
B
S
S
V
S
S
V
S
S

S
S
S
V
S
S
I
S
S

S
S
S
S
V
S
S
S
S
S
S

S
I
S
S
S
S
S
S
S

S
S
S

IBM System/3

Basic Assembler

S
R
S
S
V
I
O
S

Reference Manual

®
s Program Numbers

V
S
B
V
S
S
R
S

S
S
S
E
S

S
S
S
O
S

S
8
S
e
s

S
S
e
e
s

S
E
S
S

S
S
O
S
s
e

S
S
S
I
S
V
S

B
S
e

B
e
e

S
o
s

8 3
S
S
S
S
S
s

5702-AS1 (Models 8 and 10)

E
R

A
O
D
,

A
F
,

S
U
G

a
c
e

S
h
u
t

“
e
n
e
?

ee
O
P
 oe

e
s
 iO

S
S
S
S
S
O
S

S
S
s
s
s

S
S
R
I
S
O

S
S
V
S
E
S
S
S
S
S

S
S
S
S
S

V
S
O
S
S

S
S
S
S
S
S
S
S
S
S
S

B
S
S
S
S
S
S

S
S
S
S
S
s

S
S
S
S
C
S
S
S
S
S
I
S
S

S
S
S
H
S
S

S
S
S
I
V
S
E
S

S
V
s
e
s
e

S
S
I
s

S
I
S
O
S

S
S
S
a
s

S
S
S
S
s

S
S
e
e

B
S
s
e

S
S
S
s

S
S
S
O
s
S

S
I
V
S
I
L
S
V
S
S

S
I
S
S
S
S
S
S
S
V
s
S

S
S
S
S
S
C
S
S

S
O
S
S
O
S
S
O
S
S

S
S
S
S
S
s

S
S
P
S
S
S
P
S
S
O
S
S

S
s
e

S
I
E
R
M
S
S
S
S
E
S
S
I
S

S
S
o
s

S
S
E
o
s

I
s
e

S
S
S
S
S

S
R
S
I
O

H
O
S
S

S
S
V
S
S

S
S
S
S
S

S
e
e
s

S
S
S
S
e

S
V
S
s
s

S
S
S
S
V
I
S
S
O
S

S
S
S
S
O
R
S
S
O
S
S

S
I
S

S
S
S
S
S
S
S
E
R

S
I
S
S
O
P
S
O
S
I
O

V
S
S
V
S
S
V
s
S
s
S

S
V
W
S
S
V
S
S
S
S

S
P
S
S
S
S
S
O
S

S
S
V
s
e
s
y
e

S
S
S
S
S
a
s

S
S
O
C
S
S
S
S
S
S
S
S
R
S
S
S
S

S
S
S
O
Q
S
S
E
S
S
S

S
F
H
S
O
S
S
H
S
S
S
S
S
V
S
S
S

S
S
S
S
S
V
S
S
S
S
S

S
V
S
S
S
R
S
S
O
S
S
S
S
S
S
S
S

S
S
S
S
O
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S
S
I
V
S
O
I
S
S
S

S
S
S
S
s

S
S
S
S

S
S
S

S
S
s
s
o

S
S
s
s

S
S
S
O
s

S
S
S
s

S
S
R
s

B
E
S
S

S
S
e
e

S
S
S
s
e

B
S
o
s

S
S
I
S
S
S
S
S
O
S

S
V
S
s

B
S
R
S
O
V
S
V
S
S
o
e

B
e
s
s

S
S
S
S
S
O
S
S
S
S

S
S
S
R

R
S
S
S
S
S
S
V
S
S
S

S
S
s
s

S
o
e
s
s

B
E
S
S

B
S
S
R
S

S
S
S
S
s

S
S
S
e

B
S
S
5
S
S

S
S
s
e
s

S
S
e
e

S
I
s
s
e
s

S
S
S
B
S

S
S
S
S
S
O
V
S
s

S
V
S
S
S
S
S
H
S
S
S
S
S
s
s
s
e

S
S
S
S
S
S
I
S

V
S
S
S
S
S
S
S
S
O
S
S

S
R
S
S
I
S
O
S

S
S
S
S
S
S
S
S
S

S
R
S
P
S
S
S
S
S
S

V
S
S
S
S
s
s

V
S
S
I
S
S
O
S
S
S
S
S
S
S

B
I
S
S
R
S
S
S
S
E
S
S
S
S

V
S
S
V
S
S
S
S
S
S
I
S
S
S
S

S
S
S
P
S
S
O
S
S
E
S
S
S
E
S
O
S

S
S
S
S
S
S
e
s

S
S
S
S
S
S
E
S
S

S
S
S
S
S
S
S
S

S
S
V
S
S
S
S
S
 S
B
S
e

B
S
I
S

S
3
S
s

S
S
S
S
S
S
O
S
S
O
s
e
o
s

S
I
S
S
S
P
S
S
S
S
S
S
S
S
S

V
S
S
S
S
S
S
S
S
S
S
S
S
S

S
S
S
S
S
S
E
S
S
S
S
S
S
E
S

ene

re
oy

63
a

@

as
.

rm
©

t

e
e

NO
{3

om
os

ba

S
S
S
O
S
S
S

S
S
S
S
S
S
S

S
I
B
S
S
I
S

S
S
S
S
O
O
S

S
S
S
V
S
S
S
S

S
R
S
V
S
S
S
S

S
S
S
S
S
s
e
s

S
S
S
S
O
R
S
S

S
S
S
I
V
S
S

S
S
S
R
S
E
S

S
V
S
S
S
S
S

S
S
V
G
S
S
e

S
S
S
S
S
S
S

$
S
S
S
S
S
S

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S
S
S
S
S
I
O
S
S

S
S
S
S
S
S
E
S
S
S
S

SISOS
S
P
S
S

S
$
S
S
S
S

S
O
S

S
E
S
S

S
S
S
S
S

8
O
S
S

S
S
C
S

S
S
S
S
8

F899
B
S
S
S

S
8
5

s
E
g
8

S
S
S
S
8
S

F
9
S

S
S
E
S
S
S
S

S
S
S
I
S
S

3
5
8

S
S
S
S
s

S
S
S
S
e
s

3
B
V
S
S
O
S

S
S
S
e
e
e

e
S
S
S
S
s
e

Program Product

&

BSS

BEDS
BES DS
SESS

-

SRSS

BRAD

SBae

®
&
&
®

S
S
s
e
s

BE

&
4
DBS SB
SRBSD

z

Be
BSE

®
BESS
BOSS

BESBDRSS
SREBOSRS

Preface

This publication is a reference manual for the prograramer Related Publications

using the IBM System/3 Basic Assembler language. This

language provides facilities for representing machine The 8M System/3 Models 8, 10, 12, and 15 Components

usable instructions symbolically on a one-for-one basis. Reference Manual, GA21-9236, contains specifications

The symbolic representations are translated by the [BM governing the use of assembler language instructions.

System/3 Basic Assembler into the machine usable form

necessary for running a program on the System/3.

System /3 Model 8

The System/3 Model 8 is supported by Systern/3 Model 10

Disk System control programming and program products.

The facilities described in this publication for the Model 10

are also applicable to the Model &, although the Model 8 is

not referenced, It should be noted that not all devices

and features which are available on the Modei 10 are avail-

able on the Model 8. Therefore, Model 8 users should be

familiar with the contents of IBM System/3 Modei &

Tatroduction, GC21-5114.

Eighth Edition (April 1975}

This is a minor revision of §C21-7509-5 incorporating Technical Newsletters:

SN21-5385 March 17, 1976

SM21-5494 December 31, 1976

SN21-5536 June 24, 1977

This revision makes some changes to various pages and introduces information concerning

the IBM System/3 Model 8. Changes to text and small changes to illustrations are

indicated by a vertical line at the left of the change: new or extensively revised

illustrations are denoted by the symbol @ at the left of the figure caption.

This edition applies to version 12, modification 00 of IBM System/3 Model 10 Disk System

Basic Assernbler (Program Product Number $702-AS1); version 03, modification 60 of

IBM System/3 Model 15 Basic Assembler (Program Product Number 5704-ASi}; and to all

subsequent versions and modifications unless otherwise indicated in new editions or

technical newsletters. Changes are continually made to the specifications herein; before

using this publication in connection with the operation of IBM Systems, consult the

latest IBM System/3 Bibliography, GC20-8080, for the editions that are applicable and

current.

Requests for copies of IBM publications should be made to your IBM represeniative or to

the branch office serving your locality.

A. Reader’s Comment Porr is at the back of this publication. If the form is gone, address

your comments to IBM Corporation, Publications, Department 245, Rochester,

Minnesota 54901.

©Copyright International Business Machines Corporation 1970, 1971, 1972, 1973, 1975

INTRODUCTION
Miniraum System Requirements

Main Storage Requirements

PART I. BASIC ASSEMBLER LANGUAGE

Basic Statement Format

Terms and Expressions .

Terms .

The Symbol . oo.

The Self-Defining Term

Location Counter Reference

Expressions :

Assembler Coding Conventions

The Statement Format .

Comment Statements

Addressing

Direct Addressing

Base-Register Displacement “Addressing

Relative Addressing .

Instruction Addressing .

Data Addressing .

Control of Location Counter

Machine Instruction Statements

Name Entry Attributes .

Machine Instruction Mnemonic Codes

Extended Mnemonic Codes

Machine Instruction Operands .

Assembler Instruction Statements

Symbol Definition Instruction

Data Defining Instructions .

Listing Control Instructions

Program Control Instructions .

PART H. PROGRAMMER’S GUIDE

Assembler Control Statements

Headers Statement .

Ontions Statement . . .

OCL Statements For Assembler

OCL For Loading the Assembler .

OCL For Calling the Assembler

Sample Assembler Procedure Stored in Procedure

Library.

Object Program Desc ription
Record Formats . .

Object Program After Punch Conversion -

Assembly Time Data File Requirements .

Source File

Object File

Work File

Operating Procedures

Placing Assembler Subroutines j in R Row! tine) Library .

Using Assembler Object Program With the Program

Loader toe ee

Assembler Listing

Control Statements .

External Symbol List (ESL)

be
d

2
0

G
O

=I

OA

Ge

OF

G
m

Ga

to

Gs

18

Source and Object Listing .

Crose Reference List

External Symbol List (ESL) Tabh é ‘Size

APPENDIX A: MACHINE INSTRUCTIONS

Machine Language Instruction Formats .

' CGperation Code .

Q Code

Control Code

Storage Addresses .

Mnemonic Operation Codes (Machine) 5

Extended Mnemonic Codes

APPENDIX B: ASSEMBLER INSTRUCTION
REFERENCE TABLE .

APPENDIX C: SYSTEM/3 ASSEMBLER ~- SOURCE
LANGUAGE ERROR CODES AND DIAGNOSTICS .

Contents

40

APPENDIX BD: ASSEMBLER LANGUAGE SUBROUTINE

TO RPG H LINKAGE .
Using Fields in the RPG I Program .

Referencing a Field in an RPG Hf Program

Referencing a Table or Array in an RPG Ul Program:

Referencing an Indicator in an RPG U Program .

RPG Uf Linkage Sample Program 1
RPG Uf Linkage Sample Program 2
1/0 Subroutines . . .

Linkage for 1/0 Subroutines .
Library Deck Generator Program (Model 10 Only? .

Writing the Assembler Language Programm

Assembling the Subroutine

Running the LDG Program

Output of the LDG Program

Example . Loe

APPENDIX E: ASSEMBLER LANGUAGE SUBROUTINE
TO COBOL OR FORTRAN LINKAGE

Standards

APPENDIX F: BASIC ASSEMBLER SAMPLE

PROGRAM .

Model 10 and Model 12 Sample Programs

Program Description

Model 15 Sample Program .

Program Description

APPENDIX G: [BM 1255 MAGNETIC CHARACTER

READER SUPPORT (Models 12 and 15 Only)

INDEX

99

. 165

&

a

&

The [BM Systern/3 Basic Assembler language is a

syrobolic language. That is, it must be translated into a

form usable by the cornputer before a program can be

mun. The computer-usable form is called machine

language, and the IBM System/3 Basic Assembler language

provides a convenient method for representing, on 4

one-for-one basis, machine language instructions and

related data necessary to write a program for IBM

Systerm/3. This one-for-one relationship to machine

language instructions gives assembler language great

programming versatility.

The assembler language is composed of symbols, called

mnemonics, which are used to represent the operation

codes of two types of instruction statements:

1. Machine instruction statements are the syrnbols

that represent machine language instructions on a

one-for-one basis. Note that symbolically repre-

sented machine instructions are translated into

machine language by the assembler.

9. Assembler instruction statements are instructions

which control the functions of the assernbler. Each

assembler instruction statement causes the assembler

to perform a specific operation during the assernbly

process.

The IBM Systern/3 Basic Assembler:

e Processes instructions written in assembler language.

@ Translates the assembler language instructions into

machine language.

@® Assigns storage locations.

@ Performs other functions necessary to produce an

executable machine language program.

in order to call the assembler from its storage

location, a specific set of OCL (operation control

language) instructions must be used. Following these

OCL instructions, the user may elect to include an

OPTIONS instruction, a facility which allows him to

take advantage of various combinations of output listings

and punched decks.

introduction

There are certain procedures for storing assembler routines

an the Model 10 Disk System, Model 12, and Model 15 R

(relocatable) Library and for loading assembler object pro-

grams info main storage. These procedures, as well as the

other iterns mentioned briefly above, are discussed more

fully in the text.

MINIMUM SYSTEM REQUIREMENTS

The minimum system configuration and optional device

support for the Basic Assernbler program is shown in the

IBM System/? Models 6, 8, 10, and 12 System Generation

Reference Manual, GC21-5126 and in the IBM System /3

Model 15 System Generation Reference Manual,

GC2E-T616.

Introduction {

MAIN STORAGE REQUIREMENTS

The Model 10 Disk System Basic Assembler (5702-AS1)

requires 8,192 bytes of main storage for execution,

exclusive of control program requirements.

The Model 12 Basic Assembler (5705-AS1) and the

Model 15 Basic Assembler (5704-ASE or 5704-AS2)

require 10,240 bytes of main storage for execution,

exclusive of control program requirements.

The IBM System/3 Basic Assembler language is a syrabolic

language that provides a convenient method for

representing, on a one-for-one basis, machine language

instructions. The symbolic representations in assembler

language coding are translated by the IBM System/3

Basic Assembler into the machine language form usable

by the computer. In order to code in assembler

language, the user must become farniliar with certain

terms, coding conventions, instructions, and other

features of the language. The remainder of this chapter

deals with these items.

BASIC STATEMENT FORMAT

A statement coded in assembler language can contain up

to four entries from left to right: Name, Operation,

Operand, and Remark. See Assembler Coding Conventions

in this manual for an explanation of the contents and

functions of each entry.

Part 1. Basic Assembler Language

TERMS AND EXPRESSIONS

A term is a single symbol, self-defining valuc, or location

counter reference which can be used only in the operand

field of an assembler language instruction. The three

types of terms are described under Terms in this section.

An expression consists of one or more terms. [tis used

to specify the operand fields of assernbler language

instructions. Terms and expressions are classed as either

absolute or relocatable. A term or expression is absolute

if its value is not changed when the assembled program in

which it is used is relocated in main storage. A terrn or

expression is relocatable if its value is changed when the

program in which it is used is relocated.

Basic Assembler Language 3

Program relocation is the loading of an assembled

program (object program) into a different area of main

storage from that which was originally assigned by the

assernbler. The difference (in bytes} between the

originally assigned address of the object program and the

address of the relocated object program is the amount of

relocation. The addresses assigned to all instructions and

data in the relocated program are changed by the amount

Storage

Address

%

Main Storage

2000

Object Pragram A

First Loading

Figure |. Program Relocation

of relocation. In Figure 1, Object Program A is initially

loaded at address 2000 in main storage. When Object

Program A is loaded a second ume, it is placed at address

3000 in main storage. The amount of relocation is 1000

bytes. Therefore, the values of all relocatable terms and

expressions used in Object Program A would be increased

by 1000 during the second loading.

Storage

Address Main Storage

o

Second Loading

* The amount of prograrn relocation is 1000 bytes.

2B

TERMS

Three types of terms are used in the IBM System/3

Basic Assernbler language.

@ Symbol

@ Self-defining term

@ Location counter reference

The Symbol

A symbol is a character or combination of characters

used to represent storage locations, instructions, input/

output units, registers, or arbitrary values. A symbol can

be used in either the name field or the operand field of

a statement. When used in the name field, the symbol is

called a name field entry. When used in the operand

field, the symbol is called a symbolic term.

When the assembler finds a symbol in the name field of

a statement, it assigns to that symbol an address value

attribute. See Addressing in this section. The assembler

also assigns a length attribute to the symbol, which is

the number of bytes in the storage field named by the

symbol. There are exceptions. When the assembler en-

counters EQU, START, or TITLE statements, it does

not assign the usual attributes. EQU name field entries

derive their values from the operand, START name field

entries are assigned a length of 1, and TITLE name field

entries are assigned no values at all.

The same symbol cannot be used as a name entry more

than once within a prograrn with the exception of the

TITLE card. In order for a symbol to be used in the

operand field, it must be defined (that is, used as a name)

on an instruction other than a TITLE card somewhere in

the program. Once it is defined, the symbol may appear

in any number of operands. Whether the symibol is used

as 4 name or an operand, these rules must be followed:

Jan
and

* The symbol can consist of no more than six

characters, the first of which must be either

alphabetic or 3, #, @. The other characters can be

any combination of alphabetic, numeric, or $, FE.

be
 Blanks and special characters other than 5, #, @

cannot be used in a symbol.

The Self-Defining Term

The self-defining term is a term which specifies an actual

value or bit configuration.

The value expressed by the self-detining term is taken

literally by the assernbler and is assembled into the instrac-

tion. Like all terms, the self-defining term is used only

in the operand field.

There are four types of self-defining terms:

@ Decimal

@ Hexadecimal

@ Binary

@ Character

Decimal Self- Defining Terms

A decimal self-defining term is an unsigned decimal

number written as a sequence of decimal digits. High

order zeros may be used, such as in 0003. Ha decimal

term is used as an address, its value cannot exceed the

number of bytes in main storage. A decimal term consists

of no more than five digits and cannot exceed a value of

65,535. This value is equivalent to the binary value

that can be contained in two bytes. A decimal self-defining

term is assembled as its binary equivalent.

Cxamples: 16 132 G0006 43675

In the following example, a decimal self-defining term is

used in a Move Immediate (MV1) instruction. The binary

equivalent of 25 would be placed in the I-byte area

referenced by the symbol, COST

NAME OPERATION i 6 OPERAND

ALPHA MYVt COST, 26

Basic Assembler Language 4

Hexadecimal Self-Defining Terms

Hexadecimal self-defining terms can consist of up to

four hexadecimal digits enclosed in apostrophes and

preceded by the letter X.

Examples: X*C34A° K‘O4F" X‘@’ X“DE’

Each digit is assembled into its 4-bit binary equivalent.

Therefore, the maximum value would be X‘FFFF"
(65,535).

The following is an example of the use of a hexadecimal

seli-defining term. The l-byte area at SWITCH would

contain the hexadecimal value FO (binary, 11110000}
after execution of the instruction.

NAME OPERATION OPERAND

BETA MVt SWITCH , X'FO" S
O

Se

Binary Self-Detining Terms

Binary self-defining terms are written as a sequence of

l’s and 0’s enclosed in apostrophes and preceded by the

letter By such as B°LO11’. This term would appear in

storage as QOOO1G11. The high-order (leftmosi) bits

are padded with O-bits to make a multiple of eight bits of

data (one or two bytes}. A maximum of 16 bits of data

can be represented in cach term. In the following

example of a Move Immediate instruction, the binary

information will be moved into the L-byte field at AREA.

NAME OPERATION OPERAND

GAMMA MYVI Rm
um

me

wh
e

ea
e

ana
l

e
s

no
e

AREA, B'IOTTOOTT’

Character Self- Defining Terms

Character self-defining terms consist of one or two

characters enclosed by apostrophes and preceded by the

letter C; such as C°A3’. Any of the valid punch

combinations can be used in a character selt-defining

term.

Examples: CAV CEA’ CLR C3

Because certain terms in the assembler language must be

enclosed by apostrophes (such as CEA’), for every

apostrophe that is used as a character in a self-defining

term, two must be written. For example, the characters

A? would be written as C°A’”’.

In the following example, a dollar sign ($) would be

moved into the byte field at REPORT.

NAME OPERATION OPERAND

DELTA MV! REPORT, C'S’ a

S
e
n
s
.

em
it

ts

me

nu
e

se
np

mm
e

ta

Location Counter Reference

Location Counter: The location counter is an internal

counter, maintained by the assernbler, which always

points to the next available storage location. As each

new statement is processed, the location counter is

increased by the number of bytes in the assernbled

statement. The assembler uses the current address

in the location counter to assign consecutive storage

addresses to program staternents,

Location Counter Reference: A location counter

reference is an asterisk (*) used as a term in the operand

of an instruction. When the assembler encounters

an asterisk, it substitutes the current value of the
location counter (which always points to the next

avatlable storage location) for the asterisk.

EXPRESSIONS

An expression consists of an arithmetic combination of

one or more terms. In a multi-term expression, terms

must be separated by an arithmetic operator: the

arithmetic operators are + for addition, — for subtraction,

and * for multiplication.

AREAtK 2D Examples: N-25 RIS A*8

The rules for coding an expression are:

i. Two terms or two operators must not be used

consecutively in an expression.

2. Parentheses cannot be used in an expression.

3, Only absolute terms can be used ina multiply

operation.

4. Blanks are not allowed in an expression.

5, a. Using the Model 10 disk system basic assernbler,

an expression may consist of only one term when

that term is a symbol used as the operand of ar

EXTRN statement.

b. Using the Model 15 basic assembler, if the expres-

sion coritains an external symbol, then the

expression must be of the form Aor Ate, Aisa

symbol used as the operand of an EXTRN state-

ment and ¢ is an absolute expression.

Note: An Ate expression must not be ina Model

10 subroutine with RPG HI.

If there is more than one term in the expression, the

terms are reduced to a single value as follows:

i, Each term is evaluated separately.

4 Arithmetic operations are then performed in a

left-to-right sequence, except that multiplication

is performed before addition or subtraction. An

example would be A+B*C, which would be

evaluated as AH(B*C), not (A+B)*C. The result

would be the value of the expression.

3. The intermediate result of the expression

evaluation is a 3-byte, or 24-bit value. Intermediate

results must be in the range of 924 through

2e7—4.

Negative values are carried in the two’s-complement

form. The final value of the expression is the truncated,

rightmost 16 bits of the result. The value of the

expression before truncation must be in the range of

65536 through 65535. A negative result ts considered

to be a 2-byte positive value.

Note: In address constants the full 24-bit final expression

result ig truncated on the left to fit the length of the con-

stant.

Absolute Expressions: An expression is considered

abgolute if its value is unaffected by program relocation.

An absolute terrn may be a non-relocatable symbol, or

any of the self-defining terms. All arithmetic operations

are permitted between absohite terms.

An absolute expression can contain relocatable terms or

a combination of relocatable and absolute terms under

the following conditions:

1. The expression rust contain an even number of

relocatable terms.

4 ‘The relocatable terms must be paired and each

pair must consist of terms with opposite signs.

The paired terms need not be adjacent.

3. Relocatable terms cannot be used in a multipli-

cation operation.

Pairing relocatable terras with opposite signs cancels

the effect of the relocation, because both terms would be

relocated by the same value. Therefore, the value

represented by the paired terms would, in effect, remain

constant regardiess of the program relocation. Por

example, in the absolute expression A-Y+t, A is an

ahsohute term and X and Y are relocatable terms. Tf A

equals 50, ¥ equals 25, and X equals 10, the value of

the expression would be 35. if A and Y are relocated by

3 factor of 100, their values would become 110 and 125,

respectively. However, the expression would stil

evaluate as 35 (SG--125+110#35). Absolute expressions

reduce to a single absolute value.

Relocatable Expressions: A relocatable expression is

one whose value changes by the amount of relocation

when the program in which it is used is relocated. All

relocatable expressions must reduce to a positive

value.

Basic Assernbier Language

A relocatable expression can be a combination of

relocatable and absolute terms under the following

conditions:

1. There must be an odd number of relocatable

terms.

BS

AH relocatable terms, except one, must be paired

and each pair must consist of terms with opposite

signs. The paired terms need not be adjacent.

3. The unpaired term must not be immediately

preceded by a minus sign.

4. Kelocatable terms cannot enter into a multiplication
operation.

All terms in a relocatable expression are reduced to a

single value. This single value is the value of the unpaired

relocatable term after it has been adjusted (displaced) by

the resultant value of the other terms in that expression.

For example, in the expression W—K+Y where W, X,

and Y are relocatable terms; and W=10, X=3, Y=1;

the result would be the relocatable value of 8.

If the program is relocated by 100 bytes, the resultant

value of the expression would be increased by the amount

of relocation (100), giving the expression a value of 108.

In the following expression, a combination of absolute

and relocatable terms are used: AtF*G-—DHB. A, D,

and B are relocatable terms; F and G are absolute

terms, When given the values A=3, B=2, D=5, F=1, and

G=4, the result would be a relocatable value of 4. The

multiplication occurred first, resulting in 4; then the

addition and subtraction of the other terms, including

the result of the multiplication, was performed in a

left-to-right direction. The result of the arithmetic

operations is a relocatable value of 4 for this expression.

Upon relocation, the value of this expression can be

determined by adding the amount of relocation to all
relocatable terms.

ASSEMBLER CODING CONVENTIONS

This section explains the general coding conventions

associated with the IBM System/3 Basic Assembler

language. When coding in assembler language, the

programuner uses the IBM System/3 Assembler Coding
Forrn (Figure 2).

The Statement Format

Each Hine on the coding form is divided into two segments:

Statement (columns 1-87}, and Sequence (colurnns 89-96).

The Statement segment can contain up to four entries,
from left to right: Narne, Operation, Operand and

Remark. The Name field is column dependent. It

must start in column 1, unless otherwise specified by

the ICTL assembler instruction (see Assembler
instruction Statements). AM ather entries can start

in any coluran, as long as there is at least one blank

separating each entry and the entries rernain in the

stated order. Figure 3 is a diagrarn of assembler

Statement entries.

S9aze
o
L
u
y

3D

2004

G
i
n
d
v
d
d

S
N
H
O
N
D
S

OG
36

Oo
8

LE
16

96
aghast

A
O
D
 OA

TB
WD

OG
BL

BL
Lf

DLGL
FL

EL
Ed

10
GE

8
BO

£9
99-99

PY
C8

US
IGG

GG
5

19
98

GE
PS

fo
C5

ig
DG

GY
BD

Lb
Ov

Gy
br

EP
ty

te
Gh

OF
SE

LE
OE

GE
ve

EC
ZE

We
ME

BE
OF

LF
BE

GE
ve

CL
Te

AE
GS

Sk
B

M
O
L
 8

8
S$

eo
2

4

t
t

{
i

t
t

i
Ly ¥ i

ri '
H

'
‘

i
j

i
i

¢
i i

{
{

'
3

'
:

t
{

:
»

i

H i
i

i
7

j
i

i
i

i
2

}
i

{
{ !

i
4.

t
i

i
!

i
i

i
x

:
i

‘ :
i i

i
t

t
t

i
:

;
:

‘
i

i
H

ry
j

i
;

i
b

i
i

38
FR

ER
IB
D
O
 Ge

AL
40

GL
GL

ve
LL

€
OL

OS
GF

19
G8

49
PS

FS
29

$9
GG

59
BS

16
46

9G
ve

CS
ey

is
OG

SF
Ge

Lp
OF

Gp
th

Ee
Zy

Th
b
y
 oe

BE
ED

GE
GE

PE
CE

CE
te

OE
GE

Be
A O
E

GE
Pe

ES
Ee

OE
if

e
t
r
e

Soe
e
e
t

SHIELD
PIEISOD

uN
dO

Qui)

ANSWELV2S

t

W
A
G
O
N

ONLOTTa

C
H
E

MONTid
SNOHLDN

GLENS
i

w
a
r
e
i
y

woOud

A
V
E

O
O

Ag
SP

WH
DeRieg

L
O
L
S

L
E
K

W
H
O

wuGy

S
u
p
e

seigquiesty
oIseg

g/wEAS
WHI

Hee

Figure 2. IBM System /3 Basic Assembler Coding Form

Basic Assembler Language 9

Name Entry

@ Optional or required depending on the specific

instruction.

@ Up to six characters can be used in a name.

@ First character must be alphabetic (including $, #, @).

@ First character must be in column 1 unless otherwise

specified by an ICTL assembler instruction.

@ No special characters or blanks in a name (except

3, #, @).

@ Atleast one blank must follow the Name entry or

appear in the first Name entry cohimn Gf no name is
entered).

Operation Entry

@ Reguired entry,

@ Contains mnemonic operation code (list of valid machine

codes isin AppendixA. Machine Instructions}.

® Must be followed by a blank.

Onerand Entry

® Optional or required depending on the specific

instruction.

Contains coding that describes data to be acted upon.

@ Operands are separated by a comma.

@ No blanks between terms or operands.

@ Blanks are allowed within character constants and

character self-defining terms only,

e@ Ifthe entire operand entry is omitted, but a rernark

eniry is desired, absence of the operand must be

indicated by a comuna in the operand entry, preceded

and followed by one or more blanks.

@ Must be followed by a blank.

10

Remark Entry

® Optional entry.

@ Contains a brief verbal description of the staternent’s

function.

® Cannot extend beyond column &7 or a limit prescribed

by ICTL assembler instruction.

@ Can contain any combination of valid characters or
blanks.

@ Must be followed by a blank.

ldentitication—Sequence Entry

@ Optional entry.

@ Contains statement identification or sequence

characters.

@ See ISEQ — Input Sequence Checking later in this section.

Cormment Statements

The entire statement field (columns 1-87) can be used

for comments by placing an asterisk in column 1 (or the

beginning column, as set by the ICTL assembler

instruction}, Comments can be extended for more than

one line by the repeated use of the asterisk in the first

column of additional cards. Comment lines may be used

anywhere in the source program and are printed on the

program listing. Sequence checking is also performed

on cards containing comment statements.

, ria a

@) @
NAME 4 OPERATION 4, OPERAND + REMARK £ SEQUENCE

4
87 8g 06

G) Name Entry Operation Entry

, ; This entry consists of the

- This entry may conten mnemonic code for the

up to © characters. desired operation. The
aperation can be either

,

i

if not left blank, calumn

one must contain an Machine instruction or Assembler Instruction

aighabetic character.

Operand Entry

One or more operands

that consist of either:

EXP or [EXP (EXP! tor | EXPIEXP,EMP} [or | EXP LEXP)

L

A single term consisting of: or An arithmetic combination

of terms.

| i

A symbol or A salf-defining tern or & location counter

{AT or RT) {AP} reference (*}) {RT}
EXP = expression

i AT = absolute term

L
RT =relocetable term

Decimal Hexadecimal Binary Character

ag. 186 oF ag, X'C4 oF ag. B°404° oF ag, © AB’

Remark Entry (5) Sequence Entry

This entry contains any

statement meaningful

to the programmer.

This entry is optional.

This field may contain

any valid characters.

This entry is optional.

Figure 3. Assembler Statement Entries

Basic Assembler Language 11

ADDRESSING

The programmer must be able to access any part of storage.

IBM System/3 provides two methods of addressing: direct

and base-register displacement. The relative addressing

technique can be used with both methods. For addressing,

see the JBM System /3 Models 8 10, 12, and 15 Components

Reference Manual, GA21-9236.

Direct Addressing

The direct addressing method allows the programmer to

represent a 16-bit instruction address by using an

expression as an operand entry. The assembler places

the value of the expression in the machine instruction

which it generates.

Two bytes are always used in the machine instruction for

a direct address. A direct address is indicated by the

absence of a register in the operand.

Example: MYI ALD

This indicates to the assembler that a direct address is to

be generated for location A (see Machine Instruction

Operands }.

Base-Register Displacement Addressing

Base-register displacement addressing involves setting up

a base address from which other addresses can be

calculated. This base address must be placed in the base

register before the base register is used for addressing.

Gne byte is always used in the machine instruction for a

base-register displacement address and is indicated by the

presence of a register in the operand.

Examples: MV1 AG23,CD

MYT SCD CD’

This indicates to the assembler that a base-register displace-

ment address is to be generated for location A using base
register 2 and for displacement 5 from base register 1.

