The Programming Language
COMAL - Denmark

(A Brief Description)

By B R Christensen

The programming language BASIC would appear to be
playing an increasingly prominent role in the teach-
ing of elementary computer science. However, in
the eyes of many computer specialists, this rep~—
resents a highly undesirable state of affairs, since
the majority of them have emphatically rejected
BASIC as a language suitable for teaching beginners.
While the language does represent a measure of im~
provement upon the 'assembler—like' notations used
by desk-top calculators, and indeed, may be useful
for certain technical purposes, in the opinion of
the author it is a language which is totally un-~
suitable for use in schools. In such establish~
ments training should be aimed at a general under-—
standing of algorithms and an analysis of their
structure. In this respect, the lack of trans-
parency of BASIC has been heavily criticised since
it does not permit the underlying structure of an
algorithm to show through the program topography.
Indeed, BASIC programs tend to mask the structure
of an algorithm; anything more ambitious than
gimple calculations and printout of results soon
becomes unreadable to anyone other than the author
of the program - and even he, after a short time
lapse, would need to invest considerable effort in
order to 're~understand' his own program. Of
course, this latter difficulty is aggravated by
the very restrictive rules for comstructing var-
iable names which, in most cases, make it impos-—
sible to select names that adequately reflect their
meaning.

Based upon a considerable amount of experience, it
is the author's view that BASIC programs are

'patchworks' of program fragments knitted together
with GOTO statements. Such programs encourage the

student to develop bad programming habits. Further,

the student is given a superficial picture of an
algorithm since he is not motivated into making a
careful enough analysis of the structures with which
he is working.

After some consideration and many discussions with
both colleagues and other workers in the field,
the present version of the programming language
COMAL (COMmon Algorithmic Language) was designed.
The language should be user—orientated and should
enagble the commmication of relatively small al-
 gorithms to both man and machine in an under-—
8tandable manner. At the same time the language
should be capable of being implemented as a line-
by~line interpreter run on a stand-alone mini-
computer. BASIC is used as a host language for
COMAL; this may seem somewhat inconsistent after
the criticisms made above. However, some of the
‘best BASIC interpreters provide floating-point

Data Deparitment,
Tonder Statssem — Ostergrade.

facilities and some limited operating system cap-
abilities (for example, multiplexing and file
handling) both of which are maintained by the
manufacturer. Consequently, any implementation of
COMAL that could take advantage of such primitives
would be both quicker and less costly. While in
some ways COMAL is similar to BASIC, it is sub~
stantially better. The more important improve-
ments have been inspired by the language PASCAL,
designed by N. Wirth (cf. N. Wirth, Systematisches
Programmieren, Teubner, 1972). The final version
has also been greatly influenced by Benedict
Léfstedt, DIAMI, University of Aarhus, with whom
the author has had much discussion and whose never
failing watchfulness has been a constant source of
improvements in the preliminary drafts of the lan-
guage .

Description of COMAL

Essentially, COMAL is defined as BASIC with the
following seven modifications:—

(1) Simple Variables

A simple variable is named according to the
rule

alagag ceeees @ n<s

such that @, is a letter while ay...a, rep-
resent lettérs or digits. Two variabTée names
are interpreted as different if they differ in
one or more of the five possible characters,
for example,

PRICE, VOL, MAX25, MAXI, H235, H 235

(2) Array Variables

Arrays are used in exactly the same way as in
BASIC; naming conventions, however, follow
the same rule as COMAL simple variables, for

example,
STUDT(YEAR,NUM), SUM(TEST(I)), A(2,3)

(3) Control Structures
The FOR....NEXT construction is available in

COMAL. However, the following constructions,
while available in BASIC, are not permitted in
COMAL :~

IF P THEN GOTO linenumber
GOTO Linenwmber
ON I GOTO linenumber

Some of the more powerful control structures
available in COMAL are the WHILE....DO,
REPEAT., . .UNTIL, IF.,..THEN, and CASE state-

ment.

