

IBM System/3
Disk Concepts and Planning Guide

Fourth Edition (December 1975)

rhis is a repr inr of Gc21'7s71-2, incorporat ing technicar newsret ter GN2r -5293
dared 17 Apr i t 1975.

Informat ion concerning inquiry and duar programming for the Moder 10 Disk Sys-
tem has been removed from this manuar and can now be found in the tBM system/3
Disk system contror Programming Raference Manuar, GC21-75i2; inforrnation
concerning inquiry for Model 6 can now be found in the lgM system/3 Modet 6
operation contror Languqe and Disk lJtirity programs Reference Manual. GC21-
7516; informat ion concerning inquiry and ro l lout / ro l l in for Moder 15 can be founo
in the /EMSystemlS Moder r5 system contor prognmming Raference Manuar,
GC21-5077.

Changes are per iodical ly made to the informat ion herein; before using th is publ ica_
tion in connection with the operation of rgM systems, refer to the ratest rBM
System/3 Bibliography, GC2o€O8O, for the edirions that are applicable and
current .

Requests for copies of rBM pubtications shourd be made to your rBM representative
or to the IBM branch of f ice serv ing your local i ty .

A Reader',s comment Form is at the back of this publication. lf the form has been
removed, comments may be addressed to IBM corporation. pubrications, Depart-
ment 245, Rochester, Minnesota 55901.

@ Copyr ight Internat ional Business Machines Corporat ion 1g7 1, 1972, 1974

PREFACE

This manual d iscusses the d isk concepts and p lanning in format ion you need to
know to design computer appl icat ions for the IBM System/3 Model 6, Model
10 Disk System, arrd Model 15. The book is in tended for programmers who design
appl icat ions for thei r company.

The System/3 Model 8 is supported by System/3 Model 10 Disk System control
programming and program products. The fac i l i t ies descr ibed in th is publ icat ion for
the Model 10 are also applicable to the Model 8, although the Model 8 is not referred to.
I t should be noted that not a l l devices and features that are avai lable on the Model 10
are avai lable on the Model 8. Therefore, Model 8 users should be fami l iarwi th
the contents ot IBM System/3 Model 8 lntroduction,GC2l-5114.

This manual appl ies to these program products:

o System/3 Model l0 Disk RPG ll (5702-RGl)

o System/3 Model6 RPG ll (5703-RGl)

. System/3 Model l5 RPG ll (5704-RGl)

. System/3 Model l0 Subsef ANS COBOL (5702-CBl)

. System/s Model l5 ANS COBOL (5704-CBl)

. System/3 Model l0 Disk FORTRAN lV (5702-F0l)

o System/3 Mooel l5 FORTRAN lV (5704-F0l)

. system/3 Modet6 Disk F}RTRAN tv (5703-F0l)

Differences between these RPG ll, COBOL, and FORTRAN programs are noted
when applicable, and references are made to related publications.

The chapters of this manual should be read in a specific sequence, as described
in How to Use This Publication which follows.

You should be familiar with the IBM System/3 Disk System lntroduction,
GC21-7510, the l8M System/3 ModelS lntroduction, GC21-5114, the l8M System/3
Mod el 6 I ntroduction, G A21 -9122, or the I B M System /3 Model 1 5 I ntroduction,
GC21-5094, depending on the system you have.

After completing this manual, you should be able to write basic programs with
the aid of various reference manuals. For additional information on processing
disk files using RPG ll, see the l8M System/3 RPG ll Disk File Procesing Pro-
grammer's G u ide, GC21 -7566.

HOW TO USE THIS PUBLICATION

This publication has eight chapters and two appendixes;

o Chapters 1 through 5 discuss the basic characteristics of the IBM 5444 Disk Storage
Dr ive and the IBM 5445 Disk Storage. and descr ibe the fo l lowing basic f i le organizat ions

Sequential f i les

Indexed f i les

Direct f i les

Record address fi les

o Chapters 6 through 8 discuss the considerations for selecting a particular f i le organiza-
tion, how to plan the fi les to be created, and how to store programs and procedures
on disk. lnformation in these chapters is basically the same for the 5444 andS44E,
but specific differences are noted.

o Appendix 4 describes the calculations necessary to determine how much
disk space a f i le wi l l requi re.

' Appendix I describes some performance factors to consider when using in-
dexed fi les.

Chapters 1 through 5 of this manual are for users who need a basic knowledge of how to
use disk fi les. Chapters 6 through I can be read after the reader thoroughly understands
the basic concepts discussed in chapters 1 through 5. Appendix A should be read for
information about how to calculate fi le space. Appendix B wil l help those who plan to
use indexed fi les.

CONTENTS

CI IAPTER 1 . D ISK STORAGE
IBM 5444 Disk Storage Dr ive
IBM 5445 Disk Storage .
Storage Character is t ics (5444 and 5445) .
Comparat ive Access Times (5444 and 5445)

C I { A P T E R 2 , S E O U E N T I A L F I L E S
Crea t i ng a Sequen t i a l F i l e
P rocess ing a Sequen t i a l F i l e

Ma in ta i n i ng a Sequen t i a l F i l e

C H A P T E R 3 . I N D E X E D F I L E S
Crea t i ng an I ndexed F i l e
P rocess ing an I ndexed F i l e .
Ma in ta i n i ng an l ndexed F i l e

C H A P T E R 4 . D I R E C T F I L E S
Relat ive Record Number
Sp i l l f echn ique
Crea t i ng a D i rec t F i l e
P rocess ing a D i rec t F r l e .
Ma in ta i n i ng a D i rec t F i l e
Man ipu la t i ng D i rec t F i l e Da ta
Accessing a Fi le Consecut ively
Loading and Retr ieving Records in the Same Program

Conrrect ing Str ings of Related Records
Message Oueuing in a System/3 Direct Fi le
UsinE a Direct Fi le f or Large Arrays

C H A P T E R 5 . R E C O R D A D D R E S S F I L E S .
F i l es Con ta i n i ng Re la t i ve Reco rd Numbers

(A D D R O U T F i l e s)
F i l es Con ta i n i ng Reco rd Key L im i t s

C H A P T E R 6 . C H O O S I N G A F I L E O R G A N I Z A T I O N
Use o f t he F i l e
V o l a t i l i t y o f t h e F i l e
Ac t i v i t v o f t he F i l e
S i ze o f r he F i l e

C H A P T E R 7 . P L A N N I N G D I S K F I L E S . 4 1

Des ign ing a Reco rd 41

Document ing Record Layout 44

De te rm in i ng S i ze and Loca t i on o { a D i sk F i l e I

Sp l i t Cy l i nde r Capab i l i t y (5445) 53

Da ta F i l e Secu r i t y 54

CHAPTER 8 . STORING PROGRAMS AND

P R O C E D U R E S O N D I S K 5 5

Advantages of Stor ing Programs and Procedures on

1
1

5

o

b

9
I

1 0
l z

t c

1 6
2 1
2 1
2 3
24
25
26
26
26
2a
29

?n

30
? 1

? ?

J5

36
3 l

D i sk

Locat ion of Lrbrar ies on Disk

Source Librar ies .

Ob jec t L i b ra r i es
Stor ing Programs and Procedures into L ibrar ies ,

A P P E N D I X A . C A L C U L A T I N G D I S K F I L E S I Z E

De te rm in i ng Number o f Reco rds i n a F i l e

Calculat ing Record Space
Determining How Many Tracks are Needed- 5444.
Determining How Many Tracks are Needed - 5445

Cafculat ing Index Space -5444

Calculat ing Index Space - 5445
F i l e S i ze
Ca l cu la t i ng D i sk F i l e S i zes - Summary

A P P E N D I X B . P E R F O R M A N C E C O N S I D E R A T I O N S

F O R P R O C E S S I N G I N D E X E O F I L E S .

I ndexes
Type of Processing
Highest Added Key Save Area (5445 OnlyI

Mode l 6 and 1O (5445 On l y)
Pre-Sorted Input
Key Sort /Key Merge

Work F i l e Fo r Key So r t
Model 1 5 (5444 and 5445)
Key length

Distr ibut ion of Added Records

INDEX F i l e Desc r i p t r on En t r y (Mode l 15 RPG l l l

I NDEX

. 5 5

. 5 6

. 5 7

. 5 8

. 6 1

. 6 3

. 6 3

. 6 4

. 6 4

. 6 4

. 6 5

. 6 7

. 6 8
a a

. 7 6

. t b
7 Q

. 8 6

. 4 7

. 8 8

. 8 8

. 8 8

. 8 9

. 9 0
o l

o 1

92

i l l

The IBM System/3 Model 6, Model 10 Disk System, and Model 15 can use the IBM
5444 Disk Storage Drive to store information such as nraster, customer, and inventory
f i les as wel l as programs used on the system. IBM 5445 Disk Storage, on the other hand, .
can be at tached to the IBM system/3 Model 10 Disk system and the IBM system/3
Model 15 to prov ide addi t ional s torage capaci ty ; no l ibrar ies can res ide on the 5445.

The major advantages of storing information on disk instead of on cards are:

Large storage capacity. A5444 disk can hold as muclr data as 25,600 96-
column cards. Also, a d isk pack is more convenient to handle than large num-
bers of cards.

Faster processing rate. A card f i le must be processed in its entirety. even if all the
cards are not needed. A d isk f i le , on the other hand, can be processed randomly; that
is, only the records needed are accessed and processed.

IBM 5444 Disk Storage Drive

The IBM 5444 Disk storage Drive consists of one drive, two disks, ano an access
mechanism (Figure 1) . The lower d isk is mounted permanent ly on the dr ive.
The upper disk is removable and can be replaced with other disks. Each disk,
whether f ixed or removable. is ca l led a volume.

The access mechanism contains four read/write heads, one for each surface of the
two disks. This mechanism moves back and forth across the disk surfaces to posi-
tion the heads to read or write data. When the access m€'chanism is in any one
position, all four heads are positioned in the same relative location on the four
disk surfaces.

Figure 1. IBM 5444 Disk Storage Drive

CHAPTER 1. DISK STORAGE

Read/Write Heads (4)

Disk Storage 1

Each surface of each 5444 disk provides the user with 100 or 200 tracks, depend-
ing on which model of the d isk storage dr ive you have. Tracks are d iv ided into
24 equal parts called sectors; each sector of a track has its own unique address.
Each sector can contain 256 characters (bytes) of data.

Corresponding tracks fronr both surfaces of one disk form a cylinder. These two
corresponding tracks can be accessed in a single position of the read/write heads.

2O4 concentr ic cy l inders, 1 for each
set of corresponding tracks on a disk

Cy l i nde r 0 , Top o f D i sk 1

Cyl inder 0, Bot tom of Disk 1

For th is example. cy l inders are numbered 0 through 203, beginning wi th the
outer cylinder. IBM cus,tomer engineers use cylinder 203 for diagnostic functions,
so this cylinder is not av;ailable for permanent storage. Tracks in cylinders
1,2, and 3 are used by l l3M programming as a l ternate ' t racks whenever t racks in cy l inders

1 through 2O2are found to be defective; therefore, if IBM programming is being used,

cyfinders 1 ,2 and 3 are reserved for use as alternate tracks. Cylinder 0 is used by
IBM-suppl ied programm ing support .

Although there are actu4lly 1O4 or 2O4 tracks per surface depending on which

model you have, only 1(10 or 200 are avai lable to the user . In th is manual and

elsewhere, capacity is re ferred to as either 100 or 200 tracks per surface or

200 or 400 per disk pacl<.

1 Sector
(256 characters)

The IBM 5444 Disk Storage Drive is available in these configurations:

Conf igurat ion

Number o{
Dr ivss

Number of
Disks

Number of
Cyl inders

Storage
Capacity

1

J

4

1

1

2

3

4

100/disk '

200/disk

200/disk

200/disk

2,457,600 bytes

4,915,200 bytes

7,372,800 bytes

9,830,400 bytes

* Mode l s 6 and 10 on lY

IBM 5445 Disk Storage

IBM 5445 Disk Storage has one or two drives for the Model 10 Disk System or from one

to four dr ives for the Model 15. Each dr ive uses a d isk pack that conta ins 11 d isks. The

upper surface of the top disk and the lower surface of the bottom disk are unused. There
are, therefore, 20 usable surfaces. The disk pack is removable.

The access mechanism contains 20 read/write heads for the usable disk surfaces.
This mechanism moves back and forth across the disk surfaces to position the
heads to read or write data. When the access mechanism is in any one position,

all 20 heads are positioned in the same relative location on the 20 disk surfaces
(F igu re 2) .

Each surface of each 5445 disk contains 200 tracks. Tracks are divided into 20

sectors; each sector has a unique address, and contains 256 characters (bytes)

of data.

Disk

Figure 2. IBM 5445 Disk Storage

Disk Storage 3

A 5445 cy l inder consists of a l l the t racks on a d isk pack in one ver t ica l p lane
(Figure 3) . S ince 20 d isk sur faces can be accessed, a cy l inder is made uo of 20
tracks. The same cy l inder address is used for a l l corresponding t racks in
the cy l inder .

l - . ' a r , i n d e r s -
|

,
- tnn |

oo

I
I
I
I

Tracks in
a Cyl inder

I
I
I

I
I
{

1 9

Cyl inders 3-5

Figure 3. Cyl inder Concept on the IBM 5445

|
-

\\:-
\ r

Storage Gharacteristics (5444 and 544b)

Figure 4 shows the relative storage characteristics of the IBM 5444 and IBM 5445
Disk Storage drives.

Comparative Access Times 15444 and il45)

Figure 5 i l lustrates the access times available on the IBM 5444 Disk Storage Drive (normal
and high speed) and the IBM 5445 Disk Storage drive. For more information, see the
IBM System/3 Model l0 Components Reference Manual, (GA21-9103) ,the IBM System/3
Model 6 Components Reference Manual, GA34-0001, or the l9M System/3 Model l5
ComponenB Reference Manual (GA21-91 93).

' Models 6 and 10 only

Figure 5. Comparative Access Timee (5444 and 5,4451

Bytes per sector

Sectors per track

Bytes per track

Tracks per cylinder

Bytes per cylinder

Cylinders per disk pack

Bytes per disk pack

Tracks per disk pack

Sectors per disk pack

Maximum number of disk fi les
stored per disk pack

5444

256

24

6144

2
't2,288

r 00/200

1,228,8001
2,457,600

200/400

4800/9600

il45

256

20

51 20

20

102,400

200

20,480,000

4000

80,000

50

8

50

40 (Model 10) ;80 (Model 15)

2 (Mode l 10) ;4 (Mode l 151

Maximum number of usable disk surfaces

Maximum number of disk drives

Figure 4. Charsctoristics of the IBM 54F,4 and 5445 Disk Storage Drives

5444 (normal) t 5444 (hiqh speedl 54t15
1 00 cyl 200 cyl 100 cyl 200 cyl

Minimum access time 39 msec 39 msec 28 rnsec 28 msec 25 msec

Average aocess time 153 msec 269 msec 86 msec 126 msec 60 msec

Maximum access time 395 msec 750 msec 1 65 nsec 255 msec 130 msec

Data transfer rate 199,000 bytes/sec 199,000 bytes/sec 312,000 bytes/sec

Rotational speed 15OO RPM 15OO RPM 24OO RPM

Average rotational
delay

20 msec 20 msec 12.5 msec

Dirk Storage 5

CHAPTER 2. SEOUENTIAL FILES

Adisk f i le can be organized and processed l ike a card f i le . Such a d isk f i le is
called a sequential f i le. The sequence of the fi le can be determined by control
f ields, such as an employee number or a customer number, or the records may be
in no particular sequence. Consecutive processing means that the records are
processed one after another in the physical order in which they occur.

An example of a sequential f i le is an employee master f i le arranged in employee
number order and containing information about each employee. When this fi le is
used for processing, such as payroll checks, the records are processed consecutively.
The lowestemployee number is processed firstand so on unti l the last record,
the highest employee number, is processed.

A sequent ia l f i le may span mul t ip le d isk volumes. (A volume refers to one d isk
pack. A mul t ivo lume f i le is a f i le that is conta ined on more than one d isk pack.)
A multivolume fi le, however, affects the processing of your fi le. For information
on processing considerations when using multivolume sequential f i les, see the
discussion on multivolume fi les in Chapter 6.

Creating a Sequential File

You create a fi le when you write the records onto a disk for the first t ime. The
records in a sequential f i le are placed on the disk consecutively; that is, they are
written on the disk in the order in which they are read. All tracks in one cylinder
are f i l led f i rs t , then a l l t racks in the next cy l inder , and so on unt i l the whole f i le
is p laced on the d isk.

Figure 6 shows an example of this process using a5444. In this example, each record is
128 positions (bytes) long. Since each track can contain 6144 bytes of data,48 records
can be written on each track; 96 records can be written on each cylinder. The numbers
on the tracks in Figure 6 correspond to the number and position of each record.

Processing a Sequential File

Sequential f i les can be processed consecutively or randomly by relative record
number. Normally the fi le is processed consecutively because a sequential f i le
is usually used when all the records in the fi le are to be processed.

Sometimes, however, you may want to process only certain records in the fi le.
Consecutive processing can be time-consuming in this case, because allthe records
must be processed or at least read. lt would be faster to process the records ran-
domly by a number related to the position of the records in the fi le. This number
is called a relative record number. lf your sequential f i le is in order by control
f ields and there are no missing or duplicate records, the contents of the control
f ields can be used as relative record numbers. For more information on this type
of processing, see Random Processing by Relative Record Number in Chapter 4.

Top Tracks

nd Cy l i nde r

Bottom Tracks

F i r s t Cy l i nde r

= 124

Figure 6. Wri t ing Records on a Disk

Maintaining a Sequential File

Once you create a fi le. you must maintain it. File maintenance means performing

those functions that keep a fi le current for daily processing needs. Four fi le main-

tenance functions affect or apply to sequential f i les:

Adding records

Tagging records for deletion

Updating records

Reorganizing a fi le

Adding Records

Records can be added to a fi le after the fi le has been created. When records are

added to a sequential f i le, they are written at the end of the fi le. Thus, the fi le

is extended by the added records.

Sometimes, however, the new records must be merged between the records al-

ready in the fi le. This may be necessary in order to keep the fi le in a particular

order when the control f ields of the new records are not higher in sequence than

those already in the fi le. In order to put the new records in the proper sequence,
you must sort the fi le to create a new fi le containing the added records. Another

technique would be to merge the new records into the proper place in the

original f i le during a copy to a new fi le.

Note: Adding records to a sequential f i le is not supported by COBOL. A FORTRAN
program must read all existing records first, and then begin writ ing.

1 .

2.

3.

4.

Sequent ia l F i les 7

Tagging Records for Deletion

when a record becomes inactive, you wii l no ronger want to process it with the
other records. A record cannot be physically removed from the fi le during regularprocessing; therefore, it is necessary to identify or tag the record so it can be by-passed. one way to tag such a record is to put a code, calred a derete code, in aparticular location in the record. when the fire is processed, your program can check
for the derete code; if the code is present, the program can bypass that record.

Updating Records

when you update records in a fire, you can add or change some data on the record.
For exampre, in an inventory fire you might want to add the quantity of items re-ceived to the previous quantity on hand. The record to be updated is read into
storage, changed, and written back on the disk in its original rocation.

Reorganizing a File

when several records in a fire have been tagged for deretion, you shourd physicaily
remove them from the fi le. This wil l free disk space. You can remove the inactive
records by copying the records to be retained onto another disk area.

In some data process ing app l ica t ions you may no t want to p rocessyour f i l e con-

secut ive ly . Consecut ive process ing is t ime-consuming i f you on ly want to p rocess

certain records in the f i le. l t is faster to skip the records not needed in a job and
process on ly the requ i red ones . An indexed f i le a l lows th is type o f p rocess ing .

/Vote. ' This chapter and any other discussions of indexed f i les in this manual do

not app ly to FORTRAN; indexed f i les a re no t suppor ted by FORTRAN.

An indexed f i le is organized into two parts: an index and the data records. The

index conta ins an en t ry fo r each record in the f i le . You can go to the index , f ind

the location of the record, go to that location, and { ind the record you want.

Under certain condit ions up to three types of indexes may be used. These index types

are g iven spec i f i c names in th is manua l to e l im ina te confus ion . The f i rs t , and most used,

index is referred to as the f i le index. In some cases when using the 5445, the system

may generate an index (on disk) known as the drsk track index. Sti l l another type of in-
dex, used to improve performance, isthecore index. For more information on these

three indexes, see Appendix B.

Each en t ry in the f i le index descr ibes a record in the f i le . There is an en t ry in the f i le

index fo r each record in the f i le . For example , i f a f i le index has 2000 en t r ies , the f i le

contains 2000 records. The f irst part of the entry contains the record's key f ield.

Each en t ry (key) in the key f ie ld conta ins da ta tha t un ique ly ident i f ies the record . For

example, the customer number may be the key f ield for a customer master record. The

second part of the f i le index entry contains the drsk address of the record. The disk

address represents the location on the disk where the record is stored. The f i le index is

arranged in ascending sequence according to the key f ield in each record.

An indexed f i le can be a mul t i vo lume f i le . When process ing an indexed f i le . however ,

you must cons ider the e f fec t tha t mu l t i vo lume f i les w i l l have on f i le p rocess ing . For

in fo rmat ion on process ing cons idera t ic lns when us ing mul t i vo lume indexed f i les . see

the d iscuss ion on mul t i vo lume f i les in Chapter 6 .

Creating an lndexed File

When you create an indexed file for RPG ll, the records in the file can be in an
ordered or an unordered sequence; when creating an indexed f i le for COBOL,

however, the records must be in ascending sequence, as determined by their keys.

An ordered sequence means the records are arranged in order according to some

major control f ield used as the key f ield. An unordered sequence means the

records are in no part icular order.

An inventory f i le loaded according to frequency of use is an example of an unordered

fi le. The most act ive i tems are at the beginning of the f i le. When the f i le is used to

write customer orders, most of the records needed are located in a small area of the

fi le rather than scattered throughout the entire f i le. This reduces the total t ime i t

takes to process the records because the access mechanism does not have to move

back and forth across the whole disk to access the required records.

CHAPTER 3. INDEXED F ILES

lndexed Fi les I

When an indexed f i le i s c rea ted , the f i le index is c rea ted as the records are wr i t ten on d isk .
l f the f i le i s an ordered f i le , the f i le index is in the cor rec t sequence when the records are
wr i t ten . l f the f i le i s an unordered f i le , the sys tem automat ica l l y sor ts the f i le index in to
ascending sequence after al l the records in the f i le have been loaded. (The t ime
requ i red fo r sor t can be reduced i f the spec ia l work f i le $ lNDEX44 or $ lNDEX45
is ava i lab le .)

The f i le index area precedes the area where records are placed on a disk. For example,
suppose the f i le index fo r a cer ta in f i le requ i res f i ve t racks . The ' f i le index en t r ies
wou ld be wr i t ten on the f i rs t f i ve t racks o f the f i le . Records wou ld be wr i t ten beg inn ing
in the f i rs t sec tor o f the s ix th t rack . Both the f i le index area and the record area must
s ta r t a t the beg inn ing o f a t rack .

Top
Track
of Fi rst
Cy l i nde r

Bottom
Track
of Third
Cyl inder

For indexed fi les on the 5445, another type of index is created when the fi le index uses
more than 15 t racks. This addi t ional index. which precedes the f i le index. is known as
the drbk track index. Each entry in the disk track index refers to one track of the fi le
index. The disk track index wil l be used by the system only if i ts use wil l improve per-
formance. See Appendix B for more information on this subject.

Processing an Indexed File

Indexed fi les are not l imited to consecutive processing; they can be processed
several ways because the fi le index provides several ways to find records.

Sequential Processing by Key

When an indexed fi le is processed sequentially by key, the records are processed in the
order of the key fields. This method is used to process all records in a fi le, regardless
of thei r order .

1 0

To i l lustrate this processing method, note the similari t ies and dif ferences between

Fi le A and F i le B in F igure 7 . Both f i les conta in the s rame records , and bo th f i le

indexes are in order according to the key f ield. The dl i f ference between the two

fi les is the order of the records. The records in Fi le A, are in order according to

key f ie ld ; the records in F i le B are unordered. A l l rec ;o rds in e i ther f i le can be

processed in order i f you specify the processing as secluential by key.

Fi le A

F i l e l ndex

10 I 20 | 3ol 40 I 50 | 60 | 70

Fiila B

Figure 7. Example of an Ordered and an Unordered Fi le

Sequential Processing Within Limits

Another way to sequent ia l l y p rocess an indexed f i le i s sequent ia l l y w i th in l im i ts , a method

in which records are processed in groups.

/Vote ; COBOL suppor ts s ta r t ing key (lower l im i t) p rocess ing on ly . Upper l im i t p rocess ing ,

i f d e s i r e d , m u s t b e p r o v i d e d i n y o u r C O B O L s o u r c e p r o g r a m . T h e l i m i t s f o r a n R P G l l

object program can be supplied by a l imits iecord or the lower l imit can be set in your pro'

g ram. For mu l t i vo lume f i les , th is type o f p rocess ing l app l ies on ly to Mode l 15 .

