10 Disk System)

— e
~ I I N
© - r
_ 0 00 0 O
© . B T T TV TV
] w O 0 0 O O
£ S =S === = -
3 . N e et Q
s & Q 3
@ N Q 3 0 o o o O =4
Z < O Z Lob U 0 O
Qax € E N OF ST W o o £
o O O 0o o o 9
72 B el SR NNKEKK & o
s oc o O W oW Ww © g o
m s 2 2 N 2 2
- L o o @i [
0000000 00000000090 9000000 000000 o0806COO 20000 00006 000000 0000000000000 0000000 *ON0000 ;] 900000000006
00000000 000202008000 0000000 2000000 9000600000 09000 [3.4.3-4-4 0000000 0000000060000 0000000 000008 0900000000600
[4 ® 0060000050000 00050000 200000600 00060050000 0000600 20060006 000000000068 080000 006000606 0000000000006 00000000 200600300 2000060008008
S esee’ Toisee occes “toccess ecess " %ooes *%oeces seses’” oeee P00%c0se cecess sese’"enee”
41 20ee seec’ S2oe scese °*° 2ioesesers Sesesrs ssessss o TeRe g%t
2060 000660600000+ L d d.d e0000¢ _,. > 400600008 0000060000007 %0 [13333
2000 20000060000 20060 000006060 L0 (X113l 1) 20000000 0000000060000 00005008
*000 B 2000060000¢ 20060 0000680600 [1 X 13 2000 200080000 00O BOOGOONN -~ «000¢C 500
»>000 20000800680¢ 2060 0000000000 [1] o080 20000000 0090 6%¢0C Go.) 900089000
“""N “"”” ""““" "“““ PR, (33334 [(IX11] 060 000 9006 500600 200 0200
sose eses "2028 oees ecoes ssece] 43 eose 3233 ooee “sce’ 208c . ssear 32322
GO0O000 ~ RPN NePssO0C S0O6S 00060 20000 20000000 00000000 9000000000000 0060000 (L34 ® L dad L1 0 8@e
[d ¢ >0.90,0000000 60000 0008660900000 90000000 206006000 0000000000000 000000 (113 [4 e 9008000000000
[¢ 0920006080000 06000 0006000800000 00000000 900006000 0000800000000 900000 [o €32000000000
SO008A0 000000600006 00000 [(21T T1] 20000600080 20000000 90000000 0000000000008 000000 ® ® i 040000000
0008000 0000000 0008000

Page of SC28-6874-3
Issued 29 September 1978
By TNL: SN21-5634

Fourth Edition (September 1976)

This is a major revision of, and obsoletes, SC28-6874-2 and Technical Newsletters
SN21-5329 and SN21-5259. Changes are indicated by a vertical line at the left of the
change.

This edition applies to the System/3 program versions listed below and to all subsequent
versions and modification levels until otherwise indicated in new editions or technical
newsletters:

System/3 Version Modification Program Number
Model 6 13 00 5703-FO1
Model 10 13 00 5702-FO1
Model 12 2 00 5705-FO1
Model 15 5 00 5704-FO1
Model 15 1 00 5704-FO2

Changes are continually made to the specifications herein; before using this publication
in connection with the operation of IBM Systems, consult the latest /BM System/3
Bibliography, GC20-8080, for the editions that are applicable and current.

Use this publication only for the purposes stated in the Preface.

Publications are not stocked at the address below. Requests for copies of IBM
publications and for technical information about the system should be made to your
IBM representative or to the IBM branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use the
Reader’s Comment Form at the back of this publication to make comments about

this publication. If the form has been removed, address your comments to IBM
Corporation, Publications, Department 245, Rochester, Minnesota 55901. 1BM may
use and distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the
information you supply.

© Copyright international Business Machines Corporation 1972, 1974, 1976

This publication describes the System/3 FORTRAN {V
language and the use of the System/3 FORTRAN 1V proces-
sor to run programs written in the language.

This publication is intended to be used as a reference
manual by persons writing programs in the System/3 FOR-
TRAN 1V language. You should have some knowledge of
FORTRAN before using this publication. A usefu! source
of this information is the set of programmed instruction
texts describing the System/3 FOR™RAN 1V language,
Order Numbers SR29-5015 througr SR29-5019.

System/3 FORTRAN IV contains those features defined
in American National Standard Bas c FORTRAN X3.10-
1966; language extensions supported by IBM 1130 Basic
FORTRAN IV; and additional capabilities previously
available only with certain IBM Full FORTRAN 1V com-
pilers.

The System/3 FORTRAN 1V processor is a program product
consisting of a compiler and a library of mathematical func-
tions, service subprograms, and commercial subroutines.

The System/3 FORTRAN 1V program product operates

on the IBM System/3 Model 10 Disk System, IBM System/3
Model 6, IBM System/3 Model 12, and on the IBM
System/3 Model 15.

Preface

The IBM System/3 Model 8 is supported by System/3
Model 10 Disk System control programming and System/3
Model 10 FORTRAN V. The facilities described in this
publication for the Model 10 are also applicable to the
Model 8, even though the Model 8 is not referenced. Some
of the devices discussed in this publication might not be
applicable for the Model 8. Model 8 users shou!d be
familiar with the contents of /BM System/3 Model 8
Introduction, GC21-5114.

All references to the System/3 Model 15 in this publication
apply to System/3 Models 15A, 15B, 15C, and 15D unless
otherwise specified.

Direct Access Storage for Models 12 and 15

The IBM 3340 Direct Access Storage Facility attaches to
System/3 Model 12 and to System/3 Models 15B, 15C,
and 15D. Also, the IBM 3344 Direct Access Storage
attaches to System/3 Model 15D. Certain areas on the
3340 and 3344 disks are treated as 5444 disks. These
areas, known as 5444 simulation areas or simulation areas,
are used for the program libraries and can also be used for
data files. The remainder of the disk space, known as main
data area, can only be used for data files.

References in this manual to 5444, 5445, and 3340 are to
be interpreted according to which disk storage device(s)

is {are) attached to the system. Use the following table to
determine the meaning of the reference:

Models 12, 158,
Reference Model 15A Meaning 15C Meaning Model 15D Meaning
5444 5444 Disk Storage Drive 5444 simulation area Simulation area on
on 3340 3340 or 3344
5445 5445 Disk Storage Main data area on 3340 Main. data area on 3340
or 3344
3340 Not applicable Main data area on 3340 Main data area on 3340
or 3344

For further information, see the appropriate publications
listed under Related Publications.

IBM System/3 5448 Disk Storage Drive

The IBM System/3 5448 Disk Storage Drive on System/3
Models 8 and 10 uses the same program product support
as the IBM 5445 Disk Storage. However, a separate system
control program feature is required for the 5448. In
general, references to 5445 in this manual also apply to
5448. For specific information about 5448 operating
characteristics and programming support, see the /BM
System/3 5448 Disk Storage Drive Program Reference
Manual, GC21-5168.

Related Publications

Publications containing information about the System/3
FORTRAN IV program product, System/3 Model 6,
System/3 Model 8, System/3 Model 10 Disk System,

System/3 Mode! 12, and System/3 Model 15 are:

Order Number of Publication for

System/3
System/3 System/3 Model 10 System/3 System/3

Manuals Modlel 6 Model 8 Disk System Model 12 Model 15
FORTRAN IV
Commercial Subroutines SC28-6875
Introduction GA21-9122 GC21-5114 GC21-7510 GC21-5116 GC21-5004 E
Operator’s Guide GC21-7501 GC21-7634 GC21-7508 GC21-5144 (GC21-5075
System Generation
Reference Manual GC21-5126 GC21-7616
Halt Guide
(System Messages) GC21-7541 GC21-7540 GC21-5145 GC21-5076
System Control 5704-FO1
Programming Reference , _ GC21-5077

21- 221- GC21-5130 -
(Operation Control GC21-7516 GC21-7612 5704-F02:!
Language) GC21-5162
Overlay Linkage Editor
Reference Manual GC21-7561
Disk Concepts and
Planning Guide GC21-7571
]

User’s Guide GC21-5142
Components
Reference Manual GA34-0001 GA21-9209 GA21-9103 GA21-9236 GA21-9193

3340 Reference

3741 Reference
Manual

GC21-5111

5704-FQ2
only
GC21-5113

' Availability date for GC21-5162 manual is not the same as for this manual. Orders sent shortly after the issue date
of this manual might be considered invalid.

Page of 5C28-6874-3
issued 29 September 1978
By TNL: SN21-5634

Contents

HOW THIS MANUAL IS ORGANIZED
PART 1. SYSTEM/3 FORTRAN {V LANGUAGE

CHAPTER 1. FORTRAN STATEMENTS
Coding FORTRAN Statements
Colurnne 1-5-Statement Number
Colurni, 1—Comment Statement
Column 6—~Continuation
Colurins 7-72—-FORTRAN Statement
Coiurnns 73-80 {or 73-96)—Program Identlflcatnon
Elements of the lLLanguage
Order of Statements in a FORTRAN Program

CHAPTER 2. CONSTANTS, VARIABLES, AND ARRAY
ELEMENTS .
Integer and Real Calculatcons

Data Types and Data Description
Operation Symbols
Constants .
Integer Constants
Real Constants
Hexadecimat Constants
Literal Constants
Variables .
Variable Names
Varianle Types
Arrays
Arrangement of Arrays in Storage
Subscripts .
Form of Subscripts

CHAPTER 3. ARITHMETIC ASSIGNMENT STATEMENTS
AND EXPRESSIONS
Arithmetic Assignment Statements
Expressions .
Rules for Constructmg Expressnons
Mode of an Arithmetic Statement

CHAPTER 4. CONTROL STATEMENTS

Unconditional GO TO Statement

Computed GO TO Statement

Relational IF Statement

Arithmertic tF Statement

DO Sratement

CONTINUE Statement

PAUSE Statement

STOP Statement .
PAUSE and STOP Algorlthm
Character to Displacement
Decimal to Hex

END Statement

CHAPTER 5. FORMAT OF INPUT/OUTPUT

Format Statement .
Various Forms of a Format Statement

vi

00NN NNNOOMm

15
15
15
15
17

19
19
19
20
21
21
23
24
24
25
26
26
27

29
29
30

Format Codes for Numeric Data
| Format Code {alw)
F Format Code {aFw.d)
D and E Format Codes {aDw.d, aEw. d)
Scale Factor {nPc)
Format Codes for Alphameric Data
A Format Code (aAw} .
H Format Code (sttnng) and therais Enclosed in
Apostrophes
Specifying Blank Fields in a Record (X Format Code)
Formatting the Record (T Format Code)
Lists for Transmission of Data
Indexing in Input/Qutput Lists
Implied DO Notation in Input/Qutput Llsts
Additional Details of Input/Output Lists
Printed Output
Data Input to the Object Program
List-Directed Input Data
List-Directed Output Data

CHAPTER 6. INPUT/OUTPUT STATEMENTS

SEQUENTIAL INPUT/OUTPUT STATEMENTS

READ Statement

WRITE Statement

END FILE Statement

BACKSPACE Statement

REWIND Statement .

DIRECT-ACCESS INPUT/OUTPUT STATEMENTS

Define FILE Statement

Direct-Access READ Statement

Direct-Access WRITE Statement

FIND Statement .
General Example— Dlrect Access Operatnons

CHAPTER 7. SPECIFICATION STATEMENTS
TYPE Statements
IMPLICIT Statement
Explicit Specification Statements (INTEGER and
REAL) .
DIMENSION Statement
COMMON Statement
EQUIVALENCE Statement
Other Specification Statements
Data initialization Statement

CHAPTER 8. SUBPROGRAMS
Naming Subprograms
Statement Functions
Function Definition
Function Reference
FUNCTION Subprograms
SUBROUTINE Subprograms
CALL Statement
RETURN Statement

31
31
32
32
34
34
34

35
36
36
37
37
38
38
39
39
40
40

41
42
42
43
43
43
44
45
45
46
47
48
49

51
51
51

52
53
53
56
57
57

59
59
59
59
60
61
62
63
64

Dummy Arguments in a Function or Subroutine
Subprogram
EXTERNAL Statement
Automatic Function Selection
GENERIC Statement

CHAPTER 9. INTERPROGRAM COMMUNICATION
PROGRAM Statement

INVOKE Statement

GLOBAL Statement

CHAPTER 10. DEBUG FACILITY
DEBUG Statement

AT Statement .o

TRACE ON Statement

TRACE OFF .

Examples of the Debug Facmty

CHAPTER 11. EXAMPLES OF FORTRAN
PROGRAMS

Sample Program 1

Sample Program 2

PART 2. SYSTEM/3 FORTRAN IV USER’'S GUIDE

CHAPTER 12. OVERVIEW OF FORTRAN
PROCESSING

How a FORTRAN Program is Processed

Using Operation Control Language (OCL.)
IBM System/3 FORTRAN-Supplied ?rocedures
Libraries

Compiler, Linkage Edltor and Load Module Output

Defining Files .
Files Needed by the Comptler and Lnnkage Edltor
Files Needed by the FORTRAN Loadi Module
Defining FORTRAN Files at Compilation Time
Defining FORTRAN Files at Execution Time
Logical Unit Numbers

CHAPTER 13. COMPILATION
Compiler Option Statements
READ Device Option Statement .
PRINT and NOPRINTER Device Op:ion Statements
PUNCH Device Option Statement
DAD40, DAD44, and DADA45 Device Optlon
Statements .
SEQA40, SEQ44, and SEQ45 Devuce ()ptlon
Statements
TAPE Device Option Statement
CORE Statement .
CATEGORY Statement
*PROCESS Statement
Batched Compilation .
Combining OCL and Compller Optlon S ‘atements

CHAPTER 14. LINKAGE EDITOR PROCESSING
Compiler Input to the Linkage Editor

OCL Statements Needed for the Linkage Edltor
Linkage Editor Control Statements

Linkage Editor Overiay Feature

CHAPTER 15. LOAD MODULE EXECUTION

OCL Statements Needed for Load Module Execution

Program Data

Combining Load Module OCL Statements W|th Complle
Step Statements

64
65
66
66

69
69
69
70

7
71
72
72
73
73

75
75
76

81

83
83
86
86
88
88
88
88
88
88
89
89

93
93
94
94
95

95

96
97
97
98
98
102
102

105
105
105
106
106

107
107
108

108

Page of SC28-6874-2

Issued 29 September 1978

By TNL: SN21-5634

CHAPTER 16. JOB QUTPUT
Object Module
ESL Records
RLD Recoras
END Record
Compiler Output Listing
Messages .
Output from *PRCC FSS Op’lons
Object Module Curd Deck
Source Module Listing
Storage Map
Linkage Editor Qutput
Load Module
tinkage Editor Oumut Listing
Output from Options
Load Module Qutput
Messages
Program Outpit
Using the FORTRAN Traceback Llstmg

PART 3. PROGRAMMING CONSIDERATIONS

CHAPTER 17. DIRECT-ACCESS PROGRAMMING

CONSIDERATIONS
Formatted 1/O

Unformatted 1/0
Sharing the Associated Variable Between Programs
Minimizing Direct-Access 1/0 Time
Buffer Assignment for Direct-Access Files

Sharing Buffers

CHAPTER 18. SEQUENTIAL DISK AND TAPE
PROGRAMMING CONSIDERATIONS

Formatted or List-Directed

Unformatted 1/0O

Buffer Assignment for Sequentlal F|Ies .

Restrictions on the Order of Sequential 1/0O Operatlons

Model 16 Multifile Tape Processing

Tape Processing in Programs Using Overlays

CHAPTER 19. FORTRAN IMPLEMENTATION
CONSIDERATIONS

Array Considerations

Expression Considerations

Real Number Considerations

Assignment Statement Considerations

Control Statement Considerations

CALL Statement Considerations

Subprogram Vaiue Considerations

Setting up a Job Stream for Programs Contammg
PROGRAM and INVOKE .

Separating Debug, DUMP, or PDUMP Output from
Other Program Output

Directing Program OQutput to Both a Prlnter and a
Card Punch

DEBUG Facility Conslderatvons

Assigning Names to User-Supplied Subprog:ams

CHAPTER 20. SYSTEM CONSIDERATIONS
Optimum Assignment of $WORK and $SOURCE
Work Files
Assignment of Wovk F|Ies on One DlSk
Assignment of Work Files on Two Disks
Model 15 Assignment of Work Files on 5445 or 3340
Disk Storage . .
Linkage Between Modules Produced by System ‘3
Language Translators
Standards

i

1T
118
11
1o
T
119
Y24
120
124
124
i24
124

129

137
131
131
131
132
132
134

135
135
135
138
138
138
138

139
139
139
139
139
139
140
140

140
140
141

141
142

145
145
14%
145

146
148

vii

Console Display Panel Dial Settings
Models 10 and 12 Dual Programming Con5|derat|ons
Mode! 15 Considerations .
Model 15 Spooled Envnronment and Multlprogvammlng
Model 15 CRT/Keyboard Support
Model 15 Double Buffering for Card Dewces
Considerations/Restrictions .
Differences Between 1130 and System/3
Unit Numbers
Device Options
Specifying the BCD Optlon
Read/Punch on the Same Card
Cali Link e
Associated Variables in Subroutines
Library Routines
Passing Arrays .
Length Specification of Vanables .
Use of COMMON, EQUIVALENCE, and DEFINE
FILE
Rounding .
Passing Scalar Arguments to Subroutlnes
Forms Control
Commercial Subroutines
Decirnal Data Format
A1 Data Format
Negative Zero
Number of Record Flelds in the DEFINE FILE
Statement

PART 4. REFERENCE

CHAPTER 21. FORTRAN STATEMENT REFERENCE
Arithmetic Assignment Statement
Arithmetic IF Statement
AT Statement .
BACKSPACE Statement
CALL Statement
COMMON Statement .
Computed GO TO Statement
CONTINUE Statement
DATA Statement
DEBUG Statement .
DEFINE FILE Statement
DIMENSION Statement
Direct-Access READ/WRITE Statement
DO Statement
END Statement
END FILE Statement
EQUIVALENCE Statement
Explicit Specification Statement
EXTERNAL Statement
FIND Staternent
FORMAT Statement
Function Definition Statement
FUNCTION Statement
GENERIC Statement
GLOBAL Statement
GO TO Statement
IF Statement
IMPLICIT Statement
INTEGER Statement
INVOKE Statement
PAUSE Statement
PROGRAM Statement L.
READ Statement (Direct-Access)
READ Statement (Sequential)
REAL Statement

viii

148
149
149
149
149
150
150
151
151
152
152
152
153
7683
153
154
154

154
154
154
155
155
155
155
165

155

157

159
159
159
160
160
160
160
161
161
161
161
162
162
162
162
163
163
163
163
163
163
164
164
164
164
164
165
165
165
165
165
165
166
166
166
166

Relational IF Statement

RETURN Statement

REWIND Statement .
Sequential READ/WRITE Statements
STOP Statement .
SUBROUTINE Statement

TRACE OFF Statement

TRACE ON Statement .
WRITE Statement {Direct- Access)
WRITE Statement (Sequential)

CHAPTER 22. SYSTEM/3 FORTRAN INTRINSIC AND
EXTERNAL LIBRARY FUNCTIONS
Algorithms
Control of Program Exceptlons in Mathematlcal
Functions
Exponential Functlons
EXP, REAL*4 Exponent»al Functlon (Module Names
EXP,$FOMM,$FOMC) .
DEXP, REAL*8 Exponential Function (Module
Names DEXP,$FOMN,$FOMD)
Logarithmic Functions
ALOG, REAL*4 Natural Logarlthm (Module Names
ALOG,$FOMS5,$FOMI)
ALOG10, REAL*4 Base 10 Logarrthm (Module Names
ALOG10,$FCMK,$FOMS5)
DLOG, REAL*8 Natural Logarithm (Module Names
DLOG,$FOMJ,$FOMB)
DLOG10, REAL*8 Base 10 Logarlthm (Module Names
DLOG10,$FOML,$FOMB)
Trigonometric Functions
SIN/COS, REAL*4 Sme/Cosme (Module Names
SIN,COS,$FOM1,$FOM3)
ATAN, REAL*4 Arctangent {Module Names
ATAN,$FOME)
DSIN/DCOS, REAL*8 Sme/Cosme (Module Names
DSIN,DCOS,$FOM2,$FOM4)
DATAN, REAL*8 Arctangent {Module Names
DATAN,$FOMF)
Square Root Functions .
SQRT, REAL*4 Square Root (Module Names
SQRT and $FOMG)
DSQRT, REAL*8 Square Root (Module Names
DSQRT and $FOMH)
Hyperbolic Tangent Functions
TANH, REAL*4 Hyperbolic Tangent (Module Names
TANH,$FOMO,$FOMM)
DTANH, REAL*8 Hyperbaolic Tangent (Module Names
DTANH,$FOMP,$FOMN)
Implicitly Invoked Exponentiation Subprograms
$FOM7, Subprogram for 1**J (Module Name $FOM7
Secondary Entry Point #FOM7) .
$FOMS, Subprogram for A**J (Module Name
SFOMS8) .
$FOM9, Subprogram for D**J (Module Name
$FOMO)
$FOMA, Subprogram for A**B (Module Names
$FOMA,$FOMS5,$FOMC)
$FOMB, Subprogram for A**B (Module Names
$FOMB,$FOMB,$FOMD)
$FOMC, REAL*4 Subprogram to Compute 2"
{Module Name $FOMC) .
$FOMD, REAL*8 Subprogram to Compute 2’(
(Module Name $FOMD)

167
167
167
167
167
167
168
168
168
168

169

169

173
174

174

174
175

175
176
176

176
177

178
179

180
181

181

182
183

183

183
184

184
185
185
186
186
187

188

Page of SC28-6874-3
Issued 29 September 1978
By TNL: SN21-5634

CHAPTER 23. FORTRAN SERVICE SUBPROGRAMS . 189
Machine Indicator Test Subprograms 189
Pseudosense Light Subprogram (Entry Names
SLITE/SLITET) 189
Divide Check Subprogram (Entry Name DVCHK) .. 189
Overflow Indicator Subprogram (Entry Name:
OVERFL) P £ - <
Utility Subprograms 190
End Execution Subprogram (Entry Name EXlT) .. 190
Storage Dump Subprogram (Entry Names:
DUMP/PDUMP) .o 190
Transaction Logging Subprogram (SUBR81)
5704-FO2 Only . . A 2
Address/Data Switch bubprogram (Entry Name
DATSW) 192
Library Function Error Subprogram (Entry Name
FCTST) 193
ROLLOUT Support Subprogram (Entry Name:
INQCHK) L. 195
Inquiry Support Subprogram (Entry Name
SETINQ) R 195
Date/Time-of-Day Subprogram (Entry Ndme
CFTOD) 19
GLOSSARY . & X
APPENDIX A. FORTRAN SAMPLE PROGRAM .. 20
Fortran Sample Program L s 20
APPEND!IX B. COMPILATION MESSAGES 209

INDEX 2

This page is intentionally ieft blank.

System/3 FORTRAN IV consists of a /anguage and a
processor.

The System/3 FORTRAN IV languege is especially useful
in writing source programs for appli:ations that involve
mathematical computations and other manipulation of
numerical data, Source programs witten in the System/3
FORTRAN IV language consist of a set of statements
constructed from the language elemants described in this
publieation,

The processor consists of a FORTRAN compiler and a
llbrary of EORTRAN subprograms that perform operations
required during program execution, In a process calied
compllation, the FORTRAN compiler analyzes the source
program statemants and translates them into an object
module. n a process called /ink-edi'ing, the object module
Is combined with FORTRAN subprograms from the library,
and with any user-wrlitten subprograms, and bacomes a
lead madule, suitable for execution. In a process called
load module execution, the load madule Is run by the
System/3 System Control Program.

Part 1. System/3 FORTRAN IV Language

System/3 FORTRAN |V Language

3

Chapter 1. FORTRAN Statements

Source programs consist of a set of statements from which
the compiler generates instructions, constants, and storage
areas. A given FORTRAN statemert:

® Causes certain operations to be performed.

® Specifies the nature of the data teing handled.

® Specifies the characteristics of the source program.
FORTRAN statements are composed of certain FORTRAN
keywords used in conjunction with the elements of the

language: constants, variables and expressions.

There are two broad classes of FORTRAN statements—exe-
cutable statements and nonexecutable statements:

Class Purpose Example
Executable Performs calculations A=B+C
Statement
Transfers data between main storage and an input/output device WRITE, READ
Controls operation of an input/output device REWIND
Changes the order of execution in the program GO TO
Terminates program execution STOP
Nonexecutable Provides initial values for variables and arrays DATA
Statement
Specifies the form in which data is to appear FORMAT
Defines the properties of variables, arrays, and functions REAL+8
Declares th: operations to be performed by statement functions CALC(1,J)=3+1/J
Names and specifies arguments for subprograms SUBROUTINE SUB3(A &}

FORTHAN Statements 5

Some examples of FORTRAN statements and their effects
are:

Statement Meaning

A=96.0 Assigns the vaiue 96.0 to the variable
named A,
C-A/3 The stash (/) indicates division. Thus,

this statement means divide A by 3 and
set C equal to the result. Using the data
of the previous example, C would be
given the value 32.

For purposes of clarity in coding FORTRAN elements in
this publication, we use uppercase letters to inclicate actual
coding, and lowercase letters to indicate a value that must
be supphed.

CODING FORTRAN STATEMENTS

Although the usual form of input to the computer is a
deck of punched cards, the initial coding of FORTRAN
statements is generally on a coding sheet. The FORTRAN
coding form, order number GX28-7327, is shown in

Figure 1.
. GX28.7327 U/MOBO
FORTRAN Coding Form Printed 1n U.S.A.
PROGRAM PUNCHING GRAPHIC PAGE OF
PROGRAMMER I)ATE INSTRUCTIONS| puncH CARD ELECTRO NUMBER
3 - TOENTIFICATION
Hoomen |2 FORTRAN STATEMENT SEQUENCE
TI7 3 4567 35 0111213141636 17 181020 21 2223 24 75 26 27 28 29 20 31 32 33 34 35 36 37 3 30 40 41 47 43 44 45 46 47 45 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 60 70 71 72|73 74 75 76 17 78 79 B0
‘ BESEEEES T T T NEERE '
i l i - | i | I i
1 L T T t . T t
' | I | I i
; . - ‘ I } ;
co . ! !
o i —
i : t
. o i | ! ! ! | :
‘ S — : b * ' :
I ! | | i H !
: ; 4 L ; 4t
IR | T T | T f !
b - = H— . { tt
L) | ! i 1 i . s 4 1]
R i ' ! T i f . ! i
! N i I | I I ; Il
ERERE ' ERENERER r ! ’ 3 ERREDEEE “
- | e ‘ ‘ i B i T
; i ;
! . It ! i I | i
1 t % T il | l t = f i t T
| It } [
i i T T ! ' i I
1 , . i j . I +
4 1 SREEI 4~ +—— T ! M
——t e + : T
H H i I
ot T I ! | !
i | | H
; Lo Y L 1 ‘-
— ! : +—+ H :
| ’ i l Ll
f ! -t 1 : : + t '
! | .
|] ; I I 1
i —— + — + B ¢ ;
i P i i ; [
+ R e : : — i - -+
i | | ‘ ' !
i i’ ! ! i ' ' ! 1 - i i
L Co i : i i il
— , it j - ; ? -
I i R N H I K I .
! ‘ ' * + - + . ;
¢ ! i . ; i |
n F it i by 4 4 4 + L
1 Tll I I T I T I t T ‘
; | , | ; b i : ! ; ; :
H i A i L1 n L It I L Y- L
1 2‘3 4 5]6]7 8 9 1011213181516 17 181320 “2223‘24252{77"‘2‘829:031 323334‘353637‘38:34041 474344454547 48495061 57535455 5657 5B 50 60 61626364 856667 6869 70 71 7217374 75 76 .7 718 79 80

Figure 1. FORTRAN Coding Form

6

Columns 1-5—Statement Number

Columns 1-5 can be used to enter a number by which the
statament is referred to. Statement numbers can be assigned
in any order; the sequence of operations depends only on
the order of the statements, not on tteir statement numbers.
Blanks and leading zeros in statement numbers are ignored
by the FORTRAN processor. Thus,

00090

90

09 0
and 20

are equivelent. However, a given statemant number can be
assigned only once in a program unit,

Column 1-Commant Statement

Commaents that explain the program ¢an be written in
columns 2-72 of a line having a C in column 1, Comments
are not processad by the FORTRAN compller, but are
printed in the compller listing, A corament statement can-
not appear between continuation lines of a statement,

Calumn 8—Continuation

If 3 statemaent is too long for one line, it can be continued
on as many as 19 successive lines by placing a character
other than zero or a blank in column 6, |f desired, the
charaetars In column 8 ean he used to indicate the order of
continuation lings; that is, the eharacter A can be used for
tha first continuation line, B for the tecond, etc. A blank
or zero in calumn 6 indicates that thi line is the initial line
of s statement,

Columns 7-72—FORTRAN Statement

The FORTRAN statement must be written only in columns
7-72 of each line of the coding form.

Bianks can be used to improve the readability of a FOR-
TRAN program because the compiler ignores blanks except
in certain limited cases (literal fields of FORMAT or DATA
statements and column 6 of a card).

Thus
A=B{l,J)-D-(C/E}-F++K

and
A=B(l,J)-D-(C/E)-F=«=«K

are equivalent.

Columns 73-80 (or 73-96)~—Program ldentification

Columns 73-80 {or 73-96 for 96-column cards) can be used
for identifying information. These columns are not ana-
lyzed by the compiler, although the information in columns
73-80 is printed in the compiler listing. When 96-column
cards are used, columns 81-96 are not printed in the com-
piler listing.

FORTRAM Statervents 7

ELEMENTS OF THE LANGUAGE

In order to write FORTRAN programs, it is necessary to
learn the rules for writing the following elernents of the

language:
Name of Element Purpose
Constant Specifies a numeric vatue
Variable Refers to a particular area in storage
Array eloment A member of a collection of data that has identical

attributes

Mathematical Causes mathematical computations
expression
Assignment Assigns a quantity to a variable or array element
statement
Control statement Affects the order in which statements are executed
Specification Provides information about the data used in the source
statement program, and the amount of storage required for it
Input/Qutput Cets data into the computer or transfers data to an
statement output device
Subprogram Performs a series of statements to be performed
statement

ORDER OF STATEMENTS IN A FORTRAN PROGRAM

The order of statements in a FORTRAN program is as
follows:

1. Subprogram statement for a subprogram. PROGRAM
statement, if any, for a main program.

2. IMPLICIT statement, if any.
3. Other specification statements, if any.

4, Statement function definitions, if any, to describe
statement functions.

5. Executable statements, at least one of which must
be present.

6. END statement, to indicate the end of the program.

FORMAT and DATA statements can appear anywhere
after the IMPLICIT statement, if present, and before the
END statement. DATA statements, however, must follow
any specification statements that contain the same variable
or array names.

8

Examples
27 or 3.14159
XorY

X{l)or Y(3,2)

A+B or 3«J

A =B/C

DO or GO TO

IMPLICIT, REAL,

COMMON

READ , WRITE

SUBROUTINE,
FUNCTION

FORTRAN provides a means of expressing numeric con-
stants, variable quantities, and array elements. The rules
for expressing these quantities are quite similar to the rules

of ordinary mathematical notation. However, each of these

quantities can be expressed in one of two modes: integer
or real {floating-point).

Integer and Real Calculations

Floating-point calculations are carried out between two
real numbers in one of two degrees o precision-—-single
precision (REAL=*4) or double precis on (REAL x8)—that
can be specified by the user. The nuinber of digits main-
tained for single precision is approximately 7, and for
double precision approximately 17. Some typical floating-
point calculations are:

Arithmetic Result of
Operation Calculation
A=.4301/1.7 A=25%
B=5./2. B=25
C=1.6x.7 C=1.12
D=-2.7+1.2 D=--1.E

In floating-point calculations roundirig does not occur;
digits in excess of the precision are dropped.

Integer calculations are carried out differently; no decimal
remainders are retained or used in computations. For
example:

Arithmetic Result of

Operation Calculation

1=5/2 1=2 (instead of 2.5, because
the .5 is truncated)

1=5/2+7/2 I=5 (intermediate truncation
computes this as 2+3
rather than 12/2)

J=5x2 J=10

K=-4+1 K=-3

Data Types and Data Description

FORTRAN deals with arithmetic, literal, and hexadecimal
data. Arithmetic data can be represented as a real or inte-
ger number, a constant, a variable, or an array (a group of
related members that have related attributes).

Operation Symbols

Operation symbols used in FORTRAN are:

+ Addition

- Subtraction

* Multiplication
Division

* % Exponentiation

To express the arithmetic operation A=,4301 divided by
1.7, the following statement can be used:

A=.4301/1.7

To express the operation J equals the product of 5 and 2,
this statement can be used:

J=5%2

CONSTANTS

A constant is a number that is used in computations with-
out change during execution of the program. |t appears
in its actual numeric form in the source statement. For
example, in the statement

J=3+X

3 is a constant because it appears in actual numeric form,

Constants, Variables, and Array Elements

Chapter 2. Constants, Variables, and Array Elements

G

Four types of constants can be specified in FORTRAN: Invalid Integer Constants Reason

® Integer constant—written without a decimal point or 4.321 Contains a decimal point
exponent
-3,675 Contains a comma
® Real constant—written with a decimal point and/or an
exponent 5436578656 Exceeds the magnitude per-
mitted by the System/3
® Hexadecimal constant—the character Z followed by the FORTRAN |V processor

hexadecimal characters 0 through 9 and A through F,
® Literal constant—a string of alphabetic, numeric, and/or Real Constants
special characters enclosed in apostrophes . .
A real constant is any of the following:
The rules for writing each of these constants are given in the

. . 1. A basic real constant is a number written with a
following sections.

decimal point, using the decimal digits 0, 1, ..., 9.

A preceding + or - sign is optional. An unsigned con-

stant is assumed to be positive.

Integer Constants P

2. A basic real constant followed by a D or E, followed
by an exponent. The exponent is a signed or unsigned
one- or two-digit integer constant. An unsigned ex-
ponent is assumed to be positive.

An integer constant is a whole number written without a
decimal point, using the decimal digits 0, 1, ..., 9. A pre-
ceding + or - sign is optional. An unsigned constant is
assumed to be positive.

An integer constant followed by a D or E, followed

All integer constants occupy four storage locations (bytes). by an exponent

The magnitude of an integer constant cannot exceed

31
2,147,483,647 (2°" -1). In the exponent, the letter E specifies a single-precision

constant occupying four storage locations {bytes}, and the
letter D specifies a double-precision constant occupying
eight storage locations. Unless it contains a D exponent, a
real constant always occupies four storage locations.

Examples:

Valid Integer Constants

+g Precision: Single precision—6 hexadecimal digits, or
approximately 7.2 decimal digits.
186 pp! Yy g
-327 .. . -
6 Double precision—14 hexadecimal digits, or
45 approximately 16.8 decimal digits.
123456 b (blank) is ignored by the orocessor

Magnitude: Single-precision and double-precision con-
stants have the same magnitude limitations:
0, or 167%° (approximately 10-78) through
16%3 (approximately 1075).

The decimal exponent permits the expression of a real
constant as the product of a basic real constant or integer
constant times 10 raised to a desirecl power.

Examples:

Valid Real Constants
{single precision)

Equivalent To

+0.
-999.9999
7.0E+0 7.0x10"=7.0

19761.25E+1 19761.25 x 10' = 197612.5

7.E3 Z
7.0E3 7.0 x 10° = 7000.0
7.0E+03 S
7E-03 7.0 x 1073 = 0.007

21.4354657687
not be accommodated in four
storage locations. Positions to
the right of the decimal point
that cannot be accommodated
are truncated.

Valid Real Constants
{double precision) Equivalent To
1234567890123456.D-93

.1234567890123456 x 10”77

7.9D03

7.9D+03 7.9 x 10" = 7900.0
7.9D+3

7.9D0 7.9x10° =79
7003 7.0 x 10° = 7000.0

Note: Thnis level of precision can-

Invalid Real Constants Reason

1 Missing a decimal point or ex-
ponent)
3.471.1 Embedded comma

1.E Missing an integer constant
following the E

1.2E+113 E is followed by a three-digit

integer constant; must be one-

or two-digits

23.5E+97 Magnitude outside the aliowable

range; 23.5 x 10°7 greater than

1663

21.3E-90 Magnitude outside the allowabie

range; 21.3 x 107°° less than

16—65

Hexadecimal Constants

A hexadecimal constant is used only in DATA initialization
statements to specify initial values for variables and array
elements. A hexadecimal constant contains the character
Z followed by a hexadecimal number {0, 1,..., 9, A, B, C,
D, E, F).

In System/3, the basic unit of storage is an 8-bit byte. Under
this sytem, one byte contains two hexadecimal digits. The
internal (binary} form of each of the 16 possible hex digits

is as follows:

Hex Binary Hex Binary
0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 Cc 1100
5 0101 D 1107
6 0110 E 1110
7 0111 F 1111

pry
-

Constants, Variables, and Array Elemenis

If a constant with an odd number of digits is specified, a

leading hexadecimal zero is added on the left to fill the stor-

age location,

Examples:

The eight-digit hexadecimal number Z1C49A2F 1 represents

the bit string 0001 1100 0100 1001 1010 0010 1111 0001

The seven-digit number ZBADFADE represents the bit
string 0000 1011 1010 1101 1111 1010 1101 1110. The
first four zero bits are implied because an odd number of
hexadecimal digits was written.

Further information about hexadecimal constants can be
found in the section that describes the DATA initialization
statement.

Literal Constants

A literal constant is a string of alphabetic, numeric, and/or
special characters, enclosed in apostrophes.

Each character requires one byte of storage. Mote that the
blank is considered a character. The appearance of a blank
is significant only in literal constants and in statement con-

tinuation requirements. {f an apostrophe is to appear in the
literal, it must be represented by two consecutive apostrophes

with no intervening blank.

Literals can be used as data initialization values in the DATA

statement. Rules for this usage are presented in the Chap-
ter 7 description of the DATA statement.

Examples:

'X—-COORDINATE
'3.24159"
'FRANCIS BACON''S ' 'HAMLET''"!

Y-~COORDINATE

12

Z-COORDINATE!

VARIABLES

A FORTRAN variable is a data item, identified by @ name,
that occupies a storage area. The value specified by the
name is always the current value stored in the area.

For example, in the statement
A=5.0+B

both A and B are variables. The value of B was determined
by some previously executed statement. The value of A is
calculated when the above statement is executed, and de-
pends on the previously calculated value of B.

As with constants, a variable can be integer or real, depend-
ing on whether the value it represents is integer or real,
respectively. Because a variable represents an area of stor-
age, it is assigned a length, either implicitly or explicitly.

A real variable can have a length of either four or eight
bytes. An integer variable can have a length of either two
or four bytes.

In order to distinguish between variables that derive their
value from an integer, as opposed to a real number, the
rules for naming each type of variable are different, al-
though these rules can be overridden.

Variable Names

A variable name consists of from 1 to 6 alphabetic or
numeric characters, of which the first must be alphabetic.
In the context of this discussion, the character $ is con-
sidered an alphabetic character. Blanks in a variable name
are ignored.

Examples:

I

ABCD
BILLZ23
I1$2

ITEML

I TEMZL
ITEM 1

In the above list, the last three names are considered
identical.

The rules for naming variables allow for extensive selectivi-
ty. Ingeneral, it is easier to follow the flow of a program if
meaningful names are used wherever possible. For instance,
to compute distance it would be possible to use the state-
ment:

A=B+C

but it would be more meaningful to write:
D=R»*T

or:

DIST=RATE=+TIME

Variable Types

The type of avariable corresponds to the type of the data
the variable represents. Variable tyre can be specified in
three ways: predefined, implicitly, or explicitly.

Predefined Convention

If the first character of the variable name is |, J, K, L, M, or
N, the variable is considered to be an integer variable of
length 4. If the first character of the variable name is not
I,J, K, L, M, or N, the variabte is a real variable of length 4.

Implicit Specification

By use of the IMPLICIT statement, the FORTRAN proces-
sor can be told to ignore the predefined convention for
variable names whose initial letters are specified in the
IMPLICIT statement. Thus, variables whose names begin
with the letters | through N can be cleclared as type real,
and those which begin with A through H or O through 2
can be declared as type integer. In eddition, variables can
be declared to be one of the optionzl lengths: two bytes
for integer variables, or eight bytes for real variables. The
rules for using the IMPLICIT statement are given later.

Explicit Specification

Explicit specification of type (and, nptionally, length) is
made for individual variables by using the INTEGER or
REAL type-specification statements. These statements
override predefined and IMPLICIT specifications. The
rules for using these statements are given later.

ARRAYS

An array is an ordered set of data items identified by a
single name. A member of the array, called an array element
is identified according to its position, by a quantity cailed

a subscript.

Arrays, like variables and constants, have & type associated
with them. The rules for naming arrays are the same as the
rules for naming variables. The type of an array name is
determined by the same conventions that govern the type
of avariable name. Each element of an array is of the type
and length specified for the array name.

Assume the following elements are contained in an array
named NEXT:

15
12
18
42
19

Suppose you want to refer to the second element in the
group; in ordinary mathematical notation this would be
NEXT,. in FORTRAN this would be

NEXT(2)
The quantity 2 is the subscript. Thus

NEXT(2) has the value 12
NEXT(4) has the value 42

Similarly, ordinary mathematical notation might use NEXTi
to represent any element of the set, NEXT. In FORTRAN,
this might be written as NEXT{(!) where | equals 1, 2, 3, 4,
or 5.

The array could be two dimensional, as for example, the
array JO:

Column 1 Column 2 Column 3
Row 1 82 4 7
Row 2 12 13 14
Row 3 91 1 31
Row 4 24 16 10
Row 5 2 8 2

Constants, Variables, and Array Elements 13

Page of SC28-6874-3
Issued 29 September 1978
By TNL: SN21-5634

Suppose you want to refer to the element in row 2, column
3; this would be

JO(2,3)
2 and 3 are the subscripts. Thus,

JO(2,3) has the value 14
JO(4,1) has the value 24

Similarly, ordinary mathematical notations might use JO..
to represent any element of the set JO. In FORTRAN,
this might be written as JO(1,J) where | equais 1,23, 4,or
5and J equals 1, 2, or 3,

The above notation can extend to three-dimensional arrays:

J0(1,2,3)
JO(1,4,K)
JO(5,4,16)

The use of an array in the source program must be preceded
by its declaration in either a DIMENSION statement, a
COMMON or GLOBAL statement, or a type specification
statement specifying the size of the array. These statements
are explained later.

Arrangernent of Arrays in Storage

An array is stored in ascending storage locations, with the
value of the first of its subscripts increasing most rapidly,
and the value of the last subscript increasing least rapidly,

For example, the array named A, described by one subscript
that varies from 1 to 5, appears in storage as follows:

A1) A{2) A(3) Al4) A(5)

The array named B, described by two subscripts, with the
first varying from 1 to 5 and the second from 1 to 3, appears
in storage as follows:

B(1,1) B(2,1) B(3,1) B(4,1) B(5,1) B(1,2) B(2,2) B(3,2)
B(4,2) B(5,2) B(1,3) B(2,3) B(3,3) B{4,3) B(5,3)

Note that B(1,2) and B(1,3) follow in storage B(5,1) and
B(5,2), respectively.

The following list is the order of a three-dimensional array,
C(3,3,3):

C(1,1,1) C(2,1,1) C(3,1,1) C(1,2,1) C(2,2.1) C(3,2,1)
C(1,3,1) C(2,3,1) C(3,3,1) C(1,1,2) C(2,1,2) C(3,1,2)
€{1,2,2) C(2,2,2) C(3,2,2) C(1,3,2) C(2,3,2) C(3,3,2)
C(1,1,3) C(2,1,3) C(3,1,3) C(1,2,3) C(2,2,3) C(3,2,3)
C{1,3,3) C(2,3,3) C(3,3,3)

14

Subscripts

A subscript is an integer quantity or a set of integer
quantities separated by commas, enclosed in parentheses,
and written immediately after the array name. The
subscript is used to identify a particular element of an
array. The number of subscript quantities in a subscript
must be the same as the number of dimensions of the
array. A maximum of three subscript gquantities can
appear in a subscript.

Form of Subscripts

A subscript must be in one of the foliowing forms, (v repre-
sents any unsigned nonsubscripted integer variable, and ¢
and ¢! any unsigned integer constant):

v
c

v+c orv-c

cry

c*v+e! or cxv—c!

Whichever subscript form you use, the evaiuated result
must be greater than 0, less than or equal to the range
of the array, and less than or equal to 32,767. The
evaluated result of a subscript is the product of ali
subscript quantities multiplied by the length of an
element for the associated array. For example, if the
subscript (200,4) is used to reference an element of

an integer *4 array, the evaluated result is the product
of the subscript quantities (200 x 4 = 800}, multiplied
by the length of an element (800 x 4 = 3200).

Examples:
Valid Form of
Subscripts Subscript
(IMAX) v
(19) c
(JOB+2) vte

(NEXT-3) v-Cc
{8xIQUAN) cxy

(5+L+7) crvtc!

(4xM-3) crv-c!

Invalid Reason

Subscripts

(-1 The variable cannot be signed.

(0) A subscript quantity cannot assume the
value 0.

(-2+J) The constant must be unsigned.

(1(3)) A subscript cannot be subscripted.

(K*2) For multiplication, the constant must
precede the variable, thus 2xK is correct.

(2+JOB) For addition, the variable must precede

the constant; thus, JOB+2 is correct.

Chapter 3. Arithmetic Assignment Statements and Expressions

ARITHMETIC ASSIGNMENT STATEMENTS

The arithmetic assignment statement defines a numeric
calculation; it resembles a conventicnal arithmetic formula.

The general form of an arithmetic assignment statement is:
a=b
where
ais avariable or array element.
b is an expression as defined under Expressions.
Examples:
The following are valid arithmetic assignment statements:

A=B+C
D(N=E(1}+2.-F

In an arithmetic assignment statement, the equal sign
means /s to be replaced by rather than is equivalent to. This
distinction is important; for example, suppose an integer
variable 1 has the value 3. Then, the statement

=1+1
would give | the value 4. This feature enables the program-

mer to keep counts and perform other required operations
in the solution of a problem.

The following is an example of a series of arithmetic assign-
ment statements:

Statement Meaning

A=3.0 Store the value 3.0 in A

B=2.0 Store the value 2.0 in B

C=A+B Add the values in A and B and store in
C(3.+2.=5))

C=C+1 Add 1. to the value in C{5.+1.=6.)

EXPRESSIONS

An expression in FORTRAN is a sequence of constants,
variables, array elements, and operation symbols that indi-
cates a quantity or a series of calculations. |t must be
formed according to the rules for constructing expressions.
It can include parentheses and can also include functions
(which will be discussed later). It appears on the right-
hand side of arithmetic assignment statements and in cer-

tain types of control and 1/O statements.

Rules for Constructing Expressions

Because constants, variables, and array elements can be
integer or real quantities, expressions can contain integer
or real quantities; that is, two types can appear in the same

expression.

In the following discussion, no mention is made of the rules
for using integer and real quantities in functions. These
rules are stated when functions are described and are con-

sidered as addenda to the following rules.

1. The simplest expression consists of a single constant,
variable or array element. |f the quantity is an inte-
ger type, the expression is said to be in the integer
mode. If the quantity is a real type, the expression
is said to be in the real mode.

Examples:

Expression

3
3.0
|

A
1(J)

A{)

Type of
Quantity

Integer constant
Real constant
Integer variable
Real variable
Integer array
element

Real array
element

Mode of
Expression

Integer
Real
integer
Real

livteger

Real

In the last example, note that the subscript, winch
must be an integer quantity, does not affect the mode
of the expression. The mode of the expressic: is
determined solely by the type of the quantity jwseif,

Arithmetic Assignment Statements and Expressions 15

16

Real exponentiation of a quantity affects the mode
of the expression; thus:

1%%2.3 Real
%] Integer
Axx| Real
Ax+xB Real

Quantities can be preceded by plus or minus signs

{+ or -}, or can be connected by any of the operation

symbols (+, -, *, /, **) to form expressions, provided:

a. No two operation symbols appear consecutively.
Quantities connected need not all be t1e same
mode but are converted to the higher mode (in the
order INTEGER+2, INTEGER~4, REAL 4,
REAL 8} before the expression is evaluated. For
example, in A+l, if A is real and | is integer, | is
converted to real before the addition. Figure 2
shows the type and length of the result of arithme-
tic operations.

Second

Quantity INTEGER*2 INTEGER+*4 REAL=*4 REAL+8
First
Quantity
INTEGER=*2 INTEGER *2 INTEGER*4 REAL +4 REAL~*8
INTEGER*4 INTEGER =4 INTEGER 4 REAL+4 REAL~*8
REAL x4 REAL*4 REAL+4 REAL 4 REAL =8
REAL*8 REAL*8 REAL+8 REAL+8 REAL*8

Figure 2. Determining the Type and Length of the Result of Arithmetic Operations that use Quantities of

Different Mode

b. No operation symbols are assumed; that is, no two
quantities appear consecutively.

Examples:

Valid
Expressions

-A+B
B+C-J
VA
K=l

Invalid
Expressions Reason

A+-B Must be written as A+(-B).
3J Must be written as 3+J if multi-
plication is intended.

4, The order of operations (hierarchy} must be con-
sidered when writing FORTRAN statements. The
hierarchy of operations {(from highest to lowest) is as

follows:
1. Evaluation of functions
2. Exponentiation (**)

3. Multiplication (*) and Divisicn (/)

4, Addition {+) and Subtraction (-)

Because of this hierarchy, the expression
A+B+C/D+ExxF-G+H

will be taken to mean

A+BD;C+EF-(G*H)

Hierarchy determines which of two consecutive operations
is performed first. If the hierarchy of the first operation is
higher than or equal to the hierarchy of the second opera-
tion, the first operation is performed. If itis not, the
hierarchy of the second operation is compared to the
hierarchy of the third, etc. Once an operation is executed,
the next comparison starts with the last operation that was
skipped.

In the following examples, the operations are numbered in
the order in which they will be performed:

X=A+B*xC/D+E*+F-G=H
3 1 2 5 4 7 6

When evaluating consecutive exponentiation operations, the
order is from right to left:

X = AxsBxxC +D
2 1 3

Parentheses can be used in arithmetic expressions, as in
algebra, to specify the order in which operations are to

be performed. Where parentheses are used, the expression
within the innermost set of parentheses is evaluated first.
For example:

X=({(A+B)*C/D+E)xxF-Gx*H
1 2 34 5 7 8

Mode of an Arithmetic Statement

Expressions must be integer or real; however, the variable
on the left-hand side of the equal sign in an arithmetic
statement need not be of the same mode as the expression
on the right-hand side,

If the variable on the leftis an integer quantity and the
expression on the rigiht is real, the expression is first evalu-
ated as a real quantity, the portion following the decimal
point is dropped, and the remainder is converted to an
integer quantity. Thus, if the result is +3.872, the integer
stored is +3, not +4. If the variable on the left is real and
the expression on the right is integer, the latter is evaluated
as an integer expression, and the result is converted to real.

Examples:
Arithmetic Result of
Statement Calcuiaticon Contents of Variable
A=3/2 1 A is assigned the value 1.0
A=3./2 1.5 A s assigned the value 1.5
1=3/2 1 ! is assigned the value 1
1=3./2. 1.5 I is assigned the value 1
1=3./2 1.5 i is assigned the value 1

Arithmetic Assignment Siatements and Zxpmsiony 17

18

Normally, FORTRAN statements are executed sequentially.

That is, after one statement is executed, the statement
immediately following it is executed. Hovrever, it is often
undesirable to proceed with each statemert in this manner.
This chapter describes the statements used to altter sequen-
tial execution.

UNCONDITIONAL GO TO STATEMENT

The general form of the unconditional GO TO statement is:
GO TOn

where n is a statement number.

This statement is used to interrupt sequential execution; it
indicates the statement that is to be executed next.

Uses: The GO TO statement transfers cortrol to the
statement numbered n.

Considerations/Restrictions: The statement following the
GO TO statement must have a statement riumber in order
to be executed.

Examples:

GO TO 16
GO TO 137

A coding example is shown below:

B=4.

GO TO 7
12 B=2.xA

A=2.+B

Statement 12 is not executed. After the GO TO statement
is executed, statement 7 is evaluated and A is assigned the
value 8.0.

Chapter 4. Control Statements

COMPUTED GO TO STATEMENT

The general form of the computed GO TO statement is:
GO TO (ny,ng, ... ,ngL), i

where

ny,N,,, are statement numbers
i is an integer variable having a value of 1 to ,.

This statement also indicates which statement is executed
next. However, it also gives you the ability to execute
different statements during various stages in the program.

Uses: This statement transfers control to the statement
numbered ny,n,, . .. n, depending on whether the current
valueofiis 1,2, ... ,,, respectively. If the value of i is less
than 1 or greater than the number of statement numbers in
the list, the next sequential statement is executed.

Considerations/Restrictions:

1. i must be given a value before the computed GO TO
statement is executed.

2. No more than 60 statement numbers can be specified
in a computed GO TO statement.

Examples:
GO T0O(5,7,8,2,4),J if Jis 3, transfer control to
statement 8.

GO T0O(4,4,4,7,8,9) MAX This example iliustrates that
several values of i can cause a
transfer of control to the same
statement. In this case, when
MAX has the vaiue 1, 2, or 3,
control transfers to statement
4.

Control Statements 19

Further use of the computed GO TO staternent is illustrated
below:

o

0 TO(10,20,30) K

36 F=A-B
GO TO 12

20 E=A-C
GO TO1

10 D=B-C
GO TO1

12 CONTINUE

As a study of this example shows, D, E and F are computed,
in that order, and control proceeds to statement 12. Of
course, the examplz itself is highly simplified; if these were
the only required calculations in this series, the programmer
would just compute D, E, and F sequentially, in any desired
order and without using the Computed GC' TO statement.

20

RELATIONAL iF STATEMENT

The general form of the reiational {F statement is:
IF (a) s

where
a is a relational expression

s is the associated statement—any executable statement
except a DO statement or another relational |F state-
ment.

A relational expression is formed by combining two arith-
metic expressions with one of the six relational operators:

.GT. Greater Than

AT Less Than

EQ. Equal to

.NE. Not Equal to

.GE. Greater than or Equal to
.LE. Less than or Equal to

Periods must precede and follow the relational operators,
as shown.

Uses: The relational IF statement permits the programmer
to execute or skip an associated statement depending on
whether the relational expression is true or false.

Considerations/Restrictions: The associated statement can
not be a DO statement ot another relational IF statement.

Examples:

IF(A.GT.1.0) GO TO 50
IF(A-B.LT.A+C) A=B

The associated statement is executed if the relational
expression is true. Otherwise, the statement following the
IF statement is executed next. In the second example, if
the relational expression is true, A is set equal to B and then
the statement following the IF statement is executed.

Suppose a series of records, each containing a variable code
number, |, is being read and processed. Certain of the
records, appearing at random but with special code numbers
greater than 99, are to be processed differently. The
FORTRAN statements to accomplish this might be as
follows:

IF{}.GT.99) GO TO 20

ARITHMETIC IF STATEMENT
The general form of the arithmetic IF statement is:
IF (aln;,ny,ng
where
a represents an expression.
n represents a statement number.
The expression, a, must be enclosed in parentheses; the
statement numbers must be separated from one another by

commas. The same statement number can be specified more
than once.

Uses: This statement transfers control to the statement
numbered ny,n,, or ng, depending upon whether the value
of the expression, a, is negative, zero, or positive, respec-
tively.

Considerations/Restrictions: The statement following the
arithmetic IF statement must have a statement number in
order to be executed.

Examples:

IF{A-B)10,10,7
IF(A(1)/D)1,2,3

Control transfers to statement number n,, n,, Or N3
depending on whether the value of a is less than, equal to,
or greater than zero, respectively. Note thatin the first
example, the same statement, numbered 10, is to be
executed if a is less than or equal to O.

As another example, suppose a value, A, is being computed.
Whenever this value is positive, you wish to proceed with
the program. Whenever the value of A is negative, an
alternative routine starting at statement 12 is 1o be followed;
and if Ais zero, an error routine at statement 72 is to be
followed. This may be coded as:

.
.

A=(B+C)/(D*+E)-F

IF(A}12,72,10
10 -
12 -
2 -

DO STATEMENT
The general form of the DO statement is:
DO ni=m; ,m,,m;
where
n (end of range) is a statement number identitying the
last statement to be executed in the range of the DO
statement.
i (the DO variable) is a non-subscripted integer variable.
my (the initial value} is an unsigned integer constant
greater than O or a non-subscripted integer variable.

The value of m; should not exceed the value of m, .

m; (the test value) is an unsigned irteger constant
greater than 0 or a non-subscripted integer variable.

m3(the increment) is an unsigned integer constant
greater than O or a non-subscripted integer variable.
m3 is optional and iIf omitted is assumed to be 1. |f
m3 is omitted, the preceding comma must also be
omitted.

Control Statements 71

Uses: The DO statement is used to control multiple
execution of the statements that physically follow the DO
statement, up to and including the statement numbered n.
These statements are called the range of the DO. For the
first execution of the statements within the DO range, the
variable, i, is set to the initial vaiue, m;. Each time state-
ment n (the end of the range) is executed, the value of i is
increased by the increment value, my, and checked against
the test value, m,. Ifiis less than or equal to m,, the
statements within the DO range are executed again. If the
value of ' s greater than the value m,, the statement
immediately following statement number n is executed
and i becomes undefined.

Considerations/Restrictions:

1. The statements within the DO range are always
executed at least once.

2. A maximum of 25 nested DOs is perrnitted. A nested
DO cannot extend beyond the range of the containing

DO statement.

For example, the following is a valid nest of DOs:

DO outer DO
r—>D00 inner DO number 1
[4-DO inner DO number 2

The following is an invalid nest of DQs.
DO
—DO

Transfer of contro!l to the end of the range of a nest
of DOs is permitted only from the innermost DO. A
transfer from any other DO in the nest causes the
innermost DO to begin execution.

3. Transfer of control from inside the range of a DO to a
statement outside its range {by means of a GO TO or
an IF statement) is permitted at any time. However,
the reverse is not allowed except as specified in item
7 in the following configuration. A transfer of con-
trol is not permitted into the range of any DO from
outside its range. Thus, in the following configuration
1, 2 and 3 are permitted transfers of control, but 4,5
and 6 are not.

22

DO
o—T)
‘______5
2
————
6
3

After a normal exit from a DO (when the DO becomes
satisfied and control passes to the next statement
after the range), the value of the DO variable is not
defined, and the DO variable cannot be used again
until it is defined. If exit occurs by a transfer of
control out of the range, the current value of the DO
variable is preserved for subsequent use.

No statement is permitted in the range of the DO that
changes the value of any of the variable parameters
(i, my, my, or my).

The last statement in the range of a DO must be an
executable statement. |t cannot be a transfer of
control, such as a GO TO of any type, an arithmetic
IF, another DO, PAUSE, STOP, or RETURN. A
relational IF statement is valid only if the associated
statement is not a transfer of control (PAUSE and
STOP are not considered transfers of control when
associated with a relational IF),

The extended range of a DO is defined as those state-
ments that are executed between the transfer out of
the innermost DO of a set of completely nested DOs,
and the transfer back into the range of this innermost
DO. In a set of completely nested DOs, the first DO
is not in the range of any other DO, and each succeed-
ing DO is in the range of every DO that precedes it.
The following restrictions apply:

a. Transfer into the range of a DO is permitted only
if such a transfer is from the extended range of
the DO.

b. The extended range of a DO statement must not
contain another DO statement that has an extended
range if the second DO is within the same program
unit as the first.

c. The variable parameters (i, m;, m,, m3) cannot be
changed in the extended range of the DO.

