)

(o]
o
e
<
ST ETEN
00 [l B]
.
LD L OO
T T TV T
= O O O O
.S y;SsSs=
r e Nocuss” g
o™ ..m...v c 3] P
L0 © L = = (\ ™ O
EES E9Quu9 5
§ 3o 3IIILL 3
2 20 2 NS < W -
> A c = 0000 - O
1) Q = NSNS by M =
T) M ©WLWLWLW 28 &
= B = =4 0 g
m 32 ° % 8
— o0 a g2 =
»u Q.
ssssssssss, gmamss s sgsss gsnmss gsmsmss, sas s3002 sassessssses
° 0ec000000 e eceece ese e0ee P++44-44 / 494 ¢
mmmm s23s ssecess ssees eoo > H4+4 nm ® | oase o“xx.
6600000000 soe ® ooe ° o6 ° / b4
sasssesses sasesases *: s : S /
sitsssiste, gHii s : 1 N
-4 494 sece / -4
2000 09066 6000 09 o000 8000 e00 cooee T ° o000 / secos ese
oo““““otcu“u““ P+9-4-4 b4 b4 _ sees 4444 34 o6 [T I / 13T 000
0000000006000 00 oce soe 0000000 0000000000000 M -4 %/ b4 S
000000600000 [34 ® ° oo [34 ®0 4 ® ® ° oe | 4 hd
ety H ° ° esscsces sesssess 44 4 8 | s

Preface

This publication is a reference manual for the programmer Related Publications

using the IBM System/3 Basic Assembler language. This

language provides facilities for representing machine The IBM System/3 Models 8, 10, 12, and 15 Components

usable instructions symbolically on a one-for-one basis. Reference Manual, GA21-9236, contains specifications

The symbolic representations are translatéd by the IBM governing the use of assembler language instructions. .

System/3 Basic Assembler into the machine usable form
necessary for running a program on the System/3.

System/3 Model 8

The System/3 Model 8 is supported by System/3 Model 10
Disk System control programming and program products.
The facilities described in this publication for the Model 10
are also applicable to the Model 8, although the Model 8 is
not referenced. It should be noted that not all devices

and features which are available on the Model 10 are avail-
able on the Model 8. Therefore, Model 8 users should be
familiar with the contents of IBM System/3 Model 8
Introduction, GC21-5114.

Eighth Edition {April 1975)
This is a minor revision of SC21-7509-5 incorporating Technical Newsletters:

SN21-5385 March 17, 1976
SN21-5434 December 31, 1976
SN21-5536 June 24,1977

This revision makes some changes to various pages and introduces information concerning
the IBM System/3 Model 8. Changes to text and small changes to illustrations are
indicated by a vertical line at the left of the change; new or extensively revised
illustrations are denoted by the symbol ®at the left of the figure caption.

This edition applies to version 12, modification 00 of IBM System/3 Model 10 Disk System
Basic Assembler (Program Product Number 5702-AS1); version 03, modification 00 of
IBM System/3 Model 15 Basic Assembler (Program Product Number 5704-AS1); and to all
subsequent versions and modifications unless otherwise indicated in new editions or
technical newsletters. Changes are continually made to the specifications herein; before
using this publication in connection with the operation of IBM Systems, consult the

Jatest IBM System/3 Bibliography, GC20-8080, for the editions that are applicable and
current.

Requests for copies of IBM publications should be made to your IBM representative or to
the branch office serving your locality.

A Reader’s Comment Form is at the back of this publication. If the form is gone, address
your comments to IBM Corporation, Publications, Department 245, Rochester,
Minnesota 55901.

©Copyright International Business Machines Corporation 1970, 1971, 1972, 1973, 1975

INTRODUCTION
Minimum System Requirements

Main Storage Requirements

PART . BASIC ASSEMBLER LANGUAGE
Basic Statement Format
Terms and Expressions .
Terms. . .
The Symbol .
The Self-Defining Term
Location Counter Reference
Expressions .
Assembler Coding Conventlons
The Statement Format .
Comment Statements
Addressing
Direct Addressmg .
Base-Register Dlsplacement Addressmg
Relative Addressing .
Instruction Addressing .
Data Addressing . .
Control of Location Counter .
Machine Instruction Statements
Name Entry Attributes .
Machine Instruction Mnemonic Codes
Extended Mnemonic Codes
Machine Instruction Operands .
Assembler Instruction Statements
Symbol Definition Instruction
Data Defining Instructions .
Listing Control Instructions
Program Control Instructions .

PART II. PROGRAMMER'’S GUIDE
Assembler Control Statements
Headers Statement .
Options Statement .
OCL Statements For Assembler
OCL For Loading the Assembler .
OCL For Calling the Assembler
Sample Assembler Procedure Stored in Procedure
Library . .
Object Program Descnpﬁon
Record Formats .
Object Program After Punch Converslon
Assembly Time Data File Requirements .
Source File
Object File
Work File
Operating Procedures

Placing Assembler Subroutmes in R (Routme) lerary

Using Assembler Object Program With the Program
Loader .
Assembler Listing
Control Statements .
External Symbol List (ESL)

~

00~ h W W

37

38
38
39

Source and Object Listing .
Cross-Reference List . .
External Symbol List (ESL) Tabie Slze

APPENDIX A: MACHINE INSTRUCTIONS
Machine Language Instruction Formats .
Operation Code .
Q Code
Control Code
Storage Addresses
Mnemonic Operation Codes (Machme)
Extended Mnemonic Codes

APPENDIX B: ASSEMBLER INSTRUCTION
REFERENCE TABLE R

APPENDIX C: SYSTEM/3 ASSEMBLER —~ SOURCE

LANGUAGE ERROR CODES AND DIAGNOSTICS .

Contents

39
40
42

43
43
43
43
43
43
47
48

67

69

APPENDIX D: ASSEMBLER LANGUAGE SUBROUTINE

TO RPG II LINKAGE

Using Fields in the RPG II Program .
Referencing a Field in an RPG II Ptogram .
Referencing a Table or Array in an RPG II Program
Referencing an Indicator in an RPG II Program .

RPG II Linkage Sample Program 1

RPG II Linkage Sample Program 2

I/O Subroutines . .

Linkage for I/O Subroutmes .

Library Deck Generator Program (Model 10 Only)
Writing the Assembler Language Program
Assembling the Subroutine .
Running the LDG Program
Output of the LDG Program
Example .

71
71
71
71
72
72
72
72
72
76
76
79
79

82

APPENDIX E: ASSEMBLER LANGUAGE SUBROUTINE

TO COBOL OR FORTRAN LINKAGE
Standards

APPENDIX F: BASIC ASSEMBLER SAMPLE
PROGRAM ..
Model 10 and Model 12 Sample Programs
Program Description
Mode! 15 Sample Program .
Program Description

APPENDIX G: IBM 12556 MAGNETIC CHARACTER

READER SUPPORT (Models 12 and 15 Only)

INDEX

86
88

89
89
89
93
93

99

. 105

The IBM System/3 Basic Assembler language is a
symbolic language. That is, it must be translated into a
form usable by the computer before a program can be
run. The computer-usable form is called machine
language, and the IBM System/3 Basic Assembler language
provides a convenient method for representing, on a
one-for-one basis, machine language instructions and
related data necessary to write a program for IBM
System/3. This one-for-one relationship to machine
language instructions gives assembler language great
programming versatility.

The assembler language is composed of symbols, called
mnemonics, which are used to represent the operation
codes of two types of instruction statements:

1. Machine instruction statements are the symbols
that represent machine language instructions on a
one-for-one basis. Note that symbolically repre-
sented machine instructions are translated into
machine language by the assembler.

2. Assembler instruction statements are instructions
which control the functions of the assembler. Each
assembler instruction statement causes the assembler
to perform a specific operation during the assembly
process.

The IBM System/3 Basic Assembler:
e Processes instructions written in assembler language.

e Translates the assembler language instructions into
machine language.

e Assigns storage locations.

e Performs other functions necessary to produce an
executable machine language program.

In order to call the assembler from its storage

location, a specific set of OCL (operation control
language) instructions must be used. Following these
OCL instructions, the user may elect to include an
OPTIONS instruction, a facility which allows him to
take advantage of various combinations of output listings
and punched decks.

Introduction

There are certain procedures for storing assembler routines
on the Model 10 Disk System, Model 12, and Model 15 R
(relocatable) Libraryand for loading assembler object pro-
grams into main storage. These procedures, as well as the
other items mentioned briefly above, are discussed more
fully in the text.

MINIMUM SYSTEM REQUIREMENTS

The minimum system configuration and optional device
support for the Basic Assembler program is shown in the
IBM System /3 Models 6, 8, 10, and 12 System Generation
Reference Manual, GC21-5126 and in the /BM System/3
Model 15 System Generation Reference Manual,
GC21-7616.

Introduction 1

MAIN STORAGE REQUIREMENTS

The Model 10 Disk System Basic Assembler (5702-AS1)
requires 8,192 bytes of main storage for execution,
exclusive of control program requirements.

The Model 12 Basic Assembler (5705-AS1) and the

Model 15 Basic Assembler (5704-AS1 or 5704-AS2)
require 10,240 bytes of main storage for execution,
exclusive of control program requirements.

The IBM Systern/3 Basic Assembler language is a symbolic
language that provides a convenient method for
representing, on a one-for-one basis, machine language
instructions. The symbolic representations in assembler
language coding are translated by the IBM System/3
Basic Assembler into the machine language form usable
by the computer. In order to code in assembler
language, the user must become familiar with certain
terms, coding conventions, instructions, and other
features of the language. The remainder of this chapter
deals with these items.

BASIC STATEMENT FORMAT

A statement coded in assembler language can contain up
to four entries from left to right: Name, Operation,
Operand, and Remark. See Assembler Coding Conventions
in this manual for an explanation of the contents and
functions of each entry.

Part 1. Basic Assembler Language

TERMS AND EXPRESSIONS

A term is a single symbol, self-defining value, or location
counter reference which can be used only in the operand
field of an assembler language instruction. The three

types of terms are described under Terms in this section.

An expression consists of one or more terms. It is used
to specify the operand fields of assembler language
instructions. Terms and expressions are classed as either
absolute or relocatable. A term or expression is absolute
if its value is not changed when the assembled program in
which it is used is relocated in main storage. A term or
expression is relocatable if its value is changed when the
program in which it is used is relocated.

Basic Assembler Language

3

Program relocation is the loading of an assembled
program (object program) into a different area of main
storage from that which was originally assigned by the
assembler. The difference (in bytes) between the
originally assigned address of the object program and the
address of the relocated object program is the amount of
relocation. The addresses assigned to all instructions and
data in the relocated program are changed by the amount

Storage

m Main Storage

0

2000

First Loading

Figure 1. Program Relocation

Address

of relocation. In Figure 1, Object Program A is initially
loaded at address 2000 in main storage. When Object
Program A is loaded a second time, it is placed at address
3000 in main storage. The amount of relocation is 1000
bytes. Therefore, the values of all relocatable terms and
expressions used in Object Program A would be increased
by 1000 during the second loading.

Storage
Main Storage
e

2000 1

3000

Second Loading

* The amount of program relocation is 1000 bytes.

TERMS

Three types of terms are used in the IBM System/3
Basic Assembler language.

¢ Symbol
e Seif-defining term

e Location counter reference

The Symbol

A symbol is a character or combination of characters
used to represent storage locations, instructions, input/
output units, registers, or arbitrary values. A symbol can
be used in either the name field or the operand field of

a statement. When used in the name field, the symbol is
called a name field entry. When used in the operand
field, the symbol is called a symbolic term.

When the assembler finds a symbol in the name field of
a statement, it assigns to that symbol an address value
attribute. See Addressing in this section. The assembler
also assigns a length attribute to the symbol, which is
the number of bytes in the storage field named by the
symbol. There are exceptions. When the assembler en-
counters EQU, START, or TITLE statements, it does
not assign the usual attributes. EQU name field entries
derive their values from the operand, START name field
entries are assigned a length of 1, and TITLE name field
entries are assigned no values at all.

The same symbol cannot be used as a name entry more
than once within a program with the exception of the
TITLE card. In order for a symbol to be used in the
operand field, it must be defined (that is, used as a name)
on an instruction other than a TITLE card somewhere in
the program. Once it is defined, the symbol may appear
in any number of operands. Whether the symbol is used
as a name or an operand, these rules must be followed:

1. The symbol can consist of no more than six
characters, the first of which must be either
alphabetic or $, #, @. The other characters can be
any combination of alphabetic, numeric, or $, #,@.

[}

Blanks and special characters other than §,#, @
cannot be used in a symbol.

The Seif-Defining Term

The self-defining term is a term which specifies an actual
value or bit configuration.

The value expressed by the self-defining term is taken
literally by the assembler and is assembled into the instruc-
tion. Like all terms, the self-defining term is used only

in the operand field.

There are four types of self-defining terms:
e Decimal

e Hexadecimal

e Binary

e Character

Decimal Self-Defining Terms

A decimal self-defining term is an unsigned decimal
number written as a sequence of decimal digits. High

order zeros may be used, such as in 0003. If a decimal
term is used as an address, its value cannot exceed the
number of bytes in main storage. A decimal term consists
of no more than five digits and cannot exceed a value of
65,535. This value is equivalent to the binary value

that can be contained in two bytes. A decimal self-defining
term is assembled as its binary equivalent.

Examples: 16 132 00006 43678

In the following example, a decimal self-defining term is
used in a Move Immediate (MVI) instruction. The binary
equivalent of 25 would be placed in the 1-byte area
referenced by the symbol, COST

NAME OPERATION OPERAND

ALPHA MVi COST, 25

Basic Assembler Language §

Hexadecimal Self-Defining Terms

Hexadecimal self-defining terms can consist of up to
four hexadecimal digits enclosed in apostrophes and
preceded by the letter X.

Examples: X‘C34A° X'04F X‘6° X‘DE’

Each digit is assembled into its 4-bit binary equivalent.
Therefore, the maximum value would be X‘FFFF’
(65,535).

The following is an example of the use of a hexadecimal
self-defining term. The 1-byte area at SWITCH would
contain the hexadecimal value FO (binary, 11110000)
after execution of the instruction.

NAME OPERATION OPERAND

BETA Mvi SWITCH, X'FO’

Binary Self-Defining Terms

Binary self-defining terms are written as a sequence of
1I’s and O’s enclosed in apostrophes and preceded by the
letter B; such as B°1011°. This term would appear in
storage as 00001011. The high-order (leftmost) bits

are padded with 0-bits to make a multiple of eight bits of
data (one or two bytes). A maximum of 16 bits of data
can be represented in each term. In the following
example of a Move Immediate instruction, the binary

information will be moved into the 1-byte field at AREA.

NAME OPERATION OPERAND

GAMMA MVi AREA, B10110011’

Character Self-Defining Terms

Character self-defining terms consist of one or two
characters enclosed by apostrophes and preceded by the
letter C;such as C°A3’. Any of the valid punch
combinations can be used in a character self-defining
term.

Examples: C'A9° CEA’ CLB (3

Because certain terms in the assembler language must be
enclosed by apostrophes (such as C'EA’), for every
apostrophe that is used as a character in a self-defining
term, two must be written. For example, the characters
A’ would be written as C°A™.

In the following example, a dollar sign ($) would be
moved into the byte field at REPORT.

NAME OPERATION OPERAND

DELTA MVI REPORT, C'8$’

Location Counter Reference

Location Counter: The location counter is an internal
counter, maintained by the assembler, which always
points to the next available storage location. As each
new statement is processed, the location counter is
increased by the number of bytes in the assembled
statement. The assembler uses the current address

in the location counter to assign consecutive storage
addresses to program statements.

Location Counter Reference: A location counter
reference is an asterisk (*) used as a term in the operand
of an instruction. When the assembler encounters

an asterisk, it substitutes the current value of the
location counter (which always points to the next
available storage location) for the asterisk.

EXPRESSIONS

An expression consists of an arithmetic combination of
one or more terms. In a multi-term expression, terms
must be separated by an arithmetic operator: the
arithmetic operators are + for addition, — for subtraction,
and * for multiplication.
AREA+X2D’

Examples: N-25 R+15 A*8

The rules for coding an expression are:

1. Two terms or two operators must not be used
consecutively in an expression.

2. Parentheses cannot be used in an expression.

3. Only absolute terms can be used in a multiply
operation.

4. Blanks are not allowed in an expression.

. Using the Model 10 disk system basic assembler,
an expression may consist of only one term when
that term is a symbol used as the operand of an
EXTRN statement.

b. Using the Model 15 basic assembler, if the expres-
sion contains an external symbol, then the
expression must be of the form AorAte. Aisa
symbol used as the operand of an EXTRN state-
ment and e is an absolute expression.

Note: An Ae expression must not be in a Model
10 subroutine with RPG IL.

If there is more than one term in the expression, the
terms are reduced to a single value as follows:

1. Each term is evaluated separately.

2. Arithmetic operations are then performed in a
left-to-right sequence, except that multiplication
is performed before addition or subtraction. An
example would be A+B*C, which would be
evaluated as A+(B*C), not (A+B)*C. The result
would be the value of the expression.

3. The intermediate result of the expression
evaluation is a 3-byte, or 24-bit value. Intermediate
results must be in the range of —2 4 through
2241

Negative values are carried in the two’s-complement
form. The final value of the expression is the truncated,
rightmost 16 bits of the result. The value of the
expression before truncation must be in the range of
-65536 through +65535. A negative result is considered
to be a 2-byte positive value.

Note: In address constants the full 24-bit final expression
result is truncated on the left to fit the length of the con-
stant.

Absolute Expressions: An expression is considered
absolute if its value is unaffected by program relocation.

An absolute term may be a non-relocatable symbol, or
any of the self-defining terms. All arithmetic operations
are permitted between absolute terms.

An absolute expression can contain relocatable terms or
a combination of relocatable and absolute terms under
the following conditions:

1. The expression must contain an even number of
relocatable terms.

2. The relocatable terms must be paired and each
pair must consist of terms with opposite signs.
The paired terms need not be adjacent.

3. Relocatable terms cannot be-used in a multipli-
cation operation.

Pairing relocatable terms with opposite signs cancels

the effect of the relocation, because both terms would be
relocated by the same value. Therefore, the value
represented by the paired terms would, in effect, remain
constant regardless of the program relocation. For
example, in the absolute expression A—Y+X, A is an
absolute term and X and Y are relocatable terms. If A
equals 50, Y equals 25, and X equals 10, the value of
the expression would be 35 If X and Y are relocated by
a factor of 100, their values would become 110 and 125,
respectively. However, the expression would still
evaluate as 35 (50—125+110=35). Absolute expressions
reduce to a single absolute value.

Relocatable Expressions: A relocatable expression is
one whose value changes by the amount of relocation
when the program in which it is used is relocated. All
relocatable expressions must reduce to a positive
value.

Basic Assembler Language

7

A relocatable expression can be a combination of
relocatable and absolute terms under the following
conditions:

1. There must be an odd number of relocatable
terms.

2. All relocatable terms, except one, must be paired
and each pair must consist of terms with opposite
signs. The paired terms need not be adjacent.

3. The unpaired term must not be immediately
preceded by a minus sign.

4. Relocatable terms cannot enter into a multiplication
operation.

All terms in a relocatable expression are reduced to a
single value. This single value is the value of the unpaired
relocatable term after it has been adjusted (displaced) by
the resultant value of the other terms in that expression.
For example, in the expression W—X+Y where W, X,

and Y are relocatable terms; and W=10, X=3, Y=1;

the result would be the relocatable value of 8.

If the program is relocated by 100 bytes, the resultant
value of the expression would be increased by the amount
of relocation (100), giving the expression a value of 108.

In the following expression, a combination of absolute
and relocatable terms are used: A+F*G—D+B. A, D,
and B are relocatable terms; F and G are absolute

terms. When given the values A=3, B=2, D=5, F=1, and
G=4, the result would be a relocatable value of 4. The
multiplication occurred first, resulting in 4; then the
addition and subtraction of the other terms, including
the result of the multiplication, was performed in a
left-to-right direction. The result of the arithmetic
operations is a relocatable value of 4 for this expression.

Upon relocation, the value of this expression can be
determined by adding the amount of relocation to all
relocatable terms.

ASSEMBLER CODING CONVENTIONS

This section explains the general coding conventions
associated with the IBM System/3 Basic Assembler
language. When coding in assembler language, the
programmer uses the IBM System/3 Assembler Coding
Form (Figure 2).

The Statement Format

Each line on the coding form is divided into two segments:
Statement (columns 1-87), and Sequence (columns §9-96).

The Statement segment can contain up to four entries,
from left to right: Name, Operation, Operand and
Remark. The Name field is column dependent. It
must start in column 1, unless otherwise specified by
the ICTL assembler instruction (see Assembler
Instruction Statements). All other entries can start

in any column, as long as there is at least one blank
separating each entry and the entries remain in the
stated order. Figure 3 is a diagram of assembler
statement entries.

gm@vmmmnm—wcmw L8 98 58 vB €8 I8 —Dgzmhhh®hmhv~.mhms:,Oﬁmmwmhmwmm@vmmwN@—wgmmwéhmxmmﬁwﬁmmm—msmtwthvwvwvvfﬁvnvv??@hghﬂwﬁﬁw‘ﬂﬁﬂwnvﬂgﬂmwNNNWﬂR'NﬂNNN_ﬂam«wfﬁnm»mwﬁw.n—N——wovmWpom v e Z 1
T T
| i
] T
| |
| T
; _
i
! “
i
i |
}
{
“ 1
| |
i t
H 1
}
]
~ ». i
: }
| i
T 1
! i
1
| |
f
\ |
|
! ;
T)
| 1
1 i
i i
} -
! |
t]
| |
T
" i
| i
f T §
{)
|
. :
i
; i
H i
1]
&mmowmﬁmwm>m;®mmwmﬁmgnxqrmmﬁwamvmcﬁahhﬁg\mmq~ €L oL —mOwawchwﬁwm@gﬂm&wwmgmmmwNMO,amm(mmmNmwmamqshvwvggnewq —wgmmmmhnwﬁﬂ;ﬁnwm‘mgﬁﬁhN&thQﬁMNNN amgar@»hpowmﬁ@wmwmw itoL 6 giela s v £ 21
syeusY pupIaiQ $oNRIBAQ) BuRy
AN3W3LYLS
HIHWNN OHLD313 AUV HONNG 31va HIANMAY HDOUG
40 ERLZ) DIHAVHO WYHOOHd

YUS T v palg
LOVE 1L W04

w04 BuipoeD ejquisssy diseg £/ wasAS Wel

wal1

Figure 2. IBM System/3 Basic Assembler Coding Form

Basic Assembler Language 9

Name Entry

e Optional or required depending on the specific

instruction.

o Up to six characters can be used in a name.

e First character must be alphabetic (including $, #, @).

e First character must be in column 1 unless otherwise

specified by an ICTL assembler instruction.

e No special characters or blanks in a name (except

$,#, @.

e At least one blank must follow the Name entry or

appear in the first Name entry column (if no name is
entered).

Operation Entry

Required entry.

Contains mnemonic operation code (list of valid machine
codes is in Appendix A. Machine Instructions).

Must be followed by a blank.

Operand Entry

Optional or required depending on the specific
instruction.

Contains coding that describes data to be acted upon.
Operands are separated by a comma.
No blanks between terms or operands.

Blanks are allowed within character constants and
character self-defining terms only.

If the entire operand entry is omitted, but a remark
entry is desired, absence of the operand must be
indicated by a comma in the operand entry, preceded
and followed by one or more blanks.

Must be followed by a blank.

10

Remark Entry
e Optional entry.

e Contains a brief verbal description of the statement’s
function.

e Cannot extend beyond column 87 or a limit prescribed
by ICTL assembler instruction.

e Can contain any combination of valid characters or
blanks.

o Must be followed by a blank.

Identification—Sequence Entry
e Optional entry.

e Contains statement identification or sequence
characters.

o See ISEQ — Input Sequence Checking later in this section.

Comment Statements

The entire statement field (columns 1-87) can be used
for comments by placing an asterisk in column 1 (or the
beginning column, as set by the ICTL assembler
instruction). Comments can be extended for more than
one line by the repeated use of the asterisk in the first
column of additional cards. Comment lines may be used
anywhere in the source program and are printed on the
program listing. Sequence checking is also performed
on cards containing comment statements,

®

SEQUENCE

OPERATION 4| oreraAND % REMARK £

Name Entry Operation Entry

This entry consists of the
mnemonic code for the
desired operation. The
operation can be either

. |

This entry may contain
up to 6 characters.

If not left blank, column { l
one must contain an Machine instruction or Assembler instruction
alphabetic character.

Operand Entry

®

One or more operands
that consist of either:

I
[[[1

EXP or | EXP (EXP) \ or | EXP(EXP,EXP) | or |EXP (,EXP)

[|

A single term consisting of: or An arithmetic combination

of terms.
[]
A symbol or A self-defining term or A location counter
(AT or RT) (AT) reference (*) (RT)
EXP = expression
| AT = absolute term

L I L 1 RT = relocatable term
Decimal Hexadecimal Binary Character
e.g. 166 or e.g. X'C4’ or e.g. B'101’ or e.g. C' AB’

Remark Entry Sequence Entry

This entry contains any
statement meaningful
to the programmer.

This entry is optional.

Figure 3. Assembler Statement Entries

This field may contain
any valid characters,

This entry is optional.

Basic Assembler Language

11

ADDRESSING

The programmer must be able to access any part of storage.
IBM System/3 provides two methods of addressing: direct
and base-register displacement. The relative addressing
technique can be used with both methods. For addressing,
see the /BM System/3 Models 8, 10, 12, and 15 Components
Reference Manual, GA21-9236.

Direct Addressing

The direct addressing method allows the programmer to
represent a 16-bit instruction address by using an
expression as an operand entry. The assembler places
the value of the expression in the machine instruction
which it generates.

Two bytes are always used in the machine instruction for
a direct address. A direct address is indicated by the
absence of a register in the operand.

Example: MVI ACD
This indicates to the assembler that a direct address is to

be generated for location A (see Machine Instruction
Operands).

Base-Register Displacement Addressing

Base-register displacement addressing involves setting up
a base address from which other addresses can be
calculated. This base address must be placed in the base
register before the base register is used for addressing.

One byte is always used in the machine instruction for a
base-register displacement address and is indicated by the
presence of a register in the operand.

Examples: MVI
MVI

A(2),CD
5(,1),CD°

This indicates to the assembler that a base-register displace-
ment address is to be generated for location A using base
register 2 and for displacement 5 from base register 1.

IBM

PROGHAM

PROGRAMMER

1 2N§mi 5 8] 7 aoé’ei?f'??vz 13114 1516 17 18 19 20 21 nogse'g'a\dzzs‘nmzemsv:nsawiﬁr
RIX\L EQU
LA DBAIsIE|, RIX
U\S// NG ADBIASIE,IRX 1
Mviel | | lalC], IRx(L)], 1Bi([2], [RX[1])
i

Figure 4. Base-Register Displacement Addressing

12

The base register plus a displacement can reference any
higher address within 255 bytes of the specified base
address. The displacement portion of the address can be
either absolute or relocatable; however, in either case the
programmer indicates that a base-displacement address is

to be generated by the presence of the register in the
operand (see Machine Instruction Operands). If relocatable
displacements are used, the USING statement (see Assembler
Instruction Statements) must be used to indicate to the
assembler which register contains the base address and
what address will be loaded into that register. The USING
instruction does not load the register with the specified
address; the programmer must use a load instruction to
place the indicated address into the register. Figure 4 is

an example of base-register displacement addressing.

In Figure 4 two bytes of data will be moved from the
location of B to the location of A. The assembler
calculates the displacement to the addresses for A and
B, if A and B are relocatable and are within a positive
255 bytes of the address in base register XR1. If either
A or B is over 255 bytes from the base address, an
addressing error occurs and an assembler error statement
is generated. If the terms A and B are not relocatable
symbols, the assembler uses the absolute values (up to
255) of the terms for the displacement. If absolute
displacements are used, the USING assembler statement
is not required.

Note: The programmer must explicitly specify the base
register whenever base-register displacement addressing is
used.

The programmer terminates the use of a previously
defined base register through the use of the DROP
instruction (see Assembler Instruction Statements). The
value of the register is not affected. This register
cannot, however, enter into base-register displacement
addressing using relocatable displacements until specified
again by a USING instruction.

Relative Addressing

Relative addressing is an addressing technique
accomplished by adding bytes to or subtracting bytes
from a symbol or location counter reference. The
expression *+5, for example, specifies the location 5
bytes beyond the current value of the location counter.
Figure 5 is an example of relative addressing.

In Figure 5, the instruction with the operation code
ZAZ has a length of 6 bytes, the instruction AZ has a
length of 5 bytes and the instruction with MVI has a
length of 4 bytes in storage. Using relative addressing,
the location of the AZ instruction can be expressed in
two ways, AAA+6 or BBB-S.

Control of Location Counter

Addressing in any computer language depends upon the
location counter. IBM System/3 allows the programmer
to control the location counter by using two assembler
instructions: START and ORG. The START assembler
instruction can be used to initialize the location counter
to a desired value at the beginning of a program. The
ORG assembler instruction can be used to change the
value of the location counter anywhere in a program.

IBM
Name Operation Operand
1 7§3 4 5 B1 718 (im 11 12{13{14 1516 17 18 1920 21 222324 25 26 27 28 29 30 31 32 33 N F |
AAA ZAZ | | 1B,|C
AZ lel(1 1@, 111)1,C
BB3 MVt LD XA E
B AAAHG

Figure 5. Relative Addressing

Figure 6 shows how the AZ instruction can be addressed
relative to the nearby symbolic addresses, AAA and BBB.

Relative addressing may also be used with base-register
displacement addressing if the displacement is a
relocatable term.

Example: MVC A+5(,RX1),B(2,RX1)

In the example, A+5 is an example of relative addressing
used with base-register displacement addressing.

Instruction Addressing

A symbol used as a name entry in a machine-instruction
statement addresses the leftmost byte of storage occupied
by that instruction.

