r ——
S =
Ll] d
5 = s
a 8 — — —
0 S 0 g 228
. w S 9 9 90 ®
3 o 8 T T T T
m R~ M @ o0 0 06 0O o©o
EE= §s=2:s
o 5 - m n N -
Q> € 300000
s © DD DDGD
S ——— | - m 2- A(-v 3 3 ,
nrv Q ©c O O M M % 23
M P nr9 N NN NMNN 2o
B > @ ° N W W Ww W ms
=0 x a ¥
o2
o
00000300 06000008000 . o0cee
R olsisgs, gosss gamss ssess :
I I iifiiits, IR TR
i G i g U NH, (I i s i i, G i
44 ecssessese mwuuouuunommuuu 0000000000 ooe o geces sece 0335 oees seee e+ Sses 3 : 33333358
i e sfsasssssasess N s ° 44+ PPPPIN ge2s sees o seee ssee - 44444 -4
i Edn EEHEHY T . HH i
i, ooitte, dii o S0 5 45, DS S 008 GoaE i "
i s i 0 Hn LR ol ; o HH i
4 ss3ees ssessesssse wmnm ...:.uoowmmmm cceseses 41 oouom 2523 *222e um coee
ety secesee 'S mmmmmno "nm"un“n mmmmmmwwmmmwm Mwwmwm n““u.m m\ m : :
L] o b4 .

Preface

The Overlay Linkage Editor is a part of the IBM System/3
Model 15 System Control Program (Program Number
5704-8C1), and is a separately orderable feature of the

IBM System/3 Model 10 Disk System (Feature 6026/6027),
IBM System/3 Model 12 (Feature 6026/6027), and the IBM
System/3 Model 6 (Feature 6011/6012). This manual pro-
vides reference information for programmers using the
Overlay Linkage Editor capabilities of System/3. This man-
ual is intended for experienced programmers who plan to
link-edit their own object modules rather than have the
language translators (assemblers and compilers) do the
link-editing,

Note: In this publication there are some references to
support of 64K bytes of main storage. A System/3 Model
10 with a 64K processing unit is available only as an RPQ.
Your IBM Marketing Representative can provide informa-
tion about this.

Sixth Edition {September 1978)

System/3 Model 8

The System/3 Model 8 is supported by System/3 Model 10
Disk System control programming and program products.
The facilities described in this publication for the Model 10
are also applicable to the Model 8, although the Model 8 is
not referenced. It should be noted that not all devices and
features which are available on the Model 10 are available
on the Model 8. Therefore, Model 8 users should be familiar

with the contents of /BM System/3 Model 8 Introduction,
GC21-5114.

This is a major revision of. and obsoletes GC21-75614 and technical newsletters
GN21-5406 and GN21-5585. Changes or additions to the text and illustrations are

indicated by a vertical line to the left of the change or addition.

This edition applies to the System/3 program versions listed below and to all subsequent
versions and modifications until otherwise indicated in new editions or technical news-

letters.
Version Modifications Program Number Feature Number
15 0 5702-SCt 6026, 6027
15 0 5703-SC1 6010, 6011
6 0 5704-SC1 6033, 6070, 6071
3 0 5704-SC2 6011,6012
4 0 5705-SC1 6070, 6071

Model

8,10

4,6

15A. 15B, 15C
15D
12

Changes are periodically made to the specifications herein; before using this publication
in connection with the operation of IBM systems, refer to the latest IBM System /3
Bibliography, GC20-8080, for the editions that are applicable and current.

Use this publication only for the purposes stated in the Preface.

Publications are not stocked at the address below. Requestes for copies of IBM publi-
cations and for technical information about the system should be made to your IBM

representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Address
your comments about this publication to IBM Corporation, Publications, Department
245, Rochester, Minnesota 55901. IBM may use and distribute any of the information
you supply in any way it believes appropriate without incurring any obligation whatever.

You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1971, 1972, 1973, 1974,

1974, 1975, 1978

INTRODUCTION

System Configuration

Primary Storage Requuements
Secondary Storage Requirements .
Error Halts .
Changes in Load Module Slze .

USING THE OVERLAY LINKAGE EDITOR
Compiler Entry .
User Entry .
OCL Statements
Control Statements .
Parameter Summary
Storage Map .

OVERLAYS .

Overlay Areas
Root Area
User Overlay Area
System Overlay Area
Co-resident Area

Assigning Overlays .

Control Statements and Object Modules .
Determining Which Modules Can Be Qverlaid
Link-Edit Start Addresses |,
Load Module Entry Point .

Overlay Area Size .
Including Overlay Areas in the Root .
Using the Group Statement .

Memory Resident Overlays (Model 15 Only)
Supervisor Support for Memory Resident Overlays .
Using Memory Resident Overlay with Communications

Control Programming . .
Memory Resident Overlay Program Lxecutlon
Execution of the MOVE Technique
Execution of the REMAP Technique .

EXAMPLES .
Examples 1 through 5
Examples 6 and 7 .
Example 6 (Figure 12) .
Example 7
Examples 8 through 11
Example 8
Example 9
Example 10 .
Example 11
Examples 12 and 13
Example 12 .
Example 13

W W W W

[RN NV S N Y

—

13

13
13
14
14
14
15
16
16
18
18
18
18
19
19

19
20
21
22

23
23
27
27
29
30
31
32
33
34
35
35
36

APPENDIX A. MESSAGES
APPENDIX B. OBJECT MODULES .
Header Record
External Symbol List (ESL) Records
Text-Relocation Directory (RLD) Records
End Record .
APPENDIX C. PERFORMANCE IMPROVEMENTS
GLOSSARY .

INDEX

Contents

38
43
43
43
44
45
47
49

" 51

Introduction

Linkage editor processing is necessary following the assem-
bly or compilation of any program. The output of a lan-
guage translator (assembler or compiler) is called an object
module (see Figure 1). An object module cannot be run

as a program until it is link-edited into a load module. Ob-
ject modules and load modules can reside on cards or in the
object library on disk (see Figure 2).

Source Object Load
Program Module Module

Linkage
Editor

Language
Translator

S -/

Figure 1. Preparing a Source Program for Execution

Introduction 1

Source Library {optional)

Object Library Directory

Permanent Entries
— O Library Entries
—~ R Library Entries

Temporary Entries
— O Library Entries
— R Library Entries

User Area

The O
by the LOAD OCL statement.

The R

library entries are load modules. They are loaded

library entries are object modules that must be
link-edited into a Joad modute before they can be loaded.

Figure 2. Format of Object Library

The Overlay Linkage Editor provides a compiler entry and
a user entry. The compiler entry provides the following
functions:

139

Punches into cards and/or catalogs into the object library
on a disk the output object module of a language trans-
lator such as IBM System/3 FORTRAN, COBOL, Basic
Assembler, and Model 15 RPG 11.

Link-edits the output of language translators such as
IBM System/3 FORTRAN, COBOL and Model 15
RPG II into a load module and punches the load
module into cards and/or catalogs it into an object
library on disk. The assigning of modules to overlay
segments is determined automatically by the Overlay
Linkage Editor.

The user entry allows the user to link-edit IBM System/3
Basic Assembler object modules and object modules built
by other language translators into load modules. The user
can influence the determination of overlays himself or he
can allow the Overlay Linkage Editor to determine the
overlay structure. The load modules can be punched into
cards and/or cataloged into an object library on disk.

SYSTEM CONFIGURATION

For information concerning the minimum system config-
uration for Overlay Linkage Editor and additional devices

supported. see one of the following publications, as appro-

priate for your System/3 model:

® [BM System/3 Models 4, 6, 8, 10, and 12 System
Generation Reference Manual, GC21-5126

® /BM System/3 Model 15 System Generation Reference
Manual, GC21-7616

® [BM System/3 Model 4 Introduction, GC21-5146
® [BM System/3 Model 6 Introduction, GA21-9122
® [BM System/3 Model 8 Introduction, GC21-5114
® [BM System/3 Model 12 Introduction, GC21-5116

® [BM System/3 Model 15 Introduction, GC21-5094

PRIMARY STORAGE REQUIREMENTS

The primary storage requirements for the execution of the
Overlay Linkage Editor are as follows:

System/3 Model Main Storage
Models 4 and 6 7K
Models 8 and 10 7K
Model 12 8K
Model 15 10K

SECONDARY STORAGE REQUIREMENTS

The Overlay Linkage Editor requires 10 tracks in the object
library. For execution, work space must be available as
follows:

3340
5444 5445 | 5444
Simulation Area;, Main Data Area
Models 4
and 6 X
Models 8 X
and 10
Model 12 X
Model 15 X X X X

This space can be specified by the user or allocated by the
Overlay Linkage Editor (see index entry: OCL statements).

ERROR HALTS

Halts are issued with system halt messages on SYSLOG for
error conditions. If the log is off, a second level halt is
issued to fully define the error condition (Models 6, 10
Disk System, and 12).

CHANGES IN LOAD MODULE SIZE

Changes made to the Overlay Linkage Editor from release
to release may cause change in the size of the output load
module. For example, a program that tits in 4K on one re-
lease may not fit in 4K on the next release.

Introduction 3

Using the Overlay Linkage Editor

This section describes the compiler and user entries to the
Overlay Linkage Editor and the storage map printed by the
Overlay Linkage Editor to inform the user of the structure
of his program. The input object modules used by both
entries of the Overlay Linkage Editor are described in
Appendix B.

COMPILER ENTRY

The compiler entry to the Overlay Linkage Editor is used
by language translators to punch and/or catalog their out-
put object modules (object modules are described in Ap-
pendix B). Language translators, such as IBM System/3
FORTRAN, COBOL. and RPG I (Model 15 only), can
also specity link-editing. The Overlay Linkage Editor
then link-edits the object module into a load module

and punches and/or catalogs the load module.

When the user compiles an object module and immediately
link-edits it into a load module via the compiler entry, he
can influence the determination of overlays only by speci-
fying the category of the object modules on the compiler
input. For the Overlay Linkage Editor method of deter-

mining overlay structure, see index entry: determining
overlay modules.

USER ENTRY

To use the Overlay Linkage Editor, the user must supply:
® Operation Control Language (OCL) statements

® Ovcrlay Linkage Editor Control statements

® Modules to be linked (described in Appendix B)

OCL Statements

The following OCL statements are examples of loading the
Overlay Linkage Editor via the user entry:

Model 10 Disk System, Model 12, and Model 15
| /I LOAD $OLINK unit {unit can be R1,F1,R2, or £2)
;
{Th 1 F ate-
// FILE NAME —$SOURCE, {These two FILE state
ments are optional and
t d Fi tate-
/] FILE NAME —$WORK, are standar LE state
ments used by the
// RUN compilers.)
Model 6
010 LOAD NAME — SOLINK
011 UNIT - (R1,F1,R2, or F2)
020 FILE NAME— $SOURCE
L]
. {These two FILLE
o statements are
030 FILE NAME — $WORK optional and are
° standard FILE
. statements used by
. the compilers.)
MODIFY
!
RUN

The Overlay Linkage Editor requires from 10 to 30 tracks
of disk space. FILE statements should be supplied for

large programs (25K or more), or if the partition size that
the Overlay Linkage Editor is currently in, is 25K or more.
{f the two FILE statements are supplied, they must be the
same as the standard FILE statements used by the compilers.

The Overlay Linkage Editor will find disk space if FILE
statements are not supplied. Space will be assigned on F1
if there is a minimum of 10 tracks available (even though
10 tracks may not be sufficient for a large program). If
the minimum space is not available on F1, space will be
assigned on R1.

You may save time if you supply FILE statements to place
the files optimally{see Appendix C, Performance Improve-
ments): for the Model 15, files should be placed on a

5445 disk drive (or 3340 main data area) for best perfor-
mance. FILE statements can also be supplied to ensure
that the Overlay Linkage Editor has adequate work space
to complete the link-edit.

The OCL statements can be entered from the system input
device or called from the procedure library.

Control Statements

Overlay Linkage Editor control statements can be entered
from the system input device or from the procedure library.
The types of control statements are:

1. PHASE statement (optional).

[S%)

OPTIONS statement (optional).

3. INCLUDE statements and/or object modules in card
form (required). The first object module encountered
(either in card form or indicated on an INCLUDE card)
will be the mainline routine.

4. GROUP statement (optional).

5. CATEGORY statement (optional).

6. EQUATE statement (optional).

7. END statement (required).

Control Statement Summary

Use Control Statements
T
A { YES = s YES
Define // PHASE NAME —name,UNt T—code,PUNCH— NO LRETAIN-—{ P LLINKADD— S+X'aaaa’ \ RLD— N_O—
Load 1 —_ R X'aaaa’
Module*
Define // OPTIONS UPACK—code,COREVannK,LEVEL—nnn,ENTRY#abeI,

Environment

Define Object
Modules

Group Object
Modules
Together

in Storage

Change
Category
of Object
Module

Equate
Module
Names

End of
Control
Statements

ATTR—xxx,MAP-- (YES 3

NO
i XREF
MSG
/I 'NCLUDE NAME—name (or ‘name,name, . . . name’),UNIT—code

// GROUP NAME—name (or ‘name,name, . . . name'),AREA—USER

// CATEGORY NAME--name {or ‘name,name, . ..name'),VALUE—~nnn

/I EQUATE OLDNAME—name (or ‘name,name, . . . name’), NEWNAME —name (or ‘name,name, . . . name’)

/ END

YES
* — |
RLD {NO } applies only to Model 15

Using the Overlay Linkage Editor

Parameter Summary

The following is a discussion of the parameters for each of
the control statements. When there is a default value for
a parameter, the default value is underlined.

PHASE Statement

The PHASE statement specifies the name and destination
of the load module. If the PHASE statement is omitted,
the load module is assigned the sume name as the mainline
routine (see index entry: INCLUDE statement) and is
cataloged as a temporary entry in the object library of the

program pack.

\ves/ ‘yl? s] VES

// PHASE NAME —name,UNIT—code,PUNCH-— o | RETAIN- ('P ‘ LINKADD— S+X'aaaa'§ RLD- {——‘—
= R
. /

X'aaaa’

NAME --name

The name that the load module has in the object tibrary directory. 1f the NAME
parameter is not supplied, the load module assumes the NAME of the mainline
routine. The name can be from one to six characters long and can contain any
combination of System/3 characters except blanks, commas, quotes, or periods.
The first character must be alphabetic.

UNIT—code

Disk where the load module is placed. Possible codes are R1, F1, R2, and F2.
1f neither the UNIT parameter nor the PUNCH parameter is specified, the load
module is put on the program pack.

PUNCH— J YES
NO

Specifies whether to punch the load module. If not supplied, the default is NO.
The load module can be both punched into cards and put in the object library by
specifying both UNIT and PUNCH parameters.

f L
RETAIN- 4 P }
LR

Specifies whether the load module 1s to be cataloged as a temporary or permanent
entry in the object library directory. RETAIN- R means replace an existing entry
with the same name. The RETAIN type of the new module is P. 1f no entry
exists with the same name, the new entry is added with a permanent designation
(P). If RETAIN is not specitfied, T is the default. If RETAIN—P or R is specified,
all previous temporary modules are deleted from the library. If this parameter is
specified with PUNCH-- YES, the retain code 15 specified on the COPY card that
is punched with the module.

