
,..=~==:--n~•f"::-~-:=s=== ::: === ::::::~:======- ··=-=::t'"'::= ·==========- ·-: ·- -----, -, ., -~-- .. ,,_ ---, .,., ,,.,,, ,,., _,..,,,_I,'

Iaaae 3 - Ja1~ 1912

COMAL CATALYST is published by the COMAL Users
Group (microNOTIONS). (c) 1982. Right to reprint
is granted if the reprint includes a credit line

COIi.AL II.ADE IT

"taken from issue #3 of the COMAL CATALYST, 5501 COMAL made it. Those three words say quite alot.
Groveland Terrace, Madison, WI 53716" and a copy It is the official language in the schools of
of the magazine or newsletter is sent to us for both Denmark and Ireland, and soon Sweden and
our records. Edi tor: Len Lindsay, Assistants: England. The four major companies providing
Maria Lindsay, Steve Kortendick. COMAL interpreters have agreed upon a common

CONTENTS
About the User Group & Editor •••••••••••••••• 16
CBM COMAL Disk Commands •••••••••••••••••••••• 13
CBM COMAL Version 0. 11 Obsolete •••••••••••••• 3
COMAL at the Show •.•••••••••••••••••••••••••• 3
COMAL is Fast •••••••••••••••••••••••••••••••• 5
COMAL Made It ••••••••••••••••••••••••••••••• i 1
FIX & TRANSFER program listings •••••••••••••• 11
Information About CBM COMAL-80 ••••••••••••••• 4
MENU text and program listing •••••••••••••••• 16
News ••••••••••••••••••• • •••••••••••••••••• 3,11
Resource List ~-· ..••...••.•..... 20
Review: Instrutek CBM COMAL-80 ROM Board ••••• 2
Rumors •••• ••••••••••••••••••••••••••••••••••• 11
SCAN text and program lis"ting •••••••••••••••• 20
Tips •••••••••••••••••••••••••• 3,4,5,11,13,15,20
The Uggley Story •••••••••••••••••• ; •••••••••• 5
Update for Manual & Handbook ••••••••••••••••• 13
User Group Disks ••...•••••••••••••.•.•.••••.. 12
You May Not Want to Hear This •••••••••••••••• 17

NEXT ISSUE
Next issue will be part two of the Uggley Story,

standard called the COMAL KERN AL. It is
supported by two newsletters, three books (and
two more in the wings), and two users groups. It
was the feature of a presentation at the
Nati onal Computer Conference in the USA as well
as featured at the Third International Commodore
Computer Show. But possibly the best news, is
that a new dual processor microcomputer system
has been advertised as including COMAL as its
standard language (BASIC does not come with the
computer I). Aren't you glad that you can claim
to be one of the COMAL pioneers! You had the
foresight to see a major breakthrough in
programming languages.

COMAL is THE official language

The education system in both Ireland and Denmark
have adopted COMAL as the official language.
Sweden and England may enjoy similar good
fortune. Aparantly every school (except one) in
Ireland now has a COMAL system. It has been that
way in Denmark for several years.

more rumors and news, more program listings, COMAL has an official STANDARD
programming tips, and hopefully an article from
the creators of CBM COMAL on some of the up until May, 1982, there were several COMAL
advanced features of CBM COMAL. We welcome your interpreters available. They each ran on
contributions. different computer systems and were very similar

to each other. However, they had some minor
CBM & PET are trademark of Commodore differences, causing incompatibility. These
CP /M is trademark of Digital Research companies realized that it would be to their
WORD PRO is trademark of Professional Software advantage, if a common COMAL KERN AL could be
VISICALC is trademark of VisiCorp agreed upon. With this goal, there were many
COMAL CATALYST is trademark of COMAL Users Group long meetings. The f inal meeting was held in
COMAL and COMAL-80 are public domain terms Tonder, Denmark on May 7-9, 1982. It was

Issue 3 - COIi.AL CATALYST 5501 GroYe1and Ter. lladison VI 53716 - P&.1

organized by Borge Christensen (the founder of
the COMAL language). Instrutek, Denmark (CBM
COMAL) was represented by Lars Laursen, Jens
Erik Jensen, and Mogens Kjaer. Metanic. Aps,
Denmark (CP/M COMAL) was represented by Arne
Christensen and Mogens Pelle. Regencentralen,
Denmark (RC COMAL) was represented by Jorgen
Olsen and Erik Steffensen. Trinity College,
Ireland (TC COMAL), was represented by Colleen
Kitchen and Kevin Ryan. Heston Publishing (The
COMAL HANDBOOK) and the COMAL Users Group (USA)
were represented by Len Lindsay.

Many compromises were made at this final
meeting. Each group made concessions, thus the
final COMAL KERNAL was not the least common
denominator of all the different versions.
Rather it emerged as a FULL COMAL, taking the
best from each of the implementations. The
standard COMAL is refered to as the COMAL
KERNAL. If a language does not meet this KERNAL,
then it is not a true full COMAL. Thus at the
end of the meeting, there was no COMAL
interpreter available that met the new KERN AL.
However, each group agreed to update their
versions to meet the new standard. Instrutek
appears to be the first to finish this task.
Their CBM COMAL version 1.02 should be available
by the end of July 1982 for the CBM 8096 or as a
plug in ROM board for any PET or CBM.

Two COMAL Newsletters

The original COMAL CATALYST (which you are
reading) has been joined by the COMAL BULLETIN
from England. The Bulletin is published by Ellis
Horwood Limited, and is available for 10 pounds
in England, 13.50 pounds overseas (about $30 US
dollars?). The CATALYST subscription is free
when you get the set of User Group Disks from
the COMAL Users Group.

Three COMAL books

The original COMAL book is by Borge Christensen,
founder of the language. COMAL PROBLEMLOSNING OG
PROGRAMMERING is the original Danish version
published by Bogika Data-Systemer. The German
translation, COMAL 80, Die Strukturierte Sprache
auf der Basis von BASIC, is published by
Oldenbourg Verlag. The English translation,
Beginning COMAL, is published by Ellis Horwood
Limited.

STRUCTURED PROGRAMMING WITH COMAL by Roy
Atherton, is published by Ellis Horwood Limited.

includes over 100 complete sample programs and
procedures.

Watch for two more books coming soon, one from
Prentice-Hall, England, and the other from
Sweden.

Two Users Groups

The original COMAL Users Group in the USA is an
organization to help spread the good news about
COMAL. The Users Group in England additionally
has meetings. If you have a local COMAL group,
please let us know. We offer 1 page in our
newsletter to any COMAL group, for your news.
The USA COMAL USERS GROUP has now been
revitalized and will provide User Group Disks
and a free newsletter. The only source of income
is from the Disks (thus far · advertising has
been free). If you have any CBM COMAL programs
you would like to place in the public domain,
send them LISTed to disk to the COMAL User Group
for inclusion on future User Group Disks.

Featured at the National Computer Conference

Kevin Ryan, from Ireland, presented COMAL at the
NCC in Houston. The new COMAL interpreter from
Trinity College was highlighted.

COMPUTER comes with COMAL as standard language

Full page, full color ads in Englands major
microcomputer magazines announced the arrival of
the GALAXY 1 COMPUTER by Gemini Microcomputers.
This full featured micro system includes disks,
keyboard, and monitor, as expected. But it is
more advanced, and includes dual processors and
COMAL-80 as part of its standard configuration.

REVIEW: COMAL ROM BOARD by Instrutek
Christianholmsgade, DK-8700 Horsens, DENMARK

With this board installed in your PET or CBH
computer, you will have the full enhanced COMAL
version 1.02. Whenever your computer is turned
on it will come up in COMAL. To switch back to
PET BASIC simply enter the word BASIC. The COMAL
board supports both tape and disk, so an
expensive disk drive is not required for
operation. The board is a 64K ROM board, with 16
sockets for 4K EPROM chips. Ten of these sockets
are used by the COMAL interpreter. The others
are empty and available for your use. One 4K
EPROM chip is available from Instrutek that
allows you to control their high resolution
graphics board using turtle graphic commands.

The COMAL HANDBOOK by Len Lindsay, is published If you are concerned about getting this COMAL
by Res ton Publishing (with a translation into because it is not from Commodore, don't worry.
Danish soon to be published by Bogika Guess who wrote the COMAL interpreter for
Data-Systemer). It is completely updated to meet Commodore. Right. Instrutek. And they made sure
the new COMAL KERNAL standard, which is printed that their board is completely compatible with
in one of its appendices. The 300-400 page book the COMAL available for the CBM 8096.
Issue 3 - CONAL CATALYST 5501 Growe1a■d Ter. Nadiso■ VI 53716 - P&.2

CBM COMAL version 0.11 NOW OBSOLETE

CBM COMAL version O. 11 has been updated to meet
the new COMAL KERNAL standard. The old version
0. 11 is now obsolete and should not be used.
Version 0.12, the update, is also in the public
domain and can be freely copied. Note that it
still is only an introductory COMAL and does not
contain the complete COMAL KERN AL. CBM COMAL
version 1 .02 does contain the complete COMAL
KERNAL, but will only run on the CBM 8096 (or it
is available as a ROM BOARD to plug into any
PET/CBM). Apparently CBM COMAL version 1 .02 is
also placed into the public domain, but this
fact has not yet been verified. Major changes
from version 0.11 to 0.12 include:

•• Programs LISTed or EDITed
type files, an improvement
0. 11 • These are compatible
version 1.02.
•• ZONE is now a function.

to disk are now SEQ
from old version

with the CBM 8096

Version 0.11-> ZONE:=2 and OLDZONE:=ZONE
Version 0.12-> ZONE 2 and OLDZONE:=ZONE

•• Functions are now separate from procedures.
Replace the PROC and ENDPROC statements with
FUNG and ENDFUNC statements. The value of the
function is now returned with a RETURN statement
(RETURN <value>). The old version 0.11 assigned
the value to the procedure name.
•• Substrings are specified differently. The old
version 0.11 used <start posit i on>:<length>
while the new version 0.12 uses <start
position>:<end position>.
•• The keyword DELETE has been added and is used
to delete files from disk. DELETE <filename> is
the syntax. The file name may contain wildcard

COMAL AT THE SHOW by Steve Kortendick

This season's feature event for Commodore fans
in Europe was the Third International Commodore
Computer Show held at the Cunard International
Hotel in Hammersmith (London), England. Since
1980, the event has grown annually, to a poin t
this year where the initially estimated space
requirement of 18,000 square feet had to be
supplemented by an additional 14,000 square foot
exhibition hall. This is the extravaganza i n
which Commodore is king; in fact the entire
show is fully dedicated to Commodore compatable
hard- and software.

Among my greatest thrills at the show was stand
128. There, displaying three versions of CBI-,
COMAL-BO were two of its creators: Jens Erik
Jenson and Laurs Larson of Instrutek, the Danish
firm commissioned by Commodore to write COMAL.
With them was Brian Grainger, one of England' ~
foremost supporters of the language.