Data Addressing

A symbol used as a name entry in a data definition
instruction (see DC — Define Constant and DS — Define
Storage) address the rightmost byte of storage occupied
by or reserved for that data.

}————Gbytes —+ 5-bytes —+¢bytes -l

Pttt
T 4 A

AZ MVI
ZAZ (AAA+B) (BBB)
symbolic address = (AAA) (BBB-5)

Figure 6. Schematic of Relative Addressing

These two instructions are described in detail under
Assembler Instruction Statements.

MACHINE INSTRUCTION STATEMENTS

Machine instruction statements are symbols that
represent machine language instructions on a one-for-one
basis. The assembler translates these symbolic repre-
sentations into machine language usable by the
computer. Machine instruction statements differ from
assembler instruction statements in that the machine
instruction statements are executable parts of the
program’s logic (such as MV1, ST, LA, etc), while
assembler instruction statements are simply orders to
the assembler, each statement directing a specific operation
(such as DC, START, SPACE, etc). See IBM System/3
Models 8, 10, 12, and 15 Components Reference Manual,
GA21-9236 for a description of the execution of machine
instructions.

The format for a machine instruction statement is closely
related to, but not the same as, the machine language
instruction format which results from the assembly
process (see Appendix A. Machine Instructions for
machine language instruction formats).

A mnemonic operation code is used in place of the
actual machine language operation code and one or
more operands provide the information required by
the machine instruction. A remark and a sequence
entry may be included in the machine-instruction
statements, but they will not affect the machine
language instruction.

Basic Assembler Language 13

Name Entry Attributes

Any machine-instruction statement can contain a
symbol as a name entry. Other machine-instruction
statements can use that symbol as an operand. The
assembler assigns value and length attributes (charac-
teristics) to every sumbol used in a program. The value
attribute of a symbol which is used as a name entry

in a machine-instruction statement is the address of
the leftmost byte of storage occupied by the assembled
instruction. The length attribute of the symbol is

the number of bytes of storage occupied by the
assembled instruction. Refer to Lengths—FExplicit and
Implied in this section for a discussion of the length
attributes of other types of symbols, terms, and
expressions.

Machine Instruction Mnemonic Codes

The mnemonic operation codes are designed to be
easily-remembered codes that remind the programmer
of the functions performed by the instructions. The
mnemonic codes are translated into machine-language
operation codes by the assembler. IBM System/3 Basic
Assembler provides mnemonic and extended mnemonic
operation codes. The complete set of mnemonic codes
is listed in Appendix A. Machine Instructions.

Extended Mnemonic Codes

Extended mnemonic codes are provided for the
convenience of the programmer. They are unlike other
mnemonic codes in that part of the information

usually provided in the operand is in the extended
mnemonic code itself. Extended mnemonic codes allow
the following:

1. Conditional branches (BC) and jumps (JC) can
be specified mnemonically, requiring only a
branch address as an operand.

2. Half-byte moves (MVX) can be specified
mnemonically, requiring only the use of addresses
as operands.

3. The supervisor call form of the command CPU
(CCP) machine operation can be specified
mnemonically (Model 15 only).

Extended mnemonic codes are not part of the set of
machine instructions, but are translated by the assembler
into the corresponding operation code and condition
combinations.

14

See Appendix A. Machine Instructions for a list of
extended mnemonic codes.

Machine Instruction Operands

This section describes (1) operand fields and subfields,
(2) explicit and implied lengths, and (3) operand groups
and formats. The operands of machine instruction
statements provide the information about addresses,
lengths, and immediate data that is required by the
assembler to generate executable machine instructions.
General rules for coding of operands are covered in
Assembler Coding Conventions.

Operand Fields and Subfields

The left operand of a pair is called operand 1, or
operand field 1; the right operand is called operand 2,

or operand field 2. An operand field may include one

or two subfields (length subfield, register subfield)

as in the following example of base-register displacement
addressing.

Example: 40(,2)

The above operand field contains a displacement entry,
40, and a register subfield entry, 2, representing index
register 2. The following rules apply to the coding of
subfields:

1. Parentheses must enclose a subfield or subfields.
2. Blanks cannot be used within subfield parentheses.

3. A comma must separate two subfields within
parentheses (L,R).

4. If the first subfield of a pair is omitted, the
comma that separates it from the second subfield
must be retained (,R).

5. If the second subfield of a pair is omitted, the
comma separating the pair must also be omitted

().

6. If both subfields are omitted, the separating
comma and the parentheses must also be omitted.

Operand subfields can contain immediate data, length,
or register information. Only absolute expressions
and self-defining terms may be used as subfield entries.

Lengths — Explicit and Implied

A length subfield in an operand may be either explicit
or implied. To imply a length, the programmer omits
the length subfield from an operand. When a length
specification is not included in an operand requiring

a length, the assembler includes the implied length of
the first operand, such as the length attribute of a name
entry (see Name Entry Attributes in this section).

The length attributes of various terms and expressions
are shown in Figure 7.

An explicit length is written by the programmer in the
operand as an absolute expression. The explicit length
overrides any implied length.

Term or Expression Length Attribute

Length, in bytes, of the
instruction.

1. Name entry symbol
of a machine-instruction

2. Location-counter
reference {*)

Length, in bytes, of the
instruction in which it

appears (except in the EQU
assembler statement, where the

Length attribute of the
leftmost term in the
expression.

3. Expression

4. Self-Defining Term Length attribute is one.

5. START name entry Length attribute is one.

NOTE: See also Subfield 3 - Length under Data Defining

Instructions.

length attribute assigned is one).

Figure 7. Length Attributes of Terms and Expressions

Operand Groups

Machine-instruction statement operands are divided
into six groups. The characteristics of each group are
as follows:

Group 1: Two-operand format in which a length is
explicit or implied in both operands.

Group 2: Two-operand format in which a length can
be explicit in either operand, but not in both. If
length is not explicit in either operand, the assembler

uses the implied length of operand 1.

Groupu_?: Two-operand format in which a length
cannot be specified.

Group 4: One-operand format in which only immediate
data may be used.

Group 5: Two-operand format in which both operands
are immediate data.

Group 6: Two-operand format in which operand 1 is

used by the assembler to calculate a positive displacement

and operand 2 is immediate data.

Basic Assembler Language

15

Figure 8 shows the allowable operand formats for each
operand group. The instructions using each operand
group are also listed. Refer to Appendix A. Machine
Instructions for the related machine-instruction formats.

For the extended mnemonics of the MVX instruction,

the I-field information is inherent in the mnemonic and
the I-field is omitted from the operand. For the extended
mnemonics of the BC and JC instructions, the second

operand (I-field) is not used since the information is
inherent in the mnemonic (see Extended Mnemonic
Codes in this section).

Data movement is from operand 2 to operand 1 in a
two-address format instruction (group 1 and group 2).
This operand order is equivalent to that of machine

instructions.

GROUP INSTRUCTIONS ALLOWABLE OPERAND FORMAT
1 ZAZ,AZSZ AA A(L)LA D{,R),A D(L,R),A
AA(L) A(L),A(L) D(,R),A(L) D(L,R),A(L)
A,D(,R) A(L),D(,R) D(,R},D{,R} D(L,R),D(,R)
A,D(L,R) A(L),DIL,R) D{,R}),D(L,R} D(L,R),D{L,R}
2 MVC,CLC,ALC AA A(L),A D(,R),A D(L,R),A
SLC,ITC,ED AA(L) A(L),D(LR) D(,R),A(L]} D(L,R)},D{,R)
A,D{,R) D(,R},D(,R)
A,D(L,R) D(,R),D(L,R)
MV X AA(D All),A D(,R),A(l} D(1,R),A
A,D{1,R) A(),D(,R) D(,R),D({I,R) D(1,R),D{,R)
3 MVI,CLI,SBN ALl D{,R),i
SBF,TBN,TBF
TiO,SNS,LIO
BC
L,ST,ALA AR D({,R),R
SCP* LCP*
4 APL,SVC* i
5 HPL,SIO CCP* 1,1
6 Jc Al
*Model 15 only.
The following codes are used to describe the possible operand formats: -
CODE MEANING ACCEPTABLE FORM
A Address Relocatable expression, absolute expression, or self-defining value.
D Displacement Relocatable expression, absolute expression, or self-defining value.
L Length Absoclute expression or self-defining value.
R Hegister Absolute expression or self-defining value.
I Immediate Data (bit masks, Absolute expression or self-defining value.
condition bit masks, or
controf bits to be used in
the instruction)

Figure 8. Operand Format by Group

16

In groups 3, 5, and 6, the Q-code operand is always
on the right. See Appendix A. Machine Instructions
for an explanation of Q codes.

ASSEMBLER INSTRUCTION STATEMENTS

When writing a program the programmer uses two types
of statements: executable instructions and instruction
statements to the assembler. The executable instructions
are the machine instruction statements. These are
symbolic representations of the programmer’s logic,

such as branch, move, or compare, which are translated
into machine language by the assembler.

Assembler instruction statements, on the other hand, do
not generate executable machine codes. They are
instructions that control specific assembler functions.
These instructions are used to set up areas in storage, to
define data, to equate symbols, and to control program
listings, location counter, statement formats, and types
of addressing. In the remainder of this section, the
individual assembler instruction statements are
discussed.

Symbel Definition Instruction

EQU~Equate Symbol

The EQU instruction is used to equate symbols with
register numbers, immediate data, or other arbitrary
yalues. The EQU instruction defines a symbol by
assigning to it the length and value of the expression
in the operand field of the EQU instruction. The EQU
instruction has the following format:

NAME OPERATION OPERAND

symboi EQU an expression

The expression in the operand field can be either
absolute or relocatable. Any symbol appearing in
the operand field must have been previously defined.
Figure 9 illustrates how this instruction can be used
to equate a symbol with the contents of the operand.

In Figure 9, MAX has the value of TEST + X‘3FC’
(X‘102+X3FC or X'4FE’) any time it is used in the
program. The symbol STEST has the value of the first
(left most) byte of the data area reserved by the DC
instruction. Since the symbot on the DC (TEST) has
the value of the rightmost byte, this type of EQU is
useful for addressing the leftmost byte. The symbol
REG? in any statement is the same as using the number
2.

IBM

PROGRAM

PROGRAMMER

Name Operation Operand
t 234 5 6718 5 1011 12{ 1314 1516 17 18 1920 21 2223 24 26 26 27 28 28 30 31 32 33 34 B A

1 ¥

Figure 9. EQU Assembler Instruction

Basic Assembler Language 17

Data Defining Instructions

Two data defining instruction statements are available:
Define Constant (DC), and Define Storage (DS). These
instructions are used to enter data constants and to
reserve areas in storage. Each instruction can have a
name field entry (symbol) to which other instructions
can refer.

DC—Define Constant

The DC instruction is used to initialize a storage
location with a desired value. The IBM System/3

Basic Assembler Language allows six types of constants:
storage address, binary, character, decimal, hexadecimal,
and integer. The format of the DC instruction is as
follows:

NAME |OPERATION | OPERAND
i | T T
symbol | DC ;Duplication 'Type ! Length iConstant
or | | Factor (2 ; 3 4 @
blank ! P | " ;
i 4 “

Notice that the operand of the DC statement consists
of four subfields. The first three describe the constant
and the fourth provides the constant. The only blanks
permitted within an operand field are blanks embedded
in a character constant. The symbol that identifies the
DC statement receives the value of the address of the
rightmost byte of the area defined by the statement.

Subfield 1—Duplication Factor: This subfield enables the
programmer to repeat the constant in storage. The constant

will be generated the number of times indicated by the

entry in the first subfield. This entry can be any unsigned,

nonzero, decimal value, 1 through 65535. If this subfield
is omitted, a duplication factor of 1 is assumed. This
duplication factor is applied after the constant is fully
assembled. If duplication is specified for an address cons-
tant containing a positive location counter reference, the
value of the location counter used in each duplication is
increased by the length of the constant.

18

Subfield 2—Type: This subfield defines the form of the
constant being entered. From the type specification, the
assembler determines how it is to interpret the constant
and translate it into the appropriate machine format. The
type entry is specified by one of the letter codes A, B, C,
D, X, or I (see Subfield 4 — Constant for related meanings).
The type entry is required.

Subfield 3—Length: The third subfield describes the
number of bytes required by the constant. The entry for
this subfield may be written two ways:

1. Ln, where n is an unsigned, nonzero, decimal value.
The value of n is as follows:

n=1-256 for I, B, C, X constants
n = 1-31 for the D constant
n=1-3 for an A constant

2. L (absolute expression), where an absolute
expression is enclosed in parentheses. The value
limits for the absolute expression are the same as
those for n in the previous paragraph. A location
counter reference is not allowed in this expression.

The total area allocated for this constant is the result of:
Duplication Factor * Length=Total Area. The length
entry is required.

Subfield 4—Constant: This subfield supplies the constant
that was described in subfields 1 through 3. In general, the
address constant (type A) is enclosed in parentheses, while
the data constants (types B, C, D, I, and X) are enclosed in
apostrophes. An entry in the constant subfield of a DC
statement is always required.

Address Constant (A): This constant is used to load an
address into a storage area.

Example: SYMBOL DC AL2(BETA)

In this example, the address represented by the symbol
BETA will be stored in the 2-byte field addressed by
SYMBOL. The full 24-bit final expression result is trun-
cated on the left to fit the length of the constant. The
maximum length of an address constant is 3.

Binary Constant (B): This constant is used to create bit
patterns and masks.

Example: SYMBOL DC 1BL1°10011

The byte of storage addressed by SYMBOL will contain
00010011. Truncation or padding with binary zeros
occurs on the left if the constant is not the length speci-
fied. This constant is enclosed in apostrophes. Each digit
within the apostrophes represents a single bit in storage,
and each eight bits specified will occupy one byte of
storage.

Character Constant {C): This constant can be used to
place a string of characters in storage.

Example: SYMBOL DC
The byte of storage addressed by SYMBOL will contain a

blank, and the byte of storage addressed by SYMBOL-16
will contain the character P.

Note: Two blanks have been padded on the right of the
character string.

If the constant is not the specified length, truncation or
padding with blanks will occur on the right. Each
character (including blanks) within the apostrophes will
occupy a byte of storage. If an apostrophe occurs within
the string of characters, it must be represented by a
double apostrophe.

Decimal Constant (D). This constant can be used for
arithmetic purposes.

Example: SYMBOL DC DL5‘125.66°
This constant will appear in zoned-decimal form in a 5-byte
storage field, addressed by SYMBOL. The decimal point
is used only as a convenience for the programmer, and
is not assembled into the constant. The value of the
constant is calculated without the decimal point. Trunca-
tion or padding with decimal zeros occurs at the left of the
field, if necessary. Signed decimal constants are permitted,
making it possible to have a decimal constant with a nega-
tive value. Fach decimal digit will occupy one byte of
storage.

Hexadecimal Constant (X): This constant is used to
associate a hexadecimal value with a symbol in a defined
area in storage.

1XL68ACI4

Fxample: SYMBOL DC

1CL17‘PLANT 5 PAYROLL’

The 6-byte field addressed by SYMBOL will contain the
following 12 hexadecimal digits: 00000008AC14.

Truncation or padding with hexadecimal zeros occurs at
the left. Each two digits between apostrophes will occupy
one byte of storage.

Integer Constant (I): This constant is used for fixed-point
binary arithmetic.

Example: SYMBOL DC 1IL2%-7
A negative number may be used for an I constant. The
negative constant is placed in storage in its two’s-comple-
ment form. This example would appear in storage in bit
formas 1111111111111001. There is always a positive
equivalent to a negative constant; in the above example, it
is hexadecimal FFF9 or decimal 65,529. The range of I
constants must be within 23241 t02 2_1. If the number
is positive, it is padded on the left with O-bits. If the
number is negative, it is padded on the left with 1-bits.

DS-—Defines Storage

The DS instruction is much like the DC instruction. It
assigns a symbol to an area of storage. Unlike the DC
instruction, the DS instruction only reserves the area of
storage, it does not insert data. A constant subfield cannot
be used with a DS statement. The following illustration
shows the DS format.

i |

NAME | OPERATION OPERAND
i i
1] H

symbol DS duplication ! type)tength
| | | I

or i i factor i |

blank t

| | | ;

A duplication factor of zero can be used in a DS statement
if the programmer wishes only to assign a length to its
corresponding symbol. The symbol will be given the value
of the current location counter minus one. The type and
length subfields must follow the same rules as for the DC
statement.

The duplication factor can be used by the programmer to
specify a reserved area larger than 256 bytes.

Example: SYMBOL DS 3CL100

This instruction would reserve a 300-byte area, which would
be referenced on the right by the name entry SYMBOL.

Basic Assembler Language 19

Listing Control Instructions
The listing control instructions aid the programmer in

documenting his assembler listing. These instructions are
TITLE, EJECT, SPACE, and PRINT.

TITLE — Identify Assembly Output

The TITLE instruction enables the programmer to identify
assembled object cards and assembler listings.

NAME OPERATION OPERAND

TITLE a sequence of characters

enclosed in apostrophes

label or blank

R S —

The name field entry can consist of a maximum of six
characters. The first character may be numeric. The
contents of the name field in the first TITLE card is punch-
ed into the sequence field of all object cards produced by
the assembler. This name field entry also appears in all
listing header fields.

The name on the TITLE statement is not the object pro-
gram name, but may be the same as the object program
name. See START — Start Assembly. The name field
entry is used only for identification and may not be
referenced by the program.

The operand field contains a sequence of characters
enclosed in apostrophes. Any embedded apostrophes must
be represented by a double apostrophe. The contents of
the name and operand fields are printed at the top of each
page of the assembler listing.

A program can contain more than one TITLE statement.
When a new TITLE statement is read, the listing is advanced
to a new page before the new heading is printed. The name
fields of all subsequent TITLE statements are ignored by
the assembler. The TITLE instruction is not listed on the
assembler listing, but it does increase the statement counter
by one. Figure 10 shows an example of the TITLE
statement.

20

iBM

PROGRAM

PROGRAMMER

Name Operation perand
12345 6l7 10 11 12{13}14 15 16 17 18 1920 21 2223 24 25 26 27 28 20 3 31 32 33 34 36 ¢

8 5
SITARIT X{'3171"
PAY TiTILE] ['OiciToBiER! | 1s| PAYRIoLIL !
DATIALN 1DIC fecget! |/
SAVE Dis 4cilllpd
TEN EQU XA

Figure 10. Use of the TITLE Statement

EJECT — Start New Page

The EJECT instruction causes printing to begin at the top
of a new page, under the page heading. Through the use
of the EJECT statement, the programmer can separate
routines in the assembler listing. The format of the EJECT
assembler instructions is as follows:

NAME OPERATION OPERAND

EJECT Not Used

T
{
1
blank ;

I
|
T
!

In Figure 11, the EJECT instruction is used to separate
executable instructions from the data-defining assembler
statements. The EJECT instruction is not listed on the
assembler listing, but it does increase the statement counter
by one. The coding example in Figure 11 shows the position
of EJECT. Note that the corresponding statement number
(4) has been omitted in the listing. Statement number 5
appears at the top of the next page, under the heading.

SPACE — Space Listing An unsigned decimal value is used to specify the number
of blank lines that are to be inserted. If the operand con-
This instruction is used to insert one or more blank lines tains a blank, a zero, or a 1, one blank line will be inserted.
between statements in the assembler listing: If the value of the operand exceeds the number of lines
remaining on the current page, the instruction has the
same effect on the listing as an EJECT statement. The

NAME ; OPERATION I OPERAND SPACE instruction, like the EJECT instruction, is not
} | listed on the assembler listing, but does increase the state-
blank i SPACE 1 decimal value or a blank ment counter by one.
i !
IBM IBM System/3 Basic Assembler Coding Form
rrocean P &O GRA' M 1 PUNCHING GRAPHIC
procrammen AR X I DATE INSTRUCTIONS PUNCH
STATEMENT
1 2N;mi 5 617 Bogm:f;i?? 12013114 15 16 17 18 19 20 21 210?3)(;2”25 26 27 28 20 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 45 47 48 4950 51 52 53 54 55 56 57 58 ?geg»‘)ar;fsz 63 64 65 66 67 68 89 70 71 72 73 74
FRIIGI1] | [SITARTT] X' 188" : |
MalsiK 1l | |pc! LBl A1 1a1] :
ClovINTI3 D¢ 3)/Li2 '] !
EWECT |
READ Lo !
STIORE | MVC clalelotele]e ;
. |
E/MD! READ !
E
] e
Listing Page 1
Statement Name Operation Operand Remark
O number
O 1 PROG1 START X'100'
O 2 MASK1 DC 1BL.1'01101"
3 COUNT3 DC 31L2'0
|

W

N Listing Page 2

O Statement Name Operation Operand Remark
R number
5 READ Lo e
O 6 STORE MVC
END READ

Figure 11. EJECT Instruction

Basic Assembler Language 21

PRINT—Print Optional Data

The programmer can control the printing of an assembly
listing by using the PRINT instruction. A program can have
any number of PRINT instructions. Each PRINT
instruction controls the listing until the next PRINT
instruction is encountered.

NAME OPERATION OPERAND

blank PRINT

!
|
!
I

IR S

operand

The operand field can include entries from the following
groups (one or two operands for the Model 10, one, two,
or three operands for the Model 12 and the Model 15):

1. ON-A listing is printed.
OFF--No listing is printed.

2. DATA-Constants are printed out in full on the
assembler listing.
NODATA-Only the leftmost 8 bytes of the con-
stants are printed on the assembler listing.

3. (Model 12 and Model 15 only)
GEN--Print statements generated by the macro
processor if not overridden by other listing
control statements.
NOGEN-—Suppress printing of statements gen-

erated by the macro processor.
Dperand entries must be separated by a comma.

The ON, GEN and DATA conditions are assumed by the
assembler unless otherwise specified by a PRINT instruc-
tion. If an operand is omitted, it is assumed to be un-
changed and continues according to its last specification.
Both of the examples in Figure 12 would cause a listing
to be printed with only the leftmost 8 bytes of the con-
stants appearing in the listing.

1BM

PROGRAM

PROGAAMMER

Name Operation Operand
1 2 3 a 5 8718 910 11 12{13114 1516 17 18 1920 21 2223 24 25 26 27 28 29 30 31 32 33 34 36

|l P&l NT] [N, MolDlalTIA
MAX e 5lc|L 3 AlBC|’

IBM Or

FROGRAM

PROGRAMME R

Narmz O
12 3 4 8 6

3

eration Operand
1 14 1516 17 18 1920 21 7223 24 25 25 27 28 20 30 31 32 3334 3B o

Rii INT INOIDATA| |
e 5iclLi3it [AlBC|’

e

=1~

X

Figure 12, The PRINT Statement

22

Program Control Instructions

ICTL—Input Format Control

The ICTL statement permits the programmer to change
the normal bounds of the source program statements.
When included, the ICTL instruction must precede all
other source statements. This instruction can be used
only once during a program. An invalid or mispositioned
ICTL statement causes termination of the assembly.

NAME | OPERATION i OPERAND ~

blank ICTL two decirnals in the form of B,E

#

The term B specifies the beginning column and the term
E specifies the ending column of the source statement.
The beginning column must be within columns 1-48. The
ending column must be within columns 49-95. The
column after the ending column must be blank.

When an ICTL statement is not included in a source
program, the beginning column is assumed to be column
1, and column 87 is assumed to be the ending column.
Figure 13 is an example of the ICTL instruction. In
Figure 13, the name field would start in column 14

and the remark field would end in column 80.

IBM
PROGRAM 'PRO GRA M X 3
PROGRAMMER x xx
5T
Name Operation Operand
1 2 3 4 5 61708 g 10 11 12{13114 1516 17 18 19 20 21 27 23 24 75 7 27 25 26 3 31 32 33 34 36 36 37
AL L
PROGX3| STARIT X!'|1d@’
i
M A A y 2 |

S
E

S\YiMBoL DL lleLe S yMBolL"
E

Figure 13. The ICTL Statement
ISEQ—Input Sequence Checking

The ISEQ instruction is used to check the sequence of
source cards. Sequence checking begins with the first
card after the ISEQ instruction. The first sequence entry
is taken from the sequence identification field of the
ISEQ statement. The sequence entry on the next card is
then compared to the previous sequence value. The ISEQ
assembler statement has the following effect:

1. The sequence entries on source-statement cards are
checked for ascending order.

o]

Statements that are out of order and statements
without sequence entries are flagged in the assembler
listing.

3. The total number of flagged statements is noted at
the end of the assembler listing.

For example, with the sequence values 13,27, 31, 6, 8,
45,47, % and 48, the card numbered 6 and the card with-
out a sequence value would be out of sequence. The
assembly does not stop due to a card being out of
sequence order. In this example, the card numbered 6
and the card without a sequence entry would be flagged
in the error field of the listing. If sequence checking is
requested, there is a statement at the end of the listing
showing that two cards were out of sequence.

The assembler will not check the sequence unless requested
to do so by use of the ISEQ statement.

The following is the ISEQ instruction format:

NAME OPERATION OPERAND

blank ISEG two decimal values in the

form L, R; or blank

The operand entries, L or R, specify the leftmost (L) and
rightmost (R) columns of the field to be sequence checked.
The value of L must be within the range of 73 through 96
(inclusive). The length of the sequence field may be from
1 to 8. If the programmer wants to discontinue sequencing,
an ISEQ instruction card with a blank operand is inserted.

The sequence field must be separated from the last column
of the source statement by at least one blank position.
The last column of the source statement is column 87
unless otherwise specified by the ICTL assembler state-
ment. The sequence field must not appear before the last
column +1 of the source statement. If the sequence field
is to start before column 89, the ICTL statement must be
used to redefine the beginning and end of the source state-
ment. For example:

ICTL 1,71 Source statement is defined within
columns 1-71

ISEQ 73,80 Sequence field is in columns 73-80

START—Start Assembly.

The START instruction may be used to initialize the
location counter to a desired value at the beginning of a
program. The format of the START instruction is:

NAME OPERATION OPERAND

symbol START a self-defining value or blank

The assembler uses the single self-defining term in the
operand as the initial location-counter value. For example,
either of the START instructions in Figure 14 could be
used to indicate an initial assembly location of 2040.

If the operand of a START instruction is blank, the
location counter is initialized with a value of zero. If
neither an ORG nor a START instruction is used to initial-
ize the location counter, the initial value is also zero.

A START instruction must not be preceded by any state-
ment that affects or is dependent upon the setting of the
location counter.

The name entry in the name field of a START instruction
provides the program with an identifier name called the
module name. The module name may be the same as the
first TITLE statement.

Note: Certain naming restrictions apply when assigning
names for your program. For more information on naming
restrictions, see IBM System/3 Model 10 Disk System
Control Programming Reference Manual, GC21-7512.
IBM System/3 Model 12 System Control Programming
Reference Manual, GC21-5130, IBM System/3 Model 15
System Control Programming Reference Manual,
GC21-5077 (Program Number 5704-AS1), or IBM
System/3 Model 15 System Control Programming
Concepts and Reference Manual, GC21-5162 (Program
Number 5704-AS2).

This program name may be used for program linkage. If
the START card is not included in the program, or if the
name field is blank, a default program name is assigned.
See the MODULE NAME MISSING diagnostic in
Appendix C. System/3 Assembler — Source Language
Error Codes and Diagnostics.

IBM
PROGRAM
PROGRAMMER
S
Name Cperaticn Operand
1 2 3 4 5 6L718 o 16 11 12013814 18 16 17 18 19 20 21 22 23 24 25 26 27 78 7% 30 31 37 33 36 36 36 |
S[yMglo[c| [S[TIAlRT] [2lg4lg] [[[LiolclaiT: o] ngiad]

b
A

T

X

(or
SiymsloL| IsiTiaRT X' 7Fe| | LoclaTion 284

N,

Figure 14. Using START to Initialize the Location Counter

Basic Assembler Language 23

ORG—Set Location Counter

The ORG statement sets the location-counter value.

T
NAME | OPERATION , OPERAND
}

blank

expressions in the form A, B, C

!
|
* t
| ORG] blank operand or an expression A
% ! optionally followed by two absolute
1 |

The location counter is set to the smallest value greater
than or equal to A which is C more than a multiple of B.
In the following example, A can be either a relocatable or
absolute expression; B and C must be absolute expressions.
The default values for B and C are 1 and 0, respectively. If
the second operand (B) is omitted, the third operand (C)
must also be omitted.

Current New

Location Location

Counter A B ¢ Counter
275 * 100 50 350
340 * 100 50 350
350 * 100 50 350
504 * 256 0 512
750 100 e e 1000

All symbols used in the expression A must have been
previously defined. The value specified by the ORG state-
ment must be greater than or equal to the starting location-
counter value.

If previous ORG statements have reduced the location-
counter value for the purpose of redefining the current
program, an ORG instruction with a blank operand is used
to set the location counter to the previous maximum
assigned address plus one (see Figure 15).

Location
Counter
0064
0064
006A
00CE
00CE
0326

Name Operation Qperam
z 3 9 10 11 12{13}14 1516 17 18 19 20 21 22 23 24

RIT LD

Address

/

6

P
0063 _BYME
*0325 F

=0 R
i

C
c
!
5

¢
N-151919
‘A

L

1
7
F
L

™~ -

~

SITINEY

01Fg ATA

=2
SIS SIS
B O DM

m
2
(S]

* Previous
High Address

Figure 15. Using ORG to Control the Location Counter

24

USING — Use Register for Base-Displacement Addressing

The USING statement specifies the register to be used for
base-displacement addressing and also specifies the base
address that the assembler will assume to be in that register
at object time. The USING statement does not load the
base address into the register specified. This must be done
by the programmer before the register can be used for
base-register displacement addressing. See Addressing in
this section.

NAME OPERATION OPERAND

blank USING VR

T
i
{
[
i

In the preceding format, term V represents an expression.
Term R represents an absolute expression with a value of
1 or 2. Term R specifies the index register assumed to
contain the base address represented by the term V. The
programmer has the option of changing the base register
or base address at any time by the insertion of another
USING statement. Two USING statements enable the
programmer to use the two index registers as base registers
to two different portions of main storage.