S
LINKADDM{ S+X'aaaa’
* X‘aaaa’

}

Specifies the link-edit start address, which is the address assigned to the first byte of the
link-edited load module. On the Model 15, if S is specified, the start address is X'4000’,
An absolute address can be specified by coding X'aaaa’, where aaaa is an absolute address.
S+X'aaaa’ is coded to specify the end of the supervisor plus an absolute address. If this
parameter is not coded, S is assumed. if the start address ptus the number of bytes in

the program exceeds X'FFFF’, the program is link-edited to start at X’0000°’. (The
System Control Program {Program Number 5704-SC2] is link-edited to the largest
possible multiple of 2K.) This parameter does not affect the loading of the load module
(see index entry: /ink-edit start addresses).

Specifies whether a program will be produced with Text-Relocation Directory
records (RLDs). If this parameter is not supplied, YES is the default. This
parameter applies only to the Model 15.

OPT/ONS Statement

The OPTIONS statement describes the load module and
specifies the location of user object modules and the type
of linkage editor output. If the entire OPTIONS statement
or any of the parameters are omitted, the defaults given

are used.

YES
/{ OPTIONS UPACK—code,CORE—annK,LEVE L—nnn,ENTRY —label ATTR—xxx,MAP— NO
XREF
UPACK—code Disk where user modules to be link-edited can be found. 1f UPACK is not
specified, the linkage editor looks for the user modules on the pack that the
Overlay Linkage Editor is on. This keyword is used when the Overlay Linkage
Editor performs AUTOLINK,
CORE—annK Storage size the load module has available for execution. |f specified, the
directory entry contains this size even though the actual size required by
the load module is less. 1f not specified, the current partition size is used
to determine when overlays are required and the directory entry contains
the actual load module size. This parameter is needed only if the partition
size at execution will be different from what it is at link-edit time.
a = increments of 1/4 K
Q = 1/4 or 256 bytes
H = 1/2 or 512 bytes
T = 3/4 or 768 bytes
0 = zero bytes
nn = 1K increments
Example: Q04K = 1/4K + 4K = 256 + 4096 = 4352 bytes
LEVEL—nnn Number that is ptaced in the level entry in the object directory entry. Differ-
ent modification levels of load modules can be assigned different level vatues.
The maximum value for nnn is 255. Default value is 001, except for
load modules generated by the following Model 15D compilers:
5704-RG2, RPG |1 = 253!
5704-CB2, COBOL = 254!
5704-FO2, FORTRAN ~ 285!
ENTRY —label An entry point or modute NAME of an included module. Default is the entry

point of the mainline routine.

M a compiler requested R-module is link-edited using the level
parameter of another compiler, erroncous time/date information
will be printed in the module directory listing.

It a level value of 000 through 252 is used. the time/date infor-
mation will not be printed in the module directory listing.

Using the Overlay Linkage Editor

7

ATTR—xxx or Attributes of the module being link-edited. If ATTR is not specified, no attributes are

XXX, XXX, L .. assigned.

xxx' xxx = INQ —Inquiry. This program can be run in either program level and dedicates the use
of the Inquiry key (PA1 key on Mode! 15) to its program leve! {normally used
to start processing).

{EV —Inquiry Evoking. This program can run on a dedicated system or in level 1 of a
DPF system. In a DPF system the Inquiry key (or the ROLLOUT command
in the System Control Program [Program Number 5704-SC11) is dedicated to
the !EV program in levet 1. The Inquiry key is normally used to cause the |EV
program to be rotled out to allow another program to run. Using the System
Contro! Program (Program Number 5704-SC1), the |1EV program can run in
either partition, but can be rotled out only when running in partition 1. This is
not supported by the System Contro! Program (Program Number 5704-SC2).

DED —Dedicated. In a DPF system, this program must run with the other program
level inactive. This is not supported by the System Control Program {(Program
Number 5704-SC2).

SRQ —Source Required. This program requires the atlocation of the $WORK and
$SOURCE files. $SOURCE must be filled either from the system input device
or a source library. Any program with the SRQ attribute will be loaded, and
relocated, to the normal ioad point plus 10 bytes.

DFM—Deferred Mount. This program accepts mounting of packs during its execution,

SID —SYSIN Dedication. The system input device must be dedicated to this program.
The device is released at end of job.

CPR —Checkpoint Restart Program.

DSR —Direct Source Read. This program can have a // COMPILE statement and a
no-source-required attribute. SYSIN dedication can also be reieased by program
and not have the source-required attribute, The program accesses the source
tibrary itself.

MRO—Memory Resident Overlay REMAP Program (Model 15). When specified, the
program executes the segments in the resident area itself.

MOV—Memory Resident Overlay MOVE Program (Model 15). When specified, the
program retains the segment in the resident area but executes the segment in
the conventional overlay fetch area.

Notes:

1. CPR and IEV are mutually exclusive on all models.

+2. INQ and IEV are mutualty exclusive on Models 6, 8, 10, and 12.

3. MRO, MOV, IEV, and CPR are mutually exclusive on Modei 15.

4. A checkpoint/restart program cannot have externatl buffers (56704-SC2).

If ATTR is not specified, no attributes are assigned.
\@ Type of printer output during link-edit:

MAP-. } NO

XREF YES = A storage map and messages are printed. 1f MAP is not specified, YES is assumed.
MSG . NO = No storage map or messages are printed.

XREF = A storage map, cross-reference list, and messages are printed.

MSG = Only messages are printed.

INCLUDE Statement

The INCLUDE statement specifics which object modules are
to be included in the load module. Multiple module names
may be submitted on one INCLUDE statement. The first
object module named on an INCLUDE statement or read
from the SYSIN device is the mainline routine. It a module
name 1s not found on the UNIT specified. a halt 12 will
result. By taking a zero option, the program will do a find
on the next module name in the statement. Either an
INCLUDE statement or an object module in card form

must be supplied as input to the Overlay Linkage Editor.

// INCLUDE NAME-name, UNIT-code
NAME-name Namel(s) of the object module(s} 1o be
or included in this program.

NAME—"name,

name, . . . name’

UNIT-—code Disk unit where object module is located.

!t omitted, will default to the program pack.

GROUP Statement

The GROUP statement can be used to specify a number of
object modules that the user wishes to group together in
storage. The user may design his own overlay structure,
based on his knowledge of the object modules being link-

edited, to obtain more efficient loading of overlay segments.

These modules are put into the same overlay segment or

partly in an overlay segment and partly in the root segment.

The first module named in a GROUP statement should be
referenced by a module that is not in the group (see index
entry: grouping modules).

By specifying AREA—USER, you can also use the GROUP
statement to assign co-resident overlay modules to the user
overlay area (see index entry: overlay area), thereby possi-
bly reducing main storage size.

The GROUP statement is optional; if it’s not supplied, the
Overlay Linkage Editor designs the overlay structure (see
index entry: overlays).

// GROUP NAME--name, AREA—USER

NAME --name The name of a module that shouid be assigned
or to the user area or the names of the object

NAME -‘name, modules that must all be in storage at the same

. name’

name, . . time.

AREA--USER If the modules named in this statement are
asstgned to an overlay, they will be assigned

to the user overlay area. If a list of names
'name,name, ...} is used with AREA~USER,
the named modules are grouped in the user
overlay area. To force muitiple modules to

the user area without grouping them together,
specify each module name on a separate GROUP
statement.

CATEGORY Statement

The CATEGORY statement is used to temporarily change
the category value (priority) of object modules. Because
the priority of an object module influences the placement
of the module into an overlay, the user can delegate the
module to a different segment by changing the category
value. The category value of the module is changed only
for this link-edit.

CAUTION

A program falure may result from changing the priority of
a system module ($Sxxxx module) or a compiler object
module. Compiler object modules are modules (usually
Sxxxxx) that are included in the load module built from
the compiler-generated object text. Modules for the Binary
Synchronous Communications Adapter (SSBSxx modules)
must remain at category 0 and cannot be overlaid.

Modules containing DTFs can be overlaid only if the
associated file is closed prior to returning to the caller.

Using the Overlay Linkage Bditor 9

// CATEGORY NAME-name,VALUE—nnn

NAME —-name
or
NAME —'name,
name, . . name'

Name(s) of module(s) for which the category value {priority} is to be
changed for this link-edit.

VALUE-nnn

The new category value:

8-124 =

125 =

126 =

127 =

128 =

A module with this category value cannot be overlaid. It is
always placed in the root segment.

These category values are generally reserved for system modules.
These moduies can be overlaid if necessary to satisfy main storage
size. Modules with these category values may only call modules
with the same category value or category O modules. 1BM system
modules have the following general category values:

2 -- Disk 1/O

3 — Tape I/O

4 — Arithmetic

6 — Unit Record 1/0

Category values 1, b, and 7 have no special meaning but are available
for use.

These category values assign overlay priorities. The lower the number,
the tess likely that the module will be overlaid.

For the Model 15, if ATTR-MRO or ATTR-MOV has been specified,
category vatue 125 atiows the module 1o be overlaid but does not
allow that overlay segment to be a candidate for memory residence.

For the Model 15, this category value assigns a special overlay
priority. In any overlay program, routines of category 126 will
be given first consideration for re-inclusion in the root area
{non-overlay core). Generally, category 126 routines should
be RPG maintine routines.

This value will be treated the same as a category value of O (zero). It will
be displayed on the core map as category O, not category 127, except
when it is assigned by a CATEGORY statement.

This value specifies that the module must be aligned on a 256-byte
boundary. Value 128 can be used with any lower category value.
This is done by adding the lower value to 128. For example, you can
specify that a module have category value of 8 and be aligned on a
256-byte boundary by specifying a category value of 136 (8 + 128)
on the CATEGORY statement. Category 128 indicates a category O
module aligned on a 256-byte boundary.

If an input module contains a category value of 128, the module wil

be aligned on a 256-byte boundary even if a CATEGORY statement
assigns a category value of less than 128. The boundary-align attribute
cannot be changed by a CATEGORY statement, but the non-boundary-
align (under 128) portion can be changed for this link-edit.

END Statement

An END statement indicates the end of the Overlay Linkage
Editor input and must follow the control statements and/
or object modules read from the SYSIN device.

/ END

EQUATE Statement

The EQUATE statement is used to make a temporary change
to a reference to a module name or entry point. References
to a module name or entry point specified in the QOLDNAME
parameter are resolved to the module name or entry point

in the NEWNAME parameter. If a list of names is entered,
the OLDNAME entries have a one-to-one relationship to

the NEWNAME entries. The first OLDNAME is resolved to
the first NEWNAME, the second to the second, ete.

Each list must contain the same number of names. 1f a
name is used as an OLDNAME move than once. it is resolved
to the first NEWNAME it matches. Only one level of cquat-
ing is done. Consider the following statements.

// EQUATE OLDNAME—ABLE NEWNAME—BAKER
// EQUATE OLDNAME -BAKER,NEWNAME—SAM

These statements would cause references to ABLY to be
resolved to BAKER and reterences to BAKER 1o be resolved
to SAM. Reterences to ABLE would not be resolved to
SAM.

If two modules are equated and their entry points are also
referenced, the entry points also must be cquated

name
// EQUATE OLDNAME 4 "7 L newname- S nome v
name,name, . . . name ‘ name,name, . . . name ‘
OLDNAME—name The module name or entry point now referenced in
or the program.
OLDNAME—‘name, ... name’
NEWNAME—name The module name or entry point that will replace
or the referenced name or entry point in the program.
NEWNAME—'name, . . . name’

Using the Overlay Linkage Editor

1

STORAGE MAP

A storage map is printed unless MAP--NO is specified on
the OPTIONS statement. The system date is printed fol-
lowing the title line. The headings on the map are: Start
Address, Overlay Number and Overlay Area. Category.
Name and Entry (for module name and entry points).
Code Length Hexadecimal, Code Length Decimal. and
Referenced By (only it a cross-reference list included).
The Overlay Area heading lists the area cach overlay is
Joaded into: U for user area, S for system area. and C for
co-resident area.

If the category of a module is changed. both the old and
new category values are printed. The format is: old, new.

It a module is included in two or more overlays, it appears
on the map in two or more places. I MAP—XREF is
specified on the OPTIONS statement, a cross-reterence
list is also printed. This list contains modules that have
external reference ESLs to the module names or entry
points.

At the end of the storage map, the total storage used is
given in decimal, and the start control address is given in
hexadecimal. If the program uses overlays, the non-overlay
storage size is also printed. The storage size of an overlay
program is always in increments of 256 bytes. The non-
overlay storage size is the exact number of bytes in the
load module.

The storage map can be omitted to save link-edit time
(see Appendix C. Performance Improvements).

Overlays

OVERLAY AREAS

Main storage for an object program with overlays may be
divided into four areas; root, user, system, and co-resident.
(see Figure 3) Not all programs will need all four areas.
The storage map indicates which overlay area each overlay
segment is loaded into and the start address of each over-
lay area. See the storage maps printed with the examples.

Supervisor

— GLOBAL
- COMMON

— Mainline Module

— Category 0 Modules (user) /

-~ Other Modules Included (if space
available) > == Root Area

— Overlay Fetch Routine, Fetch Table, s

and Transfer Vectors

User |/O Dependent Modules

|
T User Qverlay Area
(categories 8-126) , roveray
e —_ |
System Modules ™ ~— __ ¢ System Overlay Area

(categories 1, 2, 3, 5, 6,

and 7. Each category in

a separate overlay.)
T User 1/0 Independent Modules

— - = Co-resident Area

e~ - (categories 8-126)

System Modules (category 4)

Figure 3. Overlay Areas (Non-DPF System)

Root Area

The root area of an overlay program contains the parts of
the program that are never overlaid (see Figure 3). The
root area always contains the mainline module. overlay
fetch routine, fetch table. and transfer vectors. The re-
maining parts of the root depend on the program being
linked.

User Overlay Area

The user overlay area contains user modules that call Sys-
tem 1/O modules. Each overlay segment loaded into the
user overlay area can contain modules of different category

values.

Overlays 13

If the COBOL segmentation feature has been used, the
COBOL segments appear as overlays in the user overlay
area. The presence of COBOL segments forces any non-
COBOL modules that normally would have been assigned
to the user area to the root area (category 0).

System Overlay Area

A system overlay segment contains system modules with
the same category value. Each system overlay segment is
independent of other system overlay segments. System
modules are assigned to overlay segments solely by category
value. A system module can only call another module with
the same category or a category 0 module.

Co-resident Area

The co-resident area is actually a part of the system overlay
area (see Figure 3). The system arithmetic overlay segment
(category 4) is sometimes smaller than the system overlay
arca. It it is smaller, the remaining space is the co-resident
area and can be used to load user modules that are 1/0O-
independent (do not call system [/O modules). If the cose
requirements of category 4 plus the co-resident area is
greater than the size of the system overlay area, category

4 modules will be re-included in the root area until all
category 4 routines are in non-ovetlay core, or until the
category 4 plus co-resident area will fit into the system
overlay arca. A module can be moved from this area to

the user area by grouping it with an 1/O-dependent user
module or by specifying AREA-USER on the GROUP
statement.

