

R. L. Taylor

Low-End General-Purpose Systems

Since the announcement of the IBM System/3 in 1969, IBM has been incorporating leading-edge technology in products

referred to as small general-purpose systems. With the many models of the System/3, System/32, System/34, and System/

38, IBM has introduced many technological advances addressing the needs of diverse customers, from the novice, first-

time user to the experienced user in the distributed data processing account. By identifying the goals, objectives, design

themes, major salient features, and development constraints, this paper reviews and highlights the technical evolution of

these products in terms of their systems layout, processor architecture, machine structure, and programming support.

Introduction

The System/3 was announced by IBM in July 1969 and

shipped in January 1970. This was the first in what has

become a family of four system lines including the Sys-

tem/32, System/34, and System/38. This family has en-

joyed significant success in addressing the computing re-

quirements of small general-purpose computer users. A

companion paper on IBM’s small real-time systems is

also included in this issue [1].

These general-purpose systems were originally in-

tended primarily for installations not previously using

computers, as was the 1401 [2], and there have been ex-

tensive enhancements to these systems in response to ex-

panding customer requirements. These enhancements

were affected by improving price/performance tech-

nologies which, in conjunction with expanding customer

needs, significantly affected the key development deci-

sions.

This paper relates the reasons for some of these deci-

sions. It is not intended to be a complete history, but

rather to provide some insight as to why certain direc-

tions were taken. The following section gives a brief de-

scription of technological improvements and key require-

ments and constraints for each system. The next three

sections address the system layout, CPU architecture,

and machine structure. This is followed by a section that

discusses the evolution of software supporting these

products, including operating systems, languages, and ap-

plications, and the final section presents a brief summary

of the paper and reflects upon future trends.

Small general-purpose systems overview

In 1969, logic technology at IBM had just achieved three

logic circuits per chip. In 1978, the System/38 was an-

nounced with 704 circuits per chip. In 1969, memory den-

sity was less than 100 bits per chip; by 1978, it was 64K

bytes per chip (K = 1024) [3]. In file technology, record-

ing densities went from 20 kilobits per square inch in 1969

to 6 megabits per square inch in 1978 [4, 5]. Additional

advances in technology have occurred in packaging,

power supplies, input and output devices, adapters, and

other system components.

These technological improvements have significantly

increased capacities. In 1969,-a System/3 renting for

$2300 per month (without program products) had approxi-

mately 3000 circuits in the processor, 24K bytes of main

storage, and 10M bytes of file storage (M = 1 048 576).

Memory increments were in units of 8K bytes renting for

$28.75/K-bytes. In 1980, a System/38 with an equivalent

monthly lease charge (again excluding program products)

had approximately 20 000 circuits in the processor, 512K

bytes of main storage, and 130M bytes of file storage,

Copyright 1981 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

IBM J. RES, DEVELOP. @ VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1981

429

R. L. TAYLOR

430

R. L. TAYLOR

Figure 1 Time-line of small general-purpose systems.

Models
Ss (256K)-MI15C $138

System MIO Card (48K) MISB/C M4 (96K, 128K)-M15 M3
Model ystem MI0Disk M6 (64K) MISA M8 MI2 M1S5D (512K)-M15 MS

numbers,
memory

and file SB2 SB4 (96K) [64M] (256K)

sizes Systemni32— (128K) [128M] 194M
Systemi34 256M.

1403 Pr.
MLTA, 3410 Tp.

System HP. 5444 F. Direct 3270s
ystem BSCA 5445 F., 3270 L. 5203 Pr.~M15 -12{M8} 3600Tm. 3rd, 4th BSCA-M15

300LPMPr. 1442Card Diskette 3284Pr.-M15 3741Tm. -30 {M15} 5448 F.-M8, 10 3287 Tm. 120 Tm.-MI5

Ho
System/32 Diskette BSCA MICR SNA 2nd CA 9-16 L.W.S. 5255, 5225 Pr.
Sestem 34 ~[10M] SDLC L. 5250 Tm 5250 M12 Cntr. 3600 Tm.

y: wi64 R.W.S. KANJI

MIS F & Perf. Impi
M15 A ~ SB8

Systemi3- C&DSCP M6,RPG Auto Report Multiprog. CPF

SystemB38 RPGU BASIC,TP COBOL,OLE SPOOL RPG Concurrent Transaction IDU S88

ASM FORTRAN, CCP MRJE 3270 M15D Supp. diagnostics logging RPG COBOL

Prog
RPG, SEU RPG II FORTRAN _ICF, BASIC
DFU, SCP WSU, DFU, COBOL DDFF

Systemi32- SEU, SDA

System/34
AQ wt \. 7)

¥ ~~

IAPs (Applications) Applications, Enhancements

70 n nN B 14 75 16 17 8 79 80 81

All dates refer to the year of first customer shipments.

() = memory capacities in bytes; K = 1024

{]= file sizes in bytes; M = 1 048 576

ASM = Assembler

BSCA = Binary Synchronous Communications Adapter

C&D SCP = Card & Disk System Control Program(s)
CA = Command Adapter

CCP = Communications Control Program

CPF = Control Program Facility

DDFF = Distributed Disk File Facility

DFU = Data File Utility

IAP = Installed Application Program(s)

ICF = Interactive Communications Feature

IDU = Interactive Data Utilities

LPM = Lines Per Minute

MICR = Magnetic Ink Character Recognition

MLTA = Multi-Line Terminal Adapter

with memory increments of 256K bytes available at ap-

proximately $.55/K-bytes, or a cost reduction of more

than 50 to 1. These advances have allowed corresponding

improvements in application justification, customer and

IBM support personnel productivity gains, enhanced

systems operation and functions, and architectural struc-

ture. The evolution of these systems is shown in Fig. 1.

e System/3

The initia! System/3 was primarily directed toward the

new-account customer who was expected to use the sys-

tem for accounting and financial applications serially exe-

cuted with transactions batched. A key assumption in se-

lecting interfaces was that the customer would have few

MRJE = Multileaving Remote Job Entry

OLE =.On-Line Linkage Editor

SCP = System Control Program

SDA = Screen Design Aid

SDLC = Synchronous Data Link Control

SEU = Source Entry Utility

WSU = Workstation Utility

Cntr. = Controller

F. = File

H.P. = High Performance

L. = Local

Pr. = Printer

R. = Remote

Tm. = Terminals

Tp. = Tape

W.S. = Workstations

trained data processing personnel. The major assumption

was the target rental—between $1000 and $2500 per

month.

