& =
- 0 m —
o = o =
08 5 S
a= @ Q
58 z S
£ 5 cseal
0oL 2T IO O
) TETTO
" o IR -B- IS
™ S s =2 E
NQo» @ S
E® O - -
® 0 ErrN Yy«
L 9c SO000Q =
® 5 € Z2Pp%RZ
> N < D
nES Eg8338¢
anOu.v Wv5555w
o) <
VoA o L

GC21-7579-6
File No. $3-36

[]

00000000 00000880000 00000600 0000000 00000 0000000 20000 .o o 0000000
000000060 0000080600000 200006060 200060000 00000 0000006000 i dd 00800006
0000000 0000000000000 000000600 008600600 0000600 00000800000 0000 [3.4 (.3
00000000 00000080000000 00000000 0000600 00000008 0O [1 J o o0 [&

[3344 000 (14334 000000 [L 90600 20006 0600 (4 (1114 ®

2000 o000 [$3.3.4.4 0000000 06000008 [4 0000 0600 [3 L] o000 ®

[3434 o000 (13344 [3034 o [3.4 [3434 0000

000 0000000060060 (333 000 [3.4 [3. el

o000 [14 000060 000 200008 ® o0000 2000 b 00090

o000 [3.4 [3.4.4-4-4 [3334 000600060600 [1331 900000 [$.4.3.4 L ®

[1444 00 00000 0000 000000600600 000 9000000 [$.4.0. 2000

[4.3.4.4 000 00000 [3033 20000 *900 os000 2000 2000

o000 0000 000060 o900 00000 [3.4.3.3. 900 (3.4 [3-3-3-4-4 o000 b 000

00 0000 0000 000 00080 0000 000 [3 08000 000 800
00000000 00000000000000 600000 [&ddd 0000 00000000 ® 000060 00000000 [0000 [3.4
00000080 0000000000000 2000060 0000000000000 20000000 [000000060 000000060 [4 000660 200000
00000000 0060000000000 000000 0000000000 00000000 00000600 0000600060 [3 00000 900000
00000000 00080000000 00000 L] 00000 0000000080 00000000 000000 000800600 [o000 00000

eo00000 0000000

000

Sixth Edition {September 1979}

This is a major revision of, and obsoletes, GC21-7579-5 and Technical
Newsletters GN21-7970 and GN21-5628. Information has been added to support
Program Number 5704-SC2 for the IBM System/3 Model 15D. Changes or
additions to the text and illustrations are indicated by a vertical line to the left of
the change or addition.

This edition applies to the IBM System/3 Communications Control Program for:

. Version 15, modification 00, of Program Number 5702-SC1 for the iBM
System/3 Model 10

. Version 7, modification 00, of Program Number 5704-SC1 for the IBM
System/3 Model 15

« Version 4, modification 00, of Program Number 5704-SC2 for the 1BM
System/3 Model 15

« Version 5, modification 00, of Program Number 5705-SC1 for the IBM
System/3 Model 12

This edition also applies to all subsequent versions and modifications unless
otherwise indicated in new editions or technical newsletters.

Changes to the information herein are made periodically; changes will be reported
in technical newsletters or in new editions of this publication.

Use this publication only for the purpose stated in the Preface.

Publications are not stocked at the address below. Requests for copies of IBM
publications and for technical information about the system should be made to
your IBM representative or to the IBM branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use
the Reader's Comment form at the back of this publication to make comments
about this publication. If the form has been removed, address your comments to

IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901.
IBM may use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of
course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1973, 1974, 1975, 1976, 1978, 1979

This publication describes how to write telecommunications
application programs to run under control of the communi-
cations control program (CCP). CCP is a feature of disk
system management that facilitates the implementation

of telecommunications applications on the Model 10 Disk
System, Model 12, and Model 15.

This manual is intended for programmers who use one or
more of the following System/3 programming languages:

® RPG H

® Subset American National Standard (ANS) COBOL
e FORTRAN IV

® Basic Assembler

The introduction to this manual summarizes the purpose
and operation of CCP. Subsequent chapters describe the
standard application program interface to CCP, examples
of typical application program logic, application program-
ming in COBOL, FORTRAN IV, RPG 1], and Basic
Assembler, preparing source programs to run under CCP,
program testing, and use of the optional 3270 display
format facility of CCP.

System/3 Model 8

The System/3 Model 8 is supported by System/3 Model 10
Disk System contro! programming and program products.
The facilities described in this publication for the Model 10
are also applicable to the Model 8, although Model 8 is

not referenced. However, the integrated communications
adapter (ICA)} and local display adapter are available on the
Model 8. If you have the ICA or local display adapter, it is
always designated on BSCA line 2. Therefore, you must
specify line 2 whenever it is required, or enter the BSCA
OCL statement (// BSCA LINE-2) at execution time.

It should be noted that not all devices and features which
are available on the Model 10 are available on the Model 8.
Therefore, Model 8 users should be familiar with the
contents of /BM System/3 Model 8 Introduction,
GC21-56114.

Preface

Prerequisites

The CCP application programmer need not have extensive
previous knowledge of telecommunications networks, data
link control, and the characteristics of specific terminal
devices. This manual assumes, however, that the program-
mer has a working knowledge of his programming language
and is familiar with the configuration of the CCP system

in his installation.

This manual has no specific prerequisite publications;
however, many references are made to the following
manuals that are required by the programmer:

® /BM System/3 Models 8, 10, and 12 Communications
Control Program System Reference Manual, GC21-7588

® /BM System/3 Model 15 Communications Control Pro-
gram System Reference Manual, GC21-7620

® /BM System/3 Communications Control Program
System Design Guide, GC21-5165

® /BM System/3 Model 15D Channel Connected Systems
Program Reference and Logic Manual, GC21-5199

Also, in order to fully utilize the display format facility

of CCP, the programmer must have a basic understand-

ing of the concepts and operation of the IBM 3270
Information Display System as given in /BM 3270 Informa-
tion Display System Component Description, GA27-2749.

Other publications that are useful to the programmer are
listed in Appendix C: Bibliography.

This page is intentionally left blank.

CHAPTER 1:
CCP Stages .
Generation Stage .
Assignment Stage
Operational Stage .
Terminals and Features Supported

INTRODUCTION

CHAPTER 2: STANDARD APPLICATION PROGRAM
INTERFACE TO CCP . .
Communications Service Subroutme .
Parameter List
Return Code (Posmons 0 1)
Operation Code (Positions 2-3) .
Third Field (Positions 4-5) .
Maximum Input Length (Positions 6- 7)
Address of the Record Area {Positions 8-9)
CCP Work Area (Positions 10-15)
Record Area
Program Name .
Symbolic Terminal Name
Multicomponent Terminal Consuderatlons
Data Transfer and Translation
Terminal Attributes .
Input Data Transfer .
Input Data Translation
Output Data Transfer .
Output Data Translation . .
Transmitting 3735 FDPs on an ASCII Lme .
Record Separators (Variable Length and Spanned
Records} . L.
Device Control Characters
MLTA Typewriter Terminals
BSCA Terminals
Line Control Characters
Communicating with MLTA Termmals
Communicating with BSCA Terminals
Blocking
End of Transm|55|on (EOT)
BSCA Input Operations
BSCA Output Operations .
3284/3286 Printer Consuderatlon .
Operations .
Program Errors .
3270 Display Format Facnllty Operatlons .
Get
Function and Use of Get
Specifying the Terminal .
Put
Function and Use of Put
Put-Then-Get . .
Function and Use of Put Then Get
Put-No-Wait
Function and Use of Put No Walt
Invite Input . .
Function and Use of InV|te Input .
Accept Input
Function and Use of Accept Input

2-2
2-2
2-3
2-3
2-4
2-4
2-4
2-4

2-6

29

- 2-10

2-11
2-12
2-13
2-13
2-13
2-13
2-13
2-14
2-14
2-16
2-17
2-18
2-18
2-18
2-19
219
2-19
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-27
2-28
2-28

Contents

Accept No-Wait Input (5704-SC2 Only)
Function and Use of Accept No-Wait Input
Stop Invite Input {(or Get} .
Function and Use of Stop Invite Input
Get Terminal Attributes .
Special Information Returned in the Parameter Llst .
Information Returned in the Record Area
Function and Use of Get Attributes .
Specifying the Terminal .
Acquire Terminal . .
Function and Use of Acquwe Termmal
Generic Acquire Terminals (5704-SC2Only}
Example
Port Command Request (6704-SC2Only)
Task Chain Request (5704-SC2O0nly)
Function and Use of the Task Chain Request.
Release Terminal
Function and Use of Release Terminal
Release and Task Chain (5704-SC2Only)
Function and Use of the Release and Task Chain
Release and Task Chain involving Sort Programs
Shutdown Inquiry,
Function and Use of Shutdown Inquiry
Wait Operation (Model 150nly)
Function and Use of Wait Operation.

CHAPTER 3: COMMUNICATIONS PROGRAMMING
TOPICS .
Terminal Classes
Command Terminals
Data Terminals .
Program use of Terminals
Requesting Terminal
Program-Selected Terminal
Program Types
Single Requesting Termlnal (SRT) Program
Multiple Requesting Terminal (MRT) Program
Special Program Attributes .
Never-Ending Program
Serially Reusuable Program (Models 10 and 12)
Dedicated Program (Models 10 and 12) .
Program Request Under Format
Sort Programs . .
Task Chaining and Release and Task Chaln W|th Sort
(56704-SC2 Only)
Examples of Application Program Logic
Single Requesting Terminal .
Single Requesting Terminal and Program Selected
Terminals .
Multiple Requesting Termmals
Multiple Requesting Terminals and Program Selected
Terminals
Symbolic Files
Considerations and Restnctlons in Usmg Symbollc
Files .
Switched Lines
BSCA Switched L|ne
MLTA Switched Line .
Switched Line Disconnect ConS|derat|ons

3-1
3-1
3-1
3-1
3-2
3-2
3-2
3-3
3-3
3-3
3-4
3-4
3-5
3-5
3-5
3-7

3-8
3-8
3-9

3-15
3-16

3-17
3-17
3-17
3-20
3-20

Contents v

CHAPTER 4: COBOL . . .
COBOL Use of the Standard Interface .
Defining the Record Area and Parameter List .
Record Area .
Parameter List

Setting the Contents of the Parameter Llst and Record

Area . .

Setting F|e|ds in the Parameter L|st .

Setting the Record Area . .
Calling the Communications Service Subroutlne .
Examining Returned Informatlon

Return Code . . .

Examining a Returned Name .

Referencing Saved Information .

Effective Input Data Length

Count of Qutstanding Invite Inputs .

Input Data .

Using the System Operator Console .
COBOL Programming Considerations
3270 Display Format Facility
Programming Examples

Example 1 .

Example 2 .

CHAPTER 5: FORTRAN IV
FORTRAN Use of the Standard Interface
Defining the Record Area and Parameter List .
Record Area .
Parameter List .

Setting the Contents of the Parameter L|st and Record

Area . .

Setting Flelds in the Parameter Llst .

Setting the Record Area . .
Calling the Communications Service Subroutme .
Examining Returned Information

Return Code . . .

Examining a Returned Name .

Referencing Saved Information .

Effective Input Data Length

Count of Qutstanding Invite Inputs .

Using the System Operator Console .
FORTRAN Programming Considerations
3270 Display Format Facility
Programming Examples

Example 1 .

Example 2 .

CHAPTER 6: RPG Ii .
RPG Il Use of the Standard CCP Interface .
Communications Interface Using RPG [l Special Files
Parameter Array for SPECIAL
Record Area for SPECIAL
CCP Communications Service Subroutmes for SPECIAL
SPECIAL Input Record Area
SPECIAL Output Record Area
Indicators Reserved for CCP Use .
Defining Special Files for use with CCP
Main File Description for SPECIAL
Continuation Specification for SPECIAL .
Defining the Parameter Array .
Extension Specifications .

vi

41
4-1

4-9

4-11

4-11
4-13
4-13
4-13
4-13
4-13
4-15
4-15
4-15
4-17
4-17
4-24

5-11

5-11
5-13
5-13
5-13
5-13
5-156
5-15
5-21

6-3

CCP Operation Codes
Force End of File (SPECIAL Only)
Put With Invite Input {(SPECIAL Only) .
Put-No-Wait With Invite Input (SPECIAL OnIy)
Performing CCP Operations with SPECIAL

Performing CCP Operations Using Primary, Secondary,

or Demand Input
Performing CCP Operatlons Usmg Headlng, Detarl
Total or Exception Qutput
Heading, Detail or Total Output
Put-Then-Get Operation .
Non-1/0 Operations .
Operations Issued at Input Trme
Operations Issued at Output Time
EXIT/RLABL Communications Interface
Parameter Array
Record Area .
EXIT to SUBR91 .
Setting the Parameters for EXIT/RLABL
Operations
Examining Returned Informat|on
EXIT to SUBR90O .
Task Chaining (5704-SC2)
EXIT to SUBR87 and SUBRS88 .
3270 Display Format Facility
RPG |I Programming Considerations .
Specific Restrictions
Programming Examples
Example 1 .
Example 2 .

CHAPTER 7: BASIC ASSEMBLER PROGRAMMING
FOR CCP .

Symbols Used in Deflmng Macro Instructlons

Mnotes
Generate Equates for Common Values ($NCOM)
Generate Equates for Parameter List Offsets {($NPLO)
Generate Operation Code/Modifier Values ($NOPV) .
Generate Equates for Return Code Values ($NRTV)
Generate Parameter List (BNPL) .

Example .

Set Control information for Communncatlons Operatlon

(SNCIO)
Examples of Usmg $NCIO
Programming Restrictions .o
Assembler Macro Support Mnotes .
Programming a User Security Routme—ModeIs 10
and 12
Sample Program—ModeI 10 or Model 12
Programming a User Security Routine-Model 15
Sample Program—Model 15

6-10
6-12
6-12
6-12
6-12

6-16
6-19
6-19
6-20
6-21
6-22
6-22
6-23
6-23
6-23

6-24
6-25
6-26
6-27
6-27
6-30
6-30
6-32
6-32
6-32
6-38

71

7-1
7-1
7-2
7-3
7-3
7-6
7-7

7-12

7-14
7-14

7-16
7-19
7-22
7-23

CHAPTER 8: 3270 DISPLAY FORMAT FACILITY
(DFF) .
General Information
Overview . .
Prerequisite |nformat|on .
DFF Routines
Field Concepts
Definition
Field Classes
Field Types .
Planning the Pnnter/Dlsplay Layout .
Attributes
Output Class
Input and Output/lnput Classes
SPD Class .
Autoskip and Cursor Posmonlng
Defining Data .
Data in Numeric Input Edlted Fnelds
(5704-SC2 Only).
Number of Fields .
Record Concepts .
Display Output Record Format .
Printer Output Record Format
Input Record Format
Display Format Generator
Printer/Display Layout Sheet
Display Control Form
Field Definition Form
Additional Functions for the Fleld Defmmon
Statement
OCL Considerations for the Dlsplay Format
Generator
Display Format Generator Dragnostrc Messages
Printer Format Generator Routine (PFGR) .
Printer/Display Layout Sheet
Printer Control Form
Field Definition Form

Printer Control on the Field Deflnmon Statement .

PFGR Line/Partial-Line Duplication
OCL Considerations for the Printer Format
Generator .

Printer Format Generator Dlagnostrc Messages .
Display Format Control Routine (DFCR)
3270 Display Operations . .

Operation Considerations with DFF .

Put Message

Put-No-Wait .

Put Override . .

Selecting the WCC

Copy .

Selecting the Copy Control Character .

Erase .

Return Codes

Input Operations - Accept Input Get Stop lnwte

Input .
User Program Record Area .
Display Concepts
New Screens
Overlay Screens
DFF, CCP Considerations . .
Assignment Control Statements
Storage Area .
Terminal Operator Actrons .
Display Format Test Routine ($CCPDT)
Format Find Routine {6704-SC2 Only)

8-1
8-1
8-1
8-2
8-2

8-4
8-4
8-6

8-11

8-11
8-13
8-13
8-14
8-16
8-17

8-19
8-20
8-21
8-21
8-21
8-21
8-22
8-22
8-22
8-26

8-28

8-32
8-32
8-33
8-33
8-33
8-36
8-38
8-38

8-40
8-40
8-41
8-43
8-43
8-43
8-44
8-44
8-49
8-50
8-52
8-63
8-53

8-53
8-54
8-56
8-56
8-56
8-58
8-68
8-58
8-569
8-61
8-64

Examples

Example 1-DFF Formattlng Example .
Example 2—-RPG Il MRT Program Using the Dlsplay
Format Facility

Example 3—SRT Inquiry Program .

Example 4—RPG il Order Entry Program (Usmg PRUF
with the DFF) . . .

Example 5—COBOL Order Entry Program (Usrng PRUF
with the DFF) .

CHAPTER 9: PROGRAM PREPARATION

Compiling and Link-Editing the Program—Model 15 CCP

Compiling the Program—Model 10 and Model 12 CCP

Link-Editing the Program—Model 10 and Model 12 CCP
Overlay Linkage Editor Control Statements—Model 10
and Model 12 CCP

8-65
8-65

8-72
8-95

8-103
8-122
9-1
9-1
9-2
9-3

9-3

Link-Editing a Program to Run Under DSM Models 10

and 12 .
Copying the Load Module
Making Assignments
Unit Record File Consrderatlons—ModeI 10 and Model
12 CCP . . .
Unit Record File Consrderatlons Model 15 CCP .
Disk File Considerations .
Models 10 and 12 ConS|derat|ons
Model 15 Considerations R
Model 10 and Model 12 CCP Flle Sharmg
Considerations
Model 15 CCP File Sharlng Consrderatlons
Determining the Disk File Access Value .

CHAPTER 10: PROGRAM TESTING .

CHAPTER 11. PORTLINE APPLICATION PROGRAM
INTERFACETOCCP it innnnn
Required Ports
OperationCodes
Portline Exception to Get Terminal Attributes

APPENDIX A: CPU TO CPU CONSIDERATIONS .
Attachment Configurations .
Programming Considerations
Command Mode
Data Mode
Generation Consrderatrons .
$EMLA and $EMLD Statements
$EBSC and $EBSD Statements L
$ECSC and $ECSD Statements (5704-SC2 On|y)

Assignment Considerations .

Recommendations and Examples .
Example 1: Multipoint Command Mode .
Example 2: Point-to-Point Command Mode

Example 3: Point-to-Point Switched Command Mode .

Example 4: Point-to-Point Data Mode
APPENDIX B: GLOSSARY

APPENDIX C: BIBLIOGRAPHY
CCP
General System/3 . .
BSC and BSCA Termlna|s/Systems .
Programming Language Manuals .
General Telecommunications .

9-4
9-6
9-6

9-7
9-7
9-8
9-8

9-10

9-14
9-14
9-19

. 101

111
. 11-2
112
113

A-1
A-2
A-2
A-3
A-5
A-b
A-5
A-b

. A6

A-6
A-6
A-7
A-8
A-9
A-11

Contents vii

viii

APPENDIX D: OPERATION COD

ES .

APPENDIX E: RETURN CODES .

Negative Return Codes .
Use of Data Truncated Return C

INDEX .

ode in 3270 DFF

D-1
E-1
E-1
E-1

X-1

In order to gain an overall understanding of the require-
ments for writing application programs under CCP, read
chapters 1, 2, and 3 before reading the chapter that applies
to your programming language. These chapters contain:

Chapter 1: Summary of the purpose and operation of CCP.

Chapter 2: Description of the application program inter-
face to CCP, independent of any particular programming
language.

Chapter 3: General description of terminal classes, pro-
gram types, and CCP application program logic.

After you have read the first three chapters, read
thoroughly the chapter that applies to your programming
language:

Chapter 4: COBOL

Chapter 5: FORTRAN IV

Chapter 6: RPG I

Chapter 7: Basic Assembler

How To Use This Manual

I your program will use the 3270 Display Format

Facility of CCP to communicate with components of

the IBM 3270 Information Display System, read chapter 8
after you have an understanding of CCP application pro-
gramming in your language.

Before attempting to write a CCP application program, be
sure to read Chapter 9: Program Preparation, since that
chapter contains important disk and unit record file con-
siderations you must be aware of.

Reference Aids

The appendixes provide convenient summaries of applica-
tion program operation codes and return codes as well as
a glossary of terms and a bibliography.

Use the index at the end of the manua! to locate specific
subjects.

Terminology Notice

Unless otherwise indicated, references in this manual to
BSCA (binary synchronous communications adapter)
should be interpreted to mean BSCA and BSCC (binary
synchronous communications controller). BSCC is
supported on the Model 15D only, and as a multipoint
nonswitched control station or in point-to-point non-
switched configurations.

The Communications Control Program (the CCP) is a
system control program feature of the IBM System/3 Model
10 Disk System, IBM System/3 Model 12, and IBM
System/3 Model 15 designed to facilitate the development
and implementation of telecommunications applications.
The CCP serves as the control program of a telecommunica-
tions subsystem, operating in conjunction with disk system
management (referred to by the abbreviation DSM in this
manual).

Under the CCP, an online network of terminals can call
application programs as needed and access a common set
of disk files. f sufficient main storage is available, the
CCP permits several application programs to be executing
concurrently under its control.

Communications application programs to be run under
control of the CCP can be written in any of the high-level
languages available with Models 10, 12, and 15 — RPG I,
COBOL, and FORTRAN IV — and in Basic Assembler.
Individual application programs can be written without
detailed knowledge of the requirements for programming
under a telecommunications system and, with few excep-
tions, as though they are to be run individually, with access
to all system resources.

With the facilities provided by the CCP, the System/3 can
be used either as a host system or as a subhost system:
Host System: The System/3 is the central controtler of a
network of start-stop and/or binary synchronous terminals.
Subhost System: The System/3, while directly controlling
a group of terminals, is itself a tributary station to a large
central processor, such as System/370.

Note: For an introduction to the CCP that includes more
detailed descriptions of CCP services and relationships be-
tween the CCP and other System/3 programs, see the CCP
System Reference Manual, GC21-7588 for Models 10 and
12, GC21-7620 for Model 15. If you are not acquainted
with terms and abbreviations used in this manual, you can
find definitions either in Appendix B. Glossary at the end
of this manual, or in /BM Data Processing Glossary,
GC20-1699.

Chapter 1: Introduction

CCP STAGES

Establishing and operating the CCP in a particular environ-
ment is accomplished in three stages:

® Generation
® Assignment

® QOperation

Generation Stage

CCP generation is the process whereby your installation
creates its individual version of the CCP. The purpose

of generation is to establish the required capabitities of the
CCP by creating a set of CCP object modules and sub-
routines, unique to the requirements of your installation.
The process of generation involves:

1. Describing the type of equipment to be used by the

communications system and other permanent features
of the CCP system.

2. Creating a set of control routines whose specific
content may be unique to your installation.

3. Joining the routines by a link-editing process.
4, Copying appropriate additional supporting routines.

5. Initializing the control file that the assignment stage
and the operational stage use ($CCPFILE).

CCP Generation is described in CCP System Reference

Manual, GC21-7588 for Models 10 and 12, GC21-7620 for
Model 15.

Introduction 1-1

Assignment Stage

CCP assignmer.t stage is a brief process by which one or
more sets of specific environments in which the CCP can
run are defined. Each set includes:

® Specific items of information pertaining to the entire
CCP, such as the current password.

® Programs that may be run under the CCP and the
resources that each requires.

® Files that are accessible to each program.
® The current line/terminal configuration.

® Symbolic terminal names and the actual terminals to
which they apply.

® Terminal attributes.

The assignment run need be repeated only when some of
the specific information given in a previous assignment run
must be changed. For example, CCP assignment must be

repeated when new programs and files are to be used under
the CCP.

As a programmer, you must be familiar with the contents
of the CCP assignment sets, since you must be aware of
characteristics of files, terminals, and communication
lines available to programs you write. You can determine
the contents of assignment sets from the listing produced
by the Assignment List program.

See CCP System Reference Manual, GC21-7588 for Models

8. 10, and 12, GC21-7620 for Mode! 15, for detailed infor-
mation about CCP Assignment.

1-2

Operational Stage

The operational stage begins with operational startup, when
the CCP is loaded into main storage. During startup, CCP
routines open disk files, adapters, and communication lines
and complete various tables and control blocks. During
operation, the CCP supervises the environment in which
your application programs run and provides communi-
cations services to your programs, The operational stage

is concluded by shutdown, which is initiated by the system
operator. During shutdown, the CCP allows programs

that are currently executing, or that are currently scheduled
or chained, to finish processing, then it closes communica-
tion lines, adapters, and files.

See CCP System Operator’s Guide, GC21-75681 for Models
8, 10, and 12, or GC21-7619 for Model 156 for a detailed
description of CCP operation.

TERMINALS AND FEATURES SUPPORTED

The following terminals may be used with the communica-
tions control program.

Through the multiple line terminal adapter:

® 1050 Data Communication System
Switched
Multipoint nonswitched

® 2740 Communication Terminal Model 1
Basic
Checking
Dial
Dial with checking
Dial with transmit control
Dial with transmit control and checking
Station control
Station control with checking

® 2740 Communication Terminal Model 2
Station control
Station control, checking
Station control, buffered receive
Station control, buffered receive, checking

® 2741 Communication Terminal
Basic
Switched

® 3767 Communication Terminal {when simulating a
2740 Model 1)
Checking
Dial with checking
Station control, checking
(when simulating a 2740 Mode! 2)
Station control, checking

¢ 3767 Communication Terminal (when simulating a 2741)
Basic
Switched

® Communicating Magnetic Card SELECTRIC® Type-
writer (appears identical to a 2741 switched)
Point-to-point switched

® System/7 (appears identical to a 2740 Model 1)
Checking
Dial with checking
Station control with checking

® 5100/5110 Portable Computer (when simulating a 2741)
Point-to-point switched
Point-to-point nonswitched

With the binary synchronous communications adapter:

® 3270 Information Display System
Multipoint nonswitched

® 3275 Information Display Station
Switched
Nonswitched

® 3735 Programmable Terminal
Switched
Multipoint nonswitched

® 3741 Data Station Model 2, Programmable Work
Station Model 4
Point-to-point nonswitched or switched
Mutltipoint

® 5110 Portable Computer
Point-to-point switched
Point-to-point nonswitched
Multipoint with CCP as control station

® 5230 Data Collection System (appears identical to a 3741
Model 2 or 4)
Point-to-point switched
Point-to-point nonswitched

® 5937 Display Station RPQ
Appears to be a 240-byte 3277 Model 1

® 3600 Finance Communication System (see Note 2)
Multipoint nonswitched

® System/3
Point-to-point switched
Point-to-point nonswitched
Multipoint with CCP as control station
Multipoint with CCP as a tributary

® System/7 Feature 2074 or RPQ (see Note 1)
Point-to-point switched
Point-to-peint nonswitched
Multipoint with CCP as control station

® System/360, System/370
Point-to-point switched
Point-to-point nonswitched
Multipoint with CCP as tributary

Introduction 1-3

® System/32
Point-to-point switched
Point-to-point nonswitched
Multipoint with CCP as control station

® System/34
Point-to-point switched
Point-to-point nonswitched
Multipoint with CCP as control station

® Series/1
Point-to-point switched
Point-to-point nonswitched

With the binary synchronous communications controller:

® 3270 Information Display System
Multipoint nonswitched

® 3735 Programmable Terminal
Multipoint nonswitched

® 3741 Data Station Model 2, Programmable Work
Station Model 4
Multipoint nonswitched
| Point-to-point nonswitched

® System/3
Multipoint with BSCC as control station
| Point-to-point nonswitched

® System/7 Feature 2074 or RPQ (see Note 1)
Multipoint with BSCC as control station
| Point-to-point nonswitched

® System/34
Point-to-point nonswitched
Multipoint nonswitched

® 3600 Finance Communications System (see Note 2)
| Multipoint with CCP as control station

® 5230 Data Coliection System (appears identical to a

3741 Model 2 or 4)
Point-to-point nonswitched

1-4

Terminals that are equivalent to those explicitly supported
may also function satisfactorily. The customer is respon-
sible for establishing equivalency, 1BM assumes no respon-
sibility for the impact that any changes to the IBM-supplied
products or programs may have on such terminals.

Notes:

1. Under BSCA or BSCC, the System/7 is supported only
as it is supported by the Multiline/Multipoint BSCA
IOCS — see /IBM System/7 (RPQ) Binary Synchronous
Module Programming Guide and Reference Manual,
SC34-1510.

2. Under BSCA or BSCC, each 3600 work station is
supported as a CPU by CCP. RPQ number 540156 is
required to attach the 3600 to System/3 Model 8, 10,
and 12.

Chapter 2: Standard Application Program Interface To CCP

The standard interface (that is, the procedures and common
data areas) used by application programs to request CCP

to perform communications operations with remote
terminals or the system operator’s console is composed of
the following basic elements:

® Communications Service Subroutine
® Parameter List
® Record Area

® A set of communications operations that can be issued
to the CCP

The details of this interface differ slightly among the
programming languages—RPG |11, COBOL, FORTRAN IV,
and Basic Assembler—but the functions performed by the
basic elements remain essentially the same. Where the
interface for a particular language differs from the standard
interface, you are referred to the chapter covering that
language.

In order to perform a communications operation, such as
writing a message to a terminal, an application program
must do the following:

1. Provide storage space within itself for a parameter
list and record area and specify the format of these
areas.

2. Prepare the record area for the operation.

3. Set the contents of the parameter list.

4, Invoke the communications service subroutine to

perform the operation.

5. Check appropriate return codes to determine the
result of the operation.

Since your program may be competing with other programs
for system resources such as terminals, disk files, and unit
record devices, CCP ensures that these resources are
available to your program before your program is allowed
to run. Each terminal required by your program is
allocated exclusively to your program until your program
releases it (see index entry Release Terminal Operation) or

until the execution of your program has ended. When
either of these events has occurred, the terminal is free to
be allocated to another program (or to enter commands, if
it is a command terminal). Because CCP also allocates the
use of unit record devices, you can code 1/0 operations
using these devices as though your program has exclusive
control of them. (Exception for Model 15 CCP: Your
program can share use of the 1403 printer with another
program running concurrently if PRINTER—SHR is
specified in the PROGRAM assignment statement for your
program [see CCP System Reference Manuall. You should
consider in the design of your program that you do not
have exclusive control of the printer.)

CCP may receive a request for a program that uses:
® A terminal that is presently allocated to another program.

® A disk file that is allocated to another program in such a
manner that the access methods conflict. For example,
a currently executing program adds consecutively to a
file and the program being requested adds to the same
file.

® A disk file is specified as NOSHR on the FILES param-
eter of the PROGRAM assignment statement or as
SHARE-NO on the FILE OCL statement on 5704-SC2.

CCP rejects such a program request or queues it, depend-
ing on the queue status of the terminal (see /Q and /NOQ
commands in CCP Terminal Operator’s Guide, GC21-7580).
When the previous program has terminated, terminals and
disk files used by that program are available to subsequent
programs.

Note: Model 10 and Model 12 CCPs can also queue (/Q) a
request for a program that uses a unit record device that is
temporarily unavailable. Model 15, however, normally
rejects requests for programs that require a unit record
device that is unavailable. The exception is if the requested
program uses the printer and the printer is either perma-
nently allocated to the CCP partition, or spool is intercept-
ing the CCP partition, and the requested program uses no
other unit record devices or terminals.

Standard Application Program interface to the CCP 2-1

COMMUNICATIONS SERVICE SUBROUTINE

Since RPG 1, COBOL, and FORTRAN 1V, do not include
special statement types for general purpose terminal 1/0
operations and other communications services (see
Operations), the CCP provides one or more communications
service subroutines to application programs written in each
language. (For Basic Assembler Programs, a macro instruc-
tion is provided — see index entry $NC/O macro.) The
communications service subroutine converts the application
program’s request into a standard request to the CCP
communication facilities.

The communication service subroutine {(RPG 11 programs
may actually use more than one) must be link edited to
each application program prior to using the program under
the CCP. Thus, the communication service subroutine,
although provided by the CCP, actually becomes a part of
the application object program. See Chapter 9: Program
Preparation for procedures for preparing an application
program to run under the CCP.

In COBOL and FORTRAN 1V, the application program
initiates a communications operation by issuing a CALL
statement to the communications service subroutine.

in RPG II, the program can initiate an operation and
invoke the communications service subroutine either
through the SPECIAL or EXIT/RLABL facilities of the
language.

PARAMETER LIST

You must provide a parameter list within your program
with each request for a communications operation. The
parameter list specifies the details of the communications
operation and provides locations within itself where the
CCP returns information about the results of the operation.
This chapter describes the parameter list as it is presented
by the communications service subroutine to the CCP
communications facilities. In RPG {l, the parameter list

as defined in the user program is somewhat different (see
Chapter 6: RPG I1).

The parameter list is 16 positions long, consisting of eight
two-position fields, as shown in Figure 2-1.

Return Code (Positions 0-1)
Although this field (see Figure 2-1) must be provided in

the parameter list, the CCP ignores the contents at the
beginning of the operation. At the completion of each

2-2

operation, before returning control to the application
program, the CCP places a value in this field indicating the
status of the operation:

® Qperation completed normally (value of zero).

® Operation resulted in an 1/O error (negative value).

® Operation resulted in an exception condition (positive
value}.

Specific return code values and meanings are given in
Appendix E: Return Codes.,

0 1)
Return Code
2 3
Operation Code
4 Output Length/ Effective Input/ 5
Attributes ldentifier/
Outstanding Invite Inputs
6 7
Maximum Input Length
16 Positions
(8 2-position
8 9 fields)
Address of the Record Area
10 11
12 CCP 13
Work
Area
14 15
J

Note: In RPG I, the format of the parameter list is
somewhat different (see Chapter 6: RPG I1).

Figure 2-1. Parameter List

In order to determine the results of a communications
operation, you must include coding in your program to
test the return code. The degree of return code checking
and the actions taken based on return code checking will
vary in different applications, however, it is strongly
recommended that return code checking at the leve! of
normal completion (zero return code) or abnormal comple-
tion (non-zero return code) be done in all programs.