On the Model 15, routines of category 126 will be given
tirst consideration for re-inclusion in the root area (non-
overlay core). Generally, category 126 routines should

be RPG mainline routines.

ASSIGNING OVERLAYS

The Overlay Linkage Editor attempts to fit all modules of
an object program into the specified storage size without
overlays. [f this cannot be done, the Overlay Linkage Edi-
tor assigns some modules to overlay segments. Figure 4
shows the Overlay Linkage Editor method of assigning
modules to overlay seaments. The maximum number of
overlay segments in a program is 254. The first module
encountered (either on an INCLUDE statement or as an
object module read from the input device) is the mainline
routine and thus part of the root. The extended root
mainline includes the mainline and all its descendants
with each string of descendants being terminated when a
non-category 0 module is encountered. A descendant is

a module called by another module. The root is in main
storage at all times and is never overlaid. The amount of
main storage available determines the amount of code
placed into overlay segments. If the load module does not
fit in the main storage size specified and generating over-
lay segments would not enable it to fit better in storage,
overlay segments are not generated.

Through the user entry you can use the GROUP statement
to specify module groupings (see index entry: grouping
modules) and use the CATEGORY statement to change
the category of a module. You originally established the
category of a module by specifying options to the compiler
or assembler.

The Overlay Linkage Editor generates an overlay fetch
routine, fetch table, and transfer vectors for programs
with overlay segments and includes them in the root seg-
ment. The generated code is 116 bytes (127 bytes if
ATTR-MRO is specified) plus 7 bytes for each overlay
segment and 11 bytes tor each overlay segment entry
point that has a transfer vector. During execution of the
object program, the overlay fetch routine is called when an
overlay segment is needed. The overlay fetch routine checks
to see if the segment is already in main storage. 1If it is, the
segment is not reloaded. This saves the time needed to
load the segment.

Control Statements and
Object Modules

® {f program fits in available storage without overtays

® Assign category O to modules that cannot be overiaid.
{see index entry: determining overlay modules)

® Assign root area as follows:
(see index entry: root area)

~— Mainline module

— Category 0 modules

— Overtay fetch routine

—- Fetch table entries for overlays

~ Transfer vectors for overlay modules

® Assign system modules to overlays. (see index entry:
system overlay area and co-resident area)

Build program without overlay segments

End-of-
Link-edit

® Assign user modules that are called by the extended
root mainline to overlay segments as follows:

— 1f the user module, its descendant, or a module it
is grouped with (see index entry: GROUP state-
ment) calls a system 1/O module, assign the user
module to a user overlay segment and assign each
descendant that calls a system {/O module or has
a descendant that calls a system 1/0 module to the
same user overlay segment. Assign descendants of
modutes in the user overlay segment that do not
calt system {/O modules to a co-resident overlay
segment along with their descendants.

— If the user module does not call a system /O
module, assign the module and its descendants
to a co-resident area.

® Compute minimum size of each overlay area.

® |nclude overlay modules in the root if they fit and
can be included (see index entry: including mod-
ules in root). Modules are included by category
values 1 through 126 in order. For the Model 15,
modules are included by category values 126, then
1 through 125 in order. |f a modutle is included
in the root, the transfer vector for it is eliminated
and the fetch table entry is eliminated if the
module was the tast entry in the overlay segment.

® (f any modules were included, repeat the last two
steps.

® Pad non-system overlays to equal iengths by combin-
ing smalier overlays to create larger ones.

Build overlay program

End-of-
Link-edit

Figure 4. Overview of the Overlay Linkage Editor Method of Assigning Overlays

Overlays 15

Determining Which Modules Can Be Overlaid

The Overlay Linkage Editor considers a module capable of
being overlaid if the category of the module is non-zero and
if the module is a direct descendant of (called by) the main-
line routine (the first module named on the INCLUDE
statement or read from the system input device) or descends
from the mainline routine through only category 0 modules.
A, C, G, and H in Figure 5 meet these requirements and

can be overlaid.

A module that calls a module of an extended mainline
routine (B and E are examples of extended mainline in the
shaded portion of Figure 5) can be overlaid only if the
module called has no direct or indirect call to an over-
layable module. C in Figure 5 is overlayable since it calls

E, and E does not call an overlayable module. If E called

an overlayable module, C would have to be included in root.

A module called by an overlay module can itself be over-
laid (module F in Figure 5).

Modules that do not qualify for overlay segments are as-
signed to the root segment. Module C in Figure 6 is as-
signed to the root segment because it appears twice in the
program. Modules C and F in Figure 7 are assigned to
overlay segiments because each appears only once in the
program, even though they do not meet the normal cri-
teria for overlay modules.

Link-Edit Start Addresses

[f LINKADD is not coded on the PHASE statement, the

program is link-edited to start at the end of the supervisor
(or at a fixed address for the Model 15).

If the start address plus the length of the program exceeds
64K, the program is link-edited to start at X‘0000’. Using
the System Control Program (Program Number 5704-SC2),
the object program is linked-edited to the largest multiple
of 2K, which allows the end address to be less than 64K.

The link-edit start address does not affect the load address.
A program run on other than a Model 10 or Model 12 DPF
system is always loaded at the end of the supervisor, no
matter what address it is link-edited to. A PARTITION
statement can be used in the OCL jobstream on a Model

10 or Model 12 DPF system to define the load address

for programs run in level 2 (see the PARTITION statement
in the /BM System/3 Model 10 Disk System Control Pro-
gramming Reference Manual, GC21-7512, or in the IBM
System/3 Model 12 System Control Programming Refer-
ence Manual, GC21-5130). If a PARTITION statement

is not used, a program run in leve} 2 is loaded at the end

of main storage.

Severe throughput degradation results if relocation is neces-
sary for overlay programs. They should be link-edited to
start at the load address. To determine the load address for
overlay programs which are to run in level 2 of a Model 10
or Model 12 DPF system when a PARTITION statement is
not used, subtract the program size from the main storage
size. For example, you can calculate the link-edit start
address of a 9728-byte program on a 24K system as follows:

6000 — 24K converted to hexadecimal.
-2600 — Program size in hexadecimal. (All overlay
3A00 program sizes are stated in sector (256-byte)
increments on the Overlay Linkage Editor
storage map. Non-overlay programs must be
rounded up to the next even sector.)

The sample program just mentioned should be link-edited
to start at X‘3A00° by specifying LINKADD-X‘3A00 on
the PHASE statement.

Mainline

i X _—
Ed *
A B C D
Category 8 Category O Category 8 Category 0
H
- 3 3 c 8
E E G E ategory
Category 0 Category 8 Category O Category 8 Category 0
K E
Category O Category 0
L M
*Modules assigned to root
t 0
Figure 5. Tree-structure of an Qverlay Program Category 0 Category
* »
Mainiine Mainline
[1 [.. |
A D A D
Category 10 Category 10 Category 10 Category 10
- . 1
B B B E
Category O Category 0 Category 0 Category O
l i . | " 1
c c c F
Category 50 Category 50 Category 50 Category 60

*Modules assigned to root

Figure 6. User Modules Assigned to the Root Because
they Cannot be Overlaid

*Modules assigned to root
**Modules in first user overlay
***Modules in second user overlay

* %

* %%

Figure 7. Normal Root Modules Assigned to Overlays

Overlays

17

Load Module Entry Point

The entry point of a load module can be changed by using
the ENTRY paramecter on the OPTIONS statement. The
entry point can be changed to an overlay segment. If this
is done, the actual entry point will be to the overlay fetch
routine to load the overlay segment. The entry point of
load modules that reference common areas must be the
first byte of the module.

Overlay Area Size

The Overlay Linkage Editor assigns the smallest overlay
areas possible. The user can increase the size of the over-
lay areas, and thereby possibly decrease the number of

overlays, by using the GROUP statement to group modules

into one Jarge overlay. The Overlay Linkage Editor then
automatically increases the size of the other overlays to
take advantage of the increased area. This reduces the
number of overlays.

Including Overlay Modules in the Root

After the Overlay Linkage Editor has assigned all modules
to either the root segment or to overlay segments, any
overlay modules that can be included in the root segment
without exceeding the user specified main storage size

are included. A module can be included if it meets one
of the following criteria:

® The module calls no other module.

® The module is a user module and calls another user
module but the called user module appears in only one
overlay segment.

® The module is a system module called from a user
module and all other system modules with the same
category, not called by user modules, have already
been included in the root segment.

18

Using the GROUP Statement

The GROUP statement is entered via the user entry to
specify module grouping and/or overlay area assignment,
The sequence of module names within the GROUP state-
ment is important. The module of a group that is referenced
from outside the group should be the first module named
on the GROUP statement.

Figure 8 shows the modules referenced in the following
GROUP statements. To group modules A, B, and C in one
overlay and D, E, and C in another overlay, the correct
GROUP statements are:

// GROUP NAME—'A,B,C’
// GROUP NAME—'D,E,C’

Modules A, B, C, D, and E would be assigned to only one
overlay if the sequence of module names in the GROUP
statements were as follows:

// GROUP NAME—'C A,B’
// GROUP NAME—'C,E,D’

The GROUP statement can also be used to assign overlays
to the user area. To assign groups AB and DE to the user
overlay area, use the following GROUP statements:

// GROUP NAME—'A B’ AREA—-USER
// GROUP NAME—'D,E', AREA—USER

Module C would be assigned to the co-resident area. This
method reduces the size of the user area, saves secondary
storage (module C appears only once), and may speed up
execution of the program (module C must be loaded only
once).

Mainline

Figure 8. Tree-structure of Sample Program

MEMORY RESIDENT OVERLAYS (MODEL 15 ONLY)

Memory resident overlays (see Figure 9) is a technique de-
signed to increase the performance of large overlay pro-
grams by allowing certain overlay segments to remain in
primary storage after the initial segment fetch. The two
types of memory resident overlay programs are MOVE and
REMAP, which differ as follows:

® When ATTR-MOV is specified in the OPTIONS state-
ment (MOVE technique), the program retains the seg-
ment in the resident area but executes the segment in
the conventional overlay fetch area (see Figure 10).

® When ATTR-MRO is specified in the QPTIONS state-
ment (REMAP technique), the program executes the
segments in the resident area itself (see Figure 11).

To use the memory resident overlays feature, the feature
must be selected as an option during system generation.
However, object programs may be link-edited with this
attribute on any system.

The overlay fetch routine generated for the MOVE tech-
nique is identical to the fetch routine generated for con-
ventional overlay programs.

The CATEGORY statement controls which overlay seg-
ments are candidates for memory resident overlays. Any
overlay segment containing a category 125 module is not
a candidate for memory residence.

With the two memory resident overlay techniques (MOVE
and REMAP), programslarger than 48K can reside in pri-
mary storage throughout execution if the partition is large
enough and if the program can be link-edited within 48K.
These techniques may improve performance for overlay
programs that require a large number of overlay fetches.

The REMAP technique requires that the overlay segments
be link-edited to 2K boundaries. These overlays are loaded
on 2K boundaries at execution time. The MOVE technique
does not have this restriction. For large overlay segments,
REMAP will generally execute faster than MOVE.

Throughput degradation for memory resident overlays pro-
grams with RLDs will not be as severe as for conventional
overlay programs because each resident overlay segment
will be relocated only the first time it is fetched from disk.

Supervisor Support for Memory Resident Overlays

Supervisor support for memory resident overlays provides
exactly the same function as the supervisor loader but with
the new resident overlay techniques. It exists as a separate
module ($@RLOD) and uses the entire partition to retain
overlay segments after the initial segment fetch (for example,
partitions greater than 48K).

To take advantage of the supervisor support for memory
resident overlays, the module must be linkedited with
one of the OPTIONS parameters (ATTR-MOV or ATTR-
MRO) or compiled using the ATTR parameter of the OCL
COMPILE statement.

An object program that is not compiled with one of the
memory resident overlays options can be executed on a
system that supports memory resident overlays. Similarly,
an object program that is compiled with one of the memory
resident overlays options can be executed on a system that
does not support memory resident overlays.

If a program is link-edited with a memory resident overlays
option but it does not require overlays, the option is not
used and no diagnostics or halts occur.

Using Memory Resident Overlay with Communications
Control Programming

A program running under the communications control pro-
gram (CCP) can take advantage of the memory resident
overlay techniques if you specify additional storage for

the program at CCP start-up. The additional storage is
specified on the PROGRAM statement of the CCP assign-
ment set. For more information, see the IBM System/3
Model 15 Communications Control Program System Ref-
erence Manual, GC21-7620.

Overlays 19

Memory Resident Overlay Program Execution

Each time an overlay fetch is necessary, the supervisor
loader checks to see if there is room for the segment in the
resident area that begins just past the end of the last over-
lay area. If enough room exists, the segment is loaded into
the resident area and the corresponding overlay fetch table
entry is modified to show the physical location of the
segment.

Those segments not having enough room in the resident
overlay area will remain on disk to be fetched into the
overlay fetch area as required.

For a general schematic of a memory resident overlays pro-
gram see Figure 9.

Supervisor

— GLOBAL
— COMMON

Root Area

— Mainline Module
— Category 0 Modules (user)
— Other Modules Included (if space

Minimum available)

Executable — Overlay Fetch Routine, Fetch Table,
Memory and Transfer Vectors

Resident <

Overlays (User Overlay Fetch Area

Program

Size

Overlay J System Overlay Fetch Area
Fetch

Fetch

-

MNe— 1

Area <

Co-resident Overlay Fetch Area

1st Resident Overlay Segment

Overlay

2nd Resident Overlay Segment

Resident 3rd Resident Overlay Segment
Overlay <

Segments

Area 4th Resident Overiay Segment

nth Resident Overiay Segment

Figure 9, Schematic of the Memory Resident Overlays Program

20

Execution of the MOVE Technique

When ATTR-MOV is specified in the OPTIONS statement.,
the segment is retained in the resident area but executed in
the overlay fetch area. Figure 10 shows a move of the 3rd
resident overlay segment into the system overlay fetch arcu.
This move replaces the disk 1/0 previously needed.

MOVE technique considerations are:

I. The ATTR-MOV memory resident overlays program
link-edits into the same amount of storage asa con-

ventional overlay program. but the overlavs do not
have to begin on 2K boundaries (see Lxample 12).

2. The MOVE technique requires more processing unit

cycles than the REMAP technique hecause data move-
ment is more time-consuming than adjusting address

translate registers.

Supervisor

— GLOBAL
- COMMON

Root Area

Maintine Module

— Category 0 Modules {user)

— Other Modules {ncluded (if space
available)

— Overlay Fetch Routine, Fetch Table,

and Transfer Vectors

User Overlay Fetch Area

System Overlay Fetch Area

Co-resident Overlay Fetch Area

1st Resident Overlay Segment

2nd Resident Overlay Segment

3rd Resident Overlay Segment

4th Resident Overlay Segment

N—

T

)T

N
Overlay
Segments ’
e

nth Resident Overtay

Figure 10. Schematic Execution of the Memory Resident Overlay MOVE Technique

// OPTIONS ATTR-MOV

/

/
e

Causes the 3rd resident
overlay segment to be
moved to the appropriate
overlay fetch area.