These requirements translated into a number of system

objectives. Hardware and maintenance costs had to be

substantially reduced compared to those of systems then

available. Built-in capacity for on-site functional expan-

sion had to be provided. The user’s installation problems

had to be minimized by making the system compact and

the programming support easy to use. The System/3

Model 10 was IBM’s response to these objectives [6].

Based on the new 96-column card and its associated pro-

cessing machines, a new version of the RPG programming
.

IBM J. RES. DEVELOP. ¢ VOL. 25 ¢ NO. 5 © SEPTEMBER 1981

language called RPG I, new I/O devices including fixed

and removable disks, and a new systems architecture,

this system was widely accepted as an easy-to-use small

batch system. (Cost consideration prohibited use of the

System/360 architecture [7].) In March 1971, the support

for the System/3 Model 6 offered comparable facilities in

a small, versatile, operator-oriented system available

without card equipment for batch processing.

The product characteristics of the System/3 resulted in

customer application growth and demands for product en-

hancements. These demands took three major forms.

First, support the system as an interactive workstation-

oriented system. Second, expand to larger, more diverse

configurations with the software to use them efficiently.

Finally, provide an interactive operator-oriented system

with a rental substantially less than $1000 per month. The

following paragraphs expand upon each of these.

Through 1970 and 1971, hardware communications fea-

tures were announced, but the software support was re-

stricted to single-line Binary Synchronous Communica-

tions (BSC) [8] support via an RPG feature and assembler-

written user control code. This level of support did not

lead to the wide utilization of interactive terminals which

was being experienced on large systems [8]. Thus, in May

1972, IBM announced the System/3 Communications

Control Program (CCP), which supported an on-line net-

work of terminals with function similar to that provided

with larger systems. It enabled users at terminals to in-

voke applications, allowed programs to access a common

set of disk files, monitored the execution of several con-

currently executing tasks, and was tailored to suit both

batch and on-line environments. This feature provided

the facilities necessary to make the System/3 a strong,

competitive, interactive system.

Extensive interactive use with CCP and a larger num-

ber of transactions processed by a growing number of

batch applications resulted in the second major expansion

requirement. As Fig. 1 illustrates, this was addressed

through a number of extensions/additions of memory ca-

pacities, file sizes, magnetic tape, 80-column card equip-

ment, additional printer options, etc. In July 1973, the

third System/3 model was announced, the Model 15. This

model provided SCP support for multiprogramming, in-

cluding multiple batch job streams, spooling, device-inde-

pendent data management, system history area, and a

new operator interface. The system and its software, in

conjunction with CCP, have provided the base for a mul-

tiprogramming, multitasking system which has had many

enhancements. There were also three additional versions

of this machine model and three new smaller interactive

models (Models 4, 8, and 12).

IBM J. RES. DEVELOP. ¢ VOL. 25 « NO. 5 ¢ SEPTEMBER 1981

© System/32

The third major expansion requirement was for an oper-

ator-oriented system leasing for substantially less than

$1000 per month. IBM’s response was the announcement

of the System/32 in January 1975. This was a full-scale,

fully-integrated computing system, the size of a desk, for

the price of adding a clerk. It incorporated substantial us-

ability features, powerful procedure capability, and ex-

tensive industry-oriented applications, allowing installa-

tion and use without customer programmers.

e System/34

Demand for a lower-cost, interactive, multiple-work-

station system with System/32-usability characteristics

led to IBM’s announcement of the System/34 in April

1977. The System/34 was a powerful, low-cost system

available for both batch and interactive environments. In-

tegrated into the system and its System Support Program

(SSP), the multitasking workstation support made the

System/34 an effective solution for the new-account user,

an existing user migrating to the new product, and the

larger account employing distributed data processing.

Satisfying these objectives required many features not

commonly associated with products in this price range.

Examples included multiple processors, including a pro-

cessor executing system control code; new memory-man-

agement functions; microprocessors for device attach-

ment; productivity features; usability and installability

improvements; flexible scheduling of work; multinational

language support; and broad communications support un-

der the Interactive Communications Feature (ICF). As

shown in Fig. 1, the growth in functional capability and

options on this system has paralleled that of the System/3.

@ System/38

In July 1980, IBM shipped to customers the System/3 suc-

cessor—the System/38. Employing the latest advances in

LSI logic circuitry, MOSFET main storage, RAM MOS-

FET and bipolar control store, system organization, and

processor structure, this system supported a new ap-

proach to systems design. It provided a high level of func-

tion, integrated data base facilities, excellent usability

characteristics, highly productive application and sys-

tems programmer facilities, and nondisruptive growth.

Examples of unique system functions included flexible

facilities for the scheduling of work in the system, com-

prehensive security and authorization support, powerful

message handling facilities, and a unique single-level-

store concept. The integrated data base facilities provided

described data, simultaneous use of shared data files, in-

tegrity facilities, full data save and restore functions, and

program independence from stored file structures. 431

R. L. TAYLOR

432

R. L. TAYLOR

Major usability characteristics included a new control

language, a data-description language for defining data-

base-file and display-screen formats, a powerful com-

mand-selection menu, and a prompting facility. Enhance-

ments in the installation of new applications were ad-

dressed through simplified programming facilities. In-

cluded were a new RPG III programming language, on-line

program debugging, powerful interactive source and data

entry utilities, and a query utility.

Nondisruptive growth was enhanced by the archi-

tectural approach. This architecture was structured in a

series of horizontal layers, each providing a consistent,

uniform, well-architected interface to the implementation

above it, allowing replacement through a given layer with

minimal impact. Subsequent sections of this paper ana-

lyze these systems in terms of their component parts. It is

important to remember that in each component area deci-

sions were made on a total system basis. There was no

attempt to individually optimize any component.