This enthusiastic trio had several versions of
COMAL on display, including a 3032 version, al l
in the CBM's RAM, an Instrutek ROM board
version, and the 8096 RAM COMAL, with over
38,000 bytes of user memory left free. Also
installed in one machine was the Instrutek
add-on graphics board, the speed and response of
which vastly superceded any single pixel
addressable graphics option I have seen for home
computer products. Further, all plot commands
were directly addressable by procedure name from
COMAL, making programming extremely
straightforward.

patterns using the* and? as in CBM DOS. It was a joy to meet those responsible for the
•• The keyword PASS has been added. This is used version of COMAL I'm now using. Their
to pass a command to the disk drive: PASS enthusiasm for the language and their own
"<command>" --- example: PASS "iO" this enhancements, together with plans for future
initializes drive o. Note that the dos 1.0 implementations was infectious. They're
syntax is used for the commands. terribly interested in the public's reaction to
•• The keyword NULL has been added. It does their work, and appreciate both positive and
absolutely nothing (a null statement). negative feedback about the implementation, and
•• Several 'bugs' in version 0.11 have also been ideas for future direction.
corrected.

TIP-FILE NAMES: When naming your files, take
into consideration the following convention
used by the COMAL Users Group. Files LISTed to
disk should end with .L, BASIC programs should
end with .B, Word Pro files with .W, and
VisiCalc files with .v. This allows quick
identification of program type from the
directory listing.
lfEWS-CBH 3.0 VERSION: A version of CBM COMAL
version O. 11 · has been converted to work with
tape and BASIC 3 .o machines. However, version
O. 11 is now obsolete, replaced by version O. 12
to meet the changes in the COMAL STANDARD at the
May 1982 meeting in Denmark.

Of considerable interest among the many talks
and seminars offered was the one by Brian
Grainger of ICPUG (the famous Independent
Commodore Product Users' Group). Brian's
presentation was entitled "CBM COMAL-BO: The
Easiest First Lanugae to Learn," and covered the
ease of use of COMAL, together with its logical
yet simple structure.

One might expect a considerable amount of
fanfare surrounding COMAL, •the language which
dares attack BASIC in the wo~ld of the micro.
But few of the European show participants were
terribly surprised. There, COMAL is a natural.
It's clear that the national education boards of
both Denmark and Ireland ~ould not have mandated

Issue 3 - CORAL CATALYST 5501 GroYe1aad Ter. Nadis~~;~I 53716 - Pg.]

the instruction of COMAL in the schools before
the introduction of any other language without INFORMATION ABOUT CBH COHAL-80
some familiarity being generated. To the by COMAL staff of INSTRUTEK
Europeans, it is no longer the wave of the
future, but the reality of today. I soon
realized that COMAL information was available
from several of the stands, ranging from local
user groups to major educational displays.
Whenever I inquired about COMAL I received none __ ,
of the "Oh sure, I've heard of 'COBOL'"
responses so common here in the States.

CBM COMAL-80 is a semi-compiler. When lines are
entered from the keyboard, they are checked for
syntax errors. During this parsing the lines are
translated iQto an internal code (reverse
polish). For example, the expression:

1 + 3 * SIN(- X / 2) + 3
is translated to reverse polish:

1 3 X 2 / - SIN•+ 3 +
This allows fast program execution but also
makes it harder to recreate (LIST) the original

Commodore, clearly number one in European small
computers, is strongly backing the COMAL
revolution. Rather than be left in the bitter program lines.
dust of BASIC, Commodore has already
commissioned CBM COMAL-80 and placed it in the When RUN is typed, a pre pass is performed and
public domain. the program is RUN. The prepass chains the

program structures such as IF-ELIF-ELSE-ENDIF,
One high ranking official of Commodore UK
confided that Commodore would soon be
commissioning a software house to write a
version of COMAL for the Commodore 64, VIC's new
"big brother" being released this fall. This
version will be in a ROM cartridge, plugging
into the back of the 1164," and targetted for
school as well as home use. In fact, Commodore
expects to sell these computers with COMAL
cartridges in four-figure quantities to European
school systems.

In Commodore's guide to the show, mention was
made of The COMAL Handbook, by Len Lindsay.
Unanimous among the COMAL supporters was the
immediate need for that book to fill the
information gap. Once this gap is bridged,
there seems no bound to the challenge offered by
COMAL to its ailing grandfather, BASIC. In
Europe, COMAL is winning rapidly; we in the
States can only hope for a similar outcome.

ABOUT THE AUTHOR: Steve is a programmer for the
Department of Transportation, writing and
maintaining programs to run on the huge AMDAHL
mainframe computer system. He has had his own
microcomputer for four years now, and currently
is writing a small data base system in CBM COMAL
version 1.02.

REPEAT-UNTIL, etc. Absolute addresses are
inserted in the program code. All structures are
checked so that a REPEAT does not end with ENDIF
and so on.

Because of the internal format of the program
there are two types of program files:

A SAVE-file (PRG file) contains a prgram in the
internal format. SAVE-files can be LOADed and
CHAINed. It is useful because it is fast to load
and is compact.

A LIST-file (SEQ file) contains the source text
of a program. LIST-files can be ENTERed. It is
useful when the program has to be transferred to
different COMAL-80. It can also be used to
handle procedure libraries.

CBM COMAL-80 version O. 12 works only on
Commodore computers with 32K and BASIC 4.0, and
leaves only 5-6K free memory for the user. It is
meant as a free and introductory version. CBM
COMAL-80 version 1 .02 is an extended COMAL and
can run with a CBM 8096 leaving 39K free memory.
It also exists as a ROM version available from
Instrutek which can be used with all CBM/PET
computers with BASIC 2 or BASIC 4. It uses 2K of
the RAM in the host CBM/PET. The CBM 8096
version is in the public domain. TIP-PROGRAM STRUCTURE SCAN: COMAL checks for

correct syntax as you enter each line. However,
it does not check for correct structures (an About the AUTHORS:
UNTIL for each REPEAT, etc.) until given the RUN The COMAL staff at Instrutek includes Jens Erik
command. So, to have. your program scanned for Jensen, Lars Laursen, Mogens Kjaer, and Helge
correct structures, just make line 1 be: 0001 Lassen. You would be hard pressed to find
END. A RUN will then check the structures another group of such bright and dedicated young
without actually starting. men. They are doing their best to make COMAL the
TIP-PROCEDUES: Use procedures and funtions as very best language available. I think they are
much as possible. Small modules are easier to doing a marvelous job.
debug and can be used in several programs
without rewriting. CBM COMAL version 1.02 allows
any of the procedures or functions to be called
from direct mode after the program has been run.
This is like adding new keywords to COMAL.
Iaaae 3 - CO■AL CATALYST 5501 Growelaad Ter. ■adlaoa VI 53716 - Pa.,

COMAL IS FAST

First we heard that the new language COMAL was
structured and made programming and future
modifications of programs easy. Next we heard
that it was very "user friendly". Plus, disk
loaded versionsof COMAL for the the CBM 8032 and
8096 are public domain (you can make copies of
the interpreter for all your friends). If that
isn't enough to convert BASIC users, we put
together a Benchmark Test System. We wrote the
same system in CBM BASIC 4 .O and CBM COMAL
version 1 .02 (preliminary release). COMAL was
faster than BASIC in every test (using a CBM
8032 with CBM 4040 disk). Both the BASIC and
COMAL versions of the Benchmark Test System are
available on a COMAL USERS GROUP disk. Next
issue we hope to present both programs and the
results. For now, a quick summary of the tests
and how much faster COMAL was is shown below:

TEST TYPE I HOW MANY TIME FASTER COMAL IS

Assign 1000 random coin flips to an array
Classify 10 people by score 100 times
Read 10 data strings 100 times

(note: second group of data statements)

/ 1 .6
I 2.7
I 9.3

Disk file write/reread numbers 1-1000 / 1.8
Increment a variable 1000 times I 5.1
Loop 1000 times I 1 • 7
Process 10 choices of 6 items 100 times / 3.5
5 nested loops of 1 thru 10 / 2.1
Assign a random die throw 1000 times / 1.4
Locate a string within another 1000 times /55.2
Convert time from seconds to minutes & sec/ 2.6
ALL THE TESTS / 3.9

COMAL did very well in processing choices (3 .5
times faster than BASIC) and incrementing
variables (5.1 times faster), both are important
parts of most programs. And COMAL really was
55 .2 times faster than BASIC in locating
substrings (it is not a misprint, 55 .2 times
faster is correct). So if you compare strings
a lot, COMAL is ideal for you. COMAL also was
more than 2 1/2 times faster in converting
seconds into minutes and seconds. Although COMAL
was almost 4 times faster for the combined
tests, that result is not as significant as the
specific tests.

TIP-CLOSED: Take advantage of the CLOSED option
on procedures. A CLOSED procedure lets you use
any variable names you wish without conflict
with variables with the same name elsewhere in
the program. You no longer have the variable
name problem when adding a small routine to an
existing program. In BASIC you probably used a
wierd variable name like QW assuming it probably
wasn't in use anywhere else. No such worry with
COMAL.

THE UGGLEY STORY - by Borge Christensen
Mr. Otis Uggley, the general manager of the very
large company, Uggley Publishers, always has
difficulties finding the telephone numbers of
the many members of his staff. The Uggley House
has 14 departments, some of which has as many as
24 offices, and each office may have more than
one local telephone number. At Uggley's a local
telephone number has four digits, such as 2106.
The two first digits is the number of the
department plus 10, and the two last digits
indicate the phone's number within the
department. Thus the number 2106 shows that the
telephone has been installed in deparment no. 21
as number 6. Mr. Uggley asks the company's house
programmer, Mr. V. Cunning, to make it possible
for him, Mr. Uggley, to retrieve the number of a
member of the staff in an easy, fast, and safe
way. Already the day after this request, Mr.
Cunning has a small microcomputer installed
besides Mr. Uggley's telephone. It is a new and
very fine computer, using an efficient
programming language called COMAL-80, he
explains to Mr. Uggley, and a small program has
been written to retrieve the telephone number of
any member of the staff. Mr. Uggley only needs
to enter the name of the person whose number he
wants to know, then the computer will display
the correct number in a split second.

Let's take a look at Mr. Gunning's problem and
try to find out how he solved it so fast. "I
shall do it fast and simple", he said to
himself, "later on I may refine it or extend it
to serve Mr. Uggley even better; right now we
are very busy in this department!". To tell the
reader the truth: they are always very busy
right now in the programming department, and
they always think that they shall have more time
tomorrow, but that is a different story. His
first program is shown above the next column.

The names of the staff members and their
telephone numbers are set up in DATA statements
to build a data queue. In the program be.lo'"' only
a few persons and numbers are shown. Mr. Cunning
used them for test purposes. Later on one of the
typists at Mr. Uggleys secretariat typed in the
full telephone directory.

