Binary Synchronous Communications

et o 1 W
-m m - kol - ™
o S T 00 O
®eSE ; 2833 3
ESE2 g s 2
TR >0 0O 00 O
Qaop 8 Z AN DD
n U] L] —.Mw
ND=>9 E 8§33 3 &
- - 7
SXxa9 5 b b b b m
oM =) m N3
— = 000 a S
20000060 00600000 00000 8000 90000060 0080035005600 0000 208090600 00008 8000000 2060000 o000 [4
eo00000e 00000050000 000880 000006 0600080000 S00escosss0s0sss sescecssseses soosces es0s00s \mwwmmwm °
000000000000 ...”.. GOO00S ANOBOO000000 SBLLHECOOO 006C...."““ ...‘...” “.-“..... /| 0000000 ®
R R T T, G HES
°$33353200, ‘sossest sasisssre, g33s2ss gisssseassisses 28288,
i OCHE g ogaioan o) Gl
00 0s 0000 o000 9000 260000 2906 sses 000 Nﬂ..ﬂ 2880 26800 mmm
[3 29000 s0000 (111 269060 1144327 2000 0066 20866 [113 900 "NM-.- ”
: $3335,.028880 gaffites f388%,..88880 gaffflss ggsiddsssselt sassss 3% feites | 3R, 8382
iR it I+ S I H I R R

Fifth Edition (December 1976}

This is a major revision of, and replaces, GC21-7573-3 and Technical Newsletters
GN21-7775, GN21-5279, and GN21-5363. Changes are indicated by a vertical line
at the left of the change. New or extensively revised illustrations are indicated by the
symbol ® to the le“t of the caption.

This edition applies to Program Number 5702-SC1 {version 10 and modification 00)
of 1BM System/3 Model 10 Disk System, Program Number 5704-SC1 (version 0t and
modification 00) ¢f 1BM System/3 Model 15, Program Number §704-SC2 (version
01 and modification 00) of I1BM System/3 Model 15, and Program Number 5705-
SC1 (version 02 arid modification 00) of 1BM System/3 Model 12, and to all subse-
quent versions and modifications until otherwise indicated in new editions or techni-
cal newsletters.

Changes to the information herein are made periodically. Before using this publica-
tion to operate an 1BM system, refer to the latest /BM System/3 Bibliography,
GC20-8080, for the editions that are applicable and current,

Requests for copies of 1BM publications should be made to your |IBM representative
or to the 1BM branch office serving your locality.

A Readers Comments form is provided at the back of this publication. If the form has

been removed, comments may be addressed to I1BM Corporation, Publications, Depart-
ment 245, Rochester, Minnesota 55901,

© international Business Machines Corporation 1972, 1973, 1974, 1976

This manual provides the programming information required
to use the Multiline/Multipoint Feature (MLMP) with
System/3 Model 10, Mode! 12, or Model 15 binary synchro-
nous communications programs.

On the Model 10 and Model 12, MLMP is a feature of the
System Control Programming (6702-SC1, Features 6030
and 6031). On the Model 15, MLMP is included in the base
System Control Programming (5704-SC1 or 5704-SC2).

Hereafter, the terms “MLMP’* and ““System/3"’ should be
understood as applying to the System/3 Model 10 Disk Sys-
tem, the Model 12, and the Model 15, unless qualified by
“Model 10 and Model 12 only” or "Model 15 only.”

This reference manual is intended for applications program-
mers who are familiar with:

® Basic telecommunications concepts and practices
® |BM System/3 Basic Assembler language

® |BM System/3 Model 10 Disk System, Model 12, or
Model 15

The manual describes MLMP and the functions of MLMP,
the System/3 MLMP macro instructions, and the MLMP diag-
nostics and diagnostic aids. The book also lists MLMP sys-
tem requirements and considerations. Appendixes contain a
tist of MLMP considerations unique to certain terminals, ex-
amples of coded MLMP macro instructions and a sample pro-
gram, data area formats, BSC line control characters and
codes, and a macro instruction summary.

As noted in the text, many of the cross references in this
manual address index entries.

Preface

SYSTEM/3 MODEL 8

The System/3 Model 8 is supported by System/3 Model 10
Disk System controi programming and program products.
The facilities described in this publication for the Model 10
are also applicable to the Mode! 8, although the Model 8 is
not referenced. However, the Integrated Communications
Adapter (ICA) is only available on the Model 8. If you
have either the ICA or local display adapter, it is always
designated as BSCA line 2. Therefore, you must specify
line 2 whenever the ICA or local display adapter is used, or
enter the BSCA OCL statement (// BSCA LINE-2) at
execution time. It should be noted that not all devices
and features which are available on the Model 10 are avail-
able on the Model 8. Therefore, Model 8 users should be
familiar with the contents of /8M System/3 Model 8
Introduction, GC21-5114.

Prerequisite Publications

® General Information: Binary Synchronous Communica-
tions, GA27-3004

® /BM System/3 Models 8, 10, 12, and 15 Components
Reference Manual, GA21-9236

Preface

Related Publications

1BM System/3 Basic Assembler Reference Manual,
SC21-7509

1BM System/3 Models 4, 6, 8, 10, and 12 System Genera-
tion Reference Manual, GC21-5126 or /BM System/3
Model 15 System Generation Reference Manual,
GC21-7616

1BM System/3 Modet 8 Operator’s Guide, GC21-7634,
/BM System/3 Model 10 Disk System Operator’s Guide,
GC21-7508 or /1BM System/3 Model 15 Operator’s
Guide, GC21-5075

IBM System/3 Model 10 Disk System Control Program-
ming Reference Manual, GC21-7512; 1BM System/3
Model 15 System Control Programming Reference
Manual (5704-SC1), GC21-5077, or IBM System/3 Model
15 System Control Programming Concepts and Reference
Manual, (5704-SC2), GC21-5162

IBM System/3 Model 10 Disk System Halt Guide,
GC21-7540 or /BM System/3 Model 15 System

Messages, GC21-5076

1BM System/3 Disk System Control Programming Macros
Reference Manual, GC21-7562 or /BM System/3 Model

15 System Control Programming Macros Programming
Reference Manual, GC21-7608

/IBM Systemn /3 Overlay Linkage Editor Reference
Manual, GC21-7561

1BM System /3 Multiple Line Terminal Adapter RPQ
Program Reference and Component Description

Manual, GC21-7560

I1BM System /3 Model 12 System Control Programming
Reference Manual, GC21-5130

IBM System /3 Model 12 Operator’s Guide, GC21-5144
1BM System /3 Model 12 User's Guide, GC21-5142

I1BM System /3 Models 8, 10, 12, and 15 Components
Reference Manual, GA21-9236

I1BM System /3 Model 12 Halt Guide, GC21-5145

{BM System /7 Systems Summary, GA34-0002

1BM System /7 Binary Synchronous Communications
Module (RPG), Programming Guide and Reference
Manual, SC34-1510

1BM Systern /7 Teleprocessing Multiplexor “TPMM”’
Programming Guide and Reference Manual Supporting

RPQ D08011, SC34-1506

System Components: IBM 2770 Data Communication
System, GA27-3013

IBM 2780 Data Transmission Terminal: Component
Description, GA27-3005

Component Description: 1BM 2972 Models 8 and 11
General Banking Terminal System, GL27-3020)

IBM 3270 Information Display System Component
Description, GA27-2749

I1BM 3735 Programmer’s Guide, GC30-3001

I1BM Systems 3735 Support Program Coding Manual,
GC21-5096

1BM 3600 Finance Communication System Program-
mer’s Guide and Component Description, GC27-0004

CHAPTER 1. MULTILINE/MULTIPOINT BINARY
SYNCHRONOUS COMMUNICATIONS
Telecommunications Lines Supported
Functions
Multiple Line Termlnal Adapter

CHAPTER 2. SYSTEM/3 MACRO INSTRUCTIONS
Description
Conventions

CHAPTER 3. MLMP PROGRAMMING .
Preparing for Data Transfer
Generate Common Equates ($COMN)
Generate BSC DTF Displacements and Labels
($DT0B) .
Define the File for BSC ($DTFB)
Allocate BSC Files ($ALOC)
Open BSC Fiies (SOPEN)
Generate a Mode! 10 and Model 12 Checkhst
{$CKL)
Generate a Model 15 Checkllst UECKL)
Generate a Polling/Addressing List ($POLB)
Change a Polling List ($BCPL)
Generate a Parameter List for Changing a Polhng
List or a Switched 1D List ($CHGB)
Allocate the Terminal Statistics Logging Area
($LOGB)
Gererate a Switched 1D Lust ($SWIB)
Change a Switched 1D List ($BCSW) .
Generate a Translate Parameter List ($TRL)
Generate a Translate Table ($TRTB) .
Generate an Interface to the Translate Routine
($TRAN)
Generate an Online Test Parameter Lnst ($RFTL)
Initiating Data Transfer
Move Mode
Issue a GET F(equest ($GETB)
Issue a PUT Request ($PUTB)
Cancel a GET Request {$CANB)
Check for 1/0O Completion ($CHK)
Techniques for Initiating Data Transfer
Terminating Data Transfer .
Terminate BSC Files
Close BSC Files {$CLOS)

CHAPTER 4. DIAGNOSTICS AND DIAGNOSTIC
AIDS
Mnotes
Halts
Completion Codes
BSC Counters
Initializing MLTERFIL
Online Test
Trace .
Snap Dump Mam Storage ($SNAP)

DO O =

~N N

10
10
16
18

17
18
19
20

21

21
22
23
24
24

25
26
27
27
27
28
29
29
31
39
39
39

41
41
45
45
50
50
51
54
55

Page of GC21-75734
Issued 25 November 1977

By TNL: G

CHAPTER 5. REQUIREMENTS AND
CONSIDERATICONS
System Configuration
Model 8
Modet 10 .
Model 12 .
Model 15 .
Storage Requnrements
Programming Reguirements
MLMP Programming Considerations

APPENDIX A, DEVICE-DEPENDENT

CONSIDERATIONS ..

tBM 2972 Banking Terminal System .

IBM 3270 Information Display System
Polling/Addressing a 3270 .
Reading From and Writing To & Remote 3270
How to Request an Online Test from a 3270
Status/Sense Messages

Polling/Addressing a 3270 via the Dnsplay Adapter .

IBM 3735 Programmable Terminal .
Form Descriptor Convert Routine ($$BSCN)
Additionat 3735 Considerations

APPENDiIX B. SAMPLES .
Sample MLMP Macro Instructions .
Model 10 and Modet 12 Sample Program:
Communicating with the 3270

N21-5587

Contents

57
57
57
58
58
59
59
59

61
61
61
61
62
71
71
76
77
77
78

79
79

87

APPENDIX C. DATA AREAS, PARAMETER LISTS,

AND MESSAGE FORMATS .
BSC DTF .
MLMP 1/O Area .
Terminal Statistics Logging Area
Trace Table
BSC 1/O Registers
Checklist . .
Polling/Addressing L|st .
Switched ID List
Parameter List for Changmg a Pong Lnst or
Switched ID List
Translate Parameter List
Online Test Parameter List
Online Test Requests
MLMP Message Formats

APPENDIX D. CONTROL CHARACTERS AND
CODES .
EBCDIC
ASCII .
Hexadecimal Representanons .
Tributary System/3 Polling and Addressnng
Characters

APPENDIX E. MACRO INSTRUCTION SUMMARY

INDEX

105
105
109
109
110
1
111
112
112

112
113
113
114
115

117
117
118
119
119
121

123

Contents

Chapter 1. Multiline/Multipoint Binary Synchronous Communications

Multiline/Multipoint (MLMP) is a binary synchronous
communications (BSC) feature of System/3. MLMP pro-

vides the assembler programmer access to the

BSC 1/0

routines that support the Binary Synchronous Communica-
tions Adapter {BSCA) as an /O device. For a description

of the BSCA, see the appropriate components reference

manual for your system listed in the Preface.

MLMP enables the assembler programmer to transmit and
receive binary synchronous data over two telecommunica-
tions lines simultaneously (each line requires a BSCA).
The two lines can be used in the same program or can be
used independently in separate program levels (on Model 10
or Model 12 that has the dual programming feature in-

stalled) or in the program partitions {on Model 15). The

lines can be nonswitched or switched. Figure 1 gives exam-
ples of the line configurations possible with MLMP.

Nonswitched Multipoint

L L

\
B \ 2 iBm 3271
System/3 S \ Data Set S (BM
Model 10, . F—~ Data Set (Modem) || ¢ | Contro! 3277(s)
12,0r 15 A {Modem) Al Unit
Nonswitched, Point-to-Point BSCA
\
\
\
System/3| g \ B 7
Model 6 |5 [1Data Set | | |Data Set Data Set S L:BMt32l IBM
(RPG 1l fc |, |(Modem) (Modem) (Modem) c|onte 3277(s)
Only) A A Unit
System/3 : Swutch/ed Point-to-Point
Model 10 /
e Data Set Data Set
12,0r 15 /
o A {Modem) (Modem? System/370
BSCA
Nonswitched, Point-to-Point t__
\ B B
\ Data Set S System/3 S
\ Common Model 10,
. (Modem? C C
\ Carrier A 12, 0r 15 p
\ Exchange '
\
System/370 [Data Set |\ _|Data Set B
ystem
[~ (Modem) (Modem) Data Set s| 1BM
(Modem) c| 3735
A
B
Data Set S
(Modem) C System/7
Figure 1 (Part 1 of 2). Examples of MLMP BSC Networks A

Muitiline/Muitipoint Binary Synchronous Cornmunications

1

1 ¢+ fe— 8000 BPS Local Interface
System/3 IC -
Model 8 A §2 t—— 2400 BPS Local Interface
BSCA? !
Data Set Data Set
{Modem) {(Modem)

1 1

lThe Integrated Communications Adapter (ICA) must be addressed as BSCA
line 2. The manual ICA switch can have only one interface active at any
one time.

2See Figure 1 (Part 1 of 2) for examples of BSCA line configurations.

Figure 1 (Part 2 of 2). Examples of MLMP BSC Networks

The MLMP user specifies the functions of MLMP 1/0 rou- Figure 2 shows the relation of MLMP to the macro proc-

tines by using System/3 assembler macro instructions {see essor, the overlay linkage editor, and user programs.

Chapter 2). The IBM System/3 Macros Feature expands

these macro instructions into linkage to MLMP routines. Figure 3 shows the relationship of a user MLMP program to
MLMP 1/O routines, BSC DTFs, BSC I10Bs and buffers,

Linkage to the MLMP routines is assembled as part of the and the BSCA.

user’s program. The IBM System/3 Overlay Linkage Editor
is then used to incorporate the MLMP routines in the
user’s object program.

User MLLMP
Source The user assembler program includes
Program macro instructions for MLMP /0 routines.
Macro Macro instructions are expanded into
Processor linkage to MLMP routines.
The user program, which now includes
Assembler linkage to the MLMP routines, is
assembled.
MLMP
Routines
Overlay . . .
Linkage MLMP routines are incorporated into
Editor the user’s object program.
User MLMP
Object
Program
TerminalsZ B B STerminals
S Execution 5
c c
A A

Figure 2. Generation of a User MLMP Object Program

Multiline/Muitipoint Binary Synchronous Communications 3

X1 '€ 181dey) ui paquiosap ase
SUO0I1DNIISUL OJdBW n_s_._s:

(eiep uasn) 1xa)
s4910elYd Butwely

mojy ereq = AU
MOJ} [041U0D) = I

]

]
-

a0 ayng | 80! ealy
Jagng
ealy J834ng “ ! 4

| o/l
N} —— o4 —— L]
A” dNTIN
dWTW axy) | (¥a) “mo_

N

JEH ! Jasn

1891607 (3x1)
$1X1 4

NN

ow o

410 0S8 4140 0S8

I
\\\\

{139) {LNd)

saujnoy sauilnoy

suonansu| o/l o/1

(SUONONAISU|
dIN dNTW

OB\ dNTTIN

CI0EN dWTIN

8 - da44ng
1
(w3 e 1B %50]|q 8uo
paJiajsuel] elep — [013U0D .
Hng
Ja44n
4ng 3ul] SNOUOIYOUAG)) i

(8n1908Yy) ~L (dwsuedy) |
~L weibouyg sasn L ~ welboug sasn —

OO

Figure 3. Functional Control and Data Flow of MLMP

Telecommunications Lines Supported

Following are the terminals and line connections supported
by MLMP. For considerations unique to using a given ter-
minal with MLLMP, see Appendix A.

Nonswitched Point-to-Point

MLMP supports point-to-point nonswitched connections
with central processing units programmed according to the
conventions described in General Information: Binary
Synchronous Communications, GA27-3004. MLMP also

1BM 2972/2980 Banking Terminal System (supported
in the United States only) as described in Component
Description: 1BM 2972 Models 8 and 11 General Bank-
ing Terminal Systems, GL27-3020

IBM 3270 Information Display System as described in
I1BM 3270 Information Display System Component
Description, GA27-2749

I1BM 3735 Programmable Terminal as described in /BM
3735 Programmer’s Guide, GC30-3001

IBM 3600 Finance Communication System (Model 15

supports point-to-point nonswitched connections with the:

IBM System/7 Teleprocessing Multiplexor {TPMM) as
described in I1BM System/7 Teleprocessing Multiplexor
“TPMM” Programming Guide and Reference Manual
Supporting RPQ DO8O11, SC34-1506

® |BM 2770 Data Communication System as described in
System Components: |BM 2770 Data Communication
System, GA27-3013

® [BM 2780 Data Transmission Terminal as described in
IBM 2780 Data Transmission Terminal: Component
Description, GA27-3005

Multipoint

MLMP supports System/3 as a control station and as
a multidropped terminal. As a control station,
System/3 can exchange binary synchronous data with:

IBM System/3

IBM System/7 as described in /BM System/7 Binary
Synchronous Communications Module Programming
Guide and Reference Manual, SC34-1510

IBM System/7 Teleprocessing Multiplexor (TPMM) as
described in /BM System/7 Teleprocessing Multiplexor
“TPMM* Programming Guide and Reference Manual
Supporting RPQ D0O8011, SC34-1506

IBM 2770 Data Communication System as described in
System Components: |1BM 2770 Data Communication
System, GA27-3013

IBM 2780 Data Transmission Terminal as described in
IBM 2780 Data Transmission Terminal: Component
Description, GA27-3005

only) as described in /BM 3600 Finance Communica-
tion System Programmer’s Guide and Component Des-
cription, GC27-0004

When System/3 is a control station, MLMP
does not support intermixing of terminals on one line.

Note: For information on how to generate IBM 3735 form
descriptor programs {FDPs) on System/3, see /BM System/3
Model 10 Disk System 3735 Application Package Coding
Manual, GC21-56096. A conversion routine (FDP/Convert)

is provided with MLMP to convert FDPs generated on OS

or DOS to a format suitable for transmission from Model

10 or Model 12 to a 3735. For a description of FDP/Convert,
see index entry FDP/Convert.

Switched Point-to-Point

MLMP supports point-to-point switched connections with
the following:

® Central processing units programmed according to the
conventions described in General Information: Binary
Synchronous Communications, GA27-3004

® |BM System/7 Teleprocessing Multiplexor (TPMM) as
described in /BM System/7 Teleprocessing Multiplexor
“TPMM** Programming Guide and Reference Manual
Supporting RPQ D08011, SC34-1506

® |BM 2770 Data Communication System as described in
System Components: |IBM 2770 Data Communication
System, GA27-3013

e IBM 2780 Data Transmission Terminal as described in

I1BM 2780 Data Transmission Terminal: Component
Description, GA27-3005

Multiline/Multipoint Binary Synchronous Communications 5

® |BM 3275 Display Station as described in /18M 3270

Information Display System Component Description,
GA27-2749

® |BM 3735 Programmable Terminals as described in /8M
3735 Programmer’s Guide, GC30-3001

® IBM System/7 as described in /BM System/7 Systems
Summary, GA34-0002

For switched connections, MLMP supports autocall (United
States only), manual call, autoanswer, manual answer, and
the exchange of station identification characters.

Note: For information on how to generate IBM 3735 form
descriptor programs (FDPs) on System/3, see /BM System/3
Model 10 Disk System 3735 Support Program Reference
Manual, GC21-5096. A conversion routine (FDP/Convert)
is provided with MLMP to convert FDPs generated on OS
or DOS to a format suitable for transmission from Model

10 to a 3735. For a description of FDP/Convert, see index
entry FDP/Convert.

Functions

The following program functions are available to the MLMP
user:

1. Receive only (receive input data from a remote
terminal).
2. Receive with transmittal of conversational reply (re-

ceive input data from a remote terminal and, when
required, transmit data as an acknowledgement).

3. Transmit only (transmit data to a remote terminal).

4, Transmit with reception of conversational reply
{transmit data to a remote terminal and, when re-
quired, receive data as an acknowledgement).

5. Transmit and receive—no conversational reply. Four
modes of operation are possible:

a. Transmit a file, then receive another file.

b. Receive a file, then transmit another file.

c. Transmit records of a file interspersed with re-
ceiving records of another file (receive RV1).

d. Receive records of a file interspersed with trans-
mitting records of another file (transmit RV1).

Depending on the terminal used and whether or not data is
exchanged in conversational mode, records transmitted

and received can be fixed length, variable length, or span-
ned (one record can occupy space in two contiguous blocks).
Data can be exchanged in EBCDIC (Extended Binary Coded
Decimal Interchange Code) or in ASCIHI {American Nation-
al Standard Code for Information Interchange), depending
on the BSCA used. Data translation is supported by trans-
late tables generated with macro instructions. EBCDIC
transparency and ITB (Intermediate Block Checking) are
supported by MLMP.

MLMP does not transmit leading graphics. MLMP can re-
ceive leading graphics, but does not pass them to the user.

During program execution, MLMP automatically does the
following:

® Biocks and debtocks data as required.

® Moves user data from the user’s logical buffer to the
telecommunications /O buffers when sending data
(PUT requests).

® Moves user data from the telecommunications 1/0 buf-
fers to the user’s logical buffer when receiving data
(GET requests).

® |Inserts and removes data-link control characters as
necessary.

MLMP provides error recovery, error recording and, at
user’s request, online test (OLT). A trace module and a
dump routine are also provided with MLMP.

Multiple Line Terminal Adapter

The BSCA and the Multiple Line Terminal Adapter (MLTA)
can be used concurrently on the disk system. For infor-
mation regarding MLTA, see /BM System/3 Multiple Line
Terminal Adapter RPQ Program Reference and Compon-
ent Description Manual, GC21-7560.

You inform MLMP of the functions your binary synchron-
ous communications program requires by using System/3
macro instructions.

Description

A System/3 macro instruction causes a specified sequence
of assembler source instructions to be generated. The for-
mat of a System/3 macro instruction is:

1 8 14 72
Name Operation Operands
symbol {¥ |macro |b | no operands
or blank name or one or
more
operands
separated by
commas
Name

If you specify a name, it is assigned to the generated se-
guence of assembler instructions. The name becomes the
symbolic address of the first byte of code generated by the
macro instruction and it can be used to reference the code
— that is, to modify the code or to branch to the code.

A name:

® Must begin with an alphabetic character in position 1
of the Assembler Coding Form

@ Can be from one to six alphameric characters in length

® Must contain no special characters or blanks

Note: System/3 macro instructions generate labels begin-
ning with the dollar sign ($). If you also define labels
beginning with $ when you use System/3 macro instruc-
tions, duplicate labels may result.

Operation

The operation entry is the mnemonic operation code of the
macro instruction. Each operation entry must begin in
position 8 of the Assembler Coding Form.

Chapter 2. System/3 Macro Instructions

Operands

Operands qualify the operation by specifying functions to
be performed and data to be modified. Each operand con-
sists of a keyword and a parameter joined by a dash. Key-
words and parameters are predefined symbols available for
use with individual macro instructions. You select key-
words and parameters according to the rules that apply to
the macro instruction you are writing.

® The first operand must begin in position 14 of the
Assembier Coding Form.

® Qperands must be separated by commas.

® Blanks are not permitted between operands coded on the
same line.

® Blanks are not permitted between keywords and
parameters.

® QOperands cannot be specified beyond position 71.

® Operands can be written in any order.

Continuation Lines

The number of operands involved in some macro instructions
may require more than one line of coding. If continuation

is required, column 72 must contain a character and the last
operand must be followed by a comma. An operand cannot
be divided and continued on the next line. The operands

of the continued field must begin in column 14. For an
example of continuation coding, see Figure 4.

Comments

Comments can be placed after the last operand in a line if
the comment is separated from the operand or comma by

a blank. If a macro instruction has no operands, comments
can be placed in the operand field if position 14 is left
blank (Figure 4).

System/3 Macro Instructions 7

1BM System/3 Basic Assembler Coding Form

IBM
PROGRAM PUNCHING GRAPHIC
PROGRAMME R ID"E INSTRUCTIONS oUNCH
STATEMENT
Name Operation Operand Remarks
1 2 3 4 5 61718 910 11 12/13]14 1516 17 18 1920 21 2223 24 25 26 27 28 20 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60,61 62 63 64 6566 67 68 5370 73 72 73 74
WaMel1] | [olPl1 OPEIRANDIA] [0lrlelriAVD]2] 03], |olplelelalp|4], [0PEiialvID]s], [olPlEelelalMPl4], X
OPERANDIT| 0P| £1RANDI8 MMEINT] :
|
WAME2 | lop2z OPERANDI |, iOPIERANDZ N1 J A (]
0P ERAMD 3, ! B
OPERANDY, 1 I
OPIERIANIDS I L
|
NAMES| | 10pP3 clonmlEnT |
;
|
T
|
|
i
!
J
l
1
|
E
|
|
i
1
i
I
1
1.2 34 » 617]8 9 30 13 12|13f14 1516 17 18 19 20 21 22 23 24 26 26 27 23‘293331 32 33 34 36 35 37 38 3940 41 47 42 44 45 46 47 48 49 50 51 5253 54 55 56 57 58 59 6061 62 63 64 6566 67 68 69 70 71 72 7 74 7

Figure 4. Sample of Continued Macro Instructions and Comments

Conventions

Certain symbols are used in this manual to abbreviate the

descriptions of macro instructions.

1 8 14
{ [name] [s$0P | KEYWORD—A/B/C |

BRACKETS [] indicate an optional entry,

SLASHES / separate entries when a choice exists.

UNDERSCORE __indicates the default if a parameter is
not specified.

UPPER CASE LETTERS indicate words or abbreviations
that must be entered as shown.

LOWER CASE LETTERS indicate information you must
supply.

Each MLMP macro instruction is described in detail in
Chapter 3. All MLMP macro instructions are summarized
in a chart in Appendix E. The chart also gives the approxi-
mate length of code generated by each macro instruction.

Every MLMP program you write must accomplish three
major functions:

1. Prepare BSC files for reception and/or transmission
of data.
2. Initiate the transfer of data: receive and/or transmit.

3. Terminate the transfer of data.

Before programming these functions, however, note that
one EXTRN must be defined in every MLMP program
($$BSMS). Other required EXTRNs are generated by the
MLMP macro instructions when MLMP programs are
assembled.

PREPARING FOR DATA TRANSFER

Preparing for data transfer always includes the following
three steps:

1. Generate labels and equates for use by the various
macro instructions and generate field displacements
and labels for the BSC DTFs. Common labels and
equates are generated by the $COMN macro
instruction when your MLMP program is
assembled. BSC DTF field displacements and labels
are generated by the $DTOB macro instruction when
your MLMP program is assembled.

2. Prepare BSC data files. Each BSC file must be:

a. Defined ($DTFB macro instruction)
b. Allocated ($ALOC macro instruction)
c. Opened ($OPEN macro instruction)

3. Create a checklist to check for 1/O completion.
Entries in the checklist are created by the $CKL
macro instruction,

Chapter 3. MLMP Programming

If your station is a control station, you must create a
polling/addressing list. Entries in a polling/addressing list
are created by the $POLB macro instruction. Entries in

a polling list can be activated or deactivated by using the
$BCPL macro instruction (stations identified in active
entries in a polling list are polled, stations identified in in-
active entries are not polled). The $CHGB macro instruc-
tion can be used to generate the parameter list required by
$BCPL.

Control stations must also provide space for logging termi-
nal statistics. The $LOGB macro instruction can be used
to allocate space for the Terminal Statistics Logging Area.

if you are using a switched answer line, you can create a

list containing the station identification sequences (station
IDs) your station will accept from a remote terminal.
Entries in the switched ID list are created by the $SWIB
macro instruction. The $BCSW macro instruction can be
used to activate or deactivate entries in the list. (If an entry
is inactive, your station will not accept the station 1D given
in that entry.) The $CHGB macro instruction can be used
to generate the parameter list required by $BCSW.

If data in your BSC files requires translation, either before
it is transmitted or after it is received, you must provide
for data translation by constructing translate tables
($TRTB macro instruction for EBCDIC/ASCII tables) and
generating a translate parameter list (§TRL macro instruc-
tion). When you want to translate data, generate the inter-
face to the IBM-provided translate routine ($TRAN macro
instruction).

MLMP Programming 9

Note: If you are transmitting translated data or receiving

data that must be transiated, be sure you have given the

following information in the correct data code (EBCDIC or

ASCH):

1. Polling and/or addressing characters if you are a control
or tributary station.

2. Station identification sequences if you are on a switched
line.

3. Online test parameter lists {generated by the $RFTL
macro instruction) and online test messages if you intend
to request online tests (see index entry onfine test).

Generate Common Equates ($COMN)
The $COMN macro instruction generates labels and equates
used by System/3 macro instructions. This macro instruc-

tion must be issued once in every assembler program con-
taining System/3 macro instructions.

$COMN Macro Instruction Format

L [scomn]]

Generate BSC DTF Displacements and Labels ($DTOB)

BSC DTF field displacements and labels must be defined
once in every MLMP program. The $DTOB macro instruc-
tion generates field displacements and associated labels

for BSC DTFs. These displacements and labels, as well as
BSC DTF byte and bit definitions and a definition of MLMP
completion codes (see index entry completion code), are
included in your assembly listing.

The generated BSC DTF labels are used by the code your

MLMP macro instructions generate and you can use the
labels to reference fields in the BSC DTFs.

10

See index entry BSC DTF for the labels generated by $DTOB.

$DTOB Macro Instruction Format

[[$D708])

Define the File for BSC ($DTFB)

The $DTFB macro instruction generates a BSC DTF. More
than one BSC file can be defined for each telecommunica-
tions line. See Appendix C for the format of the BSC
DTFs. See also index entry open BSC files ($OPEN).

8DTFB Macro Instruction Format

[name] $DTFB RECL—decdig,BLKL—decdig,
RCAD—address,FTYP—RCV/TSM
[,BUFST—address,BUF END—acldress}
[.LBUFNO~—decdig]

[.CODE—E/A] [,LINE-1/2]
[LUP—binary/Q] [,CHN—name}
[L,CONV-Y/N] [ITB-Y/N]
[.TRANSP—Y/N]
[.RVIADR—address, RVIMSK—hex]
[.DLYCT—decdig)

{, TYPE—PP/MP/CS/AC/MC/AA/MA]
[.,TERMAD—hex] [,AUTORS—Y/N]
[,LISTAD—address,ERRLOG—address)
[,POLRES—Y/N]

[,LIMIT—decdig]
[.DIAL~address,DIALCT—decd ig}
[.LRCVID—address, RCVCT —decdig/
SWLIST—Y/N]

[,.SNDID—address, SNDCT—decdig]
[.SPAN—Y/N]

[,RECSEP—hex] [,ERRCT—decdig}

name

If a name is specified, it is assigned to the first byte of the
generated BSC DTF.

RECL—decdig

Specifies, in decimal, the maximum record length for this
file, excluding line control characters. Record length is
limited by available storage and terminal characteristics
such as those listed in Appendix A. See index entry $DTFB
considerations.

BLKL—decdig

Specifies, in decimal, the maximum block length for this
file, excluding line control characters. Block length must
be equal to or greater than record length (RECL operand).
See index entry $DTFB considerations.

RCAD—address

Specifies the symbolic address identifying the first byte of
your logical buffer. The required size of the logical buffer
depends upon the kind of operations requested for this file:

® |f this is a receive file and OPC—N will be specified in
GET requests for this file, the logical buffer must be
large enough to contain one record for this file.

® if thisis a receive file and OPC—BLK will be specified in
GET requests for this file, the {ogical buffer must be
large enough to contain the largest block of data ex-
pected, including line control characters.

For a description of OPC—N and OPC—BLK, see index
entry 8GETB macro instruction.

® If this is a transmit file, the logical buffer must be farge
enough to contain one record for this file.

Records are moved from the logical buffer to the BSC
1/0 buffers on PUT requests ($PUTB macro instruction),
and moved from the BSC 1/O buffers to the logical
buffer on GET requests {$GETB macro instruction). See
index entry move mode.

FTYP—RCV/TSM

Indicates whether the first operation for tnis file is receive
(RCV) or transmit (TSM). If you define & receive file (RCV),
the first 1/O request for the fite must be a GET request

(see index entry $GETB macro instruction); if you define

a transmit file (TSM), the first 1/O request for the file must
be a PUT request or a request for an online test (see index
entries SPUTB macro instruction and online test).

BUFST-—address

Specifies the symbolic address identifying the first byte
of the area available to this file for 1/0O buffers and 10Bs
{input/output blocks).

Note: Each BSC file requires a unigue 1/0 area.

BUFEND-—address

Specifies the symbolic address identifying the last byte of
the area available to this file for I/O buffers and 10Bs. For
formulas necessary to calculate the length of MLMP 1/0
areas, see index entry MLMP /0 area. See also index
entry onl/ine test if you intend to use the online test.

BUFNQO-decdig

Specifies the number of 1/O buffers and 10Bs to be con-
tained in the 1/O area for this file, and specifies that the
1/O area is to be allocated by this $DTFB macro instruc-
tion. (See index entry MLMP 1/0 area.)

Note: Either BUFST and BUFEND or BUFNO should be

specified. Otherwise, the $DTFB macro instruction allo-
cates enough /O area to contain only one 10B and buffer.

MLMP Programming 11

Page of GC21-75734
Issued 25 November 1977
By TNL: GN21-5587

CODE--E/A

Specifies whether the character code of your data is
EBCDIC (E) or ASC!I (A). The character code yOou use is
determined by the transmission code feature installed on
your BSCA.,

LINE—1/2

Specifies the BSCA this file uses; adapter 1 or adapter 2.
The // BSCA operation control language {OCL} statement
can override this operand. For OCL information, see the
appropriate system control programming reference manual
listed in the Preface.

UP-—-binary/0

Specifies the conditional opening of a DTF. If the bits
specified, in binary, are on in the external indicator
etting given by the last SWITCH OCL statement, the
DTF is opened. The default O specifies the unconditional
opening of a DTF. For OCL information, see the approp-
riate syster control programming reference manual listed
in the Preface.

CHN—name

Specifies the symbolic address of the next DTF in the
chain. Chained DTFs are allocated, opened, or closed at
the same time as the first DTF in the chain. An end-of-
chain indicator, X‘FFFF’, is entered in the DTF if no chain
operand is given.

CONV-Y/N

Specifies whether conversational repiies can be sent from or
to this file: Y if yes, N if no.

Note: Block length (BLKL operand) must equal record
length (RECL operand) for a conversational file.

ITB—Y/N

Specifies whether intermediate block checking is requested;
Y if yes, N if no. Intermediate block checking is not per-
mitted for a conversational file.

12

TRANSP-Y/N

Specifies whether data for this file will be transmitred in
transparent mode; Y if yes, N if no. Transparency may be
specified only if the transparency feature is installed on the
BSCA used. If N is specified and transparent data is
recetved, no error occurs and the $BCRAN bit is set in the
SBDATT field of the BSC DTF.

RVIADR-—address

Specifies the symbolic address of a cne-byte field you pro-
vide. The field is used with the mask specified in the
RVIMSK operand {following paragraph) to indicate when
a reverse interrupt request (RV1) is received or is 1o be
sent. See index entry reverse interrupt for examples of
using reverse interrupts. RVIADR—address requires the
RVIMSK operand.

RVIMSK---hex

Specifies two hexadecimal characters to represent the
reverse interrupt (RVi) mask. The bits represented by the
mask are set on by MLMP in the RVIADR field (preceding
paragraph) if a reverse interrupt request (RV1) is received
from a remote terminal. If a reverse interrupt request is
to be sent to a remote terminal, you must set on the mask
in the RVIADR field. See index entry reverse interrupt
for examples of using reverse interrupts. RVIMSK—-hex
requires the RVIADR operand.

DLYCT—decdig

Specifies a decimal delay count. The delay count is the
number of seconds after receiving or transmitting a block
of data that MLMP will wait for you to receive or transmit
another block of data for the same file. MLLMP waits the
specified number of seconds by using the WACK ENQ and
TTD NAK line control sequences.

Except when you have received or transmitted end of file,
MLMP aborts transmission and posts the $BCLST com-
pletion code if the delay count is exhausted between trans-
missions. (See index entry completion code.)

If you do not specify a number, a 180-second delay count
is assumed. If you do specify a delay count, consider the
time that may be required for such things as device errors,
halts, and readying /O devices.

TYPE-

This operand specifies the type of line connection to be
established for this file. You must have the appropriate
network attachment feature installed before specifying

one of the following line types:

PP

Specifies that this file will use a point-to-point non-
swiiched line. PP is assumed if no line type is specified.

WP
Specifies that this file will use a multipoint line, and this
station is a tributary station. TYPE—MP requires the
TERMAD operand.

CS
Specifies that this file will use a multipoint line, and this
station is the control station. TYPE—CS requires the
LISTAD and ERRLOG operands.

AC

Specifies that this file will use a switched line, autocall.
TYPE—~AC requires the DIAL and DIALCT operands.

mC

Specifies that this file will use a switched line, manual
call.

AA

Specifies that this file will use a switched line, auto
answer.

MA

Specifies that this file will use a switched line, manual
answer.

TERMAD—hev¥

Specifies the hexadecimal representation of the two-
character polling or addressing sequence used by this file.
if this is a transmit file (FTYP—-TSM), TERMAD specifies
potling characters; if this is a receive file (FTYP—RCV),
TERMAD specifies addressing characters.

Each tributary station on a muitipoint line must have
unique polling and/or addressing characters. See index
entry tributary System/3 polling and addressing characters
for the polling and addressing characters available to identify
System/3 tributary stations. See also index entry polling/
addressing.

The TERMAD operand is used only when TYPE—MP is
specified.

AUTORS-Y/N

Specifies whether MLMP will automatically send a negative
response to polling and addressing sequences received after
data transfer for this file is complete; Y if yes, N if no. If
AUTORS--Y is specified, MLMP will continue to respond
negatively to polling and addressing sequences until another
MLMP 1/0 request ($GETB, $PUTB, or $RFT) is issued for
the line, or until a request to close the MLMP files ($CLOS)
is issued. (See index entry macro instructions.) 1f
AUTORS—N is specified or if AUTORS is not specified at
all for a tributary station, the tributary station will be on-
line with the control station only when an MLMP 1/0 re-
quest (SGETB, $PUTB, or $RFT) has been accepted.

AUTORS-Y enables a tributary station to remain online
with the control station after initial data transfer, even
though data transfer is not occurring. When a tributary
remains online until all data transfer between it and the
control station is complete, the control station spends no
time waiting for the tributary to respond to polling or
addressing.

AUTORS is used only when TYPE—MP is specified, and
the AUTORS operand must be specified the same way in
all $DTFB macro instructions written for the same BSC

line.

MLMP Programming 13

LISTAD—address

Specifies the symbolic address identifying the first byte of
the polling or addressing list used by this file. If this is a
transmit file (FTYP--TSM), LISTAD points to an addressing
list; if this is a receive file (FTYP—RCV), LISTAD points

to a polling list. See index entry polling/addressing.

LISTAD is required only when TYPE—CS is specified.

ERRLOG—address

Specifies the symbolic address identifying the first byte of
an area in main storage to be used for logging transmission
statistics by terminal. You must provide one such area
for each telecommunications line used ($LOGB macro
instruction); and each area must be large enough to con-
tain statistics for each unique polling and addressing se-
quence used in your program. For the format of this log-
ging area and a formula for computing its size, see index
entries $LOGB Macro Instruction and Terminal Statistics
Logging Area.

ERRLOG is required only when TYPE—CS is specified.

Note: Only one terminal statistics logging area per line is
required in your program. Therefore, all ERRLOG oper-
ands specified for DTFs using the same line will be
identical.

14

POLRES—Y/N

Specifies whether the control station modules required to
poll and address tributaries, log terminal statistics, and
close active files are to be resident in main storage; Y if yes,
N if no.

Specifying POLRES~Y for control stations saves a signifi-
cant amount of execution time because transient modules
do not have to be found and loaded from the disk object
library each time the control station polls or addresses a
tributary, logs terminal statistics, or closes an active file.

POLRES is used only when TYPE—CS is specified, and the
POLRES operand must be specified the same way in all
$DTFB macro instructions written for the same BSC line.