InFigure 16, register 2 is loaded with the address of
ADRES1, which will be used as the base address in instruc-
tions following the USING statement.

IBM

PROGRAM

PROGHAMMER

Operand
15 16 17 18 1920 21 222324 25 26 27 28 20 M 31 32 33 M3

Nami Cperation

e
4 5 B 718 g 10 11 12013114

PR

g é1l | STlalRlT

LA ADREIST . 12
Uisl/ NG| A DRES]

Figure 16. Specifying a Base Register With the USING Statements

DROP — Drop Base Register

The DROP instruction specifies a base register that is no
longer to be used as a base register. The programmer can
reinitiate the base register with another USING

instruction.

NAME OPERATION OPERAND

blank DROP

|
|
t
U specified register
|

The operand must contain an absolute expression of
either 1 or 2. This absolute expression represents the
register that is no longer to be used as a base register.
The contents of the register are unaffected by the DROP
instruction. Figure 17 shows an example of the DROP
instruction. Another USING statement is used to
specify register 1 as the new base register.

IBM
1 zNgmi s 8617 805)8:?)“??‘.21 14 15 16 17 18 19 20 21 290;};”3:6252577?8)9:{)3:323334355
PIRlelel1] | IS[TIAIRIT

L ADIRES|L], 2

Uislrivie! |AIDIR|E S|,

DIRolP | |2

LA ADIRESIZ 11

Usirivil laipiRles]al) 1

Figure 17. Example of the DROP Statement

ENTRY — Identify Entry Point to Program

This instruction identifies symbols, defined in the current
program, which can be used as entry points from other
programs.

NAME OPERATION OPERAND

blank ENTRY any relocatable
symbol found in the
name field of the

current program

The symbol used in the ENTRY operand can also be refer-
enced by any other program provided that program uses
the same symbol in the operand of an EXTRN statement.
See the example given in the discussion of EXTRN for
additional information on the use of ENTRY.

EXTRN — Identify External Symbols

This instruction identifies symbols, used in the current
program, which are defined in another program. Each
symbol in the operand of an EXTRN statement must be
identified by an ENTRY statement or be the module name
in some other program.

NAME OPERATION OPERAND

EXTRN not found in the name

field of the current pro-

gram, optionally followed

by an absolute expression
| in parentheses

I
1
I one relocatable symbol
!
i

|
I
f
blank |
|
|
l
!

The external symbol cannot be used in a Name field in the
same program that describes that symbol as an EXTRN.

An EXTRN subtype can be specified for the EXTRN
symbol by following the symbol with an absolute
expression enclosed in parentheses. The value of the
absolute expression cannot be less than zero nor more
than 255. Any symbol in the expression must have been
previously defined. For an explanation of the subtype
values and their meanings, see IBM System/3 Overlay
Linkage Editor Reference Manual, GC21-7561.

Basic Assembler Language 25

Figure 18 shows how ENTRY and EXTRN can be used to

symbols just as it would if the symbols had been defined

make two or more programs act as one main program through in the subroutine. SUBRO1, on the other hand, is defined

sharing data and control. The main program defines sym-
bols A, B, and C and identifies them as entry points. These
same symbols are identified as EXTRNs (external symbols)
in the subroutine. This allows the subroutine to use these

and identified as an entry point by the subroutine and as an
EXTRN, external symbol, by the main routine. These four
symbols — A, B, C, and SUBRO1 — can now be used inter-
changeably by both the main routine and the subroutine.

The main routine has control first. It executes instructions
and then branches to SUBRO1 which is defined as an entry

IBM
s point in the subroutine. Instructions in the subroutine are
PROGRAMME R executed. Notice that the subroutine uses symbols A, B, and
P B A T B - ;;:”;u C which were defined in the main routine. Control is then
WA T TIerARr 111111 passed back to the main routine.
ENTRRY] A
@;RY B Note: The actual resolution of symbols between programs
EE?\(TEK EUBRKﬁ 1 is not performed by the assembler.
ENTRY, | EQU %
5
5
8 SUBRE!
2 END—End Assembly
5
A DC D L‘i’, L23! The END instruction terminates assembly of the program.
= gg’ 2‘[; Zie 18 The operand of this instruction can contain an expression
4 (usually a name field entry) which specifies the address
5 to which control is to be transferred after the program is
EN;O ENTRY loaded. The END instruction must be the last statement
I in the program. The relocatable expression in the operand
Main Routine must not contain external symbols. The start-of-control
address must be specified for programs loaded with the
1BM absolute loader.
g 1 '
NAME | OPERATION f OPERAND
é{;ﬁés) 75&(; é-}g—mg‘;wmw SERERRRERERRERRRREEED blank E END E a relocatable expression or a blank
ENTRY] SUBRAL
E XTR;\? A N
gfgé;j e Figure 19, shows an END statement. In this example, the
SDBRAL BT RETORNT3,8 program receives control at the address corresponding to
MVIC g?‘g(2 2 i?;! AsIK BEGIN when it is executed.
el gém:g)(dr) IEM
e e et B
RETURN| |B .
MAISK 10 XLi5/ 2@20204 820" Name Speration Goerand
EDiT D5 D ‘; 1 2.3 4 5 Bi718 9 10 11 12113{14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
b DS DLA PIRol611] [ISITAIRT | | t
END : :
1l EG/N | IMViel | | o, iABle(1])
Subroutine EIND &6 N
N 1 EEEEEE N

Figure 18. Example of ENTRY and EXTRN Statements

26

Figure 19. Designating an Entry Point With the END Statement

ASSEMBLER CONTROL STATEMENTS

Two control statements are used: The HEADERS state-
ment and the OPTIONS statement. Up to 45 of these
control statements may be used, in any order. Each state-
ment is limited to six operands. All control statements
must appear before any assembler source statements.

HEADERS Statement

The HEADERS control statement specifies control infor-
mation other than output control information to the
assembler. The programmer may specify a category level
for the object module through the CATG operand, or the
length of the control section for any subtype 4 or 5
EXTRNs in the assembler through the COMLA and COMLS
operands. For an explanation of category levels and
subtype 4 and 5 EXTRNG, see IBM System/3 Overlay
Linkage Editor Reference Manual, GC21-7561.

The format of the HEADERS statement with the CATG
operand is:

| b}HEADERS%CATG nnnnn

NN

Column 2 At least Decimal category
or greater one blank level

Part 2. Programmer’s Guide

nnnnn is a one to five character decimal string whose value
must be less than 65536. If more than one COML4 or
COMLS operand is present in the assembler control state-
ments, the length in the last valid operand is used for the
appropriate subtype control section length. The lengths
specified are placed in the ESL records for the subtype 4
or 5 EXTRNs.

OPTIONS Statement

An OPTIONS statement is a control statement for
assembler control options. All OPTIONS statements must
precede the source deck. The user may specify the follow-
ing assembler options on OPTIONS statements: DECK,
NODECK, LIST, NOLIST, XREF, NOXREF, REL,
NOREL, OBJ, OBJ(T), OBJ(P), NOOBJ. XBUF-nnnnn
and NOXBUF are also available to users having program
5704-AS2. They may appear on one statement in any
order, but must be separated by commas. If the pro-
grammer preférs, separate statements may be used for
each option. The OPTIONS keyword must start in
column 2 or higher (the preceding column must be blank),
and there must be one or more blanks between the key-
word and the selected options. Blanks are not allowed
between the selected options.

The following example shows options appearing on one
statement:

nnnnn

nnnnn is a one to five character decimal string whose value
must be less than 00256. If more than one CATG operand
appears in the assembler control statements, the value of
the last valid operand is used for the module category level.
The module category level is placed in the module ESL
record.

The format of the HEADERS statement with the COMLA4
and COMLS operands is:

FMHEADERS&COMLA-nnnnn, COMLS5-nnnnn l

TN~

Column 2 At least ecimal control
or greater one biank section length

l BOPTIONSYDECK, LIST, NOXREF, REL]

!

Column 2

At least one blank between

or greater. keyword and options.

More than one OPTIONS statement may be used. In the
following example, three statements are used:

BOPTIONSBDECK

BOPTIONSHLIST

BOPTIONSBNOXREF

Programmer’s Guide 27

The following list provides a brief description of all the
options available:

Option

DECK

NODECK

LIST

NOLIST

XREF
NOXREF
REL

NOREL

28

Explanation

The object program is punched. When an
object program is punched, it is preceded
by a // COPY OCL card and followed by

a // CEND OCL card. These cards are
provided for placing the object program in

the R library with the library maintenance

utility program (SMAINT).

The object program is not punched.

The following sections of the assembler
listing are printed (see Assembler Listing
in this section for a description of the
listings):

® Options information

e External symbol list

® Source and object program listing

® Diagnostic listing

@ FError summary statements

Only the following listings are printed:

® Options information

® Any statements in error and the
associated diagnostics

® Error summary statements

The NOLIST option overrides all
assembler PRINT statements.

A cross-reference listing is generated.

A cross-reference listing is not generated.
A relocatable object program is produced.
An absolute object program is produced.

Nore: Absolute object programs can only
be used as stand-alone programs; that is,

programs which are not dependent on any

other disk management system program.

On the Model 10 an absolute loader will pre-
cede the absolute deck if DECK is specified
and if MFCU?2 is specified on the // PUNCH
statement. On the Model 12 and Model 15,
an absolute loader will precede the absolute
deck if DECK is specified and if the
SYSPCH device is MFCU, 1442, or MFCM
(Model 15 only). The loader punched will
program load only on the device type on
which it was punched. A blank card is in-
serted between the absolute loader and the
object program. This blank card and the
OCL cards included with the object program
do not affect the operation of the absolute
loader and may be discarded.

To prevent cataloging of the absolute object
program when NOREL is specified, you

should specify NOOBIJ.
OBJ or The object program is placed in the R
OBI(T) library with a retain entry of temporary.
OBIJ(P) The object program is placed in the R library
with a retain entry of permanent.
NOOBJ The object program is not placed in the R

library. (See Placing Assembler Subroutines
in R [Routine] Library in this section.)

If no OPTIONS statement is used, the assembly is processed
as though DECK, LIST, REL, XREF, and OBJ had been
specified. NOXBUF is also assumed with program
5704-AS2.

XBUF-nnnnn Specifies the size of the disk external buf-
fers the user has requested. From one to
five numeric digits may be used to specify
the size of the disk external buffers (pro-
gram 5704-AS2 only). External buffers
should not be specified due to performance
considerations if the program size including
physical disk buffers does not exceed 56K.
However, if external buffers are specified,
they should equal the size of the physical
disk buffers that normally would be set
aside within the program.

NOXBUF Specifies no external buffers are requested

for the program (program 5704-AS2 only).

If DECK or OBJ is entered on the OPTIONS statement and
there are errors in the assembly, a halt is issued.

OCL STATEMENTS FOR ASSEMBLER

The loading and running of a disk-system program,
including the assembler, is done under control of a group
of programs called disk system management. The user
tells disk system management to run a program through
the use of Operation Control Language (OCL) state-
ments. It is necessary to have a set of OCL statements
each time a program is run. This section discusses the
OCL statements required for use of the assembler. For

a complete discussion of OCL, see IBM System/3

Model 10 Disk System Control Programming Reference
Manual, GC21-7512, IBM System/3 Model 12 System
Control Programming Reference Manual, GC21-5130,
IBM System/3 Model 15 System Control Programming
Reference Manual, GC21-5077 (Program Number
5704-AS1), or IBM System/3 Model 15 System

Control Programming Concepts and Reference

Manual (Program Number 5704-AS2), GC21-5162.

The assembler language source program can be obtained

from either a system input device, a source library entry, or

the macro processor. If the source records are obtained
from an 80-column device, they are padded with 16
blanks before being placed in the $SOURCE file. In this

case, the user should provide an ICTL statement to prevent
the assembler from processing the sequence field of the

80-column record.

OCL For Loading the Assembler

Source Program on System Input Device (Cards)

Figure 20 is a sample set of OCL statements to load the
assembler when the source program is on cards. The unit
parameter (F1) on the // LOAD statement specifies
where the assembler resides. The codes for the disk
drive upon which the assembler resides are:

|

e RI -drive 1

e F1 drive 1

|

e R2 — drive2

e F2 drive 2

Programmer’s Guide

29

The first // FILE statement specifies the attributes and
location of the file used for source program residence
during the assembly process.

The second // FILE statement specifies attributes and the
location of the file used for object output of the assembler.
The third // FILE statement specifies attributes and
location of the file used for assembler working storage
during the assembler process.

The $WORK? // FILE statement is optional on the

Model 10 Disk System. If it is not supplied, the assembler
allocates the work space. However, by specifying the
proper placement of file locations, as in Figure 20, this
file statement improves the performance of the assembler.
It should, therefore, be specified.

In all three [/ FILE statements, the PACK and UNIT
parameters indicate the location of the file named in the
NAME Parameter. In addition to RI, F1, R2, and F2, the
UNIT parameter can specify D1, D2, D3, and D4 for the
Model 15. The RETAIN parameter should reflect a scratch
file(s). The TRACKS parameter contains the number of
tracks required for that file. The user should choose the
number of tracks required in accordance with the space
requirements charts in the Assembly Time Data File
Requirements section. See IBM System/3 Model 10 Disk
System Control Programming Reference Manual,
GC21-7512, IBM System/3 Model 12 System Control
Programming Rejerence Manual, GC21-5130, and IBM
System/3 Model 15 Svstem Control Programming
Reference Manual (Program Number 5704-AS1),
GC21-5077, or IBM System/]3 Model 15 System Control
Programming Concepts and Reference Manuai, GC21-5162,
(Program Number 5704-AS2) for further information.

Source Program in ¢ Source Library

Figure 21 shows a sample set of OCL statements used when
the source program is in the source library.

1BM System/3 Basic Assembier Coding Form

1BM
[et ; B § [owee
} pROGRAMMER [nm l‘" TAUETIONS iw § ; 3 ; g | | Ev:vwr)uec?mwvm s
A/ [LOAY $ASSEM Fii E F__ RN \ i -
/7 FITLE WAME -5 SOURCIE PACK- VOLIGdL UN1T-FL RETAIN-S, ‘
/| TRACIKS- 12551 ILOC AT {ION! -2, L ! i 1
/7 FliUe NAME-$WoRK, PAICK- VO L@z, UNI|T-RL RETAIN-S : i
/17 TRACIKS -5 Lowu%zm 1 :{N 1 ! i -
77 FILE WAME-SWoRKa, PACK-VoLdds UNIT-F2 RETAIN-3 (D ‘
7/ TRACKS-25! LOCATION-18/¢ | | LT j
i i i E - 1
Y { ! it
S(ource Program Deck T :
i H
i j
] Il
i i
, ;
| i | I !
i i i 4

(1) Optional on Model 10 Disk System
Figure 20. Assembler OCL Statements (Source Program on Cards)

1BM Systern/3 Basic Assembier Coding Form

Farm X

i —
rnocmaw [P N N T B N 5
[rmocmasmen [onre | N

STATEWENT 1 Igentification

'i:“:“: s B 7B%m%%"“stnwﬁﬂﬂvm‘znﬂha@sxnnﬂiﬁl:‘l:ﬂxﬂ«04]«6“%’«”@&‘52535‘ﬁﬁit&;ﬁ?w&n&&&ms&wmn 7‘1?J;lﬁnﬁ?7?&*93’):?52&12495@871‘51_3_9”9'01”9
3] | :
/ LOAE] 3. : i
Hi el JPAL 'VDIL%LAQ‘T'F 3 TALN-SI, ! i
/] TTRAN »LIGCIATT N+ | | :
HlLE -&&TK,P dK~-NQ NG TI-RUIRETALIN-S), i !

51151, [LOATH oW | ! iy

it @
n ~i%8]. LION !
COME IILE ORIEQT-RL, 50 CIE-SUARA NI : ,
P H ; :
élé T Punch Deck on MFCU : |
: A NEEEEEERERY I !
| , LN ! 5
- Source program in Source Library with: OPTIONS DECK, OBJ b Place object program in R library on RT3
AU U0 O O O O T O O A O T O N T O O O O [0 0 0 00 A O U A O U O O W OO N A N O D '

@ Optionai on Model 10 Disk System

Figure 21. Assembler OCL Statements (Source Program in Source Library)

30

Note that the additional OCL statement // COMPILE is
required. The following entries in the figure are optional:
PUNCH This statement specifies where an object
deck is punched. For more information on
statement, see IBM System/3 Model 10 Disk
System Control Programming Reference
Manual, GC21-7512, IBM System/3
Model 12 System Control Programming
Reference Manual, GC21-5130, IBM
System/3 Model 15 System Control
Programming Reference Manual, GC21-5077
(Program Number 5704-AS1), or IBM
System/3 Model 15 System Control Pro-
gramming Concepts and Reference Manual,
(Program Number 5704-AS2), GC21-5162.

OBJECT
operand

This operand is used to indicate to the
assembler the library unit used when the
OBJ option is used on the OPTIONS
statement.

The // LOAD and // FILE statements are as described in
the first example. The // COMPILE statement specifies

both the location of the source library and the required

source program within the library. The // COMPILE
statement may appear at any position between // LOAD
and // RUN.

Macro Processor-Produced Source Program

The macro processor creates a source program on the
$SOURCE file. To indicate that the macro processer has

// SWITCH Considerations

The external indicator Ul indicates that the macro
processor has loaded the SSOURCE file and the source
program is not in the input stream. If this indicator is
on when the assembler is loaded, the $SOURCE file

is not loaded.

When the $SOURCE file is to be loaded, external
indicator U1 must be off. This can be ensured by
entering the following statement after the assembler
// LOAD statement:

il

/7] s IrlelHl @I Xixxixix

OCL For Calling the Assembler

It is possible for the user to store a portion of the OCL
statements required for use by the assembler in

a procedure library. They may then be called with a

/] CALL statement, thus reducing the number of
written OCL statements required for each assembly.
Examples are included for source programs on cards and
for source programs in a source library on disk.

Source Program on Cards
If the source program is a deck of cards, the OCL cards

necessary to assemble the program, and the order in
which they must appear, are as follows:

already loaded the $SOURCE file, external indicator Ul IBM
must be turned on. This is done through a // SWITCH e —
statement. If this indicator is on when the assembler is T
loaded, the $SOURCE file will not be loaded. P B I B P e
/& '
In the following OCL stream, the source program has been ; ; ﬁShL ASM,[FIL
created on the $SOURCE file: <]
IBM s \lp
[- ourc‘e rogram Deck
[rsomemen o N
— S— — ST l
/8] T T ﬁz
7171 LiojAlp] [$/Als[slEM ,>RL |nd|cate that the source fl!e i
/5 SWI Tcl“ lex:xxxx has been loaded by the macro
/i JFIULE] [NAME]-$/SloluRICE[TT- |-
/7|l e WAl $;¢eolnix,'. P \pmce“m step.
/7Y El el NAME[-[$wioRk 2]] |- .
g RuN | T | o# i k] [} In this example, ASM is the procedure name. F1 refers
/ Eﬁieffe;rérl CLS mie ng" ce file Crl‘a[te d to the disk pack upon which the assembler OCL procedure
by the macro processor step. is stored. In this case, it would be the fixed disk on

@ Optbonal on Model 10 Disk System

Note: For more information on the macro processor, see
IBM System /3 Models 10 and 12 System Control Program-
ming Macros Reference Manual, GC21-7562, or IBM
System /3 Model 15 System Control Programming Macros
Reference Manual, GC21-7608.

drive one.

Programmer’s Guide 31

Source Program in a Source Library HEADER record

If the source program is stored on disk in a source ESL (external symbol list) record

library, the OCL format must be as follows:
e TEXT-RLD (text-relocation directory) records

IBM

— e END record
1 ézN:mZ 5; 6l 78 TS vl sl va s 16 17 18 19 20 20 N s 21 78 29 30 31 32 33 34 Record Formats

/L LA % SM, IFit .) .

A1 LE SIOQURCE-SUBRALIUNLT-RL The following paragraphs describe the format of each
// record type.
/¢
HEADER Record

In this example, ASM is the procedure name and F1

refers to the fixed disk on drive 1. SUBRA is the name A HEADER record with record type H is added by the
of the source program. The user must substitute his overlay linkage editor when it processes the assembler
own source program name. R1 is the disk pack upon object program. The HEADER record format is:
which the source library resides.
Sample Assembler Procedure Stored in Procedure | H] Obiject program information field]
Library 1 2 64
A sample assembler procedure is shown in Figure 22. The ® Bytel Record type identifier H.
format is as it would appear in the procedure library. ® Bytes2:64 Object program information field.
The // LOAD statement and // FILE statements are as
described in preceding examples.

ESL Record

OBJECT PROGRAM DESCRIPTION
The object program name, that is the module name and all
EXTRN and ENTRY symbois are placed in the ESL record.
The assembler converts the source program into The ESL record format is:
a set of control information, machine language instruc-
tions, and data, all of which collectively are called an
object program. There is one object program produced
per assembly. Each object record is originally produced 1 2 3 6263 64
as a 64-byte field. If the object program is punchea on
the MECU. it is translated into a 96-byte punch record

lS l Length ~1 ESL Entries ' X'00

(bytes 2 to 64 are translated 4 for 3 for punching; e Bytel Record type identifier S.
for every three 8-bit bytes, four card code characters e Byte2 Length -1 of the ESL entries.
are created). See Object Program After Punch Conversion e Bytes 3-62 ESL entries. Up to five MODULE,

ENTRY, and/or EXTRN fields.

in this section. Each object program generated by the
@ Bytes 63-64 Filled with hexadecimat zeros.

assembler contains four types of records:

BM 1BM Systerm/3 Basic Assembter Coding Form Fom-
[onwonm [reme [[T T T T 1 Tm= o ;
fmwn»meh' IcAv(}] puncH i i i } l l i]msmmc-«mn
STATEMENT 1 identificatic
Zznﬂ 5 6 :sm;'vﬁitiu 15 8 17 3@ 1@ 3 21 no?a«;?’zszsnmsm:anxzmlznvnnna ﬂuuﬁ;ﬁ;ﬂlﬂwmslnbaslﬁ&-sss)sﬁ[;‘;&grgumuwamﬂmmﬂ 72 73 74 7578 77 78 79 80 1 82 33 84 85 66 87 89 90 91 97 83
T T
5 i ' H
;%; LE t% -5 PACIK-VIO SUNTTSRIL, REETIAILIN-S], TIRACKS -1l i
/| FLUE Y L IPACKEINO 1T-F TALN~ CKS -4 i
RiLIE N - R, PACKI-NIO JUNITT 1R > 3an-(0) H
/ IRUN [; s
L I L ! |
@ Optional on Model 10 Disk System : 1 T

Figure 22, Sample Assembler Procedure in Source Library

32

TEXT-RLD Records

Text records and RLD pointers are combined in this type
of input record. The text portion of each record contains
the object code for the program, while the RLD pointers
indicate where the address constants and relocatable
operands of the text are located. If the NOREL option
has been selected on the OPTIONS control card, there
will be no relocation indicators in the record. The format
for the TEXT-RLD record is:

Object Program After Punch Conversion

All four types of records (HEADER, ESL, TEXT-RLD,
and END) assume the same format when they are punched
into cards. The punched record format, using 96-column
cards, is as follows:

1]
I T l Length-1 i Assembied Address Text4X'00'r€¢RLD
i H 1

1 2 3 4 5 64
e Byte1 Record type identifier T.
e Byte2 Length - 1 (of text only).
® Bytes3-4 Assembled address of the low order (rightmost)

text byte in the record.

® Bytes 5-64 Text starts at byte 5 and goes right, RLD
starts at byte 64 and goes left. The leftmost
end of the RLD section is marked by
hexadecimal zeros, which fill the space
between the Text and RLD sections. The end
of text is always followed by at least one

byte of X'00".

END Records

The last record in each object program is an END record.
It contains the entry address of the object program. If the
user did not include an operand in his source program
END statement, the object program END record generated
by the assembler will contain the address X'FFFF’. The
END record format is:

Entry END card program
E Address
1 2-3 4

e Byte1 Record type identifier E.

® Bytes 2-3 Entry address of the object program.

e Bytes 4-64 Program to transfer control to Entry address.

Record 1D | Data Field | Self Check | ldentification
Number Sequence Field
1 2 85 86 88 89 96
Column 1 Record type identifier (H, S, T, or E).
Columns 2-85 Data field, transformed 4 for 3. (For every
three 8-bit bytes, four card code characters
are created for System/3 96-column cards.)
Columns 86-88 A 2-byte self check number transformed
4 for 3, to 3 bytes.
Columns 89-96 Identification/sequence fieid.

The punched record format, using 80-column cards, is as
follows:

Record ID | Data Field | Blank Self Check | identification
Number Sequence Field
1 2 64 65 69 70 72 73 80
Cotumn 1 Record type identifier (H, S, T, or E).

Columns 2-64 Data field, bytes 2 to 64 of the object record.

Columns 65-69 Blank.

Columns 70-72 A 2-byte self check number transformed 4 for 3,

to 3 bytes.

Columns 73-80 identification/sequence field.

Note: When an object module is punched, it is preceded
by a // COPY OCL card and followed by a // CEND OCL
card. These cards are provided for placing the object
module in the R library with the Library Maintenance
program (SMAINT).

Programmer’s Guide 33

ASSEMBLY TIME DATA FILE REQUIREMENTS
There are three data files necessary at assembly time:
1. Source file (NAME-SSOURCE)

2. Object file (NAME-SWORK)

3. Work file (NAME-SWORK?2)

Model 10 Disk System: These files must be located on
5444 disk drives. If a // FILE statement is not provided
for SWORK2, the assembler allocates its own work space.

Model 12: These files must be located on the simulation
area.

Model 15: These files must be located on either 3340,
5444, or 5445 disk drives.

Source File ($SOURCE)

The source file is used by the assembler for storage of the
source program. During the job initialization procedure,
a disk system management program places the source
program in the source file (if the macro processor has not
loaded the file). The source records are obtained from
either the system input device or a source library using
the // COMPILE statement. (See OCL statements for
Assembly in this section.) Each source record contains
96 bytes, so that eight records occupy three disk

sectors in the source file. (One sector = 256 bytes, and
is the smallest addressable unit on a disk.) Figure 23

is a source file space requirements table showing how
many tracks are required for the size of the source pro-
gram indicated.

If the assembler is processing a source file created by

the macro processor, the // FILE statement for $SOURCE
must correspond to the SSOURCE file produced in the
Macro processor run.

Object File (SWORK)

The object file is used by the assembler for intermediate
storage of the object program. The object records are
stored in four 64-byte entries per sector. (See Object
Program Before Conversion in this section.) Because each
track in the object file can contain 96 records on the 5444,
80 records on the 5445, or 192 records on the 3340, two
tracks usually are sufficient for most assemblies.

34

Work File (SWORK2)

The work file is a scratch file used by the assembler
throughout the assembly process for intermediate data
storage. The file contains four types of data:

1. Intermediate text
2. Symbol table entries
3. Cross-reference data

4. Error information

Intermediate Text

Intermediate text is made up of fixed length (10-byte)
records. The number of fixed length records is variable
for each source statement, and is dependent on the
statement type and the contents of the operand field.

The following rules can be used to determine intermediate
text file requirements. (The rules apply only to error-
free source statements. A statement that contains errors
generally requires less storage space.)

All Instructions:

e One record for each machine or assembier instruction,
or comment statement.

® One record if there is a name field entry.

Machine Instructions: One additional record for each
term in the operand field.

Source Program Size Number of Tracks Reguired
(Statements)
5444 % 5445 3340
100 2 2 1
200 4 4 2
300 5 6 3
400 7 8 4
500 8 10 4
600 10 12 5
700 11 14 6
800 i3 15 7
900 1 17 8
1000 16 19 8

*Or simulation area

Figure 23. Source File Space Requirements Chart

Assembler Instructions:

e END, ENTRY, EQU, EXTRN, ORG, USING — One
additional record for each term in the operand field.

e ISEQ, PRINT, SPACE, START — One additional record
for each instruction.

e TITLE — Additional records = N/8 (plus one for any
non-zero remainder); where N is the number of
characters in the TITLE operand field.

e DS/DC

— One additional record for duplication factor
(default or specified value).

— One additional record for each term in the length
specification.

e DC

— Address constant—One record for each term in
the address constant expression.

— All other constants—Additional records - N/8
(plus one for any nonzero remainder); where N is
the number of bytes required to contain the
converted constant plus one.

Figure 24 is a sample list of instructions together with the
intermediate text space requirements for each.

Text Space
DECK STARTO 3
ENTRY SLC A(2),A 5
MVC A(2),CON1 4
ALC A(2),CON2 4
HPL X'FF . X'FF’ 3
A DS CL2 4
CON1 DC 1L2°500' 5
CON2 DC 1L2'-320’ 5
END ENTRY 2

Figure 24. Intermediate Text Space Requirements

Symbol Table Entries

Whenever a symbol is used in the name field of an instruction
(except a TITLE statement) it becomes a symbol table

entry. When the assembler user requests a Cross reference,

all symbol table entries are added to the work file immedi-
ately after the intermediate text. The symbol table entries
are also 10-byte, fixed-length records. Assuming an average
of one name entry for every four source statements, one
sector per 100 source statements is required.

Cross-Reference Data

Cross-reference data is written in the same area as the
intermediate text and symbol table entries and does not
impose any additional space requirements.

Error Information

Each statement in error requires a 10-byte error record;
therefore, a track will contain at least 600 error records.

Work File Space Requirements

Figure 25 is a work file space requirements table showing
the number of tracks required for the number of source
statements indicated. The requirements for intermediate
text and symbol table entries are summed to get the
table values. Approximately 40 sectors per 100 source
statements are needed to cover most varieties of source
statements. If a SWORK?2 // FILE statement is not pro-
vided on the Model 10 disk system assembler, the source
file ($SOURCE) size is used for the work file size.