System organization and I/O device attachment

Advances in technology have had a significant impact on

the selection of I/O and its attachment. The I/O character-

istics have, in turn, had a major impact on the archi-

tecture of the other system elements. Examination of

these components shows an evolution in terms of

e Unbuffered, program-controlled, native I/O adapters to

fully buffered, autonomous channel attachment.

e Fully synchronous data transfer between device and

central processor to fully asynchronous transfer be-

tween decoupled processor and channel.

e Primary reliance of unit-record input to reliance on dis-

play-oriented and industry-oriented terminals.

e System/3

One of the most important new elements of the System/3

was its medium—the 96-column card. Although capacity

was increased, higher performance was achieved by re-

ducing the mass and size of the card. Reduced product

cost was realized through a design requiring smaller and

fewer parts. More reliable techniques for cornering,

stacking, etc. were provided, and the card I/O equipment

was made more compact. Finally, increased capacity

through use of 96 columns was achieved.

A second feature, which subsequently became stan-

dard on these products, was an embedded, fixed disk us-

ing the fixed-block architecture [9]. The 5444 disk storage

drive achieved its low-cost, high-reliability, and capacity

requirements by providing two 14-inch magnetic coated

disks mounted on a common spindle. Because low-cost

load dump media such as diskettes were not available, the

upper disk was removable in a cartridge to control con-

tamination and facilitate handling. This allowed system

and frequently used application code and data to be resi-

dent, with remaining programs and data off line.

The importance of product cost influenced the choice

of device adapter characteristics. Two modes of data

transfer were provided. For most operations, devices

transferred data utilizing a noninterrupting multiplex

channel via cycle steal (suspension of processor activity

while a memory access was made to service I/O). This

reduced the main storage needed for interrupt handling to

that required to interrogate I/O completion. In situations

where device interrupts were required (e.g., communica-

tions) or program execution could not continue (e.g., pro-

gram check), eight prioritized interrupt levels, each with

separate registers, were provided.

To allow concurrent operation of a batch job stream

with the Serial I/O Channel, telecommunications, or oc-

casional operator inquiry, a Dual Program Feature (DPF)

was provided on the Model 10. This feature allowed two

programs to be resident in main storage, with control

passing from one to the other.

Expansion into the multiprogramming, multitasking en-

vironment required more effective task and I/O data

transfer mechanisms. This resulted in an evolution ending

with the Model 15D including hardwired (personalized at

the AND/OR level with many part numbers) micro-

processors performing outboard control of displays, files,

and console; masking interrupts by level; two-byte chan-

nel operation; and four unique interrupt levels [10].

e System/32

The System/32 cost reduction objective required a dif-

ferent approach from the System/3 trend toward more

powerful I/O handling. The removable file was deleted

and a diskette was provided. The display and keyboard

were integrated into the base system, which, with the

software support providing messages requiring indicators

on the System/3, gave enhanced service. To minimize

cost, all I/O operations and data transfer were controlled

by the central processor [11].

The native instruction set of the System/32 was opti-

mized for effective I/O control. The logic in the device

adapters was minimal. The processor performed data

transfer, including transfer by keystroke for the

keyboard, by byte for the diskette, and by sector for the

file. To properly control I/O and error conditions, an in-

terrupt mechanism was provided, consisting of seven in-

terrupt levels, each level having a complete complement

of registers.

IBM J. RES. DEVELOP. @ VOL. 25 ¢ NO. 5 e SEPTEMBER 1981

Denser FET nonlinear load circuits and logic tech-

nology and packaging considerations allowed the pro-

cessor and channel to be packaged on one logic board,

and the I/O adapters on single cards.

In attaching the 1255 Magnetic Character Reader, the

System/32 began a trend followed by the later systems.

This adapter included a programmable microprocessor

which had been originally developed for the System/7 [1].

This microprocessor, with a 4-bit data flow, provided for

16-bit instructions and 16-bit addresses. This unique com-

bination of data flow, address, and instruction lengths re-

sulted in a low product cost with efficient bit handling.

e System[34

In choosing attachment mechanisms on the System/34

and System/38, programmable microprocessors were

used as adapters. This had substantial advantages:

© Increased efficiency in the handling of data transfer and

device control.

e Expandability; for example, the movement of code exe-

cuting in the central processor to the adapter.

e Flexibility, allowing changes during development.

© Development, by minimizing engineering-change cost.

e Terminal independence with the potential of handling

device-unique functions in the microcode [12].

e Configurability, potentially providing on-line operation

diagnostics and service.

The System/34 employed the same microprocessor used

by the System/32 not only for 1255 attachment but also

for printer and workstation attachment. With more de-

manding attachments resulting from more workstations

and networking than this microprocessor could contain

(e.g., multiline telecommunications), a more powerful

controller was required. A choice of a more powerful mi-

croprocessor was required. The requirements for such a

microprocessor included device-handling functions, buf-

fering, multiple interrupt levels, effective polling func-

tions, reasonable product cost, and a straightforward in-

struction set for ease in programming. These were nearly

the same objectives used in the design of the System/32

processor. A processor with this architecture was already

included in the System/34 CPU complex, so the choice

was straightforward. A version of this processor was in-

cluded as the second System/34 controller.

Performance requirements for the high data transfer

rates of direct disk access devices required that these de-

vices on the System/3, System/32, and System/34 be at-

tached with hardwired controllers.

© System/38&

These trends toward a more powerful I/O structure con-

IBM J. RES. DEVELOP. ® VOL. 25 ¢ NO. 5 e SEPTEMBER 1981

tinued with the System/38 [13]. The demands of larger

configurations joined with the opportunities of new cost/

performance technology to provide a sophisticated sys-

tem organization. The following objectives were identi-

fied:

® Use the system’s virtual addresses in the channel.

e Exploit LSI technology.

e Provide multiple I/O attachment interfaces.

e Make the processor and channel asynchronous.

e Allow multiprogramming in the channel program.

This system employed a sophisticated virtual memory

addressing scheme. To avoid the problems inherent in

channel use of real addresses, such as programming relo-

cating addresses, a Virtual Address Translator interface,

separate from that of the processor, was provided. This

enabled the channel to execute commands or programs

containing virtual addresses, and by saving the translated

real addresses, to then cycle steal data into locations

identified by these real addresses. Special controls al-

lowed addresses to be retranslated during I/O operations.

The System/38 contained two types of adapters, one

hardwired for high-speed devices [14], the other micro-

programmed for lower-speed devices [12]. In the latter

case, a standard microprogrammed I1/O processor had

multiple uses. This microprocessor, packaged with the

channel adapter as a field-replaceable unit, provided de-

vice control function. Separate data store was provided

for buffers, control tables, channel queues, and work

areas. The microprocessor had an 8-bit data flow, 8-bit

data addresses, 13-bit control store addresses, 32 LSRs

(Local Storage Registers) in the first 32 storage locations,

and two program levels with a single interrupt. This con-

troller was used for unit-record devices, for local work-

station support, and for the communications adapter [12].

