$5S5558S§ PPPPPPPP EEEEEEEEEE gceeceecce
S$SSSSSSS PPPPPPPP EEEEEEEEEE ceeeccecc
SS PP PP EE CcC
SS PP PP EE cc
SS PP PP EE cc
$S PP PP EE cc
$85S835S PPPPPPPP EEEEEEEE cC
$35S8835S PPPPPPPP EEEEEEEE cc
SS pp EE cc
SS PP EE cC
SS PP EE cC
SS PP EE cc
SS$5S5S5SSS PP EEEEEEEEEE ccecececce
555555SS PP EEEEEEEEEE [0 04 8 o8 o 0 1
LL PPPPPPPP TTTITITTITTT 333333
LL PPPPPPPP TITTTITTITTIT 333333
LL PP PP 17 33 33
LL PP PP 77 33 33
LL PP pp TT 33
LL PP ppP TT 33
LL PPPPPPPP 17 33
L PPPPPPPP 17T 33
LL PP T 33
Ly PP 17 33
LL PP 1T ases 33 33
LL PP 1T sune 33 33
Litiitieit PP 17 anmw 333333
IREREREREREN PP 7 avsa 333333
START Job SPEC Req #6693 for EGB Date 3-Dec-82

1:52:04 Monitor: Rational M

File RM:<MICRO-ARCHLFIUDSPECLLPT.3, created: 1-Dec-82 14:51:10

printed: 3-Dec—-82 171:52:04
Job parameters: Request created: 3-Dec—82 1:52:03 Page limit:81 Forms: NORMAL
File parameters: Copy:z 1 of 1 Spacing:SINGLE File format:ASCII Print mode:/

Specification of the Field Isolation Unit

DRAFT 3

Rational Machines proprietary document.

1« Summary

This document is a functional and physical specification of the R1000
Field Isolation Unit (FIU). It is assumed that the reader is familiar
with the R1000 architecture and has access to documentation on other
parts of the hardware.

Section 2 of this document describes the functionality of the FIU and
includes a description of each major block of the FIU block diagram.
Section 3 describes the microword, and provides detailed information
about the hardware that must be considered when writing microcode for
the FIUa. Section 4 includes some examples of how to wuse the FlIU.
Section 35 discusses diagnostic capabilities provided by the harduware
and section 6 is a physical specification of the FIU bhoard.

2e Functional Overview

The basic operations of the FIU are insertion of data into a2 128 bit
word and extraction of data from a 128 bit word. An extract operation
is used to take 0 to %4 bits of the data which is input to the rotator
and right align them on the V0O_BUS output of the merger. If the
number of bits extracted is less than 64, then most significant bits
on the VO_BUS would be the data output on the corresponding bits of
the MERGE_VMUX. The TI_BUS will be passed to the TO_BUS on all
extract operations. An insert operation is used to take data on the
RDATA_BUS and insert it into the data on the TI_BUS and the output of
the MERGE_VMUX, the result is output on the TO_BUS and VO_BUS.

The fields being manipulated are described by their OFFSET and LENGTH,
For an extract, OFFSET is defined as the first bit of the field being
extracted in the 128 bit source word, and LENGTH defines the number of
bits in the field being extracted. For an insert, OFFSET is the
position of the first bit position in the 128 bit destination word
where data is to be inserted, and LENGTH is the number of bits in the
field being inserted. The numbering convention of bits is that the
MSB is bit 0.

The FIU will also be used for BLOCK COPY and APPEND operations, which
can be accomplished with a series of INSERTY and EXTRACT operations..
BLOCK COPY moves multiple words of data from one contiguous block of
memory. to another, and APPEND is wused to build a 6% bit word by
appending bits onto the least significant part of a partial word
stored in the VAL _ASSEMBLY_REGISTER. '

2.1 Rotator
The ROTATOR dis a 128 bit rotator used to position data fields for

INSERT and EXTRACT operations. For sign extending, the ROTATOR outputs
the most significant bit of the field being extracted +to the

Rational Machines proprietary document DRAFT 3 December 1, 1982

Functional Overvieuw 2

MERGE_VMUX. The ROTATOR selects which 64 bits of the 128 bit input
will participate in the rotater and then right rotates the selected 64
bits by up to 127 bit positions. The rotate amount is determined from
the operation being performed and the OFFSET and LENGTH parameters.
For extracts the data is rotated right by —{OFFSET+LENGTHImod128 which.
is equivalent to a 1left rotate of (OFFSET+LENGTH)mod128. For all
insert operations the data is rotated right by (OFFSET+LENGTH)mod128.