As an example o f sequent ia l p rocess ing w i th in l im i ts , suppose tha t a who lesa le company

prepares monthly statements of each customer's charges. Each customer is assigned a

5-d ig i t number ; the f i rs t d ig i t represents the reg ion the cus tomer i s in and the remain ing

four digits represent the customer's number. The company's customers are divided

into four regions. al lowing monthly statements to btr sent each week to the customers

in one o f the reg ions . Reg ion 1 cus tomers (10000-111999) a re b i l led the f i rs t week

of the month. region 2 customers (20000-29999) the second week, and so on. The

statements, therefore. are processed sequential ly within l imits'

For in fo rmat ion on process ing an indexed f i le sequent ia l l y w i th in l im i ts , see

Chapter 5 in this manual '

Records

RecordsF i l e I ndex

t 0 n 30 40 50 60 x

l ndexed F i l es 1 I

Random Processing

Indexed f i les can arso be processed randomry. This type of processing, cai led
random by key, permtts processing of one part icular record without regard to
i ts re la t ion to o ther records .

when you process a f ire randomry by key, you specify the key of the record you
want . The key is founrJ in the f i le index ; the d isk address (ad jacent to the key) i s
then used to rocate the record so the record can be transferred to storage forprocessi ng.

Processing an Indexed Fi le Ocnsecutively

Indexed f i les can be processed (read) consecut ive ly by de f in ing the indexed f i le as
a sequent ia l inpu t f i l e i rn the F i le Descr ip t ion spec i f i ca t ions . when an indexed
fi le is processed consecutivery, the f i re index is bypassed and data records are pro_
cessed consecut ivery f rom the beg inn ing o f the f i re to the end, as i f i t was a se-
quent ia l f i l e . Note tha t indexed f i res can no t be c rea ted , added to , o r updated
consecutively.

An example o f us ing consecut ive process ing o f an indexed f i le i s read ing records
f rom an indexed f i re when the f i re index is unusabre fo r some reason.

Maintaining an Indexed Fi le

Af te r the f i le i s c rea ted , you can use these f i re ma in tenance func t ions to keep the
f i le cur ren t fo r da i l y p rocess ing needs:

Adding records

Tagging records for delet ion

Updating records

Reorgan iz ing a f i l ,e

Adding Records

When a record is added to an indexed f i le, i t is writ ten at the end of the records
a l ready in the f i l e . Reco, rds can be added e i ther sequent ia l l y by key or randomly
by key. When records are added randomly by key (the records to be added need
not be in any part icurar sequence) or sequentiai ly by key, the system checks to
ensure that the record is not a dupl icate of a record already in the f i le; i f the record
is no t a dup l i ca te . i t w i l l be added to the f i re .

The f i le index entry for the added record is writ ten at the end of tne current entr ies
in the index area. After al l the records are added, the keys of the added records and
the keys of the original records are sorted or merged, so that the keys cf al l records
in the f i le a re in ascend ing sequence in the f i re index . as fo i lows:

2.

3.

4.

1 2

Fi le Index Entry
(key f ie ld and disk address)

Before Additions

Dur ing Addi t ions

After Additions

l f many records are to be added to the fi le, the time required for the index sort/merge
can be decreased by allocating a special work fi le. This requires no special RPG ll
coding but does require that the l lFlLE statement be included in the OCL statements,
and that the special f i le name $lNDEX44 or $lNDEX45 be specified. See the IBM
System/3 Model 10 Disk System Control Programming Reference Manual lGC21-75121 ,
the I8M System/3 Model 6 Operation Control Language and Disk Utility Programs
Reference Manual (GC21-7516), or the IBM System/3 Model 15 System Control Program-
ming Reference Manual (GC21-5077), for more information concerning these require-
ments.

Tagging Records for Deletion

Inactive records in an indexed fi le must be handled l ike inactive records in a sequential
f i le. Since the record is not removed from the fi le during regular processing, you must
identify or tag the record so it can be bypassed. To do this. put a code called a delete

code in a particular location in the record; a delete code cannot be put in the key field.

When the fi le is processed, your program can check for the delete code; if the code is
present, the program can bypass that record.

Key F ie l ds

1 M 2 D3 J D5 D2 6 D1

1 Bl 2 D3 3 o5 4 D6 5 D2 6 D2

Indexed Fi les 13

Updating Records

When you update records in a f i le. the records to be updated are read into storage,
changed, and wr i t ten back on the d isk in the i r o r ig ina l loca t ions . Records in an indexed
f i le can be updateo :

l . Sequent ia l ly by key

Randomly by key

Sequent ia l ly wi th in l imi ts

f t /o te . ' COBOL suppor ts s ta r t ing key (lower l im i t) p rocess ing on ly ; upper
l im i t p rocess ing , i f des i red , must be prov ided in your coBoL source program. The
l im i ts fo r an RPG l l ob jec t p rogram can be supp l ied by a l im i ts f i le , o r the lower l im i t
can be se t in your p rogram.

Records are usua l ly updated sequent ia l l y by key when you want to update a l l the
records in the f i le. Each record is updated in order.

To update your f i le randomly by key , you spec i fy the key you want . Th is key is
then found in the f i le index so the desired record can be located and moved into
storage for updating.

For a d iscuss ion on updat ing an indexed f i le sequent ia l l y w i th in l im i ts , see Chapter 5
i n t h i s m a n u a l .

Reorganizing a Fi le

I t may be necessary a t t imes to reorgan ize your indexed f i le in o rder ro tncrease pro-
cess ing e f f i c iency and f ree d isk space. Th is can be done by phys ica l l y merg ing added
records in sequence with the records original ly created, and by removing records tagged
for de le t ion .

For example , suppose an indexed f i le was c rea ted w i th the records in ascend ing key
field order. Since that t ime, several records were added to the f i le. These records
were added a t the end o f the f i le , bu t the f i le index is in sequent ia l o rder by key f ie ld .
When the f i l e i s p rocessed sequent ia l l y by key , t t te d isk access arm must move back and
forth between the sequenced records (those original ly created) and the added records.
Th is s i tua t ion o f ten inc reases process ing t ime fo r a par t i cu la r job . Dur ing reorgan iza t ion ,
the added records can be placed in sequence.

As records are added to a f i le, the space reserved for the f i le becomes f i l led. Reorganizing
is a means of freeing space since inactive records, those with a delete code, can be physi-
ca l l y removed.

Af i le i s reorgan ized by copy ing the o ld f i le in to a new d isk a rea . Dur ing the copy ,
deleted records can be removed from the f i le. Records previously added to the
o ld f i le w i l l be cop ied in to the new f i le in sequence w i th the or ig ina l records . The
space prev ious ly occup ied by the o ld f i le can then be used to conta in new data .

2.

3.

A direct f i le is a fi le on disk in which records are assigned specific record positions.
Direct f i le organization enables you to directly access any record in the fi le without
examining other records or searching an index. Thus, in some processing situations,
direct f i le organization has advantages over sequential and indexed organizations.

Figure 8 shows direct f i le organization. Records are assigned specific locations,
independent of the order they are put into the fi le. All records put into the fi le have
record locations, although not all locations contain records. The specific location
in the fi le assigned to a record is determined from a control f ield in the record. Re-
cords can be scattered throughout the fi le, depending on the distribution of the con-
trol f ields. The unused record locations contain blanks.

Direct f i les may span multiple disk volumes. when a direct f i le is processed, however,
all volumes containing portions of the fi le must be mounted on the disk drives, since
every record in the fi le must be accessible (in other words, the entire fi le must be
online). Therefore, multivolume direct f i les ons444 disk drives are l imited to two
volumes wi th a s ingle d isk dr ive (one f ixed volume and one removable volume) and
four volumes with dual disk drives (two fixed volumes and two removable volumes).
Mul t ivo lume di rect f i les on 5445 d isk dr ives are l imi ted to two volumes for the Model 10
o r fou rvo lumes fo r theMode l 15 . Fo rmore in fo rma t i ononp rocess ingcons ide ra t i ons
when using mul t ivo lume di rect f i les, see the d iscussion on mul t ivo lume f i les in Chapter 6.

Control
Fie ld

Unused Record
Locat ions (b lanks)

Figure 8. Direct Fi le Organizat ion

CHAPTER 4. DIRECT FILES

i ' i

Oi rec t F i l es 15

Relative Record Number

ln a direct f i le, a record is writ ten and retr ieved direct ly by specifying the location
of the record in re la t ion to the beg inn ing o f the f i le . Th is re la t i ve pos i t ion is ca l led
the re la t i ve record number . The re la t i ve record number i s no t a d isk address , bu t i s
a posit ive, whole number that is converted by disk system management to the disk
address of the record to be accessed.

Deriving the Relat ive Record Number

A re la t i ve record number i s s im i la r to the key o f an indexed f i le o r the cont ro l in fo r -
mat ion in a sequent ia l f i l e ; i t i s dependent upon a spec i f i c f ie ld (cont ro l f ie ld) in the
record . The cont ro r f ie rd can e i ther be used d i rec t ry (w i thout change) as a re ra t i ve
record number or i t can be mathematical ly converted to provide an acceptable re-
lat ive record number.

Direct Method

An easy way to derive relat ive record numbers is to have them correspond direct ly
to the control f ields in the records. Because the control information need not be
conver ted in to a re la t i ve record number . man ipu la t ion and programming are kept
to a min imum. For example . in F igure g , the record w i th a 1 in the cont ro l f ie ld
becomes relat ive record number one; the record with a 5 becomes relat ive record
number f ive, and so forth. This method is practical where control numbers can
be assigned on a sequential basis. such as employee numbers for payrol l records,
student numbers in a school. and customer numbers for customer f i les.

Suppose a smal l co l lege has an enro l lment o f 5 .000 s tudents . A master s tudent f i le i s
main ta ined wh ich inc ludes cur ren t ly enro l led s tudents and graduates fo r the las t two
years. The master f i le contains approximately 7,000 records. Each student is assigned
a 6-d ig i t f i l e number as fo l lows:

i
7\e3e7

Expected '7ear I
of graduation I

A un ique ident i f i ca t ion
number f rom 1-9999

The ident i f y ing numbers are ass igned on a sequent ia l bas is ; numbers re t i red f rom
the master f i le a re ava i lab le fo r reass ignment .

A direct f i le with 10,000 record locations is used for the stuclent master f i le,
satisfying a need for fast access to each student's record. Since the identi fying
numbers range between 1 and 9999 and there are no duplicates, the relat ive record
number i s taken d i rec t l y f rom the s tudent f i le number . F igure 9 shows re la t i ve
record numbers taken from the student f i le number being used to update student
addresses.

' t6

Student
Addres
F i le

Control
F ie ld

R E I I T J O H N H R R z
1 5 ' 6 r r a ' 9 t 0 r r 2 : r : r .

G L E N C O E r M I N N

a

2
l

B

2
l

a

I N N
! ! 5 . 5 t 5 6 t t

IHNSON r J

M A I N g T
3 l l r 3 ! !G r ' ,a J r .o

L A K E T O

E L M S T U T L L V I O

R C E R I J A C Q U E S B

I R O N C I T Y T M I N N

R B E R T F 3 1 6

E , u I N N

Diroct
Student
Master Fi le

i:*H)-' 8006 8007 8008

Figure 9. Relat ive Record Numbers Corresponding Direct ly to a Control F ie ld

Conversion Method

Conversion refers to any technique for obtaining a desirable range of relative record
numbers from the control f ields of the records. The conversion method must be
used when the values in the control f ields cannot be used directly as relative record
numbers. For example, employee numbers in a factory range from 0001 to 1500,
but only 450 numbers are in use since numbers belonging to employees who have
retired or terminated have not been reused. A fi le large enough for 1500 records
is not needed; therefore, a technique must be found for convert ing the employee
numbers to approximately a 1 through 500 range (which would provide 50 locations
for f i le expansion) .

f+t
tril

Di rec t F i l es 17

when the conversion method is used, every possible control f ield in the f i le must
convert to a relative record number in the allotted range (in this case, I through b00),
and the resulting relative record numbers should be distributed evenly across the
af lotted range so that there are few synonym records. synonym records are rwo or
more records whose control f ields yield the same relative record number, but contain
different data (see the next section, synonym Recordsl. your program must allow for
synonyms if they are generated.

A way to convert the range of employee numbers from 1500 to b00 is to divide the
employee number by 3 and drop the remainder (thus 3 becomes 1; 6 becomes 2;
1500 becomes 500). However, there is a possibil i ty of having synonym records. For
example, if the numbers 6, 7, and 8 are present, all three become relative record number
2 .

Another technique that may produce fewer synonyms is to divide the employee number
by 2 and drop the remainder. This compresses 1500 numbers to 7s0. There are 300
unused locations in this case, rather than 50.

A third method would be to divide the employee number by 499 (500 - 1). and use the
remainder + 1 as the relative record nUmber,

lf there is no sequence to numbers in a control f ield (such as part numbers), a
conversion technique that produces random numbers can be used. The resulting
numbers should be distributed evenly within the selected range (depending upon
the number of record locations needed), and should be suitable as relative record
numbers (positive, whole numbers). one such technique is squaring the number in
the control f ield and selecting certain digits from the resulting number as the relative
record number. The calculation must be performed every time the program must
seek a record, For example, suppose you have part numbers that consist of six
d ig i ts . wi th cer ta in d ig i ts having a specia l meaning. No two par t numbers are a l ike.
The part number is squared and, of the resulting digits, only four are used as the
relative record number for the parts inventory fi le.

Part number = 4681 52

4€81 52 x 4681 52 = 21 91166-t6ls1 04

Relative record number = 6629

Since four digits are selected. random numbers from 1 to gggg could be developed.
Therefore, a fi le containing 10,000 record locations should be provided for the parts
inventory.

Even the technique used in the example above is l ikely to produce synonym records,
since the selected four digits of the square of two different part numbers can be
identical. lf a conversion technique produces too many synonyms, it may be necessary
to f ind a different technique.

1 8

Synonym Records

Two or more records whose control f ields yield the same relative record number are
called synonym records. Synonyms have the same relative record numbers, but con-
tain different data. Since only one synonym record can be stored in the record location
for its relative record number. a different method must be found to store and retrieve the
other synonym records.

Chain Technique

One way to handle synonyms is to chain (l ink) them together so that a l l can be found by
locating the first. The first record is stored in the record location indicated by its relative
record number. That location is called the home location; the record placed there is
called the home record. The first synonym (second record) is stored in the first unoccu-
pied record location in the fi le (a location for which no relative record number had been
developed). The re lat ive record number of the second locat ion is then stored in the home
record; that is , the f i rs t synonym is l inked to the home record. The second synonym, i f
present. would be stored in the next unoccupied record location and would be l inked to
the f i rs t synonym, and so for th. In F igure 10, a l l records that are synonyms are loaded
into the fi le after records that can be stored in their home location have been loaded.
Loading the records in th is manner s impl i f ies the programming because the coding for
loading synonym records can be done in a separate program. The chain technique is
useful when a fi le is created, but tends to be of less value as records are added to or de-
leted f rom a f i le .

Unoccupied Locat ions

l \

Synonym
I, Added

Synonym
B, Added

Record I
contains location
of synonym 8r.

Synonym I ,
contains locat ion

of synonym I ,

Home
Location

A B 3
I

81
lu

D Bz G H I

1 32 6 1 05 7 84 I

F igu re 10 . S to r i ng Synonym Reco rds i n a D i r ec t F i l e

D i rec t F i l es 19

l f a new record is added to the f i le , bu t i t s home loca t ion is a l ready occup ied by a
synonym, fo r a d i f fe ren t record loca t ion , the new record must be t rea ted as a syno-
nym fo r i t s home loca t ion . F igure 11 shows the f i le tha t resu l ted f rom the add i t ion
o f synonyms in F igure 10 . The home loca t ion fo r record c i s occup ied by a synonym
for record B, so record c i s p laced in the f i rs t unoccup ied loca t ion . S ince record B1
is a l ready l inked to record B2, record c must be l inked th rough 82 to i t s home loca-
t r o n .

Record C is relative record number 3, but
location 3 is already occupied. Therefore,
record C must be placed in the first avail-
able locat ion.

Figure 11. Storing a Record When lts Home Location ls Occupied

When you process a d i rec t f i l e con ta in ing synonyms, you must ver i f y every record
re t r ieved. For example , when you re t r ieve re la t i ve record 3 f rom the f i le in F igure 11 .
you ge t record 81 , wh ich is a synonym fo r re la t i ve record2, wh ich is no t the re r :o rd you
want . However , i f you check the record re t r ieved, you f ind tha t i t i s a synonymr . You
can now cha in the re la t i ve record loca t ion , i f any , ind ica ted by the f i rs t record : rnd re -
t r ieve the second record . You can cont inue th is p rocess un t i l you f ind the record you
want o r un t i l the cha in o f synonyms ends . In th is case, you cou ld eventua l l v have an
er ror cond i t ion because the reques ted record is no t in the f i le .

A s imi la r method fo r hand l ing synonyms is to se t as ide a por t ion o f the f i l e fo r synonym
records' Suppose, for example, a f i le for 8500 records is set up to provide relat ive record
numbers be tween 0 and 9999. By ac tua l l y se t t ing as ide enough area fo r 1 1 ,000 records ,
any synonyms deve loped can be s to red in record loca t ions f rom 10,000 to 10 ,999.

Relative record numbers G9999
Synonym
records

9999 10,000 10,999

1 0

\

A
I

B 1 3
I
I

Bt 5 D
I

p l A- 2
l "
I

c G H J

Direct Fi le

20

The relative record number of a synonym is stored in the home location, and a
chain of synonyms is bui l t as in the previous method.

)
A

I
B 110000,1111;1..r.1.i1i1111ifi+.'+fl " i.ro-'[$]Hfl Bl D l

10,000 10,001
-

Synonyrrs

Processing by this method is faster when records must be added to a f i le because
a home location is kept free for every relat ive record number; only one seek
operation is required for records without synonyms. However, this method wastes
more f i le space, because 11,000 locations are used for 8500 records.

Spil l Technique

Another method o f hand l ing synonym records , the sp i l l techn ique. uses the home
locat ion as a s ta r t ing po in t . When the f i le i s f i r s t loaded, a counter i s se t to ind ica te
the max imum number o f reads wh ich wou ld be necessary fo r loca t ing a g iven

synonym record . (For example , the counter wou ld be se t to 3 i f the max imum
number of synonyms for a given home address were 3.) To retr ieve a record from

the f i le , you wou ld f i rs t need to de termine the home record loca t ion and read the
record from that address. l f i t isn't the record you want. you read the record in the
nex t loca t ion in the f i le . Th is o rocess cont inues un t i l the cor rec t record is se lec ted
f rom the f i le . l f the max imum number o f reads (3 in the example , above) i s reached.

a record-not-found condit ion exists.

When a record is to be added to a f i le, you f irst check the location at the home
address . l f th is loca t ion ind ica tes tha t the home record has a synonym, you incre-

mel t the re la t i ve record number by one. and cont inue to check fo r synonyms, un t i l

an ava i lab le space is found. A t tha t po in t you wou ld add the new record to the
fi le. l f the number of t imes you incremented the relat ive record number exceeds

the count you se t up fo r the max imum number o f reads , the count wou ld be inc re-

mented by one (in the example , the count wou ld be se t to 4) .

Other methods fo r hand l ing synonyms can be dev ised. Whatever the method used,
plan on extra accesses for synonym records and extra coding in order to veri fy the

recoros.

Creat ing a Direct Fi le

To c rea te a d i rec t f i l e , you must de f ine a d isk f i le as : a cha ined ou tpu t f i l e (fo r

R P G l l) ; a r a n d o m o u t p u t f i l e (f o r C O B O L) ; o r , a d i r e c t a c c e s s f i l e (f o r F O R T R A N) .

In th is way, the f i le i s un ique ly ident i f ied to d isk sys tem management as a d i rec t

f i le . D isk sys tem management then a l loca tes d isk space fo r the f i le , and the en t i re

f i le space is e rased to b lanks . Th is ac t ion , in e f fec t , c rea tes dummy records whose

length is determined by the creating program- Once the f i le has been cleared, one

or more subsequent jobs can be run to read record loca t ions wh i le load ing the f i le .

The method you use to write data records on the f i le depends on whether or not
you must check fo r synonyms among those records .

Direct Fi les 21

whether or not you must check for synonyms. relative record numbers are used in
your program to make the corresponding record locations available for loading. Re-
cords are loaded into the fi le in an update mode by f irst chaining the record to a
given record location according to its relative record number, and then by ourput-
ting the new record into that record space. The relative record number is the
sequence number of that record within the fi le. The data used as a relative record
number can come from a field in the input record, or it can be created in your pro-
gram.

Creating a Direst File Without Synonyms

lf you do not have synonyms, you can load records into a direct f i le in a single
pass. In this case, record locations are not inspected before they are fi l led with
data. lf a synonym is encountered, it is written over the previous record and the
previous record is lost.

Creating a Direct File With Synonyms

lf you have synonyms, you can create a direct f i le by using more tnan one pass to
load records into the fi le. The exact method you use depends on your scheme for
handling synonym records (see Synonym Recordsl.

Processing a Direct File

Direct f i les can be processed in three ways:

1 . Consecutively

Randomly by re lat ive record number

Randomly by ADDROUT fi le (see Chapter 5. Record Address Filesl

Consecutive Processin g

Di rec t f i l es a re o f ten used where the ac t iv i t y o f a f i le i s low and d i rec t inqu i ry o f
the f i le i s necessary . However , when the ac t iv i t y on a d i rec t f i l e i s h igh fo r cer ta in
jobs, such as writ ing a report where the entire f i le is l isted, you may want to process

the f i l e consecut ive lv .

Consecut ive process ing o f d i rec t f i l es i s s im i la r to consecut ive process ing o f sequent ia l
f i l es . Record loca t ions are processed one a f te r another un t i l end o f job requ i rements
are met . The d i rec t f i l e has no nex t ava i lab le record (EOF) po in te r in the labe l . As a re -

su l t , consecut ive process ing w i l l access the en t i re f i le space be fore the las t record (LR)

cond i t ion occurs . Remember tha t a d i rec t f i l e i s c leared to b lanks when i t i s c rea ted ,
and record loca t ions no t f i l l ed remain b lank . Thus , in consecut ive process ing , b lank
record loca t ions w i l l be read a long w i th those conta in ing da ta . Your p rogram shou ld

check fo r b lank record loca t ions and bypass them so tha t on ly va l id records are processed.

When re t r iev ing and updat ing a d i rec t f i l e consecut ive ly , you a lso may want to check

each record fo r synonyms and then hand le the synonyms d i f fe ren t ly f rom o ther records .

However, since consecutive processing does not depend on relat ive record numbers, a

d i rec t f i l e can be processed consecut ive ly w i thout regard {o r synonyms.

Random Processing by Relat ive Record Number

Remember tha t random process ing o f indexed f i les i s accompl ished by us ing the cont ro l
f ie ld va lue (record key) to search an index . l f a match is found, the record a t the d isk

loca t ion conta ined in the index en t ry can be accessed. The cont ro l f ie ld va lue , there fore ,
is no t re la ted to the ac tua l loca t ion o f the record on d isk . When process ing randomly by
re la t i ve record number , however , the re la t i ve record number i s used by d isk sys tem man-
agement to ca lcu la te the d isk loca t ion o f the record . No index area and index search are

requ i red , s ince the cont ro l f ie ld va lue is d i rec t l y re la ted to the record loca t ion . There fore ,
random processing by relat ive record number can be faster than random processing by key

of an indexed f i le . l f a la rge number o f synonyms ex is t in the f i le , however , re t r iev ing a

record by loca t ion may requ i re more ex tens ive programming, and an inc rease in the

average number of seeks per record due to synonyn"!s.

Records can be processed e i ther in an ordered or an unordered manner . Process ing

of records in o rder accord ing to re la t i ve recc l rd number i s usua l ly fas te r than unordered
process ing s ince less nrovement o f the d isk access mechan ism is requ i red . F igure 12
shows the s teps invo lved in random process ing o f a d isk f i le by re la t i ve record number .

ln the f igure , re la t i ve record numbers are ob ta ined fo r con t ro l f ie lds in the input
records ; however , they cou ld a lso be genera ted by your p rogram. Random re t r ieva l
inc ludes s teps one, two, and th ree in the f igure ; random update inc ludes a l l f i ve
steps.

2.

D i r e c t F i l e s 2 3

o
Record is
t he i npu t

read from
f i l e

I
I

I
t
I

€) n.rr,il record number from
the input r€cord clntrol field
ir used to chain to the disk fite.

\ \ - -

Relat ive

Oisk
File

Record Numbert . F
2 3 4 5

Figure 12. Random Processing by Relative Record Number

Maintaining a Direct Fi le

Three fi le maintenance functions can be used to
are created:

1. Adding records

2. Tagging records for deletion

3. Updating records

@ *",r, information is
inserted in the record
if update is indicated.

keep direct f i les current after they

Updated disk
is written.

r->g 8 e ro

'9
I

I

Adding Records

Unl ike sequent ia l and indexed f i les, d i rect f i les can have space avai lable between
existing records for records to be added. To add records to the fi le, the relative
record number for the added record must f irst be determined. The location is then
read into storage. lf the location is blank, the record is stored. otherwise, if the
location already contains a record. the new record is stored as a synonym.

Tagging Records for Deletion

As in other f i les, records in d i rect f i les can be ident i f ied for delet ion by a delete
code. This code is usual ly a s ingle character at a par t icu lar locat ion in the record.
When the fi le is processed, your program must check for the delete code; if the
code is present, the record can be bypassed.

Since the delete code indicates that the record has been deleted, however, the record
location is available for a new record. Either the location can contain a synonym, or
it can be reused by assigning the relative record number to a new record. lf the fi le
conta ins synonyms, be carefu l not to delete synonym chain ing in format ion when
you delete a record and reuse the location.

Updating Records

When you update records in a fi le, you can add or change some data on the record,
The record to be updated is read into storage, changed, and written back on the disk
in i ts or ig inal locat ion. Records in a d i rect f i le can be updated consecut ive lv or
randomly.