The other adapter type was hardwired for high-speed

magnetic media control. It provided for high-speed data

transfer and multiple overlapped time-shared execution

of RAM instructions. Although not providing simultane-

ous data transfer from multiple drives, it did allow seek

overlap and rotational sensing identifying which drive

was ready. It also provided a standard, consistent data

flow supporting the channel interface and functions [14].

The requirements of multiplexing subchannels and in-

terfacing with control programs of the main processor are

not unlike those of multitasking system programs. This

function was provided in the task dispatcher of the sys-

tem, implemented as a part of the microcode of the ma-

chine. To ensure decoupling of channel and processor op-

eration, this same mechanism was used for channel oper-

ation. This had the further advantage of allowing

multiprogramming at the channel program level. 433

R. L. TAYLOR

434

R. L. TAYLOR

Central processing unit (CPU) architecture

Fundamental decisions in CPU design involve the archi-

tecture and functional organization. The primary factors

influencing both these areas include the cost of logic and

memory; the expected ‘‘typical’’ use of the system, in-

cluding importance of high storage efficiency and func-

tional levels of the instruction set; performance consid-

erations such as the relationship of internal processor

clock time to memory cycle; architectural independence

of technology choices; ease of implementation (e.g. , com-

pleteness and symmetry of data types); and extendibility

considerations in the operation encoding, size of address-

ing space, number of registers, nature of data types, etc.

e System/3

The key objective was lowest cost on a system basis. The

target was execution of commercial programs written us-

ing RPG 11. Efficiently compiling RPG II source code into

machine-readable object code was essential. Relatively

high storage cost demanded high storage efficiency. The

original system was planned to have models with as much

as 24K, but extendibility to 64K was to be allowed. Lim-

ited multiprogramming was to be supported. Transaction

data had to be exchangeable with other systems.

On the basis of these considerations, the data types

chosen were characterized by EBCDIC bytes and in-

cluded both zoned and packed decimal for RPG II manipu-

lation of data entered from character-oriented devices.

Binary format data in two’s complement form was sup-

ported for interchange as well as for control program effi-

ciency. For storage utilization reasons, the byte was cho-

sen as the addressable unit, with two-byte addresses al-

lowing addressability to 64K. Storage efficiency also

caused selection of variable-length instructions of three to

six bytes with three operand-addressing formats. Each in-

struction contained a one-byte operation code and a one-

byte extender. For reasons of cost and expected use, no

general-purpose registers and only three index registers

were provided [10].

The processor was implemented via hardwired Mono-

lithic System Technology (MST) logic utilizing approxi-

mately 3000 circuits, yielding a processor with a cycle

time of approximately 1.5 ys. The speed of the logic tech-

nology allowed the processor to perform multiple sub-

cycles within each cycle. Typical device operation was

designed without operation-end interrupts, and multi-

programming support was limited to the Dual Program-

ming Feature. The processor utilized a one-byte data path

for both instruction fetch and execution cycles.

With extension into larger configurations and more

complex environments, many decisions in the functional

organization changed in newer models. The instruction

set, for compatibility reasons, remained almost the same.

This can be exemplified by the Model 15D.

Through address translation, the maximum main stor-

age size was increased to 512K bytes, ECC (Error Cor-

recting Code) was introduced to provide correction of

single-bit errors and detection of double-bit errors, and

write/fetch storage protection under program control was

provided in 2K-byte segments. The address-translation

function used 32 8-bit registers residing between the

Storage Address Register and main storage. The pro-

cessor saved the 11 low-order bits of a logical address,

and used the 5 high-order bits to select one of 32 trans-

lation registers. The 8 bits from this register were con-

catenated to the 11 low-order bits to form a 19-bit ad-

dress, thereby allowing 512K-byte addressability. This

accommodated programs up to 64K.

The data path of the processor was further changed,

allowing a two-byte data channel and instruction-fetch, a

privileged mode of operation, maskable operation-end in-

terrupts from all devices for prioritized task switching,

and complete overlap of all I/O without data overrun.

© System/32

The System/32 processor, for product cost reasons, had

to fulfill a dual role. In addition to executing the stored

program, it had to be an efficient device controller. Since

the System/3 architecture had been formulated, the cost

of storage had been substantially reduced. The objective

was to effectively use this reduced storage cost to maxi-

mum benefit, and to maintain the System/3 instruction set

_to reduce development cost and time by reusing portions

of the System/3 control code. The hardwired control

function in the processor was replaced with writable-con-

trol-storage-resident code—microcode, which emulated

the System/3 instruction set [11].

The instruction set included register-to-register, regis-

ter-immediate, and register-storage instructions, with

eight 16-bit registers. The unit of addressing was a 16-bit

word with 16-bit addresses. Five interrupt levels were

used, with each having a full complement of eight regis-

ters for high-speed interruptibility ensuring no data over-

run when handling device data transfer.

© System/34

The objectives for the System/34 processor included im-

provement in price/performance; sufficient processor ca-

pacity to support an integrated multitasking, multi-

programming environment; substantial extendibility; Sys-

IBM J. RES. DEVELOP. @ VOL. 25 « NO. 5 ¢ SEPTEMBER 1981

tem/32 compatibility to utilize some control code from

that system; and addressability beyond 64K.

An effective way of providing additional processing

performance is to add more processors. This technique

was used to offload I/O control by utilizing micro-

processors, resulting in more cycles available for program

execution. However, an additional step was required to

meet all the objectives: multiple processors for CPU func-

tions. Requirements previously stated made the approach

straightforward: nonhomogeneous processors each per-

forming special-purpose functions, one for system control

and one for execution of stored programs. The compati-

bility requirement made the choice of processor archi-

tectures obvious: the System/32 processor architecture

for the former (referred to as the Control Store Processor

or CSP), the System/3 processor for the latter (referred to

as the Main Storage Processor or MSP).