2«2« RoOtator Details

The follouwing discussion describes the implementation of the ROTATOR,
which need not <concern the microprogrammer who uses the FIU for
vanilla inserts and extracts. The ROTATOR is implemented with four
bit combinatorial (right) shifters as three "tiers” of rotators: the
first tier nibble aligns the datar, the second tier does a 16 bit
alignment, and the third tier does the final 64 bit alignment. The
first tier can be thought of as a 128 bit rotator which can rotate
right by 0 to 3 bits. After this first rotations, the 64 bits which
will participate in the final rotate are selected. The nibble that
contains the first bit of the field being rotated and the 15 nibbles
to the right of that {(wrapping around through the most significant
nibble) are wused as the input to the second tier. Before passing
through the first tier the first bit of the field being rotated is at
OFFSET (for extracts) and 128-LENGTH (for inserts). The sign
extractor uses OFFSET to find the sign bit of data being extracted for
both INSERT and EXTRALT operationss, so the sign bit is not really
useful when the INSERY operation is selected.

223« Merger

The merger is a 128 bit 2 te 1 multiplexor which merges data from the
RDATA_BUS with data coming from the TI_BUS, on the TYPE hal¥, and the
MERGE_VMUX on the VAL half. A merge mask is generated to control the
select lines of the MERGER using the OFFSEY, LENGTH, and operation
parameters. These parameters are used to calculate a START_BIT and
END_BIT which mark the beginning and end of the field where the
RDATA_BUS will be selected on the merger outputs. The following table
shouws START_8IT and END_BIT definitions for the specified FIU
operationsa

" OPERATION START_BIT END_BIT
———————————————— }-—_—-_-_———-_—_--—_---—*—-a. - - . v
| 1
EXTRACT i 128-LENGTH 1 127
l i
INSERT FIRST 1 OFFSET 1 127
WORD]]
i i
INSERT LAST] 0 1 OFFSET+LENGTH-1

Rational Machines proprietary document DRAFY 3 December 1, 1982

Functional Overview ' 3

word

i e

INSERT i OFFSET OFFSET+LENGTH-1

2e%. Merge Data Register

The MERGE DATA REGISTER {MDR) is 2 6% bit register which can be loaded
with data from the output of the ROTATOR. This is most commonly used
for INSERTs, when data which would normally be right aligned on the
ROTATOR"s dinput is rotated to the position where it be inserted in to
the destination word and loaded into the MDR. In the next <cycle the
destination word is merged with the rotated data in the MDR.

25« Merge VYmux

The MERGE_VMUX selects one of three sources of data to be merged with
the ROTATOR outpul on the VALUE half of the MERGER. The three sources
to this mux are the rotator sign bit ocutputr, the VI_BUS, and the
FI_BUS. If the sign bit is selected as the MERGE_VMUX output, then
the sign bit is driven on 211 64 bits of the MERGE_VMUX output.

2«6« Type Assembly Register and Value Assembly Register

The TAR and VAR are used for storing intermediate results, and are
also used when the timing does not allow the results to be written
back out into the register file. Data from the register files on the
TYPE and VAL boards does not make it through the FIU and back into the
register file in one cycles so the output of the MERGER would have to
be loaded into TAR and VAR.

27« Bus interfaces

The FIU interfaces to the TYPE, VALUE, and FIU busses. The sources of
these busses are selected by two fields in the microcode :
VALUE_AND_TYPE_BUS_EN and FIU_BUS_EN, which are in the FIU part of the
microword. These busses include byte parity checking and generations
and a machine <check is generated if a parity error is detected on a
bus from which the FIU will be receiving data.

