
--
COMAL 80~PROGRAMMING LANGUAGE.

proposal

Background.

The first COMAL language was designed in 1974 by Børge R.
Christensen, State Teachers' College, Tønder, Denmark, and
Benedict Løfstedt, Department of Computer Science, University
of Aarhus.

COMAL (COMmon Algorithmic Language) was constructed as an
exter.sion to BASIC, reflecting developments in programming
languages and techniques, such as structured programming.

COMAL was intended primarily for use in public schools, but
the language has found broader applications.

Since 1974 the language has been extended with additional
facilities. Today several different versions of the language
eXist, supplied by a number of manufacturers.

In October 1979 a group interested in COMAL, including
manufacturers, school teaehers, and university people, concluded
that a standardization of COMAL, in the form of COMAL 80, was
needed. A working group was formed to write a proposal for
the COMAL 80 language.

The standardization was to contain a nucleus forming the
COMAL 80 language and recommendations for extending the
language.

COMAL 80 Definition 2 25.03.80

This report, written by the working group, is the proposal
for the nucleus of the COMAL 80 language. Recommendations for
extending the language will appear later.

The members of the working group included:

Arne Christensen, International Computers Limited A/S
Bgrge R. Christensen, Tønder State Teaehers' College
Steffen Dyhrberg, International Computers Limited A/S
H. B. Hansen, Roskilde University Center
Rolf Molich, Dansk Data Elektronik Aps.
Jørgen Olsen, RC Computer A/S
Jesper Barfod, Digitek Data og Instrumentering
Tom Østerby (editor), Technical Univers it y of Denmark.

Other manufacturers, companies, and gro ups have followed the
work with great interest.

The group grant s free permission to reproduce this report for
using the COMAL 80 language.

http:25.03.80

COMAL 80 Definition 3 25.03.80

General information.

COMAL 80 is a general pur pose programming language intended for
use by non-expert programmers.

COMAL 80 has facilities for writing structured programs.

The COMAL 80 language system is designed to operate in an in ter­
active environment. COMAL statements are entered directly from
the user's terminal and checked immediately for syntactical errors.

Execution of programs is also done in interactive mode. Normally
the system will include facilities for debugging. These facilities
are not part of the standard.

Description of the COMAL. 80 language.

The language is described in the following order - program,
statements, expressions, variables, constants, and characters.
The description of each construction includes a general
introduction, the syntactical format, the effect, and notes.

The syntax is specified by means of Backus-Naur notation,
extended with the following notation:

{} meaning zero, one, or more occurrences
[] meaning zero or one occurrences.

Notes contain remarks concerning use of the construction,
including rules, precautions, operation, etc.

Space characters may be included where it is not specifically
forbidden.

In the description of the language there are some places where
the effect or result is undefined. An implementation might choose
to give an error reaction here.

http:25.03.80

COMAL 80 Definition 4 	 25.03·80

COMAL programs.

Format

<comal program> ::= <statement list>

<statement list> ::= { <statement> }

<statement> ::= <unstructured statement> I <structured statement>

<unstructured statement> ::= <simple statement> :

<simple declaration statement>
<structured statement> ::= <compound statement> :

<structured declaration statement>
<simple statement> ::= 	<assignment statement> : <io statement>

<goto statement> :
<procedure cal l statement> I
<end statement> : <stop statement>

<io statement> ::= 	<read statement> : <restore statement>
<input statement> :
<print statement> : <print-using statement>
<select output statement>

<compound statement> ::= <cond{tional statement> :
<repetitive statement>

<conditional statement> ::= <if statement> : <case statement>
<repetitive statement> ::= <for statement> I <while statement>

<repeat statement>
<simple declaration statement> ::= <data declaration> :

<label statement>
<data declaration> ::= <dim statement> : <data statement>
<structured declaration statement> ::= <procedure declaration>

In put format.

A COMAL program consists of a number of statements. A statement
is written on one or more program lines depending on the type
of statement.

A program line may begin with a line number and may end with
a comment.

COMAL 80 Definition 5 25.03.80

If line number is present, then it must be an integer in the
range 1 to 9999. The line numbers determine the order in which
statements are stored in the program. The line number must be
followed by at least one space character. A program line may
consist of a line number only. Execution of such a program line
has no effect.

A program line may end with a comment. The comment begins with
two consecutive slashes (II), and may be followed by any
sequence of displayable ASCII characters. A comment is stdred, but
has no effect on statement execution. Consecutive program lines
in a structured statement must have increasing line numbers.

