Comput. Educ. Yol 6. pp 179 to 192, 1982 0360-1315 82 020179-14%03.00:0
Printed in Great Britain Pergamon Press Lid

COMAL 80—ADDING STRUCTURE TO BASIC

M. A. BRAMER
Mathematics Faculty. The Open University. Milton Keynes. MK7 6AA. England

(Received 27 January 1981 amended 28 April 1981)

Abstract—BASIC has developed almost to the status of a standard lunguage in many areas of
educational computing. despite strong criticism by theoreticians and considerable weaknesses (in
particular. the lack of facilities for “structured programming™) which are handicaps when writing
all but the most elementary programs.

Some of the features of BASIC which have led to its considerable popularity are examined.
These features together with the widespread use of BASIC suggest that if a more appropriate
introductory programming language is 10 be developed and accepted it must build on rather than
replace BASIC.

A programming language is described which was designed to remedy the weaknesses of BASIC
by adding structured constructs and other desirable improvements. whilst retaining its major
features and overall spirit.

This language—known as COMAL 80—was developed in Denmark and is proposed as a
significant vet realistic improvement on BASIC as a programming language for schools.

“Marley was dead. to begin with. There is no doubt whatever about that. The register of
his burial was signed by the clergyman. the clerk, the undertaker, and the chief mourner.

Scrooge signed it Old Marley was as dead as a door-nail There is no doubt that
Marley was dead. This must be distinctly understood.” (Charles Dickens—A Christmas
Carol)

“Reports of my death are greatly exaggerated.” [Mark Twain (in a cable to the Associ-
ated Press]]

The two quotations reproduced above come naturally to mind when considering the imminent demise
of the BASIC programming language and its replacement by ALGOL-68 (or Pascal. PL/1 or what-
ever). a favourite topic of conversation in academic computer science circles.

It is notable that the most popular languages—BASIC. FORTRAN and COBOL—are also the
most widely and vehemently criticised. Although frequently pronounced moribund. in reality all three
are flourishing and continuing to evolve.

BASIC (the name stands for Beginners' All-purpose Symbolic Instruction Code) was developed at
Dartmouth College. U.S.A. in the mid-1960s by John Kemeny and Thomas Kurtz. principally as a
language for use by novice students working in an interactive mode. In the intervening years. count-
less more powerful or “sophisticated” languages have come and gone almost unnoticed. whilst BASIC
has gained worldwide popularity. reaching the status of a de facto standard language in many areas of
educational computing (especially school computing) as well as for “personal” or hobbyist computing.
The great majority of criticism of BASIC in the educational world not only fails to explain the reason
for its considerable popular success but unrealistically ignores the huge commitment, in terms of
personal effort and practical experience as well as of software development, which the users of a
language have invested in its use. For most practising teachers, it is simply not practical to abandon
the use of BASIC whatever the theoretical deficiencies which others may ascribe to it. The language is
widely available, well-known. there are numerous introductory textbooks and an ever-increasing
volume of educational software. These are not advantages to be lightly discarded. In this article, it is
argued that even leaving aside these advantages there are good practical reasons for the popularity of
BASIC as a language for beginners and non-computing specialists. but that there are identifiable
weaknesses which are handicaps when writing all but the most elementary programs, A programming
language designed to remedy these weaknesses whilst retaining the major features and overall spirit of
BASIC is COMAL 80 (COMmon ALgorithmic language), which was developed in Denmark, and this
is proposed as a significant yet realistic improvement on BASIC as a programming language for
schools.

179

180 M. A. BRAMER

In the absence of an agreed “standard” version of BASIC*, examples will be based on the version
originally implemented on the Hewlett-Packard 2000 series of minicomputers. since this 1s both
reasonably typical and well-known in educational circles. It is recognised that other versions may be
considerably different in particular features.

It is assumed that the reader is generally familiar with BASIC.

Before describing the features of COMAL it is worthwhile digressing to examine some of the
characteristics of BASIC which may account for its popularity, since any argument for improving
BASIC begs the question why it should be retained at all.

WHY IS BASIC SO POPULAR?

BASIC is oriented towards use at a terminal. in an interactive mode, by the beginner (and the poor
typist). By contrast, many other languages were originally designed for use in batch mode with all
input on 80-column punch cards and all output to a 132-character width line printer. Even when used
from a terminal. such languages frequently reflect their age, for example by providing no facilities for
interactive input of data.

Some particular features of BASIC are as follows. (Comparisons are drawn with other languages
where appropriate.)

T yping aids

(a) Lines are input in “free-format”. with spaces not significant. (c.f. the precise and error-prone
spacing needed for FORTRAN programs, with 6 initial spaces for “normal” statements. then up to 66
characters. followed by up to cight characters for comments.)

(b) Program statements can be entered in any order and are automatically placed in the correct
sequence.

Debugging aids

(a) Syntax checking takes place on a line-by-line basis as program statements are typed. thus 1t is
not possible to store or list an invalid line of BASIC. Only a small number of multi-line syntax errors
(c.g. "unmatched FOR and NEXT™) are not detected this way. and these are easy to find when a
program is RUN. A syntax error in one line cannot “contaminate” the analysis of any subsequent
lines to produce incorrect error messages, a common feature of many compilers.

