A X R E C L * 4 o r B L K L + 2 3 .

- lf the terminal attributes in this assignment set are
both DFF and non-DFF, then the length is the
greater of the two preceding values.

Put/get area: CCP requires as a minimum that this
area be large enough to handle the largest
system-initiated invite input or program request from
the system operator console.

The length of the largest system-init iated invite input
is the largest of the following values:

- PGMREOL + PCT + 4

PGMREOL is the length of the longest possible
program request as specified on the SYSTEM
assignment statement. The size of the largest pCT
is calculated using the following formula:

P C T = 3 4 + l 4 x N F) + (2 x N T)

NF is the number of disk fi les used by the
program.

NT is the number of terminals specified on the
TERMS parameter of the PROGRAM
assignment statement.

- PRUFLNG + PCT + 11

PRUFLNG is the largest PRUFLNG value specified
on a PROGRAM assignment statement. PCT is
calculated the same as in the preceding formula.

- COMMANDL + 4

COMMANDL is the value specified on the
SYSTEM assignment statement.

Performance Tips 99

The area required for program requests from the
system operator console is calculated as follows:

104 + PCT

PCT is calculated the same as in the preceding
formula.

The above calculation is the minirnurn value accepted
by CCP for the put/get area. The estimated
operating size can be calculated using the formula
given below. The optimal value can then be
determined by varying the size of the put/get area
until optimal performance is achieved. The estimated
operat ing s ize is :

S i z e = 1 . 2 x ((N + 1) x L)

where:

N is the number of CCP tasks generated into the
DSM system. lf there is the probabil ity that many
MRT programs wil l be executing concurrently,
increasing th is number by one for each MRT may
yield improved throughput.

L is the average of (1) the min imum Fut /get area
size calculated above and (2) the average length of
text expected to be sent to or returned from a
terminal .

Invite parameter l ist area: The length of this area rs
calculated as follows:

(N x 2 0) + 4

N is the number of input capable terminals.

DFF buffer: The length of each allocated buffer is
2,048 bytes (2K).

DFF output for any BSC line with an optional DFF buffer
is processed through that buffer. Each buffer can
handle a DFF format that is up to 2,@8 bytes long if
the l ine buffer is large enough to contain the entire
format (see Line Buffer in this section for information
concerning the l ine buffer size). lf a DFF format is
longer than 2,O48 bytes or the line buffer is smaller than
the length of the longest format, the format is
transmitted in blocks.

Specifying DFFBUF may enhance the performance if Tp
buffer uti l ization is at its maximum.

For maximum performance when using DFF buffer
support, specify a DFF buffer for each BSC line used for
a DFF put operation, and specify a line buffer size that
is large enough to handle the longest format (DFF or
non-DFF) expected. For example, if the longest DFF
format is 512 bytes (or less), some improvement in
performance may be possible if two or more BSC lines
use a DFF buffer. This improvement is obtained
because two or more DFF put operations can be
scheduled and these operations can be in various stages
of transmission at any given time.

Each DFF buffer allocated reduces the user program
area (UPA) by 2K bytes.

Outpu l

Record

Area

Put
Put
Data
Areal

Put L ine
Buf fer

Output

3270

a:-l*r"-

Put

Accept Input

Put/Get
Area

User
Program

Console
tlo
Buffer

t/o
Console

Line
Buffer

I npu t
3270

I npu t
Record
Area

nv i te lnput

Inv i te

Parameter

L is t Area

A

DFF Buf fer
BSC Line 1

Maximum of four (one for each
BSC l ine) DFF buf fers (opt ional l .

DFF Output Data

DFF Buf fer
BSC Line 2

DFF Buf fer
BSC Line 3

DFF Buf fer
BSC Line 4

I
lf on prt operations the put clata area is not available, the output data is
placed in the put/get area.

Figurel9. l TPBufferUsagofortnput /OutputOperat ionronthesystem/3Model l5D(57O4€C2lwhhOpt ionalDFFBufferSupport

Performance Tips 101

Une Buffer

All input and output text passes through the line buffer.
There is a line buffer associated with each line. The size
of the line buffer is determined by the BLKL value

L

I
(rounded up to the next .25K boundary) of the
TERMATTR assignment statement associated with this
line.

This space is doubled if DBLBUF-YES is specified on
the BSCALINE assignment statoment or if ASCII
transmission code is specified (see note). Double
buffering may reduce data transmission time in a
multiple block transmission environment (for example, if
a 3270 sends data to the computer in blocks of 256
characters or less). However, double buffering uses
mor€ storage than single buffering.

The size of the line buffer is determined by the lengths
of the input text and the output toxt. For 3270 terminals
only 256 is needed for inpu! but any size could be
needed for output text. Thus, if the system has limited
main storage available, it is best to specify a single
buffer of 512 bytes. To improve response time. specify
a larger line buffer so that fewer of the output
m€ssages need to be blocked. lf further improvement in
rosponse time is desired and the system has sufficient
main storage, double buffering can be specified.

Note: lf ASCII is specified, an additional buffer, equal to
the line buffer, is allocated for translation of the output
text from EBCDIC to ASCll.

Figure 20 shows the interaction of the line buffer, Tp
buffer, and the user area for CCp operations.

CCP TASK SIZES

In addition to specifying the size of the Tp buffer. the
user must specify a minimum size for an area to load
and execute user tasks. This area is called the minimum
user program area (MINUPA) and is specified on the
SYSTEM assignment statement. The size of this area
depends on the size of the user tasks that are being
executed. The storage requirements of each user task
are calculated using the following elements:

. The size of the object program

. The size of the largest DFF field descriptor table
(FDT) used bY the user task

. The number of terminals and formats used by the
task

The last two elements form the program appended
storage (PAS) for DFF. The minimum size for each
element is .25K.

The TASKSIZE parameter (5704-SC2 only) sheul6 ps
considered for calculating user program storage
reourrements.

The size of the object program is obtained from the
compiler l isting. The size of the FDT is obtained from
the display format generator l isting. The amount of
storage required for terminal information and format
information is calculated as follows:

Storage requi red = 127 + (37 x NT) + (18 x NF)

where:

NT is the number of terminals

NF is the number of formats

Once the sizes of the elements are known, the size of
each is rounded up to the next .25K boundary. The
sizes of the elements are then added together to form
the storage requirements of the user task. On a Model
15, this total is rounded up to the next 2K boundary.

102

User Area
Output
Hold Area

TP Buffer
or

DFF BufferOperation

Putr (Models 4, 8,
10 , and 12 -no DFF I

Get (Models 4. 8,
10 , and 12 -no DFF)

Put-Then-Getr
(i nva l i d f o r DFF)

DFF Pu t o r
DFF Put-No-Wai t

Get (Model 15)
DFF Ge t
DFF Accept Input
DFF Stop Inv i te

Put (Model 15)
Put-No-Wait
(n o D F F)

Inv i te lnput

Line Buffer

Accept Input or
Stop Inv i te Input

I For console operat ions, console buf fer is used instead of the l ine buf fer .

Figure 20. Buffer Interaction

Mode ls 4 ,8 , 10 , 12
DFF adds
control
characters

DFF adds
control
characters

Held unt i l
l ine buf fer
is free

Held f rom
previous
inv i te input

Performance Tips 103

Minimizing Storage Requirements

Knowing how each element is developed allows some
judgment to be made on where storage requtrements
can be reduced, especially if one of the elements is just
over a .25K boundary. Some techniques are to:

. Define fields with a type F output f ield class. This
reduces the FDT by 14 bytes for each field defined
as type F, but the fields defined with this
classification cannot be modified using a put override
operatron.

. Combine two f ie lds in to one. This e l iminates an FDT
entry.

. Redesign a format as two formats. This reduces the
size of the FDT, but input data can be received onlv
from the format last sent to a terminal.

. Def ine each l ine of data as a unique format . This
reduces storage requirements, but this method
Increases l ine and disk activitv.

. Use the most efficient program design (MRT, SRT,
etc) for the application. This affects storage
util ization (see Chapter 2 for additional information).

Techniques for reducing RpG ll program size are given
in the RPG ll Reference Manual, SC21-7504.

Model 12 Examples

For example, a task to be executed on a Model 12 has
an object program s ize of 7, 15g bytes (7.0K or 7,16g
bytes, rounded to the next .25K), an FDT size of 140
bytes (256 bytes rounded). and two terminals with one
format for a size of 21g bytes (256 bytes rounded). The
total storage required for this user task is 7.5K bytes.
The FDT and terminal / format requi rements for th is task
are a l ready at min imum sizes (.25K each); the onty way
to reduce the storage requirements for this task would
be to reduce the size of the object program by at least
246 bytes, to 6.75K.

lf another Model 12 task has an object program size of
5,510 bytes (5.5K rounded), an FDT size of 2g4 bytes
(.5K rounded), two terminals and one format for a s ize
of 219 bytes (.25K rounded), storage requirements can
be reduced by decreasing the size of the object program
and the FDT. Reducing the object program by 134
bytes reduces the storage requirement by 256 bytes.
Reducing the FDT by 28 bytes reduces the storage
requirement by another 256 bvtes.

104

Model 15 Example

On a Model 15, the total storage requirement for a user
task is rounded up to the next 2K boundary. Here it is
even more important to take a closer look at tne
elements in a task for storage saving techniques. For
example, a Model 15 task has an object program size of
6,236 bytes (6.25K rounded), an FDT size of 154 bytes
(.25K rounded), and two terminals and three formats for
a size of 255 bytes (.25K rounded). The total storage
for this task is 6.75K, rounded to the next 2K boundary
is 8.0K. Removing 768 bytes (.75K) from the object
program (a l l o ther e lements are a l ready at min imum)
reduces the total user task storage requirements bv
2,048 bytes (2K).

