System Control Programming Macros

Reference Manual

0
1
[
©
o
=
™
N
£
Q
whd
2]
P
7)
=
0

[{o]
N ™M
D ™M
(=27}
©w .
N~ o
- 2
N o
O =
0w
00000000 00000000000 [TITIYY) cesee [T 0000000000000008 0000000000008 0000600 so00000 000000000000
00000000 000000000000 000000000 o000s 000000000 0000000000000008 0000000000000 0000000 sooc000 \ 000000000000
00000000 ©600000000000 00000000000 000000 000008 00000000000 0000000000000000 0000000000068 00006000 ees00000 | eceecccceces
00000000 00000000000000 000000000000 000060 000000 0000000000000000 0000000000000 00000000 ce00s000 /| oecceseeeesse
esse o0000 eso0e seoe cc00e osssoe 0000 0000 0000 0000 s000 eooe o000 . | ee Ty
o000 cooe s00e ooee 0000 0000 0060 o000 o000 111 00004 ° /| ee seee
o00 e000000000 eo0e co00 o0 - . / o0
s0oe oo sc0es00e s000000000 cooe ees00000 o0 | oo
e000000000 eoosece 2000000000 sese eeso0000 o / cesoeee
0000000000 seoo o000000000 seoe seeo0o0e co / e0000000
ey ooee 0000000000 eooe soo0000e oo / e0c000000
eoc00 soee eoo0ee co00 h s0s00
cso0e sos00 ee00 ce00e soo0e eoee / ceoe ces00
° Tt e0000 eeoe ceoee sceee ceee / eooe cooe
° ccooe ss00s se0s0000 sseoe coeoe co000000 / ee0e seoe
° 0000000000000 sec00000 0000000000000 eo000008 0000000000000 / 0000000000000
00000000 000000000600 . e0000000000 eece0000 e0000000000 00000008 0000000000000 seo000 | 00000000000
00000000 00000000000 s ° sooese seo000000 esessooe s0000000e e 0000000000000 s00000 ° cos00e | 000000000
ey eecceee eoo00ee

Page of GC21-7608-2
Issued 29 September 1978
By TNL: GN21-5649

Preface

This manual describes the macro instructions provided By
the IBM System/3 Model 15. The publication s intended
for persons who are programming in the Basic Assembler
Language or its equivalent and who are famiirar witt: tie
concept of macro instructions and system programming
for the 1BM System/3 Model 15.

The following topics are discussed in this publication:

® Coding macro instructions,

® Descriptions of the various macro instructions

® OCL necessary to call the macro processo:

® Error conditions detected by the macro processor

Third Edition (December 1976)

Aosamipls progrart showing how macro 1nstructions are

@ Desaophions of tie peopen and post-open DTF (Define

the Ve Conteol Blooks for unit record and disk devices.,

Reiatad Publications

Cabibrarions oosimn safomation whieh torthes

i e g P O T ayry sl
GESCrInes s JisCausedd e L5IE ynanual

C0 Bast, Assernder Helerence Manual,

I . i N A ey
@ QBN Systein /5 Moand

CSyster: Control Programming
am Nuinber 5704-5C1T,

Helarorrs Manial 1o

This is a major revision of, and obsoletegs, GC21-7603 1 ana Toennical Newsielters

GN21-5353 and GN21-5432. information has been added 1o support SCP

5704-SC2 as well as SCP 5704-SC1. Changes to 1axt sad diustranons gie mowaigd

by a vertical line.

This edition applies to version 05, modificaton 00 of the tBM Systiin

System Control Program 5704-SC1, to version 01, modit
System/3 Model 15 System Control Program 8704-5(C7 5

versions and modifications until otherwise indicated 1 new editiang

newsletters.

and current.

Use this publication only tor the purposes stated in the Sr e

Publications are not stocked at the aadress boiow Reguests io: o

atton DG of the

IEAS ubh

cations and for technical information about the system shouid be rrade 14 y ot b R

representative or to the branch office serving vour tocainy

This publication could contain technical inaccuracies or typogranm sl rros

Reader’s Comment Form at the back of this publicatios
this publication. If the form has been removed, address YO ©

information vou supply.

ST

Corporation, Publications, Department 245, Hochester, Minpesois

© Copyright International Business Machines Corporstios 1977 1976 1976
~ .

CHAPTER 1: INTRODUCTION .
Writing Macro Instructions .
System Configuration

Macro Instructions Provided

CHAPTER 2: MACRO INSTRUCTION STATEMENTS
Programming Considerations
System Services Macros

System Reader Support

System Log Support

General SCP Support
Input/Output Support .

General 1/0 Support

Card Device Support

Printer Support .

Disk Device Support

3741 Device Support

Tape Device Support . .

Device Independent Support

CRT/Keyboard

Display Support . ..

Program Function Key Support

CHAPTER 3: OCL AND SAMPLE PROGRAM
OCL for Macro Processor
Sample Program . ..
Purpose of the Sample Program
Termination of the Sample Program

Macro Instructions Used in the Sample Program

APPENDIX A: ERROR INFORMATION

APPENDIX B: DEFINE THE FILE CONTROL
BLOCKS

APPENDIX C: INPUT/OUTPUT BLOCKS .

Disk Input/Output Block
Timer Input/Output Block .

APPENDIX D: MACRO INSTRUCTION SUMMARY

CHART .

INDEX

Contents

63
63
63
63
63
66

67

68
106
106
111
112

119

jii

A macro instruction is a source statement that causes
generation of a predetermined set of assembler statements

each time the macro instruction is used. The Model 15 System

Control Program provides macro instructions which per-
form both system services and input/output device support.
By using these macro instructions, you can perform both
system and input/output operations with less coding.

Figure 1 is an overview of the operation of the macro
processor. The OCL statements used to call the macro
processor are explained in Chapter 3: OCL and Sample
Program.

WRITING MACRO INSTRUCTIONS

You code macro instructions as follows:

Starting

Column 1 8 14 72
Name Operation Operands Continuation
Symbol Macro No operands Any nonblank
or blank name or one or more | character if

separated by
commas

continuation is
being used

The name field can contain any valid assembler language
symbolic name beginning in column 1. The name is
assigned to the first byte of generated code. Since the name
is optional, it is shown enclosed in brackets.

The desired mnemonic operation code (macro instruction
name) must appear as specified in the macro instruction
description. The operation code must start in column 8.

Keyword

Dash

/ Parameter

[Namel | $FIND

14

14
NAME-module [,FIND-!ddress [,PACK-P/S]
o =

Operand

"/ /]

Optional
Operand

Default
Value

Option
List

Chapter 1: Introduction

Operands specify the available services and options. The
operands must start in column 14, and are written as
follows:

® Each operand consists of a keyword followed by a dash
and a parameter.

® Commas separate the operands; no blanks should be
left between operands.

® Keywords — those shown in capital letters — are coded
exactly as shown. The keyword part of each operand
must correspond to one of the keywords in the macro
instruction description.

® The parameter part of the operand must immediately
follow the dash.

® Parameters — those shown in lowercase letters — indicate
information you must supply. Some operands are not
required. These optional operands are indicated by
enclosing the operand within brackets [KEYWOQRD-
parameter] .

® An option list for a keyword parameter is specified as
follows:

KEYWORD-A/B/C

This list indicates that the keyword has the options
A, B, or C. These are the only valid options for the
keyword parameter.

When the options Y/N are given in a macro instruction,
Y indicates a yes response, N indicates a no response.

® The operands may be written in any order. If a key
word is not specified, the default value is used. A
default value is selected for optional keywords that are
omitted. The default value is indicated in the macro

instruction description by a line under the default option.

For example, [KEY-A/B/C] indicates the option A is
the default value.

Introduction

1

This is your program.
!t includes macro
statements.

Source
Statements

OoCL
Statements

Load the macro processor ($MPXDV).
OCL can be entered through the
system input device or called from
the procedure library.

Statements placed in —
SSOURCE are used as
source input to an
assembler,

Figure 1. Macro Processor Overview

PR

$SOURCE
File

7
AN

Ve

<
!

/ \ This indicates the beginning

of the next job.

This indicates the end of your job.

IBM System/3 Model 15
Macro Processor (SMPXDV)

vice or a source library.

macro expansion.

sion statement.

placed in $SOURCE.

The macro processor reads source state-
ments from either the system input de-

® Macro statements are listed in
$SOURCE, preceded by an
asterisk and followed by the

® Macro expansion statements are
marked (by the macro processor) in
position 96 in $SOURCE and indi-
cated on the assembly listing by a
plus sign (+) preceding the expan-

® [nvalid statements are flagged and

® All valid assembler statements and \
comments are placed in $SOURCE.

No operands can be specilicd boveas wolvea 21, 3 con

tinuation is required, coluinin 72 imuast coMen o oaonblark

character and the tast Gpeiand st e Ttionear by

]
comima. An opiered cannct be dioded oo caninned on
the cext line The opersaas of the conmeaed Deid s
begin in column 14, For an exannle of continuation coding,

see Figure 2.

Comments must be separated from the vperard o cemma
by at least une biank spece. Corirmaiis Cannot be aseried

between aperands o0 ¢ cne-ling macro nsi Frgure

3 shows examples ot cormaente used with i Strug

tons. On the assembder listing, ali cormmernite on

generated code are Justiviest Oy the 10acrs provesson 1o

begit in colurin 40, Any conwne, s voo fong 1o be con-

tabied in colummns 44 dirough 77 wiv tranesed oo vhes
rignt.

T eTavemess T
a1 o) h o Remarks -
/ . . H v Wy 21 42 40 44 45 a6 47 48 49 50 51 52 &3 54 5556 57 L& 59 60 61 62 53 64 65 66 67 68 69)0 11 12 14
Y =z T '
-[T|o[B], |B]L]KL]-I5]1]2], NiAIME]-[SIAM[PIL]E], X |
b 1 hoti Al by d 4 SR oE B 1 - | - :
! 4 [N R B :
' | |
; Ty b |
i f
i i 4 Aol 4 ‘r .
t I
e ! - g REEEEN
' ; ! 1 X
+H ‘ SRS - -
NN P : N SR X
H ‘] i Q:PAiCiL ‘B‘ i : | N) 1
LT Frree 1 ! ! - T T
| : [: R i i !
!] ot Pt . L ; ! { L. B! N }
SRR R EREEEE R | ERRREREER RS .

Figure 2 Conomtiation Gouiny Baemplos

52 63 64 B5 L6 LT By f-fgb‘"ff 62 63 B4 65 66 67 65 65370 73 7

S| lojNE| olrle[RIAN[D] _vﬁ I

’ |
- b B S e | 1 \: %
ZjoiN| aND| TH LS [
TITNIUED]. ik
TS| GUITE [LEN e
ED |8 EFORIE |THE !
HEIRWISE , IIT| W ¥

ACRIO! EXPANSTO ;!

1

o I

1N i A i

[: Co ! B

1T
i
|
i
j

Figuve 3 Comsitents on blocia ot nalosiy

introduction 3

SYSTEM CONFIGURATION

The minimum system configuration for using the Model 15
macros is:

® 5415 Processing Unit with at least 48K bytes of main
storage.

¢ 3277 Display Station Mode! 1 with Feature 4632.
This comprises the IBM System/3 Model 15 CRT/Key-
board, usually referred to in this manual as the CRT/
Keyboard.

® Disk Storage Device.

® A system input device.

® 1403 Printer Model 2, 5, or N1,

The following input and output devices are supported:

® 5424 Multi-Function Card Unit (MFCU) Model A1 or
A2, 1442 Card Read Punch Model 6 or Mode! 7,0r
2560 Multi-Function Card Machine (MFCM) Mode! A1
or A2.

® 1403 Printer Model 2, 5, or N1.

® 3277 Display Station Mode! 1 with Feature Number
4632 (CRT/Keyboard}. This device can be used both
as the system input device and the system log device.

® 3410/3411 Magnetic Tape Subsystem Model 1,2,0r 3.

® 2501 Card Reader Model A1 or Model AZ.

® 3284 Printer

® 3741 Data Station Modei 1 or 2 or Programmable Work
Station Model 3 or 4.

® Disk Storage Requirements.

5704

SC1 SC2

Minimum 15A 158 15C 15D

5444 Disk Storage Drive, K
Model A2
3340 Direct Access Storage X X X
Facility, Modet A2
Optional

5444 Disk Storage Drive, X
Model A3
5445 Disk Storage, Models 1, X
2,and 3
3340 Direct Access Storage X X X!
Facifity, Models B1 and B2
3344 Direct Access Storage, X!
Mode! A2

' Mutually exclusive

The macro processor operates under control of the IBM
System/3 Model 15 System Control Program.

MACRO INSTRUCTIONS PROVIDED

The macro instructions provided by the Model 15 System
Control Program (SCP) and the functions they perform are
shown in Figure 4.

All macros you want to use must be in the source library on
the program pack or the system pack. The program pack is
the disk pack from which the macro processor is loaded.
The system pack is the disk pack from which irutial program
load (IPL) is performed. Note that the macro processor and
IPL. code may be on the same pack.

You may want to delete some macro instructiens from
your library to reduce the amouint of disk space required
for the macro instructions. For instance, if your system
does not include the 34103/3411 Magnetic Tape Subsystern,
the tape macro instructions would be of no use to you.
You can delete macro instructions from your lbiary by
using the library maintenance utility program, SMAINT.

Macro
Instruction
Device Type Supported Name Function
System Reader SRLST Generate reader parameter list
SRLSD Offsets in reader parameter list
$READ Linkage to system reader
System Log SLWTO Generate parameter list for WTO or WTOR
SLMSG Generate parameter list for halt message on system log
$LOG Linkage to system log
$LOGD Offsets in log parameter list
General SCP SROLL Rollout/rollin linkage (5704-SC1 Only)
$FIND Find a directory entry
SLOAD Load a module
SFTCH Load a module and pass control
$XCTL Load a module and exchange control
STRL Generate a translate parameter list
STRTB Generate a translate table
STRAN Generate an interface to the translate routine
$SNAP Snap dump main storage
SDATE Retrieve system date
$TIOB Generate timer |1OB
$SIT Set interval timer
$TOD Return time of day and system date
SRIT Return amount of time left in timer interval
$SEOJ End of job
General 1/0 SALOC Allocate disk space or device
$OPEN Prepare an 1/0 device
SCKL Generate a checklist
$CHK Check for 1/O completion for BSCA operations
$CLOS Prepare a device for termination
SDTFO DTF offsets for all devices
$SCOMN Generate equates
Card $DTFC Define the file for a card device
$GETC Construct a card GET interface
SPUTC Construct a card PUT interface
$GPC Construct a GET or a PUT interface to a card file

Figure 4 (Part 1 of 2). Macro Instructions

Introduction

Macre i
instiuction '
Device Type Supported Naine i
S - N _ T E - i

Printer $OTEP Dafina the fite T o0

F et

SPUTP ! Constract a printsr PLT e faoe

Disk SDTFD Nefine the file for disk

$GETD Consirimt a disk GET interface

SPUTD Constroet godisk PUT intectaca

SIOBD : Lieneraie a sl 0 nlnek

SI0ED Tener e csete a0 U Biock Sy disk
$RDD Flaad froig diei

SWRTD | Whrita po sk

SWAIT Wait tor disie /O compleiiog

Tape SDTFT : PDefine the fie foi taos

$GETT ; Construct a tape GE inrerface
SPUTT ! Construct g tape PUT o faen
$RDT
SWRTT : Write to tape
SCTLY
SWTT

Read from fape

Contiel commanda o0 tane

Wit G tape U completion

$GETI
SPUTI

Constriset a sdevice independent GE'T interface

it dovice independant PUT interface

b
i
H
Device Independent SDTFI i Define g device indesendernt hile
|
i
1
E
i
|

CRT/Keyhoard SDTFS
SGETS
SPUTS ; Clsretr o RO PHT pheyiace
$PGS

$CQEP
$PFKY
SPFKT

o

Constoet 5 eyvhonard G Sgerface

Consirect o PUT then a OF T vequest to CRT/ Keyboard
Generare & narameter list far a program function key request
Progrags 7oociion key rocginct

rest 1 LrnGeam funetion bey pressod

3741 $OTRK

qy i " .t g A
Pratipe Sy il ey N

Construcr g 3741 (3 mterface

Construct - 74T PUT intertace

Figure 4 (Part 2 of 2). Macro Instructions

You code macro instructions to generate a block of
assembler statements that perform a certain function. Some
functions may be the same each time they are used, others
may be modified by specifying different operands. This
chapter explains the System/3 Model 15 macro instructions
in detail.

The macro instructions are grouped in this chapter accord-
ing to the functions they perform:

® System services
® |nput/output support

Input/output support macro instructions are further
divided according to the device supported.

PROGRAMMING CONSIDERATIONS

When you use the macro processor you should remember
the following restrictions:

1. The generated code for some macro instructions uses
register 1; the generated code for other macro instruc-
tions uses register 2. You should save the contents of
the register used by the generated code before issuing
the macro instruction; otherwise, the contents are
destroyed. These macro instructions use register 1:

$PFKY
$PFKT
$RDD
$TRAN
SWAIT
$WRTD

These macro instructions use register 2:

$ALOC $GETT $PUTS
$CHK $GPC SPUTT
$CLOS $LOAD $RDT
$CTLT $LOG $SREAD
$DATE SOPEN SRIT
$FIND $PGS $SIT
$FTCH $PUTC $TOD
$GETC $PUTD SWRTT
$GETD SPUTI SWTT
$SGETI $PUTK $XCTL
$GETK $PUTP

$GETS

Chapter 2. Macro Instruction Statements

2. The code generated by the macros is assigned labels,
which begin with the dollar sign {$). To avoid dupli-
cate label errors, you should not use the dollar sign
as the first character of a label.

SYSTEM SERVICES MACROS

By using system services macro instructions, you can com-
municate with the Model 15 system control program.

These macro instructions can do the following:

® Read records from the system input device.

® | og and write error messages.

® Determine the location of an object module on disk.

® (btain object modules from disk and load them into
main storage.

® Pass control to modules in main storage.
® Terminate the current job.

The system services macro instructions are divided into
three groups:

1. System reader macro instructions, which provide
support and tinkage to the system reader function.

$READ
$RLSD
$RLST

2. System log macro instructions, which provide support
and linkage to system fog functions.

$LMSG
$LOG

$LOGD
SLWTO

Macro Instruction Statements 7

Page of GC21-7608-2
tssued 28 March 1980
By TNL: GN21-5700

3. General SCP macro instructions, which provide
linkage to system functions.

$DATE
SEQJ
SFIND
SFTCH
$LOAD
SROLL (5704-SC1 only)
SRIT
$SIT
$SNAP
$STIOB
$TRAN
$TRL
$TRTB
$TOD
$XCTL

System Reader Support

You read a record from the system reader by calling the
system reader routine through the $SREAD macro instruc-
tion. The system reader may be one of the following:

o CRT/Keyboard. Only 96-byte, single-buffered input is
allowed for this device. Double buffering is ignored.

e 2501 Card Reader. Single and double buffering are
supported. Only 80 bytes of the 96-byte buffer are
used as input; the remaining 16 bytes are cleared to
blanks.

® 2560 Multi-Function Card Machine (MFCM). Single and
double buffering are supported. Only 80 bytes of the
96-byte buffer are used as input; the remaining 16 bytes
are cleared to blanks. Support for both the primary
(MFCM) and secondary (MFCM?2) hoppers is provided.

® 1442 Card Read Punch. Single and double buffering are
supported. Only 80 bytes of the 96-byte buffer are used
as input; the remaining 16 bytes are cleared to blanks.

® 5424 Multi-Function Card Unit (MFCU). Both single and
double buffering are supported. Support for both the
primary (MFCU1) and secondary (MFCU2) hoppers
is provided. All 96 bytes are used as input.

® Directly attached 3741 Data Station Model 1 or 2 or
Programmable Work Station Model 3 or 4. Single and
double buffering are supported. Only 96-byte records
may be read.

To call the system reader, you must do the following:

1. Use the SRLST macro to construct a parameter list as
input to the system reader routine.

2. Use the SRLSD macro instruction to establish equates
for the system reader parameter list.

3. Issue the SREAD macro instruction.

The SREAD macro generates the code to load the parameter
list address into register 2, set the operation code, call the
system reader routine, and check the return codes. Because
the return code is in the same byte as the operation code,
the operation code must be reset before each call. The
$RLSD macro is provided to generate the offsets into the
parameter list, the values for the operation codes, and the
values for the return codes.

Generate a System Reader Parameter List ($RLST)
This macro instruction generates a reader parameter list.

The format of the $SRLST macro instruction is:

IName] | SRLST | BUF1-address, WORK-address|,BUF 2-address]

BUF 1-address specifies the address of the leftmost byte of
a 96-byte buffer that is aligned on a 128-byte boundary.
This operand is required.

WOR K-address specifies the address of the leftmost byte of
a 47-byte work area; this operand is required.

BUF 2-address specifies the address of the leftmost byte of
a 96-byte buffer that is aligned on a 128-byte boundary.
This is the second buffer if double buffering is used; if this
operand is not specified, single buffering is assumed.

System Reader Parameter List Offsets ($RLSD)

This macro instruction generates a list of equates used to
label the fields in the system reader parameter list. $RLSD
also generates the operation codes and return codes used
by $READ. To avoid duplicate labels, you should use this
macro instruction only once in a program,

The format of the $RLSD macro instruction is:

L SRLSD

Linkage to System Reader Function ($READ)

This macro instruction generates the linkage to call the
system reader function and check for return codes.

The format of the $READ macro instruction is:

[Namel| $READ| [LIST-address] [,OPC-code] [,EOF-address)
[,EOJ-address] [,ERR-address]

L/ST-address specifies the address of the leftmost byte of
the system reader parameter list. If this operand is not
specified, the address of the parameter list is assumed to be
in register 2.

OPC-code specifies the operation code for this read request.
The allowable codes and their meanings are:

Code Meaning

RD Set the operation code to read one record
from the system reader single buffer.

RDF Set the operation code to read one record

from the system reader into buffer 1 and
start a read on buffer 2.

RDD Set the operation code to wait on buffer 2,
switch the buffers, and start the other
buffer.

RDL Set the operat.... .ode to wait on buffer 2,

and switch the buffers; do not start the
other buffer.

N Do not set any operation code. If this value
is specified, it is your responsibility to set the
operation code before issuing this macro.

The default value for this operand is RD.

EOF-address specifies the address in your program that re-
ceives control when an end-of-file statement (/*, /&, or /.)
is detected. If this operand is not supplied, no code is gen-
erated to check for the end-of-file condition.

EOQJ-address specifies the address of the routine that should
get control if an end-of-job or end-of-step statement (/& or
/.) was detected on the previous read. If this operand is not
specified, the test for the return code is not generated.

Once a /& statement is read from the system reader, nothing
can be read from the system reader until the end of step.
Once a /. statement is read from the system reader, nothing
can be read from the system reader until the end of job.

ERR-address supplies the address in your program where
control is passed if the controlled cancel option is taken in
response to a permanent /O error. If this operand is omit-
ted, no code is generated to check for the controlied cancel
completion code.

Notes:

1. If ERR or EOF addresses are not specified, you should
check the return code in your program to determine the
outcome of the operation.

2. When double buffering is used, return code should be
provided to return to the read macro instruction until
end-of-file (EQOF) is received. When the program’s EOF
is dependent upon a user-defined EOF statement, the
last request to the read macro should be a wait only call;
this will allow all outstanding read requests to be cleared
from the device queues. The last wait request is necessary
to prevent overlaying the system input work area before
the program reaches end of job.

System Log Support

Specifying a $LOG macro instruction in your program gen-
erates a call to system log (system log is a group of system
output routines which provide communication with the
operator). You may want to use system log to notify the
operator of error conditions, error recovery procedures, and
the validity of previous operator responses to messages.

If the operator selects an invalid option in response to a
message, the response is not accepted by system log.
Instead, another message is issued to the operator until a
correct option is taken.

Note: When an immediate cancel (option 3) is selected,
control is passed directly to the end-of-job (EQJ) routine
by system log.

Two types of printed output are avaitable through system
log — logs and messages. Both are printed on the system

log device.

® A /og is a four- or six-character statement that identifies
the type and source of an error.

® A message is a printed statement which can be used to
indicate errors that have occurred or to issue instructions
to the operator, such as requesting that a disk file be
placed on a certain drive.

Logs and messages can be issued with or without being
displayed on the 3277.

Three devices can be used as the system log device: the
1403 printer, the 3284 printer, or the CRT/Keyboard.
You can change devices by entering a LOG statement in
your job stream.

Macro instruction Statements 9

To use system log, you must do the following:

1. Build the log parameter list using the $LWTO or
$LMSG macro.

2. Use the SLOGD macro instruction to establish equates
for the log parameter list.

3. Issue the macro instruction:

[Name] | $LOG [L1ST-address] [,OPNO-address]

[.OPN1-address] [,OPN2-address]

4. Process the operator’s reply in your program.

Two types of messages can be displayed on the log: the
system message and the message to the operator.

The $LLMSG macro instruction generates a parameter list to
display the standard system message. You can also include
from 1 to 107 characters of text with this message. The
Operator can respond to this message by pressing the PF12
key, taking one of the four allowable options, then pressing
ENTER. Option 0, 1, or 2 is returned to you for checking;
option 3 means end-of-job. [f the operator takes option 3,
the system log routine goes directly to the end-of-job.

The $LWTO macro instruction generates a parameter list to
display a message to the operator. This message is from 1
to 107 characters long and is prefixed with six characters
which you specify using the $LWTO macro. You can re-
quest a reply (1 to 72 characters) from the operator, but if
no reply is requested, the operator responds to the message
by pressing PF12, then ENTER.,

For either of the message types, the $LOGD macro instruc-
tion is specified to generate offsets into the parameter list
and to define the meaning of the fields within the parameter
list.

Text Length Considerations: Message text is displayed on
the CRT in one, two, or three 36-character lines, depend-
ing on the text length. For example, if the text length is

60 characters, it takes one line of 36 characters and 24 char-
acters from the second line to display the message.

Reply Length Considerations Three, 36-character lines (107
characters plus the CRT control character) are available for
the message and reply. The number of characters allowed
for the reply depends on the number of lines that contain
test characters. Once a test character has been entered on

a line, any non-text positions of that line cannot be used

for areply. Instead, the reply must begin on the next line.
If the third line contains a text character, no reply can be
made. For example:

If the textlength is: The reply length can be:

more than 1 character from 1 to 72 characters
but less than 36

more than 36 characters
but less than 72

more than 72 characters
but less than 108

from 1 to 36 characters

no reply can be made

Generate a Parameter List for WTO or WTOR ($L wro)

This macro instruction generates a system log parameter list
for the write-to-operator or write-to-operator-with-reply
function.

The format of the $LWTO macro instruction is:

[Name] | $SLWTO | TLEN-number, TADR-address [,COMP-code]
[,LHALT-code] [,SUBH-code] [,REPLY-Y/N]
[,RLEN-number] [,RADR-address]

TLEN-number specifies the text message length (an un-
signed, non-zero, decimal value). This operand is required
and can be from 1 to 107 characters long.

TADR-address specifies the address of the leftmost byte of
the text message; this operand is required.

COMP-code specifies the first two characters of the halt
message. These characters are the component identification.
If this operand is not specified, the default value is two
blanks.

HAL T-code specifies the second two characters of the halt
message — the halt identification. If this operand is not
specified, the default value is two blanks.

SUBH-code specifies the last two characters of the halt
message — the subhalt identification. If this operand is not
specified, the default value is two blanks.

REPLY-Y or N specifies whether or not a reply is requested.
If Y (ves) is specified, system log waits for the operator to
reply. 1f N (no) is specitied o1 if this operand is omitted, no
reply is allowed.

RLEN-number is the length of the reply (an unsigned, non-
zero, decimal value, from 1 to 72). 1f REPLY-Y is specified,
this operand is required.

RADR-address specifies the address of the leftmost byte of
the reply area. If REPLY-Y is specified, this operand is
required.

Generate a Parameter List for Message on System Log
($LMSG)

This macro instiuction generates a system log parameter
list for a log and/or message to the operator.

The format of the $LMSG macro instruction is:

{Namel | $LMSG | [FORMAT -code} [,COMP-code]

[HALT-code| [,SUBH-codel [SEV.codej
[,DEF-code] [,OPNO-Y/N] [,OPN1-Y/N]
[LOPN2-Y/N] [LOPN3-Y/N] [TLEN-number |
[,TADR address]

FORMA T-code specifies the type and length of the system
log parameter list. The valid code values and their meaning
follow:

Code Length of List Format of List

A 7 bytes FDCCHHO

B 9 bytes FDCCHHOII

C 10 bytes FDCCHHOL AA
D 12 bytes FDCCHHOIILAA

where: F and D are flag bytes

CC is the component ID

HH is the message 1D

O is the option indicator (this is determined
by the settings of operands OPNO, OPN1,
OPN2, and OPN3)

Il is the sub-halt ID

L is the length of the text

AA is the address of the text

If this operand is omitted, FORMAT-B is assumed.

COMP-code specifies the first two chatacters of the message
the component daescription (CC). 1 this operand is noed
specitied, two blanks are assumed,

HAL 7T -code specities the second two characters of the
message — the message identification (HH). |f this opeiand
is not specified, two blanks are assumed.

SUBH -code specifies the last two characters ot the message
- the subhalt identification (11). H FORMAT B o D

was specified and this operand i1s omitted, twao blanis are

assumed.

SEV-code specities the severity which conditions the seiec-
tion of the default (DEF) option operand. This entry cor-
responds to the severity code entry in the NOHALT state-
ment. }f the severity code specified in the NOHALT state
ment is less than the value specified in this entry, the hait
will be issued. Valid entries (from lowest to highest severity)
are 1,2, 4, and 8. If this operand is omitted, a sevetity of
8 is assumed.

DEF-code specifies the default option o select when execut-
ing in unattended mode. Valid entries ate N, 0, 1, 2, and
3: it this operand is not specified, N {none) is assumed.

OPNO-Y /N specifies whether option 0 is alfowed. Y
{yes) is entered, option 0 is altowed; if N {no} is entered o
if this operand is omitted, option 0 is nut allowed.

OPN1-Y/N specifies whether option 1 is allowed. 11 Y is
entered, option 1 is allowed; if N (no) is entered or if 1his
operand is omitted option 1 is not allowed.

OPN2-Y/N specifies whether option 2 is allowed. 11 ¥
(yes) is entered, option 2 is allowed; if N (no} is entered o
if this aperand is omitted, option 2 is nof allowed

OPN3-Y /N specifies whether option 3 is ailowed. 1Y (yes)
is specified, option 3 is allowed; if N {no) is specified or if
this operand is omitted, option 3 is not allowed.

Note: 1f aption 3 is allowed, control will nat hi returnied
to your program.

Macro Instruction Statements 11

TLEN-number specifies the text length. This entry (L),
which is a decimal entry from 1 to 107, is required if
FORMAT-C or D is specified.

TADR-address specifies the leftmost byte of the text
address. This operand (AA) is required if FORMAT-C or D
is specified.

Generate the Linkage to the System Log ($LOG)

This macro instruction generates the linkage required to use
the system log function, and checks the response returned.
The $LOGD macro instruction must be used with this
macro instruction, to establish offsets in the system log
parameter list.

If you will need to use the data in register 2 at a later time,
you should save the contents of that register before issuing

the $LOG macro instruction.

The format of the $LOG macro instruction is:

[Name] | $LOG [LIST-address] {,OPNO-address)

[LOPN1-address] [,OPN2-address]

LIST-address specifies the address of the leftmost byte of
the system log parameter list. If this operand is not speci-
fied, the address of the parameter list is assumed to be in

register 2.

OPNO-address specifies the address of the routine that
should receive control if option 0 is taken. If this operand
is not specified, no check is made for a response of 0. You
would use this operand only if the $LMSG macro was used
to generate the parameter iist.

OPN 1-address specifies the address of the routine that
should receive control if option 1 is the response. |f this
operand is not specified, no check is made for a response of
1. You would use this operand only if the $.MSG macro
was used to generate the parameter list.

OPNZ2-address specifies the address of the routine that should
receive control if option 2 is taken. If this operand is not
specified, no check is made for a response of 2. You would
use this operand only if the $LMSG macro was used to gen-
erate the parameter list.

Generate Displacements for System Log ($LOGD)

This macro instruction generates the field jabeis and offsets
for the system iog paramieter lists. To aveid duplicate labels,
you should use this macro instruction only onice in a prograny.

The format of the $LOG macro instruction is:

$LOGD

General SCP Support

The general SCP macro instructions atiow you 10 provide
linkage to system functions by communicating with the
Model 15 system control program.

Roilout/Rollin Linkage (SROLL)
This macro applies to Program Number 5704-SC1 oniy.

You use SROLL to interrupt (roll out) the current program
so that another program can be executed. When the second
program is finished, the first program is reinstated (rolled
in} and continues executing.

Once rollout is initiated, the CRT/Keyhoard becomes the
system input device until otherwise specified by the user
or until the interrupted program is rolled in.

When using roliout, you should follow these procedures:

1. Note the following restrictions:

a. A program using $ROLL can execute in either
partition, but wiil acknowledge the roliout request
only when running in partition 1.

b. A program using SROLL must be so defined to the
linkage editor using the ATTR parameter in the
OPTIONS statement (see /BM Systern /3 Overlay
Linkage Editor Reference Manual, GC21-7561).

c. If the interrupting program also recognizes rollout
requests, these requests will be ignored.

d. The same /0O devices are available to the interrupt-
ing program as were available to the ariginal pro-
gram with exception of tape units.

e. Whenever an interrupting program shares the same
disk fifes as a rolled-out program, only reading
and updating are allowed by the two programs.
Loading and additions are not atlowed.
updating are allowed by the two programs. Load-
ing and additions are not allowed.

2. Issue the $ROLL macro instruction:

The coding generated by the SROLL macro instruc-
tion determines whether rollout has been requested
by entering the ROLLOUT operator control com-
mand. If rollout has not been requested, the current
program continues executing. If the request is pend-
ing the rollout routines are called. Rollout performs
the following steps:

a. Places the current program (program being exe-
cuted and the current contents of the scheduler
work area on disk.

b. Allows a new program or procedure to be runin
place of the current program.

c. Reloads the original program and restores the
previous contents of the scheduler work area
and passes control to the point where the orig-
inal program was interrupted.

The format of the $ROLL macro instruction is:

[Name] | $SROLL | [INDEX-1/2}

INDEX-1/2 specifies which register can be used in the
macro instruction. If this operand is omitted, register 2 is
used.

Find a Directory Entry ($FIND)

A load module must be in the object library. Specific infor-

mation must be obtained from the module’s object library
directory entry before a load or fetch can be performed.
There are two ways you can locate a load module and ob-
tain the information:

@ Issue a SFIND before issuing a SLOAD, Form |l. The
information obtained during the find is used during the
load operation.

® |[ssue a load with find (3LOAD, Form 1}, a fetch
(SFTCH) or a fetch to address (§XCTL). These func-
tions perform the find operation as part of their normal
functions.

The $FIND macro instruction searches the object library
directory for the requested module name and returns the
directory entry in the parameter list.

If you will need to use the data in register 2 at a later time,
you should save the contents of that register before issuing
the $FIND macre instruction.

The format of the $FIND macro instruction is:

[Name] | $FIND | NAME-module[,FIND-address] [,PACK-P/S]

NAME-module provides the name of the module to be

found. Only names of object modules (O modules) can
be entered here.

FIND-address specifies the label that becornes the address
of a 12-byte parameter list built by the generated code.
Initially the parameter list contains input to the supervisor.
After execution, it contains the directory entry of the
module. The format and contents of the parameter list
after execution are shown in Figure 5. If this operand is
not specified, a macro label is generated.

PACK-P/S specifies the program disk pack (P) or the system
disk pack (8) to be searched. !f this operand is not specified,
P is assumed.