LIMIT—decdig

Specifies the number of times, in decimal, MLMP will
accept a negative response from each terminal in a wrapped
polling or addressing list before posting the $BCNEG com-
pletion code (see index entry completion code). Valid
entries are 1-254. If no number is specified, MLMP passes
through a wrapped list until a positive response is received,
an error is encountered, or the poll is canceled (see index
entry SCANB macro instruction).

LIMIT is used only when TYPE—CS is specified.

Note: Consider defining LIMIT for any addressing list
created by a $POLB macro instruction in which LAST—
WRAP was specified. See index entry $POLB macro
instruction.

DIAL—address

Specifies the symbolic address identifying the first byte of
the field containing the decimal number that must be dialed
to extablish a switched connection. This operand is used
only when TYPE—AC is specified. DIAL—address requires
the DIALCT operand (see following paragraph).

DIALCT—decdig

Specifies, in decimal, the length of the number that must
be dialed to establish a switched autocali connection. The
maximum length permitted is 12. This operand is used
only when TYPE—AC is specified, and requires the DIAL
operand.

RCVID—address

Specifies the symbolic address of the first byte of either the
identification sequence required from the remate station

or of the switched ID list {see index entry switched /D list
for the format of the list}. RCVID—address requires either
the RCVCT operand or SWLIST — Y. Using RCVID and
RCVCT or RCVID and SWLIST-Y improves data security
on switched lines; these operands are recommended for

all switched lines.

RCVCT—decdig

Specifies, in decimal, the length of the identification se-
quence required from the remote station. Length can be
1-15. If 1 is specified, MLMP expects to receive 2 charac-
ters — duplicates of the character addressed by the RCVID
operand (preceding paragraph). If no length is specified,

0 is assumed. RCVCT~decdig requires the RCVID operand.

SWLIST-Y/N

Specifies whether this switched answer line will use the
switched ID list (see index entry switched /D list for the
format of the list); Y if yes, N if no. SWLIST—Y can be
specified only when TYPE—AA or TYPE—MA is specified.
SWLIST—-Y requires the RCVID operand.

SNDID—address

Specifies the symbolic address of the first byte of the iden-
tification sequence required by the remote station. SNDID—
address requires the SNDCT operand. Using the SNDID

and SNDCT operands improves data security on switched
lines; these operands are recommended for all switched
lines.

SNDCT—decdig

Specifies, in decimal, the length of the identification sequence
required by the remote station. Length can be 1-15. If

1 is specified, MLMP transmits 2 characters — duplicates

of the character addressed by the SNDID operand (preced-
ing paragraph). SNDCT—decdig requires the SNDID

operand.

SPAN-Y/N

Specifies whether records in this file will span blocks of
text; Y if yes, N if no. A spanned record must be contained
within two contiguous blocks of text.

When spanned records are received or transrnitted, DTF
fields $SBDWKB and $BDREL are altered. The fields are
restored after successful 1/0 completion. If an error occurs
during transmission of spanned records, you must restore
$BDWKB and $BDREL before requesting another operation
for the file.

SPAN-Y requires the RECSEP operand if this is a receive
file (FTYP—RCV). See index entry $DTFB considerations.
See also index entry BSC DTF for the format of the BSC
DTF.

RECSEP—hex

Specifies the hexadecimal representation of a one-character
record separator used to separate variable length records
in blocks of text. See index entry $DTFB considerations.

ERRCT—decdig

Specifies the number of times, in decimal, that MLMP re-
tries an unsuccessful operation before posting an error con-
dition. Valid entries are 1-254. |f no number is specified,
an error retry count of 7 is assumed.

Note: ERRCT specifies an error retry count only for the
local MLMP program; ERRCT does not affect the remote
terminal. In an error situation occurring between two
terminals with different retry counts, the lower retry count
determines when the error becomes permanent.

$DTFB Considerations

MLMP supports three kinds of record formats: fixed length,
variable length, and spanned. The kind of format you choose
determines the way in which four $DTFB operands must

be specified: RECL—decdig, BLKL—decdig, SPAN—Y/N,
and RESCEP—hex.

MLMP Frogramming 15

Fixed Length: 1f you choose to use fixed length records:
1. Specify the record length in the RECL operand.

2. Specify a multiple of the record length in the BLKL
operand.

3. Do not code the SPAN and RECSEP operands.

Variable Length: Variable length records can change in
length from one transmission to another. if you choose to
Lise variable length records:

1. RECL—The vaiue specified in the RECL operand
should be the maximum expected record iength. How-
ever, when you transmit variable length records you
must move the length of each record to $BDREL in
the DTF before you issue $PUTB to transmit the

sord. \See index entry BSC OTF for the format of
the DTF.) After each successful GET request issued
to receive one or more variable length records (com-
fetion code = $BCDNE):

® The length of the biock received, including control
characters, is moved to $BDREL if you specified
OPC-BLK in $GETB (see index entry $GETB
macro instruction),

or

The length of the record received, including the
record separator, is moved to $BDREL if you
specified the RECSEP operand in $DTFB (see
item 4 following).

2. BLKL.—The block length you specify should be the
maximum expected block length.

3 SPAN-Variable length records may or may not be
spanned (see following paragraph).

4. RECSEP-Although record separators are not re-
quired with variable length records, you may want to
use a record separator to delimit the records. If
vou do specify a record separator, MLMP automati-
ally inserts the record separator at the end of each
record transmitted. The record separator is the last
data character moved to your logical buffer (addressed
by the RCAD operand) when you receive variable
length records.

16

OPC—BLK is recommended for each GET request (see
index entry $GETB macro instruction) if you are to re-
ceive variable length records that do not contain record
separators. When OPC—BLK is specified in a GET request,
the length of the block received is moved to $BDREL in
the DTF. See index entry BSC DTF for the format of the
DTF.

Spanned: Spanned records can be fixed or variable length,
If you choose to use spanned records:

1. Specify RECL and BLKL according to the format,
f:xed or variable length, you choose {see two pre-
ceding paragraphs).

2. Specify SPAN-Y,

3. Specify a record separator character {RECSEP oper-
and). See index entry MLMP message formats
for an illustration of spanned records.

Note: The 3735 transmits spanned records. For for-
matting considerations unigue to the 3735, see /IBM
3735 Programmer’s Guide, GC30-3001.

Allocate BSC Fiies ($ALOC)

Every BSC file must be aliocated; that is, the BSCA required
by each file must be reserved for the file before the file can
be processed. All files in your program must be aillocated
before you begin any telecommunications |/O operations.
The $ALOC macro instruction generates code that effects

a branch to a system allocate routine. The system allocate
routine reserves the devices identified by the $ALOC macro
instruction.

Note: $ALOC must not be issued while BSC 1/0 operations
are being executed.

S$ALOC Macro Instruction Format

[[name] [$ALOC [(DTF-name]]

If you specify the keyword DTF, enter, as the parameter,
the name of the DTF (file) to be allocated. If the operand
is not given, the address of the DTF is assumed to be in
register 2.

If the DTF specified is in a chain, all DTFs following in the
chain are opened by this request. (MLTA DTFs must not
be in the chain. For information regarding MLTA, see /BM
System /3 Multiple Line Terminal Adapter RPQ Program
Reference and Component Description Manual,
GC21-7560.)

After SALOC is executed, register 2 contains the address
of the first DTF allocated.

Open BSC Files (3OPEN)

Every BSC file must be opened. The DTF and 1/O area
used by the file must be prepared to accommodate the
data composing the file, and a DTF must be generated.

The $OPEN macro instruction generates code that effects a
branch to a system open routine; the routine opens the files
identified by the $OPEN macro instruction.

Note: If you reopen a BSC file that has been closed (see
index entry $CLOS macro instruction), record length,
block length, and all other file attributes will be the same
as they were at the time the file was closed.

SOPEN Macro Instruction Format

[name] $OPEN [DTF—name]

If you specify the keyword DTF, enter, as the parameter,
the name of the DTF (file) to be opened. If the operand is
not given, the address of the DTF is assumed to be in
register 2.

If the DTF specified is in a chain, all DTFs following in the
chain are opened by this request. (MLTA DTFs must not
be in the chain. For information regarding MLTA, see /1BM
System /3 Multiple Line Terminal Adapter RPQ Program
Reference and Component Description Manual,
GC21-7560.)

Page of GC21-7573-4
Issued 21 December 1979
By TNL: GN21-5691

After SOPEN is executed, register 2 contains the address of
the last DTF opened.

Generate a Model 10 and Mode! 12 Checklist ($CKL)

The Model 10 Disk System, Model 12, and Model 15 use
a macro named $CKL to generate a checklist. Since there
are differences in parameters and in function, checklist
macros are discussed separately.

One $CKL macro instruction creates one entry in a check-
list. A checklist identifies DTFs to be checked for 1/O com-
pletion by the $CHK macro instruction. The kinds of

DTFs that can be identified by the checklist are: BSC DTFs,
MLTA DTFs, and console DTFs. The $CKL macro instruc-
tions required to create a particular checklist must be coded
consecutively. See index entry checklist for the format of
the checklist. See also index entry check for 1,0
completion ($CHK).

Model 10 and Model 12 $CKL Macro Instruction Format

[name] $CKL DTF—address [, SKIP—~Y/N}
[LREQK—-Y/N or ,CONS—Y/N]

LRTN—Y/N] [,LAST—Y/N]

name

A name given to a SCKL macro instruction becomes the
symbolic address of the first byte of the generated check-
list entry. The name can then be used to address the entry
if you want to change the entry.

DTF-—address

Specifies the symbolic address of the first byte of the DTF
for which this entry is being created.

SKIP—Y/N

Specifies whether this entry should be skipped when the
checklist is scanned; Y if yes, N if no.

MLMP Programming 17

Page of GC21-7573-4
Issued 21 December 1979
By TNL: GN21-5691

REQK—Y/N or CONS—Y/N

Specifies whether the check routine (see index entry $CHK
macro instruction) should check for console requests (REQ
key pressed); Y if yes, N if no. Whenever you want the
check routine to check for console requests, you must in-
clude a console DTF in the checklist and specify REQK—-Y
or CONS-Y for that entry. REQK—Y and CONS—Y are
ignored if they are specified for a DTF that is not a console
DTF. (A device code of X’10’ in the first byte of a DTF,
field 8BDDEV, denotes a console DTF.) If the operator
has pressed the REQ key, a completion code of X‘50° is
posted in the console DTF.

If a console DTF is to be used for both request key and
data input at the same time, two entries (REQK—Y and
REQK—N) must be specified in the checklist for that DTF.

For more information regarding console operations, see
I1BM System /3 Models 10 and 12 Control Programming
Macros Reference Manual, GC21-7562.

RTN—Y/N

Specifies whether you want control returned from the
check routine even if no 1/0 operation is complete; Y if
ves, N if no. The RTN operand is effective only when
specified for the first entry in the checklist, and applies to
all entries in the list. See completion code $BCCMP (index
entry completion code).

LAST—Y/N

Specifies whether this is the last entry in the checklist; Y
if yes, N if no. LAST—Y must be specified for the last
entry in the checklist.

Generate a Model 15 Checklist ($CKL)

One $CKL macro instruction creates one entry in a check-
list. A checkliist identifies DTFs to be checked for 1/0
completion or for depression of Program Function Key 9
(PF9). The kinds of DTFs that can be identified by the
checklist are: BSC DTFs, and dummy DTFs which are
15-byte DTFs used for the PF9 key. See index entry
checklist for the format of the checklist. See also index
entry check for 1/0 completion ($CHK).

18

Model 15 8CKL Macro Instruction Format

[name] $CKL DTF—address [,SKIP—Y/N]
[REQK—Y/N]
LRTN—Y/N] [,LAST—Y/N]
name

A name given to a $CKL macro instruction becomes the
symbolic address of the first byte of the generated check-

list entry. The name can then be used to address the entry
if you want to change the entry.

DTF—address

Specifies the symbolic address of the first byte of the DTF
for which this entry is being created. A 15-byte dummy
DTF is required to check whether Program Function Key 9
has been pressed. Displacement X'00’ should contain X‘10°
and a completion code will be returned in displacement X'Ol

SKIP-Y/N

Specifies whether this entry should be skipped when the
checklist is scanned; Y if yes, N if no.

REQK—Y/N

Specifies whether the check routine (see index entry
SCHK macro instruction) should check to see if the
Program Function Key 9 (PF9) has been pressed; Y if yes,
N if no. Whenever you want the check routine to check for
PF9 requests, you must include a dummy DTF in the
checklist and specify REQK—Y for that entry. REQK—Y is
ignored if it is specified for a DTF that is not a dummy
(PFQ) DTF. (A device code of X’10" in the first byte of a
DTF denotes a dummy [PF9] DTF.) If the operator has
pressed the PF9O key, a completion code of X'50’ is posted
at displacement X'0E’ of the dummy (PF9) DTF.

For more information regarding PF9 operations, see /BM
System/3 Model 15 System Control Programming Macros
Reference Manual, GC21-7608.

RTN-Y/N

Specifies whether you want control returned from the check
routine even if no 1/0 operation is complete; Y if yes, N if
no. The RTN operand is effective only when specified for
the first entry in the checklist, and applies to all entries in
the list. See completion code $8CCMP (index entry comple-
tion code).

LAST-Y/N

Specifies whether this is the last entry in the checklist, Y
if yes, N if no. LAST—Y must be specified for the last
entry in the checklist.

Generate a Polling/Addressing List ($POLB)

If your station is a control station (TYPE—CS in the $DTFB
macro instruction), you must generate a polling or address-
ing list in order to poll or address tributary stations. GET
requests require a polling list; PUT requests require an
addressing list. See index entries $GETB macro instruc-
tion, and $PUTB macro instruction.

One $POLB macro instruction creates one entry in a poll-
ing or addressing list; each entry contains one sequence of
polling or addressing characters. An addressing list con-
tains only one entry. Polling lists may contain a number
of entries; the $POLB macro instructions that create a potl-
ing list must be coded consecutively.

For the format of poiling/addressing lists, see index entry

polling/addressing list. See also index entry tributary
System/3 polling and addressing characters.

$POLB Macro Instruction Format

[name] $POLB 10—hex, TERMAD—hex LEN—decdig

[LLAST—N/OPEN/WRAP]

name

A name given to a $POLB macro instruction becomes the
symbolic address of the first byte of the polling/addressing
entry generated. The name can then be used to address
the entry if you want to change the entry. See also index
entry change a polling list ($BCPL).

ID—hex

Specifies two hexadecimal characters to identify this entry
in the polling/addressing list. Valid entries are X'00’ through
X'EF".

When an entry in a polling/addressing list is used to poll or
address a tributary station, MLMP places the entry ID in
the BSC DTF at $BDIND (see index entry BSC DTF for the
format of the DTF). If you specify a unique ID for each
entry in a polling list, you can determine which station was
polled last by checking the contents of $BDIND after a
completion code has been posted (see index entry SCHK
macro instruction).

You can specify which station will be polled first in a
polling sequence by moving the ID from the related polling
flist entry to the DTF before you issue the first GET request
for that file (see index entry $GETB macro instruction).
The ID you move must be different from the previous D

in $BDIND.

If you move X'FO’ to $BDIND all entries in the list are
activated, and polling begins with the first entry in the

list. If you move X'F1‘ to $BDIND polling begins with the
first entry in the list, but only entries that are currently
active are included in the poll.

When an MLMP program is assembied, $BDIND is set to
X‘F1'. MLMP always considers addressing lists to be
active.

For more information on how to change a polling list, see
index entry change a polling list ($BCPL).

TERMAD—hex

Specifies the hexadecimal representation of up to 7 polling
or addressing characters. The polling or addressing charac-
ters must not include any of the line control characters
shown in Appendix D. Appendix D also shows the polling
and addressing characters available for System/3 tributary
stations.

MLMP Programming 19

LEN—decdig

Specifies, in decimal, the number of bytes represented in
the TERMAD operand. Decdig must not be greater than 7,

LAST—-N

Specifies that this entry is not the last entry in the polling
list.

—OPEN

Specifies that this is the last entry in the polling/addressing
list, and that polling or addressing must end even if a posi-
tive response is not received ($BCNEG completicn code).

Note: After polling the last station in an open poliing list,
move the |D of the first entry in the polling list, (X'F0’,
or X‘F1') to $BDIND if you expect to use the polling list
again in your program. See the preceding description of
the 1D operand.

—WRAP

Specifies that this is the last entry in a polling list, or is an
addressing entry. If a positive response is not received,
polling must continue from the beginning of the list, or
addressing must continue, until a positive response is re-
ceived, an error is encountered, or LIMIT is reached (LIMIT
is defined in the $DTFB macro instruction).

Either LAST—OPEN or LAST—WRAP is required in the
last entry of a polling list and in all addressing entries. |f
LAST—WRARP is specified for a polling list, the polling
cycle can always be canceled by the $CANB macro instruc-
tion (see index entry $CANB macro instruction). However,
to prevent an infinite addressing loop in the event that a
negative response (NAK) is received from the terminal
addressed, LIMIT must be defined in $DTFB (see index
entry 8DTFB macro instruction) whenever LAST—WRAP
is specified for an addressing list.

Change a Polling List ($BCPL)

The $BCPL macro instruction enables you to activate and
deactivate selected entries in a polling list created by the
$POLB macro instruction. For example, you can use the
$BCPL macro instruction to:

® Deactivate entries you have decided not to use. You
may want to deactivate an entry if the terminal does not
respond to polling ($BCNON compietion code). See
index entry completion code.

® Reactivate entries that have been deactivated.

Note: $BCPL requires approximately 110 bytes of main
storage plus the space required by the parameter {ist. Un-
less you have a large number of polling entries to change,
you can activate and deactivate polling entries more effi-
ciently yourself by changing the status byte in polling
entries. See index entry polling/addressing list

$BCPL Macro Instruction Format

| [name] [$8CPL [[PARM—address] |

PARM-—address

Specifies the symbolic address of a parameter list you pro-
vide. The parameter list defines the changes you want to
make to a polling list. For the format of the parameter
list, see index entry parameter list for changing a polling
list or switched 1D list. You can use the $CHGB macro
instruction to generate the parameter list. See index entry
8CHGB macro instruction.

If the PARM operand is not specified, the address of the
parameter list is assumed to be in register 1.

After $BCPL is executed, register 1 contains the address of
the parameter list.

Generate a Parameter List for Changing a Polling List or a
Switched ID List ($CHGB)

The $CHGB macro instruction generates a parameter list
for changing a polling list (see index entry $8CPL macro
instruction) and for changing a switched 1D list (see index
entry $BCSW macro instruction). For the format of this
parameter list, see index entry parameter list for changing a
polling list or switched 1D list.

$CHGB Macro Instruction Format

[name] | $CHGB | TYPE-AM/AN/DM/DN,DTF—address,
NUM--hex,CHARS—hex

name

A name given to a SCHGB macro instruction becomes the
symbolic address of the first byte of the generated param-
eter list. The name can then be used to address specific
fields in the list if you want to change the fieids.

TYPE—
Specifies the changes to be made in the polling/addressing
or switched ID list.

AM

Activates selected entries, selecting only those entries whose
characters exactly match the characters specified in the
CHARS operand.

AN

Activates selected entries, selecting only those entries whose
first N characters match the first N characters specified in
the CHARS operand, where N is the number specified in
the NUM operand.

DM

Deactivates selected entries, selecting only those entries
whose characters exactly match the characters specified in
the CHARS operand.

DN

Deactivates selected entries, selecting only those entires
whose first N characters match the first N characters speci-
fied in the CHARS operand, where N is the number speci-
fied in the NUM operand.

DTF—address

Specifies the symbolic address of the DTF whose polling
list or switched 1D list is to be changed.

NUM—hex

Specifies in hexadecimal how many of the characters speci-
fied in the CHARS operand are to be compared to charac-
ters in polling iist or switched 1D list entries.

CHARS—hex

Specifies the hexadecimal representation of characters to
be compared to characters in polling list or switched |1D

list entries.

Allocate the Terminal Statistics Logging Area ($LOGB)
The $LOGB macro instruction allocates space for the
Terminal Statistics Logging Area (see index entry Terminal

Statistics Logging Area) for control stations (TYPE—CS in
$DTFB).

SLOGB Macro Instruction Format

| [name] | $LOGB | NUM—decdig, L EN—decdig |

name

A name given to a $LLOGB macro instruction becomes the
symbolic address of the first byte of the allocated Terminal
Statistics Logging Area and can be specified in the ERRLOG
operand of the appropriate $DTFB macro instruction.

MLMP Programming 21

NUM—decdig

Specifies in decimal the number of entries the Terminal
Statistics Logging Area must contain. The value for NUM
is calculated in one of two ways:

1. Polling and/or addressing, no clusters:

NUM = number of terminals to be polled +
[number of terminals to be addressed or
number of terminals for which an online
test may be requested (see index entry
online test}]

For exampie:

S/3

56 83

Polled terminals = 4
Addressed terminals = 4

NUM =8

2. Polling and/or addressing clusters:
NUM = number of control units to be polled +
number of devices to be polled +

number of devices to be addressed

For example:

S/3

o
DG © O OO

Control units polled = 3
Devices polled = 8
Devices addressed = 8

NUM =19

22

LEN—decdig

Specifies in decimal the number of polling/addressing char-
acters used in a polling/addressing sequence for this
program. The maximum number for each terminal is 7.

Generate a Switched ID List ($SWIB)

If your station is an autoanswer or manual answer station
(TYPE—AA or TYPE—-MA in $DTFB), you can use the
$SWIB macro instruction to generate a switched ID list
containing the station identification sequences that your
station will accept. For the format of this list, see index
entry switched 1D list format.

Each $SWIB macro instruction creates one entry in the
switched ID list; each entry contains one sequence of sta-
tion 1D characters. $SWIB macro instructions must be cod-
ed consecutively.

$SWIB Macro Instruction Format

[name] |$SWIB {SELECT—hex, STATID—hex,
LEN—decdig [,LAST—-Y/N]

name

A name given to a $SWIB macro instruction becomes the
symbolic address of the first byte of the switched ID entry
generated. The name can then be used to address the entry
if you want to change the entry (for example, activate or
deactivate an entry) by using the $$BCSW macro instruction.

SELECT—hex

Specifies two hexadecimal characters for selecting this entry
in the switched ID list. Valid entry selection characters
are X’00’ through X'EF".

When an entry in the switched |D list is compared to an
identification sequence received from a remote terminal,
MLMP places the entry selection characters in the BSC DTF
at $BDRLN (see index entry BSC DTF for the format of
the DTF). If you specify unique entry selection characters
for each entry in a switched ID list, you can determine
which identification sequence you accepted last by check-
ing the contents of $SBDRLN after a completion code has
been posted on your last MLMP /O request.

If you want to communicate with only one of several pos-
sible terminals, move the entry selection characters asso-
ciated with the terminal’s expected identification sequence
to the DTF before you issue the first GET request to that
file. The entry selection characters you move must be dif-
ferent from the previous entry selection characters in
$BDRLN.

If you move X'FO’ to $BDRLN, all entries in the switched
1D list are activated before the identification sequence re-
ceived is inspected. Entries in the switched ID list are then
compared to the ID received, beginning with the first entry
in the list. If you move X’F1’ to $BDR LN, only those
entries currently active in the switched ID list are used to
inspect a received station ID.

When an MLMP program specifying SWLIST—Y in $DTFB
is assembled, $BDRLN is set to X'F1’ to indicate that any
active identification sequence in the switched ID list is
acceptable.

For more information on how to change a switched ID list,
see index entry $CHGB8 macro instruction.

STATID—hex

Specifies the hexadecimal representation of a station identi-
fication sequence. The maximum number of characters is
15.

LEN—decdig

Specifies, in decimal, the number of bytes represented in
the STATID operand. The maximum number of bytes is
15.

If you are using a switched ID list but you are willing to
establish a connection with a terminal that does not send an
identification sequence, you must define in your list an
entry with LEN—O specified. (If an entry with length =
zero is encountered in the list, a connection is established
with the calling station whether a station ID was received
or not. Consequently, if an entry with LEN—O must be
used, place the entry at the end of your list so you can
check station 1Ds that are received.)

LAST—Y/N

Specities whether this is the last entry in the switched 1D
list; Y if yes, N if no. LAST-Y causes a one-byte end-of-
list indicator to be generated. [f end-of-list is encountered
before an acceptable station identification sequence has
been received, an invalid ID completion code ($BCBID} is
posted (see index entry completion code).

Change a Switched ID List ($8CSW)

The $BCSW macro instruction enables you to activate and
deactivate selected entries in a switched ID list created by
the $SWIB macro instruction. For example, you can use
$BCSW to:

® Deactivate entries you have decided not to use. You
may want to deactivate an entry to prevent communica-
tion with a particular terminal, or to prevent communi-
cation with a terminal that does not send an identifica-
tion sequence (deactivate the entry with _LEN -0
specified).

® Reactivate entries that have been deactivated.

Note: $BCSW requires approximately 110 biytes of main
storage plus the space required by the parameter list. Unless
you have a large number of switched ID entries to change,
you can activate and deactivate switched 1D entries more
efficiently yourself by changing the status byte in switched
ID entries. See index entry switched 1D list.

$BCSW Macro Instruction Format

[[name) | $BCSW L [PARM-address]]

PARM-—address

Specifies the symbolic address of a parameter list you pro-
vide. The parameter list defines the changes you want to
make to a switched ID list. For the format of the param-
eter list, see index entry parameter list for changing a poli-
ing list or a switched 1D list. You can use the $CHGB
macro instruction to generate the parameter list. See index
entry $CHGB macro instruction.

If the PARM operand is not specified, the address of the
parameter list is assumed to be in register 1.

After SBCSW is executed, register 1 contains the address of
the parameter list.

MLMP Programming 23

Generate a Translate Parameter List (§TRL) Generate a Translate Table ($TRTB)

The $TRL macro instruction generates the parameter list The $TRTB macro instruction generates an EBCDIC to
required by the System/3 translate routine. Appendix C ASCII or an ASCII to EBCDIC translate table. The table
shows the format of the parameter list. is generated in the format required by the $TRL macro in-

struction {see index entry $TRL macro instruction), and

can be addressed by $TRL when you translate data.
$TRL Macro Instruction Format

[name] | $TRL TO-—address, FROM—address, S$TRTB Macro Instruction Format
LEN—~decdig,TRT —address

L{name]] $TRTB | (CODE-E/A] [HEX—hex]

A name given to a $TRL macro instruction becomes the
symbolic address of the first byte in the generated para-
meter list. The name can then be used to address specific
fields in the list if you want to aiter the fields.

name

A name given to a $TRTB macro instruction becomes the
symbolic address of the first byte of the generated translate

TO — address table.

Specifies the symbolic address of the first byte of the area
to which translated data will be moved. CODE-E/A

Specifies whether the character code of the data to be
FROM — address translated is EBCDIC (E) or ASCil (A). $TRTB generates a
258-byte table if CODE—E is specified and a 130-byte table

Specifies the symbolic address of the first byte of the data if CODE—-A is specified.

field to be translated. This address can be the same as the

address specified in the TO operand. Note: if you specify CODE—A, you might want to code
“DC 128XL1°FF’" after the STRTB macro instruction to
allow for the occurrence of invalid ASCII characters. See

LEN — decdig index entry System/3 translate tables.

Specifies the decimal length of the FROM field.
TRT — address

Specifies the symbolic address of the first byte of the trans-
late table.

24

HEX—hex

Specifies the hexadecimal pattern with which to replace any
invalid characters found during translation. If the HEX
operand is not specified, the replacement character is the
substitute character — EBCDIC-3F, ASCII-1A.

System/3 Translate Tables

Translate Tables Generated by $TRTB: Translate tables
generated by the $TRTB macro instruction are generated in
the following format:

Byte Field Description

0 Contains X‘FF’. This is the hexadecimal
value used in the translate table to identify
characters that cannot be translated from
EBCDIC to ASCII if CODE—E was specified
in $TRTB or from ASCII to EBCDIC if
CODE-A was specified.

1 Byte contents to be used in place of charac-
ters that are not translated.

2-n Actual translate table.

The translate table, bytes 2-n, is constructed so that the
hexadecimal value of a character to be translated can be
used as a displacement (from byte 2) to locate the correct
translation in the table.

When the correct translation for a byte is located in the
table, the translation is compared to byte 0. If the two
bytes are the same:

® The completion code in the transiate parameter list
(see index entry translate parameter list) is set to indi-
cate that an invalid character was detected, and

® The contents of byte 1 are substituted for the original
character.

If the translation of a character is not the same as the
contents of byte 0, the hexadecimal value in the trans-
late table is substituted for the original character.

User-Defined Translate Tables: 1f you don’t want to trans-
late certain valid EBCDIC or ASCI| characters {you might
not want to translate BSC line control characters, for exam-
ple), you can generate your own translate table. However,
you must generate the table in the format cescribed in the
preceding paragraphs.

Choose hexadecimal values for bytes 0 and 1 of the table,
Then, as you construct the rest of the table, substitute the
value of byte O for each character that cannot be translated
and for each valid character that you choose not to translate.

Generate an Interface to the Translate Routine ($TRAN)

The $TRAN macro instruction generates linkage to the
the System/3 translate routine. After issuing

$TRAN, check the completion code in the translate para-
meter list to determine whether or not invalid characters
were found. See index entry transiate parameter list for

the format of the translate parameter list.

MLMP Programming 25

STRAN Macro Instruction Format

[[name]l $TRAN [TRL—address]J

TRL—address

Specifies the symbolic address of the translate parameter
list. If notgiven, the address is assumed to be in register 1.
After $TRAN is executed, register 1 contains the address
of the translate parameter list.

Generate an Online Test Parameter List (SRFTL)

The $RFTL macro instruction generates the parameter list
required for online test requests (see index entry online test
requests). For the format of the parameter list, see index
entry online test parameter list.

$RFTL Macro Instruction Format

[name] $RFTL TYPE—00/01/06/14 NUM—decdig,
LEN—decdig [,CODE—E/A]
[,TERMAD —hex}
name

A name given to a $RFTL macro instruction becomes the
symbolic address of the first byte of the generated param-
eter list. The name can then be used to address specific
fields in the list if you want to change the fieids.

TYPE—-
Specifies, in decimal, the online test type:
00

Receive and acknowledge the test message the number
of times specified in the NUM operand. The formatted
test request must not be more than 300 characters long.
See index entry online test requests.

01

Transmit the test message the number of times specified
in the NUM operand. The formatted test request must
not be more than 300 characters long. See index‘entry
online test requests.

26

06

Transmit 36 alphameric characters, A-Z and 0-9, the
number of times specified in the NUM operand. Trans-
mit the characters in ASCI| (ASCI! adapter only).

14

Transmit 36 alphameric characters, A-Z and 0-9, the

number of times specified in the NUM operand. Trans-

mit the characters in EBCDIC (EBCDIC adapter only).
NUM—decdig
Specifies, in decimal, the number of times to transmit or re-
ceive the test message. Valid entries are 1-99 (leading
zeroes must not be used).

LEN—decdig

Specifies, in decimal, the number of addressing characters
(0-7). LEN must be O for:

® All non-multipoint lines (TYPE—PP,AC,MC AA, or MA
in $DTFB)

® Multipoint control stations {TYPE~CS in $DTFB)

® Multipoint tributary stations (TYPE—MP in $DTFB)
requesting online test type 00.

LEN must be greater than 0 only for muitipoint tributary
stations {TYPE—MP in $DTFB) requesting some test type
other than 00.

CODE—E/A

Specifies whether the character code of your data is
EBCDIC (E) or ASCII (A). The character code you use is
determined by the transmission code feature of your BSCA.

TERMAD—hex

Specifies the hexadecimal representation of the addressing
characters to be used, not more than 7 bytes. The number of
bytes required to contain the addressing characters must be
equal to the number specified in the LEN operand.

INITIATING DATA TRANSFER
To initiate data transfer you must issue:

® GET requests to receive data ($GETB macro instruc-
tion), or

® PUT requests to transmit data ($PUTB macro instruc-
tion).

All GET and PUT requests are executed in move mode.
The first request causes MLMP to establish line connections
according to the operands specified in the $DTFB macro
instruction. An initial GET request can be canceled after

it has been issued (SCANB macro instruction).

You must check for the completion of every BSC 1/0
operation you initiate (SCHK macro instruction). That
is, you must issue $CHK after every GET request, PUT re-
quest, and request for online test (see index entry online
test) before you issue another GET request for the same
line, PUT request, or request for online test. You must
also issue $CHK after each $CANB macro instruction.

Move Mode

Data is moved from the MLMP 1/0 buffers to your logical
buffer on GET requests, and from your logical buffer to
the MLMP 1/0 buffers on PUT requests. A single GET or
PUT request does not necessarily result in the actual trans-
mission of data over a telecommunications line.

Records for conversational files (CONV—Y in the $DTFB
macro instruction) are transmitted one at a time. Con-
sequently, each GET or PUT request causes MLMP to re-
ceive or transmit one record.

For all nonconversational files, however, a GET request
causes data to be transmitted from the remote terminal
only if the GET request moves to your logical buffer the
last record contained in an MLMP 1/O buffer. After the
GET request is executed, an 1/0 buffer is empty and avail-
able to MLMP for receiving more data, and transmission
from the remote terminal can continue.

A PUT request for a nonconversational file causes data to
be transmitted to the remote terminal only if the record to
be moved to an MLMP 1/0 buffer cannot be contained in
the current 1/0 buffer.

Issue a GET Request ($GETB)

The $GETB macro instruction instructs MLMP to move data
from an MLMP /0 buffer to your logical buffer. Do not
attempt to move data to or from your logical buffer after
issuing a GET request until you have been posted a DTF
completion code by the check routine. See index entry
SCHK macro instruction.

3GETB Macro Instruction Format

$GETB [DTF—address] [,REJECT—address]

[,OPC—N/BLK]

[name]

DTF—address

Specifies the symbolic address of the DTF (file) for which
the GET request is issued. If not given, the address of the
DTF is assumed to be in register 2.

After $GETB is executed, register 2 contains the address
of the DTF for which the GET request was issued.

REJECT—address

Specifies the symbolic address of a user routine to receive
control if the GET request cannot be accepted by MLMP.
You must provide the routine. The routine should check
the DTF completion code to determine why the GET re-
quest was not accepted. See index entry completion code.

If the REJECT operand is not specified, check for a DTF
completion code of $BCREQ after each GET request to
determine whether or not the request was accepted. See
index entry completion code,

You might want to print a message to signal rejected GET
request. In most cases, a request is rejected because of a
logic error in your program. Check your logic flow, para-
meter lists, and DTF for errors. Consider using the $SNAP
macro instruction to dump your program. See index entry
SSNAP macro instruction,

MLMP Programming 27

OPC-N

Specifies normal blocking and deblocking; that is, data
received will be stripped of control characters and moved to
your logical buffer (addressed by the RCAD operand in
$DTFB) one record at a time.

OPC—-BLK

Specifies that data received will be moved to logical buffer
one block at a time. Each block of data moved will include
line control characters. The length of the block moved

will be placed by MLMP in $BDREL of the DTF. For the
format of the DTF, see index entry BSC DTF.

OPC—BLK is recommended for GET requests for conversa-
tional files. See index entry conversational reply for the
significance of OPC—BLK in GET requests for a conversa-
tional file. OPC—BLK is also recommended for GET re-
quests issued to receive variable length records that do not
contain record separators. See index entry $DTFB con-
siderations for more information on variable length records.

Note: If you specify OPC—BLK, be sure your logical buffer
(identified by the RCAD operand in the SDTFB macro
instruction) is large enough to contain an entire biock of
data plus line control characters. For a description of the
RCAD operand, see index entry $DTFB macro instruction.

Issue a PUT Request ($PUTB)

The $PUTB macro instruction instructs MLMP to move

data from your logical buffer to an MLMP 1/0 buffer. Do
not attempt 10 move data Y6 ‘or from your logical buffer
after issuing a PUT request until you have been posted a
DTF completion code by the check routine. See index entry
$CHK macro instruction.

$PUTB Macro Instruction Format

[name] $PUTB [DTF—address] [,REJECT—address]

{,OPC—N/EOB/EOF/EOW]

28

DTF—address

Specifies the symbolic address of the DTF (file) for which
the PUT request is issued. |f not given, the address of the
DTF is assumed to be in register 2.

After $PUTB is executed, register 2 contains the address of
the DTF for which the PUT request was issued.

REJECT—address

Specifies the symbolic address of a user routine to receive
control if the PUT request cannot be accepted by MLMP,
You must provide the routine. The routine should check
the DTF completion code to determine why the PUT re-
quest was not accepted. See index entry completion code.

If the REJECT operand is not specified, check for a DTF
completion code of $BCREQ after each PUT request to
determine whether or not the request was accepted. See
index entry completion code.

You might want to print a message to signal a rejected

PUT request. In most cases, a request is rejected because of
a logic error in your program. Check your logic flow, para-
meter lists, and DTF for errors. Consider using the $SNAP
macro instruction to dump your program. See index entry
$SNAP macro instruction.

OPC—N

Specifies normal blocking and deblocking. That is, data
will be moved from your logical buffer (addressed by the
RCAD operand in $DTFB) to available 1/O buffers one
record at a time.

OPC—EOB

Specifies that in addition to performing normal blocking
operations, MLMP must make the current record the last
record in the current output buffer, thereby forcing an end-
of-block condition. ETB (ETX for conversational files)

is transmitted at the end of this record.

See index entry conversational reply for the significance
of OPC—EOB in PUT requests for conversational files.

OPC--EOF
Specifies that MLMP transmit EOT to indicate end-of-file.

Note: If you specify OPC—EOF in the first PUT request

for a file, or in a PUT request that immediately follows a

GET request for the same file, the PUT request will be re-
jected and the $BCIGN completion code will be posted in
the DTF. See index entry completion code.

OPC—EOW

Specifies that EOT will be sent after each record in response
to ACK or WACK. Each transmission consists of only one
record when OPC—EOW is specified.

If OPC—EOW is specified in PUT requests for a System/3
control station’s files (TYPE—CS in the $DTFB macro
instruction), tributary stations can process each record as

it is received from the control station without delaying
transmissions between the control station and other tribu-
taries in the network. After EOT has been sent to a tribu-
tary in response to ACK or WACK, other tributaries can

be polled or addressed. The tributary that received EOT can
also be polled or addressed again.

For more efficient use of line time, OPC—EOW is recommen-
ded when you transmit from a control station to a 2972/
2980 terminal. You must specify OPC—EOW if you are
transmitting to a 3270 printer. However, EQT is not a

valid response to WACK for every kind of terminal. Know
the restrictions pertaining to the terminals you use before
specifying OPC—EOW.

Note: Don't specify OPC—EOW for a conversational file
{CONV-Y in the $DTFB macro instruction) if you expect
to receive a conversational reply. If you do specify OPC—
EOW for a conversational file, conversational replies will
be ignored and lost.

Cancel a GET Request {$CANB)

The $CANB macro instruction instructs MLMP to cancel

a GET operation that is in progress. $CANB enables you to
override wrapped polling lists if you are a control station
{TYPE—CS in the $DTFB macro instruction) and cancel
initial GET requests.

Issue $CHK for each accepted cancel GET request. If the
check routine posts the $BCEOT compietion code, the

GET request was canceled by $CANB. If any other com-
pletion code is posted, it pertains to the GET request—$CANB
has been ignored and you must proceed according to the
completion code posted for the GET request.

$CHK needn’t be issued for a GET request before it is
canceled. However, if you are polling with a wrapped poll-
ing list or waiting to be addressed, a way to determine
whether or not to cancel the GET request is:

1. Check the GET request with RTN—Y specified in
$CKL (see index entry $CKL macro instruction).

2. Look for the $8CCMP completion cocle (see index
entry completion code). If $8CCMP is posted by
the check routine and none of the DTFs in the
checklist indicate completion yet, you might want
to stop polling or waiting to be addressed.

S$CANB Macro Instruction Format

[[name] [$CANB [IDTF—sddress) |

DTF-—address

Specifies the symbolic address of the DTF (file) for which
the cancel request is issued. If not given, the address is
assumed to be in register 2.

After SCANB is executed, register 2 contains the address of
the DTF for which the cancel GET request was issued.

Check for I/O Completion ($SCHK)

The $SCHK macro instruction generates linkage to a check
routine. The check routine checks for 1/0 completion by
examining the DTFs identified in the list created by the
$CKL macro instruction. See index entries check/ist and
$CKL macro instruction for a description of the checklist.

MLMP Programming 29

If an 1/O operation is complete, the address of the comple-
ted DTF is returned in register 2 after the complietion code
is posted in the DTF (see index entry completion code).

® Model 10 and Model 12: |If the REQ key on the 5471
Printer Keyboard was pressed, and the related DTF
appears in the checklist (REQK-Y or CONS—Y specified
for the entry in the checklist), a completion code of
X860’ is posted in the console DTF and the address of
the DTF is returned in register 2.