Offloading of device control allowed execution of con-

trol program functions, such as task dispatching and

memory management, in the CSP. This multiprocessing

approach required an architectural extension to provide

for processor synchronization. For the MSP, a supervi-

sory call function requesting service from the CSP was

added. CSP changes included an interrupt level dedicated

to MSP service, additional instructions for control of the

MSP, and a control-mode register to save status when

interrupted by an MSP-executing program.

The requirement to address more than 64K of main

store was satisfied with address translation as it had been

on the System/3. For the System/34, memory was shared

by two processors, so two sets of address-translation reg-

isters were provided [15].

© System/38

The processor on this system was designed to exploit LSI

technology to support the high-level architecture. An ex-

ample of how this was achieved is provided by the func-

tional organization of the interface to memory and its

management [16]. Objectives for memory included:

e Take full advantage of the minimum size to provide the

lowest cost while supporting full function.

© Facilitate nondisruptive growth by incremental storage

growth with no loss of natural performance.

© Decouple processor and memory technology.

® Utilize efficiently the very dense, low-cost, but rela-

tively low-speed memory.

A microprogrammed executable interface for the func-

tions supporting the high-level machine was highly desir-

able. However, the main-memory speeds prohibited use

of this memory for the control code. Thus performance

IBM J. RES. DEVELOP. @ VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1981

demands required that control store be decoupled from

main store, so 8K 32-bit words of RAM control store

were added to the system. However, even this control

store had cycle times that were relatively long when com-

pared to the possible internal processor clock cycle.

Thus, resources in the data flow were partitioned so that a

single microinstruction could simultaneously operate on

multiple elements. The interface was supported by 32-bit

instructions that employed this parallelism and were di-

rectly executed by the hardware. Providing the functions

through these relatively wide microinstructions (horizon-

tal microcode) had the further advantage of reducing the

size of relatively expensive control store needed.

Extendibility and generality considerations demanded

very large addressability at this executable interface. This

objective was satisfied by providing a 48-bit virtual ad-

dress yielding a 281-trillion-byte address space. This was

very large when compared to the maximum electronic

store available with the system. Thus, a sophisticated ad-

dress-translation process was developed [17].

Providing the high-level function at the executable in-

terface supported by horizontal microcode was a multi-

level queue-driven task-control structure. This included a

prioritized task dispatcher integrating I/O and program

processing tasks, a queued message-handling facility,

stack-manipulation functions, sharing, index handling,

and a powerful call/return mechanism.

This internal interface included 16 six-byte registers

which were used as six-byte base registers or partitioned

into four-byte and two-byte registers. Eight of the regis-

ters could be further partitioned into 16 one-byte regis-

ters. The scalar data types supported were binary, zoned,

and packed decimal data, character data, and two- or six-

byte address data. The instruction formats were very sim-

ilar to those employed by System/360-370.

High-ievel machine structure

The System/32 processor executed instructions for I/O

control and instruction-set emulation. The addressable

storage for each function was separate from the other.

During development, it became clear that the memory for

the nucleus of the operating system and the microcode

executing in control store would both be exceeded. This

would have required two additional storage increments, a

major product cost increase. However, by recoding some

portions of the nucleus in control-store code, only a single

increment was required.

With the addition of a second processor, the offloading

of I/O control to microprocessors, and the decreased cost

of storage, the System/34 was implemented with more 435

R. L. TAYLOR

436

R. L. TAYLOR

Applications

“pr System/34
MSP
su ted

System/38| Frese ve High-level _ CPP ssp utilitres languages System/34

SSP

“a System/34
CSP interface

Machine interface C4

| Vertical microcode L~ “ System/34
System/38 CSP hardware
HMC

System/38
hardware Hardware
Figure 2. High-level system architecture. Legend: CPF—Con-
trol Program Facility; HMC—Horizontal Microcode; SSP—
System Support Program; MSP—Main Storage Processor;
CSP—Control Store Processor.

system-control code written in microcode executed by

the CSP. This included supervisor-call handling, I/O con-

trol functions, memory management, transient handling,

and task dispatching. As it was enhanced, the System/34

experienced another benefit. Movement of this code to

the CSP effectively made the MSP instruction set more

functional and allowed enhancements and algorithmic re-

placement of CSP code without change to MSP code.

The System/38 formalized this concept [18]. As shown

in Fig. 2 for both System/34 and System/38, the system

structure was based on a set of horizontal layers, each

presenting an architected opaque interface to the next

layer. The hardware interface was provided through a set

of instructions to the horizontal microcode, which inter-

faced through the executable interface to the vertical mi-

crocode, which interfaced to the program products and

applications through an architected Machine Interface

(MI). Executing through the machine interface, the Sys-

tem Support Program, called the Control Program Facil-

ity (CPF), interfaced to the other program products

through a controlled set of macros, and to the customer

applications and operations through the Command Lan-

guage (CL) and the Data Description Specifications

(DDS). The focus of this section is the vertical microcode

supporting the architected Machine Interface (MI). The

key objectives addressed by this interface included

e Increased program and data independence from hard-

ware implementation and configuration.

© Increased consideration of RAS.

e Extended integrity functions in the machine.

© Machine-supported security and authorization.

e Efficiently supported, commonly used functions.

e Supported key system functions.

This resulted in a machine interface functionally similar

to a typical high-level language definition. System inde-

pendence was achieved by absorbing hardware depen-

dencies into vertical microcode. Examples included ad-

dressing all elements as if they were a part of a single-

level store, and relying on the microcode to handle store

allocation and transfers between levels of store; no archi-

tected bit representation for objects; hidden internal data

structures and relationships; and generic instructions

late-bound with respect to data type and length.

The MI enhanced RAS considerations [19] in several

ways. Every function had a well-defined, consistent, ar-

chitected interface for which there was completeness,

symmetry, and mapping among all data types, and for

which there was only one way of performing each func-

tion. Internally there were standard synchronous and

asynchronous mechanisms. Extensive machine service

functions were available to diagnose, isolate, and correct

problems. Approaches conducive to providing reliability

in code written against that interface (e.g., standard ma-

chine-supported call/return mechanisms) were provided.

The MI improved system integrity characteristics

through an object-oriented interface in which each con-

struct (program data object, control block, work space,

etc.) was explicitly created with certain capabilities de-

fined in the ubject and checked prior to use. Addressing

of any object was via a symbolic pointer which the ma-

chine resolved and which, if modified, could no longer be

used for addressing. The machine also assumed responsi-

bility for the management of user-oriented data, providing

facilities for the backup, retrieval, and maintenance of the

data.