Load a Module ($L.OAD)

This macro instruction loads a module into storage at the
address you specify. Contrai is returned after the module
has been loaded. You may then pass control to the module
at the specified address. If you will need to use the data in
register 2 at a later time, you should save the contents of
that register before issuing the $LOAD macro instruction.
Two forms of this macro can be used: load with find and
load only.

Load with Find (Form [)

The load with find macro instruction locates the module
and loads it into main storage.

The format of this macro instruction is:

[Namel [$LOAD | NAME-modute name [,FIND-address}
[,LOAD-2/address] [,USE-R/NRI
[,PLIST-address} [,PACK-P/S]

Macro Instruction Statements 13

2. For 5704-SC2,

1. For 5704-SC2 the checkpoint/restart and external buffer attributes are mutually exclusive.

if the entry has the attributes for external buffers, the low-order byte of the link edited address

contains the number of sectors minus 1.

Number Displace-
Entry of Bytes ment Description
Disk Address 2 1 Cylinder/sector address of the rmodule.
Number ot Type O—Sector length of the module in hexadecimal
text sectors 1 2 Type R--Category of routine
Link edit Hexadecimal storage address at which the module was linkage edited.
address 2 4 See note 2.
Displacement Number of bytes, in hexadecimal, into the first sector containing RLDs,
of RLDs I 5 of the first relocation directory (RLD) entry of the module.
Entry point Hexadecimal storage address at which program execution begins {with-
address 2 7 out RLDs).
Storage size 1 8 Amount of storage (in sectors) required to execute the program.
Attributes 2 A Byte 1:
Bit O 1 = Permanent entry
0 = Temporary entry
1 1 = Inquiry program
2 1 = Rollout-evoking program (5704-SC1 only)
1 = External buffers (if byte 2, bit 1 = 1)
(5704-SC2 only)
3 1 = Must run in dedicated environment
(56704-SC1 only)
Reserved (5704-SC2 only)
4 1 = Requires source information
5 1 = Deferred mounting allowed
6 1 =PTF applied
7 1 = Overlay object program
Byte 2:
Bit 0 1 = The system input device must be dedicated to
this program
1 1 = Checkpoint/Restart program
1 = External buffers (if byte 1, bit 2 = 1) (5704-SC2 only)
See note 1
2 1 = This program will access the source file directly
3 1 = Macro processor is allowed (5704-SC1 only)
1 = Model 16D program (5704-SC2 only)
4 1 = This is a privileged program
5 1= This program requires that a new ioad address be
calculated at load time to place it in main storage
beyond its own program commaon region
6 1 = 3340 data management (5704-SC1 only}
Reserved (5704-SC2 only}
7 Memory resident overlays
Level 1 B Release version of this entry.
NOI‘&‘S.' B V h T o T T) i V o V

Figure 5. Find Parameter List Description

Number Displace-
Entry of Bytes ment Description
Disk Address 2 1 Cylinder/sector address of the module in hexadecimal. See note 1.
Number of
text sectors 1 2 Sector length of the module, in hexadecimal.
Link edited
address 2 4 Storage address at which the module was linkage edited. See note 2.
Displacement Hexadecimal displacement, in bytes, into the first sector containing RLDs,
of RLDs 1 5 of the first relocation directory (RLD) entry of the module.
Relocated entry
point address 2 7 Storage address at which program execution begins, after resolving RLDs.
Load address 2 9 Address at which the requested module is loaded.

Notes:

1. If a directory entry was not found on a load with find, the first byte contains a character O.

2. For 5704-SC2, if the entry has the attributes for external buffers, the low-order byte of the link edited address
contains the number of sectors minus 1.

Figure 6. Find Parameter List after Load Execution

Macro Instruction Statements 15

NAME-module name provides the name of the module to
be loaded and is required. Only O modules can be
specified.

FIND-address becomes the address of the parameter list
passed to the find routine. The parameter list is generated
by the macro processor. After execution of the load, this
parameter list contains the modified entry for the module
as shown in Figure 6.

LOAD-2/address specifies the address where the module

is to be loaded intc main storage. The 2 indicates that the
address is in register 2; the address is the symbolic address
where the module is to be loaded. If this operand is not
specified, 2 is assumed.

USE-R/NR indicates whether the code generated by the

macro instruction is to be reusable (R) or nonreusable (NR}).

If the operand is not specified, NR is assumed.

You can reuse the generated code to load the same module
more than one time, or to load different modules. |If you
wish to load different modules using the same generated
code, you should also specify the PLIST operand.

PLIST-address is used only when the generated code is
reusable. The address specified identifies the leftmost
byte of a parameter list passed to the load routine. To
load a different module using the same generated code,
you must update the parameter list to indicate the desired
module. Figure 7 shows the format and contents of the
parameter list.

PACK-P/S specifies the program disk pack {P) or the
system disk pack (S) containing the requested module.
If this operand is not specified, P is assumed.

Load Only (Form 11}

The load-only macro instruction loads a module previously
found by the $FIND macro instruction. The format of
this macro instruction is:

[Name] | $SLOAD | FIND-address [,LOAD-2/address]
[.,PACK-P/S]

FIND-address is the address used in the previous $FIND
macro instruction. It identifies the directory entry of the
module in main storage. After execution of the load, this
address points to the directory entry of the module as
shown in Figure 6.

LOAD-2/address specifies the address where the module
is to be loaded in main storage. The 2 indicates that the
address is in register 2; the address is the symbolic address
where the module is to be loaded. If this operand is not
specified, 2 is assumed.

PACK-P/S specifies the program disk pack (P) or system
disk pack (S) containing the requested module. 1f this
operand is not specified, P is assumed.

Load a Module and Pass Control ($FTCH)

The fetch macro instruction ($FTCH) finds a module in
the directory, loads the module into main storage, and
passes control to it. Your program does not regain control.
When a module is fetched into main storage, the relocation
factor is added, as necessary, to the module’s link edit
address. This determines the location in main storage
where the module is loaded. The module receives control
at its entry point.

Number Displace-
Entry of Bytes ment Description
Module Type 1 0 Must contain O to indicate an object module.
Module Name 6 6 The name of the module to be loaded.
FE 1 7 X'FE’
Load Address 2 9 The address at which the module is to be loaded.

Figure 7. Load Parameter List Description

16

H you will need to use the data in register 2 at a later time,
you should save the contents of that register before issuing
the $FTCH macro instruction.

The format of the $FTCH macro instruction is:

[Name] | $FTCH Name-module name[,PACK-P/S]

NAME-module name specifies the object module to be
fetched into main storage. The name must be the same as
the name in the directory entry.

PACK-P/S specifies the program disk pack (P) or the
system disk pack (S) containing the requested module. If
this operand is not specified, P is assumed.

Load a Module and Exchange Control ($XCTL)

This macro instruction finds a module in the directory,
loads the module into main storage at the address you
'specify, and passes control to it. Control is not returned
to your program. As with the $FTCH macro instruction,
relocation factors are resolved, and control is passed to
the entry point of the program.

The format of the $XCTL macro instruction is:

[Name]| $XCTL NAME-modulename[,LOAD‘g/address]
[,PACK-P/S]

NAME-module name specifies the name of the module to
be loaded and given control. The module must be an O
module.

LOAD-2/address specifies the address where the module
is to be loaded in main storage. The 2 indicates that the
address is in register 2; the address is the symbolic address
where the module is to be loaded. |If this operand is not
specified, 2 is assumed.

PACK-P/S specifies the program disk pack (P) or the
system disk pack (S) containing the requested module.
I this operand is not specified, P is assumed.

Generate a Translate Parameter List (STRL)

This macro instruction generates a parameter list needed
by the Model 15 Translate routine. This list is called via
the STRAN macro instruction. $TRL does not generate
executable code. Figure 8 shows the format of the
translate parameter list.

Translate Routine Operation

To use the Model 15 translate routine, you must provide a
translate area. The format of the area is:

Byte Field Description

0 Byte contents used to determine whether a
character is to be translated.
1 Byte contents are substituted for characters

that are not to be translated.
2-257 256-byte translate table.

The translate routine processes a field, specified by the
$TRAN macro instruction, one byte at a time.

The translate table must be constructed so that the displace:
ment {from the beginning of the table) of the transiated
representation of a character is equal to the hexadecimal
representation of the untranslated character. (For example,
if you want to translate X‘C1' to X'41', you could
construct a translate table in which the value at displace-
ment X*C1" in the table is X‘41".)

The contents of the byte at a given displacement are com-
pared with the contents of the first byte in the translate
area (byte 0). If an equal compare results, the character is
considered to be invalid and the following actions are
performed:

® The completion code in the parameter list is set to indi-
cate that an invalid character was detected.

® The hexadecimal value in the second byte of the trans-
late area (byte 1) is substituted for the original character.

If an unequal compare results, the hexadecimal value in the
translate table is substituted for the original character.

The format of the $TRL macro instruction is:

TO—address,FROMAaddress,LEN-number,
TRT-address

[Name]] $TRL

Macro Instruction Statements 17

TO-address specifies the symbolic address of the first byte
of the data to which the translated data will be moved.

FROM:-address specifies the symbolic address of the first
byte of the data field to be translated. This address may
be the same as the address specified in the TO operand.

LEN-number specifies the decimal length of the FROM
field.

TRT-address specifies the symbolic address of the first
byte of the translate area.

All four operands are required.

Generate a Translate Table ($TRTB)

This macro instruction generates an EBCDIC to ASCII or
an ASCII to EBCDIC translate table. The table is generated
in the format required by the $TRL macro instruction, and
can be addressed by $TRL when you translate data.

The format of the $TRTB macro instruction is:

{Name]| $TRTB | [CODE-E/A] [HEX-hex]

CODE-E/A specifies whether the character code of the
data to be translated is EBCDIC (E) or ASCII (A). If this
operand is omitted, EBCDIC (E) is assumed. 1f CODE-E
is specified, $TRTB generates a 258-byte table; if CODE-A
is specified, STRTB generates a 130-byte table.

Note: 1f you specify CODE-A, you may want to specify
DC 128XL1°FF’ after the $TRTB macro instruction to
allow for invalid ASCI! characters.

HEX-hex specifies the hexadecimal pattern with which to
replace any invalid characters found during translation. If
the HEX operand is not specified, the replacement char-
acter is X'3F’ for EBCDIC or X'1A’ for ASCI|.

Generate an Interface to the Translate Routine ($ TRAN)

This macro instruction generates an interface to the Model
15 translate routine. After the translate routine has
finished, control is returned to your program with a com-
pletion code in the translate routine parameter list. The
address of the parameter list is in register 1. You should
check the completion code to see if any characters that
are not to be translated were encountered.

The format of the $TRAN macro instruction is:

[Name] [$TRAN| [TRL-address]

TR L-address specifies the symbolic address of the transiate
parameter list. I this operand is not entered, the address

is assumed to be in register 1. See Figure 8 for a description
of the parameter list.

Field

Length | Field Description

2 Address of the transtate area (your program must

define the translate area)

FROM field address, for transtation

TO field address for translation

Number of bytes to translate

Completion code:
X‘00' —translation complete, no errors
X'FF’ —invalid character detected

- NNN

Figure 8. Translate Parameter List

Snap Dump Main Storage ($SNAP)

This macro instruction provides an interface with the non-
terminating system storage dump routine. You must
specify a dump identifier and the limits of the area to be
dumped. The contents of the specified main storage area
are put on the 1403 printer. Qutput from the dump
routine consists of:

® The specified dump identifier.

® The contents of register 1 (XR1), register 2 (XR2), the
Instruction Address Register {IAR), the Program Mode
Register (PMR), the Address Recall Register (ARR), and
the Local Storage Register (LSR).

® The contents of the specified main storage area.

Control is returned to the next sequential instructicn in
your program.

The format of the $SNAP macro instruction is:

[{Name] | $SNAP

ID-hex, START -address, END-address

1D-hex specifies a 2-byte hexadecimal number to be used
as the dump identifier.

START-address specifies the symbolic address of the low-
storage limit of the area to be dumped.

END-address specifies the symbolic address of the high-
storage limit of the area to be dumped.

All three operands are required.

Obtain System Date ($DATE)

This macro instruction generates the code necessary to
retrieve the system date and place it at a specified location
in your program.

If you will rieed to use the data in register 2 at a later
time, you should save the contents of that register before

issuing the $DATE macro instruction.

The format of the $DATE macro, instruction is:

[Name] } $DATE { [LABEL-address)

LABEL -address indicates the addiess of the leftmost by te
of a six-byte area in which you want the system date
placed. If this operand is not specified, the address at
which you want the date to be placed is assumed to be in
register 2.

Generate Timer 108 (STIOR)

This macro instruction generates an 1OB ot the interval
timer. $T1OB must be used if you use $S17, $RIT, or
$TOD in your program. The format of the tirner 108 is
shown in Appendix C: Input/Outpui Blocks.

The format of the $TIOB macro instruction is:

l[Narne] $TIOB | [DATE-Y/N]

DATE-Y/N specifies whether a date field is to be generated.
If this operand is not entered, N (no) is assurned. If the
$TOD macro instruction is used in your program, Y {yes)
must be entered. If DATE-Y is specified, use of the $SIT
macro instruction destroys the date in the timer 1OB.

Set Interval Timer ($S1T)

This macro instruction sets the interval timer to cause a
timer interrupt after the specified amount of time has
elapsed. Before issuing this macro instruction you must
place the desired interval in bytes 2-7 of the timer 10B.
When the interval is set, byte 8 in the timer IOB is set to
X'00°. When the interval is expired, byte 8 is set to X'40".

The format of the $SIT macro instruction is:

{Name] $SIT{ [tOB-name] [,TYPE-DEC/BIN/TU/TOD]
[,ITYPE-REAL/WAIT/TASK]

10B-name specifies the name of the timer 10B generated by
the $THOB macro instruction. 1f this operand is omitted,
the address of the 0B is assumed to be in register 2.

TYPE-DEC/BIN/TU/TOD specifies the format of the time
interval in the I0OB. You must establish the time interval
in bytes 2-7 of the OB before issuing the $S17 imacro in
struction. The valid time interval formats are:

® DEC: The time interval is the amount of time in decimal
that is to elapse before the timer interrupt. The time
interval is a six-byte decimal number specifying hours,
minutes, and seconds (HHMMSS).

® BIN: The time interval is a 32-bit binary number speci-
fying the number of seconds that are to elapse before the
timer interrupt. The binary value must be right-justified
in hytes 4-7 of the 0B field.

® TU: The time interval is a 32-bit binary number speci-
fying the number of timer units that are to elapse hefore
the timer interrupt. One timer unit is 3.33 milliseconds.
The binary value must be right-justified in bytes 4.7 of
the 10B field.

e TOD: The time interval is the actual time of day when
the timer interrupt is to occur. The time is a six-byte
decimal number specifying the hour, minute and second

(HHMMSS).

It this operand is omitted, DEC is assumed.

Macro instruction Statements 19

ITYPE-REAL/MWAIT/TASK specifies the type of interval
to be timed. The types of time intervals are:

® REAL: The timer decrements the time interval continu-
ously for all types of processing.

® WAIT: The program issuing the $SIT macro instruction
is placed in a wait state for the specified time interval.

When the time has expired, control returns to the instruc-

tion following the $SIT macro instruction.

® TASK: The timer decrements the time interval only
while the task issuing the $SIT macro instruction is run-
ning.

If this operand is omitted, REAL is assumed.

Return Time and Date ($TOD)

This macro instruction returns the time of day and the
system date to the program. The time of day is returned in
bytes 2-7 of the timer 10B, the system date in the next six
bytes. DATE-Y must be specified in the $TIOB macro
instruction if the $TOD macro instruction is used.

The format of the $TOD macro instruction is:

[Name] | $TOD | [1OB-name] [,REF-Y/N] [,TYPE-DEC/BIN/TU]

/0B-name specifies the name of the timer IOB generated
by the $TIOB macro instruction. If this operand is omitted
the address of the 10B is assumed to be in register 2.

’

REF-Y/N specifies whether the macro instruction is being
issued from the transient area or a program partition. Y
(yes) indicates the macro instruction is issued by a transient
that must be refreshed; N (no} indicates it is issued from a
program partition. If this operand is omitted, N (no) is
assumed.

20

TYPE-DEC/BIN/TU specifies how the time is to be returned
in the timer I0OB. The valid formats are:

® DEC: The time returned is a six-byte decimal number
indicating the time in hours, minutes and seconds
(HHMMSS).

® BIN: The time returned is a 32-bit binary number indi-
cating the time in seconds. The binary number is right-
justified in bytes 4-7 of the IOB field.

® TU: The time returned is a 32-bit binary number indicat-
ing the time in timer units. One timer unit is 3.33 milli-
seconds. The binary number is right-justified in bytes
4-7 of the 10B field.

If this operand is omitted, DEC is assumed.

Return Interval Time ($RIT)

This macro instruction returns the remaining amount of
time in a time interval or cancels an unexpired time interval.
The remaining time is returned in bytes 2-7 of the timer

OB established by the $TIOB macro instruction. The time
interval must have been set by the $SIT macro instruction
and is returned in the format specified in that macro instruc-
tion.

The format of the $RIT macro instruction is:

[Name] | $RIT | [I10B-name] [,CANCEL-Y/N]

108B-name specifies the name of the timer 10B gererated by
the $TIOB macro instruction. If this operand is omitted,
the address of the 10B is assumed to be in register 2.

CANCEL-Y/N specifies whether the remaining time in the
interval is to be cancelled. If this operand is omitted, N (no)
is assumed.

End-of-Job ($EOJ)

The $EOJ macro instruction generates the linkage required
to execute the end of job routine. The option to perform

an immediate cancel or a controlted cancel is provided.

The format of the $EQJ macro instruction is:

[Name] | $EOJ [CANCEL-NORMAL/IMMED/CONTRL]

CANCEL-NORMAL /IMMED/CONTRL specifies the
action that the system should take as it terminates the
program. |f this operand is omitted or if NORMAL is
specified and the system is in HALT mode, an end of job
step message is issued and job processing terminates in the
partition; if NOHALT mode is in effect, no message is
issued and job processing continues.

If IMMED is specified, the disposition of files depends upon
the function being performed:

® New files being created will not be retained

® Old files being deleted will be retained

® Old files being added to will not reflect the additions

® Old files being updated will reflect the updates made
prior to the point at which this $EQJ macro instruction

was executed

® Add files (except for consecutive) will reflect additions
if file sharing (5704-SC2 only).

If CONTRL is specified, the files being used by your pro-
gram reflect all activity which took place up to the point
the $EQJ macro instruction was executed.

Page of GC21-7608-2
Issued 29 September 1978
By TNL: GN21-5649

If your program specifies CANCEL-IMMED or CANCEL-
CONTRL anditis a step of a job or a procedure in a

chained procedure, all remaining steps in the job or all
remaining procedures in the chained procedure are cancelled.
Also, EJ or ES is displayed regardiess of the status of the
system halt mode, and job processing in that partition
terminates.

if either CANCEL-IMMED or CANCEL CONTRL is speci-
fied, the input stream is flushed in the following manner:

® |f you are executing in job mode on a system on which
input spooling is active, job processing in the partition
resumes with the next job on the job input queue.

® |f you are executing in job mode on a system on which
input spooling is not active, the job stream in the system
reader is flushed until a JOB statement or a slash period
{/.) statement is encountered.

® |f you are executing in step mode, the input stream will
be ftushed until a JOB, LOAD, CALL, slash period {/.}

or slash ampersand (/&) statement is encountered.

Macro Instruction Statements 21
General SCP Support

Page of GC21-7608-2
Issued 29 September 1978
By TNL: GN21-5649

INPUT/OUTPUT SUPPORT MACROS

The input/output support Macro instructions prov:ds access
to devices without requiring that you write exterisive rou-
tines to perform each function. The input/output support
macro instructions are divided into eight groups:

1. General macro instructions are used with ai Jevice
types. The foilowing macros are v s gr .o

$ALOC
CKL
$CHK
$CLOS
$COMN
$DTFO
$SOPEN

Teleprocessing oniy

2. Card macro instructions support card devices. The
following macros are in this group:

$DTFC
$GPC

$GETC
$PUTC

3. Printer macro instructions suppcrt printer azvices.
The following macros are in this group.

$DTFP
$PUTP

4, Disk macro instructions provide suuport and tinkage
to disk data management. The toilowing niacros are
in this group:

$DTFD
$GETD
$10BD
SI0ED
$PUTD
$RDD
SWAIT
$WRTD

22

5. Tape macro instructions provide support and linkage
1o tape data management. The following macros are
in this group:

SCTLT
SDTFT
$GETT
$PUTT
SROT
SWRTT
SWTT

6 Device independent macré instructions provide sup-
port and hinkage to device independent data manage-
ment. The following macros are in this group:

SDTFI
SGETI
SPUTH

7. CRT rnacro instructions supoport CRT devices. The
fuliowing macros are in this group:

SCQEP
SDTFS
SGETS
SPFKT
SPFKY
SPGS

SPUTS

8. 3741 macro instructions provide support and linkage
to 3741 data management. The following macros
are in this group:

SDTFK
SGETK
SPUTK

General 1/0 Support

The general {/0 support macro instructions are used with

both unit record, tape, and disk devices. The normal

sequence for using thiese macro instructions is:

1. SALOC to allocate the device to your program
partition.

2. SOPEN to prepare the file or device for use.
3. /0 operations and any processing required.

4. SCLOS to prepare the file and/or device for job
termination.

Allocate Space ($SALOC)

The routines called by the $ALOC macro instruction allo-
cate unit record input/output devices and space on disk and
tape devices. These routines check to ensure that:

® The system supports the requested device.

® The device requested is available to the requesting
program,

® The LOCATION parameter of the OCL file statement
is valid.

® The correct disk pack is mounted and space is available
to the calling program.

® The number of disk, tape, and device independent
DTFs in the calling program is limited as follows:
~ 5704-SC1—The limit is 40,
— 5704-SC2—The limit is 192 with at least a 10K
partition. The limit is 128 with only an 8K
partition.

For 5704-SC2, not all 192 disk and tape DTFs may be
allocated in a single call to allocate. The maximum
number of tape and/or disk DTFs in a single chain is
as follows:

— If all are disk, the maximum is 165.

— If all are tape, the maximum is 148.

— For combinations of disk and tape, the maximum
varies between 148 and 165. To determine whether
or not the DTFs can be allocated in a single call to
allocate, multiply the number of disk DTFs by 17
and multiply the number of tape DTFs by 19. If
the sum of the above two numbers is not greater
than 2816, the DTFs may be allocated in a single
call.

If the DTFs cannot all be allocated in a single call, make
two DTF chains and two calls to allocate.

® The correct tape input file is mounted, or the tape labe!
is written on the output file, and that the tape is posi-
tioned at the beginning of the file.

An allocate request requires that pre-open DTFs be sup-
plied as input to the routine. For a description of DTFs,
see Define the File for Card ($DTFC), Define the File for
Disk ($DTFD), Define the File for Device Independent
($DTF1), Define the File for Printer ($D TFP), Define the
File for CRT ($DTFS), Define the File for Tape ($DTFT),
and Define the File for 3741 ($DTFK). When the allocate
request is for a disk, a tape device, or a device independent
file, OCL file statements are also required. More than one
DTF can be allocated at one time by chaining the DTFs.
To chain DTFs, you must enter the address of the next
DTF in the DTF you are building. The last DTF in a chain
has X'FFFF’ entered in place of the address. |If your
program operates as an interrupt handler, such as a binary
synchronous communications program, all DTFs in the
program should be chained together and allocated in one
operation. When an error condition occurs, the allocate
routine calls halt/syslog to display the proper halt code.

Note that if you will need to use the data in register 2 at a
later time, you should save the contents of that register
before issuing the $ALOC macro instruction.

The following output is produced when control is returned
to your program.

® The contents of register 1 are restored.

® The format-1 labels and configuration record are up-
dated.

® For a non-disk or non-tape DTF, bit 1 in the rightmost
byte of the attribute bytes of the post-open DTF is set
on to indicate device allocation.

® For a device independent DTF, the device code (dis-
placement O in the DTF — $DFDEV) is altered to
indicate the appropriate device.

® The address of the first DTF allocated is returned in
register 2.

Note: |f you are using telecommunications, $ALOC must

not be issued while a telecommunications operation is in
process.

Macro Instiucoun Statements 23

The format of the SALOC macro instruction is:

[{Name] I $ALOCI [DTF-address]

DTF-address specifies the address of the high-order byte of
the DTF being allocated. If this operand is not entered, the
address of the DTF is assumed to be in register 2.

Prepare An 1/0 Device (SOPEN)

This macro instruction prepares an input/output file for
data transfer. The file to be prepared (opened) must pre-
viously have been allocated by using the allocate macro
instruction. Depending on the device, one or more of the
following functions are performed for each file opened.

® The post-open DTF is formatted (see Figure 9).

® Pre-open DTF information is preserved in the format-1
label as required.

® |nput/output buffers, index buffers, and IOBs are
formatted.

® Buffers are initialized as required.

® Disk file share area is prepared as required (5704-SC2
only).

® Cards are positioned at the wait station for card output
files.

® The index area on disk for indexed files and the data
area on disk for direct files are formatted as required.

® Diagnostics are performed to ensure that:
~ The access method and the file organization are
compatible.
— The volume and file are mounted on the correct disk
or tape drive.
— Share attributes are checked for disk files (5704-SC2
only}.

Note: More than one DTF can be opened at one time by
chaining the DTFs. To chain DTFs, you must enter the
address of the next DTF in the DTF you are building.

The last DTF in a chain has X’FFFF’ entered in place of
the address. See $DTFC, $DTFD, $DTFI, $DTFP, $DTFS,
SDTFT, and $DTFK.

24

Pre-Open Conditions Post-Open Conditions

1. Unformatted DTFsare 1. Formatted DTFs are
present for output created.
files.

2. 1/0 buffers, 10Bs, and
various work areas are
formatted.

2. The 1/O buffer is in the
unformatted mode.

3. Abitissetoninthe
DTF attribute bytes to
indicate an opened file,

Figure 9. Comparison of Pre-Open and Post-Open DTFs and
Data Areas

Input: The pre-open DTF and format-1 label are input to
the open routine. Before the open macro instruction is
issued, you must be sure to have the device allocated by
previously issuing the allocate macro instruction. Also, if
you will need to use the data in register 2 at a later time,
you should save the contents of that register before issuing
the $OPEN macro instruction. You must also consider the
following in preparing the DTF:

® The disk access method must be compatible with the
disk file organization of the file being opened.

® The access method must be compatible with the access
method of the same file opened in the other program

level or for an inquiry program (see Rol/lout).

® The record length, block length, and key length must be
specified correctly.

® The file must have share specified if it is to be shared

for disk files (5704-SC2 only).

Output: The open routine returns control to your program
when the requested file has been opened. The following
output is produced:

® The contents of register 1 are restored.

® The format-1 labels are updated.

® Bit 7 in the rightmost attribute byte in the post-open
DTF is set on to indicate the file has been opened.

® The device code (disptacement 0 in the DTF — $DFDEV)
is altered to indicate the unit on which the disk or tape

file resides.

® The buffers are initialized.

® The address of the last DTF opened is returned in
register 2.

® The file share area is updated for disk files with share
specified (5704-SC2 only).

The format of the $OPEN macro instruction is:

fName] | $OPEN

[DTF-address]

DTF-address specifies the address of the leftmost byte of
the DTF for the file to be opened. If this operand is not
entered, it is assumed that the address is in register 2,

Note: Any files opened during a job should be closed
before the job ends ($CLOS macro). For 5704-SC2 only,
any open files will be closed during EQJ processing (nor-
mal or abnormal). Therefore, DTFs must be available at
this time. Any disk files opened using file sharing must
be closed to perform required actions on the file share
area.

Generate a Checklist ($CKL)

This macro instruction creates an entry for a checklist. It
does not generate executable code. A checklist identifies
DTFs to be checked for 1/0 completion, or determines
whether the PFQ key has been pressed. Two kinds of DTFs
can be identified in the checklist:

® Binary Synchronous Communications (BSC) DTFs

® Dummy DTFs (15-byte DTFs used to check for the PF9
key)

All the checklist entries that are to be tested by the same
$CHK macro instruction must be issued consecutively.

The same DTF may be in the list more than once. The
checklist entries that are generated are contiguous in main
storage. You can then issue the $CHK macro instruction to
test the entire list, by specifying the first entry in the list;
or hggin testing anywhere in the list, by specifying the

labe! of one of the later entries.

Note: The address you specify in the $CHK macro instruc-
tion identifies the beginning of the check operation. Any
entries occurring earlier in the Jist are ignored in that
operation.

For a description of the checklist entries, see Figure 10,

Disp Field Description

0 Flag byte:

X‘80’'—Skip this entry

X'40’~Request key (PF Key 9) should be checked

X‘20'—This is the last entry in the checkliist

X'10"—Return contro! to the user if no 1/0 com-
pletion is found {significant only in the
first entry of a checklist)

X‘08"—Code destroyed

X'04’—Program function key not available

1-2 Address of the DTF for this entry

Figure 10. Checklist Format

For a description of BSC, see /BM System/3 Multiline/
Multipoint Binary Synchronous Communications Reference
Manual, GC21-7573.

The format of the $CKL macro instruction is:

[Name] | $CKL DTF-address[,SKIP-Y/_I\il [LREQK-Y/N]

LRTN-Y/N] [LAST-Y/N]

DTF-address specifies the symbolic address of the first byte
of the DTF for which this entry is being created. A dummy
DTF, 15 bytes in length, is required to check if the PF9 key
was pressed. Displacement X’00’ in this DTF should con-
tain a X*10’ and a completion code will be returned at dis-
placement X‘0OE’,

SKIP-Y /N specifies whether this entry should be skipped

when the checklist is scanned. If this operand is omitted,
N (no) is assumed. IfY is specified, you must update the
checklist entry before you can check the DTF specified in
this macro instruction. You can access the skip indicator
in the entry by using the name specified on the macro in-
struction.

REQK-Y/N specifies whether the check routine (see index
entry $CHK macro instruction) should check if the PFQ

key has been pressed. Whenever you want the check rou-
tine to check for a PFQ request, you must include a dummy
DTF in the checklist and specify REQK-Y for that entry.
REQK-Y is ignored if it is specified for a DTF that is not
adummy PF9 DTF (a device code of X‘10’ in the first

byte of a DTF denotes a dummy PFQ DTF). If the operator
pressed the PF9 key, a completion code of X‘50" is posted
at displacement X°0E’ of the dummy DTF.

Macro Instruction Statements 25

RTN-Y/N specifies whether you want control returned to
your program even if no 1/O operation is complete. This
operand is valid only for the first entry in the check list. If
this operand is not entered, N (no) is assumed.

LAST-Y/N specifies whether this is the last entry in the
checklist. LAST-Y (yes) must be specified for the last
entry. If this operand is omitted, N (no) is assumed.

Check for 1/0 Completion ($CHK)

This macro instruction generates the linkage required to use

the check routine. You must issue the $CHK macro instruc-

tion for each BSC get, put, read, write, or online test
request. For a description of BSC macro instructions, see
I1BM System /3 Multiline/Multipoint Binary Synchronous
Communications Reference Manual, GC21-7573.

If you will need to use the data in register 2 at a later time,
you should save the contents of that register before issuing
the $CHK macro instruction.

Check Routine Operation

Note: When using this macro, the user program must
equate $PARM to 2.

The check routine tests for completion of an 1/0 operation
by examining the DTFs identified in the checklist — see
Generate a Checklist (§CKL). 1f an 1/O operation is com-
plete, the completion code is set in the DTF, and the ad-
dress of the DTF is returned in register 2 to the calling
program. No subsequent DTFs in the list are tested.

When no I/O completion is found by the end of the check-
list, control is returned to your program with the address
of the last DTF in the list register 2 if:

Each entry in the list is inactive, closed, or has the skip
indicator on (a completion code of X‘67').

RTN-Y was specified in the $CKL macro instruction
that created the first entry in the checklist (a comple-

tion code of X’66').

The format of the $CHK macro instruction is:

[Name] | $CHK [CKL-address]

26

CK L-address specifies the symbolic address of the first entry
in the checklist. You can also begin at a subsequent point
in the checklist by specifying the symbolic address of a

later entry. If this operand is omitted, the address is
assumed to be in register 2.

Note: The address you specify identifies the beginning of
the check operation. Any entries occurring earlier in the
list are ignored in that operation.

Prepare a Device for Termination ($CLOS)

The close macro instruction prepares a device for job termi-
nation. The routine returns post-open DTFs to their pre-
open state and updates file labels to reflect the current file
status. For devices other than disk or tape, only the entries
related to the requested functions are restored. |f you will
need to use the data in register 2 at a later time, you
should save the contents of that register before issuing the
$CLOS macro instruction.

Input to the close routine consists of the post-open DTF
and the format-1 labels. The allocate and open macro in-
structions must have previously been issued.

Output created by $CLOS is returned to your program
when control is returned. The output consists of:

® The contents of register 1 restored.

® The post-open DTFs reinitialized to the pre-open state.

® Any pending operations for unit record devices
performed.

® The format-1 label for disk updated to indicate current
file status.

® The buffer contents scheduled for disk or tape output
and disk update operations written.

® The data and index written to disk, and an indicator set
if key sorting is required at end-of-job for output files
and file additions.

® Tape trailer labels read or written.

® The file share area is cleared or updated for the disk
file specified as share.

Note: More than one DTF can be closed at one time by
chaining the DTFs. Ta chain DTFs, each DTF to be ciosed
must contain the address of the next DTF in the chairr. The
last DTF in a chain has X'FFFF’ entered 11 place of the
address.

The format of the $CLOS macro instruction is:

INamel| | $CLOS | IDTF address|

DTF-address specifies the address of 11 e tmost Dyt ot
the DTF to be closed. |f this operand is
address is assumed to be in register 2.

Ot entareg

Generate DTF Offsets (SDTFO)

ed for the Model 15. To avoid duplicate labe
instruction should be used only once 11 cack rogram: vor,
should also set the operands to indicate sy dovices you
plan to use in the program,

The format of the $DTFO macrc instriction 1o

[Name] | $DTFO | [DISK-Y/Ni { TAPE-Y]
[MFCU Y'N! {MFC 53041y,
[,D2501-Y/N] [.D3442 N} | 51403 V.iry:
[.D3284-Y/NJ | CRT-Y/N] [LALL-Y/N!
LEELD Y)

LANDY N

DISK-Y/N specifies whether iabels are 15 0 gonerater s
disk devices. If this operand is not enterog & ing s
assumed.

TAPE-Y/N specifies whether labels are 10 s gonar o for a
tape device. If this operand is not erterar N i
assumed.

IND-Y /N specifies whether fahels are t-0 e monoatag 10 g0
independent device. 1 this oneramd is mot amreipne 2 fag
is assumed.

MFCU-Y/N specifies whether labels are *s be generated oo

the MFCU. If this operand is not entered N ino) is assumed.

Page of GC21-7608-2
Issued 29 September 1978
By TNL: GN21-5649

MFCM Y % specities whether labels are to be generated for
the MFCM. If this operand is not specified, N {no) is
assumed.

D3741-¥ /N specifies whether labels are to be generated for
the 3741. If this operand is not specified, N{no) is assumed.

D2507 v % specifies whether tabels are to be generated for
the 2507 if this gperand is not entered, N (no) is assumed.

D1442-Y N specifies whether labels are to be generated for
the 1442 !f this operand is not entered, N (no) is assumed.

D71403 > % specities whether labels are to be generated for
the 1403 if this operand is not entered, N (no) is assumed.

03284 & specifies whether labels are to be generated for
the 3284, :f this operand is not entered, N {no) is assumed.

CRT-Y % wnecifies whether labels are to be generated for
the CRT ¢ this operand is not entered, N (no) is assumed.

ALL-Y /N specifies whether fabels are to be generated for all
devices stipported. If this operand is not entered, N {no) is
assumed

FIELD ¥ N specifies whether to generate the labels which
define the contents for a DTF field. If this operand is not
specitien Y {yest 15 assumed.