IBM
PROGRAM

PROGRAMME PF

12 ene 5 Si 748 Operant YE 3p id 15 18 a7 1819 20 24 2p eas 26 27 2 78 R31 2 43 WE

ALAR Ey | tb) || |
A AIDBA'S 2, Rix 4
USING ADBASE aig
Mv AC, RL) BCU RxD)

: | i

Figure 4. Base-Register Displacement Addressing

The base register plus a displacement can reference any

higher address within 255 bytes of the specified base

address. The displacement portion of the address can be

either absolute or relocatable; however, in either case the

programmer indicates that a base-displacement address is

to be generated by the presence of the register in the

operand (see Machine Instruction Operands). If relocatable

displacements are used, the USEING statement (see Assembler

Instruction Statements) must be used to indicate to the

assembler which register contains the base address and

what address will be loaded into that register. The USING

instruction does not load the register with the specified

address; the programmer must use a load instruction to

place the indicated address into the register. Figure 4 is

an example of base-register displacement addressing.

In Figure 4 two bytes of data will be moved from the

location of B to the location of A. The assembler

calculates the displacement to the addresses for A and

8, if A and B are relocatable and are within a positive

255 bytes of the address in base register XR1. If either

A or Bis over 255 bytes from the base address, an

addressing error occurs and an assembler error statement

is generated. Uf the terms A and B are not relocatable

symbols, the assernbler uses the absolute values Cap to

255} of the terms for the displacement. Ef absolute

displacements are used, the USING assembler statement
is not required.

Note: The programmer must explicitly specify the base

register whenever base-register displacernent addressing is

used,

The programmer terminates the use of a previously

defined base register through the use of the DROP

instruction (see Assembler instruction Statements). The

value of the register is not affected. This register

cannot, however, enter into base-register displacement

addressing using relocatable displacements until specified

again by a USING instruction.

Relative Addressing

Relative addressing is an addressing technique

accomplished by adding bytes to or subtracting bytes

from a symbol or location counter reference. The

expression *+5, for example, specifies the location §

bytes beyond the current value of the location counter.

Figure 5 is an example of relative addressing.

In Figure 5, the instruction with the operation code

ZAZ has a length of 6 bytes, the instruction AZ has a

length of $ bytes and the instruction with MVT has a

length of 4 bytes in storage. Using relative addressing,

the location of the AZ instruction can be expressed in

two ways, AAATG or BBB--5.

ball

PROGRAM

PROGRAMMER

Control of Location Counter

Addressing in any computer language depends upon the

location counter. [BM System/3 allows the programmer

to control the location counter by using two assembler

instructions: START and ORG. The START assembler

instruction can be used to initialize the location counter

io a desired value at the beginning of a program. The

ORG assembler instruction can be used to change the

value of the location counter anywhere in a program.

ame Operation Operand

'{ 273 4 5 BE g 1 14 Ve tid 19 16 17 18 19.20 27 27:25 28 OG 26 27 2B IH 23 MB:

ALAA gaz | Bc

BRB Avil Dx Re
s ¥

AAANG

Figure 5. Relative Addressing

Figure 6 shows how the AZ instruction can be addressed

relative to the nearby symbolic addresses, AAA and BBB.

Relative addressing may also be used with base-register

displacernent addressing if the displacement isa

relocatable terra.

Example: MVC AtSQRX1),BCLRXD

In the example, A+5 is an example of relative addressing

used with base-register displacement addressing.

instruction Addressing

Asymbol used as a name entry in a rmachine-instruction

statement addresses the Jeftmost byte of storage occupied

by that instruction.

Data Addressing

Asymbol used as a name entry ina data definition

instruction (see DC ~ Define Constant and DS — Define

Storage) address the rightmost byte of storage occupied

by or reserved for that data,

j——-E-by tes wr 5-bytes ae bytes

 iil —

i AZ MV
(ABA+6} (BBB)
(BBB-5)

LAL

symbolic address = (AAA)

Figure 6. Schematic of Relative Addressing

These two instructions are described in detail under

Assembler Instruction Statements.

MACHINE INSTRUCTION STATEMENTS

Machine instruction statements are symbols that

represent machine language instructions on a one-for-one

basis, The assembler translates these symbolic repre-

sentations into machine language usable by the

computer. Machine instruction statements differ from

assembler instruction statements in that the machine

instruction statements are executable parts of the

program's logic (such as MVE, ST, LA, etc), while

assembler instruction statements are siraply orders to

the assembler, each statement directing a specific operation

(such as DC, START, SPACE, etc}. See (AW System /3

Models 8, 16, 12, and 18 Components Reference Manual,

GA21-9236 for a description of the execution of machine

instructions.

The format for a machine instruction statement is closely

related to, but not the same as, the machine language

instruction format which results from the assembly

process (see Appendix A. Machine instructions for

machine language instruction formats).

A mnemonic operation code is used in place of the

actual machine language operation code and one or

more operands provide the information required by

the machine instruction. A remark and a sequence

entry may be included in the machine-instruction

statements, but they will not affect the machine

language instruction.

Basic Assembler Language 13

Name Entry Attributes

Any machine-instruction statement can contain a

symbol as a name entry. Other machine-instruction

statements can use that symbol as an operand. The
assembler assigns value and length attributes (charac-

teristics} to every sumbol used in a prograrn. The value

attribute of a symbol which is used as a name entry

ina machine-instruction statement is the address of

the leftraost byte of storage occupied by the assembled

instmiction. The length attribute of the symbal is

the mumber of bytes of storage accupied by the

assembled instruction. Refer to Lengths—Explicit and

Iniplied in this section for a discussion of the length

attributes of other types of symbols, terms, and

expressions.

Machine Instruction Mnemonic Codes

The mnemonic operation codes are designed to be

easily-remembered codes that remind the programmer

of the functions performed by the instructions. The

mnemonic codes are translated into machine-language

operation codes by the assembler. IBM System/3 Basic

Asserabler provides mnemonic and extended mnemonic

operation codes. The complete set of mnemonic codes

is listed in Appendix A, Machine Instructions.

Extended Mnemonic Codes

Extended mnemonic codes are provided for the

convenience of the programmer. They are unlike other

ranemonic codes in that part of the information

usually provided in the operand is in the extended

minemonic code itself. Extended mnemonic codes allow

the following:

1. Conditional branches (BC) and jumps (JC) can

be specified mnemonically, requiring only a

branch address as an operand.

2. Half-byte moves (MVX) can be specified

mnemonically, requiring only the use of addresses

The supervisor call form of the command CPU

(CCP) machine operation can be specified

mnemonically (Model 15 only).

ta

>

Extended mnemonic codes are not part of the set of

machine instructions, but are translated by the assembler
into the corresponding operation code and condition

combinations.

14

See Appendix A. Machine Instructions for a list of
extended mnemonic codes.

Machine Instruction Operands

This section describes (1) operand fields and subfields,
(2) explicit and implied lengths, and (3) operand groups

and formats. The operands of machine instruction

Statements provide the information about addresses,

lengths, and immediate data that is required by the

assembler to generate executable machine instructions.

General rules for coding of operands are covered in

Assentbier Coding Conventions.

Qoerand Fields and Subtields

The left operand of a pair is called operand 1, or

operand field 1; the right operand is called operand 2,

or operand field 2. An operand field rnay include one

or two subfields Gength subfield, register subficid}

as in the following example of base-register displacement

addressing.

Example: 40,2)

The above operand field contains a displacement entry,

40, and a register subfield entry, 2, representing index

register 2, The following rules apply to the coding of

subfields:

i. Parentheses must enclose a subfield or subfields.

Blanks cannot be used within subfield parentheses. bh

3. Acomma must separate two subfields within

parentheses (LR).

4, {fthe first subfield of a pair is omitted, the

comma that separates it from the second subfield

must be retained GR).

5, Uf the second subfield of a pair is omitted, the

commia separating the pair must also be omitted

(L).

6. If both subfields are omitted, the separating

comma and the parentheses must also be omitted,

Operand subfields can contain immediate data, length,

of register information. Only absolute expressions

and self-defining terms may be used as subfield entries.

Lengths — Explicit and implied

A length subfield in an operand may be either explicit

or implied. To imply a length, the programmer omits

the length subfield from an operand. When a length

specification is not included in an operand requiring

a length, the assembler includes the implied length of

the first operand, such as the length attribute of a name

entry (see Name Kniry Attributes in this section}.

The length attributes of various terms and expressions

are shown in Figure 7,

An explicit length is written by the prograramer in the

operand as an absolute expression. The explicit length

overrides any implied length.

Term or Expression Length Attribute

Length, in bytes, of the

instruction.

1. Name entry symbol

of a machine-instruction

Length, in bytes, of the

instruction in which it

agopears (except in the EQU

assembler statement, where the

2. Location-counter
4 reference (*}

Length attribute of the

leftmost term In the

OX Pression.

ie
) wi

4 ne
 4 6 eS

on
 o =

4. Self-Defining Term Length attribute is one.

5, START name entry Length attribute is one,

NOTE: See aso Subfield 2-- Length under Data Defining

fnstructions,
length attribute assigned is one}.

Figure 7. Length Attributes of Terms and Expressions

Operand Groups

Machine-instruction statement operands are divided

into six groups. The characteristics of each group are

as follows:

Group 1. Two-operand format in which a length is

explicit or implied in both operands.

Group 2: Two-operand format in which a length can

be explicit in either operand, but notin both. Hf

length is not explicit in either operand, the assembler

uses the implied length of operand 1.

Group 3: Two-operand format in which a length

cannot be specified.

Group 4: One-operand format in which only immediate

data may be used.

Group 5: Two-operand format in which both operands

are immediate data.

Group 6. Two-operand format in which operand 1 is

used by the assembler to calculate a positive displacement

and operand 2 is iramediate data.

Basic Assembler Language i & wf

Figure 8 shows the allowable operand formats for each

operand group. The instructions using each operand
group are also listed. Refer to Appendix A. Machine

Jnstructions for the related machine-instruction formats.

For the extended mnemonics of the MVX instruction,

the I-field information is inherent in the mnemonic and

the [-field is omitted from the operand. For the extended

mnemonics of the BC and JC instructions, the second

operand (i-field) is not used since the information is

inherent in the mnemonic (see Extended Mnemonic

Codes in this section}.

Data movement is from operand Z to operand | ina

two-address format instruction (group | and group 2).

This operand order is equivalent to that of machine

instructions.

GROUP INSTRUCTIONS ALLOWABLE OPERAND FORMAT

1 ZAZ,AZSZ AA AILEA DERLA DIL, RELA

A ACL) ACL ALE) DERE ACL) OL, FAL}
A,O08)} A(L),OLFR) D1R) DUR) DIL, ALOR)

A,DUL,B} AL} DIL, A} DLR DIL,R} DOLL, ADIL, R}

2 MVC,CLOALC AA AGIA OLRELA DUL,BLA

SLO ATC,ED A ALL) ALL), BOR} DLR) AL) O(L,B},.OGR}
A,DLR) OCREDGR}
AOL, A} DUR) OLR

MYX A, AGB AUDA DRA OU, RA

A,DULR} AUB, OCR) BLR}DU,R} DUR OCR)

3 MVLCLESBN 4} OGRE!

SBE TBN,TBF
TIG,SNS,LIO

BC

LST.A,LA AR DLR
SCP* LCP*

4 APL,SVC* i

5 HPL SIO,CCP* 1]

6 JC A

*Model 15 arty.

The following codes are used to describe the possible operand formats:

CODE

~
S
E

MEANI NG

Address

Displacement

Length

Register

trmediate Date (bit masks,

condition bit rnasks, or

contre! bits to be used in

the instruction)

ACCEPTABLE FORM

Relocatable expression, absolute expression, or self-defining value.

Relocatable expression, absolute expression, or self-defining value.

Absolute expression or self-defining value.

Absolute expression or self-defining value.

Absolute expression or self-defining value.

Figure 8. Operand Format by Group

i6

In groups 3, 5, and 6, the Q-code operand is always

on the right. See Appendix A. Machine Instructions

for an explanation of Q codes.

ASSEMBLER INSTRUCTION STATEMENTS

When writing a program the programmer uses two types

of statements: executable instructions and instruction

statements to the assembler. The executable instructions

are the machine instruction statements. These are

symbolic representations of the programmer’s logic,

such as branch, move, or compare, which are translated

into machine language by the assembler.

Assembler instruction statements, on the other hand, do

not generate executable machine codes. They are

instructions that control specific assembler functions.

These instructions are used to set up areas in storage, to

define data, to equate symbols, and to control program

listings, location counter, statement formats, and types

of addressing. In the remainder of this section, the

individual assembler instruction statements are

discussed.

Symbol Definition Instruction

EQU—Equate Symbol

The EQU instruction is used to equate symbols with

register numbers, immediate data, or other arbitrary

values. The EQU instruction defines a symbol by

assigning to it the length and value of the expression

in the operand field of the EQU instruction. The EQU

instruction has the following format:

i
NAME OPERATION » OPERAND

symbol EQU i an expression
| e

e

Ce
e

The expression in the operand field can be either

absolute or relocatable. Any symbol appearing in

the operand field must have been previously defined.

Figure 9 illustrates how this instruction can be used

to equate a symbol with the contents of the operand.

In Figure 9, MAX has the value of TEST + X°3FC

(X‘102+X‘3FC’ or X‘4FE’) any time it is used in the

program. The symbol STEST has the value of the first

(left most) byte of the data area reserved by the DC

instruction. Since the symbol on the DC (TEST) has

the value of the rightmost byte, this type of EQU is

useful for addressing the leftmost byte. The symbol

REG? in any statement is the same as using the number

2.

PROGRAM

PROGRAMMER

 Name ! Operation — | Operand
12.3 4 5 6[7]8 9 10 11 12) 1914 15 16 47 18 19 20 21 22 23 24 2S 26 27 28 29 30 31 32 33 MBH

ee

Figure 9. EQU Assembler Instruction

Basic Assembler Language 17

Data Defining instructions

Two data defining instruction statements are available:

Define Constant (DC), and Define Storage (DS). These

instructions are used to enter data constants and to

reserve areas in storage. Each instruction can have a

name field entry (symbol) to which other instructions

can refer.

OC Define Constant

The DC instruction is used to initiahze a storage

location with a desired value. The IBM Svstera/3

Basic Assembler Language allows six types of constants:

storage address, binary, character, decimal, hexadecimal,

and integer. The format of the DC instruction is as

follows:

NAME , OPERATION OPER AND

: } i i

symbol | DC ' Duplication i Type | Length | Constant

or | | Factor (2) | (3), Al
blank | i {4} |

Notice that the operand of the DC statement consists

of four subfields. The first three describe the constant

and the fourth provides the constant. The only blanks

permitted within an operand field are blanks embedded

in a character constant. The symbol that identifies the

DC statement receives the value of the address of the

rightmost byte of the area defined by the statement.

Subfield 1--Duplication Factor: This subfield enables the

programmer to repeat the constant in storage. The constant

will be generated the number of times indicated by the

entry in the first subfield. This entry can be any unsigned,

nonzero, decimal value, | through 65435. If this subfield

is omitted, a duplication factor of 1 is assurned. This

duplication factor is apphed after the constant is fully

assembied. H duplication is specified for an address cons-

tant containing a positive location counter reference, the

yalue of the location counter used in each duplication is
increased by the length of the constant.

ive we

Subfield 2-Type: This subfield defines the form of the

constant being entered, From the type specification, the

assembler determines how it is to interpret the constant

and translate it into the appropriate machine format. The

type entry is specified by one of the letter codes A, B,C,
BD, X, or I Gee Subsield 4 — Constant for related meanings).

The type entry is required.

Subfield 3—Length: The third subfield describes the

number of bytes required by the constant. The entry for

this subfield mav be written two ways:

i, Ln, where n is an unsigned, nonzero, decimal value.

The value of n is as follows:

~~
 BH 1-246 for [, B,C, X constants

= 1-31 for the D constant a

HF n -3 for an A constant

NO
 L (absolute expression}, where an absolute

expression is enclosed in parentheses. The value

limits for the absolute expression are the same as

those for n in the previous paragraph. A location

counter reference is not allowed in this expression.

The total area allocated for this constant is the result of:

Duplication Factor * Length=Total Area. The length

entry Is required.

Subfield 4—Constant: This subfield supplies the constant

that was described in subfields 1 through 3. In general, the

address constant (type A}is enclosed in parentheses, while

the data constants (types B, C, D, £, and X)} are enclosed in

apostrophes. 4n entry in the constant subfield of a DC

statement is always required.

Address Constant {A}: This constant is used to load an

address into a storage area.

Example: SYMBOL DC AL? (BETA)

In this example, the address represented by the symbol

BETA will be stored in the 2-byte field addressed by

SYMBOL. The full 24-bit final expression result 1s trun-

cated on the left to fit the length of the constant. The

maximum length of an address constant is 3.

Binary Constant (B). This constant is used to create bit

patterns and masks.

Example: SYMBOL DC IBLIIOOLLD

The byte of storage addressed by SYMBOL will contain

OOCLOOLL. Truncation or padding with binary zeros

occurs on the left if the constant is not the length speci-

fied. This constant is enclosed in apostrophes. Each digit

within the apostrophes represents a single bit in storage,

and each eight bits specified will occupy one byte of

Storage.

Character Constant (C): This constant can be used to

place a string of characters in storage.

Example: SYMBOL DC

The byte of storage addressed by SYMBOL will contain a

blank, and the byte of storage addressed by SYMBOL-16

will contain the character P.

Nore: Two blanks have been padded on the right of the

character string.

if the constant is not the specified length, truncation or

padding with blanks will occur on the right. Each

character Gacludin z blanks} within the apostrophes will

occupy a byte of storage. if an apostrophe occurs within

the string of characters, it must be represented by a

double apostrophe.

Decimal Constant (D): This constant can be used for

arithmetic purposes.

Example: SYMBOL DC DLS'125.66'

This constant will appear in zoned-decimal form in a 5-byte

storage field, addressed by SYMBOL. The decimal point

is used only as a convenience for the programmer, and

is not asserabled into the constant. The value of the

constant is calculated without the decimal point. Trunca-

tion oF padding with decimal zeros occurs at the left of the

field, if necessary. Signed decimal constants are permitted,

making it possible to have a decimal constant with a nega-

tive value. Each decimal digit will occupy one byte of

storage.

Hexadecirnal Constant {

associate a hexadecimal

area in storage.

‘X): This constant is used to

value with a symbol in a defined

Exarnples SYMBOL DC LXL6*8ACI&

LCLI7‘PLANT 5 PAYROLL’

The 6 byte field addressed by SYMBOL will contain the

following 12 hexadecimal digits: GODGQOO8ACI4

Truncation or padding with hexadecimal zeros occurs at

the left. Each two digits between apostrophes will occupy

one byte of storage.

Integer Constant (I): This constant is used for fixed-point

binary arithmetic.

Example: SYMBOL DC LUL2*-7°

A negative number may be used for an I constant. The

negative constant is placed in storage in its two's-comple-

ment form. This example would appear in storage in bit

form as LLLLLLLLILL110G1. There is always a positive

equivalent to a negative constant; in the above example, it

is hexadecimal FFF9 or decimal 65,529. The range of I

constants must be within —2° 241 to 2°*—1. Hf the number

is positive, it is padded on the left with O-bits. If the

number is negative, it is padded on the left with 1-bits.

DS-Defines Storage

The DS instruction is much like the DC instruction. It

assigns a symbol to an area of storage. Unlike the DC

instruction, the DS instruction only reserves the area of

storage, it does not insert data. A constant subfield cannot

be used with a DS statement. The following illustration

shows the DS format.

i 7
NAME , OPERATION ; OPERAND

j :
q $ z

symbol | DS , duplication type ; length

or | j factor |

blank |
A duplication factor of zero can be used in a DS statement

if the programmer wishes only to assign a length to its

corresponding symbol. The symbol will be given the value

of the current location counter minus one, The type and

length subfields rmust follow the same rules as tor the BC

staternent.

The duplication factor can be used by the programmer to

specify a reserved area larger than 256 bytes.

Example: SYMBOL DS BCL LOG

This instruction would reserve a 300-byte area, which would ¥

be referenced on the right by the name entry SYMBOL.

Basic Assembler Language 19

Listing Control instructions

The listing control instructions aid the programmer in

documenting his assembler listing. These instructions are

TITLE, EFECT, SPACE, and PRINT.

TITL& — identify Assenbly Output

The TITLE instruction enables the programmer to identify

assernbled object cards and assembler listings.

NAME OPERATION OPE RAND

a sequence of characters

enclosed in apostrophes

label or blank | TITLE

The narne field entry can consist of a maximum of six

characters. The first character may be numeric. The

contents of the name field in the first TITLE card is punch-

ed into the sequence field of all chject cards produced by

the assembler. This name field entry also appears in all
listing header fields.

The name on the TITLE statement is not the object pro-

gram name, but may be the same as the object program

name. See START - Start Assembly. The name field

entry is used only for identification and may not be

referenced by the program.

The operand field contains a sequence of characters

enclosed in apostrophes, Any embedded apostrophes must

be represented by ¢ double apostrophe. The contents of

the name and operand ficids are printed at the top of each

page of the assembler listing.

A program can contain more than one TITLE statement.

When anew TITLE statement is read, the listing is advanced

to a new page before the new heading is printed. The name

fields of all subsequent TITLE statements are ignored by

the assembler. The TITLE instruction is not listed on the

assembler listing, but it does increase the statement counter

by one. Figure 10 shows an example of the TITLE

Statement.

b3

po)

in

13 Nene & 6 8 pee 72) 13h 14 $8 16 47 18 99 DO oat wes 26 27 2 OM Bw 32 3 Be Bt

START itary
PAY TUTE Hf eircino glee iis iPa4lyiRienie
DATA IA IDC ACL |
Savie | i pis Howl ggs
TEX EGU i KA

Figure 10. Use of the TITLE Statement

EJECT — Start New Page

The ESECT instruction causes printing to begin at the top

of a new page, under the page heading. Through the use

of the EJECT statement, the programmer can separate

routines in the assempbier listing. The format of the EJECT

assernbler instructions is as follows:

NAME OPERATION OPERAND

T

{

:

{
}

| blank EJECT Not Used

in Figure 11, the EVECT instruction is used to separate

executable instructions from the data-defining assembler

statements. The ETECT instruction is not listed on the

assembler listing, but it does increase the statement counter

by one. The coding example in Figure 11 shows the position

of EJECT. Note that the corresponding statement number

(4) has been omitted in the listing. Statement number 5

appears at the top of the next page, under the heading.

SPACE ~— Space Listing An unsigned decimal value is used to specify the number

of blank lines that are to be inserted. If the operand con-

This instruction is used to insert one or more blank lines tains a blank, a zero, or a 1, one blank Hne will be inserted.

between staternents in the assembler listing: If the value of the operand exceeds the number of lines

remaining on the current page, the instruction has the

same effect on the listing as an EJECT statement. The

J 5
ed 2 . Fae @ . .2 .

NAME | OPERATION | OPERAND SPACE instruction, like the EFECT instruction, is not

i listed on the assembler listing, but does increase the state-

blank 1 SPACE i decimal value or a blank ment counter by one.

} i

IBM IBM System/3 Basic Assembler Coding Form

crccram PROGRAM 1
SUNCHENG GRAPMEC

erocrammen RYH
H DATE INSTRUCTIONS PUNCH

STATEMENT

Marne Operation Operand
Remarks

4 2 2 4 5 Sb 7Ee o 10 14 Top 1s IA 15 16 17 48 16 20 23 32 23-24 2 26 27 2 2g KM 31 32 93 4 1 6 ST ng 39 40 at 47 ag 4445 46 47 48 49 5D 51 62 55 34 5G Se 67 S869 60 Gi 42 65 64 45 66 67 62 6970 71 92 73 74

' ry f ; i

Pkoes | sia ix gee |
MASK A | De BLL mags tig
COUNTS De Belg gi!

EJECT
R EAD i i CO wi siwvjyatea taba

!

STORE MY clalolelolate

° i

END READ
ij

i

Listing Page 1

Statement Name Operation Operand Remark

© nuriber

4 PROG START x’100°

OQ 2 MASK 4 DC {BL VOTO

3 COUNTS oc SIL2'O’

— me ed

ie een ae
_ a conten net

Ne

°
Listing Page 2

C Statement Name Operation Operand Remark

. number

5 READ LG peaereaes

6 STORE MVC cere nes

©

O .
END READ ao

ee, aoa a ie al

CY Pa rs ™ Nal al
ne

eral

Figure 11. ERECT Instraction

Basic Assembler Language 21

PRINT—Print Optional Data

The programmer can control the printing of an assembly

listing by using the PRINT instruction. A program can have

any number of PRINT instructions. Each PRINT

instruction controls the listing until the next PRINT

instruction is encountered.

t ’
NAME {| OPERATION = OPERAND

i H
: i

blank PRINT operand

The operand field can include entries from the following

groups (one or two operands for the Model 10, one, two,

or three operands for the Model 12 and the Model 15):

}. ON-—~A listing is printed.

OFP -—-No listing is printed.

bo

DATA—Constants are printed out in full on the

assenibler listing.

NODATA- Only the leftmost 8 bytes of the con-

stants are printed on the assembler listing.

3. (Model 12 and Model 15 only}

GEN--Print statements generated by the macro

processor if not overridden by other listing

control statements.

NOGEN—Suppress printing of statements gen-

erated by the macro processor.
Operand ertries must be separated by a comma.

The ON, GEN and DATA conditions are assumed by the

assembler unless otherwise specified by a PRINT instruc-

tion. [fan operand is omitted, it is assumed to be un-

changed and continues according to its last specification.

Both of the examples in Figure 12 would cause a listing

to be printed with only the leftmost 8 bytes of the con-

Stants appearing in the e listing.

Tai

PROGRAM

PROGH SMMER

+3 Marne 5 8b? gee iH ibid is 16 17 ta 19 ME 24 eras 25 8 77? 78 74 SO A a2 38 ow:

PRINT lM, MODATA
MAY, De Sic 413 AIBC’

is

1M Or
PROGRAM

PROG EK AMME R

12 "9 8 8h? mers Uy sa) 14 se 18 ty 18 18 3G ty 2 BY os 28 27 78 79 SK 31 32 33 ws HG

PRINT Wo DATA
MAX Del | | Beis Ape)?

:

Figure 12. The PRINT Statement

93 hp be

Program Control instructions

iCTL—Input Format Contra!

The ICTL statement permits the programmer to change

the normal bounds of the source program staternents.

When inchided, the ICTL instruction must precede ail

other source statements. This instruction can be used

only once during a program. An jnvalid or mispositiones

{CTL staternent causes termination of the assembly.

i i
NAME {| OPERATION (OPERAND

3 ra

blank ; iCTL two decimals in the form of BLE

The term B specifies the beginning column and the term

E specifies the ending columm of the source statement.
The beginning column rnust be within columns 1-48. The

ending column must be within columns 49-95. The

coluran after the ending column must be blank.

When an ICTL staternent is not inchided in a source

program, the beginning column is assumed to be column

i, and column 87 is assumed to be the ending column.

Figure 13 is an example of the ICTL instruction. In

Figure 13, the name field would start in column 14

and the remark field would end in column 80.

18M
rasta PROGRAM X3
PROGRAMMER AE By

St

Narne Operatign oO

4 92 4 4 6 BEFEG G 10 14 F213} 4 45 76 17 38 18 20 21 22 3 26 26 37 2B 2g Ri 3i ge Ki 34 BH 3 37

evi: | fa dt 9p |
PROGX3| START X ‘tg '
MAY 2 EQU A
SYMBot D2 LCbe'S ym BolL

EMD
Figure 13. The ICTE Statement

ISEQ—Input Sequence Checking

The [SEQ instruction is used to check the sequence of

source cards. Sequence checking begins with the ‘ast

card after the ISEQ instruction. The first sequence entry

is taken from the sequence identification field of the

ISEG statement. The sequence entry on the next card is

then compared to the previous sequence value. The ISEQ

assembler statement has the following effect:

1. The sequence entries on source-statement cards are

checked for ascending order

2. Statements that are out of order and statements

without sequence entries are flagged in the assembler

listing.

ad
 _ The total number of flagged statements is noted at

the end of the assembler listing.

For example, with the sequence values 13,27, 31, 6,8,

45.47, and 48, the card numbered 6 and the card with-

out a sequence value would be out of sequence. The

assembly does not stop due to a card being out of

sequence order. In this example, the card numbered 6

and the card without a sequence entry would be flagged

in the error field of the listing. If sequence checking is

requested, there is a statement at the end of the listing

showing that two cards were out of sequence.

The assembler will not check the sequence unless requested

to do se by use of the [SEQ statement.

The following is the ISEQ instruction format:

NAME OPERATION OPERLAND

two decimal values in the

form L, Ror blank

blank ISEG

The operand entries, L or R, specify the leftmost (L) and

rightmost (R} columns of the field to be sequence checked.

The value of L must be within the range of 73 through 96

{inclusive}. The length of the sequence field may be from

Lto &. Uf the programmer wants to discontinue sequencing,

an ISEQ instruction card with a blank operand is inserted,

The sequence field nvust be separated from the last column

of the source statement by at least one blank position.

The fast column of the source statement is column 87

unless otherwise specified by the ICTL assembler state-

ment. The sequence ficid must not appear before the last

column +L of the source statement. [f the sequence field

is to start before column 89, the [CTL statement must be

used to redefine the beginning and end of the source state-

ment. For example

Source staternent is defined within

cobumins 1-71

TL 5,71

ISEQ 73,80 Sequence field is in columns 73-80

START—Start Assembly.

The START instruction may be used to initialize the

location counter to a desired value at the b renin of a

program. The forrnat of the START instruction i

NAME

START a self-defining value or blank syrnbo!

The assembler uses the single self-defining term in the

operand as the initial location-counter value. Por examp sie,

either of the START instructions in Figure 14 could be

used to indicate an initial assembly iocation of 2040.

If the operand of a START instruction is blank, the

location counter is initialized with a value of zero, If

neither an ORG nor a START instruction is used to initial

ize the location counter, the initial value is also zero.

A START instruction must not be preceded by any state-

ment that affects or is dependent upon the setting of the

location counter.

The name entry in the name field of a START instruction

provides the program with an identifier name called the

module name. The module name ray be the sarne as the

first TITLE statement.

Note: Certain naming restrictions apply when assigning

names for your program. For more information on naming

restrictions, see [BA System/3 Model 10 Disk System

Control Programming Reference Manual, GC21-7312,

[BM Svstem/3 Model iz System Control Programming

Reference Manual, GC21\-5130, IBM System/3 Model 15

System Contral Procranutine Reference Manual,

GC21-5077 (Program Number 5704-AS1}, or /BM

Svstem/3 Model 18 System Control Programming

Concepts and Reference Manual, GC21-5162 (Program

Number 5704-AS2)}.

This program name may be used for program linkage. H

the START card is not included in the programa, or if the

name field is blank, a default program name is assigned.

See the MODULE NAME MISSUNG diagnostic in

“Appendix ¢ C. System/? Assembler ~ Source Language

Error Codes and Diagnostics.

TBM

PROGRAM

PROGRAMMER

3

Name One: ater Operand
12 3 4 5 Gl 7,8 9 10 tabishie 46 16 47 18 19 2D 2h 2 22 U6 G28 77 28 73 XO si gr KG eB eS

i is
S¥MBoie START Aaa LICCAT OW, 2 gleg

 aiShiLF
Le ee

SY BloL TX FER LOCATION 2ged fA

og

=>

ee
)

Figure 14. Using START to Initialize the Location Counter

Be
d

ha
d Basic Assembler Language

O8G—Set Location Counter

The ORG statement sets the location-counter value.

NAME | QPERATION , OPERAND

ORG blank operand or an exprassion A

optionally followed by two absolute

expressions in the form A, B, ©

blank

The location counter is set to the smallest value greater

than or equal to A which is C more than a multiple of B.

in the following example, A can be either a relocatable or

absolute expression; B and C must be absolute expressions.

The default values for B and C are 1 and 0, respectively. Tf

the second operand (8) is omitted, the third operand (C}

must also be omitted.

Current New

Location Location

Counter A B c Counter

275 * 106 50 350

340 # Loe 50 350

350 * 100 50 356

$64 * 256 0 $42

750 POO ee eee 1000

All symbols used in the expression A must have been

previously defined, The value specified by the ORG state-

ment must be greater than or equal to the starting location-

counter value.

If previous ORG statements have reduced the location-

counter value for the purpose of redefining the current

program, an ORG instruction with a blank operand is used

to set the location counter to the previous maximum

assigned address plus one (sce Figure 1S).