2.8. Dffset,s, Length, and Fill Mode Registers

The seven least significant bits of the ADDRESS_BUS or the
OFFSET_LITERAL field of +the microword can be loaded into the OFFSET
REGISTER. The OREG_SRC field of the microword specifies whether the
data is loaded from the ADDRESS_BUS or from the OFFSET_LITERAL, and
the OFFSET REGISTER 1is 1loaded when the LOAD_OREG microorder is
specified. The contents of the OFFSET_REGISTER or the OFFSET_LITERAL

Rational Machines proprietary document DRAFT 3 December 1, 1982

Functional Overview 4

can be selected as a source for the OFFSET parameter. If the OFFSET
REGISTER is selected, the data must have been loaded into the register
at least one cycle previous to starting any FIU operations; however,
the OFFSET_LITERAL <c¢an be specified and an operation using that
literal can be performed in the same cycle. On a READ_MAR the
contents of the OFFSET REGISTER are returned on the least significant
bits of the VI_BUS; howevers, the RESTORE_MAR and LOAD_MAR have no
effect on the loading of the OFFSET REGISTER.

The source of data to the LENGTH REGISTER is selected by microcode to
be from the VI bus bits (25231), from the 1literal specified in the
LENGTH_LITERAL field, or from the TI bus bits (43:48). The LENGTH
REGISTER or the LENGTH_LITERAL can be specified as the source for the
length parameter. If the LENGTH REGISTER is selected the data must
have been loaded intc the register at 1least one <cycle previous to
starting any FIU coperations using this values however, a literal can
be specified and an operation started using that literal can be
performed in the same cycle. The LENGTH REGISTER actually contains
the value LENGTH-1 and the LENGTH_LITERAL specified should be LENGTH-
1. When 1loading the LENGTH REGISTER from the VI_BUS the value LENGTH
should be specified and the hardware subtracts one from this value
before laoding it into the LENGTH REGISTER. 1If a READ_MAR is issued
the contents of the LENGTH REGISTER is returned on bits 43:48 of the
TI_BUS; however, LOAD_MAR and RESTORE_MAR have no effect on the
loading of the LENGTH REGISTER.

The source of data to the FILL MODE REGISTER is selected by microcode
to be from the TI bus bit (36) or from the FILL_MODE_LITERAL field. If
the FILL MODE REGISTER is selected, the dats must have been loaded
into the register at least one <cycle prior to starting any FIU
operations using this values houwever a literal can be specified and an
operation started using that 1literal can be performed in the same
cycle. When a READ_MAR 1is issued the contents of the FILL MODE
REGISTER is returned on bit 36 of the TI_BUS; however, LOAD_MAR or
RESTORE_MAR have no effect on the loading of the FILL MODE REGISTER.

2e9- Londitions
The FIU generates two conditions: CROSS_WORD_FIELD, and OFFSET_BIT(0.

The CROSS_WORD_FIELD <condition is set ‘when the OFF3ET and LENGTH
registers describe a field that crosses 2 128 bit word boundary.

CROSS_WORD_FIELD 2= {OFFSET + LENGTH) > 128

The OFFSET_BITD condition is tested mainly for determining whether the
BADBITID generated by the ERCC hardware is in the upper or lower half
of the 128 bit word.

Both of <these are early conditions which are valid the cycle after
loading the OFFSET, LENGTH, and FILL_MODE registers.

Rational Machines proprietary document DRAFT 3 December 1, 1982

Functional Overview b]

210« Saved state

When an early event stops occurs the clocks to some registers are
stopped so that they can be saved and restored by the event handler.
All registers in the FIU, except the microinstruction registers, are
left unmodified when clocks are stopped.

211. Zero Length Fields

lero length fields can be specified and are handled as a special case
by the FIU. The representation of a zero length field on the FIU is a
field with a FILL MODE of ZERO FILL and a LENGTH REGISTER contents of
63 (A 64 bit field differs by having a FILL MODE of SIGN EXTEND). If
the LENGTH register is loaded from the VI_BUS and the most significant
bit of that field is a 1 (i.e. a length of 64) then the FILL MODE
"REGISTER will be loaded with a zero (SIGN EXTEND) independent of bit
36 of the TI_BUS. For zero length fields the MERGE MASK will select
the TI_BUS and MERGE_VMUX output to be output from the MERGER so that
inserting zero length fields will not alter the destination word. If
extracting a zero length field and the SIGN BIT is selected as ‘the
output of the MERGE_VMUX then the VO_BUS output will be ZEROS.

3. Microuword Specification

3ele Microword Format

OFFSET_LITERAL {(7bits) - specify a literal for the offset parameter.