DFF CONSIDERATIONS

Figure 21 shows the disk accesses for DFF operations.
The table indicates the following considerations:

. lf only one format is used in a program, there are
fewer accesses for the succeeding uses of the format
(only one d isk read f rom the format index in CCPFILE
and only one read of the FDT from the l ibrary).

. The proximity of CCpFILE to the object l ibrary affects
response time. This is important not only for reading
the format index, but for every program load (DFF or
non-DFF) since the PCT must be read for each
program load.

. Processing transients is faster than reading from the
object l ibrary since the disk head is more l ikely over
the transient area. Thus a put override operation is
faster than a put operation.

. There are 42 format entries in each sector of the
format index. The index is read into the FDT area,
which is part of the storage area that is appended to
user programs for DFF operations. Thus the size of
the FDT area determines how much of the index is
read in at one t ime. The index is in the order in
which the format directory entries exist in the l ibrary.
Thus, if frequently used entries are loaded into the
library first, they wil l be found faster and executed
faster.

. Unused formats should be deleted from the l ibrary
because they may cause unnecessary reads of the
format index.

Operation Item Accessed
Number of
Accesses

Area
Accessed

Put R p e d f n r m a f i ^ . l o t O r @ CCPF I LE
Read FDT f rom disk@ Obiec t l ib ra rv

Read 3270 text I 1 t9 Object l ibrary

Put overr ide Read FDT@ 1 Obiect l ibrarv
Bui ld textU z TransientU

copv Bui ld textO I rans ten tv

Accept input Read format index (PRur)@ CCPFI LE
Read FDT f rom d iskg 1 Objec t l ib ra ry

Inv i te input No disk accesses

'
A lways done.

-
Read only i f last format used is not the same as the current format.

" Read only for the f i rs t t ime format is used in the program.
-

One access i f not b locking, or one access for each block, i f b locking.
" These reads are in addi t ion to those required to support the operat ion.
6

Addi t ional reads required i f index is not in the f i rs t read. The index
is read into the FDT area

Figure 21. Disk Accesses for DFF Operations

CCP DISK ACCESSES

Figure 22 shows the number of disk accesses for
program loads and terminations. lt is usually slightly
faster for the user task to release a requesting terminal
on a Model 15A, B, and C, and then execute termination
than to allow CCP termination routines to release the
terminal (seven transient loads rather than eight). On the
Model 15D. however. it is faster to allow CCP
termination to release the terminal (two transient loads
rather than five).

Following is a l isting of the number of transient loads
for certain CCP operations:

For example, an SRT program that has disk fi les and
releases the requesting terminal requires the following
number of accesses, assuming no performance options:

Models 4, 8, Models 15A,
10, and 12 B, and C Model 15D

Load:
Transients 20
Other
$CCPFILE 1
Object

l ibrary 1

Terminate 12

1 4
1
1
I

1

1 2

1 4
1
1

1

7

Operation

Get attributes
Acquire terminal
Acqu i relset attri butes
Release terminal
Release/keep
Accept input (nonresident)

Stop invite
Task chain

Number of
Transients

1
3
4
3
4
,|

3
2

Total 34 29 24

Performance Tips 105

Operation

Program load

Program] e. tO, and 12

M R T (a l r e a d y t o a d e d) | S

Number of Disk Accesses
Models 15
A, B, and C

t l

1
,|

1

1

7
4
5
o

1 0
4
tr

Wai t

2
1
1

5
2 each

6

1
4
4
7
4

8
4
5
q

1 0

5
W a i t

I

5
1
1

+

2 + 2. each

5\7

1

8 0 . @ ,
4@p
p

10@
30
50

No wa i t

/;\ 11
6 \ 7 , \ J

z

7@
?

M R T o r S R T (n o t i n s t o r a g e)
Program request and a l loca t ion

l f d i s k
l f requ i red te rmina ls
l f un i t rc ' cord dev ices

F i l e a l l o c a t e (e a c h c h a i n
o f D T F s)

Open (each cha in o f DTFs) :
D i s k O O
Pr in te rO

Card dev iceO
Disk and pr in te rO

Disk , p r in te r and card
dev iceO

D i s k (F O B T R A N f i t e s) O
PTAM f i tes@
Buf fe r p r ime

Rela t ive record f i le
CCP/ D isk Sor t work f i le

R e a d P C T f r o m S C C P F I L E
Program load

Terminat ion
Terminals (each)
Close (one of the fo l lowing) :

D i sk f i l esO
CCP/Disk Sort work f i le
MFCUI1442
Pr i n ter
Disk, pr in ter , 1442, and MFCU
PTAM

1

5

1

/1
t q l

1
1

2
o@

4
2
3
3
5
3

'
Select one of these_

'
Add t h i s t o no rma l d i sk open .

'
l f there is not a mixture oI 5444 and 5445 type f i les, subtract . l .4 ^

. Yn ' y_o1 "
pe r cha in o f DTFs (i f two f i r es i n p rog ram, doub re t he d i sk accesses , e t c) ." Fo r ccP /D i sk so r t modu res , each ou tpu t and i npu t f i r e i s opened and c rosed sepa ra te r y .6

None i f RESREQ op t i on se lec ted .
'

One i f RESREO op t i on se tec ted .
6

2 + 2 each i f abnornral terminat ion.
'

None i f res;dent open/c lose selected.
" Add one f o r mu l t i vo l ume d i r ec t .t

Add onu f o r mu l t i vo l ume i ndexed .
'

Add one f o r mu l t i vo l ume t i l e s .

Program
term inat ion

106

Figure 22' Number of Disk Accesses for program Loads and rermination

PLACEMENT OF PROGRAMS, FORMATS, AND
FILES ON D ISK

The IBM System/3 Model 15 3340 Direct Access
Storage Facil ity Reference Manual, GC21-51 1 1, contains
a comparison of the 5444, 5445 and 3340
characteristics, such as access and rotation times, ovres
of storage, track and cylinder capacities.

Without movement of the read head, a 5444 can access
1 cylinder (2 tracks or 48 256-byte records). A S44b
read head can a lso access 1 cy l inder wi thout moving (20
tracks or 400 records). A 3340 can access .6 logical
cy l inders (12 t racks or 576 records) . A logical cy l inder
on a 3340 (20 tracks) thus cannot be accessed without
some arm movement-five arm movements wil l read 3
logical cy l inders. On a 3344, 1.5 logical cy l inders can be
read at one time, thus two arm movements wil l read 3
logical cy l inders.

For per formance reasons, a l l o f the CCp modules except
the transients are loaded onto the CCp production oack
by CCP generat ion and then the t ransients are loaded.
The transients require approximately 320 records or
sectors. Thus, if the object l ibrary starts on a particular
boundary on a 3348 data module (depending on the
support you requi re) i t is possib le for a l l o f the
transients to reside in an area which would not reouire
any d isk arm movement. l t is a lso possib le on a 334g
data module for the t ransients to over lap a physical area
and requi re an extra 10 ms (min imum arm movemenr
time) to access some transients.

The most active formats and programs should be copied
to the CCP product ion pack af ter a CCp generat ic ln so
that minimal arm movement is required between the
CCP t ransients and your programs and formats. Less
active programs and formats should be cooied to the
library last.

l f a s igni f icant amount of space is requi red for programs
and formats, it could be more efficient in terms of
min imal d isk access t ime to o lace formats and
$CCPFILE on the CCP program pack (for example R1),
and put appl icat ion programs at the end of the other
s imulat ion area on the same dr ive.

R1F 1

loo,,",oui.ct
I
riruData Area

|
,o r , " .

-Arm Movement .+

This would requi re a min imal source l ibrary s ize on the
CCP s imulat ion area.

The $CCPFILE should be p laced (by g iv ing the
LOCATION parameter) immediate ly against the end of
the object l ibrary. The F1 or IPL pack should only
contain those modules really needed to run the system.
The compiier, the sort modules and uti l i ty programs
such as $COPY, $LABEL. $MAINT should be p laced on
another drive along with batch application programs.
This effort wil l reduce arm contention and allow more
space for CCP programs and formats.

CCP Modules

($CC. . .modules)

Most Active

User Programs

Most Active

Formats

Least Active

Programs and Formats

Performance Tips 1O7

DISK UTILIZATION

CCP performance is determined to a great degree by the
demand upon the disk facil i ty as well as the speed of
the disk facil i ty. Following are some consideratrons
affecting the demand on the disk facil i tv.

File and Library Placement: In order to avoid disk arm
contention, CCp, DSM, and data fi les should be on
separate disk drives if possible. Disk access times
increase if CCP and the data fi les are on the same drive.
because there can be no disk l/O overlap.

lf multiple fi les are located on one data area, ptace the
most active fi les in the center of the area so that
accesses to the infrequently used fi les wil l average out.
The more evenly the data fi les are distributed, the less
waiting there wil l be and the better the response ttme.
This applies to all System/3 models, especially those
that have 54/14 and 5445 disk drives.

For systems that use spooling, the spool f i le should be
on a separate drive because of high disk activity when
spooling. ldeally, the record length of any fi le should be
256 characters in length, a size evenly divisible into 2b6,
or a multiple of 256. This is because all data
managements read from a disk into the program area in
even multiples of 256 (256 characters equal one sector).
lf record length is 256 characters, a read of only 256 is
necessary into the user program. lf record length is 300,
it is possible that the record could spread over 3
sectors. Thus 3 sectors would have to be read in. ln
this case, if program A read in a record to be updated,
and program B is updating the fi le also and wanted the
record immediately preceding the record read by
program A, then B would have to wait unti l program A
updated its record before B could read the record it
wanted.

GEN ERATION/ASSIG N M ENT CONSI D ERATION S

Generation and assignment statements can be useo to
balance the desired speed of CCp against the resulting
size of CCP. The optimum size of the CCp code is
achieved when more storage results in no appreciable
decrease in response time and using less storage
increases response time. lt is usually best to set uo for
optimum CCP performance and then decrease the size
of CCP if storage is exhausted.