The mainline part of the program is held in a
REPEAT ••• UNTIL loop. It starts in line 50 with
a REPEAT statement and ends in line 170 with an
UNTIL statement. It is obvious from the meaning
of the keywords in plain English that the part
of the program between the two statements is
going to be executed repetitively until the
variable THISNAME$ has assumed the empty string
(1111) as a value. The variable THISNAME$ gets its
value from input, as is seen from the statement
in 70: INPUT "ENTER NAME:": THISNAME$

0010 PRINT CHR$(147) //CLEAR SCREEN
0020 II
0030 DIM THISNAME$ OF 30, NAME$ OF 30
0040 //
0050 REPEAT
0060 PRINT
0070 INPUT "ENTER NAME:": THISNAME$
0080 RESTORE
0090 REPEAT
0100 READ NAME$,TEL
0110 UNTIL NAME$:THISNAHE$ OR EOD
0120 IF THISNAHE$=NAHE$ THEN
0130 PRINT NAME$," HAS TELEPHONE NO. ",TEL
0140 ELSE
0150 PRINT THISNAHE$," IS NOT ON MY LIST."
0160 ENDIF
0170 UNTIL THISNAHE$=""
0180 PRINT CHR$(147) //CLEAR SCREEN
0190 PRINT "READY TO DO ANOTHER JOB •••••• "
0200 II
0210 DATA "PETER BROWN",2406,"JOHN SHITH",1216
0220 DATA "ROY MANNING",1512,"ELIZA MOOR",1008
0230 DATA "MINNA JACOBS",1810

Each time this statement is executed, the text
ENTER NAME: is output to prompt the user, and
the program pauses to allow the user to type
some string of characters, presumably the name
of a person who is supposed to have a telephone,
to be assigned as a value to THISNAME$. After
the name of the person has been typed in, the
program starts searching for the one in question
in the data queue, using a very simple approach.
First the RESTORE statement in line 80 r~sets
the data pointer to indicate the first element
in the queue, i.e. the name of the person
recorded first, and after that the REPEAT •••

TEL. Since NAME$ ("PETER BROWN") is not equal to
THISNAME$ ("ROY MANNING") and the end of the
data queue has not been reached, line 100 is
executed again, and NAME$ is assigned the value
of "JOHN SMITH" and TEL the value 1216. The
value of NAME$ is still not equal to the value
of THISNAME$. and the End Of Data is FALSE, so
1 ine 100 is executed once more, this time to
assign "ROY MANNING" to THISNAME$ and 1512 to
TEL. And now the execution of the loop is
terminated, because it is true that NAME$ is
equal to THISNAME$; both have the value "ROY
MANNING". The function EOD still returns a value
of FALSE, but that does not matter because the
Boolean operator OR connects the two Boolean
expressions.

The searching has been sucessfully finished, and
the program only needs to inform the user about
the person's telephone number which is now the
value of TEL. But take care! We have to consider
the fact that it might have gone wrong! Two
situations may occur: The person has been found,
or the person has not been found on the list,
and we had better be ready for both. This is
done by means of the IF • • • ELSE • • • ENDIF
segment in lines 120-160. The segment is
controlled by the IF statement in line 120. If
the Boolean expression following the keyword IF
assumed a value of TRUE, the statement in line
130 is executed, but if a value of FALSE is
returned, the statement in line 150 is executed
instead. Now it is easy to see what happens in
the case discussed above. Since it is TRUE that
THISNAME$ is equal to NAME$ the statement:

PRINT NAME$," HAS TELEPHONE NO. ",TEL

UNTIL loop in line 90 - 110 takes over. The is executed,
range of that loop holds only one statement: produced:

and the following printout is

READ NAME$,TEL ROY MANNING HAS TELEPHONE NO. 1512

Each time this statement is executed a name and Could you ask for more? Well, not from this
a number are retrieved, and the name is assigned program_ that is, unless you enter a name of a
as a value to NAME$, whereas the number is person not in the telephone record l
assigned to TEL. This is done repetitively,

UNTIL NAME$=THISNAME$ OR EOD

EOD is a Boolean function, i.e. a function that
returns the values of TRUE or FALSE only. EOD is
an abbreviation of "End Of Data". EOD returns
the value of FALSE until the last element of the
data queue has been read. Then it switches to
return the value TRUE. The UNTIL statement above
may be interpreted as "until the name retrieved
from the queue is equal to the name entered or
the queue is finished". Let us fancy that the
name "ROY MANNINGS" is entered to become the
value of THISNAME$. The name "PETER BROWN" is
then assigned to NAME$ and the number 2406 to

If a name of a person, say "ROBERT BRADBEER",
who is not in the telephone directory is
entered, the expression NAHE$=THISNAHE$ never
returns the value TRUE, and the REPEAT ••• UNTIL
in line 90-110 is not ·stopped until EOD becomes
TRUE, i.e. after all the names on the list have
been looked at. It also implies that line 150
instead of line 130 is executed after the
searching is done, with the following printout
produced:

ROBERT BRADBEER IS NOT ON MY LIST

Iaaae 3 - CO■AL CATALYST 5501 Growela■d Ter. ■adlao■ VI 53T16 - P&~6

The program is stopped if the RETURN key alone
is hit when the program asks for another name.
This action assigns the empty string ("") as a
value to THISNAME$ making the Boolean expression
in the UNTIL statement in line 170 return a
value of TRUE thus terminating the execution of
the loop.

The example has demonstrated two of COMAL's
fundamental structures: The REPEAT UNTIL
loop and the IF ELSE ENDIF double
branching. The REPEAT ••• UNTIL loop always
works according to this scheme:

REPEAT

block of statements

UNTIL <Boolean expression>

The structure is working straightforward: The
block of statements appearing between the REPEAT
and the UNTIL statement - the range of the loop
- is executed repetitively until the Boolean
expression in the UNTIL statement returns a
value of TRUE.

The program uses long variable names: THISNAME$,
NAME$, TEL. In COMAL variable names may consist
of up to 16 letters or digits, though the first
character must be a letter (editors note: CBM
COMAL allows names of up to 78 characters). All
char~cters are significant, such that for
example NAMEOFMAN$ and NAMEOFMEN$ are two
different variables in COMAL - though it would
hardly be adviseable to use them in the same
program!

As mentioned before, if Mr. Uggley wants to stop
looking numbers up, he should do nothing but
strike the RETURN key, when the program comes
out asking for another name~ The trouble is that
after that, the whole searching affair i~
carried through, with the program virtually
searching for nothing. Of course the Boolean
expression NAHE$=THISNAHE$ returns a value of
FALSE in the end, because persons with names
that cannot be mentioned are not hired to work
in The Uggley House. This state of affairs makes
the statement in line 150 produce the output:

IS NOT ON MY LIST

This printout is actually produced, but is
The IF ELSE ENDIF
according to this scheme:

IF <Boolean expression> THEN

block of statements-1

ELSE

structure works hardly noticed by the user, because it is wiped
away a split second later by the statement in
line 180 which clears the screen. It is not
nice, but it works, and as mentioned before, Mr.
Cunning was very busy! Mr. Cunning is, however,
also a very good programmer, and he does not
like to have a "dirty" program running in The
Old Han's office. A few days later he uses C\11
opportunity to modify the program to become:

block of statements-2

ENDIF

If the Boolean expression in the IF statement
returns a value of TRUE, the first block of
statements is executed, and processing continues
with the statement following the ENDIF. If,
however, the Boolean expression evaluates to
FALSE, only the second block of statements is
executed, and processing then continues with the
statement following the ENDIF. The ELSE part can
be left out to give the following:

IF <Boolean expression> THEN

block of statements

ENDIF

A block of statements may hold as many
statements as you want, and the statements may
be of any kind. The indentation of the lines in
a block in the program listing is done
automatically by the interpreter.

0010 PRINT CHR$(147) //CLEAR SCREEN
0020 II
0030 DIM THISNAHE$ OF 30, NAME$ OF 30,
0040 II
0050 INPUT "ENTER NAME:": THISNAHE$
0060 WHILE THISNAHE$<>"" DO
0070 RESTORE
0080 REPEAT
0090 READ NAHE$,TEL
0100 UNTIL NAME$=THISNAME$ OR EOD
0110 IF THISNAME$:NAHE$ THEN
0120 PRINT NAME$," HAS TELEPHONE NO. ",TEL
0130 ELSE
0140 PRINT THISNAME$," IS NOT ON MY LIST."
0150 ENDIF
0160 PRINT
0170 INPUT "ENTER NAME:": THISNAME$
0180 ENDWHILE
0190 PRINT CHR$(147) //CLEAR SCREEN
0200 PRINT "READY TO DO ANOTHER JOB •••••• "
0210 II
0220 DATA "PETER BROWN",2406,"JOHN SHITH",1216
0230 DATA "ROY MANNING",1512,"ELIZA HOOR",1008
0240 DATA "MINNA JACOBS",1810

Iaaae 3 - CORAL CATALYST 5501 Growe1a■d Ter~ ■adlao■ VI 53T16 - P&.T

As you can see, the REPEAT • • • UNTIL loop to
control the mainline program has been replaced
by another structure that begins with a WHILE
statement in line 60 and ends with an ENDWHILE
statement in line 180. A WHILE ENDWHILE
structure is also a loop structure, only this
time the Boolean expression to control the loop
is sitting at the beginning of the loop - in the
WHILE statement - and not at the end of the loop
as it did before.

The INPUT statement to take in the value of
THISNAME$ has been replaced by two of the kind,
one in line 50 and one in line 170. When the
program is started the statement in line 50
comes out asking for a name. As soon as a string
has been typed in, the WHILE statement is
executed, and if the expression THISNAHE$<>""
returns the value TRUE, the block of statements
in the range of WHILE ••• ENDWHILE is executed,
i.e. if a non empty name is entered the search
and printout is carried out as before. When the
statement in line 170 is executed, another name
is asked for, · and when that request has been
answered the execution continues with the WHILE
statement. If the name typed in is not the empty
string, the . interior of the loop is executed
again, and lnis _goes on as long as no empty
string is entered. However, as soon as the
RETURN key alone is pressed and the empty string
is assigned to THISNAME$, the Boolean expression
in the WHILE statement returns the value FALSE -
THISNAME$ is no longer different from the empty
string - execution of the loop is stopped, and
processing continued with the statement
following the ENDWHILE.

This time Mr. Cunning has done his homework.
Because the test is now sitting at the entrance
of the loop, its range is not executed after the
empty string has been entered and assigned to
THISNAME$. But it has cost one extra INPUT
statement. Good structure sornetimes has its
price.