Records are usual ly updated consecut ive ly when you want to update a l l or most of
the records in the f i le . Records are updated in order . However, synonym records
in a consecut ive ly processed d i rect f i le may requi re specia l handl ing.

To update your fi le randomly, you must specify the relative record number of the
record you want. The relative record number is used to find the record in the fi le
so it can be moved into storage for updating.

MANIPULATING DIRECT FILE DATA

Direct f i le organizat ion on the System/3 of fers you a f lex ib le tool for data manipu-
lat ion that is not avai lable in the other organizat ion methods. Wi th d i rect organiza-
t ion, you can:

o Access a fi le consecutirrely more than once in the same program.

o Load a fi le, then retrieve the records in the same program.

Tie together strings of related records so they can be retrieved as a group when
they are not necessarily stored together in the fi le.

Bui ld and ret r ieve message queues in a communicat ions system.

Use a direct f i le for large arrays.

Di rec t F i l es 25

Using the techn iques d iscussed In th is sec t ion , a d i rec t f i l e can be used over and
over w i thout be ing re -c rea ted ;ex is t ing records are re -wr i t ten when the f i le i s used.

Consequent ly , i t i s usua l ly conven ien t to c rea te the f i le w i th a p rogram tha t does
not load any da ta . Then a l l o f the access ing programs can de f ine the f i le as an up-
date , cha ined. d i rec t , o r random f i le . The examples in th is sec t ion assume a prev ious-

ly created f i le.

The techn iques descr ibed normal ly requ i re tha t records be p laced in the f i le in con-
secut ive record loca t ions . The programs w i l l use one or more counters (numer ic

to ta l f ie lds) to keep t rack o f the nex t re la t i ve record number .

Accessing a Fi le Consecutively

To access a f i le consecut ive ly more than once in the same program, the program in -

crements the record number counter by one each t ime a record is accessed, and then

cha ins to the f i le . Th is ac t ion is repeated un t i l the las t record is read. The counter

is then reset to zero and the process is repeated. The.program recognizes the last

record in the f i le by (1) iden t i f y ing the las t record w i th a spec i f i c code and tes t ing
for tha t code, o r (2) by tes t ing fo r the f i rs t b lock record in the f i le , o r (3) by know-

ing the record number of the last record.

Loadingf and Retr ieving Records in the Same Program

In update mode, the record number counter i s used to load records in consecut ive

record locations. After records have been loaded, they can be retr ieved by record

number us ing the cha in opera t ion .

Connecting Str ings of Related Records

Th is techn ique, known as cha in ing , requ i res tha t each record in the f i le conta in an

ex t ra f ie ld . That f ie ld w i l l con ta in the record number o f the nex t record in the

s t r ing . A b lank or zero f ie ld can be used to ident i f y the las t record in a s t r ing .

The cha in ing techn ique works we l l in an accounts rece ivab le app l i ca t ion . For ex-

ample , a cus tomer master f i le i s indexed by cus tomer number . Transac t ions are

added consecut ive ly to a d i rec t f i l e as they occur and are app l ied to a ba lance f ie ld

in the cus tomer master record . An inqu i ry to the master f i le w i l l cause the ba lance

in fo rmat ion and a l l t ransac t ions fo r tha t cus tomer to be d isp layed.

Th is i s accompl ished by add ing two f ie lds to each cus tomer master record . These

fields contain the record numbers of the f irst and last transaction records (respect-

i ve ly) fo r tha t cus tomer in the t ransac t ion f i le . These f ie lds a re se t to b lank or

zero a t the beg inn ing o f the account ing per iod and remain se t a t zero un t i l the f i rs t

transaction is posted for that customer.

- Qu516rner Master Record Formal

F i r s t

Tra nsac t ion

Record Number

Last

Tra nsac t ion

Record Number

Customer Data

z o

Record 1 in the transaction f i le is reserved for storing the record number of the
nex t ava i lab le record space in the f i le a t the t ime the f i le i s c losed. When the f i le i s
init ial ized at the start of the accounting period, record 2 is the next avai lable record,

when transactions are added to the f i le, record I is read at the beginning of the job

by the program, to es tab l i sh where the nex t t ransac t ion w i l l be p laced. The va lue
stored in record 1 is increased by one each t ime a record is added (the new value is
wr i t ten back in to record 1 a t LR t ime) .

Record number- 1

Each transaction record contains a number
record to the same customer.

that is used to locate the next transaction

Record Format

Next
Transact ion
Record Number

Two routines are needed to load transaction records into the fi le. One loads the first
transaction for a customer; the other loads all subsequent records for the customer.

Assuming (1) the t ransact ion f i le is the pr imary f i le , (2) the customer master record
has been accessed by a CHAIN operation. and (3) the first transaction record
number f ie ld is b lank or zero, the fo l lowing is an example of how the f i rs t t ransact ion
record is loaded and the records set for a customer:

1. Using the next avai lable record number (f rom record 1) chain to the t ransact ion
f i l e .

Put the new transaction record out in the record space.

Place the next avai lable record number in both the f irst and last number f ields
of the master record.

Add one to the next avai lable record number.

l f one transaction had been loaded for customers X, A, and D, the f i les would appear
as fo l lows:

I n i t i a l i z e d T r a n s a c t i o n F i l e

--*1 2 | | | | |

Master Fi le
l l

T ransac t ion F i le lZ

2 .

3.

Record 1 2 3

L_!j Pointer to next available record (in storage)

4 1 4 Customer X

I Crr ,orn. rX I lcustomerRl lCrsto.ero 1 | r l
6

Direct Files 27

The fo l lowing descr ibes how subsequent records are added:

1. Using the next avai rable record number, add the new t ransact ion to the f i le

2. Using the last record number field from the master record, chain to the last
transaction for that customer.

Update th is record by p lac ing the nextavai lable record number in i ts next
t ransact ion record number f ie ld.

Place the next avai lable record number in the last t ransact ion record number
field of the master record.

5. Add one to the nex t ava i lab le record number .

Assume that one transaction has been added for customer X, one added for customer
D, and another added fo r cus tomer X . The f i les wou ld then appear as fo l lows:

t l r l t l t t l
M a s t e r F i l e - 1 n , , ,t ' , r t o r n u r a l g I s l l C u s t o m e r p l 4 | 6 l l c r r t o . n " r x l z I z l

Transac t i on r i re_ l z l l cus tx I s I cus tn l l cus to lo CustX CustD CustX

Record number -

lg I - N." , avai lable record (in s torage)

Remember tha t the nex t ava i lab le record number w i l l be wr i t ten in to record 1 a t
L R t i m e .

Message Oueuing in a System/3 Direct File

In a communications environment, i t is often necessary to store messages as they
are rece ived and make them ava i lab le fo r p rocess ing a t a la te r t ime. Th is techn ique
known as message queuing, can be readi ly used with direct f i les, with the fol lowing
restr ict ions:

o Variable length messages must be blocked by the user to f i t the f ixed length disk
reco rd.

oueued messages w i l l be processed on a f i rs t in - f i rs t ou t bas is w i th in a g iven queue.
Records (messages) a re p laced in the queues in tne same manner as t ransac t ions
were placed in the transaction f i le in the accounts receivable example presented
ear l ie r in th is sec t ion .

Three po in te rs (record numbers) a re normal ly requ i red fo r each queue in the
fi le: a pointer to the f irst record in the queue, a pointer to the last record in the
queue, and a pointer to the next record in the queue to be processed.

Oueue 1

3.

4 .

F irst
Record
Pointer l

F irst
Record
Poi nterX

Last
Record
Poi nter 1

Last
Record
Pointery

Next
Record
Pointer . l

Next
Record
PointerX

Oueue X

These pointers are usually maintained in arrays, with th€ queue numbers used for
subscripts. Besides the three pointers previously mentioned, a pointer is required
to the next available record in the fi le. When the fi le is closed, all pointers are
stored in a reserved record in a fi le.

The next record pointer allows the processing program to retrieve records consecu-
tively from a given queue. This pointer is init ially set equcl to the first record point-
er. and is then changed each time a record is retrieved frorn the queue. This pointer
may be maintained within the processing programg instead of in the fi le, to allow
multiple processing programs to access the same gueue. Each using program would
keep track of its own processing position within a quoue.

Uring a Direst File for Large Arrays

Arrays that are too large to be held in main storago nrey be storod on disk as a
direct f i le. The subscript value becomes the record number of the data stored in
the fi le. There is no minimum record size in System/3 d.ie k fi les. Data fields in an
array may be stored as individual records in a direct f i le.

Direct Files 29

CHAPTER 5. RECORD ADDRESS FILES

Record address fi les are input f i les that indicate which records are to be read from
disk fi les and the order in which the records are to be read. There are two types of
record address fi les:

F i les conta in ing re lat ive record numbers

Fi les conta in ing record key l imi ts

Fi les Conta in ing Relat ive Record Numbers (ADDROUT Fi les)

A record address f i le that conta ins re lat ive record numbers is ca l led an ADDROUT
(address out) f i le. ADDROUT fi les are comprised of binary 3-byte relative record
numbers that ind icate the re lat ive posi t ion (f i rs t , twent ieth, n inety-n inth) of
records in the fi le to be processed.

Creating an ADDROUT File

An ADDROUT fi le is created by the Disk Sort program. The input for the Sort
program is a f i le which may be organized as a sequent ia l . indexed, or d i rect f i le .
The output from the Sort program is a new fi le consisting of relative record numbers.
This fi le of relative record numbers may then be used during the processing of the
original f i le to provide accessing of the fi le in a sequence different from the se-
quence in which the fi le is stored on disk. For more information, see the l8M
System/3 Disk Sort Reference Manual, SC21-7522.

The fo l lowing three points should be considered when using ADDROUT f i les:

1 . One f i le can be sorted in several sequences, based on dif ferent control f ields

in each record o f tha t f i l e . To avo id sor t ing the en t i re f i le each t ime a

different sequence is required, several ADDROUT f i les can be created by

sort ing the input f i le to be used in your programs in several ways. For

example, you have a transaction f i le in order by stock number. By perform-

ing two ADDROUT sor ts on the t ransac t ion f i le , you cou ld have one ADDROUT

f i le sequenced by cus tomer number and another by invo ice number . Con-

sequently, you can access the transaction f i le by several sequences: stock

number , cus tomer number , o r invo ice number .

An ADDROUT f i le requ i res less d isk space than the ou tpu t f i l e o f a tag-a long

sor t because the ou tpu t records o f the ADDROUT f i le a re on ly th ree by tes

long (see sort ing a f i le, in Chapter 6).

l f an ADDROUT f i le i s used to p rocess a mul t i vo lume f i le (RPG l l and

COBOL on ly) , a l l vo lumes o f tha t f i l e must be mounted dur ing process ing

because the next record required may be on any volume.

2.

3.

Processing by an ADDROUT File

Al l types of f i le organizat ions (sequent ia l , indexed, or d i rect) used as pr imary or
secondary f i les can be processed by ADDROUT f i les. For RPG l l , when an object
program uses an ADDROUT f i le to process another f i le , i t reads a re lat ive record
number from the ADDROUT fi le, then locates and reads the record situated at
that relative position in the fi le being processed. Only those records whose relative
record numbers are located in the ADDROUT fi le are processed. Records are
read in th is manner unt i l the end of the ADDROUT f i le is reached. F igure 13
shows an ADDROUT f i le used to process a d isk f i le .

/Uote.' COBOL uses only direct f i le organization for this application.

A d i f ferent approach is needed when using FORTRAN and COBOL. You would def ine
the ADDROUT f i le as an input f i le , and the corresponding d i rect f i le as another input
f i le . Your program would then read f rom ADDROUT and put the input data in to
the associated var iable (speci f ied in the f i le def in i t ion statement) for the d i rect f i le .
Execution of a READ statement would then retrieve the desired record from the
di rect f i le . You may terminate reading f rom ADDROUT ei ther at i ts EOF or pr ior
to i ts EOF. You must log ical ly determine EOF for your own s i tuat ion (for example,
by a record count).

ADDROUT f i le
(containing relat
record numbers)

f i le
relative

First
Record

Fourth
Record

Th i rd
Record

Sixth
Record

X
1 2 3 4 5 6

File to be processed
(relative positions

of recorch)

ly 'ote: The object program wi l l read the ADDROUT f i le and
f ind that the f i rs t record to be read is in re lat ive oosi t ion one
of the file being processed. The second record to be read is in
relat ive posi t ion four. Since al l records are not read, processing
by ADDROUT f i le is random processing.

F igu re 13 . Us ing an ADDROUT F i l e t o p rocess a F i l e

Files Containing Record Key Limits

A record address file with record key limits contains the lowest and the highest
key f ields for a specif ied section of an indexed f i le. Record address f i les containing
record key l imits can be entered from disk, card, or printer-keyboard. They are
used to process only indexed f i les. When a section of an indexed f i le is processed
using record key l imits, the processing method is known assequential within l imits.

Record Address Fi les 31

ffote; COBOL supports starting key (lower l imit) processing only; upper l imit
processing, if desired, must be provided for in your COBOL source code. The
limits for an RPG ll object program can be supplied by a record, or the lower
limit can be set in your program.

Exanpb: Ysu have an indexed file. but want to process only the records with
keys 2,G througtlr 3,@0. The record key l imits in this record address fi le would
be 2,000 (lowest) and 3,000 (highest key field). Through RPG ll specifications,
the appropriate section (records with keys 2,000 through 3,000) of the indexed
file would be orocessed.

Orutinf r FiNe $rh locerd Key Liwtits

In order to create this type of record address fi le, you must f irst determine the
record key, such ae a customer number. of the fi le to be processed. Each record in
the record ad'dress fi le contains the record key l imits (the low record key and the
hiEh record key) to be used for processing. The fi le can contain several sets of
l irnits, used one at a time.

For instance, in the example expla in ing sequent ia l wi th in l imi ts in Chapter 3, the
customers were divided into four reEions. lf you wanted to process only the records
for custorners in region 3, the low record key would be 30,000 and the high record
key would be i l,S9. The record in the record address fi le would specify these
l imi ts l ike th is :

P+ooeecing Seqrnticl,ly Within Lirn,its

Processing a sect ion of an indexed f i le (RPG l l and COBOL only) by record keys is
known assequential within limits. The object program uses one set of limits (one

record in a record address fi le) at a time. Records are read according to the arrange-
ment of the record keys in the section of the indexed fi le specified by the l imits.

When the records identif ied in one section are read, the program reads another set of
l imits from the record address fi le. The program continues reading records in this
manner unti l the end of the record address fi le is reached.

It is not necessary for the record keys that were specified as l imits to be in the
fi le. For example, if you specify the high record key as 2999 and the last record
in that section of the fi le is 2800, the program will read another set of l imits from
the record address file after record 2800 is processed. lf you specify the low record
key as lS)0 and rscord 2000 is not in the file, the record with the next higher

key wil l be read providing that record is not higher than the high l imit.

For Model 6, Model 10 Disk System. and Model 15, s ingle volume indexed f i les
may be processed using l imi ts . In addi t ion, on the Model 15. a mul t ivo lume f i le
may be proceseed using l imits.

32

Chapters 1 th rough 5 o f th is manua l descr ibed severa l d isk f i le o rgan iza t ions tha t
can be used w i th the IBM Sys tem/3 Mode l 6 , Mode l 10 D isk Sys tem, and Mode l 15 .
and exp la ined the f lex ib i l i t y they prov ide to per fo rm a var ie ty o f jobs . Because
of the f lex ib i l i t y and var ie ty o f these d i f fe ren t methods , i t i s impor tan t fo r you to
ana lyze each o f your lobs and choose the f i le o rgan iza t ion method tha t g ives you the
best possible performance.

In many cases , the most appropr ia te f i le o rgan iza t ion is immedia te ly ev ident . some
app l ica t ions , however , may requ i re more thought because o f the i r complex i ty ,
because a f i le is used in several jobs, or because special processing is required. Study-
ing ex is t ing app l ica t ions is an impor tan t aspec t o f p lann ing fo r a da ta p rocess ing
system. Decisions in this area must be made before programming begins, since
the eff iciency of your data processing instal lat ion may be affected. This section
describes factors to consider when makinq these decisions.

There are no absolute rules for choosing a file organization method. However,
severa l charac ter is t i cs o f the f i le to cons ider a re :

1 . Use of the f i le.

Vo la t i l i t y (f requency o f add i t ions and de le t ions) o f the f i le .

Ac t iv i t y o f the f i l e .

S ize o f the f i le .

Use Of the File

The use o f the f i le takes pr io r i t y over a l l o ther cons idera t ions .

ls the f i le a master f i le? Recall that a master f i le is fair ly permanent, is general ly
used in severa l jobs , and is o f ten used w i th severa l o ther f l l es . An example o f such
a f i le i s a cus tomer f i le . A cus tomer f i le conta ins a record fo r each cus tomer ; each
record may conta in such da ta as cus tomer name and address , sh ipp ing in fo rmat ion ,
c red i t s ta tus , accounts rece ivab le , and sa les in fo rmat ion . A l lhough cer ta in da ta in
a record, such as accounts receivable, may change (these changes are made with a
t ransac t ion f i le) , the record remains in the f i le as long as the cus tomer does bus iness
wi th the company. S ince th is master f i le con ta ins so much in fo rmat ion about each
customer, i t may be used in several jobs to produce various reports. Likewise, the
f i le may be used w i th severa l o ther f i les . master o r t ransac t ion .

A t ransac t ion f i le conta ins records o f a less permanent na ture than a master f i le ;
t ransac t ion f i les may a lso conta in da ta tha t i s used to update a master f i le .

2.

3.

4.

CHAPTER 6. CHOOSING A FILE ORGANIZATION

Choos ing a F i l e O rgan i za t i on 33

When choosing a fi le organization method for a master f i le, the major question to
askis: What are the processing requirementsof the file? To answer this question,
you must s tudy the appl icat ions in which the f i le is used:

o ls the f i le used wi th other f i les or in several jobs?

t . l f so. what is the organization of the other fi les?

lf used with transaction fi les. are the transaction records ordered or
unordered?

Must the fi le be sorted for any jobs?

Must the f i le prov ide for inqui ry?

Using a Master Fi le With Several Fi les or in Several Jobs

l f a master f i le i s used w i th severa l f i l es (a t ransac t ion f i le , another master f i le ,
o r bo th) , the master f i le can be e i ther sequent ia l , indexed, o r d i rec t . The de termin-
ing factors are the processing requirements of the various runs that wi l l be using
the f i le and the organization of the other f i les.

f fo fe ; FORTRAN does no t suppor t indexed f i le o rgan iza t ion .

l f the other f i les are ordered (sorted in the same sequence as the master f i le),
then the master f i le may be either sequential or indexed. However, to process
unordered f i les aga ins t a master f i le , the master f i le must e i ther be indexed, and
processed randomly by key, or direct. Random access of direct f i les is faster since
a record can be retr ieved by a single access. Random access of an indexed f i le re-
quires two accesses, one for the index and one for the record.

l f the master f i le is used in several lobs, and records must be processed both in
order and randomly , then e i ther indexed or d i rec t i s a be t te r type o f o rgan iza t ion
than is sequent ia l o rgan iza t ion .

A/ote. ' Remember that a sequential f i le processed randomly by relat ive record
number has the same retr ieval and update characterist ics as a direct f i le. There-
fore, whenever the discussion says a direct f i le could be used, you can also use a
sequent ia l f i l e i f o ther f i le needs war ran t tha t type o f f i l e o rgan iza t ion .

Sort ing a Master Fi le

l f the master f i le must be sor ted fo r some jobs , you may no t want i t to be an in -
dexed or direct f i le, because the Disk Sort program cannot produce a sorted in-
dexed or direct f i le. That is, indexed ar,d direct f i les can be sorted, but the sorted
outpu t f i l e w i l l be a sequent ia l f i l e . Ins tead o f keep ing the sor ted f i le as the master
f i le, the original f i le must be kept.

Inquir ing Against a Master Fi le

Most businesses need to get information from a f i le on an inquiry basis. An inquiry
is a request for information from some type of storage.

2.

g

Some jobs that emphasize the importance of immediate inqui ry and response are:

Demand Deposi t
Accounting

Inventory Control

What i s the ba lance

of account number

133420?

How many of part
number 55632 are
on order?

What is the quant i ty
on hand for part
number 164147

What are the year-to-
date earn ings for
employee number
1 3862?

Manufactur ing

Payro l l

Sys tem/3 prov ides fo r inqu i ry . The ab i l i t y to use inqu i ry depends upon the organ i -

za t ion o f the f i l e .

Where inqu i ry i s requ i red , a c r i t i ca l ques t ion in choos ing the bes t f i l e o rgan iza t ion

method is'. How fast must the inquiry be answered? The less critical the response

time, the greater the choice of organization and processing methods.

To dec ide how fas t the inqu i ry response must be , ask yourse l f the fo l low ing ques t ion :

Can the answer to the inquiry wait until the next updating of the specific master

f i le? l I i t can , then these inqu i r ies can be t rea ted as add i t iona l t ransac t ion records

and so processed. F i le o rgan iza t ion , in th is case, can be e i ther sequent ia l , indexed,

or d i rec t , depend ing on o ther p rocess ing needs.

l f the inqiury cannot wait, another question must be asked: Can the answer wait
unti l the end of the present computer run? l t so, the disk pack containing the
spec i f i c master f i l e i s mounted a t the comple t ion o f the cur ren t job ; the inqu i ry
program is loaded; and the f i l e i s p rocessed to p roduce the requ i red answers . Ob-

v ious ly , response t ime var ies cons iderab ly depend ing on (1) the job tha t i s in p rogress

when the inqu i ry a r r i ves and (2) the organ iza t ion o f the f i le tha t i s be ing searched

for in fo rmat ion .

A d i rec t f i l e o r an indexed f i le p rocessed randomly by key w i l l usua l l y p rov ide the

best response t ime.

Volat i l i ty of the Fi le

The number o f records added to o r de le ted f rom a f i le i s another impor tan t cons ider -
at ion in choosing the type of f i le organization to use. Volat i l i ty refers to number of
add i t ions and de le t ions . H igh vo la t i l i t y means many records are added and de le ted ;
low vo la t i l i t y means few records are added or de le ted .

Choos ing a F i l e O rgan i za t i on 35

l f the f i le i s h igh ly vo la t i le , you probab ly shou ld no t use a d i rec t f i l e . You may waste
f i le space by hav ing to a l low fo r synonym records or by no t reass ign ing re la t i ve record
numbers when records are de le ted . l f too many synonyms are produced. the average
number o f seeks needed to f ind a record cou ld inc rease un t i l the d i rec t f i l e i s s lower
to p rocess than an indexed f i le . A lso , i f you are us ing the convers ion method to
der ive the re la t i ve record number , fu tu re add i t ions and de le t ions to the f i le
cou ld upset the ba lance o f your convers ion techn ique.

Records in sequent ia l and indexed f i les a re added a t the end o f the cur ren t records .
l f a f i le i s sequent ia l and the cont ro l f ie lds o f the added records are h igher than
the las t record on the f i l e , add i t ions cause no prob lem. However . i f they are no t
h igher , and process ing o f the f i le depends on the records be ing in cont ro l f ie ld
order , add i t ions do cause a prob lem. In th is s i tua t ion , records added a t the end o f
the f i le a re ou t o f sequence. To avo id th is p rob lem, the d isk f i le must be re -c rea ted
or sor ted when such add i t ions are made.

l f add i t ions are made to an indexed f i le , there is no need to rewr i te the f i le . Records
are a lso added a t the end o f the f i le , bu t the keys are in ascend ing order in the in -
dex. Thus, i f the records must be processed in order, they can be processed sequen-
t ia l l y by key . Thus , one o f the advantages o f an indexed f i le i s tha t add i t ions and
de le t ions can be hand led w i thout rewr i t ing the f i l e .

However , as the number o f add i t ions inc reases , the e f f i c iency o f sequent ia l l y
processing an indexed f i le decreases. Sequential ly processing the added records
by key requires more t ime than processing the records in the order in which they
are wr i t ten on the d isk . Th is inc rease occurs because add i t iona l access arm movement
is required to read records at the end of the f i le. The arm must move back and
for th be tween the index and the records . Even i f the or ig ina l records are in se-
quence, the added records are no t . The arm must make one add i t iona l move fo r
each added record that is orocessed.

Thus, fo r a h igh ly vo la t i le f i le where records must be processed in o roer , a se-
quent ia l f i l e w i th consecut ive process ing is bes t a l though the f i le wou ld have to
be resor ted a f te r each add i t ion job . However , i f a h igh ly vo la t i le f i le does no t
require processing records in order. the f i le can be indexed and processed randomly
by key.

l f a h igh ly vo la t i le f i le requ i res bo th sequent ia l and random process ing , an in -
dexed f i le is best. ln this case, to overcome the problem of excessive access arm
movement in o rder to re t r ieve records added a t the end o f the f i le . the f i le shou ld
be reorganized frequently.

Activity of the File

The nex t impor tan t cons idera t ion , a f te r vo la t i l i t y , i s the ac t iv i t y o f the f i le .
Activi ty refers to the number of accesses to a f i le. Activi ty is usually expressed as
a percentage. For example , i f the f i le has 6000 records and 12 ,000 t ransac t ions
are processed randomly per day using that f i le, the activi ty is 2o0o/o.

As ac t iv i t y inc reases , consecut ive process ing becomes more e f f i c ien t . Th is wou ld
jus t i f y the use o f a sequent ia l f i l e w i th consecut ive process ing or an indexed f i le
processed sequent ia l l y by key . Low ac t iv i t y wou ld war ren t use o f an indexed f i le
processed randomly by key or a d i rec t f i l e .