COMMON Equatres (SCOMN)
This mac-n astruction generates equates for various fabels
and val.:oy such as reqister equates, which may be used in

the program. This macro instruction is not required.

The formai of the SCOMN macro instruction is:

Macro Instruction Statements 27
General 1/O Support

Page of GC21-7608-2
Issued 29 September 1978
By TNL: GN21-5649

Card Device Support

This section describes the macro instructions that support
card devices. The following functions are provided:

® Build a pre-open DTF for card device and assign its off-
sets.

® Build the interface required to read/punch/print records
using a card device.

The DTF provides information to the card device data man-

agement routines that perform input/output operations.

Define the File for Card ($DTFC)
The DTF provides information needed to allocate, open,
and access a card device. This macro instruction generates

the code that builds a card DTF.

The format of the $DTFC macro instruction is:

[Name] | $DTFC | 1I0BA-address, NIOB-number

[,DEV <code]

[,UP-mask] [,CHN-address)
[.RCAD-address] [,OPC-code]
[,DEFER-Y/N] [,CARDI-Y/NI]
[,PRINT4-Y/I_\I_] [,FEED-Y/N]
[.STACKR-number] [,READA-address]
[.PUNCHA-address] [,PRINTA-address]
[LREADL-number] [,PUNCHL-number]
[.PRINTL-number] [,PRHEAD-mask]
[LALIGN-Y/N]

/OBA -address is a required operand specifying the address
of the leftmost byte of the first IOB. The area identified
by this operand must be large enough to contain one I0B
for single buffering or two 10Bs for double buffering
(specified via the operand NIOB-2). The sizes for each
card 10B are:

2501 — 25 bytes
MFCU — 29 bytes
1442 — 29 bytes
MFCM — 31 bytes

28

NIOB-number is a required operand specifying the number
of 10Bs associated with this DTF. This entry must have a
value of 1 or 2.

DEVcode specifies the card device desired. The possible
values for code are MFCU1, MFCU2, MFCM1, MFCM2,
1442, and 2501. If this operand is omitted, MFCU1 is
assumed.

UP-mask specifies the mask to test the eight external
indicators. The code for the UP-mask must be specified

as 8 binary bits. For example, to test bits 0, 3, 5, and 7,
you would enter UP-10010101. The UP-mask is compared
to the external indicators set on by the SWITCH statement
for conditionally opening files. If the bits that are on in the
UP-mask are also on in the external indicators set on by the
SWITCH statement, the file will be opened. If the UP-mask
is all zeroes or not used, the file will be unconditionally
opened.

Note: Information on setting external indicators (SWITCH
statement) can be found in the /BM System/3 Model 15
System Control Programming Reference Manual (for
Program Number 5704-SC1), GC21-5077, and in the
IBM System/3 Model 15 System Control Programming
Concepts and Reference Manual {for Program Number
5704-5C2), GC21-5162.

CHN-address indicates the address of the next DTF in the
chain of DTFs. If there is no DTF chain or if this is the
last DTF in the chain, the operand should be omitted
{(X'FFFF'is assumied).

RCAD-address specifies the leftmost byte of the logical
record for an output operation. |f this operand is not
entered, a value of X‘0000' is assumed: this value must be
updated before an output operation is performed. 1f this
operand is specified for an input operation, the value speci-
fied will not be used, and this operand will be modified by
the card data management module to contain the address of
the card that was read.

OPC-code detines the operation code for the DTF. A list
of the possible codes and their meanings are:

Code Meaning

RD Read

PU Punch

PR Print

PP Punch and print Not allowed for
RPU Read and punch MFCM1

RPR Read and print or

RPP Read, punch, and print } MFCM?2

If this operand is not specified, the operation code for a
feed is set.

DEFER-Y/N is used only with output operations to the
MFCM and MFCU. This operand enables you to print one
record on a card and puach a different record in the same
card. The $DTFC, SPUTC, and $GPC macro instructions
can be used to specity this process. For $GPC or $PUTC,
you must first issue that macro instruction for either a
print or a punch with DEFER-Y. You then modify the
logical record as needed 10 a different format and issue that
macro instruction for the remaining operation with
DEFER-N. Both operations are then performed. If this
operand is not specified, N (no) is assumed.

CARDI-Y/N specifies whether or not 1o perform a read
card image operation on the 1442 or 2501. 1f N (no) is .
specified or if this operand is omitted, a card image read is
not performed.

PRINT4-Y /N specifies whether to print three or four tiers

for a print request from the MFCU. Y (yes) indicates that
four tiers shouid be printed; if this operand is omitted or if
N (no) is specified, three tiers are printed.

FEED-Y/N specifies whether or not to perform a feed oper-
ation after a 1442 punch operation. if Y {yes) is specified
or if this operand is omitted, a feed is performed after the
punch operation,

STACKR-number specifies the stacker to be used for this
card operation. This operand is not used with the 2501, If
this operand is not specified, the byte containing the
stacker number will be set to X'00’.

Note: If this operand is zero the following occurs: stacker
one is used if the card originated in hopper 1; the highest
number stacker is used if the card originated in hopper 2.

READA-address specifies the address (at a 128-byte boun-
dary) of the buffer used for read operations. If double buf-
fering is used, both buffers must be on 128-byte bound-
aries, and the two buffers must be contiguous in main stor-
age. You must specify this operand if you plan to use this
DTF for a read operation.

PUNCHA-address specifies the address (at a 128-byte boun-
dary) of the buffer used for punch operations on the 1442,
MFCU, or MFCM. If double buffering is used, both buffers
must be on 128-byte boundaries, and the two buffers must
be contiguous in storage. You must specify this operand

if you plan to use this DTF for a punch operation.

PRINTA-address specifies the address (at a 256-byte boun-
dary) of the buffer used for print operations on the MECM
or the MFCU. For the MFCM, the buffer size must be 64
bytes times the highest print head used. If double buffering
is used, both print buffers must be contiguous in main stor-
age. For the MFCU, the buffer size must be 128 bytes for
single buffering and 256 bytes for double buffering. If two
DTFs are being used for printing from both hoppers of the
MFCU, the operation must be single buffered and the DTFs
must use the same 256-byte print area. You must specify
this operand if you plan to use this DTF for a print operation.

READ L -number specifies the number of card columns to
read. This operand should be used with the MFCM or 2501
only. If this operand is not specified, the maximum value
(80) is assumed.

PUNCHL-number specifies the number of card columns to
punch. This operand should be used with the MFCM or
1442 only. if this operand is not specified, the maximum
value (80} is assumed.

Macro Instruction Statements 29

PRINTL-number specifies the number of columns to print
per head on the MFCM. If this operand is not specified, the
maximum value (64) is assumed.

PRHEAD-mask defines the print heads selected for the
MFCM. The mask must be specified as an eight-bit field.
If this operand is omitted, the current setting of the print
head selection byte in the DTF is not modified. The fol-
fowing table shows the meaning of each bit.

Bit Meaning

Oand 1 =0 Unused, must be zero

2= Select print head six

3=1 Select print head five

4= Select print head four
=1 Select print head three
=1 Select print head two
=1 Select print head one

ALIGN-Y /N specifies whether to print in a special format
on the MFCM. IfY (yes) is specified, the first 64 charac-
ters are printed with print head 1 and the next 16 charac-
ters are printed right-justified with print head 2. If N (no)
is specified or if this operand is not entered, printing occurs
in the normal manner.

Construct a Card Get Interface ($GETC)

The $GETC macro instruction generates the interface re-
quired to communicate with card data management when a
record is being read from a card device. To use this instruc-
tion, you must construct a card DTF for the file and use
the SDTFO macro instruction to establish the offsets in

the DTF. If you will need to use the data in register 2 at a
later time, you should save the contents of that register be-
fore issuing the $GETC instruction. You must also provide
the tabels for the necessary data management routines, via
EXTRN statements in your program. The names of the
data management routines for each device are:

Module Name Device
$$SMFRD MFCU
$SMMRD MFCM
$SARFF 1442
$$ARRD 2501

30

The code generated by this macro instruction gives control
to the data management routine; the routine completes
execution and returns control to the generated code. If
the ERR or EOF operand is specified, the generated code
tests the completion code returned by data management
and branches to your routine.

The format of the $GETC macro instruction is:

[Name]| $GETC | {DEV-codel [,DTF-address} [,EOF-address]
[,ERR-address] [,OPC-Y/N]
[LREADL-number] {,CARDI-Y/N]

{,STACKR-number]

DEV-code specifies the appropriate device. One of the
following codes must be used: MFCU, MFCM, 1442, or
2501. If this operand is not specified, default is made to
MFCU.

DTF-address indicates the address of the leftmost byte of
the DTF for this file. If this operand is not specified, the
address is assumed to be in register 2.

EOF-address specifies the address in your program that re-
ceives control when the end-of-file is detected. If this oper-
and is not supplied, no code is generated to check for the
end-of-file condition.

ERR-address supplies the address in your program where
control is passed if the controlled cancel option is taken in
response to a permanent 1/0 error. If this operand is omit-
ted, no code is generated to check for the controlled cancel
completion code.

Note: 1f ERR or EOF addresses are not specified, you
should check the return code in your program to determine
the outcome of the operation.

OPC-Y /N indicates whether or not the read operation code
should be altered in the DTF. If Y (yes) is specified, the
read/punch/print bit in the operation code is set to indicate
aread. If N (no) is specified or if this operand is omitted,
read/punch/print bit in the operation code is not modified.

READL-number specifies the number of columns to read
from the MFCM or 2501. If this operand is not specified,
the DTF remains unchanged.

CARDI Y /N specifies whether to perform a read card image
wperation ui the 1442 or 25601, If Y (yes) is specified, the
card ttnaye read bit in the operation code is set on. I N
{no} is specified, the card image bit in the operation code is
set otf. I this operand is omitted, the status of the card
itage read bitin the operation code is not modified.

STAUKH rwnnber specifies the stacker to be used for hold-
iry the cards after the read operation. This operand is not
used with the 2601, f this operand is not given, the value
i the DTF is not changed.

Cuotbstruct a Card Put Interface ($PUTC)

This macro instruction gerierates the interface needed to
communicate with card data management when punching
and/ui prmting a card file. You must provide a DTF for
the tile and use the $DTFO macro instruction 1o establish
the offsets in the DTF. You must also provide, through
EXTRIN staternents in your program, the labels of the card
data mianagement modules necessary to perform the output
operation. The names of the data management routines for

each devive are:

Module Name Device
SSMEPP MFCU
SSMMPP MFCM
SSARFF 1442

yvou need to use the date in register 2 at a later time, you
should save the contents of that register before issuing the
SPUTC instruction.

Mhe code generated by this macro instruction gives control
to the data management routine. The routine completes
execution and returns control to the generated code. If the
ERR operand is specified, the generated code checks the

completior code for errors and branches to your error rou-
tine if errors occurred.

The format ot the $PUTC macro instruction is:

[Name) | $PUTC | [DEV-code] [,DTF-address] [,OPC-code]
[,DEFER-Y/N] [,PRINT4-Y/N]
[,FEED-Y/N] [,STACKR-number]
[,PUNCHL-number] [,PRINTL-number]

[,PRHEAD-mask] [,ERR-address]

DEV-code specifies the appropriate device. One of the fol-
lowing codes must be used: MFCU, MFCM, or 1442, |f
this operand is not specified, default is made to MFCU.

DTF-address specifies the address of the leftmost byte of
the DTF for this file. If this operand is not entered, the
address is assumed to be in register 2.

OPC-code specifies the operation code to be used. 1f this
operand is not specified, the status of the print/punch bits
in the operation code is not changed. Valid codes are as
follows:

Code Meaning

PU Punch

PR Print

PP Print and punch (This code is not allowed

for MFCM.)

DEFER-Y/N specifies whether the print and/ue punch oper-
ation should be deferred. 1T Y (ves) is specivied. the defer
operation bit in the operativn cede s wor o if N {ne) is
specified, the defer opoiat.on Uit in the oueration cods s
set off. If this operand is not specified, t ¢ s1atus of e
defer bit is not changed.

PRINT4-Y /N specifies whether to print on four tiers of tie
MFCU card. If Y (yes) is specified, the fourth tier print bit
in the operation code is set o if N (no} is specified, the
tfourth tier print bit is set oft. {if this operand is omitted,
the status of the fourth tier print bit in the operation code
is not changed.

FEED-Y/N specifies whether to perform o feed operation
following the 1442 punch operation. Y {yes) indicates that
a feed should occur after the punch; if N (no) is entered, o
feed is not performed after the punch operation. !f this
operand is omitted, the status of the feed/iio feed bit in the
DTF is not changed.

STACKR-number specifies the stacker to be used for this
operation. Hf this operand is omitted, the value of the
stacker-select byte in the DTF is not changed.

PUNMNCH UL -number specifies the number of columns to punch,
If this operand is omitted, the value in the punch-length
byte is not changed. This operand shouid be used with the
MFCM or 1442 only.

PRINTL-numbper indicates the number of columns 10 be
printed by each head on the MFCM. If this operand is
omitted, the value in the print-length byte is not changed.

Macro Instruction Statemily 31

PRHEAD-mask defines the MFCM print heads selected.
The mask must be specified as an eight bit field. If this
operand is omitted, the current setting of the print head
selection byte in the DTF is not modified. The following
chart shows the meaning of each bit:

Bit Meaning

[+V]
>

It
e T S S

1=0 Unused, must be zero
Select print head six
Sefect print head five
Select print head four
Select print head three
Select print head two
Select print head one

~NOoOothe WN O
It

ERR-address supplies the address in your program where
control is passed if the controlled cancel option is taken in
response to a permanent I/O error. If this operand is omit-
ted, no code is generated to check for the controlled cancel
completion code, and you should check the return code in
your program to determine the outcome of the operation,

Construct an Interface for Reading, Punching, and Printing
Cards ($GPC)

The $GPC macro instruction generates the interface required
to communicate with card data management when a record
is being read, punched, and/or printed on a card device. To
use this macro instruction, you must construct a card DTF
for the file and use the $DTFO macro instruction to estab-
lish the offsets in the DTF. If you will need to use the data
in register 2 at a later time, you should save the contents of
that register before issuing the $GPC instruction. You must
also provide labels for the necessary data management rout-
ines via EXTRN statements in your program. The name of
the data management routine for each device is:

Module Name Device
SSMFFF MFCU
SSMMFF MFCM
$SARFF 1442

The code generated by this macro instruction gives control
to the data management routine; the routine completes
execution and returns control to the generated code. If the
ERR or EOF operand is specified, the generated code tests
the completion code returned by data management and
branches to your routine.

32

The format of the $GPC macro instruction is;

[Name]l | $GPC [DEV-code] [,DTF-address] [,OPC-codel
[,DEFER-Y/N] [,CARDI-Y/N]

[PRINT4-Y/N] [,FEED-Y/N]
[,STACKR-number] [,READL-number]
[,PUNCHL-number] [,PRINTL-number]
[,PRHEAD-mask] [,EOF-address]

[,ERR-address]

DE V-code specifies the card device desired. The possible
values for this code are: MFCU, MFCM, and 1442, If this
operand is not specified, MFCU is the default value.

D TF-address specifies the address of the leftmost byte of
the DTF for this file. If this operand is not entered, the
address is assumed to be in register 2.

OPC-code specifies the operation code to be used. Valid
codes and their meanings are:

Code Meaning

RD Read only

PU Punch only

PR Print only

PP Punch and print

RPU Read and punch Not allowed
RPR Read and print for MFCM
RPP Read, punch, and print

If this operand is not specified, the status of the read/
punch/print bits in the operation code is not changed.

DEFER-Y/N specifies whether to defer the punch and/or
print request. If N {no) is specified the request is not de-
ferred; if this operand is not specified the status of the
defer bit in the DTF is not changed.

CARDI-Y/N specifies whether to perform a read card image
operation on the 1442 or 2501. If N (no) is specified or if
this operand is omitted, a card-image read is not performed.

PRINT4-Y /N specifies whether to print three or four tiers

for a print request from the MFCU. Y (yes) indicates that
four tiers should be printed; if this operand is omitted or if
N {no) is specified, three tiers are printed.

FEED-Y /N specifies whether or not to perform a feed
operation after a 1442 punch operation. IfY (yes) is
specified or if this operand is omitted, a feed is performed
after the punch operation.

STACKR-number specifies the stacker to be used for this
card operation. This operand is not used with the 2501. |f
this operand is not specified, the byte containing the stacker
number is set to X'00’.

READL-number specifies the number of card columns to
read. This operand should be used with the MFCM or

2501 only. If this operand is not specified, the default value
is 80.

PUNCH L-number specifies the number of card columns to
punch. This operand should be used with the MFCM or

1442 only. If this operand is not specified, the default value
is 80.

PRINTL-number specifies the number of columns to print
per head on the MFCM. If this operand is not specified, the
default value is 64.

PRHEAD-mask defines the print heads selected on the
MFCM. The mask must be specified as an eight bit field.
If this operand is omitted, the current setting of the print
head selection byte in the DTF is not modified. The fol-
lowing table shows the meaning of each bit:

Bit Meaning

1=0 Unused, must be zero
Select print head six
Select print head five
Select print head four
Select print head three
Select print head two
Select print head one

EOF-address specifies the address in your program that
receives control when the end-of-file is detected. {f this

operand is not supplied, no code is generated to check for
the end-of-file condition.

ERR-address supplies the address in your program where
control is passed if the controlled cancel option is taken in
response to a permanent /0 error, If this operand is omit-
ted, no code is generated to check for the controlled cancel
completion code.

Note: If ERR or EOF addresses are not specified, you

should check the return code in your program to determine
the outcome of the operation.

Printer Support

This section describes the macro instructions that support
the printers. The following functions are provided:

® Build a pre-open DTF for a printer and assign its offsets.
The DTF provides information to printer data manage-
ment routines that perform input/output operations.

® Build the interface needed to print data.

Define the File for Printer ($DTFP)
The DTF provides information needed to allocate, open,
and access a printer. This macro instruction generates the

code that builds the printer DTF.

The format of the $DTFP macro instruction is:

[Name] | $DTFP | RCAD-address,IOBA-address, IOAA-address,
OVFL-number,PAGE-number [,DEV-code]
[,UP-mask] [HUC-Y/N] [,CHN-address]
[,PRINT-Y/N] [,SKIPB-number] [SPACEB-
number] [,SKIPA-number]| [SPACEA-number]

[,RECL-number]

RCAD-address is a required operand which gives the address
of the leftmost byte of the logical record.

10BA-address is a required operand specifying the address
of the leftmost byte of the IOB. The IOB will be 50 bytes
long.

10AA-address is a required operand which specifies the
address of the leftmost byte of the 1/0 area. For the 1403,
this address must define the 1/0 area as beginning on a 124-
byte boundary. The length of the 1/O area must be:

® 132 bytes for the 1403 printer

® The record length +7 for the 3284 printer.

Macro Instruction Statements 33

OVFL-number specifies the line number on the printer
after which the overflow completion code will be returned.
it this operand is not specified, default is made to 6 lines
less than the number specified for the PAGE operand.

PAGE-number specities the number of lines to print per
page. If this operand is not specified, default is made to the
system value for the number of lines per page.

DEV-code specifies the printer desired. The possible values
for this code are 1403 and 3284. If this operand is not
specified, 1403 is assumed.

UP-mask specifies the mask to test the eight external
indicators. The code for the UP-mask must be specified

as 8 binary bits. For example, to test bits 0, 3, 5, and 7,
you would enter UP-10010101. The UP-mask is compared
to the external indicators set on by the SWITCH statement
tor conditionally opening files. If the bits that are on in the
UP-mask are also on in the external indicators set on by the
SWITCH staternent, the file will be opened. If the UP-mask
is all zeroes or not used, the file will be unconditionally
opened.

Note: Information on selting external indicators (SWITCH
staternent) can be found in the /BM System/3 Model 15
System Control Programming Reference Manual for Pro-
gram Number 5704-SC1, GC21-56077 and /BM System /3
Model 15 System Control Programming Concepts and
Reference Manual for Program Number 5704-SC2, GC21-
5162.

HUC-Y/N specifies whether to halt if an unprintable charac-

ter is detected. If N (no) is specified or if this operand is
omitted, no halt occurs.

CHN-address indicates the address of the next DTF in the
chain of DTFs. If there is no DTF chain or if this is the
last DTF in a chain, this operand should be omitted (a
vaiue of X'FFFF’ is assumed).

PRINT-Y/N specifies whether 1o perform a print and a skip
or space or only a skip or space. Default is N {no), mean-
ing that a print is not performed.

SKIPB-number specifies the line to skip to before the print
operation. If this operand is not entered, the default value
is zero.

34

SPACEB-number specifies the number of lines (maximum
of 3 lines) to space before the print operation. If this
operand is not entered, the default value is zero.

SKIPA-number specifies the line to be skipped to after the
print operation. |f this operand is not specified, the default
value is zero.

SPACEA-number specifies the number of lines to space (0,
1, 2, or 3) after the print operation. If this operand is not
specified, it defaults to a value of zero if DEV-1403 is speci-
fied or to a value of one if DEV-3284 is specified. A space
after of zero is not allowed for the 3284 printer, and, if
zero is specified, the operand defaults to a space after of
one.

RECL-number specifies the length of the line to be printed.
If this operand is omitted, default is 132 positions.

Construct a Printer Put Interface ($PUTP)

This macro instruction generates the interface needed to
communicate with printer data management. You must
provide a DTF for the file and use the $DTFO macro
instruction to establish the offsets in the DTF. You must
also provide, through an EXTRN statement in your pro-
gram, the label $$SLPRT, for the 1403, or $$LPMP, for the
3284. (These labels are for the printer data management
module necessary to perform the printer output opera-
tion.)

If you will need to use the data in register 2 at a later time,
you should save the contents of that register before issuing
the $PUTP macro instruction.

The code generated by this macro instruction gives control
to the data management routine. The routine completes
execution and returns control to the generated code. If the
ERR operand is specified, the generated code checks the
completion code for errors and branches to your error
routine if errors occurred.

The format of the $PUTP macro instruction is:

[Name] | $PUTP | [DEVcodel [,DTF-address] [,PRINT-Y/N]
[.SKIPB-number] [,SPACEB-number]
[SKIPA-number] [,SPACEA-number]

[LERR-address] [,OVFL-address]

DEV-code specifies the printer device desiied. The possible
values for this code are 1403 and 3284. If this operand is
not specified, 1403 is the default value.

DTF-address specifies the address of the leftmost byte of
the DTF for this file. If this operand is not entered, the
address is assumed to be in register 2.

PRINT-Y/N specifies whether to perfrom a print and a skip
or space or only a skip or space. If this operand is not
specified, the DTF remains unchanged.

SKIPB-number specifies the line to skip to before the print
operation. If this operand is not entered, the DTF remains
unchanged.

SPACEB-number specifies the number of lines to space be-
fore the print operation. If this operand is not entered, the
DTF remains unchanged.

SKIPA-number specifies the line to be skipped to after the
print operation. If this operand is not entered, the DTF
remains unchanged.

SPACEA-number specifies the number of lines to space after
the print operation. If this operand is not entered, the DTF
remains unchanged.

ERR-address supplies the address in your program where
contro! is passed if the controlled cancel option is taken in
response to a permanent 1/O error. If this operand is omit-
ted, no code is generated to check for the controllied cancel
completion code, and you should check the return code in
your program to determine the outcome of the operation.

OVFL -address specifies the address in your program that
should receive control if page overflow occurs.

Disk Device Support

This section describes the macro instructions that support
disk devices. The following functions are provided:

® Build a pre-open DTF for disk GET/PUT operations
and assign its offsets.

e Build an input/output block (IOB) for disk read/write
operations and assign its offsets.

® Build the interfaces required to get input records from a
disk device via a get or a read.

® Build the interfaces required to put output records to a
disk device via a put or a write.

® Build the interface to wait for disk completion.

The disk DTFs provide information to the disk data man-
agement, and the disk 10Bs provide information to the
input/output supervisor routines that perform the input
or output operations. These operations are provided
through the disk support macro instructions.

The I1BM 3340 Direct Access Storage Facility attaches to
System/3 Models 15B, 15C, and 15D. Also, the IBM 3344
Direct Access Storage attaches to System/3 Model 15D.

Certain areas on the 3340 and 3344 disks are treated as
5444 disks. These areas, known as simulation areas, are
used for program libraries and can also be used for data
files. These areas cannot contain multivolume or indexed
files. The remainder of the disk space, known as main
data areas, can only be used for data files.

Reference in this manual to 5444, 5445, and 3340 are to
be interpreted according to which disk storage device(s)
is attached to the system. The following table should be
used to determine the meaning of the reference:

References to D3 and D4 Q-numbers in this manual may be
replaced with D31 and D41 for 5704-SC2.

Macro Instruction Statements 35
Disk Device Support

Page of GC21-7608-2
Issued 28 March 1980
By TNL: GN21-5700

The format of the $DTFD macro instruction is:

Model 15A Model 158 and Mode! 15D
Reference Meaning 15C Meaning Meaning
5444 5444 Disk Simulation Simulation
Storage area on area on 3340
Drive 3340 or 3344
5445 5445 Disk Main data Main data
Storage area on area on 3340
3340 or 3344
3340 Not Main data Main data
applicable area on 3340 area on 3340
or 3344

For Program Number 5704-SC2, there are certain restric-

tions on where the DTFs and associated fields can be located

relative to 40K (X’'E0Q0Q’) in the user partition:

® DTFs must be located such that the entire DTF resides
at an address less than 40K for batch disk files speci-
fied as SHARE-YES and for CCP disk files.

® For the following disk access methods where SHARE-
YES is specified, the high add key and the high prime
key areas (ADKEY parameter) must be located
completely below 40K:
— Indexed output add
— Indexed random input and add
— Indexed random input, update and add

® | adisk file is specified with external buffers, then
the following must be located completely below
40K :
— The DTFs
— The index 10Bs (IO parameter)
— The master track index (MSTX parameter)

— The space for the multivolume extent tabie (10
parameter, M, and M, definitions)

Define the File for Disk ($DTFD)

The DTF provides information needed to allocate, open,
and access a file on the disk device. This macro instruction
generates the code that builds the disk DTF. See Appendix
B: Define the File Control Blocks for a description of the
pre-open and post-open disk DTFs.

36

[Name]

$DTFD | AC-code,RECL-number,NAME-filename,

BLKL-number,lO-address
[.DISK-5444/5445/3340]
[,UP-mask] [,BUFNO-1/2] [LMVF-N/Y]
[,LLIM-N/Y] [LORD-N/Y] [,BIN-N/Y]
[.CHN-address] [,RCAD-address]
[LENT-number] {,MVFN-number]

[, KEYL-number] [,KEYD-number]
[LKEY A-address] [,MVFT-address]
[,MSTX-address] [,IBLKL-number]
[,ADKEY -address] [,EOVK-address]
[.SHR-Y/N]' [LEXTBUF-Y/N]!

! These parameters are valid only for Program Number 5704-SC?2.

AC-code specifies the access method used for the file. This
operand is required. The codes and their meanings are as

follows:

Code

CA
CG
CO
Cu
DG
DO
DU
1A
10
IS
ISA
ISL
ISU
ISUA
ISUL
IR
IRA
IRU
IRUA

Access Method

Consecutive add

Consecutive get

Consecutive output

Consecutive update

Direct get

Direct output

Direct update

Indexed add

Indexed output

Indexed sequential get

Indexed sequential add

Indexed sequential input with limits
Indexed sequential update

indexed sequential update and add
Indexed sequential input update with limits
Indexed random get

Indexed random add

Indexed random update

Indexed random update and add

RECL-number specifies the decimal length of the logical
record. This operand must be specified.

NAME -file name specifies the name of the file. The name
must be eight characters or less in length. This operand
must be specified.

BLKL -number specifies the number of bytes in the putfer.

The minimum number can be determined as foliows, except

for the access methods listed on the ioliowing pages, for
which the minimum number of bytes s 756

® |f the record length is less than or vaual to 256 and

evenly divisible into 256, the puifer length is 258

@ |f the record iength is greater than 256 and a multiplte
of 256, the buffer iength is equal to th:

record fengih.

e if e record lengrh s net ev

i

1 2506 and

not a muitiple of 256, the bufler lengih < the muitiole
of 256 that is next higher than the 1ecud length plus

255,

@ |f the record tength is an odd multipie of 128, the nuffe

shouid be the record length pius 128.

Page of GC21-7608-2
Issued 29 September 1978
By TNL: GN21-5649

ote: These buffer lengths are minimum lengths. Larger
iengths may be specified, but must be in multiples of 266.

The foliowing access methods can always operate in a mini-

mum of a 258 -byte buffer:
Conseciuiive output

Consecutive add

Consecutive gutput multivolurne
Consecutive add muitivolume
Consecutive input

Consecutive input multivolume
indexed ouiput

indexed output multivolume

{O-address provides the address of the leftmost byte of an
area in main storage allocated to contain all buffers and
{0Bs tor the access method. This operand must be speci-
fiedd. Thie amount of main storage required is shown in the
tollowing chart:

T A -

B | EXTBUF-Y Formula for External Buffers on
Access Method Fuormula | (Space in 1/0O area) Option Statement
Consecutive, Direct (SR + 30 times BUFNG S8 temes BLIFNG BLKL times BUFNO
indexed Quiput 2N+ B0 times S times BUFNO + KEYL BLKL + 256 times BUFNO

D 4 Bt MV E Ty MIVE

indexed flandom input, o BLKE B0 - 02%g 3 /2 - M, where BLKL +512
Indexed Random Ingit and + My whioen A O far single volume files
Update My & ror single voiume fies Mo 84+ KEYL for muiti-

M, soiume tiles i5704-SC1)

= 112 + KEYL for muiti-

K T yolume tiles {5704-SC2)
indexed Randoim input and Zovrmoos UKL 1 00 - (258 144+ M. where 2 times BLKL +512
Add, or Indexed Random =301+ 256 times IBLK L Moo O for single voiume Diles + (256 times IBLKL]}
input, Update, and Adg 30+ M where B0 KEY L for mutn-

M- O o st vGrome ooy varame fites

Wi YL for g

vOioine fles

Indexed Add (BLKL « 300 + {288 + 301 108 BLKL + 512+ (256 times IBLKL)
{without input) + 256 nmes IBLKL - 30
Indexed Seguential Input, ELKEF 300 - 256G timies 7z BLKL + (256 times IBLKL)
or indexed Sequential IBLEKL + %4
Input and Update
Indexed Sequential 2 times {(BUXL + 30) + T4 2 times BLKL + 2 times (256
Input and Add, or 2 times {256 times 1BLK L times IBLKL)
Indexed Sequential Inuu? + 30

Update, and Add

indexed Seqguential/limits

input, Gr indexed

Sequentat/lLamits input
and Update

BLKL + 256 + 256 (BLKL)

Macro tnstruction Statements 37
sk Device Support

Page of GC21-7608-2
Issued 29 September 1978
By TNL: GN21-5649

DISK-5444/5445/3340 specifies whether the disk device is
the 5444 Disk Storage Drive, the 5445 Disk Storage, or the
3340 Direct Access Storage Facility. If this operand is not
specified, 5444 is assumed.

UP-mask specifies the mask to test the eight external
indicators. The code for the UP-mask must be specified

as 8 binary bits. For example, to test bits 0, 3, 5, and 7,
you would enter UP-10010101. The UP-mask is compared
to the external! indicators set on by the SWITCH statement
for conditionally opening files. If the bits that are on in the
UP-mask are also on in the external indicators set on by the
SWITCH statement, the file will be opened. If the UP-mask
is all zeroes or not used, the file will be unconditionally
opened.

Note: Information on setting external indicators (SWITCH
statement} can be found in the /1BM System/3 Model 15
System Control Programmming Reference Manual (for
Program Number 5704-SC1), GC21-5077, and in the /BM
System/3 Model 15 Control Programming Concepts and
Reference Manual (for Program Number 5704-SC2),
GC21-5162.

BUFNO-1/2 allows you to specify either one or two buffers
for the file. You can use two buffers only with consecutive
access methods and indexed output. All consecutive access
methods allow dual buffering except the consecutive up-

date and consecutive update multivolume. If this operand
is omitted or if SHR-Y is specified, one buffer is assumed.

MVF-N/Y specifies whether the access method is multi-
votume. If this operand is omitted, N {no) is assumed.

LIM-N/Y is specified only for indexed sequential get and
indexed sequential update. It specifies whether the sequen-
tial access is within limits. If this operand is not entered,

N {no) is assumed.

ORD-N/Y specifies whether an ordered toad is to be used
with the indexed output access method. This operand can
be specified only with the indexed output access method.
ORD-Y must be specified for indexed multivolume output
access methods. If this operand is not entered, N (no) is
assumed.

38

BIN-N/Y is specified only with the direct output, direct get,
and direct update access methods. Y (yes) indicates direct
binary relative record numbers; N (no) indicates direct deci-
mal relative record numbers. If this operand is omitted, N
is assumed.

CHN-address specifies the address of the next DTF in the
chain of DTFs. If there is no DTF chain or if this DTF is
the last DTF in the chain, this operand shouid be omitted
and X'FFFF’" assumed.

RCAD-address specifies the address of the leftmost byte of
the logical record. If this operand is not entered, X ‘0000’
is assumed. Depending on the disk access method being
used for an input operation, either move mode or locate
mode is used. |f move mode is used, the record is provided
at the address specified in the RCAD parameter. If locate
mode is used, the address of the input record is contained
at the displacement of $DFLRA in the DTF.

The specified address plus the total length of the area
must be less than logical X’EQOQ’ for files that are being
shared or for files that are being used for external buffers
(5704-SC2 only).

ENT-number specifies the number of entries in the master
track index. This operand is specified only for indexed
random or indexed add access methods.

MVFN-number indicates the number of volumes for a
multivolume direct access method. This operand must be
specified for these access methods.

KEYL-number specifies the length of the key field and
must be used for all indexed access methods, but no others.
The key field length can be no more than 29 bytes.

KEYD-number is entered for all indexed access methods.
It indicates the displacement into the record of the right-
most byte of the key field. The displacement of the first
byte in the record is zero, the second byte is one, and so on.

KEYA-address specifies one of the following and is a
required operand for these access methods -

® Main storage address of the leftmost byte of the key
field for indexed random access methods.

® Main storage address of the leftmost byte of the relative
record number field for direct access methods.

® Main storage address of the leftmost byte of the save
area for current and last keys for indexed sequential add
access methods.

® Main storage address of the leftmost byte of the save
area for high and low keys for indexed sequential with
limits access methods (LIM-Y). The specified address
plus the total length of the area must be less than logical
X'EQQQ’ for files that are being shared or for files that are
being used for external buffers (5704-SC2 only).

You must allocate the main storage space for the fields.
The amount of space required is:

® The number of bytes in the key field for indexed ran-
dom access methods.

® 23 bytes for direct access methods with decimal keys.
The decimal key is located in the rightmost 15 bytes of
the field.

® 8 bytes for direct access methods with binary keys.
The binary key is located in the rightmost 3 bytes of
the field.

® Two times the key length for indexed sequential add or
indexed sequential with limits access methods. The low
key is located in the left half of the field: the high key in
the right half.

MV FT-address must be specified for all multivolume direct
files, and only for the access methods used with these files.
This operand specifies the address of the leftmost byte of
the table of extents used for the access methods used with
these files. You must allocate main storage space for the

table. The number of bytes allocated must be equal to
seven times the number of volumes in the file. With

5704-SC2, if the multivolume file is to be shared, the
number of bytes allocated must be ten times the number
of volumes in the file. The specified address plus the total
length of the area must be less than logical X'E000” for
files that are being shared or for files that are being used
for external buffers (5704-SC2 only).