WHILE....DO

WHILE P DO
F

9

23

END WHILE

p is a Boolean expression; the program section,
A is repeated as long as p has the value Ytrue".
Between WHILE P DO and END WHILE the program
text is indented on the listing (cf. FOR....
NEXT) .

REPEAT....UNTIL

REPEAYT

UNTIL P

p is a Boolean expression; the program section
A is repeated until p has the value "true".
Between the REPEAT and UNTIL P the program text
is indented on the listing.

There are, then, in effect, only three loop
structures in COMAL,
FOR NEXT
WHILE P DO END
and REPEAT UNTIL

IF....THEN

Branching may be achieved by using either of
the variants of the IF....THEW....ELSE con-
struction. The simplest case is as follows:-—

IF P THEN DO

The program section A contained between the
two control statements is executed only if

&

(4)

the Boolean expression has the value "true".
After execution of this section, control
passes to the statement following the END
IF, If p has the value "false', A is ig-
nored and execution continues with the state-
ment following the END IF. Between IF P
THEN DO and END IF the program text is in-
dented on the program listing.

IF P THEN DO

P is a Boolean expression; the program sec-
tion A between IF P THEN DO and ELSE DO is
executed if p has the value "true", other-
wise the program section B between ELSE D0
and END IF is executed. After the execution
of either section A or section B, execution
continues with the statement following the
END IF. The program text lying between the
c?ntrol statements is indented on the program
listing.

CASE statement

CASES I OF
CASE 2;,8,00.0,8,
CASE bysbyse.n, L
END CASES

I represents an integer expression and d;,d,,
S ,...,bm,... are mutually different
integers. “The keyword CASE may be followed
by as many integers as the line-width will per-
mit. The mode of execution of the CASE state-
ment is as follows: when the value of I has
been determined the list of integer constants
following a given CASE is examined; if the
calculated value is found in the list then the
program section Ai, contained between the sel-
ected CASE and thé following CASE (or between
the last CASE and END CASES if the case re-
ferred to is the last in the block), is exe-
cuted. If the calculated value of I does not
select any of the CASE's the interpreter will
set an error flag at runtime,

Boolean Expressions

A Boolean variable is named according to the

(5

(6)

(D

following rules:-

#
azaz...an n<s

where the rules for the string @;0q9...a, are
the same as those for simple varlagles Qsee
(1) above).

A Boolean variable may be assigned the value
"true" or "false'. In COMAL, Boolean ex—
pressions may be inter-connected by the
Boolean operators AND, OR and NOT. The
following example illustrates the use of
Boolean variables:-

LET TEST#= TRUE
LET REMBR¥= (MAX=1{) AND TEST#
IF REMBR™ OR SUM>y THEN DO

Statements containing more than one Assignment

LET~statements in COMAL are allowed to contain
more than one assignment, for example,

LET SUM=d, A=l, B=A/2+SUM, TESTH=TRUE

The above multiple assignment is equivalent to
four separate LET-statements. A LET~
statement may contain as many assignements as
the line-width permits.

Note: In some versions of BASIC the keyword
LET may be omitted from the beginning
of the assignment (for example, Data
General's EXTENDED BASIC).

Facilities for editing Programs

The interpreter automatically supplies lin-
numbers for the statements as they are typed
in. Unless the programmer specifies other-
wise, the default numbering sequence is 10,
20, 30, ... (as is the practice with many
versions of BASIC, for example, that available
on HP 9030 machines). Editing follows the
same conventions as are used in BASIC. In
order to produce a listing of a program, two
LIST-commands are available: $LIST and
$LISTNUM. A $ character in the first char-
acter position of a statement is interpreted
as signifying an immediate command; such a
command is not stacked, but instead, is im—
mediately executed., $LIST may be used to
produce a program listing without line-numbers
while $LISTNUM causes line-numbers to be prin-
ted with the listing. Since there are no
GOTO-statements in COMAL, line numbers are
only required for editing purposes.

