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1« Summary

The R1000 1170 adaptor board (IDA) connects an IJ0 processor {IOP) to
the R1000%s interprocessor bus, and supports that IOP in' managing
certain aspects of R1000 cluster operation. This document specifies
the operational, programmatics and physical interfaces to the I0A"s
two constituent subsystems, Implementation of these subsystems is
discussed at the block-diagram level, using references to the R1000
block diagram (daisy file /7R1000) and the I/0 adaptor block diagram
{daisy file /R1D00/IOADAPTERD). Readers are presumed to be familiar
with the RMI program architecture and the R1000 machine organmization.
Full understanding of the I0A®s interface to its I0P requires some
familiarity with the DEC Unibus and PDP-11 architecture.

2« Introduction

An R1000 cluster consists of one to four processors {named PO through
P3) and one to four I/0 subsystems {(named IOSO <through I0S583)7 a
minimum cluster contains P00 and I050. Processors and I70 subsystemss
cellectively referred to as pgodesr, communicate at 40 megabytes per
second wvia an 8-byte parallel path known as the Sysbus. Sysbus
communication is regulated by 2 three-layer protocols, utilizing a
small set of bussed control signals.

A cluster®s I/0 subsystems contain all of its peripherals, which
typically include magnetic disk and tape drivesr, data communication
devices, terminalss, and printers. The intelligence to manage these
peripherals is provided by an 170 processor {(I0OP) located in each 1I70
subsystem. The I70 adaptor in each subsytem provides the physical
path between the Sysbus and the subsystem®s IOP.

I050 has the additional responsibility of controlling and monitoring
the cluster”®s operator panel, multiplexing operator communications
between a local console and the remote diagnostic center, timekeepings
generating system clockss and managing cluster startupr, shutdoun,
auto-~verification, and auto~fault isoclation. The I/0 adaptor in this
subsystem (IOAD) provides direct support for these functions.

Physically, the I0A is composed of four subsystems. The
Interprogessor Commuynication (IPC) subsystem provides the control and
buffering necessary to interface with the Sysbus in conformance with
its protocol. The {luster Mapagemeni (LM) subsystem includes physical
interfaces to several cluster rescurces; this subsystem is required in
full only by IOAQ, but is benign if present on IOA1, IDA2, or IOA3.
The QP Interface provides the basic Unibus interface, which enables
the IOP to <communicate with IPL and CM subsytems. It also
electrically terminates the Unibus, and is capable of "bootstrapping”™
the I0P during cluster initialization. The Diagnostic Contcel (DO)
subsystem includes the I0A°s interface to the cluster diagnostic bus»
its support for console multiplexing, and its self—-test logic.
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3« I0P Interface

The R1000 employs DEC PDP11/2%4 minicomputers for its IOPs. Though all
processors in the PDP11 product line are compatible {more or less)
with respect to program architectures, several I/0 busses are now
supported. The original members of the PDP171 family introduced the
Unibuss, 2 16~-bit wide non-multiplexed asynchronous data path which
links the processor with both memories and I/0 devices at bandwidths
up to 2.0 million bytes per second. Low-end members of the family
{fram the PDP11723 downward) use the Q-buss a Unibus variant which
multiplexs address and data information onto the same bus conductors,
All high-end PDP11s - including VAXs - support the Unibus, but several
also wutilize the higher-bandwidth Massbus for magnetic disk and tape
interfaces.

Given current rates of improvement in minicomputer and microcomputer
technologys, the I0P interface must not be tied to a specific IO0OP
implementation. It must therefore be designed with strict adherence
to Unibus interface rules, taking no advantage of electrical or timing
characteristics of any specific PDP11 family member.

3ele Unibus protocol

The PDP11. architecture utilizes the Unibus both to access memory and
to manage peripheral devices. The upper BK bytes of physical address
space (referred to as 1I/0 space) are allocated to “memory mapped”
peripheral interfacese.

A typical Unibus peripheral interface contains both device control
registers and device status registers which are assigned unique
addresses in the 170 space. Any instruction which references memory
can be used to reference these device registers. From the PDP11
processor”s perspective, device status registers are usually read-only
{they are updated by the interface)s, whereas device control registers
may be either write-only or read-write.

The Unibus supports device-initiated program interruptss giving the
peripheral interface generating the interrupt the responsibility for
supplying the processor with the starting address of the interrupt
service routine. The address, an iptecrupt yecitor in DEC parlance.,
can be static or dynamic; an interface can, for example, select one of
several vectors as a function of some state variable.

Unibus read and write transactions utilize 2 master/slave protocol. A
processor or peripheral interface desiring to initiate a transaction
first becomes bys master by obtaining exclusive control of the bus
from a multiple-priority-level arbitor. The bus master uses the
address section of the Unibus tc select the transaction®s glaver which
is usually a memory or peripheral interface. The data section of the
Unibus is then wused +to transfer data between the master and slave.
The master can continue transferring data with the slaver or select a
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new slave and transfer data, until some higher-priority device steals
bus mastership. The Unibus provides a parity error signal, allowing
the master or slave to force a processor trap if a data parity error
is detected. :

The PDP11 architecture and Unibus support two priority classes. The
NPR <class allows a peripheral interface %o steal bus mastership from
the processor with minimum latency - it provides what is commonly.
referred to as direct memory access. Priority within the NPR class is
a function of +the <controller®s physical location on: the Unibus
relative to the processor; closer is better. The BG class is aimed at
providing a multilevel interrupt system: bus mastership is given to an
interrupting controller at macro-instruction boundaries only if its
priority level exceeds the priority level of the program being
executed, as specified by the processor®s program status word (PSW).
Four BG priority levels are provided.