Examples of testing return codes are given in chapters 4
through 6. Recommended actions to be taken by your
program for each return code are given in Appendix E.
RPG 1l programmers should see Chapter 6: RPG I/ for
additional information concerning handling of return
codes in that language.

Operation Code (Positions 2-3)

For each communications operation {except some RPG ||
operations), this field must contain a code that indicates
the specific operation to be performed. The contents of
this field are the same after completion of the operation
as when the operation began. See Operations, later in
this chapter, for descriptions of the valid operations and
operation modifiers that can be issued to the CCP by an
application program.,

Third Field (Positions 4-5)

This field in the parameter list can contain four different
kinds of information:

1. Output Length — provided by your program for
output operations (see Output Operations, following)

2. Effective Input Length — returned by the CCP (see
Input Operations, following)

3. Terminal Attributes Identifier — provided by your
program (see Acquire Terminal Operation, following)

4. Count of Outstanding Invite Input Operations —
returned by the CCP (see /nput Operations and
Release Terminal Operation, following)

Output Operations: This field must contain the length of
the data to be transmitted from your program, that is, the
number of characters of data you wish to write from the
record area in your program, not including the six positions
for the symbolic terminal name and not including line

control characters, which are added to your data by the CCP.

{(In RPG 11, the output length is placed in the output record
area; see Chapter 6.)

Input Operations: On each completed input operation, the
CCP calculates and places into this field the actual length of
the input data passed to the application program. This
effective input length does not include the symbolic ter-
minal name, line control characters, backspace characters,
or data which the CCP cannot pass to the application pro-
gram when the amount of data received exceeds the size

of the record area {see Maximum Input Length, the next
field in the parameter list). However, the effective input
length does include record separator characters (see index
entry record separators). The CCP ignores the contents of
this field at the start of an input operation.

If data mode escape is allowed in your CCP system (see
index entry) and a terminal enters the /RELEASE command
after entering the data mode escape characters, your pro-
gram will receive a 08 return code from any of the follow-
ing input operations: Get, Accept Input, Put-Then-Get,

and Stop Invite Input (see index entries). The 08 return
code indicates that the terminal to which the input opera-
tion was issued is no longer available to your program. In
this case, CCP places the current number of outstanding
Invite Inputs for your program (see index entry) in positions
4-5 of the parameter list. This information is important in
multiple requesting terminal (MR T) programs (see index
entry).

Acquire Terminal Operation: If you issue an Acquire
Terminal operation (see index entry) which sets the attri-
butes of the terminal to be acquired, this field must identi-
fy the attribute set you want to assign to the terminal. The
terminal attribute set is defined in the TERMATTR assign-
ment statement — see CCP System Reference Manual.

Release Terminal Operation: |f your program releases a
terminal (see index entry Release Terminal operation or
Release and Task Chain operation (5704-SC2 only)) and
receives a zero return code from the operation, CCP places
the current number of outstanding Invite Inputs for your
program (see index entry) in the third field (positions 4-5)
of the parameter list.

Accept No-Wait Operation (6704-SC2 only}: In addition
to the response given under input operations, the count of
outstanding invites is returned in the third field of the
parameter list for return code of 04 (shutdown was
entered) and 16 (no outstanding invites completed).

Shutdown Inquiry Operation (56704-SC2 only): f you
issue a shutdown inquiry operation, the count of outstand-
ing invites is returned in the field, regardless of the return
code.

Standard Application Program Interface to the CCP 2-3

Maximum Input Length {Positions 6-7)

On each operation involving input data, you must enter a
value into this field representing the maximum number of
bytes of input data you expect to receive. This value does
not include the six characters for the terminal name. This
value must be greater than zero and no larger than the

size of the record area provided by your program. The CCP
does not alter this value during the operation.

Address of the Record Area (Positions 8-9)

This field is set by the communications service subroutine
(except in Basic Assembler, where this field is set by the
$NCIO macro) to contain the main storage address of the
record area (see Record Area). This field addresses the first
(leftmost) position of the name field in the record area, not
the first position of data; therefore, the data actually begins
at the address given, plus six. For operations not involving
data transfer, this field may point to a record area contain-
ing only the name field.

This field is not present in the parameter list used by
RPG II application programs.

CCP Work Area (Positions 10-15)

These positions are used for a work area by the CCP. Your
program must not use these positions.

RECORD AREA

With each communications operation your program issues
to the CCP (except Shutdown Inquiry), it must provide a
record area. A record area is an area in the application
program that consists of two parts. The standard record
area for operations involving data transfer consists of a
six-position name field followed by a data area (Figure 2-2).
Exceptions to this standard format occur for RPG I (see
Chapter 6: RPG /1) and when the 3270 Display Format
Facility (see index entry) is used.

The name field contains either the name of the program (if
a chained task operation), or the symbolic terminal name
that is to be involved in the operation.

The parameter list field containing the record area address
(Figure 2-1) always points to the leftmost position of the
name field. Data transfer, however, always occurs into and
out of the data area segment of the record area. Lengths
specified in the parameter list for operations involving data
transfer refer to the length of the data area portion of the
record area, except in certain RPG 1l output operations.

2.4

Name
Data Area

{
|
Fieid |
|

\,\/\/v—\/—\/

6 positions Number of positions specified by programmer

Figure 2-2. Standard Record Area

Program Name

The program name is the name of the program to be called
on a Chain Task Request operation (5704-SC2 only). Fora
task chain operation, your program must place the name of
the program to be chained in the first six positions of the
record area (left-justified and padded with blanks if less than
six characters). If data is to accompany the chain request,
the data follows the program name in the record area, and
PGMDATA-YES must be specified on the PROGRAM
assignment statement (see the Model! 15 CCP System
Reference Manual, GC21-7620) for the requested program.

Symbolic Terminal Name

The terminal with which a communications operation is
performed is identified by a symbolic terminal name in the
first six positions of the record area (left justified). In most
operations, the application program must place the name
into the name field of the record area to specify the termi-
nal with which to operate; in certain operations, however,
the CCP places the name into the record area to inform the
program with which terminal the operation took place.
Each symbolic terminal name refers to a specific physical
terminal device.

Three classes of terminal names are available for use in
application programs:

1. User-Defined Names: These are the terminal names
defined in TERMNAME statements during CCP
assignment. The structure of these names must
conform to the following rules:

® The first character must be alphabetic {including
#,$, and @).

® Each succeeding character can be either alphabetic
or numeric.

® One to five of the six possible positions in the
name can be blank, but no blanks may be
embedded between other characters. For example,
the following names are valid: TERMIB,

THds; the following are invalid: TERMY2,
YTERM?2.

¢ Each terminal name must be unique.

® The names CONSOL, ALL, and a name consisting
of six blanks cannot be user-defined.

CONSOL: On the System/3 Model 10 and Model 12,
the symbolic name CONSOL refers to the system
operator’s 5471 Printer/Keyboard. On the Model 15,
the symbolic name CONSOL refers to the system
operator’s keyboard and 3277 Display Station, re-
ferred to as the CRT/Keyboard. Application pro-
grams can communicate with the system operator’s
console at any time; however, the console is never
allocated to the program. Operations issued to the
console by programs running under the CCP must

be issued as communications operations; if issued in
any other way, the results are unpredictable. The
only operations that can be issued to the console are:

® Pyt

® Put-No-Wait (handled as a Put by the CCP)
® Put-Then-Get

® Get Attributes

® Accept Input (to accept only data that accompanies
the program request)

® Accept No-Wait (to accept only data that accom-
panies the program request)

The CCP automatically releases the console from any
program it requests as follows:

e If the console requested the program and the
PROGRAM assignment statement (see CCP
System Reference Manual) specifies PGMDATA-
NO, the console is released when the program
is loaded.

® |f the console requested the program and the
PROGRAM assignment statement specifies
PGMDATA-YES, the console is released after an
Accept Input operation results in the console
program data being passed to the user program.

Note to Model 10 and 12 users: Programs that use
symbolic files (see index entry) must allow data to
be entered with the program request if they could
be requested by the console (see program request
command in CCP System QOperator’s Guide)}. These
programs must also open all physical files to be

referenced by a symbolic file prior to issuing an
Accept Input operation. (In RPG I, these files are
automatically opened prior to the first input
operation.)

3. Blanks: Programs that handle only one requesting
terminal per execution (designated sing/e requesting
terminal (SRT) programs, see index entry}, can issue
communications operations with six EBCDIC blanks
(hexadecimal 40) in the symbolic terminal name por-
tion of the record area. The CCP interprets the blank
name as a reference to the terminal that requested the
program. Upon completion of such an operation, the
CCP sets the first six positions of the record area to
contain the name of the requesting terminal. The
program cannot use blanks after it has released the
requesting terminal (see index entry Release Terminal
operation).

The use of symbolic names for terminals allows programs
1o be relatively independent of the specific terminals. How-
ever, the programmer must be aware of the type of terminal
he is using since he must know the record length of the
device; whether the terminal is capable of input only, out-
put only, or both input and output; and other information
(see index entry Get Attributes). The system operator

can reassign a symbolic name of a terminal (perhaps the
terminal is out of order or offline) to a different terminal
during operation of the CCP to allow execution of pro-
grams using that terminal name.

Of those operations requiring a six-position symbolic
terminal name area in the record area (only Shutdown
Inquiry does not) only Accept Input does not require that
the area contain a valid symbolic terminal name. The
contents of the terminal name field for that operation are
not used by the CCP.

Whenever you specify a symbolic terminal name other than
CONSOL in an operation, you must ensure that the termin-
al is allocated to your program under that defined name.
The only exceptions to this rule are the Acquire Terminal
operation, (see index entry) which is a request to obtain

a terminal, and Get Terminal Attributes, (see index entry)
which can be requested for any defined terminal name in
the system.

Muiticomponent Terminal Considerations

Multicomponent terminals are a special class of terminals
that can have more than one input and/or output device
attached. The 1050 Data Communications System is the
only terminal currently supported by the CCP that is
considered to be a multicomponent terminal. (Each
component of the 3270 Information Display System is
considered a separate terminal and has its own name.)

Standard Application Program Interface to the CCP 25

A 1050 system is treated by CCP as if it were one terminal
regardless of the number of components attached. For
example, the entire 1050 system is always allocated to a
program; it is impossible for one component to be allocated
to one program while another component of the same 1050
system is allocated to another program. Therefore, any
program in control of a 1050 system has access to a//
components of that particular 1050 system.

As with every other terminal in the CCP system, the 1050
has a symbolic terminal name. However, this symbolic
terminal name has a principal input and principal output
component associated with it. When the symbolic terminal
name is used in an operation, it refers to the principal
components.

You can address other than the principal input and/or
principal output component of a 1050 system. In addition
to the symbolic terminal name, you can assign symbolic
names to a component or pair of components. These are
called symbolic sub-terminal names. To direct an operation
to a specific component, use the symbolic sub-terminal
name associated with that component.

The following special rules apply to use of multicomponent
terminals:

® Only one /nvite Input operation (see index entry) may
be outstanding to the terminal at one time, regardless of
the number of input components attached to the
terminal.

® When an operation is issued in which CCP returns a
symbolic terminal name, such as Accept Input, the
name returned is always the master terminal name,
never a symbolic sub-terminal name.

® The Acquire Terminal operation must specify a symbolic
terminal name, not a symbolic sub-terminal name.

® The Release Terminal operation must specify a symbolic
terminal name, not a symbolic sub-terminal name.

DATA TRANSFER AND TRANSLATION

The CCP either moves data into your record area or out
of your record area during a communications operation,
according to the operation you specify in the Operation
Code field of your parameter list. In order to know how
data is transferred to or from a specific terminal, what the
CCP does with the data, and what your program must do
with the data, you must know what attributes are assigned
to the terminal (for example, whether or not a 3270 is
using the Display Format Facility).

2-6

Terminal Attributes

TERMATTR assignment statements (see CCP System
Reference Manual) define terminal attribute sets for ter-
minals used under the CCP. Each attribute set is assigned an
identification number. This number is then referenced

in a BSCATERM or MLTATERM assignment statement

to assign a particular set of attributes to a terminal. A
terminal may have different attributes at different times
and a single attribute set can be used by more than one
terminal, See Get Attributes and Acquire Terminal for
additional information about terminal attributes.

The terminal attribute sets specify the following informa-
tion about terminals:

For BSCA and MLTA terminals:

® Whether or not the CCP will translate data sent to or
received from the terminal.

® |f data is to be translated, whether to force the data to
uppercase EBCDIC.

® Whether the terminal is auto or manual answer (if on
a switched line).

For BSCA terminals only:

® Record length

® Block length

® input data mode (record, block, or message)

® Whether or not the EBCDIC transparency feature is
used for output

® |TB (intermediate text blocks) used

® Variable length or spanned records used

3270 Display Format Facility used
For BSCA terminals on switched lines only:

® Whether or not the CCP will verify exchange identifica-
tion sequences

® Whether the terminal is auto or manual call

Input Data Transfer

Data received from a terminal as the result of an input
operation (see Operations) is moved by CCP from the com-
munication line buffer to your program's record area. Data

is received in the seventh and succeeding positions of your request is not sent to the program. A positive

record area (the program or symbolic terminal name re- input return code is posted if the data length
sides in positions 1-6 of the record area}, except in the exceeds the length specified. The return code
following instances: can be tested and appropriate action taken.
® In RPG I, data may begin in a different position (see 4. For PRUF programs, more than 78 characters of
Chapter 6: RPG I1). program request data can be sent to the user program.
The length of the data sent to the program can be
® In 3270 Display Format Facility operations, the format up to the maximum length specified in the
of the record area varies with different operations (see PRUFLNG parameter of that program’s PROGRAM
Chapter 8: 3270 Display Format Facility). statement (see Assignment Stage in the /BM System/3
Models 8, 10, and 12 Communications Control
With some exceptions, CCP removes teleprocessing line Program System Reference Manual, GC21-7588, or
control characters from the terminal input data that it the /BM System /3 Model 15 Communications
moves to your record area. These exceptions and a Controfl Program System Reference Manual,
discussion concerning the length of the data passed to GC21-7620). If the program being requested is a
the record area follow: PRUF program, CCP will pass the entire 3270 text
stream, control characters and data, to the user
1. For BSCA terminals, the ITB (intermediate text program at program request time. |f PRUF$Z was
block) character is not removed from input data specified on the PROGRAM statement at assign-
unless fixed length records are being processed in ment time, PRUF program request data is handled
ITB record mode, with the correct record length. by the display format facility. See Chapter 3:
When using variable length records, the record Communications Programming Topics for a further
separator character is returned in the record area description of PRUF.
as the last character of data. The effective input
length returned in the third field of the parameter 5. For task chain requests with data, the maximum
list includes the record separator character. amount of data that can be transferred is limited
only by the size of the teleprocessing buffer. If
2. Programs that communicate with 3270 terminals other tasks are active or the teleprocessing buffer

without using the Display Format Facility will
receive and must send the actual data and display
control characters necessary for the 3270, such as
Escape Command, Set Buffer Address, Start Field,
buffer addresses, and others (see Example 1 in
chapters 4, b, and 6 for specific examples in COBOL,
FORTRAN, and RPG [1).

For programs not using PRUF (program request
under format) that are requested by 3270 terminals,
the data appended to the program request is not
processed by the Display Format Facility but is
passed directly to the user program. See Chapter 3:
Communications Programming Topics, for further
description of PRUF. The data is provided in the
program record area as a continuous string, but

with no 3270 display control characters. The fength
of the data depends on the value specified in the
SYSTEM assignment statement (see Assignment
Stage in the /IBM System /3 CCP System Reference
Manual for your system). The maximum length

of the data appended to the program request is

the value of the PGMREQL parameter minus the
length of the program name and one blank. Since
80 is the maximum value of PGMREQL, the
maximum length of data that can be appended to
the program request is 78 characters; any further
data in the 3270 buffer at the time of the program

is fragmented, the area for a chain task with a large
amount of data may be temporarily unavailable.

In this case, the task chain request should be

reissued at a later time or reissued with a smaller
amount of data. If the chained task is a sort program,
the maximum amount of data that can be passed by
the requesting program is 80 characters.

6. For CPU-or-CPU applications or MLTA applications
for Program Number 5704-SC2, the maximum
length of data that can be appended to the program
request is 253.

Input Data Translation

The attribute set associated with a terminal specifies
whether or not data received from that terminal is to

be translated from the line transmission code (if other than
EBCDIC) to EBCDIC. If translation is specified, the
attribute set also indicates whether or not to force to
upper case all alphabetic characters received.

Note: All input, including PRUF input, received from a
terminal in command mode is forced to upper case.

Standard Application Program interface to the CCP 2-7

EBCDIC Transmission Code Used or Translation Requested

If the transmission code is EBCDIC, or if translation is
requested, data is presented in EBCDIC in the record area.
(If translation is requested, the data is converted to
EBCDIC by the CCP.} No teleprocessing line control
characters are included in the data except for the BSCA
ITB character mentioned under /nput Data Transfer. For
MLTA, backspace characters sent from the terminal are
not received in the data area; rather, the input data is
received with all backspacing resolved. Also, if the last
character of the input is a carriage return, the CCP removes
it from the input data.

All other device control characters {such as 3270 control
characters, tab key, carriage return in the middle of text)
are treated as input data characters. Whether or not lower
case alphabetic characters are translated to their correspond-
ing upper case characters is determined by the attribute set
currently associated with the terminal. 1f upper case trans-
lation is specified, all alphabetic data input appears in

upper case EBCDIC in your program’s record area.

If the length of the data received is greater than the maxi-
mum input length specified, the excess data is lost
{truncated) and the effective input length equals the maxi-
mum input length, If the data length received is less than
the maximum input length, the effective input length is
set to equal the data length received, and the remainder

of your record area is cleared to blanks up to the maxi-
mum input fength.

Transmission Code Not EBCDIC and Translation Inhibited

If the transmission code is not EBCDIC and the terminal
attributes do not specify translation, the CCP places data
into the record area as it is received, including backspace
characters, but not including line control characters. The
application program must be prepared to translate data
to EBCDIC if the data is to be processed by the program.
If more data is received than was specified as maximum
input length in the parameter list, the excess data is lost
and the CCP sets the effective input length equal to the

maximum input length. if the data received is less than
the maximum specified, the CCP sets the effective input
length to the number of input characters received. The
record area positions beyond the effective input length are
set to blanks (X’40’) {(except for MLTA terminals under
Model 10 and Model 12 CCP, when the content is
unpredictable).

28

Output Data Transfer

On output operations, the CCP moves data from your record
area to the communication line buffer and transmits it to
the terminal you specify. The data must begin in position

7 of the record area, following the symbolic terminal name,
(except in some RPG |1 operations and when 3270 DFF is
used)}. No teleprocessing line control characters are needed,
since CCP adds the necessary line control characters before
transmitting the data. However, you may inciude in your
data any device control characters you desire (see Device
Control Characters).

Note: For BSCA record mode output operations, if the
output record length is less than the record length specified
in the terminal attributes set, the number of characters
specified as the output length (third field of the parameter
list) is sent, followed by the number of blanks necessary

to satisfy the record length specified in the terminal
attributes set.

Output Data Translation

The attribute set associated with a terminal specifies
whether or not the data to be transmitted to that terminal
is to be translated from EBCDIC to the line transmission
code.

Translation

If translation is specified in the terminal attributes, the
CCP converts data from EBCDIC to the appropriate line
transmission code. Any device control characters are treated

as data; thus, if you include device control characters in
your record area, they must be in EBCDIC form. [f invalid
characters are found during the translation of the data,
data transfer does not occur and the CCP places a return
code indicating translation error in the parameter list, If
more data is sent in one output operation than the line
buffer for the terminal can hold {in BSCA record mode
operations, if the output length exceeds the record length
specified in the terminal attributes set), then the excess
data is lost {truncated). The return code indicates if there
was either a translation error or a data truncation.

Translation Inhibited

If translation is not specified, output data is taken from
your record area and transmitted as is, except for the addi-
tion of line control characters. 1f more data is to be

sent in one operation than the size of the line buffer can
hold (in BSCA record mode operation, if the output length
exceeds the record length specified in the terminal attributes
set), then the excess data is lost (truncated). All the data
that can fit into the line buffer (or record area, for BSCA
record mode) is sent and a return code indicating the data
has been truncated is placed in the parameter list.

Transmitting 3735 FDPs on an ASCH Line

You must use a special procedure to transmit FDPs (form
description programs) to a 3735 terminal under the follow-
ing conditions:

® Transmitting on an ASCII line.

® CCP to translate input and/or output data.

This special procedure is necessary because the FDPs, them-

selves, must not be translated, but all other data, including
the FDP header and trailer, must be transiated.

Standard Application Program Interface to the CCP

2-9

The procedure is as follows:

1. Define two attribute sets for the 3735 terminal at
assignment time (TERMATTR statements), one
specifying TRANSLAT-YES and the other specify-
ing TRANSLAT—NO.

2. Initially, use the terminal attribute set that specifies
TRANSLAT-YES for all input from the 3735 (until
EOT is received).

3. Send the FDP header and an EOT using the same
attribute set (TRANSLAT—YES).

4, Issue a Release Terminal (Keep-Line) operation
followed by an Acquire Terminal (Set Terminal
Attributes) operation, specifying the attribute set
with TRANSLAT-NO.

5. Transmit all blocks of FDPs, followed by an EOT.

6. Issue a Release Terminal {(Keep-Line) operation fol-
lowed by an Acquire Terminal (Set Terminal Attrib
utes) operation, specifying the attribute set with
TRANSLAT-YES,

7. Transmit the FDP trailer in a block by itself.

8. Transmit all blocks of data, foliowed by an EQT.,

On switched (dial) lines, sending an EOT to the 3735
causes the lines to be disconnected. Redialing is necessary
to continue operations on the line. It is necessary to send
an EOT before the attributes of the line can be changed.

If no data is to be read from the 3735, or no data is to be
sent to the 3735 other than the FDPs, you can code the
FDP header and/or trailer in ASCII, thereby eliminating
the need for step 4 or 6 and the EOT in step 3 or 5 of the
previous procedure. This also eliminates the need to redial
after sending EOT.

2-10

The data stream to and from the 3735 appears as follows:
Switched Line Only
— — TRANSLAT—YES — — —<—— Dial

| Input block 1|

Input block n

| | Output FDP Header |

|

|

|

| |
— |
|

|

|

I

|—— —TRANSLAT—-NO —] —<— Redial

| Output FOP block 1|

{ Output FDP biock n|

|
| I
| |
| |
__ JOutputEOT}{ |
— —TRANSLAT—YES — — —<——Redial

| Output FDP trailer |

| Output data block 1]

| Output data block nl

Record Separators (Variable Length and Spanned Records)

Record separator characters for variable length and spanned
records can be processed by the CCP on record mode input
operations and on any mode of output operations (record,
block, message). The BSCA terminal (other than the 3270)
transmitting variable length or spanned records must be

defined as supporting record separators at assignment time
(see TERMATTR statement) and must be defined as record
mode for input operations.

The CCP automatically provides record separator
characters at the end of each record to indicate the end

of the record. The normal character provided is X'1E";
however, an alternate character may be chosen during CCP

generation (see $EBSC statement in CCP System Reference
Manual). The record separator character is considered a
device control character, not a line control character.

Note: When sending blocks of field descriptor programs to
a 3735 terminal for which RECSEP-YES is specified in the
// TERMATTR assignment statement, you must specify a
block length less than 476, because a record separator
character is automatically added to the end of your data
before it is sent.

Variable Length Records

When using variable length records, no record (including
its record separator character) can be fonger than the
block size defined for the terminal. The record separator
must be considered a data position when determining
block sizes and/or line buffer sizes.

Input: When using variable length records, you must
specify a maximum input length in your parameter list
that is equal to or greater than the longest record you
expect to receive. The record separator character is
reflected as part of the effective input length in the
parameter list.

For variable fength, nonspanned input records, the last
record separator character may be omitted. In this case,
the ETB/ETX line control character suffices as a record
separator, and is received in the user program record area
in place of the normal record separator.

Output: The CCP automatically adds record separator
characters after each record. Do not include the record
separator in the output length field of your parameter
list.

Spanned Records

Spanned records can be used under the CCP only if record
separators are used. A spanned record is not completely
contained within a single block, but is continued in the
next contiguous block, as shown in the following example
of a data format (without ITB and without text trans-
parency):

S E

Block T] Record 1 R Record 2 R Rec | T
1 S S

X B

) E

Block T1 ord3 R Record 4 R Recordd | T

2 X S S B

STX; BSCA control characters - see Components
ETB) Reference Manual.
RS - Record separator.

Record length, including the record separator, may not
exceed block length.

DEVICE CONTROL CHARACTERS

Device control characters are data characters that control
certain aspects of terminal operation, such as carriage return
for typewriter-like terminals and screen formatting for the
3270 terminal. Device control characters must be included
in data that is transmitted to or from certain terminals.
Certain device control characters can be automatically
inserted into output data by the CCP:

® Carriage return and idle characters for control of MLTA
typewriter terminals.

® 3270 screen format characters, when the Display Format
Facility is used (see Chapter 8: 3270 Display Format
Facility).

In all other cases, your program must provide the appropri-
ate device control characters (such as tab characters and
3270 screen format control characters, when the 3270 Dis-
play Format Facility is not used). Therefore, before
writing a program to communicate with any terminal, you
must understand the device control required by the terminal
and the physical characteristics and capabilities of the

Standard Application Program Interface to the CCP 2-11

terminal as described in the component description manual
for the terminal {see Appendix C: Bibliography}. See index
entries for specific terminal types for additional information
about the unique requirements of specific terminals.

MLTA Typewriter Terminals

As part of the operation code in the parameter list, you can
indicate whether you want the CCP to insert special device
control characters into your data for the terminals with
typewriter characteristics. The terminals considered to
possess typewriter characteristics include the following:

® 2740, all models or equivalent (including System/7)

® 2741, all models or equivalent (including the Communi-
cating Magnetic Card SELECTRIC® Typewriter)

® 1050 with typewriter component {1051/1053).

Note: If the 1050 multicomponent terminal number
specifying all output components is specified, the 1050
is not treated as a typewriter device.

Unless you specify otherwise in your operation code, the
CCP inserts a carriage return and idle characters at the
beginning of an output record (New Line), if needed to
assure the output starts on a new line, and at the end of
an output record {(End Line). By means of operation code
modifiers, you can suppress New Line control characters
(Not New Line), End Line control characters (Not End
Line), or both sets of control characters (Not New Line
and Not End Line).

You need not suppress New Line and End Line for non-
typewriter terminals. The CCP ignores the indication in
the operation codes and does not insert the typewriter
control characters. Also, the CCP inserts New Line and
End Line characters, unless suppressed, whether or not
translation is specified.

New Line

New Line causes a transmitted message to begin on a new
line at the typewriter terminal. CCP does this by trans-
mitting a carriage return and 15 idle characters before your
data, if the typewriter is not already positioned at the
beginning of a new line. The idle characters allow the
typewriter time to reposition itself as a result of the
carriage return. It is not always necessary to insert the
typewriter control characters, since the typewriter may
already be positioned at the beginning of a new line. CCP

2-12

attempts to keep track of the position of the typewriter
and considers the typewriter to be positioned at a new
line under the following conditions:

® The last operation was an input operation in which the
last character received was carriage return.

® The last operation was an output operation which
specified End Line.

If you specify New Line under either of these conditions,
CCP does not insert the typewriter control characters. f
your program is exchanging messages with a typewriter
terminal, the terminal operator can decrease transmission
time by keying a carriage return as the last character of his
input to the program. Thus, when your program responds
with a Put, CCP will not have to insert the additiona! con-
trol characters at the beginning of your output message,

Note: For a 2740 Mode! 2 terminal with the buffered
recejve feature, CCP sends the carriage return without idle
characters, since this terminal allows for completion of
the carriage return before continuing the printout.

End Line

End Line causes the typewriter to be positioned at the
beginning of a new line after receiving a message. The
CCP does this by appending a carriage return and 15 idle
characters to the end of your data.

Message Length Considerations

You should not allow space for New Line and End Line
control characters in your record area. When you provide
an output message in your record area, the CCP must build
the actual output data stream in the teleprocessing line
buffer before transmission can occur. Any additional con-
trol characters added by the CCP must be in the line buffer
along with your message. (The size of the line buffer is
specified at assignment time, in the TERMATTR statement
for BSCA and in the MLTALINE statement for MLTA, see
CCP System Reference Manual.) Thus, if you want to
transmit a 40-character message and you specify New Line
and End Line, a 72-byte data stream is built in the line
buffer by the CCP. If the data stream is larger than the line
buffer, your message is truncated while all typewriter
control characters remain appended to the message.

BSCA Terminals

The CCP performs the following device control for BSCA
terminals:

e The CCP inserts record separators for data transmission
involving variable length or spanned records, if specified
in the terminai attribute set associated with the terminals
(see index entry record separators).

® If the 3270 Display Format Facility (see index entry)
is used with 3270 terminals, the CCP provides screen
format control based on the descriptions of fields
in the Display Format Specifications.

In communicating with other communications systems via
the BSCA, you need not provide device control characters:
however, the communications interface between the sending
and receiving programs may require that you provide cer-
tain control data in your program that is understood by both
programs, such as data delimiters and record identifiers.

See Appendix A for additional considerations.

LINE CONTROL CHARACTERS

Line control characters are the signals which control
communication on either an MLTA or BSCA line. Line
control characters are always removed from or added to
data by the MLTA and BSCA communications 10CS
facilities of the CCP, You need not provide space for line
control characters in your record area and you need not
manipulate line control characters in your program.

MLTA line control is described in the ML TA RPQ Program
Reference and Component Description Manual, GC21-7560;
BSCA line control is described in the Components Refer-
ence Manual.

COMMUNICATING WITH MLTA TERMINALS

In this discussion, the term “"MLTA terminals’’ refers to
any of the terminals listed in Appendix A as supported by
the multiple line terminal adapter (MLTA) RPQ or their
equivalents. MLTA terminals perform asynchronous (start/
stop) communications with programs through the CCP and
the MLTA input/ output control system (IOCS), which is
included in the generated CCP if MLTA terminals are to be
used. See MLTA RPQ Program Reference and Component
Description Manual, GC21-7560, for a complete description
of the MLTA 10CS.

Programs communicate with MLTA terminals in a record-by-
record manner; that is, each 1/0 operation in a program
results in a record being sent or received. The program

has effective control of the line only while a record is

being sent or received. After the record has been sent or
received, another program and/or terminal can use the line.

COMMUNICATING WITH BSCA TERMINALS

The term BSCA terminals refers to any of the terminals
{including host and subhost systems) listed in Chapter 1:
Introduction as supported by the binary synchronous
communications adapter (BSCA) or binary synchronous
communications controller {(BSCC). BSCA terminals per-
form binary synchronous communications with the Model
10 Disk System, the Model 12, and the Model 15 through
the CCP and the multiline/multipoint (MLMP) BSCA
10CS, which is included in the generated CCP if BSCA
terminals are to be used. See /BM System/3 Multiline/
Multipoint Binary Synchronous Communications Reference
Manual, GC21-7573, for a complete description of the
MLMP IOCS. Terminals on the BSCC lines perform binary
synchronous communications with Model 15 (Program
Number 5704-SC2) through CCP and the BSCC 10CS,
which are included in the generated CCP if the BSCC lines
are specified. Additional information regarding binary
synchronous communications can be found in publications
listed in Appendix C: Bibliography.

Note: BSCA conversational line control is not supported
by the CCP.

Blocking

When communicating with BSCA terminals, programs send
or receive blocks of data. A block is the physical unit of
data that is actually sent or received in each individual
transmission on a BSCA line.

A block of data can be composed of one or more data
records {Figure 2-3). Collecting records into blocks saves
time when similar operations are performed on each

record, since it is faster to send and receive more than one
record at a time than to send and receive records individual-

ly.

Block
L
i
n
e
Record 1| Record 2 | Record 3 Record n 8
n
t
r
0
|

1 block = n records

In binary synchronous communications, a block of
data can contain one or more records.

Figure 2-3. Blocking in Binary Synchronous Communications

Standard Application Program Interface to the CCP 2-13

End of Transmission {(EOQT)

When communicating with a BSCA terminal, your program
must perform Get operations until it receives an end-of-
transmission (EQT) signal from the terminal (Figure 2-4)
or until a transmission error occurs (resulting in a negative
return code — See Appendix E). The EOT signal indicates
the terminal has completed its current transmission. Like-
wise, your program must send an EOT signal when it has
finished transmitting to a BSCA terminal (see Put Message
under BSCA Output Operations), unless a transmission
error has resulted in a negative return code.

L =L L5l Lo
cBlock g cBlock2)s SlBlock 3l // cBiock) & [EGT)

<

In binary synchronous communications, each block of
data is transmitted separately. The program retains
control of the line until EOT indicates that all
transmission is complete,

Legend: -«— = Direction of transmission
(% = Line control characters

Figure 2-4. Data Transmission on BSCA Lines

2-14

A BSCA line is dedicated to a program and a terminal

once communication is initiated and is not freed for use

by another program or terminal until EOT is transmitted
(or a negative return code is received from an operation).
Other terminals on a multipoint line may be allocated to
other programs; however, a program can only be trans-
mitting or receiving with one terminal at a time. A program
that is receiving data from a BSCA terminal cannot transmit
data to the terminal or communicate with any other term-
inal on that line until the terminal sends EOT (or a negative
return code is received). Likewise, when a program is
transmitting to a terminal on a BSCA line, that line cannot
be used by any other program or terminal until either

EOT is sent by the program or a negative return code is
received by the program.

BSCA Input Operations

The CCP provides three leveis (modes) of input operations
for communication with BSCA terminals corresponding

to three basic units of data: record mode, block mode, and
message mode (Figure 2-5). The mode of input used by a
program with a terminal is specified during the CCP assign-
ment stage (see TERMATTR statement in CCP System
Reference Manual). The actual input operations are used
as described under Operations (see index entry).