Subroutines
The statement
GOSUB Llinenumber

is not permitted in COMAL. Instead, a sub-
routine may be activated by the statement,

CALL name (arg;,arg s .«.,axg,) I

in which name is the name of a subroutine and
ng,grﬁ%,...,gr_gn is a list of arguments, the
values of which are assigned to a corresponding
set of parameters in the subroutine.

The definition of a function is initiated by
means of the statement,

l SUB name(gggl,garg,...,gar]

where name is the name of the subroutine and

par; \pary s« -« Par. is a set of parameters used
by %he subroutine; these parameters are assi-
gned the values of a corresponding set of arg-
uments given in the CALL-statement. Apart

from this, subroutines are handled as in BASIC.

Illustrative Program Listings

In order that the format and structure of
COMAL programs may be illustrated, program
listings A through D show some simple algo-
rithms implemented in COMAL.

o
INPUT N

D=1
REPEAT
D=D+1, DIVI#=(N/D=INT(N/D))
UNTIL DIVI# OR D*D>N
IF DIVI# THEN DO
PRINT "SMALLEST PRIMEDIV. IS:", D
ELSE DO
PRINT N, " IS A PRIME NUMBER"
END IF

INPUT LEFT,RIGHT \E~
COOR=¢, STEP=@, HOME=¢
REPEAT
NUM=RND({#) , STEP=STEP+1
IF NUM{5 THEN DO
COOR=COOR+1

ELSE DO
COOR=COOR~1
END IF

IF COOR=¢ THEN DO
HOME=HOME+1
END IF
UNTIL CODR=RIGHT OR COOR=LEFT
PRINT COOR, HOME, STEP

\d
INPUT P1,N

QUEUE=@, TIME=(
FOR I=1 TO N
IF QUEUEL>@ THEN DO
TIME=TIME+1
IF TIME>3 THEN DO
QUEUE=QUEUE~-1
IF QUEUE>@ THEN DO
TIME=1
ELSE DO
TIME=(
END IF
END IF
END IF
NUM=RND (@)
IF NuM{pl THEN DO
QUEUE=QUEUE+1
IF TIME=¢ THEN DO

TIME=1
END IF
END IF
PRINT I, QUEUE, TIME
NEXT T

REM #Ekddkknd MATN PROCEDURE %%#kmtien
REM VAR: A,B,F ARE RESERVED SUB HORNER(A,B)
PRINT "ENTER DEGREE OF POLYNOMIAL"
INPUT GRAD
DI A(GRAD), REAL(GRAD), CHPLX(GRAD)
PRINT "ENTER COEFFICIENTS OF POLYNOMIALY
FOR I=1 TO GRAD
PRINT USING “a(##)",1
INPUT A(I)
NEXT I
IF A(@)=¢ THEN DO
PRINT "YOUR POLYNOMIAL IS NOT OF DEGREE " ,GRAD
srop
END IF
N=g
REM
REM ====zs==== START SEARCHING mzaummsssaznszazroasssazes
WHILE GRAD>@ DO
IF A(GRAD}=¢ THEN DO
N=N+1, GRAD=GRAD~1
REAL(N)=¢, CHMPLX(N)=¢
ELSE DO
XCTR=@, YCTR={@
FMIN=A(N}+2 FCTR=FMIN
DX=ABS(A(N)/A({@))t(1/N),
REPEAT
FOR I=1 TO 4
U=DY, DY=DX, DX=U
X=XCTR+DX, Y=YCTR+DY
CALL HORNER(X,Y)
IF F<FMIR THEN DO
XMIN=X, YMIN=Y,
END IF
NEXT T
IP FMIN<FCTR THEN DO
DX=1.5%*DX, DY=1.5DY
XCTR=XMIN, YCTR=YMIN,
ELSE DO
U=4*px-3*DY,
END IF
U=ABS (XCTR) +ABS (YCTR)
UNTIL U+ABS(DX)+ABS(DY)=U OR FCTR=(
CALL HORNER(XCTR,®)
IF F<FCTR THEN DO