Following are some tips that affect the speed/size
re lat ionshio:

. Memory-res ident pol l ing (RESpOL-yES) improves
response time but requires more storage. lf
RESPOL-NO is specified, the batch partit ion may be
degraded due to transient f inds for poll ing.

. Generat ing CCp wi th min imum resident code
(MINRES-YES) decreases storage requi rements but
degrades response t ime. Speci fy ing MINRES_yES
can also degrade the performance of a batch
partit ion, since the CCp partit ion and batch partit ion
will compete for use of the system transtenr area.

. A lockout could resul t i f BSCA, BSCC, and MINRES
are specified simultaneously. Should this occur.
regenerate CCp wi th MINRES-NO.

. Memory-resident accept input (ACCEpT-yES, Model
15 only) improves response time but increases main
storage requirements; the code necessary for this
often-used operation is memory resident rather than
loaded from disk as a transient when needed.

. Do not inc lude unused terminals in the assignment
set. The more terminals in your assignment set, the
more storage is required (approximately 90 bytes for
each terminal).

| . (57O4-SC2 onty) tf Tp buffer utilization is ar a
maximum, the memory resident DFF bufter area
(BSCALINE DFFBUF-YES) may improve data
transmission and terminal response time. lt increases
main storage requirements, however, since it exists in
addition to the put area normally built into the Tp
buffer.

. Using the interval poll ing feature (lNTPOL parameter
at CCP generation and pOLTIME parameter at
assignment) may cause less registered processing
unit meter time in a relatively inactive CCp
environment. However, response time may be
degraded, because CCp will be poll ing less
frequently.

. Generating the system with busy printer suppon
(BSYPRT-YES) simplif ies the coding of terminal
printer programs by eliminating the need to test for
the busy condition (-14 return code) in the program.
This support also allows CCp and other tasks to
execute while the printer is busy since the printing
task will not regain control until the print operation is
complete.

CONSIDERATIONS USING PRUF

Some considerat ions for us ing PRUF programs fo l low
(see Program Request Under Format in Chapter 5, 3270
Screen Design for additional considerations):

. A full buffer of data can be passed from one program
to another. In effect, the 3270 is used for storing
intermediate data. This can increase line activity, but
it decreases disk accesses by eliminating the need to
pass data through disk storage.

. Main storage is more efficiently used; for example,
instead of a s ingle program to handle mul t ip le
terminals and multiple transactions, a series of 8K or
10K programs are loaded as if they are overlays.
However, the time required for additional program
loads may cause an increase in terminal response
trmes.

. Sector protection is not in effect when one program
in a PRUF string reads a disk sector and goes to end
of job and another program updates the fi le. lf a
record is to be updated in a later program, the record
may need to be temporarily f lagged to reserve
inventory quantit ies, or other data, to prevent another
terminal from updating the same record.

. With PRUF, operators are entering data to a screen
format put to a terminal by a program that has since
gone to end of job. lf the system operator requests
shutdown at this time, there is no way to notify the
system operator that the terminal operator sti l l has
work to perform; consequently, CCP proceeds with
shutdown. The system operators in a PRUF
environment must be aware of this possibil i ty.
Operating procedures should be established to ensure
that the terminal operators are informed of a pending

shutdown so they can complete their work as soon
as logically possible. The system operator should
issue a delay shutdown command that does the
fo l lowing:
1. Sends a warning message to a l l the terminal

operators informing them of the pending
shutdown.

2. Allows sufficient t ime for the terminal operators to
complete their work before shutdown proceeds.

. Pressing the CLEAR key on a terminal clears the last
format written to the screen. lf the format on the

screen was a PRUF format, it cannot be rewritten to

the screen because the program that init ially wrote
the format to the terminal has gone to end of job.

Logic, such as a help format, or RECOVERY program

should be inc luded in systems using PRUF so that
the PRUF screen can be rewritten to the terminal.

. Pressing a PA key causes only the AID byte to be
returned to CCP. No program request data is
returned to CCP when a PA key is pressed. When
request ing a PRUF program, the ENTER or PF keys
must be used.

. Disk uti l ization is more efficient if a terminal operator
using a PRUF format can enter the maximum amount
of data before requiring program intervention. That
is. as the time between transactions increases, disk
uti l ization decreases. However, response time may
increase if many separate transactions are entered on
one screen, because editing them takes longer.

MISCELLANEOUS CCP TIPS

Terminals in ERP (Model 15 Only): Terminals left in ERP
(error recovery procedure) may cause fragmentation of
the TP buffer. Terminals should be either removed from
ERP or var ied of f l ine.

Loops in a CCP Task: Beware of loops in CCP user
tasks. An endless loop in a CCP user task stops the

other level on Models 8, 10, and 12, and, i f CCP is the
highest priority partit ion, the other partit ion(s) on a
Model 15. Wi th in the CCP area on Models 4, 8, 10, and
12, an endless loop stops a l l o ther user tasks; on Model
15, an endless loop stops all lower priority tasks.

Attention ldentification Keys: Be aware that attention
identif ication keys are not available on all 3270
keyboards.

Performance TiPs 109

PA Keys: When the operator of a terminal presses a
PA key to cause attention, only the AID characrer rs
transmitted from the 3270lo the processing unit; no
data is transmitted. Only the pF and ENTER keys cause
data to be transmitted. The ENTER key should be used
as much as possible in the normal application flow_in
fact, exclusively if possible. An operator is slowed and
more prone to errors if other AID keys are required on a
regular basis .

Right Adiustment aN Negative lnput: Right adjustment
and negative input are handled automatically for numeric
input f ields as follows:

. A numeric field is written to the screen as null
characters (hexadecimal 00) when the original format
write is performed.

. On subsequent input, trail ing nulls are removeo,
shift ing the remaining field contents to the right.

. lf the field contains a - (minus sign) as the right
character, the - is removed and the number is treated
as a negative number.

. Auto skip only works when the rightmost f ield
position is entered; the right tab key must be used to
get to additional input f ields if a field is only partially
f i l led.

Some examples of a S-position numeric input f ield
fo l low:

Keying Position
1 2 3 4 5 Read As

7 5 (right tab) 00075
7 5 - (right tab) 0007N (-7b)
7 5 U (r ight tab) 00750 (btank = zero)

Output/lnput Fields Carrying Negative Values: Special
processing is required to use negative values with
output/input f ields, because the 3270 hardware cannor
represent a negative zero. For example, a 3_byte
output/input f ield containing minus ten cents (unedited)
is transmitted to the 3270 as X'FOF1D0,, but is loaded
to the 3270 buffer as X'FOF1S0', which displays as 01&.
When this hexadecimal character string is received by
DFF (to which an output/input numeric modified field
cannot be defined). DFF passes it to a user program
without signing or justifying it. Therefore, the field
appears to be plus ten cents when the field is processed
numerically by the user program (the low order X,50, is
equivalent to X'F0' when used arithmetically in the
System/3). To pass a negative value via a 3270 buffer.
the user should edit the value with trail ing minus sign to
a DFF output/input f ield. To receive the field, the user
should redefine the last character as an alphamerrc
character and test it for an &. lf the character is an &.
then the whole field should be forced to a negative field.
When using PRUF, the user has another option:
separate display formats can be used to write the data
and to receive the data. The formats should differ in
that the field is defined as output/input for writ ing and
as input for reading.

Clear Key aN Data Mode Escape; pressing the CLEAR
key on a 3270 terminal sets the entire buffer to nulls
(hexadecimal O0). Programs should be written to check
for this return code and, upon receiving it, rewrite the
previous screen formar.

On systems without data mode escape, the CLEAR
return code is immediately given to the program. On
systems with data mode escape, the CLEAR return code
is not indicated to the application program until the next
time the operator presses an attention-causing key
(ENTER, PF key, PA key). lt is, therefore, recommended
that data mode escape not be generated into CCp
unless it is to be used.

1 1 0

Messages to the Terminal Operator: Messages (what to Compiling Mdet 15 Programs: A COMPILE
do next, what was lust done, what error just occurred) LINKADD-SOOO must be provided when compiling a
to the terminal operator are easier to find if they are set Model 15 CCP program. Batch programs are l ink edited
up on a message line that is in a constant location on all at 4000. lf an RPG ll program is to execute in both a
display formats. batch and CCp environment, the overlay l inkage editor

must be a separate step, with COMPILE LINKADD-8OO0
and RLD-YES specified. This step is automatic for

Link Editing CCP Programs: CCP programs must be FORTRAN and COBOL compilers and the CCp/Disk
link edited on a system that has been generated to Sort program.
support CCP because of the CCP subroutines (such as
SUBR92 and CCPCIO) and, on Models 4, 8, 10, and 12.
because of the special unit record data management. IDELETE Mode on the Modet 15: lf IDELETE mode is

not specified before CCP start-up, the system will
appear to be in a wait state, waiting for a response to

DFF Formats; The time required to load additional the tenth message before another could appear on the
display formats into program-appended storage can be system console.
minimized by having only one regularly used format.

Memory Resldent Overlays: In some cases, using
Record ldentif ying ldicators: When using memory resident overlays is not efficient use of user
READ/EXCPT logic, remember that the record program areas. The tBM System/3 Modet 15 Overlay
identifying indicators are turned off by RPG ll when the Linkage Editor Reference Manual contains additional
program goes through the normal input cycle logic (after information concerning the two memory resident overlay
detail and L0 calculations). techniques, REMAP and MOVE.

Mdel 15 Programs: A user program cannot exceed
32K including the program appended storage (but
excluding external buffer size and the MORCOR option
for memory resident overlays on the Model 15D). The
RPG ll H-specification Size to Execute (columns 12
through 14) should not be used, except to force the
program into overlays. Any value specified in these
columns that is less than the value needed by the
program to execute forces overlays. On the Model 1S, if
a value is specified that is more than that required for
the program to execute, the excess storage is wasted. lf
the program uses DFF, the program appended storage is
added to the program when it is loaded.