® Model 15: If the Program Functicn Key 9 {(PF9) was

pressed and the related dummy DTF appears in the check-

list (REQK-Y specified for the entry in the checklist),
a completion code of X560’ is posted in the dummy
DTF and the address of the DTF is returned in register 2.

Subsequent DTFs in the checklist are not tested if a com-
pleted DTF or a console/PF9 request is found.

To get completion codes posted in all DTFs in a list, con-
tinue to issue $CHK. If the check routine finds a comple-
ted BSC DTF with a $BCERR, $BCTIM, $BCDAT, $BCLOS,
$BCCON, $BCRSP, or $BCADP completion code (see

index entry completion code}). MLMP logs the following
message on the system logging device:

BSCA LINE—{1 or 2) CODE cc—{description)
Compietion code
TERMINAL ADDRESS—(characters)

Polling or addressing characters

Printed for control stations only

If no 1/0 completion is found, the $BCCMF or $8CACD
completion code is posted in the fast DTF in the checkilist
and the address of the DTF is returned in register 2 if:

@ You specified RTN=Y in the $CKL macro instruction
that created the first entry in the checkiist ($BCCMP
completion code), or

@ Each entry in the checklist is ciosed, inactive, or has

the skip indicator on (SKIP—Y specified in $CKL,)
{$BCACD completion code).

30

Model 10 and Model 12: Otherwise, the check routine does
not return controt, but issues a halt and waits for an interrupt.
The halt displayed on the stick lights is {]. After a BSCA or
MLTA interrupt, the [1 halt is automatically reset and the
check routine searches the checklist again from the begin-
ning. The check routine does not automatically reset the

[] halt after 5471 compietions; you must manuaily reset

the [] hait if you are currently using the printer keyboard.

You must check for completion of all telecommunications
1/O operations, including those controtled by MLTA. (For
information regarding MLTA, see /BM System/3 Multiple
Line Terminal Adapter RPQ Program Reference and Com-
ponent Description Manual, GC21-7560.) Issue SCHK for
every accepted GET request ($GETB), PUT request
($PUTB), and request for online test ($RFT) before issuing
another $GETB, $PUTB, or $RFT for the same line. (For
a description of online test, see index entry online test.)

You must also issue $CHK after accepted cancel GET re-
quests (SCANB). You can issue $CHK to check for com-
pletion of printer-keyboard 1/O and request operations.
{Model 10 and Model 12) or PF9 key requests (Model 15).

You can save time in your program by doing some pro-
cessing, that is independent of a particular 1/O request,
before you check the request. When $CHK is then issued,
the check routine will not have to wait so iong for com-
pletion to occur, and will return control to you sooner.

Model 10 and Model 12 Note: If you want to use the printer
keyboard REQ key for operator interaction and your program
is running in a DPF (dual programming feature) system, allo-
cate the REQ key to your program by link-editing the pro-
gram as an inquiry invoking module (ATTR—INQC in the //
OPTIONS statement). For more information on link edit-
ing, see /BM System/3 Overlay Linkage Editor Reference
Manual, GC21-7561. For information on DPF, see the

appropriate components reference manual listed in the
Preface.

$CHK Macro Instruction Format

[Tname] [$CHK JICKL—address] |

CKL--address

Specifies the symbotic address of the first byte of a check-
list or group of checklist entries. If none is given, the
address of the checklist or checklist entries is assumed to
be in register 2.

Techniques for Initiating Data Transfer Address (Control Stations)

Poll (Control Stations) If your station is a control station (TYPE--CS in the $DTFB
macro instruction), MLMP addresses a tributary station

I your station is a control station (TYPE—CS in the to transmit data to it. To address a tributary station:

$DTFB macro instruction), MLMP polls the tributary
stations to receive data from them. To poll a tributary 1.
station:

Issue a PUT request ($PUTB) for the transmit file.
When the request is accepted, MLMP will address

Issue a GET request (§GETB) for the receive file.
When the request is accepted, MLMP will poll the

the station in the addressing list identified by the
transmit file’s DTF.

first station in the polling list identified by the re- 2. After issuing $PUTB, determine whether the PUT
ceive file’s DTF. MLMP continues to poll stations request was accepted (see index entry completion
in the list until: code). (If you specified REJECT—address in the
$PUTB macro instruction, you don't have to deter-
® A station responds by sending data. mine whether the PUT request was accepted. See
index entry $PUTB macro instruction.,)
® An active station fails to respond.
3. If the PUT request is accepted by MILMP, issue a
® All stations are polled the number of times speci- check request ($CHK).
fied in the LIMIT operand of the $DTFB macro
instruction. 4, Continue according to the completion code posted.

® No active entries exist in the polling list.

After issuing $GETB, determine whether the GET
request was accepted (see index entry completion
code). (If you specified REJECT—address in the
$GETB macro instruction, you don’t have to deter-
mine whether the GET request was accepted. See
index entry $GE TB macro instruction.)

If the GET request was accepted by MLMP, issue
a check request ($CHK).

Continue according to the completion code posted.
If the $BCDNE completion code {successful com-
pletion) is posted, you can continue to receive data
(issue $GETB) until the $BCEOT completion code
{end-of-file received) is posted. Another GET re-
quest then reinitiates polling; a PUT request ($PUTB)
initiates addressing.

If the completion code is $BCNEG, you may have
received a reverse interrupt request (RV1) from the
addressed terminal. Check RVIADR (specified in
the $DTFB macro instruction) to determine whether
or not you received an RVI whenever the $BCNEG
completion code is posted to an addressing attempt.
If you did receive an RV from the addressed ter-
minal, poll the terminal {see index entry pol/).

MLMP Programming 31

Addressing Considerations: |f files for the tributaries in

a network are the same in terms of record length, block
length, line code, conversational mode, I TB checking, and
transparency, you need only one DTF to address all the
tributary stations in the network. Using only one DTF, you
can address the tributaries in either of the following two
ways. (Though completion codes are not discussed in the
following procedures, check for completion as always.)

1. Use several addressing entries:

a. Create an addressing entry for each tributary you
want to address (see index entry $POLB macro
instruction).

b. Specify in the LISTAD operand of the $DTFB
macro instruction the location of the first address-
ing entry you want to use.

c. Issue a PUT request ($PUTB).

d. Issue a PUT request with OPC—EOQOF specified
(see index entry $SPUTB macro instruction) when
you are done transmitting to the tributary.

e. Change field $BDLST in your DTF (see index
entry BSC DTF for the format of the DTF) to
point to the next addressing entry you want to
use.

Repeat steps (c) through (e} until you have
finished transmitting.

2. Use only one addressing entry:

a. Create an addressing entry for the first tributary
you want to address {see index entry $POLB
macro instruction).

b. Specify in the LISTAD operand of the $DTFB
"macro instruction the location of the addressing
entry.

c. Issue a PUT request (SPUTB).

d. Issue a PUT request with OPC—EOF specified
(see index entry $PUTB macro instruction) when
you are done transmitting to the tributary.

e. Move the next tributary’s addressing characters
into the third field of the existing addressing entry
(see index entry polling/addressing list for the
format of addressing entries).

Repeat steps (c) through (e) until you have finished
transmitting.

32

Respond to Polling or Addressing (Tributary Stations)

A tributary station (TYPE—MP in the $DTFB macro in-
struction) monitors a multipoint line for polling or address-
ing characters only when the tributary is in control mode.
MLMP establishes control mode by performing a receive-
initial (RCV1) operation. The receive-initial operation is
performed when the tributary issues the first PUT ($PUTB)
or GET ($GETB) request. If the tributary then receives

its polling or addressing characters, the tributary enters
text mode and data transmission to or from the control
station can proceed.

To monitor the line for polling characters, issue a PUT
request. If the $BCDNE completion code is posted after
an accepted PUT request, you have transmitted data to
the control station.

To monitor the line for addressing characters, issue a GET
request. If the SBCDNE completion code is posted after
an accepted GET request, you have received data from the
control station.

To re-enter control mode after transmitting or receiving
end-of-file (EOT), issue a PUT or GET request. (Control
mode is re-established automatically if you specified
AUTORS-Y in your $DTFB macro instructions. See index
entry $DTFB macro instruction.)

Note: A System/3 tributary station is committed at any
particular time to monitoring either for polling or for
addressing characters. |f you are looking for one kind
and the control station is transmitting the other, data
transmission between you and the control station will not
occur; you will be posted the $BCNCN completion code
(see index entry completion code).

Receive Only

Issue GET requests (8GETB) for the receive file until the
$BCEOT completion code is posted in the DTF (after
$CHK is issued). $BCEOT indicates that you have received
end-of-file (EOT) from the remote terminal. See index
entry terminating data transfer for MLMP end-of-job in-
formation.

Transmit Only

Issue PUT requests (SPUTB) for the transmit file until the
entire file has been transmitted, then send end-of-file (EOT).
End-of-file can be sent by specifying OPC—EOQF in a PUT
request (see index entry $PUTB macro instruction), by
issuing a request for a different file, or by closing ($CLOS)
the file. See index entry terminating data transfer for
MLMP end-of-job information.

Conversational Reply

If you want to transmit or receive conversational replies,

you should be aware of the BSC line conventions pertain-

ing to the use of the ETB, ETX, and EOT line control char-
acters. The following discussion describes the conventions
as they relate to conversational replies. Whenever a BSC pro-
gram violates the conventions described, the effect upon

the program may not be predictable.

Transmitting from a Conversational File: When you trans-
mit from a conversational file (CONV—Y in the $DTFB
macro instruction), each PUT request for which OPC—N

is specified causes transmission of one record in the follow-
ing format:

D S E
L T Text T
E X B
4

Transparency Only

PUT requests for which OPC—EOB is specified causes
transmission of records in this format:

D S E
L T Text T
E X X
t

Transparency Only

By convention, you cannot send a conversational reply in
response to a message ending with ETB. If you are trans-
mitting to a terminal that may want to send a conversation-
al reply back to you and you are ready to accept a conver-
sational reply, you must notify the terminal that you will
accept a conversational reply by transmitting a message
ending with ETX. Since line procedure requires that at
least two messages be sent from one terminal before the
other terminal can respond with a conversational reply, you
must transmit a message ending with ETX in one of two
ways:

® |f you are transmitting two or more consecutive mes-
sages to the remote terminal, specify OPC—EOB in
the last PUT request issued.

® If you are transmitting only one data message to the
remote terminal, follow the message with a nulli mes-
sage. A nuil message is STX ETX, and is transmitted
by changing $BDREL in the DTF to zero, then issuing
a PUT request for which OPC—EOB is specified. Before
transmitting a null message, however, be sure the re-
mote terminal can accept null messages. {If a null mes-
sage is received, the $SBCNDT compietion code is posted.
See index entry completion code.)

Once you have transmitted a message from a conversational
file, even if it was a nuill message, you must wait for the
$BCCRP completion code to be posted before you can issue
a GET request for the file (see index entry completion
code).

Note: |If you are going to transmit from a conversational
file after you have received records for the file, reset
$BDREL if the record length you want to transmit is dif-
ferent from the record length you've been receiving.

Receiving to a Conversational File: If you are receiving
messages to a conversational file {CONV—Y in the $DTFB
macro instruction) and you want to transmit a conversa-
tional reply, you can determine whether the remote ter-
minal will accept a conversational reply by looking for a
message ending with ETX. By specifying OPC--BLK in
the GET requests for a conversational file, vou can have

a message plus its control characters moved from the BSC
1/0 buffers to your logical buffer (addressed by the RCAD
operand in $DTFB). That is, messages received will be
moved to your logical buffer in the following format:

S E E
T Text {if any) T o T
X B X

MLMP Programming 33

Since the length of the message received is in $BDREL of
the DTF, you can use $BDREL to locate the last character
received to determine whether it was ETB or ETX. If the
message ended with ETB, you cannot send a conversational
reply; you can send a conversational reply if the message
ended with ETX.

Closing a Conversational File: After all messages for a
conversational file have been sent and received, the terminal
that sent the last message, even if it were a null message,
must also send EOT. EOT can be sent by specifying OPC—
EOF in a PUT request {see index entry $PUTB macro
instruction), by issuing a request for a different file, or by
closing ($CLOS) the file. See index entry terminating data
transfer for MLMP end-of-job information.

Always send EOT immediately after transmitting the last
message for a file. If the terminal receiving the last mes-
sage should transmit EOT before you do, your conversa-
tional file will be terminated with a permanent error posted
in the DTF ($BCERR completion code).

Summary:

® If you are transmitting from a conversational file, notify
the remote terminal that you will accept a conversation-
al reply by: (1) specifying OPC—EOB in your last PUT
request if you are sending two or more consecutive
messages, or (2) transmitting a null message.

® If you are receiving messages to a conversational file,
specify OPC—BLK in your GET requests and look for
ETX at the end of messages received to determine when
you can send a conversational reply.

® If all messages for your conversational file have been
sent and received and you sent the last message, trans-
mit EOT.

The two flowcharts that follow outline the techniques for
transmit-with-reception-of-conversational-reply and receive-
with-transmittal-of-conversational-reply.

Transmit with Reception of Conversational Reply: The
GET and PUT requests shown are issued for the same file.
See index entry completion code for a definition of the
codes appearing in the following flowchart.

@

T

Issue SPUTB to transmit
a message. Issue $SCHK
to check for 1/O
completion.

No

Completion
code = $BCDNE

Issue $PUTB to transmit
ETX (OPC—EOB). lssue
$CHK to check for 1/0Q
completion.

More than one
PUT left

Completion Completion Respond :o'
code = $BCDNE code = $8CCRP unsuccessfu
PUT request.

Yes

Issue $GETB (OPC—BLK)
to receive data. Issue

l $CHK to check for 1/0

completion.

Transmit EOT.

Completion No
code = $BCEOT

Completion
code = $BCDNE

Yas

Respond to
unsuccessful
GET request.

ETX raceived

End-of-file
received.

Note: MLMP does not block and deblock data for a file
when you specify that the file can receive conversational
replies.

MLMP Programming 35

Receive with Transmittal of Conversational Reply: The
GET and PUT requests shown are issued for the same file.
See index entry completion code for a definition of the
codes appearing in the following flowchart.

—O

Issue $GETB (OPC—-BLK)
to receive data. Issue
$CHK to check for 1/0
completion.

c leti Completion Respond to
ompletion unsuccessful
code = $BCDNE code = $8CEOT GET request.

Yes

End-of-file
recsived.

ETX received

Yes

tssue $PUTB to transmit
a message. Issue $CHK
to check for 1/O
completion.

No

Completion
code = $BCDNE

Issue $PUTB to transmit
ETX (OPC—EOB). Issue
$CHK to check for 1/0
compiletion.

More
than one PUT
left

Completion
code = $BCONE

Completion
code = $BCCRP

T it EOT.
Note: MLMP does not block and deblock ransmit

data for a file when you specify that the
file can transmit or receive conversational I
replies.

36

No

1

Respond to
unsuccessful
PUT request.

Receive Interspersed with Transmit

The following chart outlines the technique for receive-

interspersed-with-transmit. See index entry completion

Receive-interspersed-with-transmit differs from receive-
with-transmittal-of-conversational-reply in two ways:

® One DTF is required to receive data; another is required
to transmit data.

® Reverse interrupt (RVI) request is used.

Comon

Issue $GETB to receive
data. Issue $CHK to
check for 1/0 completion.

Completion
code = $BCEOT

Completion
code = $BCDNE

Set on RVIMSK
(You must not set
RVIMSK on before the
‘. initial GET request.)

Issue $GETB to continue
to receive data. Issue
$CHK to check for /O
completion.

Completion
code = $BCDNE

Note: Use this technique as many times as necessary to
process the files in your program. Consider, however, that
the reverse interrupt request is required only when the proc-
essing of a file must be interrupted. For example, if a
receive-only file were completely processed before you
wanted to transmit, the reverse interrupt request would not
be needed.

Respond to unsuccessful
GET request.

End-of-file received.

Completion
code = $BCEOT

Yes

code for a definition of the codes appearing in the follow-
ing flowchart.

Respond to
unsuccessful
GET request.

No

Set off RVIMSK.

for 1/O completion.

Issue $PUTB to transmit
data. lIssue $CHK to check

Completion
code = $BCDNE

Respond to
unsuccessful
PUT request.

No

MLMP Programming 37

Transmit Interspersed with Receive

Transmit-interspersed-with-receive differs from transmit-
with-reception-of-conversational-reply in two ways:

® One DTF is required to transmit data; another is required

to receive data.
® Reverse interrupt request (RV1) is used.

The following chart outlines the technique for transmit-
interspersed-with-receive. See index entry completion
code for a definition of codes appearing in the following
flowchart.

-

(D—

Issue $PUTB to transmit
data. Issue $CHK to
check for I/O completion.

Completion

code = $BCDNE PUT request.

Respond to unsuccessful

RVIMSK
set on

Set off RVIMSK.

Issue $GETB to receive
data. Issue $CHK to

check for 1/O completion.

Note: Use this technique as many times as necessary to
process the files in your program.

Yes Completion

code = $BCDNE

No Respond to unsuccessful
GET request.

Completion
code = $BCEQT

TERMINATING DATA TRANSFER
Data transfer is terminated by:
® Terminating BSC files.

® Closing BSC files ($CLOS macro instruction).

Terminate BSC Files
Receive Files (FTYP—RCV)

Non-conversational receive files are terminated when an
end-of-file indication (EQT) is received for the file ($BCEOT
completion code posted). For information about termin-
ating conversational files (CONV—Y in the $DTFB macro
instruction), see index entry closing a conversational file,

Transmit Files (FTYP—TSM)
Transmit files are terminated by:
® A $CLOS macro instruction.

® A $PUTB macro instruction that specifies end-of-file
(OPC--EOF).

® A GET request ($GETB), PUT request ($PUTB), or on-
line test request (SRFT) for another DTF defined for
the same telecommunications line.

When you issue a GET, PUT, or online test request for
another DTF defined for the !ine, MLMP terminates the
previous transmit file by transmitting any data remaining
in the output buffers, then transmitting an end-of-file
indication before accepting the new request,

Ciose BSC Files ($CLOS)

At the end of your MLLMP program, you should close all
files. The $CLOS macro instruction generates code that
effects a branch to a system close routine. The system
close routine then cioses the DTFs identified in the $CLOS
macro instruction,

$CLOS Macro Instruction Format

r[name] I$CLOS [[DTF—address]]

If you specify the keyword DTF, enter, as the parameter,
the name of the DTF (file) you want to close. |f the op-
erand is not given, the address of the DTF is assumed to
be in register 2.

If the DTF specified is in a chain, all DTFs following in the
chain will be closed by this request. (MLTA DTFs must
not be in the chain. For information regarcling MLTA, see
IBM System/3 Multiple Line Terminal Adapter RPQ Pro-
gram Reference and Component Description Manual,
GC21-7560.)

After $CLOS is executed, register 2 contains the address
of the last DTF closed by the macro instruction.

Considerations for Closing Files

® To ensure that all data is transmitted ancl/or received
satisfactorily, check {$CHK) for the completion of any
outstanding 1/0 requests before you close the associated
files.

® |f you have established connection on a switched line
with one terminal and want to use the line to communi-
cate with a different terminal, you must close the file
for the first terminai before you can establish connect-
ion with the second terminal. (When you close a file
for a switched line, MLMP transmits DISC and disables
the line.)

® |f you reopen a BSC file that has been closed, record

iength, block length, and all other file attributes are
the same as they were when the file was closed.

MLMP Programming 39

MLMP diagnoses many of the errors possible in writing
macro instructions and in program execution. These
errors are recorded in mnotes, halts, BSC DTF completion
codes, and the BSC counters.

Also provided with MLMP are aids to help you isolate

undetermined programming problems. The diagnostic
aids provided are the online test, a trace module, and a
dump routine.

Mnotes

Mnotes are error codes and messages pertaining to macro
instruction formats (Figure 5). Mnotes are included in

your assembly listing, printed beneath the macro instruction
to which the mnotes apply.

Chapter 4. Diagnostics and Diagnostic Aids

MLMP Mnote Format

Column

lor2 Column 99 __
LSC¥BSSEEBmessagedb®. **EMNOTE***]

SC— Severity code; 04 or 08. Mnotes with a severity code
of 04 are warnings, and are preceded by an asterisk
(*) in column 1. Mnotes with a severity code of 08
are terminal and generate assembly errors.
B— iIndicates that this mnote applies to MLMP.
SS— System message code; 00, 10, 20, 30, 40, or 50.
00—Signals miscellaneous errors not covered in the
following five categories.
10—-MISSING REQUIRED OPERAND. This oper-
and is always required, or is required by another
operand that is specified.
20—CONFLICTING OPERAND(S). This operand
conflicts with another.
30—INVALID PARAMETER IN OPERAND. This
parameter is not valid in this operand.
40—CONFLICTING PARAMETER(S). This para-
meter, as coded to the listed operand(s), conflicts
with a parameter in another operand.
50—MISSING OPERAND. This operand is not
always required, but may be required in this
instance.

Note: If you get an mnote with a system message
other than 00, 10, 20, 30, 40, or 50, contact your

local IBM representative.

EE— Explanation code. Explanation codes identify
specific operands and parameters.

Diagnostics and Diagnostic Aids 41

Related

Mnote Macro

Number Instruction Explanation

80001 $DTFB Station 1Ds are recommended for switched lines.

B0002 $DTFB If BUFST is specified, the BUFNO operand is ignored.
B0003 $DTFB If CONV-Y is specified, the parameter specified in the BUFNO operand should be 1.
B1001 $POLB The ID operand is required.

B1002 $POLB The LEN operand is required.

B1003 $POLB The TERMAD operand is required.

B1004 $DTFB The RCAD operand is required.

B1005 $DTFB If TYPE—AC is specified, the DIAL operand is required.
B1006 $DTFB If TYPE—MC is specified, the TERMAD operand is required.
B1007 $DTFB If TYPE—CS is specified, the LISTAD operand is required.
B1008 $DTFB If TYPE—AC is specified, the DIALCT operand is required.
B1009 $DTFB If RCVID is specified, the RCVCT operand is required.
B1010 $DTFB If RCVCT is specified, the RCVID operand is required.
B1011 $DTFB 1f SNDID is specified, the SNDCT operand is required.
B1012 $DTFB If SNDCT is specified, the SNDID operand is required.
B1013 $DTFB The RECL operand is required.

B1014 $DTFB The BLKL operand is required.

B1015 $DTFB The BUFST operand is required.

B1016 $DTFB The BUFEND operand is required.

B1017 $DTFB If TYPE—CS is specified, the ERRLOG operand is required.
B1018 $CHGB The TYPE operand is required.

B1019 $CHGB The DTF operand is required.

B1020 $CHGB The NUM operand is required.

81021 $CHGB The CHARS operand is required.

B1023 $LOGB The NUM operand is required.

Figure 5 (Part 1 of 3). Explanations for BSC Mnotes

42

Related

Mnote Macro

Number Instruction Explanation

B1024 $LOGB The LEN operand is required.

B1025 $SRFTL The TYPE operand is required

B1026 $RFTL The LEN operand is required.

B1027 $RFTL The TERMAD operand is required.

B1028 $SwiB The SELECT operand is required.

B1029 $SwiB The LEN operand is required.

B1030 $SWIB The STATID operand is required.

B2001 $DTFB if TYPE—AC is not specified, the DIAL operand is invalid.

B2002 $DTFB if TYPE—MP is not specified, the TERMAD operand is in-
valid.

B2003 $DTFB If TYPE—CS is not specified, the LISTAD operand is invalid.

B2004 $DTFB If TYPE—AC is not specified, the DIALCT operand is invalid.

B2005 $DTFB If TYPE—AC, MC, AA, or MA is not specified, the RCVID is invalid.

B2006 $DTFB If TYPE—~AC, MC, AA, or MA is not specified, the RCVID
and RCVCT operands are invalid.

B2007 $DTFB If TYPE—-AC, MC, AA, or MA is not specified, the SNDID
and SNDCT operands are invalid.

B2008 $DTFB If TYPE--AC, MC, AA, or MA is not specified, the SNDCT
operand is invalid.

B2009 $DTFB if RVIADR is specified, the RVIMSK operand is required.
If RVIMSK is specified, the RVIADR operand is required.

B2010 $DTFB If TYPE—AA or TYPE—MA is not specified, the SWLIST operand
is invalid.

B2011 $DTFB If TYPE—MP is not specified, the AUTORS operand is invalid.

B2012 $DTFB If TYPE—CS is not specified, the POLRES operand is invalid.

B2013 $RFTL If LEN—O is specified, the TERMAD operand is invalid and is ignored.

B3001 $POLB The parameter specified iri the ID operand must be less
than X'FQ’.

B3002 $POLB The parameter specified in the LEN operand must not be

greater than 7.

Figure 5 (Part 2 of 3). Explanations for BSC Mnotes
Diagnostics and Diagnostic Aids 43

Related

Mnote Macro
Number Instruction Explanation
B3003 $POLB OPEN or WRAP must be specified in the LAST operand.
B3004 $DTFB The parameter specified in the DIALCT operand must not
be greater than 12.
B3005 $DTFB The parameter specified in the RCVCT operand must not
be greater than 15.
B3006 $DTFB The parameter specified in the SNDCT operand must not
be greater than 15.
B3007 $RFTL The parameter specified in the NUM operand must be greater than 0
and less than 100.
B3008 $SRFTL The parameter specified in the LEN operand must not be greater than 7.
B3009 $RFTL The parameter specified in the TYPE operand is invalid.
B3010 $SWIB The parameter specified in the LEN operand must not be greater than 15.
B3011 $SWIB The parameter specified in the SELECT operand must be less than FO.
B3012 $SWIB The parameter specified in the LAST operand is invalid.
B3013 $TRTB The parameter specified in the CODE operand is invalid.
B4001 $DTFB The parameter specified with BLKL must be greater than or
equal to the parameter specified with RECL.
B4002 $DTFB If CONV-Y is specified, the parameter specified with BLKL
must be equal to the parameter specified with RECL.
B4003 $DTFB If CONV-Y is specified, ITB-Y is invalid.
B4004 $DTFB If CODE-—A is specified, TRANSP-Y is invalid.
B4005 $DTFB If SPAN--Y is specified for a receive file, the RECSEP
operand is required.
B4006 $DTFB If neither BUFST and BUFEND nor BUFNO is specified, a default of
BUFNO-—1 is used.
B5001 $RFT If online terminal test type 00 or 01 is requested, the LEN
operand is required.
B5002 SRFT If online terminal test type 00 or 01 is requested, the FROM

operand is required.

Figure 5 (Part 3 of 3). Explanations for BSC Mnotes

Halts

Figure 6 shows halts issued by MLMP that require an
operator response. For correct responses to the halts
shown in Figure 6, see the appropriate halt/messages
manual listed in the Preface.

On the Mode! 10 and Model 12, MLMP also issues the
halt {]. However, this halt does not usually require a
response, but indicates the check routine is waiting for
an interrupt. See index entry check for 1/0 completion
($CHK] for more information regarding [] and the

check routine.

’ Display

P9

Y6

Y7

Y8

Meaning

Error in running FDP/Convert

Error in:

L.ogging the control station terminal
statistics

Opening a BSC file when:

1. Buffer area is not large enough

2. Record length =0

Attempting to initialize MLTERFIL

on a disk file other than F1

(Model 10 and Model 12) Attempting
to use line 2 in an RPG | telecommuni-
cations program that was compiled on a
system having only one BSC line.

DA microcode module cannot be
found

DA microcode cannot be loaded
correctly into adapter

Perform a manual call

Perform a manual answer

Figure 6. MLMP Halts that Require an Operator Response

Completion Codes

MLMP monitors every receive and transmit operation.
MLMP indicates the status of each operation by posting a
completion code in the associated DTF at $BDCMP (see
index entry BSC DTF for the format of the BSC DTF).

If an error occurs during polling or addressing, MLMP

will retry the operation three times before posting a com-
pletion code; the error recovery retry count for other
transmit and receive operations is seven (unless you specified
some other retry count in the ERRCT operand of $DTFB
—see index entry SDTFB macro instruction).

The completion codes and the action you should take in
response to them follow. The codes are divided into two
groups: those posted after an 1/0 request (§GETB, $CANB,
$PUTB, or $RFT) and those posted after a check request
($CHK).

Diagnostics and Diagnostic Aids 45

1/0 Request Completion Codes
Label Value Description
$B8CREQ X'00’ The request is being processed. Check for 1/0 completion ($CHK).

$BCUER X‘41’ You made an error in your last request. Issue the request again, or issue a request for another
file.

The error you made was one of the following:
® You did not open the file (SOPEN) before issuing the request.

® You issued an initial GET request (SGETB) for a PUT file (FTYP—TSM in $DTFB), ora
initial PUT request ($PUTB) for a GET file (FTYP—RCV in $DTFB).

$BCOLT X‘48’ The request for an online test ($RFT) is invalid. Issue a valid request or close the MLMP
files ($CLOS).

The online test request was invalid for one of the following reasons:

®° You did not open the file (SOPEN) before issuing the request.

® You issued an |/0 request for the file before you issued $RFT for the file.
® You issued $RFT for a GET file (FTYP—RCV in $DTFB).

® The record length specified for the file (RECL operand in $DTFB) is greater than the
block length specified for the file (BLKL operand in $DTFB).

® The message length specified in $RFT is zero (LEN operand).
$BCIGN X'4A’ Your last request was ignored because:
® The previous operation was not complete,

® You issued $PUTB, OPC—EOF as the first request for a file, or as the first request after
issuing $GETB for the same file, or

® You issued $CANB to cancel an operation that was not an initial GET.

Check for completion of the previous operation ($CHK), or issue a different request for this
file.

$BCCAL X'4D’ You issued one of the following invalid requests:
® A request for a new file before a previous receive file reached end-of-file.
® A PUT request after a conversational reply was received.

® A GET request for a conversational transmit file (FTYP—TSM, CONV-Y in $DTFB) before
$BCCRP was posted.

Issue a GET request for the active receive file, a PUT request for the conversational transmit
file or close the MLMP files ($CLOS).

Check Completion Codes

Label Value
$BCDNE X‘40°

$BCEOT X‘42°

$8CBID X'43°

$BCNEG X'44’

$BCNON X‘45’

Description

The requested operation has been completed successfully. If the request was a GET request for
a nonconversational file, data has been moved from an MLMP /O buffer to your logical buffer.
It the request was a PUT request for a nonconversational file, data has been movad from vour
logical buffer to an MLMP 1/O buffer. If the request was a GET or PUT request for a conversa-
tional file (CONV-Y in $DTFB), data has been received or transmitted as well as moved be-
tween the MLMP 1/0O buffers and your logical buffer.

If the request was for an online test ($RFT), the test has been completed.

Issue the next request, or examine the logged results of the online test (see index entry online
test).

Note: Logged online test results are available only to the operator, not the MLMP program.

End-of-file has been received, or $GETB was cancelled ($CANB). lIssue another request, or
close the MLMP files ($CLOS).

Switched line: Invalid 1D exchange. Either your ID or the remote station’s 1D is invalid.
Issue a request for another file or close the MLMP files ($CLOS).

Multipoint line: The ID requested in the DTF is not in the associated polling list. You can:
® Poll or address a different station.

® Reinstate polling from the beginning of the list {move X‘FO0’ or X'F1’ to $BDIND).

® |ssue a request for another file.

® Close the MLMP files ($CLOS).

All active stations in the polling or addressing list responded negatively. You can:

® Poll or address a different station {reactivate an entry). See index entry change a polling
($BCPL).

® |ssue a request for another file.

® Close the MLMP files ($CLOS).

Note: $BCNEG also is used to indicate that you received an RV| in response to an addressing
attempt. Whenever $BCNEG is posted after you try to address a terminal, check RVIADR
(specified in $DTFB) to determine whether you received an RVI. See index entrv reverse
interrupt for information regarding RVIs.

The station whose $POLB 1D is in $BDIND did not respond to polling or addressing. You can:
® Poll or address a different station.

® Issue a request for another file.

® Close the MLMP files ($CLOS).

® Deactivate the polling entry.

Diagnostics and Diagnostic Aids 47

Label

$BCCRP

$BCNDT

$BCOLT

$BCNAC

$BCASC

$ECNCN

$BCLST

$BCERR

Value

X'46°

X'47'

X'48’

X‘49'

X'4B’

X‘4C’

X‘4E’

X‘4F’

Description

A record has been received from the remote station and is available in an MLMP 1/0O buffer
(conversational reply pending). lssue a GET request for this file.

No data is available for this conversational GET request (a null message was received).

An error has occurred in executing a request for online test (SRFT), or an online test request
you received was not followed by EOT. Check the format of your request (see index entry
online test) if you just requested an online test. Use the trace module ($$BSTT) if problems
persist (see index entry trace).

None of the entries in the polling list is active. You can:

® Activate an entry and poll a specific terminal.

® Activate all entries in the list and reinitiate polling from the beginning of the list.

® |ssue a request for another file.

Close the MLMP files ($CLOS).

An invalid ASCII character exists in the data. Close this file ($CLOS) and issue a request for
another file, or close all MLMP files.

Note: If you are transmitting or receiving ASCII data on a switched line, be sure all station
IDs have been given in ASCII. If you are a control station transmitting or receiving ASCI|
data, be sure polling and addressing characters have been given in ASCII.

MLMP has been unable to establish a connection with the remote station. lIssue your last
request again, issue a request for another file, or continue with other processing. Otherwise,
close the MLMP files ($CLOS).

You did not send or receive a block of data within the time specified in the active DTF.
(specified in the DLYCT operand of $DTFB). Issue a request for this or another file, or close
the MLMP files ($CLOS).

MLMP encountered a permanent error condition. Some permanent errors are:.
® EOT received in response to data transmitted.

@ EOT received in response to an addressing attempt.

Forward abort received. That is:

Received TTD, (EOT or DISC
\ [}
\

Transmitted NAK'

EOT or DISC is transmitted after an error recovery retry count has been exceeded.

Label Value Description

$BCTIM X'50' The remote station does not respond to attempted data transfer. Issue a request for this or
another file, or close the MLIMP files ($CLOS).

Note: X'60’ posted in a console DTF indicates that the operator pressed the REQ key {Model 10
and Model 12). X‘60’ posted in a dummy DTF indicates that the operator pressed the PFQ key
(Model 15).

$BCDAT X'51' Data was received incorrectly (data check). lssue your last request again, or issue a request
for another file. Otherwise, close the MLMP files {($CLOS).

$BCLOS X'52 Data received was lost because it exceeded the size of the input buffer, had no endirg control
character, or because no record separator was found within two contiguous blocks of-spanned
records. Issue your last request again, or issue a request to another station. Otherwise, close
the MLMP files (3CLOS).

$BCCON X'53' The switched line connection with the remote station has been lost, or DISC was received in
response to text. Issue your last request again, or issue a request for another file or station. Other-

wise, close the MLMP files ($CLOS).

$BCRSP X'54’ An invalid response was received from the remote station. Issue your last request again, or
issue a request to another station. Otherwise, close the MLMP files ($CLOS).

$BCADP X'55° The BSCA is not working correctly (adapter check). Issue your last request again, or issue a
request for another file. Otherwise, close the MLMP files {$CLOS).

Note: The BSC line is disabled if:
® The connection was lost ($BCCON completion code condition),
® DISC was received ($BCCON completion code condition), or

® Normal end of file was received (SBCEOT completion code condition).

$BCCMP X'56’ None of the DTFs in the checklist indicates completion, but you have regained control as you
requested in the first SCKL macro instruction (RTN—Y). See index entry $CKL macro instruc-
tion.

$BCCMP is posted in the last DTF in the checklist.
$BCACD X'57' All the DTFs in the checklist are inactive or have been exempted from the test for completion.

$BCACD is posted in the last DTF in the checklist.
$BCRLE X'58° The record received was larger than the specified maximum record length (RECL in $DTFB).
Note: This completion code applies only if you are receiving spanned records separated by

record separators.
Note: All data in the MLMP 1/0 buffers at the time one of the following completion codes is posted may be lost:

$BCASC $BCTIM $BCCON $BCRLE
$BCLST $BCDAT $BCRSP
$BCERR $BCLOS $BCADP

The amount of data in the MLMP 1/0 buffers at any given time depends on record length, block size, buffer size,
and the number of buffers you are using, as well as the number of 1/O requests you have issued. See index entry
move mode.

Diagnostics and Diagnostic Aids 49

BSC Counters

MLMP compiles the following statistics as it monitors re-
ceive and transmit operations:

1. Number of text blocks sent successfully,
2. Number of text blocks received successfully.

3. Number of negative acknowledgements (NAK) re-
ceived in response to text sent.

4. Number of data checks that occurred on text
received,

5. Number of forward aborts received. A forward abort
received is:

Received TTD, EQT or DISC

1 [
A i
Transmitted NAK

6. Number of EOTs {$BCERR completion code) re-
ceived in response to data transmitted.

7. Number of adapter checks that occurred while
transmitting.

8. Mumber of adapter checks that occurred while
receiving.

8. Number of invalid responses received to text
transmitted.

10. Number of inquiries (ENQ) sent in response to posi-
tive acknowledgements (ACK).

11. Number of blocks received from which data was lost.

12, Number of disconnect timeouts and abortive {cancel)
disconnects.

13. Number of timeouts that occurred while receiving
text.

For multipoint control stations the following statistics are
also recorded (see the ERRLOG operand of the $DTFB

macro instruction):

1. Number of unsuccessful transmissions for each ter-
minal address.

2. Number of successful transmissions for each ter-
minal address.

850

BSC counters and statistics are recorded in main storage
whenever a BSC file is closed or before an online test. All
BSC counters and statistics are logged to disk at end-of-job.
After the BSC program is terminated, BSC counters and
statistics can be displayed by the Device Counter Log-out
program ($$BSDL). For operating procedures required to
display the statistics, see the appropriate system operators
guide listed in the Preface.

BSCA Terminal Log Area

You must provide a permanent file on F1 for logging con-
trol station terminal statistics (see index entry Terminal
Statistics Logging Area). The permanent file, named
MLTERFIL, requires one track. Part of MLTERFIL com-
prises the BSCA Terminal Log Area and is used for logging
the control station terminal statistics. Another part of
MLTERFIL is used for logging MLTA statistics if MLTA

is present (see /BM Systemn/3 Multiple Line Termiral Adapt-
er RPQ Reference and Component Description Manual,
GC21-7560).

Initializing MLTERFIL

To initialize MLTERFIL, MLMP provides, in the object
library, module $$BSFi. The OCL required to initialize
MLTERFIL is:

// LOAD $$BSF1,unit

// FILE NAME—-MLTERFIL,UNIT—F1,PACK—~pack,
TRACKS—1,LOCATION-track number (optional),
RETAIN-P

// RUN

MLTERFIL must be initialized after BSCA systemn genera-
tion, and before using MLMP or MLTA. If MLMP cannot
find MLTERFIL on F1 while transmitting or receiving
data for a control station, MLMP issues the Y6 halt. For
a complete description of the Y6 halt, see the appropriate
halt/messages manual listed in the Preface.

Note: MLTERFIL need be initialized only once to
accomodate both MLMP and MLTA statistics. Don‘t
initialize the file twice if you use both MLMP and MLTA.

Online Test

The online test enables you, or an IBM customer engineer,
to test a line connection without interrupting data transfer
on the other line. The test consists of sending a known mes-
sage over a line, then determining whether the message was
received accurately. When the test is completed, results are
logged as follows: (see index entry online test results).

® Model 10 and Model 12 ~ Halt/Syslog is called to log
the online test results on the system log device.

® Model 15 — Online test results are logged to the System
History Area (SHA) and will be printed only if the print-
er is logged.

Requesting Online Test
To request an online test:

1. Build a test parameter list {see index entries $RFTL
macro instruction and online test parameter list).

2. Provide a test message if one is required (see index
entry online test requests).

3. Issue the SRFT macro instruction

4, Check the 1/0 request completion code to deter-
mine whether the request was accepted (see index
entry completion code).

5. Check for completion of the test ($CHK).

Note: The $BCDNE completion code, after an on-
line test request, indicates completion of the test;
$BCDNE does not indicate that the line is okay. To
determine what happened on the line during the
test, the operator must examine the logged results of
the test (see index entry online test results).

$RFT Macro Instruction: The format of the $RFT macro
instruction is:

[name] $RFT PARM—address [,FROM—address]
[.LEN—decdig] {,DTF—address]
[,REJECT—address]

PARM-—address

Specifies the symbolic address of the first byte of the on-
line test parameter list. See index entry onfine test param-
eter list for the format.

FROM—address

Specifies the symbolic address of the first byte of the test
message, including control characters. Use this operand only
for test types 00 and 01 (see index entry onfine test pararn-
eter list for test type descriptions).

LEN—decdig

Specifies in decimal the length of the test message, includ-
ing control characters. See index entry onfine test param-
eter [ist for restrictions on the length of a test message.
Use this operand only for test types 00 and 01 (see index
entry online test parameter list for test type descriptions).