The WHILE ••• ENDWHILE loop structure works
according to the following scheme:

WHILE <Boolean expression> DO

block of statements

ENDWHILE

The block of statements between the WHILE and
the ENDWHILE statements - the range of the loop
- is executed repetitively as long as, i.e.
while, the Boolean expression in the WHILE
statement returns a value of TRUE. If it returns
a value of FALSE, execution of the loop is
stopped and continued with the statement

following the ENDWHILE. You should notice that
if the Boolean expression returns a value of
FALSE right from the beginning, the range of the
loop is not executed at all. You may have as
many statements in the block as you like and
they may be of any type. The indentation on the
listing of the statements in the block is
generated automatically by the COMAL system. The
short REPEAT ••• UNTIL loop including lines
80-100 may of course be replaced by a WHILE •••
ENDWHILE loop, too. It would look like this:

0080 WHILE NOT (NAME$=THISNAME$ OR EOD) DO
0090 READ NAME$,TEL
0100 ENDWHILE

Since there is only one statement between the
WHILE and the ENDWHILE statements, the whole
loop may be written on one line:

WHILE <Boolean expression> DO <statement>

0080 WHILE NOT
(NAME$=THISNAME$ OR EOD) DO READ NAME$,TEL

This construct explains why we have the keyword
DO to terminate the WHILE statement. During the
following two weeks Mr. Cunning continues to
"brush up" his program, and finally ends up with
this version (including test data only):

0010 PRINT CHR$(147) //CLEAR SCREEN
0020 II
0030 DIM THISNAME$ OF 30, NAME$ OF 30,
0040 II
0050 INPUT "ENTER NAME:": THISNAME$
0060 WHILE THISNAME$<>"" DO
0070 II
0080 //LOOK FOR IT:
0090 RESTORE
0100 WHILE NOT (NAME$=THISNAME$ OR EOD) DO'v
0105 // ""_READ NAME$,TEL
0110 //DISPLAY MESSAGE:
0120 IF THISNAME$=NAME$ THEN
0130 PRINT NAME$," HAS TELEPHONE NO. ",TEL
0140 ELSE
0150 PRINT THISNAME$, 11 IS. NOT ON MY LIST. 11

0160 ENDIF
0170 II
0180 //GET ANOTHER NAME:
0190 PRINT
0200 INPUT "ENTER NAME:": THISNAME$
0210 ENDWHILE
0220 II
0230 //DONE:
0240 PRINT CHR$(147) //CLEAR SCREEN
0250 PRINT "READY TO DO ANOTHER JOB •••••• "
0260 II
0270 DATA "PETER BROWN",2406,"JOHN SMITH",1216
0280 DATA "ROY MANNING",1512,"ELIZA MOOR",1008
0290 DATA "MINNA JACOBS", 1810

Iaaae 3 - CORAL CATALYST 5501 Groweland Ter. Badiaoa VI 53716 - Pg.I

You may have noticed th~ symbol// to appear in
several places in the program. It is used to
indicate a comment (like REM in BASIC). Since a
comment may be empty the symbol can be used as a
kind of "segment separator", and this is how it
is used in line 20, 40, 220 and 260 in the
latest version of Mr. Gunning's program (editors
note: CBM COMAL allows a line to completely
blank, without even the//). However, in line 10
and 240 you can see that a comment may also be
placed after any statement.

One morning, about a fortnight after Mr. Cunning
had finished the program, Mr. Uggley called him
on the phone. "I have some problems with this
new system of yours", he said. "yesterday I had
a report sent up, and I wanted to ask for some
details after having read it", he went on, "but
the only reference to the person who had written
it, was the signature which said P. BROWN. I
entered the name "P. BROWN" in that new
telephone thing, as you have instructed me to
do, but the imbecile answered nothing but "P.
BROWN IS NOT ON MY LIST". Now would you be kind
enough to tell me, what this is all about?".

Of course Mr. Cunning knew what was wrong. "Oh,
I am a fool. Why did I not tell him to let IT do
it in the first place. It is most likely that he
will go on for ever now asking for more, more,
more ••• !", he sighed, and went upstairs.

Mr. Cunning changed two statements in one of the
earlier versions of his program to get the
following:

0010 PRINT CHR$(147) //CLEAR SCREEN
0020 II
0030 DIM THISNAME$ OF 30, NAME$ OF 30,
0040 II
0050 INPUT "ENTER NAME:": THISNAME$
0060 WHILE THISNAME$<>"" DO
0070 RESTORE
0080 REPEAT
0090 READ NAME$,TEL
0100 UNTIL THISNAME$ IN NAME$ OR EOD
0110 IF THISNAME$ IN NAME$ THEN
0120 PRINT NAME$," HAS TELEPHONE NO. ",TEL
0130 ELSE
0140 PRINT THISNAME$," IS NOT ON MY LIST."
0150 ENDIF
0160 PRINT
0170 INPUT "ENTER NAME: ": THISNAME$
0180 ENDWHILE
0190 PRINT CHR$(147) //CLEAR SCREEN
0200 PRINT "READY TO DO ANOTHER JOB •••••• "
0210 II
0220 DATA "PETER BROWN",2406,"JOHN SHITH",1216
0230 DATA "ROY MANNING",1512,"ELIZA MOOR",1408
0240 DATA "MINNA JACOBS",1810,"PAUL BROWN",1205
0250 DATA "MARY JOHNSON",2402,"MARY BROWN",1101

Then he instructed Mr • . Uggley to enter whatever
information he had about the name of the person
he was looking for, i.e. , "BROWN" or "JACOBS" or
the like, but never to use abbreviations as in
"P. BROWN". "My program cannot cope with that",
he .said. Mr. Uggley looked a little
disappointed, but after having entered the name
"BROWN" and watched the answer "PETER BROWN HAS
TELEPHONE NO. 2406" come up on the screen he was
satisfied. Mr. _ Cunning left his office with a
sigh of relief, knowing far too well that •••

In the meantime let us take a look at the
program. The statements in line 100 and 110 have
been changed. The statement in line 100 used to
say:

UNTIL NAME$=THISNAME$ OR EOD

but now it says:

UNTIL THISNAME$ IN NAME$ OR EOD

The Boolean expression THISNAME$ IN NAME$ uses
the relational operator "IN" which is found in
COMAL-80. Its effect is extremely simple: If the
value of the first string variable is a
substring of the value of the second variable,
the expression returns a value of TRUE,
otherwise it returns a value of FALSE. Now it is
easy to see what happened when Hr. Uggley typed
in the word "BROWN". First it was assigned to
THISNAME$ as usual. After NAME$ had assumed the
value "PETER BROWN", the expression THISNAME$ IN
■AME$ evaluated to TRUE since "BROWN" is in fact
a substring of - or found in - the string "PETER
BROWN". It is also obvious that entering the
string "P. BROWN" would not work, because "P.
BROWN" is not a part of "PETER BROWN" when we
use simple pattern matching.

The relational operator IN is defined in the set
of string as follows:

<string expression-1> IN <string expression-2>

The Boolean expression thus given evaluates to
TRUE if the string returned by the first
expression is a substring of the value returned
by the second expression; otherwise a value of
FALSE is resulting. The operator IN does,
however, give more than that. In case the first
string is a substring of the second one, an
expression like the one above does not only
return a value different from zero - and is
therefore interpreted as equivalent to TRUE -
but it gives the position of the first string in
the second. Thus with THISNAME$ equal to "BROWN"
and NAME$ equal to "PETER BROWN" the expression
THISNAME$ IN NAME$ returns the value of 7,
because "BROWN" begins at position number 7 in

Issue 3 - CO■AL CATALYST 5501 GroYela■d Ter. ■adiso■ VI 53716 - P&.9

"PETER BROWN". In that way iwo birds are killed The reason why Mr. Cunning had not heard
with one stone. IN can be used both as a anything from Mr. Uggley appeared to be that the
relational operator and a positional operator. latter had been away on business in Paris - that

is at least what he had told his wife - but now
Very much to his surprise, Mr. Cunning hears
nothing from Mr. Uggley during the next few
days, He goes over the program and there is one
small detail that does not quite satisfy him. It
is not to his taste that the somewhat longish
expression THISNAHE$ IN NAME$ appears twice. It
also slows down the program because it is
computed eah time it is encountered. Furthermore
it is very easy to remedy, and of course Mr.
Cunning knows how. He changes the segment in
line 80-110 to become:

0080
0090
0100
0110

REPEAT
READ NAME$,TEL
FOUND:=THISNAME$

UNTIL FOUND OR EOD
IN NAME$

he was back! Only half an hour later he rang Mr.
Cunning, obviously quite upset about something.
"This last program of yours is even worse than
the old one!", he yelled. "Oh, he's found out!",
Mr. Cunning murmured to himself, but Mr. Uggley
did not hear that, "I asked for Mr. Brown this
morning and got Peter Brown as last time. Only
this time he appeared to be the wrong person!
And know what? I've got three Browns in this
house: Peter Brown, Paul Brown, and Mary Brown,
and you cannot expect a man in my position to
keep in check any Peter, Paul, or Mary strolling
around here. When I ask for Brown, I want that
silly device you have installed here to give me
the names and numbers of all the Browns in this
house! ALL! Do you understand?". Oh, yes, Mr\,
Cunning had understood all this long ago, and

Let us take a look at one of the new statements furthermore he was ready to meet the challenge.
he has introduced:

FOUND:=THISNAME$ IN NAME$

As we know already, the Boolean expression to
the right of the assignment returns a numeric
value. It evaluates to zero if THISNAME$ is not
a substring of NAME$ but to the position - i.e.
a number different from zero - of the first
string in the second if it is there. Whatever
value the expression returns is assigned to
FOUND thus making it possible for this variable
to bear witness where ever needed of the outcome
of the computation.

It is needed in the statement in line 110:

UNTIL FOUND OR EOD

He had solved that problem several days ago and
jotted it down on a piece of paper. This is what
his paper says:

...
repeat

repeat
get a name and telephone number
found the name?

until found or end of data
if found then

printout name and number
endif

until end of data
if not found then

printout that the name is not on the list
endif
get another name

which replaces the statement in old line 100: •··

UNTIL THISNAME$ IN NAME$ OR EOD

This can be done because FOUND has been assigned
the value of the expression THISNAHE$ IN NAME$
and thus "knows the truth about it". The
variable FOUND also replaces the same Boolean
expression in the statement: IF FOUND THEN.

The main problem he had to cope wi_th is that
searching cannot be stopped just because one
person whose name matches with the name that has
been type in has been found. There ma-y · be more.
Fancy the name "BROWN" has been entered. Then it
is not enough that "PETER BROWN" ii ·found; "PAUL
BROWN" and "MARY BROWN" must he pic~ed up too.
If a name has been found but end of data has not

It is no longer necessary to evaluate the been reached, the program must _go· on .'searching.
expression one extra time because FOUND still This is obtained by .. introducing · an. -e>ttra loop
remembers the outcome. that forces the searching to go ◊!l ~·u11ti1 end of

When a numeric variable is used like FOUND in
the above example, it is also called a Boolean
variable. Some peope prefer to call it a flag,
because it is used as a signal to the rest of
the program about the outcome of some test.

data is finally reache,d. Each. ~, tt~~ -.a, ,name to
match the entry has been found~ - ft ,~lif <!isplayed
with the telephone number that ·· goes- ·with it.
Only if the search has been totally unsuccessful
should the user be told that no name in the
telephone directory has any resemblance
whatsoever with the name entered.