Message

R N N,
')
! Block X
]]
'/’—\/_f\. f
t | '
y Record ')
) 1 '
V m— A [} t
L : : L L : : L L - : L
c P c cL i ¢ e cl_ i Je [T
BSCA record mode input operations result in a single record
RECORD being moved from the block in the input buffer to the
MODE program’s record area (each block contains three records in
Program this illustration). The length of the record area must be at
Record least as great as the input record length plus the terminal
Area name (and additional information, in certain RPG Il oper-
ations).
Message
s Block :
e — :
] 1
! Record : '
Vo— A] 1
])]
L : ‘ L L E . L L ' ' L EOT
c i : c c | c c P c

\ BSCA block mode input operations result in a block of
BLOCK

: r records being moved to the program’s record area (without
MODE ! ! line control characters). Therefore, the length of the record
H H area must be at least as great as the block length plus the
Program Record Area terminal name (and additional information, in certain
RPG I operations).
Message
o I S \
E Block .
e — :
ERecord 5 E
L E E L L ' E L L : l[L EOT
C ! ! C C E ! C C : ! C
— e T —
MESSAGE BSCA message mode input operations result in an entire
MODE (message (all blocks of input data preceding the EOT signal)
; ' : : I\ : j being assembled in the input buffer and moved (without
: L . : 7 7r i line control characters) to the program’s record area. The

Program Record Area record area must be as long as the longest message to be

received plus the terminal name (and additional infor-
mation, in certain RPG Il and 3270 DFF operations),
or the excess portion of the message is truncated.

Figure 2-5. BSCA Input Operation Modes

Standard Application Program Interface to the CCP

Blocking has already been described (see Blocking). A
message consists of a limited number of blocks of data,
followed by an EQT, that constitute a complete span of
information that can be received by a program as the
result of a single input operation. In message mode input
operations, the CCP attempts to read all input data until
it receives EOT before moving the data to the program’s
record area. In this way, the BSCA line is freed for use by
another terminal as quickly as possible. Thus, message
mode should be used when a limited quantity of data is
expected (ideally, a single block) on each input operation.

Message mode is always used with the 3270 Display Format
Facility.

Note: Input modes do not affect output operations.

BSCA Output Operations

The CCP provides three types of Put operations for use
with BSCA terminals: Put Record, Put Block, and Put
Message. Use of these operations in your program is not
restricted by your program’s mode of input operations
(see BSCA Input Operations). See Operations later in
this chapter, for complete descriptions of all Put opera-
tions.

Your program must always send an EOT when it has
finished transmitting to a BSCA terminal, unless a trans-
mission error occurs (resulting in a negative return code),
when the CCP forces an EOT condition and terminates
the operation. The CCP automatically sends the EQT
after a Put Message operation and after the Put portion
of a Put-Then-Get operation.

Put Record

The Put Record (or Put-No-Wait Record) operation causes
a record to be sent to the terminal you specify in your
program’s record area. If block length equals record
length, each Put Record operation results in a record
being transmitted on the BSCA line. If each block con-
tains several records {specified in the terminal attribute
set), the block is transmitted when it does not have space
for another record. Thus, your program may issue several
Put Record operations before a block of data is actually
transmitted. (The CCP will automatically issue a Put
Block operation when a block is complete — see Put
Block.) In order to send EOT following Put Record oper-
ations, your program must issue a Put Message operation
(see Put Message).

2-16

In fixed-length record processing, CCP either pads a record
with blanks or truncates a record if the record length does
not equal the record length specified in the terminal attri-
bute set (TERMATTR assignment statement). For example,
if the attribute set defines the record length as 50, and you
issue a Put Record with an output length of 40, CCP
actually sends 50 characters; the last 10 characters are

blank characters. Similarly, if you issue a Put Record

with an output iength of 60, a record of b0 characters

is sent; the last 10 characters are truncated.

Put Block

The Put Block operation causes the current block in the
output buffer to be transmitted, whether or not the block
contains all the records it can hold. The next record Put
by your program starts a new block. A Put Block opera-
tion may either be:

® Accompanied by the final data to be placed in the block
before it is sent, or

® |ssued with a record fength of zero, which simply causes
the block to be sent (if there is no data to be sent, the
operation is ignored by the CCP).

When processing fixed-length records (see Put Record), it
the Put Block operation is used to force transmission of a
short block, a data length of zero is suggested. If data is to
accompany the operation, it should be exactly one record
length, as defined by the terminal attributes set, because
the normal record truncating or padding is not performed
by the Put Block operation.

Put Message

Put Message causes all data to be transmitted, followed by
an EOT. A Put Message operation can be:

® Accompanied by the final data to be sent before EOT

® Issued with a message length of zero, which simply sends
the EOT signal to the terminal.

® Program Request Under Format (PRUF), which
indicates that the Put Message operation is transmitting
a program request format out to the 3270 terminal.

When processing fixed-length records (see Put Record), if
the Put Message operation is used to indicate the end of
data, a data length of zero is suggested. If data is to accom-
pany the operation, it should be exactly one record length,
as defined by the terminal attributes set, because the normal
record truncating or padding is not performed by the Put
Message operation,

Put-Then-Get and Put-No-Wait Operations This kind of action makes heavy use of the communication

line and adversely affects the performance of other terminals

These operations have the same basic function as described using the line.

under Operations. Put-Then-Get causes data {record, block,

or message) to be transmitted to a specific terminal, follow- ® Perform other operations in the program, such as disk
ed by EOT and a Get operation for the terminal. The I/0 or console 1/0, to allow some time for the device
result of the Get portion of the operation depends on the busy condition to clear. For example, sending a message
mode of input specified at assignment time (TERMATTR to the system operator requesting a response is a way
statement}; the result may be the equivalent of a Get of delaying a retry of the printer operation without
Record, Get Block, or Get Message to the terminal. using systemn resources needed by other programs. The
Put-No-Wait can be issued at the record, block or message system operator can be asked, for example, to respond
level. A Put-No-Wait Record or Put-No-Wait Block are when the printer is free or after a specified period of

identical to Put Record or Put Block. On a Put-No-Wait time.
Message, your program neither waits for nor receives a
return code. ® (Model 15 only) After receiving a device busy return

code, issue a CCP wait operation to cause your task to
wait for a specified amount of time before retrying your
put operation. If you are using assembler, the SSIT
macro could also be used to set the interval timer to
cause the task to wait.

3284/3286 Printer Consideration

When you are issuing operations to a 3284 or 3286 printer
(components of the IBM 3270 Information Display

System), the following situation should be considered:)
the user program issues an operation that starts the printer. ® (Model 15 only) Use the RPG Il operation code TIME

Before the print operation is complete, the user program to obtain the time of day. Repeat the TIME operation

issues another operation to the printer, resulting in a “‘device code until the desired time period has elapsed from the

busy” condition, for which CCP returns a -14 return code. initial TIME operation; then reissue the Put operation

If the busy printer option (BSYPRT-YES) is specified to the printer. This method requires use of the DSM

during generation, then code to handle a printer busy transient area and may, therefore, adversely affect

condition will be included in CCP. CCP will retain control system performance through heavy use of the transient

until the printer has completed the operation: it will then area and disk access mechanism.

return control to the application program {Model 12 and

Mode! 15D only). ® Specify BSYPRT-YES at generation time. The busy
printer support will ensure that any previous printer

The user program should be written to recognize a —14
return code from the 3284 or 3286 printer and to take
some appropriate action if busy printer was not specified
during generation. Some possible courses of action are:

operation will be completed prior to scheduling the
current operation. The -14 return code will not be
returned by CCP for the “device busy’’ condition, and
other user or system tasks will continue to execute.

User programs that do not use DFF should ensure
that the WCC "’start print’” bit is set on in the last
block of a printer message only.

® Retry the print operation a number of times under
control of a counter in the program. If the operation
is not accepted after a number of retries, go on to
other processing or inform the system operator. See Note: Waiting for the “'device busy’’ condition to clear
index entry Return Codes, Negative (DFF) for special by looping in your program {not issuing C(;P oper.ations)
considerations when using the 3270 Display Format prohibits other user programs from executing during
Facility. the loop, and is therefore not recommended.

Standard Application Program Interface to the CCP 2-17

OPERATIONS

This section describes the valid teleprocessing operations
that can be issued by application programs running under
the CCP. Each description of an operation contains the
following information:

Purpose: A brief description of the purpose of the opera-
tion.

Operation Code(s): Decimal value, hexadecimal value, and
RPG 1l form of each variation of the operation code. A

summary chart of operation code values is provided in
Appendix D.

Additional Requirements: |nformation your program must
provide in addition to the operation code and record area.

Information Returned: Information the CCP provides to
your program as a result of the operation, including all
pesitive return code values. Descriptions of all return codes
and a summary chart of return codes by operation type are
provided in Appendix E.

Function and Use: A detailed description of the results of
the operation and rules, considerations, and recommenda-
tions for using the operation.

2-18

Program Errors

The CCP checks every operation issued by an application
program for validity before it performs the operation.
Certain conditions are considered to be program logic
errors, which resuit in termination of the application
program. The CCP informs the system operator of the
termination by printing a message that contains a program
termination code identifying the error condition, the name
of the program, and other information. The contents of
this message and the meanings of the program termination
codes are given in the /BM Systern/3 Communications Con-
trol Program Messages Manual, GC21-5170.

3270 Display Format Facility Operations

Requests for 3270 DFF operations are issued in the same
manner as other requests for terminal operations; that is,
each request is issued through a communications service
subroutine and is accompanied by a parameter list and a
record area. For certain 3270 DFF operations, however,
you must supply additional information in the record area,
besides the terminal name. For example, when the display
format is written to a 3270, the name of the format is
given in the record area following the terminal name,

Three operations are unique to 3270 DFF: Copy, Erase,
and Put Override. These operations are described in
Chapter 8: 3270 Display Format Facility. Considerations
for using other CCP operations with 3270 DFF are summa-

rized in that chapter and are also included in the descriptions

of CCP operations in this chapter.

GET

The purpose of the Get operation is to read a unit of data
(record, block, or message) from a specific terminal into
the record area.

Operation Codes:

Hex [Dec IRPGIII Meaning

6001 1 BBBA
0011 17 BBAA

Normal Get operation

Get operation with reverse
interrupt (RVI) (See Func-
tion and Use of Get for an
explanation of RV!.)

Additional Requirements

® Set value of the Maximum Input Length field in the
parameter list.

® Provide a symbolic terminal name (or blanks} in the
record area.

Information Returned
® Effective Length of Input Data, in parameter list.
® |Input data, in record area.

® Count of outstanding Invite Inputs in the third field of
the parameter list, if the 08 return code is received.

® Return Codes:

0 Successful
1 Data truncated
2 EOT

3 Data truncated and EQT
5 Data pending (BSCA)

7 3270 CLEAR (No AID is returned in the record
area)

8 Terminal no tonger available (/RELEASE com-
mand was successfully entered by the terminal
operator).

9 Terminal offline

-n Negative return codes (1/0 errors - see explana-
tions in Appendix E).

Function and Use of Get

The Get operation reads a unit of data (record, block, or
message) from a specific terminal and places the data in
the record area. After issuing a Get operation, an appli-
cation program waits for the CCP to complete the opera-
tion. The program resumes execution either after the CCP
has moved the unit of data received from the specified
terminal to the record area or after the CCP has terminated
the operation because data transfer cannot succeed.

If the length of the input data actually received is greater
than the maximum input length allowed, the data is
truncated. If the data received is less than that specified,
the CCP places blanks in the remainder of the record area.

The attributes of the data, which determine how the input
data is handled, and the unit of data (record, block or mes-
sage) are specified by the terminal attribute set currently
associated with the terminal (see index entry terminal
attributes). For an MLTA terminal, the unit of data is
always record.

For BSCA terminals that acknowledge the receipt of
reverse interrupts (RVI), the Get operation can be used
to send an RVI to a terminal while receiving data from that

terminal. RV/ (see index entry) is generally used as a sig-
nal from a receiving device to a device that is transmitting

to interrupt its transmission as soon as possible, usually
because the receiving device wishes to transmit to the
sending device.

Get Operation with 3270 DFF

When you are using the 3270 DFF, you must issue a Put
Message or Copy operation to format the display before
you issue a Get operation to the 3270. See Field Concepts
and Record Concepts in Chapter 8 for special requirements
in handling input data. Also see index entry Get operation,
3270 DFF.

Specifying the Terminal

You may, for a Get operation, specify either a defined
symbolic terminal name or blanks in the record area. A
defined terminal name must be either the name under
which the referenced terminal was allocated to the pro-
gram, or, if this is a multicomponent terminal (see index
entry), a sub-terminal name subordinate to that name.
A symbolic terminal name which is not assigned to a
terminal cannot be used with this operation.

This operation must not be issued to the CONSOL (5471
Printer/Keyboard on Models 10 and 12; CRT/Keyboard
on the Model 15).

Standard Application Program Interface to the CCP 2-19

A program can use a blank symbolic terminal name for
this operation only if the program is a single requesting
terminal (SRT) program (see index entry). A blank name
references the terminal that requested the currently execu-
ting copy of the program. The CCP returns the name of
the requesting terminal in the record area before returning
control to the program. In the case of an SRT program,
once the requesting terminal has been released (either by
using its symbolic name or a btank name), the use of a
blank terminal name in the record area is no longer valid.

Considerations

® The Get operation must not be issued as the initial
data-transfer operation to a requesting terminal which
entered data as part of the program request. The only
valid operation which may be issued to such a terminal

at that time is an Accept Input (see Accept Input oper-
ation).

® The Get operation must not be issued as the initial data-
transfer operation in a program that was loaded by a
chain task request. The only operation that can be
issued in this situation is an Accept Input operation.

® This operation can be issued only to a terminal capable
of transmitting data.

2-20

® A maximum input length greater than zero must be
specified in the parameter list for this operation.

® The Get operation must not be issued to a terminal
which has an Invite Input outstanding to it. Should
it be necessary to read data from such a terminal,
perform a Stop Invite Input operation. If the Stop
Invite Input is successful, the Invite Input is can-
celled and a Get may then be issued to the terminal.
If the Stop Invite Input fails, then the operation is
treated as a Get from the specified terminal.

® When communicating in record or block mode to a
BSCA terminal that is on the same multipoint line
with other BSCA terminals, it is recommended that,
once input is received from the terminal, Get opera-
tions should be issued to that terminal until EOT is
received (or the operation terminates with a negative
return code}. This procedure will free the line for use
by other terminals as quickly as possible. An alter-
nate procedure is to issue an Invite Input to the terminal,
followed by Accept Input operations until the transmis-
sion is complete (EOT or a negative return code is
received.

® In message mode, the EOT return code is never

returned.

PUT

The purpose of the Put operation is to write a unit of data
(record, block, message) to a spscific terminal. Carriage
returns are performed for MLTA typewriter terminals
before and after writing the data (New L ine and End Line,
respectively), unless a modified form of the operation
code is used to suppress carriage returns. New Line and
End Line are ignored for BSCA operations.

Operation Codes

The Put operation may specify that the unit of data is to
be written as the last unit in the current block (Put Block);
that is, an ETB (end of text block) signal is to be issued
following the data, and the next unit of data is to begin a
new block. The Put operation may also specify that the
unit of data is the last unit to be put in the current trans-
mission (Put Message); that is, the EOT (end of trans-
mission) signal is to be issued following the data.

Put Block and Put Message are intended for use with BSCA
terminals; however, these operations are valid for MLTA
terminals and have the same effect as a Put operation with-
out ETB or EOT (Put Record).

Put Message can be followed by additional input or output
operations to the same terminal.

Meaning: Perform Put operation as follows:
Hex Dec RPG I New Line End Line Unit of Data
0002 2 BBBB yes yes
0102 258 BAGYB ves no
Record
0202 514 ¥BYB no yes
0302 770 BCiBB no no
0022 34 BBBB yes yes \
0062 98 BBFB yes yes
0122 290 BABB yes no Block
0222 546 ¥BBB no yes >
0322 802 BCBB no no
S N]
0032 50 BBCB yes ves
0072 114 Bl GB yes yes
0132 306 BACB yes no Message
0232 562 ¥BCB no yes
0332 818 ¥CCB no no
0832 2098 BHCB yes yes Put overrides message
used only with DFF.
0872 2162 BHGB yes yes

Standard Application Program Interface to the CCP 2-21

Additional Requirements

® Set value of output length field in the parameter list
(see exception under RPG || for SPECIAL files).

® Provide a symbolic terminal name (or blanks) in the
record area.

® See index entry Put Overrides for special requirements
of that operation.

Information Returned

® Return Codes:

0 Successful (no exception conditions)

1 Data truncated

5 Data pending (BSCA)

6 Terminal interrupt (MLTA) or RVt (BSCA)

9 Terminal offline

-n Negative return codes (1/0 errors and device status

conditions — see explanations in Appendix E).
Function and Use of Put

The Put operation writes a unit of data to a terminal
(record, bilock, or message). On Put operations to MLTA
terminals, the application program waits for completion
of the transmission to the terminal. For BSCA devices,
the program resumes execution upon acceptance of the
operation by the CCP, except for Put Message. On Put
Message, control is not returned to the program until
either the data is transmitted successfully and the EQT
sent out, or until an error condition occurs.

Put Operation with 3270 DFF

With 3270 DFF, you must use a Put Message to write
the initial display format to the 3270 terminal. To
override data at the terminal, use the Put Overrides
operation. See index entry DFF operations for
additional information and requirements,

Specifying the Terminal

You can specify either a defined symbolic terminal name or
blanks in the record area for a Put operation. A defined
terminal name must be either the name under which the
terminal was allocated to the program, or, if this is a
multicomponent terminal, a sub-terminal name subordinats
to that name. A symbolic terminal name which is not
assigned to a terminal can not be used with this operation,

2-22

A Put operation can be issued to the CONSOL. The maxi-
mum length of output is:

Models 10 and 12 — 80

Model 15 — 107

You can use a biank symbolic terminal name for this opera-
tion only if your program is an SRT Program (see index
entry). A blank name references the terminal that reques-
ted the currently executing copy of the program. The

CCP returns the name of the requesting termina!l in the
record area before returning control to the program. In

the case of an SRT program, once the requesting terminal
has been released (either by using its symbolic name or a
blank name), the use of a blank terminal name in the
record area is no longer valid.

Considerations

® The Put operation must not be issued as the initial
data-transfer operation to a requesting terminal which

was specified to receive data as part of the program request.

The only valid operation which may be issued to such a
terminal at that time is an Accept Input (see Accept Input
operation).

® The Put operation can be issued only to a terminal
capable of receiving data.

® An output length greater than zero must be specified
for this operation if transmitting to an MLTA terminal.
However, a zero output length may be specified on Put
Block operations and Put Message operations to BSCA
terminals (except on the first such operation) to force
sending of the current block or message.

e This operation must not be issued to a terminal which
has an Invite Input outstanding to it.

® Put operations to the console, regardiess of the form of
Put operation code used, cause the data (message) to be
sent to the console.

® PRUF Put operations issued to the console are invalid.

® \When using block mode or record mode input with BSCA
terminals, the following situation can occur and must be
programmed for:

1. The program issues an Accept Input; two terminals
have outstanding Invite Inputs.

2. The first terminal (T 1) provides input data.

3. The program issues input operations to T1 until EOT
is received, then issues a Put to T1.

4. Prior to the Put to T1, the second terminal {T2)
provides input data. Since T2 now has control of the
BSCA line, the Put operation issued to T1 results in
a 05 return code (data pending on the BSCA tine).

® When transmitting fixed length data to a BSCA terminal
using Put Record, any Put Block or Put Message oper-
ation should not have data specified unless the data is
exactly one record as specified in the terminal attribute
set. Truncation or padding of record data is not per-
formed for Put Block or Put Message operations (see
index entry Put Record).

PUT-THEN-GET

The Put-Then-Get operation transmits a unit of data to a
specific terminal and then reads data from the same ter-
minal. Optionally, carriage returns are performed for
MLTA typewriter terminals before and/or after writing the
data (Vew Line and End Line, respectively), Put-Then-Get
is more efficient than separate Put and Get operations.

Put-Then-Get is the on/y operation that can be used to
read data from CONSOL except when an Accept Input is
used to receive data entered with the program request.

Operation Codes

Hex Dec RPG 11 Meaning

Put (Record) -Then-Get
operation including New
Line and End Line on Put.

0003 3 BBBC

0033 51 HBCC Put {Message) -Then-Get

0103 | 259 BABC Put (Record) -Then-Get
including New Line, but
suppressing End Line,
0203 | 5156 BBBC Put (Record) -Then-Get
including End Line, but
suppressing New Line.
0303 771 BChC Put (Record) -Then-Get
with neither New Line

nor End Line.

Notes:

1. New Line and End Line are ignored for
BSCA terminals and the console.

2. This operation cannot be used with DFF
terminals.

Additional Requirements

® Setvalue of Output Length field in parameter list (see
exception under RPG 1 for SPECIAL files).

® Set value of Maximum Input Length field in parameter
list.

® Provide a symbolic terminal name (or blanks) in the
record area.

Information Returned

® |nput data in the record area.

Effective Input Length value in parameter list.

Count of outstanding Invite Inputs in the third field of
the parameter list, if the 08 return code is received.

Return Codes:
0 Successful (no exception conditions)

1 Data Truncated - this return code indicates that
input data was truncated

2 EOT - applies to the Get, not returned to the pro-
gram if Get was message mode (input mode is

determined by terminal attributes — see index
entry)

3 Data Truncated and EOT - applies to the Get
(MLTA terminals only)

5 Data Pending - BSCA terminals only
6 Terminal interrupt (MLTA) or RV (BSCA)

7 3270 CLEAR - applies to the Get. No AID is
returned in the record area.

8 Terminal no longer available - applies to the Get
only (/RELEASE command was successfully
entered by the terminal operator)

9 Terminal offline - applies to the Put, since Get is
not performed

-n Negative return codes {1/O errors and device status

conditions — see explanations in Appendix E) —
see Error Return Codes under Function and Use
of Put-Then-Get for additional information

Standard Application Program Interface to the CCP 2-23

Function and Use of Put-Then-Get

This operation is a combination of a Put operation and a
Get operation. First, the Put operation is issued to a
specific terminal. Upon completion of the Put, a Get
operation is issued to the same terminal. The application
program resumes execution upon completion of the Get,
when the input data resides in the record area. The same
record area is used for both the Put and the Get {except
with RPG Il SPECIAL - see index entry Put-Then-Get,
RPG I/ SPECIAL).

For BSCA terminals, the operation works as foltows:

® For Put{Record}-Then-Get, the output data is padded or
truncated according to normal record processing (see
index entry Put Record). After the record is sent, EOT
is sent, followed by the Get operation.

® For Put(Message)-Then-Get, either the output data is
the only data sent (if this is message output only), or
the output data is the last data sent (if the previous
operation was a Put Record or Put Block operation).
No record padding or truncating is performed by the
Put{Message)-Then-Get operation (see index entry Put
Message). After the output data is sent, EOT is sent,
followed by the Get operation.

The mode of input (record, block, message) specified by
the terminal attribute set which is currently associated
with this terminal (see index entry terminal attributes)
determines the unit of data received. For an MLTA ter-
minal, the unit of data is always record.

Specifying the Terminal

You can specify either a defined symbolic terminal name or
blanks in the record area for Put-Then-Get. A defined termi-
nal name must be either the name under which the terminal
was allocated to the program or, if this is a multicomponent
terminal, a sub-terminal name subordinate to that name. A
symbolic terminal name which is not assigned to a terminal
cannot be used with this operation.

The use of a blank symbolic terminal name is valid for this
operation only if the program is an SRT program (see index
entry). A blank name references the terminal that requested
the currently executing copy of the program. The CCP re-
turns the name of the requesting terminal in the record area
before returning control to the program. In the case of an
SRT program, once the requesting terminal has been re-
leased (either by using its symbolic name or a blank name),
use of a blank terminal name is no longer valid.

2-24

Put-Then-Get is the only operation that can be used to get
data from the system operator’s console {CONSOL), except
when an Accept Input is used to receive data entered with
the program request. The maximum input and output
lengths for this operation are:
Models 10 and 12 — 80
Model 15 — The maximum input that may be received
is based on the maximum output length.
If the output length is 1 through 35, the maximum
input received is truncated to 80. If the output length
is 36 through 71, the input is truncated to 40. The
output fength may not exceed 71.

Error Return Codes

When 1/0O errors occur on an input operation, the CCP sets
the effective input length in the parameter list to zero and
clears the record area to blanks. When errors occur during
the execution of the Put-Then-Get operation, the operation
is terminated immediately. Thus, if the error occurs on the
Put portion of the operation, the CCP does not perform the
Get, but returns control to your program. In order to deter-

mine whether an |1/O error (negative return code) occurred
on the Put or the Get, you can examine the effective input

length in the parameter list. If the value of this field is the
same as the output length value specified for the operation,
then the 1/O error occurred on the Put. However, if the

value has been set to zero, the 1/O error occurred on the
Get.

Considerations

® This operation must not be issued as the initial data-
transfer operation to a requesting terminal which enterea
data as part of the program request. The only valid oper-
ation which may be issued to such a terminal at that
time is an Accept Input (see Accept Input Operation).

® This operation can be issued only to a terminal capable
of both transmitting and receiving data.

® A maximum input length greater than zero must be
specified for this operation.

® An output length greater than zero must be specified for
this operation if transmitting to an MLTA termina! or if
this is the initial block being transmitted to a BSCA
terminal.

® This operation must not be issued to a terminal which
has an Invite Input outstanding to it.

® This operation must not be used with the 3270 DFF.

PUT-NO-WAIT

The Put-No-Wait operation allows overlap of the output
operation with continued program execution. Put-No-Wait
writes a unit of data (record, block, or message) to a
specific terminal. For MLTA operations and for BSCA
message operations, your program resumes execution
immediately upon acceptance of the operation by the
CCP. Optionally, a carriage return is performed for MLTA
typewriter terminals before and/or after writing the data
(New Line and End Line, respectively). New Line and

End Line are ignored for BSCA operations.

Operation Codes

Meaning: Perform Put-No-Wait as folows:

Hex Dec RPG Il New Line End Line Unit of Data

0006 6 BPBF ves yes

0106 262 bABF yes no
Record

0206 518 BBYF no ves

€306 774 BCYF no no

€026 38 BYBBF yes yes

C126 294 BABF yes no
Block

€226 550 #WBBF no yes

0326 806 B CBF no no

—-—-——0————-——r— ————— —t——_———_— e e —_—————— . —_——————]

0036 54 BBCF ves ves

0076 118 BBGF yes yes

0136 310 B ACF yes no Message

0236 566 BBCF no yes

0336 822 BCCF no no

083 2102 BHCF yes yes Put overrides message
used only with DFF

0876 2166 BHGF yes yes

Standard Application Program Interface to the CCP 2-25

Additional Requirements

® Set value of Output Length field in the parameter list
(see exception in RPG 11 for SPECIAL files).

® Provide a symbolic terminal name (or blanks) in the
record area.

Information Returned

® Return codes (see explanations in Appendix E}:
0 Operation accepted by CCP

5 Data pending (BSCA)

Function and Use of Put-No-Wait

This operation causes the data in the Put record area to be
Put to a specific terminal. The requesting program resumes
execution upon acceptance of the operation by the CCP.

The Put-No-Wait operation may specify:

® A record is to be written in the current block (see index
entry blocking).

® An EOB (end of block) signal is to be issued following
the record and the next record is to begin a new block
{Put Block).

® A record is the last to be Put in the current transmission;
that is, the EOT (end of transmission) signal is to be
issued following the data (Put Message).

Put-No-Wait with EOB, Put-No-Wait with EOT, and PRUF
Put-No-Wait with EOT are intended for use with BSCA
terminals; however, these operations are valid for MLTA
terminals and have the same effect as a Put-No-Wait
operation without EOB or EOT (Put Record), or without
PRUF.

On Put-No-Wait (record) and Put-No-Wait (block) opera-
tions to a BSCA terminal, the requesting program does not
resume execution until the specified terminal has gained
control of the BSCA line.

Put-No-Wait Operation with 3270 DFF
If Put-No-Wait is used with 3270 DFF to put a format on
the display, the CCP changes the operation to a Put

Message and your program does not regain control untii
the operation is complete.

2-26

Specifying the Terminal

You can specify either a defined symbolic terminal name or
blanks in the record area with a Put-No-Wait. A defined
terminal name must be either the name under which the
referenced terminal was allocated to the program, or, if
this is a multicomponent terminal, a sub-terminal name
subordinate to that name. A symbolic terminal name
which is not assigned to a terminal cannot be used with

this operation. Put-No-Wait can be issued to the console,
but it is treated as a Put (with wait).

You can use a blank symbolic terminal name for this oper-
ation only if your program is an SRT program. A blank
name references the terminal that requested the currently
executing copy of the program. The CCP returns the name
of the requesting terminal in the record area before return-
ing control to the program. In the case of an SRT program,
once the requesting terminal has been released {either by
using symbolic name or a blank name), the use of a biank
terminal name is no longer valid.

Considerations

® The Put-No-Wait operation must not be issued as the
initial data-transfer operation to a requesting terminal
which entered data as part of the program request. The
only valid operation which may be issued to such a ter-
minal at that time is an Accept Input (see Accept Input
operation).

® This operation can be issued only to a terminal capable
of receiving data.

® An output length greater than zero must be specified for
this operation if transmitting to an MLTA terminal or if
this is the initial block being transmitted to a BSCA ter-
minal,

® This operation must not be issued to a terminal which has
an Invite Input outstanding to it.

® Since control is returned to the user program before com-
pletion of the data transfer, no indication as to the success
or failure or the data transmission is returned to the user
program.

INVITE INPUT

The purpose of the Invite Input operation is to make a spe-
cific terminal eligible to send input data. The invited input
is not made available to your program except as the result of
a subsequent Accept Input operation (see next operation).

Operation Code

Hex Dec RPG 1| Meaning

0005 5 BBYBE Invite Input

Additional Requirements
® Set value of Maximum Input Length in parameter list.

® Provide a symbolic terminal name (or blanks) in the
record area.

Information Returned
Return Codes:
0 Successful

9 Terminal offline

Function and Use of Invite Input

This operation causes CCP to make a specific terminal
eligible to transmit data to the application program. The
program resumes execution after acceptance of the Invite
Input operation by CCP.

More than one Invite Input may be outstanding at one
time, but not to the same terminal. As each terminal com-
pletes transmission, the data is queued as input to the user
program. An Accept Input operation (see next operation),
causes the first completed input to be made available to
the application program.

The attributes of the data and the unit of data (record,
block, or message) for this operation are those specified in
the terminal attribute set currently associated with the
terminal. For an MLTA terminal, the unit of data is
always record.

Invite Input Operation with 3270 DFF

This operation must not be issued to a terminal under
3270 DFF until a Put Message or Copy operation has
placed a format on the display.

Specifying the Terminal

You can specify either a defined symbolic terminal name or
blanks in the record area for the Invite Input operation.

A defined terminal name must be either the name under
which the terminal was allocated to the program, or, if

this is a multicomponent terminal, a subterminal name
subordinate to that name. A symbolic terminal name which
is not assigned to a terminal cannot be used with this
operation. This operation must not be issued to CONSOL.

You can use a blank symbolic terminal name for this oper-
ation only if your program is an SRT program. A blank
name references the terminal which requested the currently
executing copy of the program. The CCP returns the name
of the requesting terminal in the record area before return-
ing control to the program. In the case of an SRT program,
once the requesting terminal has been released {(either by
using a symbolic terminal name or a blank name), the use
of a blank terminal name is no longer valid.

Considerations

® An Invite Input operation must not be issued as the
initial data-transfer operation to a requesting terminal
which entered data as part of the program request, The
only valid operation which may be issued to such a
terminal at that time is an Accept Input (see Accept
Input operation).

® This operation can be issued only to a terminal capable
of transmitting data.

® A maximum input length greater than zero must be
specified for this operation.

® The maximum input length must not be greater than
the size of the entire processing buffer put or get area
{minus 4) defined in the current assignment set, or re-
defined during Startup (four bytes are required for
control information used by the main storage allocation
routines).

® This operation must not be issued to a terminal which
has an Invite Input outstanding to it.

Standard Application Program Interface to the CCP 2-27

ACCEPT INPUT

The purpose of the Accept Input operation is to gain access
to the earliest completed record from the terminals to which
Invite Input operations were previously issued, and to ob-
tain the data received with a program request or a chain task
request. Invite Inputs to the other terminals remain in
effect.

Operation Code

Hex Dec RPG I Meaning

0004 | 4 BBk D Accept Input

Additional Requirements

® Set value of Maximum input Length field in the param-
eter list.

Information Returned

® [nput data in the record area.

® Effective length of Input Data, in the parameter list.

® Symbolic name of terminal from which data was re-
ceived, in the record area.

® Count of outstanding Invite Inputs in the third field
of the parameter list, if the 08 return code is received.

® Return Codes:
0 Successful
1 Data Truncated
2 EOT or non-PRUF request to a PRUF program
3 Data truncated and EOT
4 Shutdown requested (no data returned)

7 3270 CLEAR {No AlD is returned in the record
area)

8 Terminal no longer available (/RELEASE com-
mand was successfully entered by the terminal

operator)

9 Terminal offline

2-28

14 An accept operation was successful. Data was
received from a task chain operation. There is no
terminal.

15 Truncated data was received from a task chain
operation. There is no terminal.

-n Negative return codes (/0 errors—see explanations
in Appendix E).

Function and Use of Accept Input

This operation makes data available to your program from
one of three sources:

1. A terminal to which an Invite Input operation was
previously issued by the program (program invite
operation).

2. A terminal that presents data along with the program

request. In this case, the Invite Input is done by CCP
(system invite operation).

3. A CCP program that presents data along with a chain
task request.

A successful Accept Input operation satisfies the previous
Invite Input to the terminal from which data was received
so that there is no longer an Invite input outstanding to
that terminal. However, Invite Inputs to other terminals
remain in effect and can be satisfied by subsequent Accept
Inputs.

Your program resumes execution after data from a terminal
has been made available in the record area.

On an Accept Input operation, CCP ignores the data in the
name field of the record area. However, CCF places the
name of the terminal from which the data was received in
this area before returning control to your program. On a
chain task request operation, CCP places the name of the
requesting program in the name field.