A <simple statement> must be contained within one program line.
A program line must contain only one <simple statement>.

A <structured statement> may extend over one or more program
lines. In the Backus-Naur description of a structured statement
each line must correspond to a separate program line.

When a program is run the statements in the program are normally
executed in the order in which they are stored: Certain
statements can alter the sequence of execution

Assigment statement.

A statement to assign values to numeric and string variables.

Format

<assignment statement> ::= <assignment list>

<assignment list> ::= <assignment> {;<assignment>}

<assignment> ::= <numeric assignment> : <string assignment>

<numeric assignment> :::

<left side> := <arithmetic expression>
<left side> ::= <numeric variable> : <procedure identifier>
<string assignment> ::=

<string variable> := <string expression>

~--_.-~.....

http:25.03.80

COMAL 80 Definition 6 	 25.03.80

Statement execution.

a. 	The reference to the variable on the left side of ":~"

is computed.

b. 	The expression, string or numeric, is evaluated.
c. 	The result of step b is assigned to the variable on the left

s ide of ': = ' •
d. 	Steps a, b, and c are repeated for all assignments in the

assignment list.

Notes.

1. 	 In an assignment the type of variable and expression must

be the same, either numeric or string.

2. 	 If <string expression> is longer than the string variable,

the string expression is right truncated to the length of

the variable. If the string expression is shorter than the

string variable, the string expression is placed left

justified in the string variable or the substring. If

the string variable is not a substring, the rest of the

string variable is fil led with characters indicating

'nulI' values. If the string variable is a substring, and

the string expression is shorter than the substring, the

rest of the substring is fil led with blanks.

3. 	 If the string variable is a substring, the start position of
the substring must be less than or equal to the length of the
string plus one (start postion <= LENCstring variable) + 1),
otherwise the result is undefined.

READ statement.

A statement, applied to read values from the list defined by
one or more DATA statements, to assign values to string and
numeric variables listed in the READ statement.

Format

<read statement> ::= READ <variable> {,<variable>}
<variable> ::= <numeric variable> l <string variable>

http:25.03.80

--- -- - -------------

COMAL 80 Definition 7 	 25.03.80

Notes.

1. 	 READ statements are always used in conjunction with DATA

statements.

2. 	 The variables listed in the READ statement may be sub­

scripted or simple numeric or string variables.

3. 	 A data element pointer is moved to the next available value
in the DATA statement list as values are retrieved for
variables in the READ statement. If the number of variables
in the READ statement exceeds the number of values in the
DATA statement list, a run-time error occurs.

4. 	 The type (n~meric or string) of a READ statement variable
must match the type of the corresponding data element valuej
otherwise a run-time error occurs.

5. 	 Reading a value to a string variable follows the same

rules as described in the assignment statement.

RESTORE statement.

A statement to reset the data element pointer to the beginning
of the DATA statement list.

Format

<restore> ::= RESTORE

INPUT statement.

A statement to assign values entered from the user's terminal
during program execution to a list of string and/or numeric
variables.

Format

<input statement> ::=
INPUT [<string constant>: J <variable> {,<variable>} [<cont> J

<variable> ::= <numeric variable> : <string variable>
<cont> ::=

http:25.03.80

COMAL 80 Definition 8 	 25.03.80

Statement execution.

a. 	A prompt character is output unless a string constant is
included, in which case the value of the string constant is
output. The standard prompt is a colon (:).

b. 	 The user responds by typing a list of data items, which
are assigned to the variables listed in the INPUT
statement. The user ends the list of data items by activating
the 'end-of-input' key.

c. 	If <cont> is specified, the printing position is left

unchanged; otherwise the printing position will be the

first position on the next line.

Notes.

1. 	 Data entered must be of the same type (numeric or string)

as the variable in the argument list for which the data is

being supplied. Variables in the argument list may be sub­

scripted or unsubscripted.

2. 	A data item supplied for a numeric variable can be typed in

the folIowing form:

[+1-] <real number>
One or more spaces can be typed before a numeric value.

3. 	A separator between two numeric values may be any character

not part of a real number. The separator between a numeric

value and a string is the first character not included in

a real number.

4. 	 If the data entered does not match the type of the current

variable, an error will take place; the user can then enter

data of the correct type.

5. 	If the 'end-of-input' key is activated before values have

been assigned to all of the variables in the argument list,

a prompt character will be output, indicating that further

items are expected.

6. 	 Entering a value for a string variable follows the same rules
as described in the assignment statement.

7. 	 'End-of-input' is the only possibIe separator between two

string values.

http:25.03.80

COMAL 80 Definition 9 	 25.03.80

PRINT statement.