MICROWORD_BITS(Dz6)

XXXXXXX = OFFSET

LOAD_OFFSET_REG (1 bit) specifies the load control for the offset
register

MICROWORD_BIT(20)
0 load OFFSET REGISTER
1 no load

Rational Machines proprietary document DRAFT 3 December 1, 1982

Microword Specification

OFFSET_REGISTER_SOURCE {1 bit) specifies the source of data to the
OFFSET REGISTER

MICROWORD_BIT(7)

0 ADDRESS_BUS bits ADDR_OFFS{25:31)
1 OFFSET_LITERAL

OFFSET_SOURCE (1 bit) - specifies the source of the offset parameter
MICROWORD_BIT{19)

0 offset
1 offset

OFFSET REGISTER
OFFSET LITERAL

W oh

LENGTH_AND_FILL_MODE {7 bits) - specify a literal for the length and
fill mode parameters. The most significant bit of this field is the
fill mode literal and the least significant 6 bits are a literal that
specify length=1. A length cf 64 is differentiated from 2a length of

0 by defining the fill mode bit for 64 to be 0 {which will indicate
sign extend) and the fill mode bit for 0 to be 1 {which will indicate
zero fill). '

MICROWORD_BITS(8:14)
FLLLLLL = FILL MODE]]JLENGTH-1

F
F

0 => SIGN EXTEND
1 => ZIERO FILL

([]

LENGTH_AND_FILL_REG_CONTROL (2 bits) Specify the load control for the
LENGYH and FILL MODE REGISTERS.

MICROWORD _BITS{16:17)

LENGTH PART FILL MODE PART
00 Load VI (25:31) Load TI {36)
01 Load literal Load literal
10 Load TI {(43:48) toad TY (38)
11 no load no load

Rational Machines proprietary document DRAFT 3 December 1, 1982

Microword Specification

FILL_MODE_SOURCE {1 bit) specifies the source of the FILL MODE
parameter

MICROWORD_BIT{18)

FILL MODE REGISTER
FILL MODE LITERAL

0 FILL MODE
1 FILL MODE

Hou

LENGTH_SOURCE (1 bit) specifies the source of the length parameter
MICROWORD_BIT(13)

0 LENGTH = LENGTH REGISTER

1 LENGTH = LENGTH LITERAL

VI_AND_TI_BUS_SOURCES {6 bits) specify the source of the TI and VI

busses

MICROWORD_BITS(28:31)

TI_BUS source VI_BUS source
0000 TAR VAR
0001 TAR VAL UE_BUS
0010 TAR FIU_BUS
0011 TAR ~ FRAME_ADDRESS
0100 FIU VAR
0101 FIU , YALUE_BUS
0110 FIU FIU_BUS
0111 FIU FRAME_ADDRESS
1000 TYPE_BUS VAR
1001 TYPE_BUS VALUE_BUS
1010 TYPE_BUS FIU_BUS
1011 TYPE_BUS FRAME_ADDRESS
11XX MAR MAR

LOAD_MDR ({1 bit) specifies whether or not to load the Merge Data
Register

MICROWORD_BIT(23)

0 no locad
1 LOAD MDR

Rational Machines proprietary document ~ DRAFT 3 December 1, 1982

Microword Specification : : 8

OPERATION_SELECT (2 bits) specify the FIU operation, mod 128 of the
results for start bits, end bits, and rotate amount are used by the.
harduwuarea.

MICROWORD _BITS{243:25)

op : merge mask ; rotate amount
start bit end bit
00 EXTRACT 128-LENGTH 127 -{OFFSET+LENGTH)
01 INSERT LAST ¥ ODFFSETHLENGTH-T OFFSETH#LENGTH
10 INSERT FIRST OFFSET 127 OFFSET+LENGTH
11 INSERT OFFSET OFFSET+LENGTH~ OFFSETHLENGTH

MERGE_INPUT (1 bit) specifies the source of data to the merger
MICROWORD_BIT(3I7)

0 ROTATOR QUTPUT

1 MERGE DATA REGISTER

MERGE_VMUX_SELECT (2 bits) specify the output of the merge_vmux

MICROWORD_BITS{(26:27)

oX FILL VALUE
10 VI_BUS
11 FIU_BUS

LOAD_TAR (1 bit) specifies whether or not to load the TAR with T0
MICROWORD_BIT{(21)

0 LOAD_TAR
1 ne load
LOAD_VAR {1 bit) specifies whether or not to load the VAR with VO
MICROWORD_BIT(22)

0 LOAD_VAR
1 no load

Rational Machines proprietary document DRAFT 3 December 1, 1982

Microword Specification 9

MICROWORD _PARITY (1 bit)
MICROWORD_BIT(38)

Parity is checked on the contents of the microword, and a machine
check is generated if a pariity error is detected. The combination of
the microword and the parity bit should generate odd parity.