Advances were provided in security and authorization

through MI. By ensuring process execution indepen-

dence, each user was isolated from others. All resources

were owned through an object called a user profile which

determined the user’s protection domain. All objects

were referenced through capability addressing.

The MI provided efficient support for commonly used

program functions. For example, late binding with re-

spect to data type, length, and location for computational

instructions was provided by dictionary addressing, refer-

encing values within a space object associated with the

code in that program. Powerful generic instructions were

provided. Complex data types such as array processing

were supported.

Efficient execution in the multitasking, multi-

programming environment required machine provision

for control functions. The MI contained either total sys-

IBM J. RES. DEVELOP. ¢ VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1981

tem support or substantial facilities, particularly in the ex-

ecution phases (as opposed to creation or maintenance)

for management of storage, processor allocation, events

and exceptions, source/sink device and data handling,

data base, communications, and resource management.

One way of characterizing a system is to examine its

concurrency attributes. Most systems have provided for

some level of asynchronous machine operation, mini-

mally I/O transfer. The MI substantially increased the

number and changed the nature of asynchronously exe-

cuting facilities. These included dispatching functions,

storage management functions such as memory and

DASD page reclamation and directory management, ob-

ject creation, system recovery functions, save/restore op-

erations, and asynchronous linkage facilities. Synchro-

nous operation was maintained in the scan, decode, and

execution of computational and control instructions,

security and authorization checking, and exception han-

dling.

Usability and productivity considerations were primar-

ily directed to the external user interface. The intent was

to assume as much management of resources by the sys-

tem as possible. Machine independence considerations,

in turn, required that these resources be managed by the

machine. These requirements had to be balanced against

performance considerations, requiring at least partial re-

source management by MI processes. Care was exercised

in such instances to ensure that these resource manage-

ment functions were not tied to specific choices of appli-

cation structure, functions, or attributes. This allowed

performance tuning and configuration changes to be made

without affecting the application. Further, user in-

volvement was minimized by containing these functions

within the CPF.

The following are examples of special provisions for

performance. MI control of resource management con-

structs was provided, allowing a dispatching priority to be

specified for a process. Main store could be pooled, so a

specific set of processes was limited in the number of

pages used for its working store. Pages could be grouped

by affinity to allow access by group. Multirecord sequen-

tial data base transfer could be specified, and was particu-

larly useful for performing functions such as sorting. In-

tegrity of address pointers was ensured through use of

special memory tags set if a pointer was modified, thereby

disallowing use of that pointer for addressing. Alterna-

tively, objects containing pointers could have been re-

quired to be in segments separate from data. Finally, the

overhead considerations in the interpretation of the ge-

neric late-bound high-level instruction set resulted in a

step to prebind an MI program.

IBM J. RES. DEVELOP. ¢ VOL. 25 NO. 5 ¢ SEPTEMBER 1981

This concept of an architected, high-level machine in-

terface was the logical evolution of the increased capabili-

ties of the system hardware. It represented an effective

way to address major design issues for the entire system.

As the largest and latest of these products, the System/38

represented a continuation of a trend that began with the

introduction of the System/32.

Operating systems/languages

Since productivity dictates data processing personnel

costs, the software support has substantial leverage on

the customers’ investment. The key decisions made rela-

tive to the software concerned 1) its operational ef-

fectiveness, 2) the choice of system environments and ap-

plication structures, 3) the technical concepts employed

in the design, 4) the nature of interfaces, 5) the distribu-

tion of system support, and 6) IBM-supplied applications.

Operational effectiveness refers to two factors. First

are the human factors provided for each user. The second

refers to the system performance attributes measured

both in terms of batch and interactive transaction rate and

interactive response time. As technology costs allowed

addressing of new environments and higher transaction

rates, additional system functions and interfaces were

provided. The programming support increased in general-

ity through, for instance, remote/local transparency for

displays. It provided the new 5250 terminal family sup-

port with enhanced operator guidance such as menu se-

lections, levels of system messages, etc. It supplied more

powerful functional capabilities, including workstation

application tasks which were interruptible. Additionally

provided were increased recovery facilities such as auto-

matic system recovery following power failures, and sim-

plified installation with the system operational as distrib-

uted.

System environment types include batch, real-time,

and interactive. The original System/3 supported only the

batch environment. (The systems described in this paper

do not address the real-time environment [1].) With the

System/3 CCP, the user had available a subsystem sup-

porting general-purpose interactive transactions and lim-

ited transaction-driven processing. The System/34 gener-

alized this through inclusion of the necessary support in

the System Support Program [15]. The System/38 contin-

ued this trend by providing full functional capability for

general-purpose interactive transactions and by enhanc-

ing transaction-driven applications through a transaction-

routing facility with a control language interface. It also

addressed time-sharing with such interactive productivity

aids as the ability to dynamically set checkpoints or dis-

play variables interactively. 437

R. L, TAYLOR

438

R. L. TAYLOR

Technical concepts include a number of topics: the

means by which a system binds data to programs, data

and programs to store, etc.; units of and algorithms allo-

cating resources; asynchronism of task execution depen-

dent on sharing; the means of handling data; and con-

currency attributes as defined by the degree to which the

system supports multitasking and multiprogramming.

Space limitations prohibit a detailed examination of the

evolution within these systems of each of these attributes.

Concurrency will, however, serve as a typical example of

the increasing capability in these systems over time.

System/3 allowed for single-job-stream execution with

all system resources not required by the supervisor avail-

able to each program. With CCP, a subsystem executing

under control of SCP for such functions as program load,

V/O, console management, and physical communications,

up to 15 multiple predefined tasks concurrently resident

and executing could share a limited number of predefined

system resources including data files and terminals.

The Model 15D expanded concurrency by supporting

three independent partitions, multiprogrammed with

SPOOL, to which serially reusable resources could be al-

located. Memory was allocated during system generation

allowing later modification. The user could prioritize the

scheduling of jobs and dispatching of tasks [6].

Generalization continued with the System/34 SSP. The

interactive support was integrated. No absolute con-

straint was provided on the number of tasks concurrently

executing. The SSP dynamically managed prioritized bal-

ancing of workstation response characteristics with batch

throughput. A single workstation could initiate multiple

tasks and a single task could perform at multiple work-

stations. Program swapping between the file and memory

allowed storage overcommitment. Diagnostics could run

concurrently with user tasks [15].