Issue 3 - CORAL CATALYST 5501 GroYeland Ter. Badlaon VI 53716 - P&.10

But this raises one problem. If a Boolean TIP-VERSION 0.11 LIST FILES FIX: CBM COMAL
variable like FOUND in the program above is used version 0.11 makes its LIST files type PRG
to flag sucesses as well as failures, it is of instead of SEQ. Thus a program LISTed to disk in
course set to TRUE each time a matching name has version 0.11 cannot be entered by version 0.12
been found, but in any other case it is set to or 1 .02 due to a file type mismatch. The FIX
FALSE. Unless the name we are looking for is the procedure will read a PRG type LIST file created
last one on the list, FOUND will always end up by version 0.11 from drive O adn write it to
with a value of FALSE, even though several names drive 1 as an SEQ type file. It then can be
to match may have been found earlier! ENTERed into version 0.12 and 1.02 COMAL. To use

The problem can be solved by introducing another
flag of a more persistent nature than FOUND. We
shall use a "black flag", i.e. one which holds a
value of TRUE - is set - as long as no name has
been found, but is assigned a value of FALSE -
is reset - if only one name is found and
displayed. Mr. Gunning's algorithm now comes to
look like this:
.,· ~-~ ~- :! : . .'-;' ... -;~ ~- · ·-! -. . :
• 1 '. • - l <.- '

:~ 1~. :, ,
"'nune;=true i I maybe none of that name
. _ i;-_ep·eat ··
.c;, : . r.epeat
:' · ~ . ; get- a name and number

· faun~ ' the nam~?
.; until'. found or end of data

i7f found then
~rintout name and
non~:=false // at

~ndif
until end of data
if none then

number
least one

pri'ntout that name is not on list
endif
get another name ...

And now it is your turn, dear reader. Use Mr.
Cunnings notes and parts of the other programs
he has written tO) set· up a COMAL-80 program that
will solvj Mr. Uggley's problem - and Mr.
Cunning' s ! A solution will be suggested in the
next article. · (Edi tors note: Next issue will
hold the_next installment of the Uggley story)

ABOUT !HE AUTHOR:
' . -

Borge ::--Christensen >is the founder of the COMAL
langua~e!: and autno~ 0f the book BEGINNING COMAL.
He is . th.e priJ1-~·i<pal' iecturer for Mathematics and
Comput:ing ·at th~ C.ol1~ge of Higher Educaton in
Tonder, -benmar"k. I,.f yo-u like the style of this
article --please- 1et U,S know. We are encouraging
him tcf'., write <fi"~OMAL STORYBOOK".

' -- :-~· • ~) - : .i

RUMOR~MHODORE -J;4:: -CQ.lllmodore hopes to have a
COMAL :···: ROt{: PAtK/ for i-'their new COMMODORE 64
compu~-er. ''Just plug ;;, the cartridge in and you
have a full COMAL computer. Apparantly they are
hoping to provide the Irish school system with
1000 - 4000 systems (including the COMAL pack
for less than the list price without the pack).

FIX, simply RUN it. Then type FIX("NAKE") -
replace NAME with the name of the file. Make
sure that the version 0.11 LIST file is in drive
0 and a disk is in drive 1 for the new version.
If you have alot of programs to convert -
TRANSFER will convert all the PRG files in drive
0 to SEQ files in drive 1. It uses FIX, so
include both in your program. Once RUN simply
type TRANSFER. Procedures FIX & TRANSFER are
listed below·:

PROC TRANSFER CLOSED
IMPORT FIX lj.o~O t)nve. Of\\y
DIM SKIP$ OF 1, FILE'NAME$ OF 16
PASS "IO"
OPEN FILE 7,"$011 ,READ
SKIP$:=GET$(7,162); SKIP$:=GET$(7,92)
BLOCK' COUNT: =O
WHILE NOT EOF(7) 00

FILE1TYPE:=ORD(GET$(7,1))
SKIP$:=GET$(7,2)
FILE'NAME$:=GET$(7,16)
SKIP$:=GET$(7,11)
BLO(l('COUNT:+1
IF BLOCK'COUNT MOD 8 THEN SKIP$:=GET$(7,2)
IF FILE'TYPE=130 THEN FIX(FILE'NAME$)

ENDWHILE
CLOSE FILE 7

ENDPROC TRANSFER

PROC FIX(OLD1FILE$) CLOSED
DIM NEW'FILE$ OF 20, LINE$ OF 100
DIM NEW'ORIVE$ OF 2, OLD'DRIVE$ OF 2
DIM NEW' TYPE$ OF 4, OLD I TYPE$ OF 4
NEW1DRIVE$:="1 :"; OLD1 DRIVE$:="O:"
NEW'TYPE$:=",SEQ"; OLD1TYPE$:=",PRG"
NEW 1 FILE$:=OLD1 FILE$
PRINT "FIXING:";OLD'FILE$
OPEN FILE 2,0LD'DRIVE$+0LD'FILE$+0LD'TYPE$,READ
OPEN FILE 3,NEW'DRIVE$+NEW'FILE$+NEW'TYPE$,WRITE
WHILE NOT EOF(2) 00

INPUT FILE 2: LINE$
PRINT FILE 3: LINE$

ENDWHILE
CLOSE FILE 3
CLOSE FILE 2

ENDPROC FIX

NEWS-APPLE: If you have an APPLE II+ with a
language card and disk drive, you can get a
version of COMAL for the system. Apparently the
Irish school system bought 500 of these systems.

Issue 3 - CORAL CATALYST 5501 Groweland Ter. Madison VI 53716 - Pg.11

USER GROUP DISKS FINALLY

Now that the CUG is not distributing COMAL
STARTER KITS, the distribution of User Group
Disks is virtually our only income (the
newsletter remains free). Thus far most COMAL
programs in our library are either from DENMARK
or Madison, WI. Only one other person has sent
us a disk of sample programs so far. Our current
problem is that CBM COMAL has just changed to
meet the new COMAL KERN AL. Thus most of our
programs must be updated accordingly. I have
written several programs to aid in the
conversion process. These aids plus all programs
we can convert will be put onto master disks and
should be available by the time you read this.
The disks should be useful to you, as well as
extremely informative as to how COMAL programs
are put together. Host important, each disk will
contain both new version of CBM COMAL, version
O.12 and version 1.02. The disks are public
domain and may be freely copied. The programs
will run on either version 1.02 or 0.12 or both.
The programs will be stored on the disk as
LIST-files (SEQ files). They then can be ENTERed
into either version. If you have only version
0 .12, you can list the programs that can run
only with version 1.02 from disk to printer
easily, so that you can analyze the program, to
see if you can adapt it. FORMATTER will do this
elegantly. A simple way to do it is with the
following program:

DIM LINE$ OF 100
OPEN FILE 2,<program name>,READ
SELECT "LP"
WHILE NOT EOF(2) DO

INPUT FILE 2: LINE$
PRINT LINE$

ENDWHILE
SELECT "OS"
CLOSE

All programs on the User Disks and their
grouping is subject to change without notice,
but here is how we plan to precede:

reads a file from drive O and writes it to drive
1 as a SEQ type LIST file. TRANSFER will do the
whole disk, one file at a time, unattended.
DIRECTORY:: :Another way to solve the PRG / SEQ
file type conflict. It actually changes the PRG
in the directory to be SEQ. It shows you how the
directory can be modified by a COMAL program.
REMOVE //:::Removes all remarks in a program.
READ'DIR:::Reads the disk directory.
AUTO'HENU:: :Creates a menu of all PRG files on
the disk with a fast moving cursor controlled
pointer. Point to the program you want to run,
and hit return.
AUTO'RUN.B:: :A COMAL Loader program that will
LOAD the COMAL interpreter and then
automatically RUN a COMAL program from disk. A
good way to have the AUTO'MENU run.
FILE'TO'SCREEN:::For use with the Instrutek high
resolution graphics board.
DIFF:::
DOS:: :A very good DOS interface similar to the
WEDGE used by BASIC.
SYNTAX1 & SYNTAX2:::Simulates the COMAL
interpreter by checking the syntax of anyline
you type.
NAME'TABLE:: :Lists all variables, arrays,
procedures, and functions used by a program.
RECREATE:::Lists a program from its SAVE file.
DISK:::Disk command interface.
EXPRESSION:::Evaluates expressions.
PACK & UNPACK:::For use with the Instrutek high
resolution graphics board.
BASICREADCOMAL.B:::A BASIC program example to
read a COMAL data file.
VPTOCOMAL.B:::Convert a Word Pro file to a COMAL
file.
BASICLISTCOMAL.B:::A BASIC program that will
list a COMAL program LISTed to disk.
HEX'TO'DECIHAL:::Conversion program.

•• APPLICATION DISK
UGGLEY SERIES PROGRAHS:::The telephone directory
programs that go along with the continuing
article by Borge Christensen.
BALLCLUB PROGRAMS:: :The programs needed to
maintain a random data base of members of a ball

•• UTILITY DISK 1: club (or any other group).
FORMATTER:: :List programs with variable width, MONEY TRACKER PROGRAMS:: :Track where you money
lines per page, indentation amount, left margin, goes by account number via sequential disk
and page heading with page numbers. Programs can files.
be listed with or without line numbers. ORDER PROCESSING PROGRAMS:: :Process orders and
SCAN & DISK'SCAN:::Aid in conversion of old keep a disk file of all customers.
version 0.11 programs to new version 0.12. SCAN OLSEN HAIN PROGRAMS:::Converted from version
reads a LIST file and lists lines that may be of 0.11 to 0.12.
concern, such as assigning a value to a ENGLISH LESSONS:::
procedure name (the old way of performing a SUBTRACTION AID:::
function) and possible substring use (the HISTOGRAH:::Creates a histogram from your data,
substring specification has been changed). and includes a movable pointer to point to
DISK'SCAN will do a whole disk, one file at a smallest and largest points, etc.
time, unattended. TURTLEGRAPHICS PROGRAMS:: :For use with the
FIX & TRANSFER:: :Version O. 11 LIST files are a Instrutek high resolution board.
type PRG and cannot be entered into version 0.12 DISK MANAGEMENT SYSTEH:::Keeps track of all your
or 1 .02 which expect SEQ type LIST files. FIX programs and disks. Not yet completed.
Issue 3 - COMAL CATALYST 5501 Growe1aad Ter. Nadlsoa VI 53716 - Pg.12

•• DEMO & FUN DISK
OTHELLO
LABYRINTH:: :You are inside a maze. Rather than
show you the maze, it shows you your view as if
you were walking down a corridor. Nicely done.
Set of three programs.
POLYGON PUZZLE:::With data files and graphic
display.
TOWERS OF HANOI:::Well done display of the
solution to this classic problem.
MAGIC SQUARE: : :
SILLY:::
QUEENS:::Solution to the queens chess problem.
COMAL LOGO: : :
MUSIK:::
QUICKSORT:::A fast sort routine that you can use
with your programs.
CLOCK:::

•• VARIOUS PROGRAMS
There are several dozen more programs not
mentioned that will hopefully end up on one disk
or another. We welcome your program subissions
for future disks.