Overlays

Execution of the REMAP Technique

v

Each tme aresident overlay segment fetch is requested by

the overluy tetch routine. the appropriate address translate

reghsters (ATRs)are adjusted o logically include the seg- 4.

mentin translated storage. No disk 1O is required. Figure

FE illustrates translated storage during execution,

REMAP technique considerations are:

N

1. Segments must start on 2K boundaries.

2. A program may require moye execution storage than

in the past (must link-edit into 48K).

A REMAP program can have fewer overlay segments
than a MOVE program and may require more storage
to execute in.

The link-edit start address must be a multiple of 2K
if the overlay program has RLDs: otherwise, the link-
edit start address will be rounded down to a 2K
boundary.

A FORTRAN program using the INVOKE feature
cannot be used with a memory-resident overlay.

Supervisor

@ Always active

- GLOBAL
COMMON

@ A system overlay that does
not fit in resident storage or

Root Area

- Mainline Modute

— Category 0 Modules (user)

- Other Modules Included (it space
available)

— Overlay Fetch Routine, Fetch Table,
and Transfer Vectors

contains a category 125 mod-
ule and thut is being executed
in the conventional overlay
area

A resident overlay segment

©30)

tor either the user or resident

-

~—

User Overlay Fetch Area

area where execution is with-
in the resident area itself

Overlay

7th Overlay E
Fetch, etc

System Overlay Fetch Area

Segments

~—

~—

Co-resident Overlay Fetch Area

When the last resident

1st Resident Overlay Segment

overlay segment area
15 used, the remainder

2nd Resident Overlay Segment

Causes the execution of

of the segments will
be tetched from disk
into the appropriate
overiay fetch area.

3rd Resident Overlay Segment

the segment in the
resident area itself.
Address translate

4th Resident Overiay Segment

registers are remapped.

5th Resident Overlay Segment

6th Resident Overlay Segment

Figure 11. Schematic Execution of the Memory-Resident Overlay REMAP

Technique and Overlay Fetch Routine

(99
18]

EXAMPLES 1 THROUGH 5

These five examples show the OCL statements and Over-
lay Linkage Editor control statements used to link-cdit
five programs. The notes with cach example explain the
purpose of the control statements in cach job.

Example 1

ﬁ_T——‘ e

// LOAD, aouwTK FL 1 T

/ FILE NAME- £souRCE UNLTF L, PACK-FLF 1Fi1, TRACKS - 16, L0¢ TION-358,RETAL ‘—sf
/ FILE: NAME-$WORK, UNIT F1, PACK- F1F1F1,,TRAC KIS~ 10,4L0C'AT 10N~ 3[603 RE ALN-

0‘_!//. RUN. .
O A PiASE naME-TesTSB, UNIT-R1.RETAIN-P, LI NKADD
0 O— oprions UPack-RY LATTR-CPR |£Ju:_v:aL 2" S

/; INCLUDE NAME - TEST‘/ﬂ UNIT-
‘:H EN
+ -

, T L

Notes on Example 1

0 The Overlay Linkage Lditor is loaded from the tixed
pack on drive .

e The SSOURCL file ot ten tracks is allocated on the
fixed pack on drive | starting at track number 350.
This is a scratch file.

The SWORK tile of ten tracks is allocated on the
fixed pack on drive 1 starting at track number 360.

This is a scratch file.

Exccution of SOLINK (last OCL card) is started.

0 O

The output Joad module is generated as 4 permancnt
entry in the object library of the removable pack on
drive 1 under the name TESTSO. The start address
is the end of the supervisor plus X'0200'.

Examples

. ,.,7'_, ‘_F T _._...,_T_q—ﬁf

5
S ¢z¢d’ SRR AR

|
i

G User modules can be found on drive R1. This pro-
gram is a checkpoint restart program. The level
number is 20.

e The mainline routine for this program is an object
module in the object library of the removable pack

on drive I under the name TEST40.