Page of GC21-7608-2
Issued 29 September 1978
By TNL: GN21-5649

MSTX-address specifies the address of the leftmost byte of
the master track index in main storage. This operand must
be specified for indexed random and indexed add access
methods. You must aliocate space in main storage for the
master track index. The tength of the masier track index is
determined by the following formulas:

® For singie volume random access methods,
Length = ENT (key length + 2}

® For multivolume random access methods,
Length = ENT (keyiength + 2)
ENT must be equal to or greater than 4.

The specified address plus the total fength of the area
must be less than logical X’"EQQQ’ for files that are being
shared or for files that are being used for external butfers
(5704-SC2 only).

IBLKL-number specifies the number of sectors in the index
buffer. This operand is used only with indexed access
methods. If this operand is not specified, one sector is
assumed. For indexed sequential access methods with both
input and add, the specified index buffer size applies to
both the input index buffer and the add index buffer. For
indexed random access methods, the specified buffer size
applies only to the add index buffer, Increasing the size of
this index buffer will increase the efficiency of processing
for a random file.

ADKEY -address specifies the address of the leftmost byte
of an area used to save the highest key in the prime index
and the highest key in the add index. The area at this ad-
dress must be equal in length to 2 times KEY1 for each vol-
ume used by the file. This operand is requirad tor indexed
add, indexed random input and add, and indexed random
input, update, and add access methods. !t is ignored it
specified with other access methods. The specified address
plus the total length of the area must be less than logicat
X’EQOOQ’ for files that are being shared or for files that are
being used for external buffers (5704-SC2 only).

EOVK-address specities the address of the leftmuost byte of
an area used to save a key if force end-of-volume is spec-
ified (by the HIKEY parameter on the FILE QCL state-
ment) for a multivolume indexed output file. The area at
this address must be equal in length tc KEYL.. This oper-
and is used only when the multivolume indexed output
access method is used and force end-of-voiurne will be usedd.
The specified address plus the total length of the area
must be less than fogical X'E00Q’ for files that are being
shared or for files that are being used for external butfers
(5704-SC2 only).

Macro Instruct:ion Statements 39

Page of GC21-7608-2
Issued 29 September 1978
By TNL GN21-5649

SHR-Y/N, applicable to Program Number 5704-SC2 only,
allows the user to specify whether or not file sharing is
permitted on the file. File sharing is permitted, when
possible, if this parameter is not used,

EXTBUF-Y/N, applicable to Program Number 5704-SC2
only, allows the user to have external buffers. If this para-
meter is not used, external buffering does not occur.

Construct a Disk Get Interface ($GETD)

The $GETD macro instruction generates the interface need-
ed to communicate with disk data management when a
record is being read from a disk file. To use this macro
instruction, construct a disk DTF for the file and use the
$DTFO macro instruction to establish the offsets tor the
DTF. You must also provide the labels for the necessary
data management routines through EXTRN statements in
your programs. The names of the data management mod-
ules and the functions of the modules are shown in Figure
1. If you will need to use the data in register 2 at a iater
time, you should save the contents of that register before
issuing the SGETD macro instruction.

The code generated by this macro instruction gives con-
trol to the data management routine; the routine completes
execution and returns control to the generated code. The
generated code tests the completion codes returned by data
management.

[Name] | $GETD [AC—codef |

[EBAC-code]$

[,DTF-address! |,ERR-address]
[,LEOF-address| [,NFR-address]
[,LSTV-address] [,NOKY -address|

AC-code or EBAC-code specifies the appropriate access
method for the file. The EBAC-code is for external but-
fering and is valid only for Program Number 5704-SC2.
One of these parameters must be specified.

The codes that must be used for the AC-code and the
EBAC-code parameters are shown in Figure 11.

40

DTF-address indicates the address of the leftmost byte of
the DTF for this file. If this operand is not specified, the
address is assumed to be in register 2.

ERR-address supplies the address in your program where
control is passed if the controlied cancel option is taken in
response to a permanent /O error. f this operand is omit-
ted, no code is generated to check for the controlled cancel
completion code.

EOF -address specifies the address in your program that
receives control when the end-of-file is detected. If this
operand is not supplied, no code is generated to check for
the end-of-file condition. You must not use this operand
with random or direct access methods.

Note: |f ERR or EOF addresses are not specified, you
should check the return code in your program to determine
the outcome of the operation.

NRF-address must be used only for random and direct
access methods. |t specifies the address in your program
that is to receive control when a no-record-found condition
occurs.

LSTV-address is used when processing a random, offline,
multivolume file. This operand supplies the address in your
program which receives control when the requested key is
too high for the final volume in a multivolume file.

NOKY -address supplies the address in your program that is
to receive control under either of the following conditions:

® The requested key is too low for the current volume
when processing an indexed random offline multivolume
file.

® The requested key is too high for any volume when
processing an indexed random online multivolume file.

This operand is not used with other access methods.

Construct a Disk Put Interface (SPUTD)

The $PUTD macro instruction generates the interface need-
ed to communicate with disk data management when put-
ting a record to disk or updating a previously retrieved
record. You must provide a DTF for the file and use the
$DTFO macro instruction to establish the offsets in the
DTF. You must also provide, through EXTRN statements
in your program, the labels of the disk data management
modules necessary to perform the output operation (see
Figure 11). If you will need to use the data in register 2 at
a later time, you should save the contents of that register
before issuing the $PUTD macro instruction.

Macro Instruction Statements 41
Disk Device Support

Page of GC21-7608-2

Issued 29 September 1978

By TNL: GN21-5649

Move/
$GETD $PUTD AC-code Locate System Moduie
5444 l 5445 Made 5444] 5445 Access Method

X CA CAB M S$CSOP I SSCFOP Consecutive Add

X CAM CAMS M $$SCSOM S$CFOM Consecutive Add Multivoiume
X CG CGH M $SCSIP SSCF P Consecutive Get
X CGM CGM5S M $TCSIM SSCFIM Consecutive Get MVF

X co CO5 M $$CSOP $$CFOP Consecutive Output

X COM COM5 M $$CSOM $SCFOM Consecutive Qutput MVF
X X cu Ccub i $SCSUP $$CFUP | Consecutive Update
X X CUM CUM5 L $$CSUM $SCFUM i Consecutive Update MVF
X DG DG5S L $$DAID SSDFID Direct Get
X DGA DGAS5 L $SDAIB $SCFIB Direct Get (Binary Keys)
X DGAM | DGAMS L SSDAIT $SDFIT Direct Get (Binary Keys) MVF
X DGM DGM5 L $SDAIM $SDF IM Direct Get MVF
X X DO D05 L $SDAUD $SDFUD 2trect Output
X X DOA DOAL L $SDAUB $SDOHFUB Direct Output (Binary Keys)
X X DOAM | DOAMS L $$SDAUT $SDFUT Direct Qutput {Binary Keys) MVF
X X DOM DOMS L $SDAUM $SDFUM Oirect Output MVF
X X DU DUb L $$DAUD $EDFUD Direct Update
X X DUA DUASB L $SDAUB $SDHFUB Direct Update {Binary Keys)
X X DUAM | DUAMS L $SDAUT $FDFUT Direct Update {(Binary Keys) MVF
X X DUM DUMS5S L $SDAUM SEDFUM Direct Update MVF

X 1A I1A5 M $SIOAD $SIFAD Indexed Add

X 1AM IAMbS M $SI0AM $SiFAM Indexed Add MVF

X 10 105 M $$I0UT SSIFUT Indexed Qutput

X I0M IOM5 M $SIOUM SSIFLM Indexed Qutput MV F
X IR IR5 L ESIRIP SIiGIP indexed Random Input
X X iIRA IRAS L $SIRAD SSIGAD i indexed Random Add
X X IRAM IRAMb L $SIRAM SSIGAM indexed Random Add MVF
X X IRBM IRBM5S L $SIRBM $EIGBM indexed Random Update & Add MVF
X iRM IRM5 L $SHRIM SSIGIM indexed Random Input MVF
X X IRU IURS L $SIRUP $SIGUP indexed Random Update
X X IRUA IRUAS L SSIRUA $SICGUA indexed Random Update & Add
X X IRUM IRUM5 L $SIRUM SHIGUM indexed Random Update MVF
X 1S 1S5 M $SISIP SEIHIP s indexed Sequential Input
X X ISA ISAS M $SISAD SBIHAL ! indexed Sequential Add
X X ISAM i ISAMS M $SISAM SSIHAM | Indexed Sequential Add MVF
X X ISBM | ISMB5 M $31SBM SEIHBM 1ndexed Sequential Update & Add MVF
X ISL ISLS M $BISIL ERSISIEN tedexed Sequential tnput Within Limits
X ISM ISM5 M $HISHM SBISHIM indexed Seqguential Input MVF
X X ISU 1ISUS L $SISUP SEIHUP indexed Sequential Update
X X tSUL ISULS L $SISUL SHiHUL Indexed Sequential Update Within Limits
X X 1ISUM ISUMb L $SISUM $3IHUM | indexed Sequential Update MVF
X X ISUA ISUAS M $SISUA $$IHUA | indexed Sequential Update & Add
X ISLM ISLM5 M $3iSIB $$iHIB E Indexed Seqguential Input Within Limits MVF
X X ISUB 1SUBSH M $SISUB $$I1HUB | Indexed Seguential Update Within Limits MVF
X ISC ISC5 M $3I1SIC S$IHIC i indexed Sequential Input Within Changeabie Limits
X ISCM ISCM5 M $SISID $S14ID | Indexed Sequential Input Within Changeable Limits MVF
X X ISUC ISUCH M $$iSUC SSHHUC 1 indexed Sequentiai Update Within Changeable Limits
X X ISUD ISUD5 M $$ISUD $$1HUD 1 indexed Sequential Update Within Changeable Limits MVF

Figure 11 (Part 1 of 2}. Disk Data Management Modules Without External Buffering

42

Page of GC21-7608-2
Issued 29 September 1978
By TNL: GN21-5649

Move/
$GETD $PUTD AC-code Locate System Module
5444 5445 Mode 5444 5445 Access Method

X CA CA5 M $EWSOP $SWFOP Consecutive Add

X CAM CAMS M SIWSOM SIWFOM Consecutive Add Multivelume
X CG CG5 M $EWSIP SSWFIP Consecutive Get
X CGM CGMS5 M SSWSIM SSWFIM Consecutive Get MVF

X CcO (0] M $SWSOP $SWFOP Consecutive Output

X COM COM5 M $EWSOM SSWFOM Consecutive Output MVF
X X CcuU Cus M TEWSUP SSWFUP Consecutive Update
X X CUM CUM5 M SEWSUM SSWFUM Consecutive Update MV F
X DG DG5 M $SYAID $SYFID Direct Get
X DGA DGASB M SEYAIB $$YFIB Direct Get (Binary Keys)
X DGAM DGAMS M $SY AT SEYFIT Direct Get (Binary Keys) MVF
X DGM DGM5 M SEY AIM $EYFIM Direct Get MVF
X X DO DOS M $SYAUD $SYFUD Direct Qutput
X X DOA DOAS M $SYAUB $SYFUR Direct Qutput (Binary Keys)
X X DOAM | DOAMS M $SYAUT $SSYFUT Direct Output (Binary Keys) MVF
X X DOM DOM5 M $EY AUM $SYFUM Direct Qutput MVF
X X DU DU5S M $SYAUD $EYFUD Direct Update
X X DUA DUAS M $SYAUB $SYFUB Direct Update {Binary Keys}
X X DUAM | DUAMS M $SYAUT $SYFUT Direct Update (Binary Keys) MVF
X X DUM DUM5 M $EY AUM $EYFUM Direct Update MVF

X 1A IAD M $EXOAD $EXFAD Indexed Add

X 1AM 1AMS M $IXOAM SEXFAM indexed Add MVF

X 10 105 M SSX0OUT SEXFUT Indexed Output

X 10M 10M5 M SEXOUM $EXFUM Indexed Qutput MVF
X IR IR5 M $SXRIP $EXGIP Indexed Random Input
X X IRA IRAD M SEXRAD $$XGAD Indexed Random Add
X X IRAM IRAM5S M ISXRAM SEXGAM Indexed Random Add MVF
X X IRBM IRBM5 M $EXRBM $EXGBM Indexed Random Update & Add MV ¥
X IRM IRM5 M SSXRIM $EXGIM Indexed Random Input MVF
X X IRU IURS M $SXRUP $EXGUP Indexed Random Update
X X IRUA IRUAB M $EXRUA $SXGUA Indexed Random Update & Add
X X IRUM IRUMS M $EXRUM SIXGUM Indexed Random Update MVF
X 1S 1S5 M $SXSIP $EXHIP indexed Sequential Input
X X ISA ISAS M $EXSAD $EXHAD Indexed Sequential Add
X X ISAM ISAMS M $SXSAM $EXHAM Indexed Sequential Add MVF
X X ISBM ISMB5 M $EXSBM $SXHBM Indexed Sequential Update & Add MVF
X ISL ISLS M $SXSiL $SXHIL Indexed Sequential Input Within Limits
X ISM ISM5 M $SXSIM $EXSHIM Indexed Sequential Input MVF
X X ISU 1ISUS M $SXSUP $ESXHUP indexed Sequential Update
X X ISUL ISULS M $SXSUL $SXHUL Indexed Sequential Update Within Limits
X X ISUM ISUMS M FSXSUM SEXHUM Indexed Sequential Update MVF
X X ISUA ISUAS M $SXSUA SEXHUA indexed Sequential Update & Add
X ISLM ISI.M5 M $SXSIB SEXHIB Indexed Sequential Input Within Limits MVF
X X 1SUB ISUBS M $$XSUB $SXHUB Indexed Sequential Update Within Limits MVF
X I1SC 1SC5 M $$XSIC $SXHIC indexed Sequential Input Within Changeable Limits
X ISCM ISCM5 M $SXSID $EXHID Indexed Sequential input Within Changeable Limits MVF
X X ISUC ISUC5S M $SXSUC $EXHUC indexed Sequential Update Within Changeable Limits
X X ISUD ISUDbB M $SXSUD SEXHUD Indexed Seguential Update Within Changeable Limits MVF

Figure 11 (Part 2 of 2). Disk Data Management Modules With External Buffering (6704-SC2 only}

Macro Instruction Statements 435

Page of GC21-7608-2
Issued 29 September 1978
By TNL: GN21-5649

The code generated by this macro instruction gives control
to the data management routine; the routine completes
execution and returns control to the generated code. Com-
pletion codes are tested and control is returned to your
program.

The format of the $PUTD macro instruction is:

{Name] | $PUTD [AC<code]

B[EBAC-code] E
[,DTF-address] [,ERR-address]
[.EOX-address] [,DUP-address]
[. SERR-address] [,KERR-address]
[LUPD-Y/N] [,LSTV-address]
[,NOKY -address] [,HKER-address]

AC-code or EBAC-code specifies the appropriate access
method for the file. The EBAC-code is for external buf-
fering and is valid only for Program Number 5704-SC2.
One of these parameters must be specified.

The codes that must be used for the AC-code and the
EBAC-code parameters are shown in Figure 11.

44

DTF-address specifies the address of the DTF associated
with this file. If this operand is not specified, the address
is assumed to be in register 2.

ERR-address supplies the address in your program where
control is passed if the controlled cancel option is taken in
response to a permanent 1/0 error. If this operand is omit-
ted, no code is generated to check for the controlled cancel
completion code.

EOX-address supplies the address in your program that is to
receive control when an end of extent is reached during the
operation. This operand is entered only when creating a
consecutive or indexed file or when records are to be added
to the file.

DUP-address provides the address in your program that is to
receive control when an attempt to add a duplicate record
has occurred. This operand is used only with an add access
method.

SERR-address is the address in your program where control
is passed in the event of a sequence error while loading an
indexed file.

KERR-address specifies the address of your routine to be
called when an attempt has been made to update a record
in an indexed file and the attempt would destroy the
record key.

UPD-Y/N indicates whether an update is to be performed.
If this operand is not entered, N (no) is assumed.

LSTV-address specifies the address in your program that
receives control when a requested key is too high for the
last specified volume. This operand is used only when

processing an indexed, random, offline, multivolume file.

NOKY -address supplies the address in your program that is
to receive control under either of the following conditions:

® The requested key is too low for the current volume
when processing an indexed, random, offline, multi-
volume file.

® The requested key is too high for any volume when
processing an indexed random online multivolume file.

This operand is not used with other access methods.

HKER-address specifies the address in your program that is
to receive control when an indexed sequential add multi-
volume is attempted and the requested key is higher than
any key presently in the file, but lower than the highest
permissible key.

Input/Output Block for Disk ($10BD)

This macro instruction generates a disk input/output block
(10B) for use by the disk input/output supervisor. A 30-
byte 10B is generated for 5444, 5445, and 3340 disk
devices. For a detailed description of the disk 10B, see
Appendix C: Disk Input/Output Block.

The format of the $10BD macro instruction is:

[Name] | $10BD | [DISK-5444/5445/3340] [,CYL-number]
[,SCTR-number} [,HEAD-number]
[,NUM-number] [,BUFF-address]
[,Q-number] [,ERREC-10S/USER]

[.LOG-Y/N] [, VER-Y/N] [,CHN-address]

Page of GC21-7608-2
Issued 28 March 1980
By TNL: GN21-5700

DISK-5444/5445/3340 specifies whether the disk device
being used is the 5444 Disk Storage Drive Model 1, 5445
Disk Storage, or the 3340 Direct Access Storage Facility. If
a device is not specified, 5444 Disk Storage Drive Model 1
is assumed.

CYCL-number indicates the beginning cylinder to be
accessed. You can specify the cylinder by a decimal num-
ber (0-199) or a hexadecimal number (X'00-X'C7’). If this
operand is not entered, X‘FF’ is assumed. You must then
insert the correct number into the 10B before performing
the input/output operation. This can be done through the
macro used to initiate the 1/0 operation.

SCTR-number specifies the first sector to be accessed. The
number specified must be a decimal from 1 through 48 for
the 5444 disk drive, from 1 through 20 for the 5445 disk
storage, or from 1 to 48 for the 3340 disk drive. If this
operand is not entered, X‘FF’is assumed. You must then
insert the correct number before performing the input/
output operation. You can specify the sector through the
$RDD and $WRTD macro instructions.

HEAD-number is specified only for the 5445 or 3340 disk
storage drives. It specifies the head to be used with the
cylinder and sector when an /O operation is performed.
The number specified may be decimal {0-19) or hexa-
decimal (X'00°-X"13’). If this operand is omitted, X'FF’
is assumed and the value must be updated when the {/0
operation is performed.

NUM-number specifies the number of sectors used. You
may specify the number in either decimal or hexadecimal
form. If this operand is not entered, one sector is assumed.

BUFF-address is the address of the leftmost by te of your
data area. If this operand is omitted, X'FFFF’ is assumed,
and you must update the 10B before performing the input/
output operation.

Q-number specifies the drive on which the record is located.

"You may specify the disk drive alone F1, R1, F2, R2, D1,

D2, D3/D31, D32, D33, D34, D4/D41, D42, D43, and D44
or you may specify the hexadecimal Q-code in the form
Q-X‘nn’, where nn is a valid hexadecimal Q-code. The
valid Q-codes are shown in Figure 12. If you specify

only the disk drive, you must set the reac' /write bits (the
last four bits of the Q-code) before you can perform

the 1/0 operation. This can be done through the $RDD

or $WRTD macro instructions.

’

Note: D31, D32, D33, D34, D41, D42, D43, and D44
are for 5704-SC2 only.

Macro Instruction Statements 45
Disk Device Support

Figure 12. Q-Byte Hexadecimal Settings!

ERREC-/I0OS/USER indicates whether the input/output
supervisor is to handle error recovery. If you specify 10S,
the supervisor handles error recovery and retries the opera-
tion when errors occur. If you specify USER, the supervisor
does not retry the operation and returns control to you. If
this operand is not specified, 10S is assumed.

LOG-Y/N indicates whether the 1/O supervisor is to log
errors that oceur during the operation. If you specify Y
{yes), error conditions are logged on the system pack. This
information is used by IBM customer engineers. N (noj
indicates no logging is to be done for this IOB. If this oper-
and is not entered, Y is assumed.

VER-Y/N is used for output operations. Y {yes) indicates
the written data should be verified; N (no) indicates it
should not. [f this operand is omitted, Y is assumed.

CHN-address specifies the address of the leftmost byte of
the next IOB for the operation if more than one IOB is
required.

! Figure 12 applies only to 5704-SC1. For 5704-SC2, you can
specify only the disk drive (F1, R1, etc.) with the Q parameter,
and read/write bits are set with $RDD or SWRTD.

46

Input/Output Block Offsets ($10ED)

1/0 Q-Byte Setting (Hex)
Operati Drive 1 i i i . . .

peration rve Drive 2 | Drive 3 | Drive 4 This macro instruction generates equates to establish labels

for the disk 10Bs. These labels are offsets from the begin-
5444 R i .
emovable Disk ning of the 10B and are used as displacements from the be-
Control A0 BO — -- ginning of the 10B when you wish to refer to one of the
Re_ad A1l B1 — — fields. The labels generated by this macro instruction are
Write A2 B2 — — given with the fields of the OB in Appendix C: Disk
Scan A3 B3 -~ — Input/Output Block. To avoid duplicate labels, you should
5444 Fixed Disk use this macro instruction only once in a program.
Control A8 B8 — —
h i ion is:
Road A9 59 — — The format of the $IOED macro instruction is:
Write AA | BA — . L | $I0ED
Scan AB BB - -
5445 Disk

Control Co C8 DO D8 Read from Disk ($RDD)
Read C1 C9 D1 D9
Write C2 CA D2 DA This macro instruction generates an interface to the disk
Scan C3 CB D3 DB input/output supervisor that is to read from the disk device,

When using this macro instruction, you must:

® Provide an IOB and use the $IOED macro instruction
to establish the offsets in the 10B.

® Wait for the completion of the input operation {using
SWAIT).

® Check for end of extent when the record is received —
completion code of X‘70" ($CPEOX) at SDFCMP in the
DTF.

If both reading and writing for a program are to be per-
formed using a single 10B, the bits of the Q-byte are altered
to indicate an invalid operation. In this case, you must set
off the bits of the Q-byte for all but the first read (or write)
operation in the program.

If you will need to use the data in register 1 at a later time,
you should save the contents of that register before issuing

the SRDD macro instruction.

The format of the SRDD macro instruction is:

10B-address,CS-address, NSECT-number
[,DISK-5444/5445/3340]

[Namel| $RDD

10B-address provides the address of the leftmost byte of
the OB which you created through your $10BD macro
instruction. The label provided must be the same as the
name specified on your $10BD macro instruction,

CS-address is the address of the rightmost byte of the main
storage area containing the disk cylinder/sector address of
the area you want to read. The cylinder/sector address for
use with the 5444 is a two-byte, hexadecimal number. The
first byte specifies the cylinder; the second specifies the
sector. For use with the 5445, or 3340, a three-byte hexa-
decimal disk address is provided through this entry. The
first byte specifies the cylinder; the second, the head
number; the third, the sector.

NSECT-number indicates the hexadecimal number of sectors,
minus one, to be read in this operation.

DISK-5444/5445/3340 specifies whether the operation is
on a 5444, a 5445, or a 3340 disk drive. If this operand is
omitted, 5444 is assumed.

Write to Disk (SWRTD)

This macro instruction generates an interface to the disk
input/output supervisor needed to write records to disk.
When you use this macro instruction, you must:

® Provide an |OB, and use the $IOED macro instruction to
establish the offsets in the 1OB.

® Wait for the completion of the output operation (using
SWAIT).

If both reading and writing for a program are to be
performed using a single 10B, the bits of the Q-byte are
altered to indicate an invalid operation. In this case, you
must set off the bits of the Q-byte for all but the first read
{or write) operation in the program.

If you will need to use the data in register 1 at a later time,
you should save the contents of that register before issuing

the macro instruction.

The format of the SWRTD macro instruction is:

SWRTD| 10B-address,CS-address,NSECT-number
[,DISK-5444/5445/3340]

[Name]

Page of GC21-7608-2

Issued 28 March 1980

By TNL: GN21-5700
/0B-address provides the address of the disk OB for this
operation. The address is the name specified on the related
$10BD macro instruction.

CS-address is the address of the rightmost byte of the main
storage area containing the disk cylinder/sector address of
the area to which you want to write. The cylinder/sector
address for use with the 5444 is a two-byte hexadecimal
number. The first byte specifies the cylinder; the second
specifies the sector. For use with the 5445 or the 3340,

a three-byte hexadecimal disk address is provided through
this entry. The first byte specifies the cylinder; the second
the head number; the third, the sector.

NSECT-number specifies the hexadecimal number of disk
sectors, minus one, to be written.

DISK-5444/5445/3340 specifies whether the operation is
on a 5444, a 5445, or a 3340 disk drive. If this operand is
omitted, 5444 is assumed.

Wait for Disk 10S Completion ($WAIT)

This macro instruction is used with the $RDD and $WRTD
macro instructions. lt generates the code that allows you

to wait for completion of the disk 10S operation. You pro-
vide the label of the associated I0OB and an address to receive
control in the event of an error.

If you will need to use the data in register 1 at a later time,
you should save the contents of that register before issuing

the SWAIT macro instruction.

The format of the SWAIT macro instruction is:

SWAIT [[10B-label] [,ERR-address]

I[Name]

/OB-label is the name assigned to the 10B in the $10BD
macro instruction. This same |0OB must have previously
been specified in either a $RDD or $WRTD macro instruc-
tion. If this operand is not entered, the address is assumed
to be in register 1.

ERR-address specifies the address of the routine in your
program that handles errors detected in the operation. If
this operand is not entered, no error checking is performed,
and you should check the return code in your program to
determine the outcome of the operation.

Macro Instruction Statements 47
Disk Device Support

3741 Device Support

This section describes the macro instructions that support
the directly attached 3741 Data Station Model 1 or 2 or
Programmable Work Station Model 3 or 4. The following
functions are provided:

® Build a pre-open DTF and assign its offsets.

® Build the interface required to read input records from
the 3741 device via a GET.

® Build the interface required to write output records to
the 3741 device via a PUT.

The DTFs provide information to the data management
routines that perform the input/output operations. The
interfaces to these operations are provided through the
3741 macro instructions.

Define the File for 3741 ($DTFK)
The DTF provides information needed to allocate, open,
and access a file on the 3741. This macro generates the

DTF for this purpose.

The format of the SDTFK macro instruction is:

[Namel | $DTFK | NAME-filename,RECL-number,!O-address
[LAC-1/0] [,RCAD-address] [,BUFNO;l/Z]
[,CHN-address] [,UP-mask]

NAME-filename specifies the name of the file. The name
must be eight characters or less in length. This operand
must be specified.

RECL-number specifies the decimal length (from 1 to 128)
of the logical record. This operand must be specified.

/0-address provides the address of the leftmost byte of an
area in main storage that contains the buffers and the 10B.
This operand must be specified. The amount of storage
must be the record length plus 26 times the BUFNO.

AC-1/0 specifies whether the DTF is input or output. If
this operand is not specified, input is assumed.

RCAD-address specifies the address of the leftmost byte
of the logical record. If this operand is not entered,
X'FFFF'is assumed.

48

BUFNO-1/2 allows you to specify either one or two buf-
fers. If this operand is omitted, one buffer is assumed.

CHN-address indicates the address of the next DTF in the
chain of DTFs. If there is no DTF chain, the operand is
omitted and X'FFFF' is assumed.

UP-mask specifies the mask to test the eight external
indicators. The code for the UP-mask must be specified

as 8 binary bits. For example, to test bits 0, 3, 5, and 7,
you would enter UP-10010101. The UP-mask is compared
to the external indicators set on by the SWITCH statement
for conditionally opening files. If the bits that are on in the
UP-mask are also on in the external indicators set on by the
SWITCH statement, the file will be opened. If the UP-mask
is all zeroes or not used, the file will be unconditionally
opened.

Note: Information on setting external indicators (SWITCH
statement) can be found in the /BM System /3 Model 15
System Control Programming Reference Manual (for
Program Number 5704-SC1), GC21-5077, and /BM
System/3 Model 15 System Control Programming Concepts
and Reference Manual {for Program Number 5704-SC2),
GC21-5162.

Construct 3741 Get Interface ($GETK)

The SGETK macro instruction generates the interface need-
ed to communicate with the 3741 data management when a
record is being read from the 3741. To use this macro
instruction, construct a 3741 DTF for the file and use the
$DTFO macro instruction to establish the offsets for the
DTF. You must also provide an EXTRN statement with
the label $$CPIP to use this macro. If you will need to

use the data in register 2 at a later time, you should save
the contents of that register before issuing the $GETK
macro instruction.

The code generated by this macro instruction gives control
to the data management routine. The data management
routine completes execution and returns control to the
generated code.

The format of the $§GETK macro instruction is:

[inamel] $GETK | EOF-address [,DTF-address] [.ERR-address}|

EOF-address specifies the address in your program that
receives control when the end of file is detected. This
operand must be specified.

DTF-address indicates the address of the leftmost byte of
the DTF for this file. If this operand is not specified, the
address is assumed to be in register 2.

ERR-address supplies the address in your program where
control is passed if the controlled cancel option is taken in
response to a permanent 1/0 error. {f this operand is
omitted, no code is generated to check for the controlled
cancel completion code.

Construct 3741 Put Interface ($PUTK)

The $PUTK macro instruction generates the interface needed
to put a record on the 3741. You must provide a DTF for
the file and use the $DTFO macro instruction to establish
the offsets in the DTF. You must also provide an EXTRN
statement in your program with the label $$CPOP to use
this macro. If you will need to use the data in register 2

at a later time, you should save the contents of that register
before issuing the $PUTK macro instruction.

The code generated by this macro instruction gives control
to the data management routine. The data management
routine completes execution and returns control to the
generated code.

The format of the $PUTK macro instruction is-

I[Name]l $PUTK| [DTF-address] [,ERR-address]

DTF-address indicates the address of the leftmost byte of
the DTF for this file. If this operand is not specified, the
address is assumed to be in register 2.

ERR-address supplies the address in your program where
control is passed if the controlled cancel option is taken in
response to a permanent /O error. If this operand is
omitted, no code is generated to check for the controlled
cancel completion code.

Tape Device Support

This section describes the macro instructions that support
the IBM 3410/3411 Magnetic Tape Subsystem. The follow-
ing functions are provided:

® Build a pre-open DTF for tape and assign its offsets.

® Build the interfaces required to read input records from
a tape device via a get or a read.

® Build the interfaces required to write output records to
a tape device via a put or a write.

® Build the interface required to issue tape control
commands.

® Wait for completion of read, write, or tape control
operations,

The tape DTFs provide information to the tape data man-
agement routines that perform the input/output operations.
These operations are provided through the tape support
macro instructions.

Define the File for Tape ($DTFT)

The DTF provides information needed to allocate and open
a tape device. This macro instruction generates the code
that builds the tape DTF. See Appendix B: Define the
File Control Blocks for a description of the pre-open and
post-open DTFs.

The format of the $DTFT macro instruction is:

[Name] | $DTFT | NAME-filename,|O-address,BLK L-number,

RECL-number [,UP-mask] [,AC-IN/QUT]
[.CHN-address] [,BASIC-Y/N]
[,RCAD-address] [MODE-LOCATE/MOVE]
[,LMBUFF-Y/N] [, RECFM-code]

[,LIOA-number] [.SPAN-Y/N] [,CODE-A/E]

[,OSET-B/number] [,END-code] LMVF-Y/N}

NAME-filename is a required operand specifying the name
of the tape file. The filename can be up to eight characters
in length and must be the same as the name of the // FILE
statement.

Macro Instruction Statements 49

10-address specifies the address of the leftmost byte of the
main storage area used to contain all buffers and 10Bs. This
operand is required. The length of the area specified by
this address is specified in the LIOA operand.

Note: If basic data management routines are used to
process the file, this operand should point to a 40-byte area
to contain the tape 10B.

BLKL-number is a required operand that specifies the deci-
mal block length for the file. The minimum block length
allowed is 18 bytes. if a shorter length is specified, 18 is
assumed. For files with fixed-length records, the block
length must be a multiple of the record length; for files with
variable-length records, the block length must equal the
length of the longest record plus eight.

Note: If basic tape data management is used, the block
length in the DTF ($DFBKL) must be updated after the file
is opened and before any read or write operation is per-
formed. The field must also be updated before any subse-
quent read or write if the length used is different than the
previous read or write.

RECL-number is a decimal value specifying the length of a
logical record in the file. If variable-length records are used
for the file, the record length specified must be equal to the
longest record plus four. The minimum record length when
variable-length records are used is four, which results in
zero-length records. The minimum record length for files
using fixed-length records is 18. This operand is required.

UP-mask specifies the mask to test the eight external
indicators. The code for the UP-mask must be specified

as 8 binary bits. For example, to test bits 0, 3, 5, and 7,
you would enter UP-10010101. The UP-mask is compared
to the external indicators set on by the SWITCH statement
for conditionally opening files. If the bits that are on in
the UP-mask are also on in the external indicators set on by
the SWITCH statement, the file will be opened. If the
UP-mask is all zeroes or not used, the file will be uncondi-
tionally opened.

Note: Information on setting external indicators (SWITCH
statement) can be found in the /1BM System /3 Model 15
System Control Programming Reference Manual for Pro-
gram Number 5704-SC1, GC21-5077, and /BM

System/3 Model 15 System Control Programming Con-
cepts and Reference Manual for Program Number 5704-
SC2, GC21-5162.

50

AC-IN/OUT specifies the type of file. IN specifies an input
file; OUT, an output file. If this operand is not entered, IN
(input) is assumed.

Note: The operation code in the Tape DTF will be initial-
ized according to the entries specified (or defaults) of the
AC and BASIC operands, as follows:

AC-IN AC-OUT
BASIC-Y Read forward Write
BASIC-N Get Put

CHN-address specifies the address of the next DTF in the
chain of DTFs. If there is no DTF chain or if this DTF is
the last DTF in the chain, this operand should be omitted
and X'FFFF’ assumed.

BASIC-Y /N specifies whether this DTF uses the basic access
method. If this operand is not entered, N (no) is assumed.

Notes:

1. BASIC-Y must be specified if any of the following macro
instructions are used to process the file: $RDT, SWRTT,
SCTLT or $WTT.

2. 1f you process ASCII files using the basic access method,
you must translate the characters in your program.

3. Multivolume files are supported with the hasic access
method, but the EXTRN statement that is provided
must be $$BTMM for multivolume support. $$BTAM
and $$BTMM should not be used in the same program.
$$BTMM supports both single and multivolume files.

4. Deferred open is not allowed with the basic access
method.

RCAD-address specifies the symbolic record area address.
This operand is required for all operations using the basic
access method. If standard data management is used, this
operand is required for an output operation and for an
input operation using move mode.

MODE-L OCATE/MOVE indicates whether the locate mode
or move maode is used. If this operand is not specified,
MOVE is assumed. When locate mode is specified, the record
address (RCAD-address) is set to the address of the record

in the buffer. When move mode is used, records are moved
from the buffer to the ocation specified by the record
address.

Locate mode is valid anly for input files. Thic operand

should not be used if BASIC Y is specifiad

RECFM-cede specifies the record format used for the file.
The codes and their meanings are:

Code Record Format

f Fixed, EBCDIC or ASCH

FR Fixed blocked, EBCDIC or ASCI!
v Variable, EBCDIC

vB Variable blocked, EBCDIC

D Variable, ASCH!

DB Variable blocked, ASCII

If this operand is not specified, F is assurned,

MBUFF-Y/N indicates whether more than one huffer is
used. [f this operand is not specified, N (no) is assumed.
The number of buffers is determined by the length of the
1/0 area, specified by the LIOA operand. This opetand
should not be used if BASIC-Y is sperifiad.

LIOA-number is the total decimal length of the 1/0Q area if
more than two buffers are required (MBUFF-Y). If the
number specified is zero or if this entry is omitied, two
buffers are allocated in the 1/O area. If this entiy is not
zero, as many buffers as possible are allocated in the |/0
area.