Accept Input Operation with 3270 DFF

For systems without program request under format or
when using the 3270 DFF, you must issue a Put Message or
Copy operation to format the display before you use Invite
Input and Accept Input operations with the 3270. See
Field Concepts and Record Concepts in Chapter 8 for
special requirements in handling input data. See also index
entry Accept Input Operation, 3270 DFF.

DFF non-PRUF programs that use the AID byte position

to set record identifying indicators on Accept Input oper-
ations must take into consideration that an Accept Input
that satisfies a system invite operation does not return the
AID byte to your record area. The first byte of the pro-
gram request input data is in the AID byte field {position

15 if using SUBR92) and could duplicate a valid AID char-
acter, causing the corresponding record identifying indicator
to be set on.

Accept Input Operation for Program Request Data

When input data is appended to the program request for
non-PRUF programs, that data is not processed by the
DFF, but is passed directly to the user program. In this
case, the Accept Input must not be preceded by a Put
Message or Copy operation to format the screen.

The input data is entered into the dynamic TP buffer area in
a continuous string. if the data is from a 3270 terminal, the
first 8 bytes are the control unit and device addresses, the
AID byte, and the 3270 control characters. The length
atlocated to the dynamic TP buffer is determined by the
PGMREQL value {(maximum 80 bytes) of the SYSTEM
assignment statement plus 8 bytes. When the input data is
passed to the program record area, the 8 bytes and the pro-
gram name information are also stripped from the input
data, leaving a maximum of 78 bytes of actual program
data. Any additional data in the 3270 buffer at the time

of the program request is not sent to the program.

When input data is appended to the request for PRUF
programs (identified by the PRUFLNG keyword given on
the assignment PROGRAM statement), that data may or
may not be processed by DFF. The maximum length of
this data is specified by the PRUFLNG keyword. This

data will be processed by DFF if the PRUF$Z keyword
was included in the assignment PROGRAM statement. The
data stream returned to the program for PRUF non-DFF
program requests differs from that for non-PRUF programs.

When input data is appended to the program request for
CPU-to-CPU programs or MLTA programs, the maximum
length is 253 characters {5704-SC2).

Program area examples of program request data:

® Non-PRUF:

Eatal | L0

(up to 78 characters
-5704-SC1 or 253
characters for CPU and
MLTA - 5704-SC2).

position 1. ..
{position 15 if RPG 1)

® PRUF non-DFF:

cu Idev aid cl@ |sba|]@@‘

position 1 2 3 4-5 6 7-8
(position 15 if RPG I1)

l pgmnamib data sba @@ data...
[R T R T SR | 1
9... (up to PRUFLNG parameter)
e PRUF DFF:

i jeld2 ...
|a|d [pgmlnam {:e i i

position 1 2... (up to PRUFLNG parameter)

{position 15 if RPG 11)

See Chapter 3 for an explanation of the 3270 control
characters, aid, sba, etc.

If the PRUFLNG keyword was given in the PROGRAM
statement for the requested program, but the last success-
ful user Put was not a PRUF Put, the CCP will return a
02 return code to the PRUF program being requested.
This indicates that non-PRUF data accompanies the
program request.

Input data appended to the program request is passed to
the user program in upper case even though it may have
been entered in lower case at the 3270 terminal. Program
Number 5704-SC2 aliows data to be passed to the user
program exactly as it is entered if the PF1 key is pressed
instead of the ENTER key.

Accept Input Operation for Chain Task Requests with Data

When data is appended to a chain task request for a DFF
program, the data is not processed by DFF but is sent
directly to the input area in the program. This data does
not contain any 3270 control characters.

When a program has been loaded via a chain task request

with data, the program must issue an Accept Input opera-
tion before attempting any other CCP operation.

Standard Application Program Interface to the CCP 2-29

Considerations

® You should specify a maximum input length in the pa-
rameter list (and a corresponding record area) large
enough to accommodate the largest amount of data
that can be received from an outstanding Invite Input,
because, if several Invite Inputs are outstanding, you do
not know which Invite Input will be the first to satisfy
the Accept Input.

® Use caution when issuing Accept Input or Get operations
after receiving a Shutdown return code (04). If the
terminal operators do not key in data to satisfy the
operations, the program remains in main storage until
cancelled by the system operator. Stop Invite Input
operations are recommended to cancel outstanding
Invite Inputs and still permit processing of any data
that may be received.

® An Accept Input can be issued only under the following
conditions:

1. There are one or more Invite Inputs outstanding
for the program (including any implied Invite
Inputs due to program requests with accompany-
ing data).

2. There are no outstanding Invite Inputs and

a. The program is defined as a never-ending pro-
gram, and

b. The defined maximum number of requesting
terminals that the program can handie con-
currently is greater than the current number
of requesting terminals the program is
handling.

® An input length greater than zero must be specified
for this operation.

® Accept Input is valid to the console only when issued
for data with the program request. Any subsequent

Invite input to the console results in program termination.

Shutdown Requested by Operator

A return code indicating that shutdown has been requested
by the System Operator may be returned to this operation.
in this case, the parameter list remains unchanged except
for the return code field and the count of outstanding
invites; no input data is received. If you still wish to have
the operation performed, you must reissue the Accept
Input. The shutdown-requested return code can onty occur
when there are no completed Invite Inputs to satisfy the

2-30

Accept Input. A shutdown-requested :turn code will be
issued to an operation other than Shutdown Inquiry gnly
once during the execution of the program.

Every program that uses Accept {nput should check for the
shutdown-requested return code.

Note: Only the Accept Input need be reissued if you still
want to have the operation performed, because the Invite
Input is still in effect.

ACCEPT NO-WAIT INPUT (5704-SC2 ONLY)

The purpose of this operation is to allow the user to regain

control even though no Invite Input operations have
completed.

Operation Code

Hex Dec | RPG i Meaning

0044 68 BBDD Accept No-Wait Input

Additional Requirements

® Set value of Maximum Input Length field in the param-
eter list.

Information Returned

The information returned is the same as that returned for
Accept Input, except the following, which is unique for
Accept No-Wait Input.

® Return Code:

16 No invite input, chain task, or program requests
have been completed.

Function and Use of Accept No-Wait Input

Accept No-Wait Input performs the same functions that
Accept Input performs, except that Accept No-Wait input
checks for any completed invite input program request or
task chain operations. If there are none, control is returned
to the user with a 16 return code and the number of out-
standing invites indicated in the third field of the parameter
list.

If there are completed invites, program requests, task
chains, CCP performs an accept input operation.

This operation can be issued even though no Invite Inputs
have been issued. However, the defined maximum number
of requesting terminals that the program can handle con-
currently must be greater than the number of terminals
currently being handled.

Considerations

The considerations for this operation are the same as the
considerations for Accept [nput.

There are several return codes associated with accept input
and accept no-wait input that imply no data. These codes
are returned to the user so that the application program
can be informed about these conditions. Some example
return codes are:

04 Shutdown entered (only once).

07 A terminal operator has pressed the clear key on
a 3277 terminal.

08 A terminal was released by the terminal operator.
09 A terminal was taken offline,

Any of these codes can be returned after an accept no-wait
operation if there are no completed invites, program
requests, or task chain operations. If none of the condi-
tions exist, control is returned to the user with a return
code of 18. In contrast, the accept input operation will
wait until it has something to give the application program
before returning control.

MRT application programs, which receive data via a pro-
gram request from the console or task chain operation

after processing data, do not know whether more requests
are outstanding. Such an application program could do

an accept no-wait operation if there was a request for the
application. The application program would then have data
and would process it. If there are no requests, control is
returned with a return code of 16 and the count of the
outstanding invites.

If the count of outstanding invites in the third field of the
parameter list is not zero, the operator has these options:

1. Do an accept input and wait for data from the
invited terminal.

2. Do a timer wait, then repeat the accept no-wait
operation. f, after shutdown, none of the terminals
are being used, a stop write operation may be issued
to allow the program to go to end of job.

3. Drive a printer or some unit record device while
waiting for a terminal.

Note: Looping on the accept no-wait operation may
prohibit other user programs from executing; therefore,
looping is not recommended.

STOP INVITE INPUT (OR GET)

The purpose of this operation is to stop an Invite input
previously issued to a specific terminal and, if the Invite
Input cannot be stopped, to accept (Get) the input. Stop
Invite Input is used when some event has occurred in the
program such that the program no longer wants input from
the terminal.

Operation Code

Hex Dec RPG Il Meaning

0401 1025 bDBA Stop Invite Input

Additional Requirements

® Provide a symbolic terminal name {or blanks) in the
record area.

® Set value of the Maximum Input Length field in pa-
rameter list,

Information Returned
® |nput data (if Invite Input is not stopped)

® Effective Input Length value in parameter list (if
Invite Input is not stopped)

® Count of outstanding Invite Inputs in the third field of
the parameter list, if the 08 return code is received.

Standard Application Program Interface to the CCP 2-31

® Return Codes:
0 Get successful {no exception conditions)
1 Data truncated
2 Get successful with EOT
3 Data truncated with EOT

7 3270 CLEAR (No AID is returned in the record
area)

8 Terminal no longer available (/RELEASE com-
mand was successfully entered by the terminal
operator)

9 Terminal offline
10 Stop Invite Input successful

-n Negative return codes {1/0 errors and device status
conditions — see explanations in Appendix E)

Function and Use of Stop Invite Input

Stop Invite Input causes the CCP to attempt to cancel an
Invite Input that has been previously issued to a specific
terminal. If the Invite tnput is stopped successfully, the
terminal no longer has an Invite Input outstanding. How-
ever, if the Invite Input cannot be stopped, your program
must be ready to handle any data received from the ter-
minal as though your program issued a Get to the terminal.
Thus, when requesting a Stop Invite Input, your program
must present all the information needed for a Get opera-
tion. Your program resumes execution either when the
Invite Input has been cancelled or when the Get has been
completed.

This operation can only be issued to a terminal which has
an Invite Input outstanding to it.

If the operation becomes a Get, the attributes of the data
and the unit of data (record, block, message)} for this
operation are those specified in the terminal attribute

set currently associated with this terminal (see index entry
terminal attributes). For an MLTA terminal, the unit of
data is always record.

2-32

Specifying the Terminal

You can specify either a defined symbolic terminal name
or blanks in the record area for this operation. A defined
terminal name must be either the name under which the
terminal was allocated to the program, or, if a multicom-
ponent terminal, a sub-terminal name subordinate to that
name. A symbolic terminal name which is not assigned to
a terminal cannot be used with this operation. This oper-

ation must not be issued to the system operator console
(CONSOL).

You may use a blank symbolic terminal name with this
operation if your program is an SRT program. The blank
name references the terminal which requested the currently-
executing copy of the program. The CCP returns the name
of the requesting terminal into the record area before
returning control to your program. In the case of an
SRT program, once the requesting terminal has been
released (either by using a symbolic terminal name or

a blank terminal name), the use of a blank name is no
longer valid.

Considerations for Using Stop Invite Input

® This operation must not be issued as the initial data-
transfer operation to a requesting terminal which enter-
ed data as part of the program request. The only valid
operation which may be issued to such a terminal at
that time is an Accept Input.

® This operation can be issued only to a terminal capable
of transmitting data.

® A maximum input length greater than zero must be
specified for this operation.
GET TERMINAL ATTRIBUTES

The purpose of this operation is to determine the attri-
butes of a specified terminal.

Operation Code -

Hex Dec RPG I Meaning

0008 8 BB i¥H Get Terminal Attributes

Additional Requirements

® Provide a symbolic terminal name (or blanks) in the
record area,

® Set value of the maximum input length field in the
parameter list.

Information Returned
® Effective input length value in the parameter list,

® Special information in positions 10-15 of the parameter
list (see Special Information Returned in the Parameter
List following).

® Terminal attributes, in the record area (see Special
Information Returned in the Parameter List following).

® Return codes (see explanations in Appendix E):

0 Success

1 Data truncated

Special Information Returned in the Parameter List

Get Attributes returns the following information in the
last three fields of the parameter list. This is the only
situation in which you may want to reference information
in these fields. These fields are not returned by the

RPG It Get Attributes operation.

Positions 10-11: (Work Area A)

Contains the address of the Terminal Unit Block (TUB) for
the terminal specified. The Terminal Unit Block is an internal
CCP control block used to maintain control information for
each terminal defined in the system with a MLTATERM

or BSCATERM statement during the Assignment run.

Positions 12-13: (Work Area B)

BSCA Terminal: Contains the block length specified in the
terminal attributes set associated with this terminal.

MLTA Terminal: Contains the record length specified in
the terminal attributes set for the terminal.

Positions 14-15: (Work Area C)

BSCA Terminal: Contains the record length specified in
the terminal attributes set associated with this terminal.

MLTA Terminal: Contains the record length specified in
the terminal attributes set for the terminal.

Information Returned in the Record Area

As a result of a successful Get Attributes operation, the
following information is returned in the first 21 positions
of the data portion of the record area (all information is
in EBCDIC).

Position 1 - Allocation Status: Position 1 contains a
single character that indicates the following information
about the terminal specified:

EBCDIC

Character Meaning

1 Allocated to this program. All the
attribute data is provided.

2 Allocated to another program. All the
attribute data is provided.

3 Not allocated to a program. All the
attribute data is provided.

The specified name was a sub-terminal

name. The master symbolic terminal

name has been returned in record area.

All attribute data applies to the master

terminal.

J = Master is allocated to this program.

K = Master is allocated to another
program,

L = Master is not allocated to a program.

~ X <

X The specified symbolic terminal name is
not assigned to a terminal. No other
attribute data isprovided.

2 Terminal name not defined in the
system.

Standard Application Program interface to the CCP 2-33

Position 2 - Terminal Class: Position 2 contains a

single character representing the class of terminal as
follows:

EBCDIC

Character Terminal Class

0 CONSOL

5471 Printer/Keyboard {Models 10
and 12),CRT/Keyboard (Model 15)

1 MLTA terminal other than 1050

2 1050

3 3277M1 (480-character), 3284M1,
or 3286M1

4 3277M2 (1920-character), 3284M2,
or 3286M2

5 3275M1 (480-character), with or
without 3284M3

6 3275M2 (1920-character), with or
without 3284M3

7 3735

8 Another computer system (CPU) on 3
BSCA line.

9 3741 Data Station, 5231 Controller
Model 2

A Acquirable port!

B Acquirable port!

YFor S10C, see IBM System /3 Model 15D Channel Connected
Systems Program Reference and Logic Manual, GC21-5199,
For portline, see index entry portline exception to get terminal

attributes under heading portline application program interface
to CCP.

2-34

Position 3 - Line Number: Position 3 contains the MLTA
line or BSCA adapter number to which the terminal is
attached. Determine whether MLTA or BSCA by check-
ing position 2,

EBCDIC

Character Meaning

1 MLTA line 1/BSCA adapter 1 %
2 MLTA line 2/BSCA adapter 2

3 MLTA line 3

4 MLTA line 4

5 MLTA line 5

6 MLTA line 6

7 MLTA line 7

8 MLTA line 8

Position 4 - Online: Position 4 contains a single charac-
ter that indicates whether the terminal is logically online
or offline. This logical status of the terminal can be con-
trolled by the system operator by use of the /VARY com-
mand (see CCP System Operator’s Guide).

The value ‘Y’ indicates the terminal is online; the value
‘N’ indicates that the terminal is offline.

Position 5 - Line Type: Position 5 contains a character
that indicates the type of line on which the terminal
resides:

EBCDIC

Character Meaning

P Point-to-Point

C Control Station

M Multi-point Tributary (BSCA oniy)

S Switched

W Control Station - Switched (MLTA only)

Positions 6 - 21 - Terminal Attribute Set: These 16 char-

acters represent the 16 bit settings of the terminal attri-
bute set currently associated with the terminal. (See

index entry terminal attributes, also see the TERMATTR
assignment statement in CCP System Reference Manual.)

Record Corresponding
Area Bit in Attribute
Position EBCDIC Character-Meaning Set
6 0 - Translate data 0
1 - Do not translate data
7 0 - Upper case translate 1
1 - Lower case translate
8 0 - Answer switched line 2
1 - Call switched line
9 0 - Manual switched line 3
1 - Auto switched
10 Reserved 4
1 Reserved 5
12 Reserved 6
13 0 - DFF not used for this terminal 7
1 - DFF used for this terminal

14 0 - Data format not record mode 8
1 - Data format is record mode

15 0 - Data format not block mode 9
1 - Data is block mode

16 0 - Data format not message mode 10
1 - Data format is message mode

17 0 - No ITB support 11
1 - Suppecrt ITB characters

18 0 - Non-transparency mode data’ 12
1 - Transparency mode data

19 0 - Verify switched line exchange 1D 13
1 - No exchange ID verification

20 0 - No spanned record support 14
1 - Support spanned records

2 0 - No variable length record support 15
1 - Support variable length records

(record separators)
I Applies to data sent to the terminal (CCP output operations only).

Standard Application Program Interface to the CCP

2-35

Functions and Use of Get Attributes

This operation is used to determine the attributes of any
terminal defined by a BSCATERM or MLTATERM assign-
ment statement (see CCP System Reference). It is not
necessary that a terminal be allocated to a particular pro-
gram for that program to issue a Get Attributes request
to that terminal. The attributes of the specific terminal
requested are available in the parameter list and the record
area when the program resumes execution.

You might use a Get Attributes operation, for example,
to determine which component of a 3270 is being used
or whether or not the attribute set defined specifies
DFF,

As a result of the Get Attribute operation, 21 characters
of information are returned in the record area. If the
maximum input length in the parameter list is less than
21, then only the number of characters indicated are
returned. The effective input length field in the parameter
list indicates the number of characters of information
returned; the return code indicates data truncation occurs.

Specifying the Terminal
Issuing this operation with a terminal name that is not
defined causes CCP to return a Z in position 1 of the

record area.

You may use a blank symbolic terminal name with this
operation if your program is an SRT program. The blank

name references the terminal which requested the currently-

executing copy of the program. The CCP returns the name
of the requesting terminal into the record area before
returning control to the program.

In the case of an SRT program, once the requesting termi-
nal has been released (either by using a symbolic terminal
name or blanks}, the use of a blank terminal name is no
longer valid.

If a sub-terminal symbolic name is given with this opera-
tion, then the attributes of the master terminal are return-
ed along with the name of the master terminal to which
the sub-terminal name is subordinate.

2-36

Considerations

® |f an RPG |l program uses position 15 of the input
record area as the AlD byte to set record identifying
indicators, data from a previous operation can be lost
or overwritten when a Get Attributes operation is
performed.

® The PF 1, PF 2, and PF 3 keys return the characters
1, 2, and 3 respectively as the AlD character in position
15 of the record area. A Get Attributes operation can
also return the characters 1, 2, and 3 as valid allocation
status information in the same position of the record

area.

ACQUIRE TERMINAL

This operation enables a program to request a specific
terminal to be allocated to itself and to change the
attributes of the terminal.

Operation Code -

Hex

Dec

RPG 1l

Meaning

0009

0019

0029

0039

25

41

57

BBBI

BBAI

BBBI

BBCI

Acquire Terminal—use
the attribute set currently
associated with the ter-
minal (defined in
TERMATTR statement)

Acquire Terminal-change
the attributes to the set
identified in third field of
the parameter list

Acquire a command-
mode, non-PRUF ter-
minal (6704-SC2 only)

Acquire a command-mode
non-PRUF terminal and
change the attributes to
the set identified in third
field of parameter list
(6704-SC2 only).

Additional Requirements

® Provide a symbolic terminal name in the record area.

® Provide an attributes identifier in the parameter list,
if attributes are to be set by the operation.

Information Returned
Return Codes:
0 Successful
11 Acquire failed
Function and Use of Acquire Terminal

Application programs can issue teleprocessing operations
only to those terminals that are allocated to them. One
way to allocate terminals is to specify the terminals in
the PROGRAM assignment statement (see CCP System
Reference Manual). However, there may be times when a
program wishes to have a terminal dynamically allocated
to it. This can be done with the Acquire Terminal
operation,

The Acquire Terminal operation causes CCP to attempt to
allocate a specific terminal to a program. If the terminal

is online, not already allocated to a program, and not in
command mode (signed on), it is eligible for allocation. I
operating under control of 5704-SC2, an Acquire Terminal
operation can acquire a command-mode, non-PRUF
terminal. A non-PRUF terminal is a 3277 or 3275 that is
not formatted with a PRUF display.

A PRUF terminal remains a PRUF terminal until any non-
PRUF Put is issued to that terminal by the user or until
the clear key is pressed. If PRUFOF-YES is specified at
assignment time, the PRUF condition will be terminated
after an Accept Input operation is sent to that terminal.
This means a non-PRUF Put will not be required to put
the terminal in non-PRUF mode.

Along with this operation you may identify a specific
set of operational attributes to apply to that terminal
while allocated to your program. If an Acquire Terminal
operation is to set terminal attributes, then the identifier
value of the terminal attribute set (as given in the
TERMATTR assignment statement) must be given in

the third field of the parameter list (in decimal for RPG |1;
in hexadecimal for other languages). CCP checks the

attribute set specified against the terminal type for validity.

The Acquire Terminal operation is valid if the terminal is
already allocated to your program only if the Acquire
Terminal with Set Attributes modifier is issued to change
the attribute set. (On a BSCA line, the last transmission
must have completed a message; that is, EOT must have
been sent or received.)

Your program resumes execution upon the completion of
the allocation or upon recognizing that the terminal is not
available for allocation.

Specifying the Terminal

For this operation, you must specify a defined symbolic
terminal name in the record area. The following names
may not be specified for the operation:

® The name of a terminal already allocated to the pro-
gram (except the requesting terminal, immediately
after the first successful Accept Input).

® A symbolic sub-terminal name.

® A symbolic terminal name that is not assigned to a
terminal.

® CONSOL

® Blank terminal name,

Considerations

When both DFF and non-DFF programs can be requested
from the same 3270 terminal, at least two TERMATTR
statements (DFF3270-YES and DFF3270-NO) must be
defined in the assignment set for these programs. The first
terminal attributes set defined in the ATTRID parameter
of the BSCATERM statement is the default attribute set
for the terminal. A program that uses the requesting ter-
minal in a manner other than that defined by the default
attribute set must perform an Acquire Terminal operation
with the appropriate attributes identifier to modify the
terminal attributes. For further information about acquir-
ing switched BSCA or ML.TA devices, see Program-Selected
Terminals and Switched Lines in Chapter 3.

Standard Application Program Interface to the CCP 2-37

Generic Acquire Terminals (5704-SC2 Only)

The purpose of this operation code is to find an available
command-mode, non-PRUF terminal or port by using a
generic key given in the record. The terminal or port is
found by matching the generic key to the terminal or port
name that begins with the same characters.

Operation Code

Hex Dec RPG 1} Meaning

0069 | 0105 | bbF! Generic Acquire

0079 | 0121 | bbGI Generic Acquire and

Set Attributes

Additional Requirements

® Provide enough of the terminal name or port name
needed to select a terminal within a defined group.

® Provide an attribute identifier in the parameter list, if
acquiring a terminal from a group of terminals (for
example, that begin with PRNT), and if attributes are
to be set by the operation.

® Attribute may not be set for the port terminal.

® After shutdown is entered and accepted port terminals
may not be acquired.

Return Codes

00 Successful. Name of terminal or port acquired is
given in the record as the terminal name.

04 Acquire failed. Port terminals may not be acquired
after shutdown is entered and accepted.

11 Acquire failed. None of the terminals or ports in

the group selected are available to be acquired at
this time.

2-38

Example

In the first six bytes of the record, the user program places
the first characters (see note) of the name of the terminals
or port available to be acquired. Then the user program
issues the GENERIC ACQUIRE operation code. The first
terminal or port that is available, that may be acquired, and
whose name begins with the characters contained in the
record is then acquired. The name of the terminal or port
which is acquired is returned to the user program in the first
six bytes of the record.

If the user program was looking for an available port it
would use the name given on the PORTPRF X parameter of
the PORTLINE statement.
// PORTLINE MODE-P, ..., PORTPRFX-PORT
Generates: PORTO1

PORTO2
PORTO3

And the assignment set also has a terminal defined as
follows:

// TERMNAME NAME-TERMO1
// TERMNAME NAME-TERMO02 ¢ Terminals
// TERMNAME NAME- . . . J

// TERMNAME NAME-PRNTO1]

// TERMNAME NAME-PRNTO2 ¢ Printers

/I TERMNAME NAME-PRNTO3 |

When using a TERMNAME of PORTbb, any available and
acquirable port would be acquired (PORTO1, PORTO02,
PORTO3,...).

Note: The number of characters used depends on how
many are needed to select the group of terminals or ports
wanted.

In the above example only PObbbb was needed to acquire
any port. If the user program had several printers, it could
name the printers PRNTO1, PRNTO02, and acquire any
available printer that was not being using by another
program by specifying PRNTbHb.

Port Command Request (5704-SC2 Only) Function and Use of Port Command Request

The purpose of this operation code is for issuing commands The PCR (port command request) op code operates func-
and program requests to the command processor via an tionally the same as the CCP PUT, MSG operation code.
acquirable port. The command issued by the PCR operation code is given

to the command processor of the other system. If a paired
port in the other system was owned by a program, when

Operation Code the PCR is issued, then the paired port is released from
the program and returned to the command processor.
Hex Dec RPG 1l Meaning The program that would have received the command is
instead given a return code of 08 (port released) on the
003A | 0058 | bBCK Port Command Requests program’s next read operation or an 05 (data pending do
a read) on the program’s next put operation.

Additional Requirements Specifying the Terminal

® All commands must be issued with the PCR operation You can specify either a defined symbolic port terminai
code. name or the PORTPRFX name if it is a required port.

A symbolic terminal name cannot be used with this

® Commands allowed are: /MSG, /FILES, and program operation. A PCR operation canrot be issued to the
requests. CONSOLE.

® Commands may be issued only to an acquirable port.

Considerations
® Set the value of the output length field in the parameter
list {see exception under RPG |1 for SPECIAL files). ® The PCR operation must not be issued as the initial
The output length does not include the 6 character port data-transfer operation to a requesting terminal which
name. entered data as part of the program request. The only
valid command that may be issued to such a terminal
® A symbolic port terminal name must be provided in the at that time is an Accept Input command.
record.
® A blank terminal name may not be used since the
® The port prefix may be used as the port name if a port requestor of a SRT (single requesting terminal)
was required on the PROGRAM statement at assign- program by a port terminal is a nonacquirable port.

ment using the port prefix.

® An output length greater than zero must be specified
for this operation.
Return Codes

® This operation must not be issued to a terminal that
0 Successful (no exception conditions) has an outstanding invite input operation.

1 Data truncated
5 Data pending (program must do a get)

-n Negative return codes (}/O errors and device status
conditions—see explanations in Appendix E).

Standard Application Program Interface to the CCP 2-39

TASK CHAIN REQUEST (5704-SC2 ONLY)
This operation allows a program to request a second pro-

gram that is to execute as an unrelated task. Data can
optionally be passed with the request.

Operation Code

Hex Dec RPG 11 Meaning

002A | 0042 BB BK Set up a program request

from this program.

Additional Requirements

® Provide the name of the requested program in the name
field of the record area.

® Specify either the output length or O (if no data with
the chain request) in the parameter list (see Performing
CCP Operations with Special in Chapter 6).

Information Returned
Return Codes:

0 Successful operation (Chain Task Request
accepted)

12 Request rejected (maximum number of chain
task requests already queued)

13 Request rejected (insufficient TP buffer avaiiable)

Function and Use of the Task Chain Request

When successfully executed by a CCP program, the Task
Chain Request operation causes a second program to be
loaded and executed. [f the resources (files, terminals, or
storage) required by the second program are not available,
the second program is automatically queued. If data is
presented with the Task Chain Request and PGMDATA.-
YES was specified on the PROGRAM assignment state-
ment, the data is passed to the second program when that
program issues its first Accept input operation.

Following are some examples of Task Chain Request
operations {for additional information, see /BM System /3
Communications Control Program System Design Guide,
GC21-5165):

2-40

Task Chaining from a Program Loaded from the Console:
PGM1 is loaded from the system operator’s console by
entering the program request: PGM1bCPGM2, PGM1
issues an Accept Input operation and receives the data
CPGM2, and sets up the chain request.

Console
l-> PGM1 1/0 Area CPGM2
® Accept [CPGM24|
® Chain -
Request

Note: The output length is zero in this example because
no data is passed between programs.

Task Chaining with Data From A Program Loaded From a
Terminal: PGM1 is loaded from a terminal by entering the
program request: PGM1BCPG2BBDATA. When PGM1
issues an Accept Input operation, the program receives
CPG2BBWDATA as data, sets up and issues the chain request
for CPG2, and passes the characters DATA to the requested
program. When CPG2 is loaded, it issues an Accept Input
operation to receive the characters DATA. If both accept
operations are successful, PGM1 receives a 00 return code,
CPG2 receives a +14 return code.

Terminal
PGM1 CPG2
1/0 Area
® Accept ® Accept
[CPG268DATA|
® Chain
Request

Note: 1n this example, the output length is set to four.

Multiple Task Chaining Involving Sort Programs: PG1 is
requested from a terminal in this example. No program
data accompanies this program request. When PG1 re-
ceives control, it sets up and issues the chain request for
SORT1. SORT1 is then loaded and begins executing. PG1
then sets up and issues the chain request for SORTO02.
When SORTO02 is loaded, it issues an accept operation to
receive the data passed from PG1, performs the sort func-
tion, and sets up and issues a chain request for PGM2.
PGM2 is then loaded and executed.

Note: It is possible for PG1, SORT1, SORT02, and PGM2
to be executing at the same time, provided the programs do
not have conflicting resource requirements. It is not
necessary that one program end before another can begin
executing.

Terminal r—
SORT1
PG1
1/0 Area
® Chain
Request SORT1#}
® Chain |SORT02PGM2'2 SORTO02
Request —>
® Accept
® Chain
Request

1/O Area

1
[PGM2us, LPGM2

1Output length is zero.
2Output length is four,

Note: CCP/Disk Sort issues a chain request if chaining was
specified during the generation of the sort program.

Multiple Chain Requests Involving both Sort and Nonsort
Programs: PG1 is loaded from the console by entering the
program request: PG1BS1¥S2BP16BP2. PG1 issues an
accept operation to receive the program data, and sets up
the chain request. Sort programs S1 and S2, and nonsort
programs operate similarly to the preceding examples.

Console

L»PG1

I/0 Area

® Accept [«—|CONSOLS18S2BP16P2|

® Chain —»lS1bb5b$lz5‘S2h$lP1h$lP2|
Request —-l

N

® Accept |«—{PG16BBS2BP18P2|

® Chain ——P!SZMWZSP1BP2|
Request

N

® Accept

—{S18BBYP16P2)

® Chain —{P1 lélbléléP2|
Request —I
L

® Accept <-._|82bSbSbSbSP2|
® Chain P2b bbb

Request -—J

L¢3

Note: PG1 and P1 must be set up by the programmer to
build the chain requests from the input data and to move
the program name into the name field. S1 and S2, the sort
programs, are set up to use up to 6 characters of input or
until the first blank (delimiter) is detected, as the name of
the program for a chain request. The remaining characters
are passed as data.

Standard Application Program Interface to the CCP 2-41

Considerations

® Symbolic file names that are valid for the requesting
program are not valid for the requested program because
the /FILE commands and SYMFILE statements do not
resolve file name references.

® The MAXCHAIN parameter of the SYSTEM assignment
statement must contain a value greater than zero for
programs that use the Task Chain Request operation. |f
a Task Chain Request operation is made and MAXCHAIN-0
was specified in the assignment set, the program is termi-
nated with a 3F termination code. The MAXCHAIN
parameter has a default value of zero.

Once a Task Chain Request is accepted by CCP and a
return code returned to the requesting prograrn, any
further diagnostics and messages for that request are
issued to the system operator’s console.

® CCP allocation does not normally queue requests for
any unit record devices. If a Task Chain Request
operation has been successfully executed, but the
chained task requires a unit record device that is not
available, the chained task is rejected and a message is
issued to the system operator’s console. An exception
to this is the Model 15 CCP; it will queue an unavail-
able printer if the printer is spooled or if the printer is
permanently allocated to CCP and not in use by an
NEP or MRT.

If a program that issued a Task Chain Request operation
abnormally terminates, the program requested by the
task request is allowed to execute.

® |f a CCP user program does not terminate immediately
after a Task Chain Request operation and instead,
invokes a program that requires resources made
unavailable by the invoking program (such as a NOSHR
disk file), the invoked program is queued until the
invoking task releases the resources or terminates.

® When a series of task chained programs are active when

SHUTDOWN is entered, the chained programs continue
executing to normal end of job.

242

® A potential tock-up situation exists when using Task
Chain Requests. Each Task Chain Request requires
TPBUFFER to hold the requested program name and
any data to be passed to the requested program. Also
required is one of the task chaining contro! blocks as
specified on the MAXCHAIN parameter of the SYSTEM
assignment statement. Either of these resources can
become exhausted. When this happens, another Task
Chain Request will be rejected with a return code of
12 or 13. A program receiving such a return code should
not loop on the Task Chain Request. If a program loops
on a Task Chain Request, lower priority CCP user tasks
that are being task chained are prevented from doing an
ACCEPT input which frees the above mentioned
resources. A preferred action to take when receiving a
12 or 13 return code is to issue a WAIT operation and
then retry the Task Chain Request or issue an ACCEPT
if it is possible that the program has Task Chain Request
data queued.

RELEASE TERMINAL
The Release Terminal operation enables an application
program to give up control of a specific terminal in

order to make the terminal available to the rest of the
CCP system.

Operation Codes

Hex] Decl RPG H] Meaning

000A 10 BBBK Release terminal and the
Communication line.
001A 26 BBAK Release terminal - keep

line allocated to the
program (switched lines
only).

Additional Requirements

® Provide a symbolic terminal name (or blanks) in the
record area.

Information Returned

® Count of Invite Inputs outstanding for this program,
in the third field of the parameter list.

Function and Use of Release Terminal

When issued to a terminal on a nonswitched communica-
tion line, a Release Terminal operation causes CCP to
release the specified terminal from the program, making
it available to other programs (if it was not the request-
ing terminal) or freeing it to enter commands {if it was
the requesting terminal). When issued to a terminal on
a switched line, Release Terminal can be issued so that
it releases the terminal and either:

1. Keeps the line allocated to the program, or
2. Releases the line, making it available to other pro-
grams.

Keeping the line breaks the connection to the terminal,
but allows the program to acquire any terminal on the
line, since no other application program can gain access
to the line.