3.2« Miscellaneous microcode restrictions

* When using the FIU bus as a source to the MERGE_VMUX, the FIU_BUS“
must also be selected as a scurce to the TI or VI bus so that
parity can be checked. ‘

* On an INSERT, if both halfs of the ROTATOR input are not the same
then [LENGTH + {(OFFSET)mod4] must be <= 64 If any of the
following <conditions are met then don”t worry about trying to
figure this one out.

- If the target field for this data is totally in the TYPE or
VAL half of the desination word.

- If the length of this field is less than 62.
* Data from the register file of the TYPE or VAL board cannot go

through the FIU data path and be loaded back into the register
file in the same cycle. ' :

Rational Machines proprietary document DRAFT 3 December 1, 1982

FIU Examples : B 10
4o FIU Examples
4.17. Insert

CYCLE 1 - The OFFSET and LENGTH parameters are determined from a
literal specified in this cycle or from a value latched in some
previous cycle (it is possible to specify a literal for one and a
previously latched value for the other). The D to 64 bit field is

sent from the register file on the TYPE or VAL board, over the

FIU_BUS and driven onto both the TI and VI busses. These bits are
rotated right by (OFFSET+LENGTH), and the result is stored in the MDR.
The data being inserted does not necessarily need to be driven onto
the TI_BUS {see section on miscellaneous microcode restrictions).

data source

$rm—————— P ——————————— +
jgarbage | field 1
Fmm————— F o e e e e +
destination
offset-—+
v
o e e o e et e e e e ——— +
| 1 field i i
P ——————— F o e e —————————— +
rotator input
e pe e —————————— e ————— b e e e -——
Jgarbage | field jgarbage } field 1
tm—m—————— P —————— e e e o ———— e ———— -

rotator output {loaded into MDR)

e e e e ————— +
jeld {garbage | i}
trmr et ———— tmm————— +

Rational Machines proprietary document DRAFT - 3 December 1, 1982

B
7
!
?
!
P
7
i
7
l
|
|
I
!
l
l

FIU Examples 11

CYCLE 2 The output of the MDR is input to the rotator part of the
merger on both the VAL and TYPE halves. The word into which the

field is inserted, is being driven onto the TI and VI busses. The

TI bus drives the unrotated of the merger input on the TYPE hal¥,

and the VI bus is selected as the MERGE_VMUX output to drive the
unrotated part of the merger input on the VALUE half. The

merge mask START BIT is (OFFSET) and the END BIT is (OFFSET+LENGTH-1).
The output of the merger is loaded into the TAR and VAR, or the
register file (if destination word comes from memory).

merger input
(rotated part)

- - P e e i e e B e e o e e F o i o G o -
jeld {garbage | fijeld lgarbage |} fil
o e P o fmmm———— - - o e fmm—————— P o e Es

merger input
{unrotated part)

o e o e o et e e e i o e i e i e o o ——

| TI i vl i

o o o e e o e e e e e e +
merge mask

.................. | | LS
merger cutput.

P rrea e - - -————— F o s 2 e e e o s e +

i TI | field i vl]

b ——————————— d oo e e e o e e e bm———— - i e o e

Rational Machines proprietary document DRAFT 3 December 1, 1982

FIU Examples 12

4.2+ Cross Word Insert

CYCLEY - The OFFSET and LENGTH specified have resulted in a CROSS WORD
FIELD condition. In this cycle the data to be inserted is driven over
the FIU bus and onto both the TI and VI bussess, then rotated left by
(OFFSET+LENGTH) and stored in the MDR.