Performance Tips 111

This page is intentionalty left blank.

For definit ions of communications and data processing
terms that are not included in this glossary, see IBM
Data Processing Glossary, GC20-1699, or publications
listed in Appendix B, Bibliography.

$CCPFILE: A CCP contro l f i le on a d isk in which.
dur ing CCP assignment s tage, the user def ines one or
more specific operating environments for CCP. Each
operating environment consists of a set of terminals,
fi les, and programs that can be used during a particular
run of the CCP.

addressing: In communications, the means whereby the
originator or control station selects the unit to which it is
going to send a message.

AID character: Attention identif ication character.

algorithm: A prescribed set of well-defined rules or
processes for the solution of a problem in a finite
number of steps. ln using direct f i les, an access
algorithm describes how the contents of a key field are
used to determine a relative record location.

application: Data processing work that is accomplished
with the assistance of a computer.

application program: A program written for or by a
computer user that applies to his own work.

assignment stage: The special preparatory CCP run
during which the user defines one or more sets of
specific operating environments in which CCP can run.

attention identif ication (AlD) character: A code that
is set in a 3270 display station when the operator takes
an act ion that produces an l /O pending condi t ion. The
character identif ies the action or key that caused the
condition to be generated. The AID is set when the
display station operator presses a program access key,
ENTER key, TEST REO key, or program function key;
when a selector pen attention occurs; or when a
successful operator identif ication card read-in occurs. lt
also identif ies device addresses assigned to printers.

Appendix A. Glossary

attribute (3270): A characteristic of a display field. The
attributes of a display field include: protected or
unprotected; numeric-only or alphameric input control;
displayed, nondisplayed, display intensified;
selector-pen-detectable or nondetectable; and modified
or not modified.

attri.bute character l3270l: A code that defines the
attributes of the display field that follows. An attribute
character is the first character in a display field, but it is
not a displayable character.

batch mode: The operating method in which programs

are being executed such that each is completed before
the next is started.

batch program: An application program that processes

a series of related transactions that have been grouped
together. Batch programs can run under disk system
management control and under CCP control.

batch data: Data, such as transactions, that is grouped

to be transmitted or processed in a continuous series.

binary synchronous transmission: Data transmission
in which synchronization of characters is controlled by
timing signals generated at the sending and receiving

stations.

block mode operations: Operations that result in all
data from an operation in the program up to ETB (end

text block) being moved into or from the user
programs's record area.

BSCA: Binary synchronous communications adapter.

CCC: Copy control character.

command interrupt mode: The operating mode of a
terminal following data mode escape unti l the program

execution is resumed by a RUN command (the terminal
reenters data mode) or unti l the terminal is released by a
RELEASE command (terminal enters command mode).

Glossary 113

command mode: The operating mode of a command
terminal following a successful sign-on, up to and
including the program request. Following program
termination, a terminal returns to command mode unti l
another program request is made or unti l sign_off.

command terminal: A terminal that is capable of
commanding CCP services related to requesttng a
program. Terminals are designated as either command
terminals or data terminals at assignment time.

common carrisr: Any government-regulated company
that furnishes communication services and facil i t ies to
the general public; for example, a telephone or telegraph
company.

communication management: A major function of
CCP that controls terminal input/output.

communications service subroutine: A relocatable
subroutine provided by CCp that is l ink-edited to user
programs. The subroutine is called by the user program
whenever the program requires a communications
service, such as sending and receiving messages.

consecutive processing: A mode of file processing in
which records are processed in the order they appear in
the file. Contrast with radom processing.

control station: The primary or controll ing computer rn
a multipoint telecommunications configuration.

copy control character (CCC): A character used in
conjunction with the 3270 copy command to specify
that a particular operation, or combination of operations,
is to be performed at a display station or printer in the
data that is to be copied.

copy operation: A 3270 DFF operation that copies the
contents of the buffer from one display station or printer
to another display station or printer attached to the
same control unit.

cursor: A unique symbol (an underscore) that identif ies
a character position in a 3270 screen display, usually the
character position at which the next character to be
entered from the keyboard wil l be displayed.

data entry application: A communications-based
system application in which terminals are in relatively
prolonged communication with an application program
(as opposed to the typical inquiry application), for
example, entering data for document preparation (such
as invoice preparation), or entering data directly into
data fi les from a terminal.

114

data mode: The operating mode of a terminal when it
is under control of a user program, unti l the program
terminates, the terminal is released by the program, or
the data rnode escape characters are entered. While in
data mode, a terminal is not in direct communication
with CCP.

data mode escape: A special CCp command.
consisting of a unique string of six characters entered at
a requesting terminal while the terminal is in data mode.
The data mode escape command temporarily suspends
a terminal's communication with a program and places
the terminal in command interrupt mode.

data security: The protection of data against damage,
loss, unauthorized access, or unauthorized use.

data stream: All data transmitted through a
communication channel on a single operation, including
data l ink control, device control, and data characters.

data terminal: A terminal that is not capable of
commanding CCP services. A data terminal is always
either in standby mode (not polled for input by CCp) or
in data mode (under control of an application program).

dedicated program: A program running under CCp that
requires sole use of the CCP user program area.

d€signator character: A character that immediately
follows the attribute character in a 3270
selector-pen-detectable field. The designator character
controls whether a detect on the field wil l or wil l not
cause an attention. For a nonattention-producing field,
the designator character also determines whether the
modified data tag for the field is to be set or reser as
the result of a selector-oen detect.

DFF: 3270 Display Format Facil ity of CCp.

direct f i le: A disk fi le organization in which, for
purposes of storage and retrieval, there is a relationship
between the contents of the records and their locations
in the file. Contrast with sequential file and idexed file.
See also algorithm.

display adapter: An IBM device that converts the
binary data stream from the device buffer into signals
on the communication l ine, and vice versa. The display
adapter provides for the local attachment ol 3277
displays and of 3284, 3286, and 3288 printers to
System/3.

f i le management: A major function of CCP that

controli the use of data fi les by programs running under

ccP.

home record: A record in a direct file that is stored in

the location indicated by its relative record number
(home location).

implied invite input: An invite input that is not actually

issued by the user program, but exists because data is

allowed with the program request. lmplied invite inputs

are included in the count of outstanding invite inputs in

the communications parameter l ist for certain
operations.

indexed fi le: A disk fi le organization in which records

are arranged in logical sequence by key. Indexes to

these keys permit records to be processed either
randomly or sequentially. Contrast with direct file and

sequential file.

init ial mod€: The operating mode of a command
terminal before a sign-on at the terminal has been

accepted by CCP.

inquiry: A communications-based system application in

which. typically, a single transaction or request for

information is entered from a terminal and a response is

returned to the terminal.

inquiry with update: A communications-based system

application in which records of transactions entered

from terminals are used to interrogate and update one

or more master f i les maintained by the system
(synonymous with inquiry and transaction processing).

integrated display adapter: See display adapter'

integrity: See system integritY.

interface: In application programming under CCP, the

data areas (parameter list and record area),

communications service subroutines, and defined

operations by which user programs and CCP

communicate with each other.

line buffer: The internal main storage area associated

with a communication l ine from which data isr

transmitted to a terminal or into which data irs received

from a terminal. Data in this area includes dervice and

line control characters inserted or removed b'7 CCP.

locaf display adapter: See display adapter.

focal terminal: In the CCP environment, a 327O

Information Display System device attached to the

system via the display adapter. Contrast with remote

terminal.

master f i le: A fi le that is either relatively permanent or

that is treated as an authority in a parlicular job.

MDT: Modified data tag.

mossage mode operations: Operations that result in

all blocks of data including the EOT signal being sent or
received in a single operation.

MLMP: Multi l ine/multipoint BSCA input/output control

system (IOCS), the base data management and IOCS
included in the CCP for binary synchronous
communications.

modified data tag (MDTI: A bit in the attribute

character of a 3270 display field which, when set on,

causes the field to be read on an input operation. The

modified data tag may be set by (1)a keyboard input to

the field, (2) a selector-pen detection in the field, (3) a

card read-in operation. or (4) program control. The

modified data tag may be reset by (1) a selector-pen

detection in the field, (2) program control, or (3) ERASE

INPUT key.

MRT program: Multiple requesting terminal program'

multipoint l ine: A l ine interconnecting several stations.

Synonymous with multidroP line.

multiple requesting terminal (MRT) program: A type

of application program under CCP that can process

additional requests for it even though it is sti l l
processing an earlier request.

multitasking: (CCP) The concurrent execution of one

or more user tasks under control of CCP.

NEP: Never-ending program.

never-ending program: A user application program.

which. after it has been init iated, normally remains in

main storage and does not go to end of job unti l CCP is

shut down.

nonswitched line: A connection between a remote

terminal and a computer that does not have to be

established by dialing.

Glossary 1't5

null character: A hex 0O character on a 3270 that
occuptes a position in the storage buffer and is
displayed as a blank.

object library: An area on disk storage used to store
object programs, routines. and, if DFF is used, display
formats.

object program: A fully compiled program that is ready
to be loaded into the computer system.