0 End of the Overlay Linkage Editor input. Automa-
tic overlays are generated if needed

Examples 23

Example 2

T
) j[] R .] N I R R R T L R "0(11 i1 08 G5 66 67 ke 6970 1N s
a TRy T T SEENEEEEEEEEEREEEEERRERE T T
o;; ;SNl‘){ﬁb‘-I INKLR1 | S]u;,,i{l,i‘ﬂ : lf EANR RN qlr«up “L -
~~~~~ i i - F 0 00 S [ RS A VA S O A b R
@/ Finse NAME-BLUE | PRI iR RI R T T
(s INCLUDE Ni AME - BLUE,,LU;MI T-Fit M [N AU B SN il +“ i i,,.,p O
[ I ST I P ! (: ‘:‘; I !'\
Vs caraxs}‘ R NS L EURRy OO S R DS R DR D AN SR RRREY SNSN ANRN
© .9 RMw’qem card Aarm ] SRR RN A ;',J,zbiii;,,
[ caraf R Medvle ‘ NERRRURE R N DS R AN R R R A
e N SR 3 P P i = x 1y A
0 /7 ‘C‘A‘TE]G,OR,Y, INAME - WHITE, VAL UE- R R bl D Y L HRE
© // EqvATE NEMM*AME RED.oLDWAME-YELLOW "1 L[
i// END ' I . ; SRR RN RN
,,,,,, f R “, + : . I E ' i ‘,,L: i | e T
R 1‘? | . - L Cd e HT" F— b e —
“( ..... }. ,,,,, : N T . . ?; . X "f | i I s b

Notes on Example 2

remuovable pack on drive 1.

The Overlay Linkage Editor is loaded from the
This pack is now the

progrum pack. Because no file statements are
given, the Overlay Linkage Editor finds from 10
to 30 tracks of work space on either F1 or R1.

12

The output foad module is a temporary entry in the

object library of the program pack (see note 1) un-

der the name BLUE.

Look for user modules on the

program pack because no OPTIONS card is given.
The mainline routine for this program is BLUE and

is tocated on F1.

One of the modules required for this job is in card

form. The name of the module is picked up from
the module name ESL entry on the S card.

For this link-edit the category of module WHITE

is changed to a value of 20. WHITE is included by

AUTOLINK.

The references to YELLOW in the object module

arc replaced by RED in the load module.




Example 3

7O WO TR T T T T ] RENRAANERES
/L F FUILE ,A:MIE;J)JTOTRi ‘LUNI T-Fl PHCK‘ Fi 1F1 T_R‘A:clxs\— 2‘¢‘ LOCATITON- 318, RE[TAIN-IS,
| AR 8 ‘4_T Ll¢+44‘+‘¢_ HF TJr* | A .
,/,,/,,,LF;IKL,E,,,Nlﬁﬁlf:fsOJURcE‘,jU 1T R1, mcx‘ Ri‘R‘L;R,ii.;T,gilﬂ G320 LOCATI.ON -3\t 9|, RETALN-S
TLORUNLL L L R oo
s LPXH;&S«E,,JN;”W EL‘BLL.“!QK,LU:MIT‘ R2, R| ETAI‘N- i Loipay L,,J 0 SRS TS S S AN I
© /7 orTioNs] coRE- 1k, ENTIRY- WHITTE, malse LT -
‘L i ‘ £ \ Lo T+4 4 r_r« — 4t ‘
- - (‘vk»; o e Cor o "",L"'YT 1 b s{l-" T T t HER
S Cardls)) | B I il T U S I L.
957 1Cio.1riJ[S] f?ﬁwad{k RLE &aro’ fo‘{'m ‘T . SN IRERN 4\ : ‘ T 1
e Cairdl T 1 N RN R
4 » PR I .‘,.. 1;, } O f i f‘, 1‘7 ;,
(4] A N'A'M'E’-\'msn GREEN’ TyALUE'ss Proo I 4’ SRR RRER R
e / WAME-YELLO, VALUE 25 IR [ SRR E
DN‘A'M,EA-.‘TH 8. c;' ; ' ' ! . SERERE
DIVAME -, |D l ER RNy Pl Fe ot T‘ SRR
SRR EEE R RRRS SRR R RRERERRSES R R RN

Notes on Example 3

@ SWORK and SSOURCE are allocated on the two
packs on drive 1. $WORK will be right on top of
$SOURCE.

e The object code is constructed so that the program
can run in a 12.5K partition. The entry point
WHITE is the start control address. Only messages
are printed.

)

The mainline routine for this program is in card form.
Therefore, no INCLUDE card is used forit. If a
mainline is in card form it must be the first card

deck read.

For this link edit the category of both modules
RED and GREEN is changed to a value of 55.

If more than one module category value is to be
changed, more than one CATEGORY card can be
used.

The references to module names or entry points A,
B, and C are replaced by X, Y, and Z, respectively.

© 6 060 O

The references to module names or entry points D,
E, and F are replaced by Q.

Examples 2§



Example 4 {(Model 15 only)

1 ‘ “t‘ . r’“:wv:l"'w 1314 e 16 s we o XY ;.o;’y.‘z”?T‘Zb V6 JG 280G 30 5 40 3 34 35 b 2/ @ 9 40 41 av 4y a4 45 aeravas a9 50 51 52 53 54 55 66 57 58 SRQE?SE;,:'S 62 63 64 6566 67 68 69 70 71 72
7/ LOAD BoL Tk, RZ 1171 T i | BEREEERAR ¢
°) V./. EILE NAME - BWORK UNIT-0.L ,PACK- OLNLDL, TRACKS-28,RETALN~S
'Y /. FILE| NAME-BSOURCE ,UNTT- DL, PACK-DAPAD, TRACKS- 268 , RETIATN S
e V/ORUN L I . i b pld | j
// INCLUDE NAME-AAAAUNIT-R]1 | i I REEEEE
€ V// GroluP NAME-TANBB,CCY . LTI B EEEEYE
0 /[ CATEGORY. NAME- " AA,BB, DD EE’,VALVE-30 .. | . | .l | .
/. CATEGORY. NAME-CCl,VALOE-1@ |, | . .. | ., ]
e /!/+ E D, ‘T R 1;,47-7‘*‘. . PR AU S SN T SRS AN ESORE S ;,,.,,4 i el L Li ! §
H Do Py | . Co oL H | [ '_T
I VU N PO 0 U 0 S0 OO (56 GO (SRR N S UGN O 0 A i I S
Example 5
°© AN J‘-m‘- C B ]|V (~" .H\”v' Wl['mdn L 2 ‘”m’s s 0 oy 29 30 31 ar a1 34 36 \b‘\}7 38 39 40 a1 42 “v““s a6 47 48 49 50 51 52 53 54 555«(57 58 ‘ft;(sng:gissz 63 64 65 66 67 68 69 70 73 72
© LoD BoLINK.FI] | EEERREE ERSEERSIRRRSRERNNEE I
JLORUNL G L ‘ BESEENRD ERNSERRRERREAN a | !
@, /7 pualse Funchi-vEs T AINSSERSAEERNNRINERRARRARIRE: ,!
€ // orrIoNs MAFP-XREF| iR ERSgUREREI NS g ,
o /./. GROUP NAME!- PGMAl, AREEA-USER) RERE L L [ i
f ‘ _ ; t e IR L | ' " ;
Cearde LT RN 1 ;
@ 57 Cardlde R miolule 1n card Form | | 1T T 1T 1] [REEEE ; B
lE Card ). 3 AENEEE SR ARG R RN RERER B ! ﬂv
; ! j,, S ‘ L L ( i L : l’ C
//_END : | B EERENRRE BN ‘
: i J 1 i [ l T { . ; 1 (] |
[ R : ! Ll i ™ i
Notes on Example 4 Notes on Example 5

€@ $VORK and SSOURCE are allocated on a 5445, The work area is assigned by the linkage editor.
A load module is punched and no library entry is
e A temporary entry is cataloged in the object library made.
on the program pack under the name of the module
included. A cross-reference list is printed on the storage map.
The overlays, if necessary, are constructed so that
AA, BB, and CC are in main storage at the same
time.

If PGMA is assigned to an overlay, it will appear in
the user overlay area.

® 00 ©0

The only thing needed is an R module. The defaults
o The category value of subroutines AA, BB, DD, and are taken.
EE is 30 for this link edit.

Routines in the same group do not need to have the
same category value. By giving the module a lower
category value, its chance of being in the root seg-
ment increases.

26



EXAMPLES 6 AND 7

These two examples of the same program show how the
overlay structure of a load module can be changed by
varying the input control statements. Both examples
include the input control statements, the storage map
printed by the Overlay Linkage Editor, and a graphic rep-
resentation of the overlay structure. Figure 12 shows the
calling sequence of the modules within the program.

Example 6

Two overlay load points are shown on the storage map
(START ADDRESS heading). INIT (co-resident area)

has the same load point as the system overlay area because
it has no references to system modules and no category 4
modules appear in the program. A reference to a cate.
gory 4 module does not disqualify 2 module from the
co-resident area.

MULT4 and DIV4 are assigned to the root area by the
Overlay Linkage Editor because of their low category
values and small size. FINAL is assigned to the root area
despite its high category value because it can be placed
there without causing the program to exceed its main
storage size. Normally GET6 or PUT6 would be included
in the root segment before FINAL because of their lower
category values, but the Overlay Linkage Editor does not
include any system modules that are called by user modules
until all system modules of the same category that are
called only by other system modules are in the root seg-
ment. In this example, $$LPRT and $$MFRD will not
fit.

MAINL
] I I J ] | I 1
Div4 INIT NAME ADDRSS LOC INV BILL SHip ITEM FINAL MULT4 SREAD
GET6
MULT4 Div4 SMERD

i
SWRITE
PUT6

$LPRT

Figure 12. Calling Tree-structure of Modules Linked in Examples 6-7

Examples 27



Example 6 1300
User — Overlays 1 through 8
System — QOverlay 9
Root Co-resident — QOverlay 10
/7 LOAD 301 INK,F1
// FLLE NAM[—$SOURCE UNIT-F | ,PACK-F {FLF ], RETAIN=S, TRACKS=5
7/ FILE NAME-SWURK UNIT=F1 PACK—F1FLF1,RETAIN-S,TRACKS-5
/7 RUN 1BFB = — — — -
// PHASE NAME-CLSMPL,UNIT-F1
/7 JPTIONS MAP-XREF,(ORE-SK OVLFRTN
// CAYEGURY NAME-'MULT&4,01V4A' ,VAL'IE—4
/7 CATEGURY NAME-'GE16,PUTH! ,VALUE-6 1E00
/7 CATEGURY NAME-SWRITE,VALJE-136
/7 CATFGURY NAME-SREAD,VALUE-118
7/ CATEGIRY NAME-NAME,VALJE-20
/7 CATFLURY WAME-ADODRSS,VALUE-21
/7 CATEGORY NAME-LOC,VALUE=2?
/7 CATEGURY NAME—INV,VALUF-23 User
/7 CATFGURY NAME-BILL,VALIJF=24
/7 LATEGORY NAME-SHIP,VALUF-25
// CATFGURY NAME-ITEM,VALUE-26
/7 CATEGURY NAME—SINIT,F INAL',VALUE=90
/7 END 2400
Co-resident
System
2700
OVEFLAY LINKAGE EDITOR CORF USAGL MAP AND CROSS REFERENCE LIST 11723771
START VERLAY CATEGORY NAME AND CODE LENGTH REFERENCED
ADDRESS MUMHBER ARFA FNTRY HEXADEC IMAL DECIMAL BY
1300 0 MAINL 082D 2093
1820 Uyt MULT4 0013F 63 MAINL  BILL
tB6C 0r4 Diva 00%1 65 MAINL SHIP
1RAD 0,90 FINAL 004€ 78 MA INL
1BER OVLFRTN 0180 384
1E00 1 u 0420 NAME 0320 800 MA INL
2200 1 u 0s136 SWRITE 0192 402 NAME ADDRSS LOC INV BILL
SHIP LTEM
1€00 2 I u,21 ADDRSS 0302 770 MAINL
2?00 2 U 0,136 SWRITE 0192 402 NAME ADDRSS LOC INV BILL
SHIP ITEM
1E00 3 U 022 LOC 028A 650 Ma INL
2100 3 [y Uel36  SWRITE 0192 402 NAME ADORSS LOC INV BILL
SHIP ITEM
LE£00 4 u V,23 INY 02€4 740 MAINL
2100 o U Usl136 SWRITE 0192 402 NAME ADDRSS LOC INV 8ILL
SHIP ITEM
1F00 5 U Ve?4 BILL 02cA 714 MA INL
2100 5 u D136 SWRITE 0192 402 NAME ADDRSS LOC [NV AILL
SHIP TEM
1600 6 U V25 SHIP 0106 174 MA INL
2200 6 U Jrldo  SwRITE 0192 402 NAME ADDRSS LOC INV BILL
SHIP [TEM
1EDO 7 U Je?6 ITEM 0296 662 MAINL
2100 7 U Osl30 SwWRITE 0192 402 NAME ADDRSS LOC INV BILL
SHIP 1TEM
1£00 8 J 0s138  SREAD O1FA 506 MA INL
2404 9 N Dvb GET6 0044 68 SREAD
2444 9 S PIEA PUT 6 0034 58 SWRITE
241t 9 S 6 BSLPRT VOFB 251 PUTE
2579 G S 6 $IMERD 0l4as5 325 GET6
2400 10 C Je 0 INTT 00n0 208 MAINL
DLL0O I THE TOTAL CORE USED RY OLSMPL IS 5120 DECIMAL
OL10L I THE START CONTROL ADDRESS 9F THIS MODULE IS 1300.
OLI02 T THE NON-OVERLAY CORt SIZE s 3466 DECIMAL
OL104 I TOTAL NUMRER DF L IBRARY SECTARS REQUIRED IS 55

NAME —(CLSMPL, PACK-FLF1F L UNIT-FL,RETAIN-T,LIRARY-0

28



Example 7

1300
This example shows three overlay load points. Overlays
1, 2, 3, and 4 are in the user area. Overlays S and 6 are in
the system area, and overlay 7 is in the co-resident area
(user module in the system area). GROUP statements
were entered to increase the size of the user overlay area. Root
/7 AL B INK ]
/7 FaLt M/xWF—sﬁ/!JK(;L,UNI[—ll,“m‘,r\—}l*lfl,‘iiIAIN—;,TN/\M(Sf‘) 186C b e —— —
/7 bLEE NAME - SWHRK G UNT Tk ] ,PaCK—F1F L) W RETAIN=S, TRACKS-9
77 R OVLFRTN
J7PHASL TAME TSR NT ToF |
L4 P TIINS MAP=XEF LR — 45k 1000
/7 LATIGURY JAME — ™ML T4 0T vat WAL If -4
S/ CATEGEY JAME =P E T 6, DT At VAL -0
/7 CATEGHRY NAME =SWRTTE, VALYE =13,
/7 CATEGURPY NAME —S2b al), VAL JE ~ ] 3K
/7 CATEGUDRY MAME —NAME VAL k=20
7/ TATEGLRY NAME—ADDRS S, VAL Jo=2 1
/7 CATEGORY NAME —LO( VAL =2
/7 CATEGLIY NAME - INV,VALUF =23 User
/7 CATEGUIRY GAME =R UL, VALI'E =24
£/ CATLSURY NAME -SHLEF, VAL JE-25
/7 CATHLUY Y NAME [ TEM, VALK - /A
7/ LATEGORS JAME =Y INLT o F INAL Yy VALY =90
J/ O GRUUP A SRSV NAVE OO
7/ GRDUP 1A A A0S, Ty e
£/ ORI LA =L, e
/7 0
2600
System
Co-resident
2900
OVERLAY LINKAGr L0LT08 GURF JSAGE MAP AND CROSS REFERENCE LIST 11/723/71
START IWWERLAY CATLGORY NAME  AND CODFE LENGTH REFERINCED
ADNRE SS NUME TR OAREA FNIRY HE XANDECTMAL DECIMAL BY
1309 0 MALNL U820 2093
1820 J 4 Mal T4 003F 63 MAINL BILL
LR6C CVLFRTM Ol6y 352
1700 1 [ U2 NAME 032N 800 MATNL
2100 1 ¥l Dal o SWEITH 0l92 402 NAME ADDRSS LOC INV LESRE
SHIP  ITEM
2297 1 J V227 Lo 0218A h50 MAINL
1hoo 2 U U2 ADIRSS 03ne 170 MAINL
2100 Z U Oyl 36 SWRlTt QL1322 402 NAME ADDRSS L0C INV BILL
SHIP  ITEM
2292 2 g Dr2h Ny 024 740 MAINL
1HU0 3 N 0,26 AL 02Ca T4  MAINL
23G90 3 ¥} Oel o SA2ITE 01932 402 MAME ADBRSS LOC INV BILL
SHIP  I1TEM
2192 5 Deln ST P 0306 774 MA INL
1noov 4 5] PPN I[TEM 0296 662 MATNL
2000 “ Jel3n  SariTlE 0192 402 NAME  ADDRSS LOC INV BILL
SHIP  ITEM
2200 “+ U Jel 8 SREAY OLFA 506 MATNL
2600 5 S 3ea e ouatl 65  MAINL SHIP
2600 o N 0,5 GETh 2044 68  SREAD
2644 o S Dyt PUTA Q0 sA 58 SWRITE
2071 [¢] S L] PHLPRT QUFR 251 PUTE
2179 o S “ SLMERL 0las 325  GETe
2100 ’ ¢ Uyeu INTT 0019 208 MAINL
27100 7 c 0,90 FINAL 004E 78 MAINL
oL1oy 1 THE TOTAL CURE USED BY Ot sMpPL IS 5632 DECTIMAL
0nrial ot Ftie. START CONTROL AGDRESS MF THIS MUDULE IS 1300.
oLioe 1 THE NON-OVERLAY CORE S1ZF IS G466 DECIMAL
OLLJ4 T TOIAL NUMBEK CF LIBRARY SHCTORS REQUIRED 1S 51

NAME=OLSMPL y PACK=F IF IF Ly UNIT=FL,RETAIN=T,1l IBRARY=0

Examples

29



EXAMPLES 8 THROUGH 11

These four examples show how the overlay structure of a
program can be changed by varying the input control state-
ments. The changes result from varying the category values
of modules and varying the main storage size. All four
examples show the input control statements, the storage
map printed by the Overlay Linkage Editor, and a graphic
representation of the storage map. Figure 13 shows the
tree structure of the program.

ABLE JAKE

BAKER KING

] |

CHARLY DOG EASY LOVE MIKE

Figure 13, Calling Tree-structure of Modules Linked in Examples 8-11

30

EASY



Example 8

1300
All modules except ROOT, BAKER, and KING are given
overlay category values. Because no system modules
(category values 1-7) are present, only one overlay area Root
Is assigned. Any module assigned to an overlay segment
must be assigned to the same segments as its descendants.
Because ABLE calls CHARLY and DOG (through BAKER),
these three modules are assigned to one segment. Likewise,
JAKE calls LOVE and MIKE (through KING) and is assigned, 2B00 = — —— — —
with them, to the second overlay segment. EASY would OVLFRTN
have been assigned to both segments, but space was avail-
able in the root so EASY was included in the root segment. 2coo
/7 CALL GLINK,4RL
XX LOG PRINTER
XX NOHALT .
XX PUNCH MFCU2 Co-resident
XX LOAD S$SOULINK,F1L
XX FILE NAME—SSUURCE.REIAIN-SpTKACK§~25pPACK-FlFlFI'UNIT—Fl
XX FILE MAME-&NHRK.RETAIN—S.TRACKS-ZS.PACK—FIFLFIpUNXT—Fl
XX RUN
// RUN
// PHASE NAME-RIZZI,uNIT-F]
/7 UPTIONS MAP~XREF UPACK~R] CNRE-T] LK
/7 INCLUDE NAME-RONT,UNIT-R]
// CATEGURY NAME - *ARLE  JAKE® , VALUE-8
// END
4000
OVERLAY LINKAGE EDITOR CURE USAGE MAP AND CROSS REFERENCE LIST
START UVERLAY CATEGORY NAME AND CODE LENGTH REFERENCED
ADDRESS NUMBER AREA ENTRY HEXADECIMAL DEC IMAL 8y
1300 0 ROOT 0800 2048
1304 ROOT
1R0O0 0 SAKER Q400 1024 ABLE
1R05 BAKER ABLE
1FOO o} KING 0400 1024 JAKE
2008 KING JAKE
2300 37 EASY 0800 2048 BAKER KING
250A EASY BAKER KING
2B00 OVLFRTN 00C4 196
2C00 1 C Q.8 ABLE 0328 808 ROQT
2FQA ABLE ROOT
2F28 1 C 37 CHARLY [V2:30]¢] 2048 BAKER
2F 34 CHARLY BAKER
3728 1 C 37 006 0800 2048 BAKER
3A31 DOG BAKER
2€00 2 c 0.8 JAKE 0400 1024  ROQT
2C0A JAKE ROOTY
3000 2 [ 37 LOVE 0800 2048 KING
310C LOVE KING
3800 2 C 37 MIKE 0800 2048 KING
380C MIKE KING
OLL00O | THE TOTAL CURE USED 8Y RIZZ1 IS 11520 DECIMAL
OLL101 I THE START CONTROL AODRESS OF THIS MODULE IS 130A.