* Frevious

High Address

Figure 15. Using ORG to Control the Location Counter

a4

Location Be warty & Oper stian Ones ai

Counter Address 33 4 6 Bhr7ke ot iy Te tofsa yy te 67 18 19D zt ze 23 a4

0064 PROG4 | START 1S
0064 g069 SYMBOL ibe Lek |
OO6A _-|*0828 FPL LN US TCL Lae
OOCE ORG Fikilid ine 19/4
OOCE O1F3 ATA LC Lemie. 2 ale!
0325 ORS

EAD

USING — Use Renister for Base-Displacement Addressing

The USING staternent specifies the register to be used for

base-displacernent addressing and also specifies the base

address that the assembier will assurne to be in that register

at abject time. The USING staternent does not load the

base address into the register specified. This must be done

by the programmer before the re gister can be used for

base-repister displacement addressing. See Addressing in

this section.

i ¥

NAME | OPERATION | OPERAND
i a

blank | USING Poy

tn the preceding format, term V represents an expression.

Term R represents an absohite expression with a value of

tor2. Terr R specifies the index register assumed to

contain the base address represented by the term V. The

programmer has the option of changing the base register

or base ad dre 88 af any time by the insertion of another

USING statement. Two USING statements enable the

programmer Lo use > the two index registers as base registers

to two different portions of main storage.

In Figure 16, register 2 is loaded with the address of

ADRES}. which will be used as the base address in instruc-

tions following the USING statement.

IBM

PROGRAM

PROGRAMMER

Digi Cperation
1202.45 817,38 9 16 11 14 thé 4 3 3) 32 35 24 Ba

PROeL | START

LA ADRES! 2
USING IADR Es 1) 2

Figure 16. Specifving a Base Register With the USING Statements

DROP — Brop Base Register

The DROP instruction specifies a base register that is no

longer to be used as a base register. The programmer can

reinitiate the base register with another USING

instruction.

NAME OPERATION OPERAND

blank DROP specified register

The operand must contain an absolute expression of

either 1 or 2. This absolute expression represents the

register that is no longer to be used as a base register.

The contents of the register are unaffected by the DROP

instruction. Figure 17 shows an example of the DROP

instruction. Another USING statement is used to

specify register | as the new base register.

Ta

Name Operation Greraras .
4623 4 8 6£ 748 9 16 15 Whrabi4 15 16 47 16 19 2D 24 29 23 24 O28 77 OR 29 M33 39 33 34 36

Prot | |Sitalaly |

L ADRES 2
USING IA DRIES i

Dar iz
Lia ADRES 2 L
CS INIG ADR ES|2)

Figure 17. Example of the DROP Statement

ENTRY -- Jdentify Entry Point to Program

This instruction identifies symbols, defined in the current

program, which can be used as entry points from other

programs.

NAME OPERATION OPERAND

blank ENTRY any relocatable

symbol found in the

name field of the

current program M
n

a

 S
e
e

C
e

O
C

e
e
n
o

The symbol used in the ENTRY operand can aiso be refer-

enced by any other program provided that program uses

the same symbol in the operand of an EXTRN statement.

See the example given in the discussion of EXTRN for

additional information on the use of ENTRY.

EXTAN — Identify External Symbais

This instruction identifies symbols, used in the current

program, which are defined in another program. Each

symbol in the operand of an EXTERN statement must be

identified by an ENTRY statement or be the module name

in some other program.

NAME OPERATION OPERAND

. one relocatable symboal
EXTAWN

field of the current pra-

gram, cotionally fallowed

by an absolute expression

|

blank |

|
|

i in perentheses

H

{
i

| not found in the narne

i
x

}
j

The external symbol cannot be used in a Name field in the

same program that describes that symbol as an EXTERN.

An EXTRN subtype can be specified for the EXTRN

symbol by following the syrabol with an absolute

expression enclosed in parentheses. The value of the

absolute expression cannot be less than zero nor more

than 255. Any symbol in the expression must have been

previously defined. For an explanation of the subtype

values and their meanings, see BM Svstem/3 Overlay

Linkage Editor Reference Manual, GC21-7561.

Basic Assembler Language 25

Figure 18 shows how ENTRY and EXTRN can be used to

make two or more programs act a5 one main program through

sharing data and control. The main program defines sym-

boils A, B, and C and identifies thern as entry points. These

game symbols are identified as EXTRNs (external symbols)

in the subroutine. This allows the subroutine to use these

TBR

i STATEMENT

: _ a & BE? g pagnen Weis 1.16 77 12 59 3G 23 aes 2627-28 799 3132 BUBKBYN ens

RAT IN START @
ENTRY IA
ENTRY) 6
ENTRY)
EXTRA] SUBRGL

ENTRY: | EMU He
»
5

fe SHB ROL
S
5
4

iS BIC DLA aS!
ne DL4! iS 6 7a!

C. BS CLS)

5
ENO | ENTRY

Main Routine

IBM

2 Nene él poate Whiahid 1676 17 18 19 20 71 Pes 26 27 28:96 3 21 33 22 34 3 36 97 2a ga

Suse | | israler ¢
ENTRY! SUSRGL
EXMTIRINE IA
EXTIRIN: |B
EXTRA

SUBRGL ST RE TURING 3:8

MNC EDLMCSD. MASIK
£AE DCAD INCA
Ag i 4) BCA)
=D EDL rCS)) © |
MVC icCS)) emul

RETURN |B :
MASK: | | IDC XL5/ 220204620"
ELT DS DLS

Di DS DLS
END

Subroutine

Figure 18. Example of ENTRY and EXTERN Statements

symbols just as it would uf the symbols had been defined

in the subroutine. SUBRG1, on the other hand, is defined

and identified as an entry point by the subroutine and as an

EXTERN, external symbol, by the main routine. These four

symbols - A, B,C, and SUBROIL — can now be used inter-

changeably by both the main routine and the subroutine.

The main routine has control first. Tt executes instructions

and then branches to SUBROI which is defined as an entry

point in the subroutine. Instructions in the subroutine are

executed. Notice that the subroutine uses symbols A, B, and

C which were defined in the main routine. Control is then

passed back to the main routine.

Note: The actual resolution of symbols between programs

is not performed by the assembler.

END-End Assembly

The END instruction terminates assembly of the program.

The operand of this instruction can contain an expression

(usually a name field entry} which specifies the address

to which control is to be transferred after the program is

loaded. The END instruction must be the last statement

in the program. The relocatable expression in the operand

ouist not contain external symbols. The start-of-contral

address must be specified for programs loaded with the

absolute loader.

{ i

NAME , OPERATION | OPERAND
i

I i

blank | END ! arelocatable expression or a blank
i i

Figure 19, shows an END statement. In this example, the

program receives control at the address corresponding to

BEGIN when it is executed.

IBM
eaocram FA IO 7% oe AAA OAL ES
procaammen WK

Name Operation Operard
Seance beg OE LB 8 BP +t Wp igp 14 16 16 17 28 19 20 21 22 73 24 78 we 27 28 28 31 we I Be

PROGL | START Lt

EG fit | ave OUT ABC CL)

EAD EEGs | 7 y : 7

Pot i ; PoP oR ob g ho

Figure 19. Designating an Entry Point With the END Statement

ASSEMBLER CONTROL STATEMENTS

Two control statements are used: The HEADERS state-

ment and the OPTIONS statement. Up to 45 of these

control statements may be used, in any order. Each state-

ment is Hmited to six operands. All control statements

must appear before any assembler source statements.

HEADERS Statement

The HEADERS control statement specifies control infor-

mation other than output control information to the

assembler. The programmer may specify a category level

for the object module through the CATG operand, or the

length of the control section for any subtype 4 or 5

EXTRNs in the assembler through the COML4 and COMLS

operands. For an explanation of category levels and

subtype 4 and 5 EXTRNs, see JBM System/? Overlay

Linkage Editor Reference Manual, GC21-7561.

The format of the HEADERS statement with the CATG

operand is:

| — eannnn

SL
At least Desirnal category

one blank level

\ ones

or greater

nnn

nannn is a one to five character decimal string whose value

must be fess than 00256. Hf more than one CATG operand

appears in the assembler contro! statements, the value of

the last valid operand is used for the module category level.

The module category level is placed in the module ESL

record,

The format of the HEADERS statement with the COML4

and COMLS operands is:

| eH FADER SACOML4-nnoann, COMLS-nnannn |

, \ NZ
Column 2 At least Dacimal control

or greater one blank section length

Part 2. Prograrmmer’s Guide

nnunn isa one to five character decimal string whose value

must be fess than 65536. If more than one COML4 or

COMLS operand is present in the assembler control state-

ments, the length in the last valid operand is used for the

appropriate subtype control section length. The lengths

specified are placed in the ESL records for the subtype 4

or 5 EXTENs.

OPTIONS Statement

An OPTIONS statement is a control statement for

assembler control options. All OPTIONS statements must

precede the source deck. The user may specify the follow-

ing assernbler options on OPTIONS staternents: DECK,

NODECK, LIST, NOLIST, KREF, NOXREF, REL,

NOREL, OBJ, GBT), OBHP), NOGBI. ABUP-nnnnn

and NOXBUEF are also available to users having program

5704-AS2. They may appear on one statement in any

order, but must be separated by commas, If the pro-

grammer prefers, separate statements may be used for

each option. The OPTIONS keyword must start in

column 2 or higher (the preceding column must be blank),

and there must be one or more blanks between the key-

word and the selected options. Blanks are not allowed

between the selected options.

The following example shows options appearing on one

statement:

POPTIONSBDECK, LIST, NOXREF, REL.

|
Caturnn 2

At least one blank between

Tata ocd ; or greater. keyword and options.

More than one OPTIONS staternent may be used. In the

following example, three statements are used:

ZOPTIONSBEDECK

POPTIONSBLIST

BOPTIONSBENO X REF

Programmer's Guide 9 27

The following list provides a ief description of all the

options available:

Option

DECK.

NODECK

LIST

NOLIST

XREF

REL

NOREL

Explanation

The object program is punche d. When an

ay program ig pune hed, it is preceded

a | 7 “CE ND OCL card, These cards a are

provided for placing the object program in

the R Hbrary with the library rnaintenance

utility program (SMAINT).

The object program is not punched,

The following sections of the assembler

listing are printed (see Assembler Listing

in this section for a description of the

listings):

® Options information

@® External symbol list

@ Source and object program listing

@ Diagnostic listing

@ Error summary statements

Only the following listings are printed:

@ Options inforrnation

@ Any statements in error and the

associated diagnostics

@ Error surnmary statements

The NOLEST option overrides all

assernbler PRINT staternents.

A. cross-reference listing is generated.

A cross-reference listing is not generated.

ris produced,

An absolute object program is produced.

Note: Absolute object programs can only
¥

be used as stand-slone programs; that is,

programs which are not dependent on any

other disk management system program.

OBJ or

OBIT)

OBI?)

NOOBS

On the Model 10 an absolute loader wil pre-

cede the absolute deck if DECK is specified

and if MPCU? is specified on the // PUNC B

statement. On the Model 12 and Model }

an absolute loader will precede the absolute

deck if DECK is specified and if the

SYSPCH device is MFCU, 1442, or MFCM

(Model 15 only). The loader punched will

program load only on the device type on

which it was punched. A blank card is in-

serted between the absolute loader and the

object program. This blank card and the

OCL cards included with the object program

do not affect the operation of the absolute

loader and rnay be discarded.

Yo prevent cataloging of the absolute object

program when NOREL is specified, you

should specify NOOB,

The object program is placed in the R

library with a retain entry of temporary.

The object program is placed in the R library

with a retain entry of permanent.

The object program is not placed in the R

library. (See Placing Assembler Subroutines

in R {Routine} Library in this section}

ff no OPTIONS statement is used, the assembly is processed

as though DECK, LIST, REL, XREF, and OBJ had been

specified. NOXBUP is also assurned with program

5704-AS2.

XBUF-nonnn Specifies the size of the disk external buf-

NOXBUF

fers the user has requested. Frorn one to

five numeric digits may be used to specify

the size of the disk external buifers (pro-

gram 5704-AS? only}. External buffers

should not be specified duc to performance

considerations if the program size including

physical disk buffers does not exceed 36K.

However, if external buffers are specified,

they should equal the size of the physical

disk buffers that normally would be set

aside within the program.

Specifies no external buffers are requested

for the program {program 5704-AS82 only).

Hf DECK or OBS is entered on the OPTIONS statement and

there are errors in the assembly, a halt is issued.

OCL STATEMENTS FOR ASSEMBLER

The loading and running of a disk-system program,

including the assembler, is done under control of a group

of programs called disk system management. The user

tells disk system management to run a prograra through

the use of Operation Control Language (OCL) state-

ments, lt is necessary to have a set of OCL statements

each time a program is run. This section discusses the

OCL statements required for use of the assembler. For

a complete discussion of OCL, see JBM System/3

Model 10 Disk Systern Control Programming Reference

Manual. GC21-7512, {8M Svstem/3 Model 12 System

Control Programming Reference Manual, GC21-3130,

IBM System/3 Model 15 System Control Programniing

Reference Manual, GO21-5077 (Program Number

§704-AS1), or JBM System/? Model 15 System

Contral Programming Concepts and Reference

Manual (Program Number 5704-482), GC21-3 162.

The assembler language source program can be obtained

from ¢ither a system input device, a source library entry, or

the macro processor. If the source records are obtained

from an 80-colummn device, they are padded with 16

blanks before being placed in the SSGURCE file. In this

case, the user should provide an ICTL statement to prevent

the assembler from processing the sequence field of the

80-column record.

OCL For Loading the Assembler

Source Program on System Input Device {Cards}

Figure 20 is a sample set of OCL statements to load the

assembler when the source program is on cards. The unit

parameter (FL) on the // LOAD statement specifies

where the assembler resides. The codes for the disk

drive upon which the assernbler resides are:

@ Ri —-drive i

@ FL — drive i

@ R? — drive 2

@ F2 — drive 2

Programmer's Guide 29

The first // PELE statement specifies the attributes and in all three // PILE statements, the PACK and UNIT :

location of the file used for source program resilience parameters indicate the location of the Hle named in the

during the assembly process. NAME Parameter. In addition to Ri, Fi, R2, and F2, the

INET parameter can specify Di, D2, D3, and D4 for the

The second // FILE statement specifies attributes and the Model iS, The RETAIN parameter sho: ald reflect a scratch

location of the file used for object output of the assembler. file(s}. The TRACKS parameter contains the number of

The third // PELE statement specifies attributes and tracks required for that file. The user should choose the

location of the file used for assembler working storage oumber of tracks required in accordance with the space

during the assembler process. requirements charts in the Assembly Time Data File

Requiremenis section. See SAM System/3 Madei 10 Disk

The SWORK2 // FELE statement is optional on the System Control Programming Reference Manual,

Model 10 Disk System. If it is not supplied, the assembler GC21-7512, IBM System/3 3 Model 12 Svstem Control

allocates the work space. However, by specifying the Programming Reference Manual, GC21-5130, and BM

proper placement of file locations, as in Figure 20, this System /3 Model i5 Svstem Control Programming

file statement improves the performance of the assembler. Reference Manual (Program Number 5704-A51},

{t should, therefore, be specitied. GC? 5077, ar JBM Svstem/3 Model £5 Svstem Control

Programming ‘Concepts and Reference Manual, GC21-5162,

(Program Number $704- AS?) for further information.

Source Program in a Source Library

Figure 21 shows a sample set of OCL statements used when

the source program is in the source library.

18M Sysvn/2 Basic Assembler Coding Form

IBM
H eROGRAM ncn | oraciac | | i } ij { PAGE 2

i PROCR AMIE ®, | pers | ms OS i PuRCH | ! : | ; if | CARD CL ECTS ABE

rae aes ec 32h somes 16 37 ta 39 AY 2t 2B N26 20 27 26 29 WO 3: 32 33 3436 a 37 nanee a7 a4 an 48 aG 4) 48 49 KX) Bt 52 22 na 55 56 5? 68 ae ayes 89 62 64 65 66 G7 BH 69 7G 71 77 72 74 7H 76 7? 78 79 8081 HY BE BA Hb RG A? yp Be: on,

? i | id i i : t ; :

A/7 LAR BASSEM Fiz a bet 7 ann ii
f/f FLUE NAMES SOURCE Pielke VOL Ma. MINIT OPE RETAIN Sif Z
ff TRACKS -i257 LOC AT (104) ~ 2. ag i ; sun a7
// Fle NAME~SwoRk PACK VOl@m2 UINIIT)-IRA RETATA~ |S i | -
A TRACKS "(5 DOC AT LOR 20g ‘ sesuE: ae 7 Tr
7/ FILE WAME-BwloRez, PACH VOLees UNIT-Fa RETAINS CO -
AA TRACK S25 LOCAT BA igé suaue | . sane
ff [Rb , i i |

‘ ! :
Source Program Deck pith :

| | ! H
G) Gotional on Model 10 Disk System :

Figure 20. Assembler OCL Statements (Source Program on Cards)

IRBs
Hide Sysmn/3 Basic Assernbir Coding Fors:

fom:

j PRIS BAK i anc £ GHaret H ; I | j i PARE oF

i PRIOR AARNE | oar i ae 2 Puxest i i if i i | i fp cARD SLecrnG NuweRt

arr r GEEEHAGHaGOHEREMRRTHATE ret 42 63 06 Ui 4@ 47 42 49) 57 2 5 ok So oh SO Ba OG OG 6? OF OR PR Fe Fa errata aren *

} t q

(7 COAG BASS EM, ! |
{RULE ARE BS ORR IE OAD -DILQWAL JUN TELL BTA INA Sin: | J

A/| TRB RIEES 361 OC alt tote
FUE NAME-S WORK), PACK ViCUimgn NIT -IRL JRET AN IN-IS i ;

/ CICS 8! OCT in| nat ae 1
JURA ULIE NAIeE -MORICTS BACK MOMMIES) UN! TAO RETA bas) CO).

Z7| RAI Rist LOE ATTA [|
COMGILE ne @cT Al, SOMRCE-SUBRA, UNITHR

(IPNRA SARC pe ;
é mitered Punch Deck on MFCU i
a3 anh SSeeeeeenee \

SERELSURREREEE bid

~ Source program im Source Library with: OPTIONS DECK, OBJ Place object program in F | ibrary of Ra i
LELLEELLE LLL LE LEE EEL ELE a a a a EE PELP PPD PPE RL LERL EP LLP ELS :

1) Optional on Model rio isk System

Figure 21, Assembler OCL Statements (Source Program in Source Library?

30

Note that the additional OCL statement // COMPILE is

required, The following entries in the figure are optional:

PUNCH This statement specifies where an object

deck is punched. For more information on

statement, see JBM Svstem/3 Madel 10 Disk

System Control Programming Reference

Manual, GO21-7512, IBM Spstem/3

Model 12 System Control Programming

Reference Manual, GC21-5 130, 18)

System/3 Model 15 System Control

Programming Reference Manual, GC21-3077

(Program Number 5704-AS1), or JBM

System/3 Model 15 System Control Pro-

gramming Concepts and Reference Manual,

(Program Number §704-A82)}, GC21-5162.

OBJECT

operand

This operand is used to indicate to the

assembler the library unit used when the

OBJ option is used on the OPTIONS

statement.

The // LOAD and // FILE statements are as described in

the first exarnple. The // COMPILE statement specifies

both the location of the source library and the required

source program within the library. The // COMPILE

statement may appear at any position between // LOAD

and // RUN.

Macro Processor-Produced Source Program

The macro processor creates a source program on the

$SOURCE file. To indicate that the macro processer has

Jf SWITCH Considerations

The external indicator Ui indicates that the macro

processor has loaded the SSQURCE file and the source

program is not in the input stream. If this indicator is

on when the assembler is loaded, the SSOQURCE file

is not loaded.

When the SSOURCE file is to be loaded, external

indicator Ul nvust be off. This can be ensured by

entering the following statement after the assembler

// LOAD statement:

OCL For Calling the Assembler

it is possible for the user to store a portion of the OCL

statements required for use by the assernbler in

a procedure library. They may then be called with a

// CALL statement, thus reducing the number of

written OCL statements required for each assembly.

Examples are included for source programs on cards and

for source programs in a source library on disk.

Source Program on Cards

If the source program is a deck of cards, the OCL cards

necessary to assemble the program, and the order in

which they must appear, are as follows:

already loaded the SSOURCE file, external indicator U1 ree

must be turned on. This is done through a // SWITCH PROGRARE

statement. If this indicator is on when the assembler is nn

loaded, the SOURCE file will not be loaded. en ce ee ar
2 4 6 7 G 19 71 ai 16 18 1? 16 is 422 E 27 28 29

In the following OCL stream, the source program has been : , Sane AM uk

created on the SSQURCE file: 4
IBM ANI
—— - Source Program Deck
: — : i

: PRS A AMIAE PF | pare ij

Naree Gperatvan Onerand aac i
32 3 a 4 HEB 4 rae T2pxafi4 35 16 87 28 42 2 7) B20 24 28 28 7 79 90 20 3) Kya 32,34 B36 3? 38 3240 9: az ag +8 46 46 ie

{8 mai PEPE ET GG a EL its
7i7) LIDIA SAIS SieiM:, RL indicate that the source file")

{if) (SW TICH! 1a APR has been loaded by the macra
Fé] FILE AMEE SOURCE ST. ll | oy ocessor step
AP PEN gl Masel S$ @ORIK), |. |-/. Gy onan
77 cis] Mable! Se oR Zsl ik 4 ny thi i fe ig Bis ME [iit rt in this exarmple, ASM is the procedure name. F1 refers

eee i] j ; : i OCL procedure
References the source file created to the disk pack upon which the assembler ee

by the macro processor step. is stored. In this case, it would be the fixed disk on
G4) Optional on Model 10 Disk System

Note: For more information on the macro processor, see

IBM System /3 Models 10 and 12 System Control Program-

ming Macros Reference Manual, GC21-7562, 01 [BM

System /3 Model 15 System Control Programming Macros

Reference Manual, GC21-7608.

drive one.

Programmer's Guide 314

Source Program in a Source Library

if the source program is stored on disk in a source

library, the OCL format must be as follows:

TBM

PROGRAM

PROGRAMMER

fe
// CALL ASM FL
// LOMPELE SCURCE-SUBRA JUNI TRE
fi? RUN
fle
In this example, ASM is the procedure name and Fl

refers to the fixed disk on drive 1. SUBRA is the name

of the source programa. The user must substitute his

own source program name. Ri is the disk pack upon

which the source library resides.

Sample Assembler Procedure Stored in Procedure

Library

Asarnple assembler procedure is shown in Figure 22. The

format is ag it would appear in the procedure library.

The // LOAD statement and // FLLE statements are as

described in preceding examples.

OBJECT PROGRAM DESCRIPTION

The assembler converts the source program into

a set of control information, machine language instruc-

@ HEADER record

® ESL (external symbol list} record

@ TEXT-RLD (text-relocation directory} records

@ END record

Record Formats

The following paragraphs describe ihe format of each

record type.

HEADER Record

A HEADER record with record type H is added by the

overlay linkage editor when it processes the asserabler

object program. The HEADER record format is:

Object program information field

e
n

LH]
1 2 64

@ Byte 1 Record type identifier H.

@® Bytes 2-64 Object program information field.
ESL Record

The object program name, that is the module name and all

EXTRN and ENTRY symbols are placed in the ESL record.

The ESL record format is:

tions, and data, all of which collectively are called an
ge ett . + 4 = 4 we ant 4 | les ag ft £

object program. There is one object program produced [s | Length ~1 ESL Entries X'O8 |

YY BROT Pr yr - eres £4 fe : ie f $irt ah ‘a * - ytga 5

per assembly 7 Each object record is originally produced , 3 2 6263 BA

asa 64-byte field. If the object program ts punchea on

the MPCU, it is translated into a 96-byte punch record

(bytes 2 to 64 are translated 4 for 3 for punching; e Byte 1 Recard type identifier S.

for every three S-bit bytes, four card code characters e Byte? Length -1 of the ESL entries.

are created}. See Object Program After Punch Conversion ® Bytes 362 ESL entries, Up to five MODULE,

in this section, Each object program generated by the ENTRY, and/or EXTRN fields.

; _. . " Filled with hexadecimal zeros.

assernbler contains four types of records: @ Bytes 63-64 Filled with hexadecimal zeros

rene
{EM System/3 thaic Ameintdes Coding Form

For”

i SROGHAR
i puncte [secures i | 5 | i ; i i PAGE OF ¢

i PACER ASE
[oare i INSTRUL TIONS i PUNCH : } j i | } i | CARD ELECT HD NIMAHEA

STATEMENT
tdentificatix

aa ofp ee Pee emda IIS, vey at ag 7 . Reaorks : ; Rareverce

ay 3 iB Gi? “Wak THA 6 HE sat ye Bb 34 23 23 ne 28 27 3B OTS He Se RE TT 37 38 28 WD ay 42 23 48H a 40 49 ER Gt ae t4 BS oe £7 Be fe 8 $7 82 G3 6S OG 8? OH GOD More IBA 7R 72:90 $1 89 53 84 Bh BN A? DOD ot at we gt

i coy Bi i H 4 i : 4

Fig uA “WISDURCE PACE -VOGUGG 1 UNIT “RL RETIALN-S|, TRACES | Ag
7 BUGE NAME-RMORK, PACK VOlUgda UINi/TT-IRa WETING NB, TRACK ie) 1
/RULIG NAMES MOREE) CACKI-VOHIg Ss WM IT |Ror RErTs rence) il f

{1 BM Nine
| i :

a
¥

j

(1) Qptianal on Model 16 (isk System ! i

Figure 22. Sample Assembler Procedure ts Source Library

32

TEXT-RLO Records

Text records and RLD pointers are combined in this type

of input record. The text portion of each record contains

the object code for the program, while the RLD pointers

indicate where the address constants and relocatable

operands of the text are located. If the NOREL option

has been selected on the OPTIONS control card, there

will be no relocation indicators in the record. The format

for the TEXT-RLD record is:

Object Program After Punch Conversion

All four types of records (HEADER, ESL, TEXT-RLD,

and END) assume the same format when they are punched

into cards. The punched record formiat, using 96-column

cards, is as follows:

g 8

I Length-4 | Assembled Address Texte X’00 pe LD
z 3 4 i

q 2 3 4 5 64

@ Byte Recard type identifier T.

@ Byte? Length - 1 lof text only}.

@ Bytes 3-4 Assembled address of the low order (rightmost)

text byte in the record.

® Bytes 5-64 Text starts at byte $ and goes right, RLD

starts at byte 64 and goes left. The leftmost

and of the RLD section is marked by

hexadecimal zeros, which fill the space

between the Text and RLD sections. The end

of text is always followed by at least one

byte of X’OW’.
END Records

The last record in each object program is an END record.

It contains the entry address of the object program. If the

user did not include an operand in his source program

END statement, the object program END record generated

by the assembler will contain the address MFFFP’. The

END record format is:

Entry END card prograrn

E Address

4 2-3 4

@ Byte Record type identifier E.

@ Bytes 2-3 Entry address of the object program.

@ Bytes 4-64 Program to transfer control to Entry address.

identification

Sequence Field
Record 1D | Data Field | Self Check

Number

4 2 85 886 8B «8S 96

Catumn 1 Record type identifier (H,S,T, or E).

Data field, transformed 4 for 3. (For every

three B-bit bytes, four card cade characters

are created for System/S 96-column cards}

Columns 2-85

& 2-byte self check number transformed

4 for 3, to 3 bytes.
Columns 86-88

Columns 89-96 identification/sequence field.
The punched record format, using 80-column cards, is as

follows:

| Record 1D Geta Field Blank Self Check | identification

Number Sequence Field

4 2 64 65 69 7G 7200-73 20

Column 4 Record type identifier (4, S, T, or E}.

Colurnns 2-64 Data field, bytes 2 to 64 of the objset record.

Columns 65-69 Blank.

A @-byte self check sumber transformed 4 for 3.

to 3 bytes.

Colurnns 70-72

Colurnns 73-80 identification/sequence field.
Note: When an object module is punched, it is preceded

by a // COPY OCL card and followed by a // CEND OCL

card. These cards are provided for placing the object

module in the R library with the Library Maintenance

program ($MAINT).

Proprammer’s Guide 33

ASSEMBLY TIME DATA FILE REQUIREMENTS

There are three data files necessary at assembly time:

em
s . Source file (NAME-350URCE)

. Object file (NAME-SWORK} ha

3. Work file (NAME-SWORK2}

Model 10 Disk System: These files must be located on

5444 disk drives. [fa // FULE statement is not provided

for SWORK2, the assembler allocates its own work space.

Model 12: These files raust be located on the simulation

area,

Model 15: These files raust be located on either 3340,

5444, or 5445 disk drives.

Source File (SSOURCE}

The source file is used by the assembler for storage of the

source program. During the job imtialization procedure,

a disk system management program places the source

program in the source file (if the macro processor has not

loaded the file}. The source records are obtained from

either the system input device or a source library using

the // COMPILE statement. (See OCL statements for

Assembly in this section.) Each source record contains

96 bytes, so that eight records occupy three disk

sectors in the source file. (One sector = 256 bytes, and

is the smallest addressable unit ona disk.) Figure 23

is a source file space requirements table showing how

many tracks are required for the size of the source pro-

gram indicated

If the assembler is processing a source file created by

the macro processor, the // FILE statement for SSOURCE

must correspond to the SSOURCE file produced in the

macro processor run.

Object File (SBWORK}

The object file is used by the assembler for intermediate

storage of the object program. Fhe object records are

stored in four 64-byte entries per sector. (See Gbyect

Program Before Conversion in this section.) Because ea
io

track in the object file can contain 96 records on the sad

80 records on the 5445, or 192 records on the 3340, two

tracks usually are sufficient for most assemblies.

34

Work File (SWORK2)

The work file is a scratch file used by the assembler

throughout the assembly process for intermediate data

storage. The file contains four types of data:

E, Intermediate text

2. Syrnbol table entries

3. Cross-reference data

4. Error information

intermediate Text

th 10-byte)

g s is variable

for each source statement, and is dependent on the

statement type and the contents of the operand feld

Intermediate text is made up of fixed len ae

records. The number of fixed length records

The following rules can be used to determine intermediate

text file requirements. (The rules apply only to error-

free source statements. A statement that contains errors

generally requires less storage space.}

All instructions:

@ One record for each machine or assembler instruction,

or comment staternent.

@ One record if there is a name field entry.

Machine Instructions: Qne additional record for each

term in the operand field.

Source Program Size Number of Tracks Required

{Statements}

5444 * 5445 3346

1006 2 2 1

200 4 4 2

SOO 5 G 3

400 ? 8 4

500 2 15 4

600 10 12 5

700 4 14 6

8G 13 15 7

900 15 i7 8

FOG 1S iS 3

*Or sbriulation area

Figure 23. Source File Space Requirements Chart

Assembler lastructions:

END, ENTRY, EOU, EXTRN, ORG, USING — Gne

additional record for each term in the operand field.

@ ISEQ, PRINT, SPACE, START — One additional record

for each instruction.

® TITLE — Additional records = N/8 (plus one for any

non-zero remainder); where N is the number of

characters in the TITLE operand field.

@ DS/DC

.. One additional record for duplication factor

(default or specified value).

— One additional record for each term in the length

specification.

@ BC

_ Address constant—One record for each term in

the address constant expression.

_ All other constants—Additional records - N/8

(plus ane for any nonzero remainder); where N is

the number of bytes required to contain the

converted constant plus one.

Figure 24 is a sample list of instructions together with the

intermediate text space requirements for each.

Text Space

DECK. START O 3

ENTRY SLO AL2),A 5

MVC A(2),CONT 4

ALE Ali2},CON2 4

HPL XSPR OPP’ 3

A DS Che 4

CON) DC 1L2’600' 5

CON2 OC 12-320" 5

END ENTRY 2
Figure 24. intermediate Text Space Requirements

Symbol Table Entries

Whenever a symbol is used in the name field of an instruction

(except a TITLE staternent) it becomes a symbol table

entry. When the assembler user requests a cross reference,

all symbol table entries are added to the work file immiedi-

ately after the intermediate text. The symbol table entries

are also 1G-byte, fixed-length records. Assuming an average

of one name entry for every four source statements, one

sector per 100 source statements is required.

Cross-Reference Data

Cross-reference data is written in the same area as the

intermediate text and symbol table entries and does not

impose any additional space requirements.

Error information

Each statement in error requires a 10-byte error record;

therefore, a track will contain at least 600 error records.

Work File Space Requirernents

Figure 25 is a work file space requirements table showing

the number of tracks required for the number of source

staternents indicated. The requirements for intermediate

text and symbol table entries are summed to get the

table values. Approximately 40 sectors per 100 source

statements are needed to cover most varieties of source

statements. Ifa SWORK?Z // FILE statement is not pro-

vided on the Model 10 disk system assembler, the source

file (SSGURCE) size is used for the work file size.