5O This causes the following computations:

[bo

M(1)=N(1)-1+1
M(3)=N(3)-2%3
M(5)=N(5)-3+5
M(7}=N(7)-4x7

DO M(9)=N(9)-5+9

CONTINUE STATEMENT

The general form of a CONTINUE statement is:

CONTINUE
' Extended
Range
Uses: The CONTINUE statement is used as a dummy
statement that can be placed anywhere in the source pro-
gram without affecting the sequence of execution. The
8. The my, m,, or my values, if constants, cannot primary use of the CONTINUE statement is as the last
exceed 2°1-2. statement in the range of a DO statement, where you
cannot use a transfer of contro! statement.
Example 1:
Considerations/Restrictions: A CONTINUE statement,
without a statement number, is ignored.
15 DO 25J=1,1000 Example: As an example of a program that requires a
25 INV{J)=INV(J)-10UT{J) CONTINUE statement, consider the following:
35 :
Statement 15 is a command to execute the following state- 10 DO121=1,100
ments up to and including statement 25. The first time, J iF (ARG.EQ.VALUE(l)) GO TG 20

is 1; thereafter J is incrased by 1 for each execution of the 12 CONTINUE
loop until the loop is executed with J equal to 1000. After :

the loop is executed with J equal to 1000, the statement

following statement 25 is executed.

This program scans the 100-element VALUE array unti! it
Example 2: finds an entry that equais the value of the variable ARG,
whereupon it transfers control to statement 20 with the
value of | available for use. {f no entry in the array equals
the value of ARG, a normal exit to the statement foliowing
the CONTINUE occurs.
K=0
L=10
DO 5 JOB=1,L, 2
K=K+1
5 M({JOB)=N(JOB)-K+JOB

Controf Statements 23

PAUSE STATEMENT
The general form of the PAUSE statement is:

PAUSE
or

PAUSE n

where n is an unsigned integer constant not Jreater than
99999.

Uses: The PAUSE statement halis program execution and
displays a halt code—bB6 on the Model 10, Madel 12, and
Model 15; 4 on the Model 6. The rightmost two digits of
the value n are displayed as a subhalt. If n i< not specified,
zeros are displayed.

The word PAUSE and the value n are printed as follows:
Model 6

Printed unless // NOPRINTE R has been
specified.

Model 10 Printed on the FORTRAN er-or logging
device. See PRINT and NOPRINTER Device
Option Statements in Chapter 13 for more
information.

Model 12 Printed on the line printer assigned as the
system log device if that printer has not
been allocated to the program prior to the
PAUSE n execution. If // LCG CONSOLE
is specified, the PAUSE n is printed on the
console only.

Model 15 Printed on the printer that is assigned as the
system log device if that printer is not allo-
cated to the program prior to PAUSE n
execution. (PAUSE n is always displayed
on the console.)

Note: The format of the Model 6 display is different from
that on the Model 10, Model 12, and Model 15. Use the
algorithm and tables in Figure 3 to convert one format to
the other.

When execution is halted by the PAUSE statement, the
following responses are permitted:

0 Continue execution of the program with the next
FORTRAN statement

2 Controlled cancel

3 Immediate cancel

24

For an explanation of how to respond to a halt, see the
appropriate Halt Guide, listed in the Preface under Related
Publications.

Considerations/Restrictions:
1. The constant, n, cannot exceed 99999,

2. If n is not specified, zeros are displayed or printed.

Examples:

PAUSE
PAUSE 50
PAUSE 00002

STOP STATEMENT
The general form of the STOP statement is:

STOP
or
STOP n

where n is an unsigned integer constant not greater than
99999.

Uses: The STOP statement terminates execution of an
object program. If n is specified, the STOP statement also
displays a halt code—66 on the Model 10, Model 12, and
Model 15; 4 on the Model 6. The two rightmost digits of
the STOP value, n, are displayed as a subhalt. 1f nis not
specified, normal EQJ is reached.

The word STOP and the value n are printed as follows:

Model 6 Printed unless // NOPRINTER is specified.

Models 10 Printed on the FORTRAN error logging

and 12 device. See PRINT and NOPRINTER Device
Option Statements in Chapter 13 for more
information. If // LOG CONSOLE is
specified, the STOP n is printed on the
console.

Model 15 Printed on the FORTRAN error logging
device. See PRINT and NOPRINTER Device
Option Statements in Chapter 13 for more
information.

Note: The format of the Model 6 display is different from
that on the Model 10, Model 12, and Model 15. Use the
algorithm and tables in Figure 3 to convert one format to
the other.

The only responses to a halt caused by the STOP statement
are:

2 Controlled cancel
3 Immediate cancel

For an explanation of how to respond to a halt, see the
appropriate Halt Guide, listed in the Preface under Related
Publications.

Considerations/Restrictions:

1. Execution of an object program halted by a STOP
statement cannot be resumed.

2. The constant, n, cannot exceed 99999,

Examples:
STOP
STOP 25
PAUSE and STOP Algorithm

Subhalt, STOP, and PAUSE values are converted for display
by the Model 6 according to the following algorithm:

1. Determine the displacement in th2 table (see Charac-
ter to Displacement, Figure 3) of the first character.

2. Multiply the displacement by 22.

3. Determine the displacement of the second character
and add it to the result of step 2.

4, Convert the result of step 3 from decimal to hexa-
decimal (see Decimal to Hex, Figure 3).

5. Write the 9-bit binary eguivalent of the hex value
obtained in step 4. The bits on indicate the display
lights on.

For example, to convert the U2 halt:

U displacement = 7
2 displacement = 4

7x22=154
154 + 4 = 158
158 (dec) = 9E (hex)

9E (hex) = 0000 10011110
A BCD1 2345

Modei 6 halt= B 1234
Following are exceptions to the conversion algorithm:

Disk System Halt Model 6 Halt

EJ ABCD12345
HE BCD12345
5Y A CD12 b
80 35
bo 12 45
ocC AB D12 456
7E CD1 3

0A AB D 2345
Y CD123

Any Disk System halt that ends with (-) except for (- -}
cannot be converted. If Model 6 receives a disk system halt
it cannot convert, Model 6 issues halt ABC 1 3.

Model 6 halts derived from disk system halts can be con-
verted back to disk system halts by reversing the conversion
algorithm. For example:

Model 6 halt B1234
Displayed B 1 234
0000 1001 1110 = QE {hex)

9E (hex) = 158 (decimal) {see Decimal to Hex, Figure 3).
158/22=7+4

7 = displacementifor U (see Character to Displacement,
Figure 3).
4 = displacement for 2 (see Character to Displacement,

Figure 3).

Disk system halt = U2

Contral Statemenis 28

Character to Displacement

Character 816 |E 21lo0j]cluliLiy 9|65 i3!/Y|A|[P|FIH]|A ' 711 -
Displacement| 0 | 1 2131451 6]7|8|9]10l11]12113|14|15]16]17 18119 | 20|21 {22
Decimal to Hex

Low

Order

High 0 1 2 3 4 5 6 7 8 9 A B C D E F
Ord

rer 0 | 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
1 |1 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 00239 0030 0031
2 | 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
3 | 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063
4 { 0064 0065 0066 0067 0068 0069 0070 007t 0072 0073 0074 0075 0076 0077 0078 0079
5 [00BC 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0031 0092 0093 0094 0095
6 [0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
7 10112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127
8 {10128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
9 | 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
A | 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
B | 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0183 0190 0191
C | 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
D | 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
E [0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
F | 0240 0247 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255
10 [0266 0257 0258 0259 0260 0261 0262 0263 0264 02656 0266 0267 0268 0269 0270 0271
1 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
12 | 0288 0289 0280 0291 0292 0293 0294 0285 0296 0297 0298 0299 0300 0301 0302 0303
13 | 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319
14 | 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335
15 { 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
16 | 0362 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
17 | 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383
18 | 0384 0385 0386 0387 0388 0389 0380 0391 0392 0393 0394 0395 0396 0397 0398 0399
19 | 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
1A [0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
18 | 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447
1C | 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
1D | 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
1E | 0480 0481 0482 0483 0484 (0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
1F | 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511

Figure 3. Halt Conversion Tables

26

END STATEMENT
The general form of the END statement is:

END

Uses: The END statement is a nonexecutable statement that
defines the end of a main program or subprogram. Physi-
cally, it must be the last statement of each program unit.

If any FORTRAN statements follow an END statement,
they are ignored by the compiler and not grinted. The

END statement does not terminate prograrn execution.

Considerations/Restrictions:

1. The END statement cannot have a statement number.
2. The END statement cannot have a zero in column 6.
3. The END statement cannot have a continuation.
Examples:

PROGRAM FIRST SUBROUTINE SECOND

CALL SECOND RETURN
. END

STOP 25

END

Control Statements

27

28

In order for data to be transmitted from an external storage
medium such as a punched card, tape, or disk to the com-
puter, or from the computer to an external medium, it is
necessary that the computer know the form in which the
data exists. The FORMAT statement describes the form

of the data.

The FORMAT statement uses format codes to specify the
type of conversion to be performed between the external
and the internal representation of each quantity specified
in a READ or WRITE statement 1/0 list.

FORMAT statements are associated by their statement
numbers with specific READ or WRITE statements. Suc-
cessive items in the 1/0 list are transmitted according to
successive specifications in the FORMAT statement. FOR-
MAT statements are not executed and car appear anywhere
in the same program unit as their associated 1/0 statements,
subject to the rules governing placement of PROGRAM,
IMPLICIT, FUNCTION, SUBROUTINE, and END state-
ments.

FORMAT STATEMENT
The general form of a FORMAT statement is:
xxxxx FORMAT(c;s;cys5 ... cp)
where
XXXXX is a statement number (1 through 5 digits).

c is a format code (described following).

S is a separator, which may be either a comma or

any number of slashes. Slashes are used to indi-
cate the beginning of a new record. Any number

of slashes may precede the first or follow the
last format code.

Chapter 5. Format of Input/Output

Format

Code Purpose

alw Describes integer data fields.

aDw.d Describes double precision data fields.

aEw.d Describes real data fields.

aFw.d Describes real data fieids.

nPc Describes a scale factor; if present, this code
is specified as the first part ofa D, E, or F
field descriptor.

aAw Describes character data fields.

wHstring Describes litera! data.

‘literal’ Describes literal data.

wX Indicates that a field is to be skipped on input
or filled with blanks on output.

Tr Indicates the position in a FORTRAN record
where transfer of data is to begin.

where

a is optional and is a repeat count, an unsigned
integer constant that specifies the number of
times the code is to be repeated. If ais
omitted, the code is used once.

w is an unsigned nonzero integer constant that
specifies the number of characters in the field
(field width).

d is an unsigned integer constant specifying
the number of decimal places to the right
of the decimal point {the fractional portion).
The decimal point between w and d portions
of the specification is required.

n is a negative or unsigned integer constant
which is the scale factor; if the constant is
unsigned, it is assumed to be positive.

c is format code D, E, or F.

string s a set of characters in a field.

r is an unsigned integer constant designating
a character position in a record.

Format of input/Qutput 29

Uses: The FORMAT statement is used in conjunction with
the 1/0 lists in the READ and WRITE staternents to specify
the structure of FORTRAN records and the form of the
data fields within the records. FORMAT statements are
associated by their statement numbers with specific READ
or WRITE statements.

Considerations/Restrictions:

1. A FCRMAT statement is not executed—its function
is to supply information to the object program. The
FORMAT statement can be placed anywhere in the
source program.

2. When defininga FORTRAN record with a FORMAT
statement, it is necessary to consider the maximum
size record allowed on the input/output device.

3. The specifications in a FORMAT statement must
correspond in mode to the items in the 1/0 list—inte-
ger quantities require integer format codes and real
quantities require real format codes.

4. The field width, w, of a format code cannot exceed
2565.
5. The repeat count, a, whether of the form aDw.d or

a(Dw.d), cannot exceed 255.

6. The field width, w, can be specified greater than re-
quired in order to provide spacing. For example, to
write out an integer variable with the | format code,
a specification of 110 reserves five leading blanks if
the number does not exceed five digits, including the
sign.

Examples:
05 FORMAT (15,F8.4/20X,15)

10 FORMAT (" THE ANSWER [S’,110)
33 FORMAT (E6.2,2(13,2F2.1))

30

VARIOUS FORMS OF A FORMAT STATEMENT

All of the format codes in a FORMAT statement are en-
closed in a pair of parentheses. Within these parentheses,
the format codes are delimited by a separator—a comma or
a slash. The comma delimits one format code from another;
the slash is used to indicate the beginning of a new record.

For example, the statement
25 FORMAT (13,F6.2/D10.3,F6.2)

describes the format of two records. The first record is
transmitted according to the format codes i3 and F6.2; the
second record is transmitted according to the format codes
D10.3 and F6.2.

Consecutive slashes can be used to produce blank output
records or to skip input records. if there are n consecutive
slashes at the beginning or end of a FORMAT statement, n
input records are skipped or n blank records are inserted
between output records. If n consecutive slashes appear
anywhere else in a FORMAT statement, the number of
records skipped or blank records inserted is n-1.

For example, the statement
25 FORMAT (//15//15//}

describes seven record formats. If this FORMAT statement
is used to transmit records to the printer, it produces two
blank lines, one line of data, one blank line, another fine of
data, and two blank lines.

The group format specification is used to repeat a set of
format codes and to control the order in which the format
codes are used. The group repeat count, a, is the same as
the repeat count, a, that can be placed in front of other
format codes. For example, the following statements are
equivalent:

25 FORMAT (2(E10.5,D012.6) ,14)
25 FORMAT (E10.5,012.6,E10.5,D12.6,14)

An additional leve!l of parentheses is not permitted. For
example, the following statement is invalid:

25 FORMAT (2(3(16,18)))

Additional parentheses are valid, however, as long as they
are not in the same group. For example:

25 FORMAT (2(12),2(14))

Each time a READ or WRITE statement is executed,
successive items in the 1/0 list are transmitted according to
successive format codes in the FORMAT statement. This
continues until all the items in the list are transmitted. |f
there are more items in the list than there are format codes,
control transfers to the last preceding left parenthesis of
the FORMAT statement. This is either the left parenthesis
at the beginning of the FORMAT statement or, if grouping
is used, the left parenthesis of the last group in the FOR-
MAT statement. For example, if the 1/O list contains the
variables A, B, C, D, and E and the FORMAT statement
used is

25 FORMAT (F6.2,010.3,F12.2)

the values transmitted for A, B, and C would use format
codes F6.2, D10.3, and F12.2, respective y. Because the
list is not exhausted, controt returns to tre preceding left
parenthesis and the values transmitted for D and E would
use format codes F6.2 and D10.3, respectively. If the
FORMAT statement were coded

25 FORMAT (F6.2,D10.3,2(F12.2))
the values transmitted for A, B, C, D, and E would use for-

mat codes F6.2, D10.3, F12.2, F12.2, and F12.2,
respectively.

If there are fewer items in the /O list than there are format
codes, the remaining format codes are ignored.

FORMAT CODES FOR NUMERIC DATA

Four types of format codes for numeric Jata are:

Internal Format External
Code

Real F Real {without exponent)

Real E Real {with exponent; single
precision)

Real D Real {with exponent; double
precision)

Integer | Integer

Numbers printed by the F format code are printedin a
decimal notation without an exponent. Typical output
might be:

123 -0.726 102.
-17.2 1.318 -968.
289.1 0.009 721.

Numbers printed by the D and E format codes are printed
as a decimal fraction to a power of 10. These numbers are
normalized; that is, their first significant digit is to the right
of the decimal point. For example:

232.3 is printed as 0.2323E+03
.003 is printed as 0.30E-02
17.4 is printed as 0.174E+02

Numbers printed by the | format code are printed as integers.
Typical output might be:

12
-17
2342

I Format Code (alw)

The | format code is used to read integer data or to print a
number that exists in the computer as an integer quantity.

On output, w print positions are reserved for the number.
It is printed in a w-space field right-justified {that is, the
units position is at the extreme right). If the number con-
verted is greater than w spaces, asterisks are printed instead
of the number. If the number has less than w digits, the
leftmost spaces are filled with blanks. | the quantity is
negative, the space preceding the leftmost digit contains a
minus sign, for which a space must be reserved.

The following examples show how each of the quantities
on the left is printed according to the specification 13 (B
is used to indicate blanks}):

Internal
Value Printed
721 721
-721 *xx
-12 -12
9 Hb9
8114 ¥
0 b0
-5 ¥-5

On input, w characters are read from an input device. Blanks
on either side of a significant digit are treated as zeros, it
the number is too large to be contained in a 2- or 4-byte
integer variable, only the rightmost digits are used, and
computations involving this variable are meaningless.

Format of input/Output 31

The following examples show the internal values of the
given quantities if read under the 13 format code:

Internal
Input Value
3p 300
B 0
B3k 30

F Format Code (aFw.d)

On input, w is the total field width, including the exponent
if any, and d is the number of places to the right of the
decimal point (the fractional portion). If a decimal point
is present, its position overrides the d specification in the
format code. Either a D, E, or signed integer exponent is
acceptable as input with an F format code. Blanks are
treated as zeros; thus, embedded and trailing blanks affect
the value of the number.

’

For example, the following item is interpre-ed as having
the value 1000:

Field Input
Description Record
F8.0 BUBBBI1BBY

On output, w must provide sufficient space for an integer
segment if it is other than zero, a fractional segment con-
taining d digits, a decimal point, and, if the output value
is negative, a sign. Thus, the value of w should be at least
1 greater than the value of d, and at least 2 greater if the
number can be negative. If insufficient positions are pro-
vided for the integer portion, including decimal point and
sign (if any), asterisks are written instead of the number.
If excess positions are provided, the number is preceded by
blanks. Fractional digits in excess of the number specified
by d are dropped after rounding.

32

The following example shows how each of the quantities
on the left is printed according to the specification F5.2:

Internal Value Printed
12.125 12.13
_4]5 * KK XK
-0.25 -0.25
7.375 $7.38
-1. -1.00
9.03125 $9.03
187.625 *rxx
0.00390625 $0.00
0.0078125 $0.01

The last two examples demonstrate the effect of rounding.

D and E Format Codes {aDw.d, aEw.d)

D and E format codes are used in transmitting real (single
precision or double precision) data. On input, the number
optionally has a decimal point and/or a D, E, or signed
integer constant exponent. All exponents must be preceded
by a constant—that is, an optional sign followed by at least
one decimal digit, with or without a decimal point. If the
decimal point is present, its position overrides the position
indicated by the d portion of the format specification, and
the number of positions specified by w must include a
place for it. Because leading, trailing, and embedded blanks
are treated as zeros, embedded and trailing blanks affect
the value of the item.

The D, E, and signed integer constant exponent specifica-
tions for input data are interchangeable. For example,
given a REAL*4 item in an input list, and E format specifi-
cation, the exponent specification in the data item can be
a D, an E, or a signed integer constant, or have no expon-
ent. The data item is treated as a REAL*4 constant in any
case. Similarly, if the list item is REAL*8 and the FOR-
MAT specifitation is D, the data item is treated as a double
precision constant regardless of its exponent specification,
if any. Note that the type and length of the list item must
agree with that of the specification.

For output, unless a scale factor is present {the scale factor
changes the location of the decimal point in real numbers;
its use is explained later in this section under the heading
Scale Factor (nPc), output consists of an optional sign
(required if the value is negative), a decimal point, the

number of significant digits specified by d, and a D or E
exponent requinng four positions: the D or k£, a t or -
sign, and a two-digit exponent. The w specification must
provide spaces for all of these positions. Thus the value ot
w should always be at least d + 5, or d + 6 if the number
can be negative. I additional space is available, a leading
zero is written before the decimal point. If the value of w
ts not sufficient to print a decimal point cnd a four-position
exponent, plus a minus sign if the value s negative, asterisks
are printed instead of the number. Fractional digits in ex-
cess of the number specified by d are dropped aftes
rounding.

Examples.

Given the following input record:

¥6.73124E30bYBYBY.23791D-06¥116.123.141591.413962D-0161.413962D+1
the following statements could be used to read this data:

READ (1,10}AB1,C.D,E
10 FORMAT (E10.5,016.10,17,E7.5,2D12.7)

Then the data could be printed using essentially the same
format codes:

20 FORMAT (‘1",E10.5/* ',D16.10/* ‘17/° '
E7.5,2(/" .D12.7))

v

The "1"and " ' specitications are carriage and record control
specifications that are explained under the heading Printed
Output. The following shows the printec results:

.67312E+04
0.2379100000D-06
16712
.1413962D+00
.1413962D+02

In the first data item, the decimal point was moved to the
left and exponent adjusted. For the second data item, a
leading zero was added for the integer portion, trailing
zeros were added to the decimal portion, and the number
is printed with ten digits after the decimal point. For the
third item, two feading blanks were added to the integer
field and the number is printed right-justified. Asterisks
were printed instead of the fourth data item because the
w specification, although sufficient for irput {there was no
exponent) is insufficient for output {where there is always
an exponent with the D and E format codes). For the last
two data items, identical except for their exponents, the
decimal points were moved to the left and the exponents
adjusted accordingly.

Format of Input/Output 33

Scale Factor (nPc¢)

The P scale factor can be specified as the first part of a D,
E, or F format code to change the location of the decimal
point in real numbers.

Unless there is an exponent in the external input or output
field, the effect of the scale factor for the F format code is:

external number = internal number x 10!
where n is the scale factor.

On input, the scale factor in the format specification is
ignored for any data item with an exponent in the external
field. Otherwise, a positive scale factor decreases the magni-
tude of the data item and a negative scale factor increases
its magnitude. For example, if the input data is in the form
xx.xxxx and is to be used internally in the farm LXXXXXX,
then the format code used to effect this change is 2PF7 4.
Or, if the same input is to be used in the form xxxx.xx,
then the format code used to effect this change is -2PF7.4.
If the external representation was xx.xxxxExx and the for-
mat code 2PE10.4, the scale factor would be ignored, and
the value stored internally as xx.xxxxExx.

On output, the scale factor can be specified for F, E, or D
format codes. For F format codes, the effect of the scale
factor is the opposite of that for input; a positive scale
factor increases the magnitude of the number and a negative
scale factor decreases the magnitude. For example, if the
number has the internal form xx.xxxx and it is to be written
out in the form xxxx.xx, the format code used to effect
this change is 2PF7.2.

For D or E format codes, the exponent is adjusted so that
the magnitude of the number does not change. For ex-
ample, if the internal number were printed according to the
format £10.3, it would appear as 0.238E+03. If it were
printed according to the format 1PE10.3, it would appear
as 2.385E+02. Note that this results in greaer precision.

Once a scale factor is established, it applies to all subse-
quently interpreted D, E, and F format codes in the FOR-
MAT statement until another scale factor is 2stablished. A
factor of 0 may be used to discontinue the effect of a pre-
vious scale factor. If no scale factor is given, O is used for
all F, E, and D format codes.

Example:

30 FORMAT (E10.3,2PD20.10,E7.2,15)

34

The scale factor 2 applies to both the D20.10 and the
E7.2 specifications. If 5 data items were read using this
code, it would also apply to the £10.3 code, which would
be used to interpret the fifth item. To discontinue the
effect of the code after the D20.10 specification, the state-
ment should be coded:

30 FORMAT (E10.3,2PD20.10,0PE7.2,15)

To discontinue it after the E7.2 code, if more than four
data items are to be read using the FORMAT statement,
the statement should read:

30 FORMAT {(0PE10.3,2PD20.10,E7.2,15)

Note that the OPE10.3 specification is not necessary to dis-
continue the effect of a scale factor in a previous FORMAT
statement, or in the previous use of this FORMAT statement.

FORMAT CODES FOR ALPHAMERIC DATA

There are three specifications available for input/output of
alphameric information. The specification wH or a literal
enclosed in apostrophes is used for alphameric data that is
not going to be processed by the object program; the
specification Aw is used for alphameric data that is to be
processed by the program.

Information handied with the A specification is given a
variable or array name and hence can be referred to by this
name for processing and/or modification. Information
handled with the H format code is not given a name and
cannot be referred to or manipulated in any way.

A Format Code (aAw)

The specification Aw causes w characters to be read into,
or written from, a variable or array element. The type of
the variable or array is immaterial, because no conversion
takes place. Thus, the A format code can be used for
numeric fields, but not for numeric fields requiring arith-
metic.

The maximum width of w can be 255.

The maximum number of characters stored in internal
storage depends on the length of the variable in the 1/0 list.
If w is greater than the variable length, szy v, then the left-
most w~v characters in the field of the input card are skip-
ped and the remaining v characters are read and stored in the
variable; truncation occurs on the left. 17w is less than v,
then w characters from the field in the irput card are read
and the remaining rightmost characters in the variable are
filled with blanks.

It wis greater than the length (v) of the variable in the 1/O
list, then the output field contains v characters right-justified
in the field, preceded by leading blanks. f w is less than

v, the leftmost w characters from the variable are printed
and the rest of the data is truncated; truncation occurs on
the right.

Example 1:

Assume that B was specified as REAL*8 that N and M are
INTEGER*4, and that the following statements are given:

25 FORMAT (3A7)
READ (1,25)B,N,M

When the READ statement is executed, one input card is
read from the file associated with logical unit number 1 into
the variables B, N, and M in the format specified by FOR-
MAT statement number 25. The following list shows the
values stored for the given input cards.

Input Card B N M

ABCDEFG46BATB11234567 ABCDEZFGY ATIB1 4567
HIJKLMN76543213334445 HIJKLMNY 4321 4445

Example 2:

Assume that A and B are real variables of length 4, that C
is a real variable of length 8, and that the following state-
ments are given:

26 FORMAT (A6,A5,A6)
WRITE (3,26)AB,C

When the WRITE statement is executed, one line is written
on the file associated with logical unit number 3 from the
variables A, B, and C in the format specified by FORMAT
statement 26. The printed output for values of A, B, and
Cis as follows:

A B C Printed Line

A1B2 C3D4 E5F6G7H8 WBBAIB2WC3D4ESF6GT

H Format Code (wHstring) and Literals Enclosed in
Apostrophes

The specification wH is followed in the FORMAT statement
by a string of w alphameric characters. For example,

24HBTHISBISBALPHAME RICBDATA

This specification can also be coded using apostrophes to
enclose the string of characters:

‘BWTHISBISBALPHAMERICYDATA’

The apostrophe specification method may be more conven-
ient for specifying long character strings.

Note that blanks are considered alphameric characters and
must be included as part of the count, w.

The effect of wH or literal specification depends on whether
it is used with input or output.

On input, w characters, or as many characters as are en-
closed in apostrophes, are extracted from the input record
and replace the characters included with the speacification.
On output, the string of characters following the specifica-
tion or the literal string are written as part of the output
record unless characters have replaced them as a result of

an input operation, in which case, the replacement charac-
ters are written.

For example, suppose that the following statements are
executed:

WRITE {3,2)
2 FORMAT (20HTIME/QUANTITYBREPORT)

These would cause the following output to be printed:
TIME/QUANTITY REPORT

On the other hand, assume that a card containing the
characters BNOBWB238 is read using these statements:

READ (1,1)1
1 FORMAT (‘YES',I5)

The statement
WRITE (3,1)1
would cause the following printed output:

BNOW®B238

Format of Input/Output 35

SPECIFYING BLANK FIELDS IN A RECCRD (X
FORMAT CODE)

Blank characters can be provided in an output record, or
characters of an input record can be skippec|, by means of
the specification wX where w is the number of blanks
provided or characters skipped. When the specification is
used with an input record, w characters are skipped.

For example, if a card has six 10-column fields for integers,
and you do not want to read the second quantity, then the
statement

FORMAT (110,10X,4110)
can be used with the appropriate READ sta:ement. The T
format code can also be used for this purpose.
FORMATTING THE RECORD (T FORMAT CODE)
The FORMAT statement positions data from left to right,
according to the specifications given within the FORMAT
statement. Very often, though, it is useful o start printing
other than in print position 1, or to print data at specific
print locations. The T format code can be used for this
purpose.
The T format code is specified as

Tr
where r is an unsigned integer constant specifying the posi-
tion in the record where data transfer is to begin. On a
printed line, r indicates the print position plus 1 because

the first character is used for carriage control.

A blank is inserted into any character posit on that was not
previously filled.

Example 1:
1 FORMAT (T61,'CALCULATION’)

This statement prints the word calculation in positions 60
through 70.

Example 2:
2 FORMAT (T721,D20.7)

This statement prints the data item whose ;pecification is
D20.7 starting at position 20.

36

When using the T specification for printed output, the
carriage control character must still be provided. If the
specification T1 is used, the first character of the output
image is used for carriage control. If something other than
T1 is specified as the first print position, (for example T40),
then a blank is used as the carriage control character,

Example 3:

3 FORMAT (T40,'PLUS', T1,"1MINUS’)

This statement prints the word minus starting in position 1,
with the 1 in the *1MINUS’ specification being used for
carriage control. The word plus is printed starting in posi-
tion 39.

Note that more than one T specification can be used in a
FORMAT statement, and that the order in which the print
positions are specified need not be sequential.

When output is to tape or disk, the first character of the
record is treated as data. In this case, the T specification
represents the exact position at which transfer is to begin,
rather than the position plus 1. Thus, if FORMAT state-
ment 3 were used to write a tape or disk record , TIMINUS
would be written starting in position 1, and PLUS would
be written starting in position 40.

Example 4:
4 FORMAT (T41,F7.2,Ti,” X=,T61,’RESULT’)

This statement prints the following line:

X= 1234.56 EESULT
Lrint Lrint rint
Position 1 Position 40 Position 60

The T format code can be used in conjunction with any
other format code. The positions of all codes followinga
T format code are in effect governed by the T format code
until another T format code is encountered.

Example 5:

5 FORMAT (T101,F10.3,110," NOTE 1,751,893,
T1,"ANS -)

This statement prints the following line

ANS 0.354E+02 111082.986 536453 NOTE 1
4 4 } } 4

Print Print Print Print Print
Position Position Position Posttion Position
1 50 100 110 120

When formatting a line using the T fornrat code, care must
be taken not to overlap print positions.

Example 6:

6 FORMAT (T41,D020.15,T51,F6.3)
It the preceding statement were used, the F6.3 specification
would be written over six of the decimal places of the D20.15
specification.
The T format code can also be used for nput.

Example 7:

READ (1,7) INPUT
7 FORMAT (T15,15)

These statements cause the first 14 columns of the input
record to be ignored, and the next five ta be transmitted
to the variable INPUT.

LISTS FOR TRANSMISSION OF DATA

The list in an input/output statement specifies what
quantities to transmit. For example, assume that a card
is punched as follows:

‘‘‘‘‘ . . P G

, RN Ra e At s e b a7 o1 e e

. . . PENON s e
=] * B
a . . a
a8 a8
4 L <
2 L 2 L] 2

: I

PN . ¢ L T N NN
B B
a L] o
8 8
4 [4
2 2
Ponaem s e Bacs az s wan om0 B w e e e e sy e b e o
B 8
A A
8 =]
4 a4
2 2
1 F— . !

e 27X M YT e ka6 w2 e ke s e A7 B e sc 90 97 93 94 9 96

e 3700

Further assume that the following statement appears i the
SOurce program:

READ(1,100) 1 J,K, L. .M
100 FORMAT(5110)
The card is read and the program processes the data as
though the following statements were writien:

1 25
J-102
K -101
L 10
M -5

If control passcs back to 1he READ statement, | J, K, L,
and M have new values depending upon what is punched
i the next card read.

Indexing in Input/Output Lists

DO-type notation can be used in lists for the transmission
of data. For example, suppose you want to transmit the

five quantities A(1), A(2), A3}, Ald) and A(5). This can
be accomplished by writing:

10 FORMATI(5F10.0)
12 READ(1,10)(A(1),1-1,5)

The above statements cause a record to be read and cause
the value contained in the first ten positions of the record
to be converted to a real number and stored into A{1) the

next ten positions into A{2}, etc.
This is equivalent to writing

12 READ(1,10)A(1),A(2],A13),Al4),ALE)
In other words, | is given the value 1 and the first quantity
becomes the value ot A{1). 1is then increased by 1, and
the second quantity becomes the vaiue of A{2). This con-

tinues until the fifth quantity read becomes the valce of
A(5).

As with DO statements, a third indexing parameter can be
used to specify the amount by which the index iz incre-
mented at each iteration. Thus,

READ{1.,50} (A{l},1=1,10,2)

causes transmission of values for A{1), A(3), A5G} A(7)
and A(9).

Format of input/Output 37

Implied DO Notation in Input/Output Lists
The general form of the Implied DO notation is:
(YI (')' Ya (I), v ¥Yn (l), i=m1 My Im3)
where
y is an array name.
i is composed of one through three integer variables,
sepatatca by commas, representing a value of a subscript
in the array, based on the value of m, .
my, M, , and my are each either an unsignad integer
constant or an integer variable. If m; is not stated, it is
assumed to be 1.
The maximum nesting level in implied DOs is 15,
Note: As with DOs, i is the index, m, is the initial value,
m, is the test value, and mj3 is the increment. In addition,
this notation can be nested.
Example:
((C1,9),D0,N),1=1.6) J=1 4)

transmits data in the form

C(1,1),D(1,1),C(2,1),D(2,1), ... ,C(5,1),D(5,1),
C(1,2),D(1,2),...,C(54),D(5,4)

38

Additional Details of Input/Output Lists

Any number of quantities can appear in a single list. Integer
and floating point quantities can be transmitted by the
same statement. However, if formatted 1/0 is used, each
quantity must have the correct format as specified in a
corresponding FORMAT statement.

For formatted /O, if there are more quantities to transmit
than there are in the list, only the number of quantities
specified in the list are transmitted, and remaining quanti-
ties are ignored. Thus, if a card contains three quantities
and a list contains two, the third quantity is not used by
the program.

A list for an unformatted READ must not contain more
quantities than the input record.

When an array name appears in a list in nonsubscripted
form, all of the quantities of the array receive data or are
transmitted. For example, if A is an array with 25 elements,
the statement

READ(1,100)A
causes all of the quantities A{1), ... A(25) to receive data.
A more complex list is

A.B(3) {C(1),D(1,K),I=1,10),({E(1,J),1=1,10,2),
F(J,3),J=1,K)

This list receives or transmits data in the order

A,B(3),C(1),D(1,K),C(2),D(2,K}, ... ,C{10),D{10,K),
E(1,1),E(3,1),... ,E(9,1),F(1,3),E(1,2) E(3,2),...,
E{9,2),F(2,3), ... E(9,K),F(K,3)

Note that each item in the list is separated by a cornma,
that the range of the implied DO statement is clearly de-
fined by means of parentheses, and that constants do not
appear in the list except as indexing parameters or sub-
scripts. The variable indexing parameter (K) is assumed to
be previously defined by the program, although in an input
list it could have been defined by an item in the list itself,
providing that it appeared before its use as an index.

PRINTED OUTPUT

When formatted records are prepared for a printer, the
first character of the record is not printed, it is treated as
a carriage control character. It can be specified in the
FORMAT statement with either of the two forms of literal
data: either ‘x’ or nHx, where x is one of the following:

x Meaning

blank Advance one line before printing

0 Advance two lines before printing
1 Advance to first line of nexi page
+ No advance

Due to hardware restrictions, the 3284 srinter does not
support the + carriage control for no advance. A print
request to the 3284 with a + for carriagz control will be
equivalent to the blank carriage control character.

The carriage control character can stanc by itself as a for-
mat code, or it can be included as part of a larger literal
spacification. Consider the following statements:

20 FORMAT ("1THE FOLLOWIMNG IS A LIST OF
PRIMES’)
or
20 FORMAT (“1",33HTHE FOLLOWING IS A LIST
OF PRIMES)
or
20 FORMAT (34H1THE FOLLOWING IS A LIST
OF PRIMES)

Each of these statements would print the heading at the top
of the next page.

For media other than the printer (for example, tape, disk,
or card punch), the first character of the record is treated
as data, and a carriage control character should not be
specified. Thus, the same FORMAT statement should not
be used for both printing and punching. An example
specifying the use of FORMAT statements for both print-
ing and punching may be found in Diracting Program Out-
put to Both a Printer and a Card Punch in the section
Programming Considerations in Part 2 of this publication.

DATA INPUT TO THE OBJECT PROGRAM

Numeric input data to be read by a READ statement when
the object program is executed must be in essentially the
same format as given in the previous examples. Thus, a
card to be read according to

FORMAT (i2,E12.4,F10.4)

might be punched:

27 -0.9321E @2 -Q. 076 \
P S T T R R I I Y
[T I T HD I e e P A R O AR U I S S R
ERTEEEN) : B e e BB oA EE RS Ry e N 5a ¥ W
v oy vt 03 en kT ek . T T N N
B L . s &
a (X} ¢ o scew a
) e ® 8
a e L] s a
zZ20e * oo L] . LX) 2
T e ses ose ® . 1
a cor e e P A T I @ gy
a a
a 8
4 <
2 2
1 +
P L T I N AL
o A
8 8
< o
2 2
1 1
L I T T I R ORI R AR AR TR O
_ Jam 320 L J

Within each field, all information is considered right-justified;
embedded blanks and trailing blanks in numeric fields are
read as zeros and affect the item’s value. Plus signs can be
omitted or indicated by a +. Minus signs must be punched
if the number is negative or has a negative exponent. Input
for E and D format codes can contain any number of digits,
but only the high order digits of accuracy are retained 1t
the number exceeds the capacity of the system.

To permit economy in punching, certain relaxations in
input data format are permitted.

1. Numbers for D- and E-type format codes need not
have 4 columns devoted to the exponent fieid. The
start of the exponent field must be marked by an k|
or if that is emitted, by a + or - {not a blank}. Thus,
£2, E+2,+2,+02, E02, and E+07 are all permissibie
exponein fields.

2. Numbers for D, E, and F forrnat codes need net have
their decimal point puniched. H it s not punched,
the format specification supplies it. For example, the
number -09321+2 with the code E12.4 s treated o¢
though the decimal point were nunched between thie
0 and the 9. {f the decimal point is punchad in the
card, its position cverrides the positicn midlicated in
the FORMAT statement.

Format of Input/Qutput 298

LIST-DIRECTED INPUT DATA

A record containing list-directed input data consists of an
alternation of constants and separators. The record can be
read from tape or sequential disk, in addition to unit-record
devices.

An input constant can be any valid FORTRAN numeric
data type. Blanks cannot be embedded in any list-directed
constant since they would be interpreted as separators.
Numeric constants can optionally be signed, but there must
be no embedded blanks between the sign and the constant.

Each constant must agree in type with the corresponding
list elernent. The decimal point can be omitted from a
real constant. |f omitted, it is assumed to follow the right-
most digit of the constant.

With the exceptions noted below, a separator is either a
comma or a blank. In addition, for console nput, an end
indicator is a separator. For punched card input, an end-
of-card condition is also a separator. Blanks can optionally
occur between the comma and the carrier return or end-of-
card.

A separator can be surrounded by any numker of blanks,
horizontal tabs, carrier returns, or end-of-card conditions.
Any such combination (with no intervening constants)
constitutes a single separator. At the inception of execu-
tion of a list-directed READ, a preceding separator is
assumed; and initial blanks, horizontat tabs, carrier returns,
or end-of-card conditions, if present, are corsidered part
of that separator.

A null item is represented by two consecutive commas with
no intervening constant. Any number of blanks, horizontal
tabs, carrier returns, or end-of-card conditions can be em-
bedded between the commas. |If a null item is specified,
the corresponding list item is skipped; its current value
remains unaltered.

A repeat factor can be specified for a constent or null
item. For a constant, the form is

i*constant
and for a null item, the form is

1%
In each instance, i is a nonzero unsigned integer constant,
which indicates that the following constant or null item is
to occur i times. Neither of these forms can contain embed-

ded blanks. The separators surrounding a repeated null
item need not be commas.

40

A slash (/) serves as a special-purpose separator, indicating
that no more data is to be read during the current execu-
tion of a READ statement. If the list has not been satisfied,
the values of the remaining list elements remain unaltered.
If the list has been satisfied, the slash is optional.

Example: A list-directed READ statement is used to
read a record containing constants of various types in-
to main storage. For this example, the character / is
used to represent a carrier return. A carrier return is
the terminal equivalent of an end-of-card condition.

READ (1,%) (ARRAY{l},1=1,60),A,B,C,D,E,F,GH,
J,P.Q,RS

50*0
2.17E+15,3.14E0, 1.,2.0,0.125D-3 2+, 87,,/

When this statement is executed, the value 0. is read into
each of the first 50 elements of ARRAY ; real values are
read into the variables A, B, C, D, and E; variables F and
G are skipped because of the repeated null specification;
the value 87. is read into the real variable H; variable J is
skipped because of the null specification, and variables P,
Q, R, and S receive no data because of the slash.

LIST-DIRECTED OUTPUT DATA

List-directed output data can be directed tc tape or
sequential disk in addition to any unit-record output device
such as a printer or card punch. List-directed output data
can contain any producibie form of data that is readable

as list-directed input. However, certain forms which are
permissible as list-directed input are not produced as list-
directed output. These forms are:

null items
i repeat factor
/ special-purpose separator

In list-directed output, the width of the data field depends
upon the type of variable to be written:

Type of Variable Width of
Data Field
REAL»8 24
REAL+*4 14
INTEGER *4 1
INTEGER *2 6

A blank is inserted as a separator between data fields. The
total width of the data fields plus separators must be con-
sidered when output is going to sequential devices.

Input/output statements transfer data and control the flow
of data between main storage and an input/output device
such as a card reader, printer, punch, magnetic tape unit,
or disk storage unit.

Input/output statements in FORTRAN are primarily con-
cerned with the transfer of data between mamn storage
locations defined i a FORTRAN program and records that
are external to the program. On imput, data is taken from a
record and placed into main storage locations that are not
necessarily contiguous. On output, data is gathered from
diverse main storage locations and placed into a record. An
1/0 list is used to specify which main storage locations are
used.

System/3 FORTRAN 1V provides two types of input/output
statements—sequential and direct-access. Sequential 1/0
statements read or write records consecutively. Direct-
access /0 statements generally read or write records
randomly.

Most input/output devices are sequential; that is, if there
are 100 records to be read, they would have to be read in
the order 1, 2, 3, ..., 99, 100. Record 57 cannot be read
before record 56. Examples of sequential devices are card
readers, printers, and magnetic tape.

The 5444, 5445, and 3340 disk storage devices are the only
System/3 devices that can read or write records randomly;
that is, in an order determined by the programmer. When
records are to be read or written randomly, direct-access
statements must be used. Note, however, that sequential
1/0 statements can be used to read or write records consec-
utively on the disk, and that direct-access 1/O statements

can also be used for reading or writing records consecutiveiy.

Each input/output statement uses a logical unit number to
specify which input/output device {or file on a device) is
to be used in the operation. Logical unit numbers relate
particular devices or files to the system. For example, in
this section we use the number 1 to refer to a card reader,
the number 3 for a printer, the numbers 8 and 9 for disk
files, and the number 10 for a tape file. A full explanation
of logical unit number assignments is contained in Part 2 of
this manual, in Chapter 13, Compilation.

Chapter 6. Input/Output Statements

READ and WRITE statements can be used to access
formatted records, unformatted records, or fist-directed
records.

A formatted record has a FORMAT statement associated
with it. A FORMAT statement describes the form of the
data and how it is to be transmitted. Any number ot
records can be read or written with one excocution of g
formatted READ or WRITE staternent. The data in the
records are converted according to specifications listed in
the FORMAT staternent and are assigned to {or taken
from} elements listed in the READ or WRITE staternent
A partially filled, formatted record used tor butput is
padded on the right with bianks.

An unformatted record has no FORMAT statement asso-
ciated with it. {f the file is sequential, only one record can
be transmitted per execution of an unformatted /O state-
ment. The unformatted READ s used to read records
that were written on tape or disk by an unformatted
WRITE statement. A partially fitled, unformatted record
used for output is padded on the right with seros.

A list-directed record is similar to an unformatted record
in that it has no FORMAT statement associated with it
Its use, however, is to transmit records 1o and from any
sequential file, such as a card reader, printer, tape. or disk.
A partially filled, list-directed record used for output is
padded on the right with blanis.

rput/Gutput Sratements 41

Sequential Input/Output Statements

There are five sequential input/output statements: READ
WRITE, END FILE, REWIND, and BACKSPACE.

’

The READ and WRITE statements are used to transmit
data between sequential input/output devices and main
storage. The END FILE, REWIND, and BACKSPACE
statements are used only for sequential disk files and tape
files. For a further discussion of sequential disk files and
tape files, see Sequential Disk & Tape Programming
Considerations in Part 3, Programming Considerations

of this publication.

READ STATEMENT
The general forms of the READ statement are:

Formatted read: READ (u, f,END=s,ERR=1) list
Unformatted read: READ (u,END=s,ERR=t) list
List-directed read: READ (u,*,END=s,ERR=t) list

where

u is an unsigned integer constant or INTEGER*4
variable that is the logical unit number of the device to
read from.

f is the statement number of the FORMAT statement
describing the data items to read.

*specifies list-directed data mode for sequential devices,
that is, without use of a FORMAT statement.

END=s is optional and specifies the number (s) of a
statement to which to transfer control if end-of-file is
encountered.

ERR=t is optional and specifies the number (t) of a
statement to which to transfer control if a transmission
error occurs during the data transfer. This parameter is
ignored if the file being processed is not on a disk or
tape drive.

If END or ERR is not specified, the preceding comma is
omitted.

list is an 1/0 list; it can contain variable names, array

elements, array names, or a form called an implied DO.
The 1/0 list is optional if is specified.

Uses: The READ statement transmits data from a device,

such as a card reader or magnetic tape unit, to main storage.

42

Considerations/Restrictions:

1. The program terminates if the END= parameter is not
specified and an end-of-file record is encountered.

2. The program terminates if an ERR= parameter is not
specified and a transmission error occurs.

3. There is no end-of-file from a 5406 console kepvheard.

Examples:
READ (9,100) D,E,F

The preceding formatted READ statement reads data from
the file whose logical unit number is 9, (assume a disk file)
into the variables D, E, and F, in the format specified by
the FORMAT statement numbered 100.

READ (1,98) A,B,(C(l,K),1=1,10)

The preceding formatted READ statement reads data from
the file whose logical unit number is 1 {(assume a card
reader) into the variables A and B, and the array elements
C(1,K), C{2,K), ..., C{10,K} in the format specified in the
FORMAT statement whose statement number is 98.

READ (J) AB,C

The preceding unformatted READ statement reads data
from the file whose logical unit number is the current value
of J into the variables A, B, and C.

READ (1, END=200) (ARRAY{l),1=1,25),B(1),C(6)

The preceding list-directed READ statement reads clata
from the file whose logical unit number is 1 into the 27
array elements specified by the list. 1f an end-of-file record
is encountered, control is transferred to the statement
numbered 200.

WRITE STATEMENT

The general forms of the WRITE statement are:
Formatted write: WRITE (u,f) list
Unformatted write: WRITE (u) list
List-directed write: WRITE (u,*) list

where
u is an unsigned integer constant or INTEGER x4
variable that is the logical unit number of the device to

be written on.

f is the statement number of the FORMAT statement
that describes the data items to be written.

* specifies list-directed data mode for sequential devices
that is, without the use of a FORMAT statement.

‘

list is an 1/O list; it can contain variable names, array
elements, array names, or a form called an implied DO.
The /0 list is optional if f is specified.

Uses: The WRITE statement transmits data from main
storage to a device, such as a printer or disk.

Considerations/Restrictions: The END and ERR parameters
cannot be specified in the WRITE statement.

Examples:
WRITE (3,75} A,(B(1,3),i=1,10,2),C

The preceding formatted WRITE statement writes data
from the variables A and C and array elements B(1,3),
B(3,3), B(5,3), B{7,3), and B(9,3) onto the file whose
logical unit number is 3 (a printer) according to the format
specified by the FORMAT statement whose number is 75.

WRITE (4) ARRAY

The preceding unformatted WRITE statement writes data
from the variable ARRAY onto the file whose logical unit
number is 4. If ARRAY is an array with 25 elements, al}
25 elements are written. Since the record is unformatted,
no FORMAT statement number is given, and none should
be specified when the record is read back into storage.

WRITE (2,%) I,N(1)
The preceding list-directed WRITE statement writes the

data from the variable | and the array element N{I) on the
unit-record device whose logical unit number is 2.

END FILE STATEMENT
The general form of the END FILE statement is:
END FILE i

where
i 1s an unsigned integer constant or INTEGER *4 variable
that is the logical unit number of a magnetic tape or a
sequential disk file.

Uses: The END FILE statement writes an end-of-{ile record
on the tape or sequential disk that has logical unit number i.

Considerations/Restrictions: An END FILE request
followed by another END FILE to the same logical unit
causes a terminating error.

Examples:

END FILE 10
END FILE K

BACKSPACE STATEMENT
The generai form of the BACKSPACE statement is:
BACKSPACE i

where
i is an unsigned integer constant or INTEGER -4 varabie
that is the logical unit number ¢f a magnelic tape or

sequential disk file.

Uses: The BACKSPACE staterncnt causes a tape 47 seduen
tiai disk file with a logical unit number of | t¢ ce backspaced
one record.

Examples:

BACKSPACE 10
BACKSPACE K

tnpat:Ouiput Staeinens 45

REWIND STATEMENT

The general form of the REWIND statement is:
REWIND i

where

i is an unsigned integer constant or INTEGER*4 variable
that is the logical unit number of a magnetic tape or
sequential disk file.

Uses: The REWIND statement causes a tape or sequential
disk file with a logical unit number of i to be rewound to
the beginning of the file. The REWIND statement also
closes the file.

Considerations/Restrictions: When a file is rewound, an-
other REWIND request to that file is ignored.

Examples:

REWIND 10
REWIND K

44

Direct-Access Input/Output Statements

The direct-access statements permit a programmer to read
and write records randomly from any location within a
file. They contrast with the sequential input/output state-
ments, described previously, that process records, one after
the other, from the beginning of a file to its end. With

the direct-access statements, a programmer can go directly
to any point in the file, process a record, and go directly
to any other point without having to process all the
records in between.

There are four direct-access input/output statements:
READ, WRITE, DEFINE FILE, and FIND.

The READ and WRITE statements transfer data into or
out of main storage. These statements allow the user to
specify the location within a file from which data is to be
read or into which data is to be written.

The DEFINE FILE statement describes the characteristics
of the file{s) to be used during a direct-access operation.

The FIND statement points to the next record required.

In addition to these four statements, the FORMAT state-

ment (described previously} specifies the form in which to
transmit data. The direct-access READ and WRITE state-
ments and the FIND statement are the only input/output

statements that can refer to a logical unit number defined

by a DEFINE FILE statement.

Each record in a direct-access file has a unique record
number associated with it. The programmer must specify
in the READ, WRITE, and FIND statements not only the
logical unit number, as for sequential input/output
statements, but also the number of the record to be read,
written, or found. Specifying the record number permits
processing selected records of the file, instead of records in
their sequential order.

The number of the record physically following the one just
processed is made available to the program in an integer
variable called the associated variable. Thus, if the
associated variable is used in a READ or WRITE statement
to specify the record number, sequential processing is
automatically secured. The associated variable is specified
in the DEFINE FILE statement, which aiso gives the
number, size, and type of the records in the direct-access
file.

For a further discussion of direct-access files, see Direct-
Access Programming Considerations section of this
publication.

DEFINE FILE STATEMENT

The general form of the DEFINE FILE statement is:

DEFINE FILE uy {ry,s1.f1.vi) uslrg,sa . fo vy b oL
up {rn.sn,fn.vn)

where

each u is an unsigned integer constant that is the logical
unit number.

each r is an unsigned integer constant that specifies the
number of records in the file associated with u. System/3
does not use the number of records field () in the
DEFINE FILE statement as a check for accessing

records outside the range of the file. The range ot size

of the file is set by the FILE statement via the tracks

or records parameter.

each s is an unsigned integer constant that specities the
maximum size of each record associated witih u. The
record size is measured in characters {pytes!, storage
locations (bytes), or storage units {waordsl. {A storage
unit is the number of storage locations divided by four
and rounded to the next highest integer.} The method
used to measure the record size depends tipon the
specification for f.

each f specifies that the file is to be read or written
either with or without format control; { can be one of
the following letters:

L to indicate that the file is 1o be vead oy wiitien
either with or without formai contrat,

$rhat the

record size is measured in numper of Lo
(bytes).

E to ingicate that the file is 1o Lo roaa or writie
with format control {as specified by a FORMAT
statement), and that the record size is moeasuied in
number of characiers (bytes).

U to indicate that the file is t¢ be raad o wiristen
without format control, and that {he vecord s o

measured in number of storage units [words;. oo
DEFINE FILE statement with U speci iz meano o
record size in four-byte words. The wond @2

lenigth should be considered when detoo o o
length.

Enput, Outut Satenment a3

each v is an integer variable called an associated variable.
At the conclusion of each read or write option, v is

set to a value that points to the record that immediately
follows the last record transmitted. At the conclusion
of a find operation, v is set to a value that points to the
record found. The value of the associated variabie must
be set before the first read or write operation on the
file,

Uses: The DEFINE FILE statement describes the character-
istics of one or more direct-access files. To use the direct-
access READ, WRITE, and FIND statements in a program,
the file must be described with a DEFINE FILE statement.
Each direct-access file must be described once, and only once,
in the main program.

Considerations/Restrictions:

1. The DEFINE FILE statement cannot be used in a
subprogram.

2. The associated variable cannot appear in the 1/0 list
of a READ or WRITE statement for a file with which
it is associated.

3. The value of the associated variable should be set
before the first read or write operation.

4, An associated variable passed to a subprogram as an
argument in a CALL statement is not automatically
updated when input/output operations are performed
in the subroutine. (The associated variable /s updated
if it is passed to a subprogram via COMMON or
GLOBAL, instead of through the argument list.)

Examples:
DEFINE FILE 8(50,100,L,12),9(100,50,L,J3)

The preceding DEFINE FILE statement describes two

files, referred to by logical unit numbers 8 and 9. The data
in the first file consists of 650 records, each with a maximum
length of 100 storage locations. The L specifies that the
data is to be transmitted either with or without format
control. 12 is the associated variable that points to the

next record.

The data in the second file consists of 100 records, each
with a maximum length of 50 storage locations. The L
specifies that the data is to be transmitted either with or
without format control. J3 is the associated variable that
points to the next record.

a6

If an E is substituted for each L in the preceding DEFINE
FILE statement, a FORMAT statement is required and the
data is transmitted under format control.

If the data is to be transmitted without format control,
the DEFINE FILE statement can be written as:

DEFINE FILE 8(50,25,U,12),9(100,13,U,J3)

DIRECT-ACCESS READ STATEMENT

The general form of the direct-access READ statement is:
READ {u’r,f, ERR=s) list
where

u is an unsigned integer constant or an integer variable
of length 4 that represents a logical unit number; u must
be followed by an apostrophe (').

r, the relative record number, is an integer expression
that represents the relative position of a record within
the file associated with u. The relative record number of
the first record of a direct-access file is 1.

f is optional and, if given, specifies the statement number
of the FORMAT statement that describes the data being
read.

ERR=s is optional and s is the number of a statement in
the same program unit as the READ statement to which
control is given when a device error condition is

encountered during data transfer from device to storage.

list is an 1/O list; it can contain variable names, array
elements, array names, or a form called an implied DO.
The 1/0 list is optional if f is specified.

Uses: The direct-access READ statement transfers data
from a direct-access device to main storage.

Considerations/Restrictions:

1. The file being read must be defined by a DEFINE
FILE statement.

2. The 1/0 list must not contain the associated variable
defined in the DEFINE FILE statement for file u.

3. The END= parameter canriot be specified in a direct-
access READ statement.

Example:

DEFINE FILE 8(500,100,L,1D1),9(100,28,L,1D2)
DIMENSION M{10)

ID2= 21

10 FORMAT (5120)
9 READ (816,10} (M(K),K=1,10)

.

13 READ (9'ID2+5) A,B,C,D,E,F.G

In the preceding example, READ statement 9 transmits
data from the file associated with logical unit number 8,
under control of FORMAT statement 10; transmission
begins with record 16. Ten data items of 20 characters
each are read as specified by the 1/0 list and FORMAT
statement 10. Two records are read to satisfy the |/O tist,

because each record, as defined by the FORMAT statement,

contains only five data items (100 characters). The
associated variable ID1 is set to a value of 18 at the conclu-
sion of the operation.

READ statement 13 transmits data from the file associated
with logical unit number 9, without format control;
transmission begins with record 26. Data is read until the
1/0 list for statement 13 is satisfied or until the end of the
record, whichever occurs first. Because the DEFINE FILE
statement for file 9 specified the record length as 28
storage locations, the 1/O list of statement 13 calls for the
same armount of data {the seven variables are type real and
each occupies four storage locations). The associated
variable ID2 is set to a value of 27 at the conclusion of the
operation. If the value of |D2 is unchanged, the next
execution of statement 13 reads record 32.

The DEFINE FILE statement in the previous exampie can
also be written as:

DEFINE FILE 8{(500,100,E,1D1},9{(100,7.1J,1D2)

The FORMAT statement can also controi the poirit at
which reading starts. For example, if statement 10 in the
exampie is

10 FORMAT {//5120)

records 16 and 17 are skipped, record 18 is read, recoras 19
and 20 are skipped, record 21 is read, and 1D1is set o
value of 22 at the conclusion of the READ operation in
statement 9.

DIRECT-ACCESS WRITE STATEMENT

ESSIRLEEFE PR

The general form of the direct-access WRITLE i
WRITE {u'r,f) tist
where

u is an unsigned integer constant or INTEGER »4 vanable
that represents a logical unit nuraber; u must be tollowed
by an apostrophe ().

r, the relative record number, is an intage: BxXOrassion
that represents the relative position ot 4 record wiisnen
the file associated with u.

f is optionai and, if given, specifics the siatemens
of the FORMAT statement that desiribs ity daid
written.

Arrey

list is an /O tist: it can contatn, vanahin na o

elements, array namics, or a forin o
it is optional it {is specitied.

Uses. The directr-access WRITE stateinent mronbe Codois
from main storage to a direct-access fdovie
Considerations/Restrictions:

1. The file baing wiitten rmust be dellae Do 7 00
FILE statenwni,

2. The /0 st must not conlamn tha was sl |
defined in the DEFINE &1 & padome

W

The ERR= and EM{= paruns
on a direct-access WPRITE

Example:

DEFINE FILE 8(500,100,L,1D1),9{(100,28,L,1D2)

DIMENSION M(10)

1B2=21

10 FORMAT (5120)
8 WRITE (816,10) (M(K),K=1,10)

11 WRITE (9°'ID2+5) AB,C,D,E,F,G
in the preceding example, WRITE statement 8 transmits
data into the file associated with logical unit number 8,
under control of FORMAT statement 10; transmission
begins with record 16. Ten data items of 20 characters
each are written as specified by the /O list and FORMAT
statement 10. Two records are written to satisfy the 1/0
list because each record contains five data items (100
characters). The associated variable ID1 is set to a value of
18 at the conclusion of the operation.

WRITE staternent 17 transmits data into the file associated
with logical unit number 9, without format control;
transrnission begins with record 26. The contents of 28
storage locations are written as specified by the 1/0 list for
statement 11. The associated variable 1D2 is set to a value
of 27 at the conclusion of the operation. Note the
correspondence between the records described (28 storage
locations per record) and the number of items called for by
the 1/0 list {7 variables, type real, each occupying four
storage locations).

The DEFINE FILE statement in the example can also be
written as:

DEFINE FILE 8(500,100,E,1D1),9(100,7,U,1D2)

As with the BEAD statement, a FORMAT statement can
also be used to control the point at which writing starts.