DTF—address

Specifies the symbolic address of the PUT DTF (FTYP-
TSM) for which the online test request is issued. 1f not
given, the address of the DTF is assumed to he in register 2.
After SRFT is executed, register 2 contains the address of
the DTF for which the online test request was issued,

REJECT—address

Specifies the symbolic address of a user routine to receive
control if the oniine test request cannot be accepted by
MLMP. You must provide the routine.

If the REJECT operand is not specified, check for the
$BCREQ DTF completion code after each online test re-
quest to determine whether or not the request was accept-
ed. See index entry completion code.

Accepting an Online Test Request

Valid online test requests transmitted from a remote ter-
minal are accepted when you issue an initial GET reqguest.
MLMP then performs the test automatically, iogs the re-
sults to your system logging device (see index entry onfine
test results), and reissues the GET request to receive data.

Diagnostics and Diagnostic Aids 51

If System/3 does not recognize an online test request you
receive, the request is passed to you as data. The online
test types recognized by System/3 are:

52

Test
Type

01

06

14

23

Description

Receive and acknowledge the test message
the number of times specified in bytes YY
of the online test parameter list (see index
entry online test parameter list). The for-
matted test request must not be more than
300 characters long. See index entry online
test requests.

Transmit the test message the number of
times specified in bytes YY of the online
test parameter list (see index entry online
test parameter list). The formatted test re-
quest must not be more than 300 characters
long. See index entry online test requests).

Transmit 36 alphameric characters, A-Z and
0-9, the number of times specified in bytes

YY of the online test parameter list (see in-

dex entry online test parameter list). Trans-
mit the characters in ASCI (ASCI| adapter
only).

Transmit 36 alphameric characters, A-Z and
0-9, the number of times specified in bytes

YY of the online test parameter list (see in-
dex entry online test parameter list). Transmit
the characters in EBCDIC (EBCDIC adap-

ter only}.

3270 basic EBCDIC test message:

This test checks all alphameric characters

at a display station or printer. {t checks the
use of the WCC to sound the audibie alarm
and allows attribute field specifications to
be checked at a display station. It startsa
printer, printing only 40 characters to a
line.

Test
Type

24

25

26

27

28

29-34

Description

3270 Model 1 align EBCDIC test pattern:

This test checks position alignment for the
480-character display station. It also checks
the WCC to sound the audible alarm. It
starts a printer, printing 40 characters to a
line.

3270 Model 2 align EBCDIC test pattern:

This test checks position alignment for the
1920-character display station. It also checks
the WCC to sound the audible alarm. It will
start a printer, printing 80 characters to a
line.

3270 orders EBCDIC test message:

This tests 3270 orders (SF, SBA, etc.),
checks the WCC to sound the audible alarm,
and uses display and intensified brightness.
It starts the printer, printing 64 characters
to aline.

3270 EBCDIC Universal Character Set test
pattern:

This test uses the Erase/Write command, dis-
playing the Universal Character Set in
EBCDIC. It checks the WCC to start the
printer, sound the audible alarm (on a dis-
play), and print 132 characters per line on
the printer. NL and EM are also tested on

a printer. Display intensity is used. The SF,
NL, EM, and IC orders are used.

3270 NL/EM EBCDIC test pattern:

This test is mainly intended to test the end
of message (EM) order and multiple new
line (NL) orders on the printer. The WCC is
checked to start the printer, sound the alarm
(on a display), and print 132 characters to

a line on the printer.

3270 ASCI! test patterns:

These tests correspond to tests 23-28 except
that transmission is in ASCII.

Online Test Results

Results are logged in one of two formats, depending on
whether the test message (not the test request) was trans-
mitted or received.

Test Message Transmitted:

*BSCONLINE TEST, LINE 31 or 2%[TERMEINALADDR HEX hex]
MESSAGE TYPE tt, MESSAGE COUNT cc
ACKRCVD NAKRCVD TIMEOQUT INVLD MSG

XX XX XX XX

* END ONLINE TEST

TERMINAL ADDR HEX hex identifies the terminal to
which the test message was sent if the logging station is a
control station (TYPE—CS in $DTFB).

tt identifies the test message type. See index entry online
test parameter /ist for a description of the test types.

cc is the number of times the test message was to be trans-
mitted. The message count is specified in the online test
parameter list,

ACK RCVD xx is the number of times ACK was received
as a reply to the test message.

NAK RCVD xx is the number of times NAK was received
as a reply to the test message.

TIMEOUT xx is the number of 3-second timeouts recorded
during the online test by the BSCA.

INVLD MSG xx is the number of invalid replies received
in response to test messages sent.

Test Message Received:

"BSCONLINE TEST, LINE31 or 2€[TERMHNAL ADDR HE X hex]
MESSAGE TYPE tt, MESSAGE COUNT cc
TXT RCVD DATA CHK TIMEOUT INVLD MSG

* END ONLINE TEST

TERMINAL ADDR HEX hex identifies the terminal that
transmitted the test message if the logging station is a con-
trol station (TYPE—CS in $DTFB).

ttidentifies the test message type. See index entry onfine
test parameter /st for a description of the test types.

cc is the number of times the test message was to be trans-
mitted. The message count is specified in the online test
parameter list.

TXT RCVD xx is the number of times the test message was
received correctly.

DATA CHK xx is the number of data checks recorded dur-
ing the online test by the BSCA.

TIMEOUT xx is the number of 3-second timeouts recorded
during the online test by the BSCA.

INVLD MSG xx is the number of test messages received in-
correctly for which a data check or timeout was not re-
corded.

An online test only indicates line conditions existing at the
time of the test. If the test reveals the presence of line pro-
blems, you must decide whether the probability of success-
ful transmission is great enough to justify continued trans-
mission over the line.

To discover significant trends in the appearance of line
problems, consider online test results in conjunction with
the BSC counters and control station terminal statistics
(see index entry BSC counters).

Online Test Considerations

If you want to request an online test or expect to receive
a request for an online test, consider that:

® The MLMP I/0 buffers must be large enough to accomo-
date an online test request. See the RECL and BLKL
operands in the $DTFB macro instruction, and index
entries online test requests and MLMP 1/0 area.

® No data except the online test message can be sent or
received over a line that is being tested unti! the online

test is complete.

® An online test request that is not recognized by MLMP
15 accepted as data and moved to your logical buffer.

Diagnostics and Diagnostic Aids 53

Page of GC21-75734
Issued 25 November 1977
By TNL: GN21-5587

Considerations unique to requesting an online test are:

® An online test request for System/3 must be the first
and only text message transmitted over a line. An on-
line test request transmitted to System/3 after text has
been sent will be received by System/3 and passed to
you as data.

® You must transmit EQT after transmitting an online
test request to System/3 if the message type is not 00.
If you transmit data other than the test message before
you send EOT, System/3 aborts transmission and posts
the System/3 user with the $BCOLT completion code
(see index entry completion code). The data transmitted
before EOT is lost.

® $RFT should not be used unless the remote device can
accept remotely initiated online test requests.

® $RFT must be issued only for a PUT DTF (FTYP--TSM
in $DTF B) that is opened but not being used for data
transfer.

® A multipoint control station (TYPE—-CS in $DTFB)
can only request test type 00 for a tributary station.
See index entry online test parameter list for a
description of the test types.

® A System/3 multipoint tributary (TYPE—MP in $DTFB)
cannot request that an online test be sent to another
System/3 tributary in the network.

See also index entry how to request an online test from a
3270.

Trace

If you are familiar with System/3 BSCA hardware and BSC
line control procedures, you may find a record of the BSCA
I/0 sequence helpful in isolating an MLMP programming
problem. MLMP provides a trace module ($$BSTT) to
record 1/0 information after each BSCA interrupt. This
information can be examined by you or an 1BM customer
engineer to diagnose a problem.

Once the trace module is included in your program, each
MLMP 1/Q operation calls Trace to record the event in a
trace table. The format of the table is shown in Appendix
C. Dump the trace table when you are ready to examine the
information recorded in it. You can use the $SNAP macro
instruction to dump the table (see index entry $SNVAP
macro instruction}. Dump main storage from symbolic
address MTBSML to symbolic address MTBSMM, the
beginning and ending addresses of the trace table.
{(MTBSML and MTBSMM each require that an EXTRN

be defined in the program requesting the dump.)

54

Include Trace, Assembler

include the trace module in your program by specifying
EXTRN $$BSTT in your program, or by placing an IN-
CLUDE card in the linkage editor input deck:

// INCLUDE NAME—$$BSTT ,UNIT—xx

{xx is the unit name R1, F1, R2, or F2)

Note: M you use an INCLUDE statement to call the trace
module, the overlay linkage editor generates a name not
referenced error message (0L031). This error does not
affect the output of the linkage editor, however, and should
be ignored.

Include Trace, RPG It

1f you are running under RPG Il as a subroutine, $$BSMT

is automatically link-edited as a dummy trace modute. If
you want to include the actual trace module in your pro-
gram you must rename the dummy and actual trace modules.
After renaming the modules, recompile your program to

get the actual module link-edited. The following statements
are used to rename the trace modules:

/I LOAD $MAINT xx
// RUN

// RENAME FROM—xx,LIBRARY—R,NAME—$$BSMT,
NEWNAME—$$SBSAV

// RENAME FROM—xx,LIBRARY—R,NAME—$$BSTT,
NEWNAME-—-$$BSMT

// END
(xx is the unitname R1, F1, R2, or F2)

To replace the actual trace module with dummy trace
module:

1. Rename the modules:

// LOAD $MAINT , xx
// RUN

// RENAME FROM—xx,LIBRARY —-R,NAME—$$BSMT,

NEWNAME—$$BSTT

// RENAME FROM—xx,LIBRARY—R ,NAME—$$BSAV,

NEWNAME-—-$$BSMT
// END

{xx is the unitname R1, F1, R2, or F2)

2. Recompile your program.

Trace Considerations

® ITB interrupts, BSCA enabling operations, and BSCA
disabling operations are not recorded by Trace.

® Trace entries are recorded independently of your pro-
gramming operations. That is, entries are recorded when
an interrupt occurs regardless of current operations
occurring in your program, and can be recorded at any

time, even during a snap dump (see following discussion}.

Consequently, be aware that entries may have been made
to the trace table after a request to cdump the table.

® Trace requires 512 bytes of main storage.

® For program efficiency, include Trace in your program
only when you are trying to diagnose a problem.

Snap Dump Main Storage (3SNAP)

The $SNAP macro instruction generates linkage to a system

storage dump routine. You must provide dump identifica-

tion and dump limits. The output from the dump routine

is printed on the system logging device. Output consists

of:

1. The dump identification.

2. The contents of registers 1 and 2.

3. The address of the next sequential instruction after
the $SNAP macro instruction.

4, The contents of main storage identified by the dump
limits,

Since a printer is much faster than the console, it is re-
commended that the system logging device be a printer
when you intend to use $SSNAP.

$SNAP Macro Instruction Format

[name] $SNAP 1D—hex,START--address,
END—address

ID—hex

Specifies a 2-byte parameter to identify the dump. The

parameter is printed at the beginning of the dump output.

START—address

Specifies the symbolic address of where the duimp should
begin.

END-—address

Specifies the symbolic address of where the dump should
end.

Diagnostics and Diagnostic Aids

55

SYSTEM CONFIGURATION

The minimum system configuration and optional device
support for MLMP is:

Model 8

The minimum Model 8 configuration is:

® 5408 Processing Unit Model A14 (16K bytes)

® 5444 Disk Storage Drive Model A1

® 5203 Printer Model 1

® 5471 Printer-Keyboard Mode! 1 or Directly attached
3741 Data Station Model 1

® Binary Synchronous Communications Adapter (BSCA),

Local Display Adapter, or Integrated Communications
Adapter (ICA)

Additional devices supported for the Model 8 are:

® 5408 Processing Unit Model A16 (32K), A17 (48K},
or A18 (64K)

® 5444 Disk Storage Drive Model A2 or A3

® 5203 Printer Model 2 or 3

® Binary Synchronous Communications Adapter {(BSCA),
Local Display Adapter, or Integrated Communications

Adapter (ICA)

Note: Two adapters can be present. The local display
adapter, ICA, and BSCA-2 are mutually exclusive.

¢ Directly attached 3741 Data Station Modei 2 or
Programmable Work Station Model 3 or 4

Chapter 5. Reguirements and Considerations

Mode! 10

The minimum Model 10 configuration is:

5410 Processing Unit Model A13 (12K bytes) {if not a
control station, a Model A14 (16K) is raquired for a
control station)

5444 Disk Storage Drive Model 1

5424 MFCU Model A1

5203 Printer Model 1

Binary Synchronous Communications Adapter (BSCA),
or Local Communications Adapter (LCA)

Additional devices supported for the Model 10 are:

5410 Processing Unit Model A14 (16K}, A15 (24K),
A16 (32K), or A17 (48K)

5444 Disk Storage Drive Model 2, 3, A1, A2, or A3
5445 Disk Storage Model 1, 2, or 3

3410/3411 Magnetic Tape Subsystem Models 1, 2,
and 3

1442 Card Read Punch Model 6 or 7

5471 Printer-Keyboard

5203 Printer Model 2 or 3

1403 Printer Model 2 or N1

5424 MFCU Model A2

Binary Synchronous Communications Adapter (BSCA),
or Local Communications Adapter (LCA) (both can be

present)

Directly attached 3741 Data Station Madel 1 or 2, or
Programmable Work Station Model 3 or 4

Requirements and Considerations 57

Page of GC21-75734
Issued 25 November 1977
By TNL: GN21-5587

Model 12

The minimum Model 12 configuration is:

® 5412 Processing Unit Mode! B16 (32K bytes)

® 3340 Direct Access Storage Facility Model C2

® 5424 MFCU Model A1

® 5203 Printer Model 1

® Integrated Communications Adapter (ICA), Local
Display Adapter, or Binary Synchronous Communica-
tions Adapter (BSCA)

Additional devices supported for the Model 12 are:

® 5412 Processing Unit Model B17 (48K) or B18 (64K)

® 3410/3411 Magnetic Tape Subsystem Models 1, 2, and 3

® 1442 Card Read Punch Models 6 or 7

® 5471 Printer-Keyboard

® 5203 Printer Model 2 or 3

® 1403 Printer Model 2, 5, or N1

® 5424 MFCU Model A2

® Binary Synchronous Communications Adapter (BSCA),
Local Display Adapter, or Integrated Communications

Adapter (ICA)

Note: Two adapters can be present. The local display
adapter, ICA, and BSCA-2 are mutually exclusive.

® Directly attached 3741 Data Station Model 1 or 2 or
Programmable Work Station Model 3 or 4

Model 15
The minimum Model 15 configuration is:

® 5415 Processing Unit Model A17 (48K bytes) and a
5444 Disk Stoarge Drive Model A2
or
5415 Processing Unit Model B17 (48K bytes) and a
3340 Direct Access Storage Facility Model A2

® 3277 Display Station (CRT/Keyboard)

5424 MFCU Model A1 or A2, 2560 MFCM Model
Al or A2

or
1442 Card Read Punch Model 6 or 7

1403 Printer Model 5
Binary Synchronous Communications Adapter (BSCA),

Display Adapter, or Local Communications Adapter
{LCA)

Additonial devices supported for the Model 15 are:

5415 Processing Unit Model A18 (64K), A19 (96K), or
A20 (128K} (with 5444/5445 disk units)

5415 Processing Unit Model B18 (64K), B19 (96K), or
B20 (128K) {with 3340 disk units)

5415 Processing Unit Model C21 (160K}, C22 (192K),
C23 (224K), or C24 (256K) (with 3340 disk units)

5415 Processing Unit Model D19 (96K), D20 (128K},
D21 (160K}, D22 (192K), D23 (224K}, D24 (256K}

(with 3340/3344 disk units), D25 (384K), or
D26 (512K)

3340 Direct Access Storage Facility Model B1 or B2
{available with 5415-B, -C, and -D models)

5444 Disk Storage Drive Model A3 (available with
5415-A models)

5445 Disk Storage Model 1, 2, or 3 (available with
5415-A models)

3410/3411 Magnetic Tape Subsystem Models 1, 2,
and 3

1403 Printer Model 2 or N1
3284 Printer

2501 Card Reader

Interval Timer

Directly attached 3741 Data Station Model 1 or 2 or
Programmable Work Station Modei 3 or 4

Binary Synchronous Communications Adapter (BSCA),
Display Adapter, or Local Communications
Adapter (LCA)

Note: Two adapters can be present.

Storage Requirements

MLMP resides in the Model 10 Disk System, Model 12, or
Model 15 libraries and requires:

® 0.25K in the system nucleus. (The module $$BSIN is
required in main storage at execution time — Model
10 only.)

® 5.25K of main storage to include:

$$BMS—MLMP Data Management
$$BMCH—-Check Routine
$$BSLG—Terminal Statistics Logging Routine
$$BSAT~Line 2 Work Area

Additional main storage requirements for MLMP are:

0.25K for $$BSMD if AUTORS-Y is specified in
$DTFB

2.00K for $$BSMA, $$BSMB, $$BSMC, and $$BSMF
if POLRES-Y is specified in $DTFB

0.50K for $$BSID if the display adapter is supported
0.75K for Trace ($$BSTT) if Trace is used

® Main storage for user’s code, including /0 buffers, DTFs
polling lists, §GETBs, $PUTBs, etc.

’

® Two cylinders of disk storage space for object code.

® Five tracks of disk storage space in the source library for
MLMP macro instructions.

® One track of disk storage space for error logging. See
index entry BSCA Terminal Log Area.

Programming Requirements

A. Model 10

® IBM System/3 Model 10 Disk System Management
(5702-SC1).

® 1BM System/3 Assembler (5702-AS1) or its equivalent.

® IBM System/3 Model 10 Disk System Macros Feature
(Feature Number 6020 or 6021).

® 1BM System/3 Model 10 Disk System Overlay Linkage
Editor (Feature Number 6026 or 6027), unless MLMP
programs are written as subroutine to an RPG ||
program,

B. Mode! 12

® |BM System/3 Model 12 Disk System Management
(5705-SC1). This includes the System Macros and Over-
lay Linkage Editor.

® [BM System/3 Assembler (5705-AS1) or its equivalent.
C. Model 15

® [BM System/3 Model 15 Disk System Management
(5704-SC1 or 5705-SC2). This includes the System
Macros and Overlay Linkage Editor.

® IBM System/3 Assembler (5704-AS1 or 5704-AS2) or
its equivalent.

MLMP Programming Considerations

® The user must define one EXTRN in every MLMP pro-
gram: $$BSMS. Other required EXTRNs are generated
by the MLMP macro instructions when MLMP programs
are assembled.

® MLMP Data Management ($$BSMS), BSC DTFs, MLMP
1/O areas, and user logical buffers must be in the root seg-
ment. They must not be overlaid. The Allocate, Rollout,
and Tape End of Volume functions cannot be performad
while BSCA files are open. See /BM System/3 Overlay
Linkage Editor Reference Manwial, GC21-7561.

I AUTORS-Y is specified in 3 $DTFB macro instruction,
$$BSMD must be in the root segment. 1f POLRES—Y is
specified in a SDTFB macro instruction, $$BSMA, $$BSMB,
and $$BSMF must be in the root segment.

® Binary and packed decimal data must be transmitted in
transparent mode {EBCDIC only).

® A System/3 RPG [l program using the RPG 1l Telecom-
munications Feature must not call an assembler subrou-
tine to use a BSCA. (For information on writing an assem-
bler subroutine for an RPG |l program, see /BM System/3
Basic Assembler Reference Manual, SC2 7509.)

The MLMP user should also be familiar with the unique BSC
characteristics of the terminals to be used. Some BSC char-
acteristics are listed by machine in Appendix A. For more
information regarding the terminals that can be used with
MLMP, see the publicaitons listed in the front of this manual.

Requirements and Considerations 59

{BM 2972 BANKING TERMINAL SYSTEM

® [ata received from the 2972 includes the terminal ID
and keyboard shift characters.

® Data transmitted to the 2972 must include keyboard
shift characters for upper case and lower case as well
as NL, HT, and other appropriate commands,

® More than one record can be transmitted to the 2972
before you have to transmit a new line command,.

® if you've been transmitting to one 2980, you must trans-
mit EQT before transmitting data to another 2980
(see index entry terminating transmit files).

For more information regarding the 2972, see Component
Description: 1BM 2972 Models 8 and 11 General Banking
Terminal Systems, GL27-3020.

IBM 3270 INFORMATION DISPLAY SYSTEM

Before writing an application program using a 3270, you
raust understand the 3270's physical characteristics and
capabilities as they are described in /BM 3270 Information
Display System Component Description, GA27-2749.

After reading the 3270 component description, use this
sectior: as a guide to coding MLMP macro instructions to
control and define 1/0 for a 3270. Use the 3270 compo-
nent description to construct data areas (called data stream)
to send to a 3270 to display an image or print a line, and

o interpret data streams received from a 3270. Data
stream formats are shown in this section, but you must have
read the component description to understand the terms
within the formats.

You must also understand binary synchronous telecommuni-
cations procedures as described in General Information:
Binary Synchronous Communications, GA27-3004.

Asample MLMP program that communicates with a 3270
application is shown in Appendix B.

Appendix A. Device-Dependent Considerations

Polling/Addressing a 3270
There are two kinds of polling for remote 3270 devices:

® General polling. In a general poll a response is sought
from any device attached to a particular control unit;
the control unit has the responsibility of querying each
device in turn for readiness to provide input.

® Specific polling. In a specific poll a particular device
attached to a particular control unit is queried for a
response.

Addressing (station selection) is always directed to a speci-
fic device.

Polling/addressing list entries are derived from the TERMAD

operand in $POLB macro instructions (see index entry
$POLB macro instruction) and are in the following formats:

General Polling:

CcuU CuU
Address Address 7F 7F

Specific Polling and Addressing:

CcuU Cu
Address Address

Device
Address

Devige
Address

The control unit and device addresses are repeated because
binary synchronous multipoint communications for the
3270 uses double addressing as a check against intermittent
transmission line errors. The hexadecimal values for de-
fining a polling/addressing list depend on which control
unit and device are specified and whether the transmission
is to be in EBCDIC or ASCII.

Usually, general polling lists are kept separate from specific
polling and addressing lists.

Note: The $CANB macro instruction can be used to ter-
minate polling. See index entry $CANB macro instruction.

Device-Dependent Considerations 61

Reading From and Writing To a Remote 3270

1/0 control of a remote 3270 is maintained by a combina-
tion of $GETB and/or $PUTB macro instructions, $CHK
macro instructions, and, in some cases, by special charac-
ters in the data stream called an escape command sequence.
Details of initiating data transfer to and from the 3270 are
discussed under Read Operations and Write Operations,
following, and summarized in Figure 8.

In the discussion that follows of read and write operations,
the transmission control characters (STX, ETX, etc.), de-
vice control characters, and field definition information are
shown in data stream formats; these characters are described
in /BM 3270 Information Display System Component Des-
cription, GA27-2749.

Read Operations

Reading from a remote 3270, you can:

® Read modified fields from a display station buffer after
a terminal operator has completed his entry and caused

an attention (for instance, by pressing the ENTER key).

® Read from a display station buffer fields modified by
an operator without waiting for an attention indication.

® Read only those modified fields beginning at a specified
buffer location.

® Read the entire buffer contents, both modified and un-
modified data, including attribute characters.

® Read the buffer contents, both modified and unmoditfied
data, including attribute characters, beginning at a speci-
fic buffer location.

{Attribute characters and modified and unmodified data
are described in the 3270 component description.)

Each of the following five read operations can be terminated

by transmitting an RVI to the terminal (see index entry
reverse interrupt).

62

Read Modified Fields after Operator Action: The basic
means of reading data entered by a terminal operator, this
function is performed by issuing an initial GET request
($GETB) and at least one subsequent GET request. The
first $GETB initiates a general or specific polling sequence.
Data is read by the first and subsequent GET requests
when a terminal is encountered at which the operator has
done one of the following:

® Pressed one of these keys:

ENTER

PF (program function) keys 1-12
PA {program attention) keys 1-3
TEST REQUEST

CLEAR

® Selected a detectable field with the selector pen. (See
the Component Description for establishing a detectable
field.)

® |Inserted a card in the operator identification card
reader.

All modified fields are read from the terminal buffer into
the receiver’s 1/0 buffers. A maximum of 256 bytes of
data, including control characters, are read for each GET
request. By issuing $GETB with OPC—BLK specified (see
index entry $GETB macro instruction) and monitoring
the logical buffer for ETX (meaning that no more message
blocks remain to be read), you can determine whether all
available data has been read.

After the initial $GETB, at least one more $GETB must
be issued. If all data is read on the first §GETB, the next
$GETB must be issued to be posted with end-of-file
($BCEOT completion code}. The message read by the
initial $GETB wili be in one of the formats shown in
Figure 7. (See the 3270 component description for an ex-
planation of the AID, cursor address, SBA, and other data
stream characters illustrated in Figure 7.)

The 1D byte in the BSC DTF ($BDIND) identifies the poll-
ing list entry of the responding terminal. Either $BDIND
or the control unit and device address bytes in the data
stream may be used to determine which device responded
postively to polling.

If the operator presses the ENTER key, a PF (program function) key, or selects a detectable fieid with the selector pen,
the message read is in this format (assuming the terminal buffer is formatted):

cu Device Cursor Buffer (¢ Buffer 3ETB %
STX Address | Address AID Add:'ess SBA Address TefL SBA Address ETX
1)

If, in the above case, no fields were modified by the operator {or already set to be modified by the program), the format
of the input message is:

cu Device Cursor
TX
S Address | Address AlD Add.ress ETX

If the terminal buffer is unformatted, the input message is:

cu Device Cursor 3ETB
STX| Address| Address | A'° Address Text S& ETXE

If the operator presses the CLEAR key or presses PA {program attention), the input message is:

Ccu Device
STX Address | Address AID ETX

If a card or cards are read by means of the identification card reader, the input message is:

CuU Device 0-37 EOR
X
STX Address | Address AID Characters EOI LRC ET

If a test request message is entered, the input message is in this format (although the apptication is not normatly aware of it):

SOH % / STX Text sg ETX

If a status message is read (see Figures 9 and 10), the message received is in the following format:

cu Device Sense Sense/
SOH * R ST Address | Address | Status 1 { Status 2 ETX

Note: Your program must be prepared to receive status messages.

In all of the above cases, at least one $GETB is issued to read successive blocks of the message if the message ends with ETB,
or to get an EOF completion if the message ends in ETX.

A message block received as the result of subsequent $GETBs has this format (unless it is unformatted):

K‘ Buffer Buffer ETB ;
STX 3 SBA Address Text SBA Address) 5 3 ETX

Figure 7. Message Formats Received from the 3270

Device-Dependent Considerations

63

Read Modified Fields: This function is similar to reading
modified fields after operator action except that the oper-
ation is directed to a specific device and is performed
immediately; it does not depend on an attention-causing
action by the terminal operator. The purpose of this pro-
cess is to read all modified fields in the device buffer.

Read modified fields by issuing:

® A $PUTB macro instruction with OPC—EOQOB specified
(see index entry $PUTB macro instruction}, and

® One or more $GETB macro instructions with OPC—BLK
specified (see index entry $GETB macro instruction.

When $PUTB is issued, the logical buffer must contain:

Record length ($BDREL) must be 2, and the DTF must be
a conversational DTF (CONV-Y sepcified in SDTFB). If

the $BCCRP completion code is posted after checking the

PUT request for completion ($CHK), issue SGETB.

Only modified fields are read. Issue $GETBs to read all
the modified fields in the terminal buffer. That is, issue
$GETB until the $BCEOT completion code is posted.

The input data stream received will be in one of the formats
shown in Figure 7.

Read Modified Fields from Position: This function reads
all modified fields beginning at a specified position in the
device buffer. As the with read modified fields function,
no operator attention-causing action is required. The pro-
cess is directed to a specific device. 1t can be used in a
manner similar to that for reading modified fields except
that the program selects only a certain portion of the screen
{terminal buffer) to read, even though the terminal opera-
tor may have modified other portions of the screen.

Read modified fields from position by issuing:

® A $PUTB macro instruction with OPC—EOB specified
(see index entry $PUTRB macro instruction),

® Asecond $PUTB macro instruction with OPC—-EOB
specified, and

® One or more $GETB macro instructions with OPC—BLK
specified (see index entry $GETB macro instruction).

When the first $PUTB is issued the logical buffer must
contain:

Buffer

ESC 1 WCC SBA Address

The output data stream can also include, following the WCC,
data to be written to the terminal. The WCC should be set
to inhibit resetting of modified data tags, and the last buffer
address should be the position from which the read modi-
fied operation is to start.

When the second $PUTB is issued, the logical buffer must
contain:

[Esc 6]

Record length {($8DREL) must be 2, and the DTF must
be a conversational DTF (CONV—Y specified in $DTFB).
If the $BCCRP completion code is posted after checking
the second PUT request for completion {($CHK]}, issue
$GETB.

A maximum of 256 bytes of data, including controi
characters, will be read by the first $§GETB. The data is
read from the terminal buffer location established by the
first SPUTB. The input data stream will be in one of the
formats shown in Figure 7.

Read the remaining message blocks by issuing $GETB until
the $BCEOT completion code is posted.

Read Buffer: This function reads the entire contents of a
specified terminal buffer, including modified and unmodi-
fied fields, attribute characters, and nulls (X'00°). It is
intended primarily for diagnostic use.

Read a buffer by issuing:

® A S$PUTB macro instruction with OPC—EOB specified
(see index entry $PUTB macro instruction), and

® One or more $GETB macro instructions with OPC—BLK
specified (see index entry 8GETB macro instruction).

When $PUTB is issued, the logical buffer must contain:

Record length ($BDREL) must be 2, and the DTF must be
a conversational DTF (CONV-Y specified in $DTFB). If

the $BCCRP completion code is posted after checking the
PUT request for completion ($CHK), issue $GETB.

After this message has been written to the device, the
$GETB reads the first message block from the terminal
buffer {since only a maximum of 256 bytes can be trans-
mitted by one $GETB macro instructiori, more read opera-
tions will be required to read the entire buffer). Subsequent
$GETBs are then issued to read as many remaining blocks
of the terminal buffer as the program requires.

All data beginning at location 0 in the terminal buffer is
read. In addition, a special character (SF) is inserted by the
hardware into the input data stream to indicate the begin-
ning of each field. The input data stream for the first mes-
sage block, if the terminal buffer is formatted, appears as:

Text SF
Address | Address AlD Address SF Char x Char

¥
i A Attr
STX CcuU Device Cursor SS ttr

3

ETB
ETX

j

Subsequent message blocks appear as:

. Attr Attr ETB %
STX 7L SF Char Text SF Char SS g ETX

If the terminal buffer is unformatted, no SF characters are
inserted since there are no fields. The input following the
cursor address would consist of all character locations

in the buffer, including nulls.

Device-Dependent Considerations

65

Read Buffer from Position: This function reads the contents
of a specified termina! buffer beginning at a specified buf-
fer position. All fields, modified and unmodified, attrib-

ute characters, and nulls {X‘00’) are read. As with reading

a buffer, reading a buffer from position is intended pri-
marily for diagnostic uses.

Read a buffer from position by issuing:

® A $PUTB macro instruction with OPC—EOB specified
(see index entry $PUTB macro instruction),

® A second $PUTB macro instruction with OPC—EQOB
specified, and

® One or more $GETB macro instructions with OPC~BLK
specified (see index entry $GETB macro instruction).

When the first $PUTB is issued the logical buffer must
contain:

Buffer

ESC 1 WCC SBA Address

The output data stream could also inctude, following the
WCC, data to be written to the terminal. The WCC should
be set to inhibit resetting of modified data tags; and the
buffer address should be the position from which the read
buffer from position operation is to begin.

When the second $PUTB is issued the logical buffer must
contain:

(ESC] 2]

Record length {($BDREL) must be 2, and the DTF must be
a conversational DTF (CONV-Y specified in $DTFB). If

the $BCCRP completion code is posted after checking the
PUT request for completion ($CHK), issue SGETB.

The $CETB reads the first message block from the terminal
buffer beginning at the location specified in the first SPUTB.
Ali data beginning at the specified location is read. In
addition, a special character (SF) is inserted into the input
data stream to indicate the beginning of each field. The
input data stream for the first message block, if the terminal
buffer is formatted, appears as:

F
STX Address | Address AID Address SF Char Text S Char

cu Device Cursor “ Attr Attr

)\

ETB
ETX

Subsequent message blocks appear as:

Char Char

STX Sg sk | AW Text |sF| AW

ETB
ETX

If the terminal buffer from the specified beginning location
is unformatted, no SF characters can be inserted, since
there are no fields. The input following the cursor address
would consist of all character locations in the buffer,
including nulls.

Write Operations
Writing to a remote 3270, you can:

® Write data to any desired position in a display station
or printer buffer.

@ Erase the data presently at the device buffer {on the
screen or in the printer buffer) and write data to any
buffer location.

® Erase all unprotected fields in the display or printer
buffer. Protected and unprotected data are described
in the 3270 component description.

® Copy data in one device buffer to the buffer of a device
attached to the same control unit. {For instance, have
the contents of a display station buffer printed at a
nearby printer.)

® Transmit conversational replies.

Note that if you are transmitting to one terminal attached
to a 3271 control unit, you must transmit EQT before you
can transmit to a different terminal attached to the same
control unit. See index entry terminating transmit files.

In the description of write operations that follows, consider
also that whenever you write to a 3270 printer you must
specify $PUTB OPC—EOW for each record, and need not
transmit EOT. EOT will be transmitted automatically.

Write: The write function writes a message to a terminal
(display station or printer) buffer. To write to a remote
3270:

® |[ssue a $PUTB macro instruction, and

® Transmit EOT (see index entry terminating transmit
files}.

When $PUTB is issued, the logical buffer must contain:

Orders
ESC ! wee and Text (\G

An SBA order sequence should follow immediately after
the WCC, so that the write operation can be retried if an
error occurs. See IBM 3270 Information Display System
Component Description, GA27-2749, for how to write the
WCC, SBA, and other data stream characters.

To send the message in blocks instead of in one data stream,
additional $PUTBs may be issued with the output area in
the format described above. To terminate the process,
transmit EOT.

Device-Dependent Considerations 67

Programming Note: If a terminal operator has made an entry
and pressed the ENTER key but no initial $GETB has been
issued, an initial SPUTB to the dispiay may nullify the
operator input. This situation may be avoided by reserving
areas of the display for operator input only {nothing will

be written to these areas) and then setting the reset modi-
fied data (RMD) bit to zero (meaning do not reset modified
data tags) in the write control character (WCC) of the

initial PUTB message. Setting the RMD bit off in the
WCC is required because if modified data tags are reset as
part of the initial $PUTB the pending attention will not

be honored since there will be an indication that no fields
have been modified.

Erase and Write: The erase and write function erases the
buffer of a selected terminal, and then writes a message
to the terminal buffer. The erasure consists of changing
each character location in the buffer to X’'00’. With the
message omitted, the process can be used just to erase the
buffer.

Erase and write by:
® issuing a SPUTB macro instruction, and
® Transmitting EOT (see index entry terminating transmit

files).

When $PUTB is issued the logical buffer must contain:

ESC 5 WCC Orders and Text

An SBA order sequence should follow immediately after
the WCC so that the write operation can be retried if an
error occurs,

To send the message in blocks instead of in one data stream
from one large output area, subsequent $PUTBs may be
issued with ESC code 1 and WCC specified (see the

write function).

To erase and write, the data stream placed in the logical
buffer would contain an ESC code 5. To simply erase the
buffer, orders and text would be omitted from the data
stream.

Erase Unprotected Fields: The erase unprotected fields
function sets all unprotected fields in a selected terminal
buffer to nulls (X'00°). It also resets the modified data tag
(MDT) bits in the attribute characters of unprotected data
fields to O, restores the keyborad, resets the AlD, and
repositions the cursor to the first character location in the
first unprotected field in the buffer. 1f the buffer is com-
pletely protected, the keyboard is restored, and AID reset,
the cursor moved to location 0, and no erasure takes place.
{See the component description for a description of the
attribute and AID characters.)

Erase unprotected fields by:

® |ssuing $PUTB with OPC—EOB specified {see index entry
$PUTB macro instruction), and

® Transmitting EOT (see index entry terminating transmit
files).

When $PUTB is issued the logical buffer must contain:

Copy: The copy function selects a device and copies into
its buffer the contents of the buffer of another device
attached to the same 3271 control unit. Copy can be used
to transfer the contents of a display station screen to a
printer to get a printout of the screen or to copy the con-
tents of one screen onto another.

To copy:

® |ssue SPUTB with OPC—EOB (OPC—EOW if you are
copying to a 3270 printer) specified (see index entry
$PUTB macro instruction), and

® Transmit EOT (see index entry terminating transmit files).

When $PUTB is issued the logical buffer must contain:

From Device

ESC 7 Address

ccc

See the component description for a description of the CCC.
The from device address is the one-byte address of the device
from which the data is copied.

Reply Conversationally: Any of the 3270 write operations
described on previous page can be transmitted as a con-
versational reply to a specific terminal. Instead of issuing
$GETB to receive end of file after you receive a block of
text ending with ETX, issue a $PUTB to transmit text

to the terminal. The $PUTB must be issued for the same
DTF for which you issued the last SGETB, and CONV-Y
(as well as FTYP-RCV) must have been specified for the
DTF. (See index entry conversational reply for a detailed
description of conversational techniques.)

Conversational replies save line time because you don’t have
to receive EQT and initiate a new addressing sequence in
order to transmit a response to text received. However,

to avoid two-second timeouts that lead to a possible

abort situation, conversational replies should not be used

if a significant amount of processing must occur on the data
received before you will be ready to reply to the terminal
from which the data was received. (A significant amount of
processing would be, for example, 2 or 3 disk /O
operations.)

Device-Dependent Considerations 69

To Do This.. .. Use These Macro Instructions! With This ESC Code . .
Read Modified Fields $GETB OPC—BLK None
After Operator Action
e . $PUTB OPC—EOB 6
Read Modified Field
odihed Felds Then $GETB = OPC — BLK® No ESC
Read Modified Fields $PUTB OPC—EOB 1
from Position?
Then $PUTB OPC—EOB 6
Then $GETBs OPC—BLK? No ESC
Read Buffer $PUTB OPC—EOB 2
Then $GETBs OPC—BLK* No ESC
Read Buffer from $PUTB OPC—EOB 1
Position?
$PUTB OPC—EOB 2
Then $GETBs OPC—BLK* No ESC
Write $PUTBs 1
$PUTB OPC—EOF? No ESC
Erase and Write $PUTBs 5
Then $PUTB OPC—EOQOF? No ESC
Erase Unprotected $PUTB OPC—EOB ?
Fields
Then $PUTB OPC—EOF? No ESC
Copy $PUTB OPC—EOB (OPC—EOW to 7
Copy to a 3270 Printer)
Then $PUTB OPC—EOF* No ESC

1A $CHK macro instruction is required with each $GETB or $PUTB macro instruction to determine 1/0

completion,

2)n order to effect the read modified fields from position and read buffer from position functions, an
initial $PUTB is issued first to establish the screen position by specifying an SBA address, and then a
second $PUTB is issued to send the escape command.

3The ESC code, in character form, is preceded by the ESC character.

4CONV—Y must have been specified in $DTFB for the file, and the $BCCRP completion code must have
been posted for the previous $PUTB.

SSee index entry terminate transmit files for other ways to transmit EOT.

Figure 8. 3270 Read and Write Functions

How to Request an Online Test from a 3270

One 3270 can test another 3270 in the same network (or
test itself) by transmitting an online test request to the
System/3 control station. To initiate an oniine test, a
3270 display station operator must:

1. Ensure that the screen is unformatted {one way to do
this is to press CLEAR, then RESET).

2. With the cursor at location 0, type in a message with
the format:

L [x [y [v]] hode]

where XX is a number from 23 through 34 (see
index entry online test parameter list} specifying the
desired test; YY is a number from 01 through 99

specifying the number of times the test is to be written

to the device (if the test is a printer, the test can only
be sent one time); N is the number four, indicating
the length of Address; where Address is a sequence
of four alphameric characters specifying the control
unit and device to which the test is to be sent. Al-
phabetic characters must be typed in upper case.
Because double addressing is used, each control unit
and device character must be repeated. For example,
to send a test message to control unit 0, device 1,

in EBCDIC transmission, the operator would press
the minus (-) key twice and type two A's.

3. Press TEST REQUEST.

The test should now appear at the selected display station
or printer.

After the online test is completed, the 3270 operator must
inform the MLMP program that the previous display was
erased for the test. (One way to do this is to press CLEAR,
providing that the MLMP user’s program recognizes the
CLEAR key AID sequence. If the sequence is recognized,
the MLMP user can issue $PUTBSs to refresh the 3270
screen.)

3270 Gnline Test Considerations

® If System/3 does not recognize the online test request
or cannot accept the request, the online test request is
passed to the MLMP user as data. Be sure that the
requested test number is correct, and that the MLMP
I/0 buffers are large enough to accommodate an online
test request. See index entry online test.