The following formula can be used to determine the length
of the 1/0 area:

Length of the |/O area = (40 + block length) times
(number of buffers)

This operand should not be used if BASIC-Y is specified.

SPAN-Y/N specifies whether spanned records are used. |1
spanned records are used, BASIC-Y must also he specifiad.
If this operand is omitted, N (no} is assumed. Specifying
SPAN-Y causes the spanned record hit in the tape latel to
be set on. When you use SPAN-Y, you must span the rec-
ords from block to block.

CODE-A/E specities whether the file is an EBCUHIC file o
ASCII file. 1f the file is an EBCDIC file, specity CODE-E,

If the file is an ASCII fite or can be either ASCII or EBCDIC,
specify CODE-A. If this operand is not entered, £ i
assumed.

OSET-B/number specifies the buffer oifset of an ASCH
block. B indicates that the first four bytes of the block con
tain the decimal block length and no bufter atises i pres
ent. Bis valid only when RECFM-D or RECIM DB is also
specified. Only OSET-B or OSET-00 are valid for output
files. OSET-numbei specifies, in deciinal, the length of the
buffer offset for the ASCII block. This buffer offset is
skipped over when the record is supplied 1o your prograns.
The maximum valid specification is OSET 99
and is not specified, zero is assumed.

fthis oper-

Macro Instruction Stoteiments 51

END-code specifies the tape control actions to be taken
when the file is closed. The valid codes and their meanings
are:

Code Action
REWIND

UNLOAD
LEAVE

Rewind the tape
Rewind and unload the tape
No action taken

If this operand is not entered, REWIND is assumed.

MVF-Y/N specifies whether this file has multivolume tape
output. If this operand is not specified, Y {yes) is assumed.

Construct a Tape Get Interface ($GETT)

The $GETT macro instruction generates the interface
required to communicate with tape data management when
a record is being read from a tape file. To use this instruc-
tion, you must construct a tape DTF for the file and use
112 $DTFO macro instruction to establish the offsets in the
DTF.

If you will need to use the data in register 2 at a later time,
you should save the contents of that register before issuing
the $GETT macro instruction.

You must also provide the labels for the necessary data
management routines through EXTRN statements in your
program. The names and functions of the data management
routines are shown in Figure 13,

Module

Name Type of File Being Processed

$$CSIT EBCDIC fixed input

$$CSOT | EBCDIC fixed output

$SCSIA EBCDIC or ASCII fixed input

S$CSOA | EBCDIC or ASCI! fixed output

$$CSTI EBCDIC fixed or variable input

$8CSTO | EBCDIC fixed or variable output

$$CSAI EBCDIC or ASCII fixed or variable input
$8CSAO | EBCDIC or ASCII fixed or variable output

Figure 13. Tape Data Management Modules

52

The code generated by this macro instruction gives control
to the data management routine; the routine completes
execution and returns control to the gererated code. |If the
ERR or EOF operand is specified, the generated cade tests
the completion code returned hy data management and
branches to your routine. If reading variable fength records,
tape data management returns the length of the record at
label $DFCRL in the DTF.

The format of the $GETT rnacro instruction is:

[Name] | $GETT | MODULE-name],DTF-address]
[.RCAD-address] [,OPC-Y/N]
[.ERR-address] {,EOF-address]

MODULE-name is a required operand that specifies the
module name of the tape data management subroutine.
Following are the module names used and the types of files
they will process:

$$CSIT EBCDIC fixed input

$$CSIA EBCDIC or ASCII fixed input

$$CSTI EBCDIC (fixed or variable) input

$$CSAI EBCDIC or ASCII (fixed or variable) input

An EXTRN must be provided for the module name that is
used.

DTF-address indicates the address of the leftmost byie of
the DTF for this tile. If this operand is not specified, the
address is assumed to be in register 2.

RCAD-address specifies the address of the leftmost byte of
the logical record area. If this operand is not entered, the
address of the record area is assurned to be in the DTF at
SDFLRA.

OPC-Y /N specifies whether to generate the code to set the
operation code. If this operand is not entered, N (no) is
assumed, and the operation code is not modified.

ERR-address supplies the address in your program where
control is passed if the controlled cancel option is taken in
response to a permanent |/O error. If this operand is omit-
ted, no code is generated to check for the controlled cancel
completion code.

EOF-address specifies the address in your program that
receives control when the end-of-file is detected. If this
operand is not supplied, no code is generated to check for
the end-of-file condition.

Note: 1f ERR or EOF addresses are not specified, you
should check the return code in your program to determine
the outcome of the operation

Construct a Tape Put Interface (SPUTT)

This macro instruction generates the interface needed to
communicate with 1ape data Mmanagement when writing a
record to tape. You must provide a DTF for the file and
use the $DTFO macro instruction to establish the offsets
in the DTF. You must afso provide, through EXTRN
statements in your program, the labels of the tape data
management modules necessary to perform the output
operation (see Figure 13).

If you will need to use the data in register 2 at a later time,
you should save the contents of that register before issuing
the SPUTT macro instruction.

The code generated by this macro instruction gives control
to the data management routine. The routine completes
execution and returns control to the generated code. If
the ERR operand is specified, the generated code checks
the completion code for errors and branches to your error
routine if errors occurred.

The format of the SPUTT macro instruction is:

[Name]| $PUTT | MODULE-name [,DTF-address]
[,RCAD-address] [,OPC-Y/N]

[LLENAD-address] [,ERR-address]

MODULE-name, is a required operand, and specifies the
name of the tape data management subroutine to be used.

Following are the module names used and the type of.
files they will process:

$$CSOT EBCDIC fixed output

$$CSOA EBCDIC or ASCII fixed output

$8CSTO EBCDIC fixed or variable output

$$CSAD EBCDIC or ASCI| fixed or variable output

DTF-address specifies the address of the leftmost byte of
the DTF for the file. If this operand is not specified, the
address is assumed to be in register 2.

LENAD-address specifies the address of the rightmost byte
of a two-byte area which contains the length of the current
record. This operand is used only for variable files. If this
operand is not specified, the length of the record is
assumed to be in the DTF at $DFCRL.

RCAD-address specifies the address of the leftmost byte of
the record to be put. If this operand is not entered, the
record address is assumed to be in the DTF at label $DFLRA.

OPC-Y/N specifies whether to generate the code to set the
operation code. If this operand is not entered, N (no) is
assumed, and the operation code is not modified in the
DTF.

ERR-address specifies the address in your program where
control should be passed if a permanent 1/0 error occurs.
If this operand is not entered, no permanent 1/0 error
checking code is generated and you should check the
return code in your program to determine the outcome of
the operation.

Read from Tape ($RDT)

This macro instruction generates an interface to basic tape
data management to read from a tape device. When using
this macro instruction, you must:

® Provide a tape DTF and use $DTFO to establish the
offsets in the DTF.

® Wait for completion of the input operation and che:k
for end-of-file by using the $WTT macro instruction.

® Provide EXTRN statements in your program for thrie
basic tape data management module ($$BTAM or
$$BTMM) and for the entry point to the read routine
in that module (DMBTRW).

If you will need to use the data in register 2 at a later time,
you should save the contents of that register before issuing
the $RDT macro instruction. The generated code for this

macro instruction uses register 2.

The code generated by this macro instruction branches to
basic tape data management to begin the read operation.

Macro Instruction Statements 53

The format of the $RDT macro instruction is:

[Name] | SKRDT

[DTF address] [,RCAD-address]
| DIRECT-FORW/BACK |

DTF -address specities the address of the leftmost byte of
the DTF for the file. If this operand is not entered, the
address is assumead to be in register 2.

RCAD-address specities the address of the leftmost byte of
the record area. 1f this uperand is not specified, the address
is assurned to be in the DTF at $DFLRA.

DIRECT FORW or BACK specifies the direction of the
read and catses the operation code in the DTF to be set
(see AC operand of SDTFT). 1 this operand is not
entered, thie operation code is unchanged.

Write to Tape (SWRTT)
This macy o mshuction generates the intertace to basic tape
data toanagoment needed to write records 1o tape. When

Y OuU s this macio instruction, you must:

® Provide o DTF for the file and use the $DTFO macro
mstyuciion o, astablish the offsets in the DTF.

' Wait tor the completion of the 1/0 operation by using
ST acro mstruction.

&

wide X7 RN statements in your program for the

basic tay+ data management module ($$BTAM or
SEBTMM] and fo: the entry point to the write routine
st module (DMBTRW).

ftvoa waili caad 10 use the data in register 2 at a later time,
vou shauld save the contents of that register before issuing
the SWHTT rosoro instruction, because the generated code
fot that macru mstiuci uses register 2.

The code generated by this macro instruction branches to
basic tape chatz management to start the operation.

The format of the $WRTT macro instruction is:

[Name]% SWRTT| {DTF-address} [,RCAD-address]
' [,OPC~Y/_N_]

54

D TFE-address is the address of the leftmost byte of the D'TF
for the file. |f this operand is not specified, the address of
the DTF is assumed to be in register 2.

RCAD-address specifies the address of the feftmost byte of
the record area. If this operand is not specified, the address
is assumed to be in the DTF at $DFLRA.

OPC-Y/N specifies whether the write operation code in the
DTF is to be set. If N (no) is specified or if this opecand 1s
not entered, the operation code is not modified in the DTF.

Control Command for Tape ($CTLT)

This macro instruction generates the interface 1o basic
tape data management to issue control commands to the
tape device. It is not used to get records from or put
records out on a tape file. To use this macro instruction,
you must:

® Provide a DTF for the file on the tape device and use
the $DTFO macro instruction to establish the offsets in
the DTF.

® Wait for completion of the operation by issuing the
SWTT macro instruction.

® Provide EXTRN statements in your program for the
basic tape data management module {($$BTAM or
$SBTMM) and for the entry point to the control routine
in that module {(DMBTPS).

It you will need to use the data in register 2 at a later time,
you should save the contents of that register before issuing

the $CTLT macro instruction.

The code generated by this macro instruction branches to
the basic tape data managernent to initiate the operation.

The format of the $CTLT macro instruction is:

[Name] | $CTLT | [DTF-address} [,OPC-code]

DTF-address specifies the address of the leftmost byte of
the DTF for the file on the tape device. If this operand is
not specified, the address of the DTF is assumed to be in

register 2.

OPC-code specifies the control operation to be performed,
If this operand is not specified, no code is generated to
modify the operation code in the DTF. The valid codes
and their meanings are:

Code Operation

FSF Forward space file

FSB Forward space block
BSF Backspace file

BSB Backspace block

REW Rewind tape

RUN Rewind and unload tape
WTM Write tape mark

Wait For Tape 1/0 Completion ($WTT)

This macro instruction is used with the $SRDT, SWRTT,
and $CTLT macro instructions. It generates the linkage to
basic tape data management to wait for the completion of
operations that have been initiated. You must provide the
address of the tape DTF for the file and use the $DTFO
macro instruction to establish the offsets for that DTF.
You must also provide EXTRN statements in your program
for the basic tape data Mmanagement module ($$BTAM or
$$BTMM) and for the entry point to the wait routine in
that module (DMBTWT). You may also provide addresses
where control is to be returned in the event of a permanent
1/0O error, end-of-file condition, or end-of-tape condition.

I you will need to use the data in register 2 at a |ater time,
you should save the contents of that register before issuing
the SWTT macro instruction.

The generated code from this macro instruction checks the
completion code in the DTF to determine the outcome of
the operation. When an abnormal completion is detected,
control is passed to the appropriate address in your program,
{if you have specified ERR, EQJ, or EOT) or to the next
instruction in your program.

The format of the SWTT Macro iistruction is:

[DTF-address] [LERR-address)
[,LEOF address | [,EOT-address]
[LWLKS-address | LWLRL-address)

[Name]| $WTT

DTF-address specifies the address of the leftmost byte in
the DTF for the file. If this operand is omitted, the
address of the DTF is assumed to be in register 2.

ERR-address is the address of the routine in your program
that receives control when a controlled cancel is indicated
in the completion code. |f this operand is not entered, the
controlled cancel is ignored and control returns to the
next instruction in your program.

EOF-address specifies the address of your routine that
receives control when end-of-file occurs. |f this operand is
omitted, the end-of-file condition is ignored and control
returns to the next instruction in your program.

EOT-address is the address of the routine in your program
that receives control when end-of-tape is detected. If this
operand is not specified, the condition is ignored and con-
trol returns to the next instruction in your program.

WL RS-address specifies the address of the routine that is

to get contro! when a record that is too short is read. This
operand should be used when waiting for a completion of a
read operation.

WL RL-address specifies the address of the routine that
should get control when a record that is too long is read.
This operand should be used when waiting for the comple-
tion of a read operation.

Note: If ERR, EOF, EOT, WLRS, or WLRL addresses are

not specified, you should check the return code in your
program to determine the outcome of the operation.

inements b5

Device Independent Support

This section describes the macro instructions that support
device independent files. Device independent data manage-
ment supports sequential files on disk, tape, and card
devices, and on printers. The device type is determined at
execution time according to data on the file card. The fol-
lowing functions are provided:

® Build a pre-open DTF for device independent data
management.

® Build the interface required to get a fixed length record
from a file.

o Build the interface required to put a fixed length record
to a file.

The device independent DTF provides information to the
device independent data management routines that perform
the input/output operation.

Define the File for Device Independent ($DTFI)

The $DTFI macro instruction provides information needed
to allocate, open and access a device-independent file. This
macro instruction generates the code that builds a device-
independent DTF. See Appendix B: Define the File Con-
trol Blocks for a description of the device-independent
DTFs. To use this macro instruction, you must use the
$DTFO macro instruction to establish the offsets for the
DTF.

The format of the $DTFI macro instruction is:

fName] | $DTFI NAME-filename, RECL-number, 10-address
[LAC-IN/OUT] [,BLKL-number}
[.LRCAD-address} [,BUFNO-1/2]

[,CHN-address] [,UP-mask]

NAME-filename specifies the name of the file. The name
can be eight characters or less in length. This operand must
be specified.

RECL-number is a decimal value specifying the length of a
logical record in the file. This operand is required.

56

Note: The record length will be changed by the device-
independent open to accommodate the physical device size.
If the record length is greater than the physical device
length, the record length is changed to the device length.
For output files, this means that the number of positions
by which the size of the logical record area exceeds the
device size will be truncated from the rightmost positions
of the logical record. For input files, this means that the
contents of the positions by which the size of the logical
record area exceeds the device size will not be changed. If
the record length is less than the physical device length, the
record length is not changed and, for output files, the
physical record will be padded with blanks.

10-address specifies the address of the 1/O area. This area
must be on a 256-byte boundary for each buffer. This I/O
area must be at least equal in length to block length pius 40
bytes, or be 286 bytes, whichever is greater. This operand
is required.

AC-IN/OUT specifies the type of file. IN specifies an input
file; OUT, an output file.

If this operand is omitted, IN (input) is assumed.

BLKL-number specifies the decimal block length for the
file. If this operand is not specified, the value of the record
length (RECL) is assumed.

Note: For tape files, the actual block length is used. For
disk files, the block length is rounded down to a muitiple of
256. The block length is not used for unit record devices.

RCAD-address specifies the address of the leftmost byte of
the logical record. If this operand is not entered, X‘FFFF’
is assumed and the address must be supplied when an opera-
tion is requested.

BUFNO-1/2 specifies the number of buffers to be used. [f
this operand is not specified, 1 is assumed.

CHN-address specifies the address of the next DTF in the
chain of DTFs. If there is no DTF chain or if this DTF is
the last DTF in the chain, this operand should be omitted
and the end of chain (X'FFFF’) assumed.

{/P-mask specifies the mask 1o test the eight external
ndicators. The code for the UP-mask must be specified

=5 8 binary bits. For example, to test bits 0, 3, 5, and 7,
you would enter UP-10010101. The UP-mask is com-
pared to the external indicators set on by the SWITCH
statement for conditionally opening files. 11 the bits that
are ornn the UP-mask are also on in the external indicators
set on by the SWITCH statement, the file will be opened.
o the UP-mask is all zeroes or not used, the file will be
unconditionally opened.

Note: Information on setting external mdicators (SWITCH
statement) can be found in the /B8M System/3 Model 15
System Contrel Programming Reference Manual (for
Program Number 5704-SC1}, GC21 5077, and in the

I8N System /3 Model 15 System Control Programm ing
Concepis and Reference Manual

Construct a Device-Independent Get Interface ($GET/)

The SGET! macro instruction generates the interface need-
ed to communicate with device-independent data manage-
ment when a record is being read. To use this macro
INStruction, your must construct a device-independent

DTF for the fite and use the SDTFO macro instruction to
estabish the offsets in the DTF. In addition, you must
provide the fabeis for the necessary data managerent
routines through an EXTRN to $SCSII in your programs.

If you wal need to use the data in register 2 at a later time,
vou should save the contents of that register before issuing

the SGET! instruction,

The format ot the $GETI macro instruction is:

Page of GC21-7608-2
Issued 29 September 1978
By TNL: GN21-5649

£OF-address specifies the address in your program that
receives control when the end-of-file is detected. If this
operand is not supplied, no code is generated to check for
the end-of-file condition.

Note: If ERR or EOF addresses are not specified, you
should check the return code in your program to deter-
mine the outcome of the operation.

Construct a Device-Independent Put Interface (SPUTI)

The $PUTI macro instruction generates the interface need-
ed to communicate with device-independent data manage-
ment when writing a record. To use this macro instruction,
Y Ou must construct a device-independent DTF for the

file and use the $DTFO macro instruction to establish the
otfsets in the DTF. In addition, you must provide the
labels for the necessary data management routines through
an EXTRN to $$CSIO in your programs.

If you will need to use the data in register 2 at a later time,
you should save the contents of that register before issuing
the $PUT! instruction.

The format of the $PUTI macro instruction is:

$PUTI |[DTF-address] {,RCAD-address]

{.ERR-address! [,EOQX-address]

[Name]

[Name] |{$GET: [DTF-address] [,RCAD-address)

[.ERR-address! [,FOF-address]

D7 F audress indicates the address of the leftmost byte of
the OTF fur this file. If this operand is not specified, the
address is assumed to be in register 2.

RCAD-address speciiies the address of the leftmost byte
of the record area. if this operand (s not entered, the
address 1s assumed 1o be in the DTF at SDFLRA .

ERR-address supplies the acdress in your program where
contiol is passed if the contrulied cancei option is taken in
response to a permanent 1/Q error. I this operand is omit-
ted, no code is generated to check for the controlied cancel
completion code.

DTF-addressindicates the address of the leftmost byte of
the DTF for this file. If this operand is not specified, the
address is assumed to be in register 2.

RCAD-address specifies the address of the leftmost byte of
the record area. If this operand is not entered, the address
is assumed to be in the DTF at $DFLRA.

ERR-address supplies the address in your program where
control is passed if the controlled cancel option is taken in
response to a permanent 1/O error. If this operand is omit-
ted, no code is generated to check for the controlled cancel
completion code and you should check the return code in
your program to determine the outcome of the operation.

EOX-address specifies the address of the routine that
receives control when the end of extent on disk is reached.
The file will not contain the record for which the put was
requested.

If this operand is not specified, the code that checks for
the end of extent completion code is not generated.

Macro Instruction Statements 57
Device-Independent Support

Page of GC21-7608-2
Issued 29 September 1978
By TNL. GN21-6649

CRT/Keyboard

This section describes the macro instructions that support
the CRT/Keyboard. This support can he grouped in two
categories: display support and program function key sup-
port. It provides the following capabilities:

® Builds a pre-open GTF for the CRT/Keyboard data
managemeit.

® Builds tne interface to get a record from the CRT/
Keyboard.

® Builds the interface to put a record to the CRT.

® Builds the interface to first put a record to the CRT, and
then to get a record from the Keyboard.

® Builds the interface to use the program function keys.

The CRT/Keyboard provides information to the CRT/
Keyboard data management routines that perform the
input/output operations.

Display Support

The macros which follow support the display functions of
the CRT/Keyboard.

Define the File for CRT ($DTFS)

The $DTFS macro instruction provides information need-
ed to allocate, open, and access a CRT file. This macro
instruction generates the code that builds a CRT DTF.
When using this macro, $DTFO CRT-Y or ALL-Y must
also be used. See Appendix B: Define the File Control
Blocks for a description of the CRT DTFs.

The format of the $DTFS macro instruction is:

[Namel | $DTFS | [PUTDAT-address| | PUTLOC-number]
{,UP-mask] {,CHN-address]

[PUTLEN-number} {,0PC-code]

|, GETDAT -address] | GETLOC-number}
[, GETLEN-number} I,BLANK-YN_\J_]

PUTDAT-address specifies the leftmost byte of the logical
record for a put request. For a $PGS request, this area is
used for the output. If this operand s not specified,
X'0000’ is assumed, and the address must be updated with
{or prior to) the first $PGS or $PUTS request issued.

58

PUTLOC-number specifies a number which represents the
starting location on the CRT for a put request. Valid
entries for this operand are from 0 through 278. If this
operand i1s not specified, O {the first CRT position) is
assumed. If the number exceeds 278, no data is written.

UP-mask specifies the mask to test the eight external
indicators. The code for the UP-mask must be specified

as 8 binary bits. For exampie, to test bits 0, 3, 5, and 7,
you would enter UP-10010101. The UP-mask is compared
to the external indicators set on by the SWITCH statement
for conditionally opening files. If the bits that are on in the
UP-mask are also on in the external indicators set on by the
SWITCH statement, the file wili be opened. If the UP-mask
is all zeroes or not used, the file will be unconditionally
opened.

Note: Information on setting external indicators (SWITCH
statement} can be found in the /BM System/3 Model 15
System Control Programming Reference Manual (for
Program Number 5704-SC1), GC21-5077, and in the
IBM System/3 Model 15 System Control Programming
Concepts and Reference Manual (for Program Number
5704-SC2) GC21-5162.

CHN-name specifies the address of the next DTF in the
forward DTF chain, If there is no DTF chain or if this DTF
is the tast one in the chain, this operand should be omitted
and end of chain {(X'FFFF’} assumed.

PUTLEN-number specifies the number of bytes to process
for a put request. If this operand is not specified, the miss-
ing information must be supplied with (or prior to) the first
$PGS or SPUTS request.

Valid entries for this operand are from 1 through 279. If
this number plus the entry for the PUTLOC operand
exceeds 279, the data written is truncated at location 278.

OPC-code specifies the operation code to be set. Hf this
operand is not specified, the information must be supplied
with {or prior to issuing) the first $GETS, $PUTS, or $PGS
request. The codes and their meanings are:

Code Meaning

IN Set operation code for input only ($GETS}.

INR Set operation code for input on request
($GETS).

ouT Set operation code for output only
(SPUTS).

QUTIN Set operation code for output/input
(for $PGS).

GETDAT-address specifies the leftmost byte of the area
into which the input data will be placed for a get request:
for a $PGS request, this area is used for the input. if this
operand is not specified, X'0000’ is assumed, and the infor-
mation must be supplied with {or prior to issuing) the

first $GETS or $PGS request.

GETLOC-number specifies a number which indicates the
starting location on the CRT for a get request. Valid
entries for this operand are 0 through 278. If this operand
is not specified, 0 (the first CRT position) is assumed. |f
a number greater than 278 is specified, no data will be
read.

GETLEN-number is a decimal number which represents the
number of bytes to get. If this operand is not specified,
X“0000’ is assumed, and the missing information must be
supplied with (or prior to issuing) the first $PGS or $PUTS
request. Valid entries for this operand are 1 through 279.
If this number plus the entry specified for the GETLOC
operand exceeds 279, the data read is truncated after
location 278.

BLANK-Y/N determines whether to leave the previous data
in the CRT buffer or to blank the buffer. |If Y (yes) is
specified, the operation code is set to blank the buffer. if
this operand is not specified, N (no) is assumed. When
used in conjunction with the $PUTS and $PGS macros,

the operand causes all 279 bytes to be blanked: when used
with $GETS, only the input area is blanked.

Geta Record from the CRT/Keyboard ($GE 7S)

The $GETS macro instruction generates the interface need-
ed to communicate with CRT data management when a
record is being read from the CRT. To use this macro in-
struction, construct a CRT DTF for the file and use the
$DTFO macro to establish the offsets for the DTF. You
must include an EXTRN for $$CODM. If you will need

to use the data in register 2 at a later time, you should

save the contents of that register before using the $GETS
macro instruction.

The format for the $GETS macro instruction is:

[Name] [$GETS | [DTF-address] [.GETDAT-address]
[.GETLEN-number] [L.GETLOC-number]
[,BLANK—Y/N_] [,OPC-IN/lNR/N]
[,LEOF -address]

DTF-address specifies the leftmost byte of the DTF for
this file. If this operand is not specified, the address of the
DTF is assumed to be in register 2.

GETDAT-address specifies the leftmost byte of the area
into which the data will be placed.

GETLEN-number specifies the number of bytes to get.
Valid entries for this operand are 1 through 279. If the
sum of this number plus the number specified for the
GETLOC operand exceeds 279, the data read is truncated
after location 279.

GETLOC-number specifies a number representing the start-
ing location on the CRT for this get. Valid entries for this
operand are O (the first CRT position) through 278. If this
entry exceeds 278, no data is read. If this operand is omit-
ted, the corresponding entry in the DTF is not modified.

BLANK-Y/N determines whether to leave the previous data
in the CRT buffer or to blank the buffer. If Y (yes) is
specified, the operation code is set to blank the buffer. If
this operand is not specified, N (no) is assumed.

OPC-IN/INR/N determines whether to set the operation
code to input only {IN}, to input on request (INR}), or to
leave the operation code unchanged. {f INR is entered, the
operator is prompted WAITING FOR REQUEST. Then,
when the PA1 key is pressed, ENTER DATA is prompted.
If N (no) is specified or if this operand is omitted, the
operation code is not changed.

EOF-address specifies the address in your program that
should receive control when end of file is recognized {end
of file is indicated by /* as the first two characters of input)
If this operand is not specified, no code is generated to
check for the end-of-file condition, and you should check
the return code in your program to determine the outcome
of the operation.

Generate a PUT/GET Operation Through CRT Data
Management ($PGS)

This macro instruction generates a PUT/GET data request
to CRT data management. To use this instruction, you
must construct a CRT DTF for the file and use the $DTFO
macro instruction to establish the offsets in the DTF.

Macro Instruction Statements 59

You must alse oovice the lobels for the necessary data
managemerd: U eovtines through an EXTRN for $$CODM.

Hoyou will niecn o use the data in register 2 at a later time
you should save the contents of that register before issuing

the $PGS macro instruction.

The ioriar for the SPGS macro instruction is:

{Name

|L,GETLEN-number] [, GETLOC-number}
1 EQOF-address!

P

E! $PGS [DTF addrass] I,BLANKvY/_I_I_] [,OPCvY/N]
i I PUTDAT address] [PUTLEN-number]
fPUTLOC number] [GETDAT -addressi
!

DT F-address specifies the address of the DTF for this file.
I the operand is not specified, the address is assumed to
bae iy regiser 2.

ef ANKY N deternines whether to blank the data in the
279 yie input area before a CRT operation. 1T Y (yes) is
specibiad, tho gperation code is set to blank the input area;

i
'

nes aperand s omitted, N (no) is assumed and the area
v not blanked.

OFC Y A specttios whether to set the operation code to
atputieput . TN s specified or if this operand is not
specified N (i) 6 oassumed, and the operation code is not

modified i the BTF.

PUTDA T-address identifies the leftmost byte of the user
area from which the data will be taken.

PUTLEN-number specifies the number of bytes to put to
the CRT. Valid entries for this operand are 1 through 279.
If the sum of tiis number plus the entry specified for the
PUTLOC operand exceeds 279, the data written is truncated
after location 278.

PUTLOC-number specifies the starting focation on the
screen for this put request. Valid entries for this operand
are 0 (the first CRT position) through 278. If this number
uxceeds 278, no data is written.

GETDAT-number specifies the leftmost byte of the area
into which the data will be placed.

60

GETLEN-number specifies the number of bytes to get from
the CRT. Valid entries for this operand are 1 through 279.
If the sum of this number plus the entry specified for the
GETLOC operand exceeds 279, the data read is truncated
after location 278.

GETLOC-number specifies the starting location on the CRT
for this get request. Valid entries for this operand are 0
(the first CRT position) through 278. If this number
exceeds 278, no data is read.

EOF-address specifies the address in your program that
should receive control when end of file is recognized
(indicated by the characters / i the first two input posi-
tions). Hf this operand is not specified, no code is generated
to check for the end-of-file condition, and you should
check the retuin code in your program for the outcome of
the operation.

Note: 1f the following operands — PUTDAT, PUTLOC,
PUTLEN, GETDAT, GETLOC, GETLEN, BLANK, or OPC
— are not specitied, you must supply the missing informa-
tion in the DTF before issuing the first $PGS request.

Put a Record to the CRT via Data Management ($PUTS)

This macro instruction generates a put data request to CRT
data management. To use this macro instruction, you must
construct a CRT DTF for the file and use the $DTFO
macro instruction to establish the offsets in the DTF.

I you will need to use the data in register 2 at a later time,
you should save the contents of that register before issuing
the $PUTS macro instruction. You must also provide the
iabels for the necessary data management routines through
an EXTRN to $$CODM.

The format for the $SPUTS macro instruction is:

|DTF-address}] [, BLANK-Y/M] [,OPC-Y/N]
[PUTDAT -address] [,PUTLOC-number]
[PUTLEN-number|

[Namel| $PUTS

DTF-address specifies the address of the DTF for this file.
If this operand is not specified, the address is assumed to be
in register 2.

BLANK-Y/N specifies whether to blank the data in the
279-byte input area before a CRT operation. If Y (yes) is
specified, the operation code is set to blank the input area.
If this operand is omitted or if N (no) is specified, the input
area is not blanked.

OPC-Y/N specifies whether the operation code is set to out-
put only. If this operand is omitted, or if N {no) is specified
the operation code is not modified.

v

PUTDA T-address specifies the leftmost byte of the area
from which the data will be taken.

PUTLOC-number specifies the starting location on the CRT
for this put. Valid entries for this operand are O (the first
CRT position) through 278. If this number exceeds 278,
no data is written.

PUTLEN-number specifies how many bytes to put to the
CRT. Valid entries for this operand are 1 through 279. If
the sum of this number plus the entry specified for the
PUTLOC operand exceeds 279, the data written is truncated
at location 278.

Note: |If the following operands — PUTDAT, PUTLOC,
PUTLEN, BLANK, or OPC — are missing, the missing in-
formation must be supplied in the DTF before the first put
request is issued.

Program Function Key Support

Program Function (PF) keys 1-9 on the CRT/Keyboard are
availabie for use in your program. When an assigned PF key
is pressed, the program requesting its use is notified. The
program may then test to see which key was pressed in
order to condition subsequent operations.

Generate a Parameter List for a Program Function Key
Request ($CQEP)

This macro instruction generates a ten-byte parameter list
which requests a program function key. The format of the
generated list is as follows:

Byte Field Description
0-6 Reserved

7 CQE Q-code

8 CQE request code
9 PF key requested

The format of the $CQEP macro instruction is:

{Name] | $CQEP | [KEY-number]

KEY-number specifies the number of the program function
key requested (keys 1-9 are available {or assignment to your
program}. If this operand is not specified, PF9 is assigned.

Allocate Program Function Key to a Program (SPFKY)

The $PFKY macro should be used initially to aliocate a

function key to a program for subsequent testing via the
SPFKT macro. If the function key has already bzen

altocated, the ERR branch will be affected.

The format of the $PFKY macro instruction is:

iNamel | $PFKY | [CQE-address] [ERR-address]]

CQOE-address specifies the address of the parameter list that
specifies which program function key to assign, and loads
this address into register 1. If this operand is not specified,
the address is assumed to be in register 1 (see SCQEP) If
you wiil need the contents of register 1 at a later time, you
should save the contents of that register befere 1ssuing the
$PFKY macro instruction.

ERR-address specifies the address in your program that
shouid receive contro! it the completion code in the param-
eter list indicates that the requested key is not available

If this operand is not specified, no code is generated to
check for a successful key assignment, and you should
check the completion code in your parameter list to deter-
mine the outcome of the operation {a value of X'40" at
displacement 2 in the parameter list indicates that a key
was successfuily assigned).

Macro Instruc von Sraiements 61
CRT/Keyboard Supnort

Page of GC21-7608-2
Issued 29 September 1978
By TNL: GN21-5649

Test for Program Function Key Pressed ($PFKT)

Your program can either wait for a program function key
to be pressed, or it can test at any time to see if a specified
key was pressed. Only one program function key can be
pressed before your program is notified.

This macro instruction generates code 1o test whether a
program function key was pressed. The chart under Using
More Than One Program Function Key shows the value to
check for to determine if a specific key was pressed.

The format of the $PFKT macro instruction is:

[Name] | SPFKT | [CQE-address] [WAIT-Y/N]|

[.LABEL-address]

CQE-address specifies the address of the parameter list that
was used to request the assignment of the program function
key being tested, and loads this address into register 1 (the
address is assumed to be in register 1 if this operand is not
specified). If you will need the contents of register 1 at a
later time, you should save the contents of that register
before issuing the SPFKT macro instruction.

WAIT-Y/N specifies whether to wait for the assigned pro-
gram function key to be pressed. If Y {yes) is specified,
your program waits until an assigned key is pressed. If no
keys have been assigned, this is a permanent wait. [T N
(no) is specified, or if this operand is omitted, the LABEL
operand must be specified.

62

LABEL-address specities the address in your program that
should receive control when an assigned program function
key is pressed. This operand is used only if WAIT-N is
specified or if the WAIT operand is omitted.

Using More Than One Program Function Key

If you want to use more than one program function key in
YyOur program, you must request each key separately, using
the SPFKY macto instruction. You must use a different
parameter list for each different key you wish to assign.

To test if a program tunction key was pressed, you should

issue the SPFKT macro instruction. Then, when control
Is returned to your program, you should determine which
key was pressed. The following chart shows which fields

in the parameter list should be modified and investigated:

Value to test for at dis-
placement 02 after issuing

Value to set a disptacement
08 before issuing $SPFKY

PF Key macro instruction $PFKY macro instruction
1 X0 X3
2 X‘05’ X'32
3 XOA' X33
4 X'0F’ X34’
5 X114 X35
6 X114 X'36’
7 XE’ X'37'
8 X'23 X'38’
9 X'28’ X'39

OCL FOR MACRO PROCESSOR

OCL statements used to call the macro processor can be
entered through the system input device or be called as a
procedure from the source library. The OCL statements
necessary to call the macro processor are shown in Figure
14. The // COMPILE statement shown is only necessary
when input is in a source library.

SAMPLE PROGRAM

This sample program uses the macro processor and the
IBM System/3 Model 15 Basic Assembler Program: 5704-
AS1 or 5704-AS2. The coding shown in Figure 15 pro-
duces an object program. To use the program, you must
link edit the object program and execute it. The macro
processor can be used with any valid assembler on the IBM
System/3 Model 15 and is not limited to use with the
program product 5704-AS1 or 5704-AS2.

Purpose of the Sample Program

The sample program in Figure 15 is used to print input
records entered from the system input device. It reads
data records from the system input device and prints them
on a line printer. Each printed line reproduces one input
record. If the spooling function is active for this program,

the input may have been read prior to running this program,

and the output may be retrieved at any time convenient
for you.

Chapter 3: OCL and Sample Program

Termination of the Sample Program
The sample program terminates in one of two ways:

1. After successful completion of the program, EJ is
displayed on the CRT.

2. When an error occurs during processing, one of the
following halts is displayed on the CRT.

A1—if an error is returned from the system input
routine,

A2—if an error is returned from the printer routine.