Source Program Size Number of Tracks Required

(Statements)

5444 * 5485 3340

160 2 2 4

200 4 4 2

308 6 6 3

400 7 8 4

500 3 ae 5

606 44 12 6

706 12 14 6

BOG 14 16 7

B06 16 18 8

1000 18 20 3

*Or sirnulation area

Figure 25. Work File Space Requirements Chart

Programmer's Guide 35

OPERATING PROCEDURES

Placing Assembler Subroutines in R (Routine) Library

Assembler subroutines can be placed on disk in the R

library by two methods.

}. Punching an object deck and using the Library

Maintenance program (SMAINT)} to place it in the

R library.

2. Specitying OBJ in the OPTIONS statement to

place the object program directly into the R

library. The retain entry can be either temporary

or permanent.

For more inforraation on the OCL and utility control state-

ments needed to use EMAINT, see JBM System /? Model 16

Lisk System Control Programming Reference Manual,

GC21-7512, (8M System/3 Model 12 System Control Pro-

gramming Reference Manual, GC21-5130, or [AM Spstem/3

Model 15 Sestem Control Programming Reference Manual,
5021-5077.

Placing a Punched Object Program in the RA Library

in the sample procedure shown below, the subroutine

SUBRA is being placed in the R library from a punched

object deck.

/{ LOAD Statement: tn this sample procedure, $MAINT

is the routine which interrogates the // COPY statement

and calls the proper routine to accomplish the desired
results.

Fi is the disk pack upon which the utility program resides.

// COPY Statement: The FROM parameter names the

device holding the subroutine to be entered. The

READER option must be used to capy the assembler

punched object program.

The LIBRARY parameter, R, specifies a relocatable library.

The NAME parameter gives the name of the subroutine to

be entered. This name must be the same as the program

name (that is the name on the START instruction). The

following names are restricted and cannot be used in this

parameter:

@ ALL

@ DIR

@ SYSTEM

The TO parameter specifies the physical destination of

the object program (in this case, Ri}.

The RETAIN parameter specifies the ultimate disposition

of the object program.

}/ CEND (Copy End} Statement: The // CEND

statement must follow the object deck.

Hi END: The // END statement must be the end of all

library maintenance decks.

Placing an Object Program Directly in the RR Library

When the object program is placed directly in the R

library, it has the following characteristics in the library.

@ Name of the object program is the module name

specified in the START instruction or the default

module name. See the MODULE NAME MISSING

diagnostic in Appendix C. System/3 Assembler —

Source Language Error Codes and Diagnostics.

@ Retain entry in the library is temporary if OBT or OBJ(T)

is specified and permanent if OBJ(P) is specified.

TOP fystem/3 Basic Assembler Caring Far

TER

PRERGHAM PUNCHING GRAPE PADE

PACE ARARRER i Creed INSTRUCTIONS 4 pi nucee CAA ELE

STATEMENT

1 es a Bh? ger Hid id 16 06 17 48 19 AS 91 Bee 26 27 Re BO 3s 7 33 ee tO 4s 47 89 44 OB 8G 47 48 49 OD St 57 53 Se 85 se 57 sa ot On 2 83 84 6S GA ET OG 89 FQ 7) 72 72 34 rors 22 36 79 &) at Br 93 &

; q i | ; :
i

4,

}
e

/\f| HUCAIDN SIMI INT Ap i
Af | RMN,

/| Copy, PROM-(REAnee IC TBRARY- 8, NaMe-SugRa, TAL P
¢ i ‘ ¥

4 : i
Ed : t

~ Object Deck
ea t i

2
: ;

3 £

MISIS19
:

7 if

END | : : i i
4 i t

36

@ Library to receive the object program is the disk gpeci-

fied in the OBFECT operand of the // COMPILE state-

ment. The default disk is the program disk.

Using Assembler Object Program with the Program Loader

The user may have the need to load a user-written assemb-

ler object program as 2 stand-alone program. To use

an assembler object program in this manner it is necessary

to have the program punched into an object deck on the

system punch device. The assembler language user orb-

tains an absolute loader by specifying DECK and NOREL

on the OPTIONS card (see NOREL option under OPTIONS

Statement}. The 96-column loader contains six cards and

the 80-column loader contains one card.

{tis the user’s responsibility to ensure:

1. ‘That he has not referenced any address greater than

the storage capacity of the System/3 on which the

program is to be executed.

3. That the address specified on the START instruction

staternent is greater than X‘FF’. (The START

assembler statement nist specify the address at

which the program is to be loaded.)

3. That the END staternent indicates the start-of-controal

add ress.

Note: Tf absolute object decks for more than one assembly

are to be loaded together, then the loader must be re-

moved from the front of the second and all subsequent

decks, and the END card must be removed from the

back of all decks except the last.

IBM 5424 MFCU

The procedure for loading and executing an assembler

object program on the IBM 5424 MFCU is as follows:

i. Clear MFCU.

be
 Place assembler object deck, including the loader,

in primary hopper.

3. Press MFCU START.

4. Ready the printer.

5. Set PL SELECTOR to MFCU for Modei 10 Disk

System or ALT for Models 12 and £5.

6. Press console PROGRAM LOAD to load and execute

the assembler object program. (Li or L2 halt is

issued for error or not ready conditions on the

MECH}

{BM 2560 MFCM (Model 16 only}

The procedure for loading and executing an assembler

object program on the 1BM 2560 MFCM is as follows:

Clear MFCM. p
e

©

4. Place assernbler object deck, including the loader,

in primary hopper.

3. Press MFCM START.

4. Ready the printer.

5 Set PL SELECTOR to ALT.

6. Press console PROGRAM LOAD to load and execute

the assembler object program. CLI halt is issued for

error or not ready conditions on the MFCM.)

IBM 1442 Card Read Punch (Models 12 and 15)

The procedure for loading and executing an asserobler

object program on the TBM 1442 Card Read Punch is as

follows:

i. Clear 1442.

2. Place assembler object deck, including the loader,

in hopper.

3. Press 1442 START.

4. Ready the printer.

S Set IPL SELECTOR to ALT.

6. Press console PROGRAM LOAD to load and execute

the assembler object program. (Li halt is issued for

error or not ready conditions on the 1442.)

he
d Programmer's Guide

ASSEMBLER LISTING

An important part of the assembler’s output is the assern-

bler listing. The assembler’s printed output is on the system

printer (under control of the // PRINTER OCL statement

for Models 12 and 15}.

The Hsting is a printed reproduction of the source program
and the corresponding object code generated for it to
gether with other important information. Figure 26 at

the back of this section is a sample listing. Specifically,

the listing consists of the following:

Control Statements

Any OPTIONS or HEADERS statements specified by

the user are printed and specification errors are noted.

A list of OPTIONS in effect during the assembly is then

printed. The page is ejected before the control statement

information is isted.

38

External Symbol List (ESL)

The object program name, EXTRNs, and ENTRYs will

appear in the following format:

Symbol ivpe

Program name MODULE

ENTRY symbol ENTRY

EXTRN symbol EXTRN

Source and Object Listing

The source and object listing consists of the following:

@® Error code for improperly coded statements {see

Diagnostics in this section}.

Location counter value, in hexadecimal, of the high

order address of the object code generated by the

corresponding source statement.

e The object code, in hexadecimal, generated by the

corresponding statement.

@ The value, in hexadecimal, of the expression in the

operand field of the EQU, USING, DROP, and END

statements, the storage address, in hexadecimal, of the

iow order address of the DC constants, and DS storage

areas.

@ Statement number, in decimal, for each staternent,

including corament statements. These numbers are

assigned by the assembler. The statement mumber ig 4

four-digit field which limits the assembly to 9,999

statements,

@ The source image, which is formatted according to the

size of the printer used:

1. Ona 96-column printer, the ID/SEQ field is left-

justified in columns 89-96 of the print ine. H

columns 53-88 of the source statement are blank,

Hine 2 will not be printed.

Object code Columns 1-52 of the

Hine 4 field % fsource statement iD/SEG field

1 25 36 37 8&8 89 96

Columns 93-88 of

line 2 source statement

53 BB

No
 On a 1 20-cohumn or 126-column printer, the

1D/SEQ field is left-pustified in columns 113-120

of the print line. Hf columns 77-88 of the source

staternent are blank, or if the start of the ID/SEO

field on the source record is less than column 77,

line 2 will not be printed.

Oblect code iColumns 1-76 of the

line 7 field # fsource statement ID/SEO field

q 35 36 37 442 133 120

Columns 77-88 of

line 2 source statement

101 442

Fold point for 96- Fald point for 120-

ar 126-colurnan printer
Source Record

column printer

f
Source Statement (Columns 1-88) j iD/SEQ|

£ 53

4 52 53 76 9? 88 89 = 88

The following examples assume the [D/SEQ field is in

columns 89-96 of the source record:

Note: The [D/SEQ field may be from one to eight adja-

i cent chatacters long and may reside anywhere between col-

urns 73-96.

3. With the 132-column printer, the complete source

image is printed on one Ene.

Object code Calummns 1-88 of the

flald i jsource statement

1 35 36 37

Note: Staternents generated by the macro processor

contain a plus symbol (+) in column 36.

Programmer’s Guide 39

Dlagnos tics

The source and object program listing includes error codes

for improperly coded statements. These errors are listed

again, with a message, at the end of the source and object

program listing under the heading DIAGNOSTICS. This

list provides the following information:

@ Statement—The staterment number, in decimal, (assigned

by the assembler) of the statement which is in error.

@ Error code-~a 3-digit alphameric code. See
Appendix C: System/3 Assembler—Source Language

Error Codes and Diagnostics for a list of error codes and
translations.

@ Message—A translation of the error code indicating the
type of error made.

Also included under DIAGNOSTICS are the following
error summary statements:

@ Acount of the total statements in error in the assembly.

@ Acount of total sequence errors in the assembly if

sequence check is requested.

40

Cross-Reference List

If XREP is specified on the OPTIONS statement this list

includes all symbol names referred to in the source program.
The following columns are included:

@ Symbol—The symbol name.

@ Length--The decimal length attribute of the symbol in
bytes.

@ Yalues-—-Value, in hexadecimal, of the symbol.

@ Defined—Statement number, in decimal, where the

symbol is defined.

@ References—Statement numbers, in decimal, where the

sysnbol is referenced. Symbolic references to data areas

and machine registers whose contents may be altered by

execution of a machine instruction are flagged with an
asterisk.

At the end of the cross-reference list, the error summary

statements are printed again.

SUBRCE

FY PERNAL SYMBUL LES?

SYMBOL FYPE
VER 00, MOK 60 01/56/76 PAGE Y

suBelt MODULE

Fan eirntnnetnrmnatennnannr
cane tte nen garantie ileal mittens tte NOON apy eS a ee

e ee
 we a

—— ase ners tt A SAAN Rerun anna none servers set Newman eee ee caentnntenns esr pens ae ne A a ncn anal:

SUBRG SAMPLE EX? SUBRUUTINE<-FEELG ANO TNDICATOR

ERR LOC HBsECT COLE ADDR SYMT SduRCE STATEMENT VER 00, MOG 60 01/30/76 PAGE 2

FP BREE ER KERR E DREHER EH RRERK RRR RS EOREGK ER KERAEE EERE RCEREKALAY SHEE EE

3 *
&

& ® YAKE sncaecreores SUBKCS
*

5 *
*

4 & EGNCTEGN osoaeoee EXEPT SUGROUTINE wiTh FleLo AND INGICATOR &

7 * PARAMETERS.
%

RB *

%

Q * THE COME GENERATEC 8Y THE COMPILER ES AS FOLLOKWSs *

La *
*

LL 8 SUERC *

b2 * OC TLLPFLELD LCENGTH-1? *

12% aC ALZ*ADCRESS GF KIGHT GF FEELOF *

L& % oc KLEtGUS
*

15 * oc MEETINCTCATOM BASKE *

16 * oc XLETHECISTEH 1 DISPLACEMENT ® *

1? 4
%

tH SHREK RERRORE EERE REESE RERKEOH HES SEER ELHSE OH ete teTene Lett £2. 2 a2 2 22 2s eRe RR

CoGo $3 2USRE START ©

OGO0 34 08 Of14 70 oT GET4 44 ARR SAVE PARM AUDR

0004 36 C8 GOFk FL A, CONG pAKR ENCKEMENT TO RETURN

GOO8 44 CA OCZF 2? st RET#3, ARR SAVE RETURN

GOOGC 34 G2 OCZP 23 SF SAVEtAs2 SAVE XRZ

oo1o C2 OF ocre Pe GET ba Kon Be 2 GET PARMETER ADORESS

OOL4 26 OL UCL OS 24 ave TESTAZ(24 5b 22) MOVE IN MASK AND CESPLACEMENT

Ooo 74 OO OC 2 FEST PBN Hm EL Lp gg to TEST INDICATOR

GOIC Fe 9O OS aT JF SAVE JNUECATGR GFF

GOLF 85 G2 O¢ 24 L ZlgZhad GET CONTSOL FIELD ADORESS

C022 BS O2 05 29 L Sly2hs2 GET LOGK UP ACOMESS

oG25 BO C3 00 30 Mul QtyeZa—echC3 ROVE IN CPC?

OG78 C2 G2 GOCE 31 SAVE LA Hankey? RESTORE

ooze CO a? GUCC a2 REF 4 a HETORN

0040 G06 Agat 43 CONS OC TLéeté*

elerena Aa ARS EQU B

FREE 34 END

TOTAL STATEMENTS FN ERRUH EN THES ASSEMBLY = G

a een ein namo —caewe
penne etn rat aac eset tt" ne eae werervneenmnmmmneneervoass aecitniad

cor i ee en een ant AO te ON ect Erni
earnest etre ayaa serine parce te TO ut apne, pe an enon say

TEST COLS CUL&

YOTAL STATEMENTS FR ERRUR TN

CRISS

OC2ZL* OG22

SUBRC

SYMBOL LEN VSLUE CEFN REFERENCES

ARR COL OGG8 OC34 Oo20

CONG Go2 CG3) coa3 Qo2k

GET COs COLe Co24 CG20*

KET O04 oG20 C32 oc22%

SAWE O04 oG78 CC3l co24% COZ?

SUBRC uct eoec GCs

REFERENCE

VER 00, MOD O00 01/30/76 PAGE 3

Figure 26. Sample Assembler Listing

Programmer's Guide 41

External Symbol List (ESL) Table Size

The ESL table is an execution time main storage table

containing the module name (START statement name or

ASMOBS) and each EXTRN and ENTRY symbol defined

in an assembly. The total of EXTRNs and ENTRYs

allowed in a single assernbly is limited by the ESL table

size.

Using the Model 10 disk system assembler, the limit is 74

EXTRNs and ENTRYs.,

Using the Model 12 and Model 15 assembler, the Hmit varies

with the amount of storage available in the execution partition.

The limiting sizes and associated storage ranges are:

Storage Available Limit of EXTRNs and ENTRY s

10k. &4

12K 124

14k 169

16k 209

18k - 48% 254

42

MACHINE LANGUAGE INSTRUCTION FORMATS

Operation Code

The first byte of cach instruction, the operation code,

specifies the addressing modes to be employed by the

instruction in bits 0 through 3, and the operation to be

performed in bits 4 through 7.

& Code

The second byte of each instruction ts the O code. In 2-

address formats, the O code is always a length count. In

other formats, depending upon the operation specified, the

G code can be:

® Length count

@ immediate data

@ Bit mask

Appendix A. Machine Instructions

S Register address

@ Data selection

@ Branch or skip condition

@ Device address and functional specifications

Control Code

The third byte of an instruction in the Command Format

contains additional data pertaining to the command to be

executed.

Storage Addresses

For instructions in the l-operand and 2-operand formats,

the third byte of the instruction and all bytes following

are storage address information.

3 Bytes

4 Bytes Op a Address

Op Length Destination Source Code Code Displacement

Code Count Address Address a Fig wat 4,

Dissiacement | Displacement
3 ISS 23)

.7 i me

o 78 15 16 23 Z4 34 we : ~

oO “ a

5 Bytes
irmmediate Data Destination Address ;

Op Length Direct Source | Bit Mask Source Address |

Corde Count Destination Address | Register Adelress ' Branch Address |

Address Displacement | Branch or Skip Condition |
at ; t

a 73 iE WE ay 3a 36 \ Data Selection
;

Ha

~ ~, H
j

& Bytes
4 Bytes me, ;

On Length Destination Direct

Code Count Acidress Source ne a Direct

Sisplacement Ackiress voce Code Address

0 78 18 16 23 24 39 8) 78 15 16 34

(6B One-Address Formats

6 Bytes 3 Bytes

Op Length Crect Direct

Code Count Destination Source Op a Control

Address Address Code Code Code

G 78 15 16 Bt 32 47
G zig 151 46 23

_- ~

eee

~ 7

(A) Two-Address Formats
j Device Address j

i
i and functionai i

i specifications |

; Skip Conditon !

: Halt identifier :

(pr
(©) Command Format

Appendix 4. Machine Instructions 4

Op Mnemonic Type

O4 ZAZ

06 AZ 2 ADDRESS ——>|

G7 $2

O68 MVX Direct

OA ED Op GO [Operand One | Operand Two {

O8 re

oc MYC be 6 bytes be

OD CLE

OE ALE

OF SLC

14 LAE

16 AZ - 2 ADORESS—>|

17 $2

18 MV xX Direct indexed

1A ED | Op @ | Operand One i O2 |
18 irc

ce MVC {renee 5 bytes ee

1D CLS

TE ALC R4

TF SLC

24 ZAZ

26 AZ La 2 ADDRESS>

27 SZ

23 MYX Direct indexed

ZA ED [Op | GiOperand One | 02 |
28 ITC

2o MVC [a 5 byteg—mmee

2B CLC

2E ALC R2

2F SLC

30 SNS

34 Lio 7 1 ADDRESS

34 ST wee al

35 L Direct

36 A Op | a] Operand Gne

38 TEN

3g TBF mene 4 bytes mel

3A sen
3B SBF

3c MMVI

30 cli

SE SCP*

BF LOpP*

44 ZAZ

46 AZ a 2 ADDB ESS]

47 $Zz

4S MV x

4A ED Op | a D4 Qoerand Two |

4B iT

AC MVC fate 5 bytes mmm}

4D CLE

AE ALS FR

4aF SLC

54 ZAZ

56 AZ , 2 ADDRESS

57 SZ re aed

58 MV X indexed

BA ED iOpo} Gi 61} 92 |
SB re

BC MVC eee bytesm—bel

5D CLE

SE ALS RR

BF SLC

Op Mnemonic Type

64 LAL

66 AZ Ht 2 ADDRESSY
87 SZ

88 MV x

6A ED [Op] a) p11 o2 |
68 irc

BC MVC a bytes —

6D CLO

SE ALC Ri R2
SF SLC

70 SNS

7t LIO 1 ADDRESS
74 ST
75 L

76 A lon} af ot |
78 TBN

79 TBE [aetm3 DYytes mmemin|
7A SBN

7B SBF

7G MVS RY
7D Chi
7E ScP*
TF Lep*

84 ZAZ

86 AL le? ADDR ESE ane
a? $Z

&3 MV indexed Direct

BA ED Gp | Of Di I Operand Two
8B iTC

gc MVC [a 5 bytes Se

8D CLO

BE ALC R2

BF SLE

94 ZAZ

36 AZ [ae 2 ADDRESS 3]
97 $2

88 MV xX indexed

GA ED [Op | Q| Bt | D2
OB ITC

BC MVC fete DYES mtn

9D CLC

SE ALC RA? Ry

OF SLC

A4 ZAZ

AS AZ Laem 2 ADDR ESS
A? Sz

A8 MYX indexed

AA ED fOp}| Qe D1 | 2
AB Tc

AC MVC facet DY 12S

AD CLe

AE ALC R2 RZ
AF LC

* Model 18 only.

Legend:

Di - Displacement, operand |

D2 — Displacement, operand 2

Ri — Register |

R2 -— Register 2

Op Mnemonic Type

BO SNS

Bt LEO 1 ADDRESS

B4 ST [atfometon|
BS L indexed

BG A rOp{ QO — 51 |

BE TBN

Bo TDF betfeneeneen 3 by teseted
BA SBN

a6 SBF

BC MVI XR2

BD CLI

BE SCP*

BF LCP*

CO BC Direct

C1 THO Pos| QO i Address

C2 LA frecennnnnannn by EES sommnannnlion

DG BC

Ot TIO 6 Opt G@ | D2 | +XR1
D2 LA fuartiownn 3 EVY TES mecnonnanpiang

EO BC

1 Tio fopi al o2] +XR2
E2 LA focgfeone SY LES sommes

FO HPL

F1 APL

E2 yo 060 Lp Gt Rf
F3 SIG Joon bytes ocean

F4 CCP
*Model 15 only.

Appendix A. Machine Instructions 45

 <
—

|
.

o
e

ra
3

3
e
e

edOO
O's

|
Of

May
4

29
-

-
Pe

AG
MBDA

zZ
£

dsig
@
A
g

4,
\
/

we
On

3

ig
7

-
gxapuy

4
\

Z
:

:
Z

WE
POU

3
b

B
E
.

..
vw?

PO
|

2S
3

e
a

’
-

a
a

A
g
I

eyes
p
c
y

i
A
G
A

r
a
t
a

Puaatad
yy

me
»

A
eS

a

s
d

TedOS)
PIO

CIA
| AGS

ENSS
| aBl

pNeL
v

7
SNS

a

zai
za

Cid
AGeRapU]

mae
dave

bas
x“

b
asic}

B
I
A

|
zi

At
O
7
8

PD
yy

P
O
W

D
A
W

|
OL:

a3
25

ey
2
0
2

y

ia
i

ze
7

Li
Ag-xanuy

pexopu]
;

7
:

as
x

v
:

.
J
U
S

O
y

PO
TO

T
O
A
W

|
D
1

cit
Ww

7S
w
y

2Y2
5

s
i
c

A
G

|
j
u
a
w
a
s
e
d
s
i
g

;
7

B
W
A

EOL
On

x
P
A

ZS
zy

V
z

6
'

i
:

oe
.

_
.

aAg
|

-
ayy

eC
x

5
joan

sardg
z

5
Div

PID
IDAW

FOL}
a3

MAA
|

28
1

Sy
2v2

g

;
N
a

a

7

id
A

g
e
e

e
t

We

dOSy
$45

3aS
|NGS

| sgh
I NGL

v
q

is
O
m

n
n

m
e
a

a

.
7

é

s
Ze

AQ
Mapiut

£
0

v
a

~
Z
e

A
G

*apue
e
y
e

b
y

be
oN

Aan
m
a
s

.
:

~
O

x
?

asigg
A
A
G

i
by

Ag
O
T
S

L
D
U

bo
O
A
I
N

DOLE
3

M
A
W

25
e
v

a
t
e

&
&

mo

m
b
a
r

:
.

bel
Agexepuy

pewapu
~

“4
.

iG
ta

x
’

GHC
GAR

t
PSeOp

Ht
378

1Sdy
O75

Isaw
as

XAIN
|

ES
|

ZW
Zv?2

:
:

juBuasedsig
a

i i
‘

"
.

TGLCL
S
O
L
A

F
M
A
G

w
e
n

foes
e
p

PA
AGG

.
id

x
G

POGUE]
SGA

&
A
G
L

S
I
S

P
O
V

P
O
O

P
A
W

FDL}
a3

A
R
I
S

25
a
y

2
4
2

v

=

=
a

a
n

A
e

e
e

sdiPedOS)
no

PAIN
| gas

ings
[isi

ings
v

4
S

:
_
—

a

.
2

A
W

1
38S

2 N
G
S

GL
I
N
L

ea
}

LS
S
N
S

2

_

i
Ze

AG
xenuy

au
8

asic
B
A
R
 i

O
S

[Dy
[OID

SAW
|

Oni}
os

KAW
|

ZS
b

2¥
Zv2

z

:
tet

A
g
-
N
e
p
u
s

;
iu

.
aeg

age?
Ay

o
y
e

bare
pyapey

des
-

id
“

5
as1G}

B
A
G

i
O
T
S

EO
E
T
O

A
W

|
OLt

Qa
A
A
T

pas
Z
V

2Vve
i

g
z

D
F
S

P
O
W

POTD
P
O
A
W

TOOL)
a3

A
AIM

2S
Z2v

2
2

o

:
:

TUR
GO

Fp
m
e
e

r
A

:
L
e
n
e

U
R
I

~|
p

|
do

3
3;

4
3

a
l
o
w

6
g

L
3

8
¢

e
z

i
3

aia

LaeGfocnonniinaneaminmnan ncaa
A
L
O
U

aemmcacncatatatacacntacnsacan cnn
i

w
r
e

fran
I
O
S

orieenewrten
y
a
a

B
u
d

,
wabue7

:
c

by
sug

oat)
P
r

S
i
g

anon
,

B
C
A
 EP

R
D

f
b
a
t
e
e
r
r
r
e
r
e

S
U
R
E
 C)
p
e
r

e
P
e
g

{BL
AQ

ain}

D
a
p
e
n

do

46

MNEMONIC OPERATION COBES (MACHINE) *#* These instructions are for the Model 15

but they can also be generated on the

dnstruction*® Mnemonic Operation Code Model 12 through the macros $LCP, $SCP,

and $CCP. For more information concerning

Zero and Add Zoned Decimal ZAZ ° the use of the Model 12 macros, see
Add Zoned Decimal AL IBM System {? Models 10 and 12 System
Subtract Zoned Decimal Sz Control Programming Macros Reference

Manual GC21-7562.
Move Hex Character MVX

Move Characters MVC ? Two-address

Compare Logical Characters CLC Pormat**

Add Logical Characters ALC

Subtract Logical Characters SLC

Insert and Test Characters iTCc

Edit ED

Move Logical immediate MVI |

Compare Logical Immediate CLI

Set Bits On Masked SBN

Set Bits Off Masked SBF

Test Bits On Masked TBN

Test Bits Off Masked TBF

Store Register ST One-address

Load Register L \ Pormat**

Add to Register A
Branch On Condition BC |
Test 1/O and Branch TIO

Sense £/O SNS

Load 1/0 LIO

Load Address LA
Load CPU*** LOP

Store CPD*** SCP |

Advance Program Level APL

Halt Program Level HPL

Start 1/0 SIO Command

Coramand CPU*** CCP FPormat**

Jurap On Condition JC

* For information conceming specifications for the use of

these instructions with the Model 10, see the JBM System/3

. Model 10 Components Reference Manual, GA21-9103,

or with the Model 15, see the (BM System/3 Model 13

Components Reference Manual, GA21-9193.

** See Machine Language Instruction Formats in this

appendix.

Appendix A. Machine Instructions 47

EXTENDED MNEMONIC CODES

fustruction Mnemonic Operation Code G Code

Move Hex Character (MVX}

Move to Zone from Zone MZZ. KOO’

Move to Numeric frora Zone MNZ KO?’

Mave to Zone from Numeric MZN XO

Move to Numeric from Numeric MNN OS’

Branch On Condition (BC}

Branch B AST -

Branch High BH BS”

Branch Low BL X82’

Branch Equal BE X‘BE

Branch Not High BNH OF

Branch Not Low BNL XO?’

Branch Not Equal BNE AOL

Branch Overflow Zoned BOZ x88"

Branch Overflow Logical BOL KAD’

Branch No Overflow Zoned BNOZ x08’

Branch No Overflow Logical BNOL 20"

Branch True BT KO’

Branch Faise BF x90’

Branch Plus BP BA"

Branch Minus BM RB?’

Branch Zero BZ, XBL?

Branch Not Phis BNP X04’

Branch Not Minus BNM AB?’

Branch Not Zero BNZ, AOL

Jump On Condition (IC)

Jump J X87

Junip High JH XB?

Jump Low IL BQ”

Jump Equal JE XSL

Jump Not High INH x4’

Jump Not Low INL KO?’

Jump Not Equal INE ROL

Jump Overflow Zoned JO’ BS”
Jump Overflow Logical JOL RAD? -

Jump No Overflow Zoned INOZ x08’ «

Jump No Overflow Logical JNOL » erste

Jump True JT x10’

Jump False IF KO’

Jump Plus JP BA?

Jump Minus JM X82”

Jump Zero Iz BL?

Jurap Not Plus INP x04’

Jump Not Minus INM XO?’

Jump Not Zero INZ KO

Command CPU (CCP—Model 15 only) |

Supervisor Call S¥C ALO

Assembler Language to Machine Language Relationships

The following charts show the relationship between a

machine instruction staternent as coded by the System/3

Basic Assembler Language programmer and the machine

language as generated by the assembler.

For example, the instruction coded by the programmer is

ZAZ FINAL(S),DONE(,1). From the second line of the

first of the charts we can develop the relationship between

the instruction and the machine code as follows (assume

PINAL ig a relocatable symbol with value X°13 1B’ and

DONE is an absolute symbol with value X*BA’):

Machine instruction statement

as pa to See a er

ZAL \Ad ALOR 4 ©6©6' 64a -eo f

Address Ai

co
ca
ia
in
ds
”

A
E
R
A

O
K
I
E

Five ‘pyte machine instruction generated by assemble

Used in this manner, the following charts show what

machine code reguits from a particular assembler language

statement, and vice versa, what assembler language format

obtains a particular machine code format.

The abbreviations used on the following pages mean:

Al Direct address, operand 1

AO rect address, operand 2

Di Displacement, operand 1

D2 Displacement, operand 2

Li Length of operand }

L2 Length of operand 2

Ri Repister I

R2 Register 2

RX Local storage register

i immediate data

j j |

Diso O2

lrom Ri

iB
ig | BA |

porn

Appendix A. Machine Instructions 49

Assembler instruction Format Machine instruction Format

Operation Operands Op-Code -Code Operands

Byte 7 Byte 2 Byte 3 Byte 4 Byte 5 Byte &

ZAZ AVILEDLAZIL2)} 04 i Lt, L.2-1 ; Address At i Address AZ I

. U I i
ZAZ AT(L1},D2(L2,R1} 14 f Lt-L2eb2-1] Address At j Disp D2 |

| 4 , from Ri
, : : i ;

ZA AT(L1}),D21L2,.R2} 24 Ld-L24: 12-4 i Address A1 j Disp D?
f arn £25 “ | ; j j from Ao j

} : : i H |
ZAZ DUL1,R1},A2ZIL2) 44 ' LtL21 12-1 i Disp D4 Address AZ

H t from Al i j a

|]
LAL DH{L1,R1) BAU? R41) 54 Lt-L2:L2-1 7 Disp D1 Disp D2? i

. i i fromRi | trom R4

'
LZAZ DTLIR1) D2L2,R2) 64 i LY-b23h2-1 § Diso OT { Olso D245 |

, i | from Ri, from R2 i
| H t

ZAZ D4(L4,A2),A2(L2} 84 f LIL2+L2-1) Disp D1 1 Address A2 |
i ' | from R2 i ; i

. | {
ZAZ DOULA?) D2IL2 AY} 94 i Li-L24b2-1 Disp D4 Disp O2 H

i I from 2! from At

' a |
LAZ D1{L.1,R2),D2(L2,R2} Ad Li-L24 12-4 Disp 04 Disp D2 {

. fram RZ , fram R2

i ; i i 1

NOTES:

ff Lt or 12 is not specified, the implied length is used.

Hf BD or D2 is relocatable, the assernbler computes the displacement based on the USING instruction.

Assembler instruction Format Machine instruction Format

Operation Operands Op-Code O-Code Operands

Byte 7 Byte 2 Byte 3 Byte 4 Byte 5 Byte &

£

AZ ATLUAZLS | 08 | LtE2 $21! Address At | Address A2
i j] ' :

AZ ALI), DULZA 16 f LPL2I L241, Address At isp D2 | |
; i i "from 84} |
t E i }

AZ AtiL1},D2(L2,82) 26 LL ; L211 Address Ad i Disp D2

i i j | frorn RZ |

4 j } i

AZ O1(L1,R1) AZIL2) 4G PF Lt-L2 412-4 ' Disp D4 Address A2

| t [from RA t |

|
AZ DI{L1,A1},O2(LZ,.RA1 56 LELZEL24 P Disp Bt | Dise D2] | !

| i i fromPRt 4 from Aa |

i j i |

AZ DUL1,A4},D2(L2,72} &6 LIL2 1424 “Bien DI Disp D2tt

| } | from Fi i fram R2

;
AZ OVLT AZ ARLa} 86 Lt-L2 } L24 Disp D1 y Address A2

; , from R2 4 i

4 3

AZ DHL, RZ}, O2IL2, AV 96 PULTL2 L211 Diss 1 Disp D2E |

i ‘ , from R2 , from R1 i

{ i ; } i

AZ DiiL1,R2},02(.2,R2} AG rT L2iLe-+©=6 Disp D1 | Disp D2

| ' | fromAg it from R2
t t i | |

NOTES:

if Li or LZ is not specified, the implied length is used.

if OT or D2 is relocatable, the assembler computes the displacernent based on the USING instruction,

Appendix A. Machine Instructions St

Assembler instruction Format Machine Instruction Format

Ceration Operands On-Code O-Code Operands

Byte 7 Byte 2 Byte 3 Byte 4 | Byte 5 Byte 6

4 4 £ 4 !