A statement to output values on the user's terminal.

Format

<print statement> ::= PRINT [<print list> [<print end>]]
<print list> ::= <print element>

{ <print separator> <print element> }
<print element> ::= <aritmetic expression> l

<string expression> : <tab function>
<print end> ::= <print separator>
<print separator> ::= , I j

<tab function> ::= TAB (<arithmetic expression>)

Notes.

1. 	 The print line on a terminal is divided into print zones.

The width of a print zone is not part of the standard.

2. 	 If <print separator> is a comma (,) the output of the next

element starts from the leftmost position of the next

zone. If there are no more zones on the current line,

printing continues in the first zone on the next line.

If a print element requires more than one zone, the next

element is printed in the next free zone. A print element

is always printed on one line.

3. 	 If <print separator> is a semicolon (j), the output of the

next print element starts from the next character position.

A space is printed af ter a number.

4. 	 The effect of a <print end> is the same as a <print separator>
(note 2 and 3). If no <print end> is specified, printing is
continued on the first position on the next line.

5. 	A PRINT statement with no <print list> causes output of an

empty line.

6. 	TAB(exp) is a function to tabulate the printing position for
an item in the print list to the column number evaluated from
'exp'. Columns on the print line are numbered 1,2, ••••
If <arithmetic expression> evaluates to a column number
greater than or equal to the current column number and less
than or equal the length of the print line, the value of the
expression indicates the new column position. If the equations
are not satisfied, the effect of the function is undefined.

http:25.03.80

COMAL 80 Definition 10 	 25.03.80

PRINT-USING statement.

A statement to output values of items using a specified format.

Format

<print-using statement> ::=
PRINT USING <string expression> : <using list> [<using end>]

<using list> ::= <using element> { , <using element> }
<using element> ::= <arithmetic expression>
<using end> :: =

Notes.

1. 	 <string expression> is used as a format string. The charac­

ters in this string are treated in the folIowing way:

# 	 digit position and sign (sign position required only
for negative numbers)
decimal point (only if surrounded by #)

All other characters in the format string are output directly.
2. 	The effect of <using end> is the same as descibed in note 4 for

the PRINT statement.
3. 	String variables must not appear in the using list. However the

value of a string variable can be output by concatenating it
with the string expression.

http:25.03.80

COMAL 80 Definition 11 	 25.03.80

SELECT OUTPUT statement.

A statement to control the device to which results from a
program (PRINT or PRINT USING statement) shall be directed.

Format.

<select output statement> ::= SELECT OUTPUT <unit>
<unit> ::= <string expression>

Notes.

1. 	 <string expression> specifies the output device. The names
of output devices are not part of the standard.

2. 	 All output from PRINT and PRINT USING will be directed to
the unit specified until a new SELECT OUTPUT statement is
executed.

GOTO statement.

A statement to transfer control unconditionally to another part
of the program.

Format

-<goto statement> ::= GOTO <label name>
<label name> ::= <identifier>

Notes.

1. 	 A GOTO statement must not transfer control to a statement
which is part of another structured statement or a
procedure declaration.

2. 	 A GOTO statement transferring control out of one or more

structured statements will terminate these statements.

3. 	 Execution of a GOTO statement out of a procedure will

cause an error.

http:25.03.80

COMAL 80 Definition 12 	 25.03.80

EXEC statement.

A statement to activate a procedure defined in a procedure
declaration.

Format

<procedure call> ::=
EXEC <procedure identifier> [«actual parameter list»]

<actual parameter list>::=
<actual parameter> { ,<actual parameter> }

<actual parameter> ::= 	<simple variable> :
<simple string name>
<numeric array name>
<string vector name>
<arithmetic ex pression>
<string expression>

Statement execution.

a. 	The procedure designated by <procedure identifier> is

activated. Execution is started with the statement af ter

PROC.

b. 	Execution is continued until an ENDPROC statement is

encountered. Then execution is continued with the

statement immediately folIowing the EXEC statement.

Notes.

1. 	The number of actual parameters must be the same as the

number of formal parameters in the procedure declaration.

2. 	 The rules for substitution of the formal parameters by

actual parameters are the followir.g:

Formal parameter spec. Actual parameter allowed

<simple variable> <arithmetic expression>

REF <simple variable> <simple variable>

<simple string name> <string ex pression>

REF <simple string name> <simple string name>

REF <numeric array name> <numeric array name>

REF <string vector name> <string vector name>

--_.. _-----­

http:25.03.80

COMAL 80 Definition 	 13

3. 	 An actual parameter which is a <numeric array name> must

have the same number of indices as specified for the

formal parameter.