After completion of the Release Terminal operation the
third field of the parameter list contains a count of the
outstanding Invite Input operations for the program,
including any Invite Input operations issued by the CCP
because of data accompanying a program request.

A typical use for the Release Terminal operation is to
release a requesting terminal from a multiple requesting
terminal (MRT) program (see index entry) after the pro-
gram completes its work for the terminal. When an MRT
program is handling its maximum number of requesting
terminais, it must release a terminal before it can accept
a request from a new terminal.

Your program should issue this operation when it no
longer needs a specific terminal, so that the terminal can
be available to other programs. Possibly the terminal has
been yielding negative return codes because of a malfunc-
tion and the program can make no productive use of the
terminal. The terminal cannot be placed in offline status
by the system operator while it is allocated to a program.
Thus, only after an application program releases the termi-
nal can it be placed offline.

Specifying the Terminal

For this operation you may specify either a defined
symbolic terminal name or blanks in the record area. A
defined terminal name must be the name under which the
referenced terminal was allocated to the program.

The use of a blank symbolic terminal name is valid for
this operation only if the program is an SRT program.

The blank name references the terminal which requested
the currently executing copy of the program.

None of the following may be specified as the symbolic
terminal name:

® An undefined name (a name not assigned to a terminal)

® The defined name of a terminal not allocated to this
program

® A defined name which references a terminal allocated
to this program, but which is not the name under
which that terminal was allocated to the program

® A sub-terminal name

® CONSOL-the console is automatically released by
the CCP at the beginning of execution of a program
requested from it.

Considerations

® This operation must not be issued as the initial data-
transfer operation to a requesting terminal which
entered data as part of the program request. The
only valid operation which may be issued to such a
terminal at that time is an Accept Input.

® This operation must not be issued to a terminal which
has an Invite Input outstanding to it.

® In order to issue Release Terminal on a BSCA line, the
line must be at EOT.

® (Model 10 and Model/ 12 CCPs) SRT programs using
symbolic files must open the symbolic file before releas-
ing the requesting terminal. In RPG [l and FORTRAN,
all files are opened before any 1/O operations can be
performed by the program; however, COBOL and Basic
Assembler programs must explicitly open all symbolic
files prior to issuing a Release Terminal operation to the
requesting terminal.

Standard Application Program Interface to the CCP 2-43

RELEASE AND TASK CHAIN (5704-SC2 Only)

The Release and Task Chain operation enables an application
program to give up control of a specific terminal and, at the
same time, issue a program request to the released terminal,
The released terminal is then allocated to the requested
program. Any symbolic file references associated with the
released terminal may be used by the requested program.

Operation Code

Hex | Dec | RPGIl { Meaning

004A| 74 bHDK | Release terminal and the com-
munication line and issue the
program request given in the
record area.

Additional Requirements

® Provide a symbolic terminal name {or blanks) in the
record area.

® Place the program name to be requested in the record
area after the terminal name.

® |f data is to accompany the request, place a blank after
the program name that is to be followed by the data.
The format is the same as that which the terminal
operator would type if the request were to come from
the terminal itself.

® Specify the total output length {program name plus the
blank and data if data is supplied). Do not include the
terminal name. An output length of zero is not allowed.
The maximum length is limited by the size of the TP
buffer (add 14 to the length if using SUBR92).

Information Returned

Return Codes:
0 Successful operation (terminal was released and
the program request has been accepted.)

13 Rejected {terminal was not released because
sufficient space was not available in the TP buffer
for the program request.)

If the operation is accepted (return code = 0), the count of
outstanding invite inputs is returned in the third field of the
parameter list.

Note: This is the same field that contained the PUT length.

244

Function and Use of the Release and Task Chain

When successfully executed by a CCP program, CCP will
release the terminal from the program and cause a second
program to be loaded on and executed by the terminal. If
the resources (files, terminals, or storage) required by the
second program are not available, the second program is
automatically queued. The terminal does not have to be
in the /QUEUE mode. If data is presented along with the
program name and PGMDATA-YES was specified on the
PROGRAM statement of the second program, the data is
passed to the second program when that program issues
its first Accept Input operation. The terminal released
from the first program is now allocated to the second
program. The terminal being released is placed in a non-
PRUF mode.

The Release and Task Chain operation may be used when a
terminal or symbolic file reference is needed by a subsequent
program in a chaining sequence. See Release and Task Chain
Involving Sort Programs later in this chapter,

Specifying the Terminal

For this operation, you may specify either a defined symbolic
terminal name or blanks in the record area. A defined
terminal name must be the name under which the referenced

terminal was allocated to the program.

The use of a blank symbolic terminal name is valid for this
operation only if the program is an SRT program.

The blank name references the terminal that requested the
currently executing copy of the program.

The referenced terminal must be a command capable terminal.

None of the following may be specified as the symbolic
terminal name:

® Anundefined name (a name not assigned to a terminal)

® The defined name of a terminal that is not allocated to
this program

® A defined name that references a terminal that is allocated
to this program, but the name is not the name under
which that terminal was allocated to the program

® A terminal that is not command capable

® A sub-terminal name

® CONSOLE—The console is automatically released by CCP

at the beginning of the execution of a program requested
from the console

Considerations

® This operation must not be issued as the initial data-
transfer operation to a requesting terminal that entered
data as part of the program request. The only valid
operation that may be issued to such a terminal at that
time is an Accept Input operation.

® This operation must not be issued to a terminal that has
an outstanding {nvite Input operation.

® |f the terminal is on a BSCA or BSCC line, the line must
be at EOT.

® Once the Release and Task Chain operation is accepted
by CCP and a return code is returned to the requesting
program, any further diagnostics and messages for that
request are issued to the released terminal.

® CCP allocation does not normally queue requests for any
unit record devices. If a Release and Task Chain oper-
ation has been successfully executed, but the requested

program requires a unit record device that is not available,

the requested program is rejected and a message is issued
to the terminal released by the operation. An exception
to this is the Model 15 CCP; it will queue an unavailable
printer if the printer is spooled or if it is permanently
allocated to CCP and not in use by an NEP or MRT.

® [f a program that issues a successful Release and Task
Chain operation later abnormally terminates, the pro-
gram requested by the operation is allowed to execute.

® |f a CCP user program does not terminate immediately
after a Release and Task Chain operation and, instead,
invokes a program that requires resources (such as a
NOSHR disk file) made unavailable by the invoking
program, the invoking program is queued until the
invoking task either releases the resources or terminates.

® The Release and Task Chain operation issues a program
request for the terminal operator, and the program re-
quest is processed as though the terminal operator had
entered it. |f the terminal is not signed on or if the sym-
bolic file references are undefined, the program request
will be rejected, and a message will be sent to the ter-
minal.

When a series of programs are requested by the Release
and Task Chain operation while SHUTDOWN is entered,
the requested programs continue executing to normal end
of job.

When SHUTDOWN is entered and a command mode
terminal is owned by CCP and not by an application, the
teriminal is automatically signed off. |f an application
then acquires the terminal and issues a Release and Task
Chain operation, the program requested by the operation
is rejected because the terminal has been signed off.

Notes:

1.

Symbolic file names that are defined for the terminal
being released may be used by the program being
requested if the requested program is an SRT. The /FILE
command and SYMFILE statements will resolve the file
name references.

. This operation does not require Chain Task Request

queues (MAXCHAIN) to be specified on the SYSTEM
assignment statement.

Release and Task Chain involving Sort Programs

The Release and Task Chain operation may be used to
invoke a CCP/disk sort program. This allows symbolic
files defined to the terminal to be used by the CCP/disk
sort program. The CCP/disk sort program can continue to
pass the symbolic file reference and terminal to subsequent
sort or or application programs. An option is allowed in
the sort header card to allow the CCP/disk sort program to
issue a Release and Task Chain operation upon the
completion of the sort.

Standard Application Program Interface to the CCP 245

In the following example, the terminal operator requests program
PG1. PG1, in turn, requests SORT1 and instructs SORT1 to
request SORTO2, SORTO02 then requests PGM2.

Terminal (TERMO1)

PG1

® Rand TC ———|TERMO1SORT1HSORTO2HPGM?2 |

Output length = 17

»1 SORT 1
® Accept ~«——— | TERMO1SORT02HPGM2 |

Effective input length = 11

1
® Rand TC —>| TERMO1,SORT02bPGM2 |

Qutput length = 11

! CCP/SORT issues the Release and Task Chain Operation if this
operation is specified during the generation of the sort program.

2-46

»{ SORTO02

® Accept - ITERM01|PGM2 I

Effective input length = 4

1
® Rand TC | TERMO1,PGM2

Output length = 4

»{ PGM2
o Accept ~4———— |TERMO1

Effective input length =0

PGM2 then displays the results of the two sorts to the terminal
TERMO1. TERMO1 is a allocated to PGM2 as its requester.

| lCCF’/DISK SORT issues the Release and Task Chain Operation if this
operation is specified during the generation of the sort program.

Note: 1f the sort program is requested by a Task Chain
operation or is requested by the console operator, the

sort program cannot issue the Release and Task Chain
operation because no terminal exists for the Release and
Task Chain operation. In the above case, if the sort program
has been passed data with the request, the sort program

will perform a Task Chain operation instead.

Standard Application Program Interface to the CCP 247

SHUTDOWN INQUIRY

The Shutdown Inquiry operation is used to determine
whether the system operator has requested CCP system
shutdown.

Operation Code

Hex Dec RPG 11 Meaning
0000 0 B600 Shutdown Inquiry
0100 256 b AGO Shutdown Delay Inquiry
{5704-SC2)

Additional Requirements

None,

Information Returned

® Count of outstanding Invite Inputs in third field of
parameter list (5704-SC2 only)

® Return Codes:

0

4
17

2-48

Shutdown not requested

Shutdown requested

Shutdown delay has been entered
and the delay time has not

expired (only for the

Shutdown

Delay Inquiry Operation) 5704-SC2 only

Function and Use of Shutdown Inquiry

The system operator can request shutdown of the CCP

at any time. When he does, programs currently running
should terminate their own execution in a controlled
manner, rather than be cancelled by the system operator
without warning. The Shutdown Inquiry operation deter-
mines whether or not shutdown has been requested and
sets an appropriate return code in the parameter list.

If you want your program to perform a controlled termi-
nation when shutdown is requested, you may include a
Shutdown Inquiry (or an Accept Input) and a test of
the return code in your program. For example, perhaps
you want your program to inform attached terminals
that the CCP is about to shut down before your program
terminates.

Shutdown Delay Inquiry (5704-SC2 only) allows the
application program to inquire if shutdown delay has been
entered by the system operator. A return code of 17 is
returned if the system operator has requested shutdown
delay and the time has not expired. Once the time has
expired, a 04 is returned to the program. This allows a
PRUF program to inform the terminal operator of the
shutdown delay, or this provides an orderly termination of
the PRUF program.

WAIT OPERATION (Model 15 only)

The Wait operation enables an application program to
suspend operation for a specified time period (hours/
minutes/seconds).

Note: To use the Wait operation, the timer option must be
selected at system generation time.

Operation Code

Hex Dec RPG 1I

Meaning

0014 | 20 BBAD Wait Operation

Additional Requirements

® Set output length equal to 10. (If using RPG SUBR92,
set output length to 24.)

® Specify the time limit in the user’s record area.

Information Returned

Return Code O — Successful

Function and Use of Wait Operation

This operation enables the application program to issue a
wait request for the amount of time specified (in decimal)
in the data area. The data area is specified in the following
format:

l Terminal name l ¥ | hhmmss By
1-6 7 8-13 14-16
where:
1-6 — Symbolic terminal name
7 — Blank

8-13 — hh = number of hours in decimal
mm = number of minutes in decimal
ss = number of seconds in decimal

14-16— Blanks

Wait Operation Format for RPG SUBR92

terminal

output
op code length name |) | hhmmss | hﬂhﬁb|
14 5-8 9-14 15 16-21 22-24
where:

1-4 — BBAD

58 — 0024

9-14 -~ Symbolic terminal name

15 — Blank

16-21— hh = number of hours in decimal
mm = number of minutes in decimal
ss = number of seconds in decimal

22-24 — Blanks

Your program resumes execution after the wait operation
is completed.

Standard Application Program Interface to the CCP 249

2-50

This chapter describes several aspects of communications
programming that are important for you to understand
before you write application programs that use the CCP
communications interface facilities. (The interface

facilities are described in Chapter 2 and are further defined

in later chapters for each programming language.) The
following topics are discussed:

® Terminal classes

® Program use of terminals

® Program types

® Program attributes

® Communications program logic

® Symbolic files

® Switched lines

For overall system design and performance considerations
involving these topics, refer to /BM System /3 Communi -

cations Control Program System Design Guide,
GC21-5165.

TERMINAL CLASSES

Under the CCP, terminals are divided into two classes,
based on whether or not they are allowed to enter com-
mands to the CCP:

® Command terminals

® Data terminals

Terminals are designated either command terminals or
non-command (data) terminals during CCP assignment.

(See BSCATERM and MLTATERM assignment statements
in CCP System Reference Manual.)

Chapter 3: Communications Programming Topics

Command Terminals

A command terminal can request the CCP to perform
special services; the most significant service request is a
request to load and initiate a program. Command termi-
nals must be capable of both input and output, since
they must be able to transmit commands to the CCP

and receive messages from the CCP. Once a command
terminal has requested a program, it is capable of sending
and receiving data under direction of the program. The
terminal remains under control of the program until one
of the following occurs:

® The terminal is released by the program.

® The program terminates.

® The terminal operator enters a /RELEASE command,
releasing the terminal from the program.

At that time, the terminal is again allowed to enter com-
mands to the CCP. A command terminal that is not cur-
rently signed on to enter commands may also be used by
a program to send and receive data.

When a switched line with one or more command termi-
nals is not under control of a program, the CCPawaits
calls from command terminals on that line.

Data Terminals

A data terminal cannot request CCP services, but can only
transmit and receive data under control of programs that
use the terminal. When a program releases the terminal,
the terminal is not used until it is required by another
program,

Communications Programming Topics 3-1

A switched line that is connected only to data terminals
is allocated by the CCP to a single application program
at a time, Connections are established {answers or calls)
when the program performs 1/O operations referencing
the symbolic name of a terminal on the line {see index
entry switched lines).

A data terminal might have only input capability, only
output capability, or both input and output capability.

PROGRAM USE OF TERMINALS

Your communications program differentiates between
terminals with which it communicates based on whether
the terminal requested the program.

Requesting Terminal

A requesting terminal is a command terminal that entered
into communication with your program by entering a
request for your program while in command mode (see
CCP System Operator’s Guide for a description of com-
mand mode and program requesting). Once a requesting
terminal is in communication with your program, it is in
data mode and is directed by your program to transmit
data, receive data, or both.

From a programming point of view, there are few dif-
ferences between handling requesting terminals and
program-selected terminals. However, the following con-
siderations apply to requesting terminals, but not program-
selected terminals:

® A requesting terminal can include data with a program
request (if the program is written to handle data with
the program request, see PROGRAM assignment state-
ment in CCP System Reference), therefore, the program
can issue an Accept Input operation as the first opera-

tion to the terminal (the CCP in effect issues the first
Invite Input operation to the terminal in this case).

® A program that handles only a singie requesting termi-
nal (see Program Types) can use a blank terminal name
as a reference to the requesting terminal.

® The program does not know which terminal will be the
requesting terminal and, therefore, must determine
which terminal is requesting by examining the terminal
name returned with an initial operation.

3-2

Program-Selected Terminal

A program-selected terminal is a terminal that has not
requested your program, but is needed by your program
to transmit data, receive data, or both.

A program-selected terminal can be attached to your
program in two ways: it can be either specified at assign-
ment time as required for your program or acquired by
your program during its execution by means of an Acquire
Terminal operation. A program-selected terminal can be
one of the following:

® A data terminal in standby mode.
® A command terminal in initial mode.

® (5704-SC2 only) A command terminal in command
mode and not formatted by a PRUF display.

There are hardware characteristics of certain of the MLTA
terminals that need to be considered in designing and
writing programs that use program-selected terminals:

A request for a program that uses a program-selected
terminal is rejected by the CCP if the terminal is on a
switched line that is already connected.

Data Terminals: No special consideration.

Command Terminals: Command terminals operating
under 5704-SC1 must be in initial mode in order to be
program selected. Command terminals operating under
5704-SC2 must be in either initial mode or in command
mode and not formatted by a PRUF display in order to
be program selected. However, while in initial mode,
command terminals are invited for input by CCP. Thus,
one of the steps in the allocation of a command terminal
in initial mode is a Stop Invite Input request from CCP.
If the Stop Invite Input fails (that is, the read to the
terminal cannot be canceited), the program selection of
the terminal is considered to have failed. Thus, the
capability of cancelling a read operation is crucial to the
program selection of command terminals.

There are certain terminal types for which reads cannot be
cancelled once they have been issued. Once a read has been
issued to the terminal, no other operation can be started to
the terminal until the input operation completes. The
terminals whose hardware characteristics fall into this
category are:

1. 2741

2. 2741 Dial

3. 2740 Dial with transmit control

4. 2740 Dial with transmit control and checking
5. 3767 simulating a 2741

6. 5100 simulatinga 2741

Therefore, if these terminals are assigned as command
terminals, it will be extremely difficult for them to be
program selected. Application programs using these
terminals should be written so as to handle them as request-
ing terminals. This may require writing a program as a
multiple requesting terminal (MRT) program.

PROGRAM TYPES

Two general types of communications prog-ams can be
written to run under the CCP:

® Single Requesting Terminal {SRT) Program

® Multiple Requesting Terminal (MRT) Program

Programs are designated as either MRT programs or non-
MRT (SRT) programs by the PROGRAM statement dur-

ing CCP assignment (see CCP System Reference Manual).

If the MRTMAX keyword is used on the PRCGRAM state-
ment, the program is considered an MRT program. (MRT-
MAX specifies the maximum number of requesters the pro-
gram can handle concurrently.) SRT and MRT programs
have different characteristics and place significantly different
requirements on the application programmer (see Exam-
ples of Application Program Logic, later in this chapter).

Single Requesting Terminal (SRT) Program

An SRT program can service the needs of only one
requesting terminal on each execution (that is, from the
time the program is initiated by the CCP urtil it termi-
nates). A typical example of an SRT program is an
inquiry program that processes one or more messages
from its requester and then terminates, using system
resources only briefly. The program may access or
update several different files in order to complete its
processing. An SRT program might also transmit
batched data to a host system, such as a System/370,
where the host is the requester of the program.

An SRT program can be written to acquire {ar require,
by means of the TERMS parameter of the // PROGRAM
assignment statement) one or more program-selected

terminals while servicing the requesting terminal. For

example, perhaps the requester wants information from
several terminal locations or wants to send information
to other locations. An example of such a program might
be an inquiry program that serves a credit office applica-
tion. The requesting terminal asks for information about
a customer from terminals in other offices by issuing a
message to program-selected terminals in those offices
specifying the customer identification. The attached
offices reply with the latest credit information.

tf sufficient resources are available, the CCP can load and
initiate separate, duplicate copies of an SRT program, each
copy servicing a different requesting terminal. If resources
are not available, second and subsequent requests for the
program may be placed on a queue by the CCP (see /Q
command in CCP Terminal Operator’s Guide). Multiple
copies of an SRT never-ending program are not permitted
under the CCP.

Multiple Requesting Terminal (MRT) Program

An MRT program can service requests from one or more
terminals each time it is executed. An MRT program
may be written to handle multiple requesting terminals
concurrently. The maximum number is specified by the
MRTMAX keyword of the PROGRAM statement at
assignment time. Requests for the program that are
received while the program is already handling its maxi-
mum number of terminals are queued by the CCP (if the
requester has indicated queuing) to be honored when the
program has released a terminal; therefore, you need not
check this in your program. Only a single copy of any one
MRT program can be in main storage at a time.

New requesting terminals are attached to an MRT pro-
gram by means of Accept Input operations (see index
entry). A program is notified that a new terminal is
attached by receiving a new terminal name from an
Accept Input.

MRT programs must maintain status information regarding
several requesting terminals in order to remember which
terminals are attached and the status of each terminal rela-
tive to the program.

You must explicitly release a requesting terminal once
your program has completed the processing required by
the terminal (see index entry Release Terminal operation).
if not released, the terminal remains allocated to the pro-
gram until the program terminates, An MRT program
should be written to terminate when it has no more
requests to service, unless the program is defined as a
never-ending program (see Program Attributes).

Communications Programming Topics 3-3

Many application programs, both order entry and inquiry,
could be written in either single requester or multiple
requester form. If a program is likely to be often requested
from more than one terminal concurrently, it is more
efficient to code the program as an MRT program, since
the MRT version is not as likely to cause resource conflicts
as are numerous requests of an SRT program. Also, an
MRT program should take less main storage space than
separate copies of an SRT program.

An MRT program can be defined as MRTMAX-1 on the
PROGRAM assignment statement. In this case, only one
request is processed at a time, as in an SRT program, but
subsequent requests for the program can be queued to the
same copy of the program if the requesting terminal has
elected to queue requests (/Q command). An MRT program
defined in this way does not have to keep track of multiple
attached terminals; however, the program cannot process
multiple requests concurrently and only one copy of the
program can be in main storage at a time.

SPECIAL PROGRAM ATTRIBUTES

The two geaneral communications program types—SRT and
MRT—may have additional special attributes:

® Never-ending

® Serially reusable (Models 10 and 12)
® Dedicated (Models 10 and 12)

® Prograrn request under format

® Sort

The PROGRAM assignment statement specifies whether a
program has any of these attributes.

Never-Ending Program

If a program is to be requested frequently throughout the
CCP run and if sufficient main storage is available, it can
be defined as a never-ending program (NEP). An NEP, once
it has been loaded and initiated by the CCP, does not
terminate (except in an unusual situation) until the CCP is
shut down. Under Mode! 10 and Mode! 12 CCP, once an
NEP is loaded, the main storage it occupies is permanently
unavailable for other programs, even if it terminates in an
unusual situation. Under Model 15 CCP, the main storage
occupied by an NEP is released for use by other programs
if the NEP terminates in an unusual situation.

An NEP with no work to do {no outstanding Invite Inputs)
issues an Accept Input operation and waits until it is
requested again. See Disk File Considerations in Chapter 9:
Program Preparation for a Model 15 CCP consideration in
this situation.

When using NEPs, you should be aware of facts concerning
system resource allocation:

® While a particular system resource is allocated to a NEP,
requests for programs that also require the resource will
be rejected, regardless of the queuing status (/Q or
/NOQ) of the requesting terminal.

® When an NEP requires a system resource that is already
allocated to another program, the request for the NEP
will be rejected without regard to the queuing status of
the requesting terminal. Under Model 15 CCP, a request
for a NEP can be queued if CCP is handling the maximum
number of tasks or if user program area is not immedi-
ately available.

An NEP should either check for the shutdown return code
or issue the Shutdown Inquiry operation so that CCP shut
down can be successfully completed.

When writing an SRT program as a never-ending program,
be aware that second and subsequent requests for the pro-
gram are rejected by the CCP.

To ensure that the required main storage is available for
the never-ending program, it is recommended that all
never-ending programs be loaded into main storage prior
to requesting any other programs. Main storage frag-
mentation could result if never-ending programs are not
started as the initial programs in the system.

Note to Model 10 and 12 Users: It is especially important
to load NEPs first if they use the 3270 Display Format
Facility, because the Display Format Facility is loaded into
the user program area for execution.

Note to Model 15 Users: CCP always loads NEPs at the
opposite boundary of the user program area from non-
NEPs to avoid fragmentation of this area, which couid
otherwise severely impair CCP performance.

Serially Reusable Program (Models 10 and 12)

A serially reusable program terminates normally after
executing and can be re-executed without requiring a

fresh copy of the program to be loaded in main storage.

A serially reusable program must restore data areas and
modified instructions to their initial condition prior to
reusing those data areas and instructions when the program
is reinitiated. Only COBOL and Basic Assembler programs
can be written to be serially reusable. Never-ending
programs cannot be specified as serially reusable.

Use of serially reusable programs can increase CCP effi-
ciency, especially if the programs are requested frequently,
since the need for repeated loading of the program can be
avoided in some cases. If other programs are being request-
ed and loaded, however, timing of the requests may be such
that, when a subsequent request for the serially reusable
program is entered, the main storage space previously
occupied by the serially reusable program is already
occupied by another program. In this case, the serially
reusable program must be reloaded.

Dedicated Program (Models 10 and 12)

When a program defined as a dedicated program is running,

it must be the only program running in the CCP program
level, even though multiprogramming is allowed by the CCP.
It may not be initiated while other programs are running
and other programs may not be initiated while it is running.
This program attribute applies only in CCP systems that
allow more than one program to be executing concurrently.

You might want to designate a program as dedicated if it
requires exclusive use of disk files that are otherwise
shareable, for example, a program that performs summary
operations at a particular cut-off time, such as day-end or
month-end, when concurrent operations on the files are
not desired. A dedicated program might also be used in
applications where fast response time is important and
the program relies on exclusive access to all communica-
tion lines, disk files, and other system resources.

Program Request Under Format

With a non-PRUF request, the maximum amount of data
that can be passed to a user program, as a program request,
is 78 characters. This is not an efficient use of the 3270
terminal buffer. An efficient method of using the 3270
terminal is to write a short SRT program which will put a
display at a terminal, and then go to end of job. The ter-
minal operator can then fill in the display with data, cause
attention (PF key or ENTER key) and have the display at
the terminal essentially request another program. The
whole display will be used as program request data. This
concept of requesting programs and passing up to a full
screen of data to the requested program is called Program
Request Under Format (PRUF).

The use of PRUF will provide the following capabilities:

® More than one field of data may be passed as program
request data.

® More than 78 characters of data may be accepted as
program request data.

® The AID character is passed as program request data
to PRUF programs, but not to non-PRUF programs.

® The data passed to the user program with the program
request may or may not be processed by DFF under
format control if the program being requested is a
PRUF program. However, DFF does not process non-
PRUF program request data.

® Main storage can be used efficiently, as a program need

not be in main storage during a lengthy terminal
operator keying operation.

Communications Programming Topics 3-b

A program is defined as a PRUF program if the PRUFLNG
parameter is specified in the assignment PROGRAM state-
ment. The PRUFLNG parameter specifies the maximum
length of program request data to be sent by the terminal.
If the PRUF program is also a DFF program, the PRUF$2Z
parameter is specified in the PROGRAM statement. This
gives the name of the format which will be used by DFF to
format the program request data. {(See the /BM System/3
Models 8, 10, and 12 Communications Control Program
System Reference, GC21-7588, or the /BM

System/3 Model 15 Communications Control Program
System Reference Manual, GC21-7620, for a complete
description of these keywords.}

To inform CCP that the next program request from a 3270
terminal will be a PRUF program request, user program A
(which may be a PRUF or a non-PRUF program) executes
a PRUF-Put operation to the 3270 terminal as its last
output operation prior to releasing that terminal or going
to end-of-jcb. |f the terminal receiving the PRUF-Put
operation was a requestor of the program issuing the
PRUF-Put, that program must have ENDMSG-NO specified
on its PROGRAM statement.

Before returning the terminal to command mode status,
CCP will reserve an area from the TP buffer, equal in length
to the maximum PRUFLNG, as a temporary hold area for
the program request data from that terminal. It should be
noted that CCP will only reserve a TP buffer area equal in
length to the PGMREQL, as specified in the SYSTEM
statement, if the last user output operation to that terminal
is not a PRIJF-Put operation.

The first field received from the 3270 must be the program
name of the PRUF program to be requested and must begin
in row 1, column 2 or later on the screen. The program
name must be either entered in the first field on the screen
(that field defined as an input field) or sent to the screen
(by a PRUF-Put operation) in the first field defined as an
output/input field. The terminal operator then keys in
data to all needed input fields on the screen.

3-6

When all the needed fields have been keyed in, press the
ENTER key, a PF key, or insert a card into the card
reader {this action is device dependent). Now the program
request for program B enters the system. If program B is
a non-DFF program, the following data will be passed as
program request data to program B:

culdev Iald Ic@l |sba l@@J ngm.nan]n‘) pgm|datal. 1

1 2 3 45 6 78 9...

Note: If the program is written in RPG 11, these fields start
in column 15 of the input specifications,

where:
cu = Control unit address of the 3270 terminal
dev = Device address of the 3270 terminal
aid = AID character
c@ = Cursor address
sba = Set buffer address (X'11')
@@ = Address of start of pgmnam field
pgmnam = Name of program B
B = EBCDIC character for a blank (X‘40'}
pgmdata = Remainder of 3270 text stream or the

number of characters specified by
PRUFLNG parameter, whichever is
smaller.

A PRUF program request will return 8 plus PGMNAM length
plus 7 additional character of data more than a program
request for a non-PRUF program. If a program B isa DFF
PRUF program, DFF will attach the PRUF$Z format to the
program using that format for control and move data into
program B's input record area at program request time. (See
Chapter 8 for a description DFF handling of accept input
data.)

The following considerations apply when running CCP
assignment sets with PRUF programs:

® PRUF-Put operations to the system console are invalid.

® |f the 3270 terminal has been formatted by a PRUF-
Put operation, and the program being requested is a
non-PRUF program, CCP will reject the program request.

® |f the 3270 terminal has not been formatted by a
PRUF-PUT operation, and the program being requested
is a PRUF program, CCP will issue a 02 return code
following the Accept Input operation. The program
request data returned in this case will begin with the
first character of data following the program name and
a blank. This will not have been processed by DFF.

® |fa Non-PRUF Put of a DFF Format is used to prompt

for a PRUF Program, the program name and any data
should be placed in one DFF field. if separate fields
are used for the program name and the data, the attri-
bute byte for the first data field terminates the data
stream and no data is passed to the program. (The 02
return code is returned, and the effective input length
value is zero.)

® |f PRUF is active on the terminal, all system messages
to that terminal will be output in positions 82 through
160. Therefore, these positions should be used with
caution at program request time to PRUF programs.

® A terminal which had a PRUF-Put format sent to it
becomes a PRUF terminal. This condition (PRUF-type
terminal} can be terminated by the next non-PRUF Put
operation sent to the terminal, or if the terminal CLEAR
key is pressed. If PRUFOF-YES is specified at assign-
ment time, the PRUF condition will be terminated after
an Accept Input operation is sent to that terminal. This
means a non-PRUF Put will not be required to put the
terminal in non-PRUF mode.

Sort Programs

Sort programs {using CCP/disk sort rather than disk sort)
must be generated offline from CCP but can be executed

as user programs under CCP. See the section entitled
Program Preparation in this manual. Multiple sort programs
can be active uder CCP at one time providing each program
has a unique name, and unique work and output filgs. A
minimum of three files must be defined on the FILES
parameter of the PROGRAM assignment statement for a
sort program:

® Aninput file with CG access. Input files can be opened
with CO, 10, and 10U access methods but the opening
program must terminate successfully before the file can
be shared. Up to eight input files can be defined.

¢ A work file with CA access and specified as nonshareable.

® An output file with CO access and specified as nonshare-
able. After a sort program has completed successfully,
the output file can be opened using CA, CG, CO, CU,
DG, or DU access methods.

Note: For Model 15, the sort input file cannot be specified
as the sort output file. Although the use of SYMFILE
statements and /FILE commands to resolve sort file name
assignments is supported, do not attempt to overlay the input
file with the output file by using the SYMFILE and /FILE
facilities.

After a sort program has terminated successfully, the input,
work, and output files are available to other sort and non-
sort programs,

When a sort program is requested from a terminal, addition-
al modules with the prefix $DG are loaded by the sort pro-
gram. These additional modules (initially supplied on the
system pack) must be on the same pack from which the
sort program was loaded. For example, if a sort program
has been placed on the program pack (PACK-PROGRAM
specified on the PROGRAM assignment statement}, the
$DG modules must be copied to the program pack from
the system pack. This can be accomplished using the
following OCL.:

// COPY FROM-ss, TO-pp, LIBRARY-O,RETAIN-P,
NAME-$DG.ALL

where:

ss = disk unit where system pack is located
pp = disk unit where program pack is located

Because of space considerations, it may be more convenient
to put the sort program on the system pack.

Communications Programming Topics 3-7

Once a sort program has started, the requesting terminal is
released and is free to perform other operations. All sort
messages indicating the status of the sort program are issued
to the systam operator’s console after the requesting ter-
minal is released.

Note: |f another program is allowed to update the sort in-
put file at the same time that a sort program is processing
the file, improper results can occur. For this reason, either
specify NOSHR for the sort input file in the assignment
set, or allow input only programs to access the file while
the sort program is executing. See CCP System Reference
manual for your system and the /BM System/3 Disk Sort
Reference Manual, SC21-7522, for additional information
about sorts.

If shutdown is requested, an active sort program is allowed
to complete execution to normal termination.

Task Chaining and Release and Task Chain With Sort
(5704-SC2 Only)

When a sort program is to issue a chain request or a Release
and Task Chain, the name of the requested program and the
data (if required) must be passed to the sort program with
the program request. The sort program interprets the first
six characters (or up to the first blank if the name is less
than six characters) as the name of the program to be
requested. The remaining data is passed as data along with
the chain request.

If more than 80 characters of data are passed to a sort pro-
gram, the sort program issues a CCP DATA TRUNCATED
message to the console and issues the chain request or a
Release and Task Chain, even though the data has been
truncated.

if CCP is handling the maximum number of chain requests
when a sort program issues a chain request, CCP issues a
TASK CHAIN UNSUCCESSFUL message to the console.
In this case, the sort program is allowed to complete exe-
cution, but the chain request is neither issued nor executed.

For an example of a sort program issuing a chain request,

see the following index entry: task chain request and
release and task chain.

3-8

EXAMPLES OF APPLICATION PROGRAM LOGIC

Programs that do not communicate with online terminals
are most often designed to run in batch processing mode;
that is, one program completely finishes its processing
before the next program begins to run. Often, the pro-
gram processes a large number of data records which con-
tain similar data in similar format. Such a program prob-
ably uses only a few data files; perhaps it builds a tempor-
ary file and updates a parmanent file. (Communication
terminals can also be used to advantage in batch process-
ing mode.)