® |If, in response to a general poll by System/3, you request
an online test after one or more stations in your cluster
have transmitted data to the System/3, the System/3
will be unable to recognize the online test request, and
will pass the request to the System/3 user as data.

® If you respond first to a System/3 general poll by re-
questing an online test (message type not 00) and
another station in your cluster transmits data after you
request the test, and before EOT has been transmitted,
System/3 aborts transmission and posts the System/3
user with the $BCOLT completion code {see index entry
completion code). The data transmitted subsequent to
your request is lost.

Note: To avoid the last two situations described, try to
ensure that your station will be the only one responding to
a general poll by System/3 if you want to request an online
test in response to a general poll.

Status/Sense Messages

Because the 3270 cannot accept data when status is pending,
you must poll the 3270 for status before you can initiate
or continue transmission to a 3270 on which status is pend-
ing. After you attempt to transmit to a 3270, status may
be pending if the $BCERR completion code is posted or if
the $BCNEG completion code is posted along with the RV
switch set on. In either case, poll the 3270 for status by
issuing SGETB for the terminal for which you issued the
unsuccessful SPUTB. (To avoid a polling loop, specify
LAST-WRAP in $POLB and a LIMIT of 2 or 3in $DTFB.)
After receiving the status, you must issue a second $GETB
to receive EOF {$BCEOT completion code).

Device-Dependent Considerations 71

If The
Status/Sense
Bytes
Contain . .. Mnemonic

This Means . . .

Applicable
To...!

See This
Action
Number in
Figure 10

X

‘4050 IR

Intervention required for one of these reasons:
® A command attempted to start a printer but found
it not ready (out of paper, hung, etc.). The printout

is suppressed.

® The power is off on the printer.

3271, 3275

® The control unit received a selection addressing
sequence or specific polling sequence for a device
that is unavailable or went not ready during a
printout. (A general poll does not respond to an
unavailable or not ready indication and proceeds
to the next device.)

® The control unit receives a command other than
diagnostic read or write, for a device that the CU
has logged as unavailable/not ready.

3271

® The printer went not ready during a printout.

3275

3A

X'4060' CR

Command reject. Receipt of an invalid or illega! 3270
channel command {for example, NOP, Sense, Seiect,
or Copy if not installed).

3271, 3275

X'40C1’ ocC

Operation check. Any of the following:

® An illegal buffer address or an incomplete order
sequence received on a write or erase/write
command.

3271, 3275

® CCC or from address not received on a copy
command.

3271

® Invalid command sequence (ESC is not received in
second data character position).

® An I/O interface overrun is detected. This occurs
during a command when a data byte is presented to
the control unit by the TCU before the operation
required by the previous data byte has completed.

3271, 3275

X

‘40C2’ cCc

Control check—timeout. A device has failed to re-
spond to control unit communications within a
specified period of time.

3271

2A

1 . . L, .
In analyzing a status/sense message, the programmer may need to determine whether the device is a 3271 or a 3275. One way 1o do

this is to compare the device specified in the status/sense message with a list of all 3275’s; if the device is not found in this list, a

3271 can be assumed.

Figure 9 (Part 1 of 3). Analyzing 3270 Status/Sense Messages

72

if The
Status/Sense

Bytes
Contain ...

Mnemonic

This Means . . .

Applicable
To...!

See This
Action
Number In
Figure 10

X'40C3’

CC,0oC

Control check, operation check. The condition
above was detected while the control unit was
executing an operation with the from device during
a copy command.

327

1B

X'40C4#

DC

Data check. Either one of the following:

® An internal parity check or a cursor check oc-
curred in either the control unit or device buffer.

3271, 3275

® A transmit parity check occurred on data sent
between the device and the control unit.

327

2A

X‘40C6’

DC, OC

Data check, operation check. A condition above
occurred while the control unit was executing an
operation with the from device during a copy
command.

327

18

X'40D1’

IR, OC

Intervention required, operation check. Either of
the following:

® A copy command contains a from address specify-
ing an unavailable device.

® An IR condition (see IR) is detected while the
CU is executing an operation with the from de-
vice during a copy command.

3271

38

X'4C40’

DB, US

Device busy, unit specify. The addressed device is
presently busy executing an operation or a busy
condition was detected previously by a command.

3271, 3275

X'4E40’

DB, US, DE

Device busy, unit specify, device end. A busy con-
dition was detected. However, a device end indica-
tion means the device is no longer busy and the
operation should be retried.

3271, 3275

2A

X'C140'

TC

Detection of a BSC error on the TCU transmission.

3275

1"

X‘cacr

0OC, Us

Operation check, unit specify. A from address on a
copy command specified a device with a locked buf-
fer. (The device was not authorized to be copied
from.)

327

12

Yin analyzing a status/sense message, the programmer may need to determine whether the device is a 3271 or a 3275. One way to do
this is to compare the device specified in the status/sense message with a list of all 3275's; if the device is not found in this list, a
3271 can be assumed.

Figure 9 (Part 2 of 3). Analyzing 3270 Status/Sense Messages

Device-Dependent Considerations

73

operation with the from device busy during a copy
command.

if The See This
Status/Sense Action
Bytes Applicable Number In
Contain . .. Mnemonic | This Means . . . To...! Figure 10
X'C240' DE Device end. Signals that a previously detected busy 3271, 3275 N/A

condition has gone not busy, a not ready device has

gone ready, or a not available device is now available.
X‘C250° IR, DE Same as X‘4050’. 3A
X‘C2C4’ DC, DE Same as X'40C4". 2A
X‘'C2C8’ EC, DE Equipment check, device end. A mechanical hang or 3275 6

a character generator read out error on the printer.
X‘C2Dg’ IR, EC, DE | Same as above. 3275 6
X‘C4Cc4’ DC, US Same as X'40C4". 2A
X'CACY’ DC, OC, US | Same as X'40C4’ occurring while the CU was executing 3271 2B

an operation with the from device on a copy command.
X‘'CeCa’ DC, US, DE | Same as X'40C4". 327 7
X‘CeCs’ EC, US, DE | Same as X'C2C8'. 3271 6
X'C6D8g’ IR, EC, Same as X'C2C8'. 3271 6

US, DE

X'C840’ DB The addressed device is presently busy executing an 3271, 3275 8

operation or a busy condition was detected previously

by a command. The device is or was busy executing a

printout, accepting data from an identification card

reader, or performing keyboard functions. Set under

either of these conditions:

® A command is addressed to a busy device.

® A specific poll sequence makes a status poll to a

device and finds it busy.

X‘'C8C1’ DB, OC The same as X'C840’ and the CU was executing an 3271 10

1 In analyzing a status/sense message, the programmer may need to determine whether the device is a 3271 or a 3275. One way to do
this is to compare the device specified in the status/sense message with a list of all 3275’s; if the device is not found in this list, a
3271 can be assumed.

Figure 9 (Part 3 of 3). Analyzing 3270 Status/Sense Messages

74

Action
Number

Programmer Action

1A

Execute a new address selection sequence and retransmit the message starting with the command
sequence which was teing executed when the error occurred. |f the operation is not successful
after two retries, consider this an unrecoverable error and follow procedure bA.

Same as 1A except follow procedure 5B after two retries.

Same as 1A except retransmit the entire failing chain of commands.

It is suggested that the user reconstruct the entire screen buffer image if this is possible and retry
the failing chain of commands (within the BSC sequence of operations}. If the information in the
screen buffer is such that it cannot or need not be reconstructed, the operation may still be retried.
If the operation is not successful after three retries, consider this an unrecoverable error and follow
procedure H5A.

28

The error occurred during the execution of a copy command. Execute procedure 2A except that
it is the buffer of the from device specified by the copy command that should be reconstructed.
After three retries, execute procedure 5B.

3A

The error indicates that the printer is out of paper, has the cover open, has the print mechanism
hung, or the device is unavailable. Wait for the display operator or system operator to intervene
and mechanically ready the printer. Then retry the printout by issuing a $PUTB with the WCC and
no data stream. (There is no data error and the data is still intact in the device buffer and can be
sensed.) Otherwise, execute procedure 2A.

38

The error indicates that the from device specified in a copy command is unavailable. The device
address associated with the error status/sense information is not the one requiring readying. The
device requiring corrective action is the from device specified in the copy command. This from
device should be determined and made ready. Then execute procedure 1B.

An unrecoverable programming error has occurred. Examine the data stream to locate the probiem.

5A

Request maintenance on the device giving the trouble. After repair, attempt to reconstruct the
screen buffer image if possible, starting with an erase/write command in order to correct a missing
or multiple cursor situation in the device buffer. Retry the failing operations as done in the pro-
cedure previous to BA.

58

The from device specified by the copy command in the failing operation is malfunctioning. The
from device should be determined from the data stream information, and maintenance should be
requested on the device. After repair, reconstruct the screen buffer image, if possible. The se-
quence of commands used to reconstruct the image should start with an erase/write command to
correct a missing or multiple cursor situation in the device buffer. Retry failing operations as done
in the procedure previous to 5B.

The error occurred during a printing and indicates either a character generator readout error or a
print mechanism hang. There is no data error. The proper error recovery procedure is application
dependent, since the user may or may not want a new printout. If a new printout is required,
follow procedure 3A.

A data error occurrecl in the device buffer during printing; follow procedure 2A.

Figure 10 (Part 1 of 2). Suggested Actions Eiased on 3270 Status/Sense Messages

Device-Dependent Considerations

75

Action
Number Programmer Action

8 A specific poll detected that the addressed device is busy. Periodically issue a specific poll to pick
up the device end status/sense bit which is sent by the device to the TCU when the device becomes
not busy (unless this status change is detected on a selection addressing sequence}).

9 A command was erroneously addressed to a busy device. Periodically issue an initial $GETB with
a specific poll to pick up the device end status/sense bit, which is sent by the device to the TCU
when the device becomes not busy; then follow procedure 2A.

10 This error indicates that in attempting to execute a copy command the from device was found to
be busy. Execute procedure 1A when the from device is not busy. (A specific poll read picks up
the device end status/sense bit.) The device address associated with the status/sense message is the
address of the to device and not that of the busy from device.

11 A BSC error was detected during a text transmission from the TCU. Follow procedure 2A if the
failing command is a write command which has a data stream of more than 1 byte orif itisina
chain of commands and one of the previous commands in the chain is a write command without an
SBA order immediately following the WCC character. In all other cases, follow procedure 1C. If,
after following the above retry procedure, the problem is not corrected, follow procedure 5A.

12 An unauthorized attempt was made to read data. An effort was made to execute a copy com-
mand but access to the from device data was not authorized. The device address associated with
the error status/sense bits is that of the to device.

Figure 10 (Part 2 of 2). Suggested Actions Based on 3270 Status/Sense Messages

Polling/Addressing a 3270 via the Display Adapter A maximum of 12 unique device addresses can be specified
for the Models 8 and 12, and a maximum of 30 can be

The display adapter is supported by Models 8, 12, and 15 specified for the Model 15,

only. User assembler programs for the display adapter are

coded similar to programs for the BSC adapter with the ® 255 total polling entries can be specified in the user pro-

following exceptions: gram {see index entry $POL B macro instruction).

® The display adapter requires another link-edit of your ® The display adapter is supported on line 2 only.

R-modulie using a new INCLUDE card:
® The display adapter addressing (station selection) is
// INCLUDE NAME-$$BSID,UNIT-xx always directed to a specified device.
(xx = the unit name R1, F1, R2, F2)
® Display adapter continuous polling line buffer:
® The display adapter emulates both the System/3 BSCA
line 2 attachment and the 3271 control unit of the 3270
system.

cu cu Limit Device — Device
Address Address | 8F | 8F | Count Address . Address
® The display adapter provides a continuous poll function \w\/ m
Built by MLMP Data From LIMIT From $POLB Entries
Management Keyword,

$DTFB Macro

which polls the specified devices in the order given.
(Devices can be repeated more than once to set up
priorities.)

® Address and polling characters for the display adapter
are 6060xxxx and 4040xxxx respectively (xxxx are the
device address characters).

® The poll/address line buffer must contain valid device
addresses or you will get a unit check (see index entry
$POL B macro instruction),

See Appendix B for samples.

76

IBM 3735 PROGRAMMABLE TERMINAL
Form Descriptor Convert Routine ($$BSCN)

The Form Descriptor Convert routine (FDP/Convert) is
provided with MLMP to convert form descriptor programs
{FDPs) generated on OS or DOS to a format suitable for
transmission from System/3 to an IBM 3735 Programmable
Terminal. FDP/Convert converts to a System/3

file an FOP generated by OS or DOS FDP utility pro-
grams &nd punched into cards by IEBPTPCH or an equiva-
lant punch routine. The System/3 file can then be trans-
aitted (o a 3735 by an MLMP program. (For information
on how to generate FDPs on System/3, see /BM Systems
3735 Support Program Coding Manual, 3C21-5096.)

Whatever the punch routine used to generate the input deck
for FDP/Convert, the data must be punched in the following
Termat

® Six cards: data in columns 1-72, sequence number in
columns 73-80;

® Every seventh card: data in columns 1-44, sequence
number in columns 73-80.

That is, seven cards of input for FDP/Convert must contain
a rmaximum of 476 bytes, and be equivalent to one OS or
DOS FDP disk record. (OS FDP disk records always contain
a maximum of 476 bytes. DOS FDP disk records, however,
can cuntain @ maximum of 486 bytes. The first 10 bytes

~t gach DOS FDP disk record contain an 8-byte name and

- 2-byte sequence number. If you are punching FDP re-
cords generated on DOS, do not punch the first 10 bytes

of the disk records.)

Mote: FDP/Convert checks the sequence of input decks.

If an input card is out of sequence, FDP/Convert issues the
‘P9’ halt. See the appropriate halt/messages manual listed
in the Preface for a complete description of the ‘P9’ halt.
For information regarding |EBPTPCH, see /BM System/360
Operating System Utilities, GC28-6586.

FDP/Convert can convert:

® 80-column FDP cards to 96-column expanded format
cards.

¢ 80-column FDP cards to a user-specified consecutive
b444 disk file.

® 96-column expanded format FDP cards to a user-speci-
fied consecutive 5444 disk file.

Note: Only the disk files are formatted for transmission
to a 3735.

80-Column t¢ 96-Column

For each 80-column input card, FDP/Convert generates a
maximum of two 96-col' nn cards. The information in
the input card, ercept null (haracters, is expanded for
printability and punched in columns 1-86 of a 96-column
card. (Null characters [X°4(70‘] are inserted into FDP
records by OS and DOS to pad a record to 476 bytes.)

As an example of the expansion for printability, the 80-
column input:

e

Column 1 2 3 4
]

Hex value 4 7 4 7
3 2 EGC
—

Is converted by FDP/Convert to:

r 4

Column 1234567 8
Y

Hex value FFFFFCFF
43724570[

Pl

Character 4 37 2 4 E 70

To generate a deck of 96-column FDP cards from a deck
of 80-column cards:

1. Place, as shown, the following OCL statements and
data in the 1442 Card Reader/Punch:

// LOAD $$BSCN,unit

// RUN

// CONVERT TO-MFCU,FDPNUM-nnn
80-column FDP deck(s)

/*

2. Place blank 96-column cards in MFCU2.

3. Begin reading from the 1442,

The FDP number specified in the // CONVERT statement
(FDPNUMY) is punched in columns 89-91 of each 96-column

card. Each 96-column card also contains a sequence num-
ber punched in columns 92-96.

Device-Dependent Considerations 77

80-Column to Consecutive 5444 Disk

FDP/Convert builds a maximum of one 476-byte disk rec-
ord for every seven 80-column FDP cards. Null characters
are deleted.

To generate from an 80-column card deck a consecutive
5444 disk file containing one or more FDPs:

1. Place, as shown, the following OCL statements and
data in the 1442 Card Reader/Punch:

// LOAD $$BSCN,unit
// FILE NAME—$WORK,UNIT—xx,PACK—pack,
LABEL—your filename, RECORDS—number,
P
RETAIN-< T
S
// RUN
// CONVERT TO-DISK
80-column FDP deck(s)
/i

2. Begin reading from the 1442

RECORDS-number in the // FILE OCL statement specifies
the number of records required to contain the FDP file.
The maximum number of records required is n divided by
7, where n = the number of cards in the 80-column input
deck.

Expanded 96-Column to Consecutive 5444 Disk

FDP/Convert repacks expanded format 96-column FDP
cards, then builds 476-byte disk records from the repacked
data.

To generate from a 96-column card deck a consecutive
5444 disk file containing one or more FDPs:

1. Place, as shown, the following OCL statements and
data in MFCU1:

// LOAD $$BSCN,unit
// FILE NAME—-$WORK,UNIT—xx,PACK—pack,
LABEL—your filename, RECORDS—number,
P
RETAIN-C T
S

78

// RUN

// CONVERT TO-DISK (The // CONVERT
statement is optional.)
96-column FDP deck(s)

/*
2, Begin reading from the MFCU.

RECORDS-number on the // FILE OCL statement specifies
the number of records required to contain the FDP file.
The number of records required is n divided by 952, where
n = total number of columns, excluding columns 89-96,
punched in the 96-column input deck. The number of re-
cords required is approximately one disk record for every
eleven input cards.

FDP/Convert Considerations

® FDP/Convert requires a 1442 Card Reader/Punch to
convert 80-column FDP cards. If you don’t have a 1442,
you can use an {BM Business Systems Center or another
customer installation to run FDP/Convert. Arrangements
for using an I1BM Business Systems Center can be made
through your IBM representative or the IBM branch
office serving your locality.

® All FDPs must be generated initially by System/3
Model 10 Disk System, OS, or DOS. You can have
your FDPs generated at an IBM Business Systems
Center or at a customer installation. Arrangements for
using an |BM Business Systems Center can be made
through your 1BM representative or the I1BM branch
office serving your locality.

o To avoid billable maintenance by IBM, be sure your

FDPs are generated on the current version/modification
level of System/3, OS, or DOS. 1BM may charge you to
fix an FDP problem if the FDP was generated on an old
level of System/3 OS, or DOS, and the problem is fixed
on the current level.

Additional 3735 Considerations

The 3735 has unique data formatting requirements as de-
scribed in /BM 3735 Programmer’s Guide, GC30-3001.
You must be familiar with these requirements before you
attempt to communicate with the 3735.

Appendix B. Sampies

This appendix contains examples of MI.MP macro instruc- Sample MLMP Macro Instructions
tions, coded with a minimum of associated assembler state-
ments, and a complete sample program written to communi- In pages 8-16 of the following sample MLMP macro instruc-
cate with the IBM 3270 Information Display System. tions, the label $DTF is equated to XR2 by the $COMN
macro instruction, and other labels used are equated
by the $DTOB macro instruction.

-
]m 1BM System/3 Basic Assembler Coding Form | 3
|_rrocnmn SAMPLE DTF DEFIMITION - TRIBUTARY STATION BROGVE & [Jomewe (T T T T T T Tre J il
[“mocaam Torrs 1remeres T 1 1 1 1 1 [[[emercmonmen j |
i SRTEmENT i
|‘ leam: 5 8] 7 GOQDQ;::“?;.K’ 13114 156 17 1R 19 21 270‘;;”;:«757627 28 29 30 11 42 33 M 35 36 37 18 1940 41 4) 43 44 & 46 47 A 4g 50 51 57;:54555&5750;"5'8’::07 83 64 65 08 67 68 80 70 7} 77 7174757"77 78 79 80 81 82 81 b4 85 98 87 mﬂm?vnw\um;]e i
DITIF1 $DiTFBl (AEcl]- 184, (8 KL [-[464, bl EuA1], BuAeNp-Bl|Fine, X ! BEERRRNNRESRENE
ReApi-iLloelsiFi], FTIYiA-leck], (GO E-|A], : B x) [;,I
1T 8J- I, [PL|vie|T- 15i8], [TVIPlEl- WP, Ir [ERimlAlDl - el 77 ! : ARy
: A i T T - IESUREREE
. L - ,;4 - ¢ ,>‘L.._‘+ } - J; T"'T i
- T + -+ »—‘—'l— -1+ + 4 - + 4 ot 6474“17 >“‘,"
8 FJ 3.7 ¥] it J‘r:V IRERRS AR NEE i
[D) YXLI08 00’ | || /0 BUFFER AREA T SR NEREARARREACAERARE
Agr PG T T e T T T T T ! T BERRRRE
suFe | bie! XL ! T LT S NESUNRSERN L RN
anANin Vasgiegr T H) euil BUFAeR Wee f NaRaRINRaaAn
B || AL | N i au i
CikiLisTit] [Sleidl] | 1orF-pirisal, iAlsir- iy | L chcz wesm 1] } ;) o j
VELE PP T P S]
P - x FHA R b b R e
]m 1BM System/3 Basic Assembler Coding Form : r:.:‘zvjv)m
[racosaSawane DIF Dexuunion : BINT -TO-PONT TRANSMIT™ FILE R¥BEIIME Y[B e X O O O O O O 16 i
[“rrocasmer Toere R N I I O I s
| STATEMENT enuticaton
T B P e o PR 2 TPy
piTIF2] | | $iiTiA eécL-'iI%me-% WFISTI-[BUFIZ], [BUFIEND-[BuUFz]E, X ! ;
lelcialDl -z |osiBiFiz], ATy iP-ITrisiM, L/ ME -2, : X) L1 i
Up-l1dodididdd, lowvi-Dr Finix(T], ! v i
TRAMSIA- 1Y, [/ ADLe- [Swr lelwiz], | ¥ s k- Ad 1 X 1
DLYlerT]- TyiPe - AA) ; b b
. : ; L
. REl [} T 1 r
BUFZ] | | [Eou] : B ! i IBAREN!
fkofczel ggu ERANECW" DowilLE |1/ |BUFFIER i ; BERERE
! -

11 ol il [TTTTT | ILlogll EllL| lBuiFIFER] |AREA i] i
&%{Lc IC] nAAdrrd FaliBCC | |]
CIKLSIT 2| 1$lElkiL -loriF2], [LA[ST- Y | leilecud lLisir 1T } | SEENE NS

FJ[ECT j[L E RS : L T 4
T T FErT SERaRRRE Sy ! 1T TrrTT

Samples 79

ading tonn

-

swenbler

BM Systen 3 #aun &

W,

/,

(3

91 9495 u|

41 93 va o5 96,

R

3+ 9r 93 94 95 %6

W 46 81 R [B9 o0 w1

16 75 BG 81 82 83 g4 85 86 874569 90

%78 1

5 9 B0 BT 47 4y ma

o

b .
+
i =
PO
[B
ek o
U -
[S A -
i . B

Remarks,

7 b1 64 B me 61 nA Y 0 11 77 15 T4 78

ra Sh o 5 sk 9 B0 0

“i %G 54 5% b 7 o 59 60 61 62 63 b4 65 6¢ 67 68 6970 71 Ti 73 4

S e S
~ R
e
u e
‘ § a 33
- T . 4
NURORR

Ry - ﬁ;

!
f

Coding Fun

T

I

—'YV

P
i

i
|

-N

R

S M*‘D’/ ‘

[

R AREA

STATY P

AAST
kST

"]’61_ e .

BIFiX

-
T

i
I

AS|
v
"’»

i

-io

IBM Systernd s Assembier

Al
T4

15,

Vs
Ec.
£3
o]
|
|
}
T

S

=

SN A AL e 1 a4 s s

6y |

S

| EmoE STATI DY
g

DML ST

14

N-4d,
1Ay
EC§ %3

=
+

S|HE
N-g, |

\LIEN -3,

'
¢

"
. 0“'”

|
{
|
:
|

o1 Wi gs s BijsRjY w

6 &0 70 1 1f 14 Iy

1 bt 06 86w

e s B

4

N

L alilalabias 2N <4

o W

7

B

Gl =

I)

4 b m

Lo~ . X E
I ~ Sy

e T Y -
st i .

I .

I R S R s S

[S 7 S

CrHeE

R RECEWE FILE IDEXCHANGE | - -~

-cluieldely

k.é!u# d~;a4
Al ?p\{ UDi- ot

;i

d

ATOWSWEE (uECSATIVAL REOEIVE Fols

Toerand

LB ATIED- Rl

s S[TATIID
1 SITATIID-C9)

i

Iy

2
o

KL
v, TY|PE -

#

Wi- WX TIDTE, IC OMY- Y

YPE- A, RCWI D- 1 Pif], [BC¥ic'T -

2[4 1516 7 18 1920 21 2773 2426 45 2 28 29 X ar s

C

A

LEICIT|-B
IECITI~ |

&F-;CL-I‘I 1 L<
FTYe- Rl

B N/DTD|- [ZIDML NE !, 'SINDCT - b

XLipid”

SIELECIT|-
3

L

JN N A o A O

ekl D TIF0iTF3, ATy

SWIB k5

1D EXCHANGE

fiwz

51718 9 o vt 12[0f1d 1516 17 18 192021 27723237 26 77 2828 10 1 37 14 B 0 B A 41 el 4l e 4

U USING SWCHRED T LIST, DYNAMK BUFFER ALLOCATION

SMPLE DTF DEFINITION. SWITCHED. AUTOANSWE

AmMmE R

= W
He . s 3 L.M,
2- 8 MMW,CC¢
|] Q | Er%.@.ov. 1]
= - t B

- T ¥ .

¢ 0 T ITak

3 “ ‘jW . oL M
& B S5

e llalis

i
I

71 ey

1&’%

t

bt

oy

bt

§
H

12[13{ 18 15 16 17 18 19 20 21 22) 18 25 26 77 A 23 D b

EICRE

80

HHM Systam:3 Banc Aswmbler Coding Foim

NSWITCAED AUTICALL RECEWE FILE (0D E xenansg « -

PROGHAMME R

i oo SAMPLE DT E DEEINITION

STATLMING

Sl A BR i S n

45 04 85 a4 ak o0

i

i
v

AR
S|
i

&
|
{
|
I

48 85 a6 47 4w 49 50 N1 Ao nione b

|
!
§
i
1

Elcl

IS STAT o
f

e
; b
; S e e St |
: . i %
M Tt 8
3 1 j £
=IO o — 5
IR i ! E
B 0 | T R
nwp T BN ﬂ: 2
R > 3
NE= I T B
Nﬂfr .t W‘T 1 I
£ I ~ ; €
e - 1 < : R
12 - ~ R
s 404 [9) o 4 8
2[~0[D) b JINIS) = q5
ali= “_ T~ &
2 P - 2
mn.1h =~ = =
Hiej(~) ~ ~ - =
=[O = ol gk 1=
B I I) = z
L =[oe [PEAE ILT= L
e — 15
muw = LR :
N R Ire[9) GM = -
ki MY s ®
= i b :
i 1a 1. "
B= Q1= 0] Tal Iad ~
Brs) SIS T <) -

T

“nd LS8

1BM Syster/3 Basic Assembler Gooing Fonn

I

van

Al

AOGRAM

=

1ON-CONTROL. TATION “RE(

PROGRAMME A

A TEMENT

b

g

1

IEER R
e J— -} .
DY/
. zu‘mWﬁmﬂ
PO 4& .
S
K

€ 59 60 61 62

R. AR

Fb
|

2
! .
Lioe)

tr

1o
1

i
bt 4o
I}

a

1
Al
sl

Jl

1CIS

L
-

i

S{)

B

S

- sl R nis], R

+
T Y

L0 K

| ESTATIS

LRV

RRLOG -ILIOGS)

Tpecand

7
L

i IR
[! i
$2 T
S -
(! JF I
S>> 1 R
T " 11 !
0] L ;
QO 1 _A\ T
>l 1 LT >4 ,1
JE2 TS .
i : y ,
E i ! 4aD 17!
e 22D
[=T w,
]

M 1516 17 18 320 31 2223 2426 2627 282 X031 42 93 343 36 1) 30 390 4 42 4) 44 40 41 4y 4w 50 0

XLl

REC-

|

i)y

RCAD- b

TYIPE-Ls), LTsh

DITF-

AR B kS ok B S 9B P9 90 91 3 0) 94 58 98

6504, 61w 6 IG 0

Operation
D]

POk

W ECT

D/
L

Name

HCH,

1.2 3 45 6]

RLIST

J 2 24 5 678 9 10 11 12{13(14 1516 17 18 19 2021 72 73 74 25 26 97 78 26 0 11 32 52 4 B 3 37 I 1940 41 47 47 44 4 46 47 48 49 90 51 57 51 54 55 56

DA

;

CKLSITE! Sk

81

Samples

18M System?s Bavic Assembler Coding Form Sorm %21 9307
% biimtgd in US A

SAMAE DTFE DEFINITION : dovrmoe SATion TRANSMIT Fre cAume:M{,w } % % % i } [IL T l
- SR _ im; B NSTRUCT OV ot

‘ ARG FLECTAG AUNBER I

STITEMEN Identification
Cequence

as 29 50 11 L7 53 56 55 seszsesgSOExE; 63 64 55 66 67 5H 69 10 51 72 11 18 7916 /7y 79 KO 81 82 63 84 asﬁﬁﬁ?s&ﬁ&wmnwusﬁ%
T T

T
N }l

T

T

Gt N

Q\
_‘__’:l&;_»-m
=3 ¢
i
:

H
T
i

:
i
,
I
!
i] L i
SRRAEas R R R ! R
SRS ESE YR RS SRaL -
Tk + . 1- § 4 Tt bt t-
H :é,m 1‘ o - T+ ‘r T4t H,;fiy L
e ~ - s B B
HFFEé Aged | LLIL L T *
Ao . | i !
i T T t T
: e, Jhos A e :
! ‘s REey ; P e b L -
s . A Lbit g RN R i NEREREN
£M AD S W& LS, | Fod 19/8 18 ! L |
il RHECK LISTT - HH L
| P I 1 | L REIRERRENA)
‘g .‘l%‘l»l‘¢ i 11 i L i |
'l il shis it
s ; | RERRERRRECRRARE ¢
SIRERNNY | E b e I s
i 11\; | (Ly 0 P4
! L] L] { i LT J

t4 78 2 17 2829 30 3117 33 34 F 36 37 A WM AN A1 22 4" 4a db a5 47 44 4350 51 4257 b4 55 66 h1 58 59 6061 62 63 64 B5 66 67 68 A3 70 71 72 73 74 7876 77 75 29 BOS: 82 BI B4 85 86 B7[88|BY 90 91 97 93 34 95 96|

1BM System/3 Bawc Assembier Coding Form

- BEHDLE MIMP : CECEIVE DIF 1 (SFE FAGE) PP pee s NN SRS I N O O
i l I il ICYN N U O O O A) |

:’\.d

[E LN M'bn.HJaJle 42 4 44 85 a6 47 5 4y B0 ¢ v5251455»:7555;50&54mmssssmsﬁssmn 1203 ra 75 7',"1 urv aun &IEJEAK&BE{”RBQQDOQ‘91,9:3‘95%
DITA-p AL LTIT ,T,Aﬂ,gi ¢ ERER Ll |
UL [L WAl [Foe. elomadgry ou r AEERENN SRR NRNAS!
Sgoc_ L [fBood, lepuer eV D! L ! i
5,51 L MO CK 1A 71/ OM ? | f HIRRREREI i
%C;,H;E, AECORD MOVED 1O LOBBAL ! ’ - aan
) ¥ thiy 71 TWER 1 CQ?_E € e gk L -t
[i | : { t | | A | i | i ; !
¥ 11| leglouisin Woir| acelgerias || 1] [ARERRANEN i ‘
/Mé WAS [@edecrED AMD || ; ‘ HERENS A
M. AP _%;: vt ! L
| \ H
| K PoMALET DM || ; I
De) |EW-ple- [m g T | 1T
EBEL No. | eHECK [FOE 4 LETIOM Ly +
AL i 1 - +|;, + R | 4 : ;
3 5! t - 7 TiE Il
A:T(: ?EPU’ZEQ el | | i SRaes
.*.i, + 1+ 4 i + : T+t 'J{
T et L rla L | . Ll
I NE THIE LONDY TV 1OM iwv - i ' s j L
A AA VA ary oM ! ‘ ' | S ~
fhed : it BERRERREnI | RNl . ;
L“, L J L 4 R 'r | J1 il
] frt b Frptrbtt b it 1 SRR
14015 16 17 13 A2 7711J14252677N[9]))VJ2)J)4§‘H 38 3980 41 42 40 44 45 46 47 48 49 SO 51 52'5354555657&59606\61 63 £4 8566 67 68 69 70 11 72 1) 74 757617 ‘vs mm‘ﬁl 82 1) b4 85 86 B, i.r,:osvw:glsd%%

1BM System;3 Basic Assembler Coaing Form

[rocnen SAMPLE MLMP : TRANSMIT DTFZ (SEE AGE Z)

%
gl
4
2
:
: T : T
= L e e R I
r—- o ot s Soate (RS S A S S ST
| R s e i R :
- b e s Qe R
- ﬁxxﬁﬂf : el i e el
3 1) ~ : 2
S o e e e < 1 e R
I, R TR | FP.[:]
P R i e v FTRR :
HEIRE S e (oL s s e
HERE i VAN N 2
S T M A, we :
. : IS N . 3
- 5 MW%M mm‘ T - o~ S
H D B - , *
% AT AN LT 3 8
[! o~ f E]
¥ : Ui~ N N
e o ;
M X7 2 .WTT&,TTTI 19
: ALY \J) s 3
K 2D | . [9
H M ~Q ,,me 3 T ¥
| = 3 n ' s
¥l | Hil . 2
HI T | H
R i , %
[i I 8

S f
al 1 <
2 5 N LV
aH & (=) #ﬁll ; :
& ' R

® i i
5] [4 IR < ~ .m,
] -— ™y L ~ & &
0 L s~ > ™ 2 B =
i -« 1Ir
30 Zg) T O] w g
y W Nith] z
&, r”(IK. - #L = R
=] (3] <) =8 .l
o 18 A7 P SRS .G
oI R MR R | aRehg —E
PES 3 SN G BN 2
=) H P =
8§ [I S B
HEL =S =] IR]
i 2] A [{ -
: = — =
H v - -
m »w -
8| 5 :
IR b T |]

IBM System/3 Basic Assembler Coding Form

TRANSMIT DTFZ (CONT)

94 55 56 571 58 +9 60 £y 67 &3 64 65 66 67 68 691G 1 1% ra 14 I5

57 5753 54 55 % %) 54 59 601 b7 fis 04 6566 €7 68 69 JO 11 23 vy

——
. ~
. SN S S S D P—
BENN -
o1 I DA D
. +—1 ; B
£ e o e e - -+
i3 o
AL IR A S
—— - i T
Tt ———
]
¥ :
T
T r t

STATEMENT

I

223 24 75 26 20 78 29 30 31 37 33 34 % % 17 38 1940 41 a2 43 44 45 45 4 4D 49 0

Goerand

ATE ACT! oM

|

2131e 1516 17 w19 W 21 2

?

Operation

Name

123 a5 678 50

PHOGH AMME A

(oo SAMPLE _MLMP

{

ERlez 8 | [Ed |

i

1.2 34 5 6{7]B 9 1011 1214141496 17 1819 2027 2223 24 26 26 77 28 29 30 31 32 33 34 F> 26 37 B 40 11 47 4~ 44 4 46 47 a6 95 B

LEETE VI

IBM 1BM System/3 Basi Assembler Coang Form Som r 219107
Prnred in US A

SRS I S S B ™ - S]
g Lo iku - lm‘" I I T; T I I I](‘“Uh,"mvm-ﬁsiu]

EA”‘S‘Z‘@E MLMP: PONVEESATIONAL DTF 3 (SEE PAGE 3)

Taenniicaton
“equence

[
’ b A A 3 LTSNS) LI s s S B0 61 64 51 b4 Bb o bt ta 65 IO T) 12 13 14 P56 1 13801 B A b4 s 85 8788189 90 91 42 91 94 55 96
Eﬁﬁﬁﬁfﬁb'ﬂ% ‘ I IRERRRRRERE 11
EWEB X ‘ ﬁi&a‘ JKF‘ p &Mm& ﬁf?.z,;dﬂc‘—ﬂq@,« EEBISRENNE

P -1 ’~v: o - o def b 4 }
bepe ;(3/- : I (fﬂTF) ,f@@fﬁ,d ! ; : pr : ottt H *E
uRRiay E,Pcweass)fﬁa war, HEpENpENT] m i S ffl’f"i.,“:f’:;: RAREEE !
SRR 5'5‘” CW~ Peobeiid 2 on Uit L+ besebrtlo b H
ép‘”k ! Sevenn $orv), $degor || T T
S L j,; Bgcﬁp ;,pxr‘c‘) GEO?‘ ol . i | s od g '
Lldiy. . : PR - : ot
el u/ ‘Mwuﬂ(.,swﬁ) gBeone | : IRRRRRAEREN An
o, R . Liiald 1 |
‘J;; srﬂéﬁﬁﬁd&g'vé»,._g Su IR el

bl me £D B! BEAMH s 0 SR IR AR R AR FRnnEh
iSiAN ACW"[WALW 7 BRAY o RRREEs o H
SRR B 3 SRR TR AR RN e b i tl% G bk | - R
':"T“" R R T R :;‘H"%"':4 : :ié ~'rr—
Prrrbod P S Pt |:l ‘V'}'?‘ r ‘H }T‘ '
SEERRR RN BERE RERE Povdtetoapabtito Proefrid
SEEERES o Py P “;'%*“Ml i ' fw“ N
I L P iiatsdistiininnautsinnntinintntnnn T
TN BEISHUNI L diiid
TN B ' t = R T S e T 0T 07 1 T T e & s 7 70 11 7 71 e 7576 17 7 78 RO AT 7 w1 wa e e B[B0 20 1 97 5 30 55 56

[

IBM 18M Systern. 3 tusic Assemlzr Coding Form Four x21 9107

[SAMRLE MLIP I CoMvERSATIENAL DTEE [0 S e) 2 = NS S
B R O R 0 O]

Igentitication
Sguence

T v~jrv ' -) . 7& s s s SR et Ol 0 63470 1 12 33 e 7516 1> 18 v 80 81 ki 81 ua s B 8786|8990 2 92 91 ea 95 36
Wﬁsﬁmu : DI LT RRASE I

‘ 3“;1%0,4&'5 0 'sewo AwJ,?F'CpFD SRR RN R | i

L mﬁ;wum DTE- ,.w:; BETeCT lecgs | if}v #L‘ 425»1.»/ ' I

,,,,, ,swx ;c/a KLSTC .,v,,.‘xAi: 0 oW T §RS i r
,agcmw(,w#) ﬁﬂiz‘zwf L kood S Ak |
glé . e o OMPUETIOM || T '
o mr £ DATA,| BRANCH Td Aurd LT T LT
K AU.ON TuE BEMOTE ST ﬁﬁo 70 ge‘MzzA CONYIERSAT ONAL| EEPL IRanInl BN
*‘...W’Amsmr.ms?r,ecaw 'V‘Hém SRRt IR I ROE DR R B ERRRRRREES !

U VspuTE BrebrFs, BETECT- -Eees, aPc' dog] M7 ETX] REENE N IR

. ,‘HM//K KL~ amwrc LT WANT ROl cpmMPLED 4 SRR :
.L‘..w'f/,dwc#(@ﬂF)Smed.,.,ug.ui.ilrz. A geeeyvieds | T !
g lkers VU e e gar cony As

5 : ssédmnf/a‘w’hm'wéi, e Wi Compl o, A T

L. BNE ’1[53 T o, adEek O !]

Lol deeos pre-BTEd L ‘ ‘ v N

¥ %}ﬂpf/iu' w*%ardﬁg“%,_:, EEREES _&‘g;‘ | !

b | ROCESS) NG | | Coe R SePuie e Figa At

. ,.\§ . iw.‘g,) .|., i ‘[T* et L +
.:..? . ‘,, ‘‘‘‘‘ ! i E }A “7‘1H| 'I:l_ | % 41
sres |pgu el L leeeugsr eveera || T
RN pﬁrﬂwwf M" S.Pia.‘ ad ARRRAI

{7} "AA'EAWM j uw i i N M: [B

84

o 16

CAHD ELELCTRO NUMBER

[13

53 60 61 62 63 64 65 66 67 68 6970 /1 72 74 14 7576 77 78 9 B0 81 82 Y 54 85 86 87[6u[89 90 91 97 93 94 95 96

THM Sy e

(eanr)

33 3¢ 95 K,

“To

U N MRE R

85

Samp'ess

PAGE 11/

LA gk

]

I
|
[

I
|

b1 6A 690 N D 13 18 TS 16 17 8 HOB1 67 s wa us 96 BYfasfha 0

29 B{161 K2 b4 ke 6966 67 68 6970 11 77 13 74 7576 77 78 79 8081 B2 93 64 85 B6 §7[33 9 9C 91 92 93 94 e 96

e

by Cod

a4 e

WM Sy 1

t
Nt

EQUF
Ay

o)
WA 7
00D

p

U

T i
. , :
AT (218 G U
RS N
| A
e, a2l TN
LN R —
S R R —
.. S S . JE U |
B T S
LR YIRS
T
ot SP80 b o
~ < !
LAY TOUY W . W
Y 'K M;WE@ Bna .
TR N 2
W S
Ree Rgskh K
N JW\ N Y Aty
S ‘0:4.
3

RE

}
ﬂf’b/
L BET A

'

| PETEeTED, !

t
i
|
i

i 6566 b1 bH 69 70 1Y 12 it 33 TS 6 37 o8 /380G H2 A3 5 Bb b6 8J[safB3 vo 91 42 51 98 o 96

B no

I

DTF 4 (SEE PASE 4)

AOrMY T

£,

o

Coera

U S SR S

A

1o 1

12[3]18 1516 10 18 1920 21 22232425 26 20 s w9 M 1 s

LRI

T atnn

D | FlLe leFclety
DETERMI ME [7WE TEseb

b uﬁ :

T¢31
IRLTIG

T
}
]
P

R B D I

5 6]7}8 9 1011 12] 1514 1516 37 w 18 X1 220124 % 2637 m e B

5 6|78 9 o0

[recns SAMPLE _MLMP : (ONVERSATIONAL DIF3.