{<~- 1length ->1
data source o P ————t
| garbage | field 1
o ——— o ——————— + offset ——-—%
destination v
B o e e e o o e e e o e o e bm——
wordl i] fi}
- - — - —— T _—— - - —— - - LT T T R
o ———— -+ - e i i o o e e +
word?2 Jeld 1 i
fpomc e - o e o e e e o e i e -
rotator t+e-cr—ecc-- G - e e o e B e s e ot e Sadeabedlod ot - +
input Jgarbage | field lgarbage] field , {
o - G e o s i > o G o s a0 - o - - - - - 4

rotator output {loaded into MDR)

tmm————— pm——————— - +
jeld jgarbage | - fi]
o ——— o e e o o e e e +

CYCLE 2 - Wordl is driven onto the TI and VI busses and merged with
the MDR. The insert first word mask is used, the type half of wordl is
stored in the register file on the TYPE board, and the result of the
INSERT is driven onto the FIU bus and stored in the register file on
the VAL board.

merger input
{rotated part)

b pomm—————— R b —— tm—————— R ¢
jeld jgarbage | fijeld jgarbage | fil]
e ——— S b ———— B prm————— PO T 1

merger input
{unrotated part)

F S S - B =, 4= o~ e - - o e i

word1l 1 TI] VI i

- - - B - - - - - - -
insert first , - i s o
WOPr A MASK L o o o o o o e e e e e e e e e e e e R |

Rational Machines proprietary document DRAFT 3 December 1, 1982

FIU Examples , 13

CYCLE 3 - Word2 is driven ontc the TI and VI busses and merged with
the MDR. The insert second word mask is used and the result is stored
in the TAR and VAR.

merger input

(rotated part)

bt ———— p——————— pom————— b o g o i om pmm——— -—
teld {garbage | fijeld jgarbage } il
bem - —— - fmm————— T S o e o e e +

merger input
{unrotated part)

e s e o s e e s o e B o e e o S i e s e i o
word? i TI | VI 1
o e o e e e e P e e e —————
insert o _ oo
last word ——mm —
mask

CYCLE 4 - The result of the first insert operation now stored on the
register file are written back to wordl.

CYCLE 5 = The result of the second insert operation nouw stored in the
TAR and VAR are written back to word two.

Rational Machines proprietary document DRAFT 3 December 1, 1982

FIU Examples 14

4.3. Extract

CYCLE 1 - The OFFSET, LENGTH, and FILL MODE parameters are specified
as literals or selected from previously latched values. The source
word is driven onto the TI and VI busses and rotated left by
{OFFSET+LENGTH) to right justify the field being extracted. The sign
bit is is selected to be output from the MERGE_VMUX so that the
extracted field and the sign bit can be merged and either driven out
the FIU bus into the register file or stored in the VAR.

source word offset-—+
v
rotator t-——e-eerrcccocnana T o e o i e o om Fo e e o e o e e +
input i | field i i
————u-—-—-—-—-——- ———————————— - i - - - - - - +
J<- length ->}
rotator tmm——————— o —————————— +
output jgarbage | field i
F o Fmm o o e e +
merger input
{rotated part)
o e i - - *—-—-—‘-c-‘— ------ * ———————— o i e e i o e --‘—*
jgarbage | field Jgarbage] field i
bormmm——— o i e o e pm—————— P e e e e e +
merger input
{unrotated part)
s o o -~ — - v . " - - D
| TI1 i $ill bits i
A s o (o~ - " - - - - - - oo - - - -
extract e e o 2 e e o
mask _____ e e e e e e e i

If FILL MODE = ZERO FILL then the fill bits will be all zero®s, and if
the FILL MODE = SIGN EXTEND then the fill bits will be the MSB of the
extracted field.

Rational Machines proprietary document DRAFT 3 December 1, 1982

FIU Examples

4.4, Lross Word Extract

15

CYCLE 1 - The OFFSET and LENGTH parameters have generated the {ROSS
WORD FIELD condition. The first source word is input to the rotator on
the TI and VI busses and the VALUE half of the word is extracted and
stored in the VAR. This is done by specifying a literal offset of 64»,

and a literal length of 64.

source word 1

offsel ====+

e e e o - i e

rotator input i

rotator output

o o e o e e R
] l
+ - - -
merger input
-{rotated part)
B L R
i]
b e e e e e T
merger input
{unrotated part)
o >
] TI
- - - - - - - -
extract
mask

Ratiocnal Machines proprietary document

v

i fil

- - — - - - - -
fil
SRR+

S PSP pR— e —a— +

fi 1 fil

o PN — -+

- dp o - ——— —— v - - - - — - - 4+

| CXXXXXXXXX i

e o s o o o -

DRAFT 3 December 1, 1982

FIU Examples

CYCLE 2 - The type half of the second source
TI_BUS and the VAR is driven onto the VI_BUS.
LENGTH, and FILL MODE parameters are selected
The result can be stored in the VAR or driven
stored in the register file.