Most communications programs, on the other hand are
designed for a very different environment, characterized
by online processing, that is, data enters the computer
directly from the point of origin and is transmitted
directly to where it is used. The communications environ-
ment often includes several terminals, each making
requests in a random manner, each request requiring the
execution of a different program. Each program might
process only a single transaction at a time for the
terminal, affecting several different files. The majority
of communications programs utilize this type of process-
ing, which requires program logic different from that
required for batch processing.

The following examples illustrate the typical logic
required to deal with:

® A single requesting terminal

® A single requesting terminal and program-selected
terminals

® Multiple requesting terminals

® Multiple requesting terminals and program-selected
terminals

Single Requesting Terminal

Figure 3-1 shows the program togic that might be used in
a program that deals with only a single requesting termi-

nal on each execution. The numbered notes further ex-

plain aspects of the logic.

1)

If data is expected with the program request, no
Invite Input is required, since the first Accept Input
will return the requester’s name and data in the
record area. If data is expected with the program
request, an Accept Input must be issued.

A Put operation with a blank terminal name causes
the name of the requesting terminal to be returned
in the record area. Invite Input can then be issued
to that terminal. If no data is expected with the
program request, a Get operation with a blank termi-
nal name can be used after the Put operation instead
of the Invite Input and Accept Input operations.

If data is expected with the program request, the
first input operation is an Accept Input. Subsequent
input operations can either be Accept Input or Get
operations. If Accept Input is used, Invite Input
must be issued prior to the Accept {nput except for
the first Accept Input operation when data is ex-
pected with the program request.

Initiate
Program

Data
expected with
program
request

Put with
blank

terminal

name @

Invite
{nput

Accept
Input

Process

More data

Terminate
Program

Communications Programming Topics

Figure 3-1. Program that Communicates with a Single Requesting
Terminal

39

Initiate
Program

Determine which
terminals to
select

Acquire the
program selected
terminals

Put a

Hello
message to each
terminal capable
of output

Issue an
Invite Input
to each of the
attached input
terminals

@[identity the
terminal and
locate or establish
the work area

for it

|

Determine the
proper point in e
the message
sequence

Process the
message
sequence

9 Want more
data from this
terminal

Yes

input data
to
process

Terminate
Program

Figure 3-2. Program that Communicates with a Single Requesting Terminal and Program-Selected Terminals

3-10

Single Requesting Terminal and Program-Selected Terminals

Figure 3-2 illustrates the logic that could be used by a
communications program to deal with a single requesting
terminal and one or more program-selected terminals. The
numbered notes further explain characteristic aspects of
this type of logic.

o These steps (enclosed by the broken line) are per-
formed only the first time through the program. A
program can determine which terminals to select in
various ways:

® The terminals required by the program are
specified at assignment time and the terminals
have been allocated to the program before it
gains control,

® The program knows which terminals it needs,
but must acquire them itself.

® The program does not know which terminals to
select. The program might have to obtain this
information from the system operator, a termi-
nal, or from the data he is processing.

When the program knows which terminals to select,
it can acquire them (if not already allocated by
assignment), Put a ""Hello”” message, and Invite
Input, as required.

12)

When a program is capable of handling more than
one terminal, it may need to set aside a separate
work area for each. The program would use the
work area to retain enough information to remem-
ber what it has previously received from each termi-
nal, When, for example, input data consists of more
than one part, a separate routine often processes

each different part. A complete input message might
consist of a customer name or number, an order num-
ber, item numbers, quantities, prices, and other infor-
mation, entered as separate lines of input data and, in
fact, as separate transmissions from the terminal. The
program must be able to determine which portion of
the data it is processing, where to store that data in
the work area, and which routine processes that por-
tion of the data.

When a program-selected terminal has completed a
message sequence, the program must determine
whether it wants additional input from the terminal.
For example, if the program has received an end-of-
input signal or if the system operator has issued the
SHUTDOWN command (and the program recognizes
the shutdown return code), the program should not
issue an Invite input to the terminal.

If any other program-selected terminals have input
messages to transmit {(have outstanding Invite Input
operations issued to them), the program finishes
processing them. When all input from the program-
selected terminals and the requesting terminal has
been processed, the program terminates.

Communications Programming Topics 3-11

Initiate
Program

Accept
Input

Identify the
terminal and
locate or establish
the work area

for it.

Determine the

proper point in Q Want more
the message data from this
sequence terminal

Process the
message A Release this
sequence terminal

Any
Outstanding
Invite Inputs

Terminate
Program

Figure 3-3. Program that Communicates with Multiple Requesting Terminals and No Program-Selected Terminals

3-12

Multiple Requesting Terminals

Figure 3-3 shows the program logic that might be used in
a program that deals with multiple requesting terminals.
The numbered notes further describe key steps in the
logic.

0 The Invite Input is bypassed the first time through
since it is not known which terminal requested the
program until after the Accept Input operation.

@ When the program has received the final portion of
a message sequence from a particular terminal, it
must determine whether it wants additional input
from the terminal. If, for example, the terminal
has indicated that this is the last message it will
send or if the system operator has issued the
SHUTDOWN command to shutdown the CCP
(and the program recognizes the shutdown return
code), the program should not issue an Invite Input
to the terminal.

If no Invite Input is to be issued to this terminal,
the terminal is released from the program.

If requests from other terminals are in process or
awaiting processing, they must be completed before
the program terminates. The number of remaining
requests can be determined from the count of
outstanding Invite Inputs, returned in the third
field of the parameter list by the previous Release
Terminal operation.

Communications Programming Topics 3-13

Initiate

Program

terminals to

|
' . -
| Determine which
i
select

Acquire the
program-selected
terminals

Hello
message to each

terminal capable,
of output

I

Issue an
Invite Input
to each of the
program-selected
terminals

|
|
|
|
i
|
|
!
I
| Put a
i
I
|
|
I
I
|
|
I

Identify the
terminal-locate
work area; go to
appropriate
routine

Process the
message
sequence

Finished
with this
requester

Want more
data from this
terminal

Invite Input
from this
terminal

Release this
requester

Any
Outstanding
Invite Inputs

Terminate
Program

Figure 3-4. Program that Communicates with Multiple Requesting Terminals and Program-Selected Terminals

3-14

Multiple Requesting Terminals and Program-Selected
Terminals

Figure 3-4 shows an example of the general logic of a
communications program that accepts requests concurrently
from several requesting terminals and, in satisfying the
requests, contacts one or more program-selected terminals.
As each requester is satisfied, the program releases it,
enabling the requester to enter other commands to the

CCP. The program-selected terminals in this example are
not released from the program until the last requester has
been served and the program is terminated. The numbered
notes further explain key steps in the logic.

o The first-time processing required when program-
selected terminals are used is described in Figure 3-2.

Q When a program is capable of handling more than
one terminal, it may need to set aside a separate
work area for each. The program may have to
retain enough information to remember what it
has previously received from each terminal. When,
for example, input data consists of more than one
part, a separate routine often processes each differ-
ent part. A complete input message might consist
of a customer name or number, an order number,
item numbers, quantities, prices, and other informa-
tion, entered as separate lines of input data and, in
fact, as separate transmissions from the terminal,
The program must be able to determine which por-
tion of the data it is processing, where to store that

data in the work area, and which routine processes
that portion of the data.

When a program-selected terminal has completed a
message sequence, the program must determine
whether it wants to invite additional input from the
terminal, For example, if the program has received
an end-of-input signal or if the system operator has
issued the SHUTDOWN command, the program
should not issue an Invite input to the terminal.

If requests from other terminals are in process or

awaiting processing, they must be completed before
the program terminates.

Communications Programming Topics 3-15

SYMBOLIC FILES

Under the CCP, you can write a program using a file name
{symbolic file) which might refer to a different physical

disk file each time the program is executed. The physical
(actual) files must be similar in format (that is, the same file
organization, access method, record length, key length, and
key position), although different in content. For example,
you could write a student report program that generates

a report for a different school on each execution, depending
on which school’s student file is associated with the symbolic
file for a particular run {Figure 3-5).

Student Report Program

- l -
~
Requesting Terminals /File command (\ _ 11
I~ -l

says: “For this run, School X is
School 17

-

|
_*

School)S}I

-

—

(E0

\—

Symbolic file name
used in the program

Physical files to
which the symbolic
file name may refer.

The assignment statements for this example might look like this {see CCP System Reference Manual

for explanations of the assignment statements):

// DISKFILE NAME-SCHOOL 1, ORG-1, RECL-100, KEYPOS-94, KEYL-7

// DISKFILE NAME-SCHOOL2, ORG-1, RECL-100, KEYPOS-94, KEYL-7

// DISKFILE NAME-SCHOOL3, ORG-1, RECL-100, KEYPOS-94, KEYL-7

// SYMFILE NAME-SCHOOLX, DISKFILE-"SCHOOL1, SCHOOL2, SCHOOL3’
// PROGRAM NAME-STURPT, PGMDATA-NO, FILES-'SCHOOLX/IR’

Figure 3-5. A Symbolic File

The specific physical fite to be used on a particular run of
the program is determined by the operator of the requesting
terminal by means of a /FILE command prior to the program
request (see CCP Terminal Operator’s Guide or CCP System
Operator’s Guide for a description of this command.) The

316

names of one or more valid physical files are associated with
the symbolic file nate by means of the DISKFILE and
SYMFILE assignment statements (see CCP System Refer-
ence Manual). // FILE OCL statements for the physical
files are entered by the system operator during CCP
startup.

Considerations and Restrictions in Using Symbolic Files
® An MRT program cannot use symbolic files.

® On the Model 10 Disk System or the Model 12, if your
program releases the requesting terminal prior to the
initial opening of any symbolic file, the CCP will cance!
your program. You must be especially careful in pro-
grams that can be requested from the console, since the

console is automatically released from your program by
the CCP.

To use symbolic files in Model 10 and Model 12 CCP
application programs that can be requested from the
console, you must specify at assignment time (// PRO-
GRAM statement) that data is allowed with the program
request, even if no data will actually be entered. The
CCP releases the console when the first Accept Input in
the program has resulted in the name CONSOL and
program data being passed to the user program. There-
fore, the symbolic file must be opened before the Accept
Input. In RPG Il all files are opened before any 1/0
operations can be performed.

® On the Model 10 Disk System or a Model 12, a serially
reusable program (COBOL or Basic Assembler) will
access the same physical file when it is reused (executed
without being reloaded) as it was used on its initial
execution.

SWITCHED LINES

A switched line is a communication line on which the
connection between the system and the terminal is established
by dialing a data set (telephone) number either automatically
or manually. After the connection is completed, data can

be transmitted. A terminal on a switched line is disconnected
under control of an application program by means of the
Release Terminal operation (see Operations, in Chapter 2).
This operation can specify whether to keep the line allocated
to the program or to “"return’’ it to the CCP.

If command mode terminals are attached to a switched
line, the CCP awaits calls from the terminals, rather than
polling the terminals for commands.

Under the CCP, a data set {telephone) number can be
established at assignment time (TERMNAME statement)
for each terminal name assigned to a terminal that might

be called by an application program running under the CCP.
Also, the attribute set associated with a terminal on a
switched line can assign the attributes auto/manual call

and auto/manual answer,

Auto Call

If a terminal is defined as auto call by the TERMATTR
assignment statement, an 1/0 operation from a user program
to the terminal on a switched line that is not connected
causes the CCP to place a call to the terminal automatically.
Auto call cannot be used with MLTA terminals. In order

to use auto call on BSCA terminals, the Auto Call feature
must be installed on the BSCA hardware.

Manual Call

If a terminal is defined as manual call by the TERMATTR
assignment statement, an 1/0 operation from a user program
to the terminal on a switched line that is not connected
causes the CCP to inform the system operator that he must
dial a data set number on a certain line.

Auto Answer

if a terminal is defined as auto answer, the CCP awaits a
call from the terminal, and automaticaily answers the call
(if the auto answer feature is activated on the data set).

An 1/0 operation from a user program to a switched line
that is not connected causes the CCP to inform the system
operator that the program is awaiting a call on the switched
line.

Manual Answer

In manual answer, the system operator answers a call from
a terminal. The system operator and terminal operator then
place their data sets in data mode; the CCP waits for input
from the terminal. An 1/O operation from a user program
to a switched line that is not connected causes the CCP to
inform the system operator that the program is awaiting

a call on the switched line.

BSCA Switched Line

On a BSCA switched line, the CCP allocates the line to the
user program when the first terminal on the line is allocated.
In order to communicate with a terminal on the line, the
program must either aiready have the line allocated or the
line must be free for allocation (not currently allocated to
another program).

Invite Input operations can be outstanding to multiple
terminals on the samne line after a connection has been made.
The CCP determines which symbolic name to return with an
Accept Input operation from the exchange identification
characters, which are associated with a specific terminal

Communications Programming Topics 3-17

name by the BSCATERM assignment statement {see CCP
System Reference Manual).

Note: |f a communications operation is issued to a terminal
for which VERIFYID—NO is specified in the TERMATTR
assignment statement and the operation is an answer
operation, then any terminal that calls satisfies the operation.

BSCA Requesting Terminals
The following examples illustrate the use of BSCA switched

lines with requesting terminals. Assume you have the
following switched point-to-point network:

I‘ID1 {TERM1)] ID1
ccp : ID2 Exchange ID’s
User program ID2_(TERM 2)—| ID3 g
ID3 (TERM 3) | TERM1
TERM2 Symbolic terminal names
TERM3

Common Carrier
({telephone)

Exchange
Example 1:
ID1 1. ID2 (TERM2) calls, makes connection, signs on,
Program D2 makes a program request, and communicates with
program under the name TERM2,
1D3
2. Program issues Release Terminal operation, keeping
the line. ID2 is signed off automatically.
ID1
Program ID2 3. Program now has control of the line, can call or ac-
D3 cept calls from ID1, ID2, or ID3 in data mode.
Note: No terminals are allowed to call in and sign on
while the line is in control of the application program.
Example 2: D1 1. ID2 (TERM2) calls, makes connection, signs on,
makes a program request, and communicates with
Program \D2 program under the name TERM2,
1D3
2, Program reaches end of job without issuing a
Release Terminal operation.
1D1
cece 1D2 3. TERMZ2 is still connected and can enter other
D3 commands and program requests.
4, TERM2 signs off specifying DROP. The connection
ID1 to TERM2 is broken.
CCcpP 1D2
D3 5. ID1, ID2, and 1D3 can call and sign on.

3-18

Program-Selected Terminals

The following exampies illustrate the use of BSCA switched
lines with program-selected terminals. Assume, again, a

switched point-to-point network.

Example 1

Program

CGP

{D1
1D2
D3

ID1
1D2
1D3

Program issues Invite Input operations to ID1, D2,
and ID3.

ID3 calls and communicates with program as
TERM3 (Accept Input operation code).

Program issues Release Terminal to TERM3 with
or without keeping the line and issues another
Accept Input (the line is disconnected).

ID1 and 1D2 can call and communicate with the
program; 1D3 cannot, since it no longer has an
Invite Input.

Example 2:

Program

CCh

1D1
D2
D3

D1
ID2
ID3

Program issues Invite Input operations to ID1, ID2,
and ID3.

1D 3 calls and communicates with program as
TERMS3 (Accept Input operation code).

Program goes to end of job without releasing
terminals (programs should issue Stop Invite
Inputs to terminals with outstanding Invite
Inputs before going to end of job).

All Invite Inputs are cancelled; terminals are
available to other programs.

Example 3:

Program

cce

ID1
ID2

103

ID1
1D2

ID3

Program calls |D2 and communicates with D2 as
TERM2.

Program issues Release Terminal to TERM2 with
or without keeping the line (the line is disconnected).

Program can call ID1, ID2, or ID3 and issue
Invite Inputs. CCP either automatically calis
the correct data set number {(auto call} or
provides the correct data set and line number to
the system operator (manual call).

Communications Programming Topics 3-19

MLTA Switched Line

On MLTA switched lines, there is only one terminal per
line. Both the line and the terminal are allocated to the
praogram by the CCP. The examples of using a switched
line with command terminals and data terminals given
under BSCA Switched Line apply also to MLTA switched
lines, except that:

® All terminals that call on an MLTA switched line have
the same symbolic terminal name; they cannot be
uniquely distinguished from each other.

® MLTA terminals on switched lines do not have exchange
identification characters associated with them.
Switched Line Disconnect Considerations

The CCP disconnects a terminal on a switched line in any
of the following circumstances:

® User program issues a Release Terminal operation speci-
fying the keep-line modifier.

® User program issues a Release Terminal operation without

the keep-line modifier to a data terminal (see index entry).

3-20

® User program issues a Release Terminal operation to a
command terminal that is not the requesting terminal.

® The user program terminates while the line is being used
with a program-selected terminal.

® The system operator issues a VARY OFFLINE command
to a terminal connected to the switched line.

® A requesting terminal on the line signs off (/OFF) and
the DROP option is in effect.

The only Release Terminal operation for which the terminal
is not disconnected is a Release Terminal operation to the
requesting terminal without the keep-line modifier. In this
case, the requesting terminal is still in command mode and
can continue to enter commands to the CCP.

When a command terminal is connected on a switched line,
the CCP attempts to maintain the terminal connection as
long as possible. After a program has terminated and the
CCP has sent the ““ended” or “released’’ message (which
can optionally be suppressed by specifying ENDMSG-NO
on the // PROGRAM assignment statement), the CCP
attempts to receive from the terminal for an amount of
time that is based on the error retry count specified by the
NRETRY parameter on the // BSCALINE assignment
statement.

To request CCP communication services, you must write
your COBOL programs using the standard application
program interface described in Chapter 2. This standard
interface is composed of the following elements:

® Communications Service Subroutine
® Parameter List
® Record Area

Note: This chapter assumes that you are familiar with the
COBOL language. For more information on writing and
executing COBOL programs, see /BM System /3 Subset
American National Standard COBOL, GC28-6452,

COBOL USE OF THE STANDARD INTERFACE

To use the standard application program interface to CCP,
the COBOL application program must:

1. Define the record area and the parameter list (see
Defining the Record Area and Parameter L ist).

2. Set the contents of the parameter list and the record
area (see Setting the Contents of the Parameter List
and Record Area).

3. Call the communications service subroutine, identi-
fying the program’s parameter list and record area, to
initiate the operation (see Calling the Communications
Service Subroutine).

4, Examine information returned by CCP in the parameter
list and record area and, for input operations, process
the input data (see Examining Returned Information).

DEFINING THE RECORD AREA AND PARAMETER LIST

Before your COBOL program can perform communications
operations, you must define one or more record areas and
parameter lists.

Chapter 4: COBOL

Record Area

The number of record areas you must define depends upon
the logic of your program. You need not always define
separate record areas for input data and output data, or for
operations with different terminals.

Each record area defined must be large enough to contain
either the program name (if a chained task), or the terminal
name, and the maximum length of data to be either re-
ceived as input in the record area or to be transmitted as
output from the record area. Define the record areas in
the WORKING-STORAGE SECTION of the DATA
DIVISION of your COBOL program.

The name field portion of the record area must be specified
as an alphameric character field. In the following example,
TERM-NAME is the name of a symbolic terminal name
field that has been initialized to blanks:

05 TERM-NAME PIC X{6) VALUE SPACES,

Define the data portion of the record area as required by
your formats. Unless you are using a BSCA line with the
Text Transparency feature {see index entry Terminal
Attribute), you should define all elementary data items as
one of the following types:

® Alphanumeric
® Alphabetic (PIC A).

® Numeric DISPLAY (PIC9...or S9... with USAGE as
DISPLAY or omitted).

® Numeric zoned-decimal (PIC 9 or S9 with USAGE speci-
fied as COMP or COMPUTATIONAL).

Do not define numeric data fields of the record area with a
USAGE specified as COMPUTATIONAL-3, COMP-3,
COMPUTATIONAL-4, or COMP-4 unless data is being trans-
ferred over a BSCA line using Text Transparency.

coBOL 441

Many COBOL application programs require that the same
record areas be used for records with different formats. By
defining each record area at the 01 level, you can redefine
the record area with complete flexibility, using REDEFINES
clause, (If you define record areas at another level, you
must ensure that lengths are identical on any redefinition.)
Because you must define the record area in the WORKING-
STORAGE SECTION of the DATA DIVISION, rather than
the FILE SECTION, you can assign a value to fields in the
record area when you initially define the record area (though
only in the original definition, when using the REDEFINES
clause).

Example: Figure 4-1 shows how to define a record area
whose record may be in either of two formats;
REC-AREA-A-2 redefines REC-AREA-A-1. The symbolic
terminal name field is initialized to blanks.

T T
BIDG | BERE ,
1 ofs g RECORD| |AREA -~/ RECORD [FORMAT
alo i ; ‘)
D@l REC-AREA-AFL. | L
TTTTI65] | TERM-NAME- A PITC X (6)] VALUE| SPPACES.
95T IREC-A-TY[PE plIC AL
el 1195 [ICusT-No PIC 9 ().
1% £ ‘ps CUST-NAME PTIC XKEﬁ)ii
b i ME_REECORD AREA -~ RECORD| FORMAIT| |2
111 @1 REC-AREA-A-Z REDEFINES| RECIARERSA-L.
w1 es TFTLLER PITC, XI(7).
ol [11105 | [TRANISAC~ICLASIS! PIIC X
1y [T105 | [TRANSAC-IQTY [PIC [999] ICOMP.
[} @5 | TRANSAC-IAMT [PIC 5999V 99| €
| L 1 |
L] us g LU

Figure 4-1. Defining a Record Area

4.2

Parameter List

You must also define one or more parameter lists in the
WORKING-STORAGE SECTION of your program’s
DATA DIVISION (see index entry parameter list). The
first four fields of the parameter list should be defined as
two-byte binary (PIC S9(4), USAGE specified as
COMPUTATIONAL-4 or COMP-4) fields. Because the
parameter list is defined in the WORKING-STORAGE
SECTION of DATA DIVISION rather than the FILE

SECTION, you can also specify initial values for these fields.

The fields are, in the sequence they must be defined in the
parameter list:

I Return code field.

2. Operation code and modifier field.

3. Field used jointly for output data length, actual
input data length, count of outstanding Invite Inputs,
and attributes identifier.

4, Maximum input data length field.

These fields are the only fields you reference in your appli-

cation program. The remaining four fields of the parameter

list are not referenced directly by your COBOL program.
However, they must be defined because space must be

reserved for them. You can define them simply by specifying

FILLER with a PICTURE of X(8). Your program should
never initialize or set these fields.

Example.: Figure 4-2 shows how to define a parameter list
in a COBOL program. The operation field is initialized to
2 for a PUT operation. The output data length field is
initialized to 48. This value might be the length of the first

output message. The maximum input data length is initialized

to 60. This value might be the total length of the data
portion of a record area used with this parameter list.

Return Code Values

The CCP ignores the contents of the return code field of
the parameter list at the beginning of a communications
operation. At the completion of each operation, the CCP
places a binary value in this field indicating the status of
the operation. This value indicates:

® The operation completed normally (value of zero) for
nonchained operations; value of 14 for task chained
operations)

® The operation resulted in an 1/0 error (negative value)

® The operation resulted in an exceptional condition
(positive value)

The CCP places this value in the return code field of the
parameter list before returning to the COBOL program. The
COBOL program must check the return code value upon the
completion of each operation. Specific return code values
and their meanings are given in Appendix E. Return Codes.

Operation Code Values

For each communications operation, you must set the
operation code field of a parameter list to a value which
indicates the specific operation being requested. You must
set this value within your COBOL program. This field can
be set by initializing the field in the definition of the
parameter list or by moving an appropriate value into the
operation code field during execution (see Setting Fields in
the Parameter List later in this chapter).

The CCP does not change this field during the communica-
tions operation; the contents of the field are the same after
completion of the operation as they were at the beginning
of the operation. See Chapter 2: Standard Application
Program Interface to the CCP for descriptions of the valid
operation. Appendix D: Operation Codes summarizes the
operation code values.

coBOL 43

ol] ! [’ * r j f A
] ‘“; ﬁg : [. ‘ | }
; er PARAMETER LIST -~ [INITIALTZED [FOR A [PUT’ [OPERATLON
e PARM-LIISTALL T T
Ll 1185l | PLI-RTC PIC/1S9i(4])_ComP-4].
RN PLL-0PC PIC. [S9I(4D CoMmP -4 VALVE] 2.
ol PILL-QUL [PIC [S9.(4]). _cOMP-Y4 VALUE| 4g!.
ol @5 PLL-EFL] IREDEFTNES PILIL-DUL] PIIC| [S9IC(4D | ICoMP- 4!
ol @5 PILL-ATT REDEIFINEIS PLI-DUILI IPTIC 591C4D | IcoMpl-4].
Py [95 PLII-IINL PIC S9.(H) CoMP-4| VALVE! 6.
1200 :ps FILLER PIC X(8
i I] ;
Tl i } ,
T |
T T |
- :* é
; I —
R i67la 1‘11 - 20{ —r zﬂj{ 32 3 En] FE] i 57 56 59

Figure 4-2. Defining a Parameter List

SETTING THE CONTENTS OF THE PARAMETER LIST
AND RECORD AREA

You must set the contents of the following areas before
performing a communications operation in COBOL:

1. Parameter list fields, if different from the last
operation.
2. Symbolic terminal name in the first six positions of

the record area. (This can be omitted if a terminal
name is not required for the operation or if the
name is the same as in the previous operation.)

3. Output data in the data portion of the record area
if the operation is an output operation.

44

Setting Fields in the Parameter List

You reference four parameter fields within your COBOL
program:

® Return Code field.
® OQperation Code field.

® Field used jointly for output length, effective input length,
count of outstanding Invite Inputs, and attributes identifier.

® Maximum input length field.

You need set only the operation code and the Maximum Input
Length field for input operations. For output operations, you
must set the operation code and the Output Length field.

For an Acquire Terminal operation, you must set the opera-
tion code and, if this Acquire Terminal also sets the terminal
attributes, the Attributes Identifier field. You need never set
the return code field; it is used only by the CCP to return
information about the operation to your COBOL program.

Operation Code

Whenever a communications operation is issued, this field
must contain a value indicating the operation to be performed.
You can set this field when you define it in the WORKING-
STORAGE SECTION of the DATA DIVISION by specifying
a VALUE clause:

055 PL-OPC PIC S9(4) COMP-4 VALUE 4.

You can also set this field with a MOVE statement in the
PROCEDURE DIVISION of your COBOL program. You
can move either a numeric literal or a named numeric value
into the operation code field of a parameter list you defined.
In the foliowing example, the numeric literal 4 {Accept
Input operation} is moved into the operation code field

PL-OPC:
SEQUENCE %i A iB COBOL STATEMENT
[1PAGE:; SKLERIAE c;i . 1 5 55 5% 75 Z_ 36) a3 a8 57 56 €0 &
o i ‘ i Y I f ! J
a2l |y [BR J | y
s | IDATA DINTsITON [1] — %
a4 l 1 q ‘ : [|
s | 1R ‘ | ‘
ok woquN‘_G-sTORA‘GE SECTION 3 %
HP ! J’, , : T ; é TL !
JE i : L ‘ ‘ + : :
L L P PARMYILTIST | , | mmma
1NN sl NN | ‘
N EEEES T 1
T PL-opc PIC] SAICH) [COMPL-H e
. ‘t;: | ‘1 ’ ri + ‘
e ! J | L
- | PROCEDURE DINISI0 ‘
L [!] : | ‘1 N
e]l ‘ I 1 [; :
T T MoVEl § To PLFloPC s |
JEE T j | { i
o X l ; o ‘ |
T EREEEEEE i
COBOL 45

The following example sets the Operation Code field by
moving the named numeric field, ACPTIN, into it. ACPTIN
is defined with the value 4.

SEQUENCE |2]

2 i 5 COBOL STATEMENT
(,PAGE; iERIAlg ?ia ?;' S 20 74 T e 40 LN 1
a1]] S ! 3 - 4 i
e TA! Dll\g 1.STON. ; 1 | | ‘
E nan L . i 4
BED ORKI N?G-S?TO‘RAG—{ 3 SECTI‘ON L "
Tos 77 ACPTIN PIC 59CHD" Comp-14 VALUE [A]. i
9B i . § : ‘ v j; ‘
; . o 3 l
8L PARM-LTST. [] iR i
SED 105 PL-0P[C_PI (4)_IComp-14. BEE
: | B 1 - :

]

—+

R S S O O = I O O O O R N = B -1 B

The CCP never modifies the value in the Operation Code
field. You do not need to reset the field if the operation
to be performed is the same as the last operation using this
parameter list.

For more information on the valid operations, see the
chapter Standard Application Interface to the CCP.

Appendix D: Operation Codes summarizes the operations
and operation code values.

Output Length/Attributes ldentifier/Count of Outstanding
Invite Inputs/Effective Input Length

The third field of the parameter list can contain one of four
different values depending on the type of operation:

46

Output Length
Attributes ldentifier
Count of Qutstanding Invite Inputs

Effective Input Length

The first two values you must set; the third and fourth are
returned values set by the CCP for certain operations.

You can set this field when you define it in the
WORKING-STORAGE SECTION of the DATA DIVISION
by means of a VALUE clause, or in the PROCEDURE
DIVISION by specifying a MOVE statement, just as you
set the operation code field. You can move either a
numeric literal or a named numeric value into the field.

Output Length: For task chaining and output operations,
you must place into this field the length of the data you
wish to write from the record area in your program. This
length does not include the six positions for the program
name or the symbolic terminal name. The output opera-
tions you must set a data length for are:

® Put

® Put-No-Wait

® Put-Then-Get

® Chain Task Request

® Release and Task Chain Request

You must reset this value if the output data length differs
from the last operation using this parameter list or if the
field was modified by the CCP. This field is modified by
CCP for the following operations:

® Get

® Put-Then-Get

® Accept Input

® Accept no-wait input (5704-SC2)
® Get Terminal Attributes

® Acquire Terminal

® Release Terminal

® Release and Task Chain

Attributes Identifier: 1f your operation code specifies an
Acquire Terminal operation which sets the attributes of
the terminal to be acquired, you must place into this field
the identifier of the attributes set. This numeric value
must correspond to the number you assigned to the desired
set of attributes in an Assignment run.

Effective Input Length: You do not need to set this

value. For each input operation, CCP places the actual
length of the input data passed to your COBOL program in
this field before it returns control to your program. This
is the length of the data only, it does not include the
length of the terminal name.

Count of Outstanding Invite Inputs: On Release Terminal
and Release and Task Chain operations and on any input
operation that results in an 08 return code (the terminal
that entered the data mode escape and issued a /RELEASE
command]}, this field is set by CCP to the number of

Invite Input operations still outstanding. On accept no-
wait input operations that result in a return code of 04 or
16, the count of outstanding invites is returned to your
program (5704-5C2 only). If this is a multiple requesting
terminal (MRT) program, this number includes not only
the Invite Inputs you have issued that have not yet been
satisfied by an Accept Input operation, but also the number
of additional terminals that have requested your program
but have not yet been served by your program.

Maximum Input Data Length

For each operation involving input data, you must enter a
numeric value into the fourth field of the parameter list,
indicating the maximum amount of input data you expect
to receive. This value must be greater than zero and no

larger than the size of the data portion of the record area
with which this parameter list is used. The value does not
include the six positions at the beginning of the record area
for the name field. The input operations for which you
must place a value in this field are:

o Get

® |nvite Input

® Accept Input

® Accept no-wait input (5704-SC2)

® Put-Then-Get

® Get Terminal Attributes

® Stop Invite Input {in case input cannot be stopped)

You can set the value of this field either when you define
it in the WORKING-STORAGE SECTION of the DATA
DIVISION or by means of a MOVE statement in the
PROCEDURE DIVISION. CCP never modifies the

value in this field. Therefore, you do not need to reset it
unless the maximum input length for this operation is
different from the value set in this field the last time this
parameter list was used. However, if this parameter list

is used with more than one record area, you may need to
alter this value during execution of your COBOL program.

Example of Setting Fields in the Parameter List

Figure 4-3 shows how you can set the operation, output
data length, and maximum input data length fields of a
parameter list. Each operation code value is assigned a
name. These names are then used on a MOVE statement
that moves the named numeric values into the operation
field of the parameter list. The output data length and
maximum input data length fields are set by moving
literals into them.