(b) Run-time errors identify the offending statement directly by means of its line number (c.f. the
cryptic error messages or error numbers produced by many systems).

(c) Facilities for tracing program execution and “dumping” the values of variables are often avail-
able.

Euse of use

(a) It is extremely easy to “get started” in BASIC. Having logged-on it is only necessary to type

10 PRINT "HELLO"
20 END
RUN

Most other languages (and their implementations) perform badly on this test.

(b) There is no need for the beginner to learn how to use a text editor to input or change programs.
since line numbers are used to replace and delete program statements as well as to sequence them.

(c) There is no need to learn a separate Operating System command language to manipulate
programs and files or to specify input or output devices. BASIC has its own set of simple commands
(LIST. RUN. SAVE etc.) which refer in an obvious way to the user’s “current” program etc. With
many systems the user is either automatically placed inside the BASIC operating environment or can
enter it easily by typing one or two prescribed lines. In such a “dedicated™ system, it is not possible to
obtain an error message which refers to routines or facilities outside the BASIC system—there are
none. Such messages are a considerable source of difficulty with many other systems. (Additional
facilities available to privileged users of a dedicated system. such as the system operator. will generally
take an identical format to the BASIC commands available to all.)

* An official standard has recently (and belatedly) appeared. but has made little impact as yet.

COMAL 80—adding structure to BASIC 181

Inteructive features

(a) Input and output are normally at the terminal and the user is normally ‘prompted’ for input to
be provided for a running program. (By comparison. both Pascal and ALGOL-68 experience difficul-
ties when the same file—e.g. the terminal—needs to be open for both input and output simul-
taneously.)

(b) At the end of program execution. control returns to the terminal and the program remains
unaltered in the user’s “workspace”™. It can thus be changed and rerun in a simple fashion, or the
values of specific variables can be “dumped”. Some BASIC systems allow particular BASIC state-
ments (e.g. LET X=25) to be executed in “immediate mode™, i.e. as commands, followed by restarting
the program.

Although the features listed above comprise genuine advantages over its competitors. it is clear that
they do not relate to the BASIC language as such. but rather to the operating environment (frequently
a dedicated environment) in which it is generally used. The normal use of an interpreter rather than a
compiler for BASIC makes many of the user aids described above much easier to provide, and the
lack of compiled code is not a significant problem for most reasonably small programs. although it
can become so as BASIC is used for more and more ambitious projects. The use of line numbers for
program input and editing is an especially valuable feature. Naturally. a BASIC-like environment
could be built around most (perhaps all) programming languages. but perhaps surprisingly this has
not taken place.

Turning to the BASIC language itself. its most helpful features. especially for the beginner. probably
lie in the avoidance of many of the sources of difficulty of its more sophisticated rivals*.

(a) No “awkward™ syntax

c.l. quotation marks around keywords. such as “BEGIN™ in ICL ALGOL-60
.GT. etc. in FORTRAN
different meaning for round and square brackets (ALGOL-68)
multiple parentheses. such as (CAR(CDR(CDR(CDR(X)))) in LISP
parentheses in IF statements. e.g. IF (A.EQ.B) GOTO 20. in FORTRAN.
(b) No explicit declaration of simple variables.
(c) No complex syntactic constructions. e.g. REF REF INT in ALGOL-68.
(d) No unnaturatl rules, e.g. “right to left™ application of operators in APL (e.g. 4 — 2 — 2 = 4).
(e) Few rules for ordering of statements. :
(f) No “obscure™ rules. such as for FORTRAN “format™ statements.
(g) Simple statements for terminal input and output.

On the positive side, the string handling facilities of BASIC, where a string is regarded as a variable
length quantity (not. for example. as an array of characters) are arguably superior to those of any
other widely used language. with the exception of SNOBOL. which is specifically oriented towards
string processing applications.

It is worthwhile to point out that many of the advantages of BASIC could equally well be viewed as
disadvantages. for example the lack of declarations makes certain program errors (e.g. mistyping 10
LET X=X+1as 10 LET Y =X+ 1) extremely difficult to detect. However for the purposes for which
it was originally intended the advantages of simplicity are probably decisive. The strengths and
weaknesses of BASIC are discussed more fully in[5].

BASIC gains most by comparison with the typical mode of use of other languages on a mainframe
or mini-computer system: input the source program into a file (with no syntax checking). invoke a
compiler to read in the source file and find syntax errors. use a text editor to change the source
program. exit from the editor. reinvoke the compiler to find any further errors, and so on. With the
rapid introduction of microcomputer systems aimed at the inexperienced or isolated user. the provi-
sion of user aids and debugging features is becoming a major design aim rather than a distracting
afterthought. Such facilities will increasingly be developed—doubtless in improved form from those
described above—and eventually be made available with every language. In particular. the develop-
ment of easv-to-use screen-oriented editors provides an effective alternative to BASIC’s use of line
numbers for editing purposes.