48

FIND STATEMENT

The general form of the FIND statement is:
FIND {u'r)

where
u is an unsigned integer constant or INTEGER #4 uriable
that represents a logical unit number; u must be followed
by an apostrophe (’).
r, the relative record number, is an integer expression

that represents the relative position of a record within
the file associated with u.

Uses: The FIND statement updates the associated variable
for the direct-access file with a fogical unit number, u, to
the value of the relative record number, r.
Considerations/Restrictions:
1. No actual /O operations are performed.
2. The file referred to in the FIND statement must be
defined by a DEFINE FILE statement.
Example:
DEFINE FILE 8(1000,80,L,{VAR}
10 FIND (8'50)
15 READ (8'60) A,B
After the FIND statement is executed, the value of IVAR

is 50. After the READ statement is executed, the value is
51.

General Example—Direct-Access Operations

DEFINE FILE 8(1000,72,L,1D8)
DIMENSION A(100),B(100),C(100),D(100),
E(100),F(100)
15 FORMAT (6F12.4)
FIND (8°1)
DO 1001=1,100
100 READ (8'1D8+4,15)A(1),B(1),C(1),D(1),E(1),F (1)

DO 200 1=1,100
200 WRITE (8'1D8+4,15)A(1),B(1),C{1),D(1),E(1),F(1)

END

The general example illustrates the ability of direct access
staiements to gather and disperse data in an order desig-
nated by the user. The first DO loop in the example fills
arrays A through F with data from the fifth, tenth, fifteenth,
..., and five hundredth record associated with logical unit
number 8. Array A receives the first value in every fifth
record, B the second value and so on, as specified by
FORMAT statement 15 and the 1/0 list of the READ
statement. At the end of the READ operation, the records
are dispersed into arrays A through F. At the conciusion of
the first DO loop, ID8 has a vatue of 501.

The second DO loop in the example groups the data items
from each array, as specified by the i/0 list of the WRITE
statement and FORMAT statement 15. Each group of data
items is placed in the file associated with logical uni?
number 8. Writing begins at the tive hundred fifth record
and continues at intervals of five, until record 1000 is
written, it ID8 is not changed between the last READ and
the first WRITE.

The FIND statement initially sets D8 to 1.

Input/Outpur Steements 49

50

The specification statements are nonexecutable statements

that provide the compiler with information about the nature
of data used in the source program. In addition, they supply

the information required to allocate locations in storage for
this data.

Specifications must precede statement function definitions,
which must precede the program part containing at least
one executable statement. The PROGRAM statement, if
present, must precede all statements in a main program.
The IMPLICIT statement, if present, must precede all state-
ments in a main program except the PROGRAM statement
and all statements in a subprogram except the FUNCTION
or SUBROUTINE statement.

‘

TYPE STATEMENTS

There are two kinds of type statements: the IMPLICIT

specification statement, and the explicit specification state-

ments, REAL and INTEGER.

The IMPLICIT statement enables you to:

® Specify the type (including length) of all variables,
arrays, and user-supplied functions whose names begin
with a particular letter

The explicit specification statements enable you to:

® Specify the type (including length) of a variable, array,
or user-supplied function of a particular name

® Specify the dimensions of an array
The explicit specification statements override the IMPLICIT

statement, which, in turn, overrides the predefined conven-
tion for specifying type.

Chapter 7. Specification Statements

IMPLICIT Statement
The general form of the IMPLICIT statement

IMPLICIT type *s; (all 812, .- .), ... typep *Sn(anl,
ana, ...}

where
type is either INTEGER or REAL..

each s is optional and represents one of the permissible
length specifications for its associated type.

each a is a single alphabetic character or a range of
characters drawn from theset A, B, ..., 2, 8%, in that
order. The range is denoted by the first and last charac-
ters of the range separated by a minus sign {for example,
(A-D)}).

Uses: This statement specifies the type (including length)
of all variables, arrays, and user-supplied functions whose
names begin with a particular letter. The types that &
variable, array, or function can assume, along with the
permissibie length specifications, are as follows:

Type Length Specification

INTEGER
REAL

2 or 4 (standard I>i:gth is 4)
4 or 8 (standard length is 4)

If the standard length is desired, the *s can be omittea. If
the optional length is desired, the *s must be included in
the IMPLICIT statement.

Specificatiun Stenmend

Considerations/Restrictions:

1. tna main program, if IMPLICIT is specified, it must
immediately follow the PROGRAM statement, or be
the first staten ent if PROGRAM is not specified.

2. In a subprogram, if IMPLICIT is specified, it must
immediately follow the FUNCTION or SUBRQUTINE
statement.

3. There can be only one IMPLICIT statement per pro-
gidn Or subprogram.

4. The IMPLICIT statement overrides the predefined
convention for specifying type.

Examples:
IMPLICIT REAL (A-H,0-$),INTEGER{I-N)

All variables beginning with the characters | through N are
declared as INTEGER. Because no length specification is
explicitly given {that is, the *s was omitted), four bytes,
the standard length for INTEGER, are allocated for each
variable.

All other variables (those beginning with the characters A
through H and O through Z and $) are declared as REAL
with four bytes allocated for each.

Note that the statement in this example defines the type
for variables the same as the predefined convention.

IMPLICIT INTEGER*2(A-H),REAL«8(I-K)

All variables beginning with the characters A through H are
declared as integer with two bytes allocated for each. All
variables beginning with the characters | through K are
declared as real with eight bytes allocated for each.

Because the remaining letters of the alphabet, L through Z
(and $), are left undefined by the IMPLICIT statement, the
predefined convention remains in effect. Thus, the variables
beginning with the letters L, M, and N are integer, each with
a standard length of four bytes, and variables beginning with
the letters O through $ are real, each with a standard length
of four bytes.

52

Explicit Specification Statements (INTEGER and REAL)
The general form of explicit specification statements 1s:
typers aytky)aziky), oooa k)
where
type is INTEGER or REAL.

*s 15 optional and represents one of the permissible
length specifications for its associated type.

ais a variable, array, or function name.

k is optional and gives dimension information for arrays.
Each k is composed of one through three unsigred inte-
ger constants, separated by commas, representing the
maximum value of each subscript in the array.

Uses: This statement specifies the type (including length)
of a variable, array, or user-supplied function by its name,
rather than by its initial character. This differs from the
other ways of specifying the type (that is, predefined con-
vention and the IMPLICIT statement}. In addition, the
information necessary to allocate storage for arrays (dimen-
sion information) can be included within the statement.

Considerations/Restrictions.

1. The explicit specification statements override the
IMPLICIT statements for specifying type.

2. Explicit specification statements must follow any
IMPLICIT statement, and must precede executabie
statements in the program.

Examples:
INTEGER*2 ITEM,VALUE

This statement declares that the variables, ITEM and
VALUE, are of type integer, each with two storage locations
reserved.

REAL*8 BAKER,HOLD ,VALUE ITEM(5,5)

This statement declares that the variables, BAKER, HOLD,
VALUE, and the array named I TEM, are of type real with a
length of 8 bytes. In addition, it declares that the array
named I TEM has 200 bytes reserved (8 for each element in
the array). Note that when the length is associated with
the type (for example, REAL*8), the length applies to each
variable in the statement,

In the same manner in which the IMPLICIT statement over-
rides the predefined convention, the explicit specification
statements override the IMPLICIT statement and prede-
fined convention. If the length specification (*s) is omitted,
the standard length per type is assumed.

DIMENSION STATEMENT

The general form of the DIMENSION statement is:
DIMENSION a, (k;),a3(ka),anlkn)

where
a is an array name.

k is composed of one to three unsigned integer constants,
separated by commas, representing the maximum value
of each subscript in the array.

Uses: This statement provides information necessary to
allocate storage fo arrays used in the source program.

Considerations/Restrictions: The DIMENSION statement
must precede executable statements and any DATA state-
ments initializing array a.

Examples:

DIMENSION A(10),ARRAY(5,5,5),LIST(10,100)
DIMENSION B(25,25), TABLE(5,10,15)

The first statement defines three arrays, A, ARRAY, and
LIST. The array, A, is a single dimension array consisting
of ten elements. The array, ARRAY, is a three-dimensional
array; and LIST is a two-dimensional array. The second
statement defines a two-dimensional array, B, and a three-
dimensional array, TABLE.

COMMON STATEMENT

The general form of the COMMON statement
COMMON a, (kq)as(ka), . .. aplky)

where

a is a variable name or array name that is not a dummy
argument.

k is optional and is composed of one through three un-
signed iinteger constants, separated by commas, repre-
senting the maximum value of each subscript in the array.

Uses: The COMMON statement is used o share storage by
two or more program units, and to specify the names oi
variables and arrays that are to occupy this area. Storage
sharing can be used for two purposes: to conserve storage,
by avoidiing more than one allocation of storage vor varabice
and arrays used by several program units; and to maxe
arguments available between a calling program and 5 sub
program. Arguments passed in a common area do not
appear in the argument lists of either the calling precgram or
subprogram. Arguments in common are subject to the

same rules with regard to type, length, etc., as arguments
passed in an argument list. {These rules are deseribed in the
section about subprograms.)

Considerations/Restrictions:

1. There is no restriction as to the number of program
units that can have COMMURN statoraents, excort
that a COMMON statement iv a single progean wris
serves no purpose other than strictly ordering the
arrangement of variables in commuon,. 1 she

ally have at least one counterpart in anntiter pootiant
unit.
2. There can be more than one COMMUON ciasaran in

allocated, containing ail the variables ard e

A

the order of their specification. A vi

Fiabyo oy

name canriot appear more vhan ons :
statement, in more than one COMMOGN o

the same program unit, or in poth a SO o
GLOBAL statement.

Speomfioaion Tt

54

Not all program units need refer to all of the variables
and arrays in common. Thus, in order to maintain
correct positioning, so-catled dummy variabies can be
inserted into the COMMON statement list. These
dummy arguments are not referred to anywhere else
in the program unit. Their function is to allow you
to position variable and array names that otherwise
would be in the wrong locations in a COMMON
statement.

Example:
Main Program Subprogram

COMMON A,B,C,D COMMON DUMMY1,BETA,
DUMMY3,DELTA

Because the main program and subprograms have
access to common storage locations via the COMMON
statement, they have a way of communicating with
each other. This means that a value computed in one
program unit and placed in common storage can be
used by another program unit in much the same man-
ner as if it were passed as an argument. This idea be-
comes clearer when CALL statements and function
references are discussed, later in this part of the publi-
cation.

The GLOBAL statement can be used to pass addition-
al variables to some subprograms that are not needed
by other subprograms. (The GLOBAL statement is
fully described in the section /nterprogram Communi-
cation.}

Example:

PROGRAM MAIN
GLOBAL AB,C
COMMON X,Y,z
CALL SUB1
CALL SUB2

SUBROUTINE SUB1
GLOBAL A1,A2,A3

SUBROUTINE SUB2
COMMON B1,B2,83

SUB1 would share with MAIN variables A, B, and C,
while SUB2 would share X, Y, and Z. In this case,

it is not necessary to introduce dummy variables into
the common block.

Example 1:
Because the entries in a common area share storage locations,
the order in which they are entered is significant when the

common area is used to transmit arguments. Consider the
following example:

Main Program Subprogram

COMMON A B,C,R(100) SUBROUTINE MAPMY

REALABC COMMON X,Y,Z,S{100}
INTEGER R REAL X,Y,Z
: INTEGER S
CALL MAPMY

The statement COMMON A,B,C,R(100} in the main pro-
gram reserves 412 storage locations (four locations per
variable) in the following order:

Beginning of
Common Area

A
B
C

R(1)
R(2)

R(100

4 Storage Locations

The statement COMMON X, Y, Z, S(100} in the subprogram
then causes the variables X, Y, Z, and S(1), ... ,S(100) to
share the same storage space as A, B, C, and R(1}), ...,
R(100).

Example 2:

Assume a common area is defined in a main program and in
three subprograms as follows:

Main Program COMMON A B,C (A and B are 8 stor-
age locations; C is 4 storage
locations.)

Subprogram 1 COMMON D.E,F (D and E are 8 stor-
age locations; F is 4 storage
locations .}

Subprogram 2: COMMON Q,R,S,T,U (4 storage
locations each.)

Subprogram 3: COMMON V W,X,Y,Z (4 storage
locations each.)

The correspondenice of these variables within common can
be illustrated as {ollows:

Main Program Subprogram 1 Subprogram 2 Subprogram 3
COMMON A ,B3,C COMMON D EF COMMON Q,RS,T.U COMMON VvV W, X Y,Z2
Q -~ \Y
A D
R -———— W
S -—— X
B — E
T -— Y
4 Storage Locations 4 Storage Locations 4 Storage Locations 4 Storage Locations

The main progra n can transmit values for A, B, and C to
subprogram 1, provided that C is of the same type as F.
However, the ma:n program and subprogram 1 cannot, by
assigning vatues to the variables A and B, or D and E, trans-
mit values to the variables Q, R, S, and T in subprogram 2,
or V, W, X, and Y in subprogram 3, because the lengths of
their common variabies differ. Likewise, subprograms 2
and 3 cannot transmit values to variables A and B, or D
and E.

Values can be transmitted between variables C, F, U, and
Z, assuming that each is of the same type. With the same
assumption, values can be transmitted between Q and V,
Rand W, Sand X, and T and Y. Note, however, that
assignment of values to A or D destroys any values assigned
0 Q, R, V,and W, (and vice versa) and that assignment to
B and E destroys the values of S, T, X, and Y (and vice
versa).

Specification Suaiements

EQUIVALENCE STATEMENT
The general form of the EQUIVALENCE statement is:

EQUIVALENCE (ay,a;4,a,3, ..
N

Jlayy a8, 23,

where

ais a variable or array element. a cannot be a dummy
argument The subscripts of array elements can have
either «f fwo forms:

It the array element has a single subscript, the sub-
script refers to the linear position of the element in
the array (that is, its position relative to the first ele-
ment in the array: third element, seventeenth element
two hundred fifty-ninth element).

If the array element has more than one subscript {(with
the number of subscripts equal to tive number of
dimensions of the array), the subscript refers to posi-
tion in the same manner as in an arithmetic statement
(that s, its position relative to the first element of
each dimension of the a/ray). In either case, the sub-
scripts themselves must be unsigned integer constants.

Uses: The EQUIVAIZNCE statement provides the option
for controliing the allocation of data storage within a
single program unit. In particular, when the logic of the
program perrits it, the number of storage locations used
can be reduced by causitig locations to be shared by two

or more variables (of the same or different types). Equival-
ence heiween variables implies storage sharing.

Considerations/Restrictions:
1. a cannot be a dummy argument.

2. All the efements within a single set of parentheses
share the same storage locations. The order of appear-
ance of names within an equivalence group is im-
material.

3. Mathematical equivalence of variables or array ele-
ments is implied only when they are of the same
type, when they share exactly the same storage, and
when the value assigned to the storage is of that type.

4, Because arrays are stored in a predetermined order as
discussed previously, equivaiencing two elements of
two different arrays wili implicitly equivalence other
elements of the two arrays. {The one exception is
when the first element of an array is equivalenced to

56

the tast vlement of another array.) The EQUIVAL-
ENCE statement must not congadict itself or any
previousiy established equivaiences.

5. The EQUIVALENCE statement is the only statement
in which a single subscript can be used to refer to an
element {or elemenits) in a muitidimensional acray.

6. Variables that appear in CCMMON or GLORA),
statements cannot be made equivalent 1o each other.
However, a variable car be made eguivalent to a
variabie in common or global. If the variable that is
equivalenced t¢ a variable in common or global is an
element of an array, the implicit equivalencing of the
rest of the elements of the array can extend the size
ot common or gicbal as shown in the following
examples. The size of common or global carinot be
extended so that elements are added before the begin-
ning of the estatylished common or global area.

Example 1.

Assume that in the initial part of a program, an array, C,
of size 10x10 is needed; in the final stages of the program,
C is no longer used, but arrays A and B of sizes 5x5 and
10, respectively, are used. The elements of all three arrays
are of the type REAL +4. Storage space can then be saved
by using the statements-

DIMENSION C(10,10),A{5,5),B(10)
EQUIVALENCE (C(1),A(1)),(C(26),B(1))

The array A, which has 25 elements, can occupy the same
storage as the first 25 elemenis of array C because the
arrays are not both needed at the same time. Similarly, the
array B can share storage with elements 26 to 35 of array
C.

Example 2:

DIMENSION B(5),C(10,10},0(5,10,15)
EQUIVALENCE (A ,B{1},C(5,3)).(D(5,10,2) E)

This EQUIVALENCE statement specifies that the variables
A, B(1), and C(5,3) are assigned the same storage locations
and that variables D{5,10,2) and E are assigned the same
storage locations. It aiso implies that the array elements
B(2) and C(6,3), etc., are assigned the same storage locations.
Note that further equivalence specification of B{2) with
any element of array C other than C(6,3) is invalid.

Example 3:

COMMON A B,C
DIMENSION D(3)
EQUIVALENCE (B,D(1))

This establishes a common area containing the variables A,
B, and C. The EQUIVALENCE statement would then
cause the variable D(1) to share the same storage location
as B, D(2) to share the same storage location as C, and
D(3) would extend the size of the common area, in the
following manner:

A (lowest location of the common area)
B,D(1)
C.D(2)

D(3) (highest location of the common area)

The following EQUIVALENCE statement is invalid:
GLOBAL A,B,C
DIMENSION D(3)
EQUIVALENCE (B,D{3}}

because it would force D{1) to precede A, as follows:

D(1)
A,D(2) {towest location of the common area)
B.D(3)
C (highest location of the common area)
Example 4:

A real variable (REAL™8) is equivalenced to several ele-

ments in an integer {INTEGER*2) array. This can be done

to address two bytes of an eight-byte field. The storage
space can be shared by using the following statements:

REAL*8D
INTEGER™2 1(4)
EQUIVALENCE (D,1{1))

The four elements of array | share storage with variable D
as follows:

Sign
i

D ——

m [| |

OTHER SPECIFICATION STATEMENTS

There are four other specification statements: EXTERNAL,
GENERIC, PROGRAM, and GLOBAL. EXTERNAL and
GENERIC are discussed in the following chapter, which
deals with subprograms. PROGRAM and GLOBAL. are
discussed in the chapter /nterprogram Communication.

DATA INITIALIZATION STATEMENT

The general form of the DATA statement is:
DATA K, /iy *xd; /[, kyfig*da/, o oL, kKy/iprdy/

where
k is a list containing variables, array elements {in which
case, the subscript quantities must be unsigned intege:

constants), or array names.

d is a list of constants (integer, real, hexadecimal, or
literal).

i* is optional and is an unsigned integer constant appear-
ing before d, indicating that d is to be specificd i times.

Uses: This statement defines initial values of variables,
array elements, or arrays.

Specificarion Stuaament

Considerations/Restrictions:

1. There must be a one-to-one correspondence between
data elements (k) and initializing constants {d).
However, this correspondence can be violated when
initializing arrays with literal data. An array element
can be initialized by subscripting the array name.
Only one element is initialized this way. If any excess
characters are specified, they are truncated and not
placed into the next element. If there are not enough
characters specified, the element is padded on the
right with blanks.

Several consecutive elements of an array can be
initialized with a single literal constant by specifying
the array name without a subscript. Data spill {over-
flow data from one element to the next) occurs
through as many elements as necessary to insert the
constant. If the last element initialized is only
partially filled, it is padded on the right with blanks.
{(Any subsequent array elements are not initialized.)
Truncation occurs if the constant exceeds the limit
of the array.

2. For real and integer types, each constant must agree
in type with the variable or array element it is
initializing.

3. A variable, array elcment, or array that is in a

common or glehui area cannot be initialized with a
DATA statement.

4. Dummy arguments cannot appear in list k.

(63

The DATA statement must precede any statement
that uses the initialized variable, and must follow
any specification statement describing the variable,

Examples:

DIMENSION D(5,10)
DATA AB,C/5.0,6.1,7.3/,D,E/25%1.0,25+2.0,5.1/

The DATA statement indicates that the variables A, B, and
C are to be initialized to the values 5.0, 6.1, and 7.3
respectively. In addition, the statement specifies that the
first 25 elements of the array D are to be initialized to the
value 1.0, the remaining 25 elements of D to the value 2.0,
and the variable E to the value 5.1.

DIMENSION A(5), B(3,3)
DATA A/5+1.0/, B/9%2.0/,C/'FOUR’/ STRING/Z0F/

The DATA statement specifies that all the elements in the
arrays A and B are to be initialized to the values 1.0 and
2.0, respectively. In addition, the variable C is initialized
with the literal data constant FOUR, and the variable
STRING is initialized with the hexadecimal data OF .
DIMENSION A(10),B{9),C(2)
DATA A(1),A(2),A(4),A(5)/'ABCD’,"QRSTUVW’,
'123','6666'/
DATA B/’ABCDEFGHIJKLMNOPQRSTUVWXYZ'/
DATA C/'ABCDEFGHIJKL'/,X/"MNOP’/

Through the DATA statements above, storage would be
initialized as follows:

A({1) contains ABCD.
A(2) contains QRST.

A(3) is not initialized {spill does not occur for a
subscripted array name).

Al(4) contains 1238.
A(5) contains 6666.
A(6) through A(10) are not initialized.
B{1) contains ABCD.
B{2) contains EFGH.
B(3) contains IJKL.
B(4) contains MNOP.
B(5) contains QRST.
B(6) contains UVWX.
B(7) contains YZ .
B{8) is not initialized.
B(9) is not initialized.
C(1) contains ABCD.

C(2) contains EFGH. (The remainder of the constant
is truncated.)

X contains MNOP.

It is sometimes necessary to write a program which, at
various points, requires the same computation to be per-
formed with different data for each calculation. It would
simplify the writing of that program if the statements
required to perform the desired computation could be
written only once and then referred to freely, with each
subsequent reference having the same effect as though
these instructions were written at the point in the program
where the reference was made.

For example, to take the cube root of a number, a program
must be written with this object in mind. If a general
program were written to take the cube root of any number,
it would be desirable to be able to combine that program
{(or subprogram) with other programs where cube root
calculations are required.

The FORTRAN language provides for the above situation
through the use of subprograms. There are two ciasses of
subprograms: FUNCTION subprograms and subroutine
subprograms. In addition, there is a group of FORTRAN-
supplied subprograms. Function subprograms return at
least one value to the calling program, whereas subroutine
subprograms need not return any. In addition, the method
of referring to the two kinds of subprograms is different.

A subprogram must never refer to itself directly or
indirectly.

Statement functions are also discussed in this section
because they are similar to function subprograms. The
difference is that subprograms are not in the same program
unit as the program unit referring to them, whereas state-
ment function definitions and references are in the same
program unit.

Naming Subprograms

A subprogram names consists of from one through six
alphameric characters, the first of which must be alphabetic
but not a $. A subprogram name cannot contain special
characters. The type of a function determines the type of
the result that can be returned from it.

Type Declaration of a Statement Function: The declaration
can be accomplished in one of three ways: by the prede-
fined convention, by the IMPLICIT statement, or by the
explicit specification statements. Thus, the ruies for
declaring the type of variables apply to statement functions.

Chapter 8. Subprograms

Type Declaration of FUNCTION Subprograms. The
declaration can be made by the predefined convention, by
the IMPLICIT statement, by an explicit specification in the
FUNCTION statement, or by an explicit specification
statement within the function subprogram. Note that if
the predefined convention is net used, the function must
specify the type both in the function subprogram and in
each program unit that refers to the function.

No type is associated with a subroutine name because the
types of results that are returned to the calling program
are dependent only on the types of the variable names
appearing in the argument list of the calling program and
the implicit arguments in common or global.

STATEMENT FUNCTIONS
A function is a statement of the relationship between &
number of variables. To use a function in FORTRAN, it is

necessary to:

1. Define the function (that is, specify which calcula-
tions to perform)

2. Refer to the function by name when you want to
use it in the program
Function Definition

There are three steps in the definition of a functiun in
FORTRAN:

&

P, The function must be assigned & name by whidi
can be called

2. The dummy arguments of the function must be stated
3. The procedure for evaluating the fupction musy bs
stated

Items 2 and 3 are discussed in detaii in the

with the specific subprograms, statenent fLinda
FUNCTION subprograms.

FUL O Gy e

Function Reference

When the name of a function, followed by a list of its
arguments, appears in any FORTRAN expression, it refers
to the function and performs the computations as indicated
by the function definition. The resulting quantity (the
function value) replaces the function reference in the
expression and assumes the type of the function. The type
cf the name used for the reference must agree with the
type of the name used in the definition.

Using the result of one function as an argument to another
function is called nesting. Nesting of functions cannot be
more than 20 levels deep.

The general form of a statement function definition is:

name(a, ,a,,a3, . . . ,a,)=expression

where

name is the statement function name. The name con-
sists of from one to six alphabetic or numeric characters,
the first of which must be alphabetic but not $.

ais a dummy argument. 't must be a distinct variable
(it can appear only once within the list of arguments).
There must be at least one dummy argument; and no
more than 15.

expression is any arithmetic expression that does not con-
tain array elements. Any statement function appearing in
this expression must be defined previously.

Uses: A statement function definition specifies operations
to be performed whenever that statement function name
appears as a function reference in another statement in the
same program unit.

The expression to the right of the equal sign defines the
operations to perform when a reference to this function
appears in a statement elsewhere in the program unit. The
expression defining the function must not contain a
reference to the function it is defining.

The dummy arguments enclosed in parentheses following
the function name are dummy variables. The arguments
given in the function reference are substituted for the
dummy variables when the function reference is encoun-
tered. The same dummy arguments can be used in more
than one statement function definition, and can be used

as variables outside the statement function definitions. An
actual argument in a statement function reference can be

any expression of the same type as the corresponding dummy
argument.

60

Considerations/Restrictions:

1. Dummy arguments can appear only once in the list
of arguments.

2. There must be at least one dummy argument, (a),
and no more than 15.

3. Any statement functions appearing in the expression
must be defined previously.

4, The expression defining the function must not
contain a reference to the function it is defining.

5. Arguments can be variables only {the expression can
contain constants).

6. All statement function definitions used in & program
must precede the first executable statement of the
program.

7. Expressions cannot contain array elements.

Example: The statement:
FUNC(A,B)=3.*A+B**2 +X+Y+Z

defines the statement function FUNC, where FUNC is the
function name and A and B are the dummy arguments.
The expression to the right of the equal sign defines the
operations to be performed when the function reference
appears in an arithmetic statement.

The function reference might appear in a statement as follows:
C=FUNCI(D,E)

This is equivalent to:
C=3.#«D+E**2.+X+Y+Z

Note the correspondence between the dummy arguments

A and B in the function definition and the actual arguments

D and E in the function reference.

The following are valid statement function definitions and
statement function references:

Function Definition Function Reference

SUM(A,B,C,D)=
A+B+C+D
FUNC(Z)=A+X*Y*Z

NET=GROS-SUM(TAX,0LDAGE,
HOSP,STOCK)
ANS=FUNC{(RESULT)

The following are fnvalid statement function definitions:

Function Definition

SUBPRG({3,J,K)=
3x14+dx+3
SOMEF(A(1),B)=
A(l)/B+3.
SUBPROGRAM
(A,B)=Ax*2+B*%2
3FUNC(D)=3.14+E

ASF(A)=A+B{l)

BAD(A,B)=A+B+

Reason
Arguments must be variables.

Arguments must not be array
elements.

Function name exceeds the limit
of six characters.

Function name must begin with
an alphabetic character.

Expressions cannot contain an
array element.

Definition not permitted to refer

BAD(C,D) to itself.
NOGOOD(A,A)= Arguments are not distinct
AxA variable names.

The following are invalid statement function references
{the functions are defined previously}:

Function Reference Reason

WRONG=SUM Number of arguments does not
(TAX,FICA) agree with definition.
MIX=FUNC(}) Type of argument does not agree

with above definition.

FUNCTION SUBPRCGRAMS
The general form of the FUNCTION statement
type FUNCTION name=s (a;,a;,a3, . .. ,ap)
where
type is INTEGER or REAL. its inclusion is optional.

name is the name of the FUNCTION, consisting of from
one to six alphabetic or numeric characters, the first of
which must be alphabetic but not $.

s represents one of the permissible length specifications
for its associated type. It can be included optionally
only when type is specified.

ais a dummy argument. it must be a distinct variable or
array name (that is, it can appear only once within the
statement) or dummy name of a SUBROUTINE or
other function subprogram. There must be at least

one argument in the argument list.

Uses: The function subprogram is a FORTRAN subprogram
consisting of a FUNCTION statement followed by other
statements including a RETURN and an END statement. It
is an independently written program that is executed when
its name is referred to in another program.

A type declaration for a function name can be made by the
predefined convention, by an IMPLICIT statement, by an
explicit specification in the FUNCTION statermment, or by
an explicit specification statement within the function
subprogram. The function name must also specify type in
the program units that refer to it if the predefined conven-
tion is not used.

Because the subprogram is a separate program unit, there is
no conflict if the variable names and statement numbers
within it are the same as those in other prograrn units.

Considerations/Restrictions:

1. The FUNCTION statement must be the first statement
in the subprogram.

2. The function subprogram can contain any FORTRAN
statement except:

® a SUBROUTINE statement
® another FUNCTION statemient
@ 3 DEFINE FILE statement

e 3 PROGRAM statement

3. If an IMPLICIT statement is used in a function sub-
program, it must immediately follow the FUNCTION
statement.

4. The name of the function must be assigned a valug at

least once in the subprogram—as:

® the variable name to the left of the eque! sign v an
arithmetic statement

® an argument of a CALL statement

® an external function reterence miat is assignied o
value by a subroutine referred 10

@ an item in alist of a READ statemen® in the
subprogram

Subprograms 81

5. The dummy arguments in a function subprogram
cannot be redefined (that is, cannot appear to the
left of an equal sign).

6. The number of dummy arguments in a FUNCTION
statement cannot exceed 25.

Example:

The relationship between variable names used as arguments
in the calling program and the dummy variables used as
arguments in the function subprogram is illustrated in the
following example:

Calling Program Function Subprogram

FUNCTION CALC(A,BJ)

ANS=ROOT1+
CALC(X,Y.I)
. 1=J%2

CALC=A=xx1/B
RETURN
END

In this example, the values of X, Y, and | are used in the
FUNCTION subprogram as the values of A, B, and J
respectively. The value of CALC is computed, and this
value is returned to the calling program where the value of
ANS is computed. The variable | in the argument list of
CALC in the calling program is not the same as the variable
| appearing in the subprogram.

Calling Program Function Subprogram

INTEGER*2 CALC INTEGER FUNCTION CALC+

2{1,4,K)

ANS=ROOT1* CALC=1+J+Kx*2

CALC(NM,L)

RETURN
END

The function subprogram, CALC, is declared as type
INTEGER of length 2.

62

SUBROUTINE SUBPROGRAMS

The general form of the SUBROUTINE statement is:
SUBROUTINE name (a;,a5,as, ... ,an)

where

name is the SUBROUTINE name, consisting of irom one
to six alphabetic or numeric characters, the first of which
must be alphabetic but not $.

a is a distinct dummy argument (that is, it can appear
only once within the statement). There need not be any
arguments, in which case, the parentheses must be
omitted. Each argument used must be a variable or array
name or the dummy name of another subroutine or
function subprogram.

Uses: The subroutine subprogram is similar to the function
subprogram in many respects. The rules for naming func-
tion and subroutine subprograms are similar. They both
require a RETURN and an END statement, and they both
contain the same sort of dummy arguments. Like the
function subprogram, the subroutine subprogram is a set of
commonly used computations, but unlike the function
subprogram, it need not return any results to the calling
program. The subroutine subprogram is referred to by the
CALL statement.

Counsiderations/Restrictions:

1. The SUBROUTINE statement must be the first
statement in the subprogram. The subroutine sub-
program can contain any FORTRAN statement
except a FUNCTION statement, another SUBRQU-
TINE statement, a DEFINE FILE statement, or a
PROGRAM statement. If an IMPLICIT statement
is used in a subroutine subprogram, it must
immediately follow the SUBROUTINE statement.

2. The subroutine subprogram can use one or more of
its arguments to return values to the calling program.
An argument so used appears on the left side of an
arithmetic assignment statement, in the list of a
READ statement within the subprogram, or as an
argument in a CALL statement or function
reference that is assigned a value by the subroutine
referred to. The subroutine name must not appear
in any other statement in the subroutine subprogram.

3. The dummy arguments (a, ,a, ,a;, ... ,an) are con-
sidered dummy names that are replaced at the time of
execution by the actual arguments supplied in the
CALL statement. Additional information about
dummy arguments is in the section Dummy Argu-

ments in a Function or Subroutine Subprogram.

4. Each distinct dummy argument {a) can appear only
once in the list of arguments and the number of
dummy arguments cannot exceed 25.

b. If there are no dummy arguments, the parentheses
must be omitted.

6. A subroutine subprogram must contain an END
statement and at least one RETURN statement.

7. Because the subprogram is a separate program unit,
there is no conflict if the variable names and statement
numbers within it are the same as those in other
program units.

Examples:

SUBROUTINE COPY {A,B,N}
SUBROUTINE NULL

CALL Statement

The CALL statement is used to call a subroutine
subprogram.

The general form of the CALL statement is:
CALL name (a;,a.83, ... ,an)

where
name is the name of a subroutine subprogram.

Each a is an actual argument that is being supplied to
the subroutine subprogram. The argument can be a
variable, array element, array name, constant, arithmetic
expression, or subprogram name.

Uses: The CALL statement transfers control to a subrou-
tine subprogram. The CALL statement associates the
dummy arguments named in the SUBROUTINE statement
with the value of the actual arguments in the CALL state-
ment.

Considerations/Restrictions:

1. The arguments cannot be constants or expressions if
the subprogram changes their value.

2. There cannot be more than 25 arguments in a CALL
statement.

Examples:

CALL OUT

CALL MATMPY(X,5,40,Y,7,2}

CALL ODRTIC(X,Y,Z,RO0T1,ROOT2)
CALL SUB1T(X+Y*5 ABDF SINE)

The CALL statement transfers contrai to the subroutine
subprogram, and associates the dummy variables with the
value of the actual arguments that appear in the CALL
statement.

Example:

Calling Program Subroutine Subprogram

DIMENSION
X(100},Y{100)
: SUBROUTINE COPY(A,B,N}
. DIMENSION A{100) B{100}
. DO 10{1=1,N
CALL COPY 10 B{)=All)
(X.Y,100)
: RETURN
- END
The preceding example shows the relationshap noivieen

variable names used as arguments i the calling prooram
and the dummy variables used as argumants in ihe S
ROUTINE subprogram.

Subroutine COPY copies array A it arisy Howar s the
subprogram. In this particular cail, ine sobeouting s

A and B, are associated with the calitig prag
and Y, respectively, and the varisbls N in the subcutins o

1 Breay

associated with the value 100. Thus g call to subrounne
COPY in this instance results in the 100 elevvents of arvay
X being copied into the 100 eiewments of prray ™

[
B2
o

RETURN STATEMENT

The general form of the RETURN statement is:

RETURN

Uses: This statement is used to exit from a function or
subroutine subprogram. It signifies the conclusion of a
series of computations. The subprogram transmits

argument values and returns control to the calling program.

Considerations/Restrictions:

1. There can be scveral RETURN statements in a sub-
program.

2. The RETURN statement cannot appear in a main
program.
Example:
FUNCTION DAV(D,E,F)

iF (D-E)10,20,30
10 A=D+2.0*L

5 A=F+2.0+E

20 DAV=A+Dxx2

RETURN
30 DAV=D*=*2

RETURN
END

If the result of (D-E) is negative or zero, the first RETURN
statement is executed. If the result is positive, the second
RETURN is executed.

DUMMY ARGUMENTS IN A FUNCTION OR SUBROU-
TINE SUBPROGRAM

The dummy arguments of a subprogram appear after the
function or subroutine name and are enclosed in parentheses.
They are associated at the time of execution with the

actual arguments supplied in the CALL statement or
function reference in the calling program.

The dummy arguments must correspond in numbx.., order,
and type to the actual arguments. For example, if an
actual argument is an integer constant, then the correspond-
ing dummy argument must be an integer variable of length
4. If a dummy argument is an array, the corresponding
actual argument must be (1) an array, or (2} an array ele-
ment. In the first instance, the size of the dummy array
must not exceed the size of the actual array. In the second,
the size of the dummy array must not exceed the size ot
that portion of the actual array that follows and includes
the designated element.

The actual arguments can be:

® An arithmetic constant

Any type of variable or array element

® Any type of array name

® Any type of arithmetic expression

® The name of a function or subroutine subprogram

An actual argument that is the name of a subprogram must
be identified by an EXTERNAL statement in the calling
program unit containing that name. Hexadecimal constants
cannot be actual arguments.

A dummy argument is an array when an appropriate
DIMENSION or explicit specification statement appears in
the subprogram. None of the dummy arguments can
appear in an EQUIVALENCE, COMMON, or GLOBAL
statement.

Dummy arguments or common or global elements cannot
be assigned new values in a function subprogram. If a
dummy argument is assigned a value in a subroutine sub-
program, the corresponding actual argument must be a
variable, an array element, or an array. A constant or
expression should not be written as an actual argument
unless the programmer is certain that the corresponding
dummy argument is not assigned a value in the subprogram.

A referenced subroutine cannot assign new values to dummy
arguments that are associated with other dummy arguments
within the subroutine or with variables in common or global
areas. For example, if the subroutine DERIV is defined as

SUBROUTINE DERIV (X, Y, Z)
COMMON W

and if the following statements are included in the calling
program

COMMON B

CALL DERIV (A,B,A)

then X, Y, Z, and W cannot be assigned new values by the
subroutine DERIV. Dummy arguments X and Z cannot be
defined because they are both associated with the same
argument, A; nor dummy argument Y, because it is associa-
ted with an argument, B, which is in common; nor the
variable W, because it is also associated with B.

EXTERNAL STATEMENT
The general form of the EXTERNAL statement is:
EXTERNAL ay.,a,a3,4

where
each a is a name of a subprogram that is passed as an
argument to other subprograms.

Uses: The EXTERNAL statement identifies the names of
subprograms that are passed as arguments to another sub-
program.

Considerations/Restrictions:

1. The EXTERNAL statement is a specification state-
ment, and must precede statement function definitions
and all executable statements.

2. If the name of a FORTRAN-supplied intrinsic func-
tion is used in an EXTERNAL statement, the func-
tion from the System/3 FORTRAN library is not
used when it appears as a function reference. Instead,
it is assumed that the function is supplied by the user.

Examples:

The name of any subprogram that is passed as an argument
to another subprogram must appear in an EXTERNAL
statement in the calling program. For example, assume that
SUB is a subroutine subprogram and MULT is a function
subprogram in the following statements:

Calling Program Subprogram

EXTERNAL MULT SUBROUTINE SUB(K,M,Z)

. IF {K)4,6,6
» 4 D=M(K,Z**2j
CALL SUB(JMULT.C)
& RETURN
. END

in this example, the subprogram name MULT is used gs an
argument in the subprogram SUB. The subprogram sniame
MULT is passed to the dummy veriable M as are the varia-
bles J and C passed to the dummy variables K and Z, res-
pectively. The subprogram MULT, is executed only if the
value of K is negative.
Calling Program Subprogram
SUBROUTINE SUBW, X,
. M, N}
CALL SUB(A,B,
MULT(C,D},37) .
. RETURM
END

In this example, an EXTERNAL staterment 15 not rerpayan
because the subprograny named MUL T 55 nol an arguimesd
it is executed first and the result beccmes the argument,

Surwograms A5

AUTOMATIC FUNCTION SELECTION

The automatic function selection facility allows you to use
a single generic name when requesting a FORTRAN-
supplied function that has several names depending on
argument type. The proper function is selected by the
FORTRAN compiler, based on the type of the argument(s)
of the function.

With this facility you can, for example, use the generic
name, Sily, 1o refer to any sine routine, rather than expli-
citly calling SIN for REAL*4 arguments and DSIN for
REAL=8 arguments. The facility is requested by including
the GENERIC statement in each executable program unit
in which it is to be used.

GENERIC Statement

The general form of the GENERIC statement is:

GENERIC

Uses: The GENERIC statement indicates that for FOR-
TRAN-supplied functions having several names depending

on argument type, the coirect function is to be selected by
the FORTRAN compiier.

The use of the GENERIC statement declares the set of
names in the first column of Figure 4 to be generic. Specific
built-in and library function names can be interspersed

with generic names in the same program unit.

Considerations/Restriciions:

1. As a specification statement, GENERIC must precede
statement function definitions and all executable
program statemients, and must follow any PROGRAM,
FUNCTION, SUBROUTINE, or IMPLLIC!IT statement.

2. The use of a generic name in an explicit type state-
ment overrides its definition as generic, because
generic names have no type. If the generic name of
an intrinsic function appears in an EXTERNAL
statement, its definition as generic is also overridden,
because it is thereby considered an external procedure.
(The intrinsic functions are underlined in the first
column of Figure 4.} A generic name that does not
coincide with an intrinsic function name can appear
in an EXTERNAL statement and still be considered
generic.

3. Generic names cannot be passed as arguments to
external procedures. The automatic function selec-
tion facility will not substitute the appropriate
function for the generic name in an argument list
when the generic name is used without arguments.

Note: There is no way to make such a selection, be-
cause the name being passed as an argument has no
arguments of its own. Thus, a function name is spec-
ific for use as an argument, even if the same name is
generic for use as a function reference.

Example:

GENERIC
EXTERNAL COS
REAL+8A,B,C,D
C=COS(A)
D=DCOS(B)
CALL SUB(COS})

Because automatic function selection is invoked, the
function DCOS is called to calculate the value of C and D.
The specific name COS is passed to the subroutine SUB.
Because COS is not an intrinsic function name, it can be
used in an EXTERNAL statement and still be used as a
generic name.

Page of SC28-6874-3

Issued 29 September 1978

By TNL: SN21-5634

Generic

Function Specific Function Name By Type

Name and Length of Arguments Permissible Function Value

{intrinsic

function) INTEGER x4 REAL+4 REAL«8 Type Length

ABS(1) IABS ABS DABS Arg® Arg

AINT(1) AINT Real Arg

ATAN ATAN DATAN Real Arg

COS(1} COs DCOS Arg Arg

DIM{2) IDIM DIM Arg Arg

EXP(1) EXP DEXP Arg Arg

INT(1) INT IDINT Integer 4
=IFIX@

LOG(1) ALOG DLOG Arg Arg
=L.OG

LOG10(1) ALOG10 DLOG10 Real Arg
=AL0G10®

MAX(>2) MAXO0 AMA X1 DMAX1 Arg Arg

-max®
MIN (>2) MINO AMIN1 DMIN1 Arg Arg
-MiN®

MQOD(2) MOD AMOD DMOD Arg Arg

SIGN(2) ISIGN SIGN DSIGN Arg Arg

SIN(1) SIN DSIN Arg Arg

SQRT(1) SQRT DSQRT Arg Arg

TANH({1) TANH DTANH Real Arg

(D The function name is an alias. The functions in the left column are aliases for those in the right column. They are
aliases both when GENERIC is specified and when it is not.

Alias

LOG
LOGI10
MAX
MIN

Function

ALOG
ALOG10
MAXO0
MINO

(@ IF1X performs the same function as INT, and is shown as a member of the GENERIC family INT.

(3 The abbreviation arg is used to indicate that the type and/or length of the function value is the same as the argument.

Parentheses, (), indicate the number of arguments.

Figure 4. Generic Functions

Subprograms

67

68

System/3 FORTRAN |V provides a means of loading and
executing main programs successively. Each program can
share a common storage area that is not overlaid when the
next program is invoked.

Interprogram communication enables you to avoid the
impasse that results when the main storage available for a
FORTRAN job is insufficient for the data and object code
required to process it. It also aliows for more efficient
execution of programs, that because of their complexity,
require calls to numerous subroutines.

Interprogram communication is provided by three System/3
FORTRAN statements—PROGRAM, INVOKE, and
GLOBAL. The PROGRAM statement assigns a user name
to a main program that is called (loaded into main storage)
with the INVOKE statement. The GLOBAL statement
specifies a storage area (and the variables and arrays it
contains} that will not be overlaid when the invoked pro-
gram is loaded.

The following situation illustrates the usefulness of inter-
program communication.

Assume that 16,000 bytes of main storage is available for
use by a FORTRAN program. This program must read a
large amount of data, process it, and write it out. Assume
that the data requires 10,000 bytes of storage, leaving
6,000 bytes for object code which includes routines for
reading, processing, and writing. If each of these three
steps required the full amount of storage available (6,000
bytes), the program could not be executed even if it were
divided into a main program and two subroutines (because
a subroutine does not overlay the program that calls it). The
minimum amount of storage required for processing code
would still be 12,000 bytes.

However, with the INVOKE and GLOBAL statements, the
program could be divided into three main programs of
6,000 bytes each, with the 10,000-byte data area designated
as global. When the first main program is through with its
processing, it invokes the second program, which overlays
the first (occupies the same 6,000 bytes of storage). The
10,000 bytes of data in the global area is not destroyed.
When the second program is through processing, it, in turn,
invokes the third program.

Chapter 9. Interprogram Communication

PROGRAM STATEMENT

The general form of the PROGRAM statement is:
PROGRAM name

where name is the name of the main program. The name

consists of from one to six alphabetic or numeric characters
the first of which must be alphabetic, but not $.

’

Uses: The PROGRAM statement assigns a name to a main
program.

Considerations/Restrictions:

1. The PROGRAM statement must be specified if
another program calls the main program using the
INVOKE statement.

2. The PROGRAM statement must be specified if the
program is to be compiled, link-edited, and stored

on a disk pack {for execution at a later time).

3. A PROGRAM statement, if present, must be the first
statement in a main program.

4. A PROGRAM statement cannot be used in a sub-
program.

Examples:
PROGRAM PROG3
PROGRAM COST

INVOKE STATEMENT

The general form of the INVOKE statement is:
INVOKE name

where name is the name of a main program specified in a
PROGRAM statement.

Interprogram Communication 69

Page of SC28-6874-3
Issued 21 December 1979
By TNL: SN21-5711

Uses: The INVOKE statement causes the named program
to overlay the invoking program and receive control. A
program that is invoked begins execution at its first exe-
cutable instruction.

Considerations/Restrictions:

1. The INVOKE statement can appear in a main program
or a subprogram.

2. When using the INVOKE statement on a non-DPF
system, the program being invoked must not be
larger than the amount of user main storage. When
using the INVOKE statement on a DPF or multi-
programming system, the program being invoked
must not be larger than the program that was initially
loaded into main storage (the program specified on
the LOAD statement). Also, the invoked program
cannot be larger than the program level or partition
size when using a PARTITION statement.

The CORE statement can be included in the program
initially loaded into main storage to specify the size
of the largest program to be invoked (refer to CORE
Compiler Option Statement).

3. The program being invoked and the invoking program
must reside in the object library on the same drive.

4. When the invoking program and the program being
invoked are both reading cards from the MFCU1 on
the Model 10 or any card input device on the Model
15, that device should be singie buffered. If the
device is double buffered, a data record will be lost
when the program is invoked.

5. If an invoking program uses a sequential disk file,

a following invoked program must refer to that
file by the same logical unit number.

Examples:
PROGRAM FiRST PROGRAM SECOND

INVOKE SECOND

GLOBAL STATEMENT
The general form of the GLOBAL statement is:
GLOBAL dy (kl),az (k2), . ,an(kn)

where a is the name of a variable or array. k is an optional
subscript composed of from one to three unsigned integer

70

constants separated by commas, representing the maximum
value of each subscript in the array.

Uses: The GLOBAL statement provides the sharing of a
main storage area, {and the variables and arrays contained
in it) by two or more main programs. It is like a COMMON
statement except that it can be used to communicate
between two or more main programs in addition to program
units in the same program.

Considerations/Restrictions:

1. The GLOBAL statement can appear in a main program
or a subprogram. A program unit can contain any
number of GLOBAL statements. All entries in these
statements are strung together in the order of their
specification. An entry cannot be specified more
than once in a GLOBAL statement, in more than one
GLOBAL statement, or in both a GLOBAL and
COMMON statement.

2. The global data area is for interprogram communica-
tion, although a main program may share a globa!
data area with a subprogram. The /ocal COMMON
statement can still be used for this intraprogram
communication.

3. Rules regarding the use of equivalence are the same
for a global data area as for a common data area.
Specifically, the EQUIVALENCE statement cannot
be used to extend the size of the global area by
adding elements before the beginning of the giobal
block. In addition, a variable or array cannot be
associated by equivalence to a global variable, array,
or array element if the variable or array so associated
is itself in a global or common block.

Example:

PROGRAM SECOND
GLOBAL X,Y,Z(25),

PROGRAM FIRST
GLOBAL A,B,C(5,5),

D(10,1000) DATA(10,1000)
. sTOP

INVOKE SECOND END

END

The debug faciiity is a programming aid that enables you
to locate errors i a FORTRAN source program. The debug
factlity traces the flow within a program, traces the flow
between programs, and checks the validity of subscripts.

The debug facility consists of a DEBUG statement, an AT

debug packet ideniification statemenit, and two executable
statements. These siatements specify the debugging opera-
tions for a singie program unit in source language. (A pro-
grarn unit is @ single main program or a subprogram.}

The source deck arvangement consists of the source
language statements that constitute the program, followed
by the DEBUG specification statement, followed by the
debug packets, followed by the END statement.

The statements that make up a program debugging opera-
tion must be grouped in one or more debug packets. A
debug packet consists of an AT statement followed by a
TRACE ON or TRACE OFF statement.

DEBUG STATEMENT
The general form of the DEBUG statement is:

DEBUG option, . . option

whare option can be any of the following:

SUBCHK({n, ry, ... i)
where nis an array name. The vahdity of the sub-
scripts used with the named arrays is checked by com-
pariing the subscript combination with the size of the
array. If the subscript exceeds its dimension bounds,
a message is placed in the debug cutput file. Program
execution continues, using the incorrect subscript. If
the hist ot array names is omitted, all arrays in the
program are checked for vahid subscript usage. If the
entire option is omitted, no arrays are checked for
valid subscripts

When subscript checking occurs, only two bytes of
the subscript are examined. 1f an INTEGER*4 value
is used as a subscript, the leftrmost two bytes of the
subscript value are ignored.

SUBCHK cannot be applied to a dummy array.

Chapter 10. Debug Facility

TRACE
This option must be in the DEBUG statement of
each program or subprogram for which tracing is
requested. If this option is omitted, there is no dis-
play of program flow by statement number within
this program. Even when this option is used, a
TRACE ON statement must appear in the first debug
packet in which tracing is requested,

INIT(my,my, ..., my)
where m is the name of a variable or an array that is
displayed in the debug output file only when the
variable or the array values change.

If m is a variable name, the name and value are dis-
played whenever the variable is assigned a new value
in either an assignment or a READ statement.

If m is an array name, the changed element is dis-
played. If the list of names is omittad, a display
occurs whenever the value of a variable or an array
element is changed.

If the entire option is omitted, no display occurs
when values change.

INIT cannot be applied to a dummy variable.

SUBTRACE
This option specifies that the name of this subprogram
is displayed whenever it is entered. The message,
RETURN, is displayed whenever exzcution of the
subprogram is completed.

Uses: The DEBUG statement sets the conditions for opera-

tion of the debug facility and designates debugging opera-
tions that apply to the entire program unit.

Debug Facility 71

Considerations/Restrictions:

1. There must be one, and oniy one, DEBUG statement
for each program or subprogram 1o be debuyaged; it
must follow the iast executable statement (such as

STGP or RETURN]}. The debug peckets must immedi-

ately follow the DEBUG statement.

-. Tie options ina DEBUG statement can be giveri only
once, can apprar in any order, and must be separated
by corrimnas.

3. Output from « debug operation is directed to the

FORTRAN error logging dev:ce. (See PRINT and
NOPRINTER Device Option Statements in Chapter
13 for more 1 formation.}

AT STATEMENT
The general form of the AT statement is-
ATn

where
nis the statement numbe of an executable statement
in the program oy subprogram to be debugged.

Uses: The AT sts sment identifies the beginning of a
debug packet and indicates the statement number in the
program unit where statement tracing is to begin ar end.

Considerations/Restrictions:

1. There inust be one AT statement tor each debug
packet. {Ttiere can be many debug packets for one
program or subprogram .}

2. The TRACE option must be specified in the DEBUG
staternent if AT is specified.

3. A TRACE ON statement or TRACE OFF statement
must follow tire AT statement.

Example:

200 X=Y+2Z

DEBUG TRACE
AT 200
TRACE ON
END

72

TRACE ON STATEMENT
The general torm of the TRACE ON statement is:

TRACE ON

Uses: The TRACE ON statement initiates the display of
program flow beginning at the statement number indica..d
by the AT statement. Each time a statement thai ..as a
statement number is executed, the statement number is
printed out on the debug output file.

Considerations/Restrictions.
1. For the TRACE ON staternent to be valid, the
TRACE option must be specified in the DEBUG

statement.

2. Tracing begins immediately before the execution of
the statement specified in the AT statement.

'lw)

The TRACE ON statement stays in effect through
any level of subprogram call or return. However, if

a TRACE ON statement is in effect and control is
given to a program in which the TRACE option was
not specified, the statement numbers in that program
are not traced.

Example:

200 X=Y+Z

DEBUG TRACE
AT 200

TRACE ON
END

TRACE OFF

The general form of the TRACE OFF statement is:
TRACE OFF

Uses: The TRACE OFF statement stops the display of

program: flow beginning at the statement number indicated
by the AT statement.

Considerations/Restrictions: For this statement to be
valid, the TRACE option must be specified in the DEBUG
statement.

Example:

200 X=YiZ

210 X=Y-2Z

DEBUG TRACE
AT 200
TRACE ON

AT 210
TRACE OFF
END

EXAMPLES OF THE DEBUG FACILITY

Exampie 1:

DIMENSION STOCK{1000),0UT{1000)

D0 30 1=1,1000

25 STOCK (1) =STOCK(1}-OUT (1)
30 CONTINUE

35 A=B+C

DEBUG SUBCHK{STOCK),INIT(STOCK)
END

Al of the invalid subscripts processed in STOCK, and all
of the values of STOCK are to be displayed.

Example 2:
10 A=15
12 L=1
15 B=A+15
20 DO221=15
22 CONTINUE
25 C=B+3.16
30 D =C/2

STOP

DEBUG TRACE

C DEBUG PACKET NUMBER 1
AT 10
TRACE ON

C DEBUG PACKET NUMBER 2
AT 20
TRACE OFF

C DEBUG PACKET NUMBER 3
AT 30
TRACE ON
END

When statement 10 is encountered in the preceding example,
tracing begins as indicated by debug packet 1. When state-
ment 20 is encountered, tracing stops as indicated by the
TRACE OFF statement in debug packet 2. When state-
ment 30 is encountered, debug packet 3 tracing begins
again.

In this example, trace output is produced for statement

numbers 10, 12 15, and 30. No debug output is produced
for statement numbers 20, 22, and 25.

Debug Facility 73

74

Chapter 11. Examples of FORTRAN Programs

Thus 2,3,5,7, 11,

The number 9 is not a prime

Thiz sample oprogram {Figure B) is designed to find all of
. are prime riumbers.

the orime nuimbers between 2 and 1000. A prime number
is ain integer greater than 1 that cannot be evenly divided

nuimber because it can be evenly divided by 3.

Dy any intoger except itself and 1.

SAMPLE PROGRAM 1

T T T T T T E
AR o g | 0 o 0 o -
21w g 4+ 44 4 —t t—F —{T
SRS 11 (e et e o %
; 23] 2! nmnxAITIJTL —F ‘N‘Tx N I A Lo O B s
B g P e e T
i o4& e | R B R B S U U B
f A e i e - 2
5 5 o s 5 e -

| B F EmSp ‘ .

C

66 67 6
T
k+:

i
Tt

]

i

-

T

!J

|
=
7

57885970, 17
T
T
4
1T
Il
N,
|
|
4
}
|
T
i
1
|
|
T
1
|
89707

Ll

61626

9

11

s

ainy

i | []
| L] 1
| ! , 5
| L — 3
N & SRR S SR R S G o I A O 0
' | ¥ H,_ Ww t ! i lﬁiw ,\‘4‘\\1{11 N
sli B i = I 7
! Elil g s
, AR - i — M
“ Clef il T 1 .
iz g SR IS O 0 B T 11 12
= 3£ I e e s T S T N "~ [4 e e e B S ™
B! ww Tz u]1!1.lrff.\f4’§‘ * b — $Tmu frott - —7
Q &2, |2 ! | — [ae | I ¥
SR I S S o ol . .
Lz e e 3 I
T o T rimsens e e e B R R e s
o e e S T O s .
- ‘o F -~ } —t T t i ¥
x R S S T s S B .
(ol [- b D I e B = e I
u 5 : IR e Tt T
5 , 1o . ! RGNS Eh
i 50 - W S B s
N S = O S s
o e R B e e I
b +H T = P Fopes T ﬁum,
A DL N S o vy iR St S S S SR +—
S S A e A S S SR
e ! * ™ i
~N T T 4 - &
e T 4 |
! e A B 0 s s T
' —+—1 s A
: et b e
H H + + H i =0
i q T T s
; TTROTTTD T
| B e W . S S S S -
-

|
-t
1

L

AT,

0. TINGE

LN |
b | MRITE

FORM

CONTIL

SAMPLL PROGRAM L

O 18
M

PROGIHAM

-
i
et

75

Sample Programs

Figure 5. Sample Program 1

SAMPLE PROGRAM 2

The n points (xj, y;) are to be used to fit an m degree poly-
nomial by the least-squares method.

y=a, ta;x ta,x> + ... +apx™

In order to abtain the coefficients a,, a,, .
necessary to solve the normal equations:

.., am,Itis

(1) Woag +Wiay +. ..+ Wpapy = Z,
(2) W,a0+W2al +--~+Wm+lam:Zl

(m+1}) Wpha+Wph+a +...+Wyham =2y

where: n
Wy =n z =Z Yi
=1
n n

i=1 i=1
n
Zy= E yixi™
i=1

76

After the Ws and Zs are computed, the normal equations
are solved by the method cf elimination, which is illustrated
by the following solution of the normal equations fcr a
second degree polynomial (m = 2).