CBM COMAL DISK COMMANDS

Scratch File: DELETE <filename>
DELETE "0:TEMP*"

or in 0.12: PASS "S<drive>:<filename>"
PASS "SO:STARTER.L"
PASS 11SO:TEMP2,CODES,MY3" (several files)

Directory: CAT [<drive>] [<pattern>]
CAT 1 "*=seq" (only seq files listed)

or in 0.12: CAT [<drive>]
CAT

Initialize: PASS "I[<drive>]"
PASS "IO"

Format/New: PASS "N<drive>:<diskname>,<id>"
PASS "NO: DISK, D8"

Reformat: PASS "N<drive>:<diskname>"
PASS "N 1 : DI SK 11

Collect/Validate: PASS "V<drive>"
PASS "VO"

Backup/Duplicate: PASS "D<destination>=<source>"
PASS "D1=0" (backup drive Oto drive 1)

Copy: PASS "C<destination>=<source>"
PASS "C0=1" (copy drive 1 to drive 0)

Copy file: PASS "C<dst>:<newfil>=<src>:<oldfil>"
PASS "CO:MENU.FINAL=1:MENU.PRELIM"

Rename file: PASS "R<drive>:<newname>=<oldname>"
PASS "RO:CREATE'REC=TESTING"

TIP-USE LIST FILES: IMPORTANT: Each version of
CBM COMAL uses a different LOAD / SAVE program
format. However, the LIST to disk or tape is
always the same. Therefore, whenever you wish to
transfer a program from one version to another
LIST it to disk, then ENTER it from the new
version. Whenever sending programs to other
users, always LIST them to disk or tape so that
any version of COMAL can retrieve them.

UPDATE TO HANDBOOK IN STARTER KIT

The COMAL STARTER KIT is no longer being
distributed by the COMAL USERS GROUP due to the
transfer of the rights of the COMAL HANDBOOK to
RESTON PUBLISHING, who will be publishing a much
expanded version in August 1982 (300-400
pages!!!). The expanded version covers CBM
versions 0.11, 0.12, and 1.02. However, here are
some updates to the old HANDBOOK:

pg 5: The IN operation returns a <numeric
expression>
pg 62: If the string supplied to ORD is more
than one character, it only looks at the first
character.
pg 64: The word OUTPUT is optional and if left
out will be supplied by the system.
pg 65: The sample RUN output should not include
the letters RUN.
pg 69: The syntax for the OPEN statement can end
with [,UNIT <dev>[,<sec adr>]][,<type>]
pg 60 & 93: UNIT has a bug in the interpreter,
and at times will yield a syntax error when it
shouldn't. It is corrected in version 0.12. The
correct syntax is:
OPEN [FILE] <num>,<name>[,UNIT <dev>[,<secadr>]]

[,<type>]
<num> is the file number
<name> is the file name
<type> is READ, WRITE, APPEND or

RANDOM <rec len>
<rec len> is the record length

Examples: OPEN FILE 2,"TEST",UNIT 9,READ
OPEN FILE 3, 1111 ,UNIT 3

TIP-READ PRG FILES: The standard OPEN statement
in CBM COMAL will allow you to read sequential
(SEQ type) files. It is possible to read other
file types as well by including the file type as
the last part of the file name preceded by a
comma: <filename> = <drive>:<name>,<type>. For
example: "O:MY'PROGRAM,PRG".

UPDATE TO CBM COMAL MANUAL

The following are updates recieved on the CBM
COMAL MANUAL, called A SHORT SURVEY OF CBM
COMAL-80 in the COMAL Starter Kit. The CASE
structure was accidently omitted and is printed
here. Also, any additions made to the survey
concerning COMAL version 0.12 (update from 0.11)
will be listed as found in the updated survey.

CASE, WHEN, OTHERWISE, ENDCASE
The CASE statement is the head of the CASE
structure, that controls multiway branching. The
syntax of a CASE statement is:

CASE <expression> [OF]

Issue 3 - CORAL CATALYST 5501 GroYelaad Ter. Radiaoa VI 53716 - Pg.13

<expression> 'is a numerical, string or boolean
expression. The keyword OF is bracketed to
indicate that it will be supplied automatically
by the COMAL interpreter if not typed in by the
user. Control is performed by the CASE statement
only if it is assisted by the WHEN and ENDCASE
statements. The syntax of the WHEN statement is:

WHEN <list of expressions>

The expressions on the list following WHEN must
be of the same type as the expression in the
master CASE statement. The expressions on the
list must be separated by commas. The ENDCASE
statement consists only of one word: ENDCASE.
There may also be an OTHERWISE statement in the
CASE structure. Its syntax is only one word:
OTHERWISE. The CASE structure works according to
this diagram:

CASE <expression> [OF]
WHEN <list of expressions>

<statements-A 1>
WHEN <list of expressions>

<statements-A2>
. . .
WHEN <list of expressions>

<statements-An>
OTHERWISE

<statements-B>
ENDCASE

When the expression following CASE has been
evaluated, the list following the first WHEN is
examined. If one of the expressions on this list
has the same value as the CASE expression,
program section A 1 is executed and control is
then passed to the statement following the
ENDCASE statement. If no such item is found, the
list following the second WHEN is examined. If
the value of the expression is found, A2 is
executed, and control is then passed to the
statement following ENDCASE. If the value still
has not been found, the interpreter starts on
the third list, etc.

A default case (statements-B) may be inserted
and is executed if the value of the expression
is not found in any of the lists following the
WHEN keywords. The default case is opened with
the OTHERWISE statement. The OTHERWISE case may
be left out but the interpreter will then stop
the execution of the program with an error
message if the value of the expression following
CASE has not been found in the WHEN lists. Note
that at most one of the cases is executed. If it
so happens that the value of. the expression may
be found in more than one of the lists, only the
first of these lists will trigger off its
process. The program texts of A 1 , A2, ••• , An,
and Bare indented in the program listing. This
indentation is supplied automatically by the
COMAL interpreter. ~ _

Examples: Sample program "AUNTIE", lines 710-830
and 1630-1750 and sample program "OLSENMAIN",
lines 130-310. Many other examples to be found
in sample programs.

DATA
As in BASIC, DATA statements are used to hold
numeric or ·string constants that may be
retrieved in a READ statement. The individual
constants are separated by commas, and string
constants must be contained between quotation
marks.

END
The END statement makes the computer terminate
,execution of a program.

ENDWHILE
The ENDWHILE statement
block of statements
statement. See WHILE.

ESC

is used to terminate the
controlled by a WHILE

The keyword ESC is used in two different ways:
As part of a TRAP statement (see TRAP), and as a
standard function (see STANDARD FUNCTIONS) •

EXPRESSIONS
In CBM COMAL-80 you have arithmetic expressions
and string expressions. Arithmetic expressions
can contain constants, variables, and functions,
used with parentheses and the following
operators according to the usual rules of
mathematics:
+ monadic+ (+A)
- monadic - (-A)
,. power (A"B)
• multiplication (A*B)
/ division (A/B)

DIV integer division (A DIV B) see DIV
MOD remainder from division (A MOD B) see MOD

+ addition (A+B)
- subtraction (A-B)

Numeric values or strings may be compared by
means of the following relational operators:

< <= = >= > <>
IN used for string pattern matching. see IN
NOT logical negation. NOT A returns a value of

FALSE if A is true, but a value of TRUE if
A is false.

AND logical conjunction. A AND B returns a
value of TRUE if a A and Bare both true

OR logical disjuncation. A ORB returns a
value of FALSE if A and Bare both false

NOTE In CBM COMAL-80 a numeric value equal to
zero is interpretted as FALSE, whereas any value
different from zero is interpreted as TRUE. A
logical operation returns a numeric 1 for TRUE
and O for FALSE.

Iaaae 3 - CO■AL CATALYST 5501 GroYelaad Ter. ■adlaoa VI 53716 - P&~1-

The priority of the operators is:
A

* I DIV MOD
+ -
< <= = >=><>IN
NOT
AND
OR

A string expression may consist of string
constants, string variables, or string array
elements concatenated by means of the+ sign.

LIST (add to page)
A program that has been stored by means of LIST
"<name>" can be opened as a normal ASCII file by
using: OPEN 2.•<name>".READ. The individual
lines of the file may now be retrieved by using
a statement like: INPUT FILE 2: LINE$.

NEW - cl ears whole workspace of program & data

POKE
POKE I,J is a statement that assigns a value of
J to byte no. I in the computers memory.

PRINT (add to page)
In a PRINT statement the TAB functions may be
used to set the next print position. The
statement: PRINT 1.TAB(2O) 9 2 displays the
constant 1 in the first column of the line and
the constant 2 in column 20 of the same line . If
the argument of the TAB function evaluates to a
position before the current one, the line is
shifted first. If the argument is less than or
equal to O an error message is given.

RESTORE - resets the data pointer to indicate
the first element in the data queue

RETURN
If used in a function it may have this
RETURN <arithmetic expession>

CHR$(X) - returns the character whose ASCII
value is equal to X

COS(X) - returns the cosine of X (X in radians)
EOD - returns a value of TRUE if the last

element in a DATA queue has been read,
otherwise a value of FALSE is returned

EOF(X) - returns a value of TRUE if the end-of
file mark in a sequential file, opened
with channel no. X, has been retrieved,
otherwise a value of FALSE is returned

ESC - returns a value of TRUE if the STOP key
has been depressed, otherwise it returns
a value of FALSE. The ESC function is not
active unless a TRAP ESC- statement has
been encountered.

EXP(X) - returns the value of e to the power
of X

INT(X) - returns the integer part of X, i.e. the
greatest integer less than or equal to X.

LEN(X$) - returns the current length of the
string value of X$

LOG(X) - returns the natural logarithm of X
0RD(X$) - returns the ASCII value of the first

character held by X$
SGN(X) - returns the sign of X: -1 if Xis

negative, 0 if Xis O, 1 if Xis positive
SQR(X) - returns the square root of X
TAN(X) - returns the tangent of X (X in radians)

STOP
A STOP statement stops t he execution of t he
program. Execution can be resumed from the
statement following the STOP statement by means
of the CON command.

SYS
The statement SYS I causes the interpreter t o
make a subroutine call (JSR) to byte no. I in
the computers memory.

TRAP
A TRAP statement or command is used to disable

The value of the expression will
returned by the function.

RUN

syntax:

then be the normal functioning of the STOP key. After
the statement or command TRAP ESC- has been
encountered by the interpreter, depressing the
STOP key will not as normal result in the
program execution being stopped, but instead the
system variable ESC will be set to TRUE. The

The RUN command invokes a prepass of the program
(all structures are linked and structural errors
are reported) and then starts execution of it.

SETEXEC
The command SETEXEC- makes the interpreter
suppress the keyword EXEC when listing a
program. The command SETEXEC+ resets the
interpreter to display the keyword EXEC. On the
start of the COMAL system SETEXEC- is executed
automatically. When typing in a program, the
keyword EXEC is optional.

STANDARD FUNCTIONS
ABS(X) - returns the
ATN(X) - returns the

absolute value of X
arctangent in radians of X

normal reaction of the system on the STOP key is
restored by the command or statement TRAP ESC+.

TIP-ROUNDING: Assigning a real value (like 1.6)
to an integer variable (like NUM#) results in
the value being ROUNDED before assignment. This
makes an easy way to round a number rather than
truncate it with the INT function.

FUNC ROUND(NUM) CLOSED
NII: =NUM
RETURN N#

ENDFUNC ROUND

Issue 3 - CO■.I.L C.I.T.I.LYST 5501 Growelaad Ter. ■adlsoa VI 53716 - P&.15

PRESENTING AN AUTOMATIC MENU IN COMAL

Automatic menu selection of programs is a
fantastic aid. A utility to provide this
function should be in everyone's library of
programs. In the past 5 years, I have written
several such menu programs. First, one for the
PET with CompuThink disk drive. Then one for the
Atari 800. Next one for the IBM 3033 (a huge
mainframe). Now, the best one yet. The following
menu presents a menu of only the PRG type files,
and provides a very fast cursor (pointer) to
slide around. Just hit <return> when it points
to the program you want to run. The program
demonstrates how to read the CBM 4040 directory
and how to move a pointer.