36

Total act ivi ty against a master f i le may be reduced by sort ing the transaction f i les
so that only one retr ieval of a master record is required for each group of trans-
ac t ions w i th the same kev f ie ld .

For a high activi ty f i le, you should consider batch processrng. This means the
application does not require transaction records to be processed the moment they
occur ; some t ime lag is a l l r igh t . T ransac t ions can be accumula ted . o r ba tched,
and processed at certain t imes. The t ime lag may be hours, weeks, or even montns,
depend ing on the app l ica t ion .

S ize o f the F i le

Mul t i vo lume F i les (RPG l l and COBOL Only)

l f your f i le i s too la rge to f i t on one d isk (vo lume) , you must cons ider the e f fec t
tha t a mu l t i vo lume f i le has on process ing . A mul t i vo lume f i le can be on l ine or
o f f l ine . On l ine means tha t a l l the vo lumes conta in ing the f i le a re runn ing on d isk
drives during processing so that al l the records are avai lable for processing. Off-
l ine means tha t on ly par t o f the f i le i s ava i lab le fo r p rocess ing a t any one t rme;
the volumes must be removed and replaced with other volumes to process the entire
f i le .

y 'yo fe" Mode l 10 COBOL suppor ts on ly mu l t i vo lume sequent ia l o r d i rec t f i l e o rgan i -
za t ion ; Mode l 15 COBOL suppor ts mu l t i vo lume indexed f i le o rgan iza t ion in add i t ion
to mul t i vo lume sequent ia l o r d i rec t f i l e o rgan iza t ion .

Off I i ne M u ltivo lu me F i les

l f you are c rea t ing a sequent ia l f i l e o r an indexed f i le , the f i le can be c rea ted as an
of f l ine mul t i vo lume f i le . when th is type o f f i l e i s be ing c rea ted , recoros are
p laced in consecut ive order on as many vo lumes as needed. For mu l t i vo lume indexed
f i les . you must spec i fy the h ighes t record key fo r each vo lume. On ly records w i th
a key f ie ld less than or equa l to the spec i f ied key w i l l then be p laced on the des iq -
na ted vo lume.

when you process an o f f l ine mul t i vo lume f i le sequent ia l l y , you mount a d isk .
wa i t un t i l a l l the records have been read, then mount the nex t d isk . For example ,
i f you have a2-dr ive sys tem, the f i rs t two vo lumes can be mounted, then the nex t
two, and so on un t i l a l l the vo lumes are processed.

An indexed f i le can be processed randomly us ing an o f f l ine mul t i vo lume f i le , bu t
on ly i f the f i le was c rea ted w i th th is techn ique in mind . The records can be wr i t ten on
each vo lume, accord ing to a p redetermined group ing . For ins tance, a cusromer
b i l l i ng p rocedure cou ld be done accord ing to g roups so tha t Group 1 wou ld be
bi l led the f irst week in the month, Group 2 the second week, and so on. The
cus tomers in each par t i cu la r g roup cou ld be wr i t ten on separa te vo lumes. Group
1 cou ld be on one vo lume, Group 2 cou ld be on another vo lume, and so on . Then
on ly the vo lume needed fo r each b i l l i ng da te wou ld be mounted. The f i le cou ld
be processed randomly s ince a l l the records needed wou ld be on the vo lume on l ine .

Online Multivolume F iles

l f you are c rea t ing a d i rec t f i l e , the f i le must be c rea ted as an on l ine mul t i vo lume
f i le . when you c rea te th is type o f f i l e , you can use bo th f i xed and removab le

Choos ing a F i l e O rgan i za t i on 37

d isks . The f i le , however , cannot exceed the number o f d isks tha t can be on the
sys tem a t one t ime.

When an on l ine mul t i vo lume f i le i s p rocessed, the records in the f i le can be on
d i f fe ren t vo lumes bu t a l l the vo lumes must be on l ine . Thus , th is type o f f i l e
must be used when you are process ing your en t i re f i le randomly (sequent ia l ,

indexed, o r d i rec t) and records may be needed f rom any one o f the vo lumes.

Sort ing a Fi le

l f the f i le w i l l be sor ted by the Sys tem/3 D isk Sor t p rogram, the s ize o f the f i le
a lso a f fec ts the cho ice o f a f i le o rgan iza t ion method.

The System/3 Disk Sort program uses disk work areas. A work area is space on the
d isk tha t the program uses to a r range records in the spec i f ied order . The s ize o f
these work a reas must be cons idered when p lann ing f i les tha t need sor t ing .

The tab le tha t fo l lows shows the va l id dev ices and f i le o rqan iza t ions fo r the f i les
used by the System/3 Disk Sort program.

Devices F i le Organ iza t ion

Input f i les *44,5/ .45 Sequentia I
I ndexed
Direct

Tape Sequent ia I

Work f i les 5444. 5/45 Sequent ia l

Output f i les 5444, y.45 Sequent ia l

Tape Sequentia I

Al l vo lumes o f a g iven input , work , o r ou tpu t f i l e must be o f the same dev ice

type. Input and ou tpu t f i l es can be s ing le vo lume or mu l t i vo lume (on l ine or o f f -

l i n e) ; w o r k f i l e s c a n b e s i n g l e v o l u m e o r o n l i n e m u l t i v o l u m e o n l y . F o r m o r e

information, see the IBM Svstem/3 Disk Sort Reference Manual (5C21-7522], .

When an en t i re d isk f i le i s sor ted and the ou tpu t f i l e con ta ins a l l the da ta in

the input f i l e . the max imum s ize o f the input f i l e on a 1 -dr ive sys tem is a l i t t le

less than ha l f the to ta l on l ine d isk s to rage dr ive capac i ty (a l i t t le less than one

vo lume) . On a 2-dr ive sys tem, ha l f the to ta l on l ine capac i ty i s a l i t t le less than

two vo lumes. In e i ther case, the vo lume tha t con ta ins the input f i l e can be re -

moved before the sort program starts writ ing the output f i le. Another volume

can be mounted, and in th is manner , the input f i l e can be preserved.

$

Tag-Along Sort

A tag-along sort allows data fields to "tag along" with control f ields when the records
in the fi le are sorted. These data fields can be only certain fields from the input
record or they can be the entire input record. The output for a tag-along sort is a
fi le of sorted records that can contain:

o Control f ields and data

. Contro l f ie lds only

o Data only

Summary Sort

A summary tag-along sort summarizes (adds together) corresponding data fields
for records wi th ident ica l contro l f ie lds. The summariz ing occurs whi le the
output f i le is being written. Suppose, for example, that a mail order company
wants a sorted fi le by catalog number of the number of sales for a month. The
catalog number is the control f ield for the record. lf a company uses a regular
tag-along sort, the sorted fi le looks l ike this:

l t r l
1 x 3 7 6 3 1 1 4 5 0 0 5 l

_VJ

Cat. No. No. Sold Cat. No. No. Sold

l l l l
1 x 3 7 6 4 1 1 4 5 0 0 2 l

_vr

Cat. No. No. Sold Cat. No. No. Sold

l l
I x376 101

\-/t

Cat. No. No. Sold

l f the company uses a summary sort for the job, all the sales for the same catalog
number are summarized and the sor ted f i le looks l ike th is :

I xaro d louoo , l
-/-
Cat. No. No. Sold Cat. No. No. Sold

Choosing a Fi le Organizat ion 39

The outpu t fo r a summary sor t i s a f i le o f sor ted records tha t can conta i r r :

o Cont ro l f ie lds and summary da ta

. Summary da ta on ly

The ou tpu t f i l e fo r a summary sor t requ i res less space than the ou tpu t f i l e fo r a
tag-along sort because there is only one record for each unique control f ield.

ADDROUT Sort

An a l te rna t ive to tag-a long or summary sor t i s the ADDROUT sor t . An ADDROUT

sor t p roduces a f i le o f re la t i ve record numbers . The re la t i ve record number can be

used by an RPG l l o r COBOL program to spec i fy the loca t ion o f a record in the
d isk f i le . The record numbers fo r a f i le a re sor ted in to the sequence spec i f ied by
the control f ields. These numbers are writ ten on the disk. They can be used as
input to an RPG l l or COBOL program that processes the records in the desired
sequence.

The ADDROUT sort offers two advantages over the other sort types:

1 . The or ig ina l f i l e i s p reserved.

2. The work and output areas must only be large enough to provide space for
the record numbers. not for the recoros.

After deciding which fi le organization method to use, you should design the record
and determine f i le s ize and locat ion.

Designing a Record

The data processing applications that you use when you process a f i le determine

what da ta i s needed in the f i le ' s records . You shou ld s tudy these app l ica t ions and
then decide the layout of the record. Layout means the arrangement of f ields in

a record. When you design a record, you must consider processing requirements of
the record and then de termine f ie ld length , loca t ion , and name.

To i l lus t ra te these des ign cons idera t ions , a name and address f i le i s used in th is
chapter . Each record in the f i le conta ins the fo l low ing da ta :

CHAPTER 7. PLANNING DISK FILES

Field

Customer Number

Name

Street Address

City and State

Record Code

Delete Code

Size (number of positionsl

20

20

20

Other F ie lds 47

*o,.,

Determining Field Size

Field size depends on the nature of the data in the field. The length of the data
may vary, or a l l data in a f ie ld may be the same length. In the example, name is
20 positions. The length of each customer's name varies, but 20 positions should
be sufficient for most names. Customer number, however, is six positions, and
al l s ix posi t ions are used in each record.

Numeric Fields

l f the f ie ld is a numer ic f ie ld, you must determine whether the f ie ld is to be in a
packed or unpacked decimal format. Packed decimal format can reduce the amount
of storage required for a record.

P lann ing D i sk F i l es 41

Unpacked decimal format means that each byte of storage, whether on disk or
in the computer, can contain one character. (That character may be a decimal
number or i t may be an a lphabet ic or specia l character .) In the unpacked decimal
format, each byte of storage is divided into a 4-bit zone portion and a 4-bit digit
por t ion. The unpacked decimal format looks l ike th is :

0 + 7 O - - + 7 O + 7 0 + 7 O - + - 7

Zone . Dig i t Zone , Dig i t
I

Zone , Dig i t Zone , Dig i t Sign r Digi t

..--!/-_-

Byte
1101 = Minus S ign
1 1 1 1 = P l u s S i g n

The zone portion of the rightmost byte indicates whether the decimal number is
positive or negative. In unpacked decimal format, the zone portion is included for
each d ig i t in a decimal number; however, only the zone over the r ightmost d ig i t
serves as the sign. The unpacked decimal format for decimal number 7,462 looks
l i ke t h i s :

Sign (indicates whether
the f ie ld is posi t ive or

negativel

0 1 1 1 0100 0 1 1 0 0010

Packed decimal format means that a byte of disk storage can contain two decimal

numbers. This format al lows you to get almost twice as much data into a byte

as you can using the unpacked decimal format. In the packed decimal format, each

byte of disk storage. except the r ightmost byte, is divided into two 4-bit digit

port ions. The r ightmost port ion of the r ightmost byte contains the sign (plus

or minus) fo r tha t f ie ld . The packed dec ima l fo rmat looks l i ke th is :

o+7 0- . .>7

Digit Digit I Digir sisn
\J-_\,-__|__

Bvte

The sign portion of the rightmost byte is used to indicate whether the numeric

value represented in the digit portions is positive or negative. In the packed

decimal format, the sign is included for the entire number; the zone portion is not

given for each digit in the number. The packed decimal format for decimal number

7,462 looks l ike th is :

Sign (indicates whether
the f ie ld is posi t ive or

0000 01 1 1 0100 01 10

The maximum length of a packed f ie ld is 15 d ig i ts (8 bytes) . F igure 24 shows the
number of bytes needed for a specified number of characters in a packed field as
compared to the number of bytes needed for that number of characters in an un-
packed f ie ld.

Unpacked Packed

1
2
2

4
5
6

8
' 9

1 0
' t 1

1 2
1 3
1 4
' t5

1

z

?

4

4

5

5

o

b

8
8

Figure 24. Number of Bytes needed for Specif ied Numbers of Chalacters in Packed

and Unpacked Fields

Alphameric Fields

There are no f i rm ru les fo r de termin ing a lphamer ic f ie ld s ize . The major p rob lem

invo lves f ie lds w i th var iab le length da ta . For example , i f name is p lanned as 15

pos i t ions and a new cus tomer has 19 charac ters in h is name, a p rob lem ar ises

when add ing h is record to the f i le . To avo id th is p rob lem, t ry to es t imate the

largest length of the data that wi l l be contained in a f ield. Use this length to

determine f ie ld s ize .

hoviding for a Delete Code

Recall that records are not automatical ly deleted. You must place a delete code

on a record with your program. Then, when the f i le is processed, your program must

check for this code. In the example. i f a customer becomes inactive, you may not

want to p rocess h is record . Thus , a 1 -pos i t ion f ie ld i s inc luded to p rov ide fo r a

delete code.

Providing Extra Space

At this stage in planning, i t is often desirable to al low for data to be added to a

record. For example, suppose the name and address f i le were created with the

fields described, but at a later t ime each customer's zip code is needed. l f al l

posit ions in the record are used, there is no place to add the zip code. Since record

length is no t ye t es tab l i shed a t the p lann ing s tage, we can a l low fo r such add i '

t ions to this record. Although i t is often dif f icult to imagine what data might be

added. i t is wise to reserve extra space.

Pfann ing D i sk F i l es 43

29288 9

Naming Fields

At the same time you are determining field size and location. you can also decide
on names for each field. since you must specify f ield names in your source pro-
grams, it is a good practice to choose names that follow the coding rules for forming
field names. lf these rules are considered at this planning stage, your programs are
easier to write.

For example, an RPG l l f ie ld name can be f rom one to s ix characters long. The
first character must be an alphabetic character, but the remaining characters can
be any combination of alphabetic or numeric characters. Blanks and special
characters are not allowed. The field names in Figure 25 follow these rules.

One other important consideration when choosing field names is that the name
should be meaningfu l . S ince f ie ld names may be restr ic ted in length and abbreviat ions
are often necessary. care should be taken to chose a meaningful f ield name. For ex-
ample, the word address has seven letters; it is shortened to ADDR in Figure 25.
Meaningfu l f ie ld names contr ibute to bet ter documentat ion, and of ten avoid mis in-
terpretat ion or confus ion whi le wr i t ing programs.

68 69

UJ-
Reserved Spacel j

UJ

127 124

Documenting Record Layout

When record layouts are documented, your programs are easier to write. Figure
25 shows the layout of a customer master record. A record layout should include
the order of the fields in the record, the length of each field, and the name of each
f ie ld.

Record Length

Although field lengths within a record may vary, the field lengths for the same fields
in each record in a f i le should be the same, and a l l records in a par t icu lar f i le must
be the same length. Record length is the sum of the field lengths (including reserved
space).

In our in i t ia l example in th is sect ion, the sum of the f ie lds was set at 116 posi t ions.
However, record length (Figure 25) was established at128, to reserve 12 positions
for data that might be needed at a later t ime.

Key

CODE = Record code
CUSTNO = Customer number
NAME = Customer name
AODR = Customer street address
CITST = Citv and state
DELETE = Delete code

Figure 25. Layout of Customer Master Record

ut

o CUSTNO NAME A D D R CITST other F ietds t

44

Block Length

lnformation about blocks may also be required in your programs. A btock is the
number o f records t rans fer red be tween a d isk f i le and the process ing un i t (inpu t) o r
be tween the process ing un i t and a d isk f i le (ou tpu t) . A l though on ly one record a t
a t ime is ava i lab le fo r p rocess ing by your p rogram, one or severa l records may be
transferred at one t ime. When more than one record is transferred, the records are
blocked. Transferr ing blocked records can result in more rapid processing. When
onf y one record is transferred at a t ime, the records are unblocked. Transferr ing
blocks of records can decrease the t ime required to perform a job, because when
records are t rans fer red one a t a t ime, access t ime is requ i red fo r the d isk access arm
to locate each record, and when several records are transferred at a t ime. access t ime
i s u s u a l l y l e s s .

You may want to use unblocked records when a program takes a large amount of
s to rage. To ta l t ime to do the job may incerase, bu t your p rogram wi l l f i t in s to rage.

Block length isa mult iple of record length. For example, i f your record length
is 64 , b lock length cou ld be 2s6 (64 x 4 = 256) . B lock length in th is case is
four t imes as la rge as record length . The mul t ip le 4 ind ica tes the number o f records
you want transferred at one t ime.

The des ign o f Sys tem/3 in f luences b lock length . Reca l l tha t the smal les t d iv is ion
of a disk is a sector, and i t can contain up to 256 characters. The system transfers
data in sec tors , tha t i s , mu l t ip les o f 256 charac ters . l f your record length is 128. you
might have a block length of 256, indicating that you want two records transferred
1128x2 = 256) . Or you migh t have a b lock length o f 512, ind ica t ing tha t four
records are to be transferred (128 x 4 = SlZl.

For e f f i c ien t b lock ing , you shou ld choose a record length tha t i s a mu l t ip le o f
256 (256 x 2 -- 512]. or submult iple of 256. A submult iole is a number that di-
v ides in to 256 a who le number o f t i mes. For example ,64 is a submul t ip le o f
256 (256 + 64 = 4). See Figure 26 for examples of how record length affects
computed b lock lenqth .

Youcan, however , spec i fy a record length tha t i s no t a mu l t ip le o r submul t ip le o f
256. The sys tem a l lows you comple te f lex ib i l i t y in choos ing a record length to f i t
your app l i ca t ion and your d isk s to rage capac i ty . When you use a record length
which is no t a mu l t ip le o r submul t ip le o f 256, nod isk s to rage is wasted ; some records
wi l l s imp ly res ide in more than one sec tor .

Sector A Sector B

roo 100 5 6 1 4 4 100 100 1 2

Record Record 2
Record 3

However, when you specify 10O-character records as shown in the example, the
computer requi res more main storage to process these records.

P lann ing D i sk F i t es 45

Record
Length

I n put/Output
Area Allocated
by RPG l l * *

Number of
Records per
Block

Group A Group B* Group A Group B

32

60

64

80

96

128

256

512

256

256

256

256

256

256

256

512

256

512

256

512

512

256

256

512

8

4

4

3

2

2
'l

I

I

8

4

6

5

2

1

1

*Files in Group B can require a larger input/output area
than fi les in Group A.

Group A Files Group B Files

Consecutive Output Consecutive Update
Consecutive Input Indexed I nput with Add
Indexed Input without or Update

Add or Update, Pro- lndexed File, Processed
cessed Sequent ia l ly Randomly (Model 15)
(Models 6 and 10) Direct F i le

Indexed Output

**These entries represent the number of bytes of l/O area
that RPG ll wil l use, assuming that the block length you
have specified is less than or equal to the values shown
in this figure, and that the block length is a multiple of
record length. lf the specified block length is greater
than the values shown, RPG ll wil l round the block
length so that the computed size is a multiple of 256.

ffofe.' This figure applies to:- 5444 and 5445 fi les, single
l /O areas for data only, s ingle volume f i les only .

Figure 26. Size of Input/Output Area Computed by RPG ll for
Disk Fi les

46

You recall that the system always transfers data from disk to the computer in
increments of sectors. To process record 3, therefore. two sectors must be in
main storage, sector A and sector B. The first 56 characters of record 3 reside in
sector A; the remaining 44 reside in sector B. Thus, to process 100-character
records wi th a b lock length of 100 requi res that 512 characters (two sectors) be
avai lable in main storage.

As another example, suppose you speci f ied 10O-character records wi th a b lock
length of 400. Four 100-character records can span three sectors. To process your
records in th is case requi red 768 characters (three sectors) in main storage.

Sector B Sector C Sector D

I too ''r
l 88 100 u r l 3 2 100

Record 6 Record 8Record 7 Record 9

The block length for d isk records is speci f ied on an RPG l l F i le Descr ipt ion
Specifications sheet, and can be from 1 to 9999 bytes for disk fi les. The block
length in a given program does not have to be the same as the block length speci-
fied when loading the fi le. Block length does not affect the way that records are
written on disk. but is used to specify the amount of core to be used for the l/O
area in the processing program. Block length can be as large or as small as the
given program wi l l a l low; wi th a large b lock length, more records are avai lable
(in core) at a g iven t ime than i f no b lock ing is speci f ied. ln RPG l l . i f b lock length
is specified as equal to record length, the compiler wil l assign an efficient block
length, to take advantage of the fact that the l/O area must be a multiple of the
sector size (256 bytes).

Blocking can be an advantage if you are l ikely to process multiple records in the
block - sequential processing, for example. However, if you are processing se-
quentiaf ly with additions, blocking may have an adverse affect on performance for
Models 6 and 10; blocking does not affect performance for Model 15.

When processing randomly, you shouldn't specify a large blocking factor unless
you are certain that the system will process more than one record in a block
before getting another block.

Block length of 400

P fann ing D i sk F i l es 47

Shared Input/output Area for Model 6 and Model 10 Disk system - RpG ll or coBoL
and 52144 Only

Usual ly a program uses one input /output (l /o) area for each f i le . However, i f
you are using the 5444, and you have a large program that cannot run in the storage
avai lable, you may want to use a shared l lo area to reduce the amount of s torage
needed. Ashared l /O area means that a l l the 5444 d isk f i les in the program snare
a s ingle l /O area. However, s ince a shared l /O area increases the t ime requi red to
process your program, you should not use shared l /o areas unless your program is
too l a rge to f i t i n to ma in s to rage . I n coBoL , t he sAME AREA c lause i s used to
share an l /O area. Shared l /O is not avai lable on the Model ' l 5 .

To determine the tota l l /o area needed when each f i le has i ts own l /o area, you
f ind the b lock lengths assigned to each f i le and add them together . Determin ing
the b lock length for RPG l l is d iscussed under Block Length ear l ier in th is chapter .
For a discussion of this capabil ity in FoRTRAN, see sharing Buffers in the I gM
system/3 FoRTRAN lv Reference Manual, SC2g 6g74; for a discussion of this
capability in coBoL, see same Area clause in the IBM system/3 subset Ameri-
can National Standard COBOL. GC2B 6452.

Shared l /O does not a l low for record b lock ing. To determine the s ize of the
shared l /O area needed, you f ind the largest record s ize in any one d isk f i le
used by the program. The l /O area s ize is then determined as fo l lows:

l f the record s ize is 256 bytes, or a submul t ip le of 2b6, the l /O area s ize
is 256 bytes.

l f the record s ize is a mul t ip le of 256 bytes, the l /O area s ize is equal to the
record size.

l f the record s ize is nei ther a mul t ip le nor a submul t ip le of 256 bytes, the
l lO area s ize is equal to the record s ize p lus 255 bytes, rounded to the nexr
h igher 256-byte increment . Shared l /O areas cannot be speci f ied in a program
if that program also speci f ies a 5445 f i le .

Buffered l/O

For cer ta in types o f p rocess ing (such as consecut ive input o r ou tpu t) , you can
specify an extra l /O area. When this process, cal led buffering, is specif ied, an
extra area is reserved so that the records being processed are directed f irst to one
area, then to the o ther . A l though spec i fy ing an ex t ra l /O area a l lows the process ing
opera t ions be ing per fo rmed to be over lapped, ex t ra ma in s to rage is requ i red , wh ich
reduces the amount o f ma in s to rage ava i lab le to the program. Use o f dua l l /o
areas in an RPG l l p rogram may cause over lays tha t migh t no t o therw ise have been
generated.

Determining Size and Location of a Disk File

Anotheraspec t o f the p lann ing s tage is de termin ing (1) how much d isk space a
f i le requ i res and (2) where the f i le w i l l be loca ted on the d isk . These two fac to rs
must be cons idered together s ince they d i rec t l y a f fec t each o ther . For example ,
two f i les a re a l ready wr i t ten on a d isk , on cy l inders 8 -155. A th i rd f i le i s to be
crea ted ; i t w i l l occupy 55 cy l inders . S ince the d isk in th is example conta ins 200
cy l inders , th is f i le has too many cy l inders to be conta ined on th is d isk (15S + SS =

210) . The f i l e must be wr i t ten on another d isk .

1 .

2.

3.

48

Determining the Size of a Disk File

Appendix A conta ins examples of the calculat ions necessary to determine how
much space a d isk f i le requi res. The fo l lowing factors are d iscussed in Appendix
A :

Determin ing number of records in a f i le

Calculating record space

. Determining number of tracks needed (5444 and 5445)

o Ca lcu la t ing index space (5444 and 5445)

o Ca lcu la t ing space fo r d isk t rack index (b445 on ly)

Note : fhe f i le p lann ing in fo rmat ion d iscussed in th is sec t ion is bas ica l l y the same
for the IBM 5444 and the IBM 5445. The ca lcu la t ions fo r de termin ing the s ize
o f a d isk f i le (Append ix A) a re d i f fe ren t , however , because: the 5445 has on ly 20
sectors per track as compared to 24 sectors per track for the 5444;tor an indexed
fi le, the disk address in the index entry is four characters in the 5445 instead of
three in the 5444; and, a disk track index may exist for a 5445 f i le, but not for
a 5444li le.