Sz AUL1)AQL2} O7 PLGA L2-4 | Address AT | Address A2
i i i

Sz AML1),D2L2.A1} 17 jf LILZILO4 f Address At Disp D2 1 |
' i . from R4

i i
8Z AI{L1}, D2(L2,82) 27 fo it-tetiad | address At p Oisp 21

; i i from Ry
: f 4 i

SZ DiL1,R1}),A2(L2) 4? P LPL 27 L249 Disp D1 Address A2
' i ' from At | '

|
Sz Ot (L4,R1},02(L2,91) 57 f LI-L2/L24 f DisoOt | Disp p21]

i j , fromPRi ft from R14
i

j 5

SZ D1L1,R1),D2(L2,R2) 87 rTPL2tLaa | Disp bi! Disp D2]!
_ from et | from Ra]

i , { j |
Sz DLR?) AZIL2) 87 L442 12-7 | Disp D1 | Address AZ |

{ ' | from R2 i

|
$Z DI(L1,R2},D2(L2,R4) 37 POLPL2. baa F Disp Dt y Disp D2] f

| : i from R2 , from Rt
;

Sz D1{L1,A2),.02(L2,R2} Al TT L2 L249 Disp 1) Disp Del |
E frome? 1 from R21

i i i i i
NOTES:

If Ld or L2 is not specified, the implied length is used.

if D4 or D2 is relocatable, the assembler cornputes the dispiscement based on the USING instruction.

Assembler Instruction Format Machine instruction Format

Operation Gperancds Op-Code G-Cadde Operands

Byte 7 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

3 a r 2 £

MV X ALA? os , 4 | Address Al | Address A2 |

; ; i :

MV x AT, D2LAY 18 ay _ Address At Disp D2 |
i , ; i fram RI

i i i ' {

MVX ATH) O20R2) 28 ; i | Address At Disp D2] |
‘ | from RJ

{ . i i

MX DAD A2 4B —_ Mpisp BT | Address A2 |
‘ i fromR1, i

, ' ' i {

MV x D1E_R1),D2UR1 58 "4 , Disp Ot f Disp D2YI
I from At, from Raf

j } ' ; i

MYX DIL R1),D2LR2} 6g ft [Disp D1 | Disp DZ
i i frarn RA i from R2

; 3 5 |

MAY X D1U,A2},A2 88 -_ Disp D1 | Address A2
; | from R2 i

| |
MYX O1,A2),D2R1) 98 rt f Disp Ot » Disp D2iy

from RZ from Ri
' i i {

MYX D10,R2},024,R2) Ag _ TTisp D1 |) Disp D2t!
| from A2 | from Raf!

i | i i {

NOTES:

i may be specified on either operand, and must have the value X’00’.X’‘G1’,K’G2", or K’O2’.

if OF or D2 is relocatable, the assernbler computes the displacement based on the USING instruction,

For the extended mnemonics of the MYX instruction, i-fleld information is inherent in the mnemonic and the [field

ig omitted from the operand field. See Extended Mnemonic Codes for the extended MVX and the associated QO-codes.

Appendix A. Machine listructions 53

Assembler instruction Format Machine instruction Farmat

Operation Operands On-Code 2-Code Operands

Byte 7 Byte 2 Byte 2 Byte 4 Byte & Syte 6

MYC ALTA oc Pood , Address A1 | Address A2 |
I ; i 1 3

MYC AI{LI),D2@0R1) ite po OT i Address At . Biso O27]
, { from Rij |

; i
MVC AViUL1) D20R3) 26 { Li-t i Acidress At Disp D2

i i , from R2

:
MVC DVLI,B1}A2 4c i Ltd P Disp D1 | Address A2 i

j | from Rit H ;

H ' A :
MVC O1(L4,R1) D20R4) 6c ; L1-1 i Disp D1 Disp D2 | |

{ from Rif fromArtl
: {

3 3 MVC OHLT AT) D20R2) BC ro Disp D1! Diep bell
i if fromAi | from R2 H
i j {

MVC DI{L1,R2},A2 BC PLE | Disp 01 Address A?

| from R2 , i
F i q t i

MVC DtHL1.A2),020R4} gC , Lat | Disp Dt | Disp D2 |
, froma?! from RA
j

MVC DHLtA2} De Aa) AC "bt Disp D1 | Disp Go tt
from R2 | from R2

i j i
NOTES:

Li may be specified on either operand: if L1 is not specified, the implied length of operand one is used.

if D1 or 02 is relocatable, the assembler computes the displacement based on the USING instruction,

Assemisier instruction Format Machine Instruction Format

Operation Operands On-Code O-Code Operands

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

§.

CLE ALA),A2 fob p Lt | Address Al | Address A2 |

j i t i |

CLC ALLY, D20R17} 7D | Li-i i Address Al i Disp D2 |

, i from RA

i

. CLC AT(L1}, D2UR2)} 2D f 44-4 j Address Al , Disp D2

i | fram RAZ
i | j

‘ ' : |

CLe DIIL1,RA2 4D hte | Disp Di } Address AZ |

. . from AY |)
a i

x

CLC D707, R1)020R1) 5D f oL4-1 i Diso Ot | Disp B2 | |

i ; from Rt | from Rf

| |
CLC DHLI,.R1),D2082) 6D L.t-1 I Disp D4 Dison D2

i from Ri : from R2

;
or D1(L1,R2),A2 8B H 14-1 i Disp D1 | Address A2

‘ { from R2 4 { {

: § } |

CLE D1{L1,22),D2(R1} 3D i Ltt Disp Di § Disp D2

{ fram A2 | from At!

; |

Cie DTiL1,R2} OS0R2) AD Li-1 | Disp D1 | Disp D2

| from R2 | fromR2
i

NOTES:

Li may be specified on either operand; if LY is not specified, the implied length of operand one is used.

if 01 or 192 is relocatable, the assembler cormputes the displacernent based on the USING instruction,

Appendix A. Machine Instructions 55

Assembler instruction Forrnat Machine Instruction Format

Operation Operands Op-Cade Q-Cade Operands

Byte 7 Byta 2 Byte 3 Byte 4 Byte 5 Byte 6

5 t

ALC AMLE) AZ , CE , bad , Address At | Address A2
¥ Ey H j

ALC AV(L1T)B20R4) 1E Poot j Address Ad | Disp D2 |

i i : i from Bay |

i g i]

ALC AT(ILE} DEL R?} BE j La-4 Address Al i Disp D2

. i | fron RZ |

i Hy i i

ALC DILiB1},A42 4E po bt Disp D1 | = Address A2 .
. * from Rt | i
' i i

ALC D71(L.4,R1), D20R1} 5E i Li-1 Disp D1 | Disp O24;

j , from Ri frorn Rid

3 ‘ j i

ALC OtL1 AD ,02(R2) 6E SOLA ' Disp Dt | Disp DZE-
| | fromRi, from Ra}!

; :

ALC Dt{L1,RA2AZ BE Lid ' Diso Ot 1 Address A2
1 from AZ j ; ,

;
ALG DV(L1.A2},.D2LR1} 9E i L441 ; Disp D1 Bisp O21)

' 1 from R2 from Ril i
{ i ;

i i ‘ 4! i
ALS BUL1,R2} D2CR2) AE Ltd ’ Diso D4 : Disp D2

' fromR2i from A2
i i i j

NOTES:

Ly may be specified on either operand: if Lis not specified, the implied length of operand ane is used.

tf D1 or D2 is relocatable, the assembler cornputes the displacement based on the USING instruction.

Py

Assembler Instruction Format Machine instruction Format

Operation Operands Op-Code Code Operands

Byte 7 Byte 2 Byte 3 Byte 4 Byte S Byte 6

* £ 2 s

SLC ALILEEA [OF bout | Address Al | Address A2
§ ' i 1 t

SLC ATIL1D2LR TF a4 t Address Al Disp BE!

i i i from RA |
i i .

SLC ATLA D2ZUR2) SE , bat i Address AY i Disp D2 |

' i i {i from RZ!

‘ t : |

SLC DULT,R1AZ 4F {4-4 i Disp D1 | Address A2

i i from mi | i
i j i i

SLC DiLTR1),O20R1) BE ; 4-4 Disp D1 y Disp D2}, |

: i from Ri, from Ri

i j ,

SLC DILi1,A1},D2UR2} 6F $4.4 l Disp 07 | Disp D2t!

from Rt} tram RQ}
; ‘ ; i

SLC OVILT RZ Ag BF Pde | Piso OY | Address A2
i from RZ |

|
SLC DiL1,R2}, 020714} oF po bi P' Disp Diy Disp D244

{ from R24 from Ri i i

i ' :

SLC D1(L.1,R2),D2,R2) AF Ltd i pisp D1 |) Disp D2 |

i i from R2 i from Fat | i

i { | | i

MOTES:

Li may be specified on either operand: if L1 is not specified, the implied length of operand one is used.

tf D1 or 02 is relocatable, the assernbler computes the displacement based on the USING instruction.

Appendix A. Machine instructions u
y

Assembler instruction Format Machine instruction Format

Operation Operands Op-Code O-Code Operands

Byte 7 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

j i i 8
ITC AVLTLA? i OB , bt-4 ; Address At f Address A? |

g

, i i
ITC AULT, D2UR1 1B Po okt4 ' Address A1 ; Disp D2TE

: i F , from R4 i

H i -
iTc AT{L1} BD2iR2} 28 bo 44.4 Address Al Disp OF i

i . from RZ ft

TC DI{L1JR) A? 4B i 17-1 Disp Ot i Address A?

. from R14 j j
; t ;

ITC DiL1,A1},D21,44} 5B Pte | Disp D1 Disp D2 ty / °
j { from R14 from Rt j

i i i
ITC DT(Lt Rt} D2ORZ} 6B i L4-4 Ciso Ot | Disp D2 i

| from Ri, from Aa
i ‘

ITC DUL1,.R2},42 8B pL 4-4 i Disp D1 Address AZ
i j frorn R2 {
; ; t i

ITC DULI,R2) D2OR 4H} 98 p Lit ' Disp 1 | Disp D2 i
F 1 from 2 [from Aq ' i

. i
i { i

ITC DI(L1.FA2)D20R2) AB Ld-4 i Disp D4 ' Disp D2

1 tfomR2 from ROE!
£ 4 £

i { { i I
NOTES:

Qperand one must address the data field at the leftmost byte.

Li may be specified on either operand; if L1 is not specified, the implied length of operand one is used,

DT or 2 is relocatable, the assernbler cornputes the displacement based on the USING instruction,

Assembler Instruction Format Mechine instruction Farmeat

Operation Operancis Op-Code O-Code Operands

Byte 7 Byte 2 Byte 2 Byte 4 Byte 5 Byte &

ED ATILT}A2 OA ee 1 Address AY i Address A2 |

| ;
ED ATELTE_ DOOR) TA L4d-t Address Al ' Disp D2 ;

i i _ fram Ri

. i ; i ‘ i

ED AIL} DeCR2) 2 » ES) Address Al * Disp D2 |

{ ‘ i from RZ |

: ; i

ED B11 Fi) AZ 48, 7-1 : Disp D4 Address AZ

i | from At | i

. { i |

ED Di{L1 Ft) b20R4) BA , ba Disp 14 Disp D2 j {

. fram Fl from Fi i

i ‘ i

ED D1(L1,21),D2(R2) GA fiat “Disp Dt | Disp D2|I
' from Pi, from Ray ft i

} ¢ i

ED DI{L1,B2A2 BA Let | Disp D1 1 address A2
from R2 |

¥
5

?

ED DLT Ae) DeZOR1) oA i 7.1 | Disp 094 : Disp D2 j

‘ , from R2 i from Ri i

}
£ Z

ED 94111 .R2},020,82) BA , a Disp D1 | Disp D2]!
' fom R2 | fram R2i]

i i i } i

NOTES:

Li may be specified on either operand; if L.7 is not specified, the implied length of operand one is used,

tf D1 or D2 is relocatable, the assernbler computes the displacement based on the USING instruction,

Appendix A. Machine Instructions 59

Assembler Instruction Format Machine Instruction Format

Operation Operands On-Cacde G-Coce Operands

Byte 7 Byte 2 Byte 3 | Byte 4 | Byte 5 Byte &

£ & 4 j

MMVI Aq [3c Zz I Address AY } ip

MMVI DIGR 7C ; i i Disp 01 ' i |
' i from R4 i I
. H j i
f fannnnn- { MVE BIGA2h BC Disp D1 | | i ;
i from AZt | |
f I i i |

NOTE:
“

tf D1 is relocatable, the assembler computes the displacement based on the USING instruction.

Assembler Instruction Format NMigchine Instruction Format

Operation Operands Op-Code O-Code Operands

Byte 7 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

, t * { Cui Ait | 30 a Address At ! a)

j |
Cli BICRAL! 7D i ' DispD1} 4

; i fromRi} 4 i

i | |
CL DICR?) BD f j Disp 4 i i

, } from R2 j

| i i i
NOTE:

if OF is relocatable, the assembler computes the displacernent based an the USING instruction,

Assembler Instruction Format Machine Instruction Format

Operation Operands Op-Code O-Code Gperands

Byte 7 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 -

$ # z

SBN At] [3A i 4 f Address At ; iT

SBN BICRT | Th { of y Disp D4 | | .
i yfrom AEP j | *

SBN DILR2}I BA j Disp D1

from R2 i i
£ 4

i i i i i
NOTE:

if D7 is relocatable, the assembler computes the displacement based on the USING instruction.

60

Assembler Instruction Format Machine Instruction Format

Operation Coerands Op-Code O-Code Operands

Byte 7 Byte 2 Byte 3 Byte 4 Byte & | Byte 6

A é. x

SBF ATs [3B fj i Address Al , if
i i '

SBE O1GR1 | 72 —_ i BispOty |
{ j fram RA ; i i

|
SBF Di.R2)! 88 ' i Disp D4 i , |

, from R2 j | }

i ki i | i

NOTE:

if Ot is relocatable, the assembler computes the displacement based on the USING instruction.

Assembler Instruction Format Machine Instruction Format

Operation Operands Op-Code O-Cade Operands

Byte 1 Byte 2 Byte 2 [Byte 4 Byte 5 Byte 6

4 2 i é

TBR Ai,! 1 38 it i Address At | i

j i i

TBN DIGRL! 78 i j i Disp Di i ;

5 i from Ri |

; }

TBN 42)! BS —_ ; bise Di
; from Ro i

i t j j i

NOTE:

if D1 is relocatable, the assembler cornputes the displacernent based on the USING instruction,

Assembler instruction Format Machine Instruction Format

Oneration Operands Op-Code O-Code Operands

Byte 7 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

TBF AL! [39 i I Address At 4 “|! :
; i i ' i
£

TBF DICRV 76 a PBepot) | |
i from Rd ‘ {

TBE D1GR2)1 Bg a i pPisp DT} 4 i
| fromm RZ i } i

ij i i { i

NOTE:

tf D1 is relocatable, the assembler computes the displacement based on the USING instruction.

Appendix A. Machine Instructions 6 ; &

Assembler Instruction Format Machine ingtruction Farmat

Operation Operands Op-Code O-Code Operands

Byte Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

i ; i i ST Ai,RX 1 34 , RX Address At! iF
j . ;
' : f

ST DILR1AK 74 RX Disp bt ¢ i [
H 4 124 ‘ i from 4 ; H

; | ST DICLR2).AX B4 i RX i Diso D1

j i frare R2
j i i i i

NOTE:

if D1 is relocatable, the assembler computes the displacernent based on the USING instruction.

Assembler fnstruction Format Machine instruction Format

Operation Operands Op-Cade O-Code Operands

Byte 7 Byte 2 Eyte 3 Byte 4 Byte 5 Byte 6

a iH HT

L ATAX 135 , AX i Address Al. \, |
, 4

4 j {

L DILRALAX 75 1 RX , Dspbtt |
;, from Ri i

f t |

L D1(.R2),.RX a5 PRX Miso OT] y
from RZ) 4 ' ' i

i i i i i
NOTE:

if D1 is relocatable, the assernbler computes the displacernent based on the USING instruction,

Assembler Instruction Format Machine instruction Format

Operation Operands Op-Code O-Cade Operands

Byte 1 Byte 2 Byte 3 Byte 4 Byte & Byte 6

{ j
A ALAX 136 ' RX I Address Al , iF

? 3 {

$ j
A DIGRI,AX 76 ' Rx ; Disp Br p }

, from RG

A D1UR2).AX B6 PRX loisoot | !
| i from Fe | |

i i i { i
NOTE:

tf D1 is relocatable, the assembler computes the displacement based on the USING instruction.

Assembler instruction Format Machine instruction Format

Operation Operands Op-Code O-Code Operands

Byte 7 Byte 2 Byte g Byte 4 Byte S Byte &

BC Ai, ico i ; Address At , i!
i ' ' j

BC OUR} BO , | , oisp OTE | {

i from RY f i

, 4 j H

BC DIA EO "4 ' Disp 04 '
i | from Re

t i i i i

NOTES:

Hf Of is relocatable, the assembler computes the displacement based on the USING instruction,

See Extended Mnemonic Codes for the extended branches and their associated Q-codes.
For the extended mnemonics of the BC, the second operand (-field) is not used since the information is inherent in the mnemonic,

Assembier instruction Format Machine Instruction Format

Operation Operands Op-Code O-Code Operands

Byte 7 Byte 2 Byte 3 Byte 4 Byte 5 Byte &

THO Ais ici to "Address Al iT i

i i i |

TIO DIL R41, 4 tof 1 Disp D4 j i i

f { from Ri f } i

; i '

TIO DIR)! Et a i Disp DIL 4 ;
' fram A2i | f

i i j i i

NOTE:

if D4 is relocatable, the assernbler computes the displacement based an the USING instruction.

Assembler instruction Format Machine Instruction Format

Operation Operands Op-Code O-Code Operands

Byte 1 Byte 2 Byte 3 Byte 4 Byte S Byte 6

{ 4 4 { é

SNS At! [30 Address At iF '
{ { .

t f i

SNS DICR1 | 70 Poi [Diso 04 ‘ '

i , from Al
: i j j

i

SNS DILR2) 80 a , Bia |
: ' fram RZ i |

' t i i i

NOTE:

if D1 is relocatable, the assembler computes the displacement based on the USING instruction.

Appendix A. Machine Instructions 63

Page of SC21-7509-6

issued 24 June 1977

By TNL: SN21-5536

Assembler instruction Format Machine instruction Format

Operation Operands Op-Code O-Cade Operands

Byte Ft Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

Lb £4. i }

Lio Ai, ; 31 i Address AL I '

; i j
LI DiLR Fi a ; Disp bIy |

, from R4 i j

j i i
Lio D1LR2) 1 87 , | , Ose OT]

from R2 .

NOTE:

{ff D1 is relocatable, the assembler computes the displacement based on the USING instruction. .

Assembler instruction Format Machine Instruction Format

Operation Operands Op-Cace O-Cade Operands

Byte 1 Byte 2 Byte 3 Byte 4 Byte & Byte 6

4 zg

LA AARX i C2 , RX Address At fy
t ; t

‘ j
LA DiLR1,AX D2 / BX { Disp DiE |

| i from Ri i i

j : { j i
LA DIYLRZ) AX E2 RX Diso 04 i i

: frermn R2
j ' i | |

NOTE:

ff C1 is relocatable, the assembler computes the displacement based an the USING instruction,

Assembler instruction Format Machine Instruction Format

Operation Operands Op-Code O-Code Operands

Byte 7 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 .

LCP ALBX (SF , 8x , Address Al I i
7 '

§ 4

LCP DICRTRX TF RX Disp DTT |
i i fromRit | I o

i i f i |
LOOP O11R2) AX BF j RX Disp Dt { i

‘ ' from R2

NOTES:

The Model 15 LCP instruction can also be generated on the Model 12 through the

SLOP rnacro instruction; see /BAF System /3 Madels 10 and 12 System Controt

Programming Macros Reference Manual, GO21-7562.

if OT is relocatable, the assembler computes the displacement based on the USING instruction.

64

Agsernbler instruction Format Machine Instruction Format

Operation Operands Op-Code OCade Operands

Byte 7 Byte 2 Byte 3 | Byte 4 | Byte & Byte 6

£ a

SCP ALRX Pe , Ax [Address Al a :
{ i i

SCP DILRILAX FE , AX j Bise DIE, | i
4 , from R4 ; i {

; \ |
sep D1LA2)AX BE PRX (Beep1] |

, from 2] |

NOTES:

The Model 15 SCP instruction can also be generated on the Model 12 through the SSCP

macro instruction; see (8AM System /? Models 10 and 12 System Control Programming

Macros Reference Manual, GO21-7562,

if O41 is relocatable, the assembler computes the displacement based on the USING Instruction.

Assembler instruction Format Machine lastruction Format

Operation Operands On-Code O-Code Operands

Byte 7 Byte 2 Byte 3 | Byte 4 Byte 5 Byte &

H

APL iF an Foo | | '
i x 3 H

NOTE:

The APL. is 3 NG-OP instruction on the Model 15.

Assembler instruction Farmat Machine instruction Format

Operation Operands Op-Code O-Code Onperancds

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

HPL 12 [Fo a iit

Assembler instruction Format Machine instruction Format

Operation Operands Op-Code O-Cade Operands

Byte 4 Byte Zz Byte 3 Byte 4 Byte 5 Byte 6

y j 4
S10 i142 | £3 _t2 iit Fg

Appendix A. Machine Instructions 65

Assembler instruction Format Machine instruction Format

Operation Operands Op-Code Q-Code Operands

Byte 7 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

4 i i cep HR | F4 RX Bay |
; } i i |

NOTES:

The Model 15 CCP instruction can also be generated on the Model 12 through the $CCP

macro instruction; see (8M System /3 Madels 10 and 12 System Contra! Programming -
Macras Reference Manual, GC21-7562.

For the SVC form of the CCP instruction, the Q-code is inherent in the mnemonic and the AX field is omitted “

from the operand field. See Extended Mnemanic Codes for the associated O-cade. *

Assembler instruction Format Machine Instruction Format

Operation Operands Op-Code &-Code Onerands

Byte Yt Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

n - t fee i i | JC Ai} LF3 . i
t i ! { i

“Wf the first operand is absolute, this value is placed in byte 3.

if the first operand is relocatable, the displacement fram the next sequential instruction to address AT is placed in byte 3,

NOTE:

Far the extended mnemonics of the JC, the second operand {I-fieid}) is not used since the information is inherent in the mnemonic.

See Extended Mnemonic Codes tor the extended jumps and their associated O-codes.

Appendix B: Assembler Instruction Reference Table

Operation Entry Name Entry Operand Entry

BC Any Symbol or Blank One operand entry containing: Duplication Factor, Type, Length, Constant.

DROP Blank Specitied register (1 or 2}.

DS Any Symbol or Blank One operand entry containing: Duptication Factor, Type, Length.

EJECT Blank Blank.

END Blank A relocatable expression or blank,

ENTRY Blank Any relocatable name entry found in the current program,

EGU Any Symbol An expression.

exraN | Blank ORE RE ences
iCTL Blank Two decimals in the form of 6,5.

iSEG Blank Blank or two decimal values in the form L, R.

ORG Blank Blank operand or an expression (A) optionally followed by two absolute

expressions in the form A,B,C.

PRINT Blank Model 10 Disk System: One or two entries from DATA, NODATA, ON,

OFF,

Model 12 and Model 15: One to three entries from DATA, NODATA,

GEN, NOGEN, ON, OFF.

SPACE Blank Blank or a decimal value.

START Narne or Blank A self-defining value or blank,

TETLE Name or Blank A sequence of characters enclosed in apostrophes.

USING Blank A relocatable éxpression (V} and an index register {A} in the form V,R.

Appendix B. Assembler Instruction Reference Table 67

O
O

Appendix C: System/3 Assembler - Source Language Error Codes and Diagnostics

Code THagnostic
Expo aration

NOT INVALID NAME LENGTH Name field entry greater than six characters

NO? INVALID CHARACTER IN NAME Name starts with non-aiphabetic or contains an invalid character

NOG NAME NOT ALLOWED ON THIS Mame field entry not allowed on this instruction

INSTRUCTION

NGA REFERENCE TO UNDEFINED SYMBOL The referenced symbat is not defined in this program

NOS NAME MISSING FROM Name field entry missing from EQU instruction

INSTRUCTION REQUIRING ONE

NOG PREVIOUSLY DEFINED SYMBOL Syrnbol has been previously defined in this program

NO? MOOULE NAME MISSING START instruction missing, or START i nstruction present but name field

entry imodule name) missing. Assembler assigns the default maduie:

name ASMOBJ.

Oot INVALID OPERATION CODE Undefined operation field entry

O02 INVALIO ORIGIN Attempt to ORG to a value fess than the initial value of the location counter

O03 INVALID OR ILLEGAL [CTL Operand error on ICTL, or ICTL not the first statement in the program.

UCTL treated as last source staternent in program)

Oo4 INVALIO START INSTRUCTION START instruction encountered after location counter is initialized

O05 LOCATION COUNTER ERROR Location counter overflow (greater than G5536} or atternpt to reference

the location counter at 65536

O06 MISSING END STATEMENT END statement missing from the program

POF INVALID OPERAND DELIMITER An operand fleld syntactical detimiter is either misplaced or missing

PO? INVALID OPERAND FORMAT The operand field is not of the proper format for this instruction

POR MISSING OPERAND OQperand field entry missing from instruction requiring one

PO4 INVALID SYNTAX IN EXPRESSION Violation of one or more expression syntax rules

POS EXPRESSION VALUE TOO LARGE inal expression value not in range -2°8 to 216-1

POG INVALIO OPERAND
CGne or more operand entries do not meet specifications for this instruction

PO? ARITHMETIC OVERFLOW intermediate expression value notin the range ~224 49 3244

POB ADDRESSABILITY ERROR Relocetable displacement outside the range of USING instruction

POS REGISTER SPECIFICATION ERROR index register specification not 1 or 2

P10 INVALID CONSTANT Error in constant specification on DC instruction

Pi INVALID CONSTANT TYPE Data type specified on DC/DS ts not valid

PI2 INVALED DUPLICATION FACTOR Error in duplication factor specification on NC/DS

PES INVALID LENGTH SPECIFICATION Error in fength specification

Pi4 INVALID STATEMENT DELIMITER The column following the statement field is not blank

PIS RELOCATABLE MULTIPLICATION & relocatable term used in multiply operation

PIG RELOCATABILITY ERROR A relocatable expression is used where art absolute expression is required,

or an absolute expression is used where a relocatable expression is required

Pi? INVALID SYMBOL
invatia character in or invalid length of a symbol in the operand field

PIS INVALID SELF-DEFINING TERM Errar in the format of a seif-defining term

PIg SELE-DEFINING VALUE TOO LARGE Value of self-cefining term is outside of range 218 tg 316-4

P20 INVALID IMMEDIATE FIELD immediate field not in range KOO’ to X'FF’

P24 INVALID DISPLACEMENT Absolute displacernent not in range 0 to 258

Appendix C. System/3 Assembler — Source Language Error Codes and Diagnostics

o
N

Cade Diagnostic Explanation

P22 INVALID EXTAN Symbol is invalid or already defined in the program or subfield
is invalid,

pong FOO MANY ESL RECORDS More than allowed number of EXTRN and ENTRY statements

were found in the program, This count includes multipte
EXTRNs and ENTRYs, ENTRYs with valid symbols which are
not defined, and EXTRNs with valid symbals which are defined
in the program. See ESL Table Size in Part Hi. Programmer's
Guide,

Assembler subroutines can be linked to an RPG Hf programa.

Appendix DB: Assembler Language Subroutine To RPG Hi Linkage

The RPG Ll program passes parameters as it branches to

the assembler subroutine. To write a subroutine that will

be linked to an RPG IL program the following rules must

be used:

Referencing a Table or Array in an RPG ft Program

The following parameters (symibolic form af code

generated by the compile ry are passed by RPG [f when a

table or array is to be referenced:

i. The name of the assembler subroutine must be B SUBRRX

SUBRxx. xx can be any valid alphabetic characters

for user-written subroutines. (Numeric characters DC IL1‘Entry length-1’

are reserved for [BM-supplied subroutines} The

name used must be the same as the name used in DC AL2Mleftmost address of table control field)

the RPG H program.
The subroutine can refer to the table or array defined in

2. Upon entry to the assernbler language subroutine, the RPG ff program by utilizing the control field created

the address recall register (ARR) contains a pointer for that table or array. This control field, one of which

to the parameters which represent the fields to be is created for each table or array built by the RPG Hl

referenced by the assentbler subroutine. The returo program, is in the following format:

point to the RPG TT program is the first byte after

the parameters.
Bytes Meaning

3. Tf the subroutine makes use of registers 1 and 2, the 1-2 Rightmost address of the first entry.

contents of these registers must be stored upon

entry to, and restored before exit frora, the 3-4 Rightmost address of the last entry.

subroutine.
5-6 Initlalized to rightmost address of first entry;

used at object time for rightmost address of

USING FIELDS IN THE RPG 11 PROGRAM the last looked-up entry of a table.

When linkage is effected from RPG Ii to an assembler 7-8 Length of an entry.

subroutine, three possible areas in the RPG U program can

be referenced by the subroutine. They are: field, table

or array, and indicator.

The subroutine can obtain the data retrieved from the last

RPC H table LOKUP by using the address in bytes 5-6.

To access the table or array itself, the address in bytes 1-2

must be used.

Referencing a Field in an RPG fi Program
Data used by the subroutine rnust be left unpacked for the

The following parameters (symbolic form of code RPG I program.

penerated by the compiler) are passed by RPG Hh when a

field is to be referenced:

B SUBRxx

pc IL 1‘Field length -1°

DC ALMrghtmost address of field)

Appendix D. Assembler Language Subroutine to RPG H Linkage 71

Referencing an indicator in an RPG Ul Program Linkage for 1/O Subroutines

The following parameters (symbolic form of code generated The following linkage is generated by RPG If to communi
by the compiler) are passed by RPG [E when an indicator cate with the user-supplied 1/O subroutine.
is to be referenced:

1. OTF (define-the-file) format:

B SUBRxx

By tes Deserip tion
DC &LI‘OG’

Q Device code (X‘00"}
DC XLI‘Mask for the indicator’ .

I UPSI mask
DC XLI‘Displacement to the indicator fram XR’

2-3 Attributes :
Note: The parameters passed to the assembler subroutine
are determined by the coding done in the RPG I] program. 4-5 Reserved for data management
For a description of this coding, see the JBM System 3
RPG H Reference Manual, SC21-7504, IBM System/3 6-7 Address of next DTF
Model 6 RPG Li Reference Manual, SC21-7517, or JAM
System /3 Card Svstem RPG H Reference Manual, 8-8 Reserved for data management
SC21-7500.

C-D Logical record address

RPG 1 LINKAGE SAMPLE PROGRAM 1 E Completion code

in this sample program, the RPG Hi program links to the KAY = End-of-file
assembler language subroutine SUBRA (Figure 27). X40 = Controfied cancel (not
When control is returned to the RPG H program, the recognized by Model 10
character “A’ will have been moved into the field in the card system)
RPG Uf program. . S40 = Normal completion (not

recognized by Model 16

card system}
RPG It LINKAGE SAMPLE PROGRAM 2 F Operation

ACO’ = Get and put (model 16
In this sample program, the RPG LU program links to the card system only)
assembler subroutine SUBRB (Figure 28). The first X'8O’ = Get
parameters passed reference a table. The second parani- X49 = Put
eters reference an indicator. The subroutine refers to X20 = Update
both sets of parameters. The subroutine first tests the x10 = Close
indicator in the RPG Ef program. If the indicator is off,
control is returned to the RPG Hi program. If the indicator 16-11 Input 1/O address
is on, a character “C’ is moved into the last looked up
entry in the table. When control is returned to the RPG II 12-43 Output 1/0 address
program, if checks for a ‘C’ in the table.

14-15 Block length

1/0 SUBROUTINES [6-17 Record length

Subroutines that support input or output devices can also 18-49 Address of array DTT if array linkage
be linked to an RPG Hf program. These subroutines are is used
commonly referred to as RPG IL SPECIAL subroutines.