Setting the Record Area

The record area consists of a six-position name field and a
data area. For an operation with a terminal, except for
Accept Input and Shutdown Inquiry operations, you must
place the symbolic name of the terminal to be involved

with the operation in the name field. For a Task Chain
Request, you must place the name of the requested program
in the name field. You must also provide the data to be
transmitted in the data portion of the record area when an
output operation is to be performed.

cosoL 47

COBOL Coding Form

SYSTEM PUNCHING INSTRUCTIONS PAGE OF
PROGRAM GRAPHIC I
PROGRAMMER l DATE PUNCH o Ji CARD FORM =
wii‘:t’:::; %i A ;B COBOL STATEMENT l IDENTIFICATION
Al a 40 ; 5 7I [}ﬂ 1%, o . 74 — 28 7] 36‘ T 40" aa . 1 52 N 56 %5! 53 ‘455(7 78
DATA, DIN[STION | - RINEERD | L L] !
ol2 ; ! 1 = : } i - l
BE i i g i l ; ‘T ‘ | !
el T} i] : ‘ I ‘ P i '
g || WORKING-STIO A&E SECTION.| | | 1 !
ok]]{? éﬁ%ﬂ‘” g % gqéq) c,owvg~% VALU%E 4)‘ I | T
Laa| 1 WT_[P] 4.4 COW -4| VALVE] 51y ; Assign names to operation :
o ; 77‘} pUT T P’ cf Sc ("’) Cp MP" ‘(V LuE 'o "[code values that can later be I
op | 7} INVIMP D“[C S‘ ("I) COMP' H VAL U!E >“—‘ used in MOVE statements to : I
o) 71 ﬁUT GET DIC 9 (‘{ ; COIMP -4 VAL ME ‘ set the operation field of the : T
R e R e e g e T
i) | v : - ' @251, ; i ;
1380 1 < J T T f i f
130N !] ! 1 1 l
L Ty O [PARM-ILTIST. | j ’ ’ !
D3 | 195 PlL-RWG PIICL S9ICHD IComPl-i -~ Return code field { !
I 107 I L 05 PLi-0PIC DIC q (L.')J CoMp -yl ; Operation code field T
18] 1 95" PIL-0UT PIICI 981CYD ICompl- — Output data length field I
ol 1 b5 PILI-INY PIIC S9 ("r‘-{ CompPl-4 : Maximum.input data iength field 1
210 i X mls FII LER PIIC (8) J ® Required work area !
Sifssansranes | T ?
S O T Y) O Pid | L il I R I : N
1F‘izc:)U§:‘RcliL gi A IIB COBOL STATEMENT J| IDENTIFICATION
T T 7i,§R01CEE’D U g DI v 151 8 N T] * = Move the named numeric value = T K
o2 i i i f + //’ for the Accept Input operation i
o i 1 OVE ACPITIN T L O‘pc po into the operation field. f
i s: } +— oN 8 o P.L -TI NL . & y Move a numeric literal into ’]
{ AR i : ; i ; ‘ the input length field. l :
| | T |
} o1 ;MIOVE g 10 PL-0uT. I Move a numeric literal into - '
| ZB } } I % . i the output length field. ; {
b L ! e i :
T MOVE| PUTIMWT _[T0l PIL-10PIC. o — Reset the operation to Put. j I
JRE MovEl By o PlL-lourd.| (| (el T ;
2NN ! % L ¢ : 1R T~ Reset the output length to 34. ! !
IJRERRERAREAL HEIEERNEER r
tHa i T\ IMOV El]INVIINP! [T0 L-0p c O ‘ Reset the operation to o I
o Ly MOVIEL 19 TIO PIL-INLL. T Tell [y | nvite Input. !
1308ERNE0 ! T Bl ~— il
T 1 7 ! N EE i T T~ Reset the input length field T
1S , P 7 X T : + to 8 I
HINIRERANERENE ‘ 1 ‘ i NEEREAN | !
ol Ll oToP] RUN. || LT | ! IRRRRRNEEEED ;

Figure 4-3. Setting Fields in the Parameter List

438

Name Field

For an operation involving a terminal, the terminal name
you place in a record area must have been assigned to your
program. You may also identify the requesting terminal by
using six blanks as the terminal name if your program is
not a multiple requesting terminal (MRT) program (see
index entry). See Chapter 2: Standard Application Pro-
gram Interface to the CCP for more information on the
valid terminal names.

For a Chain Task Request operation, you must provide the
name of the program to be loaded in the name field.

You may set the name when you define the record area in
the WORKING-STORAGE SECTION of the DATA
DIVISION, or by means of a MOVE statement in the
PROCEDURE DIVISION. You do not need to reset the
terminal name if the terminal to be used is the same that
was named the last time the record area was used, unless
the name was modified by CCP. CCP modifies the name
field of the record area in the following situations:

® Upon completion of an Accept Input operation, CCP
sets the name field to the name of the program or ter-
minal whose data is placed in the record area.

® Upon completion of any operation using the name
field that was set to blanks, CCP sets the name field to
the name of the requesting program or terminal.

Output Data Area

If the operation to be performed is an output operation,
you must provide the data to be transmitted in the data
portion of the record area. You do not need to provide
data in the record area for operations other than output
operations because either the data area is not used or data
is provided to your program by CCP. Data provided to
your program by CCP overlays the information previously
in the data portion of the data area. For example, the
input data transmitted to your program by the Get part
of the Put-Then-Get operation overlays the output data
transmitted from your program by the Put part of the
operation. See the Chapter 2: Standard Application
Program Interface to the CCP for more information on
transferring data.

Note: |f the message to be sent is shorter than the total
length of the data area, you need not clear the excess
area to blanks.

Example of Setting the Record Area

Figure 4-4 shows how you can define and set the record

area when it is used for both input and output operations.
Assume the CCP has set the terminal name and data area as
the result of an Accept Input operation. The COBOL program
then resets the data area for an output operation by moving
the message “TRY AGAIN INV DATA" to the data portion
of the record area. This message overlays the input data
transmitted to the record area by the Accept Input operation.
Later in the program, the terminal name is reset to a named
alphanumeric value.

CALLING THE COMMUNICATIONS SERVICE
SUBROUTINE

Since COBOL does not include special statement types

for terminal 1/0 operations and othér communications
services, the CCP provides a communications service sub-
routine, ‘CCPCIO,’ that converts the COBOL program’s
communications requests into a standard request to the
CCP communication facilities. The functions performed by
CCPCIO for the COBOL program are:

® | oads index register 2 with the address of the program’s
parameter list.

® Places the address of the record area into the program’s
parameter list.

® |nvokes CCP.

The CCPCIO subroutine must be linkage edited with the
COBOL application program. See Chapter 9. Program
Preparation.

After you have set the required parameter list fields and
the terminal name in the record area, and have prepared
any output data, you are ready to request the CCP to
perform the operation specified in the parameter list.
You make this request by issuing a CALL statement
specifying ‘CCPCIQ’. The names of your parameter list
and record area must be passed as arguments to the sub-
routine.

The format of the CALL statement is as follows:

CALL ‘CCPCIO’ USING parameter-list-name, record-area-name.

COBOL 49

Figure 4-4, Setting the Record Area

4-10

COBOL Coding Form
SYSTEM PUNCHING INSTRUCTIONS [PAGE OF
PROGRAM GRAPHIC CARD FORM = *
PROGRAMMER [DATE PUNCH
SEQUENCE g; A i“ COBOL STATEMENT | noemmcmlonJ
“PAGEJ] fERlM 5,)%5 }n % 20]] 74 zs! 7l a1 : = - : -] : ET 77: Te
o} [DATA DIVIISION,.] I H ; L I I :
AR EENNBREBAEN | BINRNENE RN
ozl |y] 1R i B | l i
CORHARE RN TUREN ! | - T
o | | WORKIING-STORAGE [SECTION | | ! | U
HOANINERESAET RIS | T | Sl

RECGRINREE ; ! T B ! l

1198 | ’.l.% I pUT‘b UTPUT- RIEIA . ; Defining the record area. 4 l
981y ' @5 TIERM- NA‘MLE' 0 PIC X(6)|. Terminal Name ‘ |
ol 1) TA-IINL. ‘ i 1
RN L TA-REC PIIC] DY) LI Data Area defined for input !
T IPILILER, [PICT X6 [T !
B EDS' TA-0UT RE DE FINT S, 1D ~-TINUL . Data Area redefined for output !
T T DATIA -l PITIC] X3 !
RE I ¢ i T
16 i | | I
v} LPROCEDURE. DIVISTON. [T I
18 1 j '

109 I | !
2ol [} I 9 i !
Pl y . L I I

‘Pssoueuce g}A ia COBOL STATEMENT | IDENTIFICATﬂ

AGE) JSERIALIQ]

1} [6 TP ‘ 'nzT 8 i) 77 3 , a g 57 - 13 ™ o 72] 7
LUBTRR NN] i BEEN T
o[z | L T ' [v
o3 r T v _ ove message to record area to
ola % . : ONVE TRY A?AI N_TINN D ‘TA 7o D TA - OUT!. be transmitted as output.

05 i :1 | ! Tttt -ttt
o6 | MOVEl I TERMA /| Toj [TERM-NA 110 ! Reset terminal name for next operation.]
L L | i ; i .
op [/ TT1Y ! !
op[[| : |
o] T ! ‘ | !
JONINANE ’ | 1
I3NEEEEN ‘ ! * l
Bl ! i T
) lr I | | ; |

Lt] ! ; Ll : !

: 16 | i T ' ! ; l
12NN RERNE EENRREREEN T !
kel i T ' | |
190N] | i |
200 I ; | i \ !

T T ! ' T

The CALL statement appears in the PROCEDURE
DIVISION of your COBOL program.

In the following example, the name of the parameter list
is PARM-LIST. The name of the record area is INPUT-
OUTPUT-AREA.

CALL ‘CCPCIO’ USING PARM-LIST, INPUT-OUTPUT-AREA.

Control returns to your COBOL program at the statement
immediately following the CALL statement. When the
return occurs, the following actions have already taken
place:

For output operations, any output data has been
accepted by CCP and, depending upon the output
operation specified, has been received by the terminal.
In any case, the record area is now free for you to use
again.

For input operations, any input data which was to be
received in the record area is now in the record area,

unless an error condition or one of several exception

conditions occurred.

For Accept Input operations, the name of the program
or the symbolic terminal name of the terminal that pro-
vided the data in the record area has been set in the
first six positions of the record area.

For successful task chain operations, the requested pro-
gram is placed on the program request input queue when
control is returned to the requesting program.

For operations that validly specified a blank terminal
name, the symbolic terminal name of the requesting
terminal has been set in the first six positions of the
record area.

For all operations, the return code field in your parameter

list has been set indicating the result of the operation.

For input operations, the actual input data length has
been set in your parameter list.

For Release Terminal operations or for input operations
where the terminal has released itself from the program,
the count of outstanding Invite Input operations has
been set in your parameter list.

EXAMINING RETURNED INFORMATION

After control has returned to your COBOL program from
the communications service subroutine, you should examine
returned information supplied by CCP, including one or
more of the following:

® The return code

® The symbolic terminal name {if it was set by CCP) or
the name of the program that issued the Task Chain
® Request operation

® The count of outstanding Invite Inputs, if a Release
Terminal operation was performed, or if the return
code from an input operation indicates the terminal
was released

® The actual input data length, if an input operation was
successfully performed

® The input data, if an input operation was performed

Return Code

CCP always provides a return code after an operation.
You should never assume that an operation is successful;
you should always check the return code. In certain cases,
you will find that no data transfer has occurred. See
Appendix E for the meanings of specific return codes and
see Programming Examples, later in this chapter, for
examples of checking return codes.

You may wish to perform certain operations in your COBOL
program depending upon the return code value set by

CCP. The example in Figure 4-5 assumes that you want to
branch to one of several procedure names depending upon
the value of the return code. The program examines the
return code value for the following conditions:

® The operation was successful and no exceptions occurred

® An EOT was received on a successful operation, or on
an operation in which data was truncated.

® Some other exception condition occurred.
® An 1/O error occurred.

Assume that all data names have been defined earlier in
this program. Note the use of comments in the example.

COBOL 4-11

)

COBO L Coding Form

SYSTEM N o o o PUNCHING i;q;T;;iOCTIONS PAGE OF
PROGRAM GRAPHIC " *
B . (T
SEQUENCE g;A ie B COBOL STATEMENT : I IDENTIFICATION
(1“653' EER‘AE ‘v)]a iz e 20 24 28 32 "~ 3% a0, T3 a8 57 56 60 [L] 7zl 76
oW T T T il ! RERRRRARRNNRED ’
12 ASSUME REQUIRED CONTROL FWELDS SET. || Now, ReleuElsiT] THE OPERATION ||
o lp L CALL T COPCID] USITNG PARM- LIS, | RIE-AREA- A-[L SRR ;
[elie | | . . \ : i , ‘ | ; ;
ol fXAWINE RETURN! [CODE| FOR SUCCESSIFUL OPERATION BNEER | }
:elr ‘ ‘ Lo ‘ . BERE : L 1 i L
os] i IF PILL-RTC ZERO,[60 [T0 NORMAU-0PERATIIONL | | || EYRSEIN
oF | I s | ‘ | ‘ Ll Pl
L ﬁ EMAMIN& THE RETURN [CODE| FOR 1/0] ERROR _| .. e ; ik
[k Ifi EF PILL-RITC._NECATIVE,| G0 10 I-D-ERROR-OPERATION. | [|| 1‘
: e I Pl S ! % ;
SN DISWINQ,I& BETWEEN EOT-RECEIVED AND [0TRER EX EPTIONS [T .1 }
. L ‘ Ll 1
BRGNS @o 0 OTHER-EXCEPTION, EOT-RECEINED, | Eom-RECEIVED ™ [T T 1T 17777
N { DEPENDING ON| PLI-RTC. a % RN : L { 1
= ﬁ*Foq VALUE GREATIER THAN [+3, [CONTRO.L FALLS HERE || [RNEREINAR
i N i . X ; : L i l
|y OTHER-EXCEHPTION. L ISR i L]
Figure 4-5. Examining Return Code Values
é COBOL Codmg Form
SYSTEM o) - PUNCHING INSTRUCTIONS PAGE OF
PROGRAM 7 - T 7:7 GRAPH!C ‘{I» N i CARD FORM # *
PROGRAMMER IDATE o PUNCH I
SEQUENCE E5{/-\ Ia - COBOL STATEMENT | IDENTIFICATIONJ
lVPAGE:i SEH\:&? Ii) : 16 26)4' 28 7] "7"7"3—677;777747 43 v /75‘”7! { 57v ‘:GT T EOT — (] — f] # T 76
BEL LDAHAI DIVIIISTON. (]| L e
§§xj‘i , R Sane —+ SIORRaREN 1
BEEE WORmIMG-ST@RAGElsECTION‘ JESEEERERREER IEREINEE }‘
l Uh [! ‘ : . ‘ — {‘ .]
25 L ¢ l > . - ‘ m,TL i i i]
1y @l REC-AREA-A-[L. | Ra L ; i
1105 TERMNAME-A PIC X(6) | ¢ ; | 1
T il"f - : 7 T j ; ! M
T + + bt ; - SESSIDUI SHNTN S b - i : ‘ !
‘ | s@lISAVE®~JNFORMATION. RN NN R : 1 !
. | 05 SAV-EINTRY] occlurs |5 TIMES INDEXED [BY SANV-IX. e
- B ; 10 SAN-TERM-NAME PIC xi(6) .| [[117] BENER DUERNAEE
P : L ! I ‘ | ‘ ‘
e ! 1 ! N
4 SN ! t t — st J + = + |
| PRoclEbuRle DINISION] | }
[ilg - | EREVREEE
L RET AV T L T T T SRENRNIEE
AENHIEREEN 1 L UEI DUR AR ARG ERRA DS R NN N AN N EESRNRERENEE
RN | MOVE| TERM-NAME-A[T0 SAV-TE£¢-WAMFi(5AV}JX)L[T EREREEH
- [O R i . I ! o [! | [[

Figure 4-6. Saving the Symbolic Terminal Name

4-12

Examining a Returned Name

On certain operations, CCP returns the symbolic terminal
name to your program’s record area. You may need to
examine this name.

For example, you may need to examine the name of the
terminal that provided the input data. You can then com-
pare the terminal name in the record area with a saved
terminal name to associate new data with data previously
received from this terminal. You can save a terminal name
for later comparison by specifying the terminal name field
of the record area in a MOVE statement. The field to which
the terminal name is moved must be defined with a
PICTURE of X{(6).

The example in Figure 4-6 saves the terminal name
CCP sets in the name field of the record area, TERM-
NAME-A, by moving it to the field SAV-TERM-NAME.
SAV-TERM-NAME is the name field in a table of saved
values.

If a program can be requested from both a terminal and
another program using the Task Chain Request operation,
you may want to determine how the program was re-
quested. This can be accomplished by checking for a 14
return code, indicating a Task Chain Request operation.
This information is useful if a program communicates with
the requestor since your program cannct communicate
with a chain task requesting program.

Referencing Saved Information

in some of your COBOL programs, you may need to save the
information entered on the terminals and reference it later

in your program. For example, if your program receives
data from several different terminals, you may need to

associate new data entered on a terminal with data previously

entered on the same terminal. To do this, you must save
the significant data received from every terminal you are
using and identify that saved data with the name of the
terminal from which it was received. You can then associate
new data with the saved data by comparing the terminal
name set by CCP in the record area with the saved terminal
names.

One way you can save information received from each
terminal is to define a table of group items. Specify the
number of terminals from which information must be

saved as the integer in the group item’s OCCURS clause.
For example, if information must be saved from five termi-
nals, specify that the group item OCCURS 5 TIMES. Each
group item consists of a set of elementary items, one of
which is the terminal name. Upon completion of an Accept

Input operation, you can then search the table of saved
information until you find the saved terminal name that
corresponds to the name of the terminal which just trans-
mitted data to your program. Once you have found the
table entry you are searching for, you can address any
field of the save information by indexing that field name
with the index name.

Figure 4-7 shows how to set up a table for saved information
and reference the saved information in your COBOL program.
By searching the table for the saved terminal names that
corresponds to the terminal name in the record area, you

can associate the new data with the data that was saved.

Effective Input Data Length

It the communications service subroutine requested an
operation which transferred data to your program (Get,
Accept Input, Get Attributes, Put-Then-Get, or Stop Invite
Input), CCP also places the effective length of the input
data into the parameter list. Because this is the length

of the data that was actually received by your program, you
may wish to use this length to contro! subscripted or indexed
operations in your program. For example, you may need to
scan the input data for a specific character or string of
characters. To do this you must know the length of the
input data you must scan.

Count of Outstanding Invite Inputs

On a Release Terminal operation or on an input operation
where the return code indicates that the terminal released
itself from your program, the count of outstanding Invite
Input operations is returned to your program. You may use
this number to determine whether your program has any
further terminals to serve or whether it can go to end of job.

Input Data

If the operation requested by your program is an input
operation that transfers data, CCP places the input data
received by your program in the seventh and succeeding
positions of your record area before it returns control to
your COBOL program. Any excess positions, beyond the
end of the actual data received, are filled with blanks by
CCP, up to the maximum input length you specified for
the operation. The data is then available for you to use
in your program.

COBOL 413

[Hin

COBOL Coding Form

SYSTEM PUNCHING INSTRUCTIONS [PAGE OF
PROGRAN GRAPHIG CARD FORM =
PROGRAMMER | DATE PUNCH
SEQUENCE %{A |8 COBOL STATEMENT | memmcnnonJ
(‘PAGE; fEmAE“ L7)IB 12 5 0 73 78 37 36 30 az a8 52 56, 2])) 71' 76
GUN AR NN AT ARNAR T T ' T
o2 | DATA DIMISTON.! 1 1 T T T 1
o] [(. ‘ 8 BRI
T T | ‘ maiN
o0 | WORKIING-STORAGE ISECTITION.] . [- Suill
os | [] i ; 7
1ok Ty 1ol RECORD-UREA-AL T B f
b1y 1185 TERM-NAME-A PIIC X[(6) . i 1 l
b 05 REC-TYPE-IAL PIC X, : aEn 3 -
P } ; ;) : o
TN TNNRG) SRR NRR T g
e N : | j J =t
JREDAR1 N!E} SET] [OF [FIIELIDIS| [FlOR: EIACH] O [5] T ERMINAL l %
; 1o o]] : :
a i 0“” _SAVED- INFORMATIO!N ; Defines a table of
il g5 | l5laNF ENTRY I0CCURS| 5| TIIMES| [TNDEXIED SAN-IIX. i | saved values for data
Wl ‘ SAV- TEIRM-NAME PIIC| XI(16 ; received from five
b 1] AN SAV-ICUIST-NIO_PIIC] I(4D)]. ‘ different terminals.]
2ol [' ;ll(D SAV-ICUST-INAME PIC [X(155 The group item, SAV-ENTRY, ||
IT Tl SAN, -ILAlS[T-RIECH TIYIPE PIC] consmsofﬁﬁelds.
| Ty S V.- NUMBE RI- T siAlcls! (PIic qq o " | These fields can .be
X g SAV-TT SIAL - AMT-SVBToTIAIL PITC! s9 V919 [CoMp referenced later in]
|r 1 i , l 1 ‘ i ‘ ; T l l i your program. J
T 33 67§ 12 15 20 24 28 g 32 15' 4 i ag 57 58 & 68 rrd 8
SEQUENCE %} A iB COBOL STATEMENT | IDENTIFICATIOEJ
(‘PAGE:: quR»Aé s} 5 iz - 55 - 5 = 5 s T3 rd 53 - 5 B o [} 72' T8
T) i Ik
o2 | PRI0C(EDURE] [DLVISTION 3 : SN
Bl j (s ‘ ' { " ‘
e - an . ‘ h l;l f '
o5 | SETLISAN-IX! Tlo 1L L ‘ . ! Search thr.ought e table o
os] |11 lsEARCHI-1L00P! . 1 i 1 : " | saved entries for thg saved
ol 117 JIFTERM-INAME-A =] s K/- TERM- NTA N ERMEE i { terminal nameI that is thehsame
\ ™ = as the terminal name in the
zi f %IF GOVT:‘[) ngg2-¥ Hg ;‘E gTR‘Y R ! name fietd of the record
- : } SAV:- A 1 area (TERM-NAME-A). When you find
-1 | 1 SET V - I UP BY 1 t ‘ + t the corresponding terminal name
S N7 ng OIO FLS E}?J DCH -|Loopl 1. | proceed to FOUND-THE-ENTRY.
e | - i~lF: : i -
JINNEERRENEE ‘ P
1ia ! ! . |
e % : FdUN D-[TH Ef‘ EN:T]KY . . : Once you have found the saved entry you were
103N [1T ; | ‘ B searching for, you can reference the ssa:i;ilx
Tl) [; T i é i fields by indexing the field name by -1X:
, | ; ; \ . |
1 i l]ILF REC -?TYPE-A ‘,= SA.V— LA%STﬂREC _TYDE (SA X)*-' Compares input record type field with
S { ‘ : : ‘ 1 | i previous record from this terminal.
+ f I 1 ! i | | ‘ : /‘ ® Updates the number of transactions field in
K ‘ DD i AN TR~ i ; i the saved entry by adding the new trans-
i fAlD D? 4 Tﬂ A :\N UMIBF R-TRANSACS (;SA Y I[X action from the input record.
1) i J i H H i

Figure 4-7. Referencing Saved Information

414

USING THE SYSTEM OPERATOR CONSOLE

If you wish to communicate with the system operator
through either the 5471 Printer/Keyboard (Models 10 and
12) or CRT/Keyboard (Model 15), you must specify opera-
tions as though the device is a remote terminal. You cannot
address the system operator’s console by either the
DISPLAY UPON console-name or the ACCEPT...FROM
console-name statement. Instead of using these statements,
you must specify either a Put or Put-Then-Get operation to
a terminal named CONSOL. CONSOL is the only name
that can be assigned to the system operator console.

Your program can communicate with the system operator’s
console at any time. To receive data from the console,
you must issue a Put-Then-Get operation, which:

1. Transmits a message to the system operator; and
2, Accepts a reply from the system operator.

Control is not returned to your program until the system
operator has transmitted input data to your program,

The operations that can be issued to the console are:

® Put
® Put-Then-Get
® Get Attributes

The console is available at all times to communicate with
any program or to enter system operator commands.
However, if the console requests a program, it cannot re-
quest another program until the first program is initiated by
CCP. It is not necessary, nor is it valid, to issue an Acquire
Terminal operation to the console in order to communicate
with it.

Example: The example in Figure 4-8 uses the system
operator console as the terminal for a Put-Then-Get
operation to notify the system operator of an 1/O error.

COBOL PROGRAMMING CONSIDERATIONS

When writing your COBOL program, remember:

® (Model 10 and Model 12) You cannot use either the
ACCEPT or the DISPLAY statements when addressing
the CONSOL.

® You cannot use the Checkpoint/Restart facility of Disk
Data Management. Therefore, your COBOL program
cannot specify the RERUN statement.

® (Model 10 and Model 12 CCP) You must not issue a
STOP literal statement. Programs running under the
CCP are not permitted to issue halts.

® You should not use the APPLY CORE-INDEX clause in
your COBOL program to create an in-storage index
{(master index) for randomly processed indexed files. The
index is built as a result of the MSTRINDX keyword of
the DISKFILE assignment statement (see CCP System
Reference), therefore, if you use an APPLY CORE-
INDEX clause, you will only add unnecessary storage
size to your program.

® You cannot use the COBOL TRACE option under CCP

® The DISPLAY statement cannot be used for a printer.

3270 DISPLAY FORMAT FACILITY

You can use the 3270 Display Format Facility {DFF) of
CCP to aid you in formatting and using the 3270 display.
Chapter 8: 3270 Display Format Facility describes the
programming requirements that are unique to using 3270
DFF, including the unique 3270 DFF operations, additional
information that must be placed in the record area for
certain operations, field types that are unique to the 3270,
and other information.

See Chapter 8: 3270 Display Format Facility for an example

of a COBOL program that uses the DFF to support a single
requesting 3270 terminal.

COBOL 415

COBOL Coding Form

SYSTEM PUNCHING INSTRUCTIONS PAGE OF
PROGRAM GRAPHIC CARD FORM # *
PROGRAMMER [oate PUNCH
SEQUENCE El A 8 COBOL STATEMENT | iIbENTIFICATION
yace) SR ?13 i 18 20 FLS 78 3 K3 %0 a3 I 52 55] :2) ;1 12l Te
o ESRARREENNEEEERANRERN } | ’
o2 | |DATA| DIN[ISTON. LT ‘ ? !
(Lo | WORKING-|STORAGE! |SECTITON .| . \ ; ;
BILCONNERER B N ' f
ols %’ IR s ‘ ‘ ‘ L |
o M PARAMETER ILIST i T R
TR | | N ! i
o1y @l PARM-LIIST, T ERERE !
oL L @5 [PL-RTe [PIC] S9(H) CloMp-[H] RN
Lot L gs [pi-giec T pTicl 919 (/) Clomp-ly . ‘ RN
BEEONEE ‘p PL-oTY | PICI ST Clomp-K : | EREE
e es DIPIL-IING PRl (sl (40 clomel- ENINEERRNR ik
bl L L es [FILUER 1 Plre] X8 o -
i Y ‘KI' 1 T T ‘ I [| Define the parameter list l' I
i 1l ‘%i RECIO R D’ AR EiA RN 1 ! i] and the record area. i i
T e [T ‘. | 1
Pl el INPUT-louT Pl -ARE !
IBIEINED ’QE TERM-NAME-TO] . [PIIC' X (|6 . : !
L J ‘P*§ 56-DATA PIIC X(22) | I }
O | | P L i i "
PROCIEDURE DIVISIION I] | RN ;
! ‘ b ; ; | . | i % , }
I L (e) Loy L X L
NN I S ALY S M A K w x M ! * t m
SEQUENCE |21 a is COBOL STATEMENT | lDENT!FICATIONJ
(:PAGE:I EERIA'é ?la 177 AL 20 73 75 37 35) -] B 57 58] EE' - ‘65‘ nl 7 _—
o] B ; TTTI [X ' : I ‘ " B B l ! l I
o] % PREPARE| | ERROR| MESSIAGIES] HERIE AIND| SIET L HRERE !
o] B up; PARIA ETER LIST [FOR [PuT. [TkEM GET| Tlo [CONS/OLE uiiEN R
CC N ‘ ‘ il 1 Lol | s
ol | PUT-GET.L [[~ ‘ - ‘ _ NN !
ol l Y ‘TOVE 3\’ PTO PIL- 0Pl . Set operation code for Put-then-Get, O T
e T MovEl 28 [To lpiL-ouT.| e Set output length field. : 1
s I MO\IE 2 10 PL-~ INL. | Set maximum input data length field. | ‘ :
v)(1' : L | : . | : L | : :
0} INSERT ITERMINAL] NAME COINSOLI AND| | | 1 | : ; |
Il fﬁROR MESISAGE| TO [RECORD AREA 1 1 ; ;
2008 SIS ARABRRIRaNaES RRARRSEERERSSE i
A i { r IMO*VE \ETP IO ERRIO[R” TO SIG-IDAIT @, Set data portion of record area. !
b1y MovE] TicloiNsloll]” Tol TERM-N g~1l0. ®— Set terminal name field of record !
ol b TTT1 i - area to CONSOL. '
Dl b Do:Puw THEWN (GET OPERATION ol IColNsoL N NERENE }
L1 e] by : ‘ i i al : | I
o]yl CALL ~CCPCID | USING PiARiM'JTLIST." IINPUT-IOUTIPUT -AREA|.| e Call the Communications | | |
20 ; ! | i K: L B ; Service Subroutine to L
) ; 1 [' . e | perform the Put then Get n
IRNIREAE ': anul I : : ! operation. i
e L T T NEERAEREREE ? SN

Figure 4-8. Using the Console

4-16

PROGRAMMING EXAMPLES

Two programming examples are explained in this section:

Example 1 — A COBOL program that supports a single
requesting 3270 without using the Display Format Facility.

Example 2 — A COBOL program that supports multiple
requesting terminals.

See Chapter 8 for an example of a COBOL program that
uses the 3270 Display Format Facility to support a single
requesting 3270 terminal.

Example 1

Figures 4-9, 4-10, and 4-11 show the flowcharts, messages,
and listing for a sample single requesting terminal (SRT)
COBOL program. This program transmits two messages to
a 3270 Model 1 Display System (480 character screen).
The first message from the program requests the terminal
operator to enter a room number. The program uses the
room number as the relative record number to access a
disk file whose records contain guest and rate information
about the room. This information is then formatted and
displayed as the second message transmitted to the 3270
terminal. Figure 4-9 also shows how these messages appear
on the 3270 terminal.

Because this program is a single requesting terminal (SRT)
program (see index entry) without any program-selected
terminals, it can receive data from and transmit data to
only one 3270 terminal. However, multiple copies of this
program could be in main storage at the same time, each
communicating with a different 3270 Display System. (If
multiple copies are in core at the same time, the disk file
must be specified as sharable during the Assignment stage —
see index entry disk file sharing.)

Formatting the Messages for the 3270 Display

Because this sample program does not use the Display
Format Facility, this sample program must set all formatting
control characters for the 3270 display screen into the
data portion of the record area and transmit them as part
of the messages to be displayed. Figure 4-10 shows the
messages and the 3270 control characters as they are trans-
mitted to the 3270 terminal. You can find the meanings
of each of the 3270 screen format characters shown in
Figure 4 of the General Information Binary Synchronous
Communications System Reference Library Manual,
GA27-3004.

The printable control characters are set by defining them
as part of the message in the VALUE clauses of the record
area definition. Blanks are ieft in the VALUE clauses
where the unprintable format characters will be set by
MOVE statements later in the program.

The unprintable format characters (hexadecimal values

that have no corresponding printable character in 96-column
card code) are set by first coding the hexadecimal format
characters as decimal values and initializing fields to these
values (PSEUDO and PSEUDO2). The fields assigned these
decimal values are then redefined so that the COBOL program
can access these values, which are stored in hexadecimal
internally, as the format characters. These redefined fields
{(INSERT-CURSOR, START-FIELD, SET-BUFFER-ADDR,
and ESCAPE) are then moved into the appropriate position
in the message. The notes to the right of the listing in
Figure 4-11 explain the statements used by this program

to format the 3270 display screen. You will also find

the comments in the listing helpful.

Notes Concerning this Sample Program

® Message Mode was defined during the Assignment Stage
for the 3270 terminal used by this program. (See
TERMATTR statement in CCP System Reference Man-
ual.) This eliminates the need to do repetitive input
operations until EOT is received.

® To run this program using a terminal other than the 3270
you must remove all coding dependent on the 3270.
This includes all screen formatting specifications and
3270 screen control characters within the data.

® This program will not accept data with the program
request,

® Two different lengths are used for the output length
field of the parameter list because the two messages
transmitted by this sample program have different
length.

® This program specifies a PUT operation and a GET
operation using six blanks as the terminal name. The
CCP places the name of the 3270 terminal being used
in the terminal name field of the record area after the
first PUT operation is performed.

coBOL 4-17

® To keep this sample program simple, return code

checking is kept to a minimum. You may want to do
more return code checking in your application programs.
For example, when you issue Accept Input you should
check for the Shutdown Requested return code (04).
Also, if data mode escape is allowed in the CCP system,
programs should check for return code 08 (terminal has
released itself from the program). It is recommended
that each installation design its own return code checking
and console communication routines so that a standard
is established that is satisfactory to the installation and
can be used by all application programs.

This program does not check the tength of the input
data because the terminal operator is requested to enter
a three-digit room number. 1f less than three digits are
entered, the program branches to the EXIT-DONE pro-
cedure and the program is canceled. However, you may
want to check the input data length in your application
programs.

4.18

® Since there are only two different screen formats used

by this program, they are both contained within the
program. For more complete applications, you might
store the screen formats on disk and read them when
they are needed by your program.

You could also use the Get Attributes operation in this
program. If you do not know whether the 3270 Model 1
or the 3270 Model 2 wil! request the program, you can
issue a Get Attributes operation to find out which type
of terminal requested the program.

If this program were coded and specified as a multiple
requesting terminal (MRT) program with a MRTMAX=1
keyword on the PROGRAM assignment statement (see
CCP System Reference Manual}, multiple copies of the
program would not be allowed in main storage at the
same time. As the program is written, multiple copies
could be in main storage at the same time and the disk
file must be specified as sharable (FILES keyword of
PROGRAM assignment statement).

(o)

1. Set up parameter list to Put-No-Wait
a message.

2, Format screen for 3270M1.

3. Put-No-Wait the message.
{Enter Room #.)

1. Set up parameter list for Get.
2. Get message (Room #).

Return Code
=Q?

ENTER ROOM # _

~

ENTER ROOM # 009

3

Read disk record. (Room # is relative
record number.)

1. Move disk data: Room #, Rate,

Name, Address.

Format screen for 3270M1.