Naturally BASIC wili also benefit from the growing emphasis on user aids. the Sinclair ZX80
feature of one keystroke per keyword being a simple example of this. but it is inevitable that the

* Although some of the features listed below have no justification. in many cases they are unavoidable
concomitants of the sophistication of the languages. The analysis here is given from the viewpoint of the
beginner. not the experienced user.

182 M. A. BRAMER

pre-eminent position of BASIC as a straightforward and strongly user-oriented language will be
severely undercut. A promising start in this direction is the UCSD Pascal system developed by
Kenneth Bowles at the University of California at San Diego in the United States[2]. UCSD Pascal
has been well received in educational circles in the United States and has started to gain popularity in
Britain, although it is not yet in wide use here. Whether the language will ultimately suffer the same
fate as PL/I, ALGOL-68 and the rest remains to be seen. Pascal itself has been in existence since 1968
and made little impact prior to the development of the UCSD system.

The practical difficulties associated with abandoning an established language (even one, such as
FORTRAN, with severe and obvious deficiencies) make a powerful argument against such “revolu-
tionary” change.

The alternative option of an evolutionary approach. i.e. improving BASIC rather than replacing it.
is an attractive one. However in choosing this option it is essential not to lose sight of the original
objectives of the language. as an easy to learn. easy to use, straight-forward language (or system)
aimed particularly at the beginner and non-computer specialist. Many of the available extended forms
of BASIC seem to have concentrated on providing more and more powerful features for advanced
programming. However. to extend BASIC to have the power of (say) PL/I would be a serious
mistake.

The designers of the set of extensions embodied in the programming language COMAL have
avoided this pitfall and have rightly concentrated on removing the major source of unnecessary
complexity in BASIC programming—and incidentally an area in which it is much inferior to UCSD
Pascal-—the lack of facilities for structured programming.

WHY IS BASIC UNPOPULAR?

Apart from the notorious use of “short™ (i.e. one or two character) names for variables, the most
significant criticism of BASIC is that made by the advocates of “structured programming”™. It is now
widely agreed that the unrestricted use of *“GOTO" statements (including conditional jump state-
ments such as 20 IF X <3 THEN 30) is an undesirable practice which tends to lead to the develop-
ment of programs which are extremely hard to read. modify or debug.

Unfortunately, BASIC—Ilike most other languages developed before the principles of structured
programming became accepted—positively encourages such uncontrolled use of GOTO statements,
and the common practice of debugging (or even writing) programs on-line tends to aggravate this
problem further. A striking example is given by Atherton[1] of a *moon landing™ program of only
about 20 lines. but which it seems virtually impossible to comprehend. The program is reproduced
below as Fig. 1. the lines on the left and right hand sides denoting unconditional and conditional
transfers of control. respectively. Although a particularly poor example of BASIC programming (not

20 PRINT "TIME(S),"HEIGHT (M)","VEL(M/S)", "FUEL (KG) ", " BURN (KG/S) "
30 GO=1l.62\M=26000\D=10000\F=13000\T=1\T1=0\S=1

33 P=1125\R=3\V=100\U=100

40 PRINT T1,D,V,F,\INPUT B,D2\B=ABS(B)

(e 45 FOR X=S TO D2 STEP S\R2=1,700000E+06

47 G=GO-2*D/R2\IF D<l.000000E+0O7 THEN SO\PRINT "TOO FAR OUT"\STOP

SO V=U+T*G- (B*P*T) / ((M+ (M~T*B)) /2)\ TL=T1+T

60 M=M- (T*B)}\ D=D- ((U+V) /2*T)\ U=sV\F=F~-B*T

65 K=K+ (B*.23)-9,87854\IF P*B+G*L00>250000 THEN 220

70 IF D<=0 THEN 11O\NEXT X\IF K>2000 THEN 200\ IF K>1500 THEN 210
—= 75 1IF F»>=0 THEN 40
90 PRINT "OUT OF FUEL AT";T1\B=0\S=1.000000-03\GOTO 45
110 PRINT "ON MOON AT";Tl; "SECONDS.LANDING VELOCITY";V
120 IF V<10 THEN 160\IF V<20 THEN 170
130 PRINT "ALL CREW KILLED.BLASTED NEW CRATER"; V*11.78;"KM WIDE"\STOP
160 PRINT "SAFE LANDING" \STOP
170 PRINT "CREW INJURED"; INT(3.2*V/17.46);"BONES BROKEN"\STOP -=—m—
200 PRINT "POWER TUBE BURN OUT";R-1l;"LEFT"\R=R-1\IF R=O THEN 207 -e——
t=—205 P=P/ (4-R)\GOTO 75
“-—L—_—207 PRINT "ALL TUBES GONE"\S=1.000000E-03\B=0\GOTO 45

210 PRINT "POWER TUBES TOO HOT"\GOTO 75 st g |

220 Z=RND (O) *30\PRINT "BLACK-OUT FOR";INT (Z2*D2);"“SECS"
lg———————230 D2=2Z\B=25\GOTO 45

I

|

Fig. . Moon landing program.

COMAL 80—adding structure to BASIC 183

Jeast because of the multiple statements appearing on most lines). the program epitomizes the difficul-
ties which arise in understanding the convoluted flow of control of all but the smallest BASIC
programs. The term “spaghetti-like control paths” has been used to describe this phenomenon.