72

The address of byte 0 of the DTF will be passed to

ithe 1/O subroutine in index register 2. Bytes 3, 6-7,

C-D, and 10-17 are filled in by RPG Hi at compile time.

Byte E, completion code, is inserted by the 1/0 sub-

routine when control is returned to RPG IL. Byte F,

the operation byte, is inserted at object time. The

When an output operation is requested, the L/O subroutine

must move the data from the logical buffer (address in

bytes C-D of the DTF) to the physical buffer (address

in bytes 12-13 of the DTF). The two addresses are the

same in the Model iG Card System. Bytes 0-B are unused

in the Model 10 Card System.

information in bytes O and 4-B miust be available,

unchanged at close time, for data management. . 7 ., ~

e - The 1/0 subroutine must do its own open when the first

call to itis issued. Lt must also do its own close to the

The DTT (define-the-table) is used for array linkage. file on a close call.

DTT format:

nti if a dual 1/O is requested, the second area will be immediately

. Bytes Description ' ot

° . p behind the first (Model 10 Disk System, Model 12, and Model

0-1 Address of rightmost byte of the first 15 only).

element of the array.
; . - ;

ferme y The 1/G subroutine cannot be overlaid in the Modei 10 Disk

System, Model 12, and Modei 15.

2-3 Address of rightmost byte of the last

element of the array. Sequential processing only is supported.

45 RPG last LOKUP element. When an 1/O subroutine issues a halt, three halts should be

. a displayed as follows:

6-7 Length of array element. pity

i. The first halt issued should be the FF halt reserved

2. The 1/O subroutine must save and restore the registers by RPG I for SPECIAL I/O subroutine usage.

altered in the routine. Control should be returned to

the address in the address recall register (ARR).

2 The second halt should be the last two digits of the

subroutine name.

Note: The combined get and put operation code, X°CO’, is

utilized by the System/3 Model 10 Card System only. The 3. The third halt may be any valid halt that can be

System/3 Model 10 Disk System, Systern /3 Model 12, and

System/3 Model 15 use alternate get and put operations to

accommodate combined files. When coding an 1/O subroutine

to be used on either system, be certain to consider this fact.

displayed.

When an input operation is done, the | /G subroutine must

move the address of the physical buffer currently being

used to the logical buffer address location in the DTF (bytes

C-D). In the Model 10 Card System, address bytes 10-11

will be the same as bytes C-D (one physical buffer).

mo
d

co
ed

Appendix D. Assembler Language Subroutine to RPG Hi Linkage

S
s
a
o
u
r
c
i
e
d

48}]8
3
A

I
S

O}
P
O
U
T
!

O
R
O

th hy

ma

tam ee

ee
ty
ie]

wie
Da!

Ea’
<i

se
Sea

Rea

wey
Rs,

pry
aon 7

ait
si

fw.

ao

ain
Pies

s
Sar
ay GY 2

Po
CaP dice

(GHBHIZiy
“da

9
aes
P
e
n

3a
Wdans

=

Bene ne em Poe

t i
.

asi
U2)

Sit
WILUSAS

iG
OL

WANT
OL

R
A
G
A

 od

=
a OSE, Syme

oe

ee

gh
S
U
N
W
S

B
i
S
t
V
N
N
 I

isdK |
S
T

' 2

R
O
S

A
B

w
e

E
R

CH
IS

R
D

Re,
BE

Lk
OL

Se
ee

EE
ty

5¢
GE

SG
WG

19
9
8

N
S

r
e

CG
cM

19
OG

BS
Hs

13
98

G
R

9G
C5

CS
E
T

Se
Be

iy
B
w

G
p

OF
ce

ee
Ae

O
R

OE
OE

LE
BE

OE
S
E

LE
Le

UE
S
A

B
L

LZ
RM

G
e
e

C
E

te
12

G
R

Gi
Gi

2h
Bd

Gk
HL

Ee
fre
w
u

€

g
i

tg
¢

c
e
!

euiags
D
U
E

O
R
R

euspy
i

AN40E31
84S

“ik
4

7
24

‘
arr

i
H4BNCMION

7}
Ogi}

sua
Ad

peyesaush
Fi

ri
3

FN
OWL

ETF
eD

i
i

i
|

{
H

|
I

MOM
P
n
,

°
|

eed
|

e
V

oOud
i

a
“4

w
r

:

a
i

Bo
sicreaisam

o
BSPOo

JO
u
g
h
e
l
a
s
a
i
d
a
s

S
H
O
G
W
U
A
S

pwd
i

i
t

|
i

{
|

|
w
e
a
n

|
SMINONDE

|
H
O
O
N

i
.

i

WEE

w
i
6
y

G
P
O
]

a
q
u
i

C
/
a
i
s
d
s

p
I
y

7. Assembler Language Subroutine (SUBRA) for Sample Program 1

weiboid
1]

O
d
k

*»y
a

winsBoud

if
S
q

Ag

V
W
H
E
N
S

0}
passed

poulLuEg

4
Figure

saspewueied

48}}8
a2Aq

W
s

OG}
PSUUNIS!

[
O
4
U
O
D

g
e

Ge
oe

Te
We

12
OG

BY
L
k

M
G

HM
ES

LE
46

4
FONT

25
48

99
09

CS
TS

(
E
O
D

OF
OF

62
WH

SG
$5

EN
ES

39
OR

Oe
BP

Le
OF

Qe
Be

Ee
ce

se
Og

GE
GE

40
OF

QE
oe

EK
RE

20
QE

Se
BE

16
Bt

By
ee

Ce
22

4E
Ge

BE
Ai

Ls

iH
Hf

Shoot
et
i
e

OL
®

B
E
L
E
N

S
L
e

jAsiua
jo

yxBuel}
E
2
7

OO

Ligg@y 4]
Aue

dn-paxooj
ise]

46 Ssatppe}
Ziv

Od
{Asjue

168]
$O

SSBspPe)
T
T
Y

a
q

{As.UB
US41p

JO
SHEIPHE)

O
Y

5

BIGEL
204

P]SHE
j
O
N
U
O
D

¥
ry

;
i

r
T

'

+
4

a
Y

.

i

JOPOIPUL
UB

AO}
Passed

sialowWesed
(2)

.
e
a
S
E
a
n

;
Seeeme

‘4
me

%
a

apgey
&

10}
passed

sisqeuieieg
QQ)

Pe
bid

det
e
e

Ee
{|

|
SNOS

¢

j
Pid

da
PL

dig
x

nie
el

Ls

7
SEGRE

e
H
a
e

:
eta

[WATT
SAWS

ionenen

i
|

y
o
y

Piet
ies

.

}
S
A
G

'
'

e
h
e
u
t

s
u
e

T
A
s

T
e
n
e
n
s
.

if
So

ug
fi

MOOT
Lae

Z
K

va
i:

ao
H
E
A

O
Y

Melt
WORLNOD

139)
|

ty
17

Pr
L

08.
b 1K

sab

(
G

B
O
L
V
O

T
G
A

|

ad
on

B
A
R
S

;
o
O
L
I
X

3
j

aed

ons
THOLYCIGNT

s
e
a

|
a
t
r
i
a
l

(ONE
SS

c
o
u
p
e

weentitean
>

OG:

;
;
5

4
H
a
i

a
c

B
a
y
t

M
i

;
F
A
G

r
?

T
E
V

H
S
S
}

A
d
y

i

|

|
{
p
i
s

P
O
r
p
U
O
D

B
y
Q
e
}

4
O

S
S
O
I
D
P
e

P
S
O
U
L
T
S
H
)

2
4

yf
l
a
r
,

w
r
y

iti
S5oucdy

V
I
L
A

con
o
e

|
Lie
k
e

R
e
e
c
e

G
A

3as
Ce

rey
;

Prery
el

wey
SAPS

e
e
n
s

2
B
r
a
g

iSaeaeee
(©)

. S
a
n
s

8

i
n

a

P
T
T

N
M
G

GAWS
D
L

guy
e
e
s

g
t

m
e

-

ane
an

1S
GL

ENGWO
R
O
N

anne
V SaRF

NCS

Pra
|

S
s
i
p
u
a
a
y

Bou
Sw

v
e
i

AWS:
M
a
r
i
e
l
a

fis
<
¢

ety
au)

AQ
pei

:
:

'
'

i
:

S
S
T

w
e
n
s

.
a
p
o
o

po
U
O

U
e
s
o
I
d
e
s

T
H
E
O
C
R
U
A
S

i
P
o
y

i
i

H
O
L
A

Pah
S
S
R
I

:
i

7

Ga
WELESAS

SST
O
L

N
o
n

Gul
G
N

G
e
a

i

w
e
b
e
r

1
O
d

AUUEESOREUEERRESESSORRARRERESEEEES
bb

gaubive:
SeyWADAT

gal.
Sci

| BBBNS
sine

B
o
e

OG
wR

OCW
OS

18
OR

ma
ag

Sl
Ge

ws
CE

EL
1

3g
BO

B
o
o

WS
OY

Ss
C9

£2
0G

TA
Se

OG
2S

BE
GY

WG
OG

08
13

Ch
Ge

By
cy

WS
Gh

ey
te

oe
TF

Ow
be

BE
UE

WE
E
M

CE
BC

le
AE

Ae
BE

Le
Be

GS!
we

Le
Ae

12
Ge

Bs
Be
C
4

wa
GE
R
S
E

Mot
G

R
E

GD
S
e

€
f
b

P
e
e

P
a
a
S

P
r
e
c

c
w

w
a
r
y

A
M
D
A
B
A
V
A
i
R

1

O
B

L
I
D

a
e
s

'
|

i
\

i
|

:
i

o
n
e

|
S
H
O
U
D

A
S
A

|
a
v
a
}

v
a
n
m
v
u
n
c
u
s

|

30%
H

i
i

i
i

i
i

i
Risse

5D
i

D
A
R
I
N

a

wer
Oud

i

wing
Baypog

wQNATEY
C/UURAAS

Yess
R
E

wiewoud
if

S
a
y

AG

G
H
A
N
S

01
passed

;
O
N
U
O
D

Program 2 BRED} for Sample 7
sembler Language Subroutine (SU SS Figure 28. A

73
ssembler Language Subroutine to RPG UH Linkage

LIBRARY DECK GENERATOR PROGRAM (MODEL 16
ONLY)

The System/3 Model 16 Card System user can write assem-

bler language subroutines to be used as SPECIAL or EXIT
routines inan RPG Hf program. These assembler routines,
however, cannot be inserted directly into the RPG TT
compiler. The assembler language subroutine must
hist be assembled by the System/3 Model 10 Disk System

Basic Assembler and then translated by the Library Deck

Generator (LDG) program before it can be placed in the
RPG TI compiler.

The entire opetation, from writing an asserabler subroutine

to selection of that subroutine by the IBM System/3 Model

10 Card System RPG Mf compiler is outlined as follows:

1, The assembler subroutine is written by the programmer.

if standard control cards supplied by the LDG program

are not being used, the programmer must also code

control cards for the subroutine.

2. The assembler subroutine is assembled on the

System/3 Model 10 Disk System by the Basic
Assembler.

3. The LDG program is read into System/3 Model 10
Disk System storage. The *** parameter card,

assembler subroutine object deck, and blank cards
are placed in the MFCU.

4. The LDG program produces a deck of cards, con-

taining the subroutine, which can be placed in the

RPG Il compiler. The deck produced by the LDG
program contains the following:

Header card

Control cards

Text

O-card

End card

S. The deck produced by the LDG program may now

be placed in the RPG TI compiler deck. When an

RPG I program is compiled, this subroutine will be

selected, when required, just as any other compiler
subroutine.

The following material describes the information

needed to use an assernbler language subroutine in an

RPG Uf program. This material is divided into four major
sections:

Writing the assembler language program

Running the LDG program

Output of the LDG program

Example of a SPECIAL subroutine

Writing the Assembler Language Program

The following information must be considered when the

assembler language program is written.

Title instruction

The name field of the TITLE instruction rnust contain

OOGEB in cohurnns 1-5.

Cantral Cards

Control cards are needed for every assembler language sub-
routine, Control cards contain code, executed during
compile time, which determines whether the subroutine
should be included as part of the program being compiled.
Library routines are selected only when the execution of a
control card determines they are needed. In addition,
control cards are needed to ensure that the entry point for
the subroutine is placed in the proper location in core for
the RPG Hf compiler to find and use it.

There are two ways to get the control cards you need. In
some cases, you will need to code them yourself: in athers
Standard control cards are supplied by the LDG program.
If your subroutine is to be used as a normal SPECIAL or
EXIT routine, the LDG program will supply three control
cards. See Figure 29 for samples of these. When these
control cards are provided, a SPECIAL routine is selected
if bytes 12-13 of the file description compression matches
the identification characters of the routine, and if the
SPECTAL device code B‘Oxxx1G10 is present in byte 16
of the same file description compression. EXIT routines
are selected if the identifier in the library routine is the
Same as an entry in the symbol table (bytes 3-4) and if
byte 2 of the same entry contains bit configuration
E1100000. When these decks are selected, the address of
the entry point of associated object code is placed in the
symbol table entry, bytes 3-4 for an EXIT reference and/or
bytes 8-9 of the file description compression for a SPECIAL
reference.

You must code control cards for your subroutine when:

@ The subroutine is not a SPECIAL or EXIT routine.

® The subroutine needs a function nat provided by the
Standard control cards.

The following paragraphs describe several compiler resident
routines which can be used by programmer coded control
cards,

Coding Control Cards

There are three types of control cards each identified by

a special character in column lL. Each type performs a

different function:

@ Cards with aj in column | (l-cards) are usually used to

control the selection of a routine for an object program.

They also place the routine entry address in compile

time storage for use by the RPG Hi compiler.

® Cards witha K in column 1 (K-cards) are used only

when one routine from a set of related routines is to be

used in any job. A J card will determine ifany of these

routines are needed and if so will start the scan for K

cards which in turn control selection of the proper

routine.

@ Cards with an L in column 1 (L-cards) are used to pass

information from RPG 1 compile time core to a sub-

routine or vice versa. They are executed only if the

deck in which they appear has been selected for use with

the current program.

Control card identification characters must be defined for

assembly at X‘0000" and are placed in column | of control

cards. The only allowable characters are 3, K, L, and blank.

There should be one non-blank control card identifier

character for each block of code for a control card. The

blank is used as a delimiter between control card strings.

For example, DC BEBE CLIO KLLWLBLEL’ shows identi-

fiers for seven control cards and four control card strings.

The first is a 4-card string with identifiers ‘TRLE’ used.

The others are single card strings, each of which has an

VL? identification.

LDG identifies the control cards and assigns one control

ecard identification character to each one. The control

card strings are merged with the text cards for the routine

functional code in the following manner. The first control

card string is merged in front of the text, and one addition-

al contro! card string is merged into the text cards where

there is a break in the text caused by a DS or an ORG which

changes the location counter.

Each control card must contain executable code. Control

cards are coded in the order needed for the purposes de-

scribed above. Each must begin at X‘O0017': therefore, an

ORG to 23 or K‘0017' must precede the code for each card.

Appendix D. Assembler Language Subroutine to RPG Tf Linkage

Your control cards must contain instructions for calculating

the address at which your subroutine will be loaded. TO

caiculate the true entry address, use the current relocation

factor described here.

Label Address Function

RELOCF X'030C’ to

»O30D

Contains the current

relocation factor. ls

nodified when the end

card of the selected deck

is encountered or JIFAAI

is entered.

See Figure 29, Part 1, found at the end of this section, for

an example of the use of the current relocation factor.

The following paragraphs describe several compiler resiaent

routines which can be used by programmer coded control

cards.

Card Scan Routine reads the Hbrary deck until a J-card is

encountered. The routine has three entry points.

Label Address Punction

FBEAAL X*O31A’ Scans for J-card. When

one is found, control is

passed to that card. All

other cards are ignored.

FOEAAL X°3014 Clears S*OOER® to K‘OOFRP’

and X‘OO7C to X‘OO7F"

to hex seroes then scans

for T-card as JSEAATI.

JiBAAL X‘O30E Resets the relocation

factor to the next object

address and periorms as

J2EAAL.

K-Card Scan Routine has one entry point.

Label Entry Point Function

KIEABI] X’O320 Scans for K-card. When

one is found, control is

passed to that card. Al

other cards except J-

cards are ignored. fa

}-card is found, a halt

‘40° is executed.

we
t nd

Relocate Deck Routine has one entry point,

Label Entry Point Punction

RLEACL x*032C aise of continues

ocation of the current

de ck. Wi recognize and

execute L-cards and re-

organize and print G-cards.

Exits to JIEAAI when

end card is encountered.

Sean Kile Description Compressions Routine has two entry
points. This routine steps through the file description com-
pressions. 1{ returns a pointer to the next COMPression in

register 2. If the condition cade is high, the pointer is
valid. Any other condition indicates the pointer is invalid.

Label Entry Point function

FLRAEI B03 38" Initializes pointer to first

file description compres-

sion and sets condition
code,

PREAEI O33E" Points register 2 to the

next compression and

sets the condition code.

(Register 2 need not be

pointing to the last

compression, }

Scan Extension Compressions Routine has two entry
points and steps through the extension compressions and
returns a pointer to the next compression in register 2. A
high condition code indicates a valid pointer. Any other
condition cade indicates an invalid (undefined) pointer,

Label Entry Point Function

ELEAFi wO344" Initializes pointer to first
extension compression

and sets condition code.

E2EAF] XO344’ Points register 2 to the
next compression and

sets condition cade.

(Register 2 need not

point to last compression.)

Text Handling Ro utine builds up f ful te

x nose to XOODF | “ist the location of the punch bu

and this must be considered when using this area of core.

Label Entry Point function

BREAHT 0350 Forces any partial text

card to be punched.

STALAI BOUSSO’ Accepts a string of text to

be added to the current

text immediately fol lowing

the last text passed. Re-

quires a i-byte parameter

following the branch.

Parameter contains a

“place ement relative to

ito thes 1 nigth bor
g,

x
az

b
»

1S
 ea

C
U
 &

passed. The text stri ng

should be preceded by

this length byte which

contains the length of

text.

Wait On Punch Busy Routine:

Label Entry Point function

WYPUNI SO362" Returos when th previous

punch operation has been

successfully comple ted

and the buffer is not busy.

e te

4 rt
£

Tithe af Subroutine

The title of the routine must be a defined constant to be
loaded starting at X°O000". It rust be equal to or less

than 80 characters in length. a title is printed on the

RPG U compiler listing with the address of the entry point

of the routine if it is selected a at compile time.

- Routine Functional Code An OPTIONS card must be used to successfully assemble

the subroutine.

This code must be assembled starting at X°0000". The

code must contain a break in continuity (a DS or an

ORG which changes the location counter value) where

control cards are to be inserted.

Running the LDG Program

The following paragraphs describe a special parameter card

Assembling the Subroutine that must be used with the assembler deck, the OCL required

to load the LDG program, and error conditions that may re-

The assembler subroutine is assembled by the Model 10 sult.

disk system basic assembler. The OCL considerations for

assembly are discussed in Section Programmer §

Guide under the headings OPTIONS Statement and

OCL Statements For Assembler.

Appendix D. Assembler Language Subroutine to RPG Hf Linkage 19

Library Deck Generator Parameter Card {***}

A parameter card must precede the assembler generated

object deck to provide the LDG program with information

regarding output. Entries for the parameter card are as
follows:

Columns Entry Explanation

1-3 eee Three asterisks identify a parameter card.

4-9 SUBR xx These characters identify the subroutine. Substitute any two characters

for xx — the second may be blank, but the first must not. Note that the

LDG program will not diagnose an error in these columns.

10 , fcornma) Required.

11 5 Standard control cards will be provided by the LOG program for the subroutine

identified by the characters found in columns 8-9 of this parameter card. The

title, also extracted from this parameter card, will be assigned to the subroutine.
The entry point of the routine must be the first byte of the routine. GEB will be
forced as module identifier.

N Non-standard control cards will be supplied by the user as will identification

characters and title, (The format of this material may be found in Figure 29.)

lf N is specified, the title specified in this parameter card is ignored. Thus, if

Nis used, colurnns 21-96 may be left blank.

12 , comma} Required.

13 D Default values for component version, modification tevel, and indication of

complete or partial deck replacement for header card are provided by the LDG

program.

G Default values are not assumed. The user must provide them in colurnns 15-19.

14 , comma) Required if column 11 contains an $ or column 13 a G.

18-16 VV Two numbers indicating the component version.

17-18 MM Two numbers indicating modification level.

19 0 {zero} Partial deck replacement for header card.

1 Complete deck replacement for header card.

20 , (comma) Required only if column 13 contains a G and column 11 an S.

24-96 Subroutine if column 11 contains an N, the title is not required. if column 13 contains

title a 0, the title of the subroutine must begin in colurnn 15.

80

were le zs Exampues:

PRO AMA

PROGRAMME R

|

STATEMENT

Name Operate Oper grat .

125 a 5 BLL B & re 47 WEIS ob 8 17 86 18 Oe 22 53 74 08 26 77 eS Ke) ty 35 3a Oe FS 3

ag apie a | H

eee LY Pig mM : ! } oe dn eee ee ee

 i 2

User will supply all control cards, identifying characters,

and title for subroutine ‘AP’.

PROGAAM 7

PROGRAMMES

1

STAYEMENY

Marae
Caer

24.
606 6D 2B MB 6 2 RM Da 33 36 aH 27 38 29

eS i SPEC) AL ROUTINE BB

Library Deck Generator will supply standard control cards

which will be used for selection of subroutine BB. The title

will be printed on the 4th tier of the cards and on the com-

piler listing. The values given in columms 15-19 will be used

on the header card. The component version (02) will go in

columns 59-60 of the header card, the modification level

(00) will go in columns 31-32, and deck replacement indi-

cator (1) will be placed in column 85.

Loading the LDG Program

TBM

PRSGH ARMAS FL |

12 Neos B GE? 616 27 38 WA) 2h nests 2 2F Me D519 33 BB - : 30

Af) LG
ff) LOA L
f/_ Rus
ORGS UB Eg CARD)

4
}

ASSEN HLER OSIECT, PROGR,
< .

4 :
1%

Error Conditions

Several errors are considered to be terminal. Hf terminal

errors occur, the card image is printed, the error message

is printed, the deck is run through to the ‘/* card, and a

C halt is displayed. When this halt is reset, processing is

discontinued by the end-of-job routine.

if the error is not terminal, the card image is printed, an

error message is printed, and a C halt is displayed. The

program is restartable, however, and processing will

continue.

Following is a list of error messages generated by this

phase. An asterisk (*) preceding the number indicates

which are warning errors.

i. Number of control cards generated incorrect,

2. Length of control card text, too great for one card.

3. Card sequence incorrect.

4. Title too long or the first text is contiguous.

*5 First control card character may not be blank.

6. Not enough breaks for control strings.

*7. More breaks than control strings.

#% Last text not at highest address expected.

9. Improper card in deck.

10. End card out of sequenice.

11. Invalid control card identification.

12. First object card must be an ESL card.

13. Insufficient core for control card storage.

14. Invalid eniries on *** control card.

#15 /* card or *** card out of sequence.

*16, GEB not used as module identifier.

17. *** card required before object deck.

18. Too many control card identifiers specified or

invalid sequence.

Appendix D. Assembler Language Subroutine to RPG 0 Linkage Bh

Output of the LDG Program Example

The header card in stacker 2 should be placed in front of Figure 29 is an example of a SPECIAL subroutine. This

the remainder of the output deck in stacker 3. Insert the sample program can be used as a base for any SPECIAL or

subroutine deck in the RPG Hf Cornpiler deck using the EXIT subroutine. The only changes required are modifying

Program Maintenance Program. The subroutine deck must the subroutine identification characters, entry point, label,

have GEB in columns 91-93. and routine title. Areas of change are outlined in the sample

isting. Control cards are created for you.

QOGES ANY TETLE GESKAED MAY BE USED

ERR LOC OBJECT COooE ADOR SYRY SOURCE STATEMENT

Qe SLEAARREKLS SE SATERHHH RA AKEEES SHE SE AEHKESLEIRLSERERAKTCA ETRE RAERH & HO020000 .
3 * 69030000
4 & THES IS A SAMPLE CODENG FOR THE CONTROL CARDS FOR & @SPECEAL* a 0004 0005

5 * 60050000
& DEVECE REFERENCED TW AN RFG PROGRAM, ALL LABELS WHICH WILL % 90066050
7 * * G00 760000

& * NEED TO GE MOOLFIED FOR & PARYECULAR PROGRAM HAVE LABELS x 60080000
ay * * go0ecc00

10 »* STARTING WITK THE CHARACTER t#",. THES DECK 15 IN THE FORRAT & 00100000
Li *& % O014£0000
i? REQUERED BY THE LI@RARY DECK GENERATOR. % 00120000
13 « * 80130000
14 * THESE COMTROL CAROS MAY BE USED FOR ANY SPECTAL OR EXIT & 00140000
15 « & GO1L50000
1& & SUBROUTINE. * 09160000
17 * % QOL7OOOG
LOH RERKERHRAR ASCH EE REARS AGHH ORTH GSHH HRCA ARES TRHTREAR ATES RHRH EER OOLaGONO

20 Fe CEERPTOEAERERRH TEER EERESEE HORE AEEESS HHP S ALEC KEES HOO EEEERERE ORT EEEE & og2G0000
Zh * 002160006
22 * STANDARD LABELS AND LABELS USED TO LENK TO THE LIBRARY * 90220000
23 ¥ * 00236600
24 * SELECT ROUTINE AND RPG COMPILER COMMUNICATIONS AREA * 909240000
25 % x 90250000
Fh & CRLBARAELEK HRA RED AEE RE SERB ARH ARLE RARE SUCKS BAGH AKRLATAR EERE 00260000

0000 26 START START O PROGRAM SHOULD BE STARTED AT G 90280000
OOOk 29 KRY EQU Hy STANDARD LABEL FOR INDEX HEGESTER 1 00290000

ooo2 3 R22 EQU 2 STANDARD LABEL FOR INDEX REGISTER 2 00300000
0008 BE ARR EQU & ADDRESS RECALL REG 00310000

o300 33 RELOCF EoOu START +R °O300" RELOCATION FACTOR FOR CUMMENT DECK 99330000

O20E 34 JLEAAL EQU START?E* OSOE® ENTRY POLAT TO RESET RELOCATION 00340006

35 * FACTOR AND SCON TO NEXT *3* CARD 00390000
O3LA 3& J3EAAL EQU STARTOR*O3LA® ENTRY TO SCAN FTO NEXT *3°* CARO WITH 90360000

37 © OUT RESETTING RELOGCATEON FACTOR GO37O0aG
0320 3B RIEACL EQU STAR TAR O32E° ENTRY POINT TO INETEATE OR CONTINUE 003800600

34 * RELOCATION OF THES DECK 60390000
0338 40 FIEAEL EQu SYART+R°O338F ENTRY POINT TO FMLTPTEATE THE SCSN OF 00400000

4h & THE FILE DESCRIPTION COMPRESS ROMS 40416000

O33 42 FREAEL EQU START EXCOSRE® ERTRY POINT TG COMTENUE FILE DESC. 90420000
AZ & COMP. SCAN 504360000
44 % BOTH OF THE PREVIOUS ENTREES COS4O000
45 & RETURN A POINTER IM XRZ AND A 99450000
4& * CONDETION CODE °HIGH? IF FRAT 6O4e0000
aT & POINTER £5 VALID 00470000

o2ac 69 CORMON EGU STARTER O28C ¢ START GF YHE RPG COMPILER 004690000
50 * COMMUNICATIONS AREA SOSOOGGED

OZES 5h ENDCOR EQU COMMONtSO HOLDS LAST ADDRESS IM MEMORY -FERST OGSLOOGS
S52 % BYTE USED FOR SYRBOL TABLE ~ OOS20000

O2EA 53 ENDST EQU COMMONS Ga HOLDS LAST ADDRESS USED FOR SYMBOL $05 30006
Site TaBLEe 06540000 ”

Figure 29 (Part 1 of 4}. Sample Coding for SPECIAL Device

ERR LOC OBJECT CODE ADOR STMT SOURCE STATEMENT

° Sh os PUEEKEEERDE HSA ERRESE SESH SHREK REFKARLS GRHFROROAHELKEBHHH IVS TSSOVS RRS & DG866000

SY & * GO57TA000

SR THE FOLLOWING 15 & SKELETON FOR A FELE GESCREPTION * 00585000

59 « a 90590000

£0 2 COMPRESS TON * Rreceereteterss

ol * * 006 10006

&2 ® ERKOTEREKEERAOROCRT RE LERLGEER HS OEE HE RRASSRAHOKPR ESE SH OBELEALH RS * OGH70000

oood $000 && FCFG 04 CL FLAG BYTE FOR COMP. ALWAYS MIFES GUS4S0000

go! a002 645 DS Che OUTPUT BUFFER @ 00656000

o604 C004 &e BS Cid [NPUT BUFFER ADDRESS BOS6OCOD

00s oon6 67 DS cr2 PRYINYT BUFFER ADDRESS 08670000

aout O008 8 FLENTS DS Che {OCS ENTRY POINT ADDRESS 20680000

0009 C009 69 DS cui FLAG BYTE 66696000

OOG8 Pree) Ds Cu FLAG BYTE BOTOGOOS

O008 GQ0c Fi FCEONY OS cuz HOLOS IDENT FOR SPECIAL ROUTINE GO? LOOOD

900d OOSE «72 DS ciz EXTERNAL ENDICATOR ASSIGNMENT 0720000

OOGF OOOF 73 FCOVA BS cul DEVICE CODE BY OKKKAGLO® FOR SPECTAL 00730000

aoie O01G oT oS Chi BLOCKENG FACTOR oregano

OO OOLL 75 as cua RECORO LENGTH 00750000

oan
77 & EEERECHROKS AREA ALEEEESR SRA ARB SESE RAAHOAKKELERBRIRHH SORE EEEESH e OOTFOOCS

. 7B & COTEOOGE

7 « THE FOLLOWING ES A SKELETON FOR & SYMBOL TASLE ENTRY * BOTICCOD

80 * * CO806G00

&l « REEEARSHRH HOOK ELAR ALS S STH GREETS B PRS OES RE SESS HH HK EERLELH SB & OaBLCoas

~ O12 OO12 @3 STLEN O65 cad LENGTH FO® FIELD ENTRY 00830600

0013 ORS 84 STFLAG BS cul FLAG BYTE SPECIAL KEEOS 8° ‘ B084G000

OLS C015 BS STIDNT OS cL2 EDENT FOR SPECKAL C°##? HOLDS ENTRY 80850600

Bb POINT AFTER SELECTION ob860000

BB ® ELLAKH MPR ASEEERBRR LAKE LKR SBSES GORKHECKKEREFASTS HHH SHEE CESAR ARKH a CossogaG

ay & * GRRRIO0e

80 THE FOLLOWING GO CONTAINS THE K0*S FOR THE CONTROL CARDS * CO9OGHRG

Gk * O91 OO56

32 % SEBEHARREKKKREREARS SESE LH OEE LES BREVOK GELLER RTGS EETHRR KEY HRLF EBB SHHH % COgzoooa

0006 9% GRG OO 00940000

e000 DIGIGL oOo2 = 95 De Lat suut THREE CONTROL CARDS ALL WITH TOENT 90980000

G6 * 4g? ARO INSERTED IN FRONT OF THE 90960000

oT * BECK eogTaaed

G9 % SRKHHHREKKEEEEERESHOKERR ERE ELE EPPHD OHH ERAAS ERS ESBEPOREEEELERERHGS HH % 60996000

LOO *
* e1oc0cae

tol * THES CONTROL CARO SCANS THE "F* COMPRESSTONS FOR REFERENCE TO * BiGLOCOO

1G2 » * 1020000

103 ® s88* IF EQUND LT SETS THE FLAG BYTE AT K*OO7B* TO XTFFS. * B1030000

104 % % 01640000

105 * IF ELTHER FOUND G& NOT FOUND IT STARTS THE $CAN FOR THE NEXT & BLOS0066

106 % * 01680000

1G? * CONTROL CARD. * BLOTOOGB

y0g %
* GLOR0006

19609 * PRREKEORARACEKERREBIOR AERH VERE SHAH SHR K KEL RIGHEGELE SHH REEL ESTER BGBRS a oLegaagoo

BOL? ttt ORG xPGaLT? REQUIRED FOR EACH CONTROL CARD OELLOGOS

OG78 LE FLG EGU STARTexo7e8° AREA FROM K°7B? TO K*FES 1S @iLzooso

LEZ % USABLE FOR WORKING STOMAGE 1130000

hha # THIS BYTE USED TO FLAG IF OL140000

Lid ROUTINE TS REFERENCED ON TEE 1150000

Li6 # SPECTEICAT EONS 01160000

GOGO LL? USING START X@L VALID AT ENTRY TO ANY CTL. CARD o1LTCOOn

OOL? FO OG TR 118 AV] - FLG4oARLYSX POD? EMITIALKZE FLAG FOR NOT USED OL LAGOON

Lig « GN FILE DESCREPTIGN SPECS. 1196006

OOLA &E GE 43 O300 420 ALG #ENTRYO2,xXREDeRELOCE CALCULATE TRUE ENTRY ADDRESS o1209000

OGLE CO AF 6338 h2k 8 FLEAEL TNETLATE SCAM OF °F? COMPS. BL210006

O00G 122 USENG FCEG,RRZ VALID UPON RETURN FROM FLEAE orz20000

- 6023 40 OL 45 OC 123 SPCAL CLC #IDENTOZ-KALYSFCITONTO,XAZ} ES THE POENT THE RIGHT CHAR 01230008

0027 BB OA OF 124 TAM ECOVAC, R23, 8" G000L0165 AND 1S DEVICE CODE THAT FOR 1e4ed00e

SO2& BY aS OF 125 FRE - FCOVAL, KAZ} 6B LOOGGLOLE TSPECTALS 01250660

Q6Z0 F2 98 OF L26 JC SPCAZ, X 996? LE YHES £5 NOT THE RIGHT COMP, JUMP GL26000G

: O40 7C FR TB 128 BVI FLGL ERE Pe KTEES SET FLAG TO KMDICATE USED ON GLZBO000

129 % FILE GESCREPTIGN SPECS. 01290000

0033 9C 01 GB 43 138 MVC FLENT@O2 > KRZI,@ENTAYI,XAL} MOVE ENTRY ADDRESS TO THE O1300006

LBL FILE DESCRIPTEON COMP, OL3Le00o

037 CO af GRE 132 SPCA2 6 FZESEL ELSE SCAN TO NEXT Come O1320006

0038 00 84 23 133 BH SPCALCS AREF fF POENTER STILL OX LOOP 01430000

BO3E CO AT GBA 134 8 J3EAAl GET NEXT *3* CARD OL340006

1ag o THES ENTRY WELL NOT CLEAR THE oLasaage

136 * BYTE AT FiG. OL360660

0042 COG 0043 138 #ERTAY DC ALZUSUBRERI ENTRY POINT ADDR. TO BE RELOCAT OL38GGG0

046 7878 9045 13% #IDENT OC chateet & TWO CHARACTER EOENT FOR ROUTINE GL3200O9

ss
ocoz bak pRap Kaz identify your subroutines by O1410000

replacing these # signs with

identifying characters.