Deciding Where the Fi le on Disk is to be Located

Af te r you de termine the amount o f space the f i le requ i res , you can dec ide where
the f i le shou ld be loca ted on the d isk . S ince the number o f f i l es a d isk can conta in
depends on the s ize o f the f i les , i t i s a good prac t ice to document wh ich f i les a re on
w h i c h d i s k ,

T h e D i s k F i l e L a y o u t C h a r t (F i g u r e 2 7) i s a v a i l a b l e f o r t h i s p u r p o s e . T h e D i s k F i l e
Layout Chart shows space avai lable on the f ixed and removable 5444 disks. There are
406 posit ions (0-405), represented on the chart. Each posit ion corresponds to a
t r a c k . I n F i g u r e 2 7 , n o t i c e t h a t t r a c k s 0 t h r o u g h T h a v e a l i n e t h r o u g h t h e m . T h e s e
tracks are reserved for system use only and are not avai lable for data f i les.

As you create more f i les, you can refer to the chart of a part icular disk to determine
the amount o f ava i lab le space on tha t d isk . l t i s he lp fu l then to ind ica te the re -
qu i red space fo r each f i le on a D isk F i le Layout Char t . l t i s a lso he lp fu l to ind ica te
the name o f the f i le on the char t .

P lann ing D i sk F i l es 49

IBl,l

SYST€M

Syn.m/3 Di3t Fil. L.vout Ch.n

Frh x2 t_9rO
p n n r - ' n U S A

orrt I
PAO6RAMM€F

n
R E M O V A E L € D I S K

il
F r x E o D r s K

5 7 9

llf+l ++J JlTrT t-i111] I

t l

Figure 27. Disk Fi le Layout Charr

Figure 28 shows the space and loca t ion o f the name and address f i le us ing the in -
dexed method. The ca lcu la t ions to de termine the amount o f d isk space requ i red
can be done on the back of the chart.

Svr r .m/3 Dr* Fr l . L lvo l t Ch.n

Brc{RE _ --_ __ ffi-----
---_l

R E C O R D S

r) ? t 4 a r a 8 1 5 6 1 6 4-r-ilrll-l--f-l-*' r rllT-r_r"|-
.

: , T , ,
. ! ' r r r . r

- * - 1 ,
1 3 3 i 4 r i i g j a 7 1 6 4

F igu re 28 . D i sk F i l e Layou t f o r an I ndexed F i l e

50

Input (Adds)

Obiect Library

Placement of f i les in relation to each other also has an effect on the performance
achieved when processing them. For example. when adding records to a fi le,
it is desirable to have the input on one disk drive and the fi le on another drive.
In this way, the fi les can be located as follows for a program that processes an
indexed fi le and adds records to it:

I r.___-___________-a I tl

| | I t l
l l \ l l
I f--------------- l il
t l. - v u

Indexed Fi le

l f the program used requires overlays, it might be desirable (depending on your
application) for the input f i le to be located close to the object l ibrary to reduce arm
movement on drive 1. In each RPG ll cycle, it might be necessary for the arm to go to
the input area for records to be added, and then to the object l ibrary for overlays.

Consideration might also be given to placing the input close to the index of the
fi le, or near the midpoint of the fi le, or even near the end of the fi le, depending on
the expected distribution of added records.

After you have determined where to place your fi le, you can code the LocATloN
parameter of the FILE statement to tell disk system management on which track
the fi le is to begin. This sample FILE statement contains a LocATloN para-
meter to tell disk system management that FILEA is to be located on disk pack
VOL1, beginning on t rack 8:

Automatic File Allocation

l f you do not speci fy the LOCATION parameter on the FILE statement . FILEA is
located on the disk pack automatically for you.

P lann ing D i sk F i l es 51

1
t -

2.

The process used by disk system management to al locate f i le space for you is
known as au tomat ic f i le a l loca t ion .

when a l loca t ing f i le space. d isk sys tem management ca lcu la tes the length o f the
f i le and checks the vorume raber to de termine wh ich t racks are ava i rab le fo r
a l loca t ion . (The vo lume labe l con ta ins the s ta tus o f each t rack and ind ica tes wh ich
t racks are ava i lab le fo r a l loca t ion .) D isk sys tem management then:

Finds a cont inuous st r ing of avai lable t racks.

Al locates space for permanent f i res, then temporary f i res, and f ina i ly scratch
f i les, i f mul t ip le f i les are being a l located.

Disk sys tem management p races your f i re on the smai les t con t inuous s t r ing o f
ava i lab le t racks tha t can conta in your f i le . For example , i t can de termine tha t your
f i le i s 10 t racks long and f ind one s t r ing o f 12 ava i lab le t racks and another o f 15
t racks . l t p laces your f i re in the s t r ing o f 1 2 t racks because the 1 2 - t rack s t r ing
is c loser to the length o f the f i l e .

l f d isk sys tem management f inds two s t r ings and bo th have the same number o f
ava i lab le t racks , the f i le i s p laced a t the h ighes t numbered ava i lab le loca t ion . A lso ,
i f your f i le i s the f i rs t f i l e p laced on a d isk . the sys tem a l loca tes space fo r the f i le
beg inn ing a t the h ighes t numbered t rack . The sys tem a i loca tes space begrnn ing
at the h ighes t loca t ion . Th is a l lows you as many ava i lab le t racks as poss ib le nex t to
the ob jec t l ib ra ry (the ob jec t l ib ra ry i s loca ted a t the lowest numbered t racks) . so
tha t the ob jec t l ib ra ry can expand i f necessarv .

l f an area is found conta in ing the same number o f ava i rabre t racks and two f i res
are a l ready on e i ther s ide o f the area , d isk sys tem management de termines the type
of f i le to the le f t o f the ava i lab le t rack . l f the f i te to the le f t has s imi la r a t t r i_
bu tes , the new f i le i s le f t -ad jus ted ; i f the f i le to the le f t i s no t s im i la r , the new f i le
is r igh t -ad jus ted , as shown betow:

Part A

Part B Scratch F

Scra tch

F i l e

Permanent
F i l e

Disk system management determines the type of f i le to the left
of the avai lable tracks. l f the f i le to the left is similar, the new
fire is reft-adjusted (part A). rf the f ire ro the reft is not simirar,
i t is r ight_adiusred (part B).

F i les a re p laced ad jacent to f i les w i th s imi la r a t t r ibu tes , so there w i l l be as few
unused t racks be tween f i res as poss ib re . l t i s more impor tan t , however , to p race
'a new f i le on a s t r ing o f t racks as c lose to the length o f your f i le as poss ib le . There-
fo re , a permanent f i le cou ld be a l loca ted space nex t to a temporary o r sc ra tch f i le
i f the number o f t racks a t tha t roca t ion is g rea ter than or equar to tne number o f
t racks in the permanent f i l e .

Consiclerat ions for Using Automatic Fi le Al location

I t i s eas ie r to le t d isk sys tem management a l loca te f i le space. bu t there are some
cons idera t ions to make in de termin ing whether o r no t to use au tomat ic f i le a l loca-
l . ion . A f te r you have ga ined exper ience, you shou ld be ab le to p lace a f i le on d isk

Ava i lab le

Tracks I New Permanent F

J Z

more e f f i c ien t ly than can d isk sys tem management . D isk sys tem management may
leave a s t r ing o f ava i lab le t racks be tween f i les wh ich is unusab le because the s t r ing
is no t long enough to conta in another f i le .

l f you p lan your own f i les and keep your layout char t up- to-date, you can determine
where f i les are located by checking the Disk Fi le Layout char t . l f you a l locate
space for some f i les automat ica l ly and then want to p lace a f i le on d isk yoursel f , how-
ever , you must check the volume label to determine what t racks are avai lable. This
can be done by us ing the Fi le and Volume Label Display ut i l i ty program. (see the
IBM system/3 Model l0 Disk system control programming Reference Manual,
GC21-7512, the l8M System/3 Modet 6 Operation Control Language and Disk Utili-
ty Programs Reference Manuar, GC2r-7s16, or the rgM system/3 Moder rs system
Control Programming Reference Manual, GC21-5077, for more information on this
ut i l i ty program.)

Automatic fi le allocation can increase the time needed to copy programs using
the Disk Copy/Dump uti l i ty program. (See the appropriate disk uti l i t ies reference
manual previously referenced for more information on this uti l i ty program.) For
example, you have used automatic fi le allocation and now wish to copy a fi le onto
tracks 30 through 50 of the disk on Fl. However, disk system management placed
the fi le to be copied on tracks 50 through 70 of the disk R1. Copying time increases
when a fi le is copied from one location on a disk to another location on anotner
disk, because the access mechanism must move. lt would therefore be advantageous
to allocate the fi le space on tracks 30 through 50 of R1 yourself so that the fi le
can be copied onto the same tracks (tracks 30 through 50) of F1.

Using the automat ic work f i le a l locat ion funct ion (auto-a l locate) when running the
Disk Sort program generally increases the time needed to run a sort job; auto-
allocate does not always provide the work fi le arrangement needed for a fast sort
run. l f you are concerned wi th min imiz ing sor t run t ime. use a wel l p lanned work
fi le and work fi le statement, rather than auto-allocate. An advantage of using auto-
allocate is that if sufficient contiguous space is not available, the system will f ind
work space that may be located in different areas of the same pack or on different
packs.

Automat ic f i le a l locat ion provides for ef fect ive use of f i le space, but not for f i le
usage; i t does not prov ide p lanning for mul t ip le input f i les in a program or job- to- job
transi t ions. l f you p lan your own f i le locat ions, you can p lace f i les that are used
together near one another on d isk. When f i les used together are p laced near one
another , processing t ime may be improved.

Spl i t Cyl inder Capabi l i ty (5445)

The 5445 has a spl i t cy l inder capabi l i ty for sequerr t ia l or d i rect f i les (see Figure
29). This means that two or more sequential or direct f i les can be arranged on
two or more cylinders with each fi le occupying a corresponding part of each
cyl inder . For example, you may a l locate Fi leA on t racks 0-3 of cy l inders 3-5
and Fi le B on t racks 4-7 on cy l inders 3-5. The advantage of the spl i t cy l inder
capabil ity is that you can arrange your fi les in combinations to decrease the access
time required. For instance, the first f i le on the cylinder could be a master f i le
and the remaining tracks on the cylinder could be reserved for f i les associated with
the master f i le.

Planning Disk Fi les 53

l * . . a r , i n d e r s +
|

,
-tnn

I

o0 -)
(r i te n 'Masrer F i te '

_ I
Tracks G3 Cylinders 35

- l
r i l e e

_ /
Tracks 4-7 Cyt inders 35Tracks in

a Cy l i nde r

I
I
I
I
I

1 9

uyr Inoers J-5

Figure 29. Cyl inder Concept on the IBM 5445 Showing Spt i t Cyt inder Capabi t i ty

Data File Security

Once you have s to red your da ta f i l es on d isk , you w i l l want to ensure tha t the
fi les are not accidental ly destroyed. For instance, a wrong disk pack could be
mounted. a wrong program could be loaded. or a val id data f i le could be writ ten
over . To avo id these prob lems, the labe ls and vo lume labe ls a re used to p rov ide
f i le p ro tec t ion .

Eveny data f i le stored on disk is protected by a f i le label containing f i le character-
i s t i cs . Some typ ica l f ie lds in the f i le labe l a re the f i lename, c rea t ion da te . re -
ten t ion s ta tus o f the f i le . and f i le type . A f i le cannot be accessed or changed un t i l
the f i le labe l i s checked.

The vo lume labe l de f ines the charac ter is t i cs o f the vo lume. Some typ ica l f ie lds
in t l re vo lume labe l a re the vo lume ser ia l number , owner ident i f i ca t ion , and (fo r
5444 on ly) ava i lab le t racks .

To use a par t i cu la r d isk f i le requ i red in a p rogram, the opera tor must use OCL
statements to provide information that the system uses to veri fy that the correct
pac l l i s mounted and tha t the requ i red d isk f i le o r d isk a rea is ava i lab le .

54

CHAPTER 8. STORING PROGRAMS AND PROCEDURES ON DISK

In the IBM Sys tem/3 Mode l 6 , Mode l 10 D isk Sys tem. and Mode l 15 , p rograms and

OCL statements can be stored on an IBM 5444 Disk Storage Drive and transferred as

needed into main storage. (This chapter does not apply to IBM 5445 Disk Storage.

which can not be used to store programs of OCL statements.)

The area in wh ich programs are s to red on d isk i s ca l led a l ib ra ry . Two types o f l ib ra r ies

can be located on a disk: object libraries and source libraries. Obiect libraries contain

object programs and routines; source l ibraries contain source programs, OCL state-
ments, and uti l i ty program control statements.

When OCL statements and uti l i ty program control statements are stored in a source
library, they are called procedures.

The System/3 Library Maintenance program can be used to:

Al locate space for l ibrar ies.

Enter programs and procedures in to l ibrar ies.

Mainta in l ibrar ies.

More in fo rmt r t ion about th is p rogram and i t s func t ions is g iven la te r in th is chapter

under Library Maintenance Program.

Advantages of Sttoring Programs and Procedures on Disk

Increasing System l i f f ic iency

All programs and procedures can be placed on a master pack and copied to the f ixed

d isk fo r execut ion . For example . you can load an en t i re ser ies o f app l i ca t ion programs

and procedures on a f i xed d isk . Once your p rograms and procedures are loca ted on

d isk , p rogranrs can be t rans fer red qu ick ly in to ma in s to rage, thereby decreas ing the

amount o f t i rne to run your jobs . Assume you run payro l l every Fr iday morn ing . On

Friday, you oan use a pretested procedure to transfer al l the required programs and

the i r p rocedures f rom the master pack to a f i xed d isk , then run payro l l .

Two l ib ra ry 1 'unc t ions make th is method par t i cu la r ly e f f i c ien t : naming convent ions

and ob jec t l ib ra ry expans ion .

Naming Conventions: l f you establ ish and use a naming convention, you can transfer

al l the correct programs and procedures from the master pack to the f ixed disk using

one Library lMaintenance control statement. The names of al l programs and procedures

used in an app l ica t ion ser ies shou ld beg in w i th the same le t te rs . For example , you

might name a l l payro l l p rograms and the i r cor respond ing procedures beg inn ing w i th

the le t te rs P l \Y . Then, w i th one COPY cont ro l s ta tement , a l l payro l l p rograms and
procedures in bo th l ib ra r ies w i l l be cop ied on to the f i xed d isk .

Stor ing Programs and Procedures on Disk 55

A COPY control statement is coded as follows:

Ob.iect Library Expansion: Object l ibraries can be expanded for temporary entr ies.
When you copy an ob jec t p rogram to the ob jec t l ib ra ry on f i xed d isk , you can des ignate
i t as a temporary en t ry . Then i f you add a permanent en t ry , rea l loca te the l ib ra ry . o r
de le te a l l temporary en t r ies , the ob jec t l ib ra ry w i l l re tu rn to i t s normal s ize . Consequent ly ,
by us ing th is expans ion capab i l i t y you use a min imum amount o f s to rage on the f i xed
d is l< , leav ing i t f ree to per fo rm o ther func t ions when you are no t us ing the ob jec t
l ib ra ry .

Storing Programs and Their Data Fi les on Removable Disks

l f space on the f i xed d isk i s l im i ted , o r i f you pre fer , you can s to re p rograms
anc l da ta f i les on a removab le d isk . By p lac ing programs and da ta f i les on the same
removab le d isk , you can reduce the number o f t imes d isk packs must be changed.
Th is i s espec ia l l y t rue i f a p rogram uses on ly one da ta f i le . Th is a lso prov ides more
ava i lab le space on the f i xed d isk .

Ther re a re cer ta in th ings you must cons ider when p lac ing bo th p rograms and da ta
f i les on a removab le d isk , however . F i rs t , add i t iona l space is requ i red on the removab le
d is l< .

Main ta in ing programs on removab le d isks is more d i f f i cu l t , because they are sca t te red
across severa l d isks ins tead o f a l l loca ted on a master pack . For example , i f the fo rmat
o f an inventory record changed, you migh t be requ i red to search severa l packs to up-
dat l 'a l l the programs us ing tha t record , ra ther than search ing jus t one master pack .
You shou ld have a master pack so tha t you have cop ies o f your p rograms i f someth ing
happens to one o f the o ther d isks .

You shou ld no t p lace da ta and programs on the same packs i f you are process ing mul t i -
vo lume f i les . The pack conta in ing a p rogram cannot be removed un t i l the program
run is comple ted .

Locat ions of Librar ies on Disk

You can p lace a source l ib ra ry , an ob jec t l ib ra ry , o r bo th on a d isk . l f space is a l loca ted
for on ly one l ib ra ry , the L ib rary Ma in tenance program p laces the l ib ra ry in the f i rs t
ava i lab le d isk a rea la rge enough to conta in the l io ra ry .

l f you are a l loca t ing space fo r a source l ib ra ry on a d isk conta in ing an ob jec t l ib ra ry , a
d is l l a rea la rge enough fo r the source l ib ra ry must immedia te ly fo l low the ob jec t l ib ra ry
(F igure 3Ol . Note : The L ib rary Ma in tenance program wi l l move the ob jec t l ib ra ry to
a l low space fo r the source l ib ra ry wh ich must p recede i t .

l f an ob jec t l ib ra ry i s be ing a l loca ted on a d isk w i th a source l ib ra ry , space fo r the
ob jec t l ib ra ry must immedia te ly fo l low the source l ib ra rv .

56

Source Library

Object Library
Upp€r Boundary

Figure 30. Relat ive Posi t ions of L ibrar ies on Disk

Source Libraries

Source l ib ra r ies can conta in source program s ta tements and procedures . Examples
of source statements are RPG | | source programs and sequence specif icat ions for
the Disk Sort program.

Procedures are sets of OCL statements. The procedures for ut i l i ty programs can
inc lude program cont ro l s ta tements .

Entr ies in the source l ibrary can be comprised of any val id System/3 characters.
F igure 31 shows the fo rmat o f the source l ib ra ry .

User Area

Source Library Directory

Source Library contain ing

1. Source progrsm

statements

2. Procedures

Object Library Directory

Ob,ect Libr8ry

op t i ona l

Figure 31 . Format of the Source Library

Stor ing Programs and Procedures on Disk 57

The source l ibrary is one physical area conta in ing two logical ly d i f ferent types of
entries. When these entries are copied into source l ibraries, they are given different
source l ibrary designat ions. Source programs are g iven an S l ibrary designat ion;
procedures are g iven a P l ibrary designat ion. F igure 32 shows the logical entr ies wi th in
the source l ibrarv.

Source LibrarY

S Library Entr ies

and

P Library Entr ies

The S library entries are source programs. Procedurc

cannotbe executed f rom the source l ibrary-

The P l ibrary entr ies are procedures; procedures can be

executed.

Figure 32. Logical Entries within the Source Library

Physical Characterist ics of the Source Library

Sber . ' The min imum , ize o f a source l ib ra rv i s one t rack .

Directory: Note the area labeled source l ibrary directory in Figure 31. The directory

actsi as a table of contents, and contains the name and location of each source l ibrary

entry. The f irst two sectors of the f irst track are always assigned to the directory with

addit ional sectors used as needed.

Organization of Entr ies: Entr ies (programs and procedures) within the source l ibrary

need not be stored in consecutive sectors. An entry can be stored in widely separated

sectors. Within each sector is a pointer to the sector that contains the next part of

the en t ry .

Ther boundaries of the source l ibrary cannot be expanded; therefore, an entry must

f i t n r i th in the ava i lab le l ib ra ry space. The sys tem prov ides max imum space w i th in

the prescr ibed l im i ts o f the source l ib ra ry by compress ing en t r ies . That i s , a l l dup-

l icate characters are removed from entr ies. Later, i f the entr ies are used, the dupli-

catr- ' characters are reinserted.

Object L.ibraries

The ob jec t l ib ra ry i s a d isk a rea used to s to re ob jec t p rograms and rou t ines . Ob jec t
programs (executable rpograms) are programs and subroutines that can be loaded

for execut ion . Rout ines (nonexecutab le p rograms) a re p rograms and subrout ines
tha t need fu r ther t rans la t ion be fore be ing loaded fo r execut ion . Nonexecutab le
programs are used by a compi le r and must be on the same d isk pack as the compi le r .

F igure 33 is a sample ob lec t l ib ra ry .

58

Object Library Directory

Object Library containing:

1. Executable object
progrsrTE

2. Routines (nonexecutable
object prograrrsl

Upper Boundary

Figure 33. Format of the Object Library

The ob jec t l ib ra ry i s an area on d isk conta in ing two log ica l l y d i f fe ren t types o f en t r ies :
obiect programs and routines. when these entr ies are copied into the object l ibrary,
they are g iven d i f fe ren t ob jec t l ib ra ry des ignat ions . ob jec t p rograms are g iven an o
l ib ra ry des ignat ion ; rou t ines are g iven an R l ib ra ry des ignat ion . F igure 34 shows the
log ica l l ib ra ry en t r ies w i th in the ob jec t l ib ra ry .

Obiect Library

Permanent Entr ies

O Library Entr ies

and

R Library Entr ies

O Library Entr ies

and

R Library Entr ies

Temporary Entries

The O library entries are executable programs. They are
loaded by the LOAD statement.

The R l ibrary entr ies are nonexecutable rout ines.

Figure 34. Logical Parts of an Oblect Library

Stor ing Programs and Procedures on Disk 59

Physical Characterist ics of the Object Library

Srzer . ' You can bu i ld an ob jec t l ib ra ry an any 5444 d isk pack , bu t you must have
one l ib ra ry on l ine conta in ing the sys tem programs. The min imum s ize o f an ob jec t
l ib ra ry i s th ree t racks .

Ther d isk a rea fo r the ob jec t l ib ra ry cons is t ing o f sys tem programs must a lso be
la rge enough to conta in a work a rea fo r d isk sys tem management . The number o f
t racks fo r the work a rea space is no t inc luded in the number o f t racks you spec i fy
fo r the l ib ra ry ; the L ib rary Ma in tenance program ca lcu la tes and ass igns tha t add i t ion-
a l s ; race f o r you .

The amount o f add i t iona l space needed depends on the capac i ty o f your sysrem
a n d w h e t h e r y o u h a v e t h e R o l l - o u t / R o l l - l n o r c h e c k p o i n t / R e s t a r t c a p a b i l i t y , o r
the dua l p rogramming Feature . For Mode l 6 , you may need f rom two to n ine
add i t iona l t racks ; fo r Mode l 10 , you may need f rom two to 17 add i t iona l t racks ;
fo r Mode l 15 , you may need f rom four to 15 add i t iona l t racks . For more in fo rma-
t io r r , re fe r to the appropr ia te re fe rence manua l (as descr ibed in the Pre face o f
t h i s m a n u a l) .

Directory: The Library Maintenance program creates a directory for every object
l ib r ,a ry (F igure 33) . The d i rec to ry ac ts as a tab le o f con ten ts and conta ins the name
and loca t ion o f the ob jec t l ib ra ry en t r ies . l f the ob jec t l ib ra ry i s on a sys tem pack ,
th ree o f the reques ted t racks are reserved fo r the d i rec to ry . l f no t , on ly the f i rs t
t rack is reserved fo r the d i rec to ry . The d i rec to ry s ize is over idden i f the operand
spec i fy ing the s ize o f the ob jec t l ib ra ry d i rec to ry i s coded.

Upper Boundary: The upper boundary of the object l ibrary (Figure 33) wil l auto-
mat ica l l y expand i f more space is needed fo r temporary en t r ies and i f the area nex t
to the l ib ra ry i s ava i lab le . When permanent en t r ies a re p laced in the l ib ra ry , a l l the
temporary en t r ies a re de le ted and the ob iec t l ib ra rv re tu rns to i t s normal s ize .

To rmake e f f i c ien t use o f th is fea ture , the area nex t to the upper boundary o f the
ob jec t l ib ra ry shou ld be kept f ree o f da ta f i les . When d isk sys tem management au to-
mar ica l l y a l loca tes f i le space fo r you , the area nex t to the ob jec t l ib ra ry i s p robab ly
f ree because your f i les a re p laced as c lose to the end o f the d isk pack as poss ib le .
When a l loca t ing your own f i le space, you shou ld a lso p lace your f i les toward the end
of the pack to leave room fo r ob jec t l ib ra ry expans ion .

60

Organization of Entr ies: Entr ies are stored in the object l ibrary serial ly; that is, a
2O-sector program occu;r ies 20 consecutive sectors. Temporary entr ies fol low al l
permanent en t r ies in the ob jec t l ib ra ry . A new permanent en t ry i s loaded in to the
f i rs t ava i lab le space la rge enough to ho ld i t . usua l l y the space fo l low ing the las t per -
manent en t ry .

Gaps can occur in the object l ibrary when a permanent entry is deleted and replaced
with one using fewer sectors. The Library Maintenance program scans the l ibrary to
locate avai lable sectors, nhen places the entry into the smallest gap large enough to
h o l d i t .

You should use the Library Maintenance program to reorganize the l ibrary when you
de le te permanent en t r ies , when a grea t number o f add i t ions and de le t ions take p lace ,
or when there is no apparent room.

In reorgan iz ing the l ib ra ry , the L ib rary Ma in tenance program sh i f ts en t r ies so tha t
gaps do not appear between them, making more sectors avai lable for use.

Frequent add ing , rep lac ing , and de le t ing o f en t r ies may resu l t in unused sec tors .
You can de termine how many sec tors a re ava i lab le by pr in t ing the sys tem d i rec to ry
us ing the L ib rary Ma in te rnance program.

Storing Programs and Procedures into Libraries

You can use any of threr: methods to store programs into l ibraries: the Library

Main tenance program, a spec i f i ca t ion o f the RpG l l con t ro l card sheet , FoRTRAN
or COBOL Process s ta tement , o r the COMPILE OCL s ta tement .

Library Maintenance Program

Depend ing on your spec i f i ca t ions . the L ib rary Ma in tenance program can:

. Al locate space for a l ibrary; create, reorganize, change the size of, or delete a
l i b r a r y .

o De le te en t r ies f rom a l ib ra rv .