OCL: Operation control language.

offl ine: Pertaining to equipment, devices, or processes
not under active control of the processing unit.

online: Pertaining to equipment, devices, and processes
that are under active control of the processing unit.

online system: A system in which the input data enters
the computer directly from the point of origin or in
which output data is transmitted directly to where it is
used.

order entry application: A form of data entry
application in which transactions (such as sales orders)
are entered into the system from terminals.

output/input f ield: One of four classes of f ields
defined under the 3270 Display Format Facil ity.
Output/input f ields contain data that has been supplied
either during format generation or during execution of
the application program; this data can be changed by
the terminal operator using the keyboard.

password security option: An optional CCp feature.
selected during assignment, which requires a terminal
operator to enter a predetermined password before CCp
will allow the terminal to enter commands.

physical fife: See symbotic fite.

point-to-point l ine: A l ine that connects a single
remote station to the computer; it may be either
switched or nonswitched.

poll ing: A technique by which each of the terminals on
a multipoint l ine is periodically interrogated to
determined whether it requires servicing.

procedure: A named collection of related OCL
statements, and possibly utility control statements. that
perform a particular task.

program management; The major function of CCp that
fetches programs, allocates system resources to
programs, manages the concurrent execution of two or
more programs, purges programs from main storage,
and optionally maintains a count of the number of t imes
each application program is requested.

program request: A command, consisting of a program
name entered at a terminal or the system operator,s
console, that causes CCp to init iate execution of an
application program.

program request count: The optional CCp program
management function of maintaining a count of the
number of t imes each application program is requested.

program request under format (pRUF): A method of
requestfng a program from a display format on a 3277
or 3275. The entire screen can be used to pass data
with the program request. The name of the program to
be requested appears as the first input f ield from the
3270 terminal .

program-selected terminal: From the point of view of
the application program, a terminal that is selected by
an application program for input/output, as opposed to
a terminal that requested the program (see requesting
terminall. Program-selected terminals can be either
required (must be allocated to the program before the
program can run) or acquired (allocated dynamically to
the program as it is running).

program termination code: A two character code
provided by CCP when an application program has been
cancelled by CCP because of certain coding errors or
program logic errors, or because the system operator
requested cancellation of the program. This coqe
identif ies the reason for the cancellation.

protected field: A 3270 display field for which the
display operator cannot use the keyboard or operator
identif ication card reader to enter, modify, or erase data.

PRUF: Program request under format.

queue: A waiting l ine or l ist formed in a system by
items that are waiting for service.

random processing: The treatment of data without
respect to its location in external storage and in an
arbitrary sequence, governed by the input against which
it is to be processed. Contrast with consecutive
processing and sequential processing.

1 1 6

record mode operations: Application program input
and output operations that result in a single record of a
data block being moved into or out of the program's

record area.

relative record number: In a direct file. the location of
a record in relation to the beginning of the fi le.

remote job entry: Submission of job control
statements and data from a remote terminal to a central
system, causing the jobs to be scheduled and executed
by the central system.

rsmote terminal: In the CCP environment, a device
attached to the system via the BSCA or MLTA. Contrast
with local terminal.

requesting terminal: From the point of view of the
application program, a terminal that requested the
program, as opposed to a terminal that is selected by
the program lsee program-selected terminall. Requesting
terminals are always command terminals.

response time: See terminal response time.

RVI : A signal from a receiving device to a device that is
transmitting to interrupt its transmission as soon as
possible.

SCP: System control program.

security: See data security and system security.

seek: To position the access mechanism of a direct
access device at a specified position.

selector-pen-detectable (SPDI field: One of four
classes of f ields defined under the 3270 Display Format
Facil ity. SPD fields allow the terminal operator to enter
data by using the selector pen.

sequential f i le: A fi le organization in which records are
arranged in a physical sequence. The records 8re not
necessarily in logical sequence. Contrast with direct file
and idexed file.

sequential processing: A treatment of data with
respect to its location in external storage, and in a
sequence governed by the logical order of the data in
the file. Contrast with consecutive processing and
radom processing.

serial printer: A printer that prints characters one at a
time. Contrast with a l ine printer, which prints a l ine at
a time. Synonymous with character printer.

shutdown: The final stage of CCP operation, during
which CCP allows programs currently executing or
scheduled to finish processing, then closes fi les,
adapters. and communication l ines.

sign-on: The procedure performed at a terminal while it
is in init ial mode. This procedure may include entering
only the /ON command, or entering the /ON command
with a password or other user-specified security data.

single requesting terminal (SRT) program: A type of
application program under CCP that can process a
request from only one requesting terminal during its
execution.

source library: An area on disk used to store source
programs, OCL procedures, and control statements.
Contrast with object library.

sourco program: A computer program written in a
source language, such as RPG ll, before the program is
compiled.

SPD field: Selector-pen-detectable field.

SRT program: Single requesting terminal program.

standby mode: The mode of a data (noncommand)

terminal when it is not under control of a user program.

startup: The init ial phase of CCP opeiational stage,
during which all necessary init ialization occurs, including
opening of disk fi les, adapters, and communication l ines,
and the completion of various tables and control blocks.

subhost: A telecommunications system which, while
directly controll ing a group of terminals, is itself a
tributary station to another central processor.

switched line: A communication l ine in which the
connection between the computer and remote station is
established by dialing.

symbolic f i le: A fi le reference (symbolic name) which
allows. on separate executions of a program, reference
to different files, known as physical files. A symbolic file
is related by the terminal operator to a specific physical

fi le by means of a /FILE command.

synonym record: A record in a direct file whose control
f ield yields the same relative record number as another
record.

Glossary '117

system control programming: IBM_supplied
programming that is fundamental to the operation and
maintenance of the system. lt serves as an interface
with program products and user programs.

system integrity: preservation of the accuracy and
completeness of data and programs.

system security: protection of computer data,
programs, and devices against damage, loss,
unauthorized access, or unauthorized use.

system task: A unit of work for the processing unit
from the standpoint of CCp, consisting of a CCp
function (as opposed to a user apprication, or user task)
that must be performed by CCp, such as
communications management.

aystem throughput: The total volume of work
performed by a computing system over a period of time.

task: See system task and user task.

task identification: An identifying character associated
with a task which differentiates between that task and
other tasks running concurrently under CCp.

terminal: A device capable of sending and/or receiving
information over a communication channel.

terminal attributes: Characteristics of a terminal from
the point of view of CCp and CCp application programs,
including block length, record length, data format, and
other information.

terminal reference identifier: A unique two_character
identifier, assigned to each terminal during CCp
assignment stage, that is used by CCp and the system
operator to refer to a specific terminal. Any of the 64
graphic EBCDIC characters may be used.

terminal responao time: The time interval from when
the terminal operator enters data to the system until the
keyboard is opened to permit more data to be entered.

throughput: See system throughput.

transaction: The entry of some request or unit of data,
the processing of the request or unit, and the return of
some response or acknowledgment.

transaction file: A file containing relatively transient
data to be processed in combination with a master file.
For example, in a payroll application, a transaction file
indicating hours worked might be processed with a
master file containing employee name and rate of pay.

transaction-oriented processing: A method of
processing data in which each different type of
application transaction is processed by a separate
program, as opposed to processing multiple transaction
types in a single program.

translation: Under CCp, conversion of the transmission
line data code (if not EBCDIC) inro EBCDIC or
conversion from EBCDIC into transmission l ine data
code.

tributary station: A secondary or noncontrolling device
in a multipoint telecommunications configuration.

truncation: Loss of excess data when the length of
data received from a terminal is greater than the
maximum input length specified in the parameter list or
when more data is provided in an output operation than
the line buffer for the terminal can hold (in record mode
output operations, if the output length exceeds the
record length specified in the terminal attributes set).

unprotected field: A 3270 display field for which the
terminal operator can manually enter, modify, or erase
data.

user task: A unit of work for the processing unit from
the standpoint of CCp, consisting of a user program (as
opposed to a system function, or system task) that must
be executed by CCp.

WCG: Write control character.

work station: Elements of data processing equipment
through which a system,s end user has access to a
computer as required for the performance of his job
(work) at the physical location (station) where he
performs his job tasks.

write control charactor (WGC): A character used in
conjunction with 3270 write operations to specify that a
particular operation, or combination of operations, is to
be performed at a display station or printer.

1 1 8

I

This appendix contains a l ist of CCP publications and
related programming and data communications
publications. For a complete l ist of System/3
publications, see IBM System/3 Bibliography,
GC20-8080.

ccP

IBM System/3 Communications Control Program
General lnformation Manual, GC21 -7578

IBM System/3 Communications Control Program
T erminal Operator' s Guide, GC21-7580

IBM System/3 Communications Control Program
Messages Manual, GC21 -5170

IBM System/3 Communications Control Program
Programmer's Reference Manual, GC21 -7579

IBM System/3 Models 8, 10, aN 12 Communications
Control Program System Reference Manual,
GC21 -7s88

IBM System/3 Mdels 8, 10, and 12 Communications
Control Program System Operator's Guide,
GC21 -7581

IBM System/3 Model 15 Communications Control
Program System Reference Manual, GC21-7620

IBM System/3 Mdel 15 Communications Control
Program Systern Operator's Guide, GC21 -7619

IBM System/3 Model 4 lntroduction, GC2'l-5146

IBM System/3 Model 4 Communications Control
Program Concepts and System Design Guide,
GC21 -5148

IBM System/3 Model 4 CCP Programmer's Reference
Manual , GC21-5150

IBM System/3 Model 4 Operator's Guide, GC21-5149

IBM System/3 Mdel I5D System Masurenent
Frcility Relererrce and Logic Marual, GC21-52O7

IBM System/34 ard System/3 Mdel 15D Distributed
Disk File Frcility Reference Marual, SC21-7869

Appendix B. Bibliography

Programming

. IBM System/3 RPG ll Reference Manual, SC21-7504

. IBM System/3 Models 4 aN 6 RPG ll Reference
Manual. SC21-7517

IBM System/3 RPG ll Telecommunications
Programming Reference Manual, SC21 -7507

IBM System/3 RPG ll Auto Report Feature Reference
Manual, SC21-5057

IBM System/3 RPG ll 3270 Display Control Feature
Reference ard Logic Manual, SC21-5161

lntroduction to RPG ll, GC21-7514

IBM System/3 RPG ll Disk File Processing
Programmer's Guide, GC21 -7566

IBM System/3 Disk Concepts aN Planning Guide,
GC21 -7571

IBM System/3 RPG ll Additional Topics Programmer's
Guide, GC21-7567

IBM System/3 Subset American National Starf,ard
COBOT Reference Manual, GC28-6452