Figure 29 (Part 2 of 4). Sample Coding for SPECIAL Device Appendix D. Assembler Language Subroutine to RPG U Linkage 83

ERR LGC OBVECT CODE 40GR STME SOURCE STATEMENT

L439 & RERSROOCRKKEE RAH K ESE SESH GO OERSEEAHHH GOO SEEASSSSKHKHSHSOBHAASHHHKTHHHKHRBRSS & O14 45060

144 6 * GES40000
145 * THIS CONTROL CARD DETERMINES THE ENG ADDRESS To BE USED e 03450000
146 % * 01460006
1a]? % ie TRE SEARCH OF TRE SYMBOL TABLE DONE 8Y THE NEXT CONTROL % GL470000
148 % * OL480006
149 % CSRD. % 01490006
150 * % OLSCOG0G
PG] BP eRe EEREHEKKEEEKE LOSES ESSE HKHE SE EREABAKHKKRHSBAVBHKAHRRKHETRHERKH KERR FE OLsiao0e

GO7D 153 ENDa bQU STARFeNTTDE THES Two GYTE AREA WELL HOLD GESZ0000
454 * THE AGORESS TO CONTROL THE 03445006
159 % SYMBOL TABLE SCAN. IY WELL BE 81550000
L56 % THE ADDRESS OF THE END OF THE O580000
iS? * SYMBOL TABLE OR THE FEAST OLS 7OO00
LS8 * TABLE ADDRESS TABLE POINTER OLS80000
159 & WHICH EVER £8 HIGHEST OLS960006 ©

OOLT G1 ORG X*OoL7e O16 LOOOG
OOLT &C Gk TD OG2EA Lad MYC ENDSI2s RL}, ENDST INETEALEZE END ADDRESS YO END GL620000

163 * OF SYMBOL TASLE 916306006
QOLC C2 G2 FFF 164 La RtREFC 8 gKRS INETIALEZE KHZ TO NEGATIVE 4 91649000 s
OG20 36 02 O2ke 165 a EMDC OR p RR2 POENT XK2 TO FIRST ENTRY I 01890000 o

166 *% SYMBOL TABLE 21660000
OolLl Lat USING STLEN- 2, ERZ O14 O00

a024 BF 18 G2 6s TRF SVELAGL oKR2b EY LBE TEST TF ENTRY FOR TABLE OF 81680000

149 # ARRAY 01690000
OQ027 F2 18 G+ L7O it SPC BO TF NETTHER --> JUMP OLPOOOSS -
O24 6C OL 7H 64 7k MYC ENDB(2, KHL}, SELONT Cy RRA ELSE RESET THE END ADDRESS OLPLOGOR
COZE CO B87 O31A 172 SPCBG B SZEBAL 6D GET NEXT CARD O1LT20006

o002 173 BROF RZ OL730G00

LYS BF SRHROeARSSSES HR AAERRKSSHH LHP EGASE SESH CREEEBEREOHEERERBHEREHEKKEHERRBHH & OLTS0066

ivé * THIS CONTROL CARD CHECKS THE SYMBGL TABLE FOR REFERENCES FROM & OLTEQOOG
177? * ® OLFTOGGS

17a CALCULATIONS. EF REFERENCED THERE OF DM °F? SPECS RELOCATION * OETBOOOG
179 *& ; % OLFecoee
180 % OF THE DECK ES ENETIATED % 91800006
ABL * Grarogao
LOA BR SAKKREERERRRE KALE OOK RAEER GPK EGCREKETES HSH SSe SSSERBHH SCHR SAAH HRS & O1820006

QOL 184 BRG K*OOL?S START OF COMTROL CARD TEXT 01840606
OOLT 4E G1 61 0300 LBS ALC BENTIS XRLE SRELGCE CALCULATE ENYRY ADORESS 91850000
GOIC 40 GE 30 O2E6 L836 MYC SPCBZE RES aKR LI y ENDOCR ENETIALZE L& RELGH 01866066
OO2b SE OL 30 55 LB? SPCBA ALC SPCBStSC Le RREIOSTSTEPE oRRI} STEP BACK TO NEXT ENTRY GLBTIVIO
GO75 4B OL 30 O2EA 1&6 cue SPCB24302, XRT ENDST CRECK FOR ENO OF SYMBOL TABLE 81885000
OO2A F2 42 18 189 dh SPCBS SF BEYOND END --> JUME 91890000
O02b £2 82 0000 190 SPCB2 LA SB, ERZ POENT TO ENTRY 01900000

OORL LOL USING STLEN-LyER2 OLFLooaa
GO3% 9D OL O% 53 Gz CLe STEONT C29 KRZb LONE KRLD tS THE DENT CORRECT AND O192 0000
0035 B& EO G2 193 TSN STFLAGisgER2) 55° 2 i LGOOO0* THE ENTRY FOR AM EXTT LABEL 1930000
0038 00 96 25 1% BC SPCBLLe RRLD SX 49K? TF NOT CORRECT ERTRY --> LOG 91940000
Q03B8 $C OL G4 31 19S BYC STIBNT (29 KR2) RENT ES RRL} ELSE MOVE IN ENTRY POINT O1950000

GOSF B84 OL U2 GS SBR STFLAG! »€&R2} 48 * BO0COOOG1* SET FLAG FOR ROUTINE FOUND 09960000
QO042 F2 8? OF 137 J SPCB4 START RELOCATION OF ROUTE ME G1370000
0045 TO FF 78 29d SPCB3 CLE FLGEG KREG MIFFS WAS ROUTENE REFERENCED FROM O198G000

199 FELE DESCREPTION SPECS. ? G1 3396000
0048 CO OL O30€ 2060 BNE JLEAAL NO ~ UNUSED SCAN TO NEXT DECK 02000000
0046 CO BF O32C 201 SPCRA OB RLEATL WES ~ USED AS SPECIAL RELOCATE 2010000

6OS0 O660 O05) 203 #ENT oc ALS SUBRBSS ENTRY POINT FOR RELOCATING O2030006
OO32 778 0053 204 #fDN of CL2¢RB? POENTERFACATION 82540000

GOS4 FFEC SO5% 206 STSTEP BC VLzt~-4e NEGATIVE LENGTH OF SYMBOL 082666000

2aF * TABLE ENTRY G20TOLOS

Replace these # signs with
the characters identifying

your subroutine.

Figure 29 (Part 3 of 4}. Sample Coding for SPECIAL Device

84

ERR LOC UBYECT CODE ADDR STMY S0URCE STATEMENT

20S & PHOCEREKRERADERB HED OOREKRERE BRS OHHH OREK HERES EERE EBEY OH HRELKT BEES SHE H *

210 *
rs bow THE FOLLOMING DC CONTAINS THE PROGRAM TITLE TO 8 PRINTED *

2412 *
%

Z2i3 % ON THE RPG LISTING AND SHOULD BE CHANGED TO REFLECT THE *

2i% *
*

215 9 NAME OF YHE SUBROUTINE. “

zie *
®

git * KORLORECEEEERBIRYRG ORO ROEK ERS OEM GR TORE EERE DB ORES THT TRE SEER BERL w

A000 219 gRG 0 SIGNALS START CF TITLE

OOOO E2D7CSCICVCIDI6G OGD 224 oc CLAQ*SPECTAL 1/0 MGUTENE #85

0008 CIGlLD64OD906EGE3 22k
COLD CIDSCS4GTBTRADSS 22
COLR 404040404040 221 b

Replace these # signs with

the characters identifying

your subroutine.

223 % KER EPHH ERK EERE DRA ESERR IEEE REL ARIES OR REKKELE ES ESS HHS AE KE RLHR EER x

224 *
*

225 * THE FOLLOWING CODE SEPRESENTS THE FUNCTEGNAL CODE FOR THE *

226 * *

227 * USER ROUTINE. THE SBCVE CONTROL CARDS ASSUME THE ENTRY POINT = #

228 %
4

229 * £8 AT SUBRSS THE ENTRY POINT IS UNTGUE TO EACH SUBROUTINE. = *

£30 *
a

231 * THE ENTRY POINT 15 THE LABEL ON THE ROUTINE CODE, NOT THAT *

232 * *

233 * ON THE START CARD. %

234 *
*

235 * BEGEHHOREREREE REED HEEH HEE KEE BRAG GAAHT ERAGE ER ERE SOSH THEE EELS SH *

Z3t * CREREEERERE SHRED OO RERKEEARAR EGG TWO EEE REL ERR OHH TREE TREES OG AH e

234 *
*

239 4 YHE ROUTINE MUST MEET THE FOLLOWING REQUEREMENTS «

240 *
*

241 * le WHEN ENTERED FOR ENPUT Ge OUTPUT INOT EXIT! FT BUST *

242 # ACCEPT THE STANDARD SPECTAL 1/0 LENRAGE PARAMETERS. 2

243 *
*

244 % 2. KHEN ENTERED VEA AN EXET FROM CALCULATEONS KY BUST *

245 % ACCEPT THE STANDARD EXLT LENKAGE SND PARARETERS 4 *

245 %
%

247 & 3, 17 MUST ENOICATE ERO OF FELE BY PROVIDING THE CORRECT ®

248 % COMPLETIGN CODE IN THE DTF. &

249 %
%

250 % fa IF A GYERERENT AREA 5S USED FOR THE ACTUAL INPUT OR 4

Z51 * OUTPUT BUFFER THE GATA MUST BE MOVED TO OR FROM THE ADDRESS®

252 % SUPPLIYED IN THE OTF. *

253 *
*

254 & ERPKAEARRER DAES HERDS RIERA LSERR PEKKA AERA EEE HORAK ELE EE GASES *

cooo 256 GRG 8 SIGNALS START OF RGUTINE TEXT

G000 258 SUBREE EQU * THIS 15 YHE ENTRY POINT YO THE ROUT.

vn
wn

* add . *

Replace these Jf signs with a
the characters identifying a 250 SeaeeaH BOUTETNE CODE 15 PLACED HERE EKRERE EEE

your subroutine.

Boo 262 END SUBRee THES INSUHES PROPER LISTING FROM RPG

Figure 29 (Part 4 of 4). Sarnple Coding for SPECIAL Device

62090600
OF 100000
OZ1 16000
OF4.20000

02030006
O22409000
02450000
G2tsoaoos

O2L7TOOGG

G2210000

O2230000
62240000
02290000
92260006
oz27O00c
02280000
O22990005
92300000

G23L0000
62320600
G23 30006
02360000
82350000

2370006
O238000C
92390006
02400000
2410060

B2420006
62430000
082440000
02450000
92460006
O247G000
92480000
024990000
02500000

G25100060
02820000
GO2530000

62540000

92860000

a2880000

Appendix D. Assembler Language Subroutine to RPG i Linkage 85

Appendix E: Assembler Language Subroutine To COBOL or FORTRAN Linkage

This section describes standard linkage conventions for use

between modules produced by the Systera/3 language

translators; COBOL, FORTRAN, and Basic Assembler.

Prograrnmers using standard linkage conventions are able

to code routines in the language most appropriate to the

function being performed, with the assurance that effective

and permanent communication has been established. Figure

30 illustrates the standard described on the following pages.

*

* SAMPLE SYSTEM/3 LINKAGE -~ MODULE A CALLS MODULE B
&

EXTRN MODE
@XR1 EQU x'OL
@XR2 EQU ‘OR!
*

MODA START x'o000'
*

* INITIALIZE XR1 AND XR2 TO TEST SAVING
*

L XRL,@XR1L
L XR2,@XR2
B MODB CALL MODULE B
DC AL2 (PLIST)
HPL X'6F',X'6F' HALT 00 AFTER RETURN

&

* PARAMETER LIST
*

PLIST EQU *
pc AL2 (SAVA) ADDRESS OF SAVE AREA
BC AL2 (PARM1)} ADDRESS OF FIRST PARAMETER
pc AL2 (PARM2 ADDRESS OF SECOND PARAMETER
DC XL1'00"

&

* PARAMETERS
*

PARML EQU EQU *
DC CLS'PIRST!

PARM2 EOU *
DC CL6'SECOND!

*

SAVE AREA
*

SAVA pc XLL' BO! INDICATOR BYTE ~~ ASSEMBLER MAIN
BC CL6 MODE? MODULE NAME

*

XR1 DC CL2' RL!
XR2 DC CL2°R2!

END MODA

Figure 30 (Part t of 2). Hhustration of Standard Linkages

8b

®

r

@XR1 EQU X'OoL'

8XR2 EQU XO?!

@ARR EQU KOR!

@IAR EQU x10!
&

ENTRY MODB
&

MODB START x'oooo'
%

St SAVARL,@XR1
LA SAVA,@ARL
USING SAVA,@XR1
sT SAVAR? (,@XR1) ,@XR2

St SAVART(,@X¥R1} , GARR
L SAVART(,@XRL}) ,@XR2

L 1(,@XR2) ,@XR2

ALC
7

& BODY OF ROUTINE
*

u SAVAR2 (,@XR1L} ,@XR2
L SAVARL(,@XR1) ,@XR1
L SAVART, @IAR

te

® SAVE AREA
*

SAVA pC MLi'3o0'
pc CL6 'MODB!

SAVARL pc XL2'oo!
te

SAVAR2 pe XL2'O0G?
&

SAVART ares AL? (00}
&

TWO pc TL2*2'
*

END

SAMPLE SYSTEM/3 LINKAGE ~~ MODULE A CALLS MODULE B

SAVE CONTENTS OF
XRL WILL BE BASE

SAVE CONTENTS OF
SAVE CONTENTS OF

XBL
FOR SAVE AREA

XR2
ARR

XR2 POINTS TO ADDRESS OF BARM

LIst

KR2 POINTS TO PARAMETER LIST

SAVART(,@X¥R1L),TWO(,@XR1) SET RETURN POINT 2 PAST ARR.

RESTORE XR2
RESTORE KRI
RETURN

INDICATOR BYTE ~~ ASSEMBLER LANG

MODULE NAME

CONTENTS OF XRIL ON ENTRY TO THIS

MODULE

CONTENTS OF XR2 ON ENTRY TO THIS

MODULE
RETURN POINT

Figure 30 (Part 2 of 2). illustration of Standard Linkages

Appendix E. Assembler Language Subroutine to COBOL or FORTRAN Linkage a7

STANDARDS

In order to be standard, linkage must be accomplished as

follows:

1. Each module must have a save area (Figure 31).

Byte Bit Description Preararn

0 9 O=Not a main program Subroutine

j=Main program Main program

1-3 «000=FORTRAN Subroutine

007=COBOL Main program

Ot t=Basic Assembler

4-7 Reserved

1-6 EBCODIC name, Subroutine

left justified Main programm

7-8 Value of index register 1 Subroutine

(XFt} at entry

9-A, Value of index register 2. Subroutine

XR} at entry

B-C Return point in Subroutine

esling program

Note: Main program refers to the program with the highest

level of control.

Figure 32. Save Area

2. Bach module that calls another module must have one

or more parameter lists (Figure 32).

Byte Description

0-4 Address of save area in this program

2-3 Address of first parameter

(2N)-(2N4+17) Address of Nth parameter

(2N+3} MLV OO’ toa indicate end of parameter list

Note: The first two bytes as well as the end-of-parameter-tist

indicator (XL7°OO') raust be present in all pararneter lists. H

no parameters are to be passed, the parameter list will be anly

three bytes in length. In this case, byte 3 will be 0 and the

called pragram will indicate a parameter list length of 2.

Mote: Addresses in parameter lists refer to the first byte

{byte with the lowest address} of the fern.

Figure 32. Parameter List

BS

Lo
d When control reaches a program entry point, the

address recall register (ARR) must point to a 2-byte

field containing the address of the first byte of the
parameter list.

The Basic Assembler language code to call a COBOL ZUag
or FORTRAN subroutine would normally be as
follows:

EXTRN SUBR

pg SUBR
DC ALXPARAMS)

RETNPT EQU ‘

Note that the pointer to the parameter list points

to the left byte of the save area address.

Normal return is accomplished by placing in the

instruction address register (AR) a value that is

two larger than the contents of the ARR when the

program was entered.

Index registers | and 2 (XRi and XR2} must be

saved upon entry in the called program’s save

area, and restored at exit.

The address recall register need not be restored,

but the return address must be determined and

placed in the called program’s save area.

Along with the Basic Assembler, you will receive a sample

program. By executing the sample program you can verify

that the Basic Assembler is operational.

MODEL 10 AND MODEL 12 SAMPLE PROGRAM

This section describes the sample program and explains the

operating procedures necessary for executing it. General

operating procedures for the Basic Assembler are found in

the IBM System /3 Model 10 Disk System Operator's Guide,

GC21-7508, IBM Svstem/3 Model 12 Operator's Guide,

GC21-5144, and in Part Hf of this manual.

Program Description

The sarnple program is called Prime Number Test Program.

The program reads a number from the console display

data switches, tests to see if it is a prime number, and

Appendix F: Basic Assembler Sample Programs

indicates the results of the test on the message display

unit. If the number zero is tested, the program is

terminated.

Three halt codes are used in this program to request input

and indicate whether the number is prime. They are:

Halt Code Meaning

EN Enter a number to be tested.

iP The number tested is prime.

NP The number tested is nat prime.

Figure 33 shows the OCL that assembles, link edits, and

executes the sample program. Figure 34 shows the sample

program statements.

Appendix F. Basic Assembler Sample Programs BS

IBM Systorn/3 Bose Axendiee Coding Form

j rovers P onneuse } | H | i | ear ,

fuaTE i INSTRU ie } PuRte : i | i | | | OAR R 23h

STATE MET

2 33 34 3G MG 37 58 3G MI at 42 45 a8 AG 26 a7 ag 2g MP ot £2 aa sa BB ee ar oe 4 167 68 ha BE 66 oe SR OHS TO fe Fe 78 PIG IF

Hi 7 t F i

: oh
i mt
; fot

i dee bbe

TiRi2) PACK RAR 2 R21 TRACKS: 8 ime
' dk.

“FIZ, DACIK~ FiZiFize2 (TiRalcK's|- 2 ;
} wee dendenden spp

THIEL, Paw Fale ale irae nig - § : /
yan : i : j
aN j 7 : LA

OBS RC yi- iP . i:

I L :

| o
$ ror *

; t +

1 ee

Ti Ri2i PACK RAR 22) TRACKS ~ 10
i : : bode ee de fda gedin de i

FIZ) PAIK |B ePID 2) TIRIAICIKIS [- E aan aa Hl
i Df ;

: an i
q H a

‘ ‘ Yr ;
i i tht I
i

 2 2 3 3 6 BETH 2 10 34 TOEIH 14 te 16 17 38 19 Ab 2? 22 23 24 MH 26 BF ZS PS 9) 31 32-33 34 BH 3B 37 oe AD ay ae a : i
aa a5 46 ay au a 60 Gt 32.53 54 55 56 67 55 59 6061 62 53 64 55.66 67 68 69 707172 72 78 Th i6 1 me 2 BO Bt 22 as Ba ae om SPIKE IRS We 7 99

IBM IBB Systern/3 Basic Assembler Coding Form

FROG RAM weap;
PUNCHING GRAPHIC

NOTES:

1. Specities the location of the assembler program.

2. Name of assembler sample prograrn in the source library.

3. Specifies the source library with the sample program.

4, Library in which the output assembler object (2) module

is stored.

Figure 33. Model 10 and Madei 12 Sample Program OCL

90

PROGRAMME fi f oate INSTRUCTIONS PUNCH

STATEMENT
Name Operation Operand ; ene . wer ne Remarks ; . sc an ae sn as os ;

23 4 6 87S g is it We 1sh 1S 18 16 37 18 19 2D 21 22 22 34 2S 2 27 28 29 3 34 22 23 Bea an 37 2B 38 40 41 22 42 44 45 48 47 48 W9 SO 51 87 52 Ba SH 86 57 BR 4G BO 61 62 63 Ga 66 96 67 6B BG TO 71 72079 74
et i
hs

c t //i [PHASE NIA MEI-SAISSIPIO ;
t

- t /i/ OPTIONS! MIAIPI-XIREIF
ea i @ G

ff DNCHIUDE NAME -SASIS PR UNTIT-R¢

4
/i/) (EIN |

i {

f- i //) HALIT COREG
}

: rr { {/ LOAD #assipo eg TF

{fi RUIN :
i

t
5. Name given to the output assernbler object (0) programm.

é. Module name and object program name (A).

7. Specifies the object (OG) program, stored on the Overlay

Linkage Editor program pack by default.

if the systern configuration does not include drive 2, references

in the OCL to F2 and R2 must be changed to specify devices

available on the system.

SHE LEST GE PRTECKE USED DURING THIS ASSEMPLY TE-- NODECK «LOST. MREF REL OBL

BAS SPS EXTERNAL SYRECL LIST

SYMBOL TYPE YER 13. MODO0 O1/30/76 PAGE 7

S45SPR PR TRE NUMBER TEST PROGRAM

ERR LOC OBUECT COLE ADOR SYMT SOURCE STATEMENT VER I3, MODO00 O1/0/76 PAGE @

3%
o003

4% THIS GROCHAM RESUS A NUMBER FROk THE CONSOLE OFSPLAY DATA SWITCHES, TESTS PT FOR ccs

4 # PREMERESS, AWD TRDTCATES THE RESULTS OM THE PESSSCE DISPLAY UNIT. O005

oS %
o006

& & YMEUE ARE THREE HALT CODES USED EN THIS PROGRAM: eee}

7% HALT CODE ME AMT NG 0008

a* EN EMTEG B MUMBER TO RE TESTED, {TF MURBER ENTERED FS ZERO THE Gong

g * PROGRAM TERMINATES « ccs

ig * iP NUMBER TS PRIME. oot

1 = Re MUMBER 1S NOY PRIME, GGL?
129 OCLs

aooo 1S $8550R START G O01K

ooog 414 USTNG &,2RY ESTABLISH BASE REST ATER GOLt

ooso 7 61 9000 48 La e, ERY LEAD BASE REGISTER GOL

oo04 FG TC 2F BEGIN HPL KEDECLKOTC? "ERY HALT COL?

gag? 76 00 78 SHS SENSE Ce PLD 40 SENSE TEE DATA SWITCHES ecie

H00A 50 G1 74 76 cue SENSE LZ, ¥RLD,ZERNE RRL TEST ENDICATION TO QUT nC1g

pone €2 O% 68 JRE PREDAR RYUMBER TO TEST O0z0

OOLT CO 8) coos a 4 ec TO END GF JOR CC2k

GOLS 84 ots ec HL Lt eat oo22

*
0023

% PREPARE THE TABUT RUBBERS gee

B16 8D OL 78 76 24 PREPAR CLO SENT ELE, XALD, THREE XR EE TEST FOR ONE, THO AND THREE 0025

OOLA SF G4 af ae gky pe tues CALL ONE, THO AND THREE PRIBE eC26

Soto Fa OL 7a pa YBN SENSEE,XREE, ROLF TEST FOR EVEN Ong?

raeg ©F 90 40 27 Je NPRIME FYEN, SCT PRTBE 0028

GOPS BC GL TE TS 28 ue FESTH (2, RRL? THOC EXEL O25

O02 7 SC 64 78 78 29 eve END #4202, XR1D, SENSE(ERD OIVIDE tNeuT BY tTwe O046

eg2e 7 O08 F 35 wut EADH-L EXPL YS TO USE FOR END TESTING ocak

QOge SE OF TS TH BL ALC END 4103. MELD pENDHSL EKA LG C032

0632 SF O27 TH 78 32 ALt ENCH OLD RBLP, END RAL CERT OO3S

HORA SE OF 7H 78 a3 Abe END S17 (3, XRLT PENDS 4E LRRD OO3

SOSA RE OF TE TR 3% ALC PND A*L ES MELD EMORSL TY KRY ocze

SO3E SE 62 78 78 a8 sic EREMOL C35 ZR1 PENDS OL. REL GOBE

O042 SE 0% 78 78 36 ALC ENDE4112-¥RED,ENORTE TE, MRL) OCR?

g046 SE OD Ta 7A a? ALE ENDS OL (36 RRL, ENDL E, KRD} C038

aa %
COBG

25 2 MATN TEST LOOP GCSC

Q044 SE OL Te 72 4G LECEST ALC TEST A(2, RRLP.ONED, MP1} PAC REMENT TERT C044

OO6E 8D OL TF TA Ad ee YECTH EZ MALE ENDATSXRLG TEST FOR COMPLETE ota?

OOUS FA 84 24 42 Je SRIMES ECMPLETE, CALL TT PRIME 0042

GOSS SO OL FO 78 43 wyC TEMP ART 2.X R114 SENSE, XRL} BAKE COPY AND D048

6686 SF G1 70 7F 4% SUMTR SLO TEMPARE? MALE STESTEL eXRLE FIND REMAINDER OAS

aose OH 84 $5 4% ae SUBTRE, KEES BY SUBTRACTING 0046

O0L0 OO OL 46 eh PRI LEC EST TE, RPLE PEWAINTER NOY TERC G64?

&P ®
OOAE

&E ® NUMBER MOY SH TRE 6049

* O03 FO 2F 3F 49 NPRIME HEE K83et, KOR FF NOT PRIME (NPP MALT 6839

GOSS TO B7 O48 5o & BEGING AE Gm BACK TO BEGINING ODE L

” St *
g082

a> HEMBER 15 PREME
CLES

C069 FO OF FF SR POTMES PPL REBEL KtOBt Ye PREME CFP) RALT OO4

oc6e oO 87 04 Sh # HECTRG, ERLE 6G BACK TO SFETRING Cost

Fioure 34 (Part 1 of 2). Listing of Statements in Model 10 and Model 12 Basic Assembler Sample Program

Appendix F. Basic Assembler Sample Programs 91

SASSPR PRIME NUMBER TEST PROGRAM

ERR LGC ORYEET cane ADOR SYMY SCuECE SYATEMEAT VER 13. MODGO G1/30/76 PAGE 3

5G * Oost
57 8 CSTA AREA oo8e

oo6e cooS SR PERO Ot fL2"08 BINARY ZERO 0089
GOTL COE 5S ONE oc MLZ°CooLt ONE OCaC
aera Goo? ao TRE ee RLZ*oooo0a tO" Two O0al
GO7s o003 64 TRREE OC AL2U3} THREE CCE?
OO?? &2 SENSE 0S CL? age
OOS BS ERO FS cus O0GA
CO7e b% cs Ch Odes
OOTC 65 TEMPAP OS C12 OOBE
BOTE 6& TESTS 6S Ll? ; o0a7

£7 XP Fat 1 PASE RECTSTEH OOGE
68 ENO BASSO O65

TOTAL STATEMENTS TH ERROR IN THIS ASSEMBLY < o &

SASSER CROSS REFERENCE

SYMBOL LEN VALUE DEFN REFERENCES VER. 13. MOD OO 61/30/76 PAGE 4

SASUPE OGL 90c5
REGIN oz ane
END# Coz COTA

OOAB
o0s0 C084
CO29* CO3C* CO3L CO3L* 0032 O632% GO33 0033 0034 0034% 0035 035%
OO34 GOR44 CORT Come ane,

LOGPST O04 C064 0046
NPR IME O62 0063 cO27
ONE ga2 OFS C046
PREGAR O04 OOS oOLS
PRIMES 002 9086
SENSE 602 6078
SUB Y g64 g08o o¢
TEMPAR O02 OTD
TEST# 962 OTF

SO25 CO42
GOL?* COLA CO24 C026 G629 O42
OOAS
CO43* CO4G%
B928% O040% 0041 0044

 THREE O82 GO76 saabnc

TWO 002 Sts o028
ERY GCL oO6 8914 QOS OOLF OOS O018 O02% O02% O078 o078 onze ooze onz6

HO20 OOF} O03 CC32 A032 0033 0033 G034 00324 6625 635 0036
OO36 OUST COIP CC40 O40 CC4i CCL G045 8043 0044 5044 G45
S046 OOfO LOOKS

ZERO Oo2 O8TO Se 0o18

YOVAL STATEMENTS (8 FREOR TN THTE ASSEMBLY = g

CLios 7 GTH OF $455FR 4S 128 GEC IMAL,
OLt0a fF LTRRARY SFECTORE PECUIR ED FS

W~RURUR TS UNETHRE RETAING ToL ERRARY<R YC AT EGORY~000

Figure 34 (Part 2 of 2). Listing of Statements in Model 10 and Model 12 Basic Assembler Sample Program

ey

M
e

MODEL 15 SAMPLE PROGRAM

This section describes the sample program and explains the

operating procedures necessary for executing it. General

operating procedures for the Basic Assembler are found in

the IBM System/? Model 15 Gperator’s Guide, GC21-5075

and in Part Ul of this manual.

Program Description

The sample program is called Systera Input Device List

Program. The program reads records from the system input

device and lists them on the system printer. Statements

are read and listed until one of the delimiters (/*,/&, or

/}is encountered. ff the delimiter is /*, another file can

be listed under operator control.

There are three messages displayed by this program:

Message Meaning

End of file encountered on the

systern input device. More files

can be printed if the ROP candi-

tion is caused by /*. The operator

replies P to print another file or

C to cancel.

EOF ON SYSIN

PRINTER ERROR A permanent printer error has

occurred. The program issues the

message and then goes to end of

job. (The message is displayed and

then removed when end of job is

reached. However, the message is

in the system history area and may

be displaved from there.)

SYSIN ERROR A permanent system input device
error has occurred, The program

issues the message and then goes to

end of job. (The message is dis-

played and then removed when end
of job is reached. However, the

message is in the system history area

and may be displayed from there.)

The sample program uses Model 15 macros and therefore

the assembly step must be preceded by a macro processor

step.

Figure 35 shows the OCL that assernbles, link edits, and

executes the sample program. Figure 36 shows the sample

program statements.