o

pY=¢

FMIN=F

FCTR=FMIN

DY=4#*DY+3*DX, DX=U

GRAD=GRAD-1, N=N+1
REAL(N)=XCTR, CMPLX(N)=¢
U=g

FOR J=@ TO GRAD
U=sU*XCTR+A(J), A(I)=U
NEXT J
ELSE DO
GRAD=GRAD-2, N=N+2
REAL(N)=XCTR, REAL(N~1)=XCTR
CMPLX(N)=YCTR, CMPLX(N-1)=-YCTR
U=@, V=@, K=2¥XCTR, M=XCTR4+2+YCTRt2
FOR J=@ TO GRAD
W=A(J)+K*U~M*V,
NEXT J
END IF
END IF
END WHILE

A(J)=W, V=U, U=W

National Development
Programme in Computer
Assisted Learning (cont'd)

tween classroom teachers and computer educators,
criteria for selecting the content of data bases
and for justifying the use of the computer.

In September 1975, 350 children from 5 junior
schools in South Glamorgan are to take part in a
computer managed remedial reading project. This
development project, a joint effort with South
Glamorgan County Council, is funded by the Nat-
ional Programme for two and a quarter years from
the lst October 1974 at a cost of £90,366. The
aim of this computer managed system is to assist
classroom teachers in developing and wonitoring
individualised courses of study for children ex-
periencing difficulties with reading. 1In the
first year existing teaching materials will be
classified and arranged, in-service education for
participating teachers implemented and computer
procedures set up using the ICL 1900 series comp=-
uter at City Hall, Cardiff. The educational and
the computer models were specified in earlier de-
sign studies funded by the National Programme.

A further dozen development projects and feasibil-
ity studies lie in the other areas of the Programme
with the majority in tertiary education. Projects
are located in many parts of the United Kingdom.

Conclusion

In terms of its funding relationship with educat-
ional institutions, the National Devlopment Pro-
gramme is probably the only national programme of
its type in the world. In the UK it is also the
largest programme ever mounted to develop the use
of a single educatiomnal technology.

For further details apply, in the first instance,
to the International Information Centre - address
page 2.

masssman

REM ========== SEARCH ENDED
REM
REM
REM =mmmzzazz== QUTPUT RQOOTS =
PRINT "REAL ROOTS"
FOR I=1 TO N
IF CMPLX(I)=¢ THEN DO
PRINT USING "-# ####+444%, REAL(I)
END IF
NEXT I
PRINT
PRINT
PRINT "COMPLEX ROOTS”
FOR I=1 TO N
IF CHPLX(I)<>p THEN DO
PRINT USING " (-# ###1444
END IF
NEXT I
REM w=z=z===zmzz QUTPUT ENDED ==z==mz=zz===x =
REM
REM
REM ####age2%% SUBROUTINE HORNER ##%dzxassx
SUB HORNER(X,B)

, -# ##84444) REAL(LT) ,CHPLX(T)

U=g@, V=@, K=2%3,H=312+B%2
FOR J=1 TO GRAD
W=A4(J)+K*U~M*V, V=U, U=W
NEXT J
F=(A(N)+UXA~M*V)+2+ (U*B) 12
RETURN
REM *##s#taswtt END SUBROUTINE HORNER ®##w#s
REM ;
REM F

REM #*sktt2itd END OF PROGRAM #*Akdtdtadads

30

A Neglected Dimension in

School Computing (contd)

Field F

This field acts as a 'sex-indicator'. This is
automatically set to F for females and M for males.
If it is found desirable, other letters could equally
well be used.

Operational Details

EFCP is designed to be a self-instructional system.
However in some cases, as for example when omne
wishes to modify the name generation section of the
system, more detailed information is required by
the user. 1In such cases the user should consult
the EFCP User's Manual,