You respond to these halts by choosing option 2.
EJ is then displayed on the CRT,

STATEMENT

1 stam: 5 6]7 Eoge:?)“?;‘ 12[13]14 15 16 17 18 13 20 21 22()?:'32(‘25 26 27 28 29 m3'|32|33|M|:§|36|37|38:39|40x“ 42 43 44 45 46 47 48 49 50 51 ¢
/1§ _Alml/ .;34'4411 éii;kI drive may be used,
/1 olalp] e xiplv], Je i |47

coMpriUEl Islourklel-lrINE N[~

FITILE: -1$19 EL P viall UNTIT- R, IRETATN- T,
/| I IRAICIKS |- (2151, L IO AT TION]-

N\
((Any valid // FILE statement may be used. | | |

=

— c 4]

ce statements with macro instructi

Figure 14. OCL Statements for Using the Macro Processor

OCL and Sample Program

63

e TEr— T =ttt ——r—r —— i — - 1o
ARV 2
b3 < [b4
e a (L) I
u < N
IS p o] [«Y Xix wWE X[X% E3IED IS
Rl [Xy x[< CIE Ik x 13
8 1 x| [o ® k[x 2
3 | [¥] x O K] x| J x 3
: > d F3 %[O X | %X D E3 3
8 | W L o x g
8 Y] AMEIY x| [XO x 8
3 E (S z p.3 E3 ¥ [X[& B3 z
s 1O [& Q x X & E3 £ 3
ol D X (X (%[~ X @
25 el O |un X X x W Xz * 3
23 0w jef X X[W xlw 2
z3] laf] Mol X =X X x 8
3 Q) X xX[O[H[x X W X]
Gl (Wl & fa [[¥|wlx [CI x 5
8 (=) a E x x & X 3
B [¥] [Ty g X Xt xX[Ww x 2 X 8
3 J p. R s [ws| ¥[4 < x b3
m:..s0|..l.ﬂulw.ul.wm-lnum.ﬂl.nmhllvm-ﬂ ||||| . A 3
R 4 Z K | X 2[Z][X Q) L I]
s el [wl (o K X w4 X O K« k|| X 5
2] = Xl X X %[x| [x 8
¢ O] |ua[Jwal T Xlaalx < I X H
e = b, x x| - (] x| X 2
5 [¥) g aq ML IEIES x X 5
¢l &= [A (X X[t xa] 2
2) X g - X KNw x| X 2
3 X Kl X - - E, L 3
3 (o] [u W TX IxOZ[¥ O KZ % @ x g
§ — H F 3 L IEITIR3ES [x | x ¢
5] (O e X .3 Xsla X2 K| w | x 4
el (AW Tl Tx <lo[x< Xa| [x [x ®
41 8 [+ X F_3% x| E3 8
b=) » X W x L 3
5 s [[MES x| & x | x 5
8 ~ X3 ISR X T 8
8 2z */] X[< x > X M
3 =] K x X[B x| ¥ L4 s
8 - » b3 X X E3 3 B
8 ~ x x 43 x 3 8
5 W | X x| w X| x L, 5
8 K[|- x| >x HT R
& > ﬂﬁ x| X e E. 4]
8 (=] Z x| X W[x »» X| 8
5 > -4 x| & % x o[X X X &
Q [o Y a *Psln) x x]
4 X 9 x x X EIMES ®
£s o o X Z[% x> € x w2 % z
g < o] W X o] X XH x 2
g [-% o X ax Kl x E3 X 8
= - K O X 4/ * x X[I
5] [w R X bl X[] X x O X R
2 Jit i *W%TT*R*TPKR* [
2 ELlvn 0 x K QA X[w X[O] X L3 2
= o 2= 1 £ RIS BTN %D X ~
o Q] € X uwFF*xﬁLCXN* 2
z “n'<] X X = Erﬁtvs.%tﬁ 2
= >l . EIEANS MO XN X =
T olaly e~ wmA* x>~ % ATES 2
B X 4 tw U O Z X | X Z2E] B w K E]
5= Q| - J X X[Q kO w X ea oz X J[x -
fof & X I X aa SRR EEICIE 2
So| el E T Tl X] K O %[D] ¥ X <] ¥ X ¢ @
] [X k™ XN win) xalx ®
NERT-1YIK-3 x 3 X E] X -
S 2 2w %] | X x| x X % @
o OHw Dl X 1% X x X [x e
el dulaajoalx x x X X x -
2~ T EX > EINEE 3 : IENED g
SLOINSISISIN QX X > | K X EESED ~
TTNISNING G aw EEIES FAEJED -

Figure 15 (Part 1 of 4). Samplie Program

=TI T N I A A I A e e A ©
2l E4
[X
g] o I
N e W 8
= Z - X x[X =z
olee x 2
3l [[2
E30-Y S e X X[(e 8
H ® Ta W 5
g[eC () K K[2= g
8w W= (W > RIE IS 2
=) w D [Z[W] *mrs F4
3[< O] H[[Ko &= 2
swija] Talkjwia] P~ K [X@wa o 8
Lo|af | as rUUL @ XK &
2l Q] [ono EJMEIE 48 %P % 8
= 3 < i W E3 KXo o o 2
e W (o O [b A3]
Glw & Wi X Q AN 3
8 b [y T4 [vy ¥ R
e T wiaHO wl X oc| el 8
HEI IR - IO - X 0 0[O 3
sl oieol [wi T I [X K &«le %
3 | A 4ER-YR P X6 Tk o
s[> kel fy CIE R M :
glolw 212 [X HRE<IR !
g wliwal9 (B X 2 Z] M
s[@E] Jelee|®a oo ¥
3 [o /O [*Y X E S
s[ala] 13D/ u[H| |l % PK& [¢
gLl QL Q] o W K[| g b 9
3 o < g < 3
;@A aw & =] % Dkxx(x Q
L[<[>N [4 X g
;1O w LIESBE 2 A~ z
sl e=lel | JEQA] [} X q L 8
g8 x £ 8
] d X[[8
3l s -~ E e 5
8 [y X 8
Q * K 8
E z IWE" 3
8 W o~ 3 MW ke 2
8 [T X! [XOiolo 5
m ML k. JERESIMMIMETM m.
w [7:] et t
4 - ~wo llﬂlﬂrmr:.ll 2
g 4l 42 Kz xzlzz &
& o ~ny (e XHXala o 5
g Jwe ol . X=X QOO 8
s [[elTael 1> KD X[A4 4 = 8
R FIr=4 N KO XA e[3
Eo (Ol o W |~ R 3ICIEIE 4 &
o N~] N] K SIS 8
& AU N Al w KD WK ot | S
i m[Z v Alu > X2k << < &
o s Ol N O] [XKigXE[X 2
2wVt +0/a1]X u_nmux. NN e
N AN IS I I E AN S
sl eioffluls [y L0k Z[Kw wn @
20| &XN DjWi- D A O Xk <X 2
| Tl [t/ o 0 K XX | 4 =
2 K x| 2
B =) [E3CIES =
sel |« =l O[OV =
Sol Twa Qo] H XXX QO[C 2
So[<lae SAlal o (XK Kala -
@] o) ey = 5S> "me.lrml.wsss ®
© x| x|~ s
° X Xlwg w
ev[a X [X owlw -
3-[6 X x| Z[U o
~Q X | x /2= ~
- X p LTI -

Figure 15 (Part 2 of 4). Sample Program

64

Sampie Program

Figure 15 (Part 3 of 4).

B _ :
N | 2| ¢, WD > Iy
SEIAEIEY N| X[% A x x | S
REFIES AR IES EIE3 =< e
HIEAINES EIIES x X OV S 3
2 K 3 X x Y ol dw 2
K X B x o X Ol w [3
HIE3 *| x| £ O % X[DO« [wm O 8
I X)= a* X @ x XOl2uwlz > 2
3 x[qQ] Te[x] X e[x m D[H w| @ 3
3 x M) x > % 0 I w = < 3
gl X [x[&l=lO[x] | ¥ (o] 2 X2/ [Z o @
Lol X IR MES K Jw x X olQF 2z] Z s
gl K X =00 0] X X o] x X HAIZ0R & o 3
2l x X2 x X =] X X kOl oL o Q 2
3 X[[% x W X X now e Ia O 3
s X X et x| % Xl w] X 2w O 4 W 5
8 a/Olwx x| 2O % X ~a2 O wid] [X 8
4 "SI XM x t . w4 L L) n 8
b X Wl eS| x| W X walu e =] 3
g x/_ X O/@D g [X_ [a[xl [Xi8«Sww_| | |6 T@I TQ 2
s X > AT TX o[O3 ™ X b > = I Ja 8
HIEY XA w) x x| wat] = X J Qw Y Q TJ o 3
EIES XwniH e % X] XK X[< [Wi [¥) Nw O R
HE I REIMES X X 22 x XiH| 8] s~ RIS e
EES 4IRS ¥[H[O] X X e AW "ot > 2
s[X A =X ¥ X x Qlu/o Z2 L < s
HESEJr-IkS % Ka x| [X[e T N ~ OJ&l Tm ¢
ol X X <[O0]X] x x 2| X| A wiw o[w O < 4 g
X Jl % Aol | | E i IKS] =4 [S) 2 - < 3
[x KA Z x wxWnin X XK2Ww =] O 2 Q
X [xcleqx | xOr Huuladalu I o [Hw [0 g
BES X o[« x X dlw X MR | [<) J [N <
o g X WL 0 % EI3E a Sa - <o 9
AEIE 3 x X & g
gl gl % £ X| | X x 8
gl sl x LS x X B X 3 5
B x; x x| E3 X S| ']
R X x x| g X 0 - ~ | 8
HEIES X% EIE. v ~ T s
3w x ! X X X N [SYERLTS 3
5 X X . X x x4 U [= 8
5| & X! X x| X A D] > J 5
R X x * X < X0 > oW [3) 1 8
HIES X ~] lx ﬂ x| X0 U0 W A 2
® x ~ % x| x ot Vb O[St T 2
rla [x (el DR X ¥ X 2o | ~[HO]\
o K> - X | % x I x[@H[1 [[N ,, &
IS x > Wl x X X| x O & 4Z [RERED | ®
I E3 + K2 % * X H O[T [S/NW I~ j 4
o[XWXk T~ KN K | RO K N Awol [N T , g
Col X2 W o = X S ¥ X ~ W[N ™~ &
REGIES 7 Tk DX 4] 'x XL, w4~ I[N - I
HEIEIN x O Xl x[QIXR[D D ([>T NI~ R
o RI3TX ey | xoe| X b & KO @ @] QAN < 1K
BECIEIRCES x *a X< XK 1| 10wnOO] T 1 EEE) - ~~je
s X k@[Q] [0 x] x Xa <QlJ o =S £ ta - ~ x|
o[% RANMNIERSIEI X W K < HLF 11N o | o] [X[nd]e
HER IR - O X F X o Xaq4o o N EE I -
HEIRNDIEX-X" Iy x A x Z X Hwn o HZ=D Q) x < ™M 0=
e K L ik X & T X : R E
HIEINES X Ol ¥ ¥k XQ. 9 L ©
5| el x x X Ol X w] Xu [N T T -
FEHEIE I O X 3D 2] ¥, =~ (=) I 1=
So[> KT > K ml kK O w X0 XaQ (=) VDDV O n Y-
= Ol K J 5 0 x w K v o Xin MR SO wpuao-
NE, 4 > | X K i X L I T -
¢ L X L 4 x| K ,ﬁ i ; ©
R 1 X X > p.3 i : o
N 3 X B3 X] ~ =N ‘ . A
ERIP™ X *x x| £y L S : R
NEIEIEIEY x| X ¥ [O] o x| %[= ! =R
I # ne| K[| [[x[D Y~ [=T -

Sample Program

¥ EA K s
g X X|) i3
2 RN R
3 3 E 3
3 X k. 2
3 * FIErm 5
8 x LI 8
8 > x P [(V] 8
3 [3 ™] [Y) ~ 3
3 q E 3 X %150 (4 X X 3
9 [) [KD X Hw > [3 « 9
i3 2 0 ; x x| 0| Q [+] o I
g2 F1E3 > 2 ¥ AN) 3 3 2
= 3o QN " [a % X Zz e | o 2
2l o0 n 4 x Yk dKe]]
= > > [x x/0 o o 4 b3
2= win [+] «w o k] x|atln)) o . 8
3 [[[X x| 'Y W wim 2
i[ef >at o« [N E3 x o b3
0. |) < e 1O [[_I_1_ L1 [1 X _lalewl_ i _|jFl | Iz
8 ._Mr - w [X K WD = Z 2 3
G| 3 b -~ x X a0 ™ W w oS
s(Q "n W o [y E3 X0z E = oS 2
o[lL] Tt =) w ; T x * Xy - W (wli 2
g - @ [y | < x X w = - [y ?
s 3N w 3 w Xx E3IE) < < <[3
el o5 = >) ™ X[- [M~ g
glal o z D [N [» x[«/q [)) @
HES Z W > [} * X [¥) T 3
2 O - o X 2 * % Qk YY) w W 2
=] [P [3 of ' N[B & x/</a ~] @ 1%
1O - =] [] ~ (i]=Z x X o[=x| -~y = z
o] el =4k 3 Y] 3 wl O o W LI W 4l] |®
i = D il [x| & o 4 | 8
[] @ aslola) | X % [y nll o] | 8
s 4 w o Al | X EY [e« i1 | &
8 G ~>>< x x [*]] [8
8 3 v [x| 3 Z = [8
s L) NN FIR4E]) = 2] s
2 X Z|Z[= ® €] > 4 2 =] 2
3 & lajaja x| ¥ X ~ 2 ~ 3
5 2 Q[0 © x| O X 8 | 4 s 5
] 1 w o 3 O x 1 AV - 8
2 X Jllm ¥ o x o = |8 2
2 o <<=t x> Q] X o |8 2
a Q it x x >]) S
g 3 e X - % ' [=] > 8
R o ala- x T x| | X > ' 8
S D [y <[<< xpi ¥l [T[] ! x &
Ex E) I T oK x < X 9 R
8 o0 w0 ~ x[w| x a o< &
= - < S o | < q eIk N aea S
8 X 3 [N Xl e W w M| O N R
2 < [~ (W] = b - x £ 3 MR 2
@)) . | L X T/ xw| x| >l xw xwn =
= 7 ~ ~ ~ CE LA xwu &k 4 x XX L X =
o n et | T u oo | X] ¥ Wk wl X 0,J]| 0 JO9 ©
AT 3T T) [SI-M-1ES * <X S xn<« 33T 2
RO e x| X O Q] DO Wil Wi ¥ x L x| wn X =
z o X0 Xw[x [e =
= Qra0Vlo, . (X k@[> w W Nw o =
s Ol [pnwie * x4 EDEn T n =
e [=) =) 2 O 4 EE S K 4 X <€ 4 | 1 < e
ol @ @ O QJ I O[O0 & st a2 X J Y T T 2| 2[Z|ZZ ®
= OOl L w] Al B w4y oW X O] X [V] [IR ©
~ i L] x x[Q b E [L ~
e T "y w J | [E3 K| |t]t = |2 ©
o i3) a < g i3 X QO 2 HwlNwiNw D o
2l) @: [of =]} X X =tk UL o -
3-[D [o x 0 5 a3 EJEIFS : ; ”
~Q x 3 & > << TR AN SIS NN S =
- z ol 13 " T =T kA kIS SN SIS -

Figure 15 (Part 4 of 4).

65

OCL and Sample Program

Macro Instructions Used in the Sample Program

Fifteen macro instructions are used in this sample program.
The macro instructions and their functions are:

Macro Instruction Function
SALOC Allocates the printer file to this program.
$OPEN Opens the file after allocation.
$CLOS Closes the output file.
$DTFD Constructs the DTF for disk.
$EOQJ Calls the end-of-job routine.
$SREAD Reads input records from the system reader.
$PUTP Prints output records on the printer.
$DTFP Constructs the DTF for the printer.
$DTFO Establishes the offsets for the printer and disk DTFs.
$RLSD Generates offsets for the system reader parameter list.
SRLST Constructs the parameter list for the system reader.
$LOGD Generates offsets for the system log parameter list.
$LOG Logs message on the system log device.
$LMSG Constructs the parameter list for the system log.
$PUTD Puts records to a disk file.

66

Appendix A: Error Information

T R F P Frior
Yy, v 46 Lo b e e Cusite Error Description
oot o B o R .
) N . . ' [HERERA A keyword response has resulted in an ovalid
i ”‘ PRy s ‘ decunal dwair or a boundary exceeded condition
dea T dre bl {Sev note)
IRINER! PO e
a AT crron st cotitinualioi 2x1s6 1 this macro n
struetion, Nonblank characters were found
) . o coltimns T 13 of the continued line. Al renmiain
e st v i iy ines O 1his macro instruction will be tlagged
' o b ot the srior code TOCT
v ' v Hi H S dnin st ‘1
Vi ovin vy are oo aiee! ‘t wor dd response resubted i oa character stving
i B o S S ' Phat eaceeds the maxioam iength. (See note)
> {
oy
1+ | A er o eontinuation exists in the previous
iiacre mshacton, Coinron 72 s black, Al
: ! ceranniag hies of this macro instruction will be
‘ l Hagged it the ereor code "OC or "NEL
i
; ! A delbinuites s nussing or invahid o the operand
i ! OF Lie Previots sacro instruction,
: i
Lo i A keyvword iy the macre instroction beiny
E E pronmssed i not vahid,
| !
5
; Aunvaelid pararmeter has been found in one of
! . Cojecrands of the previous macro instruchion
E E
% L : foe mmcro snstraction being processed confamns
g i NETERI ST Dperation code tol contained in the
; ! sora e hbravy of the program pack.
i
! : I e vomermoie operalion code of the previous
; | veacto anstraction s invahd . {See codes "CE and
: ' Ttor wonossibie catise s ercor code.)
{ ;
i | Y okeysanrd coponse bas resulted toan nvabid
? ! wribistioig reron (See noge)
; |
§ i BReyeat G esponse s esulted g substiiig
é‘ wontax ctror, {See note)
, 5
i i | Fhe waable syibol table s tull Recode viouy
; : FE AT i TR INEGEO TS
. IR I e
§ oAb e crpons may be tie tesult of ahy macio mshiuction

St O Fatas . Goanstractions that precede e eivor

s

- Instruction Evvor Codes

Error Information 67

Appendix B: Define the File Control Blocks

The DTF provides information to the data management
routines about files you use. You must provide one DTF
for each file you use in a program. Certain fields serve the
same purpose in all pre-open DTFs. (Pre-open DTFs are
reformatted to post-open when they are opened by using
the allocate and open macro instructions.)

The figures in this appendix describe both the pre-open
and post-open DTFs for unit record and disk devices.

Figure DTF Described
17 MFCU

18 MFCM

19 1442

20 Line Printer

21 2501

22 Disk

23 Tape

24 Device Independent
25 CRT/Keyboard
26 3741

The labels given to the fields in these figures are the labels
generated by the offset macro instruction $DTFO. Dis-
placements are hexadecimal numbers which refer to the
rightmost byte of the field; length is specified in bytes,
Addresses in the DTFs point to the leftmost byte of the
referenced area.

68

Field

Code

X407
X471’
X'42’

Name Displacement Length Contents
$DFDEV 0 1 Device code
MFCU1 (primary hopper of MFCU) = X'FO’
MFCU?2 (secondary hopper of MFCU) = X‘F8’
$DFUPS 1 1 External indicators
$DFAT1 2 1 Attribute byte 1
Bit On Meaning
0 Read
1 Print
2 Punch
3 Card image mode
$DFAT2 3 1 Attribute byte 2
Bit On Meaning
2 Device is system reader
3 Multiple buffers
4 EOF on multiple buffers
5 /. or /& read on last input operation
7 DTF has been opened
$DFCHA 5 2 Address of next DTF in backward chain
$DFCHB 7 2 Address of next DTF in forward chain
$DFARR 9 2 Address recall register save area (return address)
$DFXRS B 2 XR1 save area (contents of calling program register 1)
$DFLRA D 2 Logical record address
$DFCMP E 1 Completion code

Meaning

Successful completion
Permanent error
End of file indicator

Figure 17 {Part 1 of 2). MFCU DTF

Define the File Control Block

69

Field
Mame

EDFOPC

SDFSTS
SDFCIA
SDFRDA
SDFPNA
SDFPTA
SDFRIO
SDFO
SR

SDEFRSV

ST

Displacement

E .

10

12

!

Lengih

"Indicates tield is used for pre apen [VIF

Fiaime 17 {Part 2 of 2),

70

MECL DTF

REVRTEr RS

gk ceqee

1OR add,

P 10

MNrrnhy

tri(f':»«:f“

HOE

Field
Name Displacement Length Contents
$DFDEV 0 1 Device code
MFECM1 (primary hopper of MFCM) = X'FO’
MFCM?2 (secondary hopper of MFCM) = X‘F8’
$DFUPS 1 1 External indicators
$DFATI1 2 1 Attribute byte 1
Bit On Meaning
0 Read
1 Print
2 Punch
3 Card image mode
4 DTF for MFCM
5 Interpret mode
6 Print head 5 or 6 to be used
$DFAT2 3 1 Attribute byte 2
Bit On Meaning
2 Device is system reader
3 Multiple buffers (data)
4 EOF on multiple buffers
5 /. or /& read on last input operation
7 DTF has been opened
$DFCHA 5 2 Address of next DTF in backward chain
$DFCHB 7 2 Address of next DTF in forward chain
$DFARR 9 2 Address recall register save area (return address)
$DFXRS B 2 XR1 save area (contents of calling program register 1)
$DFLRA D 2 Logical record address
$DFCMP E 1 Completion code
Code Meaning
X'40' Successful completion
X‘41’ Permanent error
X‘42’ End of file

Figure 18 (Part 1 of 2). MFCM DTF

Define the File Control Block

71

Field
Name Displacement Length Contents
$DFOPC F 1 Operation code
Bit On Meaning
0 Read
1 Print
2 Punch
3 Defer operation
4 Card image
5 No feed
6 Four tier printing
$DFSTS 10 1 Stacker select
$DFCIA 12 2 10B
$DFRDA 14 2 Read 1/0 area address'
$DFPNA 16 2 Punch 1/0 area address’
$DFPTA 18 2 Print 1/O area address'
$DFNIO 19 1 Number of 10Bs!
$DFQ 1A 1 Q-byte (device address)
$DFR 1B 1 R-byte
$DFRDL 1C 1 Read length'
$DFPNL 1D 1 Punch length
$DFPTL 1E 1 Print length
$DFPHS 1F 1 Print head select
$DFIND 20 1 Indicator byte
Bit On Meaning
0 Previous operation was print
1 Feed required before print
2 Read already completed
3 First-time bit for interpret

! Indicates field is used for pre-open DTF.

Figure 18 (Part 2 of 2}). MFCM DTF

72

Field

Name Displacement Length Contents
$DFDEV 0 1 Device code X'50°
$DFUPS 1 1 External indicators
$DFAT? 2 1 Attribute byte 1
Bit On Meaning
0 Read
2 Punch
3 Card image mode
$DFAT2 3 1 Attribute byte 2
Bit On Meaning
2 Device is system reader
3 Multiple buffers (data)
4 EOF on multiple buffers
5 /. or /& read on last input operation
7 DTF has been opened
$DFCHA 5 2 Address of next DTF in backward chain
$DFCHB 7 2 Address of next DTF in forward chain
$DFARR 9 2 Address recall register save area (return address)
$DFXRS B 2 XR1 save area (contents of calling program register 1)
$DFLRA D 2 Logical record address
$DFCMP E 1 Completion code
Code Meaning
X'40" Successful completion
X471 Permanent error
X'42’ End of file
$DFOPC F 1 Operation code

Bit On Meaning

Read

Print

Punch

Defer operation
Card image mode
No feed

O hwWwN = O

Figure 19 (Part 1 of 2). 1442 DTF

Define the File Control Block

73

Field

Name Displacement Length Contents

$DFSTS 10 i Stacker select (MFCU, MFCM, 1442)
$DFCIA 12 2 IOB address’

$DFRDA 14 2 Read 1/O area address'

$DFPNA 16 2 Punch 1/0 area address!

$DFNIO 19 3 Number of 10Bs'

$DFQ 1A 1 Q-byte (device address)

$DFR 1B 1 R-byte

$DFPNL 1D 2 Punch length

74

! Indicates field is used for pre-open DTF.
Figure 19 (Part 2 of 2). 1442 DTF

Field

Name Dispiacement Lenath
$DFDEV 0 1
$DFUPS 1 1
SDFAT1 2 1
$DFAT2 3 1
$DFCHA 5 2
$DFCHB 7 2
$DFARR 9 2
$DFXRS B 2
SDFLRA D 2
SDFCMP F 1
$DFOPC F 1
$DFSKB 10 1
$DFSPB 11 1
$DFSKA 12 1
$DFSPA 13 1

Contents

Device cnde

Code Meaning
X'EQ’ 1403
X117 3284

External indicators

Attribute byte 1

Bit On Meaning
1 Print

Attribute byte 2

Bit On Meaning
6 Halt on unprintable character
7 DTF has been opened

Address of next DTF in backward chain

Address of next DTF in forward chain

Address recall register save area (return address)

XR1 save area (contents of calling program register 1)
l_ogical record address

Completion code

Code Meaning

x40 Successful completion
XAt Permanent error

X'42’ End of file

X'48’ Overflow on the printel

Operation code

Bit On Meaning
1 Print
Line number to skip to before the print operation
Nuinber of lines to space hefore the print operation
Line number to skip to after the print operation

Number of lines to space after the print operation

Figure 20 (Part 1 of 2). Line Printer DTF

Define the File Contro! Block

75

Field

Name Displacement Length Contents

$DFPQ 14 1 Q-byte (device address)
$DFPR 15 1 R-byte

$DFPIB 17 2 I0B address'

$DFPIO 19 2 1/ area address’
$DFPRL 18 2 Record length
$DFOVF 1C 1 Overflow line number!
$DFLP 1D 1 Lines per page'
$DFPQOS 1E 1 Position counter
SDFMSK 1F 1 Maximum skip value'
$DFPGS 20 1 Page size save area

! Indicates field is used for pre-open DTF.
Figure 20 (Part 2 of 2). Line Printer DTF

76

Field

Name Displacement Length Contents
$DFDEV 0 1 Device code X'38'
$DFUPS 1 1 External indicators
$DFAT1 2 1 Attribute byte 1
Bit On Meaning
0 Read
3 Card image mode
$SDFAT2 3 1 Attribute byte 2
Bit On Meaning
2 Device is system reader
3 Multiple buffers are being used
4 End-of-file on multiple buffers
6 /. or /& was read
7 DTF has been opened
$DFCHA 5 2 Address of next DTF in backward chain
$SDFCHB 7 2 Address of next DTF in forward chain
$DFARR 9 2 Address recall register save area {return address}
$DFXRS B 2 XR1 save area (contents of calling program register 1)
$DFLRA D 2 Logical record address
$DFCMP E 1 Completion code
Code Meaning
X'40’ Successful completion
X411 Permanent error
X'42’ End of file
$DFOPC F 1 Qperation code

Bit On Meaning
0 Read
3 Defer operation
4 Card image mode
5 No feed

Figure 21 (Part 1 of 2). 2501 DTF

Define the File Control Block

77

Field

Name Displacement Length Contents

$DFCIA 12 3 IOB address'
$DFRDA 14 2 Read 1/0 area address'
$DFNIO 19 5 Number of 10Bs'
$DFQ 1A 1 O-byte (device address)
$DFR 1B 1 R-byte

$DFRDL 1C 1 Read length

! Indicates field is used for pre-open DTF.
Figure 21 (Part 2 of 2). 2501 DTF

78

Field
Name Displacement Length Contents
$DFDEV 0 1 Device code:’
R1 (removable disk — 5444, drive 1) = X'AQ’
F1 (fixed disk — 5444, drive 1) = X'A8’
R2 (removable disk — 5444, drive 2) = X'BO’
F2 (fixed disk — 5444, drive 2} = X'B§’
D1 (5445, drive 1} = X‘CO’
D2 (5445, drive 2) = X'C8’
D3 (5445, drive 3) = X'D0O’
D4 (5445, drive 4) = X’'D8’
$DFUPS 1 1 External indicators’
$DFATI 2 1 Attribute byte 1"
Bit On Meaning
0 Indexed
1 Consecutive
2 Direct
3 Multivolume
4 Input
5 Output
6 Update
7 Add
$DFAT2 3 1 Attribute byte 2'
Bit On Meaning
3 Multiple buffers
7 DTF has been opened
$DFCHA 5 2 DTF chain pointer A (backward)
$DFCHB 7 2 DTF chain pointer B {forward)!
$DFARR 9 2 ARR save area (return address)
$DFXRS B 2 XR1 save area (contents of object program XR1)
$DFLRA D 2 Address of logical record {shared /O address of logical input record)?

! Indicates field is used for pre-open DTF.

| "Figure 22 (Part 1 of 7). Disk DTF (5704-SC1 only)

Define the File Control Block

79

Field
Name Displacement Length Contents
$DFCMP E 1 Completion code
Code Meaning
x40’ Normal completion
X'41’ Controlled cancel taken on permanent /O error
X'42’ End of file (input)
X'44' No record found (out of extent for direct files)
X650 Key field does not match key in update record
X'60’ Duplicate key on attempted load or add
X'62’ Keys out of sequence (attempted [oad or add)
X'64’ Key low for this volume or high for any volume
X'68’ Key fow for this volume
X‘70’ End of extent or end of read {output)
X772 Key high for last volume
Completion codes other than X'40" are returned before the data manage-
ment function is actually completed.
$DFOPC F 1 Operation Code:
Bit(s) On Meaning
0 Get
1 Put/add or put/load
2 Put/update
0,3 Set new limits
$DFIOB 11 2 Pre-open address of 1/O area’
Post open address of 10B
$DFPRB 13 2 Address of current process 108 (dual 1/0 only; shared
1/O—address of logical output record).
$DFBKL 15 2 Block length (length of data buffer)’
$DFRCL 17 2 Logical record length?
$DFPTR 19 2 Data block index (address of next record)
$DFRO1 1A 1 Reserved
$SDFXTA 1C 2 Data start extent
$DFMVF 1C (2) Address of direct MVF extent table!
$DFR0O2 1D 1 Reserved

!Indicates field is used for pre-open DTF.
I Figure 22 (Part 2 of 7). Disk DTF (5704-SC1 only)

Field
Name Displacement Length Contents
$DFXTB 1F 2 Data end extent (disk address)
$DFNUM 1F (2) Number of extents (direct MVF)!
$DFSWA 20 1 Scheduler work area format—1 label sequence number
$DFNAM 28 8 File name’
$DFAT3 29 1 Attribute byte 3!
Bit On Meaning

0 Addrout

1 Ordered load

2 Random

3 Limits

4 End of limits — call to open

5 Force end of volume — call to close

6 Online multivolume

7 Reserved
$DFAT4 2A 1 Attribute byte 4'

Bit On Meaning

0 Compiler access method

1-7 Reserved
$DFATS 28 1 Attribute byte 5 (Bits 0-7 are reserved)"
$DFSEC 2C 1 Number of sectors to write (split)
$DFWAA 2D 1 Work area A (disk)
$DFWAB 2E 1 Work area B (disk)
$DFWAC 2F 1 Work area C (disk)
$DFWAD 30 1 Work area D (disk)
$DFR0O4 31 1 Reserved
$DFRMA 34 3 Work area, length of first part of overlap record
$DFRO6 35 1 Reserved
$DFRMB 38 3 Work area, length of second part of overlap record

! {ndicates field is used for pre-open DTF.

' Figure 22 (Part 3 of 7). Disk DTF (5704-SC1 only)

Define the File Control Block

81

Field
Name Displacement Length Contents
SDFND1T 39 1 Indicator byte 1
Bit On Meaning
0-3 Reserved
4 Pseudo-get
5 High key loaded (indexed output — MV F)
6 Low key was found
7 Buffer has been written
$DFND2 3A 1 Indicator byte 2
Bit On Meaning
0 Indexed random update — first time indicator
1 First record on new volume
2 MVF end of file
3 End of all MVF files
4 Empty file {skip initial index search)
5 Previous operation was add
6 End of file has been reached
7 EOF on this get (limits not set)
$DFND3 3B 1 Indicator byte 3
Bit On Meaning
0 Index contains adds or new entries
1-3 Reserved
4 Records added
5 Out of sequence add (key sort needed)
6 Current process buffer contains adds
7 Current process buffer contains updates
$DFRO7 3C 1 Reserved
SDFRO8 3D 1 Reserved area 1 (5444 only)
$DFNXR 41 4 Disk address of next record (CSDD)
$DFSPC 42 1 Number of tracks in cylinder
$DFRO0O9 43 1 Reserved
$DFIOA 46 3 Disk address save area
SOFDAT 48 2 Pointer to current index entry.
End of Disk DTF for consecutive output

Figure 22 (Part 4 of 7). Disk DTF (5704-SC1 only)

82

Fieid

Name Displacement
SDFR10 49
SOFRTH 4A
$DFEOF 4D

Length

!

Contents

Reserved

Reserved area 1 hyte (5444 only)

Disk address of logical end of file (CSD)

End of Disk DTF for consecutive input and update

SDFNXK 4D (3) Disk address of logical end of index {CSD)

$DFKPR 4F 2 Pointer written index (pointer to next buffer entry)
SDFKAD 51 2 Address of user's key area’

SDFKCR 53 2 Address of key in core {direct)

End of bisk DTF for direct - - - o
e e+ e .
$DFCUR 53 (2) Address of current key (index)

$DF HI 53 (2) Address of high key (limits)

SDFR12 54 1 Reserved

SDFKXA 56 2 Start extent of index (disk address of first track)
SDFKRF 58 2 Address of mdex 1OH

SDFKL 5A 2 Key length'

SDFR13 5B I Reseived

SOFKXB HE 3 Disie address of end of index (CSD)

SDFKD 60 9 Dieplacement of oy n record’

SDFBLX 61 1 Index black size’

$DFR14 62 1 Reserved

SDFFILX 64 Vi Disk addiess of start of index (54485)

$DFR15 65 1 Reserved

' Indicates field is used for pre-open DTF.

Figure 22 (Part 5 of 7}. Disk DTF (5704-8C1 oniy)

ety e b

g Hiack

83

Field

Name Displacement Length Contents

$DFDTX 67 2 Start of disk track index (5445) disk address
$DFABF 69 2 Address of add index 10B

$DFAPR 6B 2 Add index buffer pointer

End of Disk DTF for index sequential input output, and update

$DFMIX

$DFLOW

6D

6F

2

2

Address of in-core index (random)!

Address of low key (limit)

End of Disk DTF for input or update with

limits

$DFLST

$DFHAD

$DFLOT

$DFHPK

$DFBYT

6F

71

71

73

75

Address of last key (indexed sequential}
Address of high add key bucket!
Address of save area for current key!
Address of high primary key

Number of bytes in in-core index'

End of Disk DTF for index random input

and update

SDFAPT

$DFR16

$DFR17

$DFKXP

77

78

79

7C

2

3

Pointer to next record in add buffer
Reserved
Reserved area 1 byte (5444 only)

Disk address of end of primary index

End of Disk DTF for index random add, retrieve add, and update add

$DFSLP

$DFR18

$DFSLA

7E

7F

82

2

3

Save area for last index disk pointer

Reserved

Save area for last index disk address

End of Disk DTF for index sequential add and update add

! Indicates field is used for pre-open DTF.