I I .AU'l0-1ATIC MENU / PRO:iRAM ~SSION
I I BY LEN LINI&Y - JULY 1982 - 80 OOL
DIM NJlt,Q OF 17, K>VEli OF 1
ZOOE 0
CLOOE
OPEN FILE 3, 1111 ,UNIT 3,3
INTRO
DIRECIDRY
POINTER

PROC POINTER
ROtl:=1; <n.:=1; POINT:=O
REPEAT
~:=KEY$
CASE K>VE$ OF
WHEN Oif$(19) // l01E

POINT:=O
WHEN Qii:$(145) // UP

POINT:-1
WHEN Qii:$(17) // In-IN

POINT:+1
WHEN (}{I$(157) // LEFl'

POINT:-24
WHEN QiI$ (29) / / RIGHT

POINT:+24
WHEN (}{I$(13) // RE'IURN
OO'IT

O'IHERWISE
NUU..

ENDCASE // (}{I$(146) IS REVERSE OFF
PRINT AT RC1tl,<n.: (}{I$(146), 11 11 , / /ERASE IBE >
IF POINT>=FILE'OlJNT 1llEN POINT:=FILE'OlJNT-1
IF POINT>=24*4 1llEN POINT:=24*4-1
IF POINT<O 1llEN POINT:=O
RCM:=1+(POINT M)l) 24)
COL:=1+20*(POINT DIV 24)
PRINT AT ROtl,mL: (}{I$(18), 11>11 ,

UNTIL FAI..SF;:TRUE // (}{I$(18) IS REVERSE 00
ENDPROC POINTER

PROC INTRO
PRINT (}{I$ (147) , (}{I$ (18) , / / Cl.EAR SCREEN/REVERSE 00
QJRS)R 25, 1
PRINT II USE aJRS)R KEYS TO POINT TO PRO:iRAM TO RUN. 11 ,

PRINT II HIT <RE'IURN> TO RUN IBE >PRO:iRAM. II'
ENDPROC INTRO

PROC DIRECIDRY
DIM ~P$ OF 1, FILE'NM-8 OF 16
PASS ''IO"
OPEN FILE 7,"$011 ,READII for 4040 DRIVE ONLY
SKIP$:=GET$(7, 162); SKIP$:=GET$(7 ,92)
BLOCK'OlJNT:=O; FILE'OlJNT:=O
WHILE NOf EDF(7) 00

FILE'TYPE:=ORD(GET$(7, 1))
SKIP$:=GET$(7,2)
FILE'NM-8:=GET$(7,16)
SKIP$:=GET.$(7,11)
BLOCK' CXlJNT :+ 1
IF ILOCK'OlJNT M)l) 8 1llEN SKIP$:=GET$(7,2)
IF FILE'TYPE:130 IBEN
IF FILE'OlJNT<24*4 IBEN
RCM:=1+(FILE'OlJNT]I{))) 24)
COL:=2+20*(FILE10lJNT DIV 24)
PRINT AT !Oi,<n.: FILE'NM-8,
FILE'OlJNT:+1

ENDIF
ENDIF

ENVtlilLE
CLOOE FILE 7

ENDPROC DIRECIDRY

PROC OO'IT
NJ\l,,U:=GET$(3,16) II NAME
CLOOE
PRINT AT 25 , 1 : " I.DADIN311 ; NMU; 11 •••••••••••• 11 ,

PRIITT " ••• ",
CHAIN NAME$

ENDPROC 001 IT

ABOUT THE USERS GROUP & EDITOR

Hi! As CBM COMAL moves into its second year, the
COMAL Users Group is still alive and kicking.
The CUG is run by only one person, and being
that person, I can verify that it is alot of
work. I could handle to work, if I had the time.
But there's the catch. I have two 'real' jobs. I
work as technical writer for a "microprocessor
specialists" consulting firm during the day, and
evenings (till midnight) I run an IBM 3033
computer system for the State of Wisconsin. With
the two jobs, there is not much spare time left
over (the spare time also was used to complete
my third book for HESTON PUBLISHING). Since I
can't do everything, I now have two people
helping me with the newsletter and User Group
Disks. Two other people have started a small
company, COMAL INTEREST GROUP, to distribute
COMAL books, programs and interpreters. (NOTE: I
am not part of this new group). I am trying to
find a publisher for the newsletter that can
take care of the subscriptions, layout, printing
and distribution. I still will take care of
getting the material for it. I also would like
someone to organize the many programs we are
collecting onto User Group Disk masters. The
many different versions of COMAL make this a
problem. Right now we are only supporting CBM
COMAL with the CBM 4040 disk format.

Issue] - COMAL CATALYST 5501 GroYe1and Ter. Madison VI 53716 - Pg.16

YOU MAY NOT WANT TO HEAR THIS BUT •••

You don't need me to tell you what others have
been saying for years. Computers are becoming
more advanced every year. After all the advances
and innovations in the computer hardware over
the past 20 years, why are so many people still
using BASIC, which is a rather primitive
language compared with some of the new ones
available now. Well, until last year I could
answer that easily. BASIC came with the
computer, it was FREE. It was easy to learn and
use. The other better languages may be better
for professional programmers, but not for the
ordinary non-professional home programmer. They
were too rigid, required you to understand
complex principles and usually were not
interactive. Languages were paraded around us,
each claiming superiority. PILOT claimed to be
easier to use (but lacked some of the power).
FORTH claimed to be fast, and indeed it is. If
you need application software for industrial
control, FORTH may be for you. Then APL appeared
for the microcomputer . You would see a letter
from an APL programmer showing a one line
program (with triangles and squiggles) that
would do some mathmatical calculation that BASIC
would need 20 lines to do. But who could read
it? And how about PASCAL and C, both somewhat
similar. C is good for people who don't like to
type, since it use brackets alot to save t yping
in BEGIN etc. But it is not too readable. PASCAL
is readable but imposes too many rules and
regulations on you. EVERY variable must be
declared. Besides just declaring it, you must
specify what type of variable it is, REAL,
INTEGER, etc. And each line must end with a
semi-colon (with some exceptions). The program
must have the word END. at the end (including
the period). For some reason, PASCAL can't
figure out where the end of the program is.
PASCAL is also very bad in string handling and
Input/ Output. Possibly the worst part is that
PASCAL has no line numbers and requires the use
of an EDITOR that is separate from PASCAL. So
you must learn to use the EDITOR as well as
learn to use PASCAL.

I tried PILOT, FORTH, and PASCAL. I found that
PILOT and FORTH were not suited to my situation.
PASCAL would have been nice, but it got me too
frustrated with all its silly rules.

"If you have been used to great freedom [with
BASIC], you will come to regard your PASCAL
compiler as a strict and fussy schoolmaster. You
still have the chance to be creative, certainly,
and you can still have fun, but you must play
strictly by the rules." --- page 18, PASCAL FROM
BASIC by Peter Brown.

It has been said that COMAL has the ease of
BASIC with the power of PASCAL. The corollary to
this is that COMAL doesn't have the problems of
BASIC nor the problems of PASCAL. (I use CBM
COMAL-80 version 1.02 for reference) If you are
considering leaving BASIC behind, read the book
PASCAL FROM BASIC by Peter Brown. It is very
good. It shows how BASIC can be improved with
structure, but also points out PASCAL's
shortcomings. After reading it you will not want
to use either language (BASIC or PASCAL). Then
remember that COMAL doesn't have to problems of
PASCAL, some of which are indicated by two
quotes below from the book:

"Modern education is often held to emphasize
flamboyant and trendy subjects at the expense of
basic skills. PASCAL suffers in the same way. It
is strong on data structures and the like but
comparatively weak on the three RI s: reading,
riting, and rithmetic. Its rithmetic lacks an
exponentiation operator, and, an omission felt
by commercial programmers, decimal operation.
Its reading and riting, i.e. its input and
output, seem to be designed to help sell Bill's
BASIC FROM PASCAL book. It is not so much that
PASCAL's input/output is short on facilities; it
is just that some fundamental things are
difficult or impossible to do."

"You have probably go t t he impression, after
reading this Chapter, that getting anything in
or out of your PASCAL program is like going
round the Royal Saint George's golf course
equipped only with a putter."

PASCAL FROM BASIC is available from
Addison-Wesley Publishing Company for $12.95.
Copyright 1982.

So there I was (as many of you may be right
now), knowing full well that BASIC was outdated,
and not being able to find a suitable
replacement. PASCAL is not meant to be a
replacement for BASIC for the home computer. But
in May of 1981 there was a major breakthrough
for the PET/CBM. COMAL arrived on the scene like
a ray from heaven. COMAL is an advanced
programming language for the non-professional
programmer which includes the advantages of
PASCAL without losing the friendliness of BASIC.
Any one who uses the FULL ENHANCED COMAL (CBM
COMAL version 1.02) for a week, will not want to
go back to BASIC. (Version 1.02 is available on
disk for the CBM 8096, or as a plug in board
from Instrutek for any PET/CBM except the
original PET with BASIC 1 .o --- introductory
version 0.12 is available on disk for any
PET/CBM with BASIC 4.0. All of this is available
thru the COMAL USERS GROUP).

Issue 3 - CORAL CATALYST 5501 GroYe1aad Ter~ ■adiaoa VI 53716 - Pg.1T

You may have heard about COMAL before. You heard
that it allows structured programming and even
i ndents the structures automatically so you can
SEE them (PASCAL does not provide this 'pretty
printing' automatically. You must run a program
whose listing is 7 pages long to list your
program nicely). You may already know that COMAL
allows a multiple line IF ••• THEN ••• ELSE. You
may know that it has both a REPEAT .•• UNTIL and
a WHILE ENDWHILE loop along with the
standard FOR ••• NEXT. You have been told that
it has the wonderful CASE structure (replacing
the ON ••• GOTO). Then finally you probably have
been told about COMAL's multi-line FUNCTIONS and
PROCEDURES, both allowing parameter passing and
local or global variables. So you already know
that COMAL is far superior to BASIC. But many
probably still have not used COMAL. Why? Is it
fear of change?

Well, fear no more. The COMAL system is on your
side, helping you, not fighting you with a bunch
of silly rules. COMAL uses line numbers simply
for your use in editing the program. The line
numbers are not used by the program itself. You
can delete blocks of lines with one command
(DEL). The system will prompt line numbers for
you automatically with the AUTO command. A
renumber command (RENUM) is available if you
need it. You can list all or part of your
program. The listing automatically indents the
structures (pretty printing). To LIST a specific
procedure, INTRO for example, simply type, LIST
INTRO. A program can be listed without the
indenting if you wish. Simply add a file name to
the LIST command, and the program, or program
segment, will be listed to disk or tape. These
segments can later be merged into another
program via the ENTER command. The disk
directory can be printed in full, selectively
using pattern matching, or even just listing the
SEQ files (or just PRG or USR files).