END statement.

A statement to terminate execution of the program and to return
control to interactive mode.

Format

<end statement> ::= END

Note.

1. 	 An END statement will terminate execution of the program.

In an interactive environment a prompt is output on the

user's terminal.

STOP statement.

A statement to stop execution of the program and to return
control to the terminal in interactive mode.

Format

<stop statement> ::= STOP

Notes.

1. 	 A STOP statement will terminate execution of the program. A
stop indication, including the line number of the stop
statement, will be output on the user's terminal.

2. 	 In an interactive environment program execution may be

resumed after a STOP statement.

3. 	 In a batch environment execution of a STOP statement has

the same effect as the END statement.

COMAL 80 Definition 14 	 25.03.80

IF 	 statement.

A statement to execute one of two blocks of statements depending
on whether the value of a logical expression 'is true or false.

Format

<if statement> 	 ::=
IF <logical expression> THEN <simple statement>
IF <logical expression> THEN
<statement list>
[<else part>]
ENbIF

<else part> ::= 	ELSE
<statement list>

Statement execution.

a. <logical expression> is evaluated.

b1. If the value is true, the <simple statement> af ter THEN

is executed, otherwise the statement is skipped.

b2. 	 If the value is true, the <statement list> between THEN

and ELSE/ENDIF is executed.

If the value is false, the <statement list> af ter ELSE

will be executed. If ELSE is not specified, execution

will continue at the first statement folIowing ENDIF.

If none of the executed statements cause transfer of

control to another part of the program, execution will

continue at the first statement folIowing ENDIF.

http:25.03.80

COMAL 80 Definition 15 	 25.03.80

CASE statement.

A statement to execute one of several blocks of statements
depending on the value of an expression.

Format

<case statement> ::= 	CASE <expression> OF
<case list element>
{<case list element>}
[<otherwise part>]
ENDCASE

<case list element> ::= WHEN <case expression list>
<statement list>

<case expression list> ::= <expression> {,<expression>}
<otherwise part> ::= OTHERWISE

<statement list>

Statement execution

a. 	The expression af ter CASE is evaluated.
b. 	 The expressions af ter WHEN are evaluated one by one until

a value is found which is equal to the value obtained in
step a.

c. 	If a matching value is found, the folIowing statement list
is executed until the next WHEN, OTHERWISE, or ENDCASE.
Af ter this, control is transferred to the first statement
folIowing ENDCASE, provided none of the executed statements
caused transfer of control to another part of the program.

d. 	 If a matching value is not found, the statement list af ter
OTHERWISE is executed; if OTHERWISE is not present, the
CASE statement has no effect, and execution continues with
the statement folIowing ENDCASE.

Note.

1. 	All <expression>'s in <case expression list> must be of the
same type as <expression> in <case statement>.

http:25.03.80

COMAL 80 Definition 	 16

FOR statement.

A statement to establish the initial, terminating, and incremental
values of-a control variable, which is used to determine the
number of times a statement or a statement list contained in
a loop is to be executed. The loop is repeated until the value
of the control variable meets the termination condition or until
a statement causes transfer of control from the loop.

Format

<for statement> ::=
FOR <control variable> := <for list> DO <simple statement>
FOR <control variable> := <for list> DO
<statement list>
NEXT <control variable>

<control variable> ::= <simple numeric variable>

<for list> ::= <initial value> TO <final value> {STEP <step value>J

<initial value> ::= <arithmetic ex pression>

<final value> ::= <arithmetic expression>

<step value> ::= <arithmetic expression>

Statement execution

a. 	<initial value>, <final value> and <step value> are

evaluated. If <step value> is not specified, it is assumed

to be +1.

b. <control variable> is set equal to <initial value>.
c. 	If <step value> is positive (negative) and <control variable>

is greater than (less than) <final value>, the termination
condition is satisfied, and control passes to the first
statement following the corresponding NEXT; otherwise step d
is performed.

d1. The statement af ter DO is executed.

d2. The statement list after DO is executed.

e. 	<control variable> is set equal to

<control variable> + <step value>

f. Step c is executed.

COMAL 80 Definition 17 	 25.03.80

Notes.

1. 	 Af ter the execution of a FOR statement without trans­

fer of control from the loop, the value of <control

variable> is the first value satisfying the termination

condition.

2. 	The <control variable> af ter NEXT is checked against the

<control variable> af ter FOR; if they are not identical,

an error occurs.