The Unibus physical-level protocol is implemented by a set of control
signals operating in parallel with the address and data sections. The
control regime is classically asynchronous. This is convenient; with
suitable attention to synchronization issues, interface timing can be
driven by the device rather than the processor, However, sensitivity
of the protocol to both positive and negative edges of multiple
control signals requires stringent electrical hygiene.

The Unibus is electrically terminated on its near-end by its PDP11%
processors; the opposite end requires identical termination. Far—end
termination is normally provided by installing DEC’s M5312
bootstrap/terminator card in the 1last active Unibus slot. If the
Unibus is extended to an interface not residing in a Unibus—compatible
chassiss, then that external interface must provide the far—-end
termination {(or else the Unibus must be cabled from that external
interface to another Unibus—compatible chassis containing an M%3312).

Since the termination function of the M9%312 card cannot be disableds.
an external interface which provides far—end Unibus termination must
also provide the bootstrap function. On power—up, the PDP-11
‘processor “jumps” to location 24 to begin execution. The bootstrap
function overides this address, forcing the processor to jump to 2
location in 170 space. This location maps to a ROM provided by the
bootstrap function, it contains assorted self—-test, console interface,
and peripheral bootstrap routines.

3.2+ Unibus Interface

I0A control and status registers are grouped in a block mapped to a
region of IOP 1I/0 spacer, 2as shown in Table 3-1. Throughout this
document, the definition of each control and status bit will include
its name, functionr side effects, and location within the register
blocks. All control bits are readable as well as writeable by the I0P..
but status bits are only readable; attempts by the I0OP to write status
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bits will have no effect on IOP operation. The IDA modifies control
bits only under direct IOP command. It does not generate or check
parity for control or status registers.

Table 3-1: I0A control and status register block

$mmm e ———— . ——————— +
] IPC control register 0 |}
o e ——————————————— +
] IPC control register 1 |
O -——— -+
| ]
l - l
] . l
bt e e —— +
] IPC control register N |
Fo e e et e o e +
} CM  control register 0O |
o ——————— +
} CM control register 1 |}
P — e —— e —————— +

| CM control register N )

T e e e e e e e o e +
] IPC status register 0 |
P ————————————————— +
1 IPL status register 1 |
b o e o e e +
l - i
| - ]
i - i
v o an  n —- —— - ———— T ————— +
] IPL status register N }
P — e ———————— ¥

] CM status régister 0}

F o o o e A e e o e e

}] CM status register 1 |

S S . e ——— +
} - i
] - i
| - {
ot e ——————————— +
] CM status register N ]
b e i e e - +

Reading a status bit or changing the state of a control bit may cause
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side-effects, which are defined with the specification of the bit.
Since reading a control bit never initiates a side-effect, the I0P can
safely apply read-modify-write instructions to control bits.

Under certain specified conditions, the IDA 'will generate an 1I0P
interrupt. Part of each such condition is a control bit which enables
the interrupt; at power-ups, the I0A resets 2all interrupt enable
contrel bits. The IDA provides 2 single vector for each interrupt.
Each vector is treated as an array of 16 control bits, and must
therefore be initialized by the IOP before the associated interrupt is
enabled. Additionally, a 2 control bits representing interrupt {(B8G)
priority level are associated with each interrupt. 1I0P software must
never modify an interrupt™s vector or priority-level unless the
interrupt is disabled. Every IOA-generated interrupt {(named FUBAR)
has an interrupt enable control bit {named FUBAR_INTEN), an interrupt
vector (named FUBAR_VECLT), and an interrupt priority level {(named
FUBAR_PRI).

The I0A handles the packet buffers used in the IPL subsystem as 1if
they were 64 Kbytes of standard Unibus parity memory located in Unibus
{octal) addresses 400000 through 577777. The time—-multiplexing scheme
which allows the Unibus interface and IP{ subsystem to access these
buffers without conflict is described in the Sysbus Interface section
of this document, together with the location of specific data packet
buffers and status packet buffers.

The I04A employs a synchronous microprogrammed state machine named the
Unibus microengine to implement all transaction—level and physical-
level aspects of the Unibus interface. The Unibus microengine cycles
once per Sysbus cycle. Its microcode is not readable or writeable by
the I0P.

3.3. Termination and Bootstrapping

The IOA provides Unibus termination and IOP bootstrapping functions
identical to those provided by the DEL M9312 card, as specified by its
technical manual, DEC document EXK-M9312-TM-002. The bootstrap ROM
will occupy standard I/0 space locations, and contain a pouwer—-up self-
test, soft-console programes and bootstrap programs which support
initial program load from magnetic disk, magnetic taper the Sysbus, or
the <cluster diagnostic bus. Use of EPRDMs to implement the bootstrap
ROM is presently under consideration. I0P bootstrap can be initiated
either by the I0A"s diagnostic kernel controller, or by its standard
diagnostic island.
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4« Interprocessor Communication subsystem

The IPL subsystem provides the data paths and control necessary to
implement the Sysbus protocol.

4.1 Sysbus protocol

The Sysbus protocol embodies three distinct layers: an upper message
layers, an intermediate packet layer, and a lower physical layer; a

peer—to—-peer protocol is defined for each of these layers. The
message layer permits objects of arbitrary length and content to be
transferred among a cluster®™s nodes. This layer 1is completely

implemented by software in each I0P and by software and/or microcode
in each processor; no direct I0A support is provided.

Implementations of the message layer rely on the intermediate layer
for ¢ertjified transport of bounded-length data packets from one node
to another. CLertified transport means that a sender is guaranteed to
receive either a positive or negative acknowledgement within a
specified time interval. Certain node operations - notably page fault
service - bypass the message layer