Appendix F. Basic Assembler Sample Programs 93

104 System/3 Basic Assambier Coding Form

BM

PREPG RAM PAGE oe

SRCAER BUMS | DATE

ERR ELECTRG MUAARE R se oer

STATEMENT ideradicabars

Cheraher: Cneraad
Boo ub tt Ppa id vy 16 17 18 19 20 2 2y 23 de PS Me Fe 2 WD se

Harecks
a3 48 36 36 97 38 39 40 as 47 23 46 25 46 37 30 49-9) 52 57 ot Be BS oe GT fo 8 BD et Re GF Bt BB Oe BF om BETO 1 He Ni Ma T5716 Ys 1G 74 BO Bt 22 83 84 8S BS C7} BBLBS AD ar a2 83 ae

Fe
ne

s
My

,

2 Re

z

Se kpiy.,

mt
a fe

tt
a

hi
e

El
 t ea

wa

Ta
g,

ny
,

|

r
y

F

a sm GP iL LEME Ti ob) i

fi RBS ‘
2

t
1

: |
fifi AS Sei FL

si Sula 3 et 938 i

 on

T
T
R
 R

S

>
 x)

iS

$y

cs
fa

s

e
e

Se

rae - so WOR

Sl T
E

a eit

*
 = w = P
S

F
i i H

mec ORK2, RETSIRA- 5 MNE TD), PAK RDB. FRE

77 FTCE plane Ss oURCE, WelragN-9), Umer - Ag) Pac ageanel |
33

if COnPELE Gare cr ial he
wen

jour
s

se
l

cer
n

rola
e
ce

rar

e
se
e

ni
fs

wmf

ant
e

in
nee

fe

sare
 f

oe
car

efr
ee

seh

see

end

snu
s

fe

cel

ee
nh

ea

aes

se
fee

mf

r
cen

mi

n
wat

 s
h

am
ci

i

 7

uy TAG 14 16 38 47:18:19 27 2222 2% EM 7 mM OM BD ity nt 4a WE ae ay i oy BW) 4s 42 42 44 AB 46 47 08 60 BD Gi 82:55 54 5S 56 57 $5 SY S06: 62 53 64 56 66 67 68 69 70 71 72 72 76 7576 77 TR 7A HO S1 Sz 22 St Be BG AI }es OS 96 94 92 93 54

IBM System/3 Basic Assembler Coding Fora: g

¥r
7 ~

t PROGRAM i PUNCHING | GRArt } i i i i i i | PAGE feta

? Y ONSTRUCTIGNS, ~ H i Hi n BIH hs LTT RAC) bet anne
; PROGRAMMER POATE i | PUNCH ; i | H | | } CARD ELECTAG RUMBER

i

STATEMENT idennfeation:

Kame Qoeraiion
y ¢ 7 goat: Whaghit on 16 tT

Ramat Cperarnd ei $
te Mla we 2 99 7B 27 7 74 O51 32 4G 9d BH MW 37 28H) 41 47 44 44 8G a 47 09 a9 HO St G2 St SA BH 6 57 98 58 SO BI 87 84 Ha BS OM HY BH BY IG 7) 17 75 74 7E76 77 28 79 BO et a2 22 Ye a5 U6 B7 {agi EA Go 91 92 93 94

iV RUN
b i t

ff, LORI SSO CINK Fb
1 t

Jf ECLE MAMEl-lowonk RETAIN S URTT-Du, PACK-DLIDLDE TRACKS!-i@ i
i ;

‘7 FiCid| NAPLES SGWRIC/E, RETATN- Si NXT! Ri2l PACK-~R2R2R2) TRACKS ~ Ls t
cs e J j H

iif) RABR
i

is t
// PRAISE: NAME- SAS Sh !

1 i

{fi OPTIONS) MAB ~ KE IF
§ 3 i i

iif SMC Livipe NAPE BABSP RL, UNE Re i
a: &

fie vic hail wlohe |- S/S IPIR IT, aiigit EU ;
:

AE ERD i i
ay

ff) LIGA As SPR, FA
j ' i

if, RES { ;
-

12 35 4 5 BERS go 1017 13h t 141618 UF vq ve Wt 99 23-24 26 27 26 2D Rt Be 22 we EH Ge 7 aR FO AG At 67 4 4 4B AG 47 8 49 SO G1 52 5a Se OE 96 SF SO 98 00 61 63 63 56 G5 & 67 68 65 70 71:72:73 74 TS 7G 77 78 Ta OG Si 82 83 Bs OG OG 87 joe WE a0 97 92 93 O6 ¢

pew
end

s

Specifies the program pack.

2. Name of the assembler sample program in the source

library.

fA
 Library in which the output assembler object (R)

module is stored.

Name given to the output assembler object (O}

program,

Figure 35. Model 15 Sample Program GCL

4

5. Module name and object program name (R).

6. Specifies the system pack.

Hf the systern configuration does not inchide the S444

drive 2 or the 5445 drive 1, references in the OCL to R2

and DE must be changed to specify devices available on

the system.

QPTLIGNS NOQECK

¥HE LASE

SASSPR

SYMBOL

RASS PR
SSLPRT

SAS SPR

ERR LOC

$ASSPR SY

ERR LOC

4931

GAR?

TYPE

MODULE
EXTRM

GSsECT CODE AMOR

YSEER INPUT DEVIL

QBsECT CODE

OBC

Oe 02 a7

wo

Me

o Se

o

2

ie

ae
)

fe

o
o

G

&

ob
p
e

C
e

C
w

e
t

OY

a

ka
te

L4& 04

@5Y¥5

OBJECT 1H 3B

OF GPTIGNS USED DURING THIS ASSEMBLY ESe--

EXTERNAL SYMBOL

SPMP SOURCE

/

a we

R
e
e

o
m
e
 e
g

ae

ae)
NT

{NN} LIST PROGR&M

ST4T SOURCE STATE

a THIS BRO
& * 17 ON T
7 *

ag & THERE a
9g * MESS4&G

La * S EOF ON
LL *
12 *
La *
14 *
15 *
LS * YPRIANTE
ify *
ig *
LQ * FSYSIN

29 8
Zz, *

23 SASSPR START
24 EXTRN
2 USEING
26 LA

2a * PREPARE TR
ey LA
306 * $ALOS
33% SDP EN
36 MVE
37 av T
38 MYT

49 * PREPARE TO
4) FILES MVE

44 ® READ FROM

@%@ FELEL LA

45 * $RE BD

45 cul
50 JE

Sk oh

52 JE

33 Cid

54 JE

a5 AY]

54 ayC
57 LA
SR * SRUTE

69 chi

SL Jf

62 MMVI

63 ok

6&4 JRE

of MYT

56 NGSKIP 3

STATEMENT

RARY ONLY OG010000

MODECH LEST, AREF, REL, ORS

Lis?

WER OL, 400 G2

be7i
a3 7B

GEN, ¥IIATA

MENT

GRAM READS & FILE
HE PRINTER.

te THREE MESSAGES ISSUED BY TH
TYPE MEANING

S¥YSING #FOR
MORE FELES MA
EQF CONDE TION
THE JPERATOR
ARE ? 98 FU PR
srt YG LANCEL

® ERROR? wT THERE HAS BEEN
ERROR, THE P p
MESSAGE AND G

FRQGR*® APG THERE HAS BEEN
ERROR, T4E Pt
MESSAGE AND G)

749008
£SLPRT pn

BASE pBRG c

€ PRINTES FILE FOR USF

PRNOTFL,BRG) ,$DTP

AL
3p

SOFSPAL,SITFI GL SE
SORBOCL, SOTER, SICPRT SE
SYSINLESSRECT LE, ARG}, SSRR DF S

PRINT A NEW FILE
wks

fa

AR) PRNDT FS OFSK SE dH SET TO $4 17 BEFGKE FIAST Pint

SY¥SEN ANG PIENT UNTIL END UF FILE

SYS TELE eBRGDESYS

OPC REAM FROM SYSIN

SSGRECTE SYS) eS STO TF EST FOR EGE Lisee yh see, ts ty

EOF
tSRET TL SYS) -ESREDS TEST Fok fs a eee

EO3

SSRECT USS} 2 S58 ERK TEST FIA SYSEN ES ROR

SY¥SER

ee neeeereeennre SET QA NEXT SYSIN REAG

QNOTESS$OE LRA (2 BAG) BS RHE ZEA SYS) PUINE FO CURPENT SRUIRG

saNDTet +325) 5 BO TF

GEV-1494 pe

SOF COMPLE VYF) SDP Xx TE

PRNERR

END GF FILE FNC

Li-09~73 PAGE L

BALE 2

LL-39-73 PAGE 3

INPUT DEVICE aN Lists

[S PRIGRAM:

UNTERED UN SYSIN.

¥ BE PRINTED TE THE

£5 CAUSED BY A set,

BECLYS TO THES MESSAGE

(NT ANGTHER FILE AND

AND 30 TQ EJ,

A PERMARENT PRINTER

ROGRAM [SS 46S THE

SFS Tu END Ff JOR,

A PEIMANENT SYSEN

ROGRAM ISSUES THE

JES TY END OF JOB.

INTER DATA MANAGEMENT

TABLISH & 445F REGISTER

GR THE DATA AREAS

LACATE PRINTER FILE
PN PRINTER FEL

SPACE
GP-CODE TU PRENT

Ee

Y FUR SINGLE
+

ET SYSIN TP-C 336 FOR LST

$OFSK BC, SOT EI ,a SFT F2 YQ SRTR BERGHE
SOFOMPE, SITE} SC BUYS TEST FOR PAGE UVERFLOW
NUSK TP
POP SKBE ARETE D GL SET £92 SKIER Tu LINE NE
SEL EL

Basic Assembler Sample P rograms 93

9906399009

OOG?RIGOG

GIG80995

GUG7G9G0

FO 100406

QOL®IAG9

Qoisoa0g

BOLSII00

COL TOOL

aGL

GL

o02

oG2

902

90 240995

a7 7509: od

Gy ezore re) POG

Je F3G9a

Ge vd

Oy

JG45 G09a

3O479I906

JU3SG 330

39400 304

D4 bodag

304273999

39430703

3044990:

30459303

c
o
t

LA 2
.)

“ 3
4 3

G

2

3

Q
i)

o

BASSPR SYSTEM INPUT DEVICE (SYSENE LESY PROGRAM

ERR LOC GRVECT CODE ABGOR SYMT SQURCE STATEMENT VER OL, 4390 00 L1-09-73 PAGE %

68 * END OF FILE ON SYSIN GO619900
4058 B2 O02 28 6&9 EGF LA EOFMSG(+BRGI.L GS 39620909

7a % SLOG WTGR EDF MESSAGE 99630000
&Q5F 7D C3 37 7% Ok REPLYL,BRGI,C tC? OPERATOR SAY CANCEL 00640000
40G2 F2 BL EC 7S dé EGS 90659000
965 72 OF 37 76 Cui REPLY (,8RG},CtP? GPERATIR SAY PRINT ANOTHER 90666000
£368 CO 81 46018 77? BE FILES G06 73000
S360 CO 8? 4056 78 8 EOF ENVALTD REPLY, TRY AGAIN 90680060

80 9 ERROR GN SYSEN 00700009
2O07G D2 O2 38 Si SYSER LA SERMSGE SERGI PLOG 3O7EGOGG

az * $4.0G ATS SYSEN ERROR MESSAGE 00720000
SORT F2 87 OF as + EGJ 60 TG EOS OT 40000

&8 ¢ ERROR ON PRINTER 80750900
SO7R D2 O02 4% &9 PRNERR LA PERMSG(,BRG1 LOG 00760000

9O % $L OG WTF PRINTER ERROR MESSAGE Q077G0090

95 * END OF JOB ROUTINE 09799099
&OB% 94 EOS EQU * 99800000

©3981 82 62 GF oT L& PRAOTFO,B2G), SBT 90419000
98 * $CL OS CLOSE PRINTER FILE 908 29600

LOL # SEBS 39 YO EQS 90830000

BASSPR SYSTEM INPUT GEVICE (SYSIM) LIST PROGRAM

ERR LOC BBJECT CODE ADDR SYTMY SGURCE STATEMENT VER Gb, 496 00 &l~O9-73 P&GE 5

105 * CONSTANTS 4N0 DATA AREAS 60850000
4080 106 BASE EGU * BASE REGISTER ADBRESS G0860000

106 8 SYSIN TABLES 00886000
GOS @YSINL SRLST BUFL-BUFFUL,BUFZ-3UFFR2, SYSIN PARAMETER LIST RUB FOG09
LALO # #ORK-~YWORKAR 00900006
tLG ® SRL SD SYSIN EQUATES 90910906

133 % PRINT FILE FABLES GO930G006
134 @RNDTF $OTFR DEV~1403,R040~O,TDBA~PRNTOB, PRENT FILE OFF K09940000
135 & TOSA~PRNBUF ,RECL-96, XOOS50000
136 # VEL ~&S «PAGE-66 09 960000
160 2 $OTFS O1403-¥ PAINTER DYF DISPLACEMENTS GOSTGIGG

223 * SYSTEM LOG TABLES 39990000
22% OF M5G $L¥TO COMB~AS sHAL T-AMe SUBH-PG,FLEN~-12, SYSIN EGF #TOR KOLO9G0G0
225 TADR-EGFYSC »REPLY~¥,2LEN=«1,RADR-REPLY BELOLOOGO

&3C3 EF G03 238 REPLY De GLitx? #TOR REPLY 31020000
239% *ERMSG SLMTG COMP-AS HALT -AR, SUBH-~PGeTLEY-Lls SYSIN ERROR WYO KOLO30060
240 # TADR-SERRGC 01 040000
252 SERMSG SL WTO CORB<-AS g4HALT-AmM, SUBR<PGeTLEN-13, PRINTER ERAGR Who K01080000
252 % TADR-PERMGC OLOGOGGO

40D0 263 £OFMGK EOL * BLOTOOGS
SON CSDS0 64006054082 4GE7 264 oC CLiZt*eGF ON SYSIN? 01080000

4QE8 265 SERMGO EGU * 01990000
&BES EZEBEZCIOS40C0509 40F2 266 oC CLEL® SYST ERRORS OLLGO0G60

OFS 267 PERMGE EQU * OLL1LG000
4GF3 OF OPLSDSESCEDI6G 4GFF 268 DC CLES*PRENTER ERROR ® DEL 20008

270 * SYSIN SUFFER AND WORK AREAS O41 49000
&100 ari ORG €,h28 ORG FO REQUIRED BOUNDARY OLLS0000

iGO 272 BUFPRE EGU * BUFFER OME OLL6EG00G
44060 GB00000000000000 4L7F 273 oC KLI2&?g* OLLTGOGO

4180 274 BUFFR2 EQU * BUFFER Tuo OLE SGOGG
4480 GOOG0000000G0000 41FF 275 oC XLLZe eos GOLAGOQ0G0

4200 276 KORRAR EQU ¥ WORK AREA OL2Z00006
4200 SOVGGOGBO00GRGO 4226 477 DC XLGPPQS OL2kG00G

279 * PRINTER BUFFER AND WORK AREAS QL230060
Got 280 ORG e256 e KF 7C? GG TO REQUIRED BOUNDARY ot 240000

eZ7C 28h PRNBUF EQU * PRENTES BUFFER OL2Z5G00G6
4270 $04040404040404) 4305 282 ON Cliset » OL260906

#306 283 PRNIOBR EQU + PRENTER POG GL27G009
$306 O00000G000000000 4347 284 DS XL5Q*O? QL2BGRRG

266 * REGISTER LABELS @1 3909060
G304 267 BRG EQU { BASE REGISTER OL414000
O0G2 288 S¥5 Eau 2 SYSIN PARAMETER LEST POENTER GES2G900
GOG2 289 LOG QU 2 SYSLOG PARAMETER LEST POINTER OL33000G
“#000 290 ENG SASSPR 912346000

YOVAL STATEMENTS EN ERROR IN THIS &SSEMBL Y~- 0

TOTAL SEQUENCE ERRORS IN THIS ASSEMBLY-~ 9

Figure 36 (Past 2 of 4), Listing of Statements in Model £5 Basic Assembler Sample Program.

36

SASSER

SYMBOL

$SLPRT

$ASSPR

SALEDE
$A1B4F

SALHSO

$ALENT

SALMER

BALPCH

BAL PRT

BALPR?

$ALROD

BAZALL

RAZ ARP

$AZEDF

eA2HUC

GAZING
$AZABEF

a2 GPR

£R2S EN

$C POND

$C PEGF

SC POF

$C PPER

$CPSUC

$DBF ARR

SOF ATL

SOF AT?

SDFCHA

SOFCHEB

SOFDMP

SBFEBEYV

SOFLP

SOFLRA

SOF MSR

SOF OPC

SOF OVE

$O0F PGS

SOF RIS

SOF PTO

$OFPOS

SDF PQ

SOF PR

SBF PRL

SOF SKA

SDF SKB

SOFSPA

$QF SPB

SDFUPS
$DFKRS
SO TF

BOC PRT

SSRABEE

SSRBES

SS REOF
$SREQR
BSRERR

LER

O01

Ook
Ok

BOL
Ook

OGL
OGL
301

O01
ool
QOL
GOL
GOL
G31
GOL
GOk

GOL
GOL

Ook
O01
Qgok
GGL
OOL

Qol
OGL
gah
oreRs
OGL
Gat
OGk
SOL
SOL
GO}
OOk
Ook
GO)
GOL

GOL
GO}
Gok
QoL
GOEL
aO%

901

OOL
O01
OG4
OGk
OGL
ook
301
QOL
901
agk
Gok
GOL

VALUE

QGaL
4Q00

O043
OGL
OG002
9004

Go08

G028

GO4G

GOOk
08a
0940

GOO4

G08
G32
9080

0019

GOGL
9020
G19
9642
648
041
906%

2009
e002

GO04
a005
Goo?
GO0E
G00G
GOED
6900
GOLF
GOOF
OGic
a020

GOLT
Q019
OOLE
GOL4

OG1%
0018
ere ed
9GLG
0643
QGL1
9691
OGO8
eo0¢
0040
9002
GO04
0059
a080
3060

DEFN

9024
9023
OLS3
9198
O196
O95
G194
G12
GAGh
O1sT
G199
G203
G208
O235
O20T
O202
G25
Q299
O2 OM
O21%
O217
Ogi4
O41&
G25
GLG68
O165
GL65
G16
OLS?
GLTL
O162
Gis
GL7O
G185
OLT2
0182
O184
OLT>9
O180
O184
OL?T?
OLTE
O1LB81
OL?S
OL?4
OLTS
OLTs
O163
O16
ORGY
O224
GLLG
Gh19
Ob29
GL3k
GLB

CROSS REFERENCE

REFERENCES YER OL, ADI

QG59
G290

O0453
9060

$060 0063

056%

SORTe

OG41*% G062% BOG5*
QG36%

UO29* 9036 GO37 2097% 3060 3052 9963 9055

GO37

BO8G
0049
GOSk
6053

OF LL- 39-73 PAGE &

jag?

Figure 36 (Part 3 of 4). Listing of Statements in Model 15 Basic Assembler Sample Program.

Appendix F. Basic Assembler Sample Programs 97

4

SASSPR

SY4S39L

BSRECTE
$SRNOM
$SRRG
SSRROD
ESHROF
SSRROL
ESRWAK
BASE
BRG

BUFPRI
BUFFRe
EGF
EGEMGC

MOSKIP
PERMGC
PERYSG
PRNGUF
PRNGTE
PRNERR
PRNT OG
REPLY
SERMGC
SERMASG
S¥S
S¥SER
S¥SENE
WORK AR

TOTAL

LEN

GGL
Gul
Qul
OGL
G01
BGk
OGL
aot
ore

Ok

OGL

oG3

JOR

OGk

Ok

303
003
OL

G04
QOk

GOL

Ga)

COL

J93

Ook

OGL

BOL

Gal

oOL
gaa

OOL

OL

STATEMENTS IN ERROR [N THES

1 THE
Y Yor

VALUE

3005
0040

9009
9060
QGOL
BOG?
004
O8C

Gaul

4150
4LaG

4058

490C

4086

4084

*O1B

£018

9902

954

SOF 3

4000

G2FC
4094
4QOTA

GARG

OCS

4055
404

3002

4OT9
4080

4299

CUDE
Bk

OEY

GL?
BLZ8
OLS
O1ds
O12
G125
GL2G
Gige
B287

O2F2
G2Ts
G26 9
0283
o2g27
3096
GO44

O041
G2ag
G066

G247
254
O2B1L
GLa?
aGOBS

o2B3
G236
O2o5

0242
O2BS
OGat
OLLL
C276

IN

LENGTH

0025

9025

0089

Oia

OLLG

Jusg

0235

o06%

3u52

9066

BORF

DISS"

3064

O262

G6a9

OL534

9629

DOGL

O52

OTS

3256

JOEL

D044

G54

OO4R%

GELS

THES

oF $as

NUMBER OF LISRAR

NAME~G4S5P25PACK-RALRER

3bOZS

GO 26%

QO97

GG7B

Gore

Josh

C049

2044

3

¥

Le UN

B66

OCB

ASSEMBL Y¥.=

Ss 824
TORS BE

Tri], RE

a

ASSEMBLY --

~d
e

E
O

VER S15 MOM Q9 Li-G9-73 PaGE

053 Gusse

G3& 004) GO%@ QU5S 3357 G049 JI74 OSE GOB!

O57 D097

J53 0055 0056

a

3

DEC EMSLs

VIRED FS 3

Figure 36 (Part 4 of 4). Listing of Statements in Model 15 Basic Assembler Saniple Program,

Appendix G: IBM 1255 Magnetic Character Reader Support (Models 12 and 15 Only)

Support is provided by the following [BM-supphed

subroutines:

é @ SUBRO7 — 1255 (Model 15 only)

@ SUBROS8 — 1255 (Model 12 and Model 15}

® SUBROG — 1419 (Model 12 and Model 15)

For detailed information concerning this support, see the

IRM System /3 Models 12 and 15 1255 and 1419 Magnetic

Character Reader Reference and Program Logic Manual,

GC21-S132.

Appendix G. IBM 1255 Magnetic Character Reader Support (Models 12 and iss) 699

ca

100 (101-104 deleted)

SWORK 2 ue 34

// CEND car 33

// SWITCH ate ment 31

absolute displacements 12

absolute expressions 7

absolute object program 28

address constant 18

addressing 12

base-register displacement method

7 aaddressing 13

ect method iZ

ine wiruction addressing 13

relative 4 rddressing technique 12

symbolic (direct) 12

assembler

coding conventions 8
coding form Y

functions i

instruction statements 17

data definition 1&

fields 8

format §

listing control instructions 20

tog

i2

program control instructions 22
mF

symbol definition instruction 7

listing 29

assembler language subroutines

finkage to COBOL 86
linkage to FORTRAN 86
linkage to RPG TL 71
placing im Riibrary 36

assembling a source program 28

asterisk

use i comment statement 10

use as location counter reference 6

attributes

enee ipute 14

value attribute 14

base address 12

base regis ster LZ

base-r register eee addressing

basic assembler sample program 69

beginning volun 29
binary consiant 6, 19

binary self-defining term 6

calling a source program 31

category level 20

CATG operand 27

characte ex

consiants 19

self-definine terms 6

COBOL linkage 86

—

bo

code

control 43

snemonic |

operation 9,43

machine 47

mnemonic i

Ocode 17,43

coding conventions, assembler &

coding form, assembler 9

coding sample for SPECIAL device 82

COMLx operands 29

comment statement 10

complement (two's complement form) 19

constant (see aiso self-defining term}

address 18

binary 19

character 19

data 138

decimal 19

define constant (DC) 18

hexadecimal 19

integer 19
negative (see integer constant)

paddingof 19
truncation of 19

control card code for assembler subroutine 76

control statements 27

control cards, LIDG program (see Library Deck, Generator

parameter card}

control section length 27

control code 43

conversion, punch 33

cross reference data 35

cross reference listing 28, 40

data

addressing 13
constant 18

data defining instructions (DC and DS} 18

data file requirements 34

DC (define constant) instruction 18

ecimal constant 19

decimal self-defining term 3
deck, object £7

define constant (DC) instruction 18

define storage (DS) instruction 19

diagnostics 40

table of 69

direct addressing 12

displacement 12

absolute 12

relocatable 12

DROP statement 25

DS (define storage} instruction i3

duplication factor

with DC instruction 18

with DS instruction 19

index

index

185

EIECT statement 20

END record 33

END staternent 26

ending column (see also ICTL staternent) 25

entry (see fields)

entry point 25

ENTRY statement 25

EOU (equate symbol statement 17

error cede 69

error conditions, LDG program 81

error information 35

ESL record 32

explicit length 15
expression 7

absolute 7

evaluation of 7

mult-term 7

relocatable 7

rules for coding 7
extended minemonic codes

external symbol Hist 39

table size 42

EXTRN statement 25

EATRN subtype 24

specifying 27

14,48

fel dsfs}

assembler statement 8

identification-sequence 16

name 10

operand Gmachine instructions} 14

operation 10

remark 16

files

source 34

object 34

work 34

format(s)

assembler staternent &

machine-instruction statement

operand 14

format control, input 22

FORTRAN linkage 86

13,43

groups machine-instruction operand 15

HEADER record 32

HEADERS statement 27

hexadecimal constants 19

hexadecimal self-defining terms 6

ICTL (input format contrel} statement 22

identification-sequence entry (field) (see also ISEQ statement} 10

L-field (immediate data} 146

implied lensth 15

input format control 22

input sequence checking (SEQ) statement 22

instruction(s}

addressing 12

assembler instruction statements 17

data defining 18
listing control 20

106

instruction(s} (continued)

machine-instruction statements 14

program control 2

symbol definition (EQU} 17

types 17

integer constant 19
intermediate text 34

ISEO Unput sequence checking) statement 22

Jcards 77

Keards 77

label (see symbol and name entry)

language

machine (see also machine instruction formats}
RPG IE 71

symbolic 1

Leards 78

fength(s}

attribute 14

control section 27

explicit 15

implied 15

subfield 14

of data definition instructions £8
Library Deck Generator parameter card 36
Library Deck Generator Program 76

linking

to COBOL 86

io FORTRAN 8&6

toRPGH 71

sting control instructions 20
stings. program 28, 38

loading the assembler 29
jocation counter 6

control of (see alsa START and ORG) 13
location counter reference (*) (see alsa terms) 6

machine-instruction(s) 13

format 43

listof 43
mnemonic codes 14

operands 14

machine language 1, 49

Macro processor 30

Main storage requirements 2
messages 69

rinemonic operation codes |

for assembler instruction statements 67
for machine-instruction statements 47

module category level 27

module name 23

name entry (field) 16

wane, module 23

negative values (see integer constant)

NOREL 28

NOOBE 28

1

OBI 28

object deck 28

object file Q@WORK) 34

object operand 31

object program 4, 32

object program, placing in BR Bbrary

direct 36

punched 36

OCL statements 29

one-address format (machine-instructions} 43

Op code (machine-instruction formats} 43

operand(s)

entry (field) 16

fields i4

formats 15

groups 15

machine-instraction 14

subfields 14

of DC and DS instructions 18

operation procedures 36

operation codes

extended mnemonic 13

mnemonic (see mnemonic operation codes}

Op code (machine instructions} 43

operation control language statements 29

operation entry (field) 16

OPTIONS 36

OPTIONS statement 27

ORG (set location counter) instruction 24

PRINT (print optional data) instruction 22

program control instructions 22

program relocation 4
ounch conversion 33

Qcode 17,43

record formats 32
REL 28
relative addressing 12

relocatable

displacements 12

expressions 7

terms 7
relocation of programs 4
remark entry (field) 16

representation of negative values (see integer constant)

requirements

datafile 34

main storage 1

system 1

restrictions, module name 23

RPG i
linkage to assembler language subroutine 71

sample program

basic assembler 89

RPG Ulinkage 71

SPECIAL subroutine 82

segment, assembler statement 8

self-defining term 3

sequence §

checking (SEQ) staternent 22

entry (field} 8

source file 34

source and object listing 39

source program, from macro processor 31

source staternent (assembler instruction statement) 1

SPACE (space listing} statement 21

special character(s}

in symbols (name entries) 5

START (start assembly) statement 23

statement(s}

assembler instruction 17

fields of 8

format of 8

types 1

corament 19

machine instruction 13

storage

addressing 4

definition (bs) instruction 19

relocation in 4

requirements 2

subfieldts)

constant (DC instruction} 18

duplication factor 18

length 18
of machine instruction operands 14

type 18

subroutine Hnkage 71, 86

SUBRO7 99
subtype, EXTRN 25

subtype, specifying 27

symbol (see aiso name entry} 3

definition instruction (EQU} 17

mnemonic (see mnemonic operation codes)

rules forcoding 3

table entrics 35

symbolic

addressing (see direct addressing}
language 1

system requirements |

terms 5

text, intermediate 34

TEXT-RLD records 33

TITLE Gidentify assembly output) statement 20

truncation of constants (see DC instruction)

two-operand format 15

two’s complement form (see integer constant) >

USING statement 24

UL indicator 31

valne attribute 14

work fie 34

1255 support 99

3741 Data Station i

index 107

&

©
&

&

international Business Machines Corporation

General Systems Division

4771 Northside Parkway MLW.

P.O. Box 2786

Atlanta, Georgia 30301

(U.S.A. only}

General Business Group/international

44 South Broadway

White Plains, New York 10601

USA.

(international)

SG21-7509-7

{L
E-

ES

"O
N

of
f g

)
ao

ua
ua

ja
y

ss
iq
wi
as
sy

os
eg

g/

ua
is

As

Wa
T

£
6
0
6
0

12
08

O
W
S

Ul

pa

lu
lg

d

$021-7509-7

Assernbler

erence Menual

r
he aah B

igh
& Fle

“y'S’F]
SY

Ui
PepeU

py
Aresseosu

BHeIs0G
ON

BS

sSsaippy

‘Addins
noA

U
G
H
B
U
N
O
Z
U
!

Syl
OSM

OF
S
N
U
Q
U
O
S

"SEINOD
{0

BUIBR
7ARLU

ROA
“JBAS

TRY
U
O
H
e
E
H
O
O

Aue
Gulunsul

N
O
U
N
M

SieLIdoOIdGe
SBAgtfeq

Ut

Ages
Aue

ur
Arcdding

noA
uonemusojul

3y)
fo

Aue
aynquisip

Bue
gen

A
B
U

IG!

J
U
P
U
N
M
O
D

JOQLUNAL
2BGg

"S8uDpe
PUL

B
w
B
U

IMOA
BON

ioUl

nOA
DaNiaoid

‘spew
Bulag

jou
s:

afueys
@
Aum

n
O

4j8}
10

‘
u
O
R
R
a
y
a
n
d

BYL
ApUue]o

2G
3584103

T
M

apaq
“
u
O

pled-efeisod
sis

Suisn
Ag

i:
inoge

Sh
8]

SS¥dlg
"
U
O
R
R
o
H
g
n
d

sy)
Ul

UO TRULOgUl
BulpeapEM

16
a}enooRy]

2OLi3
JBQUINNAY

B
B
E

‘Aides
@R

"(UC
Os

Pue
‘
u
O
H
e
u
e
n
i
p

‘
p
e
a
r
y
d
e
s
B
o
d

Al)
u
a
n
e
a
y
g
n
d

ul
19489

‘YUONRQO]
J
A
G
A

TS8IBBU

B
S
Y
p
O

Y
O
U
E
I
C

IAN}]
4p)

02
uO

G
A
R
e
l
U
a
s
a
u
d
e
s

g
y

4 N
O
A

OF
P
A
I
D

8a
P
p
N
O
Y
S

‘oye
‘“suOTBI

a
N
d

j
e
u
O
n
I
p
H
e

20)
sisenbar

‘
p
a
d
d
i
n
g

S
u
u
u
e
w
o
i
d

yyqy
ul

s
a
b
u
e
y
s

‘suseisAs
W
G
]

}
N
O
g
e

S
u
O
s
a
A
N
d

y
e
o
n
y
o
e
 |

“gua
eazaned

6}
S
e
B
u
e
y
s

s
e
n
h
a
.

10
siasse

U
G
e
a

a
n
d

Apinuapi
0)

ApuO
LiIOg

S
1
Y

BEN
ESeaiY

o
e

_

cs
‘

*
5

:
*

W
H
O
d

I
N
S
I
W
A
I
O
S

S&S. e
a
c
v
a
e

$C21-7808-7

FIRST CLASS

PERMIT NO. 46

ARBRMONK, N.Y.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WHL BE PAID BY...

iSM Corporation

General Systems Division

Development Laboratory

Publications, Dept. 245

Rochester, Minnesota 55901

General Systems Division

4441 Northside Parkway NW.

P.O, Box 2180

Atlanta, Georgia 30304

(U.S.A. only)

General Business Group/international

44 South Broadway

White Plains, New York 10601

USA.

{international}

(i
Z-

ES

ON

By
}

eo
ua
sa
jo
yy

sa
jQ
us
as
sy

O1
Se

g
E/

we
is

ds

WE

I
L
G
0
G
L

12
98

O
W
S

ul

pe
iu
ud