IBM System/3 FORTRAN lV Reference Manual,
sc28-6874

IBM System/3 Easic Assembler Reference Manual,
sc21 -7509

IBM System/3 Disk Sort Reference Manual,
sc21-7522

Bibl iography 119

MLTA and Supported Terminals

. IBM System/3 Muttiple Line Terminal Adapter RpQ
Program Reference ar:d Component Description
Manual, GC21-7560

. IBM 2740 Communications Terminal Models 1 aN 2
Component Desc r i pti on, GA24_3403

. IBM 2741 Communication Terminal, GA24_3415

. IBM 1050 Data Communication Systern principles of
Operation, GA24-3474

. IBM 3767 Models 1 aN 2 Communications Terminal
Component Description Manual, GA27_3096

BSCA and Supported Terminals/Systems

. General lnformation: Binary Synchronous
Communi cations, GA27_3004

. IBM System/3 Models 4 aN 6 Components Reference
Manual, GA34-000.1

. IBM System/3 Modets g, lO, 12, aN 15 Cornponents
Reference Manual, GA21 -9236

. IBM 3270 lnformation Display System Component
Descr i pti on, G A2l -27 49

. An Introduction to the tBM 3210 lnformation Disptay
System, GA27-2739

. Operator's Guide for tBM g27O lnformation Display
Systerns, GA27-2742

. IBM System/3 3735 Support program Coding Manual,
GC21 -5096

. IBM 3735 Programrner's Guide, GC3O_3OO1

. IBM 3740 Data Entry Systems programmers Gude,
GC21 -5071

. IBM 3741 Data Station Reference Manual, GA21_g1g3

. IBM System/7 Binary Synchronous Communications
Mdule (RPe) programming Guide and Reference
Manual, SC34-1b10

. IBM System/7 Systern Summary, GA34_OOO2

. IBM System/3 Muttitirc/Muttipoint Binary
Syrrchronous Communications Reference Manual,
cc21-7573

. IBM System/3 M|JLT|-LEAVING Remote Job Entry
Work Station Support Reference Manual, GC21_762j

. IBM System/3 Modet 15 MULT|-LEAVING Rernote Job
Entry Work Statjon Support Reference Manual,
cc21-51 15

. IBM System/3 DATA/3 Refererrce Manual, SC2l_S102

General Data Communications

. Data Communication Concepts, GC21_S169

. lntroduction to Data Communications Systems,
zR20-4il2

. IBM Terminals -Student Text, SR2O_MS2

. lntrduction to Data Communications Network
Design - Stude nt T ext, SR2O-4492

. IBM 3270 Scren Design-Student Text, SR2G.4441

120

- 14 re tu rn code (t ask cha in examp le) 52 app l i ca t r on - t r a i ned ope ra to r s Zg
$ccPAU 6g archives dala, backup 1o
$ccPF lLE a rm con ten t ron . r educe 1o /

f o rma t i n 1O4 a rm movemen t { d i sk) 107
locat ion on disk 1O7 array
proximrty to object l ibrary 1O4 examole 50

$CCPRB p rog ram 72 s to r i ng i n d i r ec t f i l e 18
$COPY usecJ to contro l t ransactrons 49

locat ion on disk 1O7 arr ival rate (t ransact ions) 73
used in f i le recovery 72 ASCl l . buf fer a l locat ion 1rO2

$LABEL , l oca t i on on d i sk 1O j ass rqnmen t cons rde ra t rons l og
$MAINT a t t e i r r on rden r r t r ca t i on keys 109

locat ion on disk 1Ol at t rabute characters. 3270 screen
used to rename pr int modules 39 desrgn 35

$R INDX p rog ram 72 aud ib l e a l a rn r
$TRLOG program 61 used for errors 31

used for instruct ions 31
aud r t t r a r l

de f i n i t r on 62
imp lemen t i ng 62

accept input (nonresident) t ransient sysrem integr i ty 62
loads 1O5 audrt ing data recovery procedures 70

access algof l thm autoskio 30. 1 10
de f i n i ng 19
de te rm in i ng 18
synonym records 18

ACCESS statement ($COPY) 72
access to data f i les. contro l l ing 66, 68 backup and recovery 69
accuracy of data, contro l l ing 63 oacKup procedures 69
acquire/set at t r ibutes, t ransient f ratcn envrronrnent
loads 105 contro l orocedures 63

acquire terminal , t ransient loads 1O5 system secur i ty / integr i ty 61
ac t i ve f i l e s ba t ch pa r r i t i on , a f f ec t o f M INRES-yES 109

locat ion on disk 108 batch programs
using di rect f i le 17 locat ion on disk 1O7

act ive formats, locat ion on disk 1Oj renaming pr int modules 40
adding appl icat ions, design running under CCp 4g
considerat ions 8 task chaining wi th 4 '7

adding records benef i ts of fered by CCp 2
disk accesses 17 bi l l rng invoices, example 56
f i le recovery 17 bl ink ing screen 91
indexed f i l e s 1 l BLKL 95 , 1O2

advantages of fered by CCP 2 block s ize, af fect on f i le lockout 2 l
A ID cha rac te r 110 b l ock i ng d i sp l ay sc reens 30 , 91
a lgo r i t hm , de f i n i ng 19 BSC l i ne 1OO
ana l yz i ng f i l e sha r i ng con f l i c t s 28 BSCAL INE DFFBUF-YES to8
app l i ca t i on BSypRT-yES 108

breaking into smal l programs 48 buf fer interact ion 1O3
design concepts 7 buf fer loads. terminal Dr inter M
f low 7 6uf fers, CCp-associated gj
goals, estabf ishing 7 business response t ime 1
program types I
programs, locat ion on disk 1O7

Index

fndex 121

a ^ o

advantages 2
application program types g
associated buffers g1
d isk accesses 1Ob
modutes, when loaded 1O7
performance 108
program types, summary g
task loops 109
task sizes 1O2

CCP/d isk sor t
benefi ts 53
considerations for using 53
fi les, f i le sharing restr ict ion 27
main storage uti l izat ion 53
program 53
terminal response t ime 53

c c P c t o 1 1 1
cha in ing (see task cha in ing)
chaining transaction records, example 48
characters per transaction.
de te rm in i ng 7g

characters t ransmit ted, examples
check-dig i t ver i f icat ion 63
choosing between SRT and MRT,
classi fy ing data 67
CLEAR key 1 tO

cau t i on i n us i ng 35
PRUF considerat ion l Og

CLEAR re tu rn code 1 lO
C O M M A N D L 9 5
communicatron between programs

33, 34

summary

PRUF techn ique 3b
using di rect f i le 25

commun tca taon , i n t e rp rog ram 15
comp l t e r , t oca t i on on d i sk 1O j
comp i l i ng CCp and ba t ch p rog rams
comp i l i ng Mode l i 5 p rog rams 111
concurrent uta l izat ion of system
resources 7

consecut ive add f i les, recovery j2
consecut ive f i le , recovery 72
content checklrst , t ransact ton record
contro l array 49

examp le 50
control characters t ransmit ted 75
control characters, pr inter 41
control f ie ld, as the re lat ive record
n u m b e r 1 B

control procedures 63
batch environment 63
data processing department 65
interact ive 63
manua l 63
on t rne ba t ch 65
on l rne sys tem 63
programmed 63
3741 data entry 63

control record
af fect on f i le lockout 27
example 49

t o

cost versus r isk 66
cursor posit ioning 30

example 33 , 34
put overrides 36

customer master f i le, example 54
cylrnder (logical) 107

data access, contro l l ing 66
data backup and recovery lO
data entry appl icat ions, screen design 92
data logged but not processed, backup 7j
da ta mode escape . l 10

data processed but not d ist r ibuted,
backup 71

data processing departmenr contro l
procedures 65

data received but not logged, backup 71
oata recovery jO

data secur i ty , def in i t ion 66
data t ransmit ted, reducing 36
DEFER-NO pa rame te r 4 l
de f i n i ng t he a l go r i t hm , examp le 1g
dependent funct ions 9
des ign a i ds , IBM 4
design concepts, appl icatron 7
destgn data, use 4
de te rm in i ng an access a l go r i t hm 1B
DFF (see display format faci l i ty)
D F F B U F 1 O O
D F F B U F - Y E S 1 0 8
drrect at tach l ine speeds jg
d i r ec t f i l e

advan tages 17
b u i l d i n g 1 9
d i sk accesses i l
evaluat ing 22, 24
examp les 19 , 23 , 24
mas te r f i l e 25
random iz i ng t echn ique 24
transactron f i les 25

d i sk access a rm con ten t i on 17
d i sk accesses 82 , 106

a f f ec t o f PRUF 109
c c P 1 0 5
de te rm tn ing 7S
d r rec t f i l e s 1 l
evaluat ing 22, 24
fo r DFF ope ra t t ons 105
fo r p rog ram l oads l 06
fo r t e rm ina t i on 106
rndexed f i l e s 1 i
reducing 36
reduc rng by t ask cha in i ng 48

d i sk a rm con ten t i on 1Og
disk f i les, sector protect ion 27
drsk response t ime, calculat ing g3
disk seeks (see disk accesses)

t 5

40

62

1 2 2

disk ut i l izat ion 108 f i le shar ing (cont inued)

calculat ion 82 t ransact ion f i le 2 l
PRUF considerat ion 109 t ransact ion-or iented processing 27

display format faci l i ty (DFF) f i le update, screen design example 33
benef i ts 34 f i les, p lacement on disk lo l
buf fer support , Model 15D 99 format index in CCPFILE 1O4
buffer , BSC l ines 101 formats, p lacement on disk l l l
considerat ions 104 forms design for termrnal pr inters 41
formats 1 1 1 f ragmentat ion of Tp buf fer 98
operat ions, d isk accesses 105 f raud protect ion, l is t of measures 67
output hold area 91 f ree-form input f ie ld, example 34
put operat ions, Model 15 97 funct ions of a program 9

double buf fer ing 1O2

generat ion/assignment considerat ions 108
ease of use 2 get (inv i te) input area, used for task
ease of use, operator 7 chaining 47
edi t ing. examples 33. 34 get at t r ibutes, t ransient loads 105
EM (end of message) 41
ENDMSG-NO. use w i t h PRUF 35
ENTER kev 1 10
ERASE EOF kev 31

example 33 '
handl ing synonym records 18

ERASE INPUT key 31 examp le 21
error correct ion hardware backuo 69

interact ive 63 heading and prompts 35
onl ine batch 65 high intensi ty

error correct ion/prevent ion 63 put overr ides 36
error messages, put overr ides 36 used for instruct ions 31
errors, ident i fyrng reasons 62 histor ical data, backup 70
execut ion-t ime table, used for nome locat ion, def in i t ion 18
passwords 68 human factors 29

expandabi l i ty 2
external buffer size 1 1 1

memory resident over lays 11' l

IBM des ign a i ds 4
I D E L E T E m o d e o n t h e M o d e l 1 5 1 1 1
implement ing an audi t t ra i l 62