Source Program Size Number of Tracks Required
{Statements)
5444 5445 3340
100 2 2 1
200 4 4 2
300 6 6 3
400 7 8 4
500 9 10 5
600 11 12 6
700 12 14 6
800 14 16 7
900 16 18 8
1000 18 20 9

*Or simulation area

Figure 25. Work File Space Requirements Chart

Programmer’s Guide 35

OPERATING PROCEDURES
Placing Assembler Subroutines in R (Routine) Library

Assembler subroutines can be placed on disk in the R
library by two methods.

1. Punching an object deck and using the Library
Maintenance program ($MAINT) to place it in the
R library.

2. Specitying OBJ in the OPTIONS statement to
place the object program directly into the R
library. The retain entry can be either temporary
or permanent.

For more information on the OCL and utility control state-
ments needed to use SMAINT, see IBM System /3 Model 10
Disk System Control Programming Reference Manual,
GC21-7512, IBM System /3 Model 12 System Control Pro-
gramming Reference Manual, GC21-5130, or IBM System/3
Model 15 System Control Programming Reference Manual,
GC21-5077.

Placing a Punched Object Program in the R Library

In the sample procedure shown below, the subroutine
SUBRA is being placed in the R library from a punched
object deck.

// LOAD Statement: In this sample procedure, SMAINT
is the routine which interrogates the // COPY statement
and calls the proper routine to accomplish the desired
results.

F1 is the disk pack upon which the utility program resides.

/| COPY Statement: The FROM parameter names the
device holding the subroutine to be entered. The
READER option must be used to copy the assembler
punched object program.

The LIBRARY parameter, R, specifies a relocatable library.
The NAME parameter gives the name of the subroutine to
be entered. This name must be the same as the program
name (that is the name on the START instruction). The
following names are restricted and cannot be used in this
parameter:

e ALL
e DIR

e SYSTEM

The TO parameter specifies the physical destination of
the object program (in this case, R1).

The RETAIN parameter specifies the ultimate disposition
of the object program.

/| CEND (Copy End) Statement: The [/ CEND
statement must follow the object deck.

// END: The /[END statement must be the end of all
library maintenance decks.

Placing an Object Program Directly in the R Library

When the object program is placed directly in the R
library, it has the following characteristics in the library.

e Name of the object program is the module name
specified in the START instruction or the default
module name. See the MODULE NAME MISSING
diagnostic in Appendix C. System/3 Assembler —
Source Language Error Codes and Diagnostics.

e Retain entry in the library is temporary if OBJ or OBI(T)
is specified and permanent if OBJ(P) is specified.

1BM System/3 Basic Assembler Coding Form

X

PROGRAM

PUNCHING GRAPHIC PAGE

PROGR AMMER l DATE

INSTRUCTIONS PUNCH CARD ELE

STATEMENT

36

1 zN;m: s 817 som;xf?t 13314 18 16 17 18 18 0 1 290?;';:65757723291)31 32 33 34 3 36 37 38 38 40 41 4243u46:e4745495)5!57539-555551saf;gg'::mmaesssuse&mn nmumw'nmrgmmmsxa
T
1
] s
1
LOPID §IMA1NT], [EL i :
/| [RUN : ;
/T lcloply| [FROM-READER], LTRRARY- R, -ISugRA RETAVNP ,
H 1
{ ! ;
4 : 1
— Object Deck | '
“ t ¥
R | .
| T
) , :
!
CIEND , !
AR = | i
T
(3 ! 1
T [

e Library to receive the object program is the disk speci-
fied in the OBJECT operand of the // COMPILE state-
ment. The default disk is the program disk.

Using Assembler Object Program with the Program Loader

The user may have the need to load a user-written assemb-
ler object program as a stand-alone program. To use

an assembler object program in this manner it is necessary
to have the program punched into an object deck on the
system punch device. The assembler language user ob-
tains an absolute loader by specifying DECK and NOREL
on the OPTIONS card (see NOREL option under OPTIONS
Statement). The 96-column loader contains six cards and
the 80-column loader contains one card.

It is the user’s responsibility to ensure:

1. That he has not referenced any address greater than
the storage capacity of the System/3 on which the
program is to be executed.

2. That the address specified on the START instruction
statement is greater than X'FF’. (The START
assembler statement must specify the address at
which the program is to be loaded.)

3. That the END statement indicates the start-of-control
address.

Note: If absolute object decks for more than one assembly
are to be loaded together, then the loader must be re-
moved from the front of the second and all subsequent
decks, and the END card must be removed from the

back of all decks except the last.

1BM 5424 MFCU

The procedure for loading and executing an assembler
object program on the IBM 5424 MFCU is as follows:

1. Clear MFCU.

2. Place assembler object deck, including the loader,
in primary hopper.

3. Press MFCU START.

4. Ready the printer.

5. Set IPL SELECTOR to MFCU for Model 10 Disk

System or ALT for Models 12 and 15.

6. Press console PROGRAM LOAD to load and execute

the assembler object program. (L1 or L2 haltis
issued for error or not ready conditions on the
MFCU.)

1BM 2560 MFCM (Model 15 only)

The procedure for loading and executing an assembler
object program on the 1IBM 2560 MFCM is as follows:

Clear MFCM.

fa—y

2. Place assembler object deck, including the loader,
in primary hopper.

3. Press MFCM START.
4. Ready the printer.

5. Set IPL SELECTOR to ALT.

6. Press console PROGRAM LOAD to load and execute
the assembler object program. (L1 halt is issued for
error or not ready conditions on the MFCM.)

IBM 1442 Card Read Punch (Models 12 and 15)

The procedure for loading and executing an assembler
object program on the IBM 1442 Card Read Punch is as
follows:

1. Clear 1442.

2. Place assembler object deck, including the loader,
in hopper.

3. Press 1442 START.

4. Ready the printer.

5. Set IPL SELECTOR to ALT.

6. Press console PROGRAM LOAD to load and execute

the assembler object program. (L1 halt is issued for
error or not ready conditions on the 1442.)

Programmer’s Guide 37

ASSEMBLER LISTING

An important part of the assembler’s output is the assem-
bler listing. The assembler’s printed output is on the system
printer (under control of the // PRINTER OCL statement
for Models 12 and 15).

The listing is a printed reproduction of the source program
and the corresponding object code generated for it to-
gether with other important information. Figure 26 at
the back of this section is a sample listing. Specifically,
the listing consists of the following:

Control Statements

Any OPTIONS or HEADERS statements specified by

the user are printed and specification errors are noted.

A list of OPTIONS in effect during the assembly is then
printed. The page is ejected before the control statement
information is listed.

38

External Symbol List (ESL)

The object program name, EXTRNs, and ENTRYs will
appear in the following format:

Symbol Type
Program name MODULE
ENTRY symbol ENTRY
EXTRN symbol EXTRN

Source and Object Listing
The source and object listing consists of the following:

e FError code for improperly coded statements (see
Diagnostics in this section).

e Location counter value, in hexadecimal, of the high
order address of the object code generated by the
corresponding source statement.

e The object code, in hexadecimal, generated by the
corresponding statement,

& The value, in hexadecimal, of the expression in the
operand field of the EQU, USING, DROP, and END
statements, the storage address, in hexadecimal, of the
tow order address of the DC constants, and DS storage
areas.

e Statement number, in decimal, for each statement,
including comment statements. These numbers are
assigned by the assembler. The statement number is a
four-digit field which limits the assembly t0 9,999
statements.

@ The source image, which is formatted according to the
size of the printer used:

On a 96-column printer, the ID/SEQ field is left-
justified in columns 89-96 of the print line. If
columns 53-88 of the source statement are blank,
line 2 will not be printed.

line 1

line 2

Object code Columns 1-52 of the
field b |source statement

ID/SEQ field l

1 35 36 37 88 89 96

Columns 53-88 of
source statement

53 88

On a 120-column or 126-column printer, the
ID/SEQ field is left-justified in columns 113-120
of the print line. 1f columns 77-88 of the source
statement are blank, or if the start of the ID/SEQ
field on the source record is less than column 77,
line 2 will not be printed.

line 1

line 2

Columns 1-76 of the
source statement

Object code

fieid b

{D/SEQ field l

1 35 36 37 112 13 120

Columns 77-88 of
source statement

101 112

Fold point for 120-
or 126-column printer

Fold point for 96~
column printer

Source Record

&
| lID/SEQl

76 77

i
Source Statement (Columns 1-88)

1 52 53 8889 96

The following examples assume the ID/SEQ field is in
columns 89-96 of the source record:

Note: The ID/SEQ field may be from one to eight adja-

cent characters long and may reside anywhere between col-

winns 73-96.

3.

With the 132-column printer, the complete source
image is printed on one line.

Object code Columns 1-88 of the
field b |source statement ID/SEQ field
1 35 36 37 124 125 132

Note: Statements generated by the macro processor
contain a plus symbol (+) in column 36.

Programmer’s Guide 39

Diagnostics

The source and object program listing includes error codes
for improperly coded statements. These errors are listed
again, with a message, at the end of the source and object
program listing under the heading DIAGNOSTICS. This
list provides the following information:

o Statement—The statement number, in decimal, (assigned
by the assembler) of the statement which is in error.

e Error code—a 3-digit alphameric code. See

Appendix C: System/3 Assembler—Source Language

Error Codes and Diagnostics for a list of error codes and
translations.

® Message—A translation of the error code indicating the
type of error made.

Also included under DIAGNOSTICS are the following
€rror summary statements:

e A count of the total statements in error in the assembly.

e A count of total sequence errors in the assembly if
sequence check is requested.

40

Cross-Reference List

If XREF is specified on the OPTIONS statement this list
includes all symbol names referred to in the source program.
The following columns are included:

e Symbol—The symbol name.

® Length—The decimal length attribute of the symbol in
bytes.

e Values—Value, in hexadecimal, of the symbol.

o Defined—Statement number, in decimal, where the
symbol is defined.

® References—Statement numbers, in decimal, where the
symbol is referenced. Symbolic references to data areas
and machine registers whose contents may be altered by
execution of a machine instruction are flagged with an
asterisk.

At the end of the cross-reference list, the error summary
statements are printed again.

SUBRC
SYMBOL

SUBRC

TYPE

MODULE

EXTERNAL SYMBOL LIST

VER 00, MOD 00 01/30/76 PAGE 1

WWN

Mm

SUBRC SAMPLE EXIT SUBRUUTINE-—FIELD AND INDICATOR
ERR LOC OBJECT CCPE APDR STMT SOURCE STATEMENT VER 00, MOD 00 01/30/76 PAGE 2
7 3‘#4‘##**t#*‘****#***##*#i#t**t**#**t#t##t#t#*#‘**#ﬂ«k*tt**#t**ti*t*#t‘t#*
3]
4 % NAME eseeevesesas SUBRC. *
5 % *
6 % FUNCTION weessees EXIT SUBROUTINE nITH FIcLD AND INOICATOR *
7% PAKAMETERS. *
B % *
g * THE CODE GENERATEC BY THE COMPILER IS AS FOLLOWS: ¥
10 * *
1L * 8 SUERC *
12 = oC ILLYFLELD LENGTH~1" *
13 * oc AL2VADCRESS OF RlordT GF FIELDY *
14 * e XL1t0G" *
15 * oC XLL®INCICATOR MASK? *
16 % i XLL*RECISTER 1 DISPLACEMENT? *
17 % *
14 ##‘3‘4‘t*#*##*###*##**it##*###***k####*l}##3*#**#‘t*#*i****#tt**#***#####**
co00 19 SUBRC START ©
00CO 34 0& 0C13 25 ST GET+34ARR SAVE PARM AULR
0004 36 C& GC21 Yl A CONG » ARR INCREMENT TO RETULRN
0008 34 €8 0C2F 22 ST RET+3,ARR SAVE RETURN
000C 34 €2 ocz2® 23 ST SAVE+3,2 SAVE XRZ
0010 C2 02 GCCe 74 GET La Eo%y2 GET PARMETER ADORESS
0014 2C 0L oCliP 05 25 HyC TEST+21(2145(4+2) MOVE IN MASK AND CDISPLACEMENT
0019 78 00 OC 26 TEST TBN Fed g L) g ¥ TEST INODICATCR
Q01C F2 90 0¢ 27 JF SAVE INDICATOR OFF
COLlF 8% 02 02 28 L 2052} 42 GET CONTROL FIELD ADDRESS
0022 B85 02 0° 27 L 5(92)92 GET LCOK UP ACDRESS
0025 BC €3 0C 30 MVI 0(s2)sC'C? POVE IN CfC?
0028 €2 02 0CCC 31 SAVE LA ¥-ky 2 RESTORE
po2C CO 87 oCCC 32 RET B - RETURN
0030 0006 0031 33 CONe oC IL2t6"
agos 34 AR EQU 8
FFFF 35 END
TOTAL STATEMENTS IN ERRUR IN THIS ASSEMBLY = o
b/,,——"“““~—ww—“’“‘“"“”~"§*””""‘—~“““““—“-———-—\~_,__~__~___4f‘—"——-~—‘——*“x__,/———-_,.,_w—w~’”*”‘”“"-~_M,“m_“ﬁﬁu_“_///~“-____ﬁ
SUBKC CRUSS REFERENCL
SYMBOL LEN VALUE CEFN REFERFNCES VER 00, MOD 00 01/30/76 PAGE 3
ARR colL 0008 CC34 C02C QL21% 0022
CON6 cc2 €031 €033 cozl
GET CC4 COLC CU24 Co20%
RET ¢Cc4 002C €L32 ag22x
SAVE 004 0C28 CC31 cCcz3% ¢627
SUBRC UCl 006C GCLS
TEST 0C3 (016 (L6 COzoH*
TOTAL STATFMENTS IN ERRUR IN THIS ASSEMBLY = 0

Figure 26. Sample Assembler Listing

Programmer’s Guide 41

External Symbol List (ESL) Table Size i

The ESL table is an execution time main storage table
containing the module name (START statement name or
ASMOBJ) and each EXTRN and ENTRY symbol defined
in an assembly. The total of EXTRNs and ENTRYs
allowed in a single assembly is limited by the ESL table
size.

Using the Model 10 disk system assembler, the limit is 74
EXTRNs and ENTRYs.

Using the Model 12 and Model 15 assembler, the limit varies
with the amount of storage available in the execution partition.
The limiting sizes and associated storage ranges are:

Storage Available Limit of EXTRNs and ENTRYs

10K 84
12K 124
14K 169
16K 209
18K - 48K 254

MACHINE LANGUAGE INSTRUCTION FORMATS

Operation Code

The first byte of each instruction, the operation code,
specifies the addressing modes to be employed by the
instruction in bits O through 3, and the operation to be
performed in bits 4 through 7.

Q Code

The second byte of each instruction is the Q code. In 2-
address formats, the Q code is always a length count. In
other formats, depending upon the operation specified, the
Q code can be:

& Length count

& Immediate data

Appendix A. Machine Instructions

Register address
e Data selection
e Branch or skip condition

e Device address and functional specifications

Control Code

The third byte of an instruction in the Command Format
contains additional data pertaining to the command to be
executed.

Storage Addresses
For instructions in the 1-operand and 2-operand formats,

the third byte of the instruction and all bytes following
are storage address information.

e Bit mask
3 Bytes
4 Bytes Op Q Address
Op Length Destination | Source Code Code Displacement
o Address
Code Count Afﬁdress adr S 0 7ig 516 53!
Displacement | Displacement J | L
0 78 15 16 2324 31 i l R
-~ M
- | ~
5 Bytes Immediate Data ‘l Destination Address W!
Op Length Direct Source | Bit Mask ‘ Source Address |
Code Count Destination Address | Register Address Branch Address |
Address Displacement | Branch or Skip Condition | i
o 78 18 3739 T I\D\ata Selection | |
S o I |
~ 1 |
5 Bytes 4Bytes < |
Op Length Destination Direct .
Code Count Address Source Op Q Direct
Displacement Address Code Code Address
0 78 15 16 2324 39 0 78 15 16 31
One-Address Formats
6 Bytes
3 Bytes
Op Length Direct Direct
Code Count Destination Source Op a Control
Address Address Code Code Code
4] 78 15 16 3132 47
0 7'8 15l 16 23
A R,
' !
@ Two-Address Formats | Device Address |
i and functional 1
1 specifications i
i Skip Conditon f
i
1

Halt Identifier
@ Command Format

Appendix A. Machine Instructions 43

Op Mnemonic Type
64 ZAZ

66 AZ }4. 2 ADDR ESSiI
67 sz

68 MV X

6A eo [op] o] b1 [p2]
6B ITC

6C MvC !-1-———4 bytes-—yl
6D cLc

6E ALC R1 R2
6F SLC

70 SNS

71 LiO 1 ADDRESS
74 ST

75 L

| a o] o] or]

78 TBN

79 TBF |3 bytes ——]

7A SBN

7B SBF

7C MV R1

7D cLl

7E scp*

7F LCP*

84 ZAZ

86 AZ L..z ADDR ESS-——D-l
87 74

88 MV X Indexed Direct
8A ED {Op| Q] D1] Operand Two |
8B ITC

8C MVC l-d——— 5 bytes———-——-»l
8D cLC

8E ALC R2

8F sLC

94 ZAZ

96 AZ }4— 2 ADDRESS-»I
97 Y4

a8 MV X Indexed

9A ED [or] a| D1 | D2 |
9B ITC

9C MvC }: 4 bytes :!
9D cLC

9E ALC R2 R1

9F sLC

A4 ZAZ

A6 AZ 1-4-2 ADDR ESS-D-‘
A7 sz

A8 MV X Indexed

AA ED [op] o] o1 [p2]
AB ITC

AC MVC {: 4 bytes ;;!
AD cLC

AE ALC R2 R2

AF SLC

Op Mnemonic Type

04 ZAZ

06 AZ l-<-2 ADDRESS '—'—P'{
Q7 Sz

08 MV X Direct

0A ED [Op l Q lOperand One I Operand Two }
0B ITC |
ocC MVC }: 6 bytes & |
oD cLC

OE ALC

OF SLC

14 ZAZ

16 AZ l-ﬂ- 2ADDRE88—’l
17 Sz

18 MV X Direct Indexed

1A ED IOplapmameMI[n]
iB ITC | |
1C MVC o * 5 bytes :I
1D CLC

1€ ALC R1

1F SLC

24 ZAZ

26 AZ ‘~<—-2 ADDRESS—-»{
27 Sz

28 MV X Direct Indexed

2A ED [OpJ QlOperand One 1 D2J
2B ITC | |
2C MVC l: 5 bytes :l
2D CcLC

2E ALC R2

2F SLC

30 SNS

31 LIO 1 ADDRESS

34 ST

35 L Direct

36 A 1 Op l QIOperand One J

38 TBN

39 TBF ‘-4——-—- 4 bytes—>|

3A sen !

3B SBF

3C MVI

3D CLI

3E scp*

3F LCP*

44 ZAZ

46 AZ }4— 2 ADDR ESS—-P{
47 sz

48 MV X

4A ED 1 Op | o| D1| Operand Two I
4B ITC |
4Cc MvC }w 5 bytes >
4D CcLC

4E ALC R1

4F SLC

54 ZAZ

56 AZ 2 ADDRESS

57 sz F“'--—-'*4

58 MVX Indexed

5A ED [op] @] b1] D2 |

5B ITC

5C MVC '4——4 bytes—ﬁl

5D CLC

5E ALC R1R1

5F SLC

44

* Model 15 only.

Legend:

D1
D2
R1
R2

Displacement, operand 1
Displacement, operand 2
Register 1
Register 2

Op Mnemonic Type
BO SNS
B1 LIO 1 ADDRESS
B4 ST j—>]
B85 L Indexed
86 | A [Op[Q[D]
B8 TBN
B9 TDF !4-——- 3 bvtes—»{
BA SBN
BB SBF
BC MV XR2

. BD CLI
BE SCp*
BF LCP*
co BC Dire
[o4] TiO Op Q Address
Cc2 LA |t 4 Dy tES —|
DO BC
D1 Tio [op[o D2] +XR1
D2 LA ot 3 DY 1ES]
EO BC
E2 LA et 3 Dy teS memmede]
FO HPL
F1 APL
F2 sc [oe] o] mr |
F3 Sie 3 bytes —-)’
F4 CCP* l-‘—

*Model 15 only.

Appendix A. Machine Instructions 45

"AIUO G [BPORN,

B
4 I3 - «d DD Of 1Hdv | dH El
£ —
zy Ag-xepul - ~ 5
za z I s mAg | vl ol | 08 3
. Ly Ag-xaput . e .
+a z € dsi(] ;Ag | vl |o | o8 a
7 v 104G suAg ¢ N\ vi o | o9 2
za A © »d D] dDS| 110 | 1AW | 489S | NES | 481 [NEL v Tl us 011 | SNS 8
zy Ag-xapuj) “n i . . s
oa) za X b iy 1A | 7y Ag D718 {07V {070 [OAW | DLt | 43 XAW | ZS | 2V vz k4
1g | za X N L Agxepul paxaput 218 [0 {070 {oAw | ou | a3 xaw | zs | zv zv2 6
dsi(y enAg | juswsoRIdsiy
za X 5 \ooaQ Sa1Ag 7 ahg L 2718 {07 [979 {oAW | 011 | a3 XAW | 2S | Zv 797 8
[¥s] A £ T #d0 N «dOS] 110 [1AW | 988 | NBS 480 [NEL v TS 011 | $NS ‘
» 7y Ag-xapuy PR P 5 - - S
raa X I 810 oA | L4 Ag 018 {07V |00 oA | 041 | a3 XAW | 25 |2V 2vz 9
Ag- .
1a | ia X I w%.%hwm& pexapuy 078 {07V {070 [OAW | 011 | 03 XAW | 28 | 2V vz S
! wwawaoe|ds)q
La X g 139111 591AG T a1Ag L 018 {07V |00 oA | D01 | a3 XAW | 28 | 2v vz 12
A s #«dOW»dDS| 170 [1AW | 298 [NES | 481 [NEL A4 hl 15 011 | SNS €
Zu Ag-xepu - 1 , I)
za X g dsig MAg L 218 |07V [070 oA | 011 | a3 XAW | 28 | 2v 792 4
Ly Ag-xapu) .
La X g dsiq s1Ag | 0718 |07V [070 [0AW | O | a3 xAw | zs | zv vz |
g
X 9 1082103 SA1AG 7 s91A8 ¢ 0738 101V {070 {oAW | D41 | a3 XAW | ZS | 2v Fa 74 0
ccm&aOIt* o] a0 El 3 a o] g v 6 8 A 9 G 14 Z i 0
_ aAg
ATRUIUING st DRV p— 15314 au [vsug 0
yibus
sug
415U
adA elo _ spuetad R (2149 auo)
1} eog p o] IS po do

46

MNEMONIC OPERATION CODES (MACHINE) *#** These instructions are for the Model 15
but they can also be generated on the

Instruction™® Mnemonic Operation Code Model 12 through the macros $LCP, $SCP,
and $CCP. For more information concerning
Zero and Add Zoned Decimal ZAZ the use of the Model 12 macros, see
Add Zoned Decimal AZ IBM System/3 Models 10 and 12 System
Subtract Zoned Decimal Sz Control Programming Macros Reference
Manual, GC21-7562.
Move Hex Character MVX
Move Characters MVC) Two-address
Compare Logical Characters CLC Format**
Add Logical Characters ALC
i Subtract Logical Characters SLC
Insert and Test Characters ITC
. Edit ED
Move Logical Immediate MVI
Compare Logical Immediate CLI
Set Bits On Masked SBN
Set Bits Off Masked SBF
Test Bits On Masked TBN
Test Bits Off Masked TBF
Store Register ST One-address
Load Register L Format**
Add to Register A
Branch On Condition BC
Test I/O and Branch TIO
Sense I/O SNS
Load I/O LIO
Load Address LA
Load CPU*** LCP
Store CPU*** SCP
Advance Program Level APL
Halt Program Level HPL
Start 1/O SIO Command
Command CPU*** CCP Format**
Jump On Condition JC

* For information concerning specifications for the use of
: these instructions with the Model 10, see the IBM System/3
- Model 10 Components Reference Manual, GA21-9103,
or with the Model 15, see the IBM System/3 Model 15
Components Reference Manual, GA21-9193.

** See Machine Language Instruction Formats in this
appendix.

Appendix A. Machine Instructions 47

EXTENDED MNEMONIC CODES

Instruction Mnemonic Operation Code Q Code

Move Hex Character (MVX)

Move to Zone from Zone MZZ X00’
Move to Numeric from Zone MNZ X02’
Move to Zone from Numeric MZN Xor
Move to Numeric from Numeric MNN X903’

Branch On Condition (BC)

Branch B X87 «
Branch High BH X84’
Branch Low BL X882)
Branch Equal BE X81°
Branch Not High BNH X04’
Branch Not Low BNL X902’
Branch Not Equal BNE Xor
Branch Overflow Zoned BOZ X‘88’
Branch Overflow Logical BOL X‘A0’
Branch No Overflow Zoned BNOZ X008’
Branch No Overflow Logical BNOL X0
Branch True BT X910’
Branch False BF X90’
Branch Plus BP X84’
Branch Minus BM X82’
Branch Zero BZ X81’
Branch Not Plus BNP X‘04’
Branch Not Minus BNM X902’
Branch Not Zero BNZ Xor

Jump On Condition (JC)

Jump J X87

Jump High JH X84’

Jump Low JL X82’

Jump Equal JE X81’

Jump Not High JNH X04°

Jump Not Low JNL X022’]
Jump Not Equal JNE Xor B
Jump Overflow Zoned Joz X‘88’

Jump Overflow Logical JOL XAQ’ .
Jump No Overflow Zoned INOZ X08’ -
Jump No Overflow Logical JNOL X220’

Jump True JT X100

Jump False JF X90’

Jump Plus JP X84’

Jump Minus M X'82’

Jump Zero JZ X811’

Jump Not Plus JNP X04’

Jump Not Minus JNM X02

Jump Not Zero INZ Xor

Command CPU (CCP—Model 15 only) -
Supervisor Call svC X‘10

, Assembler Language to Machine Language Relationships

The following charts show the relationship between a
machine instruction statement as coded by the System/3
Basic Assembler Language programmer and the machine
language as generated by the assembler.

For example, the instruction coded by the programmer is
ZAZ FINAL(5),DONE(1,1). From the second line of the
first of the charts we can develop the relationship between
the instruction and the machine code as follows (assume

- FINAL is a relocatable symbol with value X*131B” and
DONE is an absolute symbol with value X'BA’):

Machine instruction statement
as input to assembler

P NI N
ZAZ FINAL (5), DONE (1, 1}

e
R

i 1 i 4
ZAZ AN(L1),D2(L2,R1) 14§ L1-12 T L2-1 ' Address A1 Disp D2 1
i lfromFﬂ l
H { t
[fa [4 | o | 13 | 18 [8a |
e

Five-byte machine instruction generated by assembler

Used in this manner, the following charts show what
machine code results from a particular assembler language
statement, and vice versa, what assembler language format
obtains a particular machine code format.

The abbreviations used on the following pages mean:

Al Direct address, operand 1
A2 Direct address, operand 2
D1 Displacement, operand 1
D2 Displacement, operand 2
L1 Length of operand 1

L2 Length of operand 2

R1 Register 1

R2 Register 2

RX Local storage register

I Immediate data

- Appendix A. Machine Instructions 49

Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
ZAZ A1{L1),A2(L2) 04 { L1-L2]L21, Address Al ' Address A2 |
N ! | |
ZAZ A1(L1),D2(L2,R1) 14 I U121 L2:1] Address A1 | Disp D2 I
I b I , fromRif]
\ .)] 1 ’
ZAZ A1(L1),D2(L2,R2) 24 L2121 T Address Ar I Dpisp D2
| -
l . | j fromR2 |
[' . !] l
ZAZ D1{L1,R1),A2(L2) 44 ! L1-L2y 1241 | Disp D1 | Address A2
I { { fromR1 | l .
| i 1 |
ZAZ D1(L1,R1),D2(L2,R1) 54 I L1-L21L2-1 | Disp D1 | DispD2 | |
. : | fromR1 fromR1 I
I \ ! !
ZAZ D1(L1,R1),D2(L2,R2) 64 | L1-L2¢ L2-1 T Disp D1 | Disp D2 l !
) H | fromR1, fromR2 |
] ; ' |
ZAZ D1(L1,R2),A2(L2) 84 | tre2ii2a) pispD1 I Address A2 ‘
1) | fromR2 { !]
L — 1 : ! |
ZAZ D1{(L1,R2),D2{(L2,R1) 94 | L1-L2¢L21 Disp D1 ! Disp D2 |
1 } ' from R2 from-R1 |
z — | | t
ZAZ D1(L1,R2),D2(L2,R2)} A4 L1-L2¢ L2 | Disp D1 Disp D2 l
! I fromR2 | from R2 '
1 1 I 1
i i } |]
NOTES:
If L1 or L2 is not specified, the implied length is used.
If D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction.

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

AZ AT(L1},A2(L2) (06 , L1-L2 : L2-1 1 Address Al | Address A2

1 T 1 s !
AZ A1{L1),D2(L2,R1} 16 | L-L2 : L2-1 Address A1 ; Disp D2 |

. i . | .__fromR1]|

1 T l 1 '
AZ A1{L1),D2(L2,R2) 26 t L1-L2 : L2-1 ! Address A1 | Disp D2

[L ! | fromR2 |

i } { ‘
AZ D1(L1,R1),A2(L2) 46 ! L1-L2 : L2-1 I Disp D1 | Address A2

l | l from R1 | l

| , ! ! !
AZ D1(L1,R1),D2(L2,R1} 56 Li-12 : 211 Disp D1 | DispD2 |

f i | fromR1] fromR1 | ‘

| i ! l
AZ D1(L1,R1),D2(L2,R2) 66 L1-12 ; L2-1, Disp D1 ' Disp D2 ! I

l) I fromR1 | from R2 I

! | | | l
AZ D1(L1,R2),A2(L2) 86 ‘ L1-L2 ‘[L2-1 Disp D1 ' Address A2 l

I
| ! from R2 % |
+ 1

AZ D1(L1, R2), D2(L2, R1) 96 1 L1-L2; 1211 DispD1 | DispD2]| '

| i | fromR2 E from R1 | |

! 3 . | ‘
AZ D1{L1,R2),D2(L2,R2) A6 T iL21L21] DispD1 ' Disp D2 | |

l : | fromR2 | from R2

} 1 f | |
NOTES:

1 L1 or L2 is not specified, the implied length is used.

If D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction,

Appendix A. Machine Instructions

S1

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 [Byte 4 ’ Byte 5 Byte 6

r 4 i 4

sz A1(L1),A2(L2) [07 ' L2121 | Address A1 I Address A2
[f] I J

sz A1(L1),D2(L2,R1) 17 | L1L27127 | Address Al l Disp D2] |

1 | f ., fromR1 '

I] X] |

sz A1(L1), D2(L2,R2) 27 | L1-L2iL2-1 T Address A1 | DispD2 |
t : I ! from R2 l
' { i [

sz D1(L1,R1),A2(L2) 47 ERTRTY t Disp D1 Address A2 |
| | . fromR1 |)
; f 1 |

sz D1(L1,R1),D2(L2,R1) 57 [L1221 | DispD1 | Disp D2]] |
I | i fromR1 | fromR1 ' l

¥

i i

sz D1(L1,R1),D2(L2,R2) 67 "Li27L21 | DDl | Dispo2] | |
| | fromR1 | from R2| |
| ' ! | l

sz D1(L1,R2),A2(L2) 87 | LiL2f24 [Disp D1 [Address A2 i
| | | from R2 | |
i 1 1 l l

sz D1(L1,R2),D2({L2,R1) 97 "' L1t2ie2r T oiseD1 | Disp D2 | |
| ! | fromR2 , from R1 ' |
| X i

sz D1(L1,R2),D2(L2,R2) A7 " i12]L21 ' DispD1 | DispD2]! l
l ! fromR2 | from R2] | I
| t 1 1 |

NOTES:

If L1 or L2 is not specified, the implied length is used.

1f D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction.

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

= [i ; 1

MVX A1(1),A2 [os ! | Address A1 | Address A2]
N | i N

MV X A1(1),D2(,R1) 18 L " Address A1 I DispD2 :
| ! ‘ | fromR1
I ¥ | | |

MV X A1(1),D2(,R2) 28 L | Address Al DispD2] |
: | ' | from R l
f . 1 l

MV X D1{I,R1),A2 48 | ""Disp D1 | Address A2 |
{ I from R1 | ! |

i ! | {

MV X D1(1,R1),D2(,R1) 58 T | DispD1 | Disp D2}l I
‘ ! fromR1 , from R1 I
1 I 1 | |

MVX D1(1,R1),D2(,R2) 68 | | DispD1 | Disp D2 |
; | fromR1 | from R}l |
! § s |

MVX D1(1,R2),A2 88 ‘] M DispD1 | Address A2 ‘
, | fromm2 | 1 !
: ' ! 1 I

MVX D1{1,R2),D2(,R1) 98 Yy | DispD1 | Disp D2} |
f i from R2 \ from R1 i I
1 ¥

MVX D1(1,R2),D2(,R2) A8 I " DispD1 | Disp D2]! !
| l trompr2 | fromR2|! i
I | I { |

NOTES:

| may be specified on either operand, and must have the value X'00°,X’01’,X’02’, or X'03'".

1f D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction,

For the extended mnemonics of the MV X instruction, I-field information is inherent in the mnemonic and the |-field
is omitted from the operand field. See Extended Mnemonic Codes for the extended MV X and the associated Q-codes.

Appendix A. Machine Instructions

53

Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
MVC A1{L1),A2 I cC | L1 | Address A1 Address A2 1
T v 1 M ¥
MVC A1(L1),D2(,R1) 1C | L1 | Address A1 . Disp D2} 1
X 1 | ’ from R1j |
! n | ! |
MVC A1({L1),D2(,R2) 2C | L1-1 I Address A1 ‘ Disp D2]
| 1 { from R2
) i . I I
MvC D1{L1,R1}),A2 4C IR I Disp D1 | Address A2 { -
| I from R1 | !
i ! ; :
i
MVC D1(L1,R1),D2(,R1) 5C | L1-1 | Disp D1 ! Disp D2 ! t .
| fromR1| fromR1}!
} { I
] i
MvC D1(L1,R1),D2(,R2) 6C oL " DispD1 | DispD2]| l
| | fromR1 | fromR2 : |
{ | {
MVC D1(L1,R2),A2 8C ! L1 l Disp D1] Address A2 ’
| from R2 ' !
l] . J !
MvC D1(L1,R2),D2(,R1) 9c MR | DispD1 I Disp D2 { |
X , fromR2 | from R1 ' |
N X 1
. i |
MvC D1(L1,R2),D2(,R2) AC R "DispD1 | DispD2]!
! | fromR2 | fromR2|! !
1 1 1 | 1
NOTES:
L1 may be specified on either operand; if L1 is not specified, the implied length of operand one is used.
If D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction.

Assembler Instruction Format Machine Instruction Format
QOperation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
i
cLe A1(L1),A2 [oD EE [Address A1 | Address A2)
I | { | |
CLC AT{L1),D2{.R1) 1D i L1-1 I Address A1l | Disp D2 |
| . | fromR1
f 1 I . |
; cLe A1(L1),D2(,R2) 2D R | Address Al | Disp D2
l 1 , l from R2
| ‘ ‘ 1 |
. cLC D1{L1,R1),A2 4D R [DispD1 | Address A2 I
- ! fromR1 | 1
t ' X ! I
cLC D1(L1,R1),D2(,R1) 5D R [DispD1 ' DispD2 l [
| | fromR1 | fromR1j|
cLC D1(L1,R1),D2(,R2) 6D EE | Disp D1 | Disp D2 |
l | fromR1 | fromR2)|l
| . [] |
CLC D1(L1,R2),A2 8D ‘ L1-1 I Disp D1 | Address A2
\ | fromR2 | | |
' 1 1) I
cLe D1(L1,R2),D2(,R1) 9D [L1 T pispp1 | Disp D2 I |
| | fromR2 | from R1j!
; I | | I
CLC D1(L1,R2),D2({,R2) AD L1-1 ‘ Disp D1 | Disp D2 | I
l , from R2 , fromR2
I f i | |
NOTES:
L1 may be specified on either operand; if L1 is not specified, the implied length of operand one is used.
If D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction.

Appendix A. Machine Instructions 55

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
h .
ALC A1(L1),A2 [oE , L1 , Address A1 | Address A2
| } , ,
ALC A1(L1),D2(,R1) 1E Tt | Address A1 | Disp D2 i
] i ! | __fromR1j]
! 1 l i
ALC A1{L1),D2(,R2) 2E R T Address A1 I pisp D2
| ! | fromR2||
l ! 1 i ’
ALC D1(L1,R1),A2 4E | L [Disp D1 | Address A2
X from R1 | | |
! | ! | |
ALC D1(L1,R1},D2(,R1) 5E | L1 | Disp D1 " Disp D2}
{ , fromR1 i from R1 | !
T ‘ !
' 1
ALC D1(L1,R1),D2(,R2) 6E L1-1 I"'DispD1 | Disp D2 |
] | fromR1, fromR2 ‘
; | ' L 5
ALC D1(L1,R2),A2 8E l L1-1 T pispD1 | Address A2 |
| fromR2 { X
T 0) f |
ALC D1(L1,R2),D2(,R1) 9E | L | DispD1 . Disp D2]! i
. |_fromR2! fromR1j! |
M H
I i n [
ALC D1(L1,R2),D2(,R2) AE VoL | Disp D1 ! Disp D2 I :
! ! fromR2| fromR2
T t 1 | !
NOTES:

L1 may be specified on either operand; if L1 is not specified, the implied length of operand one is used.

If D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction.

56

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
I3 i L}
sLC A1(L1),A2 [oF RE . Address A1 | Address A2
H T
{ | 1
sLC A1(L1),D2(,R1) 1F EE T Address A1 | DispD2 f
| ! ' fromR1
1 . j ‘
sLc A1(L1),D2(,R2) 2F K | Address A1 ! Disp D2}
{ | ! | fromR2
| , , i |
sLC D1(L1,R1),A2 4F [RE I DispD1 | Address A2 1
| | from R1 ! |
§ | I | ‘
SLC D1{L1,R1),D2(,R1) 5F L l Disp D1 | Disp D2|
N from R1 ; from R1 | l
i i N
' {
SLC D1{L1,R1),D2(,R2) 6F I L1 [DispD1 | Disp D2} !
{ { from R1 l from R2| | ‘
\ 1 '] |
sLC D1(L1,R2),A2 8F R | Disp D1 | Address A2 |
| from R2 | | !
| H] |
sLC D1(L1,R2),D2(,R1) oF R M Disp D1 | Disp D2] | !
! | fromR2 | fromR1] |
‘ |]
sLC D1(L1,R2),D2(,R2) AF JRR] I DispD1 | Disp D2 1 '
! ! from R2 I fromR2| | |
| | 1 | 1
NOTES:

L1 may be specified on either operand; if L1 is not specified, the implied length of operand one is used.

1f D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction.

Appendix A. Machine Instructions

57

Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Bvte 3 Byte 4 Byte 5 Byte 6
i I 1
ITC A1(L1),A2 [0B . L1-1 | Address A1 | Address A2]
: . 1 I
ITC A1(L1),D2(,R1) 18 I L " Address A1 { DispD2]!
| | , yfrom R1} |
1 i
. | {
ITC A1(L1),D2(,R2) 2B I L1 ‘ Address A|1 i Disp D2 !
| X from R2{ |
l [. ! ' .
ITC D1(L1,R1),A2 4B | L1-1 [Disp D1 | Address A2 -
from R1 ¢ { |
I I .]
ITC D1(L1,R1),D2(,R1) 5B T 1 I Disp D1 l Disp D2 | ! N
| | from R1 from R1 | !
| ! ! f
ITC D1(L1,R1),D2(,R2) 6B [L1 " DispD1 | DispD2]!
. t fromR1 , from R2 | !
. ! ; |]
iTC D1{L1,R2),A2 8B 1 | Disp D1 I Address A2 I
| | from R2 |
| X T | {
ITC D1(L1,R2),D2(,R1) 9B ;L1 " DispD1 | Disp D2 ‘ |
, | fromR2 | from R1 ' |
. |
} | |
ITC D1(L1,R2),D2(,R2) AB i L1-1 I Disp D1 | Disp D2 I |
! ! fromR2 | from R2|!
1 | i | |
NOTES:
Operand one must address the data field at the leftmost byte.
L1 may be specified on either operand; if L1 is not specified, the implied length of operand one is used.
If D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction.

Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code O-Code Operands
Hyte 1 Byte 2 Byte 3 Byte 4 Byte 5 l Byte 6
ED A1(L1),A2 [oa EE { Address Al I Address A2 B
i 4 | 1

ED ATIL1),D2(R1) 1A Lot i Address Al ! Disp D2

{ | . _fromR1 '

! ‘ ! . ’

ED ATIL1),D2(R2) 2A S B I Address A1 " pisp D211
. i ' I fromR2J|

i {

ED D1{L1,R1},A2 4A 11 Disp D1 T Address A2 I
- ! I from R1 | | |
) I I i 1 |

ED D1(L1,R1),D2(R1) 5A L | DisoD1 | Disp D2} |

. from R1 from R1 1 |
| i |

ED D1(L1,R1),02(R2) 6A EE DispD1 | Disp D2]! '

g ' from R1 ; _ from R2} | I
. ! . f f
ED D1{L1,R2),AZ 8A L1-1 f Disp D1 | Address A2
| from R2 | | I
{ | | ! |
ED D1(L1,R2),D2(,R1) SA | L1 | Disp D1 I DispD2 | |
{ , fromR2 1 from R1 | 1
|
i i
ED D1{L1,R2),02(,R2) AA | L1-1 pDispD1 | Disp D2} ! '
I fromR2 | fromR2{l| i
i i 1 1 {

NOTES:

L1 may be specified on either operand; if L1 is not specified, the implied length of operand one is used.

If D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction,

Appendix A. Machine Instructions 59

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 [the 4 ! Byte 5 Byte 6
i A ' ¢
MVI A1) [ac | | Address A1 | I !
| i I | |
MV D1(,R1),I 7C L | DispD1| ' I |
. I from R1 ! ']
: I I t |
i
MV1 D1(,R2),l BC o I Disp D1 | |
| , from R2 { | I
| | 1 1 |
NOTE:
If D1 is relocatable, the assembler computes the displacement based on the USING instruction.
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
cLl A1l 3D T | Address A1 | B} ;
t I 1 |
i
CLI D1(,R1), 7D ' i I'bisoD1| | |
: | fromR1} | I |
} ! ! I |
CLI D1(,R2), BD | | | Disp D1 |] |
. | from R2 i
t 1 I 1 I
NOTE:
If D1 is relocatable, the assembler computes the displacement based on the USING instruction.
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
+ t '
SBN A1l [3a I | Address A1 | 1 !
T I
| |
SBN D1(,R1),1 7A [| Disp D1 I l |
| , from R1 i | |
' : [[!
SBN D1(,R2),1 BA ' 1 Disp D1 |
I fromm2| | |
i +
1 | | | i
NOTE:

If D1 is relocatable, the assembler computes the displacement based on the USING instruction,

60

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 [Byte 4 Byte 5 i Bvte 8
i P i
SBF A1l 38 [I Address A1, }; i
| | 1
SBF D1(R1),I 78 1 (DispDT| | | ‘
| | from R1 { i
1 { ’] i
SBF D1{,R2},! BB ' ! | Disp D1 | |
, fromR2 | | i
| H { ! L
NOTE:
I1f D1 is relocatable, the assembler computes the displacement based on the USING instruction.
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 lByte 4 Byte 5 } Byte 6
N N i]
TBN ALl [38 I | Address A1 | 1 |
1 I | | I
TBN D1(,R1),1 78 | [] Disp D1 i i
R y from R1 I i i
X | |
TBN D1(,R2),! B8 T | Disp D1 ! ! |
! ' fromR2| ! !
{ | 1 t 1
NOTE:
If D1 is refocatable, the assembler computes the displacement based on the USING instruction.
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
TBF A1l [39 Yo I Address A1 | t |
T
| t
i
TBF D1(R1)I 79 T [Disp DT | ! I
! | from R1 i { !
T T |]
TBF D1(,R2),I 89 my ' Disp D1 i !]
! P fromR2| I t
| | | { i
NOTE:

If D1 is relocatable, the assembler computes the displacement based on the USING instruction.

Appendix A. Machine Instructions

61

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
} ! 1
ST A1,RX [34 R , Address A1 ! il |
. ! I
ST D1{,R1),RX 74 max T DispD1] | i]
| | from R1 } | |
|]
ST D1(,R2),RX B4 i RX { Disp D1 i ! I
1 | from R2 ! ! !
i 1 1 i I
NOTE:
I1f D1 is relocatable, the assembler computes the displacement based on the USING instruction.
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 [Byfe 4 Byte 5 Byte 6
i i l
L A1,RX [35 , RX { Address A1 I |
N 1
i i ’ ‘
L D1(,R1),RX 75 bORX g Dispo1 | | | |
! ¢ from R1 i 1
1 f | |
L D1(,R2),RX 85 FR/x MBisp DT | i '
! | fromR2) | !
{ 1 1 ! I
NOTE:
If D1 is relocatable, the assembler computes the displacement based on the USING instruction,
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
i
A A1,RX [36 " RX I Address AT, 1 I
L i ‘
!
A D1(,R1),RX 76 " RX | Disp D1 | ; I
! (from R1 | {
t |
A D1({,R2) RX B6 I ax Ipisppr | ! ! '
[[fromR2| | ! '
{ | i | |
NOTE:

1f D1 is relocatable, the assembler computes the displacement based on the USING instruction,

62

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
BC A1l [co L | Address A | ! f
L ! ! I |
BC D1(R1).I DO - DispD1 | | | I
¢ , from R1 i 1 i
: 4 ' I ‘
BC D1(,R2},! EO ! "Disp D1 | |
! | trom R2 I
t T I ! 1
NOTES:

1f D1 is relocatable, the assembler computes the displacement based on the USING instruction.

For the extended mnemonics of the BC, the second operand (1-field) is not used since the information is inherent in the mnemonic.
See Extended Mnemonic Codes for the extended branches and their associated Q-codes.

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
TIO A1l [c1 T " Address A1 1 |
1] ' I I
TIO D1{,R1) [D1 P | Disp D1 | | 1
{ { fromR1 t |]
) | 1 :
TIO D1(,R2),! E1 T DispD1] | !
| I fromR2] | ! 1
T f 1 1 |
NOTE:
If D1 is relocatable, the assembler computes the displacement based on the USING instruction.
Assembiler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
1 4 t t '
SNS A1) [30 ! Address AT ' X
] | N
{ { {
SNS D1{,R1),1 70 I | Disp D1 (| 1
| (from R1 : \ X
! 1
SNS D1(,R2),1 BO [| Disp D1 ! ! !
| , from R2 ! ! i
1 1 { | |
NOTE:

1f D1 is relocatable, the assembler computes the displacement based on the USING instruction.

Appendix A. Machine Instructions

63

Page of SC21-7509-6
Issued 24 June 1977

By TNL: SN21-5536

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
4 i '
LIO A1, [31 P Address A1 1 | |
. !) «
LIO D1(,R1),1 71 T | DispD1] ! ! |
! { fromR1] | | |
I } | {
LIO D1(,R2),] B1 [| Do DT] | |
from R2
! ; [! r
NOTE:
If D1 is relocatable, the assembler computes the displacement based on the USING instruction.
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
4 1)
LA A1,RX | Cc2 | RX Address A1 j, |
] 1
4 i
LA D1(,R1),RX D2 © RX | DispD1| ! !
‘ 1 from R1 1 | |
! { | i !
LA D1{,R2),RX E2 I RX Disp D1 | |
' l from R2 I
i 4 § l
\ 1 |
NOTE:
If D1 is relocatable, the assembler computes the displacement based on the USING instruction,
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 } Byte 4 } Byte 5 { Byte 6
Lece ATRX [3F . RX . Address A1]: i
t 1
i 4
LCP D1(,R1),RX 7F TTRX "DispD1] | ! i
I | fromR1] | ! !
! 1 i 1 |
LCP D1{,R2) RX BF | RX | Disp D1 | 1 i
| \ from R2 I I]
NOTES:

The Model 15 LCP instruction can also be generated on the Model 12 through the
$LCP macro instruction; see /BM System /3 Models 10 and 12 System Control

Programming Macros Reference Manual, GC21-7562.

If D1 is relocatable, the assembler computes the displacement based on the USING instruction,

64

Assembiter instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 l Byte 4 [Byte 5 I Byte 6
i i
scp A1RX [z |_RX [Address AT | ; :
{ | |
scp D1(,R1),RX 7E | RX | Disp D1 | ! |
, , fromR1| l |
. | |
scp D1(,R2),RX BE T RX Do D7) | }
1 |
fromR2| |
" | 1 i
1 '
NOTES:
The Model 15 SCP instruction can also be generated on the Model 12 through the $SCP
macro instruction; see /BM System /3 Models 10 and 12 System Control Programming
Macros Reference Manual, GC21-7562.
1 D1 is relocatable, the assembler computes the displacement based on the USING instruction.
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 l Byte 4 Byte 5 Byte 6
{
APL I [F1 L Too |1 i |
1 1 1 i
NOTE:
The APL is a NO-OP instruction on the Model 15.
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
HPL 1,12 | Fo T2 T : : 1
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
SI10 1,12 Crs L 12 T !)

Appendix A. Machine Instructions

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands

Byte 1 Byte 2 Byte 3 I Byte 4] Byte 5 l Byte 6
cep 11,RX [Fa . RX T 1! ! .

! f | 1]

NOTES:
The Model 15 CCP instruction can also be generated on the Model 12 through the $CCP
macro instruction; see /BM System /3 Models 10 and 12 System Control Programming
Macros Reference Manual, GC21-7562.
For the SVC form of the CCP instruction, the Q-code is inherent in the mnemonic and the RX field is omitted
from the operand field. See Extended Mnemonic Codes for the associated Q-code.
Assembler Instruction Format Machine instruction Format
Operation Operands Op-Code Q-Code Operands

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
Jc A1l I'r2 K Lt]! ! '

*If the first operand is absolute, this value is placed in byte 3.

If the first operand is relocatable, the displacement from the next sequential instruction to address A1 is placed in byte 3.

NOTE:

For the extended mnemonics of the JC, the second operand (I-field) is not used since the information is inherent in the mnemonic.

See Extended Mnemonjc Codes for the extended jumps and their asso¢iated Q-codes.

66

-

Appendix B: Assembler Instruction Reference Table

Operation Entry

Name Entry

Operand Entry

DC Any Symbol or Blank One operand entry containing: Duplication Factor, Type, Length, Constant.

DROP Blank Specified register (1 or 2).

DS Any Symbol or Blank One operand entry containing: Duplication Factor, Type, Length.

EJECT Blank Blank.

END Blank A relocatable expression or blank.

ENTRY Blank Any relocatable name entry found in the current program.

EQU Any Symbol An expression.

e o s s

ICTL Blank Two decimals in the form of B,E.

ISEQ Blank Blank or two decimal values in the form L, R.

ORG Blank Blank operand or an expression (A) optionally followed by two absolute
expressions in the form A,B,C.

PRINT Blank Model 10 Disk System: One or two entries from DATA, NODATA, ON,

FF.

SAodeI 12 and Model 15: One to three entries from DATA, NODATA,
GEN, NOGEN, ON, OFF.

SPACE Blank Blank or a decimal value.

START Name or Blank A self-defining value or blank.

TITLE Name or Blank A sequence of characters enclosed in apostrophes.

USING Blank A relocatable éxpression (V) and an index register (R) in the form V,R.

Appendix B. Assembler Instruction Reference Table

67

68

Appendix C: System/3 Assembler — Source Language Error Codes and Diagnostics

Code Diagnostic Explanation

NO1 INVALID NAME LENGTH Name field entry greater than six characters

NO2 INVALID CHARACTER IN NAME Name starts with non-alphabetic or contains an invalid character

NO3 NAME NOT ALLOWED ON THIS Name field entry not allowed on this instruction

INSTRUCTION
NO4 REFERENCE TO UNDEFINED SYMBOL The referenced symbol is not defined in this program
NOS NAME MISSING FROM Name field entry missing from EQU instruction
INSTRUCTION REQUIRING ONE

NO6 PREVIOUSLY DEFINED SYMBOL Symbol has been previously defined in this program

NO7 MODULE NAME MISSING START instruction missing, or START instruction present but name field
entry (module name) missing. Assembler assigns the default module
name ASMOBJ.

001 INVALID OPERATION CODE Undefined operation field entry

002 INVALID ORIGIN Attempt to ORG to a value less than the initial vaiue of the location counter

003 INVALID OR ILLEGAL ICTL Operand error on ICTL, or ICTL not the first statement in the program.
{ICTL treated as last source statementin program)

004 INVALID START INSTRUCTION START instruction encountered after location counter is initialized

005 LOCATION COUNTER ERROR Location counter overflow (greater than 65536) or attempt to reference
the location counter at 65536

006 MISSING END STATEMENT END statement missing from the program

PO1 INVAL!D OPERAND DELIMITER An operand field syntactical delimiter is either misplaced or missing

P02 INVALID OPERAND FORMAT The operand field is not of the proper format for this instruction

PO3 MISSING OPERAND Operand field entry missing from instruction requiring one

PO4 INVALID SYNTAX IN EXPRESSION Violation of one or more expression syntax rules

P05 EXPRESSION VALUE TOO LARGE Final expression value not in range ~216 to 216-1

P06 INVALID OPERAND One or more operand entries do not meet specifications for this instruction

PO7 ARITHMETIC OVERFLOW Intermediate expression value not in the range 22410 224_4

P08 ADDRESSABILITY ERROR Relocatable displacement outside the range of USING instruction

POS REGISTER SPECIFICATION ERROR Index register specification not 1 or 2

P10 INVALID CONSTANT Error in constant specification on DC instruction

P11 INVALID CONSTANT TYPE Data type specified on DC/DS is not valid

P12 INVALID DUPLICATION FACTOR Error in duplication factor specification on DC/DS

P13 INVALID LENGTH SPECIFICATION Error in length specification

P14 INVALID STATEMENT DELIMITER The column following the statement field is not blank

P15 RELOCATABLE MULTIPLICATION A relocatable term used in multiply operation

P16 RELOCATABILITY ERROR A relocatable expression is used where an absolute expression is required,
or an absolute expression is used where a relocatable expression is required

P17 INVALID SYMBOL Invalid character in or invalid length of a symbol in the operand field

P18 INVALID SELF-DEFINING TERM Error in the format of a self-defining term

P19 SELF-DEFINING VALUE TOO LARGE Value of self-defining term is outside of range -216 t0 216~

P20 INVALID IMMEDIATE FIELD Immediate field not in range X'00" to X'FF’

P21 INVALID DISPLACEMENT Absolute displacement not in range O to 255

Appendix C. System/3 Assembler — Source Language Error Codes and Diagnostics 69

Code

Diagnostic

Explanation

P22

P23

INVALID EXTRN

TOO MANY ESL RECORDS

Symbol is invalid or aiready defined in the program or subfield
is invalid.

More than allowed number of EXTRN and ENTRY statements
were found in the program. This count includes muitiple
EXTRNsand ENTRYs, ENTRYs with valid symbols which are
not defined, and EXTRNSs with valid symbols which are defined
in the program. See ESL Table Size in Part /1. Programmer’s
Guide.

70

Appendix D: Assembler Language Subroutine To RPG Il Linkage

Assembler subroutines can be linked to an RPG II program.

The RPG Il program passes parameters as it branches to
the assembler subroutine. To write a subroutine that will
be linked to an RPG 1 program the following rules must
be used:

1. The name of the assembler subroutine must be
SUBRxx. xx can be any valid alphabetic characiers
for user-written subroutines. (Numeric characters
are reserved for IBM-supplied subroutines.) The
name used must be the same as the name used in
the RPG I program.

2. Upon entry to the assembler language subroutine,
the address recall register (ARR) contains a pointer
to the parameters which represent the fields to be
referenced by the assembler subroutine. The return
point to the RPG II program is the first byte after
the parameters.

3. If the subroutine makes use of registers 1 and 2, the
contents of these registers must be stored upon
entry to, and restored before exit from, the
subroutine.

USING FIELDS IN THE RPG Il PROGRAM
When linkage is effected from RPG Il to an assembler
subroutine, three possible areas in the RPG II program can
be referenced by the subroutine. They are: field, table
or array, and indicator.
Referencing a Field in an RPG !l Program
The following parameters (symbolic form of code
generated by the compiler) are passed by RPG 11 when a
field is to be referenced:

B SUBRxx

DC IL1‘Field length -1

DC AL2(rightmost address of field)

Appendix D. Assembler Language Subroutine to RPG II Linkage

Referencing a Table or Array in an RPG I Program
The following parame ters (symbolic form of code
generated by the compile r) are passed by RPG Il when a
table or array is to be referenced:

B SUBRxx

DC IL1‘Entry length-1°

DC AL2(leftmost address of table control field)
The subroutine can refer to the table or array defined in
the RPG II program by utilizing the control field created
for that table or array. This control field, one of which
is created for each table or array built by the RPG 1T

program, is in the following format:

Bytes Meaning

1-2 Rightmost address of the first entry.
34 Rightmost address of the last entry.
5-6 Initialized to rightmost address of first entry;

used at object time for rightmost address of
the last looked-up entry of a table.

7-8 Length of an entry.

The subroutine can obtain the data retrieved from the last
RPG 1I table LOKUP by using the address in bytes 5-6.
To access the table or array itself, the address in bytes 1-2

must be used.

Data used by the subroutine must be left unpacked for the
RPG Il program.

71

Referencing an Indicator in an RPG Il Program Linkage for 1/0 Subroutines

The following parameters (symbolic form of code generated The following linkage is generated by RPG II to communi-
by the compiler) are passed by RPG Il when an indicator cate with the user-supplied I/O subroutine.
is to be referenced:

1. DTF (define-the-file) format:

B SUBRxx
Bytes Description
DC XL100
0 Device code (X‘00%)
DC XL.1'Mask for the indicator’ -
1 UPSI mask
DC XL1‘Displacement to the indicator from XR1’
2-3 Attributes N

Note: The parameters passed to the assembler subroutine

are determined by the coding done in the RPG II program. 45 Reserved for data management

For a description of this coding, see the JBM System/[3

RPG II Reference Manual, SC21-7504, IBM System /3 6-7 Address of next DTF

Model 6 RPG I Reference Manual, SC21-7517 ,or IBM

System/3 Card System RPG II Reference Manual, &B Reserved for data management

SC21-7500.

C-D Logical record address

RPG Il LINKAGE SAMPLE PROGRAM 1 E Completion code

In this sample program, the RPG II program links to the X‘42’ = End-of-file

assembler language subroutine SUBRA (Figure 27). X‘41’ = Controlled cancel (not

When control is returned to the RPG II program, the recognized by Model 10

character ‘A’ will have been moved into the field in the card system)

RPG II program. X‘40’ = Normal completion (not
recognized by Model 10
card system)

RPG Il LINKAGE SAMPLE PROGRAM 2 F Operation

X*CO’ = Get and put (model 10

In this sample program, the RPG II program links to the card system only)

assembler subroutine SUBRB (Figure 28). The first X80’ = Get

parameters passed reference a table. The second param- X'40’ = Put

eters reference an indicator. The subroutine refers to X20’ = Update

both sets of parameters. The subroutine first tests the X‘10" = Close

indicator in the RPG II program. If the indicator is off,

control is returned to the RPG II program. If the indicator 10-11 Input I/O address

is on, a character ‘C’ is moved into the last looked up

entry in the table. When control is returned to the RPG II 12-13 Output /O address

program, it checks for a ‘C’ in the table. B
14-15 Block length -

1/0 SUBROUTINES 16-17 Record length
Subroutines that support input or output devices can also 1819 Address of array DTT if array linkage
be linked to an RPG II program. These subroutines are is used

commonly referred to as RPG I1 SPECIAL subroutines.