OL102 | THE NON-OVERLAY CORE SIZE [§ 16168 DECIMAL
OLL104 I  TOTAL NUMBER OF LIBRARY SECTORS REQUIRED I 67

NAME-RIZZ1 .PACK—F[F[FL,UN(T-Fl.RETAlN—TyLIBRARY-O

07/15/71

Co-resident — Overlays 1, 2

Examples

31



Example 9

All modules have an overlay category value (non-zero).
Because there are no system category values (1-7), only

one overlay area is assigned by the Overlay Linkage Editor.
Only two overlay segments are possible because each call-
ing module must be in the same segment as its descendants,
Module EASY could be given a category value of 0 so it
would be placed in the root rather than in both segments.

/7 CALL OLINK,R1

XX L0OG PRINTER

XX NUHALT

XX PUNCH MFCU2

XX LOAD $NULINK,F1

XX FLLE NAME-$SUOURCE,RETAIN-S, TRACKS-25,PACK-F1FL1FL,UNIT-F1
XX F1LE NAMF -4 W0ORK s RETAIN=S, TRACKS=25,PACK—FLFLF1,UNIT~F1
XX RUN

/7 RUN

// PHASE NAME-RIZ,UNIT-FL

/7 QPTIUNS MAP-XREF,UPACK-R],CIRE-H]IOK

// INCLUUE NAME-ROOT,UNIT-RL

// CATEGURY NAME-*BAKER,KiING®,VALUE-8

/7 CATEGURY NAME-'ABLE,.JAKE®,VALUE-8

1300

Root

OVLFRTN

Co-resident — Overlays 1, 2

Co-resident

3C00

REFER
BY

ROOY
ROOT
ABLE
ABLF
BAKER
BAKER
BAKER
BAKER
RAKER
BAKER
RNOOT
RDOT
JAKE
JAKE
KING
KING
KING
KING
BAKER
BAKER

ENCED

KING
KING

KING
KING

/7 END
OVERLAY LINKAGE EDITJR CORE USAGE MAP AND CROSS REFERENCE LIST
START OVERLAY CATEGORY NAME AND CODE LENGTH
ADDRESS NUMBER AREA ENTRY HEXADECIMAL DECIMAL
1300 0 RIOT 0800 2048
132A ROOT
1800 OVLFRTN 00F0 240
1000 1 C 0,8 ABLE 0328 808
1FOA ABLE
1F23 1 C 0s8 BAKER 0400 1024
LF20 BAKER
2328 i c 37 CHARLY 0400 2048
2334 CHARLY
2824 1 C 37 006G 0800 2048
2E31 D0G
3328 i C 37 EASY 0800 2048
3532 EASY
1C00 2 C Jye8 JAKE 0400 1024
1C0A JAKE
2000 2 C 0.8 KING 0400 1024
21ub KING
2400 2 C 37 LOVE 0800 2048
250C LOVE
2C00 2 C 37 MIKE 0800 2048
2CuC MIxE
3400 2 C 37 EASY 0800 2048
3604 EASY
DL10VU 1 THe TOTAL CORE USED BY RIZ 15 10496 DECIMAL
NL1ol i THE START CUNTRUL AODRESS OF THIS MODULE IS 130A.
ALL0Z2 1T THE NON-AVERLAY CORE SIZE IS 16168 DECIMAL
OL104 [ TNTAL NUMBER OF LIBRARY SECTORS REQUIRED IS 75

NAME-RIZ yPACK-FIF1FL,UNIT-F1,RETAIN-T,LIBRARY-D

32

Q1/15/71



Example 10 1300

Module EASY is assigned a category value of 2. Because
the Overlay Linkage Editor assumes that categories T, 2,
3,5, 6,and 7 are system 1/O modules. modules BAKER Root User — Overlays 1, 2

and KING are 1/O dependent and are assigned to user System — Overlay 3

overlay segments. The remaining four modules are /O Corresident = Overlays 4 through 7
independent and are assigned to co-resident overlay
segments,

2228 T T T T

OVLFRTN

2400

// CALL OLINK,R]
XX LUG PRINTER
XX NOHALT User
XX PUNCH MFCuU2

XX LUAD $NLINK,,F1

XX FILE NAMt—&SUURCF,RFTAl"‘J—S,TKAC‘(S~/‘>,PACK—FH—AFI.UNIT—F[
XX FILF NAME'&NQKK.RFTAIV—S'TKACKS—?S,PACK—FIFIFI.JNIT‘Fl

XX RyUN
// RUN
/71 PHASLE NAME—EV2 ,UNIT~F] 2800
/7 OPTIUNS MAP‘XKEF,L[)Rf"HTK’lJDACK—‘{l
7/ INCLJDE NAME-ROOT,UNIT-R] Co-resident
/1 CATEGDRY NAME - " BAKER ,KING? y VALIJE-4
// CATEGURY NAME~EASY, VAL UE=Q
// END
System
3000
OVERLAY LINKAGE EDITOR CURE USAuk MAP ANU CRUISS REFERFNCE LIST 07/715/71
START ’ UVERLAY CATEGIRY NAME  AND CODE LENGTH REFERENCED
ADDRESS NUMBER AREA FNTRY HEXADEC TMAL DEC IMAL Ry
1300 3] RUNT 0400 2043
1304 R3T
1800 ol AGQLE 0428 B0OA R1OT
1EGA ALt RIOT
1E28 D JAKE 2400 Lo26 RIIT
1E32 JAKE R7Y5T
2228 DVLFRTN JUF 2 2472
2400 1 V) Je8 BAKER Gu i) 1324 ARLE
2404 BAKER ABLF
2400 2 v] JeH KENG 0400 1024 JAKF
2508 K ING JAXKE
2R40 3 S 3742 £ASY 0800 204R 3AKER KING
2A0A EASY BAKER KING
2800 “ C 37 CHARLY 809 2148 BAKFER
2800 CHARLY BAKER
2RO 5 C 37 pIs 0400 2104R BAKER
21309 DI 1% RAKER
2800 & r 37 LvVE 0309 2048 KING
2900 Lve KING
2300 7 C 37 MIKE 0309 204n KING
280¢C MIKE K ING
OLIVO 1 THE TOTAL CHORE USED RY ¢y 1S 1424 DFCIMAL
JLiol 1 THE START CUNTRIL AUDRESS OF THILS MODULE IS 130A.
utlue 1 THE NON-TVERLAY CWRe SI7t 5 15168 DFCIMAL
JL104 | TOTAL NUMBLR OF LI4RARY SECTAORS REGUIREQ IS 12

NAML—EV 2 P PACK-F LIt F L, UNTT=F 1, RFTAIN-T, LI4RARY="

Examples 33



Example 11 1300

All modules except ROOT have an overlay category (non-
zero). Because BAKER and KING call a system module
(EASY), they are assigned to user overlay segments. Mod-
ules that call BAKER and KING (ABLE and JAKE) are Root User — Overlays 1, 2

put into the same overlay segment as the modules they System — Overlay 3

call. Modules that do not call system modules are assigned Co-esident — Overlays 4 through 7
to the co-resident area.

1B0O T T T T
OVLFRTN

1D00

/7 LALL JLINK,.R1

XX LUG PRINTER

XX NOHALT

XX PUNCH MF(U?

XX LNAD 3NLINKGFL User

AX FILE NA“E—&SUURCt,REYAIV-S.Y{ACKS—ZSyPACK'FlFIFl.UNlT‘Fl
XX FILE NAMF-S#DR&.RFTAIN—Q,YRA(KS—)S,PAC(—FIFLFL.UVIT—F[
XX RUN

/7 RUN

// PHASE NAME-EV2H,UNIT-F1

/7 OPTINONS UPACK-R1 ,MAP-XREF, CIREL~THK

/7 INCLUUF NAME-RINT,UNIT-R]

/7 CATEGURY NAME -*ABLE, BAKERy JAKE ¢ KING® ,VALUE -8

/7 CATEGURY NAME-EASY,VALUE-?

/7 END 2500
System Co-resident
UVERLAY LINKAGE EDITUR CIRE JSAGE MAP AND CRUSS REFERENCE LIST 0T/15/71
START DVFRLAY CATEGNIRY  NAME AND COUF LENGTH REFERENCED
ADDRESS  NUMBER AREA ENTRY HEXADEC T MAL DECTMAL BY
1300 0 RADT U800 2048
1304 ROOT
1800 DVLFRTN 0108 264
1000 1 u D48 ABLE 0328 80R ROOT
2004 ARLE RJQT
2028 L U 0,3 HAKER 0400 10724 A3LE
2020 BAKER ASLE
1000 2 U 048 JAKE 0400 1024 ROOT
1D0A JAKE RNOT
2100 2 U Je8B K ING 0400 1024 JAKE
2208 K ING JAKE
2500 3 S 37,2 EASY 0800 2048 BAKER KING
2704 EASY BAKER KING
2500 4 C 37 CHARLY 0800 2048 BAKER
250¢C CHARLY BAKER
2500 5 o 37 NG 0800 2048 BAKER
2809 PLT 3AKER
2500 f C 37 LOVE 0800 2048 KING
260C LOVE KING
2500 7 C 37 41KE 0800 2048 KING
250¢C MIKE KING
UL1UO I THE TOTAL CURF USED RY £V23 IS 6656 DECIMAL
OLIOL T THE START CONTROL ADDRESS OF THIS MODULE IS 130A.
DLLIOZ I THE NON-OVERLAY CORE SIZF IS L4168 DECIMAL
JLL104 T TOTAL NUMBER OF LIBRARY SECTMIRS REQUIREU IS 72

NAME -FV 28 ¢y PACK-FLF1F L UNIT=F1,RETAIN-T,LI3RARY-0

34



EXAMPLES 12 AND 13

These two examples show the same RPG program link-edited

with both memory resident overlay techniques. Note that
the ATTR-MRO program requires 2K more to execute in

than the ATTR-MOV program.

’/
124
’7/
144
7
r/
a4
7/

LUAD $ULINK, FL

NOHALT SEVERITY -4

RUN

PHAS E NAME-MUY £y RETAIN=T, kL =N
ORT Ny
[NCLULE NAME-S pMDL |

(M- LOR, MAP-Y s, ATTR-8OV —-OPTIONS statement request

for MOVE technique.

The overlay segment containing
this module will not be a
candidate for memory residence.

UVERL AY LINKACE EDITOR CriRt

START
AOCRESS

W ERLAY
NUMBER AREA

CATEGORY

4000

4580

4 C0d

«D28

4 B0y

4 EFL

G EFZ

4F51

af52

5001

5014

5028

5030

5071

50E2

553y

55A8

55E1L

95¢&1

55F2

55F5

55FD

5619

565F

5694 12
ST2F

5736

5763

5716

5713

5710

5727

5728

276 28
5717 28
STTF 29
5783 28
S578F 28
57C8 12¢e
STEG

5830

5846 93
S840

585€

5862

5871 12¢
58EC 28
S8F8 i2¢
5935 126
5959 71
5983 126
598%

5907

5 A0 F

ccoo

o

NN O OO OOR

[ NN

USAGE MAP

NAME AND
ENTRY

CODE LENG TH
HEXADEC IMAL UECLMAL
GLOBAL 0543 leal
COMMON €578 140C
SAMPLE Cl2y 256
$H#RTQ2 [8:38 433
$HMISC 0013 24
$HIPCR cgen 56

$40€E89
$ #0P CR

$a0F 19
$ #CONO
$#CON1

Q080 176

co13 LS
cov/ 23
$HCON 2 Coi? ta
$ #CON3 CO3s Ry
$$PGAR 0071 113
$$PGOC Catd 1Lt
$% SRAK ocHe L3c
ER LRV ce
ER I 0C1iu 4
MR
DM S0
LM Sn K
% Sk
$850 50
% Sk4P
SHINPT
$aliBu
tuluGa
$al0C1
$a21074
51071
$alCet
$a1C6%
$allreS
$#1HO1
$#TIHO4
SHEXPT
$H#OHLS
$ #HOHC2
$HIFLD
$a1328
$al364
$HCLOS Cids “
$aleF?
$al7C3
$alircy
$#DOUT
S HOHOS
$#TOUT
$ #LROF
$¥OFOH
$#RC 10D
$a1003
$dl112l
$4115%

~

-
Do

104
le
ol
it

Example 12

Thisexample showsa linkedit of an RPG program requesting
the memory resident overlay MOVE technique (ATTR-MOV).
This technique can also be requested by using the COMPILE
statement at compile time. The link-edit map for this tech-
nique looks exactly like a conventional linkedit of the
program.

$HTCAL
o IR
IXACE
$HSHEL
$akF
o 3¢ EXRTE
34 L AL IS
" 32 $HOR L

RO
I $HOH L
E LR NC
Nl $ a5 e
151 sal )T

$#Ol A

; - f L P TIN
EE . : Lel2s s
b b, < ) 1ol 800 1]

) J

(S : $5PLAR Goay 164
St LT} e

TrHE Tl AL 12 ISl RY MovE i LE240C DELIMALL

t
ablal 1 Trie STAT CoNTHOL ADDRESS JF dRTS M ogurr 15 40 CO.
[ THE NtV EdLAY CORE 537+ 15 LiCae T IMAL
Ll T TLTAL A Mat~ b L TeRA~Y SECTLRY REgulto S “h

NAME =M v CPALK=FLELR L, UNT =k Ty TATIN=- T, LTk ANY=T

°Segments do not have to start on 2K boundaries (1a to 1f}.

e This overlay segment will not be a candidate for
resident storage because of the category 125 module.

9 Core used is less than REMAP,

Examples 35



Example 13

This example shows a link-edit of the same RPG program
used for Example 12 requesting the memory resident over-

lay REMAP technique (ATTR-MRO).
1 LoD sCLINGELOPTIONS statement request for REMAP technique.
// RUN
77 CATEGARY NAMEASSP CLC, $5PGACD, VAL UL~ 125 —Overlay segments containing these modules will
7/ CPTIONS ATTR=MRO,MAP-XREF, CORE- 10K ) ’
/7 PHASE NAME-REMAP,UNIT-F1,RETAIN=T not be candidates for memory residence.
77 INCLUDE NAME=SAMPL E, UN IT~F |
/7 END
UVERL AY LINKAGE FDITOR COeg MAP AND € Ki&€ REFERENCE LIST
yTA=T W EKL 4y CATHGORY NAME AND CODE  LE NG Tny REFERENCED
ALK 5S NUM=SER AREA ENTRY HEXADEC IMAL DEC 1 MAL q3Y
400 GLOBAL Chay 144
tanan COMMIN 510 lars
RASR] (8] SAMPL T Cles cYn SHSROL $HSRYS SHSRIG $HSKO3 $#SRO2
$ESKOL $HSROU SHIRVE SHSAFF $HSRED
SHSREC $EMEOL 40 FOF $HEXDPT SHTUT
SHLROT $a 0 4T 80 ™S SHOPEN $HDC AL
SACHLY $SHMILG $4%CED sH INPT SHOPCK
$HIPCw 3HRTH2
GuULR o] $H<T02 ClRL 437 SAMPLE $450D6 $HSRNS $HSRO4 $HSROZ
SHSRN? $#SP0L $4SP)D SHSREF SHSRFE
SASKFU $#SHF( SHMH]H SHOFUF $HEXPT
SHTTUT seyLkCl $pLOUT SHOPEN $HDC AL
SEEFLU $#UHDS $4CH02
+ HIX a $HM ] SC ogls 24 $SHRTDZ2 SAMELE $4CFLD SHMFL G
it ] C $AlPCY 360 96 $ROPEN SHINFT
arE? $4CtHY $#IH04 $41HOD $a1MI1
4F5] 9 $HOP LR 0089 176 SHELROF $#TCUT ss0NUT $#CLEOS SHOPEN
SHTCAL s#iCaL
$aCt 1o $HOHLIS $HCHOS $UCHD?2
a $HCONC 2013 15 $HOCUT
< SHCONL cci7 23 $HTQUT
: bl $RCON2 cely 18 SHLROT $#CLCS
VT J $HCONY Clig 52 SHMFOL $#URCF S$H#CFCF $AEXPT SHTOUT
$HLROT $HCCUT $4CLES S$HOPEN $HT CAL
$#DCAL
Suti a $$PGAR corl 112 SHINPT $#CPCR $#1PCR
5t ol $$PG0C 0457 1111 $#SRO6 $#SROS $HSROG $4SRO3 $#SROZ
$HSROL $HSROO $HSRFFE SHSREE $HSRFC
SHSRFC
126 $HINPT QCos 213 SAMPLE $yCCUT
$alCHD $ARCIO
$a10%4 $#RCI D
$al0C1 SHRCID
$alCla $HMFLG
$alc7l S#MF LG
$al0¢E SHMFLG
$allES $HCFLD
$al089 $HCFLD
20 SHIHCL coas 8 SHINPT
24 $SHIHQO4 0008 8 SHEINPT
12¢ $HTCAL coc? 199 SHINPT SANMPLE
8 $H#SRFC 60s9 1532 $#TCAL
25 $HSRED 0099 153 $K¥TCAL
20 $ 4SRFE 0099 153 SHTCAL
3 SHSREF 0099 153 s4TCAL
32 $SHSROC 0099 153 SHTCAL
412 S$#S%CL €099 153 $HTCAL
33 $HSRCo 099 153 SHTCAL
3% $HSKCH c0%9 153 SHTCAL
33 $ASR D4 0069 153 $H#TCAL
33 SHSRCS 007F 127 SH#TCAL
126 $HOCAL 012¢ 302 SHIFLD SAMPLE
33 $#SRC6 010 270 SHTCAL $#CCAL
29 SHEXPT o34 52 $HSRO6 SHSROS $#SRO4 SKSRO3 $ESRO2
SHSROL SHSROO $#SRFF SHSRFE SHSRFD
SHSRFC
DF 35 2k $HOH15 cocc 12 $#SRO6 $H#SROS $#SRO& $#S5R0O3 S#SRO2
$#SRO1 $#SROD $SHSRFF S$HSRFE $#SRFD
SUSRFC
2 bl G2 $4CLOS cozB 43 SAMPLE
i gn $aleF2 $HTCAL
L6 $31703 SHTOUT
s $a17C7 $#LROF
S ke 197 $HLROT CC3D 6l $HCLOS
ran Lo $#00UT cors 123 $HOPEN $#CCAL SAMPLE
ol ‘r SHOHCS e 12 s#DOUT
IR Toe sHTOUY 30 &1 $H#CLOS SH#TCAL SAMPLE



START
AUDRESS
060
6091
60818
61343
b4y

043
plon

6800

o821
b His
obla
6BEL
HAEC
6akD
65900
EETE]
oYL
L9 le
tAJ

6 A3
HAZL
6844

g0 T

wull

6800
»aly
bold

Hols
hoH]
&80
o907
a9le
Y4
b A3y
6 A4t
6He32
6 B9 3
6 FAg

st

o CFY

o Fot
6 FI A

5807 T

D96y
0963

JLE3D
CLLSL
GLLDY |
CLOZT 4
tLlue 1

Overlay segments begin on 2K boundaries (1a to 1d).

NAME-REMAP |\ PACK=FLFLF Ly tin [T~ Ly b TA LA - T, LlarAany -,

SAMPLF

LEA VAL

SESRL

XN

L]
(YR

SRR
g WF

£ R
PE RN
ba 3
LI
a4 0
TR

Overlays 3 and 4 are not candidates for memory residence because

e Four overlay segments in this example.

of the CATEGORY 125 module.

©

REMAP uses more core than MOVE (Example 12).

OV ERL AY CATEGORY  NAME AND COOE LE NG TH HEFERENCET
NUMBER ARES ENTRY HE XAOEL IMAL DECT AL ay
e S HLROF PEY st $4TGT sd [NET
71 R AR O2A 4! dal oy
93 sHIPEN o 2N NAMPLE $BRLE]
to7 $8PGF I Cans HH L Sa PN
] $HOHD UL 17 bt gE s XFT
$H LN
2n SHIFC 3 $ur PEN
A UVLERTN ol w0
1 5 ¢ $$CTIP 2 TR Y VTR
1 5 2 $$C 5N 24 Sa HiH
i S 2 $3SRER 14C 880 STE S8CS TR
1 5 < $5 SR UA ERd $$0. 500 2E(SIP
L S I BHHRTC F $ILST P SE(SIP
DM SRLD
OM SR TC PELLOP g8 (P
DM SKRER $HCSTR s30S 0
1 S 2 $% SROE oL ] PR DAY
i S 2 5% SRM(« Cias lLea $ESREW
1 5 2 335k Sn Cl4o re Bhu KM
1 b 2 $9 SR YR 145 LR L AL S
DM SKP DY IS RLANS
IM Skomiy LM
L S 2 5 SRBP )Y $H51L 44k
ST TR T T e T gsams T T i
— L s & __ 3sLpRi
3 ( Toe FeiFn ST 13 IR
$alazk balt
$aldra LR
3 C 1oe S HRC LI [ j bal hw
bal D2 bl
sallel LR R
tallty bkl
3 C 17¢ SHMEL 1 <1/ bal AT
tallsa pul AT
falder bavo
3 < Lo $52 G0 [ S b4
3 & 12e $HLHL I ila Sal KT
$al401 La
3 C Pt Pl BN 1.6 L L AL
B o,b b s vby
Srlyl AL
3 C 54 FE25 0 Sl Lo Paoanu tHN k4
LaK 0 tmhedd
BRTOAL 810 AL
3 4 11 LR TR TR ol SHLHTE b
BHLKG s kb
3 C LY:! $EPIMA 140 sL7 BELR L bd Gk e
SR g kb
3 C 97y 12%  bevoac L7 (A L R N T
ba ko gd kot
3 C lu? BHL AL e EX T
3 C ) $ ML L3 LA L
T T T T AR R T T T e — T TR R G A
4 C 15 LRERLY Pt bROUAL tiF
THE TOTAL CIRE GSEU HY ~iMap LS L3828 dhiluay.,
THE START CONTRLL AGLELYSY THLC MU 4 Ts & (0,
FrE NUN=UDVERLAY (o=t STI78 (% Prlac b MAL
PRUGRAM WILL NUT F{I {N FrF L AR AR T I
POT AL NUMBER  F L IdiAny Lo 0K« LEVAVE I 45

saLi Tl

$a. 101
$rEC

tah <2
bu NET

ta Ry,
S 0F
tH
8K
LA
ty b

L LI S
tal 0 on

LA AVE
$AS K

LT ENCEE
i bt
tHh - ]
Suibbr
S W)
ta .0

Examples

37



Appendix A. Messages

There are three classes of messages: informational, warning,
and terminal. The informational messages are indicated by
an [ in print position 7. These messages are printed with-
out halts. Warning messages are indicated by a W in print
position 7. A 'P halt with options 0 and 3 is issued with
warning messages. Terminal messages have a T in position
7 and are issued with a 'P halt with a 3 option. If two or
more warning messages are given, the halt indicates the

first message. If 4 warning message and a terminal message
are printed, the halt applies to the terminal error.

38



MESSAGE

DESCRIPTION

OoLo16

OL020

oLo21

0Lo022

0OL023

OL024

OL025

OLO026

ENTRY POINT NAME ON
OPTIONS CARD WAS NOT FOUND.

TEXT OUT OF SEQUENCE IN
MODULE WITH BEGIN ADDRESS
nnnn IN OVERLAY nnn.

MODULE namexx HAS INVALID
ESL nnnnnn.

INVALID RLD IN namexx AT TEXT
RECORD ADDRESS nnnn.

UNRESOLVED EXTRN IN MODULE
WITH BEGIN ADDRESS nnnn IN
OVERLAY nnn.

EXTERNAL BUFFERS GREATER
THAN 64K.

MODULE NAMED namexx NOT
FOUND

PROGRAM WILL NOT FIT IN
THE MAXIMUM CORE SIZE.

The iabel given as the entry point on the OPTIONS
statement (ENTRY —label) was not one of the entry
points of the object modules. If option 0 is taken,