rotator input

16

word is driven onto the
The latched QOFFSET,

and an EXTRALT is done.
onto the FIU bus and

b ———— oo e e i e e e i S 2 e +
leld] i i fi}
Fmm——— P ———— - e o o e i
rotator tmm——————— i il ol bt 4
output {garbage | field 1
o e e B o e o e o i e i o e
merger input ‘
{rotated part)
o m———— B e s e e e e e e e e B o e e o e e
lgarbage | field Jgarbage 1} field i
b ———— e ————————————— oo o o o e e e i S
merger input
{unrotated part)
f oo o e e o e e N P i -4
jeld i i £ill bits i
o Jmm o i i e o 0
extract e e ———
mask e e e e e e e e e e e i

Rational Machines proprietary document DRAFY 3 December 1, 1982

FIU Examples 17

4.5. Using the FIU as a General Purpose Shifter
The following examples show how to use the FIU as a general purpose
shifter to shift data on the VAL part of the rotator input. The FIU

operation and parameters selected will depend on the direction of the
shift and whether the field being shifted is left or right aligned.

4.5.17« Right Aligned data, Right Shift by n bits

This is really 2 normal extract operationt

Rotator Input 128~length--%
0 ; 63 64 y 127
foemrme e e ————————— $omm———— b—— - - -4
i XXXXXX 1722272727 ?2}unshifted data |
- ——— - - - — - e - o o T e o e o e e s s -

Operation = extract
Offset = 128-l1length
Length = length—-n

Rotator output
64-length-n ~-+

i
D n=1 v 63
———— tm————— b m————— +
ldata | XXXXXX?Jjunshifted]
fm—— frmmm e ———— +
Merge Mask Start 8it = 7128~length+n
Merge Mask End Bit = 127

Rational Machines proprietary document DRAFT 3 December 1, 1982

FIU Examples 18

4e3e2« Left Aligned Data, Shift Right n bits

Rotator input
64+length=-71 ===+%

0 63 64 v 127
o e e s 2 2 o T §o e e B
] AXAXXXAXXX XXX { unshifted data] 27272277 }
o e e e e e e e e o e -

Operation = Extract

Offset = 64

Length = 6&4=n

Rotator Output

8] n vy 63
o o o o ——
122?X] unshifted data }??]
b e ———————f -

Merge Mask Start Bit = 128-(64-n) = 64+%n
Merge Mask End Bit = 127

Rational Machines proprietary document DRAFT 3 December 1, 1982

FIU Examples 19

4.5.3. Right Aligned Data, Shift Left n Bits

Rotator Input 128~length-=+
0 63 64 v 127
P o e o - - ——— i - ——— - P o s e e o o i s s e s o s o
1 XXXXXX 1277227772?Junshifted data | °
Pr——————————— - o o e e 2 e o o e J s e e o +

Operation = Insert

Offset 128=length-n %*%*% See section on miscellaneous microcode
restrictions == this will not always work
if data is shifted past the TYPE/JVAL
boundary t#%x%

Length = Length

Rotator Qutput

b64~length—n -+

1 63-n —--+
0 v v 63
b ———————————— et
172?] unshifted data XX}
$emm e ——————— -t

Marge Mask Start Bit = 128-length-n
Merge Mask End Bit = 127-n

Rational Machines proprietary document DRAFT 3 December 1, 1982

FIU Examples 20
4e5e4a Left Aligned Data, Shift Left n Bits

Rotator input
b64+length=1 ===+

D 63 64 v 127
e et S P o m———— +
] AXXXXXXXXX XXX | unshifted data § 72?22?27 |
- s s e 2 e S s S s o e i - A o - - - -—-—n——-—--}

Operation = Insert

Offset = 64

Length = Bf4~=n

Rotator Qutput

length-n -=-¢ $=== $4=n
0 Vv v 63
L T A it |
jshifted data}??227?] XX |
P —————————————
Merge Mask Start Bit = 64
Merge Mask End Bit = 127-n