(1) Woag + Wia; +Wsa, =Z,

(2) Wiap + Woay + Wia, =2

(3) Wyag + Wia, + Wya, =2,
The forward solution is as follows:

1. Divide equation (1) by W,

2. Muiltiply the equation resulting from step 1 by W,
and subtract from equation (2)

3. Multiply the equation resulting from step 1 by W,
and subtract from equation (3)

The resulting equations are:

(4) ag +t by,a; +byza; =big
(5) by,a; +byza; =bag
{6) by,a, +byza; = bag
where:
by, =W /W, by = W, /W,, bis = Zo/Wo

by, =Wy-bi oW, ., baj :Ws—ble . bag = 21'514W1
byy = W3-by, Wy, b3z =Wa-by3W, , bas =Z5-biaW,

Steps 1 and 2 are repeated using equations (5} and (6),
with b, and by, instead of W, and Wy . The resulting
equations are:

(7 a; tCy3a; T Cra
(8) C33dz = C34
where:

€23 =ba3/bya .C2a = D2a/bya
C33 = b33-Cr3b3y , C3a = b3g~Caabay

The backward solution is as follows:

(9) a, = C34/C33 from equation (8)
(10) a; = Cpa-Cy3d; from equation (7)
(11) ao =bj4-by,a,-by3a, from equation (4)

Figure 6 15 a sarnpie FORTRAN prograim foi carrying out
the celculations for the case: 1 =100, m < 10. W, W, ,
Wo, ..., W,y sie stored in \/\1\1\ W(2j, W{3},
W{2M H) respectively, 2 L2y, Dy are Sl’)!f‘d in
21}, £(2), Z{3), .. . Z{i1), respectively,

’

FOHTRAN Codlng Form et s
[rrovnaw caMPLE PROGRAM 2 o came Jomaene T T T T E L] Jreacep oy
SR i_,,[INST UG .rmslpu,\,w l 1 l l 1 }CARD ELECTAG NUMBER®]

e e AT oo . TDENTIFICATION
FORTRAN STATEMENT SEQUENCE
"} 7 6 ’]’5{8 596061]62 6364 65 66 67 68 63 70 71 72|75 74 75 76 77 78 79 80
7 T
I -
I f‘H | ! * r
“Ltz, 1;\»T17+;‘ fog 44 |
: EOPJ"XAJL.}‘MALE) .Ii¢. ,ili...Ll,ﬂ,,, R i
il ' ! N : 1 i
3 i \ = ; i ‘ } ! .
CREAD) (LA ML L ,(:q,‘ NICID L I=dl N sl ‘ ANENEREEN |
i Cu A~ | i s : : ' : ! !
R I .Z*J'LLL‘ P SRR . 1 i H O O T | | ol |
er b Bz Mz o0 Pl N HI I T N O ‘ ; . by
PolE . 14~~a i b ; . IR ; ‘ iy
, i | | ; i | | : | !
* B et ; 2l T
-4 pa—— b | | 4
s i | ’ :
Lo I | |
T ' i T
i i ! |
= ¢ ;' e
} 1 | ———+
B + ++
H i
-, + {
4 i
T | ' !
rert T t +
| B | I
; - T
; ‘ i i
+ | B e
— L + i H 17
i ; ; i | i !
L T ! ! 1 1 [T
} |
f } + + }
. ; i U
'r"f'? T *‘L‘ BEmm
L L L1 i N i
6667 68 60 70 71 72|75 74 75 76 77 78 79 BO)

Figure 6 (Part 1 of 3). Sampie Program 2

Sample Programs

77

GX28 7321 U/MDED
Printed in U5 A

PAGE 2 OF 3

| CARD ELECTRO NUMBER™

FORTRAN Coding Formi

1.

PUNCH

}

INSTRUCTIONS

PUNCHING

JD»\TE

E PROGRAM 2

[PROGRAM & A MDY

PHDGRAMMER

IDENTIFICAT ION
SEQUENCE

-
H

T

768 6C 10 71 1247 14 75 76 17 18 79 80

ol

85606

}
T
!

[T
| e q
- T
! IR '
| 1
[;
i -
b I R S
[BN
[;
(- i e T
[. i ;
b i I 1 7
e o b , ; —) e et
ﬂw_ J ,ﬁ - d—t H PR
< b e - R e |
e G :
Dt + - - e o
- : +
: }
K3
| b
o i
oy H I —
=¥,
Z 14 1 .
¥ 3 i I
= S b
W - -
[
a0 PO O S
=
Leg :
zE 3
Lo
Lk t
[. ;-
el
e -
!

|

2021 222324257627 2629 30 31 32 33 34 35 36 3/ 48 30 40 41 4:“A3444£4§4’@4‘(}5L§| 52535465 5657 58 59 60 61 62 6364 65 66 67 68 69 70 "1 72173 74 75 76 77 16 73 BO)

3
H
S

:

[

i3

B

Iy

=

m

I~

p

¥ >

K = 1 R

1< -

I IR m]

b = P ~ A

B] ~ b - Lo B IR

o TN TN Ad 4 & o

o] N Y [| 4 ™ | I

o [e | 4 T . T B A xl\u.‘_< A I

o~ R | —~ o P o

] LI R M Ak n K Qv o

o x| 0 X A v A TH [1 =

- Mo] I T O 0 2 A A IO

T + o~ 1@ T ~ 49 T T A 1™ -

EmikS 1 o+] P =

or ~ o4 P B g 4 0 ol 4 m 1Pk

o) el I VOL OUj L..LlQ‘ i

ot A £ BV EeI¥ e i wy O ~d | H | i

32 o ada qudad g ~
= 3
G W B ,bw o B
Mm4i.»_l, L .Inam fas P
0 e S i T
57 ko

Figure 6 {Part 2 of 3). Sample Program 2

UMOB0

GXX8-7327
Printed in US.A

FORTRAN Coding Form

s_cﬁgﬁ_ﬂ

CARD ELECTRO NUMBEF

PAGE

=

|
|

g
PIizx

£lg
L2
rxl s
Lo s
e
i z
-
| o
| 2%
i 3E
2%
122
2
;
i
i

DATE

PLE PROGRAM2 = =)

' SAM

M
PROGRAMMER

PROGRA

FTFTE TR
e >
< S - — s
(113 G S F s S (U (A U S SO S O S 4 L BN
L2 E
N Y N G . _
o |3 i
- - =1 T o]
% 2
SH T T
|5 IS
9 2|
I N S by
R
] 1 Lw
N : 1 s
jor I o
o .
bl ek ; 18
Eo " } ; S b
- —T T hel
! .,m T } : + V T ! M
MR N S L] ot L - 2
et s : =1 .
*M. B - S - oot e — - Hg_
g T . -1 . —]9
& .7 u [R : r L3
R I o j P A I AR R R ﬁ
- T A ! I t I
L s a e 4 : %i.v 11\1,7 m
o9 TRl S ot R I (e s et SRR s s e et b
| Wu!lli\t\lri,r from e - 44— B G =)
Lo } | 4. b o
i i =1 T !)
H H {=1
B | 2l
)
2 L 2
91 I 2
N : 5
Ky i i 2
=¥ o + T i ol
Z 9 H H ot M
2 , | 2
ey A . i 2
- - N
gy ! i : B
< 2 - T + M
! i _—
& m i f ! T B T H B
zZpe A Tt ! T ®
+ —t ot i t
a # § i } B S 4ot
= ; ; i 5
[B-9 1 I 3
(2 ' i t ol
[y ' 2
A ket S y
A SO U S S S
ComAN T &
ol [N . N
s . S s 3
&~ | ~ =y
i T : 2
i BN R 2
e~ ; ; i i 2
S i J T S
< W i ! <1
ol !] i
[} D S G (S o G 1 4y
K ! i
N h T 3y
NI | 1 . _ i
PSles|] N)
el + i I BN
2| o B i i 2
& [
| =, T "
C 1 = "
| & ~d 4 -
<f o A T <
ol o : DA S
o + + - ~+ =
| (M N] L | . B
bt i i ,_.w
2 ST A e M 4- . F
| A r ;
© LIS | m 9 b — : .
Ko{ —d by R I o .
A = , ;
a1 L ;
wR LT hSS By SN N froog e v +
L. nr_. PR T ; e
I
K - e O e S s a
2 [
o] 1

Figure 6 (Part 3 of 3). Sample Program 2

78

The elements of the W array, except W(1), are set equal to
zero. W(i}is set equal to N. For each value of |, X; and
Y, are selucted. The powers of X, are computed and
accumulated in the correct W counters. The powers of X;
are multiplicd by Y, and the products are accumulated o
the correct Z counters. In order 1o save machine time
whein the obiect program s being run the previously com-
puted power of X; is used wiien computing the next power
of Xi. Note that the use of variables as index parameters,
By the tirme control has passedd to statement 17, the counters
are set a8 follows:

N
W - N 701 E Y,
L
N N
R
W2 Y X, 22 - Ew‘ Y X
P —
1= =1
N N
i
W3 V o 2(3) E Y X,
Lrvrd
1=1 =1
N
. Zvit) - E vx M
N =1
Y A
WIPIVISTEEAN XM
Lt
b1

By the time control passes to statement 23, the values of
W,, W, ..
corresponding to columns 1 through M+1, row 71 through
M+1, of the B array, and the values of 2,,,Z,, ..., Z\y
have been stored in the locations corresponding to the
column M+2 of the B array. For example, in the illustrative
problem (M = 2), coiumns 1 through 4, rows 1 through 3,
of the B array would be set to the following computed

. W, 41 are placed in the storage locations

values:
W() Wl W2 ZU
W, W, Wy Z,
W, W, W, Z,

This matrix represents equations {1), (2}, and (3), the
normal equations for M=2,

‘Thie forward solution, which results in equations (4}, (7),
and (8), is carried out by statements 23 through 31. By
the time control passes to statement 33, the coefficients of
the Al terms in the M+1 equations, which would be ob-
tained in manual calculations, have replaced the contents
of the locations corresponding to columns 1 through M+1,
rows 1 through M+1, of the B array, and the constants on
the right-hand side of the equations have replaced the con-
tents of the locations corresponding to column M+2, rows
1 through M+1, of the B array. Columns 1 through 4, rows
i through 3, of the B array are set to the following com-
puted values:

1 b, by bia
v 1 C23 Ca4
o] 0 C33 C34

This matrix represents equations {4), (7), and (8).

The backward solution, which results in equations (9), (10),
and (11), is carried out by statements 33 through 40. By
the time control passes to statement 41, which prints the
values of the A(l} terms, the M+1 values of the A(l) terms
are stored in the M+1 locations for the A array. The A
array would contain the following computed values for a,,
a;, and ag, respectively:

Location Contents

A(3) €34 /C33

A(2) C24-C238

A1) Dig-byaa;~bysa,

The resulting vaiues of the A{l) terms are then printed
according to the FORMAT statement number 2.

Sampie Programs 79

80

Part 2. System/3 FORTRAN IV User's Guide

This section contains:
¢ Overview of FORTRAN processing

® Compilation

Linkage editor processing

Load module execution

Job output

System/3 FORTRAN IV User's Guide 81

A FORTRAN program is processed by the FORTRAN
compiter under control of the 1BM System/3 System Con-
trol Program. The FORTRAN compiler is & program that
translates FORTRAN statements into instructions that can
be understood and execuied by the System/3. The system
control program is a program that controls the operation
of the Svstem/3.

For you to make the best use of System/3, you must know
how 1o tell the System Control Program about vour FOR.
TRAN pirogram:, how to detine FORTRAN fites, and what
kind of cutput to expect. This introductory sectinn sum-
marizes bastc informausn you need in order to uge System/
3. Tnis section briefiy describes:

1. How a FORTRAN program is orocessed.
2. Coramunicating with Sysiem/3 through operation

control language {QCL},
3. Picgram output.

4. Defining FORTRAN fites and other files needed by
System /3.

HOW A FORTRAN PROGRAM 1S PROCESSED

Before your FORTRAN program can be executed, il roust
be converted into a form that can be understood by
System/3. The compiler converts the program. The linkage
editor combines the program with whaiever other programs
are required to form an executables unit, For example, if
your program uses the SORT Bbiary function, the linkage
editor retrieves SQRT frani the FORTRAN library of sub-
programs and joins it with your program.

Chapter 12. Overview Of FORTRAN Processing

The three steps thar must be taken to convert and execute
a FORTRAN program are compilation, link-editing, and
load module execution. The FORTRAN source program
is the input to the compilation step. The output is the
group of translated statements, called an object module,
which becomes the input to the link-edit step. (Other
terms used to describe the object module are routine and
nonexecutable object program; we use the term object
module throughout this publication.} The output of the
tink-editing step is the object module combined with other
rnodules to form a load module, or object program (we use
the term icad module). The ioad module is the program
executed in the load module execution step.

Although these three steps must be taken in sequence to
execute a program, it is not necessary that they occur at
one time. For example, you can choose the compilation
step only, with the other steps to follow at a later time.
Assume that you have coded a particularly complex FOR-
TRAN program. The first time you submit it, you might
only compile it, so that you can correct any source program
errors. The compiler examines each FORTRAN statement
for correct syntax and issues error messages for FORTRAN
language violations. After correcting these errors you
could have the program compiled, link-edited, and executed
at one time. Further assume that you intend to use the
program many times. Once the program is successfully
compiled, it would be pointless for you to compile it every
time you use it. You could choose to store the compiled
object module in a file of object modules, catled an opject
library. Then, each time you want to execute the progran,
you could tell the System/3 to bypass the compile step
and use the object module as its input. These are some of
the alternatives you have when executing your program.
You tell the system which alternatives to select through
use of the operation contro! language statements.

Overview of FORTRAN Processing 83

Using FORTRAN consists of the general operations illus-
trated in Figure 7:

84

Define the job. The programmer defines the job re-

quirements for the specific task. Usually, the follow-

ing questions must be answered when the job is

defined:

a. What information is provided as input to the
program?

b. What calculations are to be performed?

¢. What output information should be generated by
the program?

Write the source program. After ithe programmer de-
fines the job, he or she develops the FORTRAN
source program.

Record the source statements on disk or cards. After
the source program is written, it is recorded on
punched cards or entered into the system from the
keyboard.

Compile the source statements. The source program,
preceded by the required OCL statements, is proces-
sed by the FORTRAN 1V compiler under control of
the system control program. At the end of this
processing (compilation), the object program is
stored as an R module in the object library on disk
or punched i cards. This program contains all the
instructions required to perform the job.

Link-edit the object program. The object program is
processed by the Linkage Editor under control of the
System Control Program. This is done to resolve all
addresses and external references. At the end of this
processing (link-editing), the load module is stored
as an O module in the object library on disk or
punched on cards. The program is now ready to be
executed.

Execute the program. The load module is read from
disk or cards; then the input and output are processed
by the system under control of the FORTRAN
program.

1. Defirie the job.

Job Requirements
A tput 2. Write source program.
n. Calculations
c. Outnut \.\\ [
S~
T Coding Sheets
—
\
3. Record source statements on disk, -
diskette, or cards. /,_.__>/
Main Storage
Compiler FORTRAN |V
4. Compile the source statements. \@ compiler on disk.
The resulting object program is
recorcled on disk, diskette, or
cards.
Main Storage
. . . ; : Lirkage editor
5. Link-edit the object program. Linkage Editor \@ ag .
. , . program on disk.
The resulting load module is —
recorded on disk, diskette, or
cards.
Input Data Main Storage Output Data
6)E/((—;(, 1te ;?'e pmgu;n; The Disk Load Module | Printer
It 1He i gy ~ .
lola m.oc ute is read from Cards Disk
disk, diskette, or cards; then
" i Tape - —-—Cards
Ve it and output are .
the input and output are Console (Modeis 10 and 12)+ —-Tape

processed by the system Keyboard (Model 15)

unider control of the
FORTRAN program.

—Console (Model 10)
——=CRT (Model 15)

Figure 7. Processing a FORTRAN Program

Overview of FORTRAN Processing 85

USING OPERATION CONTROL LANGUAGE (OCL)

Operation control language (OCL) is your means of com-
municating with IBM System/3. You must write a set of
OCL statements for each program you want to run. OCL
statements describe the program to the system, which reads
the set of OCL. statements and runs the program. When the
program ends, the system reads the next set of OCL state-
ments, runs the program it describes, and repeats the proce-
dure until all OCL statements and programs have been run.

QCL statements that are essential in runninga FORTRAN
program are LOAD, FILE, and RUN.

A complete description of all OCL statements can be found
in the applicable system control programming reference
manuals. Refer to Related Publications for the order
number.

86

A program submitted for compilation, link-editing, and
execution might be arranged as foliows:

// LOAD $FORT,F1

// FILE NAME-$WORK . ..
// FILE NAME-$SOURCE . ..
// RUN

*PROCESS LINK

FORTRAN source program
/*

// LOAD ABC,F1

/! FILE (statement for load module, if any)
// RUN

Input data cards, if any

/*

Some OCL statements are used on a recurring basis, such as
the LOAD $FORT and the FILE statements for §WORK
and $SOURCE. To avoid recoding these statements every
time they are to be used, they can be stored as sets in a
source library. These sets are called procedures. A com-
plete discussion of procedures can be found in the previous-
ly mentioned reference manuals.

IBM System/3 FORTRAN-Supplied Procedures

{BM supplies a number of procedures for use with System/3
FORTRAN. Figure 8 describes the procedures used for
compiling, link-editing, and executing FORTRAN programs.

Note: The Model 15 also allows $WORK and $SOURCE
files on 5445 or 3340 Disk Storage. The user must change
the procedures if he wants to use 5445 or 3340 for
$WORK and $SOURCE. See Optimum Assignment of
SWORK and $SOURCE Work Files in Chapter 20,

System Considerations.

)

{|euoiido) sjnpowi 108fqo pied
‘JUBWB1RIS |0JIU0D UOLIPa sbeyuIT
NNy //

NNY //
S-NIVLIY'0Z-SMHIVHL LHLIHLH-0Vd LH-LINN'IDHNOSS-IWYN 3114 //
S-NIVLIH'0Z-SHOVHL LY LHLH-MOVd LY-LINN' HHOMS-INWVYN 3714 //

HnunN’ 11404 1Iv92 // L4 MNIT0$ AvOo// Hpa-uiT] 711404
«/
sp4ed 1ndul eleq
NNY // NNY //
Hun' 1404 11vo // L4 'NIVIAEZ av0oT // 31NJ3X3g D1LHO4
NNY //
XX={ INN'XX-304N0S L H-123rg0 311dW0D // (senynn
NNY // S-NIVLIH0Z-SHOVHL LY LY LH-MOVd LY-LINN'IDHNOSS-INVYN 34 // |EUO11BSIDAUOD
Hun‘gtyod 11va // S-NIVLIH0Z-SHOVHL LHLIHLH-JOVd LH-LINN'YHOMS$-IAVYN 3114 // 9 13pON)
LY'1404$ avo // a|ldwod g1404
«/
wesboud a0unos NYH 1 HO4 NNY //
NNY // S-NIVLIY 0Z-SHOVHL LY LY LH-MOVd LH-LINN'IDHNOS$-INVN 3114 //
HUN'NY1HO04 11vD // S-NIVLIH0Z-SHOVHL LH LY LH-MOVd LH-LINN' IHOMS$-IINVYN 314 //
t4'1404$ avol// 3lidwo) NY 1404
aInpasodyg awep
ay} buijjen 3INPadoid 3yl ul spuswalels uonduUN 4 ainpasoid

Figure 8. System/3 FORTRAN-Supplied Procedures

87

Overview of FORTRAN Processing

Page of SC28-6874-3
Issued 21 December 1979
By TNL: SN21-5711

Libraries

Each disk can contain a source library and an object library.
Although both libraries can be located anywhere on a disk,
the source library always immediately precedes the object
library.

The source library is an area for storing OCL procedures
and FORTRAN source programs. OCL procedures or
programs are added to a source library using the Library
Maintenance utility program. Programs may be compiled
from the source library by using the COMPILE
statement. (Refer to the description of the COMPILE
statement in the applicable system control programming
reference manual.) {Utility programs are described in
the applicable system control programming reference
manual. Refer to Related Publications for the order
number.)

The object library is an area for storing object modules and
load modules. FORTRAN modules are stored by requesting
the OBJECT parameter {for an object module) or the LINK
parameter {for a load module) on the *PROCESS compiler
option statement, used exclusively in FORTRAN processing.
This statement is described in greater detail in Chapter 13,
Compilation.

COMPILER, LINKAGE EDITOR, AND LOAD MODULE
OUTPUT

In addition to object and load modules, the compiler and
linkage editor produce other forms of output that help
you analyze the job. The compiler informs you of the
success of the compilation by issuing messages, inciuding
a severity code for any error encountered. The severity
code indicates whether the compilation was entirely or
partially successfut. An unsuccessful compilation results
in no object module being produced.

The compiler can also produce output in the form of a
storage map that lists the names and storage locations of
variables and statement numbers in the object module.

The link-editing step can produce, in addition to a load
module, a core usage map that shows the location of the
modules in the ioad module, a card deck of the object or
load module, and a cataloged entry of the object or load
module on disk!

Load module execution produces the program output that
you request in the source program.

88

DEFINING FILES

Files are collections of records, such as an object module, a
library of subprograms, a source program, or a data card
deck.

Files Needed by the Compiier and Linkage Editor

The compiler needs the file named $WORK to store the
object module if the linkage editor is called to process any
of the compiler options DECK, GODECK, OBJECT, or
LINK. The linkage editor needs the two files named
$WORK and $SOURCE.

For information about the assignment of $WORK and
$SOURCE, see Optimum Assignment of $WORK and
SSOURCE Work Files in Chapter 20, System Considerations.

Files Needed by the FORTRAN Load Module

The FORTRAN load module uses files only if it includes
input/output statements or calls to any 1/O commercial
subroutines. Commercial subroutines are described in the
publication /BM System/3 FORTRAN IV Commerical
Subroutines, SC28-6875.

Defining FORTRAN Files at Compilation Time

Device option statements are used to tell the compiler which
files and devices to use. The compiler uses the information
in the device option statements to allocate buffer space and
data management control blocks to the files. The compiler
sets up a table of logical unit numbers, which contains an
entry for each device or file that is specified. Up to a max-
imum of 40 files can be specified at compile time.

For more information about device option statements, see
Compiler Option Statements in Chapter 13, Compilation.

Defining FORTRAN Files at Execution Time

OCL FILE statements are used to define disk or tape files
at execution time. As with any FILE statement, you must
specify the file name, the file size, and the disk or tape unit.

FORTRAN file names are assigned in the form F Tnnnnn
where nnnnn is the logical unit number that is specified on
the device option statement. The following shows the rela-
tionship between the FORTRAN logical unit number and
file definition:

FORTRAN Logical Fiie Definition at
Unit Number Compilation Time:
FORTRAN Device option
input/output statement statement
Examples:
1. Detining a card file:

READ(1,100)A // READ DEVICE-MFCU1

2. Defining a disk file:
DEFINE FILE 15
(560,25,L,1D)
WRITE(15'5,100)B // DAD44 UNITNO-15

Logical Unit Numbers

You refer to a file by coding its logical unit number in the
FORTRAN input/output statement. For example, the
following READ statement refers to a file having logical
unit number 5:

READ (5, f)ist

Logical unit numbers are assigned to System/3 devices used
in FORTRAN processing. Figure 9 lists these assignments.
it your program reads input data from a card reader in a
System/3 Model 10 installation, the logical unit number
that must be coded in the READ statement is 1 for the
primary hopper of the MFCU device, 2 for the secondary
hopper, 5 for the 5471 printer/keyboard, or 9 for the 1442
card read punch. Each logical unit number can be assigned
to only one file in a program; for example, if logical unit
number 1 is used to define the MFCU1, it cannot be used
to define a disk fite.

To make the proper link between the logical unit numbers
in the FORTRAN program and the devices used by
System/3, you must define your files at compilation time
and, for tape and disk files, at toad module execution time
as well,

File Definition at
Execution Time:

FILE statement, if file

is on disk or tape.

None

// FILE NAME-FT00015

Overview of FORTRAN Processing

20

Logicai Unit
Device Function Number

Model 10 Installation:

5424 MECU primary hopper Read 1
(MFCU1)

5424 MFCU secondary hopper Read/punch/print @ 2
{(MFCU2)

5203 or 1403 printer Print 3

5471 printer/keyboard Read 5

5471 printer/keyboard Print 6

14472 card read punch Read/punch @ 9

3410/3411 magnetic tapc@ Read/write sequential formatted n(@

and unformatted records

:) —~
5144 disk Read/write sequential and direct- nl2

access formatted and unformatted
records

5445 disk Read/write sequential and direct- n®
access formatted and unformatted
records
Model 6 installation:
5406 console keyboard Read card images 1
5496 dats recorder Read/punch@ 2
5213 cr 2222 printer Print 3
5444 disk Read/write sequential and direct- n®

access formatted and unformatted
records

(1) Model 10 supports only one file per tape volume.
(@) Can be any number from 1 to 32767 that is not used in the source program to

define another device.

(3) Cannot be specified as both an inpui and output device when using FORTRAN
READ and WRITE statements. {Can be both an input and output device when
using the FORTRAN commerc:al subroutines.)

Figure 9 (Part 1 of 3). Logical Unit Number Assignment

Logical Unit
Device Function Number

Model 12 Installation:

5424 MFCU primary hopper Read 1
(MFCUT)
5424 MFCU secondary hopper Read/punch/print @ 2
(MFCU2)
5203 or 1403 printer Print 3
5471 printer/keyboard Read 5
5471 printer/keyboard Print 6
1442 card read punch Read/punch ® 9
3410/3411 magnetic tape @ Read/write sequential formatted n @
and unformatted records
3340 direct access storage Read/write sequential and direct- n ®
facility access formatted and unformatted
records

@ Model 12 supports only one file per tape volume.

@ Can be any number from 1 to 32767 that is not used in the source program to
define another device.

@ Cannot be specified as both an input and output device when using FORTRAN
READ and WRITE statements. (Can be both an input and output device when
using the FORTRAN commercial subroutines.)

Figure 9 (Part 2 of 3). Logical Unit Number Assignment

Overview of FORTRAN Processing 91

Page of SC28-6874-3
Issued 25 November 1977
By TNL: SN21-5568

access formatted and unformatted

records

Logical Unit
Device Function Number
Mode!l 15 Installation:
5424 MFCU primary hopper Read 1
(MFcun®
5424 MFCU secondary hopper Read/punch/;:)rint@> 2
(MFCu2)®
2560 MFCM primary hopper Read 1
(MFCM1)O
2560 MFCM secondary hopper Read/punch/print® 2
(MFCcm2)®
1403 printer Print 3
3284 printer Print 4
3277 display station Read 5
3277 display station Print 6
3741 data station or pro- Read/punch 7
grammable work station
2501 card reader Read 8
1442 card read punch Read/punch ® 9
3410/3411 magnetic tape@ Read/write sequential formatted n@
and unformatted records
5444 disk @ Read/write sequential and direct n ®
access formatted and unformatted
records
5445 disk &) Read/write sequential and direct n®

define another device.

located on the 3340.

(8) Supported on 5704-FO2 only.

() 5424 and 2560 are mutually exclusive.

(O Model 15 supports multifile tape volumes.

(® Can be any number from 1 to 32767 that is not used in the source program to

(® Cannot be specified as both an input and output device when using FORTRAN
READ and WRITE statements. (Can be both an input and output device when
using the FORTRAN commercial subroutines.)

(5) For Model 15, if system configuration has 3340 disk storage, these files will be

92

COMPILER OPTION STATEMENTS

Compiler option statements provide control information to
the compiler. They follow the OCL RUN statement and
are interpreted by the initial compiler phase after the OCL
statements are read.

Most of the compiler option statements are coded in the
same manner as OCL statements. Compiler option state-

ments consist of:

® Device option statements

The CORE statement

The CATEGORY statement

The *PROCESS statement

Device option statements are used by the compiler to
define input/output devices used at execution time. To
continue these statements, place a comma after each option
in every card or line except the last option. Begin each new
card or line with a // in positions 1 and 2. Leave one or
more blanks between the // and the first option in the card
or line.

Example:

// DAD44 UNITNO-'10,12,14’,
// BLOCKSIZE-'256,512,768"

READ, PRINT, and PUNCH device option statements con-
tain all the information necessary to make such devices
available at execution time. Device option statements for
disk and tape files (SEQ40, SEQ44, SEQ45, DAD40,
DAD44, DADA45, and TAPE) require corresponding FILE

statements at execution time to complete the file definition.

The CORE and CATEGORY statements cannot be con-
tinued. However, to continue the *PROCESS statement,
place a comma after each option in every card or line
except the last option. Begin each new card or line with a
nonzero or nonblank character in position 6.

Example:

*PROCESS MAP,GOSTMT,DECK,
1GODECK

Chapter 13. Compilation

Compiler option statements can be specified in any order
except that the *PROCESS statement, if used, must be the
last card before the FORTRAN source program. The
*PROCESS statement can be specified for subprograms and
main programs; the CATEGORY statement for subprograms
only; and the other statements for main programs only.

The formats and uses of the compiler option statements are
identical for all Models. The compiler option statements
are described in Figure 10.

Statement Function

Device option statements:

// READ Specifies the input device used at execu-
tion time.

// PRINT Specifies the printer(s) used at execution
time.

// NOPRINTER | Specifies that no printer is to be used at
execution time.

// PUNCH Specifies the card punch used at execu-
tion time.

// DAD40 @

// DAD44 Specifies direct-access files used at

// DAD45 O execution time.

// SEQ40 (@)

// SEQ44 Specifies sequential files used at execu-

1 SEQ45® tion time.

// TAPE ® Specifies tape files used at execution
time.

// CORE Specifies the amount of storage to be

used by the load module. The linkage
editor uses this value to create the load
module.

// CATEGORY | Specifies a priority permitting a subpro-
gram to remain in main storage in an
overlay environment.

*PROCESS Specifies compiler options.

(D Does not apply to Mode! 6.
@ For Model 12 and Model 15 only.

Note: A maximum of 40 tape and disk files can be
specified.

Figure 10. Compiler Option Statements

Compitation 93

Page of SC28-6374-3
Issued 25 November 1977
By TNL: SN21.5568

READ Device Option Statement
The format of this statement is:

/!l READ DEVICE-’ device,device, . . ., device’,
RECL-nn(

where
device is any of the following:
For Model10—MFCU1, MFCU2, 5471, 1442, MFCU 1+.

For Model 65406, 5496,

For Modei 12-MFCU1, MFCU2, 5471, 1442, MFCU1*,

For Model 15—MFCU1, MFCU1*, MFCU2, MFCU2+,
MFCM1, MFCM1+, MFCM2, MFCM2+, 3277, 32778,

1442, 1442+, 2501, 2501+, 3741, 3741 *®

The asterisk following a device indicates one buffer is
requested. The default is two buffers. You cannot
specify both MFCU1, MFCU1* in one program. If this
occurs by error, MFCU1+(one buffer) overrides MECU1
{two buffers). This information applies to all other
devices that allow the *indication. (See Mode/ 15
Double Buffering for Card Devices in Chapter 20,
System Considerations.)

The S following 3277 indicates that split screen support
is requested. (See Model 15 CR T/Keyboard Support in
Chapter 20.)

If only one device is selected, the enclosing apostrophes
can be omitted.

RECL-nn specifies the number {nn) of bytes in a logical

3741 record. This number must be from 1 through 128.

The parameter must be coded if the 3741 was specified

as a device. If the parameter is coded and the 3741 is

not specified, an OPTIONS ERROR will be set.
Example:

// READ DEVICE-5471

The example states that the 5471 will be used as a read
device.

. © For 5704-FO2 only.

94

// READ DEVICE-2501,3741',RECL-96

This example states that the 2501 and the 3741 will be used
as read devices. Both devices will use two buffers and the
logical record length for the 3741 is 96 bytes.

PRINT and NOPRINTER Device Option Statements
The format of the PRINT statement is:

// PRINT DEVICE-‘device,device, . . . ,device’
where
device is any of the following:

For Model 10--5203, 5471, MFCU2, or 1403. If you do
not use a PRINT or NOPRINTER statement, the 5203
printer is assumed. The MFCU2 is a card punch and is
specified on the PRINT device option statement when
printing is to appear on the card.

For Model 6-5213 or 2222. The default is the 5213.

For Model 125203, 5471, MFCU2 or 1403. If you do
not use a PRINT or NOPRINTER statement, the 5203
printer is assumed. The MFCU?2 is a card punch and is
specified on the PRINT device option statement when
printing is to appear on the card.

For Model 15—-1403, 1403D, 3284, MFCU2*, MFCU2,
MFCM2%, MFCM2, 3277, 3277S:

[t you do not use a PRINT or NOPRINTER statement,
the 1403 printer is assumed. Both the MFCUZ2 and

MFCM2 are card punches and are specified on the PRINT

device option statement when printing is to appear
on the card.

The D following 1403 indicates the deferred
print option. (1403D changes the FORTRAN
language space before commands to a deferred
space after command.)

The asterisk for MFCU2 and MFCM?2 indi-
cates one buffer for that device. (See Mode/
15 Double Buffering for Card Devices in
Chapter 20, System Considerations.) To
maintain the same performance level, two
buffers should be used, because MECU?2 print
uses two buffers for Model 10.

Enclosing apostrophes can be omitted if only one device
is selected.

FORTRAN Error Logging Device

For Model 6, the FORTRAN error logging device is the
printer specified.

For Models 10 and 12, the FORTRAN error logging device
is designated to the first printer specified in the printer

list. The possible devices are the 5471, 5203, and the 1403.

For Model 15, the FORTRAN error fogging device is desig-
nated to the first printer specified in the printer list. The
possible devices are the 1403 and the 3284.

Output from execution of a STOP n statement, DUMP or
PDUMP subprograms, DEBUG statement, or error trace-
back is directed to the FORTRAN error logging device.
Output from execution of a PAUSE statement on the
Models 6 and 10 is directed to the FORTRAN error logging
device. For Models 12 and 15, this output is directed to
the system log device if it is available; if the system log
device is not available, the output is displayed.

Example:

// PRINT DEVICE-'5203,MFCU2’

The example states that two printer devices, the 5203 and
the MFCU2, are to be used.

The PRINT statement is always assumed by default;
therefore, to avoid the default, you must specify the
NOPRINTER statement, as follows:

// NOPRINTER
No attempt should be made to execute statements that
require printer output if the NOPRINTER statement is
specified.
PUNCH Device Option Statement
The format of the PUNCH statement is:

// PUNCH DEVICE—’device,device’,RECL—nn®
where

device is any of the following:

For Model 10—MFCU2, 1442

For Model 65496

Page of SC28-6874-3
Issued 25 November 1977
By TNL: SN21-5568

For Model 12—MFCU?2, 1442

For Model 15—MFCU2, MFCU2*, MFCM2, MFCM2*,
1442, 1442*, 3741 3741*@,

The asterisk following a device indicates one buffer is
requested. The default is two buffers. You cannot
specify a device to have both one and two buffers in
one program. If this occurs by error, one buffer over-
rides two buffers. (See Model 15 Double Buffering for
Card Devices in Chapter 20, System Considerations.)

If only one device is specified, the enclosing apostrophes
can be omitted.

RECL-nn specifies the number (nn) of bytes in a logical
3741 record. This number must be from 1 through 128.
The parameter must be coded if the 3741 was specified
as a device. |f the parameter is coded and the 3741 is
not specified, an OPTIONS ERROR will be set.

Example:
// PUNCH DEVICE-5496

The example states that the 5496 will be used as a punch
device.

// PUNCH DEVICE-3741* RECL-80

This example states that the 3741 will be used as a punch
device. One buffer is requested and the logical record length
is 80 bytes.

DADA40, DAD44, and DADA45 Device Option Statements

// DAD44 UNITNO-'unit,unit, . .. ,unit’,

// BLOCKSIZE-'block,block, . .. block’,

// BUFFERS-‘number,number, . . . ,number’,
// CLEAR-Y,N,....Y’,

// UPDATE-'Y,N, ... N’

where

DADA44 indicates a direct-access file on the 5444 device

1
O For 5704-FO2 only.

Compilation 95

Page of SC28-6874-3
Issued 25 Novernber 1977
By TNL: SN21-5568

UNITNO is used to specify the logical unit number (unit).
This number is used in the associated 1/0 statements to
refer this file. A corresponding FILE statement using
this number in the NAME parameter must be submitted
at execution time. The enclosing apostrophes can be
omitted if only one number is specified.

BLOCKSIZE is used to specify the size of the block of
records to be transmitted for each corresponding file.
This value {block) must be 256 or a multipie of 256 (for
example, 512 or 1024). The enclosing apostrophes can
be omitted if only one block is specified. |f this param-
eter is not specified, a default value is calculated using
the record size from the DEFINE FILE statement. (See
index entry buffers.) 1/0 time can be decreased by
specifying as large a block as possible. (See Chapter 17,
Direct-Access Programming Considerations.)

BUFFERS is used to specify the number of buffers to be
used for the corresponding file. This number can be 1 or
2. If this parameter is not specified, the default value is
1. When sharing buffers only 1 buffer can be specified.
I/0 time can be decreased when two buffers are assigned
for each file and the file is accessed sequentially. (See
Chapter 17, Direct-Access Programming Considerations.)
The enclosing apostrophes can be omitted if only one
number is specified.

CLEAR (Model 15 only) is used to request (Y) or
prohibit {N) clearing a new direct-access file. if this
parameter is omitted, the default is (YY) for each
corresponding file. 1/O time is decreased if clearing is
prohibited when creating files, but the user is responsible
for formatting the disk space and ensuring that all
records are valid. Enclosing apostrophes can be omitted
if only one option is specified.

UPDATE is used to request input with update (Y) or
input only {N) access to a direct-access file. |f this param-
eter is omitted, the default is (YY) for each corresponding
file. The parameter is not used when creating a new file.
If two programs in two partitions or an interrupted
(rolied out) program and an inquiry program access the
same file, at least one of the programs must specify
UPDATE-N.@ The enclosing apostrophes can be omitted
if only one option is specified.

Example:

// DAD44 UNITNO-'15,20',BLOCKSIZE-"256,512’,
// BUFFERS-"1,2,’

@This restriction does not apply to 5704-F0O2.

96

The example states that unit numbers 15 and 20 are referred
to as direct-access files. The size of the block of records for
file 15 is 256 and for file 20 is 512. One buffer is allocated
for file 15 and two buffers for file 20. At execution time,
files named FT00015 and FTO0020 must be defined on
FILE statements.

The DADA4b5 statement is the same as the DAL44 except
that it indicates a direct-access file on the 5445 device.

// DAD45 UNITNO-‘unit,unit, . . . ,unit’,

// BLOCKSIZE-'block,block, . . . ,block’,

// BUFFERS-"number,number, . . . ,number’,
// CLEAR-'Y,N,....,Y’,

// UPDATE-'Y,N, ... N’

As on the DADA44 statement, the CLEAR parameter is for
the Model 15 only.

The DADA4OQ statement is the same as the DAD44 except
that it indicates a direct-access file in the main data area on
the 3340 Direct Access Storage Facility. Only the Model 12
and Model 15 use the DAD40 statement.

// DAD40 UNITNO-‘unit,unit, . . . ,unit’,

// BLOCKSIZE-'block,block, . . . ,block’,

// BUFFERS-‘number,number, . . . ,number’,
// CLEAR-'Y,N, ...)Y’,

// UPDATE-Y,N, ... N

The CLEAR parameter is only for the Model 15.

SEQA40, SEQ44, and SEQ45 Device Option Statements

/' SEQ44 UNITNO-‘unit, . . . ,unit’,
// BLOCKSIZE-"block, . . . ,block’

where
SEQ44 indicates a sequential file on the 5444 device.

UNITNO is used to specify the logical unit number (unit).
This number is used in the associated 1/0 statements to
refer to this file. A corresponding FILE statement using
this number in the NAME parameter must be submitted
at execution time. The enclosing apostrophes can be
omitted if only one number is specified.

Page of SC28-6874-3
tssued 25 November 1977
By TNL: SN21-5568

BLOCKSIZE is the size of the block containing a record
to be transmitted for each corresponding file. A
BLOCKSIZE must be specified for each unit given in
the UNITNO parameter. The value of block must be
256, 128, 64, 32, or 16. The enclosing apostrophes can
be omitted if only one block is specified. For best 1/O
performance, and most efficient use of disk space,
specify a block size as the smallest submultiple of 256
that is equal to or larger than your file’s record size.
(See Chapter 18, Sequential Disk and Tape Programming
Considerations.)

Example:

// SEQ44 UNITNO-'14,15',BLOCKSIZE-'256,256°
The example states that unit numbers 14 and 15 are to be
referred to as sequentia! files on the 5444, Files named

FT00014 and FT00015 must be defined on FILE state-
ments at execution time.

Compilation 96.1

This page intentionally left blank.

96.2

The SEQ45 statement is the same as the SEQ44 statement,
except that it indicates a sequential file on the 5445 device.

// SEQ45 UNITNO-‘unit, . . . ,unit’,
// BLOCKSIZE-‘block, . . . ,block’

The SEQ40 statement is the same as the SEQ44 statement
except that it indicates a sequential file in the main data
area on the 3340 Direct Access Storage Facility. Only the
Model 12 and Model 15 use the SEQ40 statement.

// SEQ40 UNITNO-unit,unit, . . . ,unit’,
// BLOCKSIZE-'block,block, . . . ,block
TAPE Device Option Statement

/i TAPE UNITNO-‘unit, . . . ,unit’,
// BLOCKSIZE-‘block, ... ,block’

where

UNITNO is used to specify the logical unit number (unit).

This number is used in the associated 1/0 statements to
refer to this file. A corresponding FILE statement using
this number in the NAME parameter must be submitted
at execution time. The enclosing apostrophes can be
omitted if only one number is specified.

BLOCKSIZE is used to define the record length for
each corresponding file. A BLOCKSIZE must be
specified for each unit given in the UNITNO parameter.
The value of block must be a number between 18 and
32767. The enclosing apostrophes can be omitted if
only one block is specified. The System/3 BLOCKSIZE
parameter must be equal to or greater than the logical
record length for formatted |/0. (See Chapter 18,
Sequential Disk and Tape Programming Considerations.)

Example:
// TAPE UNITNO-10,BLOCKSIZE-512

The example states that unit number 10 on a magnetic
tape device has a record length of 512 bytes.

The file named FT00010 must be defined on a FILE (tape)
statement at execution time.

Page of SC28-6874-3
Issued 29 September 1878
By TNL: SN21-5634

Note (Model 15 only). 1f records are being transmitted to
or from a tape drive using mu'tifile tape volumes, the OCL
FILE statement must specify the file's sequence number
(SEQNUM). A further description of multifile tape volumes
can be found in /BM System/3 Mode! 15 System Control
Programming Reference Manual, GC21-5077.

CORE Statement

The CORE statement specifies how much main storage is
required for the load module at execution time. This value
is passed to the linkage editor for a main program to be link-
edited immediately following compilation (the LINK
compiler option was specified). If you do not include a
CORE statement, the default is the actual size of the
program.

The format of the statement is:
// CORE SIZE-annK
where
S1ZE-annK indicates the amount of storage required:

nnK represents a number multiplied by K (1024 bytes).
For example, 06K indicates 5K, or 5120 bytes.

a indicates an additional fractional K; it is given one of
the values: Q {additional quarter K), H (additional half
K), T (additional three-quarter K), or 0 (no additional
K). For example, Q indicates an additional 1/4K or 256
bytes.

Example:
// CORE SIZE-H10K

The example states that 10K bytes, plus an additional 1/2K
(512 bytes), are to be allocated.

Note: For program 5704-FO2 only, when main storage
size is specified by the CORE statement, external buffer
storage space is not included. External buffers, when
specified in the *PROCESS statement, are allocated outside
of the specified CORE space but within the partition.
External buffer storage requirements are listed in the
nwerlay linkage editor map for main programs.

Compilation 97

CATEGORY Statement

The CATEGORY statement specifies a category value for a
FORTRAN subprogram. The category value is used by the
linkage editor to determine the priority of the subprogram
for remaining in main storage in an overlay environment.

The value is specified as a number between 0 and 128, the
lower the number the greater the priority.

A category value of 0 means that the subprogram will never
be overlaid. Category values 1-7 are used by system modules
and modules in the FORTRAN library. If no category is
specified for a program, its value is assumed to be 20.

The format of the statement is:
// CATEGORY VALUE-m

where
VALUE-m indicates the category value, 0 through 128.

Example:
// CATEGORY VALUE-15

The example states that the FORTRAN subprogram has a
priority of 15; only programs having a value 0 through 14
would have a higher priority.

*PROCESS Statement

The *PROCESS statement allows the user to specify which
actions the compiler is to perform. For example, by select-
ing the SOURCE option, you request the compiler to print

a listing of the source program; by selecting the DECK option,
you request the compiler to call the linkage editor to punch

a card deck of the object module.

98

The *PROCESS statement appears in the input stream as
the last compiler option statement hefore the FORTRAN
source program. Keep in mind that the *PROCESS
statement is more closely related to compiler processing
than the other statements discussed here. The other state-
ments specify information regarding operations to be
performed at later stages of processing, but the xPROCESS
statement specifies options directly reiated to compiler
operations.

The statement must start in column one; column 72 is the
fast usable column for the statement. Continuation lines
can be used. (See Continuing FORTRAN Statements in
Chapter 1.)

The format of the statement is:
*PROCESS option,option, . . . ,option

where
option is one of the *PROCESS options summarized in
Figure 11. In that figure, defauits are underlined and
need not be specified if you want the default values to
apply. Options can be specified in any order. Blanks
can be inserted between options but not within an
option.

Option

Meaning

Remarks

SOURCE
NOSOURCE

Whether the source program input is
to be printed.

MAP
NOMAP

Whether the relative addresses assigned
by the compiler to source program
data items are to be printed, and
whether the addresses assigned by the
linkage editor to the load module are
to be printed.

A relative address is the location of
the data item calcuiated from the
beginning of the program code. The
compiler replaces each data item
name with its relative address. (At
execution time, branches are made to
relative addresses rather than to
names.)

MAP causes the linkage editor to perform
extra time-consuming operations necessary
to generate a storage map. Therefore, if
the linkage editor is to be executed, MAP
should be specified onrly if processing

time is not critical.

DECK
NODECK

Whether the object module is to be
punched by the linkage editor.

If DECK is specified, the $SOURCE and
SWORK files are required.

GOSTMT
NOGOSTMT

Whether diagnostic traceback
messages issued at execution time
are to contain the internal statement
numbers assigned by the compiler.

An internal statement number {ISN)
is assigned to each source program
statement for identification. 1SNs
are assigned in ascending order
beginning with 1 for the first
statement, 2 for the second state-
ment, etc.

EBCDIC
BCD

Whether the source program was
coded in EBCDIC (Extended
Binary Coded Decimal lnterchange
Code) or in BCD (Binary Coded
Cecimal).

If the input deck contains both BCD ana
EBCDIC, specify BCD.

NOGODECK
GODECK

Whether the load moduie is tc be
punched.

Can be used with main programs oniy.

H GODECK is specified, the 8SGURCE
and $WORK files are required.

NOSHRBUFF
SHRBUFF

Whether a buffer is to be shared
between two or more direct-access
5444 5445, or 3340 files.

NOSHRBUFF must be specified if:
two buffers are specified for any
direct-access file in a program, or
EXTBUF is specified for DAL fiies
{Program Number 5704-FO2 only).

Note: it you specify onz 0i both
of the above with the SHRBUFF
option, the program defaults to the
NOSHRBUFF option.

Can be used with main programs only.

Figure 11 {Part 1 of 3). *PROCESS Statement Options

Comptiation 39

Option

Meaning

Remarks

NOOBJECT
OBJECT (T, LIB (unit))
r
R

Whether an object moduie is to be
stored in the object library maintained
by the system.

T means the object module is tempo-
rary. P means that it is permanent.
R means that it is to replace the
existing module by the same name.

Unit indicates where the object library
resides, specified as one of the codes:
R1—removabie disk, drive 1

F1—fixed disk, drive 1

R2—removable disk, drive 2

F2—fixed disk, drive 2

If LIB(unit) is not specified, the
library resides on the program
pack, that is, the pack indicated in
the unit parameter of the LOAD
statement calling the compiler.

The default value for the OBJECT
option is NOOBJECT for a main
program, and OBJECT (program
pack) for a subprogram.

If OBJECT is specified, the $SOURCE and
SWORK files are required.

NOLINK
LINK(T,LIB{unit})
P

R

Whether a load module is to be
stored into the object library main-
tained by the system.

T means that the load module is
temporary.

P means that it is permanent.

R means that it is to replace the
existing module by the same name.

Unit indicates where the load module
is to be stored, using the same codes
as specified in the OBJECT option.

If LIB(unit) is not specified, the
load module resides on the program
pack.

The default vatue is LINK (program
pack) for a main program {cannot
be specified for a subprogram).

May be used with main programs only.
If LINK is specified, the $SOURCE and
SWORK files are required.

Figure 11 (Part 2 of 3). *PROCESS Statement Options

100

Option

Meaning

Remarks

UPACK-unit
(Models 12 and
15 only)

The pack where user routines to be
link-edited can be found. The overlay
linkage editor searches this pack first
when resolving EXTRNs to modules
whose names do not begin with $. If
the EXTRN name is not found on this
pack, the program pack is searched.

Unit indicates the pack to be searched
first. The following codes apply:
R1—removable disk, drive 1

F1—fixed disk, drive 1

R2—removable disk, drive 2
F2—fixed disk, drive 2

If the option is not coded, the program
pack will be the only pack searched.

Can be used with main programs only.

EXTBUF
NOEXTBUF
(Program Number
5704-FQ2 only)

Whether DAD files only (DADA4O0,
DAD44, DAD45) are to have buffer
space allocated external to the
program space.

If EXTBUF is specified with

SHRBUFF, the program defaults to
NOSHRBUFF.

Can be used with main programs only.

Figure 11 (Part 3 of 3}. *PROCESS Statement Options

Comgilarion

LI
L

Examples:
*PROCESS MAP,DECK

in the preceding example, MAP indicates that the compiler
is to print a listing, called a map, of relative addresses {and,
if the link-editing step is executed, a load module storage
map}, and DECK indicates that a card deck of the object
module is to be punched. Default values, such as SOURCE
and EBCDIC, apply for *PROCESS options that are not
specific .

*PROCESS SOURCE,GOSTMT,LINK(T,LIB(R1))

in the preceding example, SOURCE indicates that the
compiler is 1o print a listing of the source program; note
that SOURCE, although a default value, can be explicitly
requested. GOSTMT indicates that any diagnostic trace-
back messages issued at execution time are to be printed
with the ISNs of related FORTRAN statements. LINK
(T,LIB{R1)) indicates that the load module produced by
the linkage editor is to be stored as a temporary library
entry located on the R1 disk. Default values apply for
*PROCESS options that are not specified.

BATCHED COMPILATION

To compile a program consisting of many program units,
to be immediately followed by link-editing and ioad
module execution, the main program must be the last
program compiled. For example, assume a program
consists of three program units--one main program and
two subprograms. They should be submitted for
compilation such that the main program follows the sub-
programs in the job stream. An example showing the
placement of OCL and compiler option statements for a
batched compilation is iltustrated in Example 4 in the
following discussion.

COMBINING OCL AND COMPILER OPTION STATE-
MENTS

The following examples show how compiler option
statements can be combined with OCL statements.

102

Example 1:

Assume you want to compile your program, with no link-
editing step to follow.

OCL statements you need are DATE (optional}, LOAD,
RUN, and /*. The only compiler option statement you
need is the *PROCESS statement to specify NOLINK.
Statements should be submitted in this order:

// DATE 090174

// LOAD $FORT,R1

// RUN

*PROCESS NOLINK
FORTRAN source program

I*
/

Example 2:

Assume you want to compile, link-edit, and execute a
program that reads data from a card reader and prints the
results on a printer. Further assume you want a!l compiler
default options to apply.

Necessary OCL statements are DATE, LOAD, FILE

SWORK, FILE $SOURCE, RUN, and /*. The only com-
piler option statement you need is a READ statement to
set up the input buffers for the reader used at execution

| time; assume that the reader at your location is the 5496

{(for a Model 6 instaltation). You need neither a PRINT
statement {because PRINT is assumed), nor a *PROCESS
statement (because all *\PROCESS defaults are wanted).
Statements should be submitted in this order:

// DATE 090174

// LOAD $FORT,R1

// FILE NAME-$WORK,UNIT-R1,PACK-111111,
TRACKS-20,RETAIN-S

// FILE NAME-$SOURCE, UNIT-R1,PACK-111111,
TRACKS-20,RETAIN-S

// RUN

// READ DEVICE-5496

FORTRAN source program

/*

// LOAD ##MAIN,R1

// RUN

Program data

/*

In this example, the READ statement defines the reader to
use at execution time. The compilation and link-editing
operation is defined as being from the first LOAD statement
through the first /* statement. The load module execution
operation is defined as being from the second LOAD
statement (LOAD ##MAIN) through the second /*
statement.

Example 3:

Assume you wish to compile, link-edit, and execute a
program that requires a card reader, a printer, and two
sequential files with logical unit numbers 15 and 16. You
are going to use the procedure, FORTRN, containing the
appropriate LOAD and FILE statements, to call the
compiler; and you want to produce all output types that
the compiter is capable of generating.

OCL statements you need are DATE, CALL, RUN, and /*.
Compiler option statements you need are READ {assume
a Model 10 installation having the MFCU1 device), SEQ44
to define two file numbers {assume the 5444 device}, and
*PROCESS specifying MAP, GOSTMT, DECK, and
GODECK (output-producing *PROCESSING options not
assumed by default). Statements should be submitted in
this order:

// DATE 090174

// CALL FORTRN,R2

// RUN

// READ DEVICE-MFCU1

// SEQ44 UNITNO-15,16",BLOCKSIZE-'256,256"
*PROCESS MAP,GOSTMT ,DECK,GODECK
FORTRAN source program

/*

Statements required by the load module execution step are
not illustrated here. The SEQ44 statement requires two
corresponding FILE statements at execution time. Required
FILE staternents are described in Chapter 15 Load Module
Execution.

Example 4:

Assume you want to compile, link-edit, and execute a
program consisting of three program units—MAIN, SUB1,
and SUB2. A program consisting of more than one program
unit is submitted as a batch compilation, with the subpro-
grams compiled first and the main program compiled last.

Any compiler cption statements specified, except
*PROCESS and CATEGORY, must be submitted with
the main program. {*PROCESS can be submitted for main
programs and subprograms, CATEGORY for subprograms
only.} Thus, assuming that a card reader is to read data to
the program, the READ device option statement must be
submitted among the compilation cards for the main
program. Further assume that the procedure, FORTRN,
containing the appropriate LOAD and FILE statements,

is used, and that both subprograms SUB1 and SUB2 are
given a category value of 10.

Statements should be submitted in this order:

// DATE 090174

// CALL FORTRN,R2

// RUN

// CATEGORY VALUE-10
SUBROUTINE SUB1

/*

// CALL FORTRN,R?2

// RUN

// CATEGORY VALUE-10
SUBRCUTINE SUB2

/*

// CALL FORTRN,R2

/1 RUN

// READ DEVICE-5471
PROGRAM MAIN

/%

/! LOAD MAIN,R2

// RUN

Data input to load module

/’*

The first CALL FORTHM statement calls the FORTRAN
compiter to compiie SUB1T. The /» statement indicates the
end of the first compilation. The next CALL FORTRN
statement calis the compiler to compiie SUB2. The third
CALL FORTRN statement calls the compiler 1¢ compii
MAIN. The LCAD MAIN staterment is the first stezement
of the foad moduie execution step.

Compilztion 03

104

The output of the FORTRAN compiler, the object module,
is not ready to be executed as a program.

During a process called link-editing, the linkage editor con-

verts the object module into a load module that is ready
for execution.

COMPILER INPUT TO THE LINKAGE EDITOR

The FORTRAN compiler calls the linkage editor automatic-

ally if any of the *PROCESS options DECK, OBJECT,
LINK, or GODECK are specified. If these options are
specified, the compiler must also pass to the linkage editor
the object module defined in the $WORK FILE statement
and a utility work file defined in the $SOURCE FILE
statement.

The OBJECT option causes the linkage editor to store the
ohject module into a library. DECK causes the linkage
editor to punch a card deck of the object module. If these
are the only options passed to the linkage editor, it returns
control to the system after performing these functions.

LINK causes the linkage editor to perform the link-editing
function. GODECK can be specified to have a card deck
of the load module punched.

Chapter 14. Linkage Editor Processing

OCL STATEMENTS NEEDED FOR THE LINKAGE
EDITOR

If the linkage editor is called by the compiler, you need
supply only the FILE statements named $WORK and
$SOURCE as part of the compile step OCL statements.
If the linkage editor is not called automatically, you can
call it directly by specifying its name, $OLINK, in a
LOAD statement.

The following examples show only the order in which
OCL statements should be submitted.

Example 1:

To call the linkage editor without using a procedure, you
submit the following statements:

// LOAD SOLINK ,R1

/! FILE NAME-$WORK
// FILE NAME-$SOURCE
// RUN

l.inkage editor input

153

Example 2:

To call the linkage editor using the procedure FORTL,
you submit the following statements:

// CALL FORTL,R1
// RUN

Linkage editor input
/*

Linkage Editor Processing 105

Page of SC28-6874-3
Issued 25 November 1977
By TNL: SN21-5568

LINKAGE EDITOR CONTROL STATEMENTS

The formats and uses of the tinkage editor control state-
ments are identical for all models.

Ordinarily, the compiler passes to the linkage editor all
information that is necessary to link-edit an object module,
However there are instances when you want to call the
linkage editor facility directly, such as to group a number
of subprograms together in storage. In such instances, you
can load the linkage editor directly and use linkage editor
control statements to specify the options you want.

Linkage editor control statements provide information
about the object modules to be link-edited. Like compiler
option statements, they are used exclusively in one step and
are coded in the same manner as OCL statements.

Linkage editor control statements are fully described in
IBM System/3 Overlay Linkage Editor Reference Manual,
GC21-7561.

The following example shows how linkage editor control
statements can be combined with OCL statements.

Example 1:

Example 1 of Combining OCL and Compiler Option State-
ments in Chapter 13, Compilation showed how to compile
and store a program into an object library. Assume you
want to retrieve that program, link-edit it, and store the
load module under the name FIRST, into any library.

OCL statements you need are DATE, LOAD, FILE
SWORK and FILE $SOURCE, and RUN. Linkage editor
control statements you need are PHASE, to assign a name
to the load module, INCLUDE, to indicate the object
module to be included in the link edit, and END. State-
ments should be submitted in this order:

// DATE 100174

// LOAD $OLINK,R1

// FILE NAME-$WORK,UNIT-R1,PACK-111111,
TRACKS-20,RETAIN-S

// FILE NAME-$SOURCE,UNIT-R1,PACK-111111,
TRACKS-20,RETAIN-S

// RUN

// PHASE NAME-FIRST

// INCLUDE NAME-PROG1,UNIT-F1

// CATEGORY NAME-$SBTAM,VALUE-2

// END

106

In this example, the LOAD statement loads the linkage
editor from its location on unit R1. The two FILE state-
ments are required to provide work space for the linkage
editor. The PHASE statement tells the linkage editor to
store the load module under the name FIRST; by default
the load module is stored as a temporary unit on R1 (the
program pack}. The INCLUDE statement specifies that
the object module to be link-edited is named PROG1 and
ison unit F1. The CATEGORY statement changes
$$SBTAM from category 3 to category 2.

LINKAGE EDITOR OVERLAY FEATURE

If main storage is too small to accommodate an entire pro-
gram, the linkage editor will force the program into overlays.
In addition to the automatic overlay that can be performed
by the linkage editor, the programmer can explicitly request
overlays through the use of linkage editor control statements.

The linkage editor attempts to fit all modules of an object
program into the specified storage size without overlays.
If this cannot be accomplished, the linkage editor assigns
some modules to overlay segments. Modules are placed in
overlays according to their size, category, and relationship
to other modules in the program.

The linkage editor overlay feature is fully described in the
|BM System/3 Overlay Linkage Editor Reference Manual,
GC21-7561.

The load module execution step runs a FORTRAN program
that has been compiled and merged with other object
modules into a load module.

Load module input consists of OCL statements defining
the step and any program data to be processed by the load
module. Output consists of program output and execution
messages.

This section describes OCL statements needed for load
module execution, program data, and combining OCL
statements and data.

OCL STATEMENTS NEEDED FOR LOAD MODULE
EXECUTION

The load module is called by an OCL LLOAD statement
specifying the load module’s name. The name is either the
name you assign to the source program in the PROGRAM
statement, or the name ##MAIN given to an unnamed
program by the compiler.

OCL statements needed for load module execution are
summarized in Figure 12.