3. Set up parameter list for Put-No-Wait
message.

4. Put-No-Wait the message. (Room #,
Rate, Name, Address).

N

—

ENTER ROOM # 009
ROOM # - 009

RATE - $18.50

NAME - JOHN DOE
ADDR - 114 5TH AVE SW
ADDR - STURGIS, MINN. 55101

[END OF JOB)

Figure 4-9. Program Logic of Example 1 (COBOL SRT Program)

__

JI L

CcOoBOL

L

4-19

First Message

1 2 3 4 5 Bl 718 9 10 11 12f13]14 16516 17 18 19 20 21 2223 2425 26 27 28 29 30 31 32 33 34 35 36 37 38 30 40
SIS L FENTER RlojoM RlH S ExxxEE |
LY o |
| i
| ERARE T
il P LpL} Al T [l
EC - SF- - ATT
cc — ATT- L SF
wcc— IC ——
SBA—
BA — I

5 6[7 8 9 1011 12'1314!5\6|718|9?02| 2223 24 25 26 27 28 29 30 31 37 33 34

.éé-‘ty;;now OOLFRNTE |- (B X
THNEH o EEH |

|
Tl | l
ECH BA
CC — L SBA
WwCC
SBA ——
BA ———

35 36 37 38 39 4D 41 42 42 44 45 46 47 an 49 50 B 57 53 54 55 66 57 58 59 6061 67 63 64

LNAME [~ XXX XX XXX xxxfﬂ;
|

ol uwﬁwvmlfm
SBA

T

BA —
6566 £7 68 69 70 71 72 73 14 776 7/7713868‘ ﬂ; 23 144 85 H6 87)88 B 90 91 97 93 94
-)Qx)(XX XXX !X XXXXXXXXj
|
POV LT DT T I
95 to
| i 1] i i ‘{;{») i
&@§MDDR = 1|1 |31 ¢ X ¢ | B
CESREN # _
SBA —
SF — Start Field CC — Command Codle
ATT — Attribute Character WCC — Write Control Character
IC — Insert Cursor SBA -- Set Buffer Address
X — Data Character BA — Buffer Address of first character
EC —Escape Character position in the field

Figure 4-10. Message Formats for Example 1 {COBOL SRT Program)

4-20

STNO -A...B.ea C OB OL

WN -

[=V- 2. N U

-

11
12

23

24
25
26
27
28
29
30
31

IBM SYSTEM/3 AMERICAN NATIONAL STANDARD COBOL
SOURCE

PROCESS MAP,LIST,GODECK

IDENTIFICATION DIVISION.

PROGRAM-1D. SRCOBI.

REMARKS. THES IS A SAMPLE SINGLE REQUESTING TERMINAL PROGRAM

DESIGNED TO RUN UNDER CCP. A 3 DIGIT ROOM NUMBER
WHOSE VALUE IS BETWEEN 1 AND 10 IS ENTERED FROM A 3270
TERMINAL. THE ROOM NUMBER IS RECEIVED BY THIS PROGRAM,
AND IS USED TO ACCESS A FILE WHOSE RECORDS CONTAIN
GUEST AND RATE INFORMATION ABOUT THE ROOM. THE PROGRAM
RECEIVES THIS INFORMATION FROM THE DISK AND FORMATS IT
AND THEN SENDS IT BACK TO THE 3270 TO BE DISPLAYED.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-$3.

0BJECT-COMPUTER. IBM-S3.

INPUT-DUTPUT SECTION.

FILE-CONTROL.

SELECT GUEST-FILE ASSIGN TO DA-5444~R-GSTFILE
ACCESS MODE IS RANDOM
ACTUAL KEY IS GUEST-KEY.

DATA DIVISION.

FILE SECTION.
t“..""“"..*l“".“‘““*.*"““.t“t‘t‘t“.‘.".‘....“""
* THIS IS THE RECORD THAT CONTAINS THE GUEST AND RATE *
. INFORMATION FROM THE DISK FILE. »
EEEREREH RN EREREEEREREEBEE R R KR RSB E LR ER SRR R USRS R AP RGO RS S a Sk &k

FO GUEST-FILE LABEL RECORDS ARE STANDARD

DATA RECORD IS GUEST-REC.
01 GUEST-REC.

02 RPG-DATA PIC X.

02 ROOM—NMBR PIC X(3).

02 ROOM-RATE PIC 99v99.

02 GUEST-NAME PIC X(20).

02 ADDR-HOME PIC X(20}.

02 ADDR-WORK PIC X{20).

02 FILLER PIC X(2).

WORKING-STORAGE SECTION.

EEC AR SRR AR EE SR RA RN R RN B R R R SRR S EE R BRSSP R A SRR RS XXk S SRk kR Sk
* INDEPENDENT FIELDS AND CONSTANTS AND KEYS *
BEABERREBEERER AR NSRS SRR RS RRER AR SR E RS R RSB RRE AR E S SRR NS R RS RISk
77 GUEST-KEY PIC S9(7) COMP.
EEEAEER R RAE R R SR RS ER R A S SRR R RS RS R A B SR AR R EE SRR RSB AR ERREA R AR K S Rk
* THESE ARE SPECIAL HEX-DECIMAL CHARACTERS USED FOR FORMATTING #*
* THE 3270 SCREEN *
SREXE SRR R R AR EBRERA R AR RS R AR E SR A SR SRS AR SER B R E KR RIS RE S kR RSk bk
01 PSEUDC PIC 9999 COMP-& VALUE 4893. 0
01 IC-SF REDEFINES PSEUDO.
05 INSERT-CURSOR PIC x.%
05 START-FIELD PIC X.
01 PSEUDO2 PIC 9999 COMP-4 VALUE 4391.)
01 SBA-ESC REDEFINES PSEUDO2.
05 SET-BUFFER-ADDR PIC X. E

05 ESCAPE PIC X.

Figure 4-11 (Part 1 of 3). Example 1 — COBOL SRT Program

STATEMENTS wcecacaeass IDENTFCN SEQ/NOD S

0 Initialize PSEUDO using decimal values
corresponding to the hexadecimal values
for Insert Cursor and Start Field. These
values will be internally represented in
binary:

Insert Cursor = X'13’
Start Field = X1D’
X’131D’ = decimal 4893 (see Note)

Q Redefine PSEUDO to make the resulting
two hexadecimat values available to be
manipufated individually in the program.

0 Initialize PSEUDO?2 using decimal values
corresponding to the hexadecimal values
for Set Buffer Address and Escape Char-
acter. These values will be internally
represented in binary:

Set Buffer Address = X‘11’
Escape Character = X'27’
X'1127' = decimal 4391 (see Note)

@) Redefine PSEUDO2 to make the resulting
two hexadecimal values available to be
manipulated individually in the program.

Note: The hexadecimal value to be convert-
ed to decimal must never exceed X'270F’,
or the resutting decimal value will exceed
four digits and will require a three-byte
field. If this occurs, rearrange the order of
the hexadecimal fields to see if it results in
a lower decimai value. If it does not, use a
three-byte field and place a X'00’ filter in
the first byte.

CcOoBOL 421

32
33
34
3s
36
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
s6
57
58
59
60
61
62
63
b4
65
66

67
68
69

70
71
12
73
14
15

76

Figure 4-11 {Part 2 of 3).

4-22

lAdad i i i bl ad bl St LTI TI I T LT Tl Ty T T T P Y P P o PP
* INPUT-OUTPUT PARAMETER LIST *
bbb AR R AL g L N T T e

Ol PARM-LIST.

05 PL-RTC PIC S9{4) COMP-4.

05 PL-OPC PIC S9(4) COMP-4 VALUE 54.

05 PL-QUTL PIC 59(4) COMP-4 VALUE 26.

05 PL~INL PIC S9(4) COMP-4 VALUE 11l.

05 FILLER PIC X(8).
bt bR A dd LAl L i gl d A s L Tl
* THIS 1S THE INPUT/GUTPUT AREA *

RE R AR R s A e g T Y R I Ll rTTY YY",
01 INPUT-OUTPUT~AREA. ___________————‘_—__———___1_____—-
05 I-0-TERM PIC X(6) VALUE SPACES. Data area for Messages:

C5 I-0-AREA.
10 MSG1 PIC X{21) VALUE ' 56
10 ROGM-NUM PIC X(3) VALUE SPACES.
10 CHRS1 PIC X{5) VALUE * 0- s',
10 CHRS2 PIC 99.99.
10 NAME PIC X{10) VALUE ' ABNAME - ',
10 NAM-CHR PIC X{20) VALUE SPACES.
10 ADDR1 PIC X{10) VALUE * B-ADBDR - ',
10 ADLI-CHR PIC X{20) VALUE SPACES.
10 ADDR2 PIC X{10) VALUE ' CHADDR - '.
10 AD2-CHR PIC X{20) VALUE SPACES.
05 [-0-CHARS REDEFINES I-0-AREA.
10 I-0-CHAR PIC X OCCURS 124 INDEXED BY INDX.
05 1-0-AREA2 REDEFINES I-0D-AREA.

ENTER ROOM # I°*.

10 ROOM PIC x{15}).
10 ROOM-NM PIC X(3).
10 RATE PIC X(8).
10 FILLER PIC x{98).

05 INPUT-AREA REDEFINES I1-0-AREA.
10 DEVICE PIC X.
10 CNTRL-U PIC X.

10 AID PIC X.
10 CRS~-ADD PIC Xx{2).
10 SBA PIC X.

10 SBA-ADD PIC X(2).
10 RM=-NUM PIC X(3).
10 FILLER PIC X(113).
/tttt‘ttttt##ttttt##tt#tttt#t*t»i#ttttttttttttttt#t‘tttttttt‘tt‘t.
* NOW BEGIN EXECUTION BY OPENING THE DIRECT ACCESS FILE
ttttttt*ttttt#tttttt#ttttt#tttt##tttttttt#*ttttt#ttttt.ttttttt.i#t
PROCEDURE DIVISION.
OPEN-THE-FILE.
CPEN INPUT GUEST-FILE.
AR R R A d b L L T T T st r e
* INSERT THE HEXADECIMAL CONTROL CHARACTERS INTO DATA STREAM *
hbhadddddadd i d it d Ll S s i L Y Y et i
FIRST-CHARS.
MOVE ESCAPE TO I-0-CHAR{1).
MOVE SET-BUFFER-ADDR TO I-0-CHAR(4).
NEXT-CHARS.
MOVE START-FIELD TO I-0O-CHAR(19}.
MOVE INSERT-CURSOR TO I1-0-CHAR(21).
A b b i Al At L e e T Tttt
* THIS FIELD IS DEFINED TO PREVENT DATA FROM BEING ENTERED *
* BEYOND THIS POSITION ON THE SCREEN. *
R b R S LTI
MOVE START-FIELD TO I-0~CHAR(25).
hhddd il id i i bl i i il i it s i T T P e P R 2 e L)
* DO PUT MESSAGE NO WAIT OPERATION TO 3270 TERMINAL *
* REQUESTING THE ROOM NUMBER BE ENTERED *
AR iR R Rk R L e D P

Example 1 — COBOL SRT Program

Return Code Field

Operation Code Field

Output Length Field
Maximum Input Length Field
Required CCP Work Area

Terminal Name Field

Initialize the con-
tents of message fields to be displayed and
of any printable 3270 formatting charac-
ters. Leave blanks for any unprintable 3270
control characters {characters that cannot
be represented by a character in the COBOL
character set). The blank fields are set by
MOVE statements later in the program.

The first half of this definition is used for
the first message; the second half is used
only for the second message. The first part
of the second message will be added later

by overlaying the first message.

Redefine the data area with an index so

each position in the area can be referenced
separately.

Redefine the data area to set up the first
part of the second message.

Redefine data area for Get operation.

Move the hexadecimal values for the remain-
ing 3270 formatting control characters to
appropriate positions in the data area. These
characters are unprintable.

77

78
79

80

82

84
85

89

90

92
93
94
95
96
97

99
100
101
102

103
104

105
106
107
108

CALL 'CCPCIO® USING PARM-LIST, INPUT-OUTPUT-AREA.
t‘#tt*‘t#ttt*tt##tt#tt***t#tt‘#tﬁ##‘*ttt*t#t'ttt“‘ttti*tt“#“‘
* DU GET OPERATION FROM 3270 TERMINAL AND OBTAIN ROOM NUMBER #
*ttt‘ttttt*t#tttttt‘tt##*“tttt“‘“#‘*##l#ttttttt.'ttttt‘t..‘t‘#.

MOVE 1 TO PL-OPC.

CALL *CCPCIO' USING PARM-LIST, INPUT-OUTPUT-AREA.
ttt*‘#t#*tt‘tt#tttttt‘#‘#tt**ttt#‘t*t**'.iit#t‘t‘ttﬁ.“.'.‘tt“l“
* IF THE RETURN CODE IS NOT ZERO GO TO END OF JOB *
tﬁttt##“#tt*‘*#tt‘t‘#t#t#**t#*“t‘ttt#“ttttttt.ttttltt"“*t.#t#

IF PL-RTC NOT = O GO TO EXIT-DONE.
‘tt.*#t‘t#*t##t*"##lt““t#ttt't*t‘*#t#ttt"#“tttt"“‘#t#“‘t“
* CHECK TO SEE IF THE ENTER KEY WAS PRESSED, IF IT WAS NOT GO #
* TO END OF JOB. *
AXRRRAER R EELRF RS RI R AR RS KRR DR RN E R AR AR RN A R RS R RSB RSN R E R

1f 1-0~CHAR(3) NOT = QUOTE GO TO EXIT-OONE.
"t#ttti##tt#**#tttt#‘t‘tt‘*tt‘###t.t“t‘##tttttt't“t‘#‘#“'.‘t“
* VALIDITY CHECK THE ROOM NUMBER IF ROOM NUMBER BAD GO TO END #
* OF JOB *
‘ﬂittt‘tt*tt“t#*t‘##ttt#tttt**##tlttt‘#t#‘tttt#t“.tt‘tt"“."t‘

MOVE RM-NUM TO GUEST-KEY.

IF GUEST-KEY LESS THAN 1 GO TO EXIT-DONE.

IF GUEST-KEY GREATER THAN 10 GO TO EXIT-DONE.

MOVE RM-NUM TO ROOM-NM.
t‘*‘**ltt**‘it#“‘*‘**“‘t#t#*tt#tt‘#“‘t‘“itt'#“.“*“““““‘
* READ RECORD FROM DIRECT ACCESS FILE. THE ROOM NUMBER *
* REPRESENTS THE RELATIVE POSITION OF THE RECORD IN THE FILE®
#"t#¥t“*tt#ttt*tt##t**‘tttt#ttt‘.‘i‘tt“"tt‘t“#‘*““‘.‘l““‘

READ GUEST-FILE INVALID KEY GO TO EXIT-DONE.

/SRR SRR EE R PR A RN SRR AR REE LSRR EEREN B SRS R AR S ESRE R EE RSB S SR K
* MOVE THE ROGM NUMBER, RATE PER DAY, THE NAME AND ADDRESS OF t
* THE GUEST INTO THE QUTPUT AREA
#Ut.#‘t“‘*‘.‘tl.t"“t‘t“‘.‘."‘“‘.‘..‘i.".#tt‘t‘t.‘.l.“.‘tt‘

MOVE * 16 YROOM # - ' TO ROCM.

MOVE ' AERATE ' TO RATE.

MOVE GUEST-NAME TO NAM-CHR.

MOVE ROOM-RATE TO CHRS2.

MOVE ADDR-HOME TO AD1-CHR.

MOVE ADDR-WORK TO AD2-CHR.
FXRER SRR R SRR E RN A BRSSPSR R RS R R R VDR R R R R RS R R ER SRS E S PR RRREE SR A SO Sk
* INSERT THE HEXADECIMAL CONTROL CHARACTERS INTO DATA STREAM *
R L 222222222 2 22 Rt 2t 2R R R P R P P PRSP E TP S P

PERFORM FIRST-CHARS.

MOVE SET-BUFFER~ADDR TO I-0-CHAR(19).

MOVE SET-BUFFER-ADDR TO 1-0-CHAR(3S).

MOVE SET-BUFFER-ADDR TO I-O-CHAR{65).

MOVE SET-BUFFER-ADDR TO [-0-CHAR(95).
SLRRERER AR R R LR AR SRR ER LR SRR EE ARSI AR AR R SRR KRR RS S ESERE RS SRR SRR E SRk
* SET UP PARAMETER LIST FOR A PUT MESSAGE NO WAIT *
RUEEEBEER SRR EFEERAXR BT R AR RN EARES SRS LB LR R AR KR SS R B RS SN A S E R KN

MOVE 54 TO PL-OPC.

MOVE 124 TO PL-OUTL.
U E PR SRR E R EE R SR AR KRR SR BB R B A A S SRR R SRS R A SRR R SRS KRR AR SRS R AR R RS
* DO PUT MESSAGE NO WAIT OPERATION TO THE 3270 TERMINAL .
LR REERERE R LR R R R EER SRR R AR R AR SR RS OR R R R RS SRR RS R E RS LA RO SR AR S

CALL *CCPCIO' USING PARM-LIST, INPUT-QUTPUT—AREA.

EXIT~DONE.
CLOSE GUEST-FILE.
STOP RUN.

Figure 4-11 (Part 3 of 3). Example 1 — COBOL SRT Program

Move the message, data, and printable 3270
control characters for the first part of the
second message into the data area of the
record area, overlaying the first message.

Move the hexadecimal values for the 3270

formatting control characters that are not

already set in the data area into the appro-
priate positions of the data area. These are
the unprintable control characters.

COBOL 4-23

Example 2

Figures 4-12, 4-13, and 4-14 show the flowchart, input/
output messages, and listing for a sample COBOL multiple
requesting terminal (MRT) program designed to run under
the CCP. This program handles up to four MLTA re-
questing terminals. The terminal operator enters a seven-
digit number preceded by a +, -, or N. The CCP transmits
this signed number to the COBOL program. The COBOL
program:

® Adds the number to the value in the accumulator field
associated with the terminal that transmitted the data

if the first position is +

® Subtracts the number from the accumulator if the first
position is -

® Releases the terminal if the first position is N

If a value was either added or subtracted, the new value
accumuiated for the terminal is inserted into the message
CURRENT VAL = sxxxxxxxxxx ENTER DATA and the
message is sent to the terminal.

This sample program also checks for several error conditions
and transmits the appropriate error message to the terminal.

This sample program is not designed to show the most
effective way of performing operations. Instead, it shows a
variety of ways to do things. It uses a variety of operation
codes that show how data can be associated with a terminal
by defining a save area for the terminal names and accumu-
lated data. It frequently checks return codes; but you can
do even more return code checking if you wish. Data
entered by the terminal operator must be fixed fength. To
allow variable length input fields, you could include a sub-
routine in your program to check the effective input iength
returned in the parameter list and align the data correctly.
This program communicates with the console in addition to
the requesting terminals.

The notes to the right of the listing in Figure 4-14 and
the comments in the listing explain each section of the
sample program.

Al

=)
@

2J1

B1
1. Set up parameter
list for Accept

Input
2. Accept Input

C/
Shutdown

Yes
< request
No
D1
< Terminal No
attached
Yes
E1
< Terminal Yes
cancelled
@)
F1
< Negative
return code
No
G1
< Positive return
code (#0)
No
H1

< Operator = N

B4

Cc2

Exit to

shutdown

Terminal
cancelled

E2

Set cancelled
switch

G2

B4

1. Check input
length = 8

2. Check valid
operator

3. Check valid data

. Set up Put-No-

Wait (Message)
Issue Put

C5
Cc4
No 1
2.
Yes
03 D4
Add terminal to Find proper
attached list accumulator
E4

Add or subtract
input to
accumulator

Accumulator

. Move -’ to out-

put area
Make unit position
printable

>0

1. Set up Put-No-Wait
{Message)
2. Issue Put

2F1

G4

1. Set up Put, Wait
message

2. Put message

H4
Return code

=0

Figure 4-12 (Part 1 of 3). Program Logic of Example 2 {COBOL MRT Program)

Ja

1. Set up Invite Input
2. Invite input

B1

281

cOBOL 425

B1

-{Output Error

384

Console routine

c1

Retry =
try again

Terminal
cancelled

. Set up Release

Terminal op.
Release terminal

Return
code = 0

End of job

No

. Clear terminal

name entry in
attached list
Clear accumulator

Figure 4-12 (Part 2 of 3). Program Logic of Example 2 (COBOL MRT Program)

4-26

1B1

~< Input TP Error
B4 {

3B4

Console Routine

Retry = try
again

1. Set up Put-No-
Wait (Message)
2. lIssue Put

Shutdown Routine

A1l
ENTER
g1 Console Routine
B4
Set index = 1
ENTER
C1
ca
Check entry in 1. Set up Put-then-
attached list Get to console.
2. lssue Put-then-
Get

D5

Retry = TA
(try again)

Set on release
terminal indicator

E1 No Yes J
E4
| 1. Set up Stop
Invite Input Op { RETURN)
2. Stop Invite Input

1. Set up Put-No-
Wait {message)

2. lIssue shutdown
message

()

Effective input
length = 0

H1>—_
C H1 No

Add 1 to index

No
Index = &

Yes

K1

‘ End of job '

Figure 4-12 (Part 3 of 3}. Program Logic of Example 2 (COBOL MRT Program)

COBOL 4-27

Input Data Entered by Terminal Operator

5 2 7.8 9 1011

XXX |X A fixed length numeric field where S is a +, —, or N and
X is a numeric digit. All eight postions must be entered,
except when N is entered in the first position.

i

Xl»

i
SXIX

Data Entered by System Operator on 5471 Printer/Keyboard (Models 10 and 12) or CRT/Keyboard (Model 15)

34 516]7 B9 I01TT.

TIA
ciC

In response to the messages INPUT TP ERROR TNAME-
} cceeee and OUTPUT TP ERROR TNAME-cceecce to the

i console, the system operator replies TA if he wants to
try again. Any other reply {cc) causes the terminal to be
released.

Output to the Console

3] é 7.8 9 1011121314151617 18 19 20 21 22 23 24 25 96 27 2829 30 .

Py
uT| | TP € RMO Rl TINAME|-C/CICICICIC These messages are transmitted to the console (ccecce =
5 terminal name).

INP

QUTPVIT TP [ERROR| TNAME-CCICICCC

i L ; ; } |

Output to Terminal

NUvIoE R

152 3 4 6 g7 8 9101112131415161718192021222324252627282930313233343536
CURRENT VAL =8 XX IxIx[x < [X[x[x]x EINTIERR| [DIATIA Transmitted with value in accumulator associated with
‘ the terminal.
TIRY 'Algjal N I;NV DIATA : Issued if data is invalid.
e . |

TRY AGAIN TP E‘RR QiR ! { l_jl Issued if system operator replies TA (negative return

| ; ‘ ‘ ‘ ; code on Accept Input).
CICP SHTOWN LAST| REIC- TP [ERROR Issued for negative return code on Stop Invite Input.

| . ;

CP SHTOWN| L'AsT| REC- BAD| DAT A " Issued for positive return code other than 10 on Stop
| bl i Invite Input.
CCP SHT DMN LgA‘ST ‘RE%C" S XX X X XXX Issued for return code of 0 on Stop Invite Input.
CicP SHTDWN LlA}ST REIC-| | NGO [DATA j issued for return code of 10 on Stop Invite Input

Figure 4-13. Input and Output Message Formats for Example 2 (COBOL MRT Program)

IBM SYSTEM/3 AMERICAN NATIONAL STANDARD COBOL

STNO -A...B... C O B O L S OURCE STATEM®NNENTS .ccaveas..IDENTFCN SEQ/NO S
PROCESS MAP,LIST

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. MRCOBI1.

3 REMARKS. THIS IS A SAMPLE MULTIPLE REQUESTING TERMINAL PROGRAM
DESIGNED TO BUN UNDER CCP. A NUMBER CONSISTING
OF UP TO 7 NUMERIC CHARACTERS AND A + OR - OPERATOR IS
TRANSMITTED TO THIS PROGRAM BY ANY ONE OF UP TO &
TERMINALS. THE ¢ OR - OPERATION IS PERPORMED AND THE
RESULTS PLACED IN THE ACCUMULATOR ASSOCIATED WITH THE
TERMINAL THAT REQUESTED THE OPERATION. THE VALUE IN THE
ACCUMULATOR TS THEN SENT BACK TO THE TERMINAL FOR
DISPLAY. IF AN N IS ENTERED AS THE OPERATOR THE
TERMINAL WILL BE RELEASFD. IF THIS IS THE ONLY TERMINAL
LINKED WITH THE PROGRAM, THE PROGRAM WILL END
EXECUTION.

4 FENVIRONMENT DIVISION.

5 CONFIGURATION SECTION.

6 SOURCE-COMPUTER. IBM-S3.

7 OBJECT-COMPUTER. IBN-S3.

8 DATA DIVISION.

9 WORKING-STORAGE SECTION.

b R A s P T T T T P

* INDEPENDENT PIELDS AND CONSTANTS *

A R e R T T T T P Yy
77 SWITCH PIC 9 COMP-4.

BEREEREER AR AR AR R R R R R AR R R AN AR AR R R AR KRR AR RS KRR

* OPERATION CODES

Rt a L L E E E E E ErE Y

1 77 ACPTIN PIC S9(4) COMP~4 VALUE 4. . . .
12 77 PUTNWT PIC S9(4) CONP-4 VALUE 54. Define a symbolic name for each operation
13 77 PUTMWT PIC S9(4) COMP-4 VALUE 50. used in this program. These names are used
1 77 INVINP PIC S9(4) COMP-4 VALUE 5. in the procedure division instead of the
15 77 PUTGET PIC S9(4) COMP-4 VALUE 3. P X
16 77 RELTRM PIC S9{4) CORP~4 VALUE 10. numeric operation code values.
17 77 STPINV PIC SY9(4) COMP-4 VALUE 1025.
LEE R L L R R R T Y S P S3tsitt3ttttsY]
* TFRMINAL DATA STORAGE ARRAY *

HEREEREKER KRR R R AR R RN AR ARG R R R KRR KRR KKK AR RN RN R RN

18 01 TERMINAL-STORAGR-ARRAY.

19 05 TERMINAL-ENTRY OCCURS 4 INDEXED BY TERM-X. .

20 10 TERM-NAME PIC X(6). Set up a save area for the four terminals

21 10 ACCUNMULATOR PIC S9(171) COMP. used by this program and their accumulators.

AR R s T Py T
* COMMUNICATIONS AREA >
* CCP-COBOL INTERFACE PABAMETER LIST

L R R T P T P Yy

22 01 PARM-LIST. Return Code Field
23 05 PL-RTC PIC S9(4) COMP-u. Operation Code Fieid
24 05 PL-OPC PIC S9{4) COMP-4. .
25 05 PL-OUT PIC S9{4) CONP-i. Output Length Field
26 05 PL-EFL REDEFINES PL-OUT PIC S9(4) COMP-4. Input Length Field
27 05 PL-INL PIC 39(4) COMP-u. Required Work Area
28 05 FILLER PIC X(8).

AR AR R R E RS R s N Y Y R S S 3L

* THIS IS THE INPUT DUTPUT AREA *

L e R Iy T I S T I P T Iy Y)

29 01 TINPUT-OUTPUT-AREA.

30 05 TEBM-NAME-IO PIC X(6)-. :

31 05 DATA—TIN. Terminal Name Field

32 10 OPERATOR PIC X.

33 10 DIGITS PIC 9(7) cone. The data portion of the record area is first
;g OS‘OD§;EE§S1 REDEFINESPgiT:figl' defined for an eight-position fietd whose
36 10 DATA-REC PIC X (8). first position is for the operator (+, —, or
37 10 FILLER PIC X {(26). N). It is then redefined for output and
38 05 DATA-OUT REDEFINES DATA-IN. :

39 10 DATA-CHAR PIC X(34). various messages.

40 05 ACCUM-OUT REDEFINES DATA-IN.

u1 10 FPILLER PIC X(12).

42 10 ACCUM-VALUE PIC +++44444449,

43 10 FILLER PIC X(11).

4u 05 MSG-DATA REDEFINES DATA-IN.

us 10 MSG-DATA1 PIC X(22).

46 10 MSG-DATA?2 PIC X(8).

47 10 FILLER PIC X (4).

48 05 MS-DATA REDEPINES DATA-IN.

49 10 MS-DATA1 PIC X(6).

50 10 MS-DATA2 PIC X(17).

51 10 MS-DATA3 PIC X(6).

52 10 FILLER PIC X({5).

53 05 TRY-AGAIN REDEFINES DATA-IN.

sS4 10 TA PIC X{2).

55 10 FILLER PIC X(32).

Figure 4-14 (Part 1 of 5). Example 2 — COBOL MRT Program

COBOL 429

56
57
58
59
60
61
62
63

65

67
68

69

70

72
73
T4
76
77

79
81
83
84

85
86
87
88
89

90
91

92
93

95
96
98
100
102
104
106

108
109
110
111

/tt*ﬁ“tt#'*‘tt‘*l!tt“‘ttt‘tt##“t."tttt“ltlt.‘.‘.tt"“““*"
* INITIALLY SET UP THE TERMINAL ARRAY IN ORDER THAT THIS *
* PROGRAM BE RE-ENTRANT *
ttttﬁ‘*tt'ﬂttt*t##*“‘#t"lt*“‘*“‘*t‘#‘t‘tti"‘tttt“l“""““
PROCEDURE DIVISION.
INTT.
SET TERM~X TO 1.
LOOP,

MOVE ZEROES TO ACCUMULATOR(TERM-X) .

MOVE SPACES TO TERM-NAME (TERNM-X).

SET TERM-X UP BY 1.

IF TERM-X LESS THAN 5 GO TO LOOP.
ti‘t*ttt‘t#t##tt*ttt#ii‘#t#ttt"it#ttlt‘itlOttttttttitlttltlttttt#
* SET UP PARAMETER LIST FOR ACCEPT INPUT OPERATION *
#t‘t‘tttt***t‘t‘*t‘tttt*t#tt*t‘tttt#t#“#*tt“tt"#lt'tlt““lt"‘

ACCEPT-INPUT.

MOVE 0 TO SWITCH.

MOVE ACPTIN TO PL-OPC.

MOVE 8 TO PL-INL.

ARl Al R I

* DO ACCEPT INPUT OPERATION *

AR A P P RSttt
CALL *CCPCIO' USING PARM-LTIST, INPUT-OUTPUT-AREA.

bbb A b R L A i T N R Tt

* CHECK TO SEE IF SHUTDOWN HAS BEEN REQUESTED *

b A e AR b il it bl L R R AT L LT R P LT T T TR Pp i pepanppanp ey
IF PL-RTC = 4 GO TO SHOTDOWN.

bbbl bl e R Y S P T T I

* DETERMINE IF TERMINAL HAS ALREADY BEEN ATTACHED, IF IT HAS *

* GO CHECK THE RETURN CODE

tt**tttt*ttttt#ttttttttttttttttttttttttittttttttttttttlttttttttttt
SET TERM-X TO 1.

TERM~SEARCH

#tt#.‘l*tt“l*“#“““t“**i#t“t‘t“*t#‘tt‘*“‘.t"t“‘l*"“.

* CHECK TO SEE IF THE TERMINAL HAS BEEN CANCELED, IF IT HAS *
* RETURN TO ACCEPT INPUT IP RO INVITE INPUTS ARE OUTSTAND- *
* ING. TIF INVITES OUTSTANDING GO TO ACCEPT INPUT. *

bR R R L s S P T Tt
IF PL-RTC NOT = 8 GO TO ADD-TERM.
IF PL-EFL = 0 GO TO DONE-EXIT.
GO TO ACCEPT-INPUT.

ADD-TERM.
bbb b b R R s e e Lttt
* ADD TERMINAL NAME TO ATTACHED LIST IF NOT ALREADY PRESENT *
* LOCATE A BLANK 6 CHARACTER TERMINAL NAME SPACE IN THE *
* TERMINAL DATA STORAGE ARBAY

‘tttt*tttttttttt*t‘t*ttt*tt*‘ttt#ttt#ttt#ttttttttttttttt‘#ttlt#tt‘
SET TEBM-X TO 1
BLANK-SFARCH

tt*i‘tt‘tt*‘*‘#ttt‘*“#i‘*“‘*“*‘tt##i#“tt*#t‘ﬁltt“t#‘-“"‘t#.

* NOTE: NO MORE THAN 4 TERMINALS WILL BE ALLOWED TO
* COMMUNICATE WITH THIS PROGRAM IF ASSIGNMENT SPECIPIES *
* 4 TERMINALS *

R R A R L P L T I
MOVE TERM-NAME-IO TO TERM~-NAME (TERM-X).
GO TO VALIDITY-CHK.
Vadadddd i d i d il A d il PSS a Il el L a Tl T P T P T T T I I
* CHECK TO SEE IF TERMINAL HAS BEEN CANCELLED. IF IT HAS AND *
* THERE ARE NO INVITES OUTSTANDING GO TO BXIT. IF THERE ARE *
* INVITES OUTSTANDING GO REMOVE FPROM ACTIVE TERMINAL ARRAY. *
hbhddddd i b it o il T T L L L LT Py
TERM-POUND.
IF PL-RTC = 8 GO TO CANCEL-CBHK.
hbbdddd i dd st b i L T T T LTI

* CHECK FOR INPUT ERBROR INDICATIONS, ISSUE ERROR NESSAGE IF *
* RETURN CODE NOT = 0, OR IF LENGTH NOT WITHIN RANGE *
* CHECK FOR VALID OPERATOR, IF OPERATOR BQUAL TO N GO RELEASE *
* TERMINAL *

bbb Al AL R A A R e T

IF TERM-NAME-TO = TERM-NAME(TERN-X) GO TO TERM-FOUND.
SET TERM-X UP BY 1.
I¥ TERM-X LESS THAN 5 GO TO TERM-SEARCH.

IF TERM-NAME(TERM-X) NOT = SPACES
SET TERM-X UP BY 1
GO TO BLANK-SEARCH.

VALIDITY-CHK.
IF PL-RTC LESS THAN 0 GO TO PUT-GET.
IP PL-RTC GREATER THAN 0 GO TO INVALID-DATA.
IF OPERATOR = *M' GO TO CAMCEL-CHK.

[P PL-OUT NOT = 8 THAN GO TO INVALID-DATAL "
IF OPERATOR = '+' GO TO ADD-lCCUH‘_—//
IF OPERATOR = *-% GO TQ SUB-ACCON.

bRl b AR A A A A R L L L PP I T I

* ASSUME BAD OPERATOR, ISSUE INVALID DATA KESSAGE *
bbb il d bt d i A d s R e T LTt
INVALID-DATA.

MOVE *TRY AGAIN INV DATA' TO DATA-OUT.
MOVE 18 TO PL-0OUT.
G0 TO PUT-NO-WAIT.

Figure 4-14 {Part 2 of 5). Example 2 -- COBOL MRT Program

4-30

Initialize the accumulators to zeros and the
terminal name save areas to blanks.

Set the value for the accept input operation
in the operation code field of the parameter
list.

Set the input field length to 8, the length of
the e