72

The address of byte 0 of the DTF will be passed to

the 1/O subroutine in index register 2. Bytes 0-3, 6-7,
C-D, and 10-17 are filled in by RPG Il at compile time.
Byte E, completion code, is inserted by the 1/O sub-
routine when control is returned to RPG II. Byte F,
the operation byte, is inserted at object time. The
information in bytes 0 and 4-B must be available,
unchanged at close time, for data management.

The DTT (define-the-table) is used for array linkage.

DTT format:

Bytes Description

0-1 Address of rightmost byte of the first
element of the array.

2-3 Address of rightmost byte of the last
element of the array.

4-5 RPG last LOKUP element.

6-7 Length of array element.

2. Thel/O subroutine must save and restore the registers
altered in the routine. Control should be returned to
the address in the address recall register (ARR).

Note: The combined get and put operation code, X*C0’, is
utilized by the System/3 Model 10 Card System only. The
System/3 Model 10 Disk System, System/3 Model 12, and
System/3 Model 15 use alternate get and put operations to
accommodate combined files. When coding an 1/O subroutine
to be used on either system, be certain to consider this fact.

When an input operation is done, the /O subroutine must
move the address of the physical buffer currently being
used to the logical buffer address location in the DTF (bytes
C-D). In the Model 10 Card System, address bytes 10-11
will be the same as bytes C-D (one physical buffer).

When an output operation is requested, the /O subroutine
must move the data from the logical buffer (address in
bytes C-D of the DTF) to the physical buffer (address

in bytes 12-13 of the DTF). The two addresses are the
same in the Model 10 Card System. Bytes O-B are unused
in the Model 10 Card System.

The 1/O subroutine must do its own open when the first
call to it is issued. It must also do its own close to the
file on a close call.

If a dual 1/O is requested, the second area will be immediately
behind the first (Model 10 Disk System, Model 12, and Model
15 only).

The 1/O subroutine cannot be overlaid in the Model 10 Disk
System, Model 12, and Model 15.

Sequential processing only is supported.

When an I/O subroutine issues a halt, three halts should be
displayed as follows:

1. The first halt issued should be the FF halt reserved
by RPG II for SPECIAL 1/O subroutine usage.

3. The second halt should be the last two digits of the
subroutine name.

3. The third halt may be any valid halt that can be
displayed.

Appendix D. Assembler Language Subroutine to RPG II Linkage 73

sialawesed
1a1je 81AQ 184
0} pauiniad [0JIU0D

weiboud || Ddy Aq
vHENS 01 passed jo11uo)

2
; ; ; } m m..
| L 2
i 9
! P SAraul pal =
i w o
N% b TV S
USOERCTRYCANET 0TS 2
v 3]s ()] 7 b
SIS[3a e e TOE N T e~ A il i3 £
[AV T EFAYS »m 3
| 7 A ¢ £
nsr, N 2
Si3d] H._. « AV EH L ..-// (343H) 2V a S
i gmmx S0 m .) ~——_ % oa g
LSAS a4 oL /17 101 3N | 1T vHans g .m
“ I T JY BdNYS] I3[VN (el dl | AT
St v Bl :2%52%535Na“ﬂmw..wwm;’nmtona?39?5.-593:3 :92353“!2n.,»ﬁﬁﬁﬁﬂﬂ?ﬂhm%m;R!m_:ffﬁ«;«_.ﬂxhﬁcn»wmwéanz«” M
Wi] 11dwod || Ddy 8yl Ag paiessush .m
ovosamaos [T T T T sva | sammvioous | 9p0Y j0 uoileluasaidal D1jOqUIAG
7 N O o | m
wii04 BuIpoD sequenY £/weIsAS Wal W welboud || Ody =
o~
[

74

siajawesed
i81je 81AQ I8ty
01 pauinial |043U0D

(Aqwua jo yibuay) 1,271 00

([ggvl] Anus dn-pax0o0j 158| 0 ssalppe) 21V oa
{A11ua 15€] JO SSaIppPe) 2TV oa

(Aszua 3541y jo ssaappe) gy 00

WML -i?ﬁ:-tnpl T4 24 be DL B9 B9 (9 W9 GY WO 1D «vucggﬁnmﬁmh}ﬁ“«ﬂ .ncm'ne_:fw::c.vm;n!nnwn»ncﬂgﬂonﬂ«n.aﬁﬂ!h«%ﬁ:auE:ﬁ?-_:fﬁt.? T340l 6 Ble]9 s ¥ € % 4 O—va LO% U~®~.w _Okwcoo @
1
i ;
_. i 101ED1pUY LB 10} passed sialauieied @
! - NN]
! i)
] | \.r | | ajqes e Joj passed sialswieled @
! § 1 ! . TG oG
, ! T MEnZI] ans 3
i [TV EHoTsad | i d o —
i AL 2 M EA ,\u. (.- 1AW B
T T 7y o 3 ” u il A LTIX oa
A e Sk RETH TOBLNOD L9 ! il 08.11X 04 @
T [H30 BAUVITINS iRl L
NiE RRRRN 2T el TN j EPRLN pERNTISES 00T 9a
M TS W, %Y lz'hEtieie zm (P18t} |04IUOD B](RY JO §SBIPPE ISOULR]) ZTTY od @
ERNSAERENED 5380 TowvdAd 139]) it 1735 @ 0L omw
REREREREANERREE) , ,2 .me mﬁmm BN Z oL gdans 9
! | | | sh W
EEESENIRBARANNRERERERN ;@m&?%uf .)] L . .
| 1 £l i o Lol B € alelal
| l ! = i 4l GAYS) -ﬁ,mx g J Jendwo 1 Ody 8yl Ag paletauab
| | I | B HV apoD J0 uoneuasadal DHOGUIAS
L1 L , || HO "
T e WaSAY WS T oL YN O 1l T wesbold 11 Dd
O L L | [T/ Edivs i o BT
RS T G A AR SR e B RE S A A G E R G e b P ERE RS ERT R TG R E v gy v an s np e
el LT L LT T T o o |] venons |
% D S S T O T D TN s 1} 3@5_
w0 4 Buipos WIqUeRY £/wasAs WGt Wl

welboud || DY A4
ayans o1 pessed {011U0D

75

ppendix D. Assembler Language Subroutine to RPG II Linkage

A

Figure 28. Assembler Language Subroutine (SUBRB) for Sample Program 2

LIBRARY DECK GENERATOR PROGRAM (MODEL 10
ONLY)

The System/3 Model 10 Card System user can write assem-
bler language subroutines to be used as SPECIAL or EXIT
routines in an RPG II program. These assembler routines,
however, cannot be inserted directly into the RPG II
compiler. The assembler language subroutine must

first be assembled by the System/3 Model 10 Disk System
Basic Assembler and then translated by the Library Deck
Generator (LDG) program before it can be placed in the
RPG II compiler.

The entire operation, from writing an assembler subroutine
to selection of that subroutine by the IBM System/3 Model
10 Card System RPG I compiler is outlined as follows:

1. The assembler subroutine is written by the programmer.

If standard control cards supplied by the LDG program
are not being used, the programmer must also code
control cards for the subroutine.

2. The assembler subroutine is assembled on the
System/3 Model 10 Disk System by the Basic
Assembler.

3. The LDG program is read into System/3 Model 10
Disk System storage. The *** parameter card,
assembler subroutine object deck, and blank cards
are placed in the MFCU.

4. The LDG program produces a deck of cards, con-
taining the subroutine, which can be placed in the
RPG II compiler. The deck produced by the LDG
program contains the following:

Header card
Control cards
Text

Q-card

End card

5. The deck produced by the LDG program may now
be placed in the RPG Il compiler deck. When an
RPG II program is compiled, this subroutine will be
selected, when required, just as any other compiler
subroutine.

The following material describes the information

needed to use an assembler language subroutine in an
RPG II program. This material is divided into four major
sections:

Writing the assembler language program
Running the LDG program

Output of the LDG program

Example of a SPECIAL subroutine

76

Writing the Assembler Language Program

The following information must be considered when the
assembler language program is written.

Title Instruction

The name field of the TITLE instruction must contain
O00GEB in columns 1-5.

Control Cards

Control cards are needed for every assembler language sub-
routine. Control cards contain code, executed during
compile time, which determines whether the subroutine
should be included as part of the program being compiled.
Library routines are selected only when the execution of a
control card determines they are needed. In addition,
control cards are needed to ensure that the entry point for
the subroutine is placed in the proper location in core for
the RPG Il compiler to find and use it.

There are two ways to get the control cards you need. In
some cases, you will need to code them yourself; in others
standard control cards are supplied by the LDG program.
If your subroutine is to be used as a normal SPECIAL or
EXIT routine, the LDG program will supply three control
cards. See Figure 29 for samples of these. When these
control cards are provided, a SPECIAL routine is selected
if bytes 12-13 of the file description compression matches
the identification characters of the routine, and if the
SPECIAL device code B‘Oxxx1010’ is present in byte 16
of the same file description compression. EXIT routines
are selected if the identifier in the library routine is the
same as an entry in the symbol table (bytes 3-4) and if
byte 2 of the same entry contains bit configuration
11100000. When these decks are selected, the address of
the entry point of associated object code is placed in the
symbol table entry, bytes 3-4 for an EXIT reference and/or
bytes 8-9 of the file description compression for a SPECIAL
reference.

You must code control cards for your subroutine when:
® The subroutine is not a SPECIAL or EXIT routine.

® The subroutine needs a function not provided by the
standard control cards.

The following paragraphs describe several compiler resident
routines which can be used by programmer coded control
cards.

Coding Control Cards

There are three types of control cards each identified by
a special character in column 1. Each type performs a
different function:

e Cards with a J in column 1 (J-cards) are usually used to
control the selection of a routine for an object program.
They also place the routine entry address in compile
time storage for use by the RPG II compiler.

e Cards with a K in column 1 (K-cards) are used only
when one routine from a set of related routines is to be
used in any job. A J card will determine if any of these
routines are needed and if so will start the scan for K
cards which in turn control selection of the proper
routine.

e Cards with an L in column 1 (L-cards) are used to pass
information from RPG II compile time core to a sub-
routine or vice versa. They are executed only if the
deck in which they appear has been selected for use with
the current program.

Control card identification characters must be defined for
assembly at X°0000" and are placed in column 1 of control
cards. The only allowable characters are J, X, L, and blank.
There should be one non-blank control card identifier
character for each block of code for a control card. The
blank is used as a delimiter between control card strings.

For example, DCBPpPp CLIOJ KLLBLPLBL’ shows identi-
fiers for seven control cards and four control card strings.
The first is a 4-card string with identifiers ‘JKLL’ used.
The others are single card strings, each of which has an
‘L’ identification.

LDG identifies the control cards and assigns one control
card identification character to each one. The control

card strings are merged with the text cards for the routine
functional code in the following manner. The first control
card string is merged in front of the text, and one addition-
al control card string is merged into the text cards where
there is a break in the text caused by a DS or an ORG which
changes the location counter.

Each control card must contain executable code. Control
cards are coded in the order needed for the purposes de-
scribed above. Each must begin at X*0017’; therefore, an
ORG to 23 or X*0017° must precede the code for each card.

Your control cards must contain instructions for calculating
the address at which your subroutine will be loaded. To
calculate the true entry address, use the current relocation
factor described here.

Label Address

RELOCF X‘030C to
X‘030D’

Function

Contains the current
relocation factor. Is

modified when the end
card of the selected deck
is encountered or JIEAAL
is entered.

See Figure 29, Part 1, found at the end of this section, for
an example of the use of the current relocation factor.

The following paragraphs describe several compiler resident
routines which can be used by programmer coded control
cards.

J-Card Scan Routine reads the library deck until a J-card is
encountered. The routine has three entry points.
Label

Address Function

J3EAAL X'031A° Scans for J-card. When
one is found, control is
passed to that card. All
other cards are ignored.
J2EAA1l X3014 Clears X‘00EQ” to X‘00FF’
and X007C to X'007F’
to hex zeroes then scans
for J-card as J3EAAL.
J1IEAA1 X'030F Resets the relocation
factor to the next object
address and performs as

J2EAAL

K-Card Scan Routine has one entry point.

Label Entry Point Function

K1EAB1 X'0320° Scans for K-card. When
one is found, control is
passed to that card. All
other cards except J-
cards are ignored. If a
J-card is found, a halt

‘40’ is executed.

Appendix D. Assembler Language Subroutine to RPG II Linkage 77

Relocate Deck Routine has one entry point,

Label Entry Point Function

Initiates or continues
relocation of the current
deck. Will recognize and
execute L-cards and re-
organize and print Q-cards.
Exits to JIEAAT when
end card is encountered.

RIEACI X'032C

Scan File Description Compressions Routine has two entry
points. This routine steps through the file description com-
pressions. It returns a pointer to the next compression in
register 2. If the condition code is high, the pointer is
valid. Any other condition indicates the pointer is invalid.

Label Entry Point Function

F1EAEI X033%8’ Initializes pointer to first
file description compres-
sion and sets condition
code.

F2EAF1 X‘033EF’ Points register 2 to the

next compression and
sets the condition code.
(Register 2 need not be
pointing to the last
compression.)

Scan Extension Compressions Routine has two entry
points and steps through the extension compressions and
returns a pointer to the next compression in register 2. A
high condition code indicates a valid pointer. Any other
condition code indicates an invalid (undefined) pointer.

Label Entry Point Function

E1EAF1 X'0344° Initializes pointer to first
extension compression
and sets condition code.

E2EAFI X0344A° Points register 2 to the

next compression and

sets condition code.
(Register 2 need not

point to last compression.)

78

Text Handling Routine builds up full text card in storage
and, when a card is full, punches that card. The area from
X'0080° to X*00DF” is the location of the punch buffer
and this must be considered when using this area of core.

Label Lntry Point Function

BKEAHI X'0350° Forces any partial text
card to be punched.

STXLAI X035C Accepts a string of text to

be added to the current
text immediately following
the last text passed. Re-
quires a [-byte parameter
following the branch.
Parameter contains a
displacement relative to
register 1 to the length
byte of the text being
passed. The text string
should be preceded by
this length byte which
contains the length of

text.
Wait On Punch Busy Routine:
Label Entry Point Function
WTPUNI X'0362 Returns when the previous

punch operation has been
successfully completed
and the buffer is not busy.

Title of Subroutine

The title of the routine must be a defined constant to be
loaded starting at X‘0000”. It must be equal to or less
than 80 characters in length. This title is printed on the
RPG II compiler listing with the address of the entry point
of the routine if it is selected at compile time.

- Routine Functional Code An OPTIONS card must be used to successfully assemble
the subroutine.

This code must be assembled starting at X0000°. The

code must contain a break in continuity (a DS or an

ORG which changes the location counter value) where

control cards are to be inserted.

Running the LDG Program

The following paragraphs describe a special parameter card

Assembling the Subroutine that must be used with the assembler deck, the OCL required
to load the LDG program, and error conditions that may re-
The assembler subroutine is assembled by the Model 10 sult.

disk system basic assembler. The OCL considerations for
assembly are discussed in Section 1I: Programmer’s
Guide under the headings OPTIONS Statement and

OCL Statements For Assembler.

Appendix D. Assembler Language Subroutine to RPG 11 Linkage 79

Library Deck Generator Parameter Card (***)

A parameter card must precede the assembler generated
object deck to provide the LDG program with information
regarding output. Entries for the parameter card are as

follows:

Columns

1-3

4.9

10

1

12

13

14

15-16

17-18

19

20

21-96

80

Entry

* % %

SUBRxx

, (comma)

S

, (comma)

D

G

, (comma)
Vv

MM

0 (zero)

1

, (comma)

Subroutine
title

Explanation

Three asterisks identify a parameter card.

These characters identify the subroutine. Substitute any two characters

for xx — the second may be blank, but the first must not. Note that the

LDG program will not diagnose an error in these columns.

Required.

Standard control cards will be provided by the LDG program for the subroutine
identified by the characters found in columns 8-9 of this parameter card. The
title, also extracted from this parameter card, will be assigned to the subroutine.
The entry point of the routine must be the first byte of the routine. GEB will be
forced as module identifier.

Non-standard control cards will be supplied by the user as will identification
characters and title. (The format of this material may be found in Figure 29.)
If N is specified, the title specified in this parameter card is ignored. Thus, if

N is used, columns 21-86 may be left blank.

Required.

Default values for component version, modification level, and indication of
complete or partial deck replacement for header card are provided by the LDG
program.)
Default values are not assumed. The user must provide them in columns 15-19.
Required if column 11 contains an S or column 13 a G.

Two numbers indicating the component version.

Two numbers indicating modification level.

Partial deck replacement for header card.

Complete deck replacement for header card.

Required only if column 13 contains a G and column 11 an S.

If column 11 contains an N, the title is not required. |f column 13 contains
a D, the title of the subroutine must begin in column 15.

o
Examples:
IBM
PROGRAM
PROGRAMME S J
[STATEMENT
(Rame T Operaton Operand
y 2 3 s 5 8lvls s 1o 1y 120ead 1516 37 18 1320 N 2273 74 25 26 20 8 28 W33 2 33 3 B % 37 W WO
EXSILBRA |, NP
. [T - T

User will supply all control cards, identifying characters,
and title for subroutine ‘Ap’.

IBM

PROGRAM

p—]

STATEMENT

Name
IS

Goeration Cperand
2z s ;ng*cHi?\14\5!61!131%202‘r}ﬂ?d?ﬁ‘)ﬁn2623373‘123336:536373ﬁ39ﬂ
(Sl

BRIBB, 5,], B2glL], SPEC] AL RO INE] BBy

1

Library Deck Generator will supply standard control cards
which will be used for selection of subroutine BB. The title
will be printed on the 4th tier of the cards and on the com-
piler listing. The values given in columns 15-19 will be used
on the header card. The component version (02) will go in
columns 59-60 of the header card, the modification level
(00) will go in columns 31-32, and deck replacement indi-
cator (1) will be placed in column 85.

Loading the LDG Program

IBM
p— I
}/} 3{186 ;P‘é;ﬁfg!ﬁ‘e?ﬂ” 18 19 71 22 23 24 4 26 27 28 29 X 31 32 33 34 36 37 38 39
LOAD| $AS|IDG, R1 B
7/ RN
t*&SU%R (P ETER CARD)
5 i N
As%a&,té OB IECT] [PROGRAM N
u RERE

Error Conditions

Several errors are considered to be terminal. If terminal

errors occur, the card image is printed, the error message
is printed, the deck is run through to the ‘/*’ card, and a
C halt is displayed. When this halt is reset, processing is

discontinued by the end-of-job routine.

If the error is not terminal, the card image is printed, an
error message is printed, and a C halt is displayed. The
program is restartable, however, and processing will
continue.

Following is a list of error messages generated by this
phase. An asterisk (*) preceding the number indicates
which are warning errors.

1. Number of control cards generated incorrect.
2. Length of control card text, too great for one card.
3. Card sequence incorrect.
4. Title too long or the first text is contiguous.
*5 First control card character may not be blank.
6. Not enough breaks for control strings.
*7_ More breaks than control strings.
*8 Last text not at highest address expected.
9. Improper card in deck.
10. End card out of sequence.

11. Invalid control card identification.

12. First object card must be an ESL card.

13. Insufficient core for control card storage.

14. Invalid entries on *** control card.

15, [card or *** card out of sequence.

*16. GEB not used as module identifier.

17. *** card required before object deck.

18. Too many control card identifiers specified or

invalid sequence.

Appendix D. Assembler Language Subroutine to RPG II Linkage

81

Output of the LDG Program

The header card in stacker 2 should be placed in front of
the remainder of the output deck in stacker 3. Insert the
subroutine deck in the RPG II Compiler deck using the
Program Maintenance Program. The subroutine deck must
have GEB in columns 91-93.

00GEB ANY TITLE DESIRED MAY BE USED

ERR LOC OBJECT CODE ADDR STMT SOURCE STATEMENT

Example

Figure 29 is an example of a SPECIAL subroutine. This
sample program can be used as a base for any SPECIAL or
EXIT subroutine. The only changes required are modifying
the subroutine identification characters, entry point, label,
and routine title. Areas of change are outlined in the sample
listing. Control cards are created for you.

2 ® sExEETREE sEEARE * EEEREEE * % 00020000

3 = * 00030000

4 % THIS IS A SAMPLE CODING FOR THE CONTROL CARDS FOR A 'SPECIAL? * 00040000

5 % * 00050000

6 * DEVICE REFERENCED IN AN RPG PROGRAM, ALL LABELS WHICH wWILL * 00060000

7 * * 00070000

8 * NEED TO BE MODIFIED FOR A PARTICULAR PROGRAM HAVE LABELS * 00080000

9 * * 000690000

10 * STARTING WITH THE CHARACTER *#'. THIS DECK IS IN THE FORMAT * 00100000

11 = * 00110000

12 % REQUIRED BY THE LIBRARY DECK GENERATOR. * 00120000

13 = * 00130000

14 * THESE CONTROL CARDS MAY BE USED FOR ANY SPECIAL OR EXIT * 00140000

15 = * 00150000

16 = SUBROUTINE. * 00160000

17 * * 00170000

18 * *EEEEEFSERXEEREEER SREERREXRREEREEEARREERERSE & 00180000

20 & sEErraes L e e e e L T 00200000

21 = * 00210000

22 * STANDARD LABELS AND LABELS USED TO LINK TO THE LIBRARY * 00220000

23 * * 00230000

24 * SELECT ROUTINE AND RPG COMPILER COMMUNICAYIONS AREA * 00240000

25 * * 00250000

26 * FEEEXSXEXEE KRS *EEEEEX EEXXEAXEERREEAXXERES X 00260000

0000 28 START START © PROGRAM SHOULD BE STARTED AT O 00280000
0001 29 XR1 EQU 1 STANDARD LABEL FOR INDEX REGISTER 1 00290000
0002 30 XR2 EQU 2 STANDARD LABEL FOR INDEX REGISTER 2 00300000
0008 31 ARR EQU 8 ADDRESS RECALL REG 00310000
030D 33 RELOCF EQU START#X*030D* RELOCATION FACTOR FOR CURRENT DECK 00330000
030E 34 JLEAALl EQU START#+X*030E" ENTRY POINT TO RESET RELOCATION 00340000
35 * FACTOR AND SCAN TO NEXT *J*' CARD 00350000

0314 36 J3EAALl EQU START+X*031A* ENTRY TO SCAN TO NEXT *J* CARD WITH- 00360000
37 = QUT RESETTING RELOCATION FACTOR 00370000

032C 38 RIEACL EQU START+X*032C" ENTRY POINT TO INITIAYE OR CONTINUE 00380000
39 x RELOCATION OF THIS DECK 00390000

0338 40 FIEAEL EQU START+X*0338* ENTRY POINT TO INITIATE THE SCAN OF 00400000
41 THE FILE DESCRIPTION COMPRESSIONS 00410000

033E 42 F2EAELl EQU START+X*033E"* ENTRY POINT TO CONTINUE FILE DISC. 00420000
43 * COMP. SCAN 00430000

44 % BOTH OF THE PREVIOUS ENTRIES 00440000

45 * RETURN A POINTER IN XR2 AND A 00450000

46 * CONDITION CODE °*HIGH* 1F THAT 00460000

47 * POINTER IS VALID 00470000

028C 49 COMMON EQU START+X'028C* START OF THE RPG COMPILER 00490000
50 % COMMUNICATIONS AREA 00500000

G2E6 51 ENDCOR EQU COMMON+930 HOLDS LAST ADDRESS IN MEMORY -FIRST 00510000
52 * BYTE USED FOR SYMBOL TABLE - 0052000C

02EA 53 ENDST EQU COMMON+94 HOLDS LAST ADDRESS USED FOR SYMBOL 00530000
54 * TABLE. 00540000

Figure 29 (Part 1 of 4). Sample Coding for SPECIAL Device

ERR LOC OBJECT CODE ADDR STMT SOURCE STATEMENT

56 % *x sEREEE FELEERREFAAE SR ERAR LRSS EEE SRR ANEE & 00560000

57 * * 00570000

58 * THE FOLLOWING IS A SKELETON FOR A FILE DESCRIPTION * 00580000

59 * * 00590000

60 * COMPRESSION * 00600000

61 * * 00610000

62 * SEREESERABEREREEERERERRALARRSEASERERRRREREADEREKEAERERE RS S EETHTERSE & 00620000

0000 0000 64 FCFG 0s cLl FLAG BYTE FOR COMP. ALWAYS X'FF? 00640000

0001 0002 65 oS cL2 OQUTPUT BUFFER 3 00650000

0003 Q004 66 DS L2 INPUT BUFFER ADDRESS 00660000

0005 0006 67 DS L2 PRINT BUFFER ADDRESS 00670000

0007 0008 68 FCENT3 DS cL2 10CS ENTRY POINT ADDRESS 00680000

0009 0009 69 DS Cil FLAG BYTE 00690000

cocA 000A 70 Ds cLl FLAG BYTE 00700000

0008 000C 71 FCIDNT DS cL2 HOLDS IDENT FOR SPECIAL ROUTINE 00710000

0000 Q00E 72 0s Lz EXTERNAL INDICATOR ASSIGNMENT 00720000

Q0OF Q00F 73 FCDVA DS ctl DEVICE CODE B'OXXX1010* FOR SPECIAL 00730000

0010 0010 T4 [+ 33 cLl BLOCKING FACTOR 00740000

0011 0011 75 DS Ccil RECORD LENGTH 00750000

- 7T * SEEFEEETEBSERRESRARERAREIEEBRESEBXERE LT RXRES * 00770000

- 78 * * 00780000

79 * THE FOLLOWING IS A SKELETON FOR A SYMBOL TABLE ENTRY * 00790000

80 * * 00800000

81 ® *ekdERs EEEEEERERRE * 00810000

0012 0012 83 STLEN OS cLl LENGTH FOR FIELD ENTRY 00830000

0013 0013 84 STFLAG DS cLl FLAG BYTE SPECIAL NEEDS B8* N 00840000

0014 0015 85 STIDNT DS cL2 1{DENT FOR SPECIAL C*##°' HOLDS ENTRY 00850000

86 * POINT AFTER SELECTION 00860000

88 & EEEEXEEEXEXXREERREEE * % 00880000

89 ¥ * 00890000

90 * THE FOLLOWING DC CONTAINS THE ID'S FOR THE CONTROL CARDS * 00900000

91 * * 00910000

G2 & EXREAXEEXIEASEEFEEREEEFERAEREES SEEEERREERREEEER K 00920000

0000 94 ORG o 00940000

0000 D1D1D1 0002 95 319 cL3vJJJ THREE CONTROL CARDS ALL WITH IDENT 00950000

96 * 14* AND INSERTED IN FRONT OF THE 00960000

97 * DECK 00970000

99 & EREEEEXEEXSEREEETRRARE L2223 24 * * 00990000

100 * * 01000000

101 * THIS CONTROL CARD SCANS THE *F*' COMPRESSIONS FOR REFERENCE TO * 01010000

102 * * 01020000

103 * 4% IF FOUND IT SETS THE FLAG BYTE AT X*0078' 70O X'FF'a * 01030000

104 * * 01040000

105 * IFf EITHER FOUND OR NOT FOUND IT STARTS THE SCAN FOR THE NEXT * 01050000

106 * * 01060000

107 * CONTROL CARD. * 01070000

108 * * G1080000

109 * SEEEFEIEEERRARKEREEEER AR XSS XEEE RS EEEEES * * 01090000

0017 111 ORG X'0017* REQUIRED FOR EACH CONTROL CARD 01110000

0078 112 FLG EQU START#X*7B* AREA FROM X*78° TO X°*FF*' IS 01120000

113 * USABLE FOR WORKING STORAGE 01130000

114 * TH1S BYTE USED TO FLAG IF 01140000

115 * ROUTINE IS REFERENCED ON °'F°* 01150000

116 * SPECIFICATIONS 01160000

0000 117 USING START,XR1 VALID AT ENTRY TO ANY CTL. CARD 01170000

0017 7C 00 78 118 MVl FLG{¢XRL)4X'0O" INITIALIZE FLAG FOR NOT USED 01180000

119 ¢ ON FILE DESCRIPTION SPECS. 01190000

001A 4E 01 43 0300 120 ALC #ENTRY(2,XR1},RELOCF CALCULATE TRUE ENTRY ADDRESS 01200000

Q01F CO 87 0338 121 8 FLlEAEL INITIATE SCAN OF 'F' COMPS. 01210000

0000 122 USING FCFGyXR2 VALID UPON RETURN FROM F1lEAEL 01220000

" 0023 60 01 45 OC 123 SPCAL CLC HIDENT(2,XRLY4FCIDNT(4XR2} IS THE IDENT THE RIGHT CHAR 01230000

0027 B8 0A OF 124 TBN FCDVA(,XR2),B'00001010°" AND IS DEVICE CODE THAT FOR 01240000

- 002A B9 85 OF 12% T8F FCOVA{,XR2},8°10000101"* 'SPECIAL® 01250000

0020 F2 96 07 126 JC SPCAZ,X*96" IF THIS IS NOT THE RIGHT COMP, JUMP 61260000

2 0030 7C FF 78 128 MV FLGL s XR1) ¢ X*FF?* SET FLAG TO INDICATE USED ON 01280000

129 * FILE DESCRIPTION SPECS. 01290000

. 0033 9C 01 08 43 130 MVC FCENT@(29XR21,#ENTRY{,XR1) MOVE ENTRY ADDRESS YO THE 01300000

131 = FILE DESCRIPTION COMP. 01310000

0037 CO 87 033E 132 SPCAZ2 B F2EAEL ELSE SCAN TO NEXT COMP 01320000

0038 DO 84 23 133 BH SPCAL(,XR1) 1F POINTER STILL OK LOOP 01330000

Q03E CO B7 031A 134 8 J3EAAL GET NEXT *tJ* CARD 01340000

135 * THIS ENTRY WILL NOT CLEAR THE 01350000

136 * BYTE AT FLG. 01360000

Q042 C000 0043 138 #ENTRY OC AL2{SUBRE#) ENTRY POINT ADOR. TO BE RELOCAT 01380000

0044 7878 0045 139 #IDENT DC CL2'#%° TWO CHARACTER [DENT FOR ROUTINE 01390000
o

0002 141 DROP XR2 identify your subroutines by 01410000

replacing these # signs with
identifying characters.