Chapter 15. Load Maodule Execution

Placement in Job

g
Can be Storeq
as Part o7 ¢

Statement Function When Required stream Procedure i
TN .’f‘_'"f;i‘;
// LOAD ##MAIN To call the oad module Always First card feg
or i
// LOAD name ;
// FILE NAME- To define a sequential When the load module Afier the LCAD statement Yoy :
FTnnnnn or direct-access file processes records from i

a disk or tape file ‘

_____ R -
) i
// RUN To define the end of Always Atfter OCL statements; i M

OCL statements in the hefore program mput ; ;
job stream cards : .
/* To define the end of When input cards After the last input ; Mo :
input cards in the are submitted through card :]
job stream the input stream !
i e TR T N P m\‘

Figure 12. OCL Statements Needed for Load Meodule Execution

Load Moduie Execugny e

Examples for their use are shown below. These examples
show only the order in which statements should be sub-
mitted; for examples of fully coded OCL statements see
Combining Load Module OCL Statements with Compile
Step Statements in this chapter.

Example 1:

Assume a procedure of OCL statements, FQO RTG, contain-
ing a L0~ staternent having the name ##MAIN. To cali
the procedure to execute an unnamed program, submit
the following cards:

// CALL FORTG,F1
// RUN

Program data if any
/x—

Example 2:

To call the same procedure, only this time for a program
having the name MYPROG, z1bmit the following cards:

// CALL FORTG,F1
// LOAD MYPROG
// RUN

Program data if any

/*

The LOAD statement specifying the name MYPROG
replaces the LOAD statement in the procedure.

Example 3:

To load a load module directly, without using a procedure
and assuming the use of a printer and a disk file named
FT00009, submit the following cards:

,

// LOAD MYPROG
// FILE NAME-~FT00009
// RUN

108

PROGRAM DATA

Program data—information to be processed by the load
module~—can be submitted in cards, as records on disk or
tape, or from the keybecard. Disk or tape records are
defined as files on FILE statements. Card records arc
submitted as a card deck between the OCL RUN and

/* statements. The following example shows how you
can define input both on cards and on disk.

Assume your program reads input from cards and from two
files numbered 15 and 16, and you use the procedure
FORTG to call the load module. Statements should be
submitted in this order:

// CALL FORTG,F1

// FILE NAME-FT00015
// FILE NAME-FT000156
// RUN

Card program data

/%

COMBINING LOAD MODULE OCL STATEMENTS WITH
COMPILE STEP STATEMENTS

The load module statements specified in the preceding
examples can be combined with compile step statements to
form a complete job. In Chapter 13 Compilation, under the
heading Combining OCL and Compiler Option Statements,
Example 3 shows compile step statements that can be
merged with load module statements. Simply place the
load module statements after the compile statements to
form a job in the following order:

// DATE 090174

// CALL FORTRN,R2

// RUN

// READ DEVICE-MFCU1

// SEQ44 UNITNO-"15,16',BLOCKSIZE-"256,256"

*PROCESS MAP,GOSTMT ,DECK,GODECK

FORTRAN scurce program

/*

// CALL FORTG,R2

// FILE NAME-FT00015,UN{T-R2,PACK-12345,
TRACKS-5

// FILE NAME-FT00016,UNIT-R2,PACK-12345,
TRACKS-5

// RUN

Card program data

[+

In this example, DATE assigns a system date to the job.

The first CALL invokes the compile procedure FORTRN.

READ sets up the MFCU1 as the execution-time card
reader; this statement permits card input to be read
during the execution step. SEQA44 sets up a system
control block and buffer space for each of the execution
time files named FT00015 and FT00016. *xPROCESS
specifies compiler options (a storage map to be printed,
execution time error messages to be generated with
internal statement numbers, a card deck of the object
module to be punched, and a card deck of the load
module to be punched).

The second CALL invokes the load module procedure.
The two FILE statements define the files whose system
control blocks were defined by SEQ44. Card program
data is read from the device defined by the compile step
READ statement.

l_oad Maodule Execution

<

110

This chapter describes job output for the FORTRAN pro-
gram depicted in Figures 13 and 14. Figure 13 shows a
program as it was coded. This program adds a list of 4-digit
numbers, computes the average, stores the results into a
direct-access file, and prints the results. Figure 14 shows
the program as it was keypunched. Keypunch errors were

introduced to provide examples of system diagnostic action.

Figure 15 iltustrates the OCL for the job and an input state-
ment containing a group of numbers for the source program

to add and average. The CALL statement calls the compiler.

The device option statements READ, PRINT, and DAD44
define devices to be used at execution time. The
statement lists a typical selecticn of compiler options that

produce output. !f the *PROCESS statement were missing,

PRULGHAM

*PROCESS

FORTRAN Coding Form

PHOGRAMMER

N

PLRD(JRAM e !
THIS] PRI RAM .R
IN GROUPS| OF. E
DEFINE. FIWLE. 14
LT. ALSO WRITES
PRINTING., ...
DIMENSION NUMB
NLMBS. I5. [THE A

L. 14

LS. THE MAXIMUM
Moc L S

JREAD,
M=

SV 0T 03 24 1b 26 1 8 24

EADS
TGHTE

e 4
RRAY.

| BO. .
READ]
‘NUMB,

UM

Do 3

oA
i

12
1‘,[

i [
ND A
L,
THE
CLipes)
INTO,
NUMB

rvacn
E\N FROM TH
Lib.s| E.oKk)
AVERA(,E ON

’ ¢

MHI CH
ER QF, NUMB8

> doa) |

3N

s

i s
T8 1900 7172732

B e

Ll L i
517 8 8 1011 3274141516

[

Figure 13. Sample FORTRAN Program as Coded

insrhcs
‘

FORTRAN STATEMENT
3031 3 HTML %

‘V’K‘Yﬂ;H\ A3
77

TﬁE

FR‘S h

S e

¢ L,\L} ,N,B,S,T
Sp
e

,++,‘

Chapter 16. Job Output

default options SOURCE and LINK would still be in effect
(SOURCE because it is the default for all programs, LiNK
because it is the default for main programs). The FOR-
TRAN source program is placed between the *PROCESS
statement and the /” staterment which is the last of the com-
pile step statements. The LINK option causes the linkage
editor to be called automatically; no OCL statements need
by supplied for the link edit step. The LOAD statement
loads the load module. The FILE statement defines the
direct-access file used in the program. Input data consists
of 18 numbers, consecutively numbered 1 through 18,
which the FORTRAN program is to read four characters
at a time into the array NUMBS.

CGX28 7327 La0sE
Ferted n U S.A

Ve LT nomerae

1N

-
[

L amic]
e b L

535455 56

4546 47 48 4y 5051 6275
T

] ; ; :‘\: :)
,LL;U;MB‘E;R@ ,A.R[-.‘ ‘RLAD.,H,‘,]F '
t- [P l « [P S DU
;.,‘AL,‘U:g..H.A,W_
Ll FOR L.

‘ ; Lo }x%w.a.&&; C

t
il !'
[EE

fﬁu3

[OR®]

10

30

40

1000
2000
3000

PROGRAM AVG
THIS PROGRAM READS AND AVERAGES NUMBERS. THE NUMBERS ARE READ
IN GROUPS OF EIGHTEEN FROM THE MFCUl.
DEFINE FILE 14 ¢ 1, 16, E, K)
IT ALSO WRITES THE AVERAGE ON UNIT 14 AND READS IT BACK FOK
PRINTING.,
DIMENSION NUMBS (1000)
NUMBS IS THE ARRAY INTO WHICH THE NUMBERS ARE READ. 1000 NUMBERS
IS THE MAXIMUM NUMBER OF NUMBERS THAT CAN BE AVERAGED.
1
18
"£AD (1, 1000, END = 20 (NUMBS(I), I = M, N)
M + 18
N+ 18
GO TO 10
READING CONTINUES UNTIL END OF FILE. M IS ONE GREATER THAN THE
NUMBER OF NUMBERS READ WHEN CONTROL IS TRANSFERRED TO 20.
M=M-1
SUM = 0.
DO 30 I
SUM
CONTINUE
AVG = SUM / M
WRITE (3, 2000) SUM, AVG
WRITE (14'1, 3000) SUM, AVG
READ (14'1, 3000) SUM, AVG
WRITE (3,2000)SUM,AVG
STOP
FORMAT (18 I4)
FORMAT (' SUM OF NUMBERS = ',F8.3,"' AVERAGE = ',F8.3)
FORMAT (2 F8.3)
END

Fta =
WoH

z =
o

i, M
SUM + NUMBS(H)

i

Figure 1

4. Sample FORTRAN Program as Keypunched

// CALL FORTRN,R2

// RUN

// READ DEVICE-MFCU1l

// PRINT DEVICE-5203

// DADYY UNITNO-14

*PROCESS SOURCE,LINK(T,LIB(R2)) ,NOSHRBUFF

FORTRAN source prodram

/*

// LOAD AVG,R2

// FILE UNIT—F2,PACK—SHHNOO,TRACKS—ZO,RETAIN—S,NAME—FTOOOIH,
// LABEL-MYFILE

// RUN
000l00020003000900050006000700080009001000110012001300140015001600170018
/*

Figure 1

112

5. OCL Example

Each compilation produces the following output;

® An object module if no severe errors were encountered
{as described in Diagnostic Messages), unless the
*PROCESS option NOLINK is specified.

® A compiler output listing that contains informative and
diagnostic messages.

OBJECT MODULE

The compiler produces an object module in the form of a
series of records each 64 bytes fong. There are three types
of records in an object module:

® ESL (external symbol list record)
® RLD (text-relocation directory record)

® End Record

ESL Records

An ESL record defines the object module’s reference name
and external references to other modules that are to be link-
edited with this object module. The ESL record format is
illustrated in Figure 16.

An ESL record is identified by the character S in the record’s
first byte. An ESL record can contain up to five ESL
entries, each entry being 12 bytes long. There are seven
tyoes of ESL entries:

Module Name: This entry contains the symbolic name of
the module, the start address, the module length {in hexa-
decimal}, and its category value.

Entry Point: This entry specifies this module’s entry point
name and its address.

EXTRN Reference: This entry specifies an external refer-
ence, that is, a reference to a module name in another modulc.
During the link-edit step the linkage editor must resolve

this reference (that is, locate the referenced module), by
searching first the job stream, then the SWORK file, and
finaily the object library until it locates the referenced
module.

Weak EXTRN Reference: This entry specifies an external
reference also, but during link edit the linkege editor does
not search the object library. If it cannot resclve the
corresponding reference name by searching the job stream
and SWORK, the linkage editor ignores the entry.

GLOBAL Entry: This entry specifies a space allocation for
a global area, an area to be used by more than one ioad
module. This area is allocated at the start of the program
level and its size is the size of the largest global area en-
countered.

COMMON Entry: This entry specifies a space aliocation for
a common area, an area to be used by onie ioad module
only. This area is allocated immediately following anv
global area or at the load point if no global arca is aliocated.

EXTBUF Entry: This entry specifies the space required
for external DAD buffers. The area 15 ailocated during
execution of the program and is located after the last
program byte used (between the logical evia ot the program
and the end of the partition].

RLD Records

n RLD record contains the object cods and any iniorma-
tion needed to make the text relocatanie. The P LD record

format is illustrated in Figure 16.

An RLD record is identified by the charactsr
record’s first byte.

T the

o Qutpat 313

End Record

The End record defines the end of the object module and

contains the module’s start address. It is identified by the

character E in the record’s first byte. It is illustrated in

Figure 16.

114

ESL Record
ESL ESL
S Entry 1 Entry 2 Entry 3 Entry 4 Entry 5
1 2 3 15 27 39 b1 63-64
RLD Record
T | Length Assembled
of text address of
portion rightmost Text
OF RLD | byte of
record text record
relative to 0.
1 2 34 5 64
END Record
E Start
Address
1 2-3 4 64

Figure 16. Object Module Record Formats

COMPILER OUTPUT LISTING

Compilation of the program shown in Figure 14 results in
the output listing illustrated in Figure 17, which includes
the compilation errors encountered. Figure 18 illustrates
the listing for the same program after compilation errors

were corrected.

Messages

Informative messages let you know the status of the compil-
ation giving such information as the date the job was run

and the compiler’s version and modification level. Diagnostic

messages let you know of any errors encountered during
compiifation.

Informative Messages

Informative messages in Figure 17 are labeled and E
the beginning and the end of the compiler output listing.
Label shows the first line of the listing, and a list of
compiler option statements specified for the program.

Label B points to the end of the listing, and lists the
number of compilation errors encountered, the highest
severity code encountered (see Diagnostic Messages, follow-
ing, for a discussion of severity codes}, and a list of state-
ment allocations that indicate storage addresses assigned to
statement numbers used in the program. Storage address,
shown in hexadecimal notation, are relative to the begin-
ning of the program. Because the compiier moves the in-
ternal code of FORMAT statements to the beginning of
the program, statement numbers of FORMAT statements,
such as numbers 3000, 2000, and 1000 in this program,
are allocated lower storage addresses than numbers for
executable statements, such as numbers 20, 30 and 40 in
this program.

Diagriostic Messages
Compiler diagnostic messages in Figure 17 are labeled E .
Diagnostic messages appear on an output listing under the

headings:

STATEMENT ERROR

NUMBER ISN NUMBER SEVERITY EXPLANATION

Joh Output

s

where

STATEMENT NUMBER is the statement number
assigned to a FORTRAN source statement by the pro-
grammer. Either the statement number or the internal
statement number (1SN} is printed on the diagnostic
ling.

ISN is the internal statement number assigned to the
FORTRAN statement by the compiler. ISNs are
assigneu in ascending order to the statements in the
source module. (ISNs appear on the extreme left side
of the source listing, labeled B . in Figure 17.)

ERROR NUMBER is a two-digit number assigned to a
particular error condition by the compiler. Each error
condition is assigned a number. Error conditions, and
corresponding explanations, are listed in Appendix B.

Compilation Messages.

SEVERITY indicates the severity code assigned to the
error by the compiler. Each error is assigned one of
two severity codes:

4 indicates a possible error. Compilation continues
and the link-editing function is performed if
called.

8 Indicates an error. Compilation continues but the
systerm terminates processing after compilation.
If any of the options LINK, OBJECT, DECK, or
GODECK were specified, they are ignored.

EXPLANATION is a brief summary of the error condi-
tion. A tull explanation of each error condition is
presented in Appendix B. Compilation Messages.

Figure 17 itlustrates three diagnostic errors, one with
severity code 4, the others with severity code 8. The first
error illustrated, for source statement 40, indicates that
the source statement is nowhere referred to and thus does
not need a statement number. Source statement 40 is:

40 READ(1471,3000)SUM ,AVG

Because this error will not affect program execution, it has
a severity code of 4.

The next error illustrated, for ISN 006, indicates a syntax
error. ISN 6 is the following statement:

10 READ(1,1000,END=20({NUMBS(l},1=M,N}

116

By scanning the statement we see that it contains three left
parentheses and only two right parentheses; a right paren-
thesis helongs after END=20. Because this error will affect
program execution, it has a severity code of 8, preventing
load moduie execution.

The next error, for ISN 013, indicates an error in a subscript
expression. ISN 13 contains only one subscript expression,
NUMBS(H), where H is interpreted to be a real vaniabie.
This expression should be corrected to NUMBS(1).

Figure 18 is a listing of compiler output after these correc-
tions were made. For purposes of easier comparison be-
tween Figures 18 and 17, areas of Figure 18 pertinent to
the corrections are highlighted.

OUTPUT FROM *PROCESS OPTIONS

*PROCESS options that produce some form of output are
SOURCE, MAP, DECK, GODECK, OBJECT, and LINK.

If default options are in effect, SOURCE produces a listing
of the source module; OBJECT produces an object module
for a subprogram; LINK produces a load module for a
main program; and MAP, GODECK, and DECK are sup-
pressed. You may suppress SOURCE by explicitly speci-
fying NOSOURCE. You can produce a storage map by
specifying MAP, a card deck of the object module by speci-
fying DECK, and a card deck of the load module by speci-
fying GODECK.

S FORTRAN 1V VERnn/MODnn

/7 READ DEVICE-MFCU1L
// PRINT DEVICE-5203
/7 DAD44 UNITNU-14
* ®PROCESS MAP,LINKIT,LEBIR2)) ,NDOSHRBUFF

s 1 PROGRAM AVG

C THIS PROGRAM READS AND AVERAGES NUMBERS.
C IN GRUUPS OF EIGHFEEN FRNOA THE MFCUL.

2 DEFINE FILE le t 1, 16, E, K }
C IT ALSO WRITES THL AVERAGE ON UNIT 14 AND
C PRINTING.

3 DIMENSION NUMBS (1000)
C NUMBS IS THE ARRAY INTUO WAHICH THE NUMBERS
C IS THE MAXIMUM NUMBER OF NUMBERS THAT CAN

4 M =1

5 N = 18

6 10 READ { 1, 10OOQ, END = 20 { NUMBS(I), T =

7 M = M + 18

8 N = N + 18

9 G T0O 10

NUMBER OF NUMBERS READ WHEN CINTRIL

//\\
laEal

READING CONTINUES UNTIL END 0OF FILE.

MOIS

THE NUMBERS

READS

nn/nn/nn PAGE 001

ARE KEAD

IT BACK FUR

ARE READ
BE AVERAGED.

M,

ONE

GREATE

1000 NUMBEKS

R THAN Tuc

IS TRANSFERRED T 20.

AVERAGE =

tyFB.3

HEXZ2 0eC2 NAM

M
SUM

EXPLANATEIN

i

t AT HEX]1 JECL
{ 1311 94831
R 1310 24893

STATEMENT NJUMBER IS UNREFERCNCED
SYNTAX R
SUBSCRIPT EXPRESSITON ERX

10 20 M =M -}
11 SUM = 0.
12 DO 30 1 = 1, ™
13 SUM = SUM + NUMBS(H)
14 30 CONTINUE
15 AVG = SUM / M
16 WRITE (3, 2000) SUM, AV
17 WRITE ([14'1, 3000 1 SuUM, AVS
18 40 READ (l4*'1l, 3000) SuM, AVG
19 ARITE (3,2000)SUM,AVG
20 SINe
21 1000 FORMAT { 183 T4)
22 2000 FORMAT (* SUM OF NUMBERS = ',F8.3,!
23 3000 FIORMAT { 2 F3.3)
24 END
- NAME AT HEX1 DECL HEX2 DEC2 NAME AT HEX]1 DECI
SNUMBS 1 0360 V0877 1300 04876 K I 130D 04877
N I 1315 04885 1 I 1319 354889
AVYG R 1321 94897
ERRORS FUR THIS COMPILATION
STATEMENT tRRUR
g NUMB ER I5N NUMBER SEVERTTY
I:l 40 ar 4
JJ6 33]
013 21 3
003 TYOTAL ERRIRS FAR THIS COMPILATION
s 8 WAS THE HIGHEST SEVERITY
E STATEMENT ALLOCATIGNS
3000 =13F2 2000 =1418 1000 =142A 2 =1463 30

Figure 17. Compiler Output Listing

4)

=14BA

DEC2

Duiput

117

FORTRAN IV VERnaMODnn nn/nn/nn PASE 001

// READ DEVICE-MFCUL

// PRINT DEVICE-5203

// DAD44 UNITNI-14

*PROCESS MAP,LINKIT,LIBER2)) ZNLSHRAJFF

1 PUGRAM AV
€ TALS PROGRAM READS ANU AVERAGES NUMBERS. THE WJR3ERS ARE READ
C IN SRIUPS JF EIGHTEEN FRIM THE MFCUL.

2 JEFINE FILE 14 (1y 16y Ry, K)

t IT ALSO WRITES THE AVERAGE ON UNIT 14 AND REAJS I BACK FOR
[PREYNTING.

3 JIMINSION NUMAS { 100U)
C NUMAS 1S THE ARRAY INTO W&HICH THE NUMBERS ARE REAJ. 1000 NUMBERS
i Is THE MAXIMUM NUMBER JF NUMBERS THAT CAN 4F AVERAGED.
4 VI
5 N = 1
[6 10 READ (1, 1000, ENU = 20 J (NUM35(10. 1 = M, N T |
7 TEEETEFEY
8 NN o+ 13
3 50 T 10
c READING CONTINUES UNTIL ENO OF FILb. M IS ONE GREATER THAN THE
C NUMBER OF NUM3ERS REAU AHEN CONTRUL IS TRANSFERRE)Y T 20.
10 200M =M~ 1
11 SuM = 0.
12 D30 [= 1, M
I 13 SUM = SUM + NUMBS(L)]
L4 3) CUNTENUE
15 AVG = SUM /7 4
16 WRITE (3, 2000 } SUM, av6
17 ARITE { 14%'1, 3000) SUM, AYG
Cs READ _(1471, 3000) SuM,; AVG]
19 WRITE (3,2000)5UM,AVG
20 SToP
21 1000 FORMAT { 13 14)
22 2002 FORMAT (' SUM 0OF NUMBERS = *,F8,3,' AVERAGE = 1,F3.3)
23 3000 FORMAT { 2 £3.3)
24 END
NAME AT HEXL DECL HEX2 DEC2 NAME AT HEXL DECL HEXZ DEC2 NAML AT HEXL DEC) HEX2 DEC2
NUMBS [0360 00877 130C 04876 K I 130D 14877 M I 1311 04881
N I 1315 04885 I I 1319 04889 SUM R 131D 04893
AVG R 1321 94897
L 000 TDTAL ¢xRORS FOR FHIS COMPILATION
STATEMENT ALLOCATIONS
3000 =141E 2000 =1444 1000 =1456 10 =147TA 20 =14C3 30 =14FE

Figure 18. Compiler Output Listing After Corrections

Object Module Card Deck Source Module Listing
An object module card deck is produced consisting of the The source module listing in Figure 17 is labeled E . The
records described in Object Module, and the following: source module listing prints FORTRAN source statements
together with their corresponding ISNs (internal statement
® A disk utility // COPY statement to instruct the system numbers) assigned by the compiler to all FORTRAN source
to insert the object module into a system library. This statements except comments statements and continuation
statement is the first card in the deck. lines.

® A header card that contains the object module’s name.
This staternent follows the // COPY statement.

® A disk utility // CEND statement following the records
to indicate the end of the card deck.

118

Storage Map

The storage map in Figure 17 is labeled . The storage
map is a listing of each variable name used in the program,
and such information as whether i1 describes an nteger or
real item, whether the item is in GLOBAL or COMMON,
whether the item is undefined, and the storage address of
the item, shown in both hexadecimal and decimal notation.
ltems in COMMON are listed first with storage addresses
relative to the beginning of the COMMON arca. Local
variables (variables not in COMMON) are listed next, with
storage addresses relative to the beginning of the local Pro-
gram area. The storage map appears on an output listing
under the headings:

NAME AT HEX1 DEC1 HEX2 DEC?
(Headings appear three times per line.)

where:
NAME indicates the name of the variable.

AT indicates the attributes of the variable. Attributes
can be printed using three print positions. The first
print position indicates whether the variable is integer
(1), reat (R}, halfword (H), or doubleword (D). The
second print position indicates whether it is in GLOBAL
(G) or COMMON (C); if the item is a local variable, this
position is left blank. The third print position identifies
an undefined variable (U).

HEX1 indicates the address where a variable or array
vegins, in hexadecimal.

DECT indicates the same address in decimal.

HEX2 is used with an array to indicate where the array
ends; in hexadecimal. If the item is not an array this
address is left blank.

DEC2 indicates the same address in decimal.

The headings are repeated three times across an output
listing page, so that each line of the map can describe three
data items. The first data item described, NUMBS, is of
type INTEGER (1), begins at location 877 (36D in hexa-
decimal) and ends at location 4876 (130C in hexadecimal).
NUMBS is a 4000-byte array. The data item SUM (the

last item listed) is of type REAL, and is located at address
4893 (131D in hexadecimal). Because SUM is not an array,
no end address is shown.

LINKAGE EDITOR QUTPUT
The link-editing step produces the following output:
® A load module

8 A linkage editor listing of informative and diagnostic
messages

® QOutput determined by options

LLoad Module

The foad module is in the form of a series of records, cach
96 bytes long. There are four types of records in a load
module:

1. One header record

2. A group of text records

3. A group of relocation records
4. One end record

Header Record

A header record defines the load module’s reference name
and start contro! address. The header record is identified
by the character H in the first byte of the record.

Text Records

Text records contain the object code of the load moduie.
Text records are identified by the character T in the firgt
byte of the record. Text records make up the bulk of ioad
module records.

Relocation Records
Relocation records contain information necded to moke

the load module relocatable in the event the moduie cannat
be foaded at the start control address specified in tne Head.

errecord. Relocation records are identitiad by tre charor
R in the first byte of the record
End Record

The end record defines the end of the foad madule. it 1,
identitied by the character E in the first byte of the renord,

Y

Jistz Output 1

Linkage Editor Qutput Listing

Figure 19 illustrates link-editing output for the program
shown in Figure 14,

Messages

Like compilation messages, linkage editor messages inform
you of the status of the link edit step and whether any
errors were encountered.

Inforiative messages in Figure 19 are labeled Bat the end
of the link edit output listing. Overlay linkage editor mes-
sages OL 100, OL101, and OL104 print out, respectively,
the size of the program, its beginning address (start control
address), and the number of disk sectors the load module
requires in the library. These messages are followed by a
summary of OCL parameters that identify the load module.

Diagnostic messages are in the form of halt codes that are

displayed on the display unit. Ne halt codes are generated
tor the program iilustrated here. For a description of halt
codes, see the appropriate halt guide listed under Related

Publications in the Preface.

QOutput from Options

Linkage editor output can be produced by the compiler
options GODECK and MAP. GODECK produces a card
deck ot the load module. To obtain the card deck, you
must explicitly request GODECK at compile time, the
default being NOGODECK. The MAP option causes the
linkage editor to print a core usage map of the load module.

Load Module Card Deck

A load module card deck is produced consisting of the
records described in Load Modufe and the following:

® A disk utility // COPY statement to instruct the system
to insert the load module into a system library. This

statement precedes the ioad module cards.

@ A disk utility // CEND statement to indicate the end
of a card deck.

120

Core Usage Map

The core usage map in Figure 19 is labeled . The map
appears under the headings:

START CATEGORY NAME AND CODE LENGTH
ADDRESS ENTRY HEXADECIMAL DECIMAL
where

START ADDRESS indicates the beginning storage
address of the area or routine, in hexadecimal notation.
For example, the main routine AVG begins at location
1300, and the FORTRAN library routine $FOEQ at
location 2868.

CATEGORY indicates the priority value of each routine

for remaining in main storage in an overlay environment
{the lower the number the greater the priority).

NAME AND ENTRY indicates the name of each area or
routine, and, indented from the main entry point for
each routine, other entry point names within the routine.
For example, in addition to its main entry point, $FOEQ
contains other entry point names #MNTRY, #SNTRY,
#RNTRY, and #D.

CODE LENGTH indicates the length of each area or
routine, in both hexadecimal and decimal notation.

Job Outpnt

72

OVERLAY LINKAGE £DITOR CORE USAGE MAP nn/nn/nn

/ START CATEGORY NAME AND CGDE LENGTH
/ ADDRESS ENTRY HEXADECIMAL DECIMAL
1300 255 AVG 1563 5439
/ 2858 SUNITB
, 1602 4ERBUF
15384 410BUF
2868) $FQED 0193 403
2905 HMNTRY
2993A #SNTRY
2909 HRNTRY
28569 #D
29FB 3 $FOB1L J062 98
2A2C #DED4
2A4D #DEDZD
2A5D J $FDI10 ODF5 245
2AF4 $ELST
?2R09 HELST?
2AES #DERR
2AD3 BIDINT
2ABRF #13COM
282C #ENDEQ
2313 $#ERRE)
2824 0UTAL
2R1A #INTSL
} 2330 #13393
) 2831 $¥FLRD
2B52 2 $FOVS 003C 12
285D #ADROT
2858 BRLIST
2B5¢€) $FOVA 2010 15
2860 #DLIST
2R6E 2 $FDI6 0173 371
2C63 H#FO16A
2C48 ¥FOL168B
2CE1 2 $$DAUS 20638 194
2049 2 $$SROA 30993 153
2DE2 2 $$SROI 00338 55
@ 2£01 DMSRPD
2DFA DMSRRD
ZELA p) $4 SRRC 2078 123
2E95 2 $$SRRI 2023 4]
2EBRE 2 $$SRMN 2081 129
2F3F 2 $$SRTC J01C 28
2F3F OMSRLO
2F50 DMSRTC
2F53 DMSRER
2F58 4 $FOE3 0023 40
2F62 #XL I
2F68 #XST
2F6F #XA
\ 2F 76 #XMLI
\ 2FTC EXMST
\ 2F83 4 $FOE6 001C 28
\\ 2F98 #B8ST

Figure 19 (Part 1 of 2). Linkage Editor Qutput Listing

122

START

ADDRESS

2FB3A
2F31
2F9F
2FA2
2FR3
26CC
2FCF
2F3E
2FC1
300F
30F3
31A3
3177
3121
3104
3257
32€F
32FE
3350
3354
3366
3370
3473
3473
33F3
3435
34A4
3573
376F
3779
3A03
3A51
3A59
3A86
3A30
3842
33519
3IC62
3E11
3E95
3ECC
3F38
3F62
405)
4063
4114
4141
4163
419F
4138
4254
42C1
438D

0oL10o
[’ OL101
OL10L

[
I
I

CATEGIRY

4

4

+

P

(S I IN))

Vi W

(2

o o

c OO C

NAME AND
ENTRY

#3A
#3S
$FOLA
#RL
#ST
#RAD
BRA
#RSD
S
#2179
$F D)
#UJEND
#1)7)BR
#OBGN3
bFOEE
$FOEH
$FOVE
#FL AT
$FOEC
#R IFLA
$RJFLW
$FNB2
HFRET
4F32A
4F.)R23
#£082C
$FOC2
$FICH
$FCHS
#ETE
$F0OB8
$F0X9
$FNBA
$FOCF
HEJCF3
$FOCH
#FOCH3
$FNCS
#OIVID
#AJLT
PFOIC
$ERTST
$SLPRT
$FNI3
BFOTI3A
#F313
$FI{L
#FI1A
PFOVP
$FNIB
$F031
$FOLT
PEMFRD

THE TOTAL CORE JSED
THE START CUNTROL ADDRESS
TOTAL NUMBER OF LIBRARY SECTORS REQUIRED IS 53

NAME-AVG

,PACK-R1R1IR1,UNIT-R2,RETAIN-T,LIBRARY~-O.

Figure 19 (Part 2 of 2). Linkage Editor Output Listing

3Y AVG

Canc

J154

JOE1

J083
2098
JJ61

2022

J134

JOCF
JIFC
J294

JO4t
JJo13
JO01D
2J33C

JL20

J?26A

2096

JOF S
JOE4

JJls
JJIIC
Q361
o12C
Q145

LENSTH
AEXADECTAAL JECIMAL

349

131
152
37

303

207
509
660

73
24
29
138

283

24

25
156
103
300
320

[S 12352 vECIMAL

3F THIS MIDULE

I> 1320.

Job Output

123

LOAD MODULE OQUTPUT
Output from the load module step can be the following:
® Informative and diagnostic messages

@ Printed output results generated by the FORTRAN
program

Figure 20 illustrates load module output for the program
shown in Figure 14.

Messages

The output iisting for a load module step begins with a list
of OCL load module statements, labeled in Figure 20.

Load module diagnostic messages are hait codes displayed
on the display unit rather than on an output listing. Two
hait codes are associated with FORTRAN load module
processing: B6 to indicate that a PAUSE or STOP state-
ment was executed, and ¥7 to indicate that an execution
error occurred. On the Model 6, these halts are displayed
as follows: ¥6as 4 and B¥7 as 13.

When a B6 halt code occurs as a result of a PAUSE state-
ment, you can either continue processing (by responding
with a 0 option}, or terminate processing (by responding
with a 2 or 3 option).

When a B7 halt code occurs, you must terminate processing
{by responding with a 2 or 3 option). Halt code B7 has
several secondary halt codes that identify the cause of the
error.

For procedures concerning responding to halts, and a
description of secondary halts, see the appropriate Halt
Guide--as listed in the Preface under Related Publications.

Figure 21 shows the options possible for PAUSE statements,
STOP statements, and execution error halts.

/7 LIAY AVG,R?2
3 /7 FEILE
/7 RUN
SUM JF NUMRERS = 171.000 AVERASE =

SUM JF NUMRERS 171.900 AVERAGE

It

B

Figure 20. Load Module Qutput

124

1]

Program Output

Output from execution of the FORTRAN program is
labeled in Figure 23. This output indicates the sum and
the average of the numbers read. It appears in duplicate

as a result of two executions of the WRITE statement, one
from computations made in storage, the other from reading
the results back in from direct access file number 14.

Using the FORTRAN Traceback Listing

If an execution error occurs in a program containing a
number of program units, the traceback facility can be used
to locate the program unit where the error occurred. To
illustrate how the traceback facility can be used, refer to the
program shown in Figure 22. Part 1 of this figure shows
compiler output for the subroutines X and Y. Part 2 shows
compiler output for the main program unit ##MAIN.

These program units perform the following operations:

o H##MVAIN twice passes a value to subroutine X, in the
variable A. The first time passed, A has the value 4; the
second time, the value 1.

® Subroutine X accepts the value in its variable J. X
then subtracts 1 from the value, calls subroutine Y, and
upon return from Y again subtracts 1 and calls Y.

® Subroutine Y uses the value in J as a logical unit number
in a WRITE statement to print out a message.

UNIT=F24PACK=544400 9 TRACKS -2y RETAIN=-S, NAME-FTIUOLl4,LA3EL-MYFILcC

9.52)
J.599

Part 3 of Figure 22 shows the traceback listing resulting
from an execution error in this program. The traceback
listing contains the following information:

ROUTINE indicates the name of the routine. The name
shown at the top of the list identifies the routine that
was executing when the error occurred. The name
immediately below that identifies the routine cailing
the top listed routine, and below that, are listed the
other calling routines,

ISN specifies the internal statement number in the

routine that called the routine listed. For example, sub-
routine Y was called by ISN 5 in subroutine X.

XR1, XR2, and ARR specify the contents of index
register 1, index register 2, and the address recall register,
respectively. This information is useful to the IBM
customer engineer if he must service the system.
The traceback listing in Figure 22 tells a number of things:
® Subroutine Y was executing when the error occurred.

® Subroutine Y was called by ISN 5 in Subroutine X.

® Subroutine X in turn was called by SN 3 in ##MAIN.

ISN 3 in ##MAIN is the first call to X, when A has the value
4. ISN 5 in X is the second call to Y, after X has subtracted
the value of J a second time. {The first call resulted in print-
ing the message shown before the traceback listing.) Thus,

J has the value 2 when Y is called in ISN 5. Since Y uses

J as a logical unit number, the error is that the number 2

has not been assigned to an output device. {No error occur-
red when J has the value 3 because 3 is assigned to a printer

by default.)

Obtaining a Traceback Listing

To obtain a traceback listing, do the following:

1. Specify GOSTMT in the *PROCESS statement for
each program unit to be traced. (If GOSTMT is not

specified for a program unit, interna! statement
numbers in that unit are not displayed.}

2. If an error occurs, the character 7 (from the halt code

B7) appears on the display unit. Respond with option
0 to get the secondary halt. (The error in Figure 22
would cause secondary halt code 10 to appear.}
Respond with option 2. This causes FORTRAN to
terminate job execution and print out the traceback
listing.

Halt
Model 6 | Modeis 10 | Model 15 Options
and 12
PAUSE n 4 $6 B6 0 Continue processing.
2 Have FORTRAN cancel the
program.
STOP n 4 ¥6 B6 2 Have FORTRAN cancel the
program.
3 Have system cancel the
program.
Execution 13 w7 B7 2 Have FORTRAN cancet the
error program,
3 Have system cancel the
program.

Figure 21. Possible Options for PAUSE, STOP, and Execution Errors

Job Qurput

1

N

// CALL FORTRN,F1L

XX LOAD $FORT,FL

XX FILE NAME-$WORK,UNIT-R1,PACK-RLRLRL,TRACKS~Z0,RETAIN-S
XX FILE NAME-$SOURCEJUNIT-RL,PACK-RLRLRL, TRACKS-20,RETAIN-S
// RUN

FORTRAN IV VERnn/MODnn nn/nn/nn PAGE OCL

*PROCESS MAP,GOSTMT
: SUBROUTINE X(J)
2 J=J-1
3 CALL Y (J)
J=J-1
5 CcALL Y.
RETURN
END

~NouwH Wi

NAME AT HEX1l DECL HEX2 DEC2 NAME AT HEX1 DEC1 HEX2 DECZ2 NAME AT HEXL DECL HEX2 DEC2
J 1 0006 00006

// CALL FORTRN,F1

XX LOAD $FORT,FL

XX FILE NAME-$WORK,UNIT-RL,PACK-RLRLRL,TRACKS-20,RETAIN-S
XX FILE NAME-$SOURCE,UNIT-R1L,PACK-RLRLRL, TRACKS—20,RETAIN-S
// RUN

FORTRAN 1V VERrn/MODnn an/nn/nn PAGE 001

*PROCESS MAP,GOSTMT

1 SUBROUTINE Y(J)

2 2 WRITE(J,100)

3 100 FORMAT (' IN SUBROUTINE Y')
4 RETURN

5 END

NAME AT HEXL DECL HEX2 DEC2 NAME AT HEXL DEC1 HEX2 DEC2 NAME AT HEX1 DECL HEX2 DEC2
J 1 0006 00006

Figure 22 {(Part 1 of 3). Traceback Example

126

// CALL FORTRN,FlL

XX LOAD $FORT.F1L

XX FILE NAME-$WORK,UNIT—-RL,PACK-RLRLRL,TRACKS~20,RETAIN-S
XX FILE NAME-$SOURCE,UNIT-RL,PACK-RLRLRL,TRACKS~-20,RETAIN-S
// RUN

FORTRAN IV VERnn/MODnn nn/nn/nn PAGE 00L

*PROCESS MAP,GOSTMT

1 INTEGER A
A=4
CALL X(A)
A=1
CALL X(A)
STOP
END

~Nov PN

NAME AT HEXL1 DECL HEX2 DEC2 NAME AT HEX1 DECL HEX2 DECZ NAME AT HEXL1 DEC1 HEX2 DECZ2
A I 0185 00389

000 TOTAL ERRORS FOR THIS COMPILATION

Figure 22 {Part 2 of 3). Traceback Exampie

// LOAD ##MAIN,F1L
// RUN

IN SUBROUTINE Y

TRACEBACK FOLLOWS ROUTINE ISN XR1 XR2 ARR
Y 00005 1504 16B7 1705
X 00003 1504 14CF L4E7
##MAIN

Figure 22 (Part 3 of 3). Traceback Example

Job Qutput 127

128

This section contains:

® Direct-access programming considerations

® Sequential disk and tape programming considerations
® FORTRAN implementation considerations

® System considerations

Part 3. Programming Considerations

Programming Considerations

129

130

in FORTRAN, the two types of input/output (1/0)
operations supported for direct-access files are formatted
and unformatted.

The record length for a direct-access file is specified in the
DEFINE FILE statement. The block length is specified by
the BLOCKSIZE parameter in the DEVICE OPTIONS
statement.

Formatted 1/0

Formatted 1/0 has a FORMAT statement associated with
the READ or WRITE statement that is used to access the
data in the file. The amount of data to be transferred for
a formatted READ or WRITE statement is determined by
the format codes in the FORMAT statement and the
number of variables in the 1/0 list.

The FORMAT statement used to control the reading or
writing must not specify more characters (bytes) than
there are in a record.

For example, to process a file described by the statement:
DEFINE FILE 8(10,48,L,K8)

the FORMAT statement used to control reading or writing
could not specify more than 48 bytes of data.

The following are valid FORMAT statements:

FORMAT({4F12.1)
FORMAT(110,9F4.2)

The following are invalid FORMAT statements:

FORMAT(6F10.2)
FORMAT(110,4F12.2)

The 1/O list for a READ or WRITE statement must always
be satisfied. That is, if there are more variables in the 1/0O
list than there are format codes, the FORMAT statement
will be reused. When reused, a new record will be

transferred. This will continue until the 1/0 list is satisfied.

Page of SC28-6874-3
Issued 29 September 1978
By TNL: SN21-5634

Chapter 17. Direct-Access Programming Considerations

If the amount of data to be written is less than the record
length, the record is padded on the right with blanks.

Unformatted 1/0O

Unformatted 1/O has no FORMAT statement associated

with the READ or WRITE statement that is used to

access the data in the file. The amount of data to be
transferred for an unformatted READ or WRITE

statement is determined by the number and type of

variables in the /O list. There is a one-tc-one correspondence
between internal storage locations (bytes) and external

record positions.

The 1/O list for a READ or WRITE statement must always
be satisfied. If the amount of data specified in the /O

list exceeds the record length, more than one record

will be read or written, enough to satisfy the /O list.

If the amount of data to be written is less than the
record fength, the record is padded on the right with
binary zeros.

SHARING THE ASSOCIATED VARIABLE BETWEEN
PROGRAMS

Programs can share an associated variable as a COMMON
or GLOBAL variable. The following exampie shows how
this can be accomplished:

COMMON 1UAR SUBROUTINE SUBI(A,B}
DEFINE FILE 8(100,10, COMMON IUAR
L,IUAR)

.

ITEMP=IUAR
CALL SUBI (ANS,ARG)
4 IF (IUAR-ITEMP) 20,16,20

In this example, the program and the subprogram share
the associated variable IUAR. An input/output operation
that refers to logical unit 8 and is performed in the sub-
routine changes the value of the associated variable. The
associated variable is then tested in the main program in
statement 4.

Direct-Access Programming Considerations 131

An associated variable can also be passed to a subprogram
as an argument in a CALL statement. However, in a
subprogram the dummy variable is not automatically
updated uniess it is passed to the subprogram via COMMON
or GLOBAL and not through the argument list. If the
variable is to be passed through the argument list, you
must update it yourself with FORTRAN statements.

MINIMIZING DIRECT-ACCESS 1/0 TIME

You can decrease 1/0 time by processing a direct-access
file consecutively. Consecutive processing of a direct-
access file occurs when the relative record number is
increased by one each time the file is accessed. This can be
done by using the associated variable in the DEFINE FILE

statement as the relative record number in the I/0 statement.

Example:

DEFINE FILE 10(100,64,L,1)

1=1
5 READ(10'1)IRAY

GO TOS

The associated variable (I} in the DEFINE FILE statement
is initially set to 1 by an assignment statement (I=1). It is
also used as the relative record number in the READ
statement. After the READ statement is executed, the
associated variable is automatically updated by FORTRAN
to point to the next record. Thus, as the loop is executed a
number of times, the file is processed consecutively.

Consecutive pracessing of a direct-access file can also be

done by updating the relative record number by one each
time the file is accessed.

Example:
DEFINE FILE 10{100,64,L,1)
=1 .
J=1

5 READ(10'J)IRAY

J=J+1
GOTOS5

132

if a direct-access file is processed consecutively, you can
further decrease 1/0 time by specifying two buffers and a
blocksize as large as possible without exceeding the amount
of main storage available for buffers in the load module's
environment. {(Remember that the main storege needed for
buffers is doubled when two buffers are specified.] See
Buffer Assignment for Direct-Access Files.

When BLOCKSIZE and BUFFERS are used, the program
must be in the NOSHRBUFF environment, This can be
specified in the *PROCESS statement. (NOSHRBUFF is a
default option in the *PROCESS statement.)

Note: If afile is being processed randomly, 1/0 time might
be increased when BLOCKSIZE and BUFFERS are used.

BUFFER ASSIGNMENT FOR DIRECT-ACCESS FILES

The system accesses records from a direct-access file only in
256-byte segments to correspond with the arrangement of
disk storage into 256-byte sectors. The size of the buffer
allocated to a file must be an exact multiple of 256, and

is determined by the blocksize specified in the DEVICE
OPTIONS statement. If the BLOCKSIZE parameter is not
specified, the record length from the DEFINE FILE
statement is used to calculate the size of the buffer.

The following rules apply when buffer space is being
allocated:

1. 1f the block length {or record length) is a submultiple
of 256, a 256-byte buffer is allocated.

2. If the block length (or record length) is a multiple of
256, the buffer size is equal to the block length (or
record length).

3. If the block length (or record length) is neither a
multiple nor submultipie of 256, the buffer size is
determined as: block length (or record length) + 255
raised to the next higher multiple of 256.

If the file's DEVICE OPTIONS statement specifies BUF FERS-2,

the buffer size is doubled before it is allocated.

The following examples illustrate these rules:

Example 1:

// DAD44 UNITNO-10

.

DEFINE FILE 10(100,64,L,1)

In this case, BLOCKSIZE is not specified, so the record
length (64) from the DEFINE FiLE staterment is used to
calculate the size of the buffer. The records are stored on
disk as follows:

~——3Sector 1 ————srdw——v Sector 2 s fa—— Sector 3 ~————]

Rec | Rec | Rec| Rec| Rec| Rec| Rec Rec | Rec| Rec| Rec| Rec
1 2 3 4 5 6 7 3 9 0] 11| 12

0 64 128 192 256 320 384 448 512 574 638 704 768

The record size is a submuitiple of 256. Therefore, a
buffer size of 256 is aliocated.
Example 2:

// DAD44 UNITNG-12,BLOCKSIZE-768
DEFINE FILE 12(200.64,1_1)

In this case, the BLOCKSIZE is specified as 768. The
records are stored the same as in the previous example.

The block length is a multiple of 2586, Therefore, the
length aliocated for the buffer is the biock length. In this
case, FORTRAN accesses 12 records with each physical
1/0 operation (if the file is being processed consecutively).

Example 3:

// DAD44 UNITNO- 14
DEFINE FILE 14(50,96,L,1)

In this case, BLOCKSIZE is not specified, so the record
length (96) from the DEFINE FiLE statement is used to
calculate the size of the buffer. The records are stored on
disk as follows:

«———Sector 1 F————-Sector 2 ——fu—— Sector 3 ——— s |
Rec Rec Rec Rec Rec Rec Rec Rec
1 2 31 4 5 16 7 '8

o 96 192 256 268 384 480 512 576 672 768

Direct-Access Programrning Considerations

133

Record 3 straddles two sectors. In order to process this
record, a buffer of 512 must be allocated, using the rule:

Record length (96) +255 (=351) raised to the next mul-
tiple of 256 (512). Two sectors are loaded into each
buffer.

When the buffer is loaded with sectors 1 and 2, it contains
the following records:

0 Buffer 512
Rec 1 Rec2 ! Rec3 | Rec4 | Rec5 | Recb
{partial)
0 96 192 288 384 480 512

Records 1 through 5 can be processed. When record 6 is to
be processed, the second and third sectors are placed into
the buffer, as follows:

0 Buffer 512
Rec3 | Rec4 | Recb l Rec6 | Rec7 | Rec8
{partial)

256 288 384 480 576 672 768

Record 6 can now be processed, as can records 7 and 8.
When record 9 is to be processed, the appropriate sectors
are placed into the buffer.

Sharing Buffers

Direct-access files on disk drives can share a buffer. The
size of the buffer is equal to the maximum block size
computed. For example, if the three files shown in the
preceding examples were to share a buffer, the 1/O buffer
size would be allocated as 768 bytes, the size of the largest
buffer needed.

Buffers cannot be shared with a file that has BUFFERS-2
specified in the device option statement, or EXTBUF
specified in the *PROCESS statement. For best perfor-
mance, buffers should not be shared with a file that has
BLOCKSIZE larger than 256 specified (or defaulted) on
the associated device option statement.

134

File Share (Program Number 5704-F0O2 Only)

Direct-access files on disk drives can be shared with another
task or partition at execution time by using system control
programming (SCP) statements. File share causes direct-
access files with double buffers to default to single buffer
status during execution. The SCP default parameter for

// FILE statements is SHARE-YES. Therefore, it is neccs-
sary to specify SHARE-NO if double buffering is -zed
during program execution.

Example:

// CALL FORTRN,F1

// RUN

// DAD44 UNITNO-15BUFFERS-2

FORTRAN source program

/%

// LOAD ##MAIN,F1

// FILE NAME-FT00015,PACK-654321, UNIT-R1,
RETAIN-T,

// RECORDS-800,SHARE-NO

// RUN

Program data

/*

For further information, see the appropriate System
Control Programming Reference Manual listed under
Related Publications in the Preface.

Chapter 18.

In FORTRAN, the two types of record formats supported
for sequential disk and tape files are fixed-length and
variable-length. Fixed-length records are transferred for
formatted or list-directed input/ouput {1/0). Variable-
length records are transferred for unformatted 1/0.

The record length is defined by the BLOCKSIZE parameter
on the DEVICE OPTIONS statement. This value is used

as the record length in the volume tabie of contents
{VTOC) for disk files and the header label for tape files
When FORTRAN sequential files are being accessed,

this value must be used in other programming languages

as the record length.

FORMATTED OR LIST - DIRECTED 1/0

The amount of data to be transferred for a formatted READ
or WRITE statement is determined by the format codes in
the FORMAT statement and the number of variables in the
1/0 list. For list-directed /0, the amount is determined by
the type and number of variables in the 1/0 list.

For a READ statement, if the amount of data to be read
exceeds the record length, multiple records will be read
(enough to satisfy the 1/0 list). If the amount of data
to be read is less than the record length, the remaining
data in the record is skipped.

For a WRITE statement, if the amount of data to be
written exceeds the record length, muitiple records will
be written (enough to satisfy the I/O list). Data from
a variable will never span a record. If the data from a
variable does not fit at the end of a record, it will be
the first data ptaced in the next record. If the amount
of data to be written is less than the record length, the
record will be padded on the right with blanks.

Page of SC28-6874-3
Issued 29 September 1973
By TNL: SN21-5634

Sequential Disk and Tape Programming Considerations

Example:

// SEQ44 UNIT NO-10, BLOCKSIZE-32

DIMENSION IRAY (6)

WRITE (10,20) IRAY
20 FORMAT (615)

Record Length

A
)

IRAY(1} IRAY(6) Blanks
-¢———30 Bytes 1) Bytes -
- 32 Bytes L

The BLOCKSIZE parameter specifies a record length of
32 bytes. The FORMAT statements specify 30 bytes
(six fields, each 5 bytes long). The 1/0 list has six
variables (six elements of array IRAY). If the amount
of data to be written is 30 bytes, which is less than

the record length of 32 bytes, the record is then padded
with 2 bytes of blanks.

UNFORMATTED 1/O

A record is made up of a 4-byte record descriptor,
a 4-byte segment descriptor, and a data segment.

Record Length

A
¥

Record
Descriptor

Segment

. Data
Descriptor

~—4 Bytes —pt-a— 4 Bytes —pm]

Sequential Disk and Tape Programming Considerations 135

Page of SC28-6874-3
Issued 29 September 1978
By TNL: SN21-5634

The format of the record descriptor is:

Record Length Reserved

~——— 2 Bytes e

A

2 Bytes———pm

where
record length is the value given in the
BLOCKSIZE parameter. The record
length is stored as a binary value.

reserved is filled with binary zeroes.

The format of the segment descriptor js:

Segment Length Code Reserved

- Bytes—*“-—1 Byte—»t4—1 Byte—a

where
segment length is the length in binary of the
segment of data plus the 4 bytes of the
segment descriptor.

code is used to indicate the position of
this segment with respect to the other
segments, if any, of the FORTRAN record.

Code Meaning

00 The only segment in the record.

01 The first segment of a
multisegment record.

02 The last segment of a
multisegment record.

03 Neither first nor last segment

of a multisegment record.

reserved is filled with binary zeroes.

The amount of data to be transferred for each unformatted

READ or WRITE statement is determined by the number
and type of variables in the 1/0 list. The data can be
recorded in one or more segments.

136

For a READ statement, if the amount of data to be read
exceeds the data in a segment, multiple segments will

be read. Whether the record has a single segment or
multisegments, the amount of data to be read in a

single READ statement must never exceed the amount
of data previously written into a record. If the

amount of data to be read is less than the amount
previously written, the remaining data in that segment
and any other segments of a multisegment record are
skipped.

For a WRITE statement, if the amount of data to
be written exceeds the record length minus 8 (the
length of the descriptors), muitiple segments will be
written (enough to satisfy the 1/0 list}). Data from a
variable will never span a record. If the data from a
variable does not fit at the end of a segment, it will
be the first data placed in the next segment for that
record.

If the amount of data to be written is less than the
record length minus 8 {the length of descriptors),

the segment will be padded on the right with binary
zeroes.

Example:

// SEQ44 UNIT NO-10 BLOCKSIZE-32

INTEGER"2 12
DIMENSION IRAY (8)

WRITE (10} 12, IRAY

Page of SC28-6874-3
Issued 29 September 1978

By TNL: SN21-5634

- Record Length -
*gz:(?rri(:)tor—**[s)eei::n:;ttor -t First Segment of Data >

00200000 001A 0100 12 IRAY(1) IRAY(5) 0000
~+—4 Bytes—to— 4 Bytes—p1«2 Byteot= 20 Bytes 12 Bytesr—
- 32 Bytes >
- Record Length -

oo S At et ofOts o

00200000 00100200 IRAY(6) IRAY(8){0 OJ
~e—4 Bytes—»{-4—4 Bytes—It-= 12 Bytes it 12 Bytes ———
- 32 Bytes :

The BLOCKSIZE parameter specified a record iength of
32 bytes. The amount of data to be transferred is 34
bytes: one variable 2 bytes long (12 is integer *2) and
eight variables 4 bytes long (8 elements of array IRAY).
The amount of data that can be placed in a segment is
24 bytes (32 minus 8 bytes of descriptor). Thus, more
than one segment must be written to satisfy the 1/0O list.
Variable IRAY (6} will not fit in the 2 bytes at the end

of the first 4 bytes of the next segment.

Sequential Disk and Tape Programming Considerations

The record descriptor for both segments indicate a length
of 32 (X’20’}. The segment descriptor for the first
segment indicates a length of 26 (X‘1A’); (22 bytes of
data plus 4 bytes of descriptor and a code of X‘01’ which
indicates the first segment of a multisegment record). The
length in the next segment descriptor is 16 (X’10°); 12
bytes of data plus 4 bytes of descriptor). The code X‘02’
indicates the last segment of a multisegment record.

137

Page of SC28-6874-3
Issued 29 September 1978
By TNL: SN21-5634

BUFFER ASSIGNMENT FOR SEQUENTIAL FILES

The size of the buffer allocated for a tape file is either the
value given on the BLOCKSIZE parameter of the TAPE
DEVICE OPTIONS statement or 128, whichever is larger.
The buffer will contain only one record at a time.

The size of the buffer allocated for a disk file is always
256 bytes {the size of a disk sector). The buffer can
contain from 1 to 16 records, depending on the record
length. To keep records from spanning sectors, the
record length must be 256 or one of the following
submultiples: 128, 64, 32, or 16.

To minimize /0 time and make the most efficient use
of disk space, the record length should be the smallest
submultiple. This value can be calculated as follows:

® Formatted //0: Add the lengths given in the FORMAT
statement for the number of variables in the 1/0 list.

® [ist-Directed 1/0: Add the lengths needed for the
variables in the 1/0 list. The length needed for each
type of variable is described in Chapter 5 under List-
Directed Output Data.

® Unformatted //0: Add the lengths of the variables
in the 1/0 fist. To this total, add 8 (descriptor bytes).

RESTRICTIONS ON THE ORDER OF SEQUENTIAL
I/0 OPERATIONS

1. A READ request cannot follow a WRITE or END
FILE request on the same file.

2. A WRITE request cannot follow an END FILE
request on the same file.

3. An END FILE request cannot immediately follow
another END FILE request on the same file.

138

MODEL 15 MULTIFILE TAPE PROCESSING

Multiple files per tape volume are supported only by Model
15 FORTRAN. The file sequence number is specified on
the FILE statement at execution time. A further
description can be found in the /BM System /3 Model 15
System Control Programming Reference Manual,
GC21-5077.

TAPE PROCESSING IN PROGRAMS USING OVERLAYS

Tape data management is overlay category 3, and the
FORTRAN 1/0 interface modules for sequential disk and
tape are overlay category 2. This can cause problems for
large programs that are forced into overtays when using
tape 1/0. In such cases, a separate link step should be
performed with a linkage editor control statement changing
the tape data management to category 2. The section
describing Linkage Editor Control Statements includes the
following category override statement:

// CATEGORY NAME-$$BTAM VALUE-2

Directing Program Output to Both a Printer and a Card
Punch

If program output is to be both punched and printed, use
two WRITE statements with the appropriate logical unit
number assignments, and include both a PUNCH and a
PRINT device option statement in the job stream.

Example:

/! PRINT DEVICE-5471
/! PUNCH DEVICE-1442

WRITE(5,10)J,K
WRITE(9,11)J,K
10 FORMAT('0,110,5X,15)
11 FORMATI({110,5X%,15)

The example states that the variables J and K are to be
printed on the device assigned logical unit number 5 (the
5471 printer/keyboard)} and punched on the device
assigned fogical unit number 9 (the 1442 card read punch).
The only difference between the two FORMAT statements
is that statement 10 specifies in its first position the
carriage control character needed for printing operations.

DEBUG Facility Considerations

When specifying SUBCHK or INIT to display array values,
keep the following in mind:

® The INIT option displays both the array subscript and
the array element value.

® The SUBCHK option displays only an invalid array
subscript.

® The element number displayed is shown displaced from
location 0 in the array. In other words, the first element
would show beginning at location 0.

® The subscript number displayed is shown displaced from
location 0 in bytes, not in words. For an array typed as
length 4, the first subscript would show beginning at
location 0, the second at location 4, the third at location
8, etc. Arrays typed as length 2 would be displaced by
multiples of 2; elements typed as length 8, by muitiples
of 8.

For an example, refer to Figure 23. Part 1 of Figure 23
shows the compiler output for a program that tests certain
elements of the array {-1, 0, 1, 10, and 11) using debug
options SUBCHK and INIT. Part 2 of Figure 23 shows the
debug output after program execution. lgnore for the
moment the first four items displaying unusual subscript
values in parentheses. The fifth through eighth items show
the subscript as a displacement from 0. 1A is an INTEGER+*4
array (by default); thus, the tenth element is shown
beginning at location 36 (1A{00036)=10); the eleventh
element is shown beginning at location 40 (1A{00040)=11);
because this element is beyond the range of the ten element
array |A, it is flagged by SUBCHK.

Refer to the first four items, The unusual subscripts are
dispiayed of an attempt to display subscripts occurring
before the beginning of the array (-1 and 0). To identify
the subscript that was meant to be displayed, use the
following formula:

V/L+1+N=subscript value
where
V is the value shown enclosed in parentheses.

L is the length of the item being tested. L can have the
value 2, 4, or 8.

N is the number 82768 if L is 2, 16384 if L is 4, or 8192
if Lis8.

Using this formula to identify the first value, SUBCHK
1A(65528):

V=65528

L=4 (default length of array IA)
N=16384
65528+4=16382+1=16383-16384=-1

Note: Because SUBCHK and INIT display only the fast
two bytes, a subscript value displayed may be part of a
larger number; in this case, the subscript can be identified
by adding, rather than subtracting, N.

FORTRAN Implementation Considerations 141

FORTRAN {V VERnn/MODnn nn/nn/nn PAGE 001

/7 PRINT DEVICE-5203

1 DIMENSION A(10),1A(10),8(10)
2 I=-1

3 1At =1

4 I=0

5 IAt1)=1

6 =1

7 A=

8 I=10

3 TA(L)=]

10 I[=11

11 TAll)=1

12 ST0P

13 DEBUG SUBCHK,INIT(IA)
14 END

009 TOTAL ERRORS FOR THIS CUMPILATION

Figure 23 (Part 1 of 2). Debug Display

/7 LOAD HHEMAIN,R?2

/7 RUN
~DEBUG~SUBLHK [A(655281)
=DEBUG-INIT [A{65528) = -1
~JEBUG—-SUBCHK 1A(65532)
—DEBUG-INIT TA(65532) = Q
-JEBUG-INIT [A{03030)= 1
~DEBUG-INIT [A{00U36)= 10
~DE3UG~SUBCHK 1A{30040])
=0EBUS-INIT 1A{0004))= i1

Figure 23 (Part 2 of 2). Debug Display

Assigning Names to User-Supplied Subprograms

Care should be used in naming user-supplied subprograms.
When a subprogram is compiled, it is stored in the program
pack library, which also contains the FORTRAN library.
User-supplied subprograms having the same name as
FORTRAN-supplied subprograms cause the FORTRAN
subprograms to be overlaid.