FDT (f ie ld descr iptor table) 36, 102 independenr funcr ions I
f ie ld descr iptor table (FDT) 36, 102 indexed add f i tes, recovery 72

reducing s ize of 36, 104 indexed f i les
3270 screen design 36 disk accesses 17

f i l e and l i b ra r y p l acemen t 108 i n on l i ne env i r onmen t 17
f i le lockout , f i le shar ing 27 recovery 72
f i le recovery i7 indexed master f i les 2s
f i le recovery procedures 71 input f ie lds, example 33

(see also recovery) input operat ions, use of TP buf fer 92
f i l e sha r i ng 17 , 27 i nqu i r y app l i ca t i ons

analyzing conf l ic ts 28 benef i ts 3
CCP/disk sort f i les restr ic t ion 27 screen design 32
direct t ransact ion f i le 25 interact ive contro l procedures 63
f i le lockout 27 interprogram communicatron 15
sort output f i le restr ic t ion 27, 53 interval pol l ing feature 108
sort work f i le restr ic t ion 53 interval t imer, pr inter busy condi t ion 45
sort work f i les restr ic t ion 27 INTPOL oarameter 108
system performance 27 inventory master f i le , example 54
system throughput 27 invi te parameter l is t area 95, 96
terminal response t ime 27 INVWRT program 56

fndex 123

key entry t rme 7i
key f i e l d 19
keystrokes, operator 33
keyword, MRTMAX l6

il Dra rY
loca t i on on d i sk 1O l
p tacemen t o f f i l e s 109

Irmit ing access to data f i les 68
l r ne bu f f e r s 91 , 1O2
l i ne response t i r ne , ca l cu l a t i ng 80 . B1
l ine speeds, d i rect at tach 7g
l l ne t ime , ca l cu l a t i ng 79
l i ne t u rna roun<J t rmes 7g
l i ne u t t l i za t i on , ca l cu j a t i ng gO
l i nk ed l t i ng CCp p rog rams 11 1
l ink ing records together, example 48
load f i ie , recovery 72
lockout, f i le 27
log records, for password secur i ty 68, 69
logg rng t r ansac t i ons 61 , 62
logical cy l inder on a 3340 1O7
loops i n a CCp t ask 1Og
loss of data, contro l l ing 63
loss of t ransactron f i le data 71

marl rng label , appl icat ion exarnple 59
matn storage

reduc rng requ i r emen ts 104
rasKrng a reas BB
u t i l i za r i on {CCp /d i sk so r t) 53

mar rua l con t ro l p rocedu res 63
mas te r l i l e s

as drrect f i les 25
backup 7O
indexed 25

master pointer record, example 49
M A X R E C L 9 5
MDF/MRT (mu l t r p l e dependen t f unc r i on
M R T) 1 5

MDF/SRT (mu l t i p l e dependen t f unc t i on
SRT) 14

M D F / S R T p r o g r a m l o g i c i 4
memory - res i den t accep t i npu t 108
memory - res i den t DFF bu f f e r a rea 109
mernory resident over lays 11 1
rnernory-resrdent pol l ing l0B
message backlog, caut ion note 52
messages to the terminal operator 1 1 1
messages. locat ion on screen 3i
meter t ime, processing uni t 1OB
Mf F (mu l r i p l e i ndependen t f unc t i on) g , 12
MIF /MRT (rnu l t i p l e r ndependen t f unc t i on
M R T) 1 2

M I F / M R T t e c h n i q u e 1 6
MIF /SRT p rog ram, i l l u s t r a t i on 13
M l F , t e c h n i q u e l 6
m in im i z i ng s to rage requ i r emen ts j 04
mrn in i um pu t , / ge t a rea s i ze 95
mtn rmum res tden t code 109
mrn imum use r p rog ram a rea (M lNUpA) 102
M I N R E S - N O 1 0 8
M I N R E S - Y E S I 0 8
M I N T P B U F f o r m u t a 9 2
MINTPBUF pa rame te r 92 , g l
M f NUPA (m in imum use r p rog ram a rea) 1O2
nrodi f icat ion of data, contro l l ing 63
modu lus I O 63
modu lus 1 1 63
MORCOR op r ron 11 r1 r
MRT (mu l t i p l e r eques t i ng t e rm ina l)
program I

mu l t i p l e dependen t f unc t i on l 5
mu l t i p l e i ndependen t f unc t i on 12
s ing le f unc t i on j 1
t echn ique 16

MRT and SRT, choosing between . l
1

MRT/NEP p rog ram, examp le 48 , b l
MRTMAX keyword 16
mu l t i p l e dependen t f unc t i on MRT 15
mu l t i p l e dependen t f unc t i on SRT 14
mult ip le funct ion program g
mu l t i p l e i ndependen t f unc t i on MRT 12
mu l l r p l e i ndependen t f unc t ron SRT 12
mu l t i p l e r eques t i ng t e rm ina l (MRT)
program B

{see a l so MRT}

nega t r ve i npu t 1 10
NEP (never-ending program) . l

5, 46
example 55
reasons f o r us i ng 15

neve r -end rng p rog ram (NEp) 15
NL {new l i ne) 41
nond i sp lay da ta , pRUF cau t i on 3b
nondisplay f ie ld types, used for
password 68

I \OSHR ass ignmen t pa rame te r ZB
caut ion against 7

nu l l cha rac te r s 11O
nurnber of characters t ransmit ted,
de te rm in rng 75

obJect l ibrary locat ion on disk 1O1
obJect progranl s ize 1O2
occasional operators 29
onl ine batch contro l procedures 65

124

onlrne envtronment, system
security/ integri ty 61

online system, control procedures 63
operator ease of use 7
operator keystrokes, examples 33, 34
operators

application-trained 29
occasional 29

order entry appl icat ion
example of f low 75
screen design 32
transaction-oriented 53
using CCP/disk sort 53

ORDERS program 54
outout f ields

example 33, 34
F in co lumn 16 36

output file, recovery 72
output hold area 91

M o d e l 1 5 9 1 , 9 7
Mode ls 4 ,8 . 10 , and 12 91

output/ input f ields
example 33
negative values 1 10

output operations, use of TP buffer 92
output record area, task chaining 47
overlay and segmented screens 36

i l lustrat ion 37
used to transmit headings 35

PA and PF keys, standardized use 31
PA keys 1 10
PAS (program appended storage) 1Oz
passing data between programs 1S

PRUF technique 35
using screen buffer 47

password security 68
log records 68, 69

PCT 95, 104
peak transaction load 4
peak workload 74
performance requirements 1
performance t ips 91
performance, screen design
considerations 34

PF and PA key 31
PF kev 1 10
PFGR (printer format generator
routine) 41

PGMREOL 95
physical security measures 66

cost versus risk 66
picking t icket, appl icat ion example 59
PIKWRT program 59
placement of f i les on disk 1O7
placement of formats on disk 1O7
placement of programs on disk 1o7

POLT IME oa rame te r 108
oort l ine statement 15
pr int modules

or inter 39
renaming example 40

pr inted output
f ormatt ing 41
spoo l i ng unde r CCP 41

or inter
busv condi t ion 45. 108
data stream 41
design considerat ions 39
form desrgn 42, 43
pr int modules 39, 40
program (ternr inal) 52
simulated spool ing 46
te rm ina l 41
use under CCP 39

pr int€r busy condi t ion 45
interval t imer 45
task chaining technique 52
WAIT operat ion code 45

PRINTER OCL statement 41
PRINTER parameter on PROGRAM statemenr
P R I N T E R - S H R 3 9
processing uni t

determining 74
meter t ime 108
size 88
ut i l izat ion 84

p rog ram-appended s to rage 111
program appended storage (PAS) 1A2
program design

considerat ions. pr inters 39
terminal or inters 44

program funct ions B, 9
program load 104

affect of task chaining 48
disk accesses for 105
minimiz ing 8, 9

program load t ime, af fect of PRUF 109
p rog ram l og i c , MDF /SRT 14
program request under format (PRUF) 35

advantages 35
considerat ions using 109
examp le 10
i l lustrat ion 10
nondisplay data caut ion 35
over lav screen considerat ion 36
screen design considerat ions 35
s ing le f unc t i on MRT p rog ram 11
single funct ion SRT program 10

program step, analyzing l5
program terminat ions, d isk accesses
for 105

program types, ccP B
programmed contro l procedures 63
programmed secur i ty measures 67
programs, p lacement on disk 1O7
protecting data (see data security)