It is easy to guess that the original program logic has been extended piecemeal until it is now no
longer intelligible. If in running the program an error were reported at line 50. say, it would be
extremely difficult to determine the path by which the program’s “flow of control™ had come to that
point.

A further weakness of BASIC is the poor form of subroutine facility provided (GOSUB and
RETURN statements). Such “open subroutines™ have two major disadvantages: they are “unnamed”.
with no well-defined entry or exit point (there is nothing to prevent 4 GOSUB statement which refers
to a line which is not the start of a subroutine. by accident) and there i1s no parameter passing
mechanism. The use of such inadequate facilities is also likely to impede an understanding of the
value and significant features of conventional (i.e. FORTRAN:-like or ALGOL-like) subroutines.

COMAL/STRUCTURED BASIC

The programming language COMAL was developed in Denmark by Borge Christensen (State
Teachers' College. Tonder) and Benedict Lofstedt (Department of Computer Science. University of
Aarhus) as a set of extensions to BASIC aimed at providing facilities for structured programming and
remedying other observed defects. The name COMAL stands for COMmon ALgorithmic language,
but the alternative title “Structured BASIC™ is sometimes used and is far more indicative of the nature
of the language. The language was intended primarily for use in state schools and has been used
successfully at that level in Denmark since 1975 and is steadily gaining in popularity. A number of
implementations of COMAL. on a variety of mini- and microcomputer systems. exist in Denmark. At
the time of writing. three of these are available in Britain: those for the Digital Data Electronics
SPC-1. the RC702 Piccolo and the Commodore PET 8032 microcomputers. A number of other
manufacturers well-known in the educational field are known to be interested in implementing
COMAL in Britain and it is likely that several other versions will soon be available.

Inevitably a number of different extended versions of COMAL have been implemented in Denmark
since 1975. A specification of a standardized (and improved) version has recently been produced by a
group of manufacturers. computer scientists and educationalists and this is known as COMAL 80.

COMAL extends BASIC by adding features taken from other languages, notably Pascal, whilst
remaining recognisably BASIC. Programs written in BASIC will still run successfully in COMAL.
either directly or with only slight modifications (such as would be necessary in transferring to another
slightly different version of BASIC). Changing from BASIC to COMAL is thus a practical and
relatively straightforward step to take, with the use of the structured programming features being
introduced into teaching, perhaps in a gradual fashion.

For the newcomer, it is probably best to introduce the “structured™ style of programming at the
outset. where possible, since experience shows that a bad programming style. once gained. can be
difficult to remedy later.

The following description relates to the final proposal for the nucleus of the COMAL 80 lan-
guage[4]. Earlier versions of COMAL naturally differ from this in some respects. Several of the
examples given below are adapted from those in[3].

A set of recommendations for standard extensions to the language nucleus (including file handling
facilities) is currently in preparation.

From the examples given below. it will be noted that there are a number of places {notably the
assignment statement) where there are slight differences between the syntax of COMAL 80 and that of
BASIC. In practice. it is likely that most implementations of COMAL 80 will provide the traditional
BASIC forms as an alternative.

In comparing COMAL with BASIC below. the conventional (i.e. Dartmouth College or Hewlett-
Packard) form of BASIC has been used as the basis of comparison. It should be pointed out that a
number of recent versions of BASIC (especially microcomputer versions) do. in fact. incorporate one
or more of the “structured™ features and other improvements includéd in COMAL. most commonly
the extended form of IF statement.

Thus COMAL should be looked on as taking further and improving on an evolutionary trend
which is already occurring in BASIC. Nevertheless. it is fair to say that where BASIC has been
extended in the past. it has often been done badly. The wisdom of calling such extended versions by
the name of the original language is also questionable.

184 M. A. BRAMER

SUMMARY OF LANGUAGE FACILITIES

The most immediately noticeable feature of a COMAL program is the use of long identifiers. A

length of from one up to (at least) 16 letters or digits. beginning with a letter, is permitted. Comparing
10 INPUT HW.LT.V (BASIC)

with 10 INPUT HEIGHT. WEIGHT. LENGTH. TIME, VOLUME (COMAL)

for example. it is ¢vident that the latter form is much clearer and in itself a considerable aid to making

programs “self-documenting”. Identifiers in COMAL may contain lower case letters. which are con-

sidered equivalent to their upper case equivalents in all respects.

Most of the major BASIC statements are retained in COMAL. in some cases with slight extensions
or changes. namely INPUT. PRINT. PRINT USING. IF. FOR ...NEXT. READ. DATA. RE-
STORE. STOP. END and assignment. The GOTO statement is also retained although it is expected
that it will only seldom be necessary to use it.

In addition. muiti-line “structured statements”. similar to those in Pascal. are provided to facilitate
structured programming*. These are of two kinds:

(1) Selection structures

an enhanced form of IF statement
a CASE ... ENDCASE statement (as a more powerful form of the BASIC ON...GOTO
statement)

{1i) Repetition structures

WHILE ... ENDWHILE loops. where a terminating condition is tested at the start of a
sequence
REPEAT ... UNTIL loops. where a terminating condition is tested at the end of a sequence.