5. Diagnostics

5«1« Diagnostic Hardware Subsystem

The basic hardware elements added to the FIU board for diagnostic
purposes are an 8051 microprocessor, a diagnostic finite state machine
and scannable registers. The B051 is a single <chip microprocessor
with a serial communication 1line to a master diagnostic porocessor
"which resides on the I/0 ADAPTER board. This communication 1line is
used to transmit diagnostic commands to the slave processorss, status
information from slave processors to the master, data to be loaded
into a scannable register on one of the LPU cards, or data being read
from one of these registers. The 8057 transfers diagnostic commands
to. the diagnostic finite state machine which "personalizes™ this
command into the actual sequence signals which must be generated in
order to execute the diagnostic command on the FIU board. These
signals are wused for such purposes as controlling a scannable
registers, disabling or enabling bus drivers, forcing the state of
interboard signalss, etc. The scannable registers on the board are
implemented with 745194 parts which in normal operation of the FIU
will be used in parallel load modeée, and in diagnostic mode will be
capable of being shifted by selecting one of the shift modes. These
scan chains are wired up so that diagnostically scanning a register
has the side effect of loading it back into itself.

Rational Machines proprietary document DRAFT 3 December 1, 1982

Diagnostics < 21

5.2« Scannable Registers

The microinstruction register of the FIU board is scannable. Using
this mechanism, it is possible to stimulate the board the same way as
normal microcode can. The output of the microinstruction register is
also fed back to the input of the WCS RAM"s which can be written under.
control of the diagnostic FSM, this mechanism is wused to 1load
microcode at IPL and also to 1load sequences of instructions for
diagnostic purposes. The WCS RAM®s are addressed from the UADR_BUYS or
under diagnostic contrel from a counter on the FIU board.

The MERGE DATA REGISTER 1is also scannable, which allows loading of
data into the FIU data path. This scannable register in combination
with diagnostic control of the microcode are sufficient to test the
entire FIU data path at speed.

The FIU board also contains the MEMORY MONITOR 1logic. The ADDRESS
part and SPACE part of the MAR are also a scannable register {(except
for the least significant seven bits of +the ADDRESS part). The

REFRESH COUNTER 1is used by diagnostic hardware as the address to the
WCS and also to count the number of cycles to be run in any seguence
of diagnostic instructions.

5.3. Other Diagnostic Hooks

A1l signals which are sourced by the FIU board and sent to only one
other board are made visible to the diagnostic subsystem to aide in
FRU isolation. These signals are either driven onto the 8051%
diagnostic bus or loaded into a scannable register which can then be
scanned into the 8051 in the normal manner.

The FIU board uses a non-volatile RAM for storing board serial numbers

and keeping a history of failures that could be useful in isolating
board defects and uncovering design or manufacturing problems.

6. Physical Specification

6ele Printed Circuit Board

The FIU is layed out on 2 standard RMI 19.5 X 21 inch 8 layer printed
circuil board. '

2. Pouwer Supply Requirements
The FIU board only requires a +5V pouwer supplys, and draws a maximum of
56 ampse. This current requirement was calculated by taking the wmorst

case (70 amps) and multiplying by 0.8. {(See RMI power supply
specification).

Rational Machines proprietary document DRAFT 3 December 1, 1982

Table of

Contents

Table of Contents

1- Summary
2« Functional Overview

2.1,
2-2.
2‘3.
2atea
2.5-
2.6,
247
2.8.
2%
2.10.
2.11.

Rotator :
Rotator Details
Merger

Merge Data Register
Merge Vmux

Type Assembly Register and Value Assembly Register:

Bus interfaces
Offsets Lengths, and Fill Mode Registers
Conditions

Saved state

lero Length Fields

e Microword Specification

3.1-
3.2

Microword Format
Miscellaneous microcode restrictions

4. FIU Examples

4-1.
4a2.
4.3,
boba
‘.5.

Insert

{ross Word Insert

Extract

Lross Word Extract

Using the FIU as a General Purpose Shifter
4.5.7. Right Aligned data, Right Shift by n bits
4e5e2« Left Aligned Data, Shift Right n bits
4.5.3. Right Aligned Data, Shift Left n Bits
4e5.4. Left Aligned Data, Shift Left n Bits

S5« Diagnostics

5’1'
5.2.
5.3

Diagnostic Hardware Subsysiem
Scannable Registers
Dther Diagnostic Hooks

6. Physical Specification

6.1.
6ala

Printed Circuit Board
Power Supply Requirements

V- I-RC RV RV RV I WNEWEER PR VRN S W

BN AN N B I B s ah b i ok o el ol
“ ok e owd ik (OO O 00N OO

Rational Machines proprietary document DRAFT 3 December 1, 1982