the entry point of the mainline routine is used. The
name on the OPTIONS card should match one of the
names on the storage map.

The object text is out of sequence. An ORG instruction
has caused code to overlay other code.

The object module named has an invalid ESL in an S—type
record. If using Basic Assembler, you may have specified
an invalid EXTRN subtype. Contact your IBM Field
Engineering program support representative.

The object module named has a bad text record. The
error record has the nnnn address in bytes 3 and 4. Con-
tact your IBM Field Engineering program support
representative.

There is an unresolved EXTRN to an entry point.
Probable user error.

64K is the maximum allowed for external buffers.
Reduce buffer size and recompile.

The name printed in the meésage was not found by
AUTOLINK. If the name begins with $, only the pro-
gram pack was searched. Otherwise both the user pack
(if specified) and the program pack were searched. To
correct the error, copy the module to the correct library
or change the EXTRN to the correct module.

The maximum storage size is 61-1/4K. (64K minus the
minimum supervisor) Change the module sizes or
categories to allow a different overlay structure.

Appendix A, Messages 39



MESSAGE

DESCRIPTION

OoL027 W

OLO31 W

OL032 W

OLO33 W

OL034 W

OL035 T

PROGRAM WILL NOT FIT IN THE
CORE SIZE SPECIFIED.

MODULE NAMED namexx WAS NOT
REFERENCED BY AN EXTERN.

MAINLINE MODULE NAME IN
GROUP OR CATEGORY CARD

A MODULE IN A GROUP CARD HAS
CATEGORY VALUE 0-7

MODULE NAME namexx IN
CATEGORY OR GROUP CARD NOT

REFERENCED BY OBJECT PROGRAM.

SYSTEM AREA MODULE namexx
CATEGORY n CALLS MODULE

namexx.

Even with overlays, the program will not fit in storage.
The storage size is either the core size specified on the
OPTIONS statement (CORE—annK), the core size spe-
cified to the compiler, or the default of the current par-
tition size. If more main storage is not avatlable for
execution, change the module sizes or categories to
allow a different overlay structure. If this message is
issued and no overlays are indicated on the storage map,
overlay segments were not generated for one or more

of the following reasons:

1. Overlays would not have provided a storage
advantage.

2. All of the object modules had category O.

3. Only one overlay segment was available for an
overlay area.

A module was read from the system input device
{(READER) or was referenced on an INCLUDE state-
ment but was not referenced by an EXTRN in the
object module. An EXTRN must reference the mod-
ule name for the Overlay Linkage Editor to determine
the program structure.

The mainline module name has no meaning in a GROUP
or CATEGORY statement. The name should be
removed from the statement.

The module with the 0-7 category value is ignored when
grouping modules. If the user wants the module in a spe-
cific overtay segment, he must supply a CATEGORY
statement with a value of 8-126, in addition to the
GROUP statement. |If no module named in a GROUP
statement has a category value of 0-7, this message may
result from a module being forced to category 0 by the
linkage editor. This could be the mainline module, a
non-segment in a segmented COBOL program, a
zero-length module, or a module called from a system
module (message OL035). Categories 127, 128, and 255
are treated as category O.

The name in the CATEGORY or GROUP statement is
not referenced by any of the included or AUTO-LINKED
modules. The name should be removed or the correct
name determined from the storage map.

This message may also appear if a module is named twice
in CATEGORY assignments.

A module with category 1-7 can call only modules with
the same category or category 0. The category of one of
the modules must be changed.




MESSAGE DESCRIPTION

OL036 W MODULE NAME OR ENTRY POINT This message can occur for two reasons:
namexx HAS A DUPLICATE.

1. If the name is on the core usage map twice, the
program contains duplicate entry points or module
names. If the duplicate entry points or module
names are not referenced, the program can be
executed. If the duplicate entry points or module
names are referenced, the references may be
resoived to the wrong name and the program will
not execute correctly. Therefore, the object mod-
ule should be recreated to eliminate the duplicates.

2. If the name appears only once, the module was
included more than once via the SYSIN device or
INCLUDE statement. The duplicate modules are
dropped. The duplicate deck or INCLUDE card
can be removed.

OoLo38 T MODULE namexx HAS INVALID ESL The object module named has an invalid ESL number in
NUMBER IN TEXT WITH LOAD a T—type record. The error record has the nnnn address
ADDRESS nnnn in bytes 3 and 4. Contact your IBM Field Engineering

program support representative.

oLo42 T ENTRY POINT ISNOT RELATIVE The entry point must be the first byte of the module

ZERO IN A MODULE WITH COMMON. because the start control address on the header card is
used to indicate the load point of the module. The entry
point must be changed by either recreating the module
or using the ENTRY parameter on the OPTIONS

statement.

oL100 1 THE TOTAL CORE USED BY namexx The module named requires the amount of main
IS nnnnn DECIMAL. storage given by nnnnn to execute.

oL101 | THE START CONTROL ADDRESS OF The entry point of the root segment is specified by
THIS MODULE IS xxxx. XXXX.

oL102 1 THE NON—-OVERLAY CORE SIZE The amount of main storage this program needs to
IS nnnnnnnn DECIMAL. execute without overlays is nnnnnnnn.

oL103 1 TOTAL NUMBER OF LIBRARY This message is issued when the compilter entry is
SECTORS REQUIRED IS nnnn used to catalog an object module.
NAME-—namexx,PACK—packxx,
UNIT—nn, RETAIN~r,LIBRARY—R,
CATEGORY—nnn

OL104 | TOTAL NUMBER OF LIBRARY This describes the load module cataloged into the
SECTORS REQUIRED IS nnnn object library.

NAME —namexx,PACK —packxx,
UNIT—nn,RETAIN~—r,LIBRARY -0

Appendix A, Messages




MESSAGE DESCRIPTION

OoL105 | THE CODE LENGTH OF namexx Describes the number of bytes in the R module cataloged
IS nnnn DECIMAL. to the library or punched. This size does not include:

1. Bytes reserved for COMMON.
2. Bytes bypassed for boundary alignment.

3. Bytes used by routines referenced only by

EXTRNs.
oL106 1 THE TOTAL CORE USED FOR Total main storage used for external buffers.
EXTERNAL BUFFERS BY—namexx
IS nnnnn DECIMAL.
OoL107 | THE PARTITION SIZE REQUIRED The partition size is determined by adding the values
TO EXECUTE THIS PROGRAM specified in messages OL100 and OL106 and rounding

IS xxK. up to an even multiple of 2K,




The Overlay Linkage Editor accepts object modules for
link-editing from either disk or card input. Object modules
contain four types of records which must be in this order:

H—type = Header Record (optional)

S—type = External Symbol List (ESL) Records
T—type = Text-Relocation Dictionary (RLD) Records
E—type = End Record

!

Header Record

A header record is the first record of an object module
and contains information describing the module.

External Symbol List (ESL) Records

An S—type record contains up to tive ESL fields. ESL
fields define areas within an object module and contain
external references to other modules. The Overlay Linkage
Editor accepts the following types of ESL fields:

® Module name
® Entry point
® External reference

External reference (EXTRN) ESLs are divided into seven
subtypes. These subtypes are:

® External reference to a module name (EXTRN
subtype 0)

® External reference to an entry point (EXTRN
subtype 128)

® Weak external reference to a module name (EXTRN
subtype 3)

® Weak external reference to an entry point (EXTRN
subtype 131)

® GLOBAL COMMON (EXTRN subtype 4)
® LOCAL COMMON (EXTRN subtype 5)

® Conditional external refercnce to a module name
(EXTRN subtype 6)

® External buffers (EXTRN subtype 7)—-Program Number
5704-SC2 only

Appendix B. Object Modules

Module Name

This ESL field provides the symbolic name. start address,
length in hexadecimal, and category value of the object
module.

Entry Point

This ESL field provides the entry point name in the module
and the address of the entry point in hexadecimal.

External Reference (EXTRN subtypes 0 and 128)

This ESL field specifies a symbol that is defined as a4 mod-
ule name (subtype 0) or entry point (subtype 128) in
another module. The external reference to a module
name must be to the cataloged module name. The QOver-
lay Linkage Editor searches the system input device (for
user entry) or SWORK file (for compiler entry) to find a
module. It the module is not found in the system input
device or the SWORK file, AUTOLINK is performed.
AUTOLINK means that the Overlay Linkage Editor
searches the R. entries in the object libraries to resolve
all unresolved external references to module names.
External references to entry points are not resolved by
AUTOLINK.

External references to module names are resolved in two
ways depending on the first character of the module name.

For module names that begin with $, only the program
pack directory is searched. A special AUTOLINK is per-
formed for MFCU modules. External references are
resolved to the single MEFCU module that includes all the
functions required by the load module. For example, if
one object module has an external reference to a MFCU
punch module and another object module has an external
reference to a MFCU read module, the single MFCU read-
punch module is linked. However, if a specific MFCU
module is entered via the user entry (either on an INCLUDE
statement or as an R module in the system input device),
all other MFCU modules referenced by external references
are linked into the load module.

Note: This special AUTOLINK does not apply to MECM
modules.

Appendin B. Objective Modules 43



For any other module name that begins with a valid char-
acter, the order of scarch is:

1. The user pack (if specified)
2. The program pack

If the user pack and the program pack are the same physi-
cal pack, the pack is searched only once.

Weak External Reference (EXTRN subtypes 3 and 131)

The function of the weak external reference is the same as
for the external reference except no AUTOLINK is per-
formed. If the Overlay Linkage Editor cannot resolve the
referenced name, the weak external reference is ignored
and remains unresolved.

GLOBAL COMMON Area (EXTRN subtype 4)

This ESL record specifies a space allocation fora GLOBAL
COMMON arca. This area is allocated at the start of the
program level. The size of the area is the size of the largest
COMMON area encountered. This area is saved across
INVOKE (one FORTRAN program calling another and
transferring control to the called program) if the called
program contains the GLOBAL COMMON ESL. The
Overlay Linkage Editor sets the program common attribute
in the load module.

LOCAL COMMON Area (EXTRN subtype 5)

The Overlay Linkage Editor allocates an area of main
storage for the COMMON area either at the beginning

of the program level or immediately following the storage
reserved for the GLOBAL COMMON. This area is used
by modules within the same program and is not saved
across INVOKE.

Conditional External Reference (EXTRN subtype 6)

The function of the conditional external reference is the
same as for the external reference (in other words,
AUTOLINK is performed), except that if the Overlay
Linkage Editor cannot resolve (find) the referenced
name. the conditional external reference is ignored and
remains unresolved.

44

External Buffers (EXTRN subtype 7) - Program Number
5704-85C2 Only

The Overlay Linkage Editor accumulates the length of the
required external buffers and places that length in the
object library directory entry for the program being
cataloged.

Text—Relocation Dictionary (RLD) Records

T-type records contain the object code of modules to be
linkedited. T—type records also contain the information
needed to make the text relocatable. The load addresses
on the text records must be in ascending order, and the
text must not overlap from one text record to the next.

Each record is 64 bytes long in the following format:

Byte Contents
0 T (denotes text—RLD record).
1 Length minus 1 of object text contained

in the record.

2-3 Address of the rightmost byte of object
text in the record.

4-63 Object text begins in byte 4; I-byte or 3-
byte RLD (relocation dictionary) entries
are inserted beginning in byte 63 from right
to left. Unused bytes (at least one) between
text and RLD contain X'00'. RLD points
to right end of address (displaced from
beginning of text).

One-byte RLD
Each 1-byte RLD entry contains the following:

Bir Meaning

0 0=RLD points to the rightmost byte of an
address within this module.

1=RLD points to an EXTRN.

1 0=1-byte RLD.

2-7 Displacement from the leftmost text byte
in the record. Displacement count starts
with 00.



Three-byte RLD

Three-byte RLDs are generated by the compiler for exter-
nal references when a displacement from an external sym-
bol is specified in a source statement. These RLDs are re
quired to support programs referencing a common data
area which may be considered external to all included
modules. Each 3-byte RLD contains the following:

Byte Bit  Meaning

1-2 (leftmost)  all  Relative EXTRN ESL count so
name of the EXTRN can be
found. Relative ESL count
starts with 0001.

3 (rightmost) 0 1=RLD points to an EXTRN
with a known displacement.

1 1=3-byte RLD.

27 Displacement from the left-
most text byte in the record.

Three-byte RLDs are processed like 1-byte RLDs except

that the base address is the address defined in the ESL
entry corresponding to the relative EXTRN count.

End Record

An E-type record must be the last record of an object
module.

Appendix B. Objective Modules

45



46

This page intentionally left blank



Appendix C: Performance Improvements

You can reduce the time required to link-edit a program by 3. Load the Overlay Linkage Editor from a program pack
using one or more of the following procedures: containing only the Compiler, the Overlay Linkage
Editor, and the R modules to be link-edited. This is more
1. Do not request a cross-reference list. For many programs efficient than loading the Overlay Linkage Editor from
the time saved may be small, but for programs with many the system pack.
module names and entry points, along with many refer-
ences to these module names and entry points, significant 4. Place the object modules (R modules) that will be used
time saving can result. The time saved is not only the in the link-edit ahead of the load modules in the object
amount of time needed to print the list, but also the library. This would be most effective with step 2b.