The FOR ... NEXT statement (retained from BASIC) is also an example of a repetition structure.
Provided that GOTO statements are not used. each structured statement has exactly one entry point
and one exit point. As a further aid to well-structured programming. named procedures with par-
ameters are provided to replace the use of the BASIC statements GOSUB and RETURN. The string
handling facilities of BASIC are also considerably improved in COMAL. which provides arrays of
strings as well as the use of substrings. plus a limited form of pattern matching.

The major features of COMAL are illustrated below. in comparison with their BASIC equivalents.
A number of minor changes from BASIC will also be noted as they arise.

SELECTION STRUCTURES IN COMAL

(1) “I[F" Sratements

The highly limited “IF " statement of BASIC is replaced by a more general form of single line “IF”
statement and a multiline IF ... THEN ... ELSE structure.

Example |

BASIC
100 IF V<=M THEN 140
120 LET M=V
[4Qtetmiin

(Note that in this example it is necessary to test the negation of the “condition of interest™ i.e. V> M.}
COMAL 100 IF VALUE>MAXVALUE THEN MAXVALUE:=VALUE

Note the form of the assignment statement in COMAL. The keyword LET is not permitted and : =
replaces the BASIC = sign (to avoid confusion with the use of = as a relational operator). This is
probably the point of greatest difference between COMAL and BASIC. in practice. it is likely that
many implementations will also permit the BASIC form of assignment, for reasons of compatibility.

The statement following THEN in the above example can be any “Simple Statement” i.e. assign-
ment. GOTO. STOP. END. procedure call or input-output statement.

* Some errors in multi-line statements (e.g. a missing component} cannot. ol course. be detected on a
line-by-line syntax checking basis. However. these errors are detected when the RUN command is typed. in the
same way as “unmatched FOR and NEXT" in BASIC.

COMAL 80—adding structure to BASIC 185

Example 2
BASIC

100 IF I>100 THEN 160

120 PRINT "OK."

140 GOTO 200

160 PRINT “TOO HIGH-RESET TO 10°,"”
180 LET I1=10

200

COMAL

100 IF INTEREST>100 THEN

110 PRINT “TOO HIGH-RESET TO 109"
120 INTEREST: =10

130 ELSE

140 PRINT “OK."

150 ENDIF

If the condition in iine 100 is satisfied, lines 110 and 120 are executed, otherwise line 140 is executed.
The statements in both “THEN™ and “ELSE™ portions of this form of the IF statement can them-
selves be structured statements, to any depth of “nesting”. The ELSE component can be omitted if
desired.

Example 3
BASIC

10 REM *NESTING™ IF'S CAUSES CONFUSION IN BASIC
20 IF I> =100 THEN 90

30 IF 1<0 THEN 60

40 PRINT “THAT WAS O.K.”

50 GOTO 100

60 PRINT “INTEREST CANNOT BE LESS THAN ZERO!™
70 GOTO 100

80 REM HERE THE INTEREST IS > =100

90 PRINT “INTEREST CANNOT BE SO LARGE"

100 < s

COMAL

10 // ‘IFF STATEMENTS CAN BE NESTED TO ANY DEPTH
20 IF INTEREST <100 THEN

30 IF INTEREST<0 THEN

40 PRINT “INTEREST CANNOT BE LESS THAN ZERO!"

50 ELSE

60 PRINT “THAT WAS OK."

70 ENDIF

80 ELSE

85 // HERE THE INTEREST IS > =100

90 PRINT "INTEREST CANNOT BE SO LARGE"
95 ENDIF

100 i oo

Note the form of comments in COMAL (lines 10 and 85).

(2) CASE ... ENDCASE Statements

COMAL provides a CASE ... ENDCASE structured statement as a means of facilitating multiple
tests on the value of the same variable.

Example 4
BASIC

10 DIM AS(10)
20 PRINT “WHAT NEXT? (BEGIN. END OR CONTINUE)"

186

30
40
50
60
70
80
90
100
110
120
130
135
140
150
160

COMAL

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180

{Note the form of the string dimension statement in BASIC. This will be discussed further later.) The
value of ANSWERS is examined. If it is the string "BEGIN", the statements between 50 and 80 are
executed. If it is "END". statements 90 and 100 are executed. and so on. The final component in the
structured statement. beginning OTHERWISE. is executed if ANSWERS is none of the values

M. A. BRAMER

INPUT AS

IF A$¢ > "BEGIN” THEN 80

PRINT “O.K.. LET'S DO IT AGAIN"

REM START AGAIN (STATEMENTS OMITTED)
GOTO 160

IF AS$< > "END” THEN 110

PRINT "END OF THIS OPERATION"