IBM

[mnen” SAMPLE MIMP : PECEIVE

BRUGH AlaME 3

PRGHAMME R

b4t
12 34

[

I

A

;

- 6

t 2 oaa

IBM 1BM System/3 Basic Assembler Coding Form Fom x21.8107
Pt in USA.

} SAMPLE MIMP | PECEIVE DTF5 (SEE PAGE5) { } e T T T T T T T Jreds o I8]
el L N I I O O

R s l CARD ELECTRG NUMBER

E. s ol e L34 e 10 800 AN s p s W n“s:::i::u a8 w8 e 51 5 55 e 5 0 | u's;‘;",‘.'i.'.‘,"""
BErs | s | i 11 l [;
L1l | 8eETE o Fi5l, c7-|8eels, Ad- gLk | | i8ar Al \Buoel oA 4T H
e KLrlepsis ||] y dompy T :
L e | | 3eoemad,sbr WE 11 1 Bodal [ropiad . !
Lyl BME . | |Fof |8 !
T Pedee F 2474 e 1] . t
1 || 7o BECEI Y MORE JATA, BEAMOH 70 |dAns RENREE ;
L o sEwp e T T NARENNERRONTNAN |
VL e Sl 1 7 Vi M3 ey i
e B "‘T ,v5 4 ;41 e b Di— %
345 Egiy _&T 1 1 | 7] rT !
x 1] DETE /Mjmr A _gg%gszf er | i ;
X 1| TakE WM Aseieldre/ AT E | I HT s !
L Dl P B i : | RERE H
2 1 ’ﬂhe x’EI | ST 2 F: '
Loli LS s ! 1 SiE [1
L] PE égmwe T gkﬁ 7o ' !
?Q, - 7‘A} 2 EVAIEA? Lt : ;
AR ¢ + . L I
G e | |
T a |
LHrtifyi ! H { :

V7 34 5 6[r]8 9 so v 1e Teve 1718 19 R 2 12232025 26 27 2 25 B 31 22 33 24 B %6 17] 790 41 4247 44 45 4 47 48 4950 51 5753 54 559 57 56 59 6067 67 63 64 66 66 67 6a 86 JO 71 72 73 74 7578 77 78 79 B0 81 w2 B3 w4 30 w8 7)p) w'vnnu--j

1BM 1BM System/3 Banic Assemblar Coding Form Somm x71.9107

{TJJ SAMPLE MLHP TRANSMIT DTFé (SEE PASE &) T] T T T [T T~16 ~16]l

I Jromeerow Fod 1 1 11 | 1 [[ereorscmomme

ame 5

SATEmENT] Toenitfication
i) Remarns
21 2223 24 % 26 21 28 2% 0 1 2 93 336 26 17 36 o 4D 41 47 4. 9445 45 47 45 45 50 61 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 7 72 73 74 7576 1) T8 79 B0 8) 82 8) 54 83 86 B7[#M109 90 91 92 93 94 95 98}
T T

oyl Tl T T L L] ‘ T

a_—

<
: 1 i Y
(v
™~

[
=T
1
Y
3
=
%)
MG

N
R

SIS
S

1&
~{
A
S
e
|
E
S
SR
RISTSIN
I
K
a3
T EmMO
Bt

n
r‘.
N

4G NERREAN! 1]5 T v (Beeley MEDA |

el | sy vj?;:/s

I . Ao I ATA
L | a.)

bt Ht

defzdu *” SHRI
il ko

=
1+§"

I SRR DI QU WU e
;

}
1

*:%4

o
S
i
N
s H
(il
<
3

el ol 1 ‘\i ‘f PETITTTTTTT TTHTTT
bt e d W*x} ot - i
Lt clnd il 1l
T 7 1@ . 6lejh 3 1 12| 414 15160, 18 19 20 21 22 23 2425 26 77 29 29 30 31 12 33 M 35 36 37 38 1940 11 42 47 44 45 45 47 48 49 50 51 5253 54 5556 57 58 59 6061 62 6J 64 6566 67 68 6970 71 77 73 74 7576 77 70 79 B0 81 42 43 04 e6 s 67 0 91 92 93 34 9% 98

86

Model 10 and Model 12 Sample Program: Communicating with the 3270

$3270 FXTERNAL SYMROL L1ST
SYMBOL TyoE VER
$3270 MADIHLF
$$ASMS EXTRN
$$RSTT FXTRN
$ERMIM EXTRN
$€3CLYS FXTeN
S3270 MLMP 2270 INFORMATION DISPLAY SYSTEM SAMDLE PROGRAM
FRR LNC CBJECT € 0E ADDR STMT SNURCE STATEMENT VER
990 2 S3270 START 0
0001 3 FXTRN $$BSMS
0002 4 FXTRN $¢8STT

L T T T T S Y
7 % *
8 *
AL 4 S3270 IS A SAMPLF MUMP PROGRAM WRITTEN TC THLLUSTRATFE THF 2
10 % FALLOWING - *
11 * *
12 = 1. HOW T2 CODF SYSTEM/3 SYSTFM MACRCS, *
13 = 2. HOW TN €NF SYSTEM/ 3 MULMP MACRCS, *
14 * 3. HOW IO READ ARND WRITE WITH A 3270 INFORMATIONAL DESOLAY *
15 * SYSTEM. *
16 * *
17 % S2270 WILL DISPLAY A NAME ANND ADDRESS MISSAGE 0N THE SCREEN. THF *
18 % TPERATNR THEN MAY KFY IN THE NAMF AND ATNRESS FIFLDS. THE FENTFER *
19 = KEY SHOUL N Rf DFPRESSED TO INDICATE THE N9 NF THF FIFLDS, *
2C = THE DATA FLEULNS ENYERED RY THE GPFRATOR VIA Trt NISPLAY KEYBNARD *
21 % WILL PF PRINTEL IN THF SYSTEM LOGCTNG NEVICH. THE CIFAR KFY PR THE®
27 % ONL INF TEST REQUEFST KFY MAY AL ST Rf HSEN, PRESSING THE ENTFR KFY *
ERT WITHOUT ANY OATA WItL CAUSE FRN OF JNR, 11SE OF ANY CTHER KEYS *
24 % WILL CAUSFE AN FR2NMR MESSAGE TP Rf PRINTEN AND THf SOR{FN TO ARE *
25 = REFRESHED WITH THE NANME AND ADDRFESS DISOL AY, *
26 % *
27 = «
2R F % & ok ok k %k % A& & ¥ & + & & X ¥ ok x & & & A ok & ok & & A & % 3 ¥ & &

14,

14,

Page of GC21-75734
Issued 25 November 1977
By TNL: GN21-5587

MAD 00 08/26/77 PAGE 1

MON 3C CR/26/7T PAGE 2

Samples 87

Page of GC21-75734
Issued 25 November 1977
By TNL: GN21-5587

S32 7N

FRR NC Caygrey cont

0000 €2 02 01DF
0004 €O 87 0004
2008 8%

aN0a €2 92 01DF
200D €D BT 0004
0011 82

0012 €2 02 01DF
0016 BH 00 OF
0019 F2 81 30
nNo1C B3 01 03
001F R8 40 02
0022 ¥2 90 2D
00?725 B8 CO 02
0078 BD 46 OF
00?28 F2 16 2A
002€ BC 40 OF
00721 B 00 OF
0034 (" 87 0001
0038 34 01 0045
003C RS 01 23
0N3F 7h 4D 07
0042 C2 01 0000
0046 F2 81 OF
0049 F2 87 13
004C BC 4A OF
004F F2 87 09
0052 BC 41 OF
0055 F2 87 03
0058 BC 4C OF

0058 €9 87 O19F

005F (2 02 061F
00€3 €D 87 0003

0067 BD 44 OF
006A F2 01 OB
006D 38 80 9718
0071 38 80 0718

MLME 2270 TNFORMATINN

ANNR STMT

2078

0011

1012

0058

005F

0003

30 *
ES RS
32+
33+
34+
35 #
ELE A
37+
18+
39+
40
41
42
43
44

4 H o 3

46
4T +%

49+
50+
51+
52+
53+
54+
55+
56+
57+
58+
59+
604+
61+
62+
63+

64+4$S1003 LA

€5+
66+

6T+$E1003 MVvI

68+

69+$E2003 MV!

7C+

T1+$E3003 MVI

SOURCFE STATEMENT

NISPLAY SYSTEM SAMPLF PROGRAM

$ALOC DYF-DTF1
DEVICE ALLOCATE { INKAGE

LA DTF1, $DTF
A 4
ale XL1*8R"*

$OPEN CTF-DTF1
DEVICFE OPEN L INKAGF

LA DYF1,$0TF
B 4
nc XLit+82°*

THIS ROUTINE WILL SET THE DISPLAY SCREFN TO NULLS,

VER 14, MOD 00

08/26/77 PAGE 3

ALLOCATE AND OPEN THE OVFE
RELEASE-T7

SET ADDRESS OF DOTF IN REGISTER
BRANCH TN GENERAL ENTRY

RIB —~ ALLOCAYF SPACE

RELFASE-T

LOAD DTF ADDRESS IN REGISTFR 2
GN TO GENFRAL FNTRY

RIB — OPEN

MOVFE THE NAME

AND ADDRFSS MESSAGES TO TYHE SCRFEN DISPLAY AND SET THE CURSOR AND
BUFFER ADDRFSS POINTERS TO THE FIRST OPERATOR ENTERED FIFLD,

45 SETDIS FQU *
*

$PUTHR DTF-DTF 1,REJECT-RADRET
ASCA PUT LINKAGE

LA DTF1,$DTF
CLt $BCCMP (, $DTF), $BCREQ
JE $F1003

T8N $BDATR(,$DTF)} ,$BCOPN
TBN $BDATY (, $DTF), $8COUT
JF $F2003

TBN $RDATT(,$DTF), $BCCNV
CLI $BDCMP (, $DTF), $BCCRP
JC $£3003,8TRU+SHI+$LO

MV 1 $BDOPC(, $DTF }, $80PUT
MVI tBOCMP (,$DTF), $BCREQ

A $$BSMS
ST $51003+3, $RBAC 1
L $ADINB(,$0TF),$108

cLt $BICMP(,$108),$BCC AL
*—%,$BBACY

JE $£3003

J $XT003
$BDCMP{, $DTF), $BCIGN

J $RJ003
$BDCMP (, $NTF), $BCUER

J $RJO03

$BOCMP(,$NTF) , $BCCAL

72+%RJ003 EQU *

73+ 8 BADRET

T4+$XT003 EQU *

75 * $CHK CKL-LIST1

T6+* GENERATE A WAIT ON LIST CALL
T7+ LA LIST1, $PARM

T8+ B $$BMCH

80+ EXTRN 3BMCH

8?7 CLI $BDCMP (, $DTF), $BCNEG
83 JNE CKGNOOD

84 T8N MASK,RVI

85 SBF MASK yRVI

RELEASE-T7 D

LOAD XR2 WITH OTF ADDR,

LAST (P DONE ?

NO-GO POST REQUEST IGNORED.
OPENED ?

PUT FILF 7

NO-G) POST PFRM'T ERROR.
CONVERSATIONAL

REPLY PENDING ?

YES~-GO PCST INVALID CALL.

SET RFQUFSTED PUT OPFRATION.
SET YO 0P ACCEPTED.

GN YO BSCA DATA MANAGEMENT.
SAVE XR1.

LOAD 108B APDR IN XR1.

Q INVALID CALL POSTED IN 1087
RESTYORE XR1.
YFES-GO TC POSTY
GO EXIT.

SET REQUEST IGNDRED.
GO EXIT.

SET USER ERROR.

GO EXIT.

SET INVALID CALL.

INVALID REQUEST.,

GO HANDLE REJECTED CDOMMAND.

RELEASF-7 A
LOAD ADDR OF WAIT LTIST IN XR2.
CALL COMMON WATT.

EXTRN FOR $$BMCH.

NEGATIVF RESPONSE ?

JUMP T1F NOT NEGATIVE RESPONSF
RVI PENDING ?

SET OFF RVI INDICATOR

2

*

$S3270 M.MP 3270

ERR tOC

N075

0078
0078

InNTFE
0083
0086
0089
oosc
O0RF
0092
0096
0999
009cC
00AOQ
00A3
00A%
D0A9
Q0AC
JO0AF
0082
00B6
Q0RA
038D
0oCn
aor &
noc?y
00ra
[e1s1@n}
00N0
00D3
00Ds

0ong

nonn
00E1

OO0FS5
00F8
OQFC

S3270 ML

£RR NC

00FF
00F 3
00F 7
0nFR
0191
0105
0109
010N

0111
0115

0116

OBJECT CODE

F2 10

AN 40
co o1

C2 02
8D 00
F2 81
A8 01
88 80
F2 90
24 0t
85 01
79 04
€2 01
B8 ro
F2 g0
A8 40
8D 46
F2 11
BC 81
cD 87
34 01
AS N1
7D 4D
c2 01
F2 81
F? 87
BC 4A
F2 87
RC 41
F2 87
8C 4D

Co 87

C2 02
cn 87

BD 42
Co 81
BD 40

07

oFf
019F

06272
00¢3

OF
0012
OF

Page of GC21-75734

Issued 25 November 1977

By TNL: GN21-5587

INFORMATION DISPLAY SYSTEM SAMPLE PROGRAM

ADDR STHMT SOQURCE STATEMENT VER 14y MOD 00 08/26/77 PAGE 4
86 JT RESPCN GET STATUS IF RVI RESPONSE
0078 87 CKGOOD EQU *
38 CLT $BDCMP(,$DTF), $BCDNE GNOD OP COMPLETION ?
89 BNE BADRET 50 TO ERROR PRINT [F NOT GOOD
90 *
91 % THIS ROUTINE WILL POLL THE 3270 SYSTEM FOR THE CPERATOR RESPONSE.
92 * THE DATA FIELD RECEIVED FROM THE TFRMINAL IS ANALYZED FOR THE
93 * CLEAR KEY, STAYUS MESSAGE, OR FNTER WITH OR WITHOUT DATA. ANY
94 % OTHER KEY WILL CAUSE AN ERROR MESSAGE, IF ENTER IS PRESENT WITH
95 * NO DATA THE END NF JOB ROUTINE IS CALLED. THE STATUS MESSAGE WILL
96 * BE PRINTED OUT, THE OPERATOR KEYED DATA FIELDS WILL BE PRINTED.
a7 *
N07F 98 RESPON EQU *
DOTF 99 MORF £QU *
100 % $SGETB DTF-DTF2,0PC-BLK,REJECT-RADRET
1C1+% BSCA GET LINKAGE RELEASF-7 D
103+ LA DTF2,$DTF LOAD XR2 WITH PTF ADCR.
104+ CL I $BCCMP [, SDTF), $BCREQ LAST 0P NONE ?
105+ JE $F1005 NO-GO POST REQUESY IGNORED.
106+ TBN $BDATR{,$DTF), $BCOPN OPENED ?
107+ TBN $BDATT(, $DTF), $BCIND GEY FILE ?
108+ JF $E2005 NN-GD POST PERM'T ERROR.
109+ ST $SVI05+3, $8BAC 1 SAVE RFGISTER,
110+ L $BDI0B(, $DTF), $108B LNAD THE 108 REGISTER,
111+ TBF SBIFLA(,$INB),$ATEST FRROR FRFF, ——=ommommemeo— |
112+4$SV005 LA *—%, $BBAC] RELGAD REGISTER.,
113+ TBN $BDATY (,$DTF),$BCC NV AND CONVERSATIONAL 7 <——m-—ee !
114+ JF $6T305 NO-GO PROCESS THE GFT,
115+ TBN $EBCOPC(, $DTF), $R0PUT LAST DPERATION A PUT,
116+ cut $ROCMP (, $DTF), $3CCRP AND ND CONV. REPLY PENDING ?
117+ Je $F3005,$ TRU+SEQ YES-GO PNST INVALID CALL.
1184867005 My $BDOPC(, $NTF), $BOGAK SET OP CODF FOR GET FUNCTION.
119+ 8 $$BSMS G0 TO BSCA DATA MANAG MENT.
120+ ST $51705+3, $BBAC 1 SAVE XPR1.
121+ L $BOT0B{, $DTF), $108 LNAD 108 ADDR IN SR1.
122+ cL1 $SBICMP(, $10B) ,$BCCAL Q INVALID CALL POSTFD IN I0A?
123+$51005 LA *%, $BBAC1 RESTORE XR1.
124+ JE $€3705 YES—60 TN SET INVALID REQUEST,
125+ J £X7005 60 EXIT,
126 +$E1005 MV $BOCMP (, $OTF), ¢BCIGN SET REQUFST IGNOREDN,
127+ J $° 4005 GO FXIT.
12848E2005 MV $SRDCMP (, $DTF), $BCUFR SET USER FRROR,
129+ J $RJ00S GO FXIT.
130+4$E3005 MVI $BDCMP(,$DTF), $BCCAL SET INVALID REGQUFST.
NOD9 131+$RJOOS EQU *
132+ B BADRET GO HANDLE REJECTED COMMAND.
00DD 133+$XT005 EQU *
134 * $CHK CKL-LIST?2
135+ GENERATE A WAIT ON LISY CALL RELEASE-7 A
136+ LA LIST2,$PARM LDOAD ADDR OF WAIT LIST IN XR2.
137+ B $SBMCH CALL COMMON WATT,
139 CLT $BDCMP(,$NTF),$8CEDT END OF FILE RECEIVED ?
140 BE SETDIS 50 TO PUT IF EGF RETURN
141 CLT $BDCMP(,$0TF), $BCDNE GOOD OP COMPLETION ?

MP 3270 INFORMATINN DISPLAY SYSTEM SAMPLE PROGRAM

08JECT

co 01
3n 60
co 81
oD 02
co 81
30 70
Co 81
2 02

co 87

co 87

CONE

019F
04 AF
no7F
04 AD
0114
04 AE
0175
0SE6

0004

QC7F

0627

ADDR STMT SQURCE STATEMENT VER 14, MOD 00 QB/26/77 PAGE 5
142 BNE BADRET PRINT BAD RETURN [F NOT EOF
143 cLY WORK2+3, CLEAR WAS CLEAR KEY USED 7
144 BE MORE LOOP TO GET END OF FILE
145 cLc WORK 242(3),STATUS STATUS MESSAGE RECEIVED ?
146 8E PSTAT GO TN PRINT THE STATUS MESSAGE
147 cLl WORK2+3, ENTER ENTER KEY USED ?
148 BE CATA CHECK FOR DAYA [F ENTER
149 LA ERROR,XR2 SET ERROR PARM PDINTER
150 * $SVC RIB-HALT
15] +% SUPERVISOR CALL LINKAGE RELEASE-~7
152+ 8 4 BRANCH TO GENERAL ENTRY
0115 153+ DC XLi'gs? RIB - 85
15% 8 MORE LOOP RACK TO GET EOF

Samples

* 3% 3 & # »

89

Page of GC21-75734
Issued 25 November 1977
By TNL: GN21-5587

S3270

ERR LOC

Ol1A
Ol1€E
0124
n12s
012C

01390
0134
0138
0138
013€
0144
0148
014C

0150
0153
0156

o158
015E
0164
0168

016C
0170

0171

CBJECT CODE

3C
oc
ac
c2
c2

68
€8
c2
E2
CF
co
c2
3C

m
4%
cz
oF

co
c2

co
e5

co

FO
10

01
02

02
03
01
02
00
01
01
12

F9
00
o1
00

01
02

87

87

071A
0719 0714
06&E8
0709
04 AB

00 00

01 00

02

83}

C6EB 06E9
01130

0709

06F8

0o
cs
00 06FA

01
06€8 06E9

0150
05€8

0ono4

007F

MLMP 3270 INFORMATION DISPLAY SYSTEM SAMPLE PROGRAM

MOD 00

08/26/77 PAGE 6

INITIALIZE THE PRINT AREA
INITIALIZE MOVE COUNTER
SET PRIANT PQINTER

SET DATA POINTER

SAVE THE STATUS BYTES

UPNATE THE PRINT AREA POINTER
UPDATE THE STATUS POINTER
UPDATE THE MOVE COUNTER

LOCP TO MOVE 1 NOT DONE
RESEY STATUS MESSAGE POINTER
RESET PROCESS COWUNT

PRINTABLE CHARACTYER ?
JUMP TF PRINTABLE
SET YO PRINTABLE

UPDATE THE PRINT AREFA POINTER
UPDATE PROCESS COUNTER

LOOP IF NOT END OF PROCESS
SET PRINT PARM POINTER

RELEASE-7
BRANCH TO GENERAL ENTRY
RIB - 85

ADDR STMT SQURCE STATEMENT VER 14,
157 *
158 * THIS ROUTINE WILL PRINT THE STATUS MESSAGES
159 =*
O011A 160 PSTAY EQU *
161 MVT STAT, ZERQO
162 MVC STAYT-1(17),STAY
163 MV I SCCUNT ,NINE
164 LA STATB, XR1
165 LA WORK 2, XR 2
0130 166 MOVST EQU *
167 MNZ O(yXR1),0(,XR2)
168 MNN 10+XR1),0(,XR2)
169 LA 2(4 XR1) 4 XR1
170 LA 10, XR2), XR2
171 SLC SCOUNT (1),0NE
172 BNZ MOVST
173 LA STAT8,XR1
174 MVI SCOUNY ,EIGTEN
0150 175 SEYPRT EQU *
176 Ll O0(,XR1)sNONPRT
177 JNH NOSB39
178 SLC O(1,XR1),S5B839
0158 179 NOS839 EQU *
180 LA 1(4XR1),XR1
181 sLC SCOUNT(1),0NE
182 BNZ SETPRT
183 LA SMESSGy XR2
184 * $SVC RIB-HALT
185+% SUPERVISCR CALL LINKAGE
186+ 8 4
0170 187+ DC XL185*
189 :] MORF

GO YO GEY EOQOF

$3270

ERR LOC

0175
0179
017D
0183

o187
0188

018cC
o192

0196
019A

o198

019F
01A5
O1AA
O1AF
01813
0186

01%8C
01C0
01C4
01C5
01C9
01Co

01CE

0101
0105
oing

O1NA
O1DE

OBJECT CODE

20
co
oc
c2

co
es

oc
c2

co
a5

co

07
28
28
n
F2
CF

c2
co
8s
c2
co
85

FO

c2
co
83

co
04

03
a1
10
02

87

10
02

87

01
02
03
F9
04
[¢1d]

02

87

02

87

FF

02
ar

87

0481
o101
0&n7
050C

0004

O6E7
O05E1

0004

007F

0647

0646

0647

0647

06

0647

0507

0004

0SF 0

0004

FF

01DF
0004

0004

04D6

04F2

0647

(]

O6EA

M_MP 3270 INFORMAYION DISPLAY SYSTEM SAMPLE PROGRAM

Page of GC21-75734

Issued 25 November 1977

By TNL: GN21-5587

ADDR STMT SOURCE STATEMENT VER 14, MOD 00 08/26/77 PAGE 7

191 »

192 = THIS ROUTINE 1S USED YO PROCESS THE DATA MESSAGES

193 »
0175 194 DATA EQU *

195 cLt WORK2+6,ETX ENTER KEY ONLY 7

196 13 CLOSE GO TO CLOSE IF ENTER ONLY

197 MVC NEND(30) ,NFIELD MOVE NAME DATA TO PRINT

198 LA NAME , XR2 SET NAME PRINT PARM POINTER

199 = $SVC RIB-HALTY

200+% SUPERVISOR CALL LINKAGE RELEASE-7

201+ 8 4 BRANCH TO GENERAL ENTRY
0188 202+ oC xL1'85¢ RIB - 85

204 MVC AEND(30) ,AFIELD MOVE ADDRESS TO PRINT AREA

205 LA ADDR, XR2 SET ADDRESS PARM POINTER

206 * $SVC RIB-HALT

207 +» SUPERVISOR CALL LINKAGE RELEASE-7

208+ 8 4 BRANCH TO GENERAL ENTRY
019A 209+ oC XL1'85" RIB - 85

211 B MORE LOCP TO RECEIVE EOF

212

213 « THIS ROUTINE CHECKS THE COMPLETION CODE FOR THE GET REQUEST

214 =
019F 215 BADRET EQU *

216 hY4 RET(2),RET(2) INITIALIZE PRINT AREA

217 MNZ RET-1, $8DCMP (, $DTF) SAVF THE RETURN CODE

218 MNN RET,$BOCMP({,$DTF)

219 CL1 RET,NONPRT PRINTABLE CHARACTER ?

220 JNH NOSET JUMP IF PRINTABLE ?

221 SLC RET(1),5839 SET TC PRINTABLE CHARACTER
01BC 222 NOSET EQU *

223 LA RETURN,XR2 SET PRINT PARM POINTER

224 * $SVC RIB-HALTY

225+% SUPERVISOR CALL LINKAGE RELEASE-7

226+ 8 4 BRANCH TO GENERAL ENTRY
01C4 227+ DC XL1v85°* RIB - 8%

229 LA HLMESS,XR2 SET HALT PARM POINTER

230 » $SVC RIB-HALT

231 4% SUPERVISOR CALL LINKAGE RELEASE-7

222+ 8 4 ERANCH TO GENERAL ENTRY
01CD 233+ 0C XL 1185 RIB - 85

235 HPL X'FF1 ,X1FF? HALT TO ALLOW CORE DUMP
0101 236 CLOSE EQU *

237 = $CLOS DVF-DTF1 CLOSE THE BSCA FILES

238+% DEVICE CLOSE LINKAGE RELEASE-7

239+ LA DTF1,$DTF SET ADDR OF DTF IN REGISTER 2.

240+ B 4 BRANCH TO GENERAL ENTRY
01n9 241+ Dc xL1+83°* RIB - CLOSE

242 $EO0Y CALL ECJ ROUTINES

243 4% END OF JOB UINKAGE RELEASE-T7

244+ B 4 BRANCH TO CENERAL ENTRY
O1DE 245+ o] Xt1'8e6 END OF J0B

Samples

91

Page of GC21-75734
Issued 25 November 1977
By TNL: GN21-5587

$ 3270

ERR LOC

<1370

01DF
O1E0
01F1

FRe | Or

92

210
021F
021F
0220
0221
0727
0225
n229
0278
022C
0220
Q22F
0220
0232
0233
0234
0235
0236
0239
0238
0230
023F
0241
0243
0248
02 48
0251
0252
02513
0259

MLMP 3270

CBJECT CODE

80
00
41
88
0000
€210
€0000000
0443
00
00
0000

00

000000

00R 4

0068

co68

0258

02FC
0000000000
80

0718
000000000000
08

co
0000006000000
Q5 FS

CRJFCT CONF

C4AR

00

000000

CcoB4

012C

cl12c

02ED

0442
0000000000
020000
¢00000000000
co

00
C00000000000
05F5

ADDR STMT SOURCE STATEMENT VER 14, MOD 00 08/26/77 PAGE 8
247 *TF] $0TFB RECL-104,BLKL~104,BUFST-BUF1,BUFEND-B1FND,RCAD-WORK],
248 % FTYP-TSM,LINE-1,CODE~E,TYPE-CS,LISTAD-SFLECT ,FRRLOG~LOG,
249 * CHN-DTF2,RVIADR-MASK ,RVIMSK~-80,LIMIT-10
250+% BSCA DTF, RELEASE-8
0004 251+ EXTRN $$BSLG EXTRN FOR TERM LOG ROUTINE,
O1DF 252+DTF1 EQU *
01DF 253+ DC XL1'80" CEVICE ID.
OlEQ0 254+ DC XL1'00" DEFAULT uPSI 0OF ZFRO.
Ol1El1 255+ DC ALL{00+00+4N0+00+9%00+65) ATTR AYTF 1.
01E2 256+ DC XL1'88* ATTR BYTE 2.
OlE4 257+ DC XL2'00°" POST OPEN DTF CHAIN PTR.
OlE6 258+ DC AL2(DTF?) DYF CHAIN PTR.
O1EA 259+ DC XL 400" SYSTEM SAVE AREA,
01EC 260+ DC AL2 (WORK1) ADDR OF USFR LOGICAL BUFFFR.
O1ED 261+ DC XL1* 00" COMPLETICN CODE.
O1EE 262+ ol & XL1to00! OPERATION CODE.
01F0 263+ bC XL2'00°* BSCA WORK AREA.,
01F1 264+ 0C XL1'00" INDICATORS.,
01F3 265+ oC AL2(SELECT) ADDR OF POLL/ADDR LIST.
0lF 4 266+ DcC XL1'F1* POLL/ ADCR ID WHEN CTRL STAT.
01F5 267+ ocC XL1'00" RESERVFD.
01F6 268+ oC ALL(10) WRAP L IST COUNT,
01F7 269+ DC XL1'00* RESERVED.
OlFA 270+ DC XL 300" RFSERVED.
0O1FC 271+ nc XL2'00B4" DELAY COUNT.
OlFE 272+ DC AL2(104) RECORD LENGTH,
0200 273+ oC AL2{104) BLOCK LENGTH.
0202 274+ DC AL2{BUF]) ADOR OF START OF I/0 AREA.
0204 275+ DC AL2(B1END) ADDR OF END OF 1/0 AREA.
0209 276+ DC XL5v00°* BSCA WORK ARFA.
020A 277+ 0C xL1v80" RVI MASK.
020C 278+ ocC AL2IMASK) RVI MASK ADDR.
0212 279+ ncC XL6* 00" RSCA WORK AREA.
0213 280+ oC AL1(C8+00+00) TERM ATTR.
0214 281+ ocC XL 100" RESERVED.
021A 282+ o] XL6'00 BSCA WORK AREA.
021C 283+ ble AL2{L0G) ADDR OF TERM L0OG AREA,

ADDR STMT SOURCF STATEMENT

0210
021D
021F
021F
0220
0222
0224
0278
022A
0228
022cC
022E
022F
0231
0232
0233
0234
0235
0238
023A
023C
023€
0240
0242
0247
0244A
0250
0251
0252
0258
025A

285 *TF2
286 %
28T +%
288+07TF 2
289+
290+
291+
292+
293+
2G4+
295+
296+
297+
298+
299+
300+
301+
302+
303+
304+
305+
306+
307+
308+
309+
310+
311+
312+
313+
314+
315+
316+
317+
318+

MLMP 3270 INFORMATION DISPLAY SYSTEM SAMPLE PROGRAM

INFORMATION DISPLAY SYSTEM SAMPLE PROGRAM

VER 14,

MOD 00

08/2€/71 PAGE 9

$DTFB RFCL-300,BLKL-300,BUFSYT-BUF2, BUFFND-B2END,RCAD~WORK?Z,
FYYP-RCV,LINE-1,CONE-F,TYPF-CS,LISTAD-POLL ,ERRLOG-LOG

BSCA DTF.

FQuU *

DC XL 1'80°"

nC XL1'o0°*

oC AL1(00+00+00+0C+9*08+65)
ocC Xt 188"

ocC Xtz2'o0"

DC XL2'FFEC
cc XL4'00°

nc AL2 (WORK2)
DC XL1'00°*

nc XL1'00°

nc XL2*o00*

oC XL1'00°

ne AL2(POLL)}
nc XL1'F1*

oC XL1'00°"

oles XL1'FF?*

bC XL1'00"

ocC XL3'00°"

Dc XL2'00 R4
ncC AL2(300)
s]¢ AL2(300)
0C AL2 (BUF2)
bC AL2(B2END)
DC XL5*00*

DC XL 3*00°"

oC XL6'00"

oC AL1(00+00)
DC XL1*00*

DC XL6' 00"

neC AL2(LOG)

RELEASE-B

DEVICF ID.
DEFAULT UPSIE OF ZERDO.
ATTR BYTF 1.

ATTR BYTE 2.

POST OPEN DTF CHAIN PTR,
NTF CHAIN PTR,
SYSTEM SAVE AREA.
ADDR 0OF USER LOGICAL
COMPLETICN CODE.
OPERATION CODFE.

BSCA WORK ARFA,
INDICATORS.,

ADDR 0OF POLL /ADDR LIST,
POLL/ADDR ID WHFN CTRL STAT,.
RESERVED.

DEFAULT WRAP LIST COUNT,
RESERVFD.

RESERVED.

DELAY COUNT,

RECORD LENGTH.

BLOCK LENGTH.

ADDR CF START QF 1/0 AREA.
ADDR OF END OF 1/0 AREA,
BSCA WORK AREA.
DEFAULT—NO RVI.
BSCA WORK AREA,
TERM ATTR.
RESERVED.

BSCA WORK ARFA,
ADCR OF TERM LCG

BUFFER .

AREA,

Page of GC21-75734
Issued 25 November 1977
By TNL: GN21-5587

$2270 MLMP 3270 INFORMATION DISPLAY SYSTEM SAMPLE PROGRAM
ERR LNOC CRJFCT CODE ADDR STMT SOURCE STATEMENT VER 14, MOD 00 08/26/77 PAGE 10

320 * RUFFER AREAS CATA AREAS HALT/SYSLOG PARAMETERS

0258 322 BUF1 EQU *

0258 €C000000000000000 02EC 323 B1END DC XL 146°00° BUFFER FOR CTF }
0263 C000000000000000 323
G268 0000000000000000 323
0273 £000C00000000000 323
0278 0000000000000000 323
0283 0000000000000000 323
0288 0000000000000000 323
0293 ©000000000000000 323
0298 0000000000000000 323
02473 0000000000000000 323
02 AB 0000000000000000 323
0283 €000000000000000 323
0?8BR 0000000000000000 323
02C3 0N0000N0000000000 323
02C¢R €NH00000000000000 323
22D3 00000000C0000000 323
020R 00900000000000000 323
02F3 00000000000N0000 322
Q2F8 C00D 323
02FD 324 RUF?2 FQU *
0270 0000000000000000 0442 325 B2END DC 342xL1%00" BUFFER FOR DTF 2
02%5 €C00000000000C0000 325
N2€C 000000N0000N00000 325
0205 0000000000000000 325
230D C000000000000000 325
0315 770NB000N00000Q0 325
0310 CO000000000000000 329
N325 0200C000C0000000 3728
0327 (NOD0000ONN00000 328
7335 C200000000000000 375
022nh £300000000000000 325
9345 00000000000000C0 325
N340 0NOODNNNONOND000 325
0355 CNOO000000000000 125
N35D 00000N0000000000 325
7365 0900000000000000 325
0340 CO00000000000000 325
0375 0000000000000000 325
1370 N0NNC00N000N0N00 325
0385 C00N00O0O0O0ONO00ON0 325
2380 0000000000000000 325
0395 nNNN0O0000NNNNDOO0 325
0390 C000000000000000 32%
73AS C000000000000000 325
0340 0000000000090000 325
03R5 C0N000NO00000000 325
03’N C000000000000000 325
03C5 0NN0O000ON0N000000 325
03CN 'CON00000000N0000 325
29305 €000000000000000 325
N300 07200000000000000 325%
03F5 €NO0000000000000 325

Samples 93

Page of GC21-75734
Issued 25 November 1977
By TNL: GN21-5587

S3270 MLMP 3270 INFORMATION DISPLAY SYSTEM SAMPLE PROGRAM

ERR 1L OC

03FD
03F5
03 FD
0405
N40D
0415
041D
0425
042D
0435
0430

0443
0448
0452
0455
0450
0465
0460
0475
047C
0484
0486
0488
0490
0498
04A0
04A6

04AB
0483
0488
04C3
04CB
04D3
0408
04E3
04EB
04F3
04FB
0503
0508
0513
0518
0523
0528
0533
0538
0543
0548
0553
0558
0563
0568
0573

CBJECT CQODE

€000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
€000000000000000
€000000€00000000
0000000000000000
€000000000000000
0000000000000000
C00000000000

27FSCT1140C410DF0
C5C1L4C 5406040
104013

40404 04040406040
4040404040404040
4040404040404040
4040404040404040
10F011C1041DF0
C1C4C4D9CSE2E240
€040

1040
4040404040404040
4040404040404040
40640404040404040
404040404040
10F011404D

0000000000000000
€000000C00000000
€000000000000000
06000000000000000
0000000C00000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000CC0000000
0000000000000000
0000000000000000
0000000C00000000
€000000000000000
0000000000000000
€000000000000000
€000000000000000
0000000000000000
€000000000000000
0000000000000000
€000000000000000
€000000000000000
€000000C00000000
€000000000000000
0000030000000000

ADDR STMT SOURCE STATEMENT VER 14, MOD 0C 08/26/77 PAGE 11

0443
044A
0451
0454
0474

0478
0485

0487
04AS5

04AA
04AB
0506

325
325
325
325
325
325
325
325
325
325
325
326
327
328
329
330
331
331
331
331
332
333
333
334
33%
335
33%
335
336
337
338
338
338
338
338
338
338
338
338
338
338
338
338
338
338
3138
338
338
338
338
338
338
338
338
338
338

* COMMAND AND ORDER CHAIN FOR 3270 DISPLAY

WORK 1

WORK2

EQuU
DC
DC
oC
oC

DC

DC
o]

nC
EQU
DC

x

XL8'27FSCT1140C41DFO"

CLT7*NAME -'

XL37'104013"

CL32r ¢ ASSIGNED NAME FIELD

XL7*1DFO11C1041DF0"
CL10*ADORESS ~ ¢

XL2*1D40"
cL30* ¢ ASSIGNED ADDRESS FIELD

XL5*1D0F0 114040
*

300xL1*00" OPERAYOR RESPONSE BUFFER

SET END OF FIELD AND BUFFER ADD

$3270
ERR LOC

0578
0583
05 88
0593
0598
05A3
05AB
0583
0588
05C3
0oscCa
0503

0507
05 DA

05nC
0S5DF

05E1
05 Fs

05F6
05F9

O5EB
OSEE

05F0
05F3

05FS
05F 7
Q5 FF
06 07

060F
0610
0611
0615
0616

0617
0618
0619
061D
061E

O0BJFCT CCDE

€000000C00000000
0000000000000000
£000000000000000
¢000000000000000
0000000000000000
€C000000000000000
€000000000000000
0000000000000000
€000000000000000
0000000000000000
0000000000000000
€0000000

200020
ce28

200030
0688

200030
c6R8

200020
C648

200030
C6EB

200020
cé668

001A

¢000000C00000000
¢000000000000000
€000000000000000

20
04
60604040
00
FF

20
04
40407F7F
co
FFE

ADDR STMY SOURCE STATEMENT

0507
0sb9
0508
050C
05DE
05€0
05€E1
0SF3
05E5
05E6
O5E 8
OSEA
OSEB
0SED
OSEF
0SFQ
05F2
05F 4
05F ¢
05F6
060E

Q60F
060F
0610
0614
0€15
0616

0617
0617
0618
061C
o61n
061E

338
338
338
338
338
338
338
3138
338
338
338
338

340 *
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
389
360
361
361
361
362 *ELECY
363+%
364+SELECY
365+

366+

367+

368+

369+

370 *0OLL
3T71+4x
3724P0OLL
373+

374+

375+

376+

377+

378 *IST1
379+%

RETURN

NAME

ADDR

ERROR

SMESSG

HLMESS

LOG

EQU

EQU
DC
e
EQU
DC
DC

MLMP 3270 INFORMATION DISPLAY SYSTEM SAMPLE PROGRAM

*
XL3*2C0020°"
AL2(RETRN)
*

XL3*200030"
AL2{NBEGIN)
*

XL3*200030"
AL2(ABEGIN)
*

XL3%200020°"
AL2(ERMESS)
*

XL3'200030"
AL2(SMSG)

*
XL3'200020°"
AL2(HMESS)
*

XL2'0014A"
XL24 100"

Page of GC21-75734
Issued 25 November 1977
By TNL: GN21-5587

VER 14,

MOD 00

08/26/77

HALT / SYSLOG PARAMETERS FOR PRINTING

ERROR LOGGING TABLE

$POLB ID-20,TERMAD-60604040,LEN-4,LAST—WRAP
GENERATE A POLL/ADDR LIST,

EQU
0cC
DC
oC
DoC
DC

*

XL1t2o0°
AL1(4)
XL4'60604040°"
XL1'00"
XL1'FF?