Figure 29 (Part 2 of 4). Sample Coding for SPECIAL Device Appendix D. Assembler Language Subroutine to RPG II Linkage 83

ERR LOC

0017
0017

001C
6020

0024

0027
0024
COoZE

0017
0017
ool1C
0021
002s
0024
0020

0031
0035
0038
0038
003F
0042
0045

0048
004C

0050
0052

0054

OBJECT CODE

4C

c2
36

F2
6C
co

o1
02
02
18
10

87

0000
7878

FFFC

70 0Z2EA

FFFC
02E6

02

04
70 04
0314

51 0300
30 O2E6
30 55

30 02EA

0000

ADDR STMY

607D

0011

000C2

0011

0051
0053

0055

143
144
145
146
147
148
149
150
151

153
154
15%
156
157
158
159

161
162
163
164
165
166
167
168
169
170
171
172
173

175
176
177
178
179
180
181
182

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

203
204

206
207

SOURCE STATEMENT

F RIS R AR ER KB R R EEE R R R R RS R AR SRR SR SRR TR LR R R R RS E X E AR R AR RS &
*
* THIS CONTROL CARD DETERMINES THE END ADDRESS TO BE USED *
* *
* IN THE SEARCH OF THE SYMBOL TABLE DONE BY THE NEXT CONTROL *
* *
* CARD., *
* *
X AEESEERERAE LR SRR R KSR A RIR T AR R R RN E R EREEE RS EEEERREE %
END3 EQU START#X¥7D! THIS TWO BYTE AREA WILL HOLD
* THE ADDRESS TO CONTROL THE
* SYMBOL TABLE SCAN. IT WiLL BE
* THE ADDRESS OF THE END OF THE
* SYMBOL TABLE OR THE FIRST
* TABLE ADDRESS TABLE PODINTER
* WHICH EVER IS HIGHEST

ORG X*0017*

MVC END@(2,XR1),ENDST INITIALIZE END ADDRESS TO END
* OF SYMBOL TABLE

LA X*FFFC' 4 XR2Z INITIALIZE XR2 YO NEGATIVE 4

A ENDCOR, XR2 POINT XR2 TO FIRST ENTRY IN
* SYMBOL TABLE

USING STLEN-1,XR2

TBF STFLAGU 4XR2},X% 18" TEST IF ENTRY FOR TABLE OR
* ARRAY

JT SpCBO IF NEITHER —=> JUMP

MVC END3(2,XR1)ySTIONT(4XR2) ELSE RESEY THE END ADDRESS
SPCBC 8 J3EAAlL GO GET NEXT CARD

DROP XR2
B EEEEFRERERERER K EERANEE N * % *
* THIS CONTROL CARD CHECKS THE SYMBOL TABLE FOR REFERENCES FROM *
* *
* CALCULATIONS. IF REFERENCED THERE OR ON *F' SPECS RELOCATION *
* : *
* OF THE DECK IS INITIATED *
* *
* b L2 22 EEEEBEEE &

SPCB1

sPCB2

SPC83

SPCB4

RENT
#IDN

STSTEP
*

ORG
ALC
MvC
ALC
cLc
JL

USING
cLc
TBN
8C
MVC
SBN

J
cLr

BNE
B

oc
bC

X'001L7"
#ENT(2,XR1),RELOCF
SPCB2+43{2,XR1),ENDCOR
SPCB2+3(24XR1)sSTSTEP(XR1}
SPCB2+3{2,XR1)4ENDST
sSPCB3

*-%, XR2

STLEN-1,XR2
STIDNT(2,XR2) s #1DN{ , XR1)
STFLAGUsXR2),B8*11100000"
SPCB1(sXRL},X*96"
STIDNT{2,XR2) 4 #ENT{,XR1)
STFLAG(,XR2),B*00000001"
SPCB4

FLGU s XR1) o X FF?

J1EAAL
R1EACL

ALZ{SUBR##)
cL2r#n

L2040

START OF CONTROL CARD TEXT
CALCULATE ENTRY ADDRESS
INITIALZE LA BELOW

STEP BACK TO NEXT ENTRY

CHECK FOR END OF SYMBOL TABLE
IF BEYOND END -—> JUMP

POINY TO ENTRY

IS THE IDENT CORRECT AND
THE ENTRY FOR AN EXIT LABEL
IF NOT CORRECT ENTRY --> LOOP
ELSE MOVE IN ENTRY POINT
SET FLAG FOR ROUTINE FOUND
START RELOCATION OF ROUTINE
WAS ROUTINE REFERENCED FROM
FILE DESCRIPTION SPECS. ?
NO -~ UNUSED SCAN TO NEXT DECK
YES — USED AS SPECIAL RELOCATE

ENTRY POINT FOR RELOCATING
IDENTIFICATION

NEGATIVE LENGTH OF SYMBOL
TABLE ENTRY

your subroutine.

Replace these # signs with
the characters identifying

Figure 29 (Part 3 of 4). Sample Coding for SPECIAL Device

84

01430000
01440000
01450000
01460000
01470000
01480000
01490000
01500000
01510000

01530000
01540000
01550000
01560000
01570000
01580000
01590000

01610000
01620000
01630000
01640000
01650000
01660000
01670000
01680000
01690000
01700000
01710000
01720000
01730000

01750000
01760000
01770000
01780000
01790000
01800000
01810000
01820000

01840000
01850000
01860000
01870000
01880000
01890000
01900000
01910000
01920000
01930000
01940000
01950000
01960000
01970000
01980000
01990000
02000000
02010000

02030000
02040000

02060000
02070000

ERR LOC OBJECT CODE

ADDR STMT SOURCE STATEMENT

209 * t#tt.“tt&“tttt‘!‘tl‘Ctill’..‘t‘t‘t!““ttt*‘tt‘ttttt(tl’i‘t..t‘tt *
210 * *
211 = THE FOLLOWING DC CONTAINS THE PROGRAM TITLE TO BE PRINTED *
212 * N
213 * ON THE RPG LISTING AND SHOULD BE CHANGED TO REFLECT THE *
214 * *
215 % NAME OF THE SUBROUTINE. .
216 * .
217 * ‘tt#.i*.tttttttlttt.tttt'*.tt‘ttttttt#*‘tt*“i"it#tQtti‘ttttl#*ttt *
0000 219 ORG O SIGNALS START OF TITLE
0000 E2D7CSC3C9CID340 001D 221 oC CL30*SPECIAL 1/0 ROUTINE ##'
0008 C961D640D9DGE4ES 221
0010 C9D5C540787B4040 221
0018 404040404040 221
s
Replace these # signs with
the characters identifying
your subroutine.
223 % ‘.‘t'tt#t‘tttl*‘ttt’t*tt‘t.t*ttt“"ttttttt#ttttttt‘t*‘tttt#ttttl‘t *
224 * *
225 * THE FOLLOWING CODE REPRESENTS THE FUNCTIONAL CODE FOR THE *
226 *x *
227 * USER ROUTINE. THE ABOVE CONTROL CARDS ASSUME THE ENTRY POINT *
228 *
229 * IS AT SUBR##. THE ENTRY POINT 1S UNIQUE TO EACH SUBROUTINE. *
230 * *
231 * THE ENTRY POINT IS THE LABEL ON THE ROUTINE CODE, NOT THAT *
232 * *
233 * ON THE START CARD. *
234 * *
235 * ‘it‘tt‘*'tt‘t‘*tl'.t‘ttiit"l'tt‘ttttt#tttt’*tlit#‘tt't#f“t“#t‘tt *
2371 % #“ti.“#*%i‘tt“tt““tt‘t"O‘*t#ttt*.'*ttt*tt"!ttti.ttl‘#‘#tit#t *
238 * *
239 * THE ROUTINE MUST MEET THE FOLLOWING REQUIREMENTS *
240 * .
241 * 1. WHEN ENTERED FOR INPUT OR OUTPUT (NOT EXIT) IT MUST *
242 % ACCEPT THE STANDARD SPECIAL 1/0 LINKAGE PARAMETERS. *
243 * *
244 * 2. WHEN ENTERED VIA AN EXIT FROM CALCULATIONS IT MUST *
245 * ACCEPT THE STANDARD EXIT LINKAGE AND PARAMETERS. *
246 * *
247 * 3. IT MUST INDICATE END OF FILE BY PROVIDING THE CORRECT *
248 * COMPLETION CODE IN THE DTF. *
249 * .
250 * 4. IF A DIFFERENT AREA [S USED FOR THE ACTUAL INPUT OR *
251 * QUTPUT BUFFER THE DATA MUST BE MOVED TO OR FROM THE ADDRESS*
252 * SUPPLIED IN THE DTF. .
253 * .
254 % ttt‘*ititttt‘t.tl'tt't‘tt“tttttt‘tﬁtt#t‘tt*"ttt'tt#*ttt*tttttittt *
0000 256 ORG 0O SIGNALS START OF ROUTINE TEXT
0000 258 SUBR#¥ EQU * THIS IS THE ENTRY POINT TO THE RQUT.
Replace these # signs with
the characters identifying [~ 260 *EexaEe ROUTINE CODE IS PLACED HERE ERREREREE
your subroutine.
0000 262 END SUBR## THIS INSURES PROPER LISTING FROM RPG

Figure 29 (Part 4 of 4). Sample Coding for SPECIAL Device

02090000
02100000
02110000
02120000
02130000
02140000
02150000
02160000
02170000

G2190000

02210000

02230000
02240000
02250000
G2260000
02270000
02280000
02290000
02300000
02310000
02320000
02330000
02340000
02350000

02370000
02380000
02390000
02400000
02410006
02420000
02430000
02440000
02450000
02460000
02470000
02480000
02490000
02500000
02510000
02520000
02530000
02540000

02560000

02580000

02600000

02620000

Appendix D. Assembler Language Subroutine to RPG II Linkage 85

Appendix E: Assembler Language Subroutine To COBOL or FORTRAN Linkage

This section describes standard linkage conventions for use
between modules produced by the System/3 language
translators: COBOL, FORTRAN, and Basic Assembler.
Programmers using standard linkage conventions are able
to code routines in the language most appropriate to the
function being performed, with the assurance that effective .
and permanent communication has been established. Figure
30 illustrates the standard described on the following pages.

*

* SAMPLE SYSTEM/3 LINKAGE -- MODULE A CALLS MODULE B
*
EXTRN MODB
@XR1 EQU X'o1’
@XR2 EQU X'02'
*

MODA START X'0000'
*

* INITIALIZE XR1 AND XR2 TO TEST SAVING
*

L XR1l,@XR1

L XR2,@XR2

B MODB CALL MODULE B

DC AL2 (PLIST)
HPL X'6F',X'6F' HALT 00 AFTER RETURN
*

* PARAMETER LIST
*

PLIST EQU *
DC AL2 (SAVA) ADDRESS OF SAVE AREA
DC AL2 (PARM1) ADDRESS OF FIRST PARAMETER
DC AL2 (PARM2) ADDRESS OF SECOND PARAMETER

DC XL1'oo"

* PARAMETERS

* .

PARML EQU EQU * .
DC CL5'FIRST'
PARM2 EQU * -
DC CL6 ' SECOND' -
*
* SAVE AREA
*
SAVA DC XL1'BO’ INDICATOR BYTE -- ASSEMBLER MAIN
DC CL6 'MODE ' MODULE NAME
*
XR1 DC CL2'R1’
XR2 DC CL2'R2’
END MODA

Figure 30 (Part 1 of 2). Illustration of Standard Linkages

86

* SAMPLE SYSTEM/3 LINKAGE -- MODULE A CALLS MODULE B

@XR1 EQU X'01"
@XR2 EQU X'02'
@ARR EQU X'08'
@IAR EQU X'l0'
*
ENTRY MODB
*
i MODB START X'0000"
*
ST SAVAR1, @XR1 SAVE CONTENTS OF XR1
i LA SAVA, @XR1 XR1 WILL BE BASE FOR SAVE AREA
USING SAVA,@XR1
ST SAVAR2 (, @XR1) ,@XR2 SAVE CONTENTS OF XR2
ST SAVART (,@XR1) , @ARR SAVE CONTENTS OF ARR
- L SAVART (,@XR1) , @XR2 XR2 POINTS TO ADDRESS OF PARM
LIST
L 1(,@XR2) ,@XR2 XR2 POINTS TO PARAMETER LIST

ALC SAVART (,@XR1) ,TWO(,@XR1l) SET RETURN POINT 2 PAST ARR.

*

BODY OF ROUTINE

L SAVAR2 (,@XR1) ,@XR2 RESTORE XR2
L SAVARI1 (,@XR1) ,@XR1 RESTORE XR1
L SAVART,@IAR RETURN
*
* SAVE AREA
%*
SAVA DC XL1'30" INDICATOR BYTE -- ASSEMBLER LANG
DC CL6 'MODB' MODULE NAME
SAVAR1 DC XL2'00" CONTENTS OF XR1 ON ENTRY TO THIS
* MODULE
SAVAR2 DC XL2'00" CONTENTS OF XR2 ON ENTRY TO THIS
* MODULE
SAVART DC AL2 (00) RETURN POINT
*
TWO DC IL2'2"
*
END

Figure 30 (Part 2 of 2). lllustration of Standard Linkages

Appendix E. Assembler Language Subroutine to COBOL or FORTRAN Linkage 87

STANDARDS 3. When control reaches a program entry point, the
address recall register (ARR) must point to a 2-byte

In order to be standard, linkage must be accomplished as field containing the address of the first byte of the
follows: parameter list.
1. Each module must have a save area (Figure 31). The Basic Assembler language code to call a COBOL
or FORTRAN subroutine would normally be as
follows:
Byte Bit Description Program
EXTRN SUBR
0 0 0=Not a main program Subroutine B SURR ”
1=Main program Main program DC AL2(PARAMS)
13 000=FORTRAN Subroutine RETNPT EQU * -
001=COBOL Main program -
011=Basic Assembler Note that the pointer to the parameter list points

to the left byte of the save area address. -
4-7 Reserved
1-6 EBCDIC name, Subroutine 4. Normal return is accomplished by placing in the
left justified Main program instruction address register (IAR) a value that is
two larger than the contents of the ARR when the

7-8 Value of index register 1 Subroutine program was entered.

(XR1) at entry

9-A Value of index register 2 Subroutine 5. Index registers 1 and 2 (XR1 and XR2) must be
XR2) at entry saved upon entry in the called program’s save

o area, and restored at exit.
B-C Return point in Subroutine

calling program .
6. The address recall register need not be restored,

Note: Main program refers to the program with the highest but the return address must be determined and
levei of control. placed in the called program’s save area.

Figure 31. Save Area

2. Each module that calls another module must have one
or more parameter lists (Figure 32).

Byte Description
01 Address of save area in this program
2-3 Address of first parameter ~

(2N)-(2N+1) Address of Nth parameter ~

(2N+2) XL1°00" to indicate end of parameter list

Note: The first two bytes as well as the end-of-parameter-list
indicator {XL1'00°} must be present in all parameter lists. If
no parameters are to be passed, the parameter list will be only
three bytes in length. In this case, byte 3 will be 0 and the
called program will indicate a parameter list length of 2.

Note: Addresses in parameter lists refer to the first byte
(byte with the iowest address) of the item.

Figure 32. Parameter List

88

Along with the Basic Assembler, you will receive a sample
program. By executing the sample program you can verify
that the Basic Assembler is operational.

MODEL 10 AND MODEL 12 SAMPLE PROGRAM

This section describes the sample program and explains the
operating procedures necessary for executing it. General
operating procedures for the Basic Assembler are found in
the IBM System/3 Model 10 Disk System Operator's Guide,
GC21-7508, IBM System/3 Model 12 Operator's Guide,
GC21-5144, and in Part II of this manual.

Program Description

The sample program is called Prime Number Test Program.
The program reads a number from the console display
data switches, tests to see if it is a prime number, and

Appendix F: Basic Assembler Sample Programs

indicates the results of the test on the message display
unit. If the number zero is tested, the program is
terminated.

Three halt codes are used in this program to request input
and indicate whether the number is prime. They are:

Halt Code Meaning
EN Enter a number to be tested.
P The number tested is prime.
NP The number tested is not prime.

Figure 33 shows the OCL that assembles, link edits, and
executes the sample program. Figure 34 shows the sample
program statements.

Appendix F. Basic Assembler Sample Programs

89

1BM System/3 Basic Asembler Coding Form

IBM
[e B W B
s [emre | Il N I N R
e w2 e 03 m n ‘m?ﬁﬁl?sﬂn;n N TN "
T T T T H I
! f ot
1 ;;
i} i :
: oy
TIALN- S|, UN 1 T-Ri2), Plalc K[-IRIzIRZRI2], TIRIA]k S -5 Ll
1
S Y
VIN-S] VN T -F(2], plAlclK - FI2 Flz [z, TIR(AlCKIS |- 2 BN L i
i B t
Al N S1 U T -[FLL, PAle K- [FLlF LF L [TRIACKIS - |5 SREENS ;
& i Sl L -
CloMplILE Sloju/RCE-$iAISSPIL NI TR, O[BIEICITI-IR ; L * L
. i } { L i + .
/| [RUN i ;
] o !) i al :
/ LoAlD] $oLh Nk, FL j] | , i] - h
‘ ! . 1 -
/\/ FlILILE VAME[-$S0URICIE, RETA LN -IS| NI T[-IRi2|, PlalC K- RlzIRIz[Ri2]; [TIRIAlC KIS |- L0 ' ; i Ll
| BENNEN i -
//| FULE NAME—$HQRK)RETA\W—S,UL\T-Fz,PAcx-sz;ze,TKAQKs—Io : 1
4 ! -
7./ RUIN| | H |
1 BNERENEE
: Pl 1]
1 i
1 1

1234 5 61708 & 1941 2]3514 45 i0 57 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 23 34 35 35 37 38 39 40 41 42 4 44 45 46 47 48 43 50 91 5253 59 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 J5 76 17 15 13 8041 57 65 64 g5 w 67168 |30 90 4 47 41

IBM System/3 Basic Assembler Coding Form

IBM
PROGRAM PUNCHING GRAPHIC
PROGRAMME R l DATE INSTRUCTIONS N
STATEMENT
Name Operation Operand Remarks
2 34 5 61718 9 10 11 12/13{14 1516 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 34 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 54 65 66 67 68 69 70 71 73 73 74
T @ :
[/ IPHAISIE] INAME-$IAISISIPlO 1
i
/1/| OPTIIIoNS MAlP-IXREF i
9] € |
/\/] [INCILUDE| NAME ~$A'S|SIAR, UINTTIT-[R1 !
| j
/l/| END '
i [
/7 WAL B G |
!
/I/] ILioAlD $lalsislPo, F e [7) }
| \
/(| {RUN !
1
‘ B
[.
NOTES: “
1. Specifies the location of the assembler program. 5. Name given to the output assembler object (O} program.
2. Name of assembler sample program in the source library. 6. Module name and object program name (R).
3. Specifies the source library with the sample program. 7. Specifies the object {O) program, stored on the Overlay
Linkage Editor program pack by default.
4, Library in which the output assembler object (R) module
is stored. if the system configuration does not include drive 2, references

in the OCL to F2 and R2 must be changed to specify devices
available on the system.

Figure 33. Model 10 and Model 12 Sample Program OCL

90

OPTIONS RODECK aoot

THE LISY OF CPTICKS USET DURING THIS ASSEMRLY f5-- NODECK L 15T, XREF \REL,OBS

$ASSPR EXTERNAL SYPECL LISY

SYMBOL YTYPE VER 13. MOD OGO 01/30/76 PAGE 1

Figure 34 (Part 1 of 2). Listing of Statements in Model 10 and Model 12 Basic Assembler Sample Program

Appendix F. Basic Assembler Sample Programs

$ASSPR MODULE
=
SASSPR PRIME NUMBER TEST PROGRAM
ERR LOC OBJECT COUE ADDR STMT SOURCE STATEMENT VER 13. MOD 00 01/30/76 PAGE 2

7 % 0003

3 s THIS BROGRAM READS A NUMBER FROM THE CONSOLE DISPLAY DATA SWITCHES, TFSTS 1T FOR cce4

4 % PRIMENESS, AND INDICATES THE RESULTS OM THE MESSACF DISPLAY UNIT. 0005

5 0006

& % THERE ARE THREE HALY CCOES USED IN THIS PROGRAM: ecer

T % HALT CODE MEANING 0008

g N ENTER A NUMBER TC BE TESTED. IF NUMBER ENTERED 1S ZERD THE 0009

g % PRCGRAM TERMINATES, octo

10 * P NUMBER 1S PRIME. 0011

1L = ne HUMBER 1S NOT PRIME. 0012

12 0c13

0000 13 $ASSPR START O 0014
0000 14 USTNG *.XR1 ESTABLISH BASE REGISTER 001%

G600 €2 01 9000 15 LA %, %01 LCAD BASE RECISTER 0C1¢&
0604 FG TC 2F 16 BEGIN HPL X*2F',X*7CY FENC HALT 0017
0007 70 00 78 k SKE SENSE[,XR1},0 SENSE THE DATA SWITCHES ccie
00CA 50 01 78 70 18 CLE SENSE(2,XR1},ZERC{,%XR1} TEST INDICATION TC QUIT ocis
DOOE F2 01 0% 19 JRE PREBAR NUMBER TO TEST 0020
Ge1L €O 87 000% 2¢ 8 4 €0 YO END OF Jne (431
ooLs 84 0018 21 ot XL184 0022
22 * 0023

23 % PREPARE THE TNPUT NUMBER 0c24

6016 S0 01 T8 T 264 PREFAR CLC SENSE(Z,XR1),THREE(,XR1} TEST FOR ONE,THO AND THREE 0025
001A F2 04 4T 25 JNH PRIME# CALL ONE, TWO AND THREE PRINE [+
6610 78 01 78 26 TBE SENSE{,XR1},X*01° TESY FOR EVEN 0c27
0020 F2 S0 48 27 JE NPRIME FVEN, NCT PRIME 0028
8623 5C 01 TF 7% 28 WVC TESTH(2,XR1) ,TWOL,XR1) oc2s
027 SC 01 78 78 29 PUC ENDH4102, XR1),SENSE(XR1) DIVIDE INPUT BY TWC 00130
0628 1T 00 79 30 ¥yl EADE-1{,XR1},0 TO USE FOR END TESTING 0031
002E SE 02 T8 78 21 ALC ENDE41{3,¥R1} ENDH41L,XR1) 0032
0032 SF 02 78 78 32 ALC ENC#4183,XR1},ENDESL{,XR1} 0033
00%6 SE 02 78 78 33 ALC ERDS31{3,XR1},ENDE4L L, XRYY 0C34
0034 SE 02 78 7B 34 ALC END#A1(3,XR1),ENDELI(,XR1) ocas
003E SE 02 T8 78 35 BLE EACH4LI3,XR1),ENDE*LEXR1) 003¢
0042 SE 02 7B 78 38 ALC ENDE+1(3,¥R17,ENDE+L(,XRY}Y oc3?
8048 SE 02 T8 7B a7 ELC ENDE#1(3,XR1),ENDES1E,XR1) 0038
EERES 0039

3% % MAIN TEST LOOP oc4c

0045 SE 01 TF T2 40 LUOPST ALC TEST#(2,XR1D,ONE(,XRP1} INCREMERT TEST 0041
004E 50 O} I T4 41 €L TESTRIZ,XRLY,END#{,XR1) TEST FOR COMPLETE cca2
0052 F2 84 14 42 JH PRIME# COMPLETE, CALL IT PRINFE 0042
0055 SC 01 7D 78 43 MYC TEMPAR{2,XR1},SENSEC %R} MAKE COPY AND 0044
0659 SF 01 70 7F 44 SUBYR SLC TEMPAR(2,XR1}.TESTHL{,XR1) FIND REMAINDER ocas
0850 00 84 59 45 8p SURTRI,XR1}Y B8Y SUBTRACTING 0046
0060 DO 01 48 46 BRZ LLCPST{,XF1} REMAINDER NOT ZERD 0047
47 % 0c4e

48 ® NUMBER NOY PRIME 0049

0083 FO 2F 3F 49 NPRIME HPL X'3EY, XV2FF NOT PRIME (NP} HALT 00%0
0066 DO 87 0& 50 8 BEGIN{,XR1) GO BACK TO REGINING ocst
51 # 0052

52 NUMBRER 1S PRLNE ccsl

0069 FO 03 3F 2 PRIMEE BPL H3IE, X103 15 PRIME (1P} HALY 0054
0080 DO 87 04 54 e BECING XR1} GO BACK T0 BEGINING 0055

91

$ASSPR PRIME NUMBER TEST PROGRAM

ERR L0OC OBJECT CODE ADDR STMY SCURCE STATEMEAT VER 13. MOD 00 01/30/76 PAGE 3
56 * 0cs?
57 CATA AREA 0058
006F 0000 ce7¢ 58 ZERC CC 11240 BINARY ZERD 0059
0071 0001 0072 5G ONE oc XL290001¢ CNE acec
0073 0002 0074 &0 TWC 14 BL2700000010" TWO 0061
0075 0003 0076 €1 YHREE DC AL2(3) THREF cce2
007 007 62 SENSE DS cL2 o0e?
0TS GOTA 63 ENDE DS [d¥] 0ces
0078 007e ¢4 ©s cLy 00&S
007¢C 007D 65 TEMPAR DS cL2 006e
007E 007F 66 TESTH# DS L2 0067
0001 €7 XR1 EOL 1 BASE RECISTER ocee
0000 €8 END $ASSPR 0ces
TOTAL STATEMENTS IN ERROR IN THIS ASSEMBLY =]]
ASSPR CRCSS REFERENCE
SYMBOL LEN VALUE DEFN REFERENCES VER 13. MOD OO0 01/30/76 PAGE 4

$ASSPR 001 ©OCC 0013 0068

BEGIN 003 0004 0016 0050 €054

END# 002 00T CUE3 €029% 0030% 0031 0031* 0032 0032% 0033 0033#% 0034 0034% 0035 0035%
003& 002€* €037 CC27* 0041

LOOPST 004 QO0&4A 0040 0045

NPRIME 0032 0063 CC4S o027

ONE 002 0072 0059 0040

PREPAR 0C4 0016 0024 0019

PRIME# 002 0069 CC53 0025 0042

SENSE 002 0078 0062 0017* 0018 (€024 0026 0029 0042

SUBTR 004 0089 0l44 0045

TEMPAR Q02 007D 0065 CO43% CO44a%

TEST# 00Z OCTF 0066 CO28% 0040% Q041 0044

THREE 002 007& CClE€1 €024

TR 002 0074 0C60 0028

XR1 act 0001 0087 0014 001%5% 0017 0018 0018 (0024 0024 002¢ 0028 0028 0C2¢ 0029
0030 0021 0031 €C32 0032 0033 0033 0034 0034 0035 0035 0036
0036 0037 CC27 CC40 0C4C CC41 CC41 0043 0043 0044 0044 0045
0046 0050 €054

ZERD 002 0070 Cces8 0018

TOTAL STATEMENTS R ERRCOR TN THIS ASSEMBLY = 0
OLI05 1T THE CODE LENGTH OF $ASSPR IS 128 DECIMAL,

OL103 T TOTAL WUMBER DF LIBRARY SECTCRS FRECUIRED IS
NAME-EASSOR, PACK-RIRIR 1, UNTT-R1,RETAIN=T, LIBRARY~R,CATEGORY~000

Figure 34 (Part 2 of 2). Listing of Statements in Model 10 and Model 12 Basic Assembler Sample Program

MODEL 15 SAMPLE PROGRAM The sample program uses Model 15 macros and therefore
the assembly step must be preceded by a macro processor

This section describes the sample program and explains the step.

operating procedures necessary for executing it. General

operating procedures for the Basic Assembler are found in Figure 35 shows the OCL that assembles, link edits, and
the IBMS_}’SI’EM/.? Model 15 Operator’s Guide, GC21-5075 executes the sample program. Figure 36 shows the sample
and in Part II of this manual. program statements.

Program Description

The sample program is called System Input Device List
- Program. The program reads records from the system input
device and lists them on the system printer. Statements
are read and listed until one of the delimiters (/*,/&, or
/.) is encountered. If the delimiter is /*, another file can
be listed under operator control.

There are three messages displayed by this program:
Message Meaning

EOF ON SYSIN End of file encountered on the
system input device. More files
can be printed if the EOF condi-
tion is caused by /*. The operator
replies P to print another file or
C to cancel.

PRINTER ERROR A permanent printer error has
occurred. The program issues the
message and then goes to end of
job. (The message is displayed and
then removed when end of job is
reached. However, the message is
in the system history area and may
be displayed from there.)

SYSIN ERROR A permanent system input device
error has occurred. The program
issues the message and then goes to
end of job. (The message is dis-
played and then removed when end
of job is reached. However, the
message is in the system history area
and may be displayed from there.)