If you have a printer, it can be turned on or
off with the SELECT command. Everything works
the same on the printer as on the screen,
including TAB and ZONE. So once you have your
program output looking nice on the screen
simply add the line SELECT "LP" (for Lin;
Printer) and the program will print the same
thing, formatted nicely, just as it was on the
screen. (You can't easily do this with BASIC).
COMAL provides you with two different types of
sequential files, as well as direct access
(random) disk files. Standard PASCAL has only a
sequential file capability. COMAL has the GET$
and KEY$ statements, greatly improved over
BASIC's simple GET. COMAL lets you easily 'tack
on' your own enhancement set of 'keywords'. Just
define them as procedures or functions. Once a
program is RUN all procedure and function names
are remembered by the system, and can be called

from direct mode at any time (the sky is the
limit here). For example, lets say you have
defined a function in your program called GCD
(greatest common divisor) that had two
parameters (the two numbers to test for the
greatest common di visor). After you are done
running the program, COMAL still remembers that
function. You can now find the greatest common
divisor of any two numbers in direct mode. For
example: PRINT GCD(35,21) --- COMAL will reply
with 7. .

COMAL has PRINT USING, allowing the formatting
of numbers into neat columns, as well as PRINT
AT, allowing you to specify the row and column
to begin printing on the screen. It reads DATA
statements with a READ statement (Did you know
that standard PASCAL does not have this
capability!). It also has the RESTORE statement
like BASIC, but with a major improvement. You
can restore the next DATA pointer to any line
y~u wish. But the line is not specified by its
line number (remember, line numbers are not
significant to a running COMAL program). Instead
you include a label on the line before the DATA
line to be restored to, and use RESTORE NAME
(using the name of the label of course). BASIC
has a 'tab' point every 10 columns on the screen
and when you print i terns separated by a comma
BASIC skips to the next column when it comest~
the comma. COMAL calls these tab positions
ZONEs, and lets you assign them to be whatever
interval you wish. They will work on the printer
as well as the screen. So if you wish to have
columns 6 characters wide simply say ZONE 6.
COMAL also has the CURSOR statement that will
put the cursor in whatever ROW and COLUMN you
wish. Text can be read right off the screen
under program control too. Plus division with an
integer answer is provided for with the DIV
statement. A MOD statement is also available . . .
giving the remainder to the division. You can
disable the STOP key if you want. The words TRUE
and FALSE are part of COMAL (just like in
PASCAL). PEEK and POKE are permitted, as well as
SYS (so you still can directly play with the
system). Machine code can be loaded by a program
with the command OBJLOAD. Programs can be
CHAINed together without any problems (BASIC has
a few problems in this area). String arrays are
available, and can have up to 33 dimensions each
with whatever top and bottom indexes you wish to
use (more than 256 is no problem). Of course
numeric arrays also have this capability, but
allow up to 36 dimensions.

Variable names in BASIC are a problem since only
the first two characters are significant. COMAL
allows variable names to be up to 78 characters
long, with all the characters significant. These
characters can include the apostrophe ('),
square brackets ([]), backslash (\) and
underline (represented by the left arrow' key),

Iaaue 3 - CONAL CATALYST 5501 GroYe1and Ter. Nadison VI 53716 - Pg.18

along with the 26 letters and 10 digits. The
backslash and square brackets are included so
that languages with some extra 'letters' can use
these. Danish uses one of these for the AE
combination letter. These long variable names
apply to both strings (end with a$) and integer
(end with a /1) •

Substrings are very easy with COMAL. No need to
use special words like MID$ to manipulate a
string. You can print part of a string by
specifying its start character position and its
end character position (BASIC would use RIGHT$,
LEFT$, and MID$ to do this). But COMAL also
allows you to change a substring to something
else without affecting the rest of the string
(BASIC won't let you do this).

COMAL often will provide keywords you leave out
if it knows that they belong in the statement.

For instance, to select the printer for your
output you can type SELECT "LP", but COMAL will
insert the word OUTPUT and list the line as
SELECT OUTPUT "LP". The word THEN (in the
multi-line IF ••• THEN statements) can be
omitted and will be supplied by COMAL.

-
So, what language should you now be using? That
depends upon your situation. Both the Danish and
Irish school systems are now using and teaching
COMAL as their official language (with Sweden
and England soon to follow). I haven't used
BASIC for over a year now and haven't suffered.
from any withdrawl symptoms. I enjoy using
COMAL. It makes you feel like a great

COMAL also includes end of data (EOD) and end of programmer.
file (EOF) pointers, making reading in data from
data statements or files very easy.

Those were just some of tne advantages of the
language. Now I will mention how COMAL is a
FRIENDLY language. It often will know what you
want but not require you to type it (i.e.,
PASCAL requires an END. statement in every
program). BASIC is friendly in this respect, but
COMAL is even more friendly. Both allow you the
option of leaving off the closing quote mark of
a string constant if it is at the end of a line.
But COMAL does more than allow you to skip it,
it puts it in for you so that your line lists
with the quote mark at the end. COMAL
distinguishes between the comparison equals and
the assignment equals (as does PASCAL) by use of
a colon in front of the equal sign ':=' to mean
assignment. But you don't have to type the
colon, for COMAL will put it in for you. And
incrementing a variable is easier than with
BASIC (borrowing from ALGOL). In BASIC, to add a
number to the total you would say: T=T+N
while in COMAL you would say: T:+N or more
appropriately, TOTAL :+NUMBER. This feature is
available with strings as well as numbers.

CBM COMAL provides the same full screen editor
that all PET/CBM users are fond of (and that
most other micros don't have). In addition to
that, COMAL checks each line as it is entered
for correct syntax. If it finds a mistake, it
prints a very helpful error message under the
line, and puts the cursor at the spot in the
line of the suspected error. Simply correct the
error and hit RETURN. The error message is
erased from the screen and the line that it
overwrote is restored (the error message is
therefore non destructive to the information on
the screen). This is a fantastic system,
especially the first few times you use COMAL.

- In ROM

- On Disk

COMAL BOOKS

and
PROGRAM DISKS

COMAL
INTEREST

.. GROUP
505

CONKLIN PLACE

MADISON WI 53703

Issue 3 - CORAL CATALYST 5501 Growe1and Ter~ ■adlaoa VI 53716

RESOURCE LIST
•aogika Data-Systemer, Akacieparken 38, DK-7430
Ikast, Denmark. Tel. (07) 153155
*Borge Christensen, States Training College,
Ostergade 65, DK-6270 Denmark
*COMAL Interest Group, 505 Conklin Place,
Madison, WI 53703
*COMAL Users Group, 5501 Groveland Ter, Madison,
WI 53716 USA. Tel. (608) 222-4432
*COMAL Users Group, John Collins, 4 Grirnthorte
House, Percival Street, London, EClV 085,
England
*Ellis Horwood Limited, Market Cross House,
Cooper Steet, Chichester, West Sussex, P019 lEB,
England
*Gemini Microcomputers, Oakfield Corner,
Sycamore Road, Amersham, Bucks HP6 5EQ, England
*Instrutek, Christiansholmsgade, DK 8700,
Horsens, Denmark. Tel. 05 61 1100
*IPUG, Mick Ryan, 164 Chesterfield Drive,
Riverhead, Sevenoaks, Kent, England
*Metanic Aps, Kongeveien 177, 2830 Virum,
Denmark. Tel. (02) 858284
*Oldenbourg Verlag, Rosenheimer Strasse 145,
8000 Munchen 80 W Germany
*Regnecentralen, Lautrubjerrg 1-5, DK 2750,
Ballerup, Denmark. Tel. (02) 658000
*Heston Publishing, 11480 Sunset Hills Road,
Heston, VA 22090 USA. Tel. (703) 437-8900
*Trinity College, Department of Computer
Science, Dublin 2, Ireland

CONVERT FROM CBM COMAL VERSION 0.11 TO 0.12

PRX SCAN(FILE'NAME:$) CLOOED
DIM LINE$ OF 100, PRX'NAIU OF 80
PRINT FILE'NAIU;":"
OPEN FILE 4, ''O : "+FILE' NAME:$, READ
PROC1NAIU:=""; IN'PROC:=FALSE
WHILE NOT EDF(4) DO

INP\11' Fill: 4: LINE$
IF IN'PROC THEN
IF " ENDPROC ''+POOC I NAME:$ IN LINE$ THEN

IN'PROC:=FALSE
ELSE

Fl../iGl := "$ (II IN LINE$
IF PROC'NAI-E$+":=" IN LINE$ THEN

PRINT ":= ";LINE$
ELIF II RE'IURN II IN LINE$ THEN

PRINT ''RET'';LINE$
ELIF Fl../iG1 THEN
IF ":" IN LINE$ (Fl../iG 1 :LEN (LINE$)) THEN PRINT "$ (:";LINE$
IF"," IN LINE$(Fl../iG1:LEN(LINE$)) THEN PRINT ''$(,";LINE$

ENDIF
ENDIF

ELSE
PROC1POO:=" PROC II IN LINE$
IF PROC'POO THEN
IN 1PROC:=TRUE
OO'NAHEl :=" 11 IN LINE$(PROC1Pffi>6:LEN(LINE$))
END1NAHE2:="(" IN LINE$(PROC'Pffi>6:LEN(LINE$))
IF END'NAMEl=O THEN

PROC'NAIU :=LINE$ (PRX'PCS+-6 :LEN(LINE$))
ELIF END'NAHE2 AND END1NAME1>END'NAHE2 THEN

PROC' NAI-Q: =LINE$ (PROC' Pffi>6: PRJC' PC&-$+END I NAl'l:2-1)
ELSE
PRX' NAIU :=LINE$ (PROC' Pffi>6: PROc I PC&-$+END I NAMEl-1)

ENDIF
To transfer a program written with CBM COMAL //PRINT ''PROC'NAHE=";PROC'NAME:$
version O .11, first LIST the program to disk ENDIF
(i.e., LIST "MY'PROGRAM"). Next convert the file~

_ into a SEQ type file. Use program DIRECTORY {on
Utility User Group Disk) or FIX (listed on page PRINT
11). Next scan the program for statements that ClL& FILE 4
need to be changed do to the update to the new ENDPOOC SCAN
tOMAL KERNAL. The program SCAN below prints
lines with statements that use a procedure as a
function (change the PROC and ENDPROC to FUNG
and ENDFUNC, and the value iaust be returned with
RETURN). It also prints lines that may need
changing due to substring specification changes.
To call SCAN simply type SCAN("MY'PROGRAH•).

TIP-ENTERING A DIFFERENT VERSION FILE: When
ENTERing a program from a different COMAL
version, you may encounter some SYNTAX ERRORS or
such. If this happens, the offending line will
be displayed on the screen with an accompanying
message. Either fix the problem, or if you wish,
simply move the cursor to the beginning of the
line and insert a // (or a I) just after the
line number (makes the line a remark) and hit
RETURN. The system continues to enter the rest
of the program. After the whole program is
entered, you may then go back to those lines and
correct for minor differences.

----55CHGr""""1T_,..
........ u11,

FIRST CLASS MAIL

Issue 3 - CORAL CATALYST 5501 Groweland Ter. Radison VI 53716 - Pg.20