Figure 22 (Part 6 of 7). Disk DTF (5704-SC1 only)

84

Field

Name Displacement Length Contents

$DFSTA 84 2 Muttivolume file table pointer

$DFSEQ 85 1 Volume sequence number of current volume
SDFNXT 86 1 Volume sequence number of next volume
$DFF1S 87 1 Start of format-1

$DFF1 C6 63 Format-1 save area

$DFAR1 C8 2 EOV save area

$DFXR1 CA 2 EOV save area

$DFKEY CC 2 Address of high key from Format-7
$DFTAB CE 2 Address of multivolume information table
SDFENT DO 2 Number of entries in in-core index
$DFVOL D1 1 Number of volumes online

End of Disk DTF for multivolume file processing

I Figure 22 (Part 7 of 7). Disk DTF (6704-SC1 only)

Define the File Control Biock

85

Field I‘
Name Displacement Length Contents
SDFDEV O i Device code:!
R1 (simulation area, drive 1) = X'AQ’
i F1 (simulation area, drive 1) = X'A8’
! R2 {simulation area, drive 2) = X'B0’
F2 {simulation area, drive 2) = X'B8’
D1 (3340 drive 1) = X'CO’
D2 (3340 drive 2} = X'C8’
D3/D31 (3340 drive 3) = X'DO" or
(3344 drive 3, logical unit 1) = X'D0O’
D4/D41 (3340 drive 4) = X'D8' or
(3344 drive 4, logical unit 1) = X’D8’
D32 (3344 drive 3, logical unit 2) = X'D1’
N33 (3344 drive 3, logical unit 3) = X’'D2°
D34 (3344 drive 3, logical unit 4) = X’'D3’
D42 (3344 drive 4, logical unit 2} = X'D9’
D43 (3344 drive 4, logical unit 3) = X'DA’
044 {3344 drive 4, logical unit 4) = X'DB’
SDFUPS 1 1 External indicators'
SOFATY 2 1 Attribute byie 1!
Bit On Meaning
: b Indsxead
| 1 Consecutive
’ 2 ihreot
! | 3 Muttivolurme
: 4 tput
! j | 5 Vutput
i ‘ 6 Update
; ' 7 Add
L pEAY2 ‘ 3 1 Attribute byte 2!
i | i
| ' Bit On Meaning
' ‘ 0 Device independent DTF
; 1 DTF ailocated
| 2 Device 1s SYSIN
f i 3 Multipie buffers data
i 4 Daeterred open
‘; 5 EOV -- Close ignored bit
6 EOV - Call close
‘ |] Opened
' |
SDFC ' 5 2 i‘ DTF chain pointer A (backward)

Dipchicates Lo use tor pre-open DT

Figure 22a {(Part @ of 71 Dok DTF 15704-8C2 oalyi

86

Page of GC21-7608-2

Issued 29 September 1978

By TNL: GN21-5649

Field
Name Dispiacement Length Contents
$DFCHB 7 2 DTF chain pointer B (forward)'
$DFARR 9 2 ARR save area (returrs address)
$DFXRS B 2 XR1 save area (contents of object program XR1)
$DFLRA D 2 Address of togical record (shared 1/0 address of logical input record)!
$DFCMP E 1 Completion code :
Code Meaning
X000’ Record not found (requested key low)
x40’ Successful completion
X411’ Permanent error
X'42' End of file
xX'a4’ No record found
X507 Update key not equal to key
X'60’ Duplicate key on load or add
X'62' Keys out of sequence on load or add
X'64’ Key low for this volume or high for any volume
X'68’ Key low for this volume
X'70’ End of extent or end of reel
X72 Key high for last volume
Completion codes other than X’40’ are returned before the data man-
agement function is actually completed.
$DFOPC F 1 Operation code:
Bit(s) On Meaning
X’'30’ Get
X'40’ Put/update
X'60’ Put/add or put/load
X90° Set new limits
$DFIOB 11 2 Pre-open address of 1/O area’
Post open address of 10B
$DFPRB 13 2 Address of current process 10B (dual 1/0 only; shared
1/O — address of logical output record).
$DFBKL 15 2 Block length {length of data buffer)’
$DFRCL 17 2 Logical record length®
$DFPTR 19 2 Data biock index (address of next record)

! Indicates field used for pre-open DTF.

Figure 22a {Part 2 of 7). Disk DTF (5704-SC2 only}

Define the File Controi Biock

87

Page of GC21-7608-2
Issued 29 September 1978
By TNL: GN21-5649

i
Field f
Name Displacement Length | Contents
$DFSEG 1A 1 Fiie share segment number
$DFXTA 1C 2 sx address of start ot data
$DFMVF 1c {2) | Adadress of direct MVF extent table’
$DFQB 1D i i Device-:ndependent Q code
$DFXTB 1F 2 D s« address of end of data
$DFNUM 1F {2} Numbper of extents (direct MVF}!
|
l SDFSWA 20 1 > Scniedaater work area format-1 label sequence number
SDFNAM 28 8 Foename’
$DFAT3 29 1 Atinbute byte 3':
Bt On Meaning
0 Addrout
; 1 Ordered load
2 Random
. Z Limits
f 4 End of limits — call to open
5 Force end of volume — call to close
G Ontine multivolume
; Reserved
$DFAT4 2A 1 . Art.bute byte 41
Bit On Meaning
0 Compiler access method
! 1 Bypass direct file clear
2 3340s supported
i 3 No verify {main data area)
4.6 Reserved
I 7 Consecutive add from start of file
$DFAT5 2B 1 Attribute byte 51:
Bit On Meaning
0 Format-1 for this DTF
1 File share
2 Copying a PTAM file
3 External buffers
4 External buffers closed
5 Multivoiume file share support
6 CCP task
7 Reserved

! Indicates field used for pre-open DTF.

Figure 22a (Part 3 of 7). Disk DTF (5704-SC2 only)

88

Page of GC21-7608-2
Issued 29 September 1978
By TNL: GN21-5649

Field
Name Displacement Length Contents
$DFSEC 2C 1 Number of sectors to write {spi:t}
$DFWAA 2D 1 Work area A (disk)
SDFWAB 2E 1 Work area B (disk)
$SDFWAC 2F 1 Work area C (disk)
$DFWAD 30 1 Work area D (disk)
$DFRO4 31 1 Reserved
$DFRO6 32 1 Reserved
SDFRMA 35 3 Work area. tength of first part of overiap record
$DFRMB 38 3 Work area, length of second part of overlap record
$DFND1 39 1 Indicator byte 1:
Bit On Meaning
0 Buffer is rosuis of scan read
X 1 Switch butters or pointers in subroutine
j 2 Update poorers in share DTF
3 Partialiy fiiiod adid buffer written
4 Pseudo get
5 High kev fcated {indexed output — MVF)
6 Low key was round
7 Buffer has neen written
$DFND?2 3A 1 | Indicator byte 2 :
i Bit On Meaning
0 Indexed random update - first time indicator
1 First recu o on New voiume
2 MVF end ~f fie
3 End of 4 8y ¥ files
4 Emptv file (sikip inital «ndex search)
3 5 Previous ape-ation was add
: 6 End of file nas beer roached
i 7 EOF on th.s get {iimits not set)
$DFND3 3B 1 indicator byte 3 :
Bit On Meaning
0 Current process buffer contains update
1 Added entnies in input index buffer
2 Records in add buffer were updated
3 End of data in input huffer — indexed
4 Records added
5 Out of sequence add {key sort needed)
6 Current process buffer contains adds
7 New entries in add index buffer

! Indicates field is used for pre-open DTF.
Figure 22a (Part 4 of 7). Disk DTF (5704-SC2 only)

Define the File Control Block 89

Page of GC21-7608-2
Issued 29 September 1978
By TNL: GN21-5649

Field
Name Displacement Length Contents
$DFWAE 3C 1 Work area E (disk)
$DFPUN 3D 1 Physical unit simulation area only
$DFNXR 41 4 Disk address of next record ({CSDD)
$DFSHR 43 2 Address of file share DTF
$DFI0A 46 3 Disk address save area
$DFDAT 48 2 Pointer to current index entry
$DFND5 49 1 Indicator byte 5
Code Meaning
0 Get has not been done
1 Do not flush buffers in close
2-7 Reserved
$DFR11 4A 1 Reserved (simulation area only)

End of Disk DTF for consecutive output

$DFEOF 4D

Disk address of logical end of file (CSD)

End of Disk DTF for consecutive input and update

SDFNXK 4D (3) Disk address of logical end of index {CSD)
$DFKPR 4F 2 Pointer written index {pointer to next buffer entry)
$DFKAD 51 2 Address of user’s key area’

$DFKCR 53 2 Address of key in core {direct)

End of Disk DTF for direct

$DFCUR 53 (2) Address of current key (index)

$DFHI 53 (2) Address of high key (limits)

$DFR12 54 1 Reserved

$DFKXA 56 2 Start extent of index (disk address of first track)
$DFKBF 58 2 Address of index 10B

! Indicates field is used for pre-open DTF.
Figure 22a {Part 5 of 7). Disk DTF (5704-SC2 only)

90

Field
Name Displacement Length Contents
$DFKL 5A 2 Key length'
$DFND4 5B 1 Indicator byte 4

Code Meaning

0 First key invalid in index buffer
1 First add buffer not filled
2 Add area already formatted
3-7 Reserved

$DFKXB 5E 3 Disk address of end of index (CSD)
$DFKD 60 2 Displacement of key in record!
$DFBLX 61 1 Index block size'
$DFR14 62 1 Reserved
$DFR15 63 1 Reserved
$DFFLX 65 2 Disk address of start of index {main data area)
$DFDTX 67 2 Start of disk track index disk address {main data area)
$DFABF 69 2 Address of add index 10B
$DFAPR 68 2 Add index buffer pointer
End of Disk DTF for index sequential input output, and update
$DFMIX 6D 2 Address of in-core index {random)!
$DFLOW 6F 2 Address of low key (limit)
End of Disk DTF for input or update with limits
$DFLST 6F (2) Address of last key {indexed sequential)
$DFHAD 71 2 Address of high add key bucket!
SDFHPK 73 2 Address of high primary key
$DFBYT 75 2 Number of bytes in in-core index’

End of Disk DTF for index random input and update

! Indicates field is used for pre-open DTF.

Figure 22a (Part 6 of 7). Disk DTF (5704-SC2 only)

Define the File Control Block

Field

Name Displacement Length Contents

$DFAPT 77 2 Pointer to next record in add buffer
$DFR16 78 1 Reserved

$DFR17 79 1 Reserved area (simulation area only)
$DFKXP 7C 3 Disk address of end of primary index

End of Disk DTF for index random add, retrieve add, and update add

$DFSLP

$DFR18

$DFSLA

7E

7F

82

2

Save area for last index disk pointer
Reserved

Save area for last index disk address

End of Disk DTF for index sequential add

and update add

$DFSTA
$DFSEQ
$DFNXT
$DFF1S
$DFF1
$DFAR1
$DFXR1
$DFKEY
SDFTAB
$DFENT

$DFVOL

84

85

86

87

C6

C8

CA

cc

CE

DO

D1

2

Multivolume file table pointer

Volume sequence number of current volume
Volume sequence number of next volume
Start of format-1

Format-1 save area

EQV save area

EOV save area

Address of high key from Format-7

Address of multivolume information table
Number of entries in in-core index

Number of volumes online

End of Disk DTF for multivolume file processing

Zigure 22a (Part 7 of 7). Disk DTF (5704-SC2 only)

92

Field
Name Displacement Length Contents
$DFDEV 0 1 Device code:
T1 (tape unit 1} = X“60’
T2 (tape unit 2) = X'68’
T3 (tape unit 3} = X‘70°
T4 (tape unit 4) = X'78’
$DFUPS 1 1 External indicators
$DFAT1 2 1 Attribute byte 1
Bit On Meaning

1 Consecutive

2 Direct

5 Output
$DFAT2 3 1 Attribute byte 2

Bit On Meaning

3 Multiple buffers (data)

7 DTF has been opened
$DFCHA 5 2 Address of next DTF in backward chain
$DFCHB 7 2 Address of next DTF in forward chain
$DFARR 9 2 Address recall register save area {return address)
$DFXRS B 2 XR1 save area (contents of calling program register 1)
$DFLRA D 2 Logical record address
$DFCMP E 1 Completion code

Code Meaning

x40’ Successful completion

X'41’ Permanent error

X'45’ Skip a bad input block

X‘70' End of extent or end of reel

X900’ Wrong length record on input — short
X971 Wrong length record on input — long
X‘FO’ Option 0 to error message

X'F1’ Option 1 to error message

Figure 23 (Part 1 of 4). Tape DTF

Define the File Control Block

93

Field

Name Displacement Length Contents

SDFOPC F 1 Operation code
Code Meaning
X'04’ Read forward
X'06' Read backward
X08’ Write
X0A’ Write tape mark
X'0B’ Rewind
xX'0C’ Backspace file
X'0D’ Rewind and unload
X'OE’ Forward space file
X"1C’ Backspace block
X'1E’ Forward space block
X'40' Variable length
X80’ Fixed length

SDFIOB 11 2 Pre-open address of 1/0 area'

Post-open address of 10B

$DFPRB 13 2 Address of process |10B

$DFLIO 13 {2) Length of 1/O area'

$DFBKL 15 2 Block length!

$DFRCL 17 2 Record length’

$DFPTR 19 2 Pointer to logical record in buffer

$DFCRL 1B 2 Current record length

$DFBCT 1D 2 Block count

$DFRO3 1F 2 Reserved

$DFSWA 20 1 Scheduler work area format—1 index number

$DFNAM 28 8 File name'

! Indicates field is used for pre-open DTF.

Figure 23 (Part 2 of 4). Tape DTF

94

Field

Code

X100’
X
X112’
X220
X217
X'40°
x4’
X507
X‘60’
X611’
X'62’
X707

Name Displacement Length Contents
$DFAT3 29 1 Attribute byte 3
Bits 0 5 are record format bits
Bit On Vleaning

0 Fixed length

1 Variable length

2 Unblocked records

3 Blocked records

4 Spanned records

5 ASCII format D.

6 ASCI| data management present (pre-open)

7 ASCII file (post-open)
$DFAT4 2A 1 Attribute byte 4

Bit On Meaning
0,1 Rewind at close

0 Unload at close

1 Leave at close

2 Basic access method

3 Standard label tape

4 Locate mode

5 No rmultivolume output

6 2TF closed by EQV

7 Resl opened on this fie
SDFATS 2B 1 Attribute byte 5 (Bits 0-7 are reserved)
$DFHTC 2C 1 Error halt code

Meaning

No get operation code

Wrong fength record on input
Wrong length hlock

No put operation code

Wrong length record on output
Permanent tape write error at close
Wrong block count

Permanent tape read error at close
No file statement

File not allocated

Not enough buffer space

No basic operation code

Figure 23 (Part 3 of 4}. Tape DTF

Define the File Control Block

95

Field
Name Displacement Length Contents
$DFSQU 2D 1 Format—1 sequence number
$DFOST 2E 1 ASCII buffer offset byte
Code Meaning
X80’ Offset is 4 bytes for block length
X'00’ No offset specified
Bits 1-7 are reserved for offsets of 0-99.
$DFWRA 30 2 Work area A
$DFWRB 32 2 Work area B
S$DFWRC 34 2 Work area C
$DFWRD 36 2 Work area D
$DFRO05 38 2 Reserved
$DFND1 39 1 Indicator byte 1
Bit On Meaning
0 10B not waited on
1 Truncated block
2 Empty variable block
3 Error reading trailer label
4 Write trailer label
5 DTF closed by EOV
6 EOQOV return via open
7 No end of file reached
$DFND2 3A 1 Indicator byte 2 (bits 0-7 are reserved)
$DFHSA 3C 2 Halt routine save area
$DFSR1 3E 2 EOV register 1 save area
$DFSVD 40 2 EOQOV chain DTF address save area
$DFSVE 42 2 EQV save area

Figure 23 (Part 4 of 4). Tape DTF

96

Field

Name Displacement Length Contents
$DFDEV 0 1 Device code X'40’
$DFUPS 1 1 External indicators
$DFATI1 2 1 Attribute byte 1
Bit On Meaning

0 Indexed

1 Consecutive

2 Direct

3 Multivolume

4 Input

5 Output

6 Update

7 Add
$DFAT2 3 1 Attribute byte 2

Bit On Meaning

0 Device independent DTF

3 Multiple buffers (data)

5 /& read on last input operation

7 DTF has been opened
$DFCHA 5 2 Address of next DTF in backward chain
$DFCHB 7 2 Address of next DTF in forward chain
$DFARR 9 2 Address recall register save area (return address)
$DFXRS B 2 XR1 save area (contents of calling program register 1)
$DFLRA D 2 Logical record address
$DFCMP E 1 Completion code

Code Meaning

X‘40° Successful completion
X‘41" Permanent error

X'42’ End of file

X‘70° End of extent or end of reel

Figure 24 {Part 1 of 5). Device Independent DTF

Define the File Control Block

97

Field
Name Displacement Length Contents
$DFOPC F 1 Operation code
Bit On Meaning
0 Get
1 Put
$DFIOB 11 2 Pre-open address of /O area!
Post-open address of 10B
SDFPRB 13 2 Address of process OB
$DFBKL 15 2 Block length!
$DFRCL 17 2 Record length’
$DFPTR 19 2 Pointer to logical record in buffer
$DFPOV 1A 1 Printer overflow
$DFRO1 1A (1) Reserved
$DFXTA 1C 2 Disk address of start of data
$DFQB 1D 1 Q-byte (device address)
$DFRO2 1D (1) Reserved
$DFBCT 1D (1) Block count
$DFXTB 1F 2 Disk address of end of data
$DFSWA 20 1 Scheduler work area format—1 index number
$DFNAM 28 8 File name!
$DFAT3 29 1 Attribute byte 3
Bits 0-5 are record format bits
Bit On Meaning
0 Fixed length
1 Not used
2 Unblocked records
3 Blocked records
4 Spanned records
5 ASCII format D
6 ASCII data management present (pre-open)
7 ASCII file {post-open)

! Indicates field is used for pre-open DTF.
Figure 24 (Part 2 of 5). Device Independent DTF

98

Field
Name Displacement Length Contents
$DFAT4 2A 1 Attribute byte 4
Bit On Meaning
0.1 Rewind at close
0 Unload at close
1 Leave at close
2 Basic access method
3 Standard label tape
4 Locate mode
5 No multivolume output
6 DTF closed by EQV
7 Reel opened on this file
$DFATS 2B 1 Attribute byte 5 (Bits 0-7 are reserved)
$DFHTC 2C 1 Error halt code
Code Meaning
X110’ No get operation code
X111’ Wrong length record on input
X112 Wrong length block
X220’ No put operation code
X21 Wrong length record on output
X'40' Permanent tape write error at close
X'41’ Wrong block count
X650’ Permanent tape read error at close
X'60’ No file statement
X611 File not allocated
X'62' Not enough buffer space
X770 No basic operation code
$DFSEC 2C (1) Number of sectors to write (split)
$DFWAA 2D 1 Work area A (disk)
$DFSQU 2D (1) Format—1 sequence number {tape)
$DFWAB 2E 1 Work area B (disk)
$DFWAC 2F 1 Work area C (disk)
$SDFWAD 30 1 Work area D (disk)
$DFRO4 31 1 Reserved
$DFRMA 34 3 Work area (disk)

Figure 24 (Part 3 of 5). Device Independent DTF

Define the File Control Block

99

Field
Name Displacement Length Contents
$DFRO6 35 1 Reserved
$DFRMB 38 3 Work area (disk)
$DFND1 39 1 Indicator byte 1
Bit On Meaning
0 10B not waited on
1 Truncated block
2 Empty variable block
3 Error reading trailer label
4 Write trailer label
5 DTF closed by EQV
6 EOQV return via open
7 No end of file reached
$DFND2 3A 1 Indicator byte 2
Bit On Meaning
0 Device=5444 Disk
1 Device=5445 Disk
2 Device=Tape
3 Device=MFCM
4.5 Reserved
6 {OB waited on indicator
7 Write indicator
$DFND3 3B 1 Indicator byte 3
Bit On Meaning
0-3 Reserved
4 Short record on unit record device
5-7 Reserved
$DFRO7 3C 1 Reserved
$DFHSA 3C (1) Hailt routine save area
$DFRO8 3D 1 Reserved area 1 byte (5444 only)
$DFSR1 3F 2 EQV register 1 save area
$DFSVD 41 2 EOV chain DTF address save area
$DFNXR 42 1 Disk address of next record

Figure 24 (Part 4 of 5). Device Independent DTF

100

Field

Name Displacement Length Contents

$DFSPC 43 1 Number of tracks in cylinder

$DFSVE 43 (1 EQV save area

$DFRO9 44 1 Reserved

$DFIOA 47 3 Disk address save area

$DFDAT 49 2 Pointer to current index entry buffer pointer save
area (split)

$DFR10 4A 1 Reserved

$DFR11 4B 1 Reserved area minus 1 byte (5444 only)

$DFEOF 4E 3 Disk address of logical end of file

$DFDVI 58 10 Reserved for independent DTF

Figure 24 (Part 5 of 5). Device Independent DTF

Define the Fite Contro! Block

101

Field
Name Displacement Length Contents
$DFDEV 0 1 Device code X*10°
$DFUPS 1 1 External indicators
$DFAT1 2 1 Attribute byte 1
Not used
SDFAT2 3 1 Attribute byte 2
Bit On Meaning
0 Device independent DTF
1 DTF has been allocated
2 Device is system input device
3 Multiple buffers (if this bit is off, it indicates
the first entry to CRT data management)
7 DTF has been opened
$DFCHA 5 2 Address of the next DTF in backward chain
$DFCHB 7 2 Address of next DTF in forward chain
SDFARR 9 2 Address recall register save area {(return address)
$DFXRS B 2 XR1 save area {contents of calling program register 1)
SDFLRA D 2 Logical record address
$DFCMP E 1 Completion code
Code Meaning
X'40’ Successful completion
X471’ Permanent error
X'42' End of file indicator

Figure 25 (Part 1 of 2). CRT/Keyboard DTF

102

Field

Name Displacement Length Contents
$DFOPC F 1 Operation code
Bit On Meaning
None No operation
0 Input only
0,1 Output/Input, Put/Get
0,3 Input on request
0,1,2,3 Ciear zone portion of OPC
1 Output only
5 Do not blank buffer before operation
45.6,7 Clear numeric portion of OPC
$DFCLB 11 2 Length of data, output
$DFCSB 13 2 Start position, output
$DFCRA 15 2 Address of data, input
$DFCLI 17 2 Length of data, input
$DFCSI 19 2 Start position of input
$DFCQE 1A 1 Console queue element (CQE)
$DFECB 1A (1) Console queue element ECB
$DFQCB 21 7 Console queue element Q-code
$DFREQ 22 1 Console queue element request code
$DFADR 24 2 Address of DTF

Figure 25 (Part 2 of 2). CRT/Keyboard DTF

Define the File Control Block

103

Field
Name Displacement Length Contents
$DFDEV 0 1 Device code:’
3741 = X'40’
$DFUPS 1 1 External indicators'
$DFAT1 2 1 Attribute byte 1!
Bit On Meaning
1 Consecutive
4 Input
5 Output
$DFAT2 3 1 Attribute byte 2
Bit On Meaning
0 Device independent
1 Allocated
2 System input
3 Multiple buffers
7 DTF has been opened
$DFCHA 5 2 DTF chain pointer A {backward)
$DFCHB 7 2 DTF chain pointer B {forward)?
$DFARR 9 2 ARR save area (return address)
$DFXRS B 2 XR1 save area {contents of object program XR1)
$DFLRA D 2 Address of logical record’
$DFCMP E 1 Completion code
Code Meaning
x40 Normal completion
X471’ Controlied cancel taken on permanent 1/O error
X'42 £nd of file (input)

! Indicates field is used for pre-open DTF.
Figure 26 (Part 1 of 2). 3741 DTF

104

Field
Name Displacement Length Contents

Completion codes other than X’40’ are returned before the data manage-

ment function is actually compieted.
$DFOPC F 1 Operation Code:

Bit{s) On Meaning
0 Get
1 Put

$DFI10B 11 2 Pre-open address of 1/0 area’

Post-open address of 10B
$DFPRB 13 2 Address of current process {OB
SDFBKL 15 2 Block length (iength of data buffer)*
$DFRCL 17 2 Logical record length’
$DFPTR 19 2 Reserved
$DFRO1 1A 1 Reserved
SDFXTA 1C 2 Reserved
SDFMVF 1C (2) Reserved
$DFRO2 1D 1 Reserved
$DFXTB 1F 2 Reserved
$DFNUM 1F (2) Reserved
$DFSWA 20 1 Reserved
$DFNAM 28 8 File name’

! Indicates field is used for pre-open DTF.

Figure 26 (Part 2 of 2). 3741 DTF

Define the File Control Block

105

Appendix C: input/Output Blocks

DISK INPUT/OUTPUT BLOCK

You build the disk 10B by issuing the $I/0BD macro
instruction. If you use $RDD, $WRTD, or SWAIT in your
program, you must use the $10ED macro instruction to
assign the offset in the 10B. The format of the |08 and
the labels assigned to the fields are shown in Figure 27.
10Bs for the 5444 Disk Storage Drive, the 5445 Disk
Storage, the 3340 Direct Access Storage Facility, and

the 3344 Direct Access Storage are 30 bytes long.

106

Label Displacement Length Contents
Ho Common equates Tor all devices
b e e e e

SIBECH 0 Wait/post byte - byte 1 of three-byte ECB

SIBCOM 1 Completion code - byte 2 of ECB.

SIBUCMP 2 1 The third byte of ECB. A one-byte completion code indicating the status
of the operation just performed. You should check this byte before
assuming that the data transfer has occurred. Before the wait routine 1s
called, each bit i this by te has the following meaning:

Bit On Meaning
0 Seek has been started on the operation requested
by the 1OB.
1 The operation requested is complete
2 [Data transfer 1s pending on this operation.
3 Data transfer has been started on this operation.
4 A wait occurs for this 10B
5 If bit 7 is also on, there is an error on an associated
1OB; it bit 7 is off, a scan equal has been found.
o) The scan is not satisfied.
7 A permanent error has occurred on this 10B or an
associated 10B.
After the wait routine has finished, the code in this byte has the
following meaning:
Caode Meaning
X404’ Successtul completion
X471 Permanent 1/0 error.
X'42' Scan ot satistied.
X'44" Scan cqual found.
X'4%5' Permanent evror on an associated 108,

SIBOHN 6 4 Address of the next 1OB in tie chain. 10Bs are chained only when the
file requires more than one 1OB. This area 1» always present, even whei
chaining is not used. When the operation specified by this tOB is
complete, this area contains the disk address last used (cylinder/sector
for the 5444 head/record for the 5445},

S0 7 1 The C-byte of the start HO(S1Q) command. You set this byte through
the $IOBD macro mstructior.

SIBRB 8 1 The R-byte of the stert /0 commend. 1t further defines the operaticy
requested. Figure 28 shows the passible R-byte settings for the SIO
command.

Frguie 27 (Pa:r 7 of 4}, Disk YOB Format

Input/Qutput Blocks

107

Labet Displacement Length Contents

$IBEID 9 1 ERP module displacement {D.

SIBDAT B 2 Address of the leftmost byte of your data area. You provide this address
Through the $I0BD macro instruction.

$IBSNS D 2 The area used by the input/ocutput supervisor to contain device status
sense information. The contents of this area are described in Figure 29.

$IBFLG E 1 Indicates special handling required for 1/Q operations through the various
bit settings. You set bits 0 and 4 through the $IOBD macro instruction.
If no special handling is required this byte must be set to X'00’. The
bit settings are:

Bit On Meaning

0 No recovery is to be attempted is a data check, missing
address mark, no record found, or track condition
check error condition occurs.

1 No verification is to be done on write operations.

2 No error logging is to be done if any disk /O error
should occur. Control is to be returned to the calling
routine.

3 Disk 10S should not use the C and S bytes in the 108,
but should pick up the F, C, and S bytes at the end of
the 10B for use in this operation. This bit should be
used only by the system control program.

4 The calling routine is not using disk data management;
therefore, this lOB is not associated with a DTF.

5 There is no load 1/0 of the disk file data register
(DFDR).

6 Error logging is in progress.

7 A data transfer operation involving an alternate track is
in progress.

$IBERR F 1 The area used by disk 10S to count the number of retries required to
cemplete the 1/0 request.

$IBTCB 11 2 Task control block (TCB) address.

$IBWRK 12 1 10S partial completion code.

Figure 27 (Part 2 of 4). Disk IOB Format

108

Label Displacement Length Contents
$IBFL2 13 1 Flag byte for use with the 5445. The meanings of the bits are:
Bit On Meaning
0 Special seek
1 Super 1OB
2 Not used (6704-SC1)
2-3 Specify operation (56704-5C2)
where: X11" Scan
X10" Write
X'01" Read
X'00" Seek
3 Not used {5704-SC1)
4 Reserved
5 Not used (56704-SC1)
b C/S address must be converted but not Q-byte
(5704-5C2)
6 No seek
7 Long form I0B
$IBCC 14 1 The hexadecimal value of the cylinder address where the operation
is to begin {56445 only).
You set this byte through the $IOBD macro instruction.
$IBHH 15 1 The hexadecimal value of the head address where the operation is to
begin {5445 only).
You set this byte through the $IOBD macro instruction.
$IBCB 15 (1) The hexadecimal value of the cylinder address where the operation
is 1o begin {5444 only).
You set this byte through the $10BD macro instruction.
$IBR 16 1 The hexadecimal value of the record address where the operation
is to begin (56445 only).
You set this byte through the $IOBD macro instruction.
$1BSB 16 (1) The hexadecimal value of the beginning sector address of the
operation (5444 only).
You set this byte through the $IOBD macro instruction.
$IBN 17 1 The number of records minus one, in hexadecimal, involved in the
data transfer (5445).
You set this byte through the $I0BD macro instruction.
$IBNB 17 (1) The number of sectors minus one, in hexadecimal, involved in the

data transfer (5444).
You set this byte through the $IOBD macro instruction.

Figure 27 (Part 3 of 4). Disk OB Format

Input/Output Blocks

109

Label
SIBDAD

$IBDCH

$IBDTF

Displacement

19

18

1D

Contents

Painter 1o 5445 1en-byte disk address,

The disk data management chain pointer (5444 and 5145} 1t contains
the addioss of the second of the two YOBs used for doubie bufferiny

The address of the DTF associated with this 1OB

Figure 27 (Part 4 of 4). Disk 10B Format

e

1/0 S10 R-Byte
Operation Settings {Hex) Interpretation
5444 Settings
Controi 30 Seek
00 Data
Read 01 Identifier
02 Diagnostic
3 Verify
Write 00 Data
G1 Identifier
a0 Equal
Scan 0 Low or equal
a7 High or cqual
5445 Settings
Control 014 Seek
01 Recalibrate
Read 00 Key-data
03 Verify key-data
Write [¢]¢] Key-data
00 Key-data equal
Scan 01 Key-data low or equat
02 Key-data high or rqual

Figure 28. R-Byte Settings

TIMER INPUT/OUTPUT BLOCK

if you use the $SIT, $TOD, or SRIT macro instructions in
your program, you must build the timer 10B by issuing the
$TIOB macro instruction. The format of the timer 10B
varies depending on whether DATE-Y or DATE-N is speci-
fied.

Format of Timer 10B When DATE-Y is Specified

Bytes Contents
1 Reserved
2-7 Time
8-13 Date

Format of Timer I0OB When DATE-N is Specified

Bytes Contents

1 Reserved

2-7 Time

8 Return Code
9-10 Reserved

input/Output Blocks

111

Page of GC21-7603-2
Issuerd 29 September 1978
By TNL. GN21-5645

Device

Byte

Bit On

indication

5444 =

NOGOhWN =0

1/0 no-op (single only)
Intervention required
Missing address mark
Equipment check
Data check

No record found
Track condition check
Seek check

~SMOOMREON =D

Scan equa!l

Access arm at cylinder 0
End of cyiinder

Seek busy

Hundred cylinders
Device overrun

Status address A*
Status address B*

5445

~N OO A WN- O

Format error
Intervention required
Missing address mark
Equipment check
Data check

No record found
No-op

Overrun

NS WD - D

Disk drive error

Unsafe

Seek 1 complete

Seek 2 complete

Data operation complete

End of cylinder has been reached
Scan equal

Disk drive 1D**

Bits 6.7

**oBit7

00—Drive 1
01--Drive 2

0--Drive 1
1-—Drive 2

*Indicates which drive on the 5444 had last data transfer:

Figure 29. Device Status Sense information

Page of GC21-7608-2
Issued 29 September 1978
By TNL: GN21-5649

Appendix D: Macro Instruction Summary Chart

Figure 30 is a summary chart containing all valid macro
processor instructions. The macro instructions are listed
in alphabetical order. In addition to the name, three items
are given for each macro instruction:

® Format of the instruction with all valid operands

® Function of the macro instruction

® Maximum number of statements generated

For more detaited information on any of the macro
instructions, see Chapter 2. Macro Instruction Statements.

Macro Instruction Summary Chart 112.1

Page of GC21-7608-2
Issued 29 September 1978
By TNL: GN21-5649

This page intentionally left blank.

112.2

Name of Macro instruction

[Name] | $ALOC | [DTF-address])

[Name] | $CHK [CKL-address]

[Name] | $CKL DTF-address[,SKIP-Y/N] [LREQK-Y/N]
[LRTN-Y/N] [LAST-Y/N]

[Name| } SCLOS | [DTF-address]

$COMN

{Name] | $CQEP | [KEY-number]

[Name] | SCTLT | [DTF-address] [,OPC-code]

[Name] | SDATE | [LABEL-address]

[Name] | $DTFC | IOBA-address, NIOB-number
[,DEV-code]
[,UP-mask] [,CHN-address]
{,RCAD-address] [,OPC-code]
[,DEFER—Y/L\l_] [,CARDI—Y/H]
[PRINT4-Y/N] [FEED-Y/N]
[,STACKR-number] [, READA-address]
[, PUNCHA-address] [,PRINTA-address]
[,READL-number] [,PUNCHL-number]
[,PRINTL -number] [,PRHEAD-mask]
LALIGN-Y/N]

[Name] | $DTFD AC-code, RECL-number, NAME filename,

BLKL-number,iO-address
[,DISK-5444/5445/3340]
[LuP-mask] [,BUFNO-1/2] [, MVF-N/Y]
[,LIM-N/Y] [LORD-N/Y] [,BIN-N/Y]
[,CHN-address] {,RCAD-address}
[LENT-number] [,MVFN-number]
[,KEYL-number] [,KEYD-number]
[LKEY A-address] [,MVFT-address]
[.MSTX-address] [,IBLKL-number]
{.,ADKEY -address] [,EOVK-address]
[.SHR-Y/N] [[EXTBUF-Y/N]

Figure 30 (Part 1 of 6}. Macro Instruction Summary Chart

Page of GC21-7608-2

Issued 29 September 1978

By TNL: GN21-5649

Function

Assigns the file indicated by the DTF to your
program.

Tests for 1/O operation completion in the
check list.

Generates an entry for the check list to be
used by the check routine.

Prepares the device for job termination.

Generates equates.

Generates a parameter list for a program func-
tion key request.

Issues controt commands to the tape device.

Retrieves system date.

Builds a DTF for a card file.

Builds a DTF for a disk file.

The SHR-Y/N and EXTBUF-Y/N_
parameters apply only to Program Number
5704-SC2.