41

lndex 125

PRUF consideration 1Og
PRUFLNG 95
put data area 95
put/get area 95
put operation 1O4
put override operation 36, 104

queue, definit ion 73
queuing theory

(see also simpli f ied queuing theory)
dependence on 4
example 74
simpli f ied 73

randomizing techniques 24
receiving data, SRT program 1O
record identifying indicators 1 1 1
record length, optimal 1Og
recovery

(see also file recoverv)
consecuttve 72
consecutive f i les 72
indexed add f i les 72
rndexed f i les 4, 72
load f i te 72
output f i le 72
procedures 69

reducing storage requirements 104
relat ionship of functions within a
program I

relat ive record number 1B
release/keep, transient loads 1Os
retease terminal. transient loads 1Os
renamtng unit record data management
modules 40

resident code, minimum 1Og
resident pol l ing, memory 1Og
resource handler

chaining 48
exampte 49, 52

resource utilization 4
RESPOL-YES 108
response ttme

(see also terminal response ttme)
business 1
for a transaction 79
location of CCpFILE , lM
processtng unit, example g6
queuing theory equations 73
sysrem, example g6
terminal 1

right adjustment l lO
rotational delay 82
RPG l l H-specif icat ion, restr ict ion 111
running batch programs under CCp 4g

scheduling work g
screen design (see 3270 screen design)
sector protection

PRUF consideration l0g
updating f i les 27

secunty classif icat ion 6l
security measures

physical 66
programmed 67

segmented screens 36
i l lustrat ion 37

SELECT statement ($COpy) 72
self-check digits 63
sequential f i les, in onl ine
env i ronment 17

serial {matr ix) printers 41
service time

calculat ion B0
definit ion 80
transactions 73

sharing f i les (see f i le sharing)
shipping master f i le, example 54
SHR assignment parameter 2g
shutdown, PRUF consideration lOg
stgn-on security 6g
simpli f ied queuing theory 73

example 74
s ing le func t ion MRT 11

compar ison 11
PRUF concept 1 1

s'ngle function MRT program,
i l lustrat ion 1 1

single function program g
single function SRT 1O

compar ison 11
i l lustrat ion 1O
PRUF concepr jO

single requesring terminal (SRT)
program 8

(see also SRT program)
size of CCP code 1Og
sort input f i le

access type 53
s h a r i n g 2 7 . 5 3

sort modules, location on disk 1O7
sort output file

access type 53
sharing restriction 27, 53

SORT program 58
sort under CCP b3
sort work file

access type 53
sharing restriction 27, 33

sorttng consideration, transaction
f i le 27

spool f i le, location on disk 1Og
spooling printed output under CCp 41
spooling, use of printer 39

126

SRT (single requesting terminal) table, execution-time 68
program 8 tape backup 71

choosing between SRT and MRT 1 1 task areas, number needed 88, 89
methods of receiving data 10 task chaining 47
multiple dependent function 14 affect on program loads 48
multiple independent function 12 affect on system resources 48
single function 10 interprogram communications 15

SRT programs MRT/NEP resource handler 48
INVWRT program 56 printer busy 52
ORDERS program 54 system throughput 48
PIKWRT program 59 terminal response time 48
SORT program 58 TP buffer ful l , caution 52
SRTWRT program 57 transient loads 105

SRTWRT program 57 with batch programs 47
standards between screens 31 wrth CCP/disk sort 53
stop invite 1O5 with transaction-oriented processing 47
storage requirements, reducing 104 task size
suBRg2 111 CCP 102
summary CCP program types 9 example 89
symbolic f i le technique for password task-to-task communications 15
security 69 TASKSIZE parameter 1O2

synonym records teleprocessing buffer (see TP buffer)
example 21 terminal printer program, using task
goals for handling 21 chaining 52
handling '18 using an NEP for 46
placement in f i le 18 terminal printers 39, 41

system design forms design for 41
design data (list) 3 program design techniques for 44
general approaches 2 using task chaining 48
over-designing 4 terminal response t ime 1

system failure, recovering from 69 (see also response time)
system growth 8 affect of file organization 17
system intogrity 2, 61 CCP/disk sort 53

audit trai l 62 definit ion 1
definit ion 61 disk access arm contention 17

System Measurement Facifity 4 tile sharing 27
system messages, PRUF requirement 35 minimum 1
system performance 1 task chaining 48

affect of TP buffer size 97 rermrnals in ERP, affect on TP buffer 109
fi le sharing 27 throughput 1
t ips 91 (see also system throughput)

system printer 39 timer support
design considerations 39 example 52

system resources transaction record 62
affect of task chaining 48 TP buffer (TPBUF) 91
concurrent utifization 7 affect of terminals in ERF' 109

system security 2,61 example of al location (Model 15) 97
batch environment 61 fragmentation of 98
definition 61 how freed 97
online environment 61 Model 15 95

system size, determining 74,88 Model 15D
system throughput 1 with DFF buffer support 99

affect of buffer size 91 without DFF buffer support 95
affect of f i le organization 17 Models 4, 8, 10, and 12 92
definition 1 operating size 92
fi le sharing 27 task chaining caution sta
how measured 1 two BSC lines 98
importance 1 WAIT indication 98
task chaining 48 TPBUF 91

f ndex 127

traffic peaks 4, E
transaction data, logging 61
transaction f i le 61

as direct f i les 25
example 49, b5
sharing 62
sharing consideration 27
sort ingconsideration 27
usrng task chaining to write 4g

transaction f i le data, loss of 7"1
transaction file writer program 4g
transaction f i le writer program, logic
transaction log f i le 6l
transaction logging

$TRLOG program 61
online system 61

transaction logging f i le
size consideration 62
used for audit trai l 62

transaction -oriented processing
CCP/disk sort 53
fi le sharing 27
order entry application 53
task chaining with 47

transaction peaks 4,5
transaction peakS, i l lustrat ion 5
transaction record

content checkl ist 62
timer support 62

transaction, definit ion g
transactions per hour g2

determining 77
transients 104

when loaded 1O7
transmission t ime

affect of double buffering 1O2
reducing 35

transmitted characters 33, 34
type F output f ield class 1O4

untt record data management 1 11
renamtng modules 40

update applications, screen
des ign 32 ,33 ,34

updating files, sector protection 27
use of printers under CCp 39
user performance requirements l
user record area 91
user record area, descript ion g1
user secuflty interface to ccP 6g

5 1

usrng an NEP for terminal printer 46
utility programs, location on disk 1O7
uti l izat ion (U) of a faci l i tv j3
utifization of resources 4, S. 7

calcularion 80
disk calculat ion 92
processrng unit 84
program 88
tasking area gg

uti l izat ion, disk 82, l0g

votume study, steps in 74

WAIT indications, Tp buffer 9g
wart op code, example 52
WAIT operation code, printer busv
condition 45

wart state 97
waat time 73, 80

calculation 80
definition 80

WCC (write control character) 41

XWRITE program 55

3270 screen design 29
attribute characters 35
field descripror table (FDT) 36
file update example 33, 34
guidel ines 29
heading and prompts 35
human factors 29
targe-volume output 30
operator considerations 29
performance considerations 34
PRUF considerations 35
screen bl inking 30

334O data accesses 1O7
3741 data entry, control procedures 63
5444 data access 1O7
5445 data access IO7

GC21-5165 -1IBM System/3
Communicat ions Control Program
System Design Guide

. s * 9 :
F - t o
E l . ' i
F E E $
i * : a
E s : ; 3
; E € ! €' - o o o c
6 O O o L
9 l - E - o

E , ; E E i
i > . e 9 i
. ^ - 6 . c > o
7 @ ! C

E h . 5 E . e
i : E . F q '
; f E € . 8
c o : E o e u ;

= E i € $; € F
E t $ s s : ; SR E E E f : F
i q E E r t F Ig g ; b 3 o - ; E= + ; r 3 € i *

t : n ; ! t F
r : E ! € e E
H . E H
f i sg
E € =

o :

r 9 ;
Fe lo ': -
3 d o
e r z
8 F

* ? €
L X

d p :

E E q
! oo - x
- O :
O o 6

E r ' E
; 9 :
a g t
i E t
E O H
o - a :p E b ' , .
e € I S
> € 3 q i

E € 5
! ; . g ^ 3
; ; 3 S
f i a :
: E . s L
3 ; b {
I S , i
- E s
o - 6

6 > F i
2 C o !_ q N E

9 e
F E
6 5

E F
B ;

F s
.E -o

i E
6 .

i E .
5 - s g' E = , 6

E : i t
: c : - i

o . E H 9

: 5 E Z
v c :

i i € t
; E g r
H E g 5

; i : n
F X E E
s r F i s
t . - - 6

e g g s
= X 8 2
= . : o a

GC21-516s-1

Fold and tape

c

f

I
f
o

I
I

I

Please do not staple
Fold and tape

I

I
I

I

rll NO POSTAGE
N E C E S S A R Y I F
M A I L E D I N T H E
UNITED STATES

-
-
-
-
-
-
-
-
-
-
-
rrlr
-
-
-

I
I
I

t -
l ! 0

3
l o
t \' o

l o
l o

f
r f

J

r 5 '
l o

6 '
t 6

o
l o

, o
t -
t !

I Er o
3

l o

t -
I

I B M C O R P O R A T I O N
General Systems Divis ion
Development Laboratorv
Pub l ica t ions , Dept . 24b
Rochester , M innesota 55g01

f

o
g

'n

o

z
;

:,
o
o
5'
c
U)

o
N

o

B U S I N E S S R E P L Y M A t L
F I R S T C L A S S P E R M I T N O . 4 0

POSTAGE WITI. 8E PAID BY

Fold and tape

35:E+

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlanta, Georgia 30055
(U.S.A. only)

General Business Group/lnternational
zl4 South Broadway
White Plains, New york 10601
u.s.A.
(| nternational I

Please do not staple

I
I
I
I
I
I

I
I
I

I

;

I
I
I

I
I

Fold and tape

I
I