WHILE statement.

A statement to execute a statement or a statement list
repetitively while the value of a logical expression is true.

Format

<while statement> ::=
WHILE <logical expression> DO <simple statement>
WHILE <logical expression> DO
<statement list>
ENDWHILE

Statement execution.

a. 	<logical expression> is evaluated.
b. 	 If the value of <logical expression> is false, the termination

condition is satisfied and step e is performed.

c1. The statement af ter DO is executed.

c2. The statement list after DO is executed.

d. 	Step a is repeated.
e. 	Control passes to the first statement following the

corresponding ENDWHILE, provided no statement caused trans­

fer of control from the WHILE statement during step c2.

http:25.03.80

COMAL 80 Definition 18 	 25.03.80

REPEAT statement.

A statement to execute a statement list repetitively until the
value of a logical expression is true.

Format

<repeat statement> ::= 	REPEAT
<statement list>
UNTIL <logical expression>

Statement execution.

a. <statement list> is 	executed.
b. 	<logical expression> is evaluated, provided no statement

caused transfer or control from the REPEAT statement

during step a.

c. 	If the Value of <logical expression> is false, step a is

repeated.

d. 	 If the value is true, the termination condition is

satisfied and control passes to the first statement

folIowing UNTIL.

DATA statement.

A statement to provide values to be read to variables
appearing in READ statements.

Format

<data statement> ::= DATA <value> { , <value>}
<value> ::= [+l-J <real number> : <string constant>

Notes.

1. 	 The DATA statement is non-executable.
2. 	The values appearing in the DATA statement(s) form a

single list. The first element in this list is the first
value in the first DATA statement in the program. The last
element in the list is the last value in the last DATA
statement.

http:25.03.80

COMAL 80 Definition . 19 	 25.03.80

PROC - ENDPROC statement.

A statement to define a procedure or a function which can
be called by means of an EXEC statement or in an arithmetic
ex pression.

Format

<procedure declaration> ::=
<procedure head>
<statement list>
<ENDPROC part>

<procedure head> ::=
PROC <procedure identifier> [«formal parameter list»]

<ENDPROC part> ::= ENDPROC <procedure identifier>
<procedure identifier> ::= <identifier>
<formal parameter list> ::=

<formal parameter specification>

{ ,<formal parameter specification> }

<formal parameter specification> ::=
[REF J <simple variable> :
[REF] <simple string name>
REF <numeric array name> ([,J
REF <string vector name> () :

Notes.

1. 	 A procedure declaration specifies that <statement list>

is treated as a unit named <procedure identifier>.

2. 	 A procedure can be activated only by an EXEC statement

or by a function call in an arithmetic expression. Return

from the procedure occurs when an ENDPROC statement is

executed.

3. 	Transfer of data between the calling program and the
procedure or vice versa can be done using parameters. The
transfer of data can also be done using global variables.

4. 	 Formal parameters can be used in <statement list> as

simple or subscripted variables, simple or subscripted

string variables, or actual parameters.

Formal parameters used as numeric array names or string

vector names must specify the dimension of the array in

the folIowing way:

() one-dimensional array

(,) two-dimensional array

http:25.03.80

COMAL 80 Definition 20 	 25.03.80

5. 	 Whenever the procedure is activated, formal parameters in

<statement list> will be assigned the values of (call by

value) or replaced by (call by reference) corresponding .

actual parameters.

Formal specification in the procedure head determines the

choice based on the folIowing rules:

<formal parameter spec.> equal to

<simple variable> call by value

REF <simple variable> call by reference

<simple string name> call by value

REF <simple string name> call by reference

REF <numeric array name> call by reference

REF <string vector name> call by reference

The REF before <numeric array name> and <string vector name>
must be specified to allow for possibIe future extensions.

6. 	Activation of a procedure can take place as a function call
in an arithmetic expression. A procedure used in this way
should contain at leas t one assignment statement with the
procedure identifier on the left side of ':='.

7. 	<procedure identifier> af ter ENDPROC must be the same as

<procedure identifer> af ter PROC, otherwise an error will

occur.

8. 	 If the procedure was activated by an EXEC statement,

execution of an ENDPROC statement will cause execution to

continue with the statement after the EXEC statement.

If the procedure was activated by a function call, the

value of the function will be used in evaluation of the

expression in which the call occurred.

9. 	 Procedures may be called recursively.

Label statement.

A statement to define a label to which control can be trans­
ferred by a GOTO statement.