Appendix F. Basic Assembler Sample Programs 93

18M Systern/3 Basic Assembler Coding Form

BM
[oroenm [oo Towe 1T 1T T 1T 1T 1T 1 T o
F"“’““‘“’*"’ ‘mg } INSTRUCTION ‘ ek 1 1 l 1 I l 1 i CARD ELECTRG NumBER
N B P PP ooy PP POy PP PSS ppepepypgopapap B Iog oy 0
//Wsiamp| Tlos : 1
L | i
// Lo sgnpxbv.u 2 ! ;
i
1 1
/17 FITILE| NAlME|-1$5OuRCE|, [RIE TIAZINI-T], UNLTI- R2), PIAC K - R2IR2R2|, TRACIKS -6]
[/ CloMPILILE SOURCER$ASSP L, UNTTIHFID : !
£/ RN i H
2 | i
T T
t i
1 1
} i
1 i -
< . '
/]| Lo SASSEM FuU : E
Ji/] ISMITICH X126 XXX : E ;
| i
/7] FIILE| MAME-S K, RETATIN--S| UNIT-RR, PACK-R2IRRR2|, TIRALKS -2 i
RRNaRIA A AR RN RRRR RN AARARRAN 1
naRGENS NAM%E—GHON[RZ.FWTAIIN‘S.@N[IT» .L,PACK-D.L] DLl TRA: L ! ;
| (i N
7/ [FiTiLE u[m:-SSoui ClE, E[TialzN/-[s], WWziTl-IR2), IPlaic - WalRRR | 1 !
i I
{1/ [ComMPixiL _gram&cr- n j ' T
1 Ll ! !

sz45ﬂ739mnddummwmwmnnnﬂi&nnﬁmﬁvnkEiyuxﬂuncqunqumugyw«uuwmmmuu%ﬂuummﬂnmuwnﬁmmmmmummmm%mwwmﬂm

1BM System/3 Basic Assembier Coding Form

IBM
[o oo o [T [T T T T oo =
[Troommmice Toe R T e
STATEMENT chf]r;lpl:”::‘mn
1 zN;m:E S78‘1‘”:?‘??\213)6&!517!&\SNZV2?0551;:‘42526.'7?8?)!)3»3213’%2635173&3?&0 410«4645uss-sﬁu5752‘519555557585;'&0“:35:mgsswuummn7771747575'7;71msoeus:mussa&s?asmmmms:ga
///] RUN | H
& j i
/1/] LIOAD| $OLTINK, IFIL T ;
d 1
i - | i
/1] FILE NAME- $wogzk L RIETATZN-IS|, UNTT -DlL, PACK-DLDILDL, TRACIKS|~ L@ !
1 ! : |
717 FirE] INAME-[5/sloluRiclel, RE TIATIN--Is|. uNIT-Ri2], Plalck-Ri2ZR2R 2], TRlCIkis - L !
” i MR i
il KUN ; E
| 4 ; 1
77| PHASE] NAME|-3ASssP : :
i i
1\ OPTL‘ON{S MalP|~XRE F| ! :
5 3 \ i
in .twcx.uﬂg NAPI}E—GAS&PR; u%uzr-m ! ;
0 . !
1/ Ifuc:.ubgﬁryggg-Gsunr,ub‘xr-u ! ;
! i
/11| END 1 !
4) | (@ ! i
17 LOAFLQAQSPO. FL | ;
! j
1]
/] [RuN] : | -
1]
1 23‘§5E6%189w”!21 1"5‘6!7@\9&2!272370’1526277,5?‘3333137&13476:5’!738380"un:«ﬁ‘snanﬁlﬂ52‘535456“575'!@!?52BIM%“G?I&W?O?!YIY:‘MTﬁ)G'ﬂ’l?Qms! 42 83 84 95 96 87{en B9 90 21 97 41 94 ¢ =
Notes:
1. Specifies the program pack. 5. Module name and object program name (R). N
2. Name of the assembler sample program in the source 6. Specifies the system pack.
library.
If the system configuration does not include the 5444
3. Library in which the output assembler object (R) drive 2 or the 5445 drive 1, references in the OCL to R2
module is stored. and D1 must be changed to specify devices available on

the system.
4, Name given to the output assembler object (O)
program.

Figure 35. Model 15 Sample Program OCL

94

OPTIONS NODECK OBJECT TO L IBRARY ONLY 463010300

THE LIST OF OPTIONS USED DURING THIS ASSENBLY I1S-- NODECK ,LIST XREF,REL,O8J

$ASSPR EXTERNAL SYMBOL LIST
SYMBIL TYPE VER 0L, 40D 00 11-09-73 PAGE 1

$ASSPR MODULE
$SLPRT EXTRN

$SASSPR
ERR LUC UBJECT CODE ADDR STMT SOURCE STATEMENT VER 1, %)) 30 11-39-73 PALE 2
- L ICTL 1,71 303207303
2 ISFQ 73,80 33330100
3 PRINT NOGEN,NJOATA J0U%3030

$ASSPR SYSTEM INPUT JEVICE (SYSIN) LIST PROGRAM

ERR LOC OBJECT CODE ADDR STHMT SOURCE STATEMENT VER 01, MO0) 00 11-29-73 PAGE 3
5 * THIS PROGRAM 2EADS A FILE FROWM T4 SYSTEM INPUT DEVICE AND LISTS 300603000
6 % 17T ON THE PRINTER. 30073300
7 % 20030003
g * THERF ARE THREE MESSAGES ISSJED 8Y THIS PRIGRAM: 30990000
9 * MESSAGE TYPE MEANING 20100100
10 = TEQF ON SYSIN' WTIR END 3F FILE FNCOUNTERED ON SYSIN, 20110300
11 #* MORE FILES MAY BE PRINTED IF THE Q0120000
12 * EQF CONDITION IS CAUSED BY A '/%', 20130300
13 * THE JPERATOR REPLYS TO THIS MESSAGE J0143303
14 * ARE 'D' T3 PRINT ANOTHER FILE AND 30150000
15 * CC TD O CANCEL AND 50 YO EOJ. 301463000
16 * TPRINTER ERRORY 4«70 THERE HAS BEEN A PERMANENT PRINTER 00170000
17 * ERROR, THE PROGRAM [5SJES THE 301803000
18 % MESSAGE ANUD GOFS Tu END 0OF J008. 20190000
19 * *SYSIN ERRIR? AT THERE HAS BEEN A PEYMANENT SYSIN 00200200
20 * ERROR, THE PROGRAM ISSUES THE 30212300
21 = MESSAGE AND SJES T END OF JG8. 30220200
4000 23 $ASSPR START X*4000° 30240700
JJol 24 EXTRN SLPRT PRINTER DATA MANAGEMENT 302503000
408C 25 USING BASE,BRG ESTABLISH A AASF REGISTER 30263300
4000 €2 01 408C 26 LA BASEBRG FiIR THE DATA AREAS 59272090
28 % PREPARE THE PRIMTER FILE FDR USF 30290300
4004 D2 02 07 29 LA PRNDTF [48RG) 4$0TF 00330200
30 = $ALOC ALL3CATE PRINTFR FILE 20310200
33 = $SUPEN JPEN PUINTER FILE J0320000
433F BC 01 13 36 MV SOFSPAL$3TF I 1 SET FO= SINGLE SPACE 303393930
4012 8C 40 OF 37 MV 1 $DF3PC L, $DTF) 4 $I0PRT SET GP-CODE TU PRINT 30349390
4015 7C 01 90 38 Vi SYSINL+#$SRECT [y BRG) ¢ $SRROF SET SYSIN JP=I0)E FIR 15T BUFF 00350000
40 % PREPARE TO PRINT A NEW FILF 13373300
- 4018 7C 01 17 41 FILES MVI PRNDTF+$DFSKB{, BRG], 1 SET T3 S<IP BEFIRE FIRST PIINT 393892330
v 43 % READ FROM SYSIN ANO PRINT UNTIL END UF FILE 33400302
4018 D2 02 00 44 FILEL LA SYSINLE+BRGI4SYS 03410300
45 * $READ OPC-N RLAD F20% SYSIN 0429300
4022 80 50 J0 49 cLl $SRFCT(,SYS)$53E0F TEST FOR EOF (e/% 088 0/, 0 00430200
4025 F2 81 30 50 JE EOF J0440000
& 4328 80 80 00 51 Ll $SREZTL.SYSE «B5RENY TEST FOR ENY (P78, 7.0 30450303
4028 F2 81 53 52 JE EOQJ 33460300
4028 30 60 0O 53 ctl SSRFCT{4SYS),y $5RERK TEST £33 SYSIN ERROR 00479300
4331 F2 81 3C 54 JE SYSER 00430300
4034 3C 00 00 55 Mv1 $SRFCT(,5YS), 853R3D SET FORNEXT SYSIN READ G0493000
4337 60 OL 14 04 56 MVE PRNDTE+$DFLRALZ yARG) , 5S25F2 (,5YS) PUINT T3 CURSENT RrCIRY 32500000
4038 02 02 37 57 LA PRNOTFL,335),307F 30513733072
58 ¥ $PUTP DEV-1433 PIINT T4E CUIRFNT RECIRD JU523099
4342 80 41 Ok 530 CLI SOFLMPL,$DTF) ,$0PPFR TEST FJR PRINTER FRPOR 33533300
4045 F2 41 32 61 Je PRNERR 335423303
4048 30 30 10O 62 MV $DFSKB{,30TF},0 SFT FIT ND S<1P RLFAOWE ! ¢ ;
4348 80 43 OF 63 oLt SDFCMP L, 80 TF), $0PUVE TEST £7OR PAGE UVERFLUW
404t F2 01 03 64 JNE NUSKIP
4051 3C 91 10 05 MVI $OFSKB{,80TF} .1 SET F32 SKXIP TU LINF OINE
4054 (9 87 4018 66 NOSKIP 8 FILFL JJ592397

Figure 36 (Part 1 of 4). Listing of Statements in Model 15 Basic Assembler Sampie Program.

Appendix F. Basic Assembler Sample Programs 95

SASSPR SYSTEM INPUT DEVICE (SYSIN) LIST PROGRAM

ERR LOC OBJECT CODE ADDR STMT SOURCE STATEMENT VER 01, 430 00 11-09-73 PAGE 4
68 * END OF FILE ON SYSIN
«058 D2 02 28 69 EQF LA E0FMSG(+8RGI,LOG
70 = $LOG ATOR EDF MESSAGE
&05F 70D C3 37 T4 cLr REPLY{,BRG),L*C? OPERATOR SAY CANCEL
4062 F2 81 1C 75 JE EGJ
4065 7D D7 37 76 cir REPLY {,BRG),C'P* OPERATIR SAY PRINT ANOTHER
2068 CO 81 4018 17 BE FILES
406C CO 87 4058 78 8 EOF INVALID REPLY, TRY AGAIN
80 = ERROR ON SYSIN
4070 D2 02 38 81 SYSER LA SERMSG{+BRGILOG
82 * $LOG WT3 SYSIN ERROR MESSAGE
40T7TT F2 87 07 86 J EOQJ GO 10 EQJ

88 * ERROR ON PRINTER
407TA D2 02 44 89 PRNERR LA PERMSGI,8R5),L06
30 * $LOG WT3 PRINTER ERIOR MESSAGE
95 % END OF JOB ROUTINE
4081 96 EOQJ EQU *
4081 D2 02 07 37 LA PRNDTF{,8RG 1, $DTF
98 * $CLOS CLOSE PRINTER FILE
101 #* $E0J 30 10 E0J
$ASSPR SYSTEM INPUT DEVICE (SYSIN) LIST PROGRAM
ERR LOC OBJECY CODE ADDR STMT SOURCE STATEMENT VER 01, M3ID 00 11-09-73 PAGE 5
105 ® CONSTANTS AND DATA AREAS
408C 106 BASE E£QU *® BASE REGISTER ADDRESS
108 * SYSIN TABLES
109 *YSINL S$RLST BUF1-BJFFR1,BUF2-3UFFR2, SYSIN PARAMETER LIST
110 * WORK~-WORKAR
116 * $RLSD SYSIN EQUATES
133 * PRINT FILE TABLES
134 *RNDTF $DTFP DEV~1403,RIAD-0,10BA-PRNIOB, PRINT FILE DTF
135 = I0AA~-PRNBUF,RECL-96,
136 % OVFL-60,PAGE~-66
160 * $0TFD D1403-Y PRINTER DTF DISPLACEMENTS
223 * SYSTEM LOG TABLES
224 *0FMSG $SLWTO COMP—AS yHALT-AM,SUBH~PG,TLEN~-12, SYSIN EOF WTVOR
225 * TADR-EDFMGC,REPLY-Y,RLEN-1,RADR-REPLY
40C3 E7 40C3 238 REPLY DC crievxe WTOR REPLY
239 *ERMSG SLWTO COMP~AS,HALT-AM,SUBH-PG,TLEN~11y SYSIN ERROR WTO
240 * TADR-SERMGC
251 *ERMSG $LWYD COMP~AS,4ALT-AM,SUBH-PG,TLEN-13, PRINTER ERROR WYD
252 * TADR-PERMGC
4000 263 EOFMGC EQU *
40DC C5D6C640D6D540E2 40ET7 264 oC CLL2*EQF ON SYSIN®
40E8 265 SERMGC EQU *
40E8 E2EBE2C90540C5D9 40F2 266 oc CLLIL*SYSIN ERROR?®
40F3 267 PERMGC EQU *
40F3 DYD9CIDSE3C5D940 40FF 268 oC CL13*PRINTER ERROR®
270 * SYSIN BUFFER AND WORK AREAS
4100 271 ORG *,128 ORG TO REQUIRED BOUNDARY
4100 272 BUFFR1 EQU * BUFFER ONE
4100 0000000000000000 417F 273 oc XL128¢0°
4180 274 BUFFR2 EQU * BUFFER TWO
4180 0000000000000000 41FF 275 [l XiLi28*0*
4200 276 WORKAR EQU * WORK AREA
4200 0000000000000000 422 277 D¢ XLa70Q?
279 * PRINTER BUFFER AND WORK AREAS
427C 280 ORG ¥,256,X0 700 ORG TG REQUIRED BOUNDARY
4270 281 PRNBUF EQU * PRINTER BUFFER
427C 4040404040404040 4305 282 oc cei3sge ¢
4306 283 PRNIOB EQU * PRINTER 108
4306 0000000000000000 4337 284 DC XL50¢0°*
286 * REGISTER LABELS
0001 287 BRG EQU 1 BASE REGISTER
0002 288 SYS EQuU 2 SYSIN PARAMETER LIST POINTER
0002 289 LOG £QU 2 SYSLOG PARAMETER LIST POINTER
4000 290 END $ASSPR
TOVTAL STATEMENTS IN ERROR IN THIS ASSEMBLY-- Q
TOTAL SEQUENCE ERRORS IN THIS ASSEMBLY-— ¢

Figure 36 (Part 2 of 4). Listing of Statements in Model 15 Basic Assembler Sample Program.

96

00610000
30620000
00630000
00640000
00650000
00660000
00670000
00680060

00706000
30710000
00720000
00730000

80750000
00760000
00770000

00790000
20800000
00813000
00826000
00830000

00850000
008606500

0608806000
X00890000
00300000
00910000

00230000
X303940000
X00950000

009600600

008970060

00990000
X0310000060
01010000
01020000
X01030000
01040000
X01050000
01060C00
01070000
01080000
010906000
01100000
01110000
01120000

01140000
01150000
01160000
011700060
01180000
01190000
(1200000
01210000

01230000
01240000
01250000
01260000
01270000
012800300

01300000
01310000
01320000
01330000
01340000

$ASSPR CR(OSS REFERENCE
SYMBOL LEN VALUE DEFN REFERENCES VER 0l, 420 02 11-19-73 PAGE 5

$SLPRT 001 0001 0024 9059
$ASSPR 001 4000 0023 0290
$ALCLDI 001 0010 0193
$A1DAT 001 0001 0198
$ALH56 001 0002 0196
$ALINT 001 0004 0195
$AL1MFM 00L 0008 0194
$ALPCH 001 0020 0192
$ALPRT 001 0040 0191
$41PR2 001 0001 0197
$ALRD 001 0080 0190
$AZALL 001 0040 0203
$A2AMP 001 0004 0208
@ $A2EJF 001 0008 0206
$A2HUC 001 0002 0207
$A2IND 001 0080 0202
$A2MBF 00L 0010 0205
- $420PN 001 0001 0209
- $A2SIN 001 0020 0204
$CPCND 001 0010 0214
$CPEDF 001 0042 0217
$CPOVF 001 0048 0213 0063
- $CPPER 001 0041 0216 0060
$CPSUC 001 0040 0215
$DFARR 001 0009 Oles8
$DFAT1 001 0002 0164
$DFATZ 001 0003 0165
$DFCHA 001 0005 0166
$DFCHB 001 0007 Ole67
$DFCMP 001 OO0E OLT71 3060 0063
$DFDEV 001 0000 0l62
$DFLP 001 0010 0183
$OFLRA 001 0000 0170 G056%
$DFMSX 001 OOLF 0185
$DFOPC 001 O000F 0172 2037%
$OFOVF 001 00lC 0182
$D0FPGS 001 0020 0188
$DFPIB 001 0017 0179
$OFPIO 001 0019 0180
$OFPOS 001 OOL1E 0184
$DFPQ 001 0014 0177
$DFPR 001 0015 0178
$DFPRL 001 0018 0181
$DFSKA 001 0012 0175
$DFSKB 001 0010 0173 0041* 0062% 0065%
$DFSPA 001 0013 0176 0036%
$DFSPB 001 0011 0174
$DFUPS 001 0001 0163
$DFXRS 001 0008 0169
$DTF 001 0002 0lé61 0029% 0036 0037 0057% 0060 02052 02063 0065 J0G7*
$OCPRT Q01 0040 0221 0037
$SRBFL 001 0002 0118
$SRBF2 001 0004 0119 0056
$SREOF 001 0050 0129 0049
$SREOJ 001 0080 0131 0051
$SRERR 001 0060 0130 0053

Figure 36 (Part 3 of 4). Listing of Statements in Model 15 Basic Assembler Sample Program.

Appendix F. Basic Assembler Sample Programs 97

$ASSPR CROSS REFERENCE

SY483L LEN VALUE DEFN REFERENCES VER 91, MOD 39 11-29-73 PaGk

$SRECT 001 0000 0117 0038% D049 0051 0053 0J55%
$SRNOM GULl 0040 0128

$SRRO Jol 0009 0126

$SRROO 001 0000 o122 G055

$SRROF 001 0001 Olz24 9038

$SRROL Q0L 0002 o125

$SRWRK 001 0006 0120

BASE 001 408C 0106 0025 0028
BRG 001 0001 0287 0025 3026% 0025 0038 0041 00%% 0056 0057 0069 2374 0076
0089 Q097

BUFFR1 201 4100 0272 OLl3

BUFFR2 001 4180 0274 Olls

EQF 003 4058 0069 Jus0 0078

EOFMGC 301 40DC 0263 0235

EQFMSG 001 4084 0227 0069

E3J 001 4081 0096 0u52 QU775 0086
FILEL J03 4018 0044 0066

FILES 003 4018 0041 o077

L36G 001 0002 0289 0069% QO81l%* 0089*
NOSKIP 004 4054 0066 2064

PERMGL 001 40F3 0267 0262

PERMSG 001 4000 0254 G089

PRNBUF 001 427C J281 Gi53

PRNDTF 001 4093 0137 0029 J041* U0S6® 0057 0097
PRNERR 103 407A 0089 0061

PRNIGB 001 4306 0283 G152

REPLY 001 40C3 0238 JuT4 0076 0237
SERMGC 001 40E8 02565 3256

SERMSG 001 40C4 0242 JO81

5YS Q0L 0002 0288 0044% 0049 0051 0J53 0055 0050
SYSER 003 4070 0081 0054

SYSINL 001 403C 0111 3038% 3044

WORKAR 001 4200 0276 01ls

TOTAL STATEMENTS IN ERROR IN THIS ASSEMBLY —- o}

TOTAL SEQUENCE ERRORS IN THIS ASSEMBLY-=~ 0

OL105 1 THE CUDE LENGTH UF $ASSPR IS 824 DECIMAL.
OL103 I TOTAL NUMBER OF LIBRARY SECTORS REQUIRED IS 5
NAME=~$ASSPRy PACK=RIRLIRL y UNIT=R1,RETAIN=T , LI3RARY =R, CATEZORY =727

Figure 36 (Part 4 of 4). Listing of Statements in Model 15 Basic Assembler Sample Program.

98

0081

7

Appendix G: 1BM 1255 Magnetic Character Reader Support (Models 12 and 15 Only)

Support is provided by the following [BM-supplied
subroutines:

‘ e SUBRO7 — 1255 (Model 15 only)
e SUBROS — 1255 (Model 12 and Model 15)
e SUBRO9 — 1419 (Model 12 and Model 15)
For detailed information concerning this support, see the
IBM System/3 Models 12 and 15 1255 and 1419 Magnetic

Character Reader Reference and Program Logic Manual,
GC21-5132.

Appendix G. IBM 1255 Magnetic Character Reader Support (Models 12 and 15) 99

100 (101-104 deleted)

SWORK 2 file 34
/] CEND card 33
// SWITCH statement 31

absolute displacements 12
absolute expressions 7
absolute object program 28
address constant 18
addressing 12
base-register displacement method 12
data addressing 13
direct method 12
instruction addressing 13
relative addressing technique 12
symbolic (direct) 12
assembler
coding conventions 8
coding form 9
functions 1
instruction statements 17
data definition 18
fields 8
format 8
listing control instructions 20
program control instructions 22
symbol definition instruction 17
listing 29
assembler language subroutines
linkage to COBOL 86
linkage to FORTRAN 86
finkage to RPG I 71
placing in R library 36
assembling a source program 28
asterisk
use in comment statement 10
use as location counter reference 6
attributes
length atribute 14
value attribute 14

base address 12

base register 12

base-register displacement addressing 12
basic assembler sample program 89
beginning column 25

binary constant 6, 19

binary self-defining term 6

calling a source program 31
category level 27
CATG operand 27
character
constants 19
self-defining terms 6
COBOL linkage 86

Index

code
control 43
mnemonic 1
operation 9,43
machine 47
mnemonic 1
Qcode 17,43
coding conventions, assembler 8
coding form, assembler 9
coding sample for SPECIAL device 82
COMLx operands 29
comment statement 10
complement (two’s complement form) 19
constant (see also self-defining term)
address 18
binary 19
character 19
data 18
decimal 19
define constant (DC) 18
hexadecimal 19
integer 19
negative (see integer constant)
paddingof 19
truncation of 19
control card code for assembler subroutine 76
control statements 27
control cards, LDG program (see Library Deck Generator
parameter card)
control section length 27
control code 43
conversion, punch 33
cross reference data 35
cross reference listing 28, 40

data

addressing 13

constant 18
data defining instructions (DC and DS) 18
data file requirements 34
DC (define constant) instruction 18
decimal constant 19
decimal self-defining term 5
deck, object 17
define constant (DC) instruction 18
define storage (DS) instruction 19
diagnostics 40

table of 69
direct addressing 12
displacement 12

absolute 12

relocatable 12
DROP statement 25
DS (define storage) instruction 19
duplication factor

with DC instruction 18

with DS instruction 19

Index

105

EJECT statement 20
END record 33
END statement 26
ending column (see also ICTL statement) 25
entry (see fields)
entry point 25
ENTRY statement 25
EQU (equate symbol) statement 17
error code 69
error conditions, LDG program 81
error information 35
ESL record 32
explicit length 15
expression 7
absolute 7
evaluation of 7
multi-term 7
relocatable 7
rules for coding 7
extended mnemonic codes 14, 48
external symbol list 39
table size 42
EXTRN statement 25
EXTRN subtype 25
specifying 27

fields(s)
assembler statement 8

identification-sequence 10
name 10

operand (machine instructions) 14
operation 10

remark 10

files
source 34
object 34
work 34
format(s)

assembler statement 8
machine-instruction statement 13, 43
operand 14

format control, input 22

FORTRAN linkage 86

groups machine-instruction operand 15

HEADER record 32

HEADERS statement 27
hexadecimal constants 19
hexadecimal self-defining terms 6

ICTL (input format control) statement 22
identification-sequence entry (field) (see also ISEQ statement) 10
I-field (immediate data) 16

implied length 15

input format control 22
input sequence checking (ISEQ) statement 22
instruction(s)

addressing 12

assembler instruction statements 17

data defining 18

listing control 20

106

instruction(s) (continued)
machine-instruction statements 13
program control 22

symbol definition (EQU) 17
types 17
integer constant 19
intermediate text 34
ISEQ (input sequence checking) statement 22

Jeards 77

Kcards 77

label (see symbol and name entry)
language
machine (see also machine instruction formatsy 1
RPGII 71
symbolic 1
Lcards 78
length(s)
attribute 14
control section 27
explicit 15
implied 15
subfield 14
of data definition instructions 18
Library Deck Generator parameter card 80
Library Deck Generator Program 76
linking
to COBOL 86
to FORTRAN 86
toRPGII 71
listing control instructions 20
listings, program 28, 38
loading the assembler 29
location counter 6
control of (see also START and ORG) 13
location counter reference (*) (see also terms) 6

machine-instruction(s) 13
format 43
list of 43
mnemonic codes 14
operands 14
machine language 1, 49
macro processor 30
main storage requirements 2
messages 69
mnemonic operation codes 1
for assembler instruction statements 67
for machine-instruction statements 47
module category level 27
module name 23

name entry (field) 10

name, module 23

negative values (see integer constant)
NOREL 28

NOOBJ 28

OBJ 28
object deck 28
object file ($WORK) 34
object operand 31
object program 4, 32
object program, placing in R library
direct 36
punched 36
OCL statements 29
one-address format (machine-instructions) 43
Op code (machine-instruction formats) 43
operand(s)
entry (field) 10
fields 14
formats 15
groups 15
machine-instruction 14
subfields 14
of DC and DS instructions 18
operation procedures 36
operation codes
extended mnemonic 13
mnemonic (see mnemonic operation codes)
Op code (machine instructions) 43
operation control language statements 29
operation entry (field) 10
OPTIONS 36
OPTIONS statement 27
ORG (set location counter) instruction 24

PRINT (print optional data) instruction 22
program control instructions 22

program relocation 4

punch conversion 33

Qcode 17,43

record formats 32
REL 28
relative addressing 12
relocatable
displacements 12
expressions 7
terms 7
relocation of programs 4
remark entry (field) 10
representation of negative values (see integer constant)

requirements
data file 34
main storage 1
system 1
restrictions, module name 23
RPG 11
linkage to assembler language subroutine 71

sample program

basic assembler 89

RPG 11 linkage 71

SPECIAL subroutine 82
segment, assembler statement 8
self-defining term §

sequence 8
checking (ISEQ) statement 22
entry (field) 8
soutce file 34
source and object listing 39
source program, from macro processor 31
source statement (assembler instruction statement) 1
SPACE (space listing) statement 21
special character(s)
in symbols (name entries) 5

START (start assembly) statement 23
statement(s)
assembler instruction 17
fieldsof 8
format of 8
types 1
comment 10
machine instruction 13
storage
addressing 4

definition (Us) instruction 19
relocation in 4
requirements 2

subfield(s)
constant (DC instruction) 18
duplication factor 18

length 18
of machine instruction operands 14
type 18

subroutine linkage 71, 86

SUBRO7 99

subtype, EXTRN 25

subtype, specifying 27

symbol (see also name entry) S
definition instruction (EQU) 17
mnemonic (see mnemonic operation codes)
rules for coding 5
table entries 35

symbolic
addressing (see direct addressing)
language 1

system requirements 1

terms 5

text, intermediate 34

TEXT-RLD records 33

TITLE (identify assembly output) statement 20
truncation of constants (see DC instruction)
two-operand format 15

two’s complement form (see integer constant)

USING statement 24
Ul indicator 31

value attribute 14

work file 34

1255 support 99
3741 Data Station 1

Index

107

108

IS

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150

Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway

White Plains, New York 10601
U.S.A.

{International)

SC21-7509-7

{LZ-£S "ON 8|i4) 8ouaisjay Ja|quiassy diseg S/LUGISAS wgl

L-60GL-1COS "VY'S'N ul patuld

S$C21-7509-7

IBM System/3

Basic Assembiler

Reference Manual

“W'S'M) @Y1 Ul Pajiew 1 Alessaoau abeisod ON @

ssalppy
Ajddns NOA UOIIBWIIOJUI 8Y) 8SN O} ANUIIUOD ‘88iN0J JO
awen ‘Aew no g Jeasleym uonebiiqo Aue Butiinout Inoyum aetsdoadde sansijaq
Aem Aue ui Ajddns NOA UOIIBWLOUL 3yl JO Aue 31nquUIsIp pue asn Aew NG|

U0 Jaquinpy abey

*$$94ppE pue duleu INOA apnidul

noA papiacid ‘apew Buiaq 1ou sy sBueyd e Aym noA (ja1 Jo ‘uoneagnd 40443 soquuinypy abeq
3yl AJLIR[D JO 1081400 [|IM 8p "wiioy pred-abeisod siyl Buisn Ag 11 inoge
sn |21 8sed|d "uoneAjqnd siy) Ul uolewiojul Bulpeasiu 10 81RINOIRU| “Ajded Op (U0 OS pue ‘uocilenisn||i ‘teorydesBodAl) uonesygnd ul soar3

‘UOIIED0] ANOA 188428U 801440 YoueIq NG| 8yl 01 40 saiRIUBSBIdB) NG| JNOA O PBIDAIIP 8G PINOYS 018 ‘suosieoyand jeuciiippe 1o} sisenbal ‘1ioddns
fupwwesBoid g ui sebueyo ‘sWaisAs Wg| INOGE sUOHSanD |BOIUYDS | "suoiedqnd o1 seBURYD 158NbaI J0 $I0116 UOHEIGNG AIUBP! 0F AJUO LWI0Y SIL B8N BSER g

WHOH INIWINOD S, H30av3d .

& @ - <

SC21-7509-7

f
!
i
|
|
l
|
|
l " " ! FIRST CLASS i
PERMIT NO. 40 |
|
l
i
|
|
l
|
|
l
i
i

ARMONK, N. Y.

o

ES

w

b

g

foa s] a

BUSINESS REPLY MAIL — &
e 2

NO POSTAGE STAMP NECESSARY IF MAILED iN THE UNITED STATES joo o] ;
enErE é

POSTAGE WILL BE PAID BY . . . F—— %
foooc e an] @

foe e ey

RS z

7]

IBM Corporation]
General Systems Division e T
Development Laboratory e >
. . o e o g e}
Publications, Dept. 245 e — @
)

Rochester, Minnesota 55901

Homi)

International Business Machines Corporation

L-60GL-LZOS 'V'S'N ul pajuld
S

l

General Systems Division |

4111 Northside Parkway N.W. |

P.O. Box 2150

Atlanta, Georgia 30301 |

(U.S.A. only) |
i
l
|

General Business Group/International

44 South Broadway

White Plains, New York 10601

US.A.

(International) |