(f FORTRAN subprograms are overlaid, you can restore the
library by reperforming program product generation, as
described in the applicable system generation reference
manual. Refer to Related Publications for the order
number,

142

Wherever possible, assign unique names, that is, names that
do not duplicate FORTRAN subprogram names. Figure 24
lists the names of FORTRAN-supplied functions and
commercial subroutines. Before assigning names to sub-
programs, consult this list for possible duplicate names.

If it is necessary to give a subprogram the same name as a
FORTRAN-supplied subprogram, include the OBJECT
compiler option to store the subprogram object mo-yie
into a different library.

The following is an example:
At compilation time:

// LOAD $FORT,F1

// FILE NAME-$WORK, etc.

// FILE NAME-$SOURCE, etc.
// RUN

*PROCESS OBJECT(T,LIB(R2))
subprogram SQRT

/*

The compiler is called from F1. Ordinarily, object modules
would be stored in the library on F1; however, the
OBJECT compiler option on the *PROCESS statement
directs the user-supplied subprogram SQRT to the library
on R2.

At load module execution time, retrieve the module from
the library by using the UPACK parameter on a linkage
editor OPTIONS control statement.

At execution time:

// LOAD $OLINK,F1

// FILE NAME-$SOURCE, etc.

// FILE NAME-$WORK, etc.

// RUN

// INCLUDE NAME-MAIN,UNIT-F1
// OPTIONS UPACK-R2

// END

//' LOAD MAIN,F1

// RUN

Assume that the main program (MAIN) has just been
compiled, with the NOLINK and OBJECT{T,LIB[F1])
options. The linkage editor is called from F1. The
INCLUDE statement specifies the module to be link edited
(MAIN) is located on F1. The OPTIONS statement specifies
that the user-supplied subprogram (SQRT) is located on R2.

For Model 12 and 15, the location of the user supplied
subprogram (SQRT) may be specified by using the UPACK
option on the *PROCESS statement when compiling the
main program (MAIN),

Example:

/{ LOAD $FORT,F1

/!l FILE NAME-$WORK etc.

// FILE NAME-$SOURCE etc.

// RUN

*PROCESS UPACK-R2
PROGRAM MAIN

/*

The compiler is called from F1. Ordinarily, the object
modules of subprograms needed by the main program
(MAIN) would be stored in the library on F1; however,
the UPACK option on the *PROCESS statement directs
the linkage editor to search the library on R2 first,
looking for the subprogram SQRT.

FORTRAN implementation Considerations

143

A1IDEC DUMP LCOMP READ STACK
ADD DUNPK READ42 STAK42
ALOG DVCHK MOD R2501 STAK®&0
ALOG10 MOVE R2560 SuB
CFTOD EDIT MPY S$1403
Cos EXIT SETINQ 53284
EXP NCOMP SETO

DATSW NSIGN SET1 TANH
DCOS FCTST NZONE SHIFT TYPER
CECA1 FILL SHIFTR
DEXP OVERFL SIN UNPAC
DIV GET SKIP
DLOG PACK SLITE WHOLE
DLOG10 IBTST PDUMP SLITET
DMOD ICOMP PRINT SPACE
DPACK INQCHK PUNCH SP1403
DSIN 1I20R4 PUT SP3284
DSQRT P1403 SQRT
DTANH KEYBD P1442

P2560

P3284

Figure 24. Nomes of IBM System/3 FORTRAN-Supplied Functions and Commercial Subroutires

144

Chapter 20. System Considerations

OPTIMUM ASSIGNMENT OF $WORK AND $SOURCE
WORK FILES

Proper assignment of the work files, SWORK and $SOURCE,
can improve the performance of the compiler and linkage
editor. For the Model 6 and Model 10, work files must be
on the 5444, For the Model 12, work files must be in the
5444 simulation areas. Model 15 allows work files on

either the 5444, 5445, or 3340.

The waork files should be located in such a way that they
minimize the number and distance of disk seeks in a
particular configuration. The LOCATION parameter on
the // FILE statement is used to fix the location of the
work files.

Assignment of Work Files on One Disk

If only one disk is available, the work files should be located
close to each other:

// FILE NAME-$WOR K,UNIT-F1,LOCATION-180, TRACKS-20,PACK -xxxxxx,RETAIN-S
// FILE NAME—$SOURCE,UNIT—F1,LOCATION—200,TRACKS—20,PACK-xxxxxx,RETAIN—S

Assignment of Work Files on Two Disks

When two disks are available, the work files should be
located on separate disks at the same LOCATION:

// FILE NAME—$WORK,UNIT—F1,LOCATION—190,TRACKS—20,PACK-xxxxxx,RETAIN—S
// FILE NAME—$SOURCE,UNIT—R1,LOCATION—190,TRACKS—QO,PACK—xxxxxx,RETAIN—S

Model 15 Assignment of Work Files on 5445 or 3340
Disk Storage

On the Model! 15 oniy, work files can be assigned to the
5445 or 3340 disk storage:

// FILE NAME-$WOR K,UNIT-D1,TRACKS-20,PACK -xxxxxx,RETAIN-S,LOCATION-~100/1
// FILE NAME—$SOURCE,UNIT—D1,TRACKS—QO,PACK—xxxxxx,RETAIN—S,LOCAT!ON-100/2

System Considerations 145

LINKAGE BETWEEN MODULES PRODUCED BY
SYSTEM/3 LANGUAGE TRANSLATORS

This section describes standard linkage conventions for use
between modules produced by the System/3 language trans-
lators: COBOL, FORTRAN, and Assembler. Programmers
using standard linkage conventions are able to code routines
in the language most appropriate to the function being
performed. Figure 25 illustrates the standard described on
the following pages.

* SAMPLE SYSTEM/3 LINKAGE
*
* ASSEMBLER MODULE (MODA)} CALLS FORTRAN MODULE (MODB)
*
EXTRN MODB
MOD A START X'0000!
B MODB CALL FORTRAN MODULE MODB
DC AL2(PLIST) PARAMETER LIST
* CONTROL RETURNS HERE AFTER MODULE MODB HAS BEEN EXECUTED
* PARAMETER LIST
PLIST £EQU *
DC AL2{SAVA) ADDRESS OF SAVE AREA
DC AL2{(PARML) ADDRESS OF FIRST PARAMETER
DC AL2(PARM2) ADDRESS OF SECOND PARAMETER
DC XL1'00! END OF PARAMETER LIST INDICATOR
*
* PARAMETERS
PARML EQU *
bC CL5'FIRST!
PARMZ EQU *
DC CL6'SECOND!
. .
* SAVE AREA
SAVA DC XLL'BO' INDICATOR BYTE -— CALLING PROGRAM IS ASSEMBLER
DC CL6'"MODA! CALLING PROGRAM'S NAME
END MCDA

Figure 25 (Part 1 of 2). Standard Linkage

146

XR1 EQU
XR2 EQU
ARR EQU
IAR EQU

ENTRY
MODD START

ST

LA

USING

ST

ST

L

L

ALC

FORTRAN MODULE

SAMPLE SYSTEM/3 LINKAGE

B oNE

6

MODD

X'0000"

SAVARL, XR1

SAVA,XR1L

SAVA, XR1L
SAVAR21{,XR1) yXR2
SAVART({4yXR1),ARR
SAVART(,XR1) yXR2
L({4XR2)yXR2
SAVART(4 XR1) yTWO(4 XR1)

* BODY OF ROUTINE

* RETURN TO CALLING PROGRAM

L
L
L
*
* SAVE AREA
SAVA DC
DC
SAVARL DC
SAVAR?Z DC
SAVART DC
*
TWO DC
END

SAVAR2(,XR1) yXR2
SAVARL(,XR1l) 4 XR1

(MODC) CALLS ASSEMBLER MODULE (MODD)

SAVE CONTENTS OF XR1
XR1L IS BASE FOR SAVE

SAVE CONTENTS OF XR2
SAVE CONTENTS OF ARR

XR2 POINTS TOD ADDRESS OF PARM LIST

AREA

XR2 POINTS TO PARAMETER LIST
SET RETURN POINT 2 PAST ARR

RESTORE XR2
RESTORE XR1

SAVART,IAR RETURN

XLL'30! INDICATOR BYTE -- CALLED PROGRAM IS ASSEMBLER
CL6'MODD! CALLED PROGRAM'S NAME

XLz2'00" CONTENTS OF XR1L ON ENTRY TO THIS ROUTINE
XxL2'oo0! CONTENTS OF XR2 ON ENTRY TO THIS ROUTINE
AL2(00) RETURN POINT

ILz2'2?

Figure 25 (Part 2 of 2). Standard Linkage

System Considerations

147

Standards

In order to be standard, linkage must be accomplished as
follows:

1.

148

Each module must have a save area defined as
follows:

For a subprogram:

Dye 0 Bit 0 0 Not a main program
Bits 1-3 000 FORTRAN
001 COBOL

011 Assembler
Bits 4-7 0000 Reserved

Bytes 1-6 EBCDIC name, left justified

Bytes 7-8 Value of index register 1
(XR1) at entry

Bytes 9-10 Value of index register 2
(XR2) at entry

Bytes 11-12 Return point in calling
program

For a main program:

Byte O Bit 0 1 Main program
Bits 1-3 000 FORTRAN
001 COBOL

011 Assembler
Bits 4-7 0000 Reserved

Bytes 1-6 EBCDIC name, left-justified

Note: Main program refers to the program with the
highest level of control.

Each module that calls another module must have
one or more parameter lists defined as follows:

Bytes 0-1 Address of save area in this
program

Bytes 2-3 Address of first parameter

Bytes (2n)-(2n+1) Address of nth parameter

Byte (2n+2) XL1°00’ to indicate end of

parameter list

Notes:

1. The first two bytes, as well as the end-of-parameter-
list indicator (XL1°00’}) must be present in all pa-
rameter lists. If no parameters are to be passed, the
the parameter list is only 3 bytes long. In this
case, byte 3 will be 0 and the called program indi-
cates a parameter list length of 2.

2. Addresses in parameter lists refer to the first hvte
(byte with the lowest address of the item.

3. When control reaches a program entry point, the
address recall register {ARR) must point to a 2-byte
field containing the first byte of the parameter list.

The assembler language code to call a FORTRAN
subprogram would normally be as follows:

EXTRN SUBR

B SUBR

DC AL2 (PARAMS)
RETNPT EQU *

Note that the pointer to the parameter list points to
the left byte of the save area address.

4, Normal return is accomplished by placing in the hard-
ware instruction address register {IAR) a value that
is two larger than the contents of the ARR when the
program was entered.

5. Index registers 1 and 2 (XR1 and XR2) must be
saved upon entry in the called program’s save area,
and restored at exit.

6. The address recall register need not be restored, but
the return address must be determined and placed
in the called program’s save area.

CONSOLE DISPLAY PANEL DIAL SETTINGS

To aid him in debugging a compilation error, the IBM
customer engineer can set the dial setting of the console
display panel to the combination CEFE. For more efficient
processing, be sure that this combination of characters is
not present on the dial settings before beginning a
compilation.

MODELS 10 AND 12 DUAL PROGRAMMING
CONSIDERATIONS

FORTRAN programs can run in the dual programming
environment (which allows two independent programs

to be run concurrently) provided that the two programs
do not share the same devices. For example, if the MFCU1
is used by the FORTRAN compiler, it cannot be used by
the other program.

MODEL 15 CONSIDERATIONS

Model 15 Spooled Environment and Multiprogramming

FORTRAN programs can be run in a Model 15 spooled
environment or in the multiprogramming partitions. See
|BM System/3 Model 15 System Control Programming
Reference Manual, GC21-56077.

Modei 15 CRT/Keyboard Support

The System/3 Model 15 CRT/keyboard is comprised of:

® An IBM 3277 Display Station Model 1—a cathode ray
tube (CRT) screen.

® Feature 4632 -a 78-key operator console keyboard.

Seven of the twelve 40-character lines are supported by
FORTRAN for input and output operations. Because the
last position is reserved for system use, a maximum of 279
positions are available to FORTRAN.,

line

1
2
Program Input/Output 3
4 Used By

5 FORTRAN
6
S ny S
8
Messages/Responses 9
10
11
T T T T T T staws 12

Two kinds of CRT/keyboard support are available:
® Full screen support
® Split screen support

Full screen support is obtained by specifying 3277 on the
FORTRAN READ and/or PRINT device option statements.
Split screen support is obtained by specifying 3277S.

Logical unit numbers 5 and 6 are used for both split screen
and full screen support. Split screen and full screen support
cannot both be specified in the same program.

Full Screen Support

A WRITE statement first blanks all seven lines and then
displays up to 279 characters. A READ statement allows
the operator to key data into the 279-position area. Be-
cause the screen is not blanked by FORTRAN before a
READ, a WRITE followed by a READ allows the operator
to update the displayed record.

line

279-position area used for
either input or output

NGO R WN -

Split Screen Support

Thefirst 125 positions are used for output, followed by
15 unused (blank) positions. The next 125 positions are
used for input, followed by 14 unused (blank) positions.

line

Output

Unused

~N oo h W -

The WRITE statement blanks the 125-position output area
and then displays the 125 characters. A READ statement
blanks the 125-position input area and then accesses data
from this portion of the screen after data has been keyed
and displayed on the screen.

System Considerations 149

Page of SC28-6874-3

Issued 25 November 1977

By TNL: SN21-5668

Model 15 Double Buffering for Card Devices

Model 15 FORTRAN allows the user to double buffer the
card |/0 on the MFCU, MFCM, 1442, and 2501, The de-

fault of two buffers is allocated un/ess either of the follow-
ing conditions exist:

1. The user specifies one buffer by adding an asterisk
(*) to the device code (for example, MFCU1+).

2. Multiple operations are assigned to the same device
{for example, READ, 1442; PUNCH, 1442).

The following table shows the number of buffers allocated
to MFCU2 or MFCM2 for allowable combinations of opera-
tions. The asterisk after the read, punch, or print specifica-
tion indicates a single buffer is requested.

Specification

Read*
Read

Read
Read

Read*
Read =
Read

Read
Read
Read
Read »
Read
Read*
Read »

Punch«
Punch
Punch
Punch
Punch
Punch=
Punch
Punch*
Punch*
Punch
Punch+
Punch
Punch#
Punch
Punch#
Punch+*
Punch
Punch«

Print
Print

Print
Printx
Print»
Print
Print
Print»
Print
Print=
Print»
Printx

Considerations/Restrictions

Number of
Buffers Allocated

e T N N T T W G Gy U ORI NG TSN N RN

There might be a degradation in speed when the MFCU1
and the MFCU2 print are double buffered.

150

Model 15 (5704-F02) 3741 Support

When using the 3741 with Model 15 FORTRAN
{6704-FO2), the following considerations apply:

® The record length must be from 1 to 128 bytes.

® Each sector on the diskette contains only one logical
record.

® All records in a file must have the same record length
(fixed length records).

® Records are read from or written to the 3741 one at a
time {unblocked).

® Double buffering is the default, single buffering may be
specified.

® Records are read from or written to the 3741 sequentially.

® Reading and writing cannot be done in the same program
using FORTRAN READ and WRITE statements. By
using the FORTRAN Commercial Subroutines R3741
and P3741, reading and writing in the same program can
be done.

® An end-of-file condition occurs for an input file when:
— A /¥ statement is read.
-- A /& statement is read.
- A /. statement is read.
— EOD (end of data) is reached.

For a discussion on modes of operation see /BM System/3
3741 Reference Manual, GC21-5113.

DIFFERENCES BETWEEN 1130 AND SYSTEM/3

This section briefly summarizes some of the differences
between the 1130 and System/3 which might affect FOR-
TRAN processing.

Unit Numbers

A comparison of assignment of unit numbers to input/out-

put devices is:

Unit
Number

1130 Assignment

Console print

1442 read/punch

1132 print

1403 print

Keyboard input

1442 punch

System/3
Models 10 and
12 Assignment

MFCU1 read
only

MFCU?2 read/

print/punch

5203 or 1403
print

5471 input

5471 output

1442 read/
punch

System/3
Model 6
Assignment

5406 input

5496 input
or output

5213 or 2222
print

System/3
Model 15
Assignment

MFCU1 or
MFCM1 read only

MFCUZ2 or
MFCM2 read/print/
punch

1403 print

3284 print
Keyboard input

CRT output

2501 read only

1442 read/punch

Note: in System/3, unit numbers can be assigned to only one device; for exampile, if

number 5 is specified for the 5471 in a program, it cannot also be assigned to a direct-access

device in that program. If 5471 input is not specified, unit number 5 can be assigned to a
direct-access device.

System Considerations

151

Device Options

In System/3, input/output devices are specified by device
option statements, which correspond to the 1130 *10CS
statement. For example:

1130 Usage

*I0CS (1132 PRINTER,
TYPEWRITER,
1403 PRINTER)

*10CS (CARD, 2501
READ,KEYBOARD)

*lOCS (1442 PUNCH,CARD)

*|0OCS (DISK)

Specifying the BCD Option

System/3 Usage

// PRINT DEVICE-"1403,5471"

// READ DEVICE-'MFCU1,MFCU2,1442,5471"

/! PUNCH DEVICE-‘MFCU2,1442’
// DAD44 UNITNO-'n1,n2,..."

// DADA5 UNITNO-‘n1,n2,..."

Any 1130 FORTRAN card decks that were punched using
the BCD card punch (the 026 keypunch) can be read by
the System/3 compiler by specifying the BCD option on
the *PROCESS compiler uption statement. {*PROCESS
is described in Chapter 13, Compilation.)

Read/Punch on the Same Card

In 1130 FORTRAN the same card can be read and punched
using the 1442 card read punch. System/3 FORTRAN does
not permit input/output operations to be performed on the
same card except for certain commercial subroutines. The
MFCU2 and 1442 can be used as either, but not both, an
input or output device in the same program.

152

Call Link

In Systern/3, main programs can call each other using the
INVOKE statement, which corresponds to the 1130 CALL
LINK statement. The PROGRAM statement must be
specified as the first statement of each main program to be
invoked. Further, all common blocks sharing data between
main programs must be changed to GLOBAL statements.
For example:
1130 Usage System/3 Usage

PROGRAM MAIN

COMMON A,B(10),J
. GLOBAL A,B(10),J

INVOKE MAIN2
PROGRAM MAIN2
GLOBAL C,D(10),J

CALL LINK {MAIN2)

If any of the programs being invoked require more storage
than the invoking program, a CORE compiler option state-
ment should be specified explicitly stating the largest
amount of storage required. (Additional information on
using the CORE compiler option statement with PROGRAM
and INVOKE statements can be found in Chapter 19,
FORTRAN Implementation Considerations.)

Associated Variables in Subroutines

In System/3, if an associated variable is passed as an argu-
ment to a subroutine, it is not automatically updated when
input/output operations are performed in the subroutine.
To ensure that the variable is updated, pass it through
COMMON. For example:

1130 Usage System/3 Usage
COMMON 1J

DEFINE FILE 8(r,s,f,1J) DEFINE FILE 8{r;s,f,1J}

1J=25 1J=25

CALL WRTRI{1J) CALL WRTR

END END

SUBROUTINE WRTR

SUBROUTINE WRTR(IVAR)
: COMMON VAR

WRITE (8'IVAR} WRITE (8'IVAR)

Library Routines

In System/3, if calls are made to the math library (for
example, SIN, SQRT), the GENERIC statements should
be included to ensure that the proper library modute is
loaded for the argument type.

For library routines using integer arguments {for example,

MIN, MAX, FLOAT), integer arguments must be typed as
INTEGER +4.

System Considerations 153

Passing Arrays

In the 1130, arrays not used in a subroutine need not be
dimensioned. In System/3, arrays must be dimensioned
in all subroutines in which they are passed, even though
they are not used in a particular subroutine. For example:

1130 Usage System/3 Usage

DIMENSION {20} DIMENS!ON {(20)

CALL suB1 (1) CALL suB1 (1)

SUBROUTINE SUB1(J)

SUBROUTINE SUB1(J)
. DIMENSION J(20)

CALL SuUB2(J)

{J not used in SUBT)
SUBROUTINE SUB2(K)
DIMENSION K(20)

CALL SUB2(J)

{J not used in SUB1)
SUBROUTINE SUB2(K}
DIMENSION K(20)

When arrays are passed as arguments to subroutines,
System/3 passes the address of the array in the calling
programs data area.

Length Specification of Variables

In System/3, INTEGER+*2 and REAL *8 variables can be
specified using the IMPLICIT statement, which corresponds
to the 1130 *ONE WORD INTEGERS and *EXTENDED
PRECISION statements. For example:

1130 Usage System/3 Usage

«ONE WORD INTEGERS
*EXTENDED PRECISION

System/3 FORTRAN requires some variables to be
INTEGER *4, such as: variables and arguments to INTEGER
intrinsic functions, arguments to commercial subroutines,
and logical unit numbers.

164

IMPLICIT INTEGER *2 (I-N)
IMPLICIT REAL*8{A-H,0-$)

Use of COMMON, EQUIVALENCE, and DEFINE FILE

in System/3, the relative size of double precision variables
to single precision variables (REAL+8 to REAL*4) is 2:1.
In 1130 the relative size of EXTENDED PRECISION
variables to single precision variables is 3:2. Thus, it may
be necessary to change COMMON and EQUIVALENCE
statements and to increase the size of records in DEFINE
FILE statements.

Rounding

1130 FORTRAN does not round when converting data
items on input; System/3 FORTRAN does. Thus, if any
FORTRAN rounding code is present in 1130 FORTRAN
programs, remove it before converting to System/3.

Passing Scalar Arguments to Subroutines

When scalar arguments are passed to a subroutine, System/3
copies the arguments into the subroutine’s data area, uses
them in the subroutine, then copies the values back to the
calling program when the subroutine returns control. With
the 1130, the values in the calling program are used direct-
ly; they are neither copied to the subroutine nor copied
back to the calling program.

Consider the following code:

J=1 SUBROUTINE SUM(L M ,N)
CALL SUM{J,J,5) L=M+N

RETURN

END

Before control is returned to the calling program, L has the
value 6, M the value 1, and N the value 5. However, under
System/3, when control returns, the value of Jis still 1
because the variable M (value 1) is copied back to J after
the variable L.

To avoid this problem, before converting an 1130 program,
recode the parameter list in a CALL statement so that any
value being tested is not specified more than once, for
example, CALL SUM(K,J,5).

Forms Control

The 1130 has a carriage control tape to sense channel 12 or
the overflow line and channel 1, which is the beginning of
a page. This provides for a limited amount of page format-
ting. Because System/3 has no carriage control tape, all
forms control must be incorporated into the program by
the programmer.

The 1130 also can print a program name on each page of a
program listing by the use of an = card. This is an invalid
card for System/3.

Commercial Subroutines

The System/3 FORTRAN Commerciat Subroutines Pack-
age includes three 1442 card read punch routines. P1442
is used for card punching, READ42 for card reading, and
STAKA42 for selecting alternate stackers. The correspond-
ing 1130 routines were PUNCH or P1442, READ, and
STACK. The System/3 commercial subroutines support
allows the 1442 to be used as a combined file.

Decimal Data Format

In System/3, D1 format corresponds to the standard
System /360 zoned decimal format: one digit per eight-bit
byte, or two digits per INTEGER*2 array element. The
digit is carried in the low-order four bits of the byte, with
the high-order four bits set to 1's (X'F’). However, the
high-order four biis of the fow-order byte are used to carry
the sign of the number: X’C’ (binary 1100) or X'F’
(binary 1111) for positive; X'D’ {binary 1101) for negative.

In 1130, D1 format consists of one digit per word, right
justified. The dec:mal field is stored in an array, one digit
per element. The sign of the digit is carried with the right-
most digit. If the number is negative, a negative one {-1)
is added to the rightmost digit. This must be done because
the 1130 cannot represent a negative zero.

A1 Data Format

The A1 format is the same in System/3 and 1130, except
for the sign of a numeric field. In System/3, the sty of a
numeric field in A1 format is assumed to be carned as the
zoned portion of the rightmost character: X'C' {binary
1100) or X'F' {binary 1111) for positive; XD {bhwnary
1101) or X’60° {minus) over the units position tor negative,
A negative zero is represented by a X'D0O" or X'60" (minus).

In 1130, the sign of a numeric field i AT tormat s a
multiple punch over the nightmost character:

11 punch for negative and 12 punch oy posttive.
A negative zero is represented by a X'607 {nnnush.

Negative Zero

In Systemn/3, a negative zero s represenited by oo XL
in 1130, a negative zero ts represenied by an 276847 Com-
mercial subroutines require a minus) over the snats Bos
tion for a negative value. If the unils position is a zer,
the 1130 cannot recognize the value. {hersrore 1he o
cumvention of punching a minus {X'60") i1i the aie s post
tion instead of the zero was implemented tor 1138

Number of Record Fields in the DEFINFE +1LE Statement
System/3 does not use this number as a check o agesams
records outside the range of the DEFINE v E wisen
The range or size of the file is set by the ol starerment
TRACKS and RECORDS parameters.,

R T IS S TR AL LA N

156

This section contains:
® FORTRAN statement reference

® System/3 FORTRAN intrinsic and external library
functions

® FORTRAN service subprograms

Part 4. Reference

Refereoce

158

This section hists the FORTRAN statements in alphabetical
order and summarizes cach of them using the tollowing
format:

® Statement name

® General form of the statement

® LExamples of statement use

Arithmetic Assignment Statement
General Form: a b
where

a i1s a variable or array element

b is a variable, array element, or arithmetic expression

Examples:
A=B A=A+B
A=B(1} A=SIN(A=*x{)
A=B(l) A(1)=FUNC(B,C,D)
A=l 1=A
A=6 1=1+6
A=6.4

Chapter 21. FORTRAN Statement Reference

Arithmetic IF Statement
General Form: F (a)ng o, n,
where

a1s an artthmetic expression

nyLng, and ngare staternent ninbers of executabide
statements in the program unit containing the 11
statement.

Examples:

IF (A-B)10,4,30

40 D Cre2
4 D BtC
30 C-De+2

10 E=(F+B)/D+1

The IF statement compares the value of the difterenze
between A and B. If the value is negative, a hranch is rarde
to statement number 10; if zero, a branch is macie to
statement number 4; and if positive, a branch is rmads: 10
statement number 30.

FORTRAN Statement Referencs et

AT Statement

General Form: AT n

where

n is an executable statement number in the program or

subprogram to be debugged.

Examples:

200 X=Y+zZ

DEBUG TRACE
AT 200
TRACE ON

END
BACKSPACE Statement
General Form: BACKSPACE i
where
i is an unsigned integer constant or INTEGER *4
variable that 1s the logical unit number of a sequential
file located on a magnetic tape or disk unit.

Examples:

BACKSPACE 10
BACKSPACE L

160

CALL Statement

General Form: CALL namel(a,,a,.a;3, . .. ,an)

where
name is the name of a SUBROUTINE subprogram.
a is an actual argument that is being suppliec Lo the
SUBROUTINE subprogram. It can be a variable, array
name, array element, arithmetic expression, or subpro-
gram name.

Examples:
CALL OUT
CALL MATMPY(X,5,40,Y,7,Z)
CALL SUB1(X+Y+*5 ABDF,SINE)
CALL SUB(P,Q,R,1}

COMMON Statement

General Form: COMMON a, (k,),a; (ks), . . . ,an(ky)

where

a is a variable or array name that is not a dummy
argument.

k is optional and is composed of from one to three
unsigned integer constants, separated by commas,
representing the maximum value of each subscript in
the array.

Examples:

Calling Program Subprogram

COMMON A, B,C,R{100} SUBROUTINE MAPMY

REAL AB,C
INTEGER R COMMON X,Y,Z,5(100)
: REAL X,Y,Z
INTEGER S
CALL MAPMY

Compyited GO TO Statement
General Form: GO TO (n;,n,, ... ,ny), i

where

n is the number of an executable statement in the
program unit containing the GO TO statement.

i is an integer variable whose value is in the range 1<Ni<in.

Examples:

GO TO (25,10,7,10),ITEM
3 C=7.02

7 C=E=**2+A
25 L=C

10 B=21.3E02
A branch is made to a statement number based on the value
of the integer variable, ITEM. if ITEM has a value of 1, the
branch is to the first statement enclosed in parentheses in
the GO TO statement (statement number 25); if ITEM has a

value of 2, the branch is to the second statement
{statement number 10), etc.

CONTINUE Statement

General Form: CONTINUE
Examples:

DO 30 1=1,20

GO 107
30 CONTINUE

DATA Statement
General Form: DATA K, /iy*dy/ ky/fia*xdy/, . .. Kn/ip*dn/

where

k is a list containing variables, array elements (in which
case the subscript quantities must be unsigned integer
constants), or array names.

d is a list of constants, (integer, real, hexadecimal or
literai).

i* is optional and is an unsigned integer ccnstant
appearing before d, indicating that d is to be specified
i times.

Examples:

DIMENSION D{5,10)
DATA A,B,C/5.0,6.1,7.3/,D,E/25%1.0,256%2.0,6.1/

DIMENSION A(5),B(3,3)

DATA A/5+1.0/,B/9+2.0/,C/'FOUR’/
DEBUG Statement
General Form: DEBUG option, . .. ,option

where

option may be one of the followiny, specified in any
order:

SUBCHK(n; n,, ... Ny

where n is an array name and is optional.
TRACE
|N|T(m1 My, L. ,mn)

where m is the name of a variable or an array and is
optional.

SUBTRACE

Examples:

PROGRAM FIRST

DEBUG SUBCHK(SUB), TRACE,INIT(SUM WU LT,
SUBTRACE
FORTRAN Sratement Reference Tt

DEFINE FILE Statement

Direct-Access READ/WRITE Statement

General Form: DEFINE FILE uy (ry,s;.f5,vi)up(ry.s0,f2,v2),| See READ Statement (Direct-Access).

-+ up ry sp fa Vi)

where

u is an unsigned integer constant that is the logical unit
number.

r is an unsigned integer constant that specifies the
number of records in the file associated with u.

s is an unsigned integer constant that specifies the
maximum size (in characters, bytes, or words) of each
record associated with u.

f specifies whether data is to be read or written with or
without format control. The f code may be one of the
characters L, to indicate that a file may be processed
(read or written) either with or without format control
(s is interpreted to specify bytes); E, to indicate thata
file is processed with format control (s specifies bytes);
or U, to indicate that a file is processed without format
control (s is interpreted to specify words).

v is an integer variable called the associated variable.

Examples:

DEFINE FILE 8(50,100,L,12),9(100,50,L,J3)

DO Statement
General Form: DO ni=m; m; mjy
where

n is the statement number of an executable statement
appearing after the DO statement and in the same
program unit.

i is a non-subscripted integer variable called the DO
variable.

m,,m,, and ms are either unsigned integer constants
greater than O or non-subscripted integer variables. The
value of m; should not exceed that of m,. The value
of m, cannot exceed 231_2 m, is optional and, if
omitted, is assumed to be 1. If mj is smitted, the
preceding comma must also be omitted.

The statements that physically follow the DO statement up

to and including the stateméent numbered n are called the
range of the DO. The value of m is called the initial value.
The value of m, is called the test value. The value of mj is
called the increment.

Example 1:

DIMENSION Statement
General Form: DIMENSION a, (k;),a2{k,), ... ,anlkp)
where
a is an array name.
k is composed of from one to three unsigned integer
constants, separated by commas, representing the
maximum value of each subscript in the array.

Examples:

DIMENSION A(10),ARRAY(5,5,5),LIST(10,100)
DIMENSION B(25,25), TABLE{5,10,15)

162

K=0
L=10
DO 5 JOB=1,L,2
K=K+1
5 M{JOB)}=N(JOB)-K+JOB

Example 2:

16 DO 25 J=1,1000
25 INV{J)=INV{J)-I0UT{J))
35

END Statement

General Form: END

Examples:

PROGRAM FIRST SUBROUTINE SECOND

CALL SECOND RETURN
. END

STOP

END

END FiLE Statement

General Form: END FILE

where

i is an unsigned integer constant or INTEGER *4 variable
that is the logical unit number of a sequential file on a

magnetic tape or disk unit.
Examples:
END FILE 10

END FILE L

EQUIVALENCE Statement

General Form: EQUIVALENCE (a;,,a;2.a,3,...),

(a2 1,827,823, ...). .

where
a is a variable vur array element.

Examples:

DIMENSION €(100,100)},A{50,50},B(100)
EQUIVALENCE (C(1),A{1)),(C(2501),B(1))

GLOBAL AB,C
DIMENSION D(3)
EQUIVALENCE (B,D(1))

Explicit Specification Statement

See INTEGER Statement/REAL Statement.

EXTERNAL Statement

General Form: EXTERNAL a, ,a,,a3, .. .4,

where
a is the name of a subprogram that is passed as an
argument to other subprograms.

Examples:
EXTERNAL MULT

CALL SUB(JMULT,C)

FIND Statement

General Form: FIND (u'r)

where
u is an unsigned integer constant or INTEGER x4 variable
that represents a logical unit number of a direct-access
file.
ris an integer expression that represents the refative
position of a record within the file associated with u.

Examples:

DEFINE FILE 8(1000,80,L,IVAR)
10 FIND(8'60)

15 READ(850)AB

for]
[

FORTRAN Statement Reference 1

FORMAT Statement

General Form: xxxxx FORMAT (c,s,cy5, . .. ¢y)

where
XXxxx is a one-to-five digit statement number.
¢ is a format code that describes integer data {code 1),
real data (codes D, E, F), character data (A), literal data
(H, or data enclosed in apostrophes), fields to be skipped
(X), or a position in a FORTRAN record where data

transfer is to begin (T), and the number of characters in
a field.

s is a separator, which may be either a comma or any

number of slashes. Slashes indicate the beginning of a
new record.

Examples:
10 FORMAT (E10.5,D016.10,17,E7.2,D12.7)
2 FORMAT (3F9.2,2D15.10/8E10.5)
30000 FORMAT (THE FOLLOWING IS A LIST OF
PRIMES'/{15))

Function Definition Statement
General Form: namel(ay ,a,,a3, ... ,ap)=expression
where

name is the statement function name.

a is a dummy argument.

expression is any arithmetic or relational expression that

does not contain array elements.

Examples:

FUNC(A,B)=3.xA+B+*2 +X+Y+Z
SUM(A,B,C,D)=A+B+C+D

164

FUNCTION Statement
General Form: type FUNCTION name=xs(a; a;,83, ... ag)
where
type is optional and can be INTEGER or REAL
name is the name of the FUNCTION
s is optional when type is specified and represents one of
the length specifications for its associated type {2 or 4

for INTEGER, 4 or 8 for REAL).

a is a dummy argument.

Examples:

FUNCTION CALC(A,B,J)

INTEGER FUNCTION CALC*2(l,J,K)
GENERIC Statement

General Form: GENERIC

Examples:
GENERIC
REAL*8 AB,C,D

C=COS(A)
D=DCOS(B)

GLOBAL Statement
General Form: GLOBAL a;{k),a;(ky), ... anlky)
where
a is the name of a variable or an array.
k is optional, and is a subscript composed of one through
three unsigned integer constants, separated by commas,
representing the maximum value of each subscript in
the array.
Examples:
PROGRAM FIRST

GLOBAL A.B,C(5,5),
D(10,100)

PROGRAM SECOND
GLOBAL,X,Y,Z(25),
DATA(10,100}

GO TO Statement
(See also Computed GO TO Statement.)
General Form: GO TO n

where
n is the number of an executable statement in the
program unit containing the GO TQ statement.

Examples:
GOTCs6
12 X=Y-Z
6 A=2.+B

IF Statement

See Arithmetic IF Statement/Relational IF Statement.

IMPLICIT Statement

General Form: IMPLICIT typexs;(a;;,a52,...), ...
type*sylan,an2, . ..)

where
type is either INTEGER or REAL.

s is optional and represents one of the length specifica-
tions for its associated type (2 or 4 for INTEGER, 4 or 8
for REAL).

a is a single alphabetic character or a range of characters
inthe set A,B,...,Z,$in that order. The range is
denoted by the first and last characters of the desired
range separated by a minus sign (for example (A-D))}.

Examples:

IMPLICIT INTEGER*2(A-H),REAL*8(I-K)
IMPLICIT REAL(A-H,0-Z),INTEGER(1-N)

INTEGER Statement

General Form: INTEGER~s a, (ky),a(k;), . .. ,an(ky)

where

*s is optional and represents one of the INTEGER length

specifications, 2 or 4.

ais a variable, array, or function name.

k is optional and gives dimension information for arrays.

Each k is composed of one through three unsigned

integer constants, separated by commas, representing the

maximum value of each subscript in the array.

Examples:
INTEGER*2 ITEM,VALUE
INTEGER=*4 LIST, VAL2
INTEGER B(100)
INVOKE Statement
General Form: INVOKE name
where
name is the name of a main program specified in a
PROGRAM statement.

Examples:

PROGRAM FIRST PROGRAM SECOND

INVOKE SECOND

PAUSE Statement
General Form: PAUSE n

where

n is an optional integer constant that is printed with tha

PAUSE statement for identification.

Examples:
PAUSE
PAUSE 50
PAUSE 00002

FORTRAN Statement Reference

1ol

PROGRAM Statement READ Statement (Sequential)

General Form: PROGRAM name General Form: READ (u,f, END=s,ERR=t) list

where where
name is the name assigned to the main program.
u is an unsigned integer constant or INTEGER *4 variable

that represents the logical unit number of the device to
Examples: be read from.

PROGRAM SECOND

tis optional and can be the statement number of a
FORMAT statement or an asterisk ().

END=s is optional and specities the statement number {s)
in the same program unit to which to transfer control if

. n end of file condition is encountered.
READ Statement (Direct-Access) anen ' l el
General Form: READ(u'r,f, ERR=s) list ERR=tis optional and specifies the statement number (t)
in the same program unit to which to transfer control if
where an error occurs during data transfer. ERR is ignored if

the file is not a disk or tape file.
u is an unsigned integer constant or INTEGER +4 variable

that represents a logical unit number of a direct-access list is an 1/0 list (optional if f is specified). ce
file.
ris an integer expression that represents the relative Examples:

position of a record within the file associated with u.
READ (1,98)A,B,(C(i,K},1=1,10}
f is optional and, if specified, is the statement number of READ (1A B.C -
a FORMAT statement that describes the data being read. READ (I,~ END=200) (ARRAY(1),1=1,25) B(2),C(6))

ERR=s is optional and specifies the statement number
{s) In the same program unit to which to transfer REAL Statement
control if an error occurs during data transfer.)
General Form: REALxs a; (k; },a;(ky), ... a,lky)

list is an /O list.
where

Examples: *s is optional and represents one of the REAL length
specifications, 4 or 8.
DEFINE FILE 8(500,100,L,1D1),9(100,28,L,1D2)
9 READ (8'16,10)(M(K),K=1,10) a is a variable, array, or function name.

k is optional and gives dimension information for arrays.
Each k is composed of one through three unsigned

13READ(9ID2+5)ABCDEF G integer constants, separated by commas, representing
e the maximum value of each subscript in the array.

Examples:
REAL ITEM(5,5),B(100)

REAL*8 MULT
REAL+4 JMULT

166

Relational IF Statement
General Form: |F (a)s
where

ais a relational expression,

s is an executable statement except a DO statement or
another relational IF statement,

A relational expression is formed by combining two arith-
metic expressions with one of the six relational operators:
.GT., .LT., .EQ,, .NE,, .GE., or .LE.; which stand for
greater than, less than, equal to, not equal to, greater than
or equal to, and less than or equal to, respectively. The
periods must precede and follow the relational operators,
as shown.

Examples:

The two following IF statements have the same effect:

IF (A.LT.B}A=B
200 -

.

tF (A-B)100,200,200
100 A=B
200

RETURN Statement

General Form: KRETURN

Examples:

SUBROUTINE COPY (A,B,N)

RETURN
END

FUNCTION CALC (A,B,J)

RETURN
END

REWIND Statement

Generai Form: REWIND i

where
i is an unsigned integer constant or INTEGER~4 variable,
that is the logical unit number of a sequential file on a
magnetic tape or disk unit.

Examples:

REWIND 10
REWIND L

Sequential READ/WRITE Statements
See READ Statement (SequentialJ/WRITE Statement
(Sequential).
STOP Statement
General Form: STOPn
where
n is an optional integer constant that is printed with the
STOP statement for identification.
Examples:
STOP
STOP 25
SUBROUTINE Statement
General Form: SUBROUTINE name(a; ,a;,a3, . . . ap)
where
name is the SUBROUTINE name.
a is a dummy argument that can be a variable name,
array name, or the dummy name of another SUBRQU-
TINE or FUNCTION subprogram.
Examples:

SUBROUTINE COPY(A,B,N)
SUBROUTINE NULL

FORTRAN Statement Reference 167

TRACE OFF Statement WRITE Statement {Direct-Access)
General Form: TRACE OFF General Form. WRITE (u'r,f) fist

where
Examples:
u is an unsigred integer constant or INTEGER =4 variable
200 X=Y+2 that is the logical unit number of a direct-access file

ris an integer expression that represents the refative
y position of a record within the file associated with u.
210 X=Y-2

. f is optional and, if specified, is the statement number of
the FORMAT statement that describes the data being

. written.
DEBUG TRACE
AT 200 list is an 1/O list {optional if f is specified).
TRACE ON

Examples:

AT 210 DEFINE FiLE 8(500,100,L,1D1),9(100,28,L,1D2)
TRACE OFF .
END

8 WRITE {8°16,10)(M(K},K=1,10)
TRACE ON Statement .

General Form: TRACE ON
11 WRITE (9°ID2+5}A,B,C,D,E,F,G

Examples:
WRITE Statement {Sequential)
200 X=Y+2
: General Form: WRITE (u,f) list
where
DEBUG TRACE
AT 200 u is an unsigned integer constant or INTEGER*4 variable
TRACE ON that is the logical unit number of a device to be written
* to.

f is optional and can be the statement number of a
END : FORMAT statement or an asterisk {*) for list-directed
1/0.

list is an /0 list {optional if f is specified).

Examples:
WRITE (3,75} A,(B,(1,3),1=1,10,2),C

WRITE (4) ARRAY
WRITE (3,%) 1,N(I)

168

Chapter 22. System/3 FORTRAN Intrinsic and External Library Functions

Many commonly used mathematical functions or calcula-
tions are provided by the System/3 FORTRAN 1V language.
Mathematical tunctions are called in two ways: explicitly,
when you include the function name in a source language
statement; and implicitly, when a certain notation (such as
converting a real number to an integer number) appears
within a source language statement. Explicitly called
functions are known as external functions, because the
programrmer calls them. Implicitly called functions are
intrinsic, because the compiler generates the calls to them.

To a programmer using the System/3 FORTRAN IV
mathematical functions, it is of no importance whether a
specific tunction is intrinsic o1 external unloss you wish to
detach the function name by specifying external.

System/3 FORTRAN 1V intrinsic functions include
routines for determining maximum, minimum, and absolute
values, converting from real to integer and from integer

to real, and increasing or decreasing the precision of a
number. External functions include sine, cosine, logarithm,
and square root routines.

Figure 27 summarizes the intrinsic functions: Figure 28,
the external functions. Figure 29 lists the accuracy of the
external functions.

The foliowing discussion describes the algorithms used in
the mathematical subroutines.

ALGORITHMS

This section contains information about the method used to
compute each function. The information for explicitly
called subprograms is arranged alphabetically according to
the specific function of each subprogram {that is,
exponentiation, logarithmic, etc).

Information for the implicity called subprograms is
arranged alphabetically according to function, and
alphabetically by entry name within that function.

The presentation of each algorithm is divided into its
major computational steps; the formulas necessary for each
step are supplied. For the sake of brevity, the needed
constants are normally given only symbolically. {The
actual values can be found in the assembly listing of the
subprograms.) Some of the formulas are widely known;
those that are not so widely known are derived from more
common formulas. The process leading from the common
formula to the computational formula is sketched in
enough detail so that the derivation can be reconstructed
by anyone who has an understanding of college mathema-
tics and access to the common texts on numerical analysis.
All approximations were derived by the so-called “minimax”’
methods. The approximation sought by these methods can
be characterized as follows. Given a function f(x/, an
interval /, the form of the approximation {(such as the
rational form with specified degrees), and the type of error
to be minimized (such as the relative error), there is
normally a unique approximation to f{x) whose maximum
error over / is the smallest among all possible approxima-
tions of the given form. Details of the theory and the
various methods of deriving such approximation are
provided in the reference. (D The accuracy figures cited
take round-off errors into account. Minor programming
techniques used to minimize round-off errors are not
described here.

®

Any of modern numerical analysis texts can be used as a reference.
Such texts are A. Ralston’s A First Course in Numerical

Analysis (McGraw-Hill Book Company, Inc., New York, 1965),
and C. T. Fike’s Computer Evaluation of Mathematical Functions
(Prentice-Hall, Inc., Englewood Cliffs, New Jersey).

System/3 FORTRAN Intrinsic and External Library Functions 169

Entry

Arguments

Function Value Returned

General Function | Name Definition No.| Type Range () Tvpe Range(1)
Absolute value IABS y = ixi T INTEGER -4 Any INTEGER INTEGER -4
argument
ABS 1| REAL -4 [Any REAL REAL -4
DABS 11 REAL -8 argument REAL -8
Maximum and mMax @ y = max {x,,..., xpt | 22 1 INTEGER 4] Any INTEGER INTEGER 4
minimum values MA X0 =2V INTEGER +4jargument INTEGER -4
AMAXO 22| INTEGER +4 REAL <4
MAX1 =2 | REAL 4 Any REAL INTEGER +4
AMAX1 =21 REAL +4 argument REAL x4
DMAX1 =221 REAL -8 REAL +8
MIN® y=minix,, xp) | 22| INTEGER *4|Any INTEGER INTEGER 4
MINO =22 1 INTEGER +4|argument INTEGER -4
AMINO =22 1 INTEGER +4 REAL -1
MIN1 =2 | REAL -4 Any REAL INTEGER 4
AMINI =22 | REAL »4 argument REAL +4
DMIN1 =2 | REAL -8 REAL 8
Truncation AINT y = {sign x} +n 1] REAL #4 Any REAL +4
INT where n is the 1| REAL «4 INTEGER +4
IDINT largest integer « |x| 11 REAL +8 INTEGER 4
Modulo arithmetic | MOD y = remainder 21 INTEGER «4|x, 4 C INTEGER -4
AMOD X 21 REAL 4 REAL +4
DMOD x—> - thatis, 2| REAL +8 REAL -8
y = x; {modulo x)
Float FLOAT Convert from 11 INTEGER «4]Any INTEGER REAL -4
DFLOAT | INTEGER 11 INTEGER #4jargument REAL =8
to REAL
Fix TFIX Convert from REAL 11 REAL +4 Any REAL INTEGER +4
to INTEGER argument
Transter of sign ISIGN y = {sigh xa) *x, 21 INTEGER 4! Any INTEGER INTEGER +4
x, 70 argument
SIGN 21 REAL 4 Any REAL REAL ~4
DSIGN 21 REAL +8 argument REAL =8
Positive difference | IDIM y = xp-min{x; x,) 2 | INTEGER x4} Any INTEGER INTEGER »4
argument
Dimw 2| REAL #4 Any REAL REAL #4
argument
Obtain maost SNGL 11 REAL *8 Any REAL REAL «4
significant part of .- argument
REAL argqument
Precision increase | DBLE 1| REAL 4 Any REAL REAL <8
argument

® Y= 163 11.167%) for single precision and 16%3 (116~

14

) for double precision.

(E‘ Alias. This name can be used 1in place of the REAL »4 or INTEGER + 4 function name.

Figure 27. Intrinsic Mathematical Functions

170

Arguments Function Value Returned
General Function | Name Definition No. | Type Range () Type Range (1)
Natural and LOGQ@ 1y - log, x 1 | REAL 4 x>0 REAL 4
commnon logarithm | AL OG or 1 | REAL -4 REAL =4 |- 180.218<y<
DLOG v = in x 1 | REAL «8 REAL -8 174.673
LOG10@ |y = log,, x 1 | REAL *4 x>0 REAL #4 |- 78.268<y<
ALOG10O 1 | REAL «4 REAL +4 75.858
LLOGI0 1 | REAL +8 REAL =8
Exponential EXP y o= et 1 | REAL +4 -180.218<x< REAL »4 |0<y <y
DEXP 1 | REAL #8 174.673 REAL »8
Stprare ront SORT y o x or 1 | REAL »4 x=0 REAL »4 |0< y<y
DSQRT Vo RV 1 | REAL +8 REAL *8
Arctangent ATAN v o arctan x 1 | REAL *4 Any REAL REAL =4 T T
_ SRy S
Argument {in radians)] 2 2
DATAN 1 | REAL =8 REAL +8
(in radians)
Sine end cosine SN Y < sin x 1 | REAL +4 Ix{ <(2'% . 7) REAL +4 |-1<y <1
{in radians)
DSIN 1 | REAL +8 Xl <(2°¢ -) REAL +8
{in radians)
CCS Y - L0S$ X 1 | REAL «4 Ixl <(2'®% . q) REAL 4 1<y<1
(in radians)
DCOS 1 | REAL +8 Ix{ <(2°% - 7) REAL -8
{in radians) ,
Hyperbaolic TANMH RN 1 | REAL «4 Any REAL REAL »4 |-1<y <
tangent DTANH [y - i 1 [REAL *8 | argument REAL »8
et te-

Motes
RS L6003
Uiy e

“(1-16 %) for single precision and 16° {1-16 ') for double precision.
ﬂ\ Alias. This namie may be used in place of the REAL «4 function name.

Figurc 28. External Mathematizal Functions

System/3 FORTRAN Intrinsic and External Library Functions 171

Error
1
Function Name | Sample Type| Argument Range Maximum Root Mean Square | Absolute/Relative
ALOG U 0< x< 05 5.41 x 107 240 x 1077
U 05<x<15 920x 10" 289 x 107 Absolute
§] 15<x%50 5.45 x 1077 227 x10"7
ALOG10 U 0< x<05 554 x 1077 1.22 x 107
U 05<x<15 853x 10" 3.10x 10" Absolui:
U 15< x50 915 x 107:”7 | 320x 10f o
AT A U®D o< x<tn 1.0 108 x 10”7 287 x 107 Absolu
A0S t
tan 1.0 < x << 100 953 x 1077 457 x 107 SO
cos U O~ x <71 1.02x 1077 280x 10" Absolite
.)% e
U 7S x = 100 113x10° 3.02 x 107" >
DATAN u® lo<x<an1.0 223x 10" 697 x 107'% N
o) (&
tan 1.0 < x = 100 213x 10" 7.72 x 107" _5
DCOS U O xn 244 x10" 7.73x 10" Absolute
U 7T x = 100 297 x10"'° 857 x10'° ’
DEXP u Ixl <1 151 x107"° 3.06x 107"’ Relative
U Ixl < 170 1.09 x 107 ° 2.65x 10"
DLOG u 0177 < x<05 1.34x 107" 513x 10"’
U 05<x<15 261 x10"7 9.04x 10" Absolute
U 1.5 % x < 5.0 136x10'° 537 x 10717
DLOG10 U 0177 <x<05 194 %107 6.38 x 107"
§] 05<x<15 1.45 x 10717 511 x 10" Absolute
] 15<x<56 2.01 x 1077 6.37 x 107"
DSIN u 0O x<7 269 x 10" 754 x 10" Absolute
U 7< x< 100 296x10"'° 8.61x10'°)
DSQRT E 16°°< x < 16°3 1.11x 107" 272 x 107 Relative
DTANH U 0<x<055 1.44 x 1077 416x 10"
U 0.55 < x < 21.0 1.22x 10" 4.14x 10" Absolute
U 21.0<x<32.0 1.14x 10" 1.66x 107"
EXP U Ix1< 1 463x 107 1.29 x 1077 Relative
U Ix1< 170 473x 1077 1.16 x 1077 ’
SIN u 0< x<n 1.06 x 1077 3.02 x 107" Absolute
U < x < 100 1.13x 107° 3.04x 10°°
SQORT E 167°° < x < 16%° 477 x 1077 117 x 1077 Relative
TANH U 0< x <055 5.40 x 107 1.72 x 107
U] 0.55 < x < 9.0625 577 x 10°® 1.85 x 107 Absolute
U 9.0625 < x < 16.0 2.68 x 10°® 494 x 10
@ E = exponentially distributed argument sampie
U = uniformly distributed argument sample

(2) Sample arguments are distributed so that arctangents are uniformly distributed between arctan 1 and arctan 100.

Figure 29. Accuracy of External Mathematical Functions

172

The accuracy of an answer produced by these algorithms is
influenced by two factors: the performance of the subpro-
grarn and the accuracy of the argument. The effect of an
argument error upon the accuracy of an answer depends
upon the mathematical function involved and not upon the
particular coding used in the subprogram.

CONTROL OF PROGRAM EXCEPTIONS IN MATHE-
MATICAL FUNCTIONS

The FORTRAN mathematical functions were coded with
careful control of error situations. A result is provided
whenever the answer is within the range representable in
the floating-point form. In order to be consistent with
FORTRAN control of exponent overfiow/underflow
exceptions, the following types of conditions are recog-
nized and handled separately.

When the magnitude of the function value is too large to be
represented in the floating-point form, the condition is
called a terminal overflow: wren the magnitude is too
small 16 be represented, a terminal underflow. On the other
hand, if the function value is representable, but if execution
of the chosen algorithm causes an overflow or underflow

in the process, this condition is called an intermediate
overflow or underflow.

Function subroutines in the FORTRAN library are coded
ic observe the following rules for these conditions:

1. Those arguments for which the answer can overflow
are excluded from the permitted range of the
subroutine.

2. When the magnitude of the answer is less than 16 6%
zero is given as the answer.

3. Aldgorithms which can cause an intermediate overflow
have been avoided. Therefore an intermediate over-
How should not occur during the execution of a
function subroutine of the library.

4, Intermediate underflows are detected and not allowed
to give an indication. In other words, spurious
underfiow signals are not allowed. Computation of
the function value is successfully carried out.

5. Terminal overflow conditions are screened out by the
subroutine. The argument is considered out of range
for computation and an error diagnostic is given.
Terminal overflow conditions are handled by forcing
a floating-point overflow exception. This provides
for the detection of overfiow in the same manner as
for an arithmetic statement. Terminal overflows can
occur in the function subroutines EXP and DEXP.

6. Terminal underflow conditions are handied by forcing
a floating-point underflow exception. This provides
for the detection of underflow in the same manner as
for an arithmetic statement. Terminal underflows
can occur in the function subroutines EXP and
DEXP.

For implicit arithmetic subroutines, these rules do not apply.

In this case, both terminal overflows and terminal under-
flows cause respective floating-point exceptions.

System/3 FORTRAN Intrinsic and External Library Functions 173

174

EXPONENTIAL FUNCTIONS

EXP, REAL*4 Exponential Function (MOdL;'E Names EXP,$FOMM, $FOMC)

Argument Reduction

Acceptable Range: Any argument that results in a function value that can be represented
in REAL =4 format is valid. This range is approximately:
-180,218 < argument < 174.673

Error Conditions: {f the arqument is tuo large, the overflow indicator is set on, and the
result is the largest positive REAL*4 number. If the argument is too small, the underflow
indicator is set on, and the result is zero.

Reduction: The argument is multiplied by log, (¢} and separated into integer and fraction-
al parts for calling the module SFOMC, which computes REAL *4 values of 2. {SFOMC
is described in Implicitly Invoked Exponentiation Subprograms in this chapter.)

Computational Method

The result is computed by the 2* routine, with x = log, (e) - arqument. This method

depends on the identify:
eurgumcnt - 21(>g2(c) cargument

DEXP, REAL*8 Exponential Function (Module Names DEXP,SFOMN,$FOMD}
Argument Reduction

Acceptable Range: Any argument that results in a function value that can be represented
in REAL=*8 format is valid. This range is approximately:
-180.218 < argument < 174.673

Error Conditions: If the argument is loo large, the overfiow indicator is set on, and the
result is the largest positive REAL*8 number. If the argument is too small, the under-
flow indicator is set on, and the result is zero.

Reduction: The argument is multiplied by log, {e) and separated into integer and
fractional parts for calling the module $FOMD, which computes REAL*8 values of 2%,
($FOMD is described in Implicitly Invoked Exponentiation Subprograms in this chapter.)

Computational Method

The result is computed by the 2% routine with x = log; (e} * argument. This method

depends on the identity:
gdrgument = 5 logy (e) « argument

LOGARITHMIC FUNCTIONS

ALOG, REAL=4 Natural Logarithm (Module Names ALOG, $SFOM5, $FOMI)

Argument Reduction

The range testing and argument reduction are done in module $FOMS5, which also
computes the log, of the reduced argument,

Acceptable Range: The argument must be a positive normalized number. Zero is not
acceptable because the logarithm of zero is undefined. Negative numbers are not accep-
table because the logarithm of a negative number is a compiex number with a nonzerc
imaginary pati.

Error Conditions: f the argument is zero, the result is set to the negative number with
the largest possible magnitude, and bit 7 of the FTEST byte is set to 1. If the argument
is negative, the logarithm of its magnitude is computed, and bit 7 of the ETEST byte is
set to 1.

Reduction: The argument is separated into two parts, ¢’ and m’, These are computed from
the characteristic and the mantissa of the argument, ¢ and m respectively, as follows:
¢'=4(c-64) ~a-%
m'=im; - 2%
where a is the number of leading zeros in m. This produces ¢’ and m’ such that;
~259% < ¢ < 2511
B<m' <1
The argument (representing the number 16(c-64) - Iml) can also be represented as:
2°-v2-m

Computational Method

The log, of V2 «m’is computed using the polynomial approximation:

log, (V2 -m') = 20 =/2/2) .\ 2(m’ - v2/2)\?
% Twizvv2m)PP \ Wy v

, 2{m’ - J 2/2) : 2(m'—J2/2))6
P T 2evom)P \wR v 24

The log, of the aryument is then ¢’ + log, (V2 *m’) so the result can be computed as:

Iogc(argument) Iogc(2) °|o;c;2 {argument) ;
= Iogc(2) *{c +log, (V2 -m’))

System/3 FORTRAN Intrinsic and External Library Functions

175

ALOG10,REAL*4 Base 10 Logarithm (Module Names ALOG10,$FOMK ,$FOM5)

Argument Reduction

Identical to ALOG, including the acceptable range and error conditions.

Computational Method
Identical to ALOG except for the last step, which is:
logy o largument) = log; 4 {2) - (¢’ + log, (V2 - m’))
The only difference from the computation of ALOG is that log, ¢ (2) is used instead of
log_(2).
(4

DLOG,REAL*8 Natural Logarithm {Module Names DLOG,$FOMJ,$FOMBG)

Argument Reduction
The range testing and argument reduction are done in module $FOMG, which also computes
the log, of the reduced argument. The acceptable range, error conditions, and reduction
are identical to those for ALOG, except that the reduced mantissa occupies 7 bytes
instead of 3.
Computational Method
The log, of V 2 -m' is computed by the same method as for ALOG, using a seventh
order polynomial instead of a third order, as in ALOG, to achieve the accuracy required.
The Ioge(argument) is then computed as:

loge(argument) = Iogc(2) (¢’ +logy {2 - m'))

DLOG10,REAL*8 Base 10 Logarithm (Module Names DLOG10,$FOML ,$FOM®6)

Argument Reduction

Identical to DLOG, including the acceptable range and error conditions.