Format

<label statement> ::= <label name>
<label name> ::= <identifier>

~

._-_...._._------­

http:25.03.80

COMAL 80 Definition 21 	 25.03.80

Note.

1. 	 The label statement is non-executable.

DIM statement.

A statement to define storage for one or more numeric array
variables or string variables.

Format

<dim statement> ::= OIM <declaration> {,<declaration>}
<declaration> ::= <numeric array declaration> l

<string variable declaration>
<numeric array declaration> ::=

<numeric array name> (<max row index> [,<max column index>])
<string variable declaration> ::=

<simple string name> OF <string length> :
<string vector name> «max subscript» OF <string length>

<max row index> ::= <simple numeric variable> l <real number>
<max column index> ::= <simple numeric variable> : <real number>
<max subscript> ::: <simple numeric variable> <real number>
<string length> ::= <simple numeric variable> : <real number>

Statement execution

a. 	Storage space is allocated for the numeric array or the

string variable for each declaration.

Notes.

1. 	 A declaration of an array or a string must be executed

before it is used in the program.

2. 	A numeric array or a string variable may be declared only

once. Redimensioning of arrays or strings is not allowed.

3. 	 If the value for <max row index>, <max column index>,

<max subscript>, or <string length> does not evaluate

to an integer, rounding is applied.

4. 	 All of the elements in a declared numeric array are set to
avalue indicating undefined. A declared string variable
is set to null ("").

http:25.03.80

COMAL 80 Definition 22 	 25.03.80

Expressions.

Expressions are used in a number of different statement s and
constructions. An expression may be composed of parentheses,
constants, variables (numeric or string), and functions,
linked together by operators.

Format

<expression> ::= 	<logical expression> :
<arithmetic ex pression>
<string expression>

Logical expressions.

A logical expression is used primarily for making the execution
of a statement or a statement list conditional, but may
also be used in assignment statement s or as actual procedure
parameters.

Format

<logical ex pression> ::= [NOT] <l-expression>
<l-expression> ::= <logical term> :

<l-expression> OR <logical term>
<logical term> ::= <logical operand> :

<logical term> AND <logical operand>
<logical operand> ::= <relation> «logical expression»
<relation> ::= <string relation> : <arithmetic relation>
<string relation> ::=

<string expression> <relational operator> <string expression>
<string expression> IN <string expression>

<arithmetic relation> ::=
<arithmetic expression>

[<relational operator> <arithmetic expression>]
<relational operator> ::= > : >= : = : <> : <= : <

http:25.03.80

COMAL 80 Definition 23 	 25.03.80

Notes.

L 	 The logical operators have the following meaning:

NOT: A NOT A

FALSE TRUE

TRUE FALSE

OR A B A OR B

FALSE FALSE FALSE

FALSE TRUE TRUE

TRUE FALSE TRUE

TRUE TRUE TRUE

AND: A B A AND B

FALSE FALSE FALSE

FALSE TRUE FALSE

TRUE FALSE FALSE

TRUE TRUE TRUE

2. 	The relational operators have the following meaning:

> greater than

>= greater than or equal to

= equal to

<> not equal to

<= less than or equal to

< less than

3. 	 If the relation between the two expressions is satisfied,

the value of the relation is TRUE, otherwise FALSE.

4. 	 If <relation> contains only an <arithmetic expression>,

the relation has the value TRUE, if the value of the

expression is not equal to zero, otherwise FALSE.

5. 	 In a <string relation>, the two string expressions are
compared character by character (from lower towards
higher subscripts) on the basis of their ASCII decimal
values. If a character in a given position in one string
expression has a higher decimal value than the character
in the·corresponding position in the other string expression,
the first string expression is the greater of the two. If the
characters in corresponding positions are identical, but one
string expression contains more characters than the other,
the shorter string expression is the lesser of the two.

http:25.03.80

COMAL 80 Definition 	 24 25.03.80

6. 	 The IN operator (A$ IN B$) gives the index of the first
occurrence of the first string expression in the second
string expression. If the first string ex pression is not a
substring in the second, the value of IN is O. If the
length of the first string expression is zero (LEN(A$) = O),
then IN = LEN(B$)+l.

7. 	The priorities of logical and relational operators are:

First Relational operators, IN

Second NOT

Third AND

Fourth aR

When two operators have the same priority, evaluation proceeds
strictly from left to right. Parentheses can be used to
change the priority of logical and relational operators.

Arithmetic 	expression.

An arithmetic expression is a rule for computing avalue of the

numeric type. It is primarily used in assignment statements,

but mayaIso be used in logical expressions, PRINT statements,

CASE statements and FOR statements.