. Copy en t r ies f rom one loca t ion to another w i th in a l ib ra ry o r f rom one l ib ra ry
to another (g iv ing ne ,w names i f reques ted) , f rom the input dev ice to a l ib ra ry ,
f rom a f i le to a l ib ra ry , f rom a l ib ra ry to a p r in te r , o r f rom a l ib ra ry to a punch.

o R e n a m e l i b r a r y e n t r i e s .

o Mod i fy source l ib ra ry en t r ies .

For information on the specif icat ions necessary to perform these functions, refer
to the l8M System/3 Model 10 Disk System Control Programming Reference Manual,
GC21 7512,the IBM Sys;tem/3 Model l5 System Control Programming Reference
Manual, GC21-5077 , or the IBM System/3 Model 6 Operation Control Language and
Disk Utility Programs Retference Manual, GC21-7516, depending on the system
you are us ing .

Sto r i ng P rog rams and p rocedu res on D i sk 6 l

RPG ll Control Card Sheet

You can use RPG I I to indicate the type of object program output you want after

compiling a source program. The compiled program can be stored in an object l ibrary

or punched into cards. You usually want the object program written in the object

l ibrary unti l you have corrected the severe errors in your program. Programs written

temprcrarily in the obiect l ibrary are all overlaid by the next program written perm-

anen t ' | y i n theob iec t I i b ra ry ;as ing lep rog ramwi | | beove r l a i dby thenex tp rog ram
of thr, 'same name written temporarily in the obiect l ibrary. A program written

permanent ly in the obiect l ibrary is p laced in the smal lestgap large enough to hold

it. A program written temporarily in the object l ibrary by RPG ll is written at the

end crf the last temporary entry in the l ibrary. The object program is written in the

object l ibrary that contains the compiler, unless a COMPILE statement indicates

otherwise.

Colurnn 10 on the RPG ll Control Card sheet is used to specify the object output.

Colurnns 75-80 are used to name your object program. For detailed information

on the specifications you should make in these columns, see the IBM System/3
RPG tl Beference Manual, SC21-7504, or rhe IBM System/3 Model 6 RPG ll

Reference Manual, SC21-7517, depending on the system you are using.

COMPI LE llCL Statement

The COMPILE OCL statement te l ls d isk system management to:

1. Compile a source program from a source l ibrary and store the object program

in an obiect l ibrary, or

2. Compile a source program from cards and store the object program in an object

l ibrary.

For ar detailed description of the COMPILE statement, refer to the IBM System/3

Modctl l0 Disk System Control Programming Reference Manual, GC21'7512,the

tBM,system/3 Modet l5 System Control Programming Reference Manual,GC2l'

5077, or the tBM System/3 Model 6 Operation Control Language and Disk Utility

Programs Reference Manual, GC21-7516, depending on the system you are using.

62

This appendix describes the factors to consider when determining how much disk
space a f i le w i l l requ i re . In some ins tances , the ca lcu la t ions are d i f fe ren t fo r the
f BM 5444 than fo r the IBM 5445, in wh ich case the ca lcu la t ions are i l l us t ra ted
separatel y.

Determining Number of Records in a Fi le

To de termine the d isk space requ i red fo r a f i l e , you must p lan how manv records
wi l l be in the f i le a t a spec i f ied t ime.

To de termine the number o f records in a f i le , you must cons ider severa l fac to rs .
F i rs t , you must know how many records w i l l be in the f i le when i t i s c rea ted . l f
the f i le a l ready ex is ts , perhaps as a card f i le , use the number o f records in th is f i le
as a base.

You must a lso know i f records w i l l be added or de le ted . l f add i t ions are expec ted ,
how many records are expec ted , and how o f ten w i l l they occur? l f records w i l l be
tagged fo r de le t ion , cons ider per iod ica l l y remov ing them f rom the f i le . By remov-
ing records that you no longer need, you free disk space and al low more records to
be added.

Only after considering these factors and the applications that use the f i le can you
determine the number o f records in the f i le . For example , the cus tomer name and
address f i le w i l l con ta in 6000 records a t c rea t ion t ime. l t i s es t imated tha t each
month 200 records w i l l be added and 80 records w i l l be de le ted . l t i s a lso p lanned
that the delet ion records wil l be removed once a month. At the end of six months
the f i le wi l l contain 6720 records (1 200 records are added; 480 records are deleted).

6000 Records at creation
+1 200 Records added in s ix months

7200
- 480 Records deleted in s ix months
6720 Records in f i le af ter s ix months

This example po in ts ou t another fac to r to cons ider . When determin ing the number
o f records in a f i le , cons ider expans ion fo r a reasonab le t ime in to the fu tu re (a t

leas t s ix months) . Of course , most f i les have de le t ions , and thus growth is usua l ly
s low. In a f i le where the number o f add i t ions and de le t ions are about the same,
de le ted records need be removed on ly when the d isk space a l lowed fo r the f i le i s
f i l l ed o r when reorgan iza t ion w i l l improve f i le access t ime.

APPENDIX A. CALCULATING DISK FILE SIZE

Ca lcu la t i ng D i sk F r l e S i ze 63

Calculating Record Space

Tlhe amount o f space requ i red fo r a f i le a lso depends upon whether your f i le
organ iza t ion method is sequent ia l , indexed, o r d i rec t . l f an indexed f i le , a
sequent ia l f i l e , and a d i rec t f i l e a l l con ta in the same number o f records , the amount
o l ' space requ i red fo r the records in a l l f i l es i s the same. However , add i t iona l space
is requ i red fo r the index o f an indexed f i le .

Since the same amount of space is required for the records in any f i le organization
ol ' the same size (the same number of records), record space is calculated in the
same way for al l f i les. To determine record space, you must know the number of
charac ters in the f i le .

To ca lcu la te the number o f charac ters in a f i le , mu l t ip ly the number o f records
(a l low ing fo r f i l e expans ion) by the length o f each record . For the cus tomer name
and address f i le , there w i l l be 6 ,720 records in the f i le a t the end o f s ix months .
Each record contains 1 28 characters. Thus, the number of characters in the f i le is
ca lcu la ted as :

6720 Number ol records in the file

x128 Number of characters in each record

860,160 Total characters in the file

lUrrte; FORTRAN formatted sequential f i les must have a record length of 16,32,64,
1118, or 256 bytes. FORTRAN unformatted sequential f i les have a record length calcu-
lated as follows: divide the record length bV 248 and round the result up to the next
wlrole number. Multiply that number by 256 to get the storage space required for each
record on disk. (The length descriptor for each sector is 8 bytes. which reduces the
available data space from 256 bytes - the sector size - to 248 bytes.)

Determrining How Many Tracks are Needed - il4

To store your fi le on disk, you must determine how many tracks wil l be needed for
, th,at f i le. Since a track on the i l44 contains 24 sectors and a sector contains 256

characters, each track can contain 6,144 characters (24 x 256 = 6144). To calculate
thre number of tracks the fi le requires, divide the number of characters in the fi le
by 6144. In our example th is calaulat ion is :

140 Tracks reouired

Characters in a track 6144116'T60- Characters in rhe fite

The calculation results in a quotient of 140 and no remainder. So 140 tracks are
ne'eded for the name and address fi le.

When your calculation has a remainder, always add one more track to the quotient.
Otherwise. space is not reserved for the last one or more records.

Determining How Many Tracks are Needed - 5445

Sirrce a track on the 5445 contains 20 sectors and a sector contains 256 characters,
each track can contain 5,1 20 characters (20 x 256 = 5120). To calculate the num-
ber of tracks the fi le requires, divide the number of characters in the fi le by 5120.
lf the fi le contains 6720 records and each record contains 1 28 characters, the num-
ber of characters in the fi le is 860,160. To find the number of tracks this fi le would
require on the 5445, the calculation is:

at

168 Tracks required
Characters in a track 51 2OJ g6liil Characters in rhe fite

The calculat ion resul ts in a quot ient of l68and no remainder. So l6g t racks are
needed for the f i le . When your calculat ion does have a remainder, a lways add one
more track to the guotient. otherwise, space is not reserved for the last one or
more records.

Cafcufating lndex Space - SM4

l f the f i le is indexed, you must a lso determine the amount of space for the f i le
index.

/t/ote.' FORTRAN does not support indexed f i les.

To find the space needed for the fi le index. you must know the size of the index
entry. Recall that an index entry is composed of a key and a disk address. Key
lengths vary, depending on the application, but disk addresses are always three
characters long. Thus, the s ize of an index entry is the key f ie ld length p lus 3.

Index Entry Length = Key Fie ld Length + 3

For the name and address f i le , the key f ie ld is customer number (cUSTNo), and i t
is s ix characters long. In th is case, the index entry length is 9 (6 + 3 = g) .

Another factor affecting index space is sector length. Recall that a sector is the
smal lest d iv is ion of a d isk and can conta in up to 256 characters. For System/3 an
index entry must be completely contained within a sector: an entry cannotstart in
one sector and end in a different Ector.

Todeterminethe number of entr ies that can be wr i t ten in a sector , d iv ide 256 by the
i n d e x e n t r y l e n g t h . F o r t h e n a m e a n d a d d r e s s e x a m p l e (i n d e x e n t r y l e n g t h i s g) , t h i s
calculat ion is :

2A Entr ies in a Sector
Index Entry Length g)---ft-

1 8
76
72
4 Remainder

Notice that the division results in a remainder of 4. Thus, 2g entr ies can be writ ten
in one sector. The last four posit ions of the sector are not used since a complete
entry must be vwitten in a sector. The twenty-ninth entry is writ ten in the f irst
nine posit ions of the next sector.

Ca lcu la t i ng D i sk F i t e S i ze 65

Remember, when calculat ing the number of index entr ies in a sector, drop the
retmainder.

S ince index space, l i ke record space, i s spec i f ied in number o f t racks , you must con-
vL'rt the sector space to track space. To do this, you must perform two calculat ions.

F i rs t d iv ide the number o f index en t r ies tha t can be conta ined in a sec tor in to the
number o f records . In our example , th is ca lcu la t ion is :

24O Sectors
Entries in a sector 2g tj-t26- Records

Y'ou must then add one sec tor to the resu l t ; th is sec tor w i l l serve as a de l im i te r . The

resu l t o f th is ca lcu la t ion l24O + 1 - 241 in th is example) spec i f ies how many sec tors

are needed fo r the index . l f you p lan to add to the f i le a t a la te r t ime, you must in -

c lude a min imum of two add i t iona l sec tors in the f ina l s ize o f the index . One o f

t l rese sec tors i s used as a de l im i te r fo r the added key area . The o ther (poss ib ly more

t l ran one o ther) sec tor i s used to temporar i l y s to re the added keys , un t i l they are
inser ted in to the or ig ina l index area a t EOF.

S ince there are 24 sec tors in a t rack , to f ind the number o f t racks requ i red , d iv ide
tlre number of sectors needed bv 24.

In th is example , s ince there is a remainder . the quot ien t shou ld be rounded up to
the nex t h igher number (1 1) in o rder to reserve enough space fo r the index . Thus ,
in th is example , 11 t racks w i l l be requ i red to conta in the index .

F : ina l l y , fo r an indexed f i le , add the number o f t racks requ i red fo r the index to the
number o f t racks requ i red fo r the records o f the f i le . In our example , the sum is
1 51 t racks .

140 (r eco rds) + 11 (i ndex) = 151

10+ 1
24l:af

240

1

1 1 Tracks

Sectors needed

66

Calculating Index Space - S44S

l f your f i le is indexed, you must determine the amount of space needed for the f i le
index.

/yote.' FORTRAN does not support indexed fi les.

Index space, l ike f i le space, is speci f ied in number of t racks. To f ind the space
needed for the index, you must f irst f ind the size of the index entry. The 5448
differs from the5444 in that the disk address of the index entry for the 5445 is
always four characters long. Thus, the size of the index entry is the key f ield length
plus 4.

Index Entry Length = Key Fie ld Length + 4

Thus, if you have a key I ' ield, such as a customer number, that is six characters long,
the index entry length is 10 (6 + 4 = 10) .

Next you must determine the number of entries that can be written in a sector. To
do this. divide 256 (the rrumber of characters per sector) by the index entry length.
Thus, i f the index entry length is 10, th is calculat ion is :

25 Entr ies in a Sector
Index Entry Length 1O I 256

20
5tt

50
6 Remainder

The div is ion resul ts in a remainder of 6. Thus, 25 entr ies can be wr i t ten in one
sector. The last six positions of the sector are not used since a complete entry must
be written in a sector. The twenty-sixth entry wil l be witten in the first ten posi-
tions of the next sector.

Now you must convert the sector space to track space. To do this, you must perform
two calculations. First divide the number of index entries that can be contained in
a sector into the number of records.

Calculat ing Disk Fi le Size 67

siince this calculation has a remainder, one sector should be added to your quotient
so that enough sectors wil l be reserved for all the index entries.
In our example, th is calculat ion is :

268+1 =269Sectors
Entries in a Sector 2s lffi Rscords

50
1 7 2
1 5 0
220
200
20 Remainder

T'hen, add one more sector to your total; this sector serves as a delimiter. Thus,
270 sectors are needed for the index in this example. lf you plan to add to the fi le
at a la ter t ime, you must inc lude a min imum of two addi t ional sectors in the f ina l
size of the index. one of these sectors is used as a delimiter for the added key area.
The other (possibly more than one other) sector is used to temporarily store the
added keys unti l they are inserted into the original index area at EOF.

There are 20 sectors in a track on the 5445, so to find the number of tracks required.
divide the number of sectors by 20. tn this example. there is a remainder of 10;
therefore, you should add one track to your answer. otherwise. not enough space
will be reserved for the index.

1 3 + 1 = 1 4 T r a c k s

n IT sectorsneeded
n
70
60
1 0 Remainder

For this example, 14 tracks are needed for the index. For information on how to
calculate the disk track index (i l45) see Appendix B.

File Siz:e

The fi le size (number of records in a fi le), the length of the records in the fi le, and
whether or not a fi le index is used determine the physical size of the fi le and whether
the fi le needs to be multivolume. The number of records in a fi le also affects se-
quential processing and loading, as well as key sort.

M/hen loading an indexed fi le, you can specify either the number of records in the
fi le, or the number of tracks. when you specify the number of records, the system
determines the number of data tracks, the number of f i le index tracks, and the num-
ber of disk track index tracks by computing record storage requirements, and then
computing index storage requirements. When you specify the number of tracks, the
system determines how the specified space is to be split between data tracks, file
irrdex tracks, and disk track index tracks. Figure 35 i l lustrates how the system
splits an area on the il45. wfren the TRACKS parameter is used in the OCL state-
ment.

68

Number
of

Tracks
Key

Length

Record
Length

64
t 2 6

230

o4

t 2 l l

230

b4

128

o4

128
256
u

128
230

64
128
256
64

128
256
64

128
256
64

128
256
u

124
256
&

124
256
il

'128

256
64

128
256
64

124
256
64

128
256
64

124
256
il

124
256
64

124
256

Disk
Track
lndex

F i le
Index

I

1
1
1
I

I

2
1

1

I
1

4

5

1 3

4
1 9
1 0

b

A ?

34
1 8
9 1
50
27

125
o t
? q

182
1 0 0
53

250
1 g
69

364
200
106
375
200
1 0 4
546
300
1 5 8
498
266
1 3 8
724
398
210

Data

Number Number
of of Data

Keys Records

5
5
5
5
5
5

1 0
1 0
1 0
1 0
1 0
1 0
50
50
50
50
50

* 5 0

6

5
5

1 0
1 0
'10

5
ri

1 0
1 0
1 0

6

1 0
1 0
1 0

5
1 0
1 0
1 0

5
5

1 0
1 0
1 0

5
1 0
1 0
1 0

5
5

1 0
1 0
1 0
5
5

1 0
1 0
1 0

5

3

5
1 0
1 0
1 0

4

4

I
o
q

d

9
43
46
48
41
45
47
87
93
96
80
90
94

436
465
481
408
449
472
874
932
904
817
899
946

1749
1 865
1 930
1634
1 799
1 893
2624
2799
2895
2452
2699
2841
3481
371 3
3841
32s3
3580
3769

560
560
560
360
360
360

1 120
s60
560
720
360
360

3920
2240
1120
3240
1 800
1 080
7280
3920
2240
6840
3600
2't60

35280
1 9040
10080
32760
1 8000
9-120

70000
37520
19600
65520
36000
19080

140000
75040
38640

1 31 o4o
72000
381 60

21 0000
1 1 2000
58240

1 96560
108000
56880

278880
148960
77280

260640
't43280

75600

320
1 6 0
80

320
160
80

640
360
1 8 0
640
360
180

3440
1 840
960

3280
1 800
940

3720
1920
6400
3600
1 880

34880
1 8600
9620

32UO
1 7960
9440

69920
37280
19280
65360
35960
18920

1 39920
74ffiO
38600

130720
71 960
37860

209920
1 1 1 9 6 0
57900

1 961 60
1 07960
56820

278480
144520
76420

2@240
143200
7s380

100
1 0 0
1 0 0
100
1 0 0
100
500
500
500
500
500
500

1 000
1000
1 000
1 000
1 000
1000
2000
2000
2000
2000
2000
2000
3000
3000
3000
3000
3000
3000
3980
3980
3980
3980
3980
3980

'I
'I
'l

1
I

I

1
1
I

1
1
1
I

1
z
1
I

I

1
1
2
I

1
1
1
I

J

2
1

Figure 35. Sample Record Capaci t ies of Indexed Fi les on a 5445 Disk i f TRACKS Parameter is Used in an OCL Statement

Ca l cu la t i ng D i sk F i l e S i ze 69

y 'y 'cr fe. ' The smal ler of the 'Number of Keys 'and'Number of Data Records 'entr ies

for a g iven example represents the upper l imi t o f the capaci ty of the f i le for that
example.

Fo,r example, g iven that TRACKS is speci f ied as 50. the key length is speci f ied as
10, and the record length is specified as 256; then we can see from the underlined
portion of Figure 35 that:

o No d isk t rack index is requi red (because the f i le index is not more than 15
tracks) .

o Of the 50 tracks, 3 are used for index and 47 are used for data.

The 3 index tracks can accommodate 1080 keys.

The 47 data tracks can accommodate 940 records.

Figure 36 shows how many keys can be conta ined in one t rack o f f i l e index . Track

capacity depends on key length.

Keylength Number of Keys Per Index Track

vu 5445

1
2
3
4
5
6
7
I
I

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
21
22
23
24
25
26
27
28
29

Figure 36.

1 020
840
720
640
560
500
460
420
380
360
340
320
s00
280
260
240
240
220
220
200
200
180
180
180
160
160
160
160
140

1 536
1224
1008
8il
768
672
600
552
504
456
432
408
384
360
336
312
288
288
2U
264
240
240
216
216
216
192
192
192
192

Keys per Index Track

70

Figure 37 shows the number of tracks needed to store a given number of records,
us ing var ious record lengths. This in format ion may prove usefu l in p lanning f i le
requirements.

Disk Requirements for Data Records (Number of tracks required; does not include indexesl

Number of

Records

500
1 000
1 500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500

1 0000
1 0500
1 1 0 0 0
1 1 5 0 0
1 2000
1 2500
1 3000
1 3500
14000
1 4500
1 5000
1 5500
1 6000
1 6500
1 7000
1 7500
1 8000
1 8500
1 9000
1 9500
20000

Rec-Lth - 50

uu s445
Rec-Lth - 64

ilu 54,45

Rec-Lth - 100

ilu 5445

Rec-Lth - 128

ilM 5445

Rec-Lth - 256

gM 5445

5
I

1 2

1 7
2 1
25
29
33
J I

4 1
45
49
53
57
62
oo

70
74
78
82
d b

90
94
98

102
1 0 6
1 1 0
1 1 4
1 1 9
123
1 2 7
1 3 1
1 3 5
1 3 9
143
147
1 5 1
1 5 5
1 5 9
1 6 3

1 0
t 3

I U

l 5

30
J5

40
44
49
54
59
64
69
'14

79
84
6aJ

93
98

1 0 3
1 0 8
1 1 3
1 1 8
123
1 2 7
132
137
142
147
t 3 l

l 5 t

t o z

167
1 7 1
176
1 8 1
1 8 6
1 9 1
1 9 6

1 1

t o

2 1
27
32
s t

42
47
53
58
O J

od

a 1

79
84
89
94
99

l n G

1 1 0
i 1 5
120
125
t 2 1

1 3 6
141
146
152
157
162
167
1 7 2
118
1 8 3
188
1 9 3
1 9 8
204
209

7
1 3
i 9
z a

32
38
44
50
51
b J

69
7 5
82
88
94

100
10-t
1 1 3
1 '19

125
t J z

1 3 8
144
1 5 0
157
I u J

1 6 9
I t 5

182
1 8 8
194
200
201
213
l t J

225
232
234
244
250

I
1 7
z 2

33
4 1
49

oo

74

82
90
98

1 0 6
1 1 4
123
1 3 1
1 3 9
141
1 5 5
t o J

1 7 1
180
1 8 8
1 9 6
204
2 1 2
220
224
237
245
253
261
269
277
285
293
g2

3 1 0
3 1 8
326

1 0
20
30
40
49
cv

bY

79
88
98

1 0 8
1 1 8
1 2 7
137
147
t 5 t

167
1 7 6
1 8 6
r v b
206
215
225
235
245
254
264
274
284
293
303
31 3
323
333
u2
352
362
372
381
391

1 1
2 1
32
42
53
63
t 3

84
94

1 0 5
1 1 5
125
1 3 6
146
157
167
178
188
1 9 8
209
219
230
240
250
261
2 7 1
282
292
303
31 3
323
3v
y4
JJ3

365
375
386
396
407
417

' t3

25
38
50
63
75
88

1 0 0
1 1 3
125
1 3 8
1 5 0
1 6 3
175
188
200
213
225
238
250
263
275
2Aa
300
31 3
325
338
3s0
363
375
388
400
41 3
425
438
450
463
475
488
s00

2 1
42
63
84

1 0 5
125
146
167
1 8 8
209
230
250
271
292
31 3
334
355
375
396
417
438
4s9
480
500
521
542
563
584
60s
625
u6
667
688
709
730
750
7 7 1
792
8 1 3
834

25
5U

7 5
100
125
1 5 0
1 7 5
200
225
250
275
300
325
350
375
400
425
450
475
s00
525
550
575
600
625
650
675
700
725
750
775
800
825
850
875
900
925
950
975

1000

Figure 37 (1 of 21. Disk Requirements for Data Records (number of records var ies f rom 500 to 2O0O0)

Ca l cu la t i ng D i sk F i l e S i ze 7 1

Disk Requirements for Data Records (Number of tracks required; does not include indexes)

Number of

Records

1 000
2000
3000
4000
5000
6000
7000
8000
9000

1 0000
1 1 0 0 0
1 2000
1 3000
1 4000
1 5000
1 6000
1 7000
1 8000
1 9000
20000
21 000
22000
23000
24000
25000
26000
27000
28000
29000
30000
31 000
32000
33000
34000
35000
36000
37000
38000
39000
40000
41 000
42000
43000
44000
45000
46000
47000
48000
49000
s0000
75000

1 00000
1 25000
1 50000
1 75000
200000

Rec-Lth - 50

ilM 5445

Rec-l-th - 64

gu 5/.45

Rec-Lth - 100

u4 5/.45

Rec-Lth - 128

5444 5445

Rec-Lth - 256

uM 5445

9

z5

4 1
49
C T

oo

1 4

82
90
oa

1 0 6

1 1 4
123
1 3 1
1 3 9
14- l
t 3 3

t o J

1 7 1
1 8 0
1 8 8
1 9 6
204
2 ' t 2
220
t)A

245
253
z o l

269
271
285
293
302
3 1 0
3 1 8
326
334
u2
350
359
J 6 t

383
391
?oq

401

6 1 1

8 1 4
1 0 1 8
l z z l

1425
1 628

1 0
2 0
30
40
49
59

79
88
98

1 0 8
1 1 8
1 2 1
131
147
t a t

I b /

1 7 6
1 8 6
1 9 6
zu6
l t 5

225
z J a

2 4 2

254
Z V

274
284
t o ?

S J

3 1 3
J Z J

J J J

u2
552

JOZ

J t z

381
?o' l

401
4 1 1
420
430
440
450
459
469
479
449
/ J J

977
1221
| 9 0 3

1 709
1 954

1 1
2 1
J Z

4 2
3 J

O J

1 3

84
94

1 0 5
1 1 5
125
I JCt

1 4 6
' t57

167
118
1 8 8
1 9 8
209
219
230
240
250
z o l

2 1 1
282
292
303
31 3
aa1

334
344
J 5 5

365

JOO

J v o

401
4 1 7
424
438
448
459
469
480
490
500
5 1 1
3 t l

182
1042
1 303
| 3 0 J

1 823
2084

1 3
2 5
38
50
O J

7 q

88
1 0 0
i 1 3
t z 3

1 3 8
1 5 0
t o J

1 1 5
1 8 8
200
213
z l 2

234
250
z o J

2 7 5
28A
300
3 1 3
325
338
350
J O J

J / 3

388
400
413
4 l a

438
450
463
415
488
500
3 t J

525
538
550
563

588
600
61 3
625
o?e

1250
I J O J

t d / 3

2188
l auu

1 7
? ?