RELEASE-T7 A

LENGTH CF POLL/ADDR,
POLL/ADDR CHARS.

ST ATUS.

END OF LIST.

$POLB 10-20,TERMAD~40407TFT7F, LEN—4,LAST~-WRAP
GENERATE A POLL/ADDR LIST.

EQU
oC
DC
DC
oC
oC
$CKL

*

xti1t20°

AL1(4)
XL4'40407F7F?
xLi1'o0'

XL1'FF?*
DTF-DTF1,LAST-Y

CHECK LIST FQOR COMMON

WAIT

RELEASE-T A

LENGTH CF POLL/ADDR,
POLL/ADDR CHARS.
STATUS.

END OF LIST,.

RELEASE-7 B

PAGE 12

Samples

95

Page of GC21-75734
Issued 25 November 1977
By TNL: GN21-5587

SA2T70 MLMP 3270 INFNRMATION DISPLAY SYSTFM SAMPLE PROGRAM

FRR LOC CAYFCT CONF ADDR STMT SOURCF STATEMENT VER 14, MOD 00 08/26/77 PAGE
N61F 29 N61F 38041 1ST1 nC AL1(0+0+32+0+0) ENTRY STATUS BYTE,
0620 01DF% 0621 2381+ 0c AL2(DTF1) DTF ADDRESS.

3831 *1ST2 $CKL DTF-DTF2,LAST-Y
0622 20 D622 38441 1ST2 nC AL1{040+32+40+0) ENTRY STATUS BYTE.
0623 0210 0624 385+ ocC AL2(DTF2) OTF ACCRESS.
0625 016CN9 0627 387 STATUS OC XL3'016CD9"

04N6 388 NFIELD EQU WORK2 443
04F 2 389 AFIFLD £QU WORK 2+ 71

0001 390 xR1 EQU 1
0007 391 XR2 FQU 2
0003 13972 FTX QU 3

00FO0 1393 ZFRD EQU X'FO*
006D 1394 CLEAR EQU X*T60D*
007C 395 ENTFR EQU Xvine
0080 1396 RVI EQU xX*80°*
000S 397 NINF EQU 9
0012 398 EIGTEN FQU 18
OUF9 399 NONPRTY FQU X'FQ
0628 400 RETRN EQU *

0628 5BC2C4C3D4DT40C2 0647 401 RET nc CLA2*$BOCMP COMPLETION CODE IS -*
0630 C6D4DINACSEICI06 401
0638 [540C3D06C4C540C9 401
0640 E240604040404040 401
0648 402 ERMESS FQU *
N648 C3D5ESC1IN3CIC440 0667 403 DC CL32'INVALID KEY HAS BEEN USED®
0650 C2C55840C8C1E240 403
0658 C2C5C5D540F4F2C5 403
0660 (440404040404040 4073
0668 404 HMESS EQU *
0668 C3C 5C 6C5400306N9 0687 405 o] o CL32'CEFE CORE DUMP MAY NOW BE TAKEN'
0670 (540C4€4D4DT40D4 405
0678 C1EB40DSD6E640C2 40%
0680 C540F3C102C50540 405
0688 406 NBFGIN FQU *
0688 [5C1D4C54002C5E8 0699 407 cc CL18*NAMF KEYED -*
0690 CSC4406C40404040 407
0698 4040 407
06SA 4040404040404040 06BT 408 NEND 0C cL3o*
06A2 4040404040404040 408
06AA 4040404040404040 408
06B2 4040404C4040 408
0688 409 ABEGIN FQU *
0688 C1C4C409CSE2F240 06C9 410 ne CL18'ADNDRESS KEYED -*
06C0 C2C5ERCS5C4406040 410
N6C8 4940 41C
06CA 4040404040404040 06FT 411 AEND oc cL30"
06D2 4040404C40404040 411
06DA 40640404C40404040 411
06E2 404040404040 411
06F8 00 0668 412 SCOUNT OC xLi'co
06F9 C1 06FS9 413 ONE ocC xLt1'or1e
06FA 39 06FEA 414 S8B39 DC XL1'39¢*
06FEB 415 SMSG €0V *
O06EB E2F3C1E3E4E240D4 0708 416 oC CL30*STATUS MESSAGE RECEIVED IS -°

S3270 MULMP 3270 INFORMATION DISPLAY SYSTFM SAMPLE PROGRAM

FRR L0OC CBJFCY CODE ADDR STMT SOURCE STATEMENY VER 14, MOD 00 08/26/77 PAGE

06F3 CSE2F2C1CTC54009 41¢

06FB C5C3CRC9F5C5C440 416

0703 CY9E2406C4040 416

0709 417 STATB EQU *

N709 4040404040404040 0714 418 STAT 0cC cLige

0711 4040404C40404040 418

0719 4040 418

0718 00 NT1IR 419 MASK oc XL1*00° RVI MASK HOLC AREA

13

14

$3270

ERR

L

MLMD 3270 INFORMATION DISPLAY SYSTEM SAMPLE PROGRAM

OBJECT CODE

ADDR STMT SOURCE

2002

0003
000F

0080
noCo
OO0FF
0001
0002

0008
0016
0010
noss
0011
0002
0001

421 %
422 +%

L4+ %

425+%BIFL A
42 E+$RBRIFST
427+$B1NRQ
428+$BIRVI
429+$BICMP

437 4%
432 +$BWK

43T+ $BWFG 3
434+$BWILGD
435+$BPATY
436+ $BWRFT
437+$BPILD
438+$8PCNC
439 +$BPRES
440+$BWKMC
44 1+$B2SEC

443 +%

444 +$BPATR
445 +$BPACT
446+8$BPEXT
44T+$BPDTF
448 +$BPNUM
449+ $BPEND
450 +$BPNCP
451+$8BPENA
452+$RPRM]
453+3$8LST2
45448$BLIST

456 +%
45T +$BRONT
458+$BHXOF

460+%

461 +$BDISA
462 +$9ENAB
463 +$8F0OX
4€E4+$BBAC]
465 +$BPRS2

GET+*

468 +$8L IN2
469+$BTREQ
470+$BDAON
471+$BT0OSC
472+$BTRNQ
4T3+ $BDTF

474488108

STATEMENT VER

$0708
8SCA EQUATES.

FQUATES IN 108
EQU 5

EQU X104
EQU xrQ2¢
EQU xeg3e
FQuU Xt0o7!

EQUATES FOR WNRK AREA,

£QU 1

EQU 2S
EQU 35
FQu X*10"
EQU xtQg!
£QU x*i7e

EQU X*04
FQu Xr10?
EQU X*59°
EQU X106

MOD 00

Page of GC21-75734
Issued 25 November 1977
By TNL: GN21-5587

08/26/77 PAGE 15

RELEASE-13

FLAG A.

FIRST IN FLAG A.

OFFSET TC 10B OPERATION.
RCVI OPERATION.

OFFSET TO 108 COMPLETION,

WORK AREA REG.

FLAG 3.

FLAG BYTE.

LINE ACTIVE INDICATOR,

RFET IND. IN FLAG 3.

OFFSET TO POLL INDICS IN WKA,
CANCEL PGST INDIC.

RESET POLL INDIC.

OFFSET FOR LDA INDICS.

TWO SEC TIME FQR LDA.

EQUATES FNOR $BCPL AND $BCSW MACROS.

EQU 0
FQU X'80°
EQU X140
EQU 2
EQU 3

EQU X'FE'
FQU X'00°*
ECU Xx'80°

£EQU 1

EQU 2

FQU 2

EQUATES FOR $RFT MACRO
EQU 3

£EQuU X' OF"

GENERAL EQUATES.
EQU X*80"

FQU X'Co?

FQU X'EF?

EQU 1

EQU 2

FQULATES FOR $CANB MACRC
EQU x'o8?

EQU Xr16'!

£QU X*10°

EQU Xr'88°?

EQU X*1lt

EQuU 2

EQU 1

CHANGE L ISY ATTRIBUTE QOFFSETY.
OFF-ACTIVATE;ON-DEACTIVATE.,
OFF-EXACT,ON-FIRST N CHARS,
CHANCE LIST DTF ADDR OFFSET,
CHANGE LIST OFFSET TO LENGTH.
END OF PCLL/ADDR OR SW ID LIST.
NO~-OP JUMP INSTR.
ON-ACTIVE;OFF-INACT, LIST ATTR,
REG EQU FOR MACRC PARM LIST.
REG EQU FOR POLL OR ID LIST- XR2
REG EQU FOR PTR TO LIST IN XR2.

COUNT OF NUMBER OF TRANSMISSIONS
MASK TO CHECK FOR DECIMAL NUMBER

ENABLE BSCA.

DI SABLE BSCA,

EQUATE FOR t'FF*,

USER REGISTER SAVE (REG 1).
PARAMETER REGISTER SAVE (REG 2).

LINE-2.,

TRUE AND EQUAL
0.A. SUPPORTED

TWO SEC TIME QUT
TRUE ANC NOT EQUAL
OTF REG.

108 REG.

Samples 97

Page of GC21-75734
Issued 25 November 1977

By TNL:

$3270

ERR tOC

GN21-5587

MLMP 3270 INFORMATION DISPLAY SYSTEM SAMPLE PROGRAM

OBJECT CODE

ADDR

0001
0003

0000
0001
0002
0080
0040
00Co
0020
0010
oocos
0004
0001
0003
0088
0080
0020
0010
0008
0004
0002
0001
0005
0007
0009
0008
000D
000E
0000
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
004A
0048
004C
0040
004 €
004F
0050
0051
0052
0053
0054
0055
0056

STMT SDURCE

4 75+$BONE
476 +$BTRE

478+%

479+$BDDEV
480+$BDUPS
481+$BDATY
482+$BCINP
483+$BCOUT
484+$BCCNY
485+$BCITER
486+3$BCRAN
4BT+$BCGET
488 +3$BCASK
489+$BCASM
490+$BDATR
431+$BCMCN
492+8$BCMPT
433+$BCMAN
494+$BCANS
495+8RCSWI
496+$BCUSD
497+8BCACT
498 +$RCOPN
499 +$BDCHN
500+$BONXT
S01+$BDWK 1
502+$BDWK2
503+$BDWKB
504 +$BDCMP
S05+$BCREQ
506+$BCONE
507+$BCUER
508+$BCEOT
509+$8CB 1D
S10+$BCNEG
511+$BCNON
512+$BCCRP
513+$BCNDT
514+$BCOLY
S15+$BCNAC
516+$BCIGN
517+$BCASC
518+3$8BCNCN
519+$BCCAL
S20+$BCLST
521 +$BCERR
522+$BCTIM
523+4$BCDAT
524+$8CLOS
525+3BCCON
526 +$BCRSP
527+$BCADP
528+$BCCMP

STATEMENT VER 14, MOD 00 08/26/77 PAGE 16
FQU 1 OFFSET FOR CONSTANT ONE
EQU 3 OFFSET FOR CONSTANY THREE

OFFSETS FOR BSCA OTF,

EQU 0 DEVICE 1ID.

EQU 1 UPsST.

EQU 2 ATTRIBUTE BYTE 1,

EQU X'80¢* INPUT FILE.

EqQu X'40°* OUPUT FILE.

EQU x1CqQe CONVERSATICNAL FILE,

EQu X*20! [TB MODE.

EQU X*10¢* TRANSPARENCY.

FQU xeo8: GET FILE.

EQU X104 ON-ASCIT1:; OFF-EBCDIC.

EQuU Xt Qo1 ASSEM DTF,

EQU 3 ATTRIBUTE BYTE 2.

EQU xr8g¢" MULTIPOINT CONTROL STATION,
EQU X* 80" MULTIPOINT TRIBUTARY.

EQu Xt20¢* MANUAL LINE.,

EQU Xt10° ANSWER L INE.

EQU xrQge SWITCHED LINE.

EQU X*04" FILE USED.

EQU Xt02! FILE ACTIVE.

EQuU X'01°* FILE OPENFED.

EQU 5 POST OPEN DTF CHAINING PTR,
EQU 7 OTF CHAINING POINTER,

EQU S WORK AREA.

EQU 11 WORK ARFA,

EQU 13 ADDRESS OF USER'S LOGICAL BUFF,
EQU | 8 COMPLETION CODE.

EQU X*00!* REQUEST ACCEPTED.

EQU X' 40" NORMAL CCMFLETIOCN.

EQU X471 USER ERRODR.

EQU X'42¢ END OF FILE,

EQU X430 INVALID ID.

EQU X'a4? NEGATIVE RESPONSE TO POLL/ADDR.
EQU X' 450 NO RESPCNSE TO POLL/ADDR.,
EQU Xv46" CONV REPLY PENDING.,

EQU X147 NO DATA FOR CONV GET.

EQU X*48° INVALID RFT RECQUEST.,

EQU X'49q1 NO ACT ENTRY IN POLL LIST,
EQU XT4AY REQUEST TGNORED.

EQU X481 INVALID ASCIT CHARACTER,
EQU Xv4C? NO-CONNECTION.

EQU X400 INVALID REQUEST.

EQU XT4E DELAY COUNT EXCEEDED.

EQU X'4F? PERM ERROR.

EQU X'S0* NO RESP FRCM REMOTE DEV.
EQU X'51°¢ DATA CHECK.

EQU X*52¢ LOST DATA.

EQU X* 53¢ LOST CONNECTICON.

EQu X541 INVALID RESP FROM REMOTE DEV,
EQU X155 ADAPTER CHECK.

EQU X*S6" NO CCMPLETIONS IN CHECK LIST.

§$3270

ERR LOC

MLMP 2270 INFORMATION DISPLAY SYSTEM SAMPLE FRCGRAM

CBJECT CCDE

ADDR

0057
0058
000F
0080
0081
0040
0041
0042
0044
0011
0012
0001
0002
0004
0008
0010
o080
0014
0014
0014
0015
0015
0017
0017
0018
0018
001A
oole
001D
001F
0021
0022
0025
0027
002A
002D
002E
0030
0032
0033
0034
0001
0002
0004
0008
0010
0040
0035
0037
0039
0038
003D

003F
0041
0043

STMT SOURCE

529+$BCACD
530+$BCRLE
531+$8D0PC
532+4$B0GET
533+$B0OGBK
534 +$R0PUT
535+$BOPEB
536+$BOPEF
537+$BOPEW
538+$8DMRL
539+$BDADD
540+$BCAAL
541 +$BCPOL
542 +4$B8COFL
543+$BCRCL
544+$BC TWO
545 +$BCSWD
546+$BDDCH
547+$BDPSC
548+$BDLST
549+$BDDCC
550+$BDIND
551 +$BDORID
552+$BDCNTY
S53+$BDRLN
554 +$BOLID
555+$BDSID
556 +$BDSLN
557+$BDOLY
558+$BOREL
559+$BDBKL
560+$8D108B
561+ $B8DBK X
S62+$BDITE
563+$BDPRM
564 +$BDRVI
565+ $BDNDX
566+$BDWKA
567 +$BDINT
568+$BDDED
S69+$BDAT1
STC+$BCSEP
STL+$BCSPN
572+$BCNOW
573+$BCPUT
574 +$BCRES
5T75+$BCPLR
576+$BDSEP
577+$BDSBF
578 +$BDSRL
579+$BDRFT
580+$BDTSA
581 +%

582+$RBDRLO
583+$BDRCL
584+$BDARA

STATEMENT VER 14,
EQU X571
EQU X1581
EQU 15
EQU X180
EQU xraye
EQU X401
EQU X410
EQU X1 421
EQU X144
EQL 17
EQU 18
EQU X101
EQuU Xro2!
EQU X'04"
EQU x'08°*
EQU x'10°*
EQU X*80°*
EQU 20
EQU 20
EQU 20
EQU 21
EQU 21
EQU 23
EQU 23
EQU 24
EQU 24
EQU 26
EQU 27
EQU 29
EQU 31
EQU 33
EQU 35
EQuU 27
EQU 39
EQU 42
EQU 45
EQU 46
EQU 48
EQU 50
EQU 51
EQU 52
EQuU X'01"
EQuU X102
EQU X104
EQU X'08*
EQU X'10°*
EQU X140
EQU 53
EQU 5%
EQU 57
EQU 59
EQU 61
ADD ON AREA QF DTF

EQU 63
EQU 65
EQU 67

Page of GC21-75734
tssued 25 November 1877
By TNL: GN21-6587

MOD 0C (€8/26/77 PAGE 17

NO ACTIVE DTFS IN CHECK LIST,
MAXIMUM RECORD LENGTH EXCEEDED.
OPERATION CODE.

GET.

GET-BLOCK,

PUT.

PUT END OF BLOCK.

PUT END CF FILE,

PUT EQT TO WACK RESPONSE.
MAXIMUM RECORD LENGTH.

SPECIAL USE INDICATORS

ADD ON AREA ON OTF

POLLING MODULES RESIDENT
TRUNCATE RECORD INDICATOR,
SPAN INDICATOR FOR RECORD LENGTH
END OF BLOCK INDICAYOR,

ID LTIST FOR SWICHED LINE
*ADDRESS OF DIAL NUMBER OR
*POLL/ADDR CHARACTERS OR
*ADDRESS OF POLL/ADDR LIST,
*LENGTH OF DIAL NUMBER OR
*POLLING/OR ADDRESSING ID.
*ADDR OF RCV ID OR 1D LIST QR
*LIST COUNT.

LEN OF RCY ID OR ENTRY SELECTOR,
LAST 1D OR POLL/ADDR FUNCTION.
ADDRESS OF SEND 1D.

LENGTH OF SEND 1D.

DELAY COUNT.

RECCRD LENGTH,

BLOCK LENGTH.

ADDRESS OF 108 IN PROCESS.
POINT TO DATA IN BSCA BUFFER,
ITB CHARACTER COUNT,

RESERVED.

RVI MASK AND DISPLACEMENT,
INDEX FOR LINE INITIALIZATION,
ADDRESS QF BSCA WORK AREA,

OI SK ADDR OF LINE INIT MODULE,
WORK AREA,

ATTRIBUTE BYTE FOR TERMINALS.
RECORD SEPARATOR,

SPANNING RECORD.

SPAN IN PRCCESS.

PUY SPAN FILE.

SPAN RESTYORE NECESSARY.
POLLING RESIDENT,

RECORD SEPARATOR,

SAVE AREA FOR USER BUFFER ADDR.,
SAVE AREA FOR RECORD LENGTH,
SAVE AREA FOR OLT PARM,

ADDR CF TERM LCG AREA,

ADDR OF RESIDENT LO.

ADDR OF RESIDENT CLOSE,
AUTO RESPONSE MODULE.

Samples 99

Page of GC21-75734
Issued 25 November 1977
By TNL: GN21-5687

S3270 MLMP 3270 INFORMATION CISPLAY SYSTEM SAMPLE PROGRAM

ERR LOC (€BJFCT CODE ADDR STMY SQURCE STATEMENT
0044 58S5+$BDERR EQU €8
0046 586+438DT14 EQU 70
0049 587+$8D375 EQU 73

588 * $COMN

589+% COMMON L ABELS
0001 590+$108 EQU 1
0002 591+$0TF EQU 2
0002 592+$1LDADR EQU 2
0002 S593+$PARM EQU 2
0008 S94+$ARR EQU 8
0010 595+$T1AR EQU 16
0010 596+$TRY EQU x*10
0090 597+$FLS EQU X'9Q
0004 598+$HI EQU X'04"
0002 599+%L0 EQuU xe Q2
0001 600+$FQ EQU x'or
D020 601+$0VFB FQU X*20°"
0008 602+$0VFD EQU xvo8?
0000 603 ENC $3270

TOTAL STATEMENYS IN ERROR IN THIS ASSEMBLY = 0

100

VER 14, MOD 00 08/26/77 PAGE 18

FOR SYSTEM MACRODS

RETRY CCUNT,
SAVE ADDRESS OF OLT CS.
3735 CCP EOT INDIC.

RELEASE-7

I0OB ACDRESS

DTF ADDRESS

LOAD ADDRESS

PARAMET ER LIST ADDRESS
ADDRESS RECALL REGISTER
INSTRUCTION ADDRESS REGISTER
TEST TRUE

TEST FALSE

TEST rIGH

TEST LOW

TEST EQUAL

BINARY OVERFLOW

DECIMAL OVERFLOW

S3270

SYMBOL

$$BMCH
$$ASLG
$$BSMS
$$8STT
$ARR

«BBACI
$BCAAL
$RCACD
$ACACT
$BCADP
$BCANS
$BCASC
$BCASK
$BCASM
$B8CBID
$BCCAL
$£BCCMP
$BCCNV
$BCCON
$BCCRP
$RCDAT
$ BCDNE
$RCEOT
$BCERR
$ 8CGET
$3C IGN
$BCINP
$BCITH
$8CLOS
$8CLST
$ BCMAN
$BCMCN
$BCMPT
$BCNAC
$BCNCN
$ BCNDT
$ACNEG
$RCNON
$ACNOW
$BCOFL
$BCOLT
$8COPN
$8COUT
$RCPLR
$BCPOL
$RCPUT
$ BCRAN
$BCRCL
$BCREQ
$RCRES
$BCRLE
$BCRSP
$BCSEP
$BC SPN
$BCSWD
$BCSWI

LEN

001
0C1
001
oCt
001
o011
oc1
oc1
001
oC1
0ct
oCt
ccel
oC1
oct
001
001
ccl
oc1
oc1
oct
ocCl1

0048
0004
ooch
0042
004D
005¢
coco
0053
004¢€
0051
0040
0042
004F
o008
004A
0080
0020
00¢2
004E
0020
oos8s
0080
0049
004cC
0047
0044
0045
0004
0004
0048
0001

0040
0040
0002
0008
0010
0008
0000
0010
0058
0054
0001
0002
0080
0008

DEFN

0080
0251
0003
0004
0594
0464
0540
0529
0497
0527
0494
o517
0488
0489
0506
0519
0528
0484
0525
0512
05213
0506
0508
0521
0487
0516
0482
0485
0524
0520
0493
0491
0492
0515
0518
0513
0510
0511
0572
0542
0514
0498
0483
0575
0541
0573
0486
0543
0505
0574
0530
0526
0570
o571
0545
0495

CRCSS REFERENCE
REFERENCES
0078 0137

0060 0119

0061 0064* 0109 OL12*% (0120 C(C123x

0063 0071 0122 0130
0055 0113

0056 0116

0088 0141

0139

0067 0126
0107

0082

0052 0106
0053

0050 0059 0104

VER 14,

MOD 00

08/26/17

Page of GC21-75734

Issued 25 November 1977

By TNL: GN21-5587

PAGE

19

Samples

101

$32710
SYMBOL

$BCTINM
$BCTWO
$ ACUER
$BCUSD
$BDADD
$ BDAON
$RDARA
$PCATR
$BDATT
$BDAT
$808KL
$ RDBK X
$BNCHN
$BOCMP

$BDCNT
$RODCC
$BDDCH
$RONED
$RDDEV
$BNDOLY
$ADERR
$BDIND
$8DINT
$BDIOB
$ANDISA
$801 7R
$ROLID
$ANLST
$ADMRL
$ RON DX
$AONXT
$8D0PC
$BDPRM
$ROPSC
$ADRCL
$BRDREL
$ADRFT
$ANRID
$RDRLN
$RORLO
$EDRVI
$RDSAF
$RDSEP
$80SID
$ANSLN
$BDSRL
$BOTF

$BDT SA
$BDT1A
$BOUPS
$BNWKA
$BOWKR
$RDWK1
$BDWK 2
$8D375

102

LEN VALUE
0C1 0050
001 0010
0C1 0041
0Cl 0004
0C1 0012
0oC1 o010
0C1 0043
0Cr 0007
001 0002
0Cl1 0034
001 0021
001 0025
0C1 0005
001 0O0O0FE
oc1 o017
0C1 0015
0Cl1 0014
001 0032
001 0000
0Cl 001D
0C1 0044
001 0015
0C1 0032
0Cl 0022
0Cc1 0080
oc1L 0027
0Ccl 0018
001 0014
0C1 0011
0Cl1 002E
c01 0007
0C1 000F
0C1 002A
0C1 0014
0C1 0041
001 O001F
001 0038
cC1 0017
0C1 0018
0Cl1 0073F
0Cl1 002D
001 0037
0Ct 0035
001 001A
0oC1 o018
oC1 0€39
001 00072
0oc1 003D
0C1 0046
001 0001
0C1 0030
0Cl1 000D
001 0009
0C1 0008
0C1 0049

DEFN

0522
0544
0507
C496
0539
0470
0584
0490
0481
0565
0559
0561
0499
0504

0552
0549
0546
0568
0479
0557
0585
0550
0567
0560
0461
0562
0554
0548
0538
0565
0500
0531
05673
0547
0582
0558
057S
0551
0553
0582
0564
0577
0576
n555
0556
0578
0473
0580
0586
0480
0566
0503
0501
0502
0587

CROSS REFERENCE

REFERENCES

0069 0128
0052 0106
0053 0055
0050 0056
0130* 0139
0062 0110
0058% 0115

0107 0113

Page of GC21-75734
Issued 25 November 1977
By TNL: GN21-5587

VER 14, MOD 00 08/26/77 PAGE 20

0059*% 0067* QC69* COT7i* 0082 0088 0104 0116 OL26% 0128%

0141 0217 0218

c121

0118%

$3270
SYMBOL

$BENAB
$AFOX

$ AHXOF
$BICMP
$BIFLA
$RIFST
$BI0R

$RI0RQ
$BIRVI
SRLIN2
$SALIST
$8LST?2
$BDGBK
$BOGET
$ PONE

$BOPESR
$ POPEF
S$ROPEW
$BOPUT
$BPACT
$BPATR
$RPATYV
$ BPCNC
$RPDTF
$BPENA
$RPEND
$APEXT
$PAPNOP
$SBPNUM
$BPOLD
$BPRES
$ BPRM]
$RPRS 2
$ BRCNT
$87T0SC
$RTRE

$BTREQ
$BTRNQ
$AWFG3
$BWK

S BWKMC
$BWLGD
$ BWRFT
$B2SEC
$0TF

SEQ
$E1003
$E1005
$£2003
$E2005
$£3003
$E3005
$FLS
$GT005
SHI
$TAR
$108
SLDADR
sLO
$OVFR
$OVFD
$PARM
$RJ003
$R JOOS
$5Sv005
$51003
$ 51005
$TRY
$XT003
$ XT005

L EN

oct
oc1
oc1
001
[
001
oct
6l
ccl
oct
001
001
001
0Cl
0C1
oc1
oCl1
oc:
001
001
oc1
oc1
001
oc1
ocl
ocl1
ocC1
0Cl1
001
oc1
och
0C1
oCl
001
001
oc1
001
oCl
001
00c1
ocC1
oct
oc1
0C1
001

001
oc3
0c3
003
0c3
0c3
003
oC1
0c3
o10h
0cCt
ocl
001
ocC1
oc1
001
oc1
ocl
ool
ocs
0cCs
0Ca
oC1
oc1
ocl1

VALUE

00CO
QOFF
000F
0007
00CS
0004
0001
0002
00873
0008
0002
0002
0081
0080
0001
0041
0042
0044
0040
0080
0000
0010
0004
0002
0080
OO0FE
0040
0000
00073
0017
0010
0001
gocz
0003
0088
0003
0016
0011
0010
0001
0059
0023
0008
0006
0002

0001
004C
0oCA
0052
0000
0058
0006
0090
00AF
0004
0010
0001
0002
0002
0020
0co8
0002
0058
0009
009C
C042
00CO
0010
00SF
00DD

NEFN

0462
0463
0458
0429
0425
0426
0474
0427
0428
0468
0454
0453
0533
0532
0475
0535
0536
0537
0534
0445
0444
043%
0438
0447
0451
0449
0446
0450
0448
0437
0439
0452
0465
0457
0471
0476
0469
0472
0433
0432
0440
0434
04326
0441
0591

0600
0067
0126
0069
0128
0071
0130
0597
0118
0598
0595
0590
0592
0596
0601
0602
0593
0072
0131
0112
0064
0123
0596
0074
0133

REFERENCES

0063
0111
01t1

0118

0058

0032x
0069
0118
0117
0051
0105
0054
0108
0057
0117

Oll4
0057

0062%

0057

0077*
0068
0127
0109*
0061 *
0120%*
0057
0066
0125

CRCSS REFERENCE

VER 14,

0122

0115

0037* 0049% 0050
0071 0082 0088
0121 (€126 0128

0052 0953
0103% 0104
0130 0139

0055
0106
0141

0056
0107
0217

00¢€5
0124

0063 0110* 0111 O0121% 0122

0136%
0070
0129

0117

MOD 00

0058
o110
0218

Page of GC21-75734
Issued 25 November 1977
By TNL: GN21-6587

08/26/77 PAGE 21
0059 0062 0067
0113 0115 Q116
0239%

Samples 103

Page of GC21-75734
Issued 25 November 1977
By TNL: GN21-5587

$3270 CRCSS REFERENCE

SYMBNL LEN VALUE DEFN REFERENCES VER 14, MOD 00 08/26/77 PAGE 22
ABEGIN 0OCl 06B8 0409 0349

ADDR 001 O5F1 0347 0205

AEND 030 O06E7 0411 0204%

AFTELD OCl 0Q4F2 07389 0204
BADREYT O0ClI O019F 0215 0073 0089 0132 0142
BUF1 001 0258 0322 0274
BUF2 0Cl 02FD 0324 0310
B1END 146 02€EC 0327 0275
B2END 0C1 0442 0325 0311
CKGDOD CC1 0078 0087 0083
CLEAR 0Ct 006N N394 0143
CLOSE 0C1 0101 0236 0196

DAY A 0Cl 0175 0194 0148
NTF1 0C1 21DF 0252 0032 0037 0049 0239 0381
NnTF2 0oCt 021D 0288 0103 0258 0385

EIGTEN 0C1 0012 0398 0174
ENTER NCl 007D 0395 0147
ERMESS 0C1 0¢€48 0402 0352
ERRQR 001 O05E6 0350 0149
FTX 0Cl1 0003 0392 0195
HLMESS 0C1 O0SF0 0356 0229
HMESS 0Cl1 0668 0404 0358
Lrsm 0Ct 061F 0380 0077
LIST2 OCl 0622 0384 0136

LCG 001 O0S5F5 nN359 0283 0318

MA SK 0C1 071B 04169 0084 0085* 0278

MORE 0Cl O07F 009S 0l44 (G155 C189 0211
MNysST CCl 0130 0166 0172

NAME 0C1 05DC 0344 0198

NREGIN O0Cl1 0688 0406 0346

NEND 030 0687 0408 0197%

NFIELD ©0Cl 04D6 0388 01987

NINE 0C1 0009 0397 0163

NONPRT 0Cl 00F9 0399 0176 0219

NCSR39 O0C1 Ol15B 0179 0177

NOSET 0C1 01BC 0222 0220

ONF 0C1 06E9 0413 0171 0181

POLL 0C1 06é17 0372 0301

PSTAT 0C1 011A 0160 0146

RESPON 0OCY! 007F 0098 0086

RET 032 0647 0401 0216 0216* 0217% 0218% 0219 0221%*
RETRN 0Cl 0628 0400 0343

RETURN 0C1 0SD7 0341 0223

RV1T 0C1 0080 0396 0084 0085

SR39 001 O6EA 0414 0178 0221

SCOUNT 0C1 O6EB 0412 0163* 0171% 0174* 0181%*
SFLECT 0Cl O060F 0264 0265

SETDIS 001 0012 0045 0140

SETPRY 0Cl1 0150 0175 0182

SMESSG 0Cl 0S5ER 0353 0183

SMSG 0C1 O06EB 0415 0355

STAT 018 O071A 0418 0161% 0162 0162*

STATS 001 0709 0417 0164 0173

STATUS 003 0627 0387 0145

$3270 0C1 00C0 0002 0603

WORK] 001 0443 0327 0260

WNRK?2 0C1 04AB 0337 0143 0145 0147 0165 0195 0296 0388 0389

XR1 OCL 0001 0390 Olesa* 0167 0168 0169 0169% 0173% 0176 0178 0180 0180%

XR2 0Cl 0002 0391 0149% 0165* 0167 0168 0170 0L70* 0183% 01S8% 0205% 0223% 0229%
ZERD 001 O0O0OF0 0393 0161

TOTAL STATEMENTS IN ERROR IN THIS ASSEMBLY = o]

OL105 1 THE CCDE LENGTK OF S$3270 IS 1820 DECIMAL.
OL103 T TOTAL NUMRER OF LIRRARY SFCTORS REQUIRED IS 9
NAME-S3270 4 PACK-RIRIR1,UNIT-R1,RETAIN-T,LIBRARY-R,CATEGORY-000

104

Appendix C. Data Areas, Parameter Lists, and Message Formats

BSC DTF

Displacement Length

Hex Decimal Label in Bytes Description

0 0 $BDDEV 1 Device ID: X'80' for BSCA 1

X‘88’ for BSCA 2

1 1 $BDUPS 1 UPSI: U1-U8, customer controlled program switches

2 2 $BDATT 1 Attribute byte 1
Value Label Description
X‘01’" $BCASM Assembler DTF
X‘04' $BCASK On-ASCli file

Off—EBCDIC file

X'08° $BCGET GET file
X'10' $BCRAN Transparent mode
X'20° $BCITB ITB mode
X'40’ $BCOUT Output file
X’80° $BCINP Input file
X‘CO° $BCCNV Conversational file

3 3 $BDATR 1 Attribute byte 2
Value Label Description
X'01° $BCOPN File opened
X'02" $BCACT File active
X‘04’ $BCUSD File used
X‘08" $BCSWI Switched line
X10° $BCANS Answer line
X‘20° $BCMAN Manual line
X‘80° S$BCMPT Tributary station
X‘88° $BCMCN Control station

] 5 $BDCHN 2 Chaining pointer to post open DTFs

7 7 $BDNXT 2 Chaining pointer to next DTF, preopen or post open

9 9 $BDWK1 2 Work area for MLMP routines

B 1 $BDWK?2 2 Work area for MLMP routines

D 13 $8DWKB 2 Address of user’s logical buffer

Figure 11 (Part 1 of 4). BSC DTF

Data Areas, Parameter Lists, and Message Formats

105

Displacament Length
Hex Decimal Label in Bytes Description
E 14 $BDCMP 1 Completion codes
Value Label Description
X‘00° $BCREQ Request accepted
X'40’ $BCDNE Normal completion
X‘41’ $BCUER User error
X‘42° $BCEOT End of file
X‘43° $BCBID Invalid ID
X‘44' $BCNEG Negative response to poll/address
X45° $BCNON No response to poll/address
X'46° $BCCRP Conversational reply pending
X'47° $BCNDT No data for conversational GET
{null message received)
X'48" $BCOLT Invalid $RFT (request for online test)
X'49’ $BCNAC No active entry in polling list
X‘4A’ $BCIGN Request ignored
X'4B’ $BCASC Invalid ASCII character
X'AC' $BCNCN No connection
X‘4D’ $BCCAL Invalid request
X'4E’ $BCLST Delay count (DLYCT in $DTFB)
exceeded
X‘4F’ $BCERR Permanent error
X‘'50° $BCTIM No response from remote device
X‘61° $BCDAT Data check
X‘62° $BCLOS Lost data or no RECSEP character within
2 contiguous blocks of spanned records
X'63" $BCCON Lost connection or DISC received
X'64" $BCRSP Invalid response received
X'65’ $BCADP Adapter check
X'66° $BCCMP No completion in check list
X'67° $BCACD No active DTFs in check list
X’68° $BCRLE Maximum record length exceeded
F 15 $8DOPC 1 Operation codes
Value Label Description
X‘40' $BOPUT PUT
X‘41° $BOPEB PUT end-of-block
X‘42" $BOPEF PUT end-of-file
X‘44’ $BOPEW PUT EOT to WACK response
X‘80° $BOGET GET
X‘81° $BOGBK GET a biock
1" 17 $B8DMRL 2 Maximum record length

108

Figure 11 (Part 2 of 4). BSC DTF

Displacement
Hex Decimal Label Description
12 18 $BDADD Attribute byte
Value Label Description
X'01" $BCAA1 Addon areaon DTF
X'02° $BCPOL Polling modules resident
X'04" $BCOFL Truncate record indicator
X'08° $BCRCL Span indicator for record length
X'10' $BCTWO End of block indicator
X200 $BCOPD File has been opened
X‘80° $BCSWD Switched ID list in use
14 20 $BDDCH Address of dial number if this is a switched line, or
$BDPSC Polling/addressing characters if this is for a tributary station, or
$BDLST Address of polling/addressing list if this is for a control station
15 21 $8DDCC Length of dial number if this is for a switched line
$BDIND Polling/addressing list entry 1D if this is for a control station
17 23 $8DRID Address of receive ID field or address of switched ID list if this
is for a switched line
$BDCNT List count (number of times to go through a polling list when
all responses are negative) if this is for a control station
18 24 $BDRLN Receive ID field tength or switched ID list selection characters
$8DLID Last polling/address 1D or last polling/addressing function
{(X'FO’ or X'F1°)
1A 26 $8DSID Address of send ID field
1B 27 $BDSLN Length of send ID field
1D 29 $BDDLY Delay count (DLYCT in $DTFB)
1F K $BDREL Record length
21 33 $BDBKL Block length
23 35 $B8DIOB Address of 10B in process
25 37 $8DBKX Pointer to data in BSCA buffer
27 39 $BDITB {T8 character count
2A 42 $BDPRM Reserved

Figure 11 (Part 3 of 4). BSC DTF

Data Areas, Parameter Lists, and Message Formats

107

Displacement Length
Hex Decimal Label in Bytes Description
2D 45 $BDRVI 3 RVI (reverse interrupt request) mask and displacement.
First byte is mask; next two bytes are address. Address
must be valid. Mask must be zero if not used.
2E 46 $BDNDX 1 Index for line initialization
30 48 $8DWKA 2 Address of BSC work area
32 50 $BDINT 2 Disk address of line initialization module
33 51 $BDDED 1 Work area for MLMP routines
34 52 $BDAT1 1 Terminal attribute byte
Value Label Description
X‘01" $BCSEP Record separator used
X'02" $BCSPN Spanned records used
X'04° S$BCNOW Spanning in process
X'08" $BCPUT PUT span file
X'10° $BCRES Restore after spanning
X'40° $BCPLR Polling resident
35 53 $BDSEP 1 Record separator character
37 55 $BDSBF 2 Save area for user’s logical buffer address
39 57 $BDSRL 2 Save area for record length
3B 59 $BDRFT 2 Save area for address of online test parameter list
3D 61 $BDTSA 2 Address of terminal statistics logging area
The following are in the DTF only if core resi-
dent polling, auto response, or user error retry
count is present:
3F 63 $BDRLO 2 Address of $$BSMA
For resident polling
411 65 $BDRCL 2 Address of $$BSMC (POLRES-Y
§ in $DTFB)
43 67 $BDARA 2 Address of $$BSMD
44 68 $BDERR 1 Error retry count
46 70 $BDT1A 2 Disk address of online test module
48 72 $BDEX@ 2 CCP user exit address {(CCP only)
49 73 - 3 Reserved (This field is present only if
AUTORS-Y, POLRES-Y, or ERRCT—decdig
was specified in $DTFB)

108

Figure 11 (Part 4 of 4). BSC DTF

MLMP 1/O Area

The MLMP 1/O area for a file is defined by the BUFST and
BUFEND operands of $DTFB, or by the BUFNO operand
of $DTFB. When the file is opened, MLMP formats the
allocated {/O area into as many |0Bs and buffers as the area
can contain {see Figure 12).

Note: Conversational files (CONV-Y in $DTFB) are per-
mitted only one 10B and buffer.

Chain

N

Inoa! Buffer 1 | 10B | Buffer2 | 108 | Buffer n
1 2 e lm
Chain Chain

Figure 12. MLMP Multiple Buffers

The BSC I0B is 21 bytes long. The 10B controls the flow
of data to and from the associated buffer. Each buffer
contains one block of data as described in $DTFB (see
Figure 13).

| Receive

| Buffer
10B Acknowledgement S E E | 1 Byte
(21 to Preceding T .. Data..| T or T | Reserved
bytes) | Biock Received X X B[by MLMP

\\MI
Transmitted prior |
to receiving data :

Transmit :

Buffer l
tOB S E E Acknowledgement | 1 Byte
(21 T|.Data..] TorT Received to Block | Reserved
bytes) | X X B Transmitted by MLMP

e — T
Received subsequent
to transmitting data

Figure 13. Sample MLMP Buffers

The length of each buffer, including the I0B, is calculated
as follows:

® Conversational mode:
Buffer length = (record length x 2) + 28
® Non-conversational mode:

Buffer length = (record length x blocking factors) + C
+ number of characters needed for ITB

Blocking factor = number of records per block
C = 44 for ITB transparent PUT; 42 in all other cases
Number of characters needed for ITB = (blocking
factor - 1) x ITB count
ITB count =0 for non-ITB
1 for ITB non-transparent
3 for ITB transparent GET
5 for ITB transparent PUT

If you want multipie buffers, double the computed buffer
length to have double buffers, triple the computed buffer
length to have triple buffers, etc. Multiple buffering uses
a telecommunications line more efficiently than single
buffering: you can be moving data to or from one buffer
while data is being transmitted from or to another.