Format'

<arithmetic expression> ::= {<monadic operator>} <a-expression>

<monadic operator> ::= + : ­
<a-expression> ::= <term> : <a-expression> + <term> :

<a-expression> - <term>
<term> :!= 	<factor> : <term> * <factor> :

<term> / <factor> : <term> DIV <factor>
<term> MOD <factor>

<factor> ::= <operand> : <factor> + <operand>
<operand> ::= 	«arithmetic expression» : <real number> :

<numeric variable> <system numeric function>
<numeric function> : «logical expression»

<numeric function> ::=
<procedure identifier> [«actual parameter list» J

http:25.03.80

COMAL 80 Definition 25 	 25.03.80

Notes.

1. The 	 arithmetic operators have the folIowing meaning:

+ 	 monadic + (+A)

monadic - (-A)

l' 	 exponentiation (A + B)

multiplication (A * B)
*

I division (A I B)

DIV integer division (A DIV B)

MOD modulus calculation (A MOD B)

+ 	 addition CA + B)

subtraction CA - B)

Exponentiation is standardized only for positive A.
The result of an integer division CDIV) is standardized
only for A >= O and B > O
The result of modulus calculation (MOD) is standardized
only for A >= O and B > O (remainder).

2. 	 During evaluation a floating point underflow may occur. In .

this case the result is set to zero. A floating point over­

flow will cause a run-time error.

3. 	A value must be assigned to a numeric variable before 1t may

be used as an operand in an arithmet1c express1on~ If this

condition is not sat1sfied, a run-time error may occur.

~. The 	 prior1t1es of arithmetic operators are:

F1rst monad1c + and -

Second
 +
Th1rd *, l, DIV, MOD

Fourth +, -

When two operators have the same priority, evaluation proceeds
str1ctly from left to right. Parentheses may be used to
change the priority of ar1thmet1c operators.

5. 	 If a logical express10n is used as an operand, the value TRUE
1s equ1valent to 1 and the value FALSE to O.

6. 	 In a call of a <numeric funct1on>, actual parameters

are treated 1n the same way as actual parameters in

an EXEC statement.

http:25.03.80

COMAL 80 Definition 	 26 25.03.80

System numeric functions.

System numeric functions may be used as operands in arithmetic
ex pressions.

The following numeric functions exist:

ABS eX) Absolute value of X.
ATN ex) Arctangens of x, result in radians.
COS ex) Cosine of X, where X is in radians.
EXP CX) e to the power of X.
LOGCX) Natural logarithm of X CX > O)
SIN CX) Sine of X, where X is in radians.
SQR CX) Square root of X CX > O).
TANCX) Tangens of X, where X is in rad±ans.
INT CX) Integer value of X. The largest integer less than

or 	equal to X.
ORDCS$) The ordinal number of the first character in S$.
LEN(S$) The current length of S$

Note.

1. 	 Identifiers must not be the same as names of numeric

functions.

Numeric variables.

COMAL includes two types of numeric (real) variables: simple
variables and subscipted variables.

Format

<numeric variable> ::= <simple variable> :
<subscripted variable>

<simple variable> ::= <identifier>
<subscripted variable> ::=

<numeric array name> «row index> [, <column index>])
<numeric array name> ::= <identifier)
<row index> ::= <arithmetic expression>
<column index> ::= <arithmetic ex pression>

http:25.03.80

COMAL 80 Definition 27 	 25.03.80

Notes.

1. 	 A simple variable is referred to by using the identifier.
2. 	 A simple variable may not be declared explicitly. The

declaration is made automatically.

3. 	Subscripted variables are elements in arrays having either

one or two dimensions.

4. 	 Array variables must be declared in a DIM statement before

they are used. Such a declaration contains the name of the

array, its dimension, and the upper bounds for each index.

5. 	A subscripted variable must satisfy the following:

1 <= row index <= upper bound for first index

1 <= column index <= upper bound for second index

If 	not, a run-time error occurs.
6. 	 If the arithmetic expression for <row index> or <column index>

does not evaluate to an integer, rounding is applied.
7. 	The value of a <numeric variable> is undefined before a

value has been explicitly assigned to it.

String expression.

String expressions are used for assigning values to string
variables (in assigment statements), for output (in PRINT
statements), CASE statement and in relations.

Format

<string expression> ::= <string operand> { + <string operand>}
<string operand> ::= <string variable> : <string constant> :

<system string function>
<string constant> ::= "" : "<sequence of ASCII characters>"

http:25.03.80

COMAL 80 Definition 28 	 25.03.80

Notes.