This increase in flexibility continued in the System/38

[20]. Resource management functions were implemented

in the machine with all objects contained in a single level

of storage. The requirement to support a wide variety of

interactive transaction types resulted in a new concept,

the user-defined subsystem. This allowed the user to tai-

lor one or more operating environments into which his

jobs could be grouped, without restricting the application,

through a single rule-driven mechanism [16].

The interfaces to a system include 1) the traditional

high-level languages specifying the algorithms in the ap-

plication; 2) specification languages defining the configu-

ration, screen formats, record formats, etc.; 3) utility

functions; and 4) languages for operator and job control.

Key to understanding the interfaces on these systems is

the role played by RPG. The most commonly used pro-

gramming languages in the 1960s were COBOL, FORTRAN,

BASIC, and PL/I. These languages are all procedural, re-

quiring the programmer to think through his execution se-

quence and explicitly control files, labels, data structures,

etc. This meant that the programmer’s time had to be di-

vided between the application and the system. It also

meant that additional effort was required to document and

debug programs. These attributes were judged to be unac-

ceptable for the users of these systems, even in light of

their corresponding advantages, which included complete

control and support for all forms of I/O and the ability to

optimize on resources. Thus, the decision was made to

provide these systems with RPG as the primary language.

RPG was defined in the 1950s to execute on the IBM

1401, providing easy preparation of business reports from

record descriptions. It was a nonprocedural language exe-

cuting with fixed-flow logic allowing the programmer to

focus on his file and record descriptions and data opera-

tions, not on system characteristics, resources, house-

keeping, and documentation. A new version was defined

and implemented on the System/3—RPG I.

As these systems addressed larger configurations, more

complex applications, and different operating modes, two

directions were taken. First, other high-level languages

were provided on some systems (FORTRAN, COBOL, and

BASIC are supported). Second, the disadvantages inherent

in RPG as a nonprocedural language were addressed

through additional extensions. A new language version,

RPG 111 [21], was provided on the System/38. This version

enhanced execution sequence control for I/O and data

base processing, data and device independence, struc-

tured programming, and variable binding of any program

element through prespecification.

RPG was primarily oriented toward the batch processing

of application data. With the emphasis for on-line inter-

active applications on the System/34, a new tool for pro-

gram development was produced—the System/34 Work

Station Utility (wsu). wsuU was a nonprocedural, fixed-

format application language based on RPG. It was in-

tended for fast transition to workstation applications per-

forming interactive entry, edit, and correction.

The second class of interfaces consisted of the specifi-

cation languages. System/3 required that each program

contain its own version of the environment: its device de-

scriptions, record formats, file formats, and screen de-

scriptions. Evolving use required a new set of principles

emphasizing modularity in application construction

through the separation of definitions from logic flow.

IBM J. RES. DEVELOP. e VOL. 25 ¢ NO. 5 e SEPTEMBER 1981

Various tools were provided, including screen defini-

tion via the System/3 Display Format Facility, device as-

signment via the control language, etc. On the System/38,

the Data Description Specification [22] provided the inter-

face for both data base physical descriptions and logical

usage [23] and screen format definition. In addition to

standard system-utility functions, the increasingly inter-

active orientation of these systems required inclusion of

display-oriented interfaces, including

© Nonprogrammer handling of data files.

e Source entry, including syntax checking.

© Screen design for easily defining, updating, and dis-

playing screen formats.

© Inquiry and query facilities to display information.

The final interface, the control language, controlled

system operation. System/3 employed a single syntax

supporting its two control language functions: The Opera-

tion Control Language (OCL) used in batch processing

provided the basis for job streams, and the Operation

Control Commands (OCC) allowed operator control from

the system console. As the system expanded into new

modes of operation, additional interfaces were provided.

For example, CCP had two additional interfaces for its

generation and for the assignment of specific sets of ter-

minals, files, programs, and system environment.

The System/32 and the System/34 incorporated their in-

teractive support as part of the base product. These func-

tions were included within more powerful implementa-

tions of OcL and OCC, providing parameter passing, sub-

stitutions, conditional statements, and nesting.

The System/38 continued this integration, including

within its control language interfaces to its significant new

functions. However, the need for a flexible control lan-

guage allowing system function to be invoked from a pro-

gram, the system console, and a remote or local terminal

with user tailorability demanded a new syntax. The Sys-

tem/38 control language used a free-form syntax with

commands allowing keyword or positional parameters

[24]. Its implementation was based on a rule-driven ap-

proach in which a detailed description of each command

was stored in a rule describing validity checking, defaults,

prompt text, etc. This resulted in improved command

consistency and reduced development requirements. In

addition to command procedures for inclusion in batch

job streams, it provided a compiler offering display opera-

tion, declared variables, and IF/THEN/ELSE and Do func-

tions.

Another area which experienced growth was the distri-

bution of data processing. Requirements in this area

IBM J. RES. DEVELOP. ¢ VOL. 25 ® NO. 5 e SEPTEMBER 1981

evolved over time from remote job entry utilities with

batch transmission to facilities allowing the user to write

applications with the system handling all communications

protocol and remote system dependencies. The best ex-

ample of the latter type of support was the System/34 In-

teractive Communications Feature (ICF) [25]. ICF al-

lowed the user program to interface to a remote system in

exactly the same manner it interfaced to a display. ICF

handled all device and communication dependencies,

provided the communications link and error recovery,

supported batch and interactive communications, al-

lowed remote invocation of System/34 programs, and in-

terfaced with CICS/VS, IMS/VS, 3270 BSC emulation to

System/370, CCP, and other devices using BSC pro-

tocols. In addition, the Distributed Disk File Facility al-

lowed an application program to access a disk file located

on another System/34 or System/3 Model 15D.

A critical element in the marketing success of these

systems has been the IBM-provided application products.

The typical customer, without trained data processing

personnel, wanted end-use application solutions. IBM,

with the relatively low cost of these systems, needed to
reduce marketing expense by increasing field productiv-

ity. The solution was to provide industry-oriented and

country-specific application products consisting of com-

mercial and financial applications, tailorable to specific

requirements, allowing service for each user’s specific

system and skill level. The intent was to provide turnkey

solutions to customer application needs.