Macro Instruction Summary Chart

Maximum Num-
ber of Statements

Generated

8

None

11

33

210

113

Page of GC21-7608-2
Issued 29 September 1978
By TNL: GN21-5649

Name of Macro Instruction

[Name]

$DTFI

NAME-filename, RECL-number,|O-address
[LAC-IN/OUTI [,BLKL-number]
[LRCAD-address] [, BUFNG-1/2]
[,CHN-address] [,UP-mask]

[Name}

$DTFK

NAME-filename,RECL-number,|O-address
[LAC-1/0] [,RCAD-address] [,.BUFNO-1/2]
[.CHN-address] [,UP-mask]

[Name]

$DTFO

[DISK-Y/N] [,TAPE-Y/N] [,IND-Y/N]
[L[MFCU-Y/N] {,MFCM-Y/N] {,03741-Y/N]
(,D2501-Y/N] [,D1442-Y/N] [,D1403-Y/N]
(,D3284-Y/N] [,CRT-Y/N] [,ALL-Y/N]
[LFIELD-Y/N]

| [Name]

$DTFP

RCAD address,IOBA-address, IOAA-address,
OVFL-number PAGE-number [,DEV-code]
[,UP-mask] [HUC-Y/N] [,CHN-address]
[,PRINT-Y/N] [,SKIPB-number]
[.SPACEB-number] [,SKIPA-number]
[.SPACEA-number] [,RECL-number]

[Name)

$DTFS

[PUTDAT -address] [,PUTLOC-number]
[,UP-mask] [,CHN-address]
[.,PUTLEN-number] [,OPC<ode]
[.GETDAT-address] [,GETLOC-number)
[.GETLEN-number] [, BLANK-Y/N]

[Name]

$DTFT

NAME filename,lO-address, BLK L-number,
RECL-number [,UP-mask] [LAC-IN/OUT]
[,CHN-address] [,BASIC‘Y/N]
[.LRCAD-address] {,MODE-LOCATE/MCVE]
[LMBUFF-Y/N] [,RECFM-ode]
[,LIOA-number] [,SPAN-Y/N] [,CODE-A/E)
[,OSET-B/number] [,END-code] [LMVF-Y/N]

[Name]

$EOQJ

[CANCEL-NORMAL/IMMED/CONTRL]

[Name}

$FIND

NAME-module {,FIND-address] [.LPACK-P/S]

I [Name]

$FTCH

NAME-module name[,PACK P/8]

l Figure 30 {Part 2 of 6). Macro Instruction Summary Chart

114

Function

Builds a DTF for a device independent file.

Builds a DTF for a 3741 file.

Establishes labels for fields on a DTF.

Builds a DTF for a printer file.

Builds a DTF for a CRT file.

Builds a DTF for a tape file.

Terminates the job and returns control to the
SUpervisor.

Provides the disk address of a module in the
O tibrary.

Finds and loads an O module and passes
control to it,

Maximum Num-
ber of Statements
Generated

88

16

None

33

37

67

23

21

Name of Macro Instruction

[Name]

$GETC

[DEV-code] [,DTF-address] [,EQOF-address]
[,ERR-address] {[.OPC-Y/N]
[,READL-number] [,CARDLY/_N_}
[.STACKR-number]|

[Namel

$GETD

{AC-—ode]
[EBAC-code] l

{,DTF-address] [,ERR-address]

[,EOF-address] [,NFR-address]
{ LSTV-address| [NOKY-address]

[Name]

$SGETI

[DTF-address] [,RCAD-address]
{.ERR-address] [,EOF-address)

[Name]

$GETK

EOF-address {,DTF-address] [,ERR-address}

[Name]

$GETS

[DTF-address] {,GETDAT-address]

[, GETLEN-number] [,GETLOC-number|
[.LBLANK-Y/N] [, OPC-IN/INR/N]|
{,EOQOF-address]

[Name]

$GETT

MODULE-name{,DTF-address]|
[,RCAD-address] [,OPC-Y/N]
[,ERR-address}] [,EQF-address]

[Name}

$GPC

[DEV-codel [,DTF-address] [,OPC-code]
[.DEFER-Y/N] [[CARDI-Y/N]
[,PRINT4-Y/N] {,FEED-Y/N|
[,STACKR-number| [,READL-number]
[,PUNCHL-number] [,PRINTL-number|
[,PRHEAD mask] [,EQF-address]
[,ERR-address]

[Name]

$10BD

[DISK-5444/5445/3340} [,CYL-number]
[,SCTR-number} [[HEAD-number|
[,NUM-number] [BUFF-addiess]
[,O-number] [LERREC-IOS/USER/
[LLOG-Y/N] [,VER-Y/N] [,CHN-address]

$I0OED

{Name

$LMSG

[FORMAT-code} |,COMP-code!
[,HALT-code] [,SUBH-code| |,SEV-code]
[.DEF-code] [,OPNO-Y/N] [,OPN1-Y/N]
[LOPN2-Y/NI [,OPN3-Y/N] ITLEN-number!
[,TADR-address]

’

Figure 30 (Part 3 of 6). Macro Instruction Summary Chart

Function

Gets a record from a card fiie.

Gets a record from a disk file via disk data
management.

The EBAC~ode parameter applies only to
Program Number 5704-SC2.

Gets a record from a device independent file.

Gets a record from a 3741 file.

Gets a record from the CRT keyboard.

Gets a record from a tape file.

Constructs a get, then a put interface to
a card file.

Butlds an 10B for a disk file.

Estahlishes labels for fields in the disk 10B.

Generates log hist for hait message. Linkage
to fog may also be generated,

Macro Instructi

Page of GC21-7608-2

Issued 29 September 1978

By TNL: GN21-5649

Maximum Num-
ber of Statements

Generated

31

46

32

48

35

37

40

None

on Summary Chart

115

Page of GC21-7608-2
Issued 29 September 1978
By TNL: GN21-5649

Name of Macro instruction

[{Name]

$LOAD

NAME-module name [,FIND-address]
[,LLOAD-2/address} [LUSE-R/NR}
[,PLIST-address] [,PACK-E/SJ

[Name]

$LOAD

FIND-address [,LLOAD-2/address]
[PACK-P/S]

[Name]

$LOG

[LIST-address] [,OPNO-address]
[LOPN1-address] [,OPN2-address]

$LOGD

[Name]

$LWTO

TLEN-number, TADR-address [,COMP-code]
[,HALT-code| [,SUBH-code] [,REPLY-Y/N]
[,BLEN-numberi [,RADR-address]

[Name]

$SOPEN

[DTF-address]

[Name]

$PFKT

[CQE-address) [WAIT-Y/N]
[,LABEL-address]

[Name]

$PFKY

[CQE-address] [,ERR-address]

[Name]

$PGS

(DTF-address] [,BLANK-Y/N| [,OPC-Y/N]
[,PUTDAT-address] [,PUTLEN-number]
[,PUTLOC-number} [,GETDAT-address|
[,GETLEN-number] [,GETLOC-number]
[,LEOF-address]

[Name]

$PUTC

[DEV-codej [,DTF-address] {,OPC-code]
[.[DEFER-Y/N] [,PRINT4-Y/N|
[,FEED-Y/N] [STACKR-number]
[,PUNCHL-number] [PRINTL-number|
[,PRHEAD-mask} [,ERR-address]

[Name]

$PUTD

[AC-code]

[EBAC-<ode]

[,DTF-address] [,ERR-address]
[,EOX-address] [,DUP-address]
[,.SERR-address] [,KERR-address]
[LUPD-Y/N] [,LSTV-address]
[LNOKY-address] [,HKER-address)

[Name]

$PUTI

{,DTF-address} [,RCAD-address]
[,ERR-address] [,EOX-address]

| Figure 30 (Part 4 of 6). Macro Instruction Summary Chart

116

Function

Finds and loads or loads a previously found O
module into main storage.

Generates linkage to system log.

Generates offsets for log lists.

Generates parameter list for write to operator
or write to operator with reply function.

Prepares a previously allocated file for data
transfer.

Tests whether a program function key that
was allocated by $PFKY has been pressed.

Reguest allocation of a program function
key.

PUT/GET operation through CRT data
management.

Puts a record to a card file,

Writes a record on a disk file via disk data
management.

The EBAC-code parameter applies only to
Program Number 5704-SC2.

Puts a record to a device independent
fite.

Maximum Num-
ber of Statements
Generated

a1

29

None

22

66

30

67

32

Name of Macro Instruction

I[Namell $PUTK| [DTF-address] [,ERR-address]

[Namei| $PUTP [DEV-code! [,DTF-address] LPRINT-Y/NI
[,SKIPB-number] [,SPACEB-number]
[,SKiIPA-number] [, SPACEA-number]
[LERR-address}] [,OVFL-address]

{Name]| $PUTS |DTF-address) [,BLANK-Y/_N_] [,OPC»Y/I.ll_]
[,PUTDAT-address] [,PUTLOC-number]
[PUTLEN-number]

[{Namel| $PUTT | MODULE-name |[,DTF-address]
[, RCAD-address] [,OPC-Y/N]
[,LENAD-address] { ERR-address]

[Name]! $RDD 1OB-address,CS-address, NSECT-number
[,DISK-5444/5445/3340)

IName|| $RDT [DTF-address] [,RCAD-address]
[, DIRECT-FORW/BACK]

[Namz|{ SREAD|{ [LIST-address] [,OPC-code] [,EOF-address}
{,EQJ-address] [,ERR-address]

[Name| | $RIT [10B-name] [,CANCEL-Y/N|

SRLSD

[Name] | $RLST | BUF1-address, WORK-address|,BUF2-address]

[Name] | SROLL | [INDEX-1/2}

{Name] | $SIT [10B-name] {,TYPE-DEC/BIN/TU/TOD]
[ITYPE-REAL/WAIT/TASK]

[Name] | 8SNAP | ID-hex,START-address, END-address

[Name] [$TIOB | [DATE-Y/N]

‘ Figure 30{Part 5 of 6). Macro Instruction Summary Chart

Page of GC21-7608-2

Issued 29 September 1978

By TNL: GN21-5649

Function

Puts a record to a 3741.

Prints a record via printer data management.

Puts a record to the CRT via data management.

Puts a record to a tape file.

Reads a record from a disk file via the input/

output supervisor.

Reads a record from a tape file via basic
tape data management.

Generates linkage to system reader.

Returns the amount of time remaining in a
time interval.

Generates offsets in system reader parameter
list.

Generates system reader parameter list,
buffers, and work area.

Generates linkage to rollout/roliin. This
macro applies only to Program Number
5704-SC1.

Sets a time interval.

Prints the specified area of main storage on
the system logging device.

Generates a timer 10B.

37

38

33

21

32

None

17

10

Macro Instruction Summary Chart

Maximum Num-
ber of Statements
Generated

117

Page of GC21-7608-2
Issued 29 September 1978
By TNL: GN21-5649

Name of Macro instruction

[Namel |} $TOD [10B-name] [,REF-Y/N]
[,TYPE-DEC/BIN/TU]

[Name]} $TRAN| [TRL-address]

[Name]| $TRL TO»address,FROIVI-address,LEN-number,
TRT-address

[Name] | $TRTB [CODE-E/A] [,HEX-hex]

[Name]{ $WAIT | [10B-label] [,ERR-address]

[Name]| $WRTD !0B-address,CS-address, NSECT-number
[.DISK-5444/5445/3340]

[Name]| $WRTT| [DTF-address] [,LRCAD-address]
[LOPC-Y /N]

[Name]| $WTT [DTF-address! [,ERR-address]
[LEOF-address] [,EOT-address)
[LWLRS-address] [, WLRL.-address]

[Name]| $XCTL | NAME-module name[,L OAD-2/address]
[LPACK-P/S]

I Figure 30 (Part 6 of 6). Macro Instruction Summary Chart

118

Function

Returns the time of day and the system date
to the program,

Translates a record using the system translate
routine.

Builds a parameter list to pass information to
the system translate routine.

Generates an EBCDIC to ASCII or an ASCII
to EBCDIC translate table.

Waits for completion of a disk input/output
operation,

Writes a record on a disk file via the input/
output supervisor.

Writes a record to a tape file via the basic
tape data management.

Waits for completion of a basic tape data
management /O operation,

Finds and loads a module at a specified
address and passes control to it.

Maximum Num-
ber of Statements
Generated

258

15

19

21

43

22

$ALOC (allocate space) macro instruction 23
$CHK ({check 1/0 completion) macro instruction 26
$CKL (generate checklist) macro instruction 25
$CLOS (prepare device for termination) macro instruction 26
$COMN (common equates) macro instruction 27
$CQEP (generate parameter list program function key) macro
instruction 61
$CTLT (control command for tape) macro instruction 54
$DATE (obtain system date) macro instruction 19
$DTFC (card DTF) macro instruction 28
$DTFD (disk DTF) macro instruction 36
$DTFI {device-independent DTF) macro instruction 56
$DTFK {3741 DTF) macro instruction 48
$DTFO (generate DTF offsets) macro instruction 27
$DTFP (printer DTF) macro instruction 33
$DTFS (CRT DTF) macro instruction 58
$DTFT (tape DTF) macro instruction 49
$EQJ (end-of-job} macro instruction 20
$FIND (find directory entry) macro instruction 13
$FTCH (load moduie pass control) macro instruction 16
$GETC (card get interface) macro instruction 30
$GETD (disk get interface) macro instruction 40
$GETI (device-independent get interface)
macro instruction 57
$GETK (3741 get interface) macro instruction 48
$GETS (get record from CRT/keyboard macro instruction 59
$GETT (tape get interface) macro instruction 52
$GPC (interface reading, punching and printing
cards) macro instruction 32
$10BD (input/output block disk} macro instruction 45
$I0ED (input/output block offsets) macro instruction 46
$LMSG (parameter list message system log)
macro instruction 11
$LOAD (load module) macro instruction 13
$LOG (linkage system log) macro instruction 12
SL.OGD (displacements system log) macro
instruction 12
$LWTO (parameter list WTO or WTOR) macro
instruction 10
$OPEN (prepare an 1/O device) macro instruction 24
$PFKT (test program function key pressed) macro
instruction 62
$PFKY (allocate program function key to program)
macro instruction 61
$PGS (put/get operation CRT data management) macro
instruction 59
$PUTC (card put interface) macro instruction 31
$PUTD (disk put interface) macro instruction 44
$PUTI (device-independent put interface) macro
instruction 57
$PUTK (3741 put interface) macro instruction 49

$PUTP {printer put interface) macro instruction 34

$PUTS (put record CRT data management) macro
instruction 60

$PUTT (tape put interface) macro instruction 53

$RDD (read from disk) macro instruction 46

$RDT (read from tape) macro instruction 53

SREAD (linkage system reader function) macro
instruction 9

$RIT (return interval time) macro instruction 20

$RLSD (system reader parameter list offsets) macro
instruction 8

$RLST (system reader parameter) macro instruction

$ROLL (rollout/rollin linkage) macro instruction 12

$SIT (set interval timer) macro instruction 19
$SNAP {snap dump main storage) macro instruction
$SOURCE file 2

$TIOB (timer 10B) macro instruction 19

$TOD (return time and date) macro instruction 20

$TRAN (interface translate routine) macro instruction
$TRL {translate parameter list) macro instruction 17

$TRTB (translate table) macro instruction 18

SWAIT (wait disk 1DS completion) macro instruction

$WRTD (write to disk) macro instruction 47

SWRTT (write to tape) macro instruction 54

SWTT (wait tape 1/O completion) macro instruction

$XCTL (ioad module exchange control} macro
instruction 17

access method 40

allocate program function key to a program ($PFKY)
allocate space ($ALOC) 23

areas, simulation 35

block

disk input/output 106

input output 106

timer input/output 111
block for disk ($10BD), input/output 45
block offsets ($10OED), input/output 46
buffer storage requirements

disk 37
tape 51
buffers

double card device 29

formatted 24

initialized 24

single card device 29
byte settings, R 111

Index

8

18

18

47

55

61

Index

119

card {$DTFC), file for 28
card device support 28

card get interface ($GETC) 30
card put interface ($PUTC) 31

cards ($GPC), printing, punching, and reading interface 32

chaining

allocate space routine 23

close routine 27

DTFs 23

open routine 24
chart, summary, instruction, macro 112
check for 1/0 completion ($CHK) 26
check routine operation 26
checklist ($CKL) 25
close routine

input 26

output 26
codes, macro instruction error 67
coding conventions 1
command for tape (8CTLT), control 54
comments 3
COMMON eguates ($COMN) 27
completion ($CHK), check for 1/0 26
completion ($WAIT), wait for disk 10S 47
completion ($WTT), wait for tape 1/O 55
configuration, minimum system 4
considerations, programming 7
construct a card get interface ($GETC) 30
construct a card put interface ($PUTC) 31

construct a device independent get interface ($GETI)
construct a device independent put interface ($PUTI)

construct a disk get interface ($GETD) 40

construct a disk put interface ($PUTD) 41

construct a printer put interface ($PUTP) 34

construct a tape get interface ($GETT) 52

construct a tape put interface ($PUTT) 53

construct a 3741 get interface ($GETK) 48

construct a 3741 put interface (SPUTK) 49

construct an interface for reading, punching, and
printing cards ($GPC) 32

continuation coding 3

control ($FTCH), load a module and pass 16

control ($XCTL), load a module and exchange

control blocks, file 68

control command for tape ($CTLT) 654

CRT ($DTFS), file 58

CRT data management ($PGS), put get operation

CRT support 58

17

59

CRT via data management ($PUTS), put a record 60

CRT/keyboard 58
CRT/keyboard ($GETS), get a record 59
CRT/keyboard DTF 102

120

57
57

data areas, main 35
data management {$PGS), put get operation
through CRT 659
data management {$PUTS), put CRT record 60
data management interface {tape basic)
control 54
read 53
write 54
data management routines
card 30, 31
CRT/keyboard 59, 60
device independent 57
disk 40, 41
printer 34
tape 52,53
data transfer, input/output file 24
date (8DATE), obtain system 19
date ($TOD), return time and 20
date-N is specified, timer IOB 111
date-Y is specified, timer IOB 111
default value, definition 1
define the file
card ($DTFC) 28
CRT ($DTFS) 58
device independent ($DTFI) 56
disk (3DTFD) 36
file sharing 39
multivolume 52
printer ($DTFP) 33
tape ($DTFT) 49
3741 ($DTFK) 48
define the file control blocks 68
deleting macro instructions 4
device (BOPEN), prepare I/O 24
device independent DTF 97
device independent get interface ($GETI) 57
device allocation 24
device independent ($DTF1), file 56
device independent put interface (§PUTI) 57
device independent support 56
device support
card 28
CRT/keyboard 58
device-independent 56
disk 35
general 22
printer 33
tape 49
3741 48
device termination ($CLOS), prepare 26
devices supported 4
devices, input and output 4
directory entry ($FIND), find 13
disk ($DTFD), file 36
disk ($10BD), input/output block 45
disk ($RDD), read 46
disk (SWRTD), write 47
disk buffer storage requirements 37
disk data management interface, updating a record
disk data management modules, list 42,43

41

disk device support 35
disk DTF {5704-SC1 only) 79
disk DTF (5704-SC2 only}) 86
disk get interface (§GETD) 40
disk input/output block 106
disk input/output supervisor interface 45
disk 10B format 107
disk 1OS completion ($WAIT), wait 47
disk put interface (PUTD) 44
disk routines
get 40
put 41
read 46
wait 47
write 47
disk, update 41
displacements for system log (SLOGD) 12
display support 58
DTF
card 28
CRT/keyboard 58
device-independent 56
disk 36
printer 33
tape 49
DTF defined
field contents 27
field lengths 27
labels 27
offsets 27
post-open 24
pre-open 24
DTF descriptions
CRT/keyboard 102
device-independent 97
disk (6704-SC1 only) 79
disk (5704-SC2 only) 86
general 68
line printer 75
MFCM 71
MFCU 69
tape 93
1442 73
2501 77
3741 104
DTF
chaining 23
checklist 25
dump main storage ($SNAP), snap 18

end-of-job ($EOF) 20
entry ($FIND), find directory 13
equates
generate 27
labels 8
system reader parameter list 8
equates ($COMN), COMMON 27
error codes, macro instruction 67
error information 67
exchange control {$SCTL), load module and

file control blocks, define 68
file, define (see define the file)
find {form 1), load 13
find a directory entry ($FIND) 13
find parameter list after load execution 15
find parameter list description 14
format of timer 10B
DATE-N specified 111
DATE-Y specified 111
format, disk IOB 107
function ($READ), linkage to system reader

function key pressed (§PFKT), test for program 62
function key request ($CQEP), parameter list for program 61

function key support, program 61

function key to a program {$PFKY), allocate program 61

general 1/O support 22

general SCP support 12

generate a checklist ($CKL) 25

generate a parameter list
message on system log ($LMSG) 11
program function key request ($CQEP)
WTO or WTOR ($LWTO) 10

generate a put/get operation through CRT data management

($PGS) 59

generate a system reader parameter list ($RLST)

generate a translate parameter list ($TRL)
generate a translate table ($TRTB) 18

generate an interface to the transiate routine ($TRAN)
generate displacements for system log ($LOGD)

generate DTF offsets ($DTFO) 27
generate equates 27
generate program function key request 61

generate the linkage to the system log ($LOG)

generate timer |OB ($TIOB) 19
get
card 30
CRT/keyboard 59
device-independent 57

disk 40
tape 52
3741 48

get a record from the CRT/keyboard ($GETS)

18

get input operation through CRT data management ($PGS)

halt/syslog routine 23

Index

59

121

I/0 completion {$CHK}, check 26
1/0 compietion {$WTT), wait for tape 55
1/0 device (SOPEN), prepare 24
1/0 support, general 22
information, error 67
input devices supported 4
input/output block
disk 106
timer 111
input/output block for disk ($10BD) 45
input/output block offsets ($I0ED) 46
input/output blocks 106
input/output supervisor interface {(disk)
read 46
wait 47
write 47
input/output support 22
input
close routine 26
open routine 24
instructions
delete macro 4
macro 4
macro (listof) 5
writing macro 1

interface
card get 30
card put 31

device independent get 57

device independent put 57

disk get 40

disk put 41

printer put 34

reading, punching, and printing cards 32
tape get 52

tape put 53
translate routine 18
3741 get 48
3741 put 49

interrupt program 12
interval time ($RIT), return 20
interval timer ($SI1T), set 19
10B

formatted 24

printer 33

tape 50

timer, build 19

description 111

format 111
10B, disk

build 45

description 106

storage requirements 37
108 (input/output supervisor) routines

read 46

write 47

122

jobend 20
job termination, device 26

key pressed, test for program function 62

key request, parameter list for program function

key support, program function 61
key to program, allocate program function
keywords 1

label restrictions
duplicate labels 12
use of $ symbol 7
warning 27
labels
disk 10Bs 46
equates 8
line printer DTF 75
linkage to the system log 12

61

linkage to system reader function (SREAD)

linkage, rollout/rollin {$ROLL) 2
list
description
find parameter 14
load parameter 16
parameter
find after load execution 15
message on system log 11
program function key request 61
system reader offsets 8
translate 17
WTO or WTOR 10
system reader parameter 8

load a module and exchange control ($XCTL)

load @ module and pass control ($FTCH)
load a module ($LOAD) 13
load only {(form 11} 16
load parameter list description 16
load with find {(form1) 13
log
definition 9
linkage to the system 12
parameter list for message on system
log support, system 9
log, disptacements for system 12

16

1

9

17

61

machine configuration 4
macro instruction

$ALOC (allocate space) 23

$CHK {check /O completion} 26

$CKL (generate checklist) 25

$CLOS (prepare device for termination) 26
$COMN (COMMON equates) 27

$CQEP (generate parameter list program function key) 61
$CTLT (control command for tape) 54
SDATE (obtain system date} 19

$DTFC (card DTF) 28

$DTFD (disk DTF) 36

$DTFI (device-independent DTF) 56

$DTFK (3741 DTF) 48

$DTFO (generate DTF offsets) 27

$DTFP {printer DTF) 33

$DOTFS (CRT DTF) 58

SDTFT (tape DTF) 49

$EOQJ {end-of-job) 20

SFIND {find directory entry} 13

$FTCH (load module pass control} 16

$GETC (card get interface) 30

$GETD (disk get interface) 40

$GET! (device-independent get interface) 57
$GETK (3741 get interface} 48

$GETS (get record from CRT/keyboard) 59
$GETT (tape get interface) 52

$GPC (interface reading, punching, and printing cards) 32
$10BD ({input/output block disk) 45

$IOED (input/output block offsets) 46
$LMSG (parameter list message system log) 11
$LOAD {load module} 13

$LOG (iinkage system log) 12

$LOGD (displacements system log} 12
$LWTO (parameter list WTO or WTOR) 10
$OPEN {(prepare an 1/O device) 24

$PFKT (test program function key pressed) 62
$PFKY (allocate program function key to program) 61
$PGS (put/get operation CRT data management) 59
$PUTC (card put interface) 31

$PUTD (disk put interface} 44

$PUTI (device-independent put interface) 57
$PUTK (3741 put interface) 49

$PUTP (printer put interface) 34

$PUTS (put recaord CRT data management) 60
$PUTT (tape put interface) 53

$RDD (read from disk) 46

$RDT (read from tape) 53

SREAD (linkage system reader function} 9
$RIT (return interval time} 20

$RLSD (system reader parameter list offsets) 8
$RLST (system reader parameter) 8

$ROLL (rotlout/rollin linkage} 12

$SIT (set interval timer) 19

$SNAP (snap dump main storage) 18

macro instruction {continued)
$TIOB (timer 10B}) 19
$TOD {return time and date) 20
$TRAN (interface translate routine} 18
$TRL (translate parameter list) 17
$TRTB (translate table) 18
$SWAIT (wait disk DS completion) 47
SWRTD (write to disk) 47
SWRTT (write to tape) 54
$WTT (wait tape 1/O completion) 55
$XCTL (load module exchange control) 17
macro instruction statements (see chapter 2)
macro instructions

coding 1
definitions 1
deleting 4
error codes 67
listof 5

sample program 66

summary chart 111
macro processor

overview 2

register usage 7

residence 4

restrictions 7
main data areas 35
main storage ($SNAP), dump, snap 18
message on system log, parameter list for 11
MFCM DTF 71
MFCU DTF 69
minimum system configuration 4
Model 15 translate routine 17
module ($LOAD), loada 13
module and exchange control ($XCTL), loada 17
module and pass control ($FTCH), loada 16
multivolume file support 52

name field, description 1

obtain system date ($DATE) 19
OCL for macro processor 63

offsets
device and access methods 27
disk 41

system log parameter list 10, 12
open routine
input 24
output 24
operand 1
operation code 1
operation
check routine 26
translate routine 17
option 1
output
close routine 26
open routine 24
output devices, supported 4

Index

123

pack, system 4
parameter list

find macro 13

load description 16

log and/or message to operator 11

program function key 61

support system log 10

system log message 11

system log WTO 10

system reader 8

translate routine 17

write to operator 10
pass control {($FTCH), ioad a module and 16
prepare a device for termination ($CLOS) 26
prepare an 1/O device (OPEN) 24
printer data management interface 34
printer DTF description 75
printer support 33
processor, macro ($MPXDV) 2
program control

exchange 17

pass 16
program function key

muitiple usage 62

parameter list 61

request 61
support 61
test 62

program, sample 63
programming considerations 7
put

card 31

CRT/keyboard 60

device-independent 57

disk 41

printer 34

tape 563

3741 49

put a record to the CRT via data management ($PUTS)

Q-byte 46

R-byte settings 111
read
card ($GPC) 32
disk ($RDD) 46
tape ($RDT) 53
reader support, system 8
record length
device-independent 56
tape 50
register usage 7
residence of macro processor 4

124

restrictions

allocate space 23

labels (see label restrictions)

macro processor 7

main data areas 35

rollout 12

simulation areas 35

telecommunications 23
return codes, system reader function
return interval time ($RIT) 20
return time and date ($TOD) 20
rollout routine 12
rollout/rollin linkage {$RDLL) 12
routines, data management

card 30, 31

CRT/keyboard 59

device independent 57

disk 40, 41
printer 34
tape 52,53

tape-basic 53, 54

sample program 63
macro instructions used 66
oCcL 63
purpose of the 63
termination 63
SCpP 7
SCP support, general 12
set interval timer ($SIT) 19
simulation areas 35
snap dump main storage ($SNAP)
statement, OCL 62
supported devices 4
system configuration, minimum 4
system control program {see SCP)
system date 19
system input devices 4
system log support 9
system pack 4
system reader
devices 8
function 9
parameter list 8
parameter list offsets ($RLSD)
support 8
system services macros 7

8,9

tape data management interface
control commands 54
get 52
put 53
read 53
write 54
tape data management routines 52
tape data management routines {basic) 53
table of extents, disk 37
table, translate 17
tape buffer storage requirements 50
tape device support 49
tape routines
control 54
get 52
put 53
read 53
wait 55
write 54
terminate device 2@
test for program function key pressed ($PFKT)
time and date, return 20
timer 10B (see {OB)
timer, setting 19
translate parameter list ($TRL) 17
translate routine operation 17
translate table 17

wait
disk 47
tape 55

wait for disk 10S completion 47
wait for tape 1/0 completion (SWTT) 5
write to

disk (SWRTD) 47

operator (SLWTO) 10

tape (SWRTT) 54

62

Index

125

126

Technical Newsletter This Newsletter No. GN21.5649

Base Publication No. G(C21-7608-2
File No. S3-36

Previous Newsletters Ngne

IBM System/3 Model 15
System Control Programming Macros
Reference Manual

© IBM Corp. 1973, 1975, 1976

This technical newsletter, a part of version 03, modification 00 of IBM System/3 Model 15 System
Control Program Number 5704-SC2 (and also applicable to version 06, modification 00 of IBM
System/3 Model 15 System Control Program Number 5704-SC1), provides replacement pages for the
subject publication. These replacement pages remain in effect for subsequent versions and modifications
unless specifically altered. Pages to be inserted and/or removed are:

Cover, edition notice
21,22

27, 28

37 through 44

57, 58

61, 62

87 through 90

111, 112

112.1, 112.2 (added)
113 through 118

Changes to text and illustrations are indicated by a vertical line at the left of the change.

Summary of Amendments

® Miscellaneous technical changes

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901

©IBM Corp. 1978

Date 29 September 1978

Printed in U.S.A.

Technical Newsletter This Newsletter No. GN21-5700
28 March 1980

Date
Base Publication No. GC21-7608-2
File No. 53-36
GN21-5649

Previous Newsletters

IBM System/3 Model 15
System Control Programming Macros
Reference Manual

©1BM Corp. 1973, 1975, 1976

This technical newsletter applies to version 8, modification 0O of the IBM System/3 Model 15 System
Control Programming Macros and provides replacement pages for the subject publication. These
replacement pages remain in effect for subsequent versions and modifications unless specifically altered.
Pages to be inserted and/or removed are:

7.8
35, 36
45 through 48

Changes to text and illustrations are indicated by a vertical line at the left of the change.

Summary of Amendments
Miscellaneous technical changes

Note: Please file this cover letter at the back of the manual to provide a record of changes.

|BM Corporation, Publications, Department 245, Rochester, Minnesota 55901

© IBM Corp. 1980 Printed in U.S.A.
p.

Technical Newsletter This Newsletter No. GN21-5726

Date 26 September 1980

Base Publication No. GC21-5207-1

File No. S3-34

Previous Newsletters None

IBM System/3

Model 15D

System Measurement Facility
Reference and

Logic Manual

©1BM Corp. 1978, 1979

This technical newsletter applies to the current version and modification of the applicable System/3
program listed in the edition notice and provides replacement pages for the subject publication.

These replacement pages remain in effect for subsequent versions and modifications unless specifically
altered. Pages to be inserted and/or removed are:

1-5, 1-6

Changes to text and illustrations are indicated by a vertical line at the left of the change.

Summary of Amendments
Change to PERMANENT DISK ERROR message.

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901

©1BM Corp. 1980

Printed in U.S.A.

GC21-7608-2

International Business Machines Corporation
General Systems Division

5775D Glenridge Drive N.E.

Atlanta, Georgia 30301

(USA Only)

General Business Group / International
44 South Broadway

White Plains, New York 10601

U.S. A,
v “igpet

(9€-€S "ON 2alt4) g/waisAs N8I

“V'S'N Ul parulid

2-809/-1209

GC21-7608-2

IBM System/3 Model 15

System Control Programming Macros

Reference

V'STN 3yl Ul pajiew §1 Alessaosu abelsci un @

SS3IPPY

\\\\\\ awen "Wg1 J0 Auadoud ays awodsq suonsabbns pue sIUSWIWOD |1y (310N

‘paisanbai si Ajdau j1 3do8y) D

wawiwoy 13quuinpy abey

'$S94PPE pUE dWeu JNOA apn|dul
noA papiaoad ‘spew Butaq Jou si sbueyd e Aym noA (181 1o ‘uoneoiqnd
3yl Aj11ejo 40 1931102 1M 3p, w0y pred-abelsod syl Buisn Aq 11 1noge
SN |31 9sesid "uonedlgnd siy) ul uoeWLIO UL Buipea|siw 10 8jeiNddRUY

10113 Jaquinpy abey
"Ajdai O\ (U0 Os pue ‘uoielisnp ‘|eatydesbodAl) uonesrgnd uy douig
"UO(1BD0} JNOA 153483U 301JJ0 YduRIQ NG| BY) O3 10 3ARIUASAICRI NG| SNOA 01 PaIdaLIP G PINOYs ‘213 ‘suoiiesnqnd Jeucilippe 4oy sisanbau ‘110ddns

Burwweiboid pyg| ui sebueyd ‘swaisAs g 1noge suoiisanb jediuyda | -suonediiqnd o) sabueyd 1sanbai 10 s10410 uon eI GNd AJ1Uap! 03 AJuo WO} S1Y) 3sn asesq

WHO4 INIWWOD S, H3av3y

GC21-7608-2

_—— - — — — —3ubuoyin) — — — —

Fold Foid
FIRST CLASS
PERMIT NO. 387
ROCHESTER, MINN.
|
|
BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED iN THE UNITED STATES L]
|
POSTAGE WILL BE PAID BY . . . —
]
L]
T
. —
IBM Corporation R
General Systems Division ——
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901
Fold Fold

International Business Machines Corporation
General Systems Division

5775D Glenridge Drive N.E.

Atlanta, Georgia 30301

(USA Only)

General Business Group / International
44 South Broadway

White Plains, New York 10601

U.S. A.

{International)

(9€-ES 'ON 3|!d) g/waisAs NG|

VSN ul pajulg

2-809/-12239

GC21-7608-2

IBM System/3 Modei 15

System Control Programming Macros

Reference

V'STN 8yl Ul pajlew 41 A1essaddu abeisod oN ¢

$S3IPPY

T B - awep) ‘g1 30 Aviadouid ayl awo00sq su01Isabbns pue sJUBWIWOD J1y a10p

‘paisanbai s) A|das) 3o8y) D

IUBUWILWOY 1aquiny abey

'$S3UPPE pUR dWeu JNOA apnjoul
noA papiao.id ‘apew Buiaq 10u s1 abueys e Aym NOA |93 10 ‘uoneaygnd
3Y3 Aj1e1D 40 1081100 |IM B\ ‘Wiioy pied-abelsod siyl Buisn Aq 11 1noge
SN |31 8sesjd ‘uonedlgnd sy} ui uotzewoyus buipesisiw Jo ajesnadeu| *A|das o (U0 Os pue ‘uoileJISN|} ‘learydesbodAl) uonearignd us 10443

Stw‘, Jaquinyy abey

"U0NEJ0| INOA 158.iBAU 931430 YIURIG NG| Y} O JO BAIIBIUBSAINBI NG| 4NOA O1 PaldalIp aq PInoys ‘018 ‘suonesiiqnd jeuoilippe 4oy s1sanbai ‘1ioddns
Bulwwesbo.d g | ui sabueyd ‘swaisAs W81 1noge suonsanb jeatuysa | -suonealiqnd o) sabueys 3sanbal 40 siou8 uonedtignd Aji3uap) 03 AJuo w04 siys asn asea|q

WHOd4 LNJWIOD S, H3av3y

GC21-7608-2

—_ — — — — — — U buo|yINY — - — —

Fold Fold
) o o |
FIRST CLASS I
PERMIT NO. 387 |
ROCHESTER, MINN. ‘
|

L |

BUSINESS REPLY MAIL ———
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES | l
——— |

POSTAGE WiLL BE PAID BY . . .

—— |

TR
E— l

. N
IBM Corporation —]
General Systems Division oTE—— ,
Development Laboratory |
Publications, Dept. 245 I
Rochester, Minnesota 55901 |
I
Fold Foid |
|
l
l
l

International Business Machines Corporation
General Systems Division

5775D Glenridge Drive N.E.

Atlanta, Georgia 30301

(USA Only)

General Business Group / International
44 South Broadway

White Plains, New York 10601

U.S. A,

(International)

(9€-E£S "ON 3|14) £/warsAs |

VSN ul pajulid

2-809£-12209