STOP

IF A$¢ > “"CONTINUE"™ THEN 140

PRINT "WE'LL CONTINUE NOW™

REM CONTINUE HERE (STATEMENTS OMITTED)
GOTO 160

REM INPUT WAS NOT '‘BEGIN. 'END’ OR 'CONTINUFE

PRINT “INVALID CHOICE"
REM EXECUTION CONTINUES HERE

DIM ANSWERS OF 10
PRINT “WHAT NEXT? (BEGIN. END OR CONTINUE)"
INPUT ANSWERS
CASE ANSWERS OF
WHEN "BEGIN"
PRINT "O.K.. LET'S DO IT AGAIN"
; START AGAIN (STATEMENTS OMITTED)
WHEN “END”
PRINT "END OF THIS OPERATION"
STOP
WHEN “CONTINUE"
PRINT "WE'LL CONTINUE NOW™
,. CONTINUE HERE (STATEMENTS OMITTED)
OTHERWISE
INPUT WAS NOT "BEGIN' ‘END’. OR 'CONTINUE’
PRINT “INVALID CHOICE"
ENDCASE
 EXECUTION CONTINUES HERE

“BEGIN™, "END™ or “"CONTINUE",

Each component (WHEN or OTHERWISE) can comprise any number of statements. including

structured statements. The OTHERWISE component can be omitted.

The keyword WHEN can also be followed by a list of possible values. as shown in the example

below.

Example 3
COMAL

10
20
30
40
50
60
70
80
90

The value of

DIM LETTERS OF 1
INPUT LETTERS
;/ READ A SINGLE CHARACTER
CASE LETTERS OF
WHEN "A™. “E™. “I". “O". “U"

PRINT “CHARACTER IS A VOWEL"
WHEN "X". Y™ ~Z"

PRINT "CHARACTER IS X. Y OR Z©
ENDCASE

a numeric variable can also be tested. as in Example 6.

COMAL 80—adding structure to BASIC 187

Example 6

10 // READ IN AN INTEGER LESS THAN 100
20 INPUT NUMBER

30 CASE NUMBER OF

40 WHEN 1.4.9.16.25.36,49.64.81

50 PRINT “A SQUARE"

60 OTHERWISE

70 PRINT “NOT A SQUARE"

80 ENDCASE

REPETITION STRUCTURES IN COMAL
(i) The FOR ... NEXT structure is retained from BASIC. but with a slightly different syntax. e.g.

10 FOR INDEX:=5 TO 99 STEP 2 DO

50 NEXT INDEX

A single-line FOR statement is also available, for example

10 DIM COUNT(50)
20 FOR INDEX:=1 TO 50 DO COUNT(INDEX):=0

In this form of the statement, the keyword “DO" can be followed by any “simple statement™.
(ii) The WHILE ... ENDWHILE structured statement provides an alternative form of loop struc-
ture where execution continues until a specified condition is satisfied at the beginning of the loop.

Example 7

BASIC
10 REM CALCULATE SQUAREROOTS
20 LET X=10
30 LET D=X

40 LET S=X~22

50 REM ITERATION

60 IF ABS(D)< =0.001 THEN 100
70 LET D=(X/S—S)/2

80 LET S=S+D

90 GOTO 60

100 PRINT S

COMAL

10 /- CALCULATE SQUAREROOTS

20 X:=10; DELTA:=X: SQRT: =X/2

30 /;/ ITERATION

40 WHILE ABS(DELTA}>0.001 DO

50 DELTA:=(X/SQRT—-SQRT)2

60 SQRT:=SQRT+DELTA

70 ENDWHILE,/JEND OF ITERATIONS LOOP
80 PRINT SQRT

Statements 50 and 60 are executed repeatedly provided that the condition in line 40 is satisfied. Thus
the test for performing the loop is carried out at the beginning. Note that multiple assignments are
permitted in a single line (separated by semicolons). Also note the comment on line 70 following
ENDWHILE. A singie line form of the WHILE statement is also available. e.g.

10 ;,, FIND "UNITS' PART (0-9) OF A GIVEN INTEGER
20 WHILE NUMBER>9 DO NUMBER:=NUMBER-10

The keyword DO can be followed by any “simple statement” in this form of the statement.
{iii) The REPEAT ... UNTIL structure is similar to WHILE ... ENDWHILE. but in this case the
test for termination of the loop is made at the end. with the loop only continuing if the given

188 M. A. BRAMER

statement is NOT satisfied. Thus the loop must always be performed at least once. No single line
form of the statement is available.

Example &
BASIC

10 DIM ‘A8(1)

20 PRINT "SHALL WE CONTINUE? ANSWER Y OR N':
30 INPUT AS

40 IF A$="Y" OR A$="N" THEN 60

50 GOTO 20

e

COMAL

10 DIM ANSWERS OF 1|

20 REPEAT

30 PRINT "SHALL WE CONTINUE? ANSWER Y OR N":
40 INPUT ANSWERS

50 UNTIL ANSWERS$="Y" OR ANSWER$="N"

60 i

Note that COMAL permits lines 30 and 40 to be combined into a single statement e.g.
30 INPUT "SHALL WE CONTINUE? ANSWER Y OR N": ANSWERS

with the given string then used as a “prompt” for input.

STRINGS IN COMAL
COMAL allows arrays of strings to be declared. e.g.

10 DIM NAMES(5) OF 10

dectares an array of 5 elements, each a string of up to 10 characters in length. The notation
NAMES(4) refers to the fourth (complete) string in the array. “Simple strings™ of characters can also
be declared. e.g.