49
crb

a2
98

1 1 4

1 3 1
1 4 7
t b J

1 8 0
1 9 6
2 1 2
228
z.+ 5

z o l

2 1 1

293
3 1 0
J Z O

u2
? q o

391
407
424
440
456
413
489
s05
521

554
510
586
603
6 1 9
b J b

b 5 z

ooo

684
700
7 1 7
t 5 3

749
765
t82
798
8 1 4

1221
1 624
l u 5 3

2442
2849
3256

20
40
59
7 q

98
i 1 8
137

157
1 t 6
t v b

215
235
1 5 4

214
293
J I J

J 3 Z

372
391
4 1 1
430
450
469
489
508
5 2 6

547
561
586
606
625
645
665
684
t04
t z J

143
162
782

801
421
840
860
419
aqq

9 1 8
938

9 7 1
1 465
1954
2442
2930
u l a
3907

2 1
A '

b J

84
1 0 5
t z a

146
167
1 8 8
209
230
25U

2 1 1
292
J I J

JJ4

355
J / f ,

396
4 1 1
438
459
480

500
521
J + Z

563
584
605
625
646
667
CrlJ at

709
I 5 U

750
7 1 1
792
8 1 3
au

875
896
9 ' t l
938
959
980

1 000
1021
1C'42
1 563
2044
2605
J I Z J

JL/ {O

4167

l 5

5U

1 0 0
125
1 5 0
I t 3

200
225
250
2-15
300
325
350
375
400
4 2 5

450
A A E

500
s25
5 J U

515
600
625
fr5U

o / c

700
t25
750
1 7 5
800
825
850
475
900
925
950
915

1 000
1025
1 050
1 075
' l 100
1 125
1 1 5 0
1 1 1 5
1 200
| 2 1 3

1250
1875
2soO
J t z c

3750
4375
s000

4 2
84

125
161
209
250
292
J S

J t a

417
459
s00
542
584
625
667
709
7 5 0
792
434
87s
911
959

1 000
1042
1 084
I t t a

I t o /

1209
1250
1292
1 334
1315
1 411
1459
1 500
1542
1 584
I o z 3

t o o /

1 709
1750
1192
1 834
l 6 / J

1917
1 959
2000
2042
2084

41 67
5209
62sO
7292
8334

50
1 0 0
1 5 0
200
z 3 v

300
350
400
450
500
550
600
650
700
750
800
850
900
950

1 000
1 050
1 1 0 0
1 1 5 0
1200
1250
1 300
1 350
1 400
1 450
1 500
1 550
1 600
1 650
1 700
1150
1 800
1 850
1 900
1 gso

2000
2050
21 00
2150
2200
2250
2300
2350
2400
2450
2500
3750
5000
b z S u

7500
8750

1 0000

Figure 37 (Part 2 of 2) . Disk Requirements for Data Records (number of records var ies f rom 1O00 to 2OO,000)

72

Calculat ing Disk Fi le Sizes - Summary

This sect ion conta ins step-by-step explanat ions of some common calculat ions.

Determining the Number of Tracks in a Sequential or Direct File (5444)

1. number of records x record lenqth = number of characters

2. numberqf qbaracters (f rom step 1 l
6144 (number of characters/ t rack)

= number of t racks (round to the next
h igher whole number)

Determining the Number of Tracks in a Sequential or Direct Fi le (5445)

1. number of records x record lenqth = number of characters

2 . number o f charac ters (f rom s tep 1)--:'-:--:-------:-- = number of tracks (round to the next
s120 (number o f charac ters / t rack)

h igher who le number)

Determining the Number of Tracks in an lndexed Fi le (52144)

To de termine the nunrber o f da ta t racks in an indexed f i le , the fo l low ing two s teps

shou ld be used:

1 . number o f records x record length = number o f charac ters

2' number of characters (from step 1) = number of data tracks (round to the
6144 (number o f charac ters / t rack) nex t h igher who le number)

The fo l low ing four s teps shou ld then be used to de termine the number o f f i l e index

t racks in an indexed l i le :

1 . key f ie ld length + 3 = index en t ry length

2. 256 (number of characters/sector)
index entry length (f rom step 1)

3. number of records

= number of entries per sector (drop

remainder)

= number of sectors (round to
the next h igher whole number;
then, add one sector for a de-
l imi ter , and two or more addi '
t ional sectors if you plan to
add records to the f i le la ter)

= number of index tracks (round to the
next h igher whole number)

4.

number of entries per sector (from step 2)

number of sectors (from step 3)

24 (number of sectors/track)

Ca lcu la t i ng D i sk F i l e S i ze 73

Determining the Number of Tracks in an Indexed File (5445)

To determine the number of data tracks in an indexed fi le, the following

two steps should be used:

1. number of records x record length = number of characters

The following four steps should then be followed to determine the number of f i le

index t racks in an indexed f i le :

1. key f ie ld length + 4 = index length

256 (number of characters/sector)

@
number of records

=number of entr ies per sector (drop remainder)

number of entries per sector (from step 2)
= number of sectors (round to the

nex t h igher who le number ; then,

add one sec tor fo r a de l im i te r , and

two or more addit ional sectors

if you plan to add records to the

2.

3.

2. number of characters (from step 1) _
51 20 (number of characters/track)

number of sectors (from step 1)
T

f i le la ter)

4' number of sectors (from step 3) = number of index tracks (round the next
20 (number of sectors/ t rack) h igher whole number)

1. number of index t racks (greater than 15) = number of sectors (round
number of entries per sector (from step 2 above) to the next higher whole

number)

number of data tracks (round to the
next h igher whole number)

= number of disk track index tracks (round

resul ts to the next h igher whole number)

Determining the Number of Tracks of Disk Track Index (5445)

l f an indexed 5445 f i le has more than 15 index t racks (f rom step 4 above), the f i le

wi l l have a d isk t rack index in addi t ion to the f i le index. The fo l lowing two steps

shcluld be used to determine the number of tracks needed for the disk track index:

2.

The total number of tracks in a 5445 indexed fi le can be determined by adding the

number of data tracks, the number of f i le index tracks, and the number of disk track

index tracks.

Converting Cylinder/Track to Track Number

To convert cy l inder / t rack to t rack number, mul t ip ly cy l inder number by the number
of t racks on each cv l inder and add t rack number.

EXAMPLES:'rjii:,y=r;;"*,
Zji;;:"::"i;:*

13,= t rack number 103 = t rack number

Converting Track Number to Cylinder/Track

To convert track nunrber to cylinder/track, divide track number by the number of
t racks on a cy l inder . The quot ient is the cy l inder and the remainder is the t rack.

EXAMPLES: 5444 5/t45
' l 3 ,= t rack number 103 = t rack number
1 3 : 2 = 6 (r e m a i n d e r 1) 1 0 3 - 2 0 = 5 (r e m a i n d e r 3)
6/1 is the cylinder track 5/3 is the cylinder/track.

Calculat ing Disk Fi le Size 75

APPENDIX B. PERFORMANCE CONSIDERATIONS FOR PROCESSING
INDEXED F ILES

Many factors affect the performance of a program that processes indexed fi les using
the System/3 Disk Systems, Model 6, Model 10, or Model 15.

Note: ln this section, references to the IBM 5444 Disk Storage Drive apply to
Mrrdels 6, 10, and 15 unless speci f ica l ly noted otherwise; references to IBM 5445
Disk Storage apply only to the Models 10 and 15.

Since you can control most of the factors discussed in this appendix, with proper
planning you can obta in opt imum resul ts . However, no s ingle approach wi l l produce
op, t imum resul ts for a l l users. An understanding of the factors presented in th is
appendix wi l l he lp you adapt your processing techniques for maximum throughput .

F i ,gure 38 descr ibes a sample program run a number of t imes using d i f ferent combina-
tions of some of the performance factors. This example reflects performance of a
program that randomly adds records to an indexed fi le, using the 5445 on a System/3
Model 10 Disk System. Figure 39 describes several other performance factors that
remained stable (as speci f ied) for the runs descr ibed in F igure 38. These factors
which should be considered when p lanning for opt imum performance, are d iscussed
later in th is appendix.

Run 1

N o

No
N o
72

Yes

N o

N o

50

Yes

Yes
N o
40

Run 2 Run 3 Run 4 Run 5

Disk Track Index (22-byte core
index) Used :

Work File for Key Sort/Merge:
Pre-Sorted Inout :
Tota l Job Time (in minutes)

Yes Yes

No Yes
Yes Yes
2 4 1 3

Figure 38. Performance Achieved wi th Sampte Program Under Var ious Condi t ions.

Programming Considerations

o Buf fered l /O: not used

o Shared l/O: not used (ciannot be used with 5445 fi les)

o Type of processing: random update wi th addi t ions, us ing CHAIN

o Highest added key save area used: yes

. Other data: no over lays; min imal processing; vers ion 7 of Model 10 Disk System
SCP and RPG l l ; min imal pr in t ing; 24K dedicated system; tota l t ime inc ludes
OCL processing;79 RPG l l source statements, inc luding 19 deta i l ca lculat ions
specifi cations

File Considerations

o Key length: 10 bytes

o Record length: 96 byter;

o Block length: 384 bytes

o Fi le s ize: 25,000 records

o Locat ion of f i les: indexed f i le on D1; work f i le for key sor t ($ lNDEX45l on
D2; added records on MFCU (Model 2; 500 cards per minute)

o Number of records added: 1500 { f rom 1500 cards)

o Dist r ibut ion of added records: evenly throughout the f i le

Figure 39. Character is t ics of Environment for Performance Test

Performance Considerat ions For Processing Indexed Fi les 77

lndexes

Indexes are def ined as fo l lows:

'fhecore
index is located in main storage. The length of the core index rs

:;pecified by the programmer.

'Ihe
drsk fi le index (or simply the fi le index) is located on the disk storage device,

and precedes the data records (see Chapter 3 for more in format ion) .

Thedrsk track index is located on an IBM 5445 Disk Storage drive, immediately
preceding the f i le index. A d isk t rack index is generated by the system when an

indexed f i le wi th more than 15 t racks of f i le index is loaded.

Figure 40 shows the relat ionship between these index types when using the 5445.

Main Storage 5445 Disk Storage Drive

Figure 4.0. Relat ionship o{ Indexes

Core lndex

The core index is a tab le conta in ing en t r ies fo r t racks in the index por t ion o f a da ta

f i ler. Each entry contains a track address and the lowest key f ield associated with the

nex t t rack . F igure 41 shows the layout on d isk o f the index fo r the indexed f i le ,

INDEXT. wh ich conta ins 1000 records . S ince a l l index en t r ies a re conta ined on th ree

t ra rcks , the core index fo r INDEXT shown in F igure42 conta ins on ly th ree en t r ies ,

one per track. Each core index entry contains the low key on the next track and the

track address.

Co lumns 60-65 o f the RPG l l F i le Descr ip t ion Spec i f i ca t ions sheet a re used to spec i fy

ther number of bytes you want to reserve for the core index and a highest added key

save area (d iscussed la te r in th is sec t ion) . Us ing the amount o f core s to rage you spec i fy ,

the sys tem bu i lds the most e f f i c ien t core index i t can . The core index is bu i l t im-

med ia te ly be fore your RPG l l p rogram is executed . A core index can be spec i f ied

for more than one f i le used in a p rogram; no te , however , tha t core index cannot be

used w i th shared l /O.

R P G I I

Oblect

Program

Disk T rack I ndex

Treck A

Track B

Track C

Figure 41 . Disk Layout of the Index for INDEXT

address
(2 bytesl

Figure 42. Core lndex for INDEXT

Use of the core index can significantly reduce the amount of t ime needed to process

an indexed fi le because it enables the system to go more directly to the specific record
you want. With the core index, the system can find a specif ic record by searching

only a smal l par t of the f i le index.

Without the core index, if the next key is lower than the last key, all index entries

that precede the desired record must be searched. Using the core index shown
in Figure 42, the system finds record 767 in this manner:

l. The core index is searched unti l the first key field higher than record 767 is

located. In this instance the key is 769, on track C. Since 769 is the low key

on track C, keV 767 must reside on track 8.

Performance Considerat ions For Processing Indexed Fi les 79

.t_

12. Track I in the f i le index is searched un t i l key 767 is loca ted .

Then, the sys tem cha ins d i rec t l y to the assoc ia ted da ta record

F igures 43 and 44 show the number o f by tes o f ma in s to rage requ i red fo r a core
index tha t p rov ides the most e t t rc ren t random processrng o l an Indexed t r re (on a
! i444 or 54451 , us ing key length and number o f records as var iab les .

Key Length

20
1 9
1 8
t l

t b

1 5
1 4
I J

1 2
1 1
1 0

q

8
-l

6

4

2

1 7 6
r 0 6

1 4 0
1 3 3
126
102

vb

90
70
65
60
44
40
36
24
21
1 8

5

4 1 8
?oo

360
u2
306
255
224
210
182
t 5 b

132
1 1 0
1 0 0

t ' l

64
49
36

8

682
651
560
532
468
408
368
31 5
280
247
z t o

1 7 6
1 5 0
't26

96
77
60

1 0

836
798
700
b b b

594
5 1 0
448
405
3s0
312
2U
220
1 9 0
1 5 3
120
98
72

1 5

1254
1 197
1 060
1 007
aa2
765
672
600
5 1 8
455
396
330
280
225
1 U
140
1 0 8

20

1672
1 596
1400
1 330
1 1 7 0
1020
896
195
700
61 1
524
440
370
306
2&
189
144

Figure 43. core Index s izes for 5444 s ingle Volume lndexed Fi les wi thout Addi t ions

Key Length

20
1 9
1 8
1 7
1 6
1 5
1 4
1 3
1 2
1 1
' to

9
I
7
6
E

4

2

220
210
200
1 7 1
1 6 2
1 3 6
128
1 0 5
98
78
72
66
50
45
32
28
24

5

5s0
483
460
399
378
340
288
255
224
1 9 5
168
1 g
120
99
80
63
48

8

880
777
740
646
612
527
4U
405
350
312
276
242
200
1 6 2
128
1 0 5
78

1 0

1 1 0 0
966
920
798
756
663
576
5 1 0
44a
390
336
297
240
1 9 8
160
126
96

1 5

1650
1449
1 380
1 1 9 7
113/.
986
864
750
658
585
s04
4N
360
297
2N
189
144

20

2200
1 9 1 1
1820
1 596
1512
1 309
1152
1 005
882
767
672
583
480
396
320
252
192

F i g u r e 4 4 . c o r e l n d e x s i z e s f o r 5 4 4 5 s i n g l e V o l u m e l n d e x e d F i l e s w i t h o u t A d d i t i o n s

lvote: To adapt th is f igure to apply to processing wi th addi t ions, add one keylength to the
computed core index s izes (Model l0 only) .

Number of Records (in 1000's)

Number of Records (in 10O0's)

80

f

.o_

^(\ , ^e
,

VE

e:.t qay --v

"9
Re9

, 4

Figure 45 shows the re lat i ,ve number of t racks requi red when the record length and

number of records are var iables.

Tracks

Required
F o r F i l e

(Record storage
a rea on l y ; i ndex
area for indexed
J i l e no t i nc l uded)

F igu re 45 . F i l e A l l oca t i on

Core Index Util ization

Number of Records in Fi le (hundreds) - 5444

70

60

50

30

1 0

555045401 51 0

A core index entry (for either 5444 or 5445 fi les) contains a track address and the

lowest key field associated with the next track. The format of a core index entry is:

Where C is the cyl inder number (one byte)

H is the head (t rack) number (one byte)

The address (C-H) points to a track in the fi le index or (for 5445 fi les) to a

t rack in the d isk t rack inc lex. The system analyzes the index (on d isk) to determine

which k ind of index i t is .

The core index is constructed before execution of the object program. The number

of entr ies the core index conta ins depends on factors such as keylength and number

of tracks in the fi le index and/or disk track index. (The term keylength refers to the

number of bytes in the key associated with the indexed fi le.) When the system analyzes

the core index area to determine i ts opt imum use, i t looks at the logical f i le s ize rather

that at the physical f i le s ize speci f ied.

In the following section is a discussion of the most efficient core index size and the

smallest usable core index. Since the user is not required to provide a core index

entry, for s ingle volume f i les, the smal lest core index is 0 entr ies. Mul t ivo lume

f i les wi l l a lways defaul t to the min imum core index s ize. In the fo l lowing d iscussion,

smallest core index refers to the smallest usable core index that can sti l l provide a per'

formance advantage, asspeci f ied in your program. Core index ut i l izat ion is d is-

cussed in this section.

I/ote; FORTRAN does not support indexed fi les; Model 10 COBOL does not sup-

por t mul t ivo lume indexed f i les.

Performance Considerat ions For Processinq Indexed Fi les 81

ProcessinlT 5444 Singte Volume Files

The most ef f ic ient core index for th is type of f i le would conta in one entry for everv
t rack of f i le index. l ts s ize is computed as fo l lows:

(keylength + 2) x (number of t racks in the f i le index)

Sinc;e only one core indei entry wourd provide no advantagefor 8444 f i res (and. for
RPG l l , the system would not bui ld a core index i f there was room for onry one
entry) , the smal lest core index you should speci fy is two entr ies, one point ing to
the midpoint of the logical f i le index, and the other point ing to the logical end of
t he f i l e i ndex :

F i l e i ndex (t r acks)

Core index The last key in the core index
i s se t en t i r e l y t o X 'F ' s .

Processingt 5444 Multivolume Files - Online

Sinc ;e a l l vo lumes are on l ine fo r th is type o f f i l e , a l l records are ava i lab le fo r p rocess ing ,
and the most e f f i c ien t core index wou ld conta in one en t ry fo r every t rack o f f i l e r index
on er l l vo lumes- For example , i f vo lume 1 conta ined 30 t racks o f the f i le index , , ro lume 2
conta ined 25 t racks o f the f i le index , and vo lume 3 conta ined 25 t racks o f the f i le index ,
then the core index prov id ing the bes t per fo rmance wou ld be computed as fo l louus :

(keylength + 2) x (30 + 25 + 25|}

Not 'e tha t th is ca lcuat ion is based on the number o f t racks o f f i l e index ac tua l l v
cont ia in ing keys . ra ther than on the number o f t racks a i loca ted .

The smal les t core index a l lowed is one en t ry fo r each poss ib le on l ine vo lume (i .e . ,4
ent r ies) . When us ing RPG l l , a t leas t the min imum number o f en t r ies i s requ i red l and
there fore w i l l be supp l ied . as a de fau l t va lue . i f no core index is spec i f ied on the
RPCi l l F i le Descr ip t ion Spec i f i ca t ions sheet .

Processing 5444 Multivolume Files - Offline

S ince each vo lume is p rocessed ind iv idua l l y , the most e f f i c ien t core index fo r th is
type o f f i l e wou ld be one en t ry fo r each t rack o f f i l e index conta ined in the vo lume
which has the most t racks o f f i l e index . l t s s ize is computed as fo l lows:

(l<ey length + 2) x (g rea tes t number o f f i l e index t racks in anv vo lume used)

The smal les t core index a l lowed is one en t ry fo r each poss ib le on l ine vo lume (i .e . ,4
ent r ies) ' When us ing RPG l l , a t leas t the min imum number o f en t r ies i s requ i red and
there fore w i l l be supp l ied , as a de fau l t va lue , i f no core index is spec i f ied on the
RPG l l F i le Descr ip t ion Spec i f i ca t ions sheet .

Processing 5445 single volume Files - (without additions on Model l0; with or
without aclditions on Model l5)

The most eff icient core index for this type of f i le would contain one entry for every

82

t rack o f f i l e index . l t s s ize wou ld be comouted as fo l lows:

(key length + 2) x (number o f t racks)

In th is case, the smal les t core index you shou ld spec i fy i s a s ing le en t ry (key length + 2) .
Th is min imum s ize core index w i l l be used i f the f i le index conta ins 16 or more t racks .
The f i le w i l l have a d isk t rack index , and the s ing le core index en t ry w i l l po in t to
the f i rs t t rack o f th is d isk t rack index . l f the f i le index conta ins fewer than 16
t racks , no d isk t rack index ex is ts and the s ing le core index en t ry w i l l no t be used.

Processing 5445 Single Volume Files - (with additions on Model l0)

The most e f f i c ien t core lndex fo r th is type o f f i l e wou ld conta in one en t ry fo r every
track of f i le index, plus one keylength to be used for the highest added key save area
(d iscussed la te r in th is sec t ion) . Th is a rea is comouted as fo l lows:

[(key length + 2) x (number o f t racks)] + (key length)

The smal les t core index tha t you shou ld spec i fy w i l l con ta in one en t ry p lus one key-
length to be used for the highest added key save area, computed as fol lows:

(key length + 2) + key length , o r 2 (key length) + 2

The s ing le en t ry w i l l e i ther be used to po in t to the s ta r t o f the d isk t rack index or
w i l l no t be used a t a l l . T 'he sys tem automat ica l l y makes th is dec is ion , depend ing on
which approach wil l provide the best performance.

Processing 5445 Multivolume Files - Online (without additions on Model l0; with or

without additions on Model | 5l

S ince a l l vo lumes are on l ine , a l l records are ava i lab le fo r p rocess ing . The most
e f f i c ien t core index fo r th is type o f f i l e wou ld conta in one en t ry fo r every t rack
o f f i l e index on a l l vo lunres , minus 2 . computed as fo l lows:

(key length + 2) x [(to ta l number o f t racks o f f i l e index on a l l vo lumes] - (2) l

For example , i f 150 t racks o f f i l e index on vo lume 1 are used.20 t racks o f f i l e index
on vo lume 2 are used, anrd the key length is 10 , the core index s ize tha t you shou ld
specify to provide the berst performance is computed as fol lows:

(1 0 + 2) x [(1 5 0 + 2 0) - (2)] = 2 0 1 0

Note: A single core index entry isautomatical ly reserved for each volume; the core
index s ize you spec i fy w i l l be in add i t ion to th is requ i rement .

The smal les t core index tha t you shou ld spec i fy fo r th is type o f f i l e wou ld conta in
one en t ry per vo lume, computed as fo l lows:

(key length + 2) x (number o f vo lumes)

Processing 5445 Multivolume Files - Online (with additions on Model l0)

The most eff icient core index for this type of f i le is computed as in the preceding

Performance Considerat ions For Processino lndexed Fi les 83

example. Remember that a 'h ighest added key save area 'and a s ingle core index

entry are automat ica l ly reserved for each volume; the core index s ize you speci fy

wi l l be in addi t ion to these requi rements.

The smallest core index that you should specify wil l contain one entry for each

volrr:me, computed as follows:

(number of vo lumes) x [(2) (keylength) + 2]

Processing 5445 Multivolume Files - Offline (without additions on Model l0; with or

without.tdditions on Model l5)

Since each volume is processed individually, the most efficient core index for this

typre of f i le would be large enough to accommodate the volume with the greatest

number of f i le index tracks. The size of such a core index would be computed as

fo l lows:

(keylength + 2) x (greatest number of f i le index t racks, -2)

A single core index entry is automatically reserved for each volume; the core index

size you speci fy wi l l be in addi t ion to th is regui rement .

For th is type of f i le , the smal lest core index you should speci fy would conta in a

s ingle entry (keylength + 2) . In th is case, the core index wi l l be used i f the f i le

indlex contains 16 or more tracks. Under these circumstances. the fi le would have a

disk track index, and the single core index would point to the first track of this disk

track index. lf the fi le contains fewer than 16 tracks. no disk track index would exist,

an6 the core index entry would point to the first track of f i le index, and would contain

the r 'H IKEY 'va lue .

Processilg 5445 Multivolume Files - Offline (with additions on Model l0)

The most efficient and the smallest core indexes for these fi les are computed as

der;cribed in the preceding example. The only difference between this example and

thel preceding one - processing with additions - is that in this example a 'highest

adrJed key save area' as well as one core index entry are always reserved for each

volume.

File Indetx

Thre fi le index is part of the indexed fi le that you define using the OCL statement.

Thre fi le index precedes the data records in the fi le. and contains an entry for each

reco rd in theda ta f i l e . The fo rma tso f t he f i l e i ndexen t r i es fo r5444 .and5445 f i l es

are shown below. Note that the disk addresses shown represent displacements from

thL. start of the data area.

File lndex Entry Format - 5444 Files

Key c l s l D

Where C is the rylinder number (one byte)

S is the sector number {one byte)

D is the displacernent within the sector (one bvte)

The address (C-S-D) points to a dats record in the indexed file.

84

Fi le Index Entry Format - 5445 Fi les

K e v l c l H I R l D

Where C is the cyl inder number (one byte)
H is the head (t rack) number (one bvte)
R is the record number (one byte)
D is the displacement wi th in the sector (one bvte)

The address (C-H-R-D} points to a data record in the indexed f i le .

See Chap te r 3 f o r mo re i n f o rma t i on on f i l e i ndexes .

Disk Track Index

The d isk t rack index can be used on ly fo r indexed f i les on the 5445. l f an indexed
f i le on the 5445 has mrcre than 15 t racks o f f i l e index , a d isk t rack index w i l l be
bu i l t by the sys tem when the f i le i s loaded. Th is index precedes the f i le index and is
par t o f the f i le as spec i f ied on the OCL s ta tement . The d isk t rack index conta ins
one en t ry fo r each t rack o f f i l e index . When process ing a mul t i vo lume f i le , i f vo lume
t has 4 t racks o f f i l e index and vo lume 2 has 50 t racks o f f i l e index . a d isk t rack index
wi l l be produced on ly on vo lume 2 .

When process ing s ing le vo lume 5445 indexed f i les on Mode l 10 , the d isk t rack index
is not used unless a core index is specif ied in the program. When processing single
vo lume 5445 indexed l ' i l es on a Mode l 15 , the d isk t rack index is used whenever i t i s
more e f f i c ien t to do so . When process ing a mul t i vo lumeS44S indexed f i le , RPG l l
p rov ides two core index en t r ies ; an add i t iona l core index en t ry i s used i f a core index
is specified in the program lsee Core lndexl .