Summary and conclusions

IBM has provided small general-purpose systems which

have employed and initiated advances in technology, sys-

tems architecture, and software support to meet customer

needs. The original System/3 concept has evolved to the

point where, in the System/34, it continues to provide a

solid architectural base for future expansion. A revolu-

tionary new approach to systems design and architecture

in the System/38 has been used to provide unique capabil-

ities to its users. These systems have demonstrated how

the advantages of lower-cost, better-performing tech-

nologies were used to provide expanded system capabili-

ties meeting ever-growing customer needs.

These trends can be expected to continue. Tech-

nological developments and customer requirements will

continue to allow, if not demand, continued expansion of

the product line. This expansion will occur in three di-

mensions: in terms of cost, both upward and downward;

in function, by addressing new, advanced application

areas of data processing, including support of new indus-

try-oriented terminals; and in continued improvement of

price/performance. Continuing improvements and expan- 439

R. L. TAYLOR

440

R. L. TAYLOR

sions of distributed data processing support can be ex-

pected. Further technological advances will be applied to

continue to reduce the complexity of using these systems.

These changes can be expected to be both evolutionary

and revolutionary, achieving new system breakthroughs.

References
1.

13.

Thomas J. Harrison, Bruce W. Landeck, and Hal K. St.

Clair, ‘‘Evolution of Small Real-Time IBM Computer Sys-
tems,’ IBM J. Res. Develop. 25, 441-451 (1981, this issue).

. C.J. Bashe, W. Buchholz, G. V. Hawkins, J. J. Ingram, and

N. Rochester, ‘“‘The Architecture of IBM’s Early Comput-

ers,” IBM J. Res. Develop. 25, 363-375 (1981, this issue).
. E. W. Pugh, D. L. Critchlow, R. A. Henle, and L. A.

Russell, ‘‘Solid State Memory Development in IBM,” JBM
J. Res. Develop, 25, 585-602 (1981, this issue).

. L. D. Stevens, ‘‘The Evolution of Magnetic Storage,’ JBM
J. Res. Develop. 25, 663-675 (1981, this issue).

. Andrew A. Gaudet and Bobby J. Smith, ‘‘An Overview of

the Technology in the IBM 3370 Direct Access Storage,’’

Disk Storage Technology, 1-2 (1980); Order No. GA26-1665-
0, available through IBM branch offices.

. The IBM System/3 Model 15D Cyclopedia, Order No. Z280-
0076, available through IBM branch offices.

. A. Padegs, ‘‘System/360 and Beyond,’ IBM J. Res. De-
velop. 25, 377-390 (1981, this issue).

. David R. Jarema and Edward H. Sussenguth, ‘‘IBM Data
Communications: A Quarter Century of Evolution and Prog-

ress,’ IBM J. Res. Develop. 25, 391-404 (1981, this issue).
. David L. Nelson, ‘‘The Format of Fixed-Block Architecture

in the IBM 3370 DAS,”’ Disk Storage Technology, 34-35

(1980); Order No. GA26-1665-0, available through IBM
branch offices.

. IBM System/3 Models 8, 10, 12, and 15 Components Refer-
ence Manual, Order No. GA21-9236, available through IBM
branch offices.

. S32 Functions Reference, Order No. GA21-9176, available
through IBM branch offices.

. E. F. Dumstorff, ‘‘Application of a Microprocessor for I/O

Control,’ IBM System/38 Technical Developments, 28-31

(1978); Order No. G580-0237, available through IBM branch
offices.

R. L. Hoffman and F. G. Soltis, ‘Hardware Organization of
the System/38.’’ IBM System/38 Technical Developments,

§

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

19-21 (1978); Order No. G580-0237, available through IBM
branch offices.
J. W. Froemke, N. N. Heise, and J. J. Pertzborn, ‘“‘System/
38 Magnetic Media Controller,’ IBM System/38 Technical

Developments, 41-43 (1978); Order No. G580-0237, avail-
able through IBM branch offices.

System/34 System Support Reference, Order No. SC21-
$155, available through IBM branch offices.
L. A. Belady, R. P. Parmelee, and C. A. Scalzi, ‘‘The IBM
History of Memory Management Technology,” JBM J. Res.
Develop. 25, 491-503 (1981, this issue).

M. E. Houdek and G. R. Mitchell, ‘‘Translating a Large Vir-
tual Address,” IBM System/38 Technical Developments,

22-24 (1978); Order No. G580-0237, available through IBM
branch offices.
S. H. Dahliby, G. G. Henry, D. N. Reynolds, and P. T. Tay-

lor, ‘‘System/38—A High-Level Machine,’ IBM System/38
Technical Developments, 47-50 (1978); Order No. G580-
0237, available through IBM branch offices.

M. Y. Hsiao, W. C. Carter, J. W. Thomas, and W. R. String-
fellow, ‘‘Reliability, Availability, and Serviceability of IBM
Computer Systems: A Quarter Century of Progress,’ IBM
J. Res. Develop. 25, (1981, this issue).

H. T. Norton, R. T. Turner, K. C. Hu, and D. G. Harvey,

*‘System/38 Work Management Concepts,” IBM System/38
Technical Developments, 81-82 (1978); Order No. G580-
0237, available through IBM branch offices.

S/38 RPG III Reference and Programmer's Guide, Order

No. SC21-7725, available through IBM branch offices.
C. D. Truxal and S. R. Ridenour, ‘‘File and Data Definition
Facilities in System/38,’’ IBM System/38 Technical Develop-
ments, 87-90 (1978); Order No. G580-0237, available
through IBM branch offices.

W. C. McGee, ‘‘Data Base Technology,’ IBM J. Res.
Develop. 25, 505-519 (1981, this issue).
J. H. Botterill and W. O. Evans, ‘‘The Rule-Driven Control
Language in System/38,”’ IBM System/38 Technical Devel-
opments, 83-86 (1978); Order No. G580-0237, available
through IBM branch offices.

System/34 Data Communications Reference, Order No.

S$C21-7703, available through IBM branch offices.

Received June 27, 1980; revised November 7, 1980

The author is located at the IBM Information Systems

Division laboratory, 3605 Highway 52N, Rochester, Min-

nesota 55901.

IBM J. RES. DEVELOP. © VOL. 25 e NO. 5 ¢ SEPTEMBER 1981

=