20 DIM ONENAMES OF 10

Both the number of elements in a string array and the maximum string length ("dimension™) can be
specified as the value of arithmetic expressions. The following notation is used to select a substring in
each case

String urray NAMES$(4.3:5)
Simple string ONENAMES(3:5)

In each case the substring selected begins at the third character and is of length five characters. The
notation NAMES$(4.3) denotes the substring of NAMES$(4) starting at the third character and of
length one.

Example 9

10 DIM NAMES$(5) OF 10. INNAMES OF 10

20 INDEX: =1

30 INPUT INNAMES

40 WHILE INNAMES{ > "STOP” AND INDEX< =5 DO
50 NAMES(INDEX): = INNAMES:INDEX: = INDEX + |
60 INPUT INNAMES

70 ENDWHILE

The program reads in up to five names to string array NAMES. Input stops after the fifth name or
when STOP is input.

COMAL 80—adding structure to BASIC 189

Two further useful facilities are provided in COMAL:

(1) A string “concatenation” operator.
Thus if FIRSTS is "TALPHA™ and SECONDS is "BETA™ then
JOINTS: =FIRSTS + SECONDS
gives JOINTS as “ALPHABETA"™.
(ii) A simple form of pattern matching. For example in the sequence

10 DIM VOWELS OF 5. CHARS OF 1

20 VOWELS: ="AEIOU"

30 INPUT CHARS$

40 IF CHARS IN VOWELS THEN PRINT "CHARACTER IS A VOWEL"

The condition in line 40 is satisfied if CHARS is contained anywhere in VOWELS. In general. IF
FIRSTS IN SECONDS THEN .. . is satisfied if the characters of FIRSTS form a consecutive sub-
string of SECONDS.

PROCEDURES IN COMAL

Named procedures are provided in COMAL as a superior replacement for the “GOSUB™ subrou-
tines of BASIC. For example. the calculation of squareroots given previously can be converted into a
subroutine (BASIC) or a procedure ({COMAL) as follows.

Example 10
BASIC

1010 REM CALCULATE SQUARE ROOT OF X
1020 LET D=X

1030 LET S=X.2

1040 REM ITERATION

1050 1IF ABS(D)< =0.001 THEN 1090

1060 LET D=(X/S-S)/2

1070 LET S=S+D

1080 GOTO 1050

1090 RETURN

COMAL

1010 PROC CALCROOT(X. REF SQRT)
1020 DELTA: =X:SQRT: =X 2

1030 ;- ITERATION

1040 WHILE ABS(DELTA)>0.001 DO
1050 DELTA:=(X/SQRT—SQRT)?2
1060 SQRT:=SQRT-+DELTA

1070 ENDWHILE

1080 ENDPROC CALCROOT

The procedure can be “invoked™ to calculate the square root of 10, say. and return it as the value of
the variable ROOT10 by means of the statement

10 EXEC CALCROOT(10.ROOT10)

There are two principal advantages of the COMAL procedure over the BASIC form of subroutine.
(i} Like all other constructs in COMAL. a procedure has only one entry point and one exit point.
By contrast. there is nothing to prevent an incorrect entry into a BASIC subroutine, e.g. by GOSUB
1030 or by "falling through™ from line 1000 say.
(n} COMAL permits parameters to be passed to a procedure (X and SQRT in the above example).
Thus to find the squareroot of a different variable. say Y, and to return its value in variable Z say. it is
only necessary to invoke the procedure by

EXEC CALCROOT(Y.Z).

190 M. A. BRAMER

An equivalent set of statements in BASIC would be

10 LET X=Y
20 GOSUB 1010
30 LET Z=S

The word REF in line 1010 of the COMAL version indicates that parameter SQRT is passed by
reference”. Parameters not preceded by REF are passed “by value”. Thus when CALCROOT is
invoked by

10 EXEC CALCROOT(10,ROOT10)

the value 10 is used for X in lines 1020 and 1050 of the procedure. whereas the assignments to
parameter SQRT in lines 1020 and 1060 affect the value of the corresponding variable (ROOTL10) in
the main program. Numeric and string variables. arrays and expressions are permitted as parameters.
Procedures can also call themselves recursively.

A function can be defined as a special form of procedure for use in an arithmetic expression, such as
10 TOTAL: = TOTAL +SUMSQ(A.B.C). In this case the procedure definition must contain at least
one assignment statement with the procedure name on the left-hand side. Standard functions such as
SIN, COS, TAN, ABS. EXP etc. are also available. The most significant difference between COMAL
procedures and those in languages such as FORTRAN and ALGOL-68 is that all variables in a
procedure (excluding parameters) are “global”, i.e. variable DELTA in the above example is identical
to any other use of DELTA in the remainder of the program. If DELTA existed and had a value
before CALCROOT was executed. its value would be changed by the execution of the procedure (and
remain changed afterwards). This global property of variables can be a handicap, since the user of a
procedure may need to know which variables are changed when it is executed. On the other hand, it
is easy to use such procedures to “structure” a program to aid readability. e.g.