additional time needed during the link-edit to save all
the information on disk . 5. Have the linkage editor locate the needed object modules
via AUTOLINK rather than by you supplying multiple
2. Locate the work files, SWORK and SSOURCE, optimally. INCLUDE cards.
a. On a multi-drive system., the program pack and user 6. Use the memory resident overlay techniques to ‘increase
pack (if one is used) should not be on the same drive the performance of large overlay programs. Which
as the SWORK and $SOURCE files. technique to use depends on the impact that the 2K
boundary restriction has on the program. Because
b. On a single drive system, the work files should be adjusti-ng ATRs takes less time than movir}g the da?a
located at the beginning of the library. This can be (especially for large overlay segments), Rh'MAP object
done by using the Library Maintenance program modules gen\erzﬂly produce a larger exe;utlon storage
ALLOCATE statement to first allocate the source size and fit fewer segments into the resident area of the
library to 30 tracks and then deallocate it to O tracks. par'tition, but generally execute in less time than MOVE
The 30 tracks are then available at the start of the object modules.

library and can be used for the work files by specifying
the LOCATION parameter on the FILE statements,

¢. On a single drive system. if the work files cannot be
located at the beginning of the library (as in step b),
they should be located opposite the object library on
the other disk drive. For example, if the object
library is located at tracks 28 or 37 on F1, the work
files should be located at tracks 28 to 37 on R1.

d. For the Model 15, files should be placed on a 5445
disk drive for best performance.

e. If stepsa, b, c,and/or d are not used to optimally fo-
cate the work files, no FILE statements should be pro-
vided. The linkage editor finds the work space
needed.

Appendix C. Performance Improvements 47



48

This page intentionally left blank



The following terms are defined as they are used in this
manual. If you do not find the term you are looking for,
refer to the index or to the IBM Data Processing Glossary,
GC20-1699.

AUTOLINK. Process whereby the Overlay Linkage Editor
searches the object library for object madules to resolve
all unresolved module name external references.

COMMON.  An area at the beginning of a partition or fol-
lowing &« GLOBAL arca.

conditional external refercnce. An external reference that
causes AUTOLINK to be performed. However, if the
module named by the conditional external reference is
not found, no error message is printed and the conditional
external reference is treated as a weak external reference.

descendant. In a caller-called relationship between two
modules, the called module is the descendant.

external reference. (1) A reference to a symbol that is
defined as an external name in another module. (2) An
external symbol that is defined in another module: that
which is defined in the assembler language by an EXTRN
statement, and 1s resolved during linkage editing. Sece
also weak external reference.

fetch routine. The routine to find the overlay on disk and
load it to storage.

fetch table. The parameter needed to load a single overlay.

GLOBAL. An area of main storage at the beginning of a
partition.

INVOKE. Process where one load module calls and trans-
fers control to another load module.

load module. The output of the linkage editor; a program
in a format suitable for loading into main storage for
execution,

mainline. The first module encountered when link-editing.
This module is always in the root segment.

memory-resident overlay. The technique used to increase
the performance of large overlay programs by allowing
certain overlay segments to remain in primary storage after
the initial segment fetch.

Glossary

MRO. Memory resident overlay.
) module. A load module.

object library.  An area on disk that contains load modules
and object modules.

object module. A module that is the output of an assem-
bler or compiler and is input to the linkage editor.

object program, A tullv compiled or assembled and link-
edited progran that is ready to be loaded into main
storage.

overlay. (1) The technique of repeatedly using the same
blocks of internal storage during different stages of a pro-
gram. When one module is no longer needed in storage,
another module can replace all or part ofit. (2) A pro-
gram segment or phasc that is loaded into main storage.
It replaces all or part of a previously loaded scgment.

overlay module, A load module that has been divided into
overlay scgments, and that has been provided by the Over-
lay Linkage Editor with information that enables the Over-
lay Fetch Routine to implement the desired loading of
segments when requested.

overlgy program. A program in which certain control sec-
tions can use the same storage locations at different times
during execution.

overlay region. A continuous area of main storage in which
segments can be loaded independently of other regions.

overlay segment. Sec segment.

program pack. The disk pack from which the Overlay
Linkage Editor program is loaded.

root segment. That segment of an overlay program that
remains in main storage at all times during the execution
of the overlay programn; the first segment in an overlay
program. A root segment cannot be overlaid.

R module. An object module.
segment. A part of a computer program divided into parts

such that the program can be executed without the entire
program being in main storage at any one time.

Glossary 49



system pack. The disk pack from which the system is loaded
(IPL pack).

transfer vector. The linkage to each entry point in an
overlay that allows the overlay to be loaded to storage
before control is passed to the entry point.

user pack. A disk pack that contains object modules to be
link-edited.

weak external reference. An external reference that does

not have to be resolved during linkage editing. If it is not
resolved, it appears as though its value was resolved to zero.

50



Index

address, link-edit start 16 comptler object modules 9
address, overlay program load 16 conditional external reference, ESL
alignment, modules on a boundary 10 record 44
allocating work files (see examples) configuration. system 3
AREA-USER parameter control statements

co-resident area 14 description 5

GROUP statement 9 examples 23
arithmetic overlay segment, system 14 CORE parameter, OPTIONS statement 7
assignment, modules to overlays 9 co-resident area 14
assignment, modules to root segment 16 (see examples 6-11)
assignment, overlays 14 cross-reference list
ATYR parameter, OPTIONS statement & MAP parameter &

(see example 1) storage map 12

attributes of load module 8
AUTOLINK 43

descendant, mainline 14
design, overlay structure 9

boundary alignment of modules 10 destination of load module, PHASE
BSCA modules, category value change 9 statement 6
buffers, external (5704-SC2 only) 44 determining overlay modules 16

disk space, linkage editor 4

CATEGORY statement 5,9, 19

category value end record, object module 45
change 9 END statement 5, 11
(see examples 6-11) ENTRY parameter
system modules 14 (see example 3)
Category, storage map heading 12 OPTIONS statement 7
CCP, memory resident overlay 19 entry point
change category value 9 ESL records 43
(see examples 6-11) load modules 18
changing overlay structure (see examples 6-11) (see ENTRY parameter)
checkpoint restart program 8 entry, compiler 4
(see example 1) Entry, storage map heading 12
COBOL. user overlay arca 14 entry, user 4
Code Length Decimal, storage map heading 12 EQUATE statement S, 11
Code Length Hexadecimal, storage map heading 12 error halts 3
common areas error messages 38
GLOBAL 13, 44 ESL (external symbol list) records 43

LOCAL 13, 44
communications control program, memory
resident overlay 19
compiler entry

description 4

functions 2

Index 51



cxamples including modules in root 18

example I, OCL and control statements 23 increase size of user area (see example 7)
example 2, OCL and control statements 2 informational messages 38

example 3, OCL and control statements 25 INVOKE feature

example 4, OCL and control statements GLOBAL COMMON 44

(Model 15 only) 26 LOCAL COMMON 44

example S, OCL and control statements 26 memory resident overlays 22

cexample 6, overlay structure of load module 27
example 7, overtay structure of load module 29
example 8, overlay structure of program 31
example 9. overlay structure of program 32

example 10, overlay structure of program 33 language translator 1
example 11, overlay structure of program 34 last control statement (see END statement)
example 12, MOVE technique (Model 15 only) 35 LEVEL parameter
example 13, REMAP technique (Model 15 only) 36 (see example )
extended root mainline 14 OPTIONS statement 7
exaternal buffers (5704-SC2 only) 44 library format, object 2
external reference, ESL records 43 link-edit start addresses 16
external symbol list records 43 LINKADD parameter, PHASE statement 6, 16
EXTRN (see ESL records) linkage editor

control statements S
functions 2

loading 4
processing 1
fetch routine. overlay (see overlay fetch load address, overlay programs 16
routine} load module
feteh table control statements S
generation 14 destination 6
root arca 13 entry point 18
FILE statements 4 (sce ENTRY parameter)
FORTRAN 22, 34 introduction |
name 6

RETAIN type 6
size change 3, 14
(sec CORE parameter)

generation, overlays storage map 12

memory resident overlays 19 storage size 7

overtay fetch routine 14 loading linkage editor 4
GLOBAL COMMON area 13,20, 21, 22 LOCAL COMMON area 13, 20, 21, 22
GROUP statement 5.9 location of user modules (see UPACK parameter)

(see examples 4 and 7)
description 18
svstem modules 14
grouping modules 18
mainline routine
assignment 9
card form 14
(see example 3)
halts, error 3 entry point (see ENTRY parameter)
header record 43 INCLUDE statement (see examples 1, 2, and 4)
overlay assignment 14
root area 13
MAP parameter, OPTIONS statement 8
memory resident overlay

[/0 dependent modules, user overlay Communications Control Programming 19
areas 13 description 19
1/0 independent modules. co-resident examples 35, 36
arca 14 MOVE technique 21
improvements, performance 47 performance considerations 47
INCLUDE statement S program execution 20
description 9 REMAP technique 22
mainline routine 14 supervisor support 19

(%]
[



messages 38
MECU modules, special AUTOLINK 43
modification levels (see LEVEL parameter)
module

assignment to overlay 9

boundary alignment 10

movement 9, 14

name. ESL record 43
module. toad (sce load module)
module. ohject (see object module)
module. overlay (sce overlay module)
MOVIE technique, memory resident
overtavs 19

NAME parameter
CATEGORY statement 10
GROUP statement 9
INCLUDE statement 9
PHASE statement 6

name, load module
PHASE statement 6

name. module, FSL record 43

Name. storage map heading 12
NEWNAME parameter. EQUATE statement 11

non-overlay storage size 12

object library format 2
object module
card form from SYSIN 9, 14
(see examples 20 2 and 4)
control statements S
description 43
GROUP statement 9
introduction |
OCL statements
deseription 4
examples 23
OLDNAME paramcter, FQUATE statement 11
one-byvte RLD 44
OPTIONS statement 3
description 7
memory resident overtays 19
output during hink-edit, printer 8
overtay arca
co-resident arca 14
resident 20
root arca 13
svstem overlay segment 14
user overlay arca 13
Overlay Area. storage map heading 12
overfay assigniment method 13
overfay determination 16
memory resident considerations
MOVE technique 19
REMAP technigue 19

overlay fetch routine

entry point 18

memory resident overlay 20

root arca 13

size 1422
overlay modules in root. including 18
Overlay Number. storage map heading 12
overlay programs. toad address 16
overlay segments, system {4
overlay storage size 12
overlay structure

change (see examples 6-11)

design 9
overlays

feteh routine 14, 20, 22

memory resident 19
overriding priority (see CATEGORY
statement)

parameter summniary 6
performance improvements 47
permanent load modules 6
PHASE statement 3

deseription 6
PEIMAry storage requirements 3
printer output during hnk-edit 8
priority {see category value)
processing. hinkage editor |
program fatlure. category value change 9
program modification levels tsee LEVEL
parameter)
program. source |
PUNCH paramcter. PHASE statement 6
punching object module (see PUNCH
parameter)

Referenced By, storage map heading 12
Relocation Dictionary Records 44
REMAP technique. memory resident
overlav 19
resident overlay arca 20
resident overlay program execution.
memory 26
RETAIN paramcter, PHASE statement 6
R parameter. PHASE statement 6
RED records 44
root arca, contents 1302002122

(see examples 6-13)
root mainline, oxtended 14
root scgment. module assignment 16

routine. mainline tsee mainline routine!

Indes



secondary storage requirements 3 VALUE paramcter, CATEGORY statement 10
segments, loading overlay 14, 20, 22 varying overlay structure (see examples 6-11)
stzes overlay feteh routine 14,19 vectors, transfer (see transfer vectors)
source program |
start address. link-edit = 16
Start Address. storage map heading 12
statements, controt S
statements, OCL 4 warning messages 3%
storage map weak external references, ESL record 44
contents 12
MAP parameter 8
storage requirements
primary 3
sccondary 3
storage size. load module 7
storage size. non-overlay 12
storage size. overlay 12
subtvpe. external references 43
svimbol st records, external 43
SYSLOG 2
system confrguration 3
svstem modules
category value 10
svstem overlay arca 14
system modules, category value change 9
system overlay arca 14
(see examples 6.7, 10-13)
not used tsee examples 8 and 9
svsten overlay feteh arca 200 21, 22
(see oxamples 6. 7. 10-13)

noet used tsee also examples 8, 9)

technigues, memory resident overlay
NMONE 19
REMAP 19

temporary foad modufes 6

termumal messages 3%

text-RED record 44

three-byvte RED 438

transter vectors 13

translator, language |

UNTT parametes

INCTUDE statement 9

PHASE statement 6
UPACK parameter. OPTIONS statement 7
HSCT Sty

deserption 4

lonctions 2
user overtoy area 13

(see cvunples 60 70 H-13)

not used tsee evamples 8 and 9)

stre IS

user overlay ferch area 200 20022
see enmples 0 70101
ol nsed e cvamplos X0

S4






GC21-7561-5

International Business Machines Corporation
General Systems Division

5775D Glenridge Drive N.E.

Atlanta, Georgia 30301

{USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
{International)

G19G4°1209D 'V'S'N Ut pAjutld (L£-€S "ON 3j14) J01p3 abexui] AelaanQ £/ waisAg gl