Disk Track Index Entry Format - 5445 onlV

Key H F F

Where C is the cyl inder number (one byte)
H is the head (trackl number (one byte)
FF is a 2 -by te- long f i l l e r (X 'FFFF ')

The X'FFFF'tel ls the program that this is a disk track index entry.
The address (C-H) points to a track in the f i le index.

The disk track index is used only when the system determines that i ts use wil l improve
performance. In effect, i t is an extension of the core index, and can be used only in
conjunction with a core index. l f the core index is large enough to contain an entry
for every track, or every second, third, fourth, f i f th, or sixth track of f i le index, then
the disk track index wil l not be used. l f the core index is large enough to contain
an entry for only every' group of seven or more tracks of f i le index, then the disk
track index wil l be userl. (See Core lndex for more information on that subiect.)

Performance Considerat ions For Processinq Indexed Fi les 85

Ttre s ize of the d isk t rack index must be at least one t rack, which should be enough
room for most f i les. The capacity of one track of disk track index varies according
to keylength.

Number of Entries in Capacity -

Keylength Disk Track Index Number of Records

560
360
260
200
1 6 0

313,600
129,600
67,600
40,000
25,600

For example, i f your keylength is 10 bytes, a f i le of 129,000 records wi l l requi re a
disk t rack index of only 1 t rack and a f i le index of 360 t racks. l f the f i le conta ins
m,ore than 129,600 records, a disk track index of 2 or more tracks wil l be required.

To calculate the number of tracks required for a disk track index, perform these
calculat ions:

E = --+q - = number of entries per sector {drop the remainder)- keylength + 4

- . number of t racks of f i le index
N =

ff
= number of sectors required

N
T =;; = number of tracks required for the disk track index

.v (round up to next whole number)

For example, i f your f i le conta ins 100.000 records (10-byte keys) . the f i le index
requires 278 tracks. The disk track index requires 0.77 tracks, or rounded upwards,
' l track, computed as follows:

E = 256l(.|0 + 4) = 18.3 entries per sector

N = 278118 = 15.4 sectors

T = 15.4120 = 0.77 tracks, rounded upwards to 1 track.

F,cr more detailed information, see Appendix A. Calculating Disk File Size.

Type of Processing

Tlhe type of indexed fi le processing used, combined with other factors, greatly

al'fects program performance. Figure 46 shows the different kinds of processing per-

mitted by RPG ll for indexed fi les, and indicates whether the other factors are re-
lated to each type of processing. Notice. for example, that core index is used only
for random processing or for output with additions, while key sort routines are only
used after adding records or after an unordered load.

5
1 0
1 5
20
25

86

Type of processing
for indexed fi les

O T H E R P E R F O R M A N C E F A C T O R S

C O R E I N D E X
DI S K T R A C K I N D E X

Sr V E A R E A
KE

\ IORK F ILE /KEY SORT
LOCATION

D I S T R I B U T I O N
N U M B E R O F R E C O R D S

N U M B E R O F A D D S
Sequential input/u pdate
r By key, with additions
o By key, without additions
o By l imi ts

X X X
X
X

X X
X
X

X

Random input/update
o By chain ing, wi th addi t ions
o By chain ing, wi thout

addi t ions
o By ADDROUT

X

X
X

X

X
X

X X X X

X
X

X X

X
X

X

Output
. Unordered load (see no te)

o Ordered load

o Addit iorrs only X X X

X

X

X

X

X
X
X

X

X

X
X
X X

X = Perforrnance factor is applicable

/Uote.' Work fi le/key sort is not used foran unordered load for
mode ls 6 o r 10 .

Figure 46. Appl icabi l i ty of Performance Factors to Type of Processing

Highest Added Key Save Area

Model 6 and 10 (5445 Only)

When a record is added to an indexed fi le, the fi le is checked to ensure that the
record key being added is not a dupl icate of a key a l ready in the f i le . l f the f i le is
being processed ranrdomly, the f i le index is scanned. (The f i le index is the por t ion
of the index that existed before the current job was started; it is in sequence from
a pr ior run.) l f the new key to be added is not found in th is f i le index, the area
that contains keys added in the current run is searched on a key-by-key basis. The
keys in this area are not necessarily in sequence, and must be searched by examin-
ing each key. lf no similar key is found, the record is a legitimate "add" to the fi le.
The number of keys in this "added index area" increases as records are added, and
as a result, the time to search this area increases as the job progresses,

This "highest added key save area" is reserved at the beginning of the core index
area by the system when 5445 indexed fi les are being processed randomly with
additions (see Figune 46). The save area is equal to one key length. For single
volume fi les, the save area wil l exist only if the number of bytes specified for core
index (RPG l l F i le Descr ipt ion) is equal to or greater than the key length.

Performance Considerat ions For Processino Indexed Fi les 87

l f the h ighes t key added to the f i le by the cur ren t job is saved, the searc l . r o f the

"added index area" can be avo ided fo r added records tha t have keys h igher than the
pr r :v ious h ighes t added key . Th is sav ing o f search t ime can be cons iderab le i f many

records are be ing added in a job and i f the i r keys are in ascend ing sequence (same

sequence as the f i le) .

For mu l t i vo lume 5445 indexed f i les p rocessed randomly . there is a lways a core in -

dex , and there fore the h ighes t added key save area w i l l a lways ex is t (fo r add i t ions) .

Pre-Sorted lnput

When add ing records to an indexed f i le us ing sequent ia l p rocess ing (i .e . , match ing

records in RPG l l) , the inputmust be sor ted in the same type o f sequence as the

records in the f i le . When add ing records randomly , i t i s no t necessary tha t the input

ber p re-sor ted . However , by p re-sor t ing the input fo r random process ing , s ign i f i can t
per r fo rmance improvements a re genera l l y rea l i zed .

Key Sort/Merge

When add ing records to an indexed f i le , the keys o f the added records are he ld in

an area separate from the f i le index. At the end of job (e0., after LR processing),

the added keys are sor ted and then merged in to the f i le index , l f the input i s
pre-sorted, the keys don't need to be sorted at end of job, and t ime can be saved.

A so , i f a work f i le i s spec i f ied in OCL, the key merge t ime can be fu r ther reduced.

(SeeWork Fi le For Key Sort/Merge, fol lowing.) The amount of main storage also affects

the t ime requ i red fo r the key merge opera t ion .

Work File For Key Sort/Merge

As we have seen earl ier in this appendix. keys of added records are scmetimes sorted
- and are a lways merged - a t end o f job when add ing to an indexec l f i l e . l f d isk

space is ava i lab le , you can enhance the per fo rmance o f th is func t io r r by spec i fy ing a

w,ork f i le fo r the key merge rou t ine to use . A lso , fo r Mode l 15 , a w, l rk f i l e can be

sp,ecif ied for the key sort routine to use for an unordered load of an indexed f i le. The

effect of making such a work f i le avai lable to the key sort/merge is as fol lows:

For this example. the keylength was 10 bytes; the work fi le for key sort/merge was on a
different drive than were the fi le index and added key areas; and the added keys were
placed near the beginning of the fi le (this distribution may somewhat slant the statis-

t ics, but in th is example does not a l ter the point being made).

On 5444 (us ing $ lNDEX44):
o Adding 500 records to 5000 2.7 0.5
r Adding 2500 records to 10,000 22.6 3.9

On 5445 (us ing $ lNDEX45):
o Aoding 500 records to 5000 1.9 0.4
r Adding 2500 records to 25.000 36.3 3.1

81Yo

83"/o

78o/o

91%

88

The work fi le is used to merge the added keys into the index, and must be large
enough to contain all of the keys added to the fi le. lf the program adds records
to more than one index.ed fi le, the size of the work fi le for key sort is computed by
determin ing (for each f i le) the number of sectors requi red to conta in the added
keys. The work fi le mLtst be able to accommodate the largest number of sectors
you have computed.

Model 15 (54t14 and 5445)

On the Model 15, there is a "highest primary key save area" as well as a "highest
added key save area" (described in the preceding discussion). When a fi le is opened,
the "highest primary key save area" contains the highest key in that f i le. Using
this area, when records are added to the fi le the system can easily determine if the
new record to be added is logically beyond the end of the original f i le.

Unlike the Model 10. both the "highest added key save area" and the "highest primary
key save area" are alwa,y's used to perform random additions to a fi le. regardless of the
presence of a core index.

l f the indexed f i le is on a5444 d isk, the work f i le must be named $lNDEX44
and must be located on a5444 disk. lf the indexed fi le is on a5445 disk, the
work fi le must be named $lNDEX45 and must be located on a 5445 disk. To
compute the number of tracks required for the work fi le, use the following
calculat ions:

For the 5444 disk:

256 = Number of index entries per sector (drop the remainder)
keylength + 3

Number of iadds
Number of index entries

per sector

= Number of sectors (round up to next whole
number)

Number of sectors
24

For the 5445 disk:

Number of tracks needed for work fi le (round up to
next whole number)

= Number of index entries per sector (drop the remainderl
256

keylength + 4

Number of adds
Number of index ,entries

per sector

= Number of sectors (round up to the next whole
number l

Number of sectors = Number of tracks needed for work fi le (round up to
next whole number)

lf the work fi le is not lange enough to contain all of the added index keys, the keys
are sorted without using the work fi le. (For the Model 15. a halt wil l occur, but
you wil l be allowed to continue without using the work fi le.) lf possible, the
work fi le should be locatd on a different disk drive than the indexed fi le whose keys
are being sorted. lf this is not possible, the work fi le should be as close as possible
to the beginning of the l ' i le whose keys are being sorted, in order to minimize the
disk seek time required.

Performance Considerat ions For Processing Indexed Fi les 89

20

T'he work f i le can be used wi th mul t ivo lume f i les. However, a work f i le cannot
be located on a pack that conta ins an of f l ine volume f rom a mul t ivo lume f i le .
T 'he pack that conta ins the work f i le must remain onl ine whi le the job is running.

F:or smal l indexed f i les of 10 t racks or less where sor t t ime is negl ig ib le, us ing the
rarork fi le wil l not improve performance and should be avoided.

To use a work f i le for key sor t /merge, i t is necessary only to speci fy the OCL
FILE statement ; no changes are needed to your source program, and your
programs need not be recompiled.

Keylerngth

f ley length, which is usual ly determined by the appl icat ion and is not too f lex ib le,
i: i a major factor in key sort performance as well as being a great determining fac-
t rcr in the s ize of the f i le index and the d isk t rack index. For example, assume you
have a fi le of 50,000 records. As shown in the following. the number of tracks
rraquired for the fi le index varies greatly as the keylength changes.

Keylength File Index Tracks

5/,44 5445

5 6 6 9 0
6 75 100
7 84 109
8 91 120
9 100 132

1 0 1 1 0 1 3 9

l,lot only does an increase of one byte in the keylength greatly increase the size
of the fi le index, but it could also result in an increase of 50,000 bytes in the size
of the fi le (an increase of 9 tracks on the 5444 or 10 tracks on the 5445).

90

Distribution of Added Records

The difference in perrformance between two separate add runs may be explained
by the distribution rcf added keys. with random additions, program performance
can vary according to the distribution of added keys in relation to the existing fi le.
l f the added keys are d is t r ibuted throughout the f i le . the t ime for the add run may
be longer than if all additions are relatively close together. The reason for the dif-
ference in time requrired l ies in the search for duplicate keys. With even distribution
of keys throughout the fi le, more of the fi le index must be scanned than would be
required wi th l imi ted d is t r ibut ion.

For example, assume your fi le has keys numbered 00001 to 25000. lf you were to
add 1000 records with keys spread between 00002 and 24999, the time for this
run could take longer than if the added keys were in the range 00002 to 05000, or
from 20000 to 24999, or from 25001 to 26000. Other factors (discussed earlier in
this appendix) which affect performance when adding records are pre-sorted input,
highest added key save area. size of keys, size of index, etc.

INDEX File Description l intry (Model 15 RPG il)

To obtain additional core storage for the fi le index when processing 5444 or 5445
indexed fi les. specify this option on the File Description Specification (continuation
statement). Normally only one sector of f i le index is read into core at a time; with
this option, you can cause two or more sectors of f i le index to be read into core
at one t ime.

Performance Considerat ions For Processing Indexed Fi les 91

I N D E X

access, f i le consecut ively 26 core index
access time oescription 9, 78

5444 5 ut i l izar ion 81
5445 5 creat ing f i les

acess mechanism ADDROUT f i le 30
5,44 1 di rect f i le
5445 3 description 21

act iv i ty , f i le 36 wi th synonyms 22
adding records wi thout synonyms 22

direct f i le 25 indexed f i le I
indexed f i le 12 sequent ia l f i le 7
sequent ia l f i le 7 wi th record key l imi ts 32

ADDROUT f i l e s cy t i nde r
considerat ion wfren using 30 spt i t 53
creat ing 30 5r '44 2
processing by 3l y4S 4

ADDROUT so r t 35
alphameric f ie lds 38
al ternate cyl inders 2
al ternate t racks 2
automat ic f i le a l locat ion data f i le secur i ty 54

considerat ioos when using 48 decimal format
descr ipt ion 47 packed 42

unPacked 42

delete code, Provid ing for 4: !

delet ing records (see reorganiz ing f i les; tagging records for

de l e t i on)
batch processing 37 designing records 41
bf ock length determining f ie ld s ize 41

descr iPt ion 45 di rect f i les
rules for determining 45 adding records 25

bfocked records 45 creat ing
buffered l /O 48 wi th synonyms 22

without synonyms 22

descr iPt ion 15

man iPu la t i ng 25
processing 23

calculat ing f i le s ize 63 ragging records for delet ion 25
chain technique 19 updat ing records 25
chaining % direct method of der iv ing re lat ive record numbers 16
choosing a f i le organizat ion 33 Disk Fi le Layout Chart 50
comparative access times disk address g

w4 5 6isk copy/dump ut i l i ty program 53
*45 5 6 i sk f i l e p l ann ing 41

COMPILE OCL statement 62 disk f i le s ize, calculat ing
conf igurat ions avai lable descr iot ion 63

5444 5 summarv j3

connect ing str ings of re lated records A disk pack
consecutive processing 5445 3

direct f i le 23 disk sort program 38
sequent ia l f i le 6 d isk storage, advantages of using 1

conversion method for der iv ing re lat ive record numbers 17 disk storage dr ive
convert ing cyl inder/ t rack to t rack number 75 5444 1

converting track number to cylinder/track 75 5/,45 3
COPY contro l s tatement d isk t rack index

coding 56 calculat ing 86

desc r i p t i on 55 desc r i p t i on 9 ,10 ,78
format (5445 onlv) 85

92

f ie ld name, ru les for 44
f ie ld s ize

alphameric f ie lds 43
descr iPt iqn 41
numer i c f i e l ds 41

fife, access consecutively 26
f i le act iv i ty 36
f i le a l locat ion

automat ic 51
speci fy ing 52

f i le and volume label d isplay
ut i l i ty program 53

f i le contain ing record key l imi ts
creat ing 32
processing 32

f i le index

desc r i p t i on 9 ,78
f ormat

il44 lile U
5445 f i le 85

f i fe fcrcat ion 6,49
f i le maintenance

direct 24
indexed 12
sequent ia l 7

f i le organizat ion select ion
f i le act iv i ty 46
f i le s ize 37
f i le use 33
f i le volat i l i ty 35

f i l e p l ann ing 41
f i le rerords, determining number of
f i fe srcur i ty *
f i le s ize

de te rm in i ng 49 ,68
mu l t i vo l ume f i l e s 37
sort ing f i les 38

f i le space, calculat ing U
f i le storage on removable disks 56
f i le use 33
f i l e . r nu l t i vo l ume 6
f i le, volat i l i ty 35

home locat ion 19
home record 19

f /O area, shared 48
l /O areas for RPG l l f i les

calculat ing s izes 6
IBM UU Disk Storage Drive
IBM 5445 Disk Storage Drive
inactive records

indexed f i l e 13
sequent ia l f i le I

index I

l /O area, shared 56
l /O a reas f o r RPG l l f i l e s

calculat ing s izes EA
l- tVpe program 30
IBM 5406 Processing Uni t keyboard console
IBM 54214 Disk Storage Dr ive 1
IBM 5445 Disk Storage Dr ive 3
f BM 971 Pr inter-Keyboard 28
inact ive records

indexed f i l e 13
sequen t i a l f i l e I

index I
index space, calculat ing

5/,44 73
5445 75

indexed f i le sequence
coBoL 9
R P G I I 9

indexed f i les

adding records 12
creat ing I
descr ipt ion 9
ma i n ta i n i n g 12
mu l t i vo l ume 45
processing 1 O
reo rgan i z i ng 14
tagging records for delet ion 1 3
updat ing records 14

indexes

co re i ndex 9 ,86
d i sk f i l e i ndex 9 , 86 , 92
d i sk t r ack i ndex 9 , 10 ,86 ,93

input /output area, shared 56
Inqurry program

cl assi fy i ng
R P G I I 3 0
FORTRAN 30

descr ipt ion 2a
in i n t e r rup t env i r onmen t

descr ipt ion 31
request ing 28

f nquiry Request swi tch 29
interrupt environment 28,31

iob schedu l i ng (DPF) 37

key f ie ld 9
keyboard console, 5406 processing uni t 29

key leng th 89 ,98
keys per index t rack

calculated 78

layout 49
I i brar i es

descr ipt ion 63
funct ions

naming convent ions 63
obiect l ibrary expansion 64

locat ions on disk 64
Library Maintenance program 69
LOAD * OCL card 36
locat ion of f i les 57
locat ions of l ibrar ies on disk i l

29

63, 73

1
3

Index 93

index space, calculat ing mul t ivolume f i les

5444 65 oescription 6

5445 67 direct 15
indexed f i le sequence indexed 9

COBOL 9 o f f l i ne 37
BPG l l 9 on l i ne 37

indexed files processing 56
adding records 12 sequential 37
creat ing 9
descriotion I
ma in ta i n i ng 12
mu l t i vo l ume 37
processing 1 0 naming convent ions of a l ibrary 55
reorganiz ing 14 naming f ie lds 44
tagging records for delet ion 13 nonexecutable programs (see rout ines)
updat ing records 14 number of f i le records, determining 63

indexes numeric f ie lds 41
co re i ndex 9 ,78
d i sk f i l e i ndex 9 ,74 , U
d i sk t r ack i ndex 9 , 10 , 78 .85

input /output area, shared 48

obiect libraries

descriPtion 58

directory 60
format 59

key f ie ld 9 organizat ion of entr ies 61
keylength 81.90 s ize 60
keys per index track upper boundary 60

calculated 70 objecr library expansion 56

of f l ine mul t ivolume f i les 37

on l i ne mu l t i vo l ume l i l e s 37

ordered sequence (indexed f i le for RPG l l l 1 1

f ayout 41
I i braries

descr ipt ion 55
funct ions performance considerat ions for processing indexed f i les

naming convent ions 55 appl icabi l i ty to processing types A7

obiect library expansion 56 distribution of added records 90

locations on disk 56 for sample program 76

Library Maintenance program 61 key sort/key merge 88
loading and retr iev ing records in the same program 26 keylength 90
focation of files 49 pre-sorted input 88
locat ions of l ibrar ies on disk 56 type of processing 86

use of highest added key save area 86

use of indexes 7a

work f i le for keY sort 88
physical character is t ics of the obiect l ibrary 60

ma in ta i n i ng f i l e s p l ann ing d i sk f i l e s 41
direct 24 procedures
indexed 12 descr ipt ion 55
sequent ia l 7 storage into l ibrar ies 61

master f i le storaoe on disk 55
descr ipt ion 33
inquir ing against 34
sort ing 34
using wi th several f i les or in several iobs 34

merging records, sequent ia l f i le 7

message queuing in a System/3 direct f ile 2a

model 15 (5444 and 5445) 89

94

Processing files
ADDROUT f i l e

us i ng FORTRAN 3 t
us i ng BPG l l and COBOL 31

direct f i le
consecutive 23
random by ADDROUT f i te 3 l
random by relative record numlxr 23

indexed f i le
consecut ive 12
random (random key) 12
sequential by key 1 1
sequent ia l wi th in l imi ts (s ingle r , ,o lume f i les

o n l Y) 1 1 , 3 1 , 3 2
record address

contain ing record key l imi ts 32
contain ing re lat ive record numbers (ADDROUTI

seguent ia l f i le
consecutive 6
random by re lat ive record number 6,23

program storage
into l ibrar ies 67
on disk 61
on removable disks 62

providing extra disk space for expansircn 43

random processing

direct f i le
by ADDROUT f i t e 30 , 31
by relative record number 23

indexed f i le ' '2

sequent ia l f i le 6
r iandom updat ing of an indexed f i le 12
rread/write heads

5E,44 1
5445 3

record address files
f i les contain ing record kei l imi ts 31
f i les contain ing re lat ive record nurnbers

(ADDROUT f i les l 30
record design 41
record key limits, record address liles containing 31
rrcord layout, documenting 44
record length 44
rrrord space, calculating

5/,44 65,66
*45 67 .68

rrcords in a f i le , determining number of 71
relative record number

deriving
conversion method 17
direct method 16

descr ipt ion 6, 16
synonym records 19

removable disks
il44 1
storing programs and files 56

reorganiz ing f i les
i ndexed f i l e s 14
sequent ia l f i le 8

rol l -out and ro l l - in of B-type programs. inquir ing 3
rout ines 58, 59
RPG l l contro l card sheet 62

s6ctor

5444 2
5445 3

secur i ty , data f i le g

sequential files
adding records 7
creat ing 6
descr ipt ion 6
ma in ta i n i ng 7
processing 6
reorganiz ing 8
tagging records for deletion I
updating records I

sequent ia l processing of an indexed f i le
by key 11
w i t h i n l im i t s 11

sequent ia l updat ing of an indexed f i le
by key 14
randomly by key 14
w i t h i n l im i t s 14 .32

sequent ia l wi th in l imi ts (see f i le contain ing record key l imi ts)
shared input/output area 46
size of f i le

determining 49
mult ivolume f i les 37
wf ien sort ing f i le 38

sort ing a f i le
ADDROUT sort 40
description 40
summary sort 39
tag-along sort 39

source libraries

description 57
directory 58
organization of entries 58
size 58

spi l l technique 21
spl i t cy l inder (54451 53
star t ing key (lower l imi t)

processing, COBOL 11
storage capacity. 5444 3
storage characteristics of 5444 and il45 5
storing programs and files on removable disks 56
storing programs and procedures

6n f,isla (g{{{ snly} 55
into l ibrar ies

COMPILE OCL sratement 62
library maintenance program 59
RPG l l contro l card sheet 62

3 1

Index 95

stor ing synonym records in a d i rect f i le 19 unblocked records 51
submult ip le 45 unordered sequence (indexed f i le for RPG l l) 9, 1 1

Summary sort 39 updating records

rynonym records direct file
descr ipt ion 19 consecut ively 26
stor ing in a d i rect { i le 19 randomly 26

system ef f ic iency, increasing 55 indexed f i le
System/3 Disk Sort Program (see disk sort programll random by key 14

sequential by key '14

sequent ia l wi th in l imi ts 14,31
sequent ia l f i le 8

using a di rect f i le lor large arrays 29
tag-along sort 39

tagging records for deletion
direct f i le 25
indexed f i l e 13
sequent ia l f i le 8 volat i l i ty , f i le 35

trac k volu me 1
i l44 2 volume label 1. 6
5,'45 3

TRACKS, parameter in OCL statement 68

tracks required to store given number of records,

calculated number of 71
5444 Disk Storage Drive 2

5445 Disk Storage Drive 3

96

READER'S COMMENT FORM

IBM System/il
Disk Concepts and Planning Guide

GC21-7571-3

YOUR COMII IENTS, PLEASE . . .

Your comments assist us in improving the usefulness of our publ icat ions; they are an tmporranr
part of the input used in prepar ing updates to the publ icat ions. Al l comments and suggest ions
b€come the property of lBM.

Please do not use this form for technical questions sbout the system or for requests for additional
publ icat ions; th ls only delays the response. Instead, d i rect your inquir ies or reguests to your IBM
representative or to the | 8M branch office serving your locality.

Corrections or clarif ications needed :

hge Comment

Please include your name and address in the space below if you wish a raply.

o Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

I

I
I
I
I

I

;
o

@

f
J
o

I
I

I
I
I
I

I
I
I

Fold I
I

GC21-7571-3

Fold

B U S I N E S S R E P L Y M A I L
NO PGTAGE STI\MP NECESSARY IF MAILED IN THE UNITED STATES

POSTr\GE Wltl lE PAID 8Y . . .

IBM Corporation
General Systems Division
Deverlopment Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

FIRST CTASS

PERMIT NO. 387

ROCHESTER, MINN.

-
-
rrr
-
-
-
-
-
-
-
-
-

I
' @

l 3. U '

t ;
t d' o

I 3
l \

t 0
t d '

F

l g
5

l o
t o' ! t

l 0
t o

l c Lr l
ql

t :
r E l
l o

t F :
l r

3'
t . D

I t' c
, a/,
t >

FoldFold

3==sEE
o

International Businers Machiner Corporation
Goneral Syrtemt Dividon
5775D Glenridge Drive N.E.
Atlanta, Georgia 3G101
(USA Only)

IBM World Trade Corporation
821 United Nationr Plaza, New York, New York 1d)17
(lnternational)

l o
, or !
t - l
t (t

l r i

I
I

I
I
I
I
I

I
I