1. 	 <string constant> can be empty or a sequence of characters,

which may include letters, digits, spaces, and special

characters except " and non-printable characters.

2. 	The string operator '+' denotes concatenation.

System string function.

System string functions may be used as operands in string
expressions. The following system string function exists:

CHR$(X) 	 The ASCII character corresponding to the ordinal

number X.

String variables.

COMAL 80 contains a type of variable called a string variable.
The value of a string variable is a sequence of ASCII
characters. There are two types of string variables: simple
string variable and string array variable.

Format

<string variable> ::= <simple string variable> :
<subscripted string variable>

<simple string variable> ::=
<simple string name> [(<selector>)]

<subscripted string variable> ::=
<string vector name> (<index> [, <selector>])

<simple string name> ::= <simple string identifier>$
<string vector name> ::= <string vector identifier>$
<index> ::: <arithmetic expression>
<selector> ::= <start position> [: <substring length>]
<start position> ::= <arithmetic expression>
<substring length> ::= <arithmetic expression>
<simple string identifier> ::= <identifier>
<string vector identifier> ::= <identifier>

~~. ----~_.......
_-----­

http:25.03.80

COMAL 80 Definition 29 	 25.03.80

Notes.

1. 	 All string variables contain a dollar sign ($) af ter the

identifier.

2. 	Substrings may be specified using a selector, containing the

start position and length of the substring. If the length

of the substring is not specified, it is assumed to be one.

3. 	All string variables must be declared in a DIM statement.
For simple string variables, the maximum length of the string
must be specified. For subscripted string variables, the number
of strings and maximum length of a string must be given.

4 	 The folIowing must be satisfied:

1 <= subscript <= maximum number of strings

1 <= start position <= string length

1 <= start position + substring length - 1 <= string length

O <= substring length

If not, a run-time error takes place.

5. 	If the arithmetic expression for <index>, <start position> or
<substring length> does not evaluate to an integer, rounding
is applied.

6. 	The value of a string variable is zero ("") before avalue

has been assigned to it. The value of a substring with a

substring length equal to zero is zero ("").

Real numbers.

Real numbers may be used as operands in arithmetic expressions.
Real numbers may be expressed as integers, decimal numbers,
or in exponential form.

Format

<real number> ::= <decimal number> [<exponent part>]
<decimal number> ::= <integer> I <integer>.<integer>

<integer>. I .<integer>
<exponent part> ::= E [+1-] <integer>
<integer> ::= <digit>{<digit>}
<d ig i t> :: = O : 1 : 2 : 3 : 4 : 5 : 6 l 7 8 9

http:25.03.80

COMAL 80 Definition 30 	 25.03.80

Notes.

1. 	 A real number may not contain space characters.
2. 	The range of real numbers is not part of the standard.

Identifiers.

Identifiers are used to designate entities in a COMAL 80
program.

Format

<identifier> ::= <letter> {<letter> : <digit>: }
<letter> ::= < ASCII letters plus national characters >

Notes.

1. 	 Identifiers may contain at least 16 characters.
2. 	 80th capital and small letters may be used. No

distinction is made between a capital and a small letter.

3. 	Space characters are not allowed within an identifier.
4. 	The character just before and af ter an identifier must

neither be a letter nor a digit.

5. 	Identifiers must not be the same as the reserved keywords

or names of system functions. -,
6. 	 Identifiers designate entities in a program. The folIowing

types 	exist:

- simple variables.

- subscripted variables

- simple string variables

- subscripted string variables

- label names

- procedure names

- formal parameters.

7. 	An identifier may designate only one entity in a

program.

http:25.03.80

COMAL 80 Definition 	 31

Keywords.

COMAL 80 contains a number of keywords with a fixed meaning.

Format.

<keyword> ::= 	 AND: CASE I DATA l OlM: DIV l DO l
ELSE I END l ENDCASE l ENDIF : ENDPROC
ENDWHILE : EXEC l FOR : GOTO l IF l IN
INPUT : LET : MOD l NEXT : NOT : OF : OR
OTHERWISE l OUTPUT : PRINT I PROC : READ
REF : REPEAT : RESTORE SELECT l STEP :
STOP TAB: THEN : TO : UNTIL : USING :
WHEN l WHILE

Not es.

1. 	 Keywords may be typed using both capital and small

letters.

2. A keyword must not be used as an identifier for other entities.
3. Space characters are not allowed in a key.word.
4. 	The character just befor e and after a keyword must neither

be a letter nor a digit.