Computational Method

tdentical to DLOG except for the last step, which is:

109 o (argument) = log; 4 (2) - (¢’ + log, (V2 - m'})
The only difference from the computation of DLOG is that log; ¢ (2) is used instead of
log_(2).

€

176

TRIGOROMETRIC FUNCTIONS

SIN/COS, REAL*4 Sine/Cosine (Module Names SIN,COS,$FOM1,$FOM3)

Argument Reduction

Acceptable Range: The sine/cosine routine accepts normalized arguments in the range
jargument| <7 -2’3 =g - 10°

and zero. Arguments outside this range are not accepted because they are not precise

enough ta yield a meaningful resuit after the argument is reduced to the principal range.

This range fimit is ot due 1o a limitation of the algorithm used. Rather, it is a

consequence of the periodicity of the trigopnometric functions and the representation used
tor REAL+*4 numbers.

Error Condstions: 1 an argument is out-of-range, a zero result is returned, and bit 6 in
the FTEST Lyte is set to 1.

Reduction: The argument is separated into two parts after multiplying its absolute value
by 4/n. Let g be the integer part of the result, and r be the fractional part of the result.
If x is the argument

5$in". s 4 _ysing m
icosi('xl} ?cosz {'4 (1 (TT))) icos§(4 tg+r)

Negative arguments are treated b% adding 4 to q if the function desired is SIN, since
siv {(-x} = sin{x +) = sin{x + 4(—&‘)). No change is required for COS, since cos (-x) =
cos {x}.

The computation of COS is transforme(%into the computation of SIN by adding 2 to q,
. T

since cos (x} = sin (x + =) =sin (x + 2(2)}

Let g =g mod 8.

e = 1, s {x} = cos

(

(
Q0 = 2,sin (x) = cos (5 1) ,
G0 =3 s b =sin (2 (1-0),
Go = 4.sin (x) = -sin(G +r),
G = .50 (x) = ~cos(% (1-1))
Go = 6, sin (x) = ~cos(Z * 1) .

Ug ~= 7, sin {x) ::‘—Sjn(_z_ (1 ‘T)))

. . . m
These formulas reduce each case to the computation of either sin (‘Z . rl) or cos

i S L
(Z . r,) ; where 1, is either r or {1 ~r), and is within the range, 0<Xr; < 1.

System/3 FORTRAN Intrinsic and External Library Functions

177

178

Computational Method

.o . .
sin (Z . rl> is computed by a polynomial of the form:
. T \
sin (l— -r,) =, lag +a1r12+a2r14+a3r16),
4
m . .
cos (z - rl) is computed by a polynomial of the form:

m
cos (Z . rl) E1+b1r12 +b,yry? +b3r,‘5+b4r18

These polynomials are computed by calling module $FOM3,

ATAN, REAL*4 Arctangent (Module Names ATAN,$FOME)

Argument Reduction

Acceptable Range: Any argument in the range representable in REAL+4 format is valid.

Error Conditions: None.

Reduction: The magnitude of the argument x is used to determine two numbers, A and
Z, as follows:

for tan {0) < ix} < tan (116) JA=0,z=|x| - tan (0) = x|

for tan (—=

< x| < tan (?—g) JA=7/8, 2 = (x| - tan ()

i
3
for tan x| < tan (%E) JA=m/4,z =[x - tan (%)

(76)
(58)=

fortan() x| < tan (—),A=3n/8,z:tx|-tan (?)
-

x| < tan (—) A=m/2,z=-

for tan

d
Ix|
Computational Method

Lety =tan’! {|x|). Then, using the formula for the tangent of the difference of two
angles, the following identity can be derived:

_ -1 tan(A) - tan{y) \ _ i z
y=Attan <1+tan(A)'tan(y)> At an <sec2(A)+z-tan<A)>

r—z . with the arctangent being approximated by

mom 3
This f i df =0,—,~—
is formula is used for A 0'8'4’0 3

the polynomial
n! (R)=R (py +p; - R? + P2 °R4+p3 *R®)
1 .
For A = (2) since tan’! {|x}) —(-—>+ tan’ (— m) the formula is

y=A+tan! (2)

Finally, if the argument was negative, the result is made negative, because tan’! (-x) =
-1
-tan " (x)

DSIN/DCOS, REAL*8 Sine/Cosine (Module Names DSIN, DCOS,$FOM2,$FOM4)

Argument Reduction

Acceptable Range: The precision available in REAL*8 variables allows an acceptable
range of arguments of normalized values in the range

largument| < -2%% = 3 .10'*
and zero. See the description of SIN/COS for a discussion of the reasons for this range
limit.

Error Conditions: Same as SIN/COS.

Reduction: Same as SIN/COS except that the reduction is carried out in REAL*8 arith-

metic.

Computational Method
sin (Z . r1> is computed by a polynomial of the form:

. ' 12
sin (-—4— : r,) =1 (a1r12 +a2r]4+a3r16+a4r18+a5r110+a6r1)

- .
cos Z . rl) is computed by a polynomial of the form:

i : 2 14
cos (Z . rl) =1+byr, 2 +byr 40y ® +byr® +bsr 10 +bery 12 + by,

These polynomials are evaluated by calling module $FOM4.

System/3 FORTRAN Intrinsic and External Library Functions

179

180

DATAN, REAL*8 Arctangent (Module Names DATAN ,$FOMF)

Argument Reduction

Acceptable Range: Any argument in the range representable in REAL+8 format is valid.

Error Conditions: None.

Reduction: The magnitude of the argument, x, is used 7o determine two numbers, A and
Z, as follows:

for tan (0)<1x|<tan(2”—0) A=0,7=x - tan (0) = |x|
fortan (55) < IxI < tan (%) A= z=Ix -t (55)
furtan(g—g) < ixl < tan (—Z—) ,A:% Lz =ix| - tan (15’—)
for tan (7=} < 1xI < tan (%) ,A:—?—g .z = Ixi - tan (:}g)
fortan(g—T‘T) < x| < tan (g—) ,A:% 2= le_l

Computational Method

The computation is by the same method as for ATAN, except that the polynomial

approximation for tan™! is

an™' (R)=R{py +p; *R* +p, *R* +p; -R® +p, - R® +ps “R'® +pg *R'? +p, -R'%)

SQUARE ROOT FUNCTIONS
SQRT, REAL+*4 Square Root (Module Names SQRT and $FOMG)

Argument Reduction

Acceptable Range: The square root routine successfully computes the square root of
any nonnregative number representable in REAL+4 format. Negative numbers are out-
of-range since the square root of a negative number is imaginary.

Error Conditions: 1f the argument is negative, bit 5 in the FTEST byte is set to 1, and the
square root of the argument’s magnitude is taken.

Reduction: 1f the argument is zero, a zero result is returned immediately. Otherwise,
the characteristic of the argument is tested. [f it is even, no change is made to the
mantissa. If it is odd, the mantissa is divided by 16. A divide instruction is not used to
perform this division; the operand is shifted by additions.

Computational Method

The characteristic, ¢, of the result is computed as:
clresult) = clargument}/2 for clargument) even
clresult) = {1 + c{argument}) /2 for clargument) odd

The mantissa, m, of the result is the square root of the mantissa of the reduced argument.
Because:

1/256 < m{reduced argument} < 1,

1/16 << milresult) < 1,
and the result is therefore a normalized REAL*4 number.

This method refiects the identities:
1 Y

[TGC(argumcm) . m(argument)] = [1 6c(argumcnt)] . l: m(argument)] for clargument) even

i

: %)
[16c(argumcnt) . m(argument)] = |:16' + c(argumcnt)]

¥
°[m(argument)/16] for clargument) odd.

The square root of the reduced mantissa is computed by a series of successive subtrac-
tions, with each set of subtractions determining one hexadecimal digit of the result

from two hexadecimal digits of the argument’s reduced mantissa and remainder (if

any) and the results from the previous sets of subtractions. This method is similar to the
normal method for the hand extraction of square roots. At the completion of the
subtractions, at least 21 binary digits of the result are correct. A correction to the last
binary digits is computed and applied if necessary.

Accuracy

The method produces the correct result in the characteristic and the correct result
rounded to 6 hexadecimal digits, for the mantissa.

'

System/3 FORTRAN Intrinsic and External Library Functions 181

182

DSQRT, REAL*8 Square Root (Module Names DSQRT and $FOMH)

Argument Reduction

Identical to that for SQRT except that the argument is in REAL«8 format. Acceptable
range and out-of-range action are the same,

Computational Method

Identical to SQRT except that 14 hexadecimal digits are developed in the result mantissa,

and the subtractions are carried out only to the precision necessary at each stage in the
development of the result mantissa.

Accuracy

The method produces the correct result in the characteristic, and the correct result,
rounded to 14 hexadecimal digits, for the mantissa.

HYPERBOLIC TANGENT FUNCTIONS
TANH, REAL*4 Hyperbolic Tangent (Module Names TANH,$FOMO,$FOMM)
Argument Reduction

Acceptable Range: Any number representable in REAL x4 format is acceptable.
Error Conditions: None.
Reduction: None.

Computational Method

In the range (x| < .b5, tanh x is computed with the approximation:

7 1

Cr tC3 *X
In the range .55 < x| < 9.0625 the approximation is:

5-5 (m——t— -1)]

2 X

tanh{x) = x + [1 - x* - {c,

tanh(x) = sign (x) |

R 75 + 25
L. z
vvherez:e“"'(“) in3- x)

The REAL+4 exponential module, SFOMM, is used to compute e? IxI
For {xj < 9.0625, tanh{x) = sign (x) *+ 1.0

DTANH, REAL+*8 Hyperbolic Tangent (Module Names DTANH,$FOMP,$FOMN)
Argument Reduction

Acceptable Rarige: Any number representable in REAL*8 format is acceptable.
Error Conditions: MNone.

Reduction: None.

Computational Method

in the range |x| < .65, tanh x is computed with the approximation:

"’ 2 2
e 12 co + X2 (g +6;x°)]
tanh (x) = x [b - x {do T3 s Tl (dy 1))

In the range .55 < |x| <0 21.0, the approximation is:

e N 2 S
tanh {x) = sign (x) [5 5(.75 +.25, 1)]

where 7 = 2172 1n 3~ Ix1)

The REAL*8 expenentiation module, SFOMN, is used to compute e i
For |x| > 21.0, tanh {x} = sign (x} - 1.0.

System/3 FORTRAN Intrinsic and External Library Functions 183

IMPLICITLY INVOKED EXPONENTIATION SUBPROGRAMS
$FOM?7, Subprogram for 1++J (Module Name $FOM7, Secondary Entry Point #FOM7)
Argument Reduction

Acceptable Range: Any pair of arguments for which the result does not exceed the
integer range is valid, except that | = 0 and J < 0 are invalid.

Error Conditions: 1f1=0and J< 0, bit 3in the FTEST byte is set to 1, and a resuit of
zero is returned. No indication is given if the result exceeds the integer range. This range
is:

-2 < Result < 23! - 1 for Integer *4

-2 < Result <25 -1 for Integer +2

Reduction: No reduction is performed other than the check for invalid arguments.

Computational Method

Five special cases are checked first:

If 1 =0,J>0, the result is zero.

If1#0,J=0, the result is 1.

If I =1, the result is 1 for any J.

If1=-1, the result is -1 for J odd, + 1 for J even.

If1#£1,J<0,the result is zero.
If none of these special cases exists, J is positive and the result is computed as follows:
Set a partial result equal to I, then scan J for its leftmost bit having the value 1. For
each bit position in J to the right of the leftmost 1 bit, square the partial result, and if
the bitisa 1, multiply the partial resuit by I. This method is based on the identity:

P o= gUso "230 +jy9 *229 4. +jg +20)
= (130)23% L (320227 L L (4i0)2°
= ((.. _(|J3o)2 . |J29)2 .)2 . o

where J indicates the bits of J, with Jq being the rightmost bit. The partial result be-
comes the final result when all the bits of J are processed. The method is the same for
INTEGER*2 operands, except that the operands contain fewer bits, and a secondary
entry point to the module is used. The compiler uses the entry point #FOM7 when J is
INTEGER*2, regardless of the length of I. 1is always in INTEGER*4 form for this
module as a result of the automatic extension of INTEGER=*2 to INTEGER *4 when the
register is loaded before this module is invoked.

Accuracy

The result is exact, provided that the result does not exceed the allowable range.

184

$FOMS8, Subprogram for As+J (Moedule Name $FOM8)
Argument Reduction
Acceptabie Rarige: Any pair of arguments that produces a result representable in REAL+*4

format is acceptable, except that argument pairs for which J is negative and the result’s
magnitude is inn the range 1167%% (1693 (1-167%))!] are not acceptable.

rror Conditions: It A = 0.0 and J<< 0, bit 2 of the FTEST byte is set to 1, and the
result is set to 0.0. Other out-of-range conditions are handled as follows:

[AL<21.0 |Al>10
J>0 Underflow Indicator On Overflow Indicator On
iResult] = 0.0 IResult] = 16°3 {1-16°)
J<C0 Underflow Indicator On Overflow indicator On
Divide Check [Result| = [16°3 (1-167%)] !
indicator On O
1Resulyy = 1.0

O]

The result of 1.0 1s due to a division of 1.0 by the zero resulting from the
underfiow when Al ks computed.

Reduction: No reduction is performed on the arguments after the test for A = 0.0
and J < 0.

Computational Method

The arguments are tested for these special cases:

1f A =0.0and J >0, the result is 0.0

if J =0, the resultis 1.0
Otherwise, A**|J| is computed using the same method as for integers in $FOM7, except
that REAL#*4 arithmetic is used for the multiplications. Then, if J were negative, the
reciprocal of the result is taken. 1fJis INTEGER*2, it is extended to INTEGER *4 by
the instruction that loads J before this module is invoked.

$FOMS9, Subprogram for D++J (Module name $FOM9)

ldentical to $FOMS8 for A+ *J except that the arithmetic and results are REAL+*8 and
the range limit of the result is [16°3 (1-16%%)] ! when J < 0 and |D| < 1.DO.

System/3 FORTRAN Intrinsic and External Library Functions

185

186

$FOMA, Subprogram for A*+B (Module Names $FOMA, $FOM5,$FOMC)

If Alis not REAL»4, the compiler mserts instructions to convert A to REAL*4 format
before SFOMA is invoked. Thus, $FOMA itselt computes only (REAL«4)««(REAL +4).

Argument Reduction

Acceptable Range: For A > 0, the value of B must produce a result representable in
REAL*4 format. For A - 0,B must be greater than zero. A <C 0 is invahid.

Error Conditions: 1 A 2> 0 and the resultis too large, the overflow indicator is turned
on and the result is set 1o the largest positive REAL <4 number. Hf A > 0 and the result
15 too small, the underflow indicator is turned on and the result is set to zero. 1A =0
and B s negative, bit 1. the FTEST byte is set to 1 and the result is set to zero. 1f

A <0, bit 7 inthe FTEST byte is set to 1 and the absotute value of A s used. In this
case, underflow or overtiow can also occur if the result is too small or too large,
respectively; the results are the same as for A <7 Q.

Reduction: No reduction is performed in this module.

Computational Method
The method is based on the identity

Ah = 2\) *logaa
The REAL*4 log, module, $FOMS5, is called with A as the argument. The result is
multiplied by B and passed as the argument to the REAL »4 2% module, $FOMC. This
result is then returned as the result of the exponentiation.
$FOMB, Subprogram for Ax+B (Module Names $FOMB,$FOM6,$FOMD)
If Ais REAL*4, or if Bis INTEGER*2, INTEGER x4, or REAL +4, the compiler inserts
instructions to convert them to REAL*8 format before $FOMB is invoked. Thus,
$FOMB itself computes only (REAL=8)**(REAL*8).

Argument Reduction

The range, error conditions, and argument reduction are identical to those for the
REAL*4A+**B module, SFOMA, except that:

1. The result can be slightly greater without overflow since the largest REAL*8
number is larger than the largest REAL*4 number.

2. The largest positive REAL*8 number is the result in case of overflow.

Computational Method

The method is identical to that for the REAL*4A*xB module, SFOMA, except that the
REAL+8 modules for 2* and log,, $FOMD and $FOMS, are used.

$FOMC, REAL*4 Subprogram to Compute 2* (Module Name $FOMC)
Argument Reduction

Acceptable Range: Any argument that results in a function value that can be represented
in REAL+*4 format is valid. This range is approximately:
-260 < x << 252

Error Condition: 1f x is 100 large, the overflow indicator is turned on and the result is
the largest positive REAL+4 number. If x is too small, the underflow indicator is turned
on and the result is zero.

Reduction: The argument is received in two parts, an integer part, i, and a fractional
part, f. The fractional part is brought into the range [-,%] by computing i’ and '
as follows:

HE> %t =f-1andi"=i+1

iff<l-%, f=f+1andi =i+1

otherwise ' = fand i’ =i
Then i’ is separated into two parts, i'l ,and i’y , which satisfy the relation

i=4 i, +ih with-4<i, < -1
The desired result can be written:

OX s HT g+ 0 8 #0240 _ it .92 Lof

Computational Method

Compute 2f' using the approximation:
£ / (2f') -P ((2f)?))
=1+8 - -
2 =148 (G174 {2 -P (27T
Where

P{(2f)?) = po + py - ((26)%)
Q ((2F)?) = qg + q; ° ((2f)?)

Mutltiply the result by 21‘2, and multiply that result by 1611 by adding i, " to its charac-
teristic.

System/3 FORTRAN Intrinsic and External Library Functions 187

188

$FOMD, REAL +8 Subprogram to Compute 2* (Module Name $FOMD)

Argument Reduction

The argument reduction, range, and error conditions are identical to those for the
REAL*4 2% subprogram, $FOMC, except:

1. The upper limit of the range is slightly greater, since the largest REAL *8 number
is greater than the largest REAL *4 number.

2. The result for an argument too large is the largest REAL*8 number.

Computational Method

The method is the same as for the REAL*4 2% subprogram, except that one more term
is used in the polynomials P and Q:

P ((20)2) = pg + p; ((20)2) + p, ((2f)?)22
Q ((26)%) = qo +q; ((20)2) + p, ((2f)?)

MACHINE INDICATOR TEST SUBPROGRAMS

The machine indicator subprograms test the status of pseudo-

indicators and return a value to the calling program. When
the indicator is zero, it is off; when the indicator is other
than zero, it is on. In the following descriptions of the sub-
programs, / represents an integer expression and j represents
an integer variable.

Pseudosense Light Subprogram (Entry Names: SLITE/
SLITET)

This subprogram is used to alter, test, and/or record the
status of pseudosense lights. Either of two entry names
(SLITE or SLITET) is used to call the subprogram. The
particular entry name used in the CALL statement depends
upon the operation to be performed.

If the four sense lights are to be turned off or one sense
light is 10 be turned on, entry name SLITE is used. The
source language statement is:

CALL SLITE (i)
where i has a value of 0, 1, 2, 3, or 4.

If the value of i is 0, the four sense lights are turned off; if
the value of i is 1, 2, 3, or 4, the corresponding sense light
is turned on. If the value ofiisnot 0, 1, 2, 3, or 4, halt
code 14 is issued and execution of this module or phase
is terminated.

If a sense light is to be tested and its status recorded, entry
name SLITET is used. Regardless of its status before the
test, after a sense light is tested, it is always set off. The
source language statement is:

CALL SLITET (i,j)
where

i has a value of 1, 2, 3, or 4, and indicates which sense
light to test.

Page of SC28-6874-3
Issued 25 November 1977
By TNL: SN21-5563

Chapter 23. FORTRAN Service Subprograms

Note: |f thie value ofiisnot 1,2, 3, or 4, halt code
15 is issued and execution of this module or phase is
terminated.

i has a value returned by the subprogram. 1 indicates
the sense light was on; 2 indicates the sense light was off.

Divide Check Subprogram (Entry Name: DVCHK)

This program tests for a divide-check exception (divisor

= zero) and returns a value that indicates the existing condi-
tion. After testing, the divide-check indicator is turned

off. This subprogram is called by using entry name DVCHK
in a CALL statement, The source language statement is:

CALL DVCHK (j)

where j is set to 1 if the divide-check indicator was on, or
to 2 if the indicator was off.

Overflow Indicator Subprogram (Entry Name: OVERFL)

This subprogram tests for an exponent overflow or under-
flow exception and returns a value that indicates the exist-
ing condition. After testing, the overflow indicator is turned
off. This subprogram is called by using the entry name
OVERFL in a CALL statement. The source language state-
ment is:

CALL OVERFL (j)

where | is returned by the subprogram to indicate the
following:

1 = floating-point overflow condition occurred last.

2 = no overflow condition occurred.
3 = a floating-point underflow condition occurred last.

FORTRAN Service Subprograms 189

UTILITY SUBPROGRAMS

The utility subprograms perform the following operatioris
for the FORTRAN programmer:

® Terminate execution (EXIT)
® Dump a specified area of storage (DUMP/PDUMP)

® Test the bits of a setting of the address/data switch on
the System/3 console (DATSW)

® Test an error indicator (FCTST),
® Test for an inquiry request (INOCHK/SETINQ)

® Retrieve the system date and time-of-day (CFTOD).

End Execution Subprogram (Entry Name: EXIT)

The end execution subprogram terminates execution and
returns control to the operating system. (EXIT performs
a function identical to that performed by an unnumbered
STOP statement.) This subprogram is called by using the
entry name EXIT in a CALL statement. The source
language statement is:

CALL EXIT

Storage Dump Subprogram (Entry Names: DUMP/PDUMP)

This subprogram dumps a specified area of storage. Either
of two entry names (DUMP or PDUMP) can be used to call
tne subprogram. The entry name is followed by the limits

of the area to be dumped and the format specification. The

entry name used in the CALL statement depends upon
whether you want to resume execution of the FORTRAN
program after the dump.

If execution of the load module or phase is to be terminated

after the dump is taken, entry name DUMP is used. The
source language statement is:

CALL DUMP (a;,by,fy, ... cag.by)

where
a and b are variables whose names indicate the limits of
storage to be dumped (either a or b can be the name of

the upper or lower limit of storage), which must be in
the same program or subprogram or in common:

190

f indicates the dump format and can be one of the
following:

0 = hexadecimal
3=INTEGER*2
4 = |INTEGER+*4
5=REAL+4
6= REAL+g

Any positive number other than the preceding results in a
hexadecimal dump, provided the number is less than 256.
{The low-order byte of this argument is all that is used, If
the number is negative or greater than 255, you must deter-
mine the bit pattern in the low-order byte to determine the
dump format.)

When hexadecimal format is used, the dump program
assumes that the upper limit of the dump is a variable 8
bytes long. If it is actually 2 or 4 bytes long, the last 6 or

4 bytes of the dump (respectively) are not part of the upper-
limit variable.

If execution is to resume after the dump is taken, entry
name PDUMP is used. The source language statement is:

CALL PDUMP (al,bl rflr ey, an,bn,fn)
where a, b, and f have the same meanings as for DUMP.

DUMP/PDUMP output is directed to the FORTRAN error
logging device. See PRINT and NOPRINTER Device
Option Statements for more information.

DUMP/PDUMP Programming Considerations

A load module or phase can occupy a different area of
storage each time it is executed. To ensure that the appro-
priate areas of storage are dumped, the following conven-
tions should be followed.

Transaction Logging Subprogram (SUBR81) 56704-FO2
oniy

This subprogram is used with $TRLOG to log transaction
oriented data to tape. The source language statement is:

CALL SUBR81{i,j)

where
i is an integer *2 variable or array element and must

contain the length of the data to be logged. The length
must not exceed 2,040 bytes.

j is a variable, an array element, or an array containing
the data to be logged.

For additional information about transaction logging
($TRLOG), see /BM System/3 Model 15 System Control
Programing Concepts and Reference Manual, GC21-5162.

Example:

INTEGER™2 LGTH
INTEGER*4 LOGDAT(32)
DATA LGTH/128/

CALL SUBR81 {LGTH,LOGDAT)

CALL SUBR81 (LGTH,LOGDAT)

If an array and a variable are to be dumped at the same
time, a separate set of arguments should be used for the
array and for the variable. The specification of limits for
the array should be from the first element in the array to
the last element. For example, assume that B is a REAL
number, and TABLE is an array of 20 elements. The
following call to the storage dump subprogram could be
used to dump TABLE and B in the hexadecimal format
and teminate execution after the dump is taken:

CALL DUMP{TABLE(1), TABLE(20),0,8,B,0)

If an area of storage in common is to be dumped at the
same time as an area of storage not in common, the argu-
ments for the area in common should be given separately.
For example, assuming A is in common and B is not, the
following call to the storage dump subprogram should be
used to dump the variables A and B in REAL*8 format
without terminating execution:

CALL PDUMP(A,A,6,B,B,6)

Page of 5C28-6874-3
tssued 29 September 1978
By TNL: SN21-5634

1f variables not in common are to be dumuped, each vaiiable
must be listed separately in the argument list, For example,
if R, P, and Q are not in common, the statemeant:

CALL PDUMP(R,R,5,P,P,5,0,Q,5!
should be used to dump the three var:ables If the >tatemen ¥
CALL PDUMP(R,Q,5)

is used, all main storage between R and C s dumped, which
might or might not include P, and might include other
variables.

If an array and a variable are passed to a subroutine as
arguments, the arguments in the call to the storage dump
subprogram in the subroutine should specify the parameters
used in the definition of the subroutine. For exampie, if
the subroutine SUBI is defined as:

SUBROUTINE SUBI (X,Y)
DIMENSION X{10)

and the call to SUB! within the source module is:

DIMENSION A(10)

CALL SUBI (A,B)

then the following statement should be used in SUBI to
dump the variables in hexadecimal format without termi-
nating execution:

CALL PDUMP (X{1),X(10),0,Y,Y,0)
If the statement

CALL PDUMP(X{(1),Y,0)

is used, all storage between A(1) and Y is dumped because
of the method of transmitting arguments.

FORTRAN Seivice Subprogramis 131

Address/Data Switch Subprogram (Entry Name: DATSW)

This subprogram tests the setting of the address/data
switches. The four address/data switches correspond to 16
binary switches, numbered O to 15 from left to right, as
shown in Figure 29. The binary switches 0-15 are either
off (0) or on (1)} depending upon the hexadecimal setting

of the address/data switches.

Address/Data
Switch #

Binary
Switch #
{i)

ADDRESS

4 5 6 7 8 9 101

121314 15

Setting of
Address/Data
Switch
{hexadecimal)

Setting of

the Corres-
ponding 16
Binary Switches

Figure 29. Address Data Switch Settings

PN,
0000

1

00O

0000

In Figure 29, the address/data switches are set to:

0800

Therefore, only binary switch 4 is on (1), and the other
binary switches are off (0).

The DATSW subprogram is called by the FORTRAN state-

ment:

CALL DATSW(i,j)

where

i is an INTEGER™4 constant, expression, or variable in
the range 0 to 15, indicating the binary switch to be

tested.

Note: |fiis outside the permitted range, halt code

RF#7, subhalt 16 is issued.

jisan INTEGER*4 variable, which is set to 1 if the value
of the tested binary switch was 1, or is set to 2 if the

value of the binary switch was 0.

192

0000

Example:

Setting of address/data 4 A 7
switches

Setting of the corres-
ponding binary

switches 0100 1010 0111 0000

Here, binary switches 1,4, 6,9, 10, and 11 are on (are 1).
Therefore,

CALL DATSW({4,J)
would set J to 1, and

CALL DATSW(5,J)
would set J to 2.

CAUTION

Binary switches 12-15 should be used with care on the
Model 10 because the rightmost console dial must be used
in replies to system halts, and might be changed during the
execution of a program.

Example:

PAUSE b5
CALL DATSW(13,J)

The PAUSE statement requires a replay of 0 to continue
processing, causing binary switches 12, 13, 14, and 15 to
be set off {to 0).

Library Function Error Subprogram (Entry Name: FCTST)

This subprogram is used to test an indicator word for an
error in a library function subprogram. After testing, all
conditions are turned off. The subprogram is called by
writing the FORTRAN statement:

CALL FCTST(j.k)
where

jisset to 1if any bit in the indicator word is on (1), or
to 2 if all the bits in the indicator word are off (0).

k is the indicator word. The error indicator is returned
as the rightmost byte of this word (bits 24-31). The
other bytes are zero,

The errors that can be detected are shown in Figure 30.

The value of the error word can be 1, 2, 4, 8, 16, 32, 64,
or 128, or the sum of 2 or more of these numbers if more
than one error condition occurred. In such a case, the
value returned is the sum of the integers associated with
the individual conditions. For example, if an error was
detected in DSIN (value 2}, and an error was detected in
SQRT (value 4), the value of k is 6.

FORTRAN Service Subprograms 193

194

Value
(decimal) Routine Error Result
1 ALOG/DLOG argument = 0 Largest negative value
1 ALOG/DLOG argument < 0 Absolute value of argument used
for evaluation
1 Real to Real negative base and Absolute value of argument used
exponentiation nonzero exponent for evaluation
1 SIN/COS argument magnitude Zero
exceeds 7 - 2'8
2 DSIN/DCOS argument magnitude Zero
exceeds 7 = 2°°
4 SQRT/DSQRT argument < 0 Absolute value of argument used
for evaluation
8 Real to Integer overflow on conversion Maximum value of appropriate
conversion sign
16 Integer to Integer base = 0 and exponent Zero
exponentiation <0
32 Real to Integer base = 0 and exponent Zero
exponentiation <0
64 Real to Real base = 0 and exponent Zero
exponentiation <0
128 Invalid input character Character treated as zero
to a conversion routine
Note: For exponentiation routines, the error can occur for any length item, that is, for 1+2, 1 +4, R+4, and
R«8, where applicable.

Figure 30. Error Conditions that can be Tested in FCTST

ROLLOUT Support Subprogram {Entry Name: INQCHK)

System/3 Models 6, 10, 12, and Model 15 with Program
Number 5704-FO1 aliow programs to be interrupted
{ROLLQUT/ROLLIN) whiie they are being processed;
Model 15 with Program Number 5704-F G2 does not.

To request an interruption:

Maodel 6 Set the INQUIRY REQUEST switch
to ON.

Models 10 Press the REQUEST key on the

and 12 printer keyboard.

Model 15 with
Program

Press the PF10 key, issue ROLLOUT
via the keyboard, and press ENTER.
Number

5704-FO1

Programs are normaliy interrupted to permit another pro-
gram 1o run. After this program is run, control is then
given back to the original program {(the one that was
interrupted).

For more information about the ROGLLOUT/ROLLIN
routines, see the appropriate operator’s guide listed under
Related Publications in the Preface.

The subprogram INQCHK allows the user to interrupt the
executing FORTRAN program in order to execute another
program. Calls to INQCHK should be placed at appro-
priate points in the interruptable program, so that the
interrupt request is serviced within a reasonable interval.
The INDOCHK subprogram has no parameters. The format
of the source language statement is:

CALL INQCHK

If ne inquiry is pending, the subprogram immediately
returns control to the interruptable program. If an interrupt
request has been made:

1. A system control program ROLLOUT routine moves
the interrupted primary program from main storage
to disk.

‘ 2. The desired secondary program is processed; this pro-

gram cannot be interrupted.

l 3. After the secondary program has been executed, the
interrupted program moves back into main storage
using a ROLLIN routine. The interrupted program
resumes execution at the point beyond the call to
INQCHK and terminates in a normal manner.

Notes:

1. In the dual programming mode, only program level 1
or partition 1 programs can be interrupted and moved
out of main storage by a ROLLOUT routine.

2. The Model 15 with Program Number 5704-FO2 pro-
cesses programs containing the CALL INQCHK state-
ment but the ROLLOUT/ROLLIN routine is replaced
by a simple return-to-caller statement in subroutine
INQCHK.

Inquiry Support Subprogram (Entry Name: SETINQ)

A FORTRAN program can be made an INQUIRY
(I-TYPE) program by inserting a CALL SETINQ statement
in the source program. The CALL SETINQ statement
should be the first executable statement in the program.
The SETINQ subprogram has no parameters.

Inquiry programs are usually used on systems with multiple
program levels; however, they can be used on systems with
only one program level. An inquiry program is in main
storage and is executed when an inquiry request is made
by one of the following procedures:

Model 6 Set the INQUIRY REQUEST switch to
ON.

Models 10 Press the REQUEST key on the printer
and 12 keyboard.

Model 15 Press the PA1 key.

For further information, see the appropriate operator’s
guide under Related Publications in the Preface.

FORTRAN Service Subprograms 195

Date/Time-of-Day Subprogram (Entry Name: CFTOD)

Note: The interval timer is available as a feature only on
the Mode! 15. On the Model 10, the interval timer is
available as a hardware RPQ (RPQ WE0922); and the
CFTOD subprogram is available as a programming RPQ
(RPQ 5799-WGY).

The CFTOD subprogram makes available the date and
time-of-day. Itis called by using the entry name CFTOD
in a CALL statement. The source language statement is:

CALL CFTOD (date,time[,1])

where

date must be the name of a one-dimensional, three
element, INTEGER™2 array

time must be (1) the name of a one-dimensional, three
element, INTEGER*2 array if the third operand is
omitted, or (2) the name of an INTEGER *4 variable if
the third operand is included

1 is the constant 1. When this optional operand is
coded, the time returned is in timer units. When itis
omitted, the time returned is in hours, minutes, and
seconds.

The date is incremented by one day at midnight. The date
returned in the three-element array is the system date that
was set at IPL time—either day, month, year (DDMMYY),
or month, day, year (MMDDYY), depending upon the
option chosen at system generation.

196

Examples are:

® For DDMMYY format March 14, 1974 would be returned
as 140374.

® For MMDDYY format March 14, 1974 would be returned
as 031474.

The time (when the third operand is omitted) is returned in
hours, minutes, and seconds {HHMMSS) where the first
element of the array contains the hours, the second element
contains the minutes, and the last element contains the
seconds. The values in the elements have the following
range:

Element From To
Hours 00 23
Minutes 00 59
Seconds 00 59

Unless the third operand (,1) is coded, both the date and
time are returned in the A2 format (two numeric characters
per element).

If the third operand {,1) is coded, the time is returned as

a four-byte unsigned binary number where each timer unit
represents 3.33 milliseconds, or the low-order bit represents
3.33 milliseconds. An example is:

(0000002A), represents {42),, timer units or (42 x 3.33)
milliseconds.

##MAIN: The name given to a main program by the com-
piler if the main program was not given a name by the
programmer.

alphabetic character: A character of the set A,B,C, ...,
Z,8S.

alphameric character: A character of the set that includes
the alphabetic characters and the numeric characters.

argument: A parameter passed between a calling program
and a subprogram or statement function.

arithir2iie expression: A combination of arithmetic
operators and arithmetic primaries.

arithmetic operatoi: One of the symibols +, -, *, /, ** used
to deénnte, respectively, addition, subtraction, multiplication
division, and exponentiation.

’

array: An ordered set of data iterns identified by asingle
nsme.

array element: A data item in an array, identified by the
array name foliowed by a subscript indicating its position
in the array,

array name: The name of an ordered set of data items.

assigiinent statement: An arithimetic variable or array
element, foliowed by an equal sign (=), followed by an
arithmetic expression.

basic reai constant: A string of decimal digits containing
a decimal point.

batched compilation: Sequential compilation of more than
one program.

common area: A storage area that may be referred to by a
calling program and one or more subprograms.

compilation time: The time during which a source program
is compiled, that is, translated from a high level language
to a machine fanguage program.

Glossary

compile: To prepare a machine language program from a
computer program written in a higher level programming
language.

compiler option statements: A set of statements used to
provide control information regarding a compilation by the
FORTRAN |V compiler.

constant: A fixed and unvarying quantity. The three class-
es of constants specify numbers {(numeric constants), literal
data (literal constants), and hexadecimal data (hexadecimal
constants).

control program: A program that supervises the perform-
ance of a computing system; an example is the System/3
System Control Program.

control statement: Any of the several forms of GO TO,
IF and DO statements, or the PAUSE, CONTINUE, and
STOP statements, used to alter the normally sequential
execution of FORTRAN statements, or to terminate the
execution of the FORTRAN program.

core usage map: A linkage editor listing that shows the
names and storage locations of routines that make up the
load module.

data item: A constant, variable, or array element.

data type: The mathematical properties and internal
representation of data and functions. The two types are
integer and real.

device option statements: A group of statements, in the
set of compiler option statements, used to define input/
output devices.

direct-access file: A file from which records may be re-
trieved, or to which records may be written, in a nonse-

quential manner.

DO loop: Repetitive execution of the same statement or
statements using a DO statement.

Glossary 197

DO variable: A variable, specified in a DO statement, that
is initialized or incremented before each execution of the
statement or statements within a DO loop. It controls the
number of times the statements within the DO loop are
executed.

dummy argument: A variable in a FUNCTION or SUB-
ROUTINE statement, or statement function definition,
with which actual arguments from the calling program or
function reference are associated.

executaise program: A program that can be used as a self-
contained procedure. |t consists of a main program and,
optionally, one or mere subprograms or non-FORTRAN-
defined external procedures or both.

executable statement: A statement that specifies action
to be taken by the program; e.g., causes calculations to be
performed, conditions to be tested, flow of control to be
altered.

extended range of a DO statement: Those statements that
are executed between the transfer out of the innermost
DO of a completely nested set of DO statements and the
transfer back into the range of this innermost DO.

external function: A function whose definition is not
included in program unit that refers to it.

external procedure: A procedure subprogram or a proce-
dure defined by means other than FORTRAN statements.

file: An ordered collection of one or more records.

formatted record: A record that is transmitted with the
use of a FORMAT statement.

FUNCTION subprogram: An external function defined
by FORTRAN statements, the first of which is a FUNC-
TION statement. It returns a value to the calling program
unit at the point of reference.

global area: A data area at the load point of a main stor-
age, which is not overlaid when different programs are
loaded, thereby permitting communication between two
or more programs.

halt code: A number assigned to a programmed halt; a
machine instruction that stops the execution of a program.

198

hexadecimal constant: The character Z followed by a
hexadecimal number, formed from the set 0 through 9 and
A through F.

hierarchy of operations: Relative priority assigned to
arithmetic or logical operations to be performed.

1/0 Jist: A list of variables in an 1/O statement, specifying
the storage locations into which data is to be read or from
which data is to be written.

implied DO: The use of an indexing specification similar
to a DO statement {but without specifying the word DO
and with a list of data elements, rather than a set of state-
ments, as its range).

integer constant: A string of decimal digits containing no
decimal point.

internal statement number: A number assigned to a source
statement by the compiler for identification.

intrinsic function: A FORTRAN library function used by
the compiler when certain operations are specified in a
FORTRAN source statemeint.

ISN: Internal statement number.

job stream: The sequence of operation control statements
and data submitted to tie system on an input device.

length specification: An indication, by the use of the
form *s, of the number of bytes to be occupied by a
variable or array element.

link-editing: The combining, by the linkage editor, of a
number of object or load modules for execution as one
program.

linkage: Coding that connects two separately coded
routines.

linkage editor: A program that combines separately pro-
duced object or load modules, resolves cross references
between them, and generates overlay structures on request.
The output of a linkage editor is called a load module,
suitable for loading into main storage for execution.

linkage editor control statements: A set of statements used
to provide control information regarding the link-editing
process.

list-directed input/output: input or output records that

are transmitted without the use of a FORMAT statement;
an asterisk is placed in the READ or WRITE statement
where the FORMAT statement number would ordinarily be.

literal constant: A string of alphameric and/or special
characters enclosed in apostrophes.

load module: An executable program that is the output of
a linkage editor,

load moaduiz execution time: The time during which a
load module is executed.

legical unit number: A constant or variable in an input/
output statemeitt, that specifies the file that is to be read
from or written to.

looping: Repetitive execution of the same statement or
statements, usually controlted by a DO statement.

main program: A program not containing a FUNCTION or
SUBROUTINE statement and containing at least one
executable statement. A main program is required for
program execution.

map, compiler: A compiler listing that shows the names
and storage locations of variabjes and statement numbers
in the object module.

name: A string of from one through six alphameric
characters, the first of which must be alphabetic, used to
identify a variable, an array, a function, or a subroutine.

nested DO: A DO ioop whose range is entirely contained
by the range of another DO loop.

nonexecutable object program: An object module.
nonexecutable statement: A statement that describes the
use or extent of the program unit, the characteristics of
the operands, editing information, statement functions, or

data arrangement.

numeric character: Any one of the set of characters 0,1,
2,...,9.

numeric constant: An integer or real constant.

object library: An area on disk that contains object
modules and load modules.

object module: A nonexecutable module that is the output
of a language translator such as the System/3 FORTRAN
(AY) Compiler.}

object program: A group of object modules that have been
link edited together into an executable program; same as
load moduie.

OCL: Operation control language.

predefined convention: The FORTRAN-defined type and
length of a variable, based on the initial character of the
variable name in the absence of any specification to the
contrary. The characters |-N are INTEGER *4; the charac-
ters A-H, O-Z and $ are REAL*4.

procedure: A set of operation control statements in a
source library that can be retrieved by specifying its name
in an OCL CALL statement.

procedure subprogram: A FUNCTION or SUBROUTINE
subprogram.

program unit: A main program or a subprogram.

range of a DO statement: Those statements that physically
follow a DO statement, up to and including the statement
specified by the DO statement as being the last to be exe-
cuted in the DO loop.

real constant: A string of decimal digits that must have
either a decimal point or an exponent, and can have both.

relational expression: An arithmetic expression, followed
by a relational operator, followed by an arithmetic expres-
sion. The expression has the value true or false.

relational operator: Any of the set of operators that express
an arithmetic condition that can be either true or false. The
operators are: .GT., .GE., .LT., .LE., .EQ., .NE., and are
defined as greater than, greater than or equal to, less

than, less than or equal to, equal to, and not equal to,
respectively.

scale factor: A specification in a FORMAT statement
whereby the location of the decimal point in a real number
{and, if there is no exponent, the magnitude of the num-
ber) can be changed.

Glossary 199

sequential file: A file from which records are retrieved, or
to which records are written, solely on the basis of their
order.

severity code: A code assigned to a compilation error.

source library: An area on disk that contains procedures
and source program statements.

source modulie listing: A compiler-generated listing that
shows .2 source statements in a program unit and their
corresponding internal statement numbers,

source program: A computer program written in a source
language, such as a program written in FORTRAN.

specification statement: One of the set of statements that
provide the compiler with information about the data used
in the source program. In addition, the statement supplies
information required to allocate storage for this data.

statement: The basic unit of a FORTRAN program, com-
posed of a line or lines containing some combination of
names, operators, constants, or words whose meaning is
predefined to the FORTRAN compiler. Statements fall
into two broad classes: executable and nonexecutable.

statement function: A function defined by a function

definition within the program unit in which it is referred to.

statement function definition: A name, followed by a list
of dummy arguments, followed by an equal sign (=), fol-
lowed by an arithmetic expression.

statement function reference: A reference in an arithmetic
expressicn to a previously defined statement function.

statement number: A number of from one through five
decimal digits placed within columns 1 through 5 of the
initial line of a statement. It is used to identify a statement
uniquely, for the purpose of transferring control, defining
a DO loop range, or referring to a FORMAT statement.

200

storage map: A compiler listing that shows the names and
storage locations of variables and statement numbers in
the object module.

subprogram: A program unit headed by a FUNCTION or
SUBROUTINE statement.

SUBROUTINE subprogram: A subroutine consisting of
FORTRAN statements, the first of which is a SUuOUTINE
statement. It optionaily returns one or more parameters to
the calling program unit.

subscript: A subscript quantity or set of subscript quanti-
ties, enclosed in parentheses used in conjunction with an
array name to identify a particular array element.

subscript quantity: A component of a subscript: a positive
integer constant, integer variable, or expression that evalu-
ates to a positive integer constant. If there is more than one
subscript quantity in a subscript, the quantities must be
separated by commas.

system input device: A device, such as a card reader or a
printer/keyboard, used to read the job stream.

type declaration: The explicit specification of the type
and, optionally, length of a variable or function by use of
an explicit specification statement.

unformatted record: A record for which no FORMAT
statement exists, and which is transmitted with a cne-to-
one correspondence between internal storage locations
(bytes) and external positions in the record.

variable: A data item, identified by a symbolic name, that
is not an array or array element.

FORTRAN SAMPLE PROGRAM

Figure 31 contains a sample System/3 FORTRAN program
and the output listing resulting from its compilation, link
editing, and execution. The sample program can be used to
accomplish post-installation checkout of the compiler.

After program product installation, if the system uses 5444,
this program can be run by placing the distribution disk
cartridge on R1 (for systems using 3340, place the program
product distribution data module on D1). Then, generate

a call to the procedure FRTSMP using the following OCL
statements:

// DATE 00/00/00
// CALL FRTSMP,R1
// RUN

You must have 10 tracks available for $SOURCE and 10
tracks available for $WORK on F1. The procedure assumes
that F1 is named F1F1F1.

This test program consists of three groups of statements: a
FORTRAN source module of a subprogram named KBINCO
(used to compute entries in an array), a FORTRAN source
module of a main program named SAMPLE (used to print
out the array), and a single data statement that is used as
input to the load module resulting from the compilation of
the *wo FORTRAN source modules.

The sample program is written to be run in the minimum
system configuration.

Figure 31 shows the output as it appears on the printer.
Each page heading will display the current version number,
modification number, modification number, date, and
page number. Compiler output consists of:

1. The source module listing m

2. The compiler storage map B

3. Informative messages G

Appendix A. FORTRAN Sample Program

Appendix A. FORTRAN Sample Program

201

Page of SC28-6874-3
Issued 25 November 1977
By TNL: SN21-5568

// CALL FRTSMP,.R]

XX CALl PARTO1 .R1

XX LOAD $FORTLF1

XX COMPTIF SOURCE-KBINCOLUNIT-R1

XX FILF NAMF-
XX FTILF NAMF-~

XX RUN
// RUN

FORTRAN TV

*¥PROCFSS MAP

SWORKLUNTT—-F1. PACK-FIF1F1,TRACKS~10,RETAIN=S
$SOURCE «UNTT-F1 « PACK=-F1F1F1,TRACKS—-T0.RETAIN-S

VERXX /MON XX

C
C e 30 e Ak e %K e g e o e e s ok o 3Kk Sk koo oo ok o o e o o o o ok ok ok ok
[* KBINCO COMPUTFS THFE BINOMIAL CCEFFICIENT, *
C # OCINGK) = (NR{N=1)k (N-K+1))/(KE{K=1)%%%]), *
¢ * WHFRF N AND K ARF THF INTEGFR ARGUMENTS TO *
C * THE FUNCTION. INTFRMEDIATE CALCULATICNS ARE %
C * PFRFORMFD IN RFAL ARITHFMETIC. IN THE CASF *
C * WHERF K .GT. N, A VAMUF 0OF 7ZFRC IS RFTURNEDC. *
C * THE VALUES OF N AND K ARF LFFT UNCHANGFD. *
C * THF FUNCTION HAS BFFN CHFCKFD FOR ALL (OM- *
C ¥ BRINATIONS OF N=14?2400s 9?20 AND K=142 4uu.0l0. *
¢ e o e o e e ok e ok ko e e o et s ok sk ok o ko okl ok ok o o e o e ok ok e e e ok
C
1 FUNCTION KBINCO(N.K)
CHFCK FOR TRIVIAL CASFS
2 TF(K .GT.N) GCTC 50
3 TF(K .FQ. 0} GOTO €0
4 TFIL K .FQ. N) GOTQ €0
5 TE(K .FG. 1) GCTC 70
6 TF(N-K .FQ.1) GOTO 70
CONVFRT TG RFAL FOR INT., CALCULATIONS
7 P = N
8 Q = K
CHFCK FOR LNWFR 'DENNMINATOR?®
] TF(P-0 LT Q) o] = P-Q
CALCUHLATF DFENOMINATOR
10 MAX = Q
11 0T = 1.0
12 nO 30 T=2.MAX
13 BROT = 1 * ROT
14 30 CONTINUF
COMPUTF NUMFRATNR
15 MA X = P
16 MIN = p - Q + 1.0
17 TOP = 1.0
18 00 40 T=MIN.MAX
19 TOP = T * TOP
20 40 CONTINUF
CALCULATE AND ROUND BIN. COFFF.
21 KBRINCO = TOP/ROT + 0.5
22 RETURN
73 50 KBINCO = 0
24 RETURN
25 60 KBINCO = 1
26 RETURN
27 70 KBINCO = N
78 RETURN
29 FND
NAMF AT HFX1 DEC1 HEX? DEC2? NAMF AT HFX1 DFC1 HEX2 DEC2 NAME
KRTNCO 1T 0006 00006 N 1 000A 00010 K
[R 0012 00018 Q R 0016 00022 MA X
aOT R 001F 00030 T I 0022 00034 MIN
TOP R 002A 000472
000 TOTAlL FRRORS FOR THIS CCMPILATION

Figure 31 (Part 1 of 6). FORTRAN Sample Program

202

e

XX/ XX/XX PAGE 001

01210000
0122000¢C
01230000
01240000
01242000
01244000
01246C0C
01248000
01248400
01248800
01249200
01249600
01249700
01250000
01260000
013000C0
01350000
01400000
01450000
01500000
0151000¢C
01550000
01600000
01610000
01650000
01660000
01700000
01750000
01800000
01850000
01900000
0191000C
019506000
02000000
0205000C
02100000
02110000
02120000
02130000
0215000C
02200000
02250000
023000C0
02350000
02400000
0245000C
02500000
02550000

HEX1 DEC1 HEX2 DEC2
O00OE 00014
C0lA 00026
0026 00038

Page of SC28-6874-3
Issued 25 November 1977
By TNL: SN21-5568

STATFMENT ALLOCAT INNS
30 =0141 40 =0185 50 =0180 60 =01A9 70 =018S
OL105 T THF CODF LENGTH OF KBINCO 1S 449 DECTMAL.
ar1o3 1 TOTAL NUMBFR OF LTIBRARY SFCTCRS RECUIRED IS 5

NAME-KBINCO.PACK-F1F1F 1.UNIT=-F1,RETAIN-T.LIBRARY=~R +CATEGORY-020

X' CALYL PART(Q?,R]

YK LOAD $FORT.F1

X COMPILF SOURCE-SAMPLF,UNIT-R1

KX FI1F NAME-$WORK sUNIT~F14PACK~F1F1F1,TRACKS-10,RETAIN~S
XX FItF NAMF-$SOURCF UNIT=-F1,PACK-F1F1F1,TRACKS-10,RETAIN-S
XX RUN

*PROCFSS MaAP

1 PROGRAM SAMPLF
C ********#**#**************#***********#*##********#*******#*********OOOIQOOOO
c * 00040400
€ * THIS PROGRAM IS A TEST CASF DFSIGNFD TO VERIFY THAT THE S/3 *00041200
€ % FORTRAN IV COMPILFR ANC L IBRARY HAVE BEEN PROPERLY INSTALLED IN #00041600
€ % YOUR SYSTFM. THE RFOUTRED GCL STATEMENTS ARF INCLUDED WITHIN *00041700
€ % THF CALLED PROCFEDURFS. *00041800
C % *00041900
C * THF PROGRAM GENFRATES A TARLF NF BINCMIAL CCEFFICIENTS WHICH IS *00056400
€ * THFN PRINTED ON THF PRINTFR. ALL DATA IS PROGRAM GENERATED. #00066400
c % *00070400
C % *00N071000
€ % THF OUTPUT SHOULD BF -=- *00081000
€ o* *00083000
C % T I *00085000
€ o* T K I *00085400
G K T T e e e I *00090200
Cx 1 NT1 ” 3 4 5 6 7 8 9 10 I *000%2200
G F T o | o e e e e 1 %00094200
C*x 1 171 1 0 0 0 0 C 0 0 0 0 1 *00094600
cx1 21 » 1 0 0 0 0) 0 0 01 *0009500¢C
C*1 31 3 3 1 0 0 0) 0 0 0 1 *00095100
C*1 41 & 6 4 1 0 o 0 0 o 0 1 %00108800
C*1 51 & 10 10 5 1 0 0 0 0 0 I *00118800
C*71 61 6 15 20 15 & 1 0 0 0 0 1 *00120800
Cx T 71 7 21 35 135 21 7 1 0 0 01 #*00121200
C*x 1 RI 8 28 56 70 56 28 8 1 0 0 1 00121600
C* 1 91 9 36 84 126 126 84 36 S 1 0 T #*00122000C
C* 110 7T 10 45 120 210 752 210 120 45 10 11 *00122400
C*1 111 1 55 165 330 462 462 330 165 55 11 1T *00122500
C % 1 121 172 66 220 495 797 524 792 455 220 66 1 %00127100
C %1 137113 78 286 715 1287 1716 1716 1287 715 286 1 *%00129100
C* 1 141 14 91 3¢&4 1C01 2002 3003 3432 3003 2002 1001 1T *00131100
C* T 15 1 15 105 455 1365 3003 5C05 6435 6435 5005 3003 I #00131500
C* 1 161 16 120 560 1820 4368 8008 11440 12870 11440 8008 T *00131600
C % ¥ 17 1 17 136 680 7380 6188 12376 15448 24310 24310 19448 [*00136200
C* 1 181 18 153 816 3060 8568 18564 31824 43758 48620 43758 1 %00138200
C* T 191 19 171 969 3876 11624 27132 50388 75582 92378 92378 I *00140200
C %1 20 1 20 190 1140 4845 15504 38760 77520 125570 167960 184756 1 #00140600
L S -~—==1 *00140700
€ % *00152500
C **00162500

Figure 31 (Part 2 of 6). FORTRAN Sample Program

Appendix A. FORTRAN Sample Program 203

? DIMENSION NBYK(20G,10) 00164600

3 INTEGFR OUT 00176400

4 DATA ouT/3/ [

5 DO 10 K=1.10 ' 00200000

6 NBYK(1.K) = K 00250000

7 10 CONTINUF 0030000¢

] WRITE(OUT,?) 00400006

9 WRITF(OUT.3) (NBYK{1.K).K=1,10) 00450000

10 DN 30 N=1,20 00500000

n nn 20 K=1,10 00550000

17 NBYKIN.K) = KBINCOIN.K} 0066000C

13 20 CONTINUE 00650000

14 WRITF(OUT.4) No(NBYKIN.K)eK=1,1C) 00700000

15 30 CONTINUF 0075000C
FORTRAN IV VERO5/MODOO 09/11/76 PAGE 002

16 WRITE(OUT,5) 00800000

17 sTOP 00850000

18 ? FORMAT('1 S/3 FORTRAN 1V SAMPLE TEST CASFE'///////1X,*TEST INPUT,00900006

IFOR S/3 SAMPLE PROGRAM' /////) 0091000¢

19 3 FORMAT (T 74 10 o5T7("=) o' T/ T7 I T35, 'K ' T65, 1 /T2 " [~—~1", 00950000

* STUY =1)41 /T240 0 N 1%,12,144215.316,317,t 1'/T?, 01000000

* Ve [0 G4t} 0] 1) 01050000

20 4 FORMAT (* T'.13,' I'413,T4,215,316,317,' 1) 01100000

21 5 FORMAT(' T——==T " ,57('=t} ,v17) 01150000

22 FND 01200000

NAMF AT HFX! DECL HEX2 DFC? NAME AT HEX1 DEC1 HEX? DEC? NAME AT HEX1 DEC1 HEX2 DEC2
ﬂ ouT T 0185 0038% NBYK i 0189 00393 0448 01192 X I 04A9 01193
N 1 04AD 01197

000 TOTAL FRRORS FOR THIS COMPILATION

STATEMENT ALLOCATIONS
5 =0561 4 =057 3 =0%BR 2 =0¢€66 10 =06B0 20 =072C 30 =0764

Figure 31 (Part 3 of 6). FORTRAN Sample Program

204

START
ADDRF SS

1800
1F 79
1800
1900
iF 81
I0FE
20R3
20F2
1EAY
21164
2125
2137
2168
2189
2199
2230
2730
2221
?20F
21 FR
2248
204F
2260
2256
226C
2260
7296
FRE S
P12
2042
2781
2R
?7R9
27 RF
2206
220D
2703
220A
22 FF
2281
27F8
272Fh
2386
237A
2324
2307
241D
2470
2431
244A
2440
2430
243F

OVFRLAY LINKAGE EDITOR CORF USAGE MAP

CATFGORY

0

NAMF AND
FENTRY

SAMPL F
H#UNT TR
#HERBUF
#I10BUF

$FOFO
AMNTRY
#SNTRY
#RNTRY
#0

$FCFS
#RETRN

$FOBRY
#DEDG
#OED7 O

$FO 10
#ELST
HELST?
#0DERR
H#IOINT
#10COM
#ENDEQ
#ERRFQ
#OUTBL
#INTRL
#103aa
#FLRP?

S$FOVG
#ADRDT
#RLIST

$FOVH
#OL IST

$FCE3
#xL 1
#xS5T
#XA
#XML T
#XMST
$FOF6
#AST
#BA
#BS
$FOFD
#DOEND
#DOBR
#DBGN 3
$FOF?
$FOEA
#RL
#RST
#RAO
#RA
#RSO
#RS

CODE LENGTH
HEXADFCIMAL CECIMAL

0781

0193

00FD

ooocC

0010

0028

001cC

OCE1L

0046
0154

Figure 31 (Part 4 of 6). FORTRAN Sample Program

1921

403

35

S8

12

16

40

28

70
340

Appendix A, FORTRAN Sample Program

205

START CATHGORY NAMt AND Cent tENGTH

ADDRFSS FNTRY HEXADECTMAL DECTMAL
26550 &RTO

2571 4 $FOLT 0083 131
258 4 4 4+ 0F O084 132
2678 & $FOtH 0098 142
27110 &4 $FOVC Q061 97
2T #EL0Aa7Y

207 4 $FOVA G060 109
210t 4 $F OFC 0020 32
21F4 HREE LW

?T1F4 #RUFLW

2Tk} s s+ 082 0134 108
2901 HERET

2909 #FOBR2 A

2RR1 #FOB2B

29173 HEORB?C

2912 © $EOCH OO AL LA}
2Qnt s $HOBH 004t 78
P2A2D o $HORY 0018 24
P8 4h “ $F0OBA 001 n 24
DAY 5 $EOCA OC2R 43
?ARD 6 $FOTC 00c2 194
PRV HERTSY

7 Rat 6 $EOTR 006A 106
’?RRQ 6 41 PRT aor s 251
2CR4 & s I3 00F 4 278
2CRA HEOT3A

2D &R HEOLD

?NA9R 6 $FOVP 001s ?5
?NA1 & $FORRB 0060 109
PF1F & $FND7 012c 300
2F4A 20 KAINCO 01C1 449

nmroo i THF TOTAL CORE USED RY SAMPLE IS 6411 DFECIMAL .

o rton 1 THF START CONTROL ADDRESS OF THIS MODULE IS 1800.

at104 1 TOTAL NUMBER OF L IBRARY SFCTORS REOUIRFD IS 27
NAMF -SAMPLE SPACK=-FLF1FL UNTT-FL,RFTAIN-T,.U IRRARY-0)

Figure 31 {Part 5 of 6}. FORTRAN Sample Program

206

XX CAL1 PARTQ3,R1

XX 1 0AD SAMPLFE,
XX RiiN

Fl

S/3 FORTRAN IV SAMPLF TEST CASF

TFEST INPUT,FOR S5/3 SAMPLE PROGRAM

1
[¥
) N T 2
J———=1
T Ty i 0
1 2 r 2 1
i 301 3 3
1 4 1 4 6
{ 57 5 10
1 61T & 15
1 T 7T 21
4 A1 &8 78
T 9 1 S 38
T 101 10 45
[N I B B | 5%
Fy2 1 12?2 66
I 13 1 13 718
V14 1 14 91
151 15 105
16 1 16 120
T 171 17 136
T 18 1 18 153
I 19 1 19 171
T 201 20 190
L R it

715
1001
1365
1820
2380
3060

3876 11628 27132
4845 15504 38760

K

5 [} 7 8 9 10
0 0 0 0 0 0
o} 0 0 0 0 0

o] 0 0 0 0 o]

[¢] [¢] (o} (4] 0 ¢}
1 0 0 0 0 0

6 1 0 0 (o} 0

21 7 1 [o] (o} 0
56 28 8 1 0 0
126 84 36 9 1 0
252 210 120 45 10 1
462 462 330 165 55 11
792 924 792 495 220 66
1287 1716 1716 1287 715 286
2002 3003 3432 3003 2002 1001
3003 S005 6435 6435 5005 3003
4368 B0O08 11440 12870 11440 8008
6188 12376 19448 24310 24310 19448
8568 18564 31824 43758 48620 43758

50388 75582 92378 92378
77520 125970 167960 184756

Figure 31 {Part 6 of 6). FORTRAN Sample Program

Appendix A. FORTRAN Sample Program

Ll e R e B e R e I R

207

208

Compiler-generated messages indicate conditions encount-
ered during program comipiation. Usually they describe
invalid uses of FORTRAN syntax, but can also relate to
violations of System/3 requirements.