10 IF VALUE>0 THEN
20 EXEC THISPATH

30 ELSE

40 EXEC THATPATH
50 ENDIF

without having to pass every variable used in "THISPATH" or “THATPATH" as a parameter.

It may be expected that many implementors of COMAL 80 will add a facility to declare a
procedure as “closed”. in which case all variables (apart from parameters) are purely ‘local’ to the
procedure in which they are used.

TWO COMPLETE COMAL PROGRAMS

To complete this description of the COMAL language here are two longer examples of COMAL
programs, which are intended to be self-explanatory. the first non-numeric and the second numeric.

Example 11

10 // INPUT STRINGS, FINISHING WITH "END", STORE IN A STRING
ARRAY

20 ;; AND PRINT OUT WITH ALL DIGITS 0-9 REPLACED BY ASTERISKS

30 INPUT "HOW MANY WORDS AT MOST?":N

40 INPUT "HOW LONG IS EACH ONE(MAXIMUM)”": L

50 DIM WORDS$(N) OF L. ONEWORDS$ OF L.DIGITSS OF 10

60 DIGITSS= 1234567890

70 EXEC TAKEIN

80 FOR I:=1 TO MAX DO EXEC REPLACE(WORDS(I)

90 FOR I: =1 TO MAX DO PRINT WORDS(I)

100 END

110 PROC TAKEIN

120 I:=0

130 INPUT “FIRST WORD":ONEWORDS$

140 WHILE ONEWORDS¢ »END” DO

150 I:=1+1:WORDS$(I): =ONEWORDS$

160 INPUT “NEXT WORD"™:ONEWORDS

170 ENDWHILE

COMAL 80—adding structure to BASIC 191

180 MAX: =1

190 ENDPROC TAKEIN

200 PROC REPLACE(REF THISWORDS)

210 NCHARS: =LEN(THISWORDS)

220 FOR INDEX:=1 TO NCHARS DO

230 IF THISWORDS(INDEX) IN DIGITSS THEN THISWORDS$(INDEX}): ="*"
240 NEXT INDEX

250 ENDPROC REPLACE

Example 12

10 .. PROGRAM TO SOLVE A SEQUENCE OF QUADRATIC EQUATIONS
20 i A*X12+B*X+C

30 / TERMINATE SEQUENCE BY INPUTTING ZERO VALUE FOR A
40 INPUT A

50 WHILE A< 30 DO

60 INPUT B.C

70 EXEC FINDROOTS(A.B.C)

80 INPUT A

90 ENDWHILE

100 PROC FINDROOTS(A.B.C)

110 7/ PRINTS ROOTS OF QUADRATIC EQUATION A*X12+B*X+C=0
120 SOLUTION DEPENDS ON ‘SIGN' OF DISCRIMINANT B12—-4*A*C
130 DISCRIM: =B12—4*A*C

140 SIGNVALUE:=SGN(DISCRIM)

150 CASE SIGNVALUE OF

160 WHEN —1

170 REAL:= —-B/(2*A)
180 IMAG : =SQR(—DISCRIM}/(2*A)
190 PRINT “COMPLEX ROOTS™:REAL:"+,— i".IMAG

200 WHEN 1

210 X1:=(—B+SQR(DISCRIM))i(2*A)

220 X2:=(—B—-SQR(DISCRIM})/(2*A)

230 PRINT “REAL DISTINCT ROOTS™:X1:X2
240 WHEN O '

250 X:= —B/2*A)

260 PRINT “COINCIDENT ROOTS™:X

270 ENDCASE

280 ENDPROC FINDROOTS

CONCLUSIONS

It is hoped that the above examples give a reasonable indication of the features of COMAL. The
language builds on the good start made by BASIC as a general-purpose language for use by the
non-expert, especially in an interactive mode. The addition of structured statements derived from
Pascal and other features such as string arrays and “long™ identifiers removes the major causes of
criticism of BASIC and provides a practical evolutionary means of bringing the teaching of program-
ming into the age of “structured programming™.

Experience in Denmark strongly suggests that COMAL is well-suited as an introductory program-
ming language for use in schools. It is anticipated that a number of microcomputer implementations
will shortly be available in Britain.

Acknowledgements—I1 should like to thank my fellow members of the Programming Languages Working Party
of the British Computer Society Schools Committee—and particularly the chairman. Roy Atherton—for many
valuable discussions. and Borge Chrisiensen (Tonder Staisseminarium. Denmark) and Jenny Preece (Open
University) for their detailed comments on an earlier version of this paper.

REFERENCES

1. Atherton R.. Microcomputers. Secondary Education and Teacher Training. Paper presented at the confer-
ence Microelectronics for Education and Training. University of Reading (1979).

192

Lty

ol

M. A. BRAMER

Bowles K.. Problem Solving Using Pascal. Springer—Verlag, New York {1977).
Martinsen P. N.. The COMAL programming language. A short description. Dansk Data Elektronik ApS

(1980).
Osterby T. (Ed.). COMAL 80 Programming Language. Proposal for the nucleus of the COMAL 80

language. COMAL working group. Denmark (1980).
Strengths and Weaknesses of BASIC. British Computer Society Schools Committee Programming Lan-

guages Working Party (1980).