Note: A conversational file {CONV-=Y in $DTFB)} cannot
have multiple buffers.

Terminal Statistics Logging Area

The Terminal Statistics Logging Area is a table in main
storage used by the terminal statistics logging routine Yo
record terminal statistics for multipoint control stations.
The table is addressed by the ERRLOG operand (required
if you specify TYPE—CS) of $DTFB. You can use the
$LOGB macro instruction to allocate the Terminal Statis-
tics Logging Area. The format of the area is:

Lengtﬂ of Displac:ament

Table in Hex | to Next Avail- Entry 1 Entry 2 Entry n
\ able En.try

Two Bytes, Two Bytes,

Defined by Initialized to

User X'00’'s by User

Data Areas, Parameter Lists, and Message Formats 109

Each entry in the table is formatted by the terminal statis-
tics logging routine:

p Number of
p G e o

Number of
Successes

pp = Number of polling or addressing characters (1 byte).
C = Polling or addressing characters, as many as 7.

Errors = Transmissions containing 1/0 errors (2 bytes).
Successes = Successful transmissions (4 bytes).

Space in main storage must be available for the table. The
number of bytes required by the table (and entered as the
length of the table in the first two bytes) is: 4 + p(7 + n)
where:

p = Number of unique sets of polling and addressing char-
acters referenced in this program by this DTF. (If one
terminal has both a set of polling characters and a set
of addressing characters, two entries are required for
the terminal.)

n = Maximum number of polling or addressing characters
per entry.

If you define space in main storage for the Terminal Statis-
tics Logging Area but you don‘t use $LOGB, specify the
length of the entire table in the first two bytes of the table,
and initialize the rest of the table to X’'00’.

Note: If the area you define is not large enough to contain
all the terminal statistics, MLMP will issue the Y6 halt. For
a complete description of the Y6 halt, see the appropriate
halt/messages manual listed in the Preface.

Trace Table

The trace table contains 1/0 information recorded by the
trace module ($$BSTT). The trace table is 323 bytes long,
beginning at symbolic address MTBSML and ending at sym-
bolic address MTBSMM. The format of the trace table is:

Pointer | WRAP

Entry 1 | Entry 2 S

Entry 20

110

Pointer = Address of the first byte of the last entry in the
table used by Trace {2 bytes).

WRAP = Status byte:
X‘00’'—No more than 20 entries have been written to the
the table.
X‘01'—Each entry has been filled at least once, and en-
tries are now being overlaid, beginning with entry
entry 1.

Entry = 16 bytes. The format of each entry is:

Datsa

Control
Q Byte Code

Sense Bytes D1,],D2 D3

Q Byte—From the BSCA SI0 instruction initiating the
event recorded.

Contro! Code—From the SO instruction initiating the
event recorded; 1 byte.

Sense/Status Bytes:

Byte Bit Meaning When Set to 1

1 0 Timeout status.

a. A receive timeout occurred during a
receive operation with the adapter
in the busy state.

b. An autocall operation was terminated
by an abandon call and retry sig-
nal from the autocalling unit,
(ACU), indicating that a connec-
tion was not established.

Data check during receive operation.

a. A BCC compare check occurred
(EBCDIC).

b. A VRC check occurred (ASCIH).
(Note: Characters having VRC
checks are distinguished by a high-
order bit in core storage. These
characters are never recognized as
control characters by the BSCA.)

Adapter check during transmit
operation.

a. DB register parity check.
b. }/O cycie steal overrun.

Byte Bit Meaning When Set to 1
c. LSR or shift register parity check.
d. Transmit control register check.

Adapter check during receive operation.
a. DBI register parity check.

b. 1/0 cycle steal overrun.

c. LSR or shift register parity check.

Invalid ASCII character. (A byte
fetched from core by an adapter using
ASCII code contained a 1-bit in the
high order bit position.)

Abortive disconnect. indicates BSCA
on switched network was enabled,
then the data set became ready, then
not ready. This indicates the connec-
tion has been released and causes
data terminal ready to turn off.

Disconnect timeout. Indicates dis-
connect timeout occurred on a switched
network. Disconnect timeout causes
data terminal ready to turn off.

{May not apply to systems using the
IBM remote job entry program.)

Note: The program must perform a
disconnect operation.

Not assigned.

Not assigned.

NNNNNN
N wWwNN -0

2 6 Data set ready. This indicates that the
data set is ready to operate and that
the BSCA has been enabled.

2 7 Data line occupied. This bit is used

on a switched network when the BSCA
is equipped with the autocall feature.
This bit indicates that the data

receive initial instruction will be re-
jected.

Note: Byte 1 equals leftmost byte; byte 2 equals rightmost
byte.

Data =
D1—Contents, at the time the 1/0 operation was started,
of the byte addressed by the current address regis-
ter (CAR) and the two bytes that follow.

D2—Contents, at the time the 1/0 operation was started,
of the three bytes preceding the byte addressed by
the transition address register (TAR).

D3—Contents, at the time the 1/0O operation was com-
pleted, of byte addressed by the TAR and the two
bytes follow.

D4—Contents, at the time the 1/0 operation was com-
pleted, of the three bytes preceding the byte address-
ed by the CAR.

Note: When a 2-second timeout occurs, D1-D4 are set to
X'FF’s. When a receive timeout occurs, D3 and D4 are
set to X‘FF’. When the 1/0O operation is receive-initial
(RCVI), receive only (RCVO), or autocall, D2 and D3 are
set to X'FF’.

BSC 1/0 Registers

Current Address
Register (CAR)

Stop Address
Register {SAR)

points points
L ¥
: Transmit : Receive "
A ,
Transition Addry’ Interrupt
Register (TAR) generated
points

Transmission proceeds until CAR equals TAR, when receive
mode is entered. An interrupt is generated and the opera-
tion is terminated if CAR equals SAR, if a line turnaround
sequence is received, or if a timeout occurs.

For a complete description of the BSCA instruction set
and the BSCA registers, see the appropriate components
reference manual listed in the Preface.

Checklist

The format of the checklist entries created by the $CKL
macro instruction is:
Byte 1 = Status byte:
X'80"'— Skip this entry
X'40'— This is a printer-keyboard request DTF
X'20'— This is the last entry in the checklist

Data Areas, Parameter Lists, and Message Formats 111

X’10°= Return control to user if no completed ESn
events (significant in the first check-
list entry only) L
X‘04'— Program function key not available

i

Entry selection characters, X‘00’ through X'EF’

Number of station identification characters

Sin = Station identification characters, as many as 15
Bytes 2-3 = Symbolic address of the DTF for this entry
ST = Status byte:
The format of the checklist is: X‘80'—Inactive entry
X’'00'—Active entry
| Entry 1 [Enty2 [40 T Entryn | END = End byte: X'FF’
See also index entry generate a checklist (§CKL). Parameter List for Changing a Polling List or Switched
ID List

Polling/ Addressing List The format of the parameter list generated by the $CHGB

macro instruction is:
The format of the entries generated by the $POLB macro

instruction is:

DTF
...Chars...
One Entry Type Add;ess N Chars
e N
tle fc |s ||p|c Is tlelc Is [€
Dp ... T | Dp 2...T Dp,nn..T | N Type
o ol lo
Bit O: Off—activate selected entries
IDn = Terminal identification, X'00’ through X'EF’ On—deactivate selected entries
pp = Number of polling or addressing characters Bit 1: Off—select only those entries whose
characters match the characters specified
Cn = Polling or addressing characters, as many as 7 in the Chars field (below)
On—select only those entries whose first
ST = Status byte: N characters match the first N characters
X’80'—Inactive entry specified in the Chars field (below),
X'00°'—Active entry where N is the number specified in the N
byte (below)
END = End byte:
X'FE'—Open list DTF
X‘FF'—Wrap list Address: Address of the DTF whose polling list or

switched ID list is to be changed.

See also index entry generate a polling or addressing list

($PC:.B). N: Hexadecimal number of characters in the
Chars field (below) to be compared to
characters in polling list or switched 1D

Switched ID List list entries.
The format of the entries generated by the $SWIB macro Chars: Hexadecimal representation of characters
instruction is: to be compared to characters in polling
list or switched 1D list entries.

One Entry
T — See also index entries $BCPL macro instruction and $CHGB
EI IS IS E] Is s EI IS]S E macro instruction.
S L V... TS L ... T S'L I TIN

e ol |]e

112

Translate Parameter List Test
Type

The transiate parameter list is used by the $TRAN macro

instruction to translate data. See also index entry generate 06

an interface to the translate routine (STRAN).

Field
Length Field Description 14
2 Address of translate table generated by the
$TRTB macro instruction (see index entry
$TRTB macro instruction)
23
2 FROM field for translation
2 TO field for translation
2 Number of bytes to translate
1 Return Code
X'00'—translation complete, no errors
X‘FF'—invalid character detected 24
Online Test Parameter List
The format of the online test parameter list required by
the $RFT macro instruction is:
25

(X [X v [~ [~ naaen |

XX = Decimal number specifying test type. Of the follow-
ing test types, System/3 can only request types 00,
01, 06, and 14. (When requesting an online test, be
sure to specify a test the remote terminal can accept.) 26
System/3 can accept all of the following test types.
{Types 23 through 34 are only accepted from a 3270.)

Test
Type Description
27
00 Receive and acknowledge the test message
the number of times specified in bytes YY.
The formatted test request must not be
more than 300 characters long. See index
entry online test requests.
)] Transmit the test message the number of

times specified in bytes YY. The formatted
test request must not be more than 300
characters long. See index entry on/ine
test requests.

Description

Transmit 36 alphameric characters, A-Z and
0-9, the number of times specified in bytes
YY. Transmit the characters in ASCi|
(ASCII adapter only).

Transmit 36 alphameric characters, A-Z and
0-9, the number of times specified in bytes
YY. Transmit the characters in EBCDIC
(EBCDIC adapter only).

3270 basic EBCDIC test message:

This test checks all alphameric characters at
a display station or printer. 1t also checks
the use of the WCC to sound the audible
alarm and allows attribute field specifications
to be checked at a display station. It starts

a printer, printing only 40 characters to a
line.

3270 Model 1 align EBCDIC test pattern:

This test checks position alignment for the
480-character display station. It also checks
the WCC to sound the audible alarm. It
starts a printer, printing 40 characters to a
line.

3270 Model 2 align EBCDIC test pattern:

This test checks position alignment for the
1920-character display station. [t also checks
the WCC to sound the audible alarm. It
starts a printer, printing 80 characters to a
line.

3270 orders EBCDIC test message:

Tests 3270 orders (SF, SBA, etc.}, checks
the WCC to sound the audible alarm, and
uses display and intensified brightness. It
starts the printer, printing 64 characters to
a line.

3270 EBCDIC universal character set test
pattern:

This test uses the erase/write command,
displaying the universal character set in
EBCDIC. It checks the WCC to start the
printer, sounds the audible alarm (on a dis-
play), and prints 132 characters per line on
the printer. NL and EM are also tested on
a printer. Display intensity is used. The
SF, NL, EM, and IC orders are used.

Data Areas, Parameter Lists, and Message Formats 113

Test
Type Description

28 3270 NL/EM EBCDIC test pattern:

This test is mainly intended to test the end
of message {(EM) order and multiple new
line {NL} orders on the printer. The WCC
is checked to start the printer, sound the
alarm (on a display), and print 132 char-
acters to a line on the printer.

29-34 3270 ASCII test patterns:

These tests correspond to tests 23-28 except
that transmission is in ASCII.

Y Y = Decimal number specifying the number of times to
transmit or receive the test message.

N = Decimal number specifying the number of addressing
characters (0-7). N equals 0 except when a tributary
station requests a test other than type 00.

Address = Addressing characters to be used, not more than
7.

Note: Decimal numbers and addressing characters must
be given in the code used by the BSCA (EBCDIC or
ASCil).

The message type specified determines the buffer space
required to transmit or receive an online test request. In
all cases, block length specified for System/3 (BLKL in
$DTFB) must be equal to or greater than the test message
length {LEN in $RFT), whether System/3 is sending or
receiving the online test request.

Where m = test message length, including framing char-
acters (see index entry online test requests),
and

n = number of addressing characters,

the minimum BLKL required to send or receive an online

test request is:

Message type 00
BLKL =9 or m, whichever is greater
Message type O1
Point-to-point nonswitched and switched lines:

BLKL=74+m

114

Multipoint lines:

Tributary station:
BLKL=7+m+n

Control station:
BLKL=11+m+2n

Message types 06 and 14
BLKL must be greater than or equal to 40.
Message types 23-34

BLKL must be greater than or equal to 300.

Online Test Requests
Online test requests are written as follows:
® Test type 01

Given the online test parameter list and a test message,

PARM Operand

of $RFT—1

|Online Test Parameter List|

FROM Operand

of $RFT
1

D S Test E
L T |..Characters... | T
E X X

For Transparency Only

MLMP constructs and transmits the following online
test request:

300 Bytes Maximum

M

S Online Test D S Toxt

(o] % Parameter List L T |.. .Characters. . .
H E X

Inserted by

MLMP

® Al test types other than 01
Given the online test parameter list,

PARM Operand
of $SRFT

|Online Test Parameter List]

MLMP constructs and transmits the following online
test request:

S Online Test S E
(o) % Parameter L.ist T T
H X X
N
Inserted by Inserted
MLMP by MLMP
(test message)

Note: The parameter list and the test message must both
be given in the appropriate line code, EBCDIC or ASCII
(translation may be required—see index entries generate a
translate parameter list ($TRL) and generate an interface
to the translate routine ($TRAN)).

MLMP Message Formats

MLMP builds and recognizes the foliowing message
formats:

& Non-1TB, non-transparent

S E E
T Text T o T
X X B

® Non-ITB, text transparency

D S E E
L T Text T o T
E X X B

Data Areas, Parameter Lists, and Message Formats

118

® |TB, non-transparent

7 L
JJ
S i | | E E
T Record 1 T Record 2 T Record n-1 T Record n T o T
X B B B X B
£ C
7/
® |TB, text transparency
((
77
D S | D S | D S E E
L T Record 1 T L T Record n-1 T L T Record n T o T
E X B E X 8 E X X B
{ L
JJ
Spanned records can be used with or without I TB, and
can be transparent or non-transparent. The following for-
mat shows spanned records—non-1TB, text transparency:
D S R R E
L T Record 1 Record 2 Rec T
S S
E X B
D S R R E
L T ord 3 s Record 4 s Recor T
E X B
D S E
L T db z Record 6 : T
E X B

RS = Record separator

116

Appendix D. Control Characters and Codes

EBCDIC
Main Storage Bit Positions 0, 1,2, 3

Main s“’,"” 0000 | 0001 { 0010 | 0011 | 0100 [0101 | 0110 | o1v1] 1000] 1001 {1010 | 1011 {1100 | Higi{ 11104 11N}

Bit Positions

4,5,6,7

Hex | © 1 2 3 4 5 6 7 8 9 A B C) E F
000 | o | NuL| DLE | DS spo|a - 1D N oo
000! i SOH | DCI | sOs / a j ~ A J 1
0010 2 STX | DC2 | FS SYN b k s 8 K S 2
0011 3 £TX | pC3 ¢ I t C L T 3
0100 4 PF RES | BYP PN d m " D M v 4
0101 5 HT NL | LF RS e n v 3 N v 5
EO
o110 6 L S F w 6
C B £is uc f o w (@]
PRE
ol 7 DEL | IL EOT G P X 7
ESC 9 A

1000 8 CAN h q y H Q Y 8
1001 9 RLF | EM \ ; ¢ z I R z 9
1010 A | smmicc | sm ¢ ! i
1014 8 vT s , ’
1100 C FF IFS pc4 | < * % w
1101 D CR | IGS | ENQ | NAK| () _ '
1110 3 SO | RS | ACK + ; > =
(RS F Sl WS | BEL sUB i - ? "

Duplicote Assignment

Control Characters and Codes

117

ASCIl

Main Storage Bit Positions 0, 1, 2, 3

Main Storage 0000 | 0001 | 0010 | 0011 | 0100 J010) § 0110 | o111] 1000 | 100t | 2010 | onr | oo | vier Lavio | nin
Bit Positions
4.5.6.7 HEX | © 1 2 3 4 5) 7 8 9 A B C D E F
0000 0 NUL | OLE | sp 0 @ P \ P
0001 1 SOH | DCi 1 i A Q a q
0010 2 sTx |oc2 | 2 8 & b r
0011 3 ETX |DoC3 | 3 C s c s
0100 4 EOT |DC4 | 8 4) T d t
010! 5 ENQ | NAK | % 5 € U e v
0110 6 ACK | SYN | & 6 F v f v
01t 7 BEL | ETB : 7 G w g w
1000 8 8s |can | ¢ 8 H X h x
100! 9 HT | Em) 9 ! Y i y
1010 A L sus | ¢ J z i z
101} B fvT |esc | + ; k | C k {
)
1100 C FF 1 FS . < L ~N | !
101 o |ck |es |- - Mmoo d | m }
1110 € SO |RS > N = | a ~
Hn F si us / ? o _ o DEL

118

Hexadecimal Representations

values:

ACKO
ACK1
DISC
DLE
ENQ
EOT
ETB
ETX
ITB
NAK
RV
SOH
STX
SYN
TTD
WACK

is determined.
EBCDIC

Polling
Character

BB
cc
DD
EE
FF
GG
HH
I
4
KK
LL
MM
NN
00
PP
QQ

ASCII
BSC control characters are represented by the following Poliing
Character
EBCDIC ASCII
AA
X1070° X'1030" BB
X'1061° X'1031° cc
X*1037’ X*1004" 0D
X'10° X'10° EE
X'2D’ X085’ FF
X'37° X“04" GG
X'26" X7’ HH
X'03’ X'03’ I
X1F’ X'1F* o~
X'3D° X‘15' KK
X*107C’ X‘103C’ LL
X‘01° X01" MM
X‘02’ X'02' NN
X'32' X16' 00
X'022D° X020’ PP
X*1068’ X*1038° Qa
RR
SS
Tributary System/3 Polling and Addressing Characters T
Uy
Polling and addressing characters must be used in pairs: vV
that is, once a polling character is selected, the complemen- WW
tary addressing character is determined; once an addressing XX
character is selected, the complementary polling character YY
2Z
Hexadecimal Addressing Hexadecimal
Representation Character Representation
C2C2 SS E2E2
C3C3 TT E3E3
CaC4 uu E4E4
C5C5 vV ESES
C6C6 ww EGE6
cic7 XX E7E7
C8Cs8 YY EBE8
C9C9 2z E9E9
D1D1 1 F1F1
D2D2 22 F2F2
D3D3 33 F3F3
D4D4 44 F4F4
D5D5 55 F5F5
D6D6 66 F6F6
D7D7 77 F7F7
D8D8 88 F8F8
DIDg 99 FOF9

RR

Hexadecimal Addressing
Representation Character

4141
4242
4343
4444
4545
4646
4747
4848
4949
4A4A
4B4B
4cac
4D4D
4E4E
4F4AF
5050
5151
5252
5353
5454
5555
5656
5757
5858
5959
5A5A

aa
bb
cc
dd
ee
tf
99
hh
i
1]
kk
It
mm
nn
00
PP

ag
rr

SS
it
uu
v
ww
XX

Yy
2z

Hexadecimal
Representation

6161
6262
6363
6464
6565
6666
6767
6868
6969
6A6A
6868
6C6C
6D6D
6E6GE
6F6F
7070
AR
7272
7373
7474
7575
7676
7777
7878
7979
TA7TA

Control Characters and Codes 119

120

Appendix E. Macro Instruction Summary

o

RCAD-address, FTYP—-RCV/TSM
[,LBUFST--address,BUF END—address]
[.BUFNO—decdig]

[.CODE—E/A] [,LINE-1/2]
[,UP—binary/0] [,CHN-name]}
[LCONV—Y/N] [ITB-Y/N]
[.TRANSP—Y/N)
[,RVIADR~address,RVlMSK—hex]
(,DLYCT—decdig]
[L,TYPE—PP/MP/CS/AC/MC/AA/MA]
[,TERMAD—hex] [,AUTORS—Y/M
[,LISTAD~address, ERRLOG—address)
[.POLRES—Y/N]

[,LIMIT —decdig]
[,DIAL—address,DlALCT—deedig]
[LRCVID—address, RCVCT~—decdig/
SWLIST-Y/N]
[,SNDID—-address,SNDCT—deodig]
L.SPAN—Y/N]

[.LRECSEP—hex] [,ERRCT—decdig]

Approximate Approximate
Number of Number of
Instructions Bytes
Generated, Required,
Macro Excluding Excluding
Instruction Format Function Mnotes Mnotes
$ALOC | tneme} | $ALOC | (DTF—namel | Allocates files. 3 9
$BCPL | iname] | $BCPL | [PARM—address] | Changes entries in 39 109
polling lists.
$BCSW lﬂame] l $BCSW I [PARM—addres]l Changes sntries in 43 113
switched 1D lists.
$CANB Liname] | scang | (DTF—address | Cancels an initial 25 82
GET request.
$CHGB [name] | $CHGB | TYPE-AM/AN/DM/DN,DTF—address,|| Generates a parameter| (6 lines) 6-12
NUM-—hex,CHARS—hex list for changing
' | polling or switched
iD lists.
$CHK | iname] | schk | 1cKi—address] | Checks for 1/0 2 8
completion.
$CKL {namel | $CKL DTF—address [SKIP—Y/N] Creates entries in (3 lines) 3
(Tgfe' [LREQK~—Y/N or CONS—Y/N] the check list.
LRTN~Y/N] [, LAST—Y/N]
$CKL [name] | $CKL DTF—address {,SKIP—Y/N] Creates entries in (3 tines) 3
(Model .
15(; el [REQK—Y/N] the check list.
LRTN-Y/N] [LAST-Y/N]
$CLOS [[name] J $CLOS l [DTF-—address]J Cioses files. 3 9
$COMN L J $COMN l l Generates (14 lines) 0
common iabeis.
$DTFB [name] $DTFB RECL.—decdig,BLKL—decdig, Define BSC DTFs. {31 lines) 62

Figure 14 (Part 1 of 2). Macro Instruction Summary Chart

Macro Instruction Summary

121

Approximate | Approximate
Number of Number of
Instructions Bytes
Generated, Required,
Macro Excluding Excluding
Instruction Format Function Mnotes Mnotes
s$DTOB | I $DTOB l j Generates (137 lines) 0
displacements and
labels for BSC
DTFs.
$GETB [name] | $GETB [DTF—address) [, REJECT—address] | |Instructs Model 10 31 94
BSC to receive
,OPC—N
LOPC-N/BLKI (GET) data.
$LogGse [name] $LOGB NUM-—decdig,LEN —decdig } Atlocates the {5 lines) Depends on the
Terminal Statistics number of termi-
Logging Area. nals and number
of polling/addres-
sing characters.
$OPEN [[name} l $OPEN | [DTF—name]J Opens files. 3 9
$POLB [name] | $POLB tD—hex, TERMAD—hex, Creates entries in (5 lines) 4 (plus
LEN—decdig polling and poli/addressing
addressing lists. characters)
[.LLAST—N/OPEN/WRAP]
$PUTB {name] $PUTB [DTF—address) Instructs 26 77
[REJECT—address] Mode! 10 BSC
to transmit
{LOPC—N/EQB/EOF/EOW] (PUT) data.
$RFT [name] | $RFT PARM—address [,FROM—address] Instructs 25 86
[,LLEN—decdig] (,DTF—address] Model 10 BSC
to perform an
[, REJECT—address) online test.
$RFTL [name] | $RFTL | TYPE—00/01/06/14, Generates the online | {5-6 lines) 7-12
NUM-—decdig,LEN—decdig test parameter list.
(,CODE—E/A] [,TERMAD—hex]
$SNAP (name] | $SNAP | ID—hex,START—address, Dumps main storage. | (4 lines) 10
END—address
$swis [name] $SwWIB SELECT—hex,STATID—hex, Creates entries in a (3-6 fines) 318
LEN—decdiag [,LAST-Y/N] switched 1D list.
$TRAN | (name] | STRAN | (TRL—sddress] | Transiates deta. 8 8
$TRL [name] $TRL TO-—address, FROM—address, Creates a (13 lines) 9
LEN—decdig, TRT—address translate list.
$TRTB [name] | $TRTB [CODE—E/A] [HEX-hex] Generates a translate | If CODE—A, | If CODE-A,
table. 12 lines; if 130 bytes; if
CODE-E, CODE~E,
20 lines. 258 bytes.

Figure 14 (Part 2 of 2). Macro Instruction Summary Chart

122

[] halt 30, 45
$SBSCN (form descriptor convert routine) (see FDP/convert)
$$BSFI (MLTERFIL initializstion moduie) 50
$$BSMS, EXTRN 9, 57
$ALOC macro instruction
description 16
format 16
summary 121
$BCPL macro instruction
description 20
format 20
summary 121
$BCSW macro instruction
description 23
format 23
summary 121
$CANB macro instruction
description 29
format 29
summary 121
$CHGB macro instruction
description 21
format 21
summary 121
$CHK macro instruction
(see also $CKL macro instruction)
description 29
format 29
summary 121
$CKL (Model 10) macro instruction
description 17
format 17
summary 121
$CKL (Model 15) macro instruction
description 18
format 18
summary 121
$CLOS macro instruction
description 39
format 39
summary 121
$COMN macro instruction
description 10
format 10
summary 121
$DTFB macro instructions
considerations 15
description 10
format 10
summary 121
$DTOB macro instruction
description 10
format 10
summary 122
$GETB macro instruction
description 27
format 27
summary 122

$LOGB macro instruction
description 21
format 21
summary 122
$OPEN macro instruction
description 17
format 17
summary 122
$POLB macro instruction
description 19
format 19
summary 122
$PUTB macro instruction
description 28
format 28
summary 122
$RFT macro instruction
(see aiso online test)
description 51
format 51
summary 122
$RFTL macro instruction
(see also online test)
description 26
format 26
summary 122
$SNAP macro instruction
description 56
format 55
summary 122
$SWIB macro instruction
description 22
format 22
summary 122
$TRAN macro instruction
description 25
format 26
summery 122
$TRL macro instruction
description 24
formet 24
summary 122
$TRTB macro instruction
description 24
format 24
summary 122

Index

Index

123

accepting an online test request 51,53
activating a polling list entry 19, 20
address (control stations) 31
addressing considerations 32
addressing/polling (see polling/addressing)
addressing/polling characters {see polling/addressing characters)
addressing/polling list (see polling/addressing list)
allocate BSC files (SALOC) 16
allocate the terminal statistics fogging area ($LOGB) 21
ASCH

control characters and codes 118, 119

line code 6,12

polling/addressing characters 119
autoanswer 6,13
autocall 6,13

Banking Terminal System, 2972 (see MLMP, device-dependent
considerations)
binary data 57
binary synchronous communications {see BSC)
Binary Synchronous Communications Adapter (see BSCA)
binary synchronous data 1,5
block length
considerations 16
for conversational files 12
specifying 11
blocking and deblocking data
and move mode 27
specifying in $§GETB 28
specifying in $PUTB 28
BSC (binary synchronous communications) 1
BSC counters 50
BSC DTF
format 105
generation of by $DTFB 9, 10
in MLMP overview 4
label generation 9
BSC 1/O registers 111
BSC line conventions and conversational replies 34, 36
{see also control characters and codes)
BSC MLMP networks, examples of 1
BSCA (Binary Synchronous Communications Adapter)
in MLMP overview 4
line code 6, 12
requirement 1,57
BSCA Si0 sense/status bytes 110
BSCA terminal log area 50
buffers
and move mode 27
calculating length of 109, 110, 114
defining 11
in MLMP 1/O area 109
in MLMP overview 4
sample 109

124

calculating buffer length 109, 110, 114
cancel a GET request (§CANB) 29
chained DTFs

allocating 17

closing 39

opening 17

specifying 12
change a polling list (§BCPL) 20
change a switched 1D list ($BCSW) 23
check for 1/O compietion ($CHK) 29
check routine 29
check routine completion codes 465, 47

checklist
(see also $CHK)
format 111

generation of by $CKL 17
close BSC files ($CLOS) 39
closing a conversational file 34
completion code 45
completion message 30
considerations

$DTFB 15

addressing 32

closing files 34, 39

device-dependent {see MLMP, device-dependent considerations)

FDP/convert 77

MLMP programming 57

online test 71

trace 54

3270 online test 71
console DTF 18, 30
control characters and codes

ASCIl 118,119

EBCDIC 117,119

tributary System/3 polling and addressing characters 119
control mode 32
conventions for describing System/3 macro instructions 7
conversational files

and move mode 27

closing 34

specifying 12
conversational replies 28, 29, 33

data
binary 57
binary synchronous 1,5
packed decimal 57
translation (see data translation)

data areas, parameter lists, and message formats

data transfer
initiating 27
preparing for 9
terminating 39

data translation 5,9

(see also $TRAN macro instructions; $TRL macro instruction)

data-link control characters and codes 117
deactivating a polling list entry 20

define the file for BSC ($DTFB) 10

delay count 12

description of System/3 macro instructions

device-dependent considerations (see MLMP, device-dependent

considerations)
diagnostics and diagnostic aids 40
diat number, specifying for autocall 15
display adapter 76
DPF (dual programming feature) 1, 30
DTF (see BSC DTF)

(see also $CKL macro instruction)
dual programming feature (DPF) 1, 30
dump routine 6

(see also $$SNAP macro instruction)

EBCDIC
control characters and codes 117, 119
line code 6, 12
polling/addressing characters 119
transparency 6
end-of-block
for conversational files 33, 34
for 3270 data 70
specifying in $PUTB 28
end-of-file
and terminating data transfer 39
for conversational files 34
for 3270 data 69
specifying in $PUTB 29
EOT in response to ACK or WACK 29
error recording 5, 40
error recovery 5, 45
error retry count 15
error statistics 50
establishing line connection 27
examples
continuation lines 8
macro instructions 77
MLMP BSC networks 1
MLMP buffers 109
3270 program 87
EXTERNSs
$$BSMS 9, 57
$$BSTT 54
MTBSML 54
MTBSMM 54

FDP {form descriptor program) {(see FDP/convert)

FDP/convert
considerations 78
description 4,77

expanded 96-column to consecutive 5444 disk 78

80-column to consecutive 5444 disk 78
80-column to 96-column 77

fixed length records {see record type, fixed length)

form descriptor convert routine ($$BSCN) {see FDP/convert)

form descriptor program (FDP) (see FDP/convert)
functional contro! and data flow of MLMP 4

functions of MLMP 6,9

generate a checklist ($CKL) 17

generate a parameter list for changing a polling list or a

switched 1D list ($CHGB) 21
generate a polling/addressing list ($POLB)
generate a switched ID list ($SWIB) 22
generate a translate parameter list ($TRL)
generate a translate table ($STRTB) 24

generate an interface to the translate routine ($TRAN)
generate an online test parameter list (SRFTL)
generate BSC DTF displacements and labels ($DTOB)

generate common equates (SCOMN) 10

generation of a user MLMP object program 2

GET request {see $GETB macro instruction)

halts 45

how to request an online test from a 3270 71

{/O area, MLMP 109
/0 buffers

defining’ t1

in MLMP 1/O area 109

in MLMP overview 4
1/O registers, BSC 111
1/O requests completion code 45, 46
1/O routines, MLMP 4
{BM System/3 macros feature 2,57
IBM System/3 overlay linkage editor 2, 57
including trace

assembler 54

RPG Il 54

Information Display System 3270 (see MLMP, device-dependent

considerations)
(see also 3270 sample program)
initial GET 29, 32
initializing MLTERFIL 50
initiating data transfer 27
intermediate block checking {ITB} 5, 12
intermixing of terminals, restriction 4
108
defining 11
in MLMP I/O area 109
in MLMP overview 4
issue a GET request ($3GETB) 27
issue a PUT request ($PUTB) 28
ITB (intermediate block checking) 6, 12

25

10

Index

125

leading graphics 6
line
code, specifying 12
supported by MLMP 5
type, specifying 13
1 or 2 specifying 12
local display adapter 76
logical buffer
in MLMP overview 4
specifying 11

machine requirements, MLMP 57
macro instructions
$ALOC (see $ALOC macro instruction)
$BCPL (see $BCPL macro instruction)
$BCSW (see $BCSW macro instruction)
$CANB (see $CANB macro instruction)
$CHGB (see $CHGB macro instruction)
$CHK (see $CHK macro instruction)
$CKL (see $CKL macro instruction)
$CLOS (see $CLOS macro instruction)
$COMN (see SCOMN macro instruction)
$DTFB (see $DTFB macro instruction)
$DTOB (see $DTOB macro instruction)
$GETB (see $GETB macro instruction)
$LOGB (see $LOGB macro instruction)
$OPEN (see $OPEN macro instruction)
$POLB (see $POLB macro instruction)
$PUTB (see $PUTB macro instruction)
$RFT (see $RFT macro instruction)
$RFTL (see $RFTL macro instruction)
$SNAP (see $SNAP macro instruction)
$SWIB (see $SWIB macro instruction)
$TRAN (see $TRAN macro instruction)
$TRL (see $TRL macro instruction)
$TRTB (see $TRTB macro instruction)
description of System/3 7
examples 79
in MLMP overview 4
summary chart 121
macro processor 2,57
manual answer 6
manual call 6
message formats
completion 30
MLMP 115
online test 114
message formats, data areas, and parameter lists 105
MLMP (Multiline/Multipoint)
BSC networks, examples of 1
buffers (see buffers)
device-dependent considerations
IBM 2972 Banking Terminal System 61
IBM 3270 Information Display System 61
1BM 3735 Programmable Terminal 77
diagnostics and diagnostic aids 41
error recordings 41
error recovery 45
error statistics 50
examples (see examples)
functional control and data flow 4
functions 6,9
i/O area 109

126

MLMP {Multiline/Mulitipoint} {continued)
1/O routines 1,4
introduction !
lines supported 5
macro instructions {see macro instructions)
message formats 118
mnotes 41
networks, exampies of 1
object program, generation of 2
programming
considerations 57
exampies {see examples)
initiating data transfer 27
preparing for data transfer 9
terminating data transfer 39
requirements and considerations 57
statistics 50
telecommunications lines supported 5
terminal statistics 50
terminal supported 5
MLTA {Multiple Line Terminal Adapter) 6
MLTERFIL 50
(see also terminal statistics logging area)
mnotes 41
move mode 27
MTBSML, EXTRN 54
MTBSMN, EXTRN 54
Multiline/Multipoint (see MLMP)
multipte buffers 109
Multiple Line Terminal Adapter (MLTA) 6

networds, examples of MLMP BSC 1
no completion in checklist, specifying return on
noncenversational files and move mode 27

object program, generation of MLMP 2
OLT (see online test}
online test (OLT}
accepting a request for 51,53
calculating buffer space 114
considerations 53
discussion 51
froma 3270 71
message format 1185
parameter list 113
requesting 91
requests 114
results 53
test types 51,114
open BSC files ($OPEN} 17
open polling list, specifying an 20
opening a DTF conditionally 12
overiay linkage editor
and trace 54
n generating an MLMP object program 2
requirement 57
overview of MLMP 4

18

packed decimal data 57
parameter list
for changing a polling list or switched ID list 112
online test 113
transiate 113
parameter lists, message formats, and data areas 105
poll {contro! stations) 31
polling/address list
changinga 20, 21
format 112
generation of 19
identifyinga 14
specifying entry IDs fora 19
polling/addressing
and 3270 59
initiate 31
respond to 32
polling/addressing characters
ASCil 119
EBCDIC 119
specifying 19
preparing for data transfer 9
program level 1
programmable terminal, 3735 (see MLMP, device-dependent
considerations)
programining considerations, MLMP 57
programming requirements, MLMP 57
PUT request (see $PUTB macro instruction)

RCVI {receive-initial) 32
reading from and writing to a remote 3270 &0
receive
(see also $GETB macro instruction)
a block of data at a time 28
file, specifyinga 11
interspersed with transmit only 33
to a conversational filte 33
with transmittal of a conversational reply 38
receive-initial (RCVI) 32
recognizing an online test request 51, 53
{see also online test)
record length
considerations 15
specifying 11
record separator 15,116
record type
fixed length 15
spanned
considerations 15
format 116
specifying 15
supported 5
variable length 5, 15

reject routine
for $GETB 27
for $PUTB 28
for $RFT 51
REQkey 17,30
requesting an online test 51,563
reguirements and considerations, MLMP 57
respond to polling or addressing (tributary stations) 32
return on no completion in checklist, specifying 18
reverse interrupt {(RV1)
and addressing 31
and transmit/receive interspersed 37, 38
specifying 12
supported 6
RPG I
and trace 54
consideration 57
RV (see reverse interrupt)

$SNAP dump main storage {($SNAP) 55
samples (see examples)
sense/status bytes, BSCA SIO 110
skip entries in checklist 17, 30
spanned record {see record type, spanned)
station identification sequence, specifying 15
statistics, MLMP BSC 50
status/sense messages, 3270 71
storage requirements, MLMP 57
switched 1D list
changinga 21,23
format 112
generation of 22
identifyinga 15
System/3 macro instructions 2,7
System/3 translate routine 25, 26
translate tables 25
table
trace 54,110
translate 24
techniques for initiating data transfer
address (control station) 31
conversational reply 33
poll {tributary stations) 31
receive interspersed with transmit 37
receive only 33
respond to polling or addressing {tributary stations) 32
transmit interspersed with receive 38
transmit only 33
telecommunications lines supported 5
terminal statistics logging area
and $LOGB 21
and MLTERFIL 50
defining 14, 21
format 109

Index

127

terminals supported 5
terminating BSC files
receive files 39
transmit files 39
terminating data transfer 39
text mode 32
trace
considerations 55
description 54
including 54
table 54,110
translate parameter list 113
translate routines, System/3 25, 26
translate tables, System/3 25
translation data 6,9
(see also $TRAN macro instruction; $TRL macro
instruction; $TRTB macro instruction)
transmit
(see also $PUTB macro instruction)
file, specifyinga 11
from a conversational file 33
interspersed with receive 38
only 33
with reception of a conversational reply 35
transparency 6,12
tributary, System/3 polling and addressing characters
ASCIl 119
EBCDIC 119

variable length record {see record type, variable fength)

wrapped polling list
and $CANB 29
and $OTFB 14
specifying 20

2972 Banking Terminal System (see MLMP, device-
dependent considerations)

3270 information Display System (see MLMP, device-
dependent considerations)

{see also 3270 sample program)

3270 online test considerations 71

3270 sampie program 87

3270 status/sense messages 71

3735 programmable terminal {(see MLMP, device-
dependent considerations)

128

I@Mé Technical Newsletter

IBM System/3

Multiline/Multipoint

Binary Synchronous Communications
Reference Manual

©1BM Corp. 1972, 1973, 1974, 1976

This Newsletter No.

Date

Base Publication No.

File No.

Previous Newsletters

GN21-5587

25 November 1977

GC21-7573-

S3-30

None

This technical newsletter, a part of version 02, modification 00 of the 1BM System/3 Model 15 SCP
{Program Number 5704-SC2), also applicable to version 06, modification 00 of the 1BM System/3

Model 15 SCP (Program Number 5704-SC1), provides replacement pages for the subject publication.
These replacement pages remair effect for subsequent versions and modifications unless specifically

altered. Pages to be inserted and/or removed are:

i, iv 57,58
11,12 87 through 104
53, 54

Changes to text and illustrations are indicated by a vertical line at the left of the change except

for the updated sample program.

Summary of Amendments

Updated sample program and miscellaneous technical corrections.

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901

©I1BM Corp. 1977

4

Printed in U.S.A.

Technical Newsletter

This Newsletter No. GN21-5691
Date 21 December 1979

Base Publication No. GC21-7573-4
File No. S3-30

Previous Newsletters None

IBM System/3

Multiline/Multipoint

Binary Synchronous Communications
Reference Manual

© 1BM Corp. 1972, 1973, 1974, 1976

This technical newsletter applies to the current versions and modifications of the applicable System/3
programs listed in the edition notice and provides replacement pages for the subject publication.
These replacement pages remain in effect for subsequent versions and modifications unless
specifically altered. Pages to be inserted and/or removed are:

Pages 17 and 18 of this reference manual have been transposed. The pages in question are enclosed
in the correct sequence.

Summary of Amendments

Correct out-of-sequence pages

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBA! Corporation, Publications, Department 245, Rochester, Minnesota 55901

Printed in U.S.A.
© IBM Corp. 1979