Errcr messages are listed here in order by message number
and are described using the forrat:

[

i

Message number and text.

Explanation, which sutpmaiizes the condition(s)
causing the message to be generated.

Severity code, which indicates the action taken by
rhe compiter. Two severity codes are possible:

Severity 4 warning message. Compilation con-
tinues; the iink-editing step and load module
execution step are sull peraitted.

#® Severity 8--serious error. Compilation continues,
but processing terminates at the end of compila-
tion (the LINK, OBJECT, DECK, and GODECK
options are ignored}. The phrase output text not
generated is used as a reminder that processing
is terminated at the end of compilation.

If the compiter makes an assumption or takes a
special action because of one of the error messages,
that assumption or action is described in the severity
code section.

Programrmer response, sugygesting appropriate action
which you should take. Corrective action should
solve the problem; however, if the problem recurs,
have the source program and associated source listing

available before calling {BM for programming support.

NON-NUMERIC STMT NUMBER.

Explanation: Thie statement number contains a
character that is not a decimal digit.

Severity: 8; output lext not generated.

Programmer Response: Respecify the statement
number using oniy decimal digits.

02

03

05

Appendix B. Compilation Messages

CONTINUATION ERROR.

Explanation: More than 19 continuation cards are
specified, or a continuation card is out of sequence.

Severity: 8; output text not generated.

Programmer Response: Check for proper delimiters;
respecify the statement so that it does not extend
over move than 19 continuation cards.

SYNTAX ERROR

Explanation. A statement is found that does not
conform to the rules for writing FORTRAN state-
ments.

Severity: 8; output text not generated.

Programmer Response: Correct the statement.

INVALID STATEMENT.

Explanation: The statement is undeterminable, mis-
spelled, or incorrectly formed.

Severity: 8;output text not generated.
Programmer Response: Correct the statement.
SEQUENCE ERROR.

Explanation: The statement is not in the proper
order of statements for a FORTRAN program.

Severity: 8;output text not generated.

Programmer Response. Place the statement into
proper sequence. For example, if the FUNCTION,
SUBROUTINE, or PROGRAM statement appears,
it must be the first statement in a program; the
IMPLICIT statement must precede all other state-
ments; specification statements must precede execu-
table statements.

Appendix B. Compilation Messages 209

06

07

08

09

10

210

MISSING STMT NUMBER. 11
Explanation: A statement following a STOP, RE-

TURN, GOTO, or arithmetic IF statement does not
have a statement number.

Severity: 8; output text not generated.

Programmer Response: Supply a statement number
where required.

INVALID NAME. 12

Explanation: A statement contains a variable or
subprogram name longer than six characters or one
that does not begin with an alphabetic character; or
ina FUNCTION or SUBROUTINE statement, the
name is missing.

Severity: 8; output text not generated.

Programmer Response: Supply or respecify the name, 13
making sure it begins with an alphabetic character and
is no more than six characters long.

SUBSCRIPT ERROR.

Explanation: A subscript is missing or incorrectly
specified within dimensioned information.

Severity: 8; output text not generated.
Programmer Response: Correct the subscript. 14

DUPLICATE STMT NUMBER.

Explanation: The statement number is previously
defined.

Severity: 8; output text not generated.

Programmer Response: Assign a different statement
number.

DUPLICATE COMMON/GLOBAL. 15
Explanation: A variable in a COMMON or GLOBAL
statement is previously defined in a COMMON or

GLOBAL statement, or an attempt is made to initial-

ize a COMMON or GLOBAL item.

Severity: 8;output text not generated.

Programmer Response: Assign a different variable
name.

SUBPROGRAM IN COMMON.

Explanation: A subprogram name or dummy pararm
cter appears in a COMMON or GLOBAL statement,

Severity: 8; output text not generated.
Programmer Response: Remove the subprogram
from COMMON; respecify COMMON or GLOBAL
statements without dummy arguments.

DUPLICATE SUBPROGRAM VAR.

Explanation: A vanable name appears more than
once ina SUBROUTINE or FUNCTION statement.

Severity: 8; output text not generated.

Prograrnmer Response: Assign a different variable
name.

INVALID FORMAT SYNTAX.

Explanation: The FORMAT statement contains a
slash followed by a comma, or a comma followed by
a slash.

Severity: 4; warning.

Programrmer Response: Correct the statement if the
program is to be compiled again.

SUBPROGRAM NAME ERROR.

Explanation: An attempt was made to dimension a
subprogram name or type a SUBROUTINE name.

Severity: 8; output text not generated.

Programmer Response: Remove dimension informa-
tion from subprogram names. |f a name is to be
typed, make the subprogram a function rather than
a subroutine.

INVALID SPECIFICATION.

Explanation: A name is dimensioned more than
once or explicitly typed more than once.

Severity: 8; output text not generated.
Programmer Response: Make sure type and dimen-

sion information is specified only once for a name;
assign different names to different variables and arrays.

16

17

18

19

INVALID EXTERNAL NAME.

Explanation: A name specified in an EXTERNAL
statement is a subprogram name, a dummy parameter,
a COMMON or GLOBAL variable, a PROGRAM
name, or is dimensioned.

Severity: 8; output text not generated.

Programmer Response: Correct any duplicate names;
assign undimensioned names.

INVALID REAL CONSTANT.

Explanation: An invalid or incorrectly specified
real constant is detected.

Severity: 8; output text not generated.

Programmer Response: Respecify as a valid real
constant; that is, a number of decimal digits written
with a decimal point optionally followed by a D or
E and one or two digits for an exponent.

INVALID INTEGER CONSTANT.

Explanation: An invalid or incorrectly specified
integer constant is detected.

Severity: 8; output text not generated.

Programmer Response: Respecify as a valid integer
constant; that is, a number of decimal digits written
without a decimal point that does not exceed the
value 2147483647.

DUMMY ARGUMENT ERROR.

Explanation: More than 15 dummy arguments, or
duplicate dummy arguments, appear in a statement
function argument list, or more than 25 dummy argu-
ments appear in a FUNCTION or SUBROUTINE
statement.

Severity: 8; output text not generated.
Programmer Response: Correct any duplicate names;

make sure the number of dummy arguments does not
exceed 15 or 25.

20

21

22

23

Page of SC28-6874-3
Issued 29 September 1978
By TNL: SN21-5634

SUBSCRIPTED VAR IN ASF

Explanation’ A subscripted variable is specified in a
statement function.

Severity: 8; output text not generated.
Programmer Response: Remove the subscript; if
necessary, restructure the program to execute the
proper variable.

SUBSCRIPT EXPRESSION ERR.

Explanation: An incorrectly formed subscript ex-
pression or undefined variable appears in a subscript
expression.

Severity: 8; output text not generated.

Programmer Response: Correct the subscript expres-
sion; define all variables.

SUBSCRIPT DIMENSION ERR.

Exp/anat/'on: The number of subscripts in a subscript
expression, or the evaluated result of the subscript(s)
does not agree with the dimension information, or
the evaluated result of the subscript exceeds 32767.

Severity: 8; output text not generated.

Programmer Response: Respecify the expression or
the dimensioned definition so that they are consistent.

ARITHMETIC STMT ERROR.

Explanation: An invalid arithmetic statement or
variable is specified; or in a FUNCTION subprogram,
the left side of an arithmetic statement is a dummy
argument or is in COMMON.

Severity: 8; output text not generated.

Programmer Response: Correct the arithmetic
statement.

Appendix B. Compilation Messages 211

24

25

26

27

28

212

INVALID IF EXPRESSION. 29

Explanation: An invalid or incorrectly formed |F
expression is specified.

Severity: 8, output text not generated.
Programmer Response: Correct the |F expression.
INVALID SIMPLE ARGUMENT.

Explanation: An invalid simple argument appears
in a CALL statement. 30

Severity: 8; output text not generated.
Programmer Response: Correct the CALL statement.
INVALID CALL EXPRESSION.

Explanation: An invalid expression appears in a
CALL statement.

Severity: 8; output text not generated.
Programmer Response: Correct the CALL statement. 3t
INVALID ASF LEFT SIDE.

Explanation: An invalid expression appears to the
left of an equal sign in a statement function.

Severity: 8; output text not generated.
Programmer Response: Correct the statement function.
INVALID ASF RIGHT SIDE. 32

Explanation: An invalid expression appears to the
right of an equal sign in a statement function.

Severity: 8; output text not generated.

Programmer Response: Correct the statement
function.

INVALID STMT NUMBER.

Explanation: In an arithmetic |F, GOTO, or AT, or

on the END= or ERR= parameter of an |/0O statement,
a statement number is missing, invalid, incorrectly
placed, or is the number of a non-executable statement.

Severity: 8; output text not generated.

Programmer Response: Respecify the statement with
a valid statement number.

FORMAT STMT NUMBER ERROR.

Explanation: A FORMAT statement number is miss-
ing or is incorrectly specified ina READ or WRITE
statement, or a READ/WRITE statement containing
an 1/Q list references a FORMAT statement not hav-
inga D, E, F, |, or A format specification.

Severity: 8; output text not generated.

Programmer Response: Respecify the statement with
a valid statement number.

INPUT/QUTPUT LIST ERROR.

Explanation: A syntax error or an invalid list element
appears in an input/output list; or in a FUNCTION
subprogram, the input list element is a dummy argu-
meint or is in COMMON.

Severity: 8; output text not generated.

Programmer Response: Correct the input/output list.

COMPUTED GO INDEX ERROR.

Explanation: The index of a computed GO is missing,
invalid, or not preceded by a comma.

Severity: 8; output text not generated.

Programmer Response: Correct the computed GO.

33

34

35

36

DO LOOP ERROR.

Expianation: The DO statement is incorrectly nested;
or the terminal statement of the associated DO state-

ment is a GOTO arithmetic IF, RETURN, FORMAT,
STOP, PAUSE, or another DO,

Severity: 8; output text not generated.

Programmer Response: Supply a CONTINUE state-
ment if possible; otherwise, restructure the DO loop.

TOO MANY NESTED DOS.

Explanation: There are more than 25 nested DO
statements.

Severity. 8; output text not generated.

Programmer Response: Restructure the program
wherever possible 1o contain fewer DO statements in
a loop.

INVALID DO VALUE.

Explanation: The initial, test, or increment value in
a DO statement or implied DO ina READ or WRITE
1/0 list is of the invalid type or the initial value is
negative or zero.

Severity: 8; output text not generated.

Programmer Response: Respecify the DO statement
initial value as an unsigned integer constant or
variable greater than zero.

INVALID DO INDEX.

Explanation: The index of a DO or an implied DO is
of invalid type, or, in a FUNCTION subprogram, the

index of a DO is a dummy argument or is in COMMON

or GLOBAL.
Severity: 8; output text not generated.

Programmer Response: Correct the DO statement,

37

38

39

41

INVALID LAST STATEMENT.

Explanation: The last executable statement before
the END statement is not a STOP, GOTO, arithmetic
IF, or RETURN statement.

Severity: 4; warning.

Programmer Response. Supply a STOP or other valid
statement before the END statement.

NO END STATEMENT.
Explanation: The END statement is missing.
Severity: 4; warning.

Programmer Response: Supply an END statement if
the program is to be compiled again.

STATEMENT TOO LONG.

Explanation: A statement is too long to be scanned
because of compiler expansion of subscript expres-
sions or addition of generated temporary storage
locations.

Severity: 8; output text not generated.

Programmer Response: Restructure the statement
into smaller logical units and specify as separate
statements.

COMMON/GLOBAL EXTENSION.

Explanation: A variable is made equivalent to an
element of an array in such @ manner as to cause the
array to extend beyond the origin of the COMMON
or GLOBAL area.

Severity: 8, output text not generated. The compiler
will restructure the EQUIVALENCE nest so that
COMMON or GLOBAL is not extended. Note that
this restructuring may cause apparent errors in other
nests, generating error 42.

Programmer Response: Restructure equivalence

wherever possible; include dummy arrays if necessary
to make the COMMON area larger.

Appendix B. Compilation Messages 213

42

43

44

45

214

EQUIVALENCE ERROR.

Explanation: Two variables or array elements in
COMMON or GLOBAL are equated, or the relative
locations of two variables or array elements are
assigned more than once.

Severity: 8; output text not generated.
Programmer Response: Restructure COMMON or
G1.OBAL variables and arrays, or correct EQU[VA-
LENCE statements to eliminate double definition.

INVALID EQUIVALENCE NAME.

Explanation: A name that may not appear in an
EQUIVALENCE list was detected in the list.

Severity: 8; output text not generated.

Programmer Response: Make sure that only data
variable names are used in EQUIVALENCE lists.

RETURN ERROR.

Explanation: A RETURN statement is present in a
main program.

Severity: §; output text not generated.

Programmer Response: Remove the RETURN state-

ment and supply a STOP statement.

MISSING DEFINE FILE.

Explanation: A DEFINE FILE statement is missing
in a main program that contains a direct access
READ, WRITE, or FIND statement.

Severity: 8; output text not generated.

Programmer Response: Supply a DEFINE FILE
statement.

46

47

48

49

INVALID DEFINE FILE.

Explanation: A DEFINE FILE statement is present
in a subprogram or is specified more than once for a
file.

Severity: 8; output text not generated.
Programmer Response: Remove any extra,.cous
DEFINE FILE statement; make sure duplicate
DEFINE FILE statements are not specified.

TOO MANY ASFS.

Explanation: The number of arithmetic statement
functions has exceeded the compiler’s maximum of
20.

Severity: 8, output text not generated.
Programmer Response: Reduce the number of
arithmetic statement functions, or subdivide the
program into FUNCTION subprograms.

MISMATCH IN DATA.

Explanation: Names and constants in a DATA state-
ment are not in a one-to-one correspondence.

Severity: 8; output text not generated.

Programmer Response: Respecify the DATA state-
ment, deleting extraneous names or constants.

MIXED MODE IN DATA.

Explanation: A constant and variable in a DATA
statement do not have the same type.

Severity: 8; output text not generated.

Programmer Response: Respecify the DATA state-
ment so that typing is consistent.

Hi

INVALIOD H CONSTANT. 55
Explanation. Ao mvaiid hitecal constant is specificd
ma DATA statement.
Severity. 8, urput text not generated.
Progrommer Respoose. Respecity the DATA state-
et chivek tor vaiid delinnrer s,
INVALID HEX CONSTANT. H6
Explonation Aninvahd hexadecimal constant is
sprasiied i o DATA statanent.
Severtty. B output toxt not generated.
Frogramener Wesponse. Respeaily the DATA state-
ment using only the charocters 0 through 9 A through
F,and blank, tor hexadecital characters.
57
SUBPHOGRAM VAR IN DATA.
Explanation: A subprogiam name o dummy variable
is specithied 0 DATA statement.
Severity: 8; output text not generated.
Programiner Response: Bespecify the DATA state-
ment, removing subprogram names or dummy variables.
COMMON NAME IN DATA.
58
Explanation A COMMON or GLOBAL variable is
foaded with a DATA specification.
Severity: 8; output text not generated.
rogrammer Response: Respecify the DATA state-
et deteting COMMON or GLLOBAL variables.
OPTIONS ERROR.
Explanation: There was an options error in one or 59

more compiler option statements. (Compiler option
staterments inciude device option statements, the
CORE statement, the CATEGORY statement, and
thz »PROCESS statement.) Each statement in error
is followed by the message **CONFLICTING OP-
TICNS OR INVALID SYNTAX **,

Severity: 8; output text not generated.

Programmer Response: Correct the statement(s).

MISSING FORMAT DELIMITER.

Explanation: A literal, X, or H type group ina FOR
MAT statement is not tollowed by a comma, stash, or
right parenthesis.

Severity: 4, warning.

Programmer Response: Correct the statement
RELATIONAL IF ERROR.

Explanation: A relational 1F statement contains a
DO statement, another relational IF statement, or a
non executable statement.

Severity: 8; output text not generated.

Programmer Response: Correct the statement.
INVALID DEBUG VARIABLE.

Explanation: A variable name is misspelled, not
defined, an EXTERNAL name, the name of a sub-
program {not this function), a dummy argument, or
an attempt is made to SUBCHK a scalar.

Severity: 4; warning.

Programmer Response: Correct the DEBUG state-
ment.

INVALID DEBUG OPTION.

Explanation: A DEBUG option is specified incorrect-
ly; or the NOTRACE option is specified with AT
and/or TRACE statements in the DEBUG packet.

Severity: 8; output text not generated.

Programmer Response: Correct the DEBUG packet
as necessary.

INVALID RECORD NUMBER.

Explanation: The record number expression in a
READ, WRITE, or FIND statement does not evaluate
to an integer value.

Severity: 8; output text not generated.

Programmer Response: Respecify the expression so
that it is an integer value greater than zero.

Appendix B. Compilation Messages 215

60

61

62

216

PROGRAM NAME MISSING.

Explanation: No name is specified in the PROGRAM
statement.

Severity: 8; output text not generated.
Programmer Response: Supply a program name.
INVALID DEBUG PACKET.

Explanation: The DEBUG packet contains statements
other than AT and TRACE.

Severity: 8; output text not generated.

Programmer Response: Remove all but AT and
TRACE statements from the packet.

NOT ENOUGH CORE.

Explanation: Total constant, variable, buffer, and
1OB allocations exceed the indicated number of
bytes:

Models 6, 10, and 12 62,720 bytes

Model 15 with Program
Number 5704-FO1

49,152 bytes

Model 15 with Program
Number 5704-FO2

57,344 bytes

For program 5704-FO2 only: The total external
storage requirements (external buffers) exceeds 64K.

Severity: 8; output text not generated.

Programmer Response:
(one of the following):

® Segment the program into smaller subprograms
that can be overlaid in an overlay environment.

® Separate the program into a number of smaller
programs performing independent functions.

® Use either the SHRBUFF or EXTBUF (Model 15
with Program Number 5704-FQO2 only) options
for DAD files.

63

64

65

66

67

DATA NAME DOUBLY DEFINED.

Explanation: A variable in a DATA statement is
previously defined.

Severity: 4; warning. The last definition is used.
Programmer Response: Respecify variables using

different names; or remove previously define:!
variables from the DATA statement.

MISSING RIGHT PAREN.
Explanation: A required right parenthesis is missing.
Severity: 8; output text not generated.

Programmer Response: Supply required right paren-
thesis; or remove the extraneous left parenthesis.

COMPUTED GO TO ERROR.

Explanation: More than 60 statement labels are
specified in the COMPUTED GO TO statement.

Severity: 8; output text not generated.

Programmer Response: Reduce the COMPUTED
GO TO statement into two or more statements.

MISSING STMT NUMBER.

Explanation: The FORMAT statement does not
have a statement number.

Severity: 8; output text not generated.

Programmer Response: Respecify the statement with
a statement number.

MISSING LEFT PAREN.

Explanation: The FORMAT statement does not
begin with a left parenthesis.

Severity: 8; output text not generated.

Programmer Response: Correct the statement.

68

INVALID SCALE FACTOR. 72

Explanation: The FORMAT statement specifies a

scale factor on a data type other than D, E, or F, or
no number or an invalid number precedes the scale
factor, or the scale tactor is greater than 127 or less

than -127.
Severrty: 8, output text not generated.

Programimer Response. Correct the statement.
73
FIELD TOO LARCE.

Expianation: The FORMAT statement contains a

literal longer than 255 characters or a numeric

specification greater than 255,

Severity: 8, output text not generated.

Programmer Response: Restructure the statement;

sogiment large numeric specifications wherever

possible. 74
UNBALANCED PARENTHESES.

Explanation: The rGRMAT statement has a nesting

level greatar than 2, or ain enclosed literal, or more

code after the tast right parenthesis, or too large an

H specification, or the number of right parentheses

is less than the number of left parentheses,

Severity: 8; output text not generated. 75
Programmer Response: Correct the statement,

INVALID FIELD WIDTH

Explanation: The FORMAT statement contains a

fietd width of ¢ero, or in a D, E, or F specification,

W is specified less than D, or a literai of length O is

specified. 76

Severity! 8; cutput text not generated.

Programmer Response. Correct the statement,

MEANINGLESS NUMBER.

Explanation: The FORMAT statement contains a
meaningless number (for example, a field or group
count of zero), or a field count precedes a literal or

T format specification.

Severity: 8; output text not generated.

Programmer Response: Correct the statement.
INVALID DELIMITER.

Explanation: The FORMAT statement has a delimiter
other than a comma or slash, or there are two consecu-
tive data items without an intervening delimiter, or two
consecutive delimiters.

Severity: 8; output text not generated.

Programmer Response: Correct the statement.

MORE THAN 1 GENERIC STMT.

Explanation: The program contdins more than one
GENERIC statement.

Severity: 4; warning.

Programmer Response: Remove extraneous
GENERIC statements.

INVALID CHARACTER.

Explanation: The FORMAT statement contains a
character that is not a valid format character.

Severity: 8; output text not generated.
Programmer Response: Correct the statement.
INVALID $ NAME.

Explanation: A name beginning with $ is specified
for a FUNCTION or SUBROUTINE subprogram.

Severity: 8; output text not generated.

Programmer Response: Rename the subprogram.

Appendix B, Compilation Messages 217

77

78

79

80

81

218

MISSING DEVICE OPTIONS. 82

Explanation: A sequential or direct access 1/0
statement appears without a matching device options
statement specified, or a DEFINE FILE statement
appears with no corresponding direct access device
options statement.

Severity: 8; output text not generated.

Frogrammer Response: Specify the proper device
options statements.

STATEMENTS FOLLOWING END.

Explanation: The END statement is not immediately 83
followed by a /*.

Severity: 4; warning.

Programmer Response: Remove extraneous state-
ments. Place the END statement after all statements
in program execution.

DUPLICATE UNIT NUMBER.

Explanation: A iogical unit number is used more 84
than once.

Severity: 8; output text not generated.

Programmer Response: Redefine files so that each
logical unit number defines one file only.

INVALID UNIT NUMBER.

Explanation: The logical unit number in a READ,
WRITE, BACKSPACE, REWIND, END FILE, or
FIND statement is of the wrong type or is zero.

Severity: 8; output text not generated.

Programmer Response: Make sure the logical unit
number is valid.

TOO MANY NESTED CALLS.

Explanation: The program contains a statement
which has more than 20 levels of nesting for functions.

Severity: 8, output text not generated.

Programmer Response: Correct the statement.

INCORRECT NUMBER OF ARGS.

Explanation: An incorrect number of arguments was
specified for a function in a program containing a
GENERIC statement, or more than 25 arguments are
present in a CALL statement or function reference.

Severity: 8; output text not generated.

Programmer Response: Respecify the number of
arguments to agree with the number required by the
function, {for example, specify only one argument

for SIN); or reduce the length of the argument list to
25.

PROGRAM SELF REFERENCE.

Explanation: The program name in the main program
or subprogram is used as a subroutine name in a CALL
statement or in a function reference.

Severity: 8; output text not generated.

Programmer Response: Respecify either the program
name or parameter name to make each unique.

INVALID ARGUMENT TYPE.

Explanation: A subprogram contains:

1. An argument of the wrong type.

2. More than one argument not all of the same
type.

3. An argument which was an array name.

4. An argument which was a name that appeared

in an EXTERNAL statement.
Severity: 8; output text not generated.

Praogrammer Response: Correct the argument type.

85

86

87

INVALID SUBPGM REFERENCE. 88

Explanation: The subroutine name in a CALL state-
ment or a function reference is in a COMMON,
GLOBAL, or DATA statement or is dimensioned, or
the subroutine name in a CALL statement is explicitly
typed or is missing.

Severity: 8; output text not generated.
Programmer Response: Correct the subprogram.
NAME USED AS SUBPR, FUNCT.

Explanation: A variable name is used as both a sub-
routine and function name.

Severity: 8; output text not generated.

Programmer Response: Assign different names to
functions and subroutines. 89

INCONSISTENT NO. OF ARGS.

Explanation: The number of arguments specified for
a function in a program containing no GENERIC
statement was inconsistent with FORTRAN rules.

Severity: 4; warning.

Programmer Response: If the function is meant to 90
be user-supplied, assign a function name that does

not duplicate a FORTRAN:-supplied function name.

If the function is meant to be FORTRAN-supplied,

specify the correct number of arguments.

INCORRECT ARGUMENT.

Explanation: Without the GENERIC statement
present, a non-intrirsic processor yunction contains:

1. Anargument of the wrong type.

2. More than one argument not all of the same
type.

3. An argument which was an array name.

4. An argument which was a name that appeared

in an EXTERNAL statement.

Severity: 4; warning. The function is assumed tc be
user-supplied.

Programmer Response: Correct the argument.
DATA STMT ERROR IN ARRAY.

Explanation: A redefinition of a subsection of an
array is attempted.

Severity: 4; warning.

Programmer Response: Review the DATA statement
and correct redefinitions.

INCONSISTENT FUNCT REF.

Explanation: A non-intrinsic processor function that
is either non-generic (or the GENERIC statement is
not present) has a parameter list that does not agree
with the original reference.

Severity: 8; output text not generated.

Programmer Response: Correct the parameter list or
specify the proper function.

Appendix B. Compilation Messages 214

91

92

93

220

DIRECT ACCESS DEV OPTNS. 97

Explanation: Two or more conflicting options have
been specified:

A. Two buffers were specified for a direct access
file. SHRBUFF was indicated in the option
statement; NOSHRBUFF is assumed and two
buffers are used.

B. For Model 15 with Program Number 5704-FQ2
only: SHRBUFF and EXTBUF have both been
specified for a direct access file. NOSHRBUFF 98
and EXTBUF are assumed.

Severity: 4, warning.
Programmer Response:

A. If NOSHRBUFF is desired, change *PROCESS
statement to indicate NOSHRBUFF. If
SHRBUFF is desired, change the DEVICE
option statement to indicate one buffer.

B. If NOSHRBUFF is desired, change the
*PROCESS statement to indicate NOSHRBUFF.
If SHRBUFF is desired, change the *PROCESS
statement to indicate NOEXTBUF.

SEQ DISK DEVICE OPTIONS. 99
Explanation: BLLOCKSIZE was not 256 or a valid

submultiple of 256 (128, 64, 32, 16). 256 is assumed
as the BLOCKSIZE.

Severity: 4; warning.

Programmer Response: Specify a valid BLOCKSIZE.

DAD/DEFINE FILE MISMATCH.

Explanation: The number of define file statements
does not equal the number of direct access device
option statements, or the logical unit number(s} does
not match.

Severity: 4;warning.

Programmer Response: Add the missing statement(s)
or correct the statement(s).

Page of GC2R-6874-3
Issued 29 September 1978
By TNt SN21-5634

STATEMENT NUMBER IS UNREFERENCED.

Explanation: The statement is not referred to any-
where in the program,

Severity: 4; warning.

Programrmer Response: Remove cxirznzous state-
ment numbers; correct statement numbers that may
have been specified incorrectly.

UNDEFVVAR NAME, iNDICATED BY ‘U" IN MAP.

Explanation: One or more variables are not defined.
That is, the variable was not assigned a value in the
program unit. The varizote did not appear on the
left of an equal sign (=], in 8 DATA statement, as a
dummy argumenit in a SUBROUTINE or FUNCTION
statement, or in the input/output list in a READ
statement. The variable(s) are identified by a ‘U’
under the AT column of the storage map.

Severity: 4; warning.

Programmer Response: Remove extraneous variables;
correct variable names that may have been specified
incorrectly.

INTERNAL TEXT FORMAT EXCEEDS CORE SIZE.

Explanation: The compiled program is too large to
be contained in working storage, and compilation
cannot continue.

Severity: 8; compiiation is terminated immediately.

Programmer Resporise. Reduce the size of the pro-
gram by subdividing it into subprograms or by
eliminating unnecessary parts of the progam {for
example, reducing the number of CALL arguments
by using COMMON where possiblei, ot by increasing
the partition size for the program, or by specifying
SHRBUFF on the *PROCESS statement.

$FOMT exponantiation subprograni
SFOMS exnonentiation subprogram
SFOMY exponentiation subprogram
SFOMA exponentiation subprogram
$FOMB exnunentiation subproaram
$FOME
BFC IXPONERIZLON subprogram
SEORT compiisr ac
SOLIMK, Hinbege cditor name 105, 1
$SOURACE Hie 105, 106

astiignming siorage foeation for 145
<Hle 005, 106

aming stavage location for 145
e hist-directed data 42

grocrientiation subprogram

Pt siaiminent (B2

TOMNEWORD INTEFGERS 1130 staten

PPROLESS compiler option stateiment

f,use s FORMAT sriiement 29

HRELIAN foed? madule name 1G7
gefinition 1487

A use in FORMAT staternent 34
ABS generic function name 67
sarmmnary of tunction 170
absolute value functions, summarized
access methods, input/output 41
addition, ocperation symbol for 9
address recall register {ARR) 148

184
185
185
186
186
187
188

e, specified on LOAD statement

66

P EPRECISIUN 1130 statement

ent

98

170

address/data switch subpiogram {DATSW)

AINT generic function name 67
summarized 170
algortthms. of lbrary functions 169
abigses, for function names 67
ALQOG, ALOG10 funcuions
accuracy of 1772
algorithm tor 175
error conditions tested 194
suminarized 171
aiphabetic character, definition 197
alphameric
chaiacter, defivition 197
data 34, 38
AMAXD, AMAXT funetions 170
AMING, AMINT tunctions 170
AMOID function 170
appendix 2{1

apostrophe

used in device option statements 94

used in direct-access input/output statements

used in literal data definition 12, 35
arctangent functions

accuracy of 172

algorithms for 178, 180

summarized 171

arguments
definition 197
dummy 64

in COMMON 53

passed to subroutines, differences between System/3 and

1130 154
arithmetic assignment statements 15
mode of 17
summarized 159
type and length of result 16
arithmetic expressions 15
definition 197
hierarchy of operations (order of operations)
parentheses in 17
programming considerations for 139
rules for constructing 15
type and length of result 16
arithmetic IF statement 21
summarized 159
arithmetic operator, defined 197
ARR (address recal! register) 148
arrays 13
arrangement in storage 14
debug facility to check subscripts 73
defining in specification statements 52
differences between System/3 and 1130 154
equivalencing 56
programming considerations for 139

Index

46, 48

17

assembler language for standard !inkage between modules

assignment statements, arithmetic 15
mode of 17
summarized 159
type and length of result 16
associated variable 45
differences between System/3 and 1130 1563
sharing of 131
AT debug statement 72
summarized 160
ATAN function
accuracy of 172
algorithm for 178
summarized 171
automatic function selection 66
GENERIC statement 66

Index

146

2

BACKSPACE statement 43

summarized 160
basic real constant 10

definition 197
batched compilation 102

definition 197

example of 103

order of program units 102
BCD compiler option 99

differences between System/3 and 1130 152
blank character in FORTRAN program 7

affect on list-directed data 40

affect on numeric data 32
blank fields in a record 36
block iength of files, specifying in devics option statements
BLOCKSIZE parameter in device option statements 95
buffers

direct-access 132

doubie buffering (Model 15) 150

sequential 137

sharing of 134

C, to define comments in FORTRAN 7
calculations

floating point S

integer 9
CALL LINK 1130 statement 153
CALL operation control statement

exampies of

in compilaticrs 103
in link editing 105

CALL statement (FORTRAN) 63

programming considerations for 140

summarized 160
card devices, double buffering (Model 15} 150
carriage control characters 39
CATEGORY compiler options statement 93, 98
CFTOD subprogram 196
CLEAR parameter (Model 15) 96
coding form, FORTRAN 6
comma, separator in list-directed data 40
comments, in FORTRAN statements 7

commercial subroutines, differences between System/3 and

1130 155
common block
(see also COMMON statement)
arguments in 53
conserving space with 140
definition 197
identified on compiler storage map 109
relationship to EQUIVALENCE statement 57
COMMON entry in object module records 113

222

95

COMMON statement 53

{see also common block)

contrasted with GLOBAL statement 54
reiationship of EQUIVALENCE statement 57
summarized 160

use in converting 1130 programs 154

compilation

batched 102

defining FORTRAN files for 89
description of compile step 93

messages 115

relationship of FORTRAN processing 3, 83

compilation time, definition 197
compile step 93

compiler option statements 93
job stream 103
output from 111

compiled sample program 201
compiler

calling with $SFORT name 86

files for 88

output from 111
compiler option output 117
messages 113, 209
object module 83,113
storage map 88, 119

post installation checkout of 201
sample program output 202

compiler map 117

definition 197

compiler messages 209

described 115

compiler option statements

*PROCESS 98

CATEGORY 98

combining with load module OCL statements 108

combining with operation control statements 102

CORE 97

device option statements (READ, PRINT, NOPRINTER,
PUNCH, DAD40, DAD44, DADA45, SEQ40, SEQ44, SEQ45,
TAPE) 94

placement in job stream 93

compiler options 98

output from
in compile step 117
inlink edit step 119

compiler output

compiler option output 117
messages 115, 209

object module 113

sample of 117

storage map 88, 117
summarized 88

computed GO TO statement 19

summarized 161

consecutive processing of direct-access file 132
console display panel dial setting 148

Model 6 algorithm 25

constant 9
definition 1897
hexadecimal 11
definition 198
in arithmetic expression 15
integer 10
defwition 198
lireral 12
definition 199
nurcesic, definition 199
reai 10
detinition 199
suimmarized 9
CONTINUE statement 23
surnrmarized 157
continining FORTRAN statements 7
centrel characters, carriage 39
cantrc! program 53
deisution 197
control stuternents, FCRTRAN 16
derinition 197
pragrarruning considerations with - 139
conticl statemernts, linkage editor 106
convers

wdes {see format codes)
convei sion functions, error conditions tested 194
COFRE compilgr option statement 97

to specity storage for more than one main program 140
e u o= 13251 fap

definition 197

described 121

sample 122
COS function

accuracy of 172

algorithm for 177

as o generic name 67

arror conditions tested 194

surnmarized 171

O 1

cosine and sine functions
accuracy of 172
algosithm for - 1727
summerized 171
CRT,keyboard (3277 display station) 149

D, use m format statement 29, 32
DABS funciion, summarized 170
DADA4A0, DADA44, DADAS device option statements 95
data item, definition 197
DATA statement 58
i e order of 8 FORTRAN program 8
surnarized 161
date rvpe
detinition 197
equivalencing 56
DATAN fynction
accuracy of 172
algorithm for 180
summary of 171

date/time-of-day subprogram (CFTOD) 196
DATSW subprogram 192
DBLE function, summarized 170
DCOS function
accuracy of 172
algorithm for 179
error conditions tested 194
summarized 171
debug facility 73, 141
AT statement 72
debug packet, definition of 71
DEBUG statement 71
examples of 73
separating output from other program output 140
TRACE OFF statement 73
TRACE ON statement 72
DEBUG statement 71
summarized 161
DECK compiler option 99, 105
object module from 113, 118
DEFINE FILE statement 45
buffer assignment of files 132
differences between System/3 1130 153
example of use 45
summarized 162
use in converting 1130 program 153
defining files 88
at compilation time 88
at execution time 89
for load module 88
use of logical unit numbers when 91
device option statements 94
compared with 1130 *10OCS statement 152
DAD40, DAD44, DAD45 95
definition 197
NOPRINTER 94
placement in job stream 93
PRINT 94
PUNCH 95
READ 94
SEQ40, SEQ44, SEQ45 96
TAPE 97
device, input/output
differences between System/3 and 1130 151
logical unit numbers for 90
1403 printer 90, 94
1442 card read punch 90, 94
2222 printer 90, 94
2501 card reader 92, 94
2560 MFCM 92,94
3277 display station 92, 94, 149
3284 printer 92, 94
3410/3411 magnetic tape subsystem 90
5203 printer 90, 91, 94
65213 printer 90, 94
5406 console keyboard 90, 94
5424 MFCU 90, 94
5444, 5445 disk storage drive 90
5471 printer/keyboard 90, 91, 94
5496 data recorder 90, 94

Index

223

DEXP function
accuracy of 172
algorithm for 174
summarized 171
diagnostic messages
compiler 115, 209
linkage editor 119
dial setting, console display panel 148
Model 6 algorithm 25
DIM function 170
as a generic name 67
DIMENSION statement 53
summarized 162
direct-access file 41
associated variable, sharing of 131
buffer assignment 132
consecutive processing 132
definition 197
minimizing 1/0 time 132
programming considerations for 131
specifying on device option statements 95
direct-access 1/0 statements 45
DEFINE FILE 45
summarized 162
FIND 48
summarized 163
general example of 49
programming considerations for 131
READ 46
summarized 166
WRITE 47
summarized 168
direct-access programming considerations 131
associated variable, sharing of 131
buffer assignmen: 132
consecutive processing 132
minimizing input/output time 132
disk drive (5444 and 5445} 90, 92
disk file
definition
at compilation time 88
at execution time 89
logical unit assignment for 90

specifying on a device option statement 96

display panel, console 148
divide check subprogram (DVCHK) 189
division, operation symbol for 9
DLOG, DLOG10 function
accuracy of 172
atgorithm for 176
error condition tested for 194
summarized 171
DMAX1 function 170
DMIN1 function 170
DMOD function 170

DO ioop, programming considerations for 139

224

DO statement 21
examples of 23
extended range of 22
looping with 21
nested DOs 22
rules governing use of 22
summarized 162
DO, nested 22
definition 195
DO-type notation, in /O list 38
double precision
data 9
format code 31, 32
scale factor in 34
DSIN function
accuracy of 172
algorithm for 179
error condition tested 194
summarized 171
DSQRT function
accuracy of 171
algorithm for 182
error condition tested 194
summarized 171
DTANH function
accuracy of 172
atgorithm for 183
summarized 171
dual programming environment 149
dummy argument 64
definition 198
specifying
in function definition statement 61
in SUBROUTINE statement 167
dump subprograms (DUMP/PDUMP) 190
output from 94
separating from other program output

use in DEFINE FILE statement 45
use in FORMAT statement 29, 32
EBCDIC compiler option 99
end execution subprogram (EXIT) 190
END FILE statement 43
sequence of 137
summarized 163
END parameter, in READ statement 42
end record
in load module 119
in object module 114
END statement (FORTRAN) 27
summarized 163
end-of-file, END parameter to control 42
EQ relational operator 20

140

EQUIV AL ENCE staterment 56

releticoaship of COMMON and GLOBAL statements

surrnrarized 163

use s converting 1130 programs 164
ERR parameter in REATD statement 42, 46
error corditions, tested in FCTSY subprogram
RITOr TICIRAYeS

compiter 115, 20¢
\
;
i

1

finkzr
ool modute 120
errar subprogram (FCIST) 193
reback 124
rrectod 10 T perticdar printer 95

Iy

@

recaras o object mcdule 113

excentions googoam nnathematical functions

executabie progrera deiimiticn 198

execuiabla starernents B
cebirinon 198

naE FUIRTRAN progiam 8

-

1 ime [

SO toag madiste execution step)
execution, 1o wudule 107

EYLT subprogras 190

EXFP funenion

suvicarized 171
expicit specification statements 572
163
expunential funetious

accuracy ot 172

RO HOETVISS

glgurithms for 774

swrimarized §71
exponentistion

oparation symbol for 9
exponientiaticn functions

errar conditions tested 194

implicitly mwvoked 184
exprassion celational, definition 199
expressions, arithmetic

deftition 197

considerations for - 139
EXTENLED PRECISION 1130 statement 154
exteuded range of DO statement 22
defirqtion 198
external functions, mathernatical
accuracy b 172
aigorithms for 169
deftntion 198
surrmsrized 1773
EXTERNAL statement 65
relationship of GENERIC statement 66
yirg birary functions with 169
suvtmanizad 163
EXTHN reference
in ESL records 113

Prigrammin

SEEGH

194

173

F, use in FORMAT statement 29, 32
FCTST subprogram 193
file
$SOURCE 105, 145
SWORK 105, 145
buffer assignment for 132
defininga 88
definition 198
direct-access 41, 131
linkage editor 88
load module 88
name of 89
refationship of file name and logical unit number 89
sequential 40
specifying on device option statements 97
FILE operation control statement
for multifile tape volumes (Model 15 only) 98
in foad module execution 89
FIND statement 48
summarized 163
fixed arithmetic functions
summarized 170
fixed-length records 135
FLOAT function 170
floating point
(see also real)
calculations 9
format codes
for alphameric data 34
for numeric data 31
format control codes
in DEFINE FILE statement 45
format of input/output 29
FORMAT statement 29
delimitersin 30
summmarized 164
use of parenthesesin 30
use of slashes in 30
formatted record
definition 198
examples of 42
refationship of FORMAT statement 41
forms contiol
differences between System/3 and 1130 154
FORTB procedure 87
FORTG procedure 87
FORTL procedure 87
exampiecf 105
FORTN procedure 87
FORTRAN
coding form 6
compiler
messages 209
post-instaltation, checkout of 201
file
definition 88
language
list of elements of 8
summarized 5
library
functions 169
subprograms 177

Index

225

FORTRAN (continued)
operation symbols, list of 9
processing
overview of 83
traceback listing 124
program
called by assembler language module 146
calling an assembler language module 147
order of statements in 8
sample of 75
statements
classes of 5
codingof 6
fuactions of 5
order of 8
use of blanks in 7
steps in using 84
traceback listing 124
FTnnnnn to name FORTRAN files 89
function definition statement 60
summary of 164
function error subprogram (FCTST) 193
FUNCTION statement 61
(see also statement function)
declaration of type 59
relationship of statement functions 59
summarized 164
FUNCTION subprogram 61
definition 198
dummy arguments in 64
RETURN statement in 64

GE relational operator 20
generic function names 67
GENERIC statement 66
summarized 164
global area
(see also GLOBAL statement)
conserving space with 140
definition 198
identified on storage map 119
relationship of EQUIVALENCE statement 56
GLOBAL entry in object module records 113
GLOBAL statement 70
(see also global area)
contrasted with COMMON statement 53
relationship of EQUIVALENCE statement 56
summarized 164
GO TO statements
computed GO TO 19
summarized 161
restrictions with DO statement 22
unconditional GO TO 19
summarized 165
GODECK compiler option 99
linkage editor processing of 105
output from 120
GOSTMT compiler option 99
GT relational operator 20

226

H, use in FORMAT statement 35
halt code
conversion algorithm 25
definition 198
displaying for PAUSE and STOP statements 24
for tinkage editor messages 120
for load module messages 124
header record in load module 119
hexadecimal constant 11
definition 198
hierarchy of operations 17
hyperbolic tangent functions
accuracy of 172
algorithm for 183
summary of 171

1/0 tist, definition 198
I, use in FORMAT statement 29, 31
IABS function 170
1AR {instruction address register} 148
iDIM function 170
IDINT function 170
|F statement
arithmetic IF 21
‘summarized 159
relational IF 20
programming considerations for 139
summarized 167
restrictions with DO statement 22
use in looping 23
IFIX function 170
{MPLICIT statement 51

compared to 1130 ONE WORD INTEGERS and EXTENDED

PRECISION statements 154
restrictions in SUBROUTINE subprogram 62
summarized 165
implicitly invoked exponentiation subprograms 184
implied DO notation 38

definition 198

example of 38
increment, in DO statement 21, 162
index registers (XR registers}) 148
indexing parameters

in DO statement 21, 162

in input/output lists 37
indicator test subprograms 189
informative messages

compiler 115

linkage editor 119
INIT debug option 71

example of output 141
initial value, in DO statement 21, 162
input, mixing BCD and EBCDIC 99
input error, ERR parameter to control 42

input/output statements 41
direct-access 4b

FORMAT 29
list-directed 40
lists in = 37

refationship to files 41
sequential 42
tape 43
INQCHK subroutine 195
instruction address register {AR) 148
INT function 170
intager
cateulations 9
constangs 10
data 29
ryping in specification statements 52
INTEGER siatement 52
rules for B2
sammarized 165
internal statement number (ISN) 99, 116
definition 198
interprogram commuication 69
SLOBAL statement 70
iNVOKE statement 70
FROGRAM statement 69
intrinsic functiors
algerithms for 169
detinition 198
generic narmes for 67
surminarized 170
INVOKE statemant 70
sxample of use in job stream 140
relationship of 1130 CALL LINK statement 153
suimmarized 165
10CS 1130 statement 152
ISIGN function, summarized 170
1SN {irternal statement number} 99, 116
definition 198

118}
desciibed 83
output
compiier 111
linkage editor 119
load module 124
ict stream, example of 86
exdample of in combining operation control statements
and compiler option statements 102
exampies of when using PROGRAM and INVOKE
statements 140

L, use in DEFINE FILE statement 45
language elements, summarized 8
LE relational operator 20
length specification of variables 51
differences between System/3 and 1130 154
library
FORTRAN
compiler options to store modules into 86
description of
functions 169
service subprograms 189
utility subprograms 190
differences between System/3 and 1130 153
priority value of 93
system 88
library function error subprogram (FCTST) 193
LINK compiler option 100, 105
link edit step
compiler inputto 105
files needed for 105
output from 119
relationship of FORTRAN processing 84
linkage between modules 148
linkage editor
calling with FORTL procedure 105
calling with operation control statements 105
definition 198
description of iink edit step 105
output 86, 119
overlay feature 106
linkage editor control statements, examples of 106
list-directed data 40
definition 199
field width 40
relationship of FORMAT statement 42
specifying in input/output statements 42
lists in input/output statements 37
indexing (implied DO notation) in 38
specifying in READ statement 42

literal
constant 12
data 35

definition 199
load module
compared to object program 83
contents of 119
definition 199
GODECK option to punch 98
LINK option to store in object library 86
name 107
size of 97
load module execution step 107
definition 199
files needed for 107
operation control statements for 107
combining with compile step statements 108
output from 124
program data in 108
relationship to FORTRAN processing 84

Index

227

LOG, LOG10 functions
accuracy of 171
algorithms for 175
summarized 171
logarithmic functions
accuracy of 171
algorithms for 175
suminarized 171
logical unit number 89
definition 199
differences between System/3 and 1130 151
relationship to device 41
relaticiship to device option statement 88
use in FORTRAN input/output statements 42
iooping 21
definition 199
LT relational operator 20

machine indicator test subprograms 189
magnetic tape
device option statement for 93, 96
input/output statements
BACKSPACE 43, 160
END FILE 43,137,163
REWIND 44, 167
magnitude
of double precision constants 10
of integer constants 19
of single precision constants 10
main program, defirnuon 199
map
compiler 88, 117
core usage 121
definition 199
MAP compiler option to specify 99
MAP compiler option 99
compiler map generated 116, 118
core usage map generated 121
mathematical functions
external 171,174
intrinsic 170
program exceptions, control of 173
rules for coding 173
MAX functions 170
maximum vatue functions, summarized 170
messages
compiler 115, 209
linkage editor 119
load module 124
MFCM device {25660 muiti-function card machine}
logical unit number for 92
specifying
on PRINT device option statement 94
on PUNCH device option statement 95
on READ device option statement 94

228

MFCU device {5424 multi-function card unit)
differences between System/3 and 1130

fogical unit number fol
specifying

r

90

on PRINT device option statement
on PUNCH device option statement
on READ device option statement

MIN, MING, MIN1 functions

170

151

94
95
94

minimax, method of during mathematical approximations 180
170
minus character, use in expression

minimum value functions

MOD function 170
as a generic name 67

9

module {see ioad module; object module)

modulo arithmetic function, summarized

mutti-function card unit device (see MFCU)
multidimensional arrays, example of

Fil.E statement for

97

multiplication, operation symbol for
multiprogramming partitions

names in program
definition 199
variable 12

natural togarithmic functions

accuracy of 171
algorithms for 174
summarized 171

NE relational operator 20

negative zero, representation of, in System/3 and 1130

nested DO 22
definition 199

NODECK compiler option
NOGODECK compiler option
NOGOSTMT compiler option
100
99
non-executable object program

NOLINK compiter option
NOMAP compiler option

(see also object modul
definition 199

e}

non-executable statements

definition 199

99

5

NOOBJECT compiler option

NOPRINTER device option statement

normal exit of DO loop 22
NOSHRBUFF compiler option
NOSOURCE compiler option
null item, in list-directed data

numeric character 199
numeric constant 199
numeric data

145

99
99

100

99
99
40

(see also integer data; real data)

FORMAT codes for

31

13
multifile tape processing {(Model 15 only)

9

94

170

137

165

OBJECT compiler option 100
example of 142
linkage editor processing of 105
object library
contents of 88
definitionn 199
LINK compiler option to store toad modules 100
OBJECT compiler option 10 store object modules
object moduie
card deck oi 118
contents of
end record 114
ESL records 113
RiDrecords 113
definition 1992
options
DECK to punch 99
OBJECT to store into library 100
object program
!see also load module)
definition 199
OCL. {see operation control Janguage)
ONE WORD INTEGERS 1130 statement 154
operation contro! language {OCL})
combining with compiler option statements 102
cormbining with linkage editor control statements
definition 199
in job processing
in compile step 102
in link edit step 1056
in load moduie execution step 107
relationship to FORTRAN processing 86
operation symbols, iist of 2
operator
arithmetic 197
retetional 20, 199
options, compiler 97
order of a8 FORTRAN program 8
order of operations, in arithmetic expressions 17
cutput
compiler 113
directing to both printer and punch 141
linkage editor 88, 119
lcad module 124
separating debug or dump output 140
OVERFL subprogram 189
overflow exceptions 173
overflow indicator subprogram {OVERFL) 189
overlay, linkage editor 106

100

106

P, scale factor code (in FORMAT statement) 29, 34
parameter list, for standard linkage 148
parentheses

use in EQUIVALENCE statement 56

use in expressions 17

use in FORMAT statement 30

use in subprograms 64

passing arrays, differences between System/3 and 1130 154

PAUSE algorithm 25
PAUSE statement 24
halt code for 24,124
conversion from Models 10 and 15 to Model 6 25
response to 24
summarized 165
PDUMP/DUMP subprograms 190
separating from other program output 140
plus character, use in expressions 9
positive difference functions 170
precision increase function 170
predefined specification of variables 13, 199
PRINT device option statement 94
directing output to a card punch 141
printer, input output 90, 94
carriage control characters for 39
procedure subprogram 199
procedures, FORTRAN-supplied
definition 199
list of 87
use of 86
PROCESS compiler option statement 98
function of 93
placement in job stream 93
processing, FORTRAN 3
overview of 83
program data 108
program exception in mathematical functions 173
program output (see output)
program processing 83
PROGRAM statement 69
example of use in job stream 140
relationship to 1130 CALL LiINK statement 152
summarized 166
use of CORE compiler option 140
program unit, definition 199
program, FORTRAN
order of statementsin 8
samples of 75, 201
programming considerations
direct-access 131
sequential dgisk and tape 135
pseudo sense light subprograms {(SLITE/SLITET) 189
publications, related v
PUNCH device option statement 95
to obtain printed cards 141
punching and reading the same card 152

Index

229

range of DO loop 22
definition 199
READ device option statement 94
READ statement 46
direct-access 46
summarized 166
listsin 37
sequential 42,137
summarized 166
reading and punching the same card 152
real {floating point)
arguments 170
calculazions 9
constants 10
data
format codes for 31
scale factor in 34
specification of type
in FORMAT statement 31
in specification statements 51
REAL statement 52
rules for 52
summarized 166
record
fixed length 135
format codes for 35
formatted 41
length of, assigning buffer for 132
list-directed 41
load module 119
object module 113
size of, in direct-access file 45
unformatted 41
variable spanned 135
related publications v
relational expression, definition 199
relational |F statement 20
programming considerations for 139
summarized 167
relational operators, in relational IF statement 20
relative record number, in direct-access statements
relocation record in load module 119
repeat factor, in input/output statements 40
RETURN statement 64
summarized 167
REWIND statement 42
summarized 167
RLD records, in object module 113
rounding, differences between System/3 and 1130
routine {see object module}

230

46

154

sample FORTRAN programs
examples of coding 75
post instaliation checkout 201
save area 148
scale factor 34
definiticn 199
sense light subprograms 189
sequential files
assigning buffers for 137
definition 200
multi-file tape processing {Model 15 only) 137
programming considerations 135
sequential input/output statements 41
order of 137

SEQA40, SEQ44, SEQA5 device option statements 96

service subprograms 189
SENTINQ subroutine 195
severity code 88,116
definition 200
SHRBUFF compiler option 99
sharing buffers 134
SIGN function 170
sign transfer functions 170
SIN function
accuracy of 172
algorithm for 177
as a generic name 67
error condition tested 194
summarized 171
sine and cosine functions
accuracy of 172
algorithms for 177
summarized 171
single precision
constant 10
conversion code 32
data 9
scale factor in 34
SIZE parameter in CORE compiler option statement
SLITE/SLITET subprogram 189
SNGL function 170
SOURCE compiler option 98
listing generated from, sample 117
source library 88
definition 200
source module listing
definition 200
sample 117
source program, definition 200
specification statements 51
COMMON 53, 160
(see also common block)
definition 200
DIMENSION 53, 162
EQUIVALENCE 56, 163
explicit specification statement 52, 163
IMPLICIT 51, 165
split screen support (CRT/keyboard) 149
spooled environment 149

97

Technical Newsletter This Newsletter No. SN21.5634
Date 29 September 1978

Base Publication No. SC28-6874-3
File No. S3-25

Previous Newsletters SN21-5568

IBM System/3
FORTRAN 1V
Reference Manual

©IBM Corp. 1972, 1974, 1976

This technical newsletter applies to version 03, modification 00 of IBM System/3 Model 15 FORTRAN
(Program 5704-F0O2) and also applies to the current versions and modifications of the System/3 programs
listed in the edition notice. It provides replacement pages for the subject publication. These replacement
pages remain in effect for subsequent versions and modifications unless specifically altered. Pages to be
inserted and/or removed are:

Cover, Edition Notice
v through x
13, 14

67, 68

97, 98
131, 132
135, 136
137, 138
191, 192
211, 212
219, 220

Changes to text and illustrations are indicated by a vertical line at the left of the change.

Summary of Amendments

® Partial rewrite of Chapter 18. Sequential Disk and Tape Programming Considerations
® Adds support of Transaction Logging Subprogram (SUBR81) 6704-FQ2 only

® Miscetlaneous technical changes

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901

© IBM Corp. 1978

Printed in U.S.A.

U, use in DEFINE FILE statement 45 1130 ditferences with System/3 151

unconditional GO TO statement 19 1403 printer
underflow exceptions 173 logical unit number for 91
unformatted record 41 specifying on PRINT device option statement 94
definition 200 1442 card read punch
unit numbers, logical 89 differences between System/3 and 1130 152
. differences between System/3 and 1130 151 Jogical unit number for 91
unit record devices (see card devices) specifying on PUNCH device option statement 95
UNITNO parameter in device option statement 97 specifying on READ device option statement 94
UPACK compiler option 101 2222 printer
utility subprograms 190 logical unit number tor 980

specifying on PRINT device option statement 94
2501 card reader

logical unit number for 92

specifying on PRINT device option statement 94

2560 MFCM
VALUE parameter in CATEGORY compiler option logtcal unit number for 92
statement 98 N specifying on PRINT device opticn statement 94
variable 12 specifying on PUNCH device option statement 95
definition 200 specifying on READ device option statement 94
names 12 3277 display station (CRT/keyboard)
type specification of logical unit number for 92
explicit specification 13 programming considerations for 149
implicit specification 13 specifying on PRINT device option statement 94
predefined convention 13 specifying on READ device option statement 94
variable-spanned record: 135 3284 printer

logical unit number for 92
specifying on PRINT device option statement 94
3401/3411 magnetic tape subsystem, logical unit number

for 90
5203 printer
weak EXTRN reference, in ESL records 113 logical unit number for 90
work files 105, 145 specifying on PRINT device option statement 94
WRITE statement 5213 printer
direct-access 47 logical unit number for 90
summarized 168 specifying on PRINT device option statement 94
sequential 43, 137 5406 console keyboard
summarized 168 logical unit number for 90

specifying on READ device option statement 94
5424 MFCU, logical unit number for 90
5444 disk storage drive
logical unit number for 90, 92
sharing bufferson 134
X, use in FORMAT statement 36 5445 disk storage drive
XR registers (index registers) 148 logical unit number assignment 90, 92
restriction on sharing buffers 134
5471 printer/keyboard
logical unit number for 90
specifying on PRINT device option statement 94
specifying on READ device option statement 94
Z, used to define hexidecimal constants 11 5496 data recorder
zero, in FORTRAN statement numbers 7 logical unit number for 90
specifying on PUNCH device option statement 95
specifying on READ device option statement 94

232

ER@ Technical Newsletter

IBM System/3
FORTRAN IV
Reference Manual

© 1BM Corp. 1972, 1974, 1976

This Newsletter No.

Date

Base Publication No.

File No.

Previous Newsletters

SN21-5568
25 November 1977

SC28-6874-3
S3-25

None

This technical newsletter, a part of version 02, modification 00 of IBM System/3 Model 15 FORTRAN
{Program Product Number 5704-F02), also applies to IBM System/3 Model 15 FORTRAN (Program
Product Number 5704-FO1). This technical newsletter provides replacement pages for the subject
publication. These replacement pages remain in effect for subsequent versions and modifications

unitess specifically altered. Pages to be inserted and/or removed are:

v, vi 137, 138
91 through 96 149, 150
96.1, 96.2 (added to accommodate 189, 190
moved information) 201 through 204
105, 106

Changes to text and illustrations are indicated by a vertical line at the left of the change.

Summary of Amendments

® Adds support for 3741

® Tape processing in programs using overlays

® Miscellaneous technical changes

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901

© 1BM Corp 1977

Printed in U.S.A.

$C28-6874-3

Jinnj}

International Business Machines Corporation
General Systems Division

5775D Glenridge Drive N.E.

Atlanta, Georgia 30301

(USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

(GZ-€S "ON 3|14) dduaidjay Al NVHLHOA €/S WaI

"V'S'N Ul parung

€-v.89-820S

TeCh nical NeWS|etter This Newsletter No. SN21-5711

Date 21 December 1979

Base Publication No. SC28-6874-3
File No. S3-25

Previous Newsletters SN21-5568
SN21-56634

IBM System/3
FORTRAN 1V
Reference Manual

© IBM Corp. 1972, 1974, 1976

This technical newsletter applies to the current versions and modifications of the applicable System/3
programs listed in the edition notice and provides replacement pages for the subject publication.
These replacement pages remain in effect for subsequent versions and modifications unless
specifically altered. Pages to be inserted and/or removed are:

69, 70
87, 88

Changes to text and illustrations are indicated by a vertical line at the left of the change.

Summary of Amendments

Miscellaneous technical changes

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBN! Corporation, Publications, Department 245, Rochester, Minnesota 55901

©1BM Corp. 1979

Printed in U.S.A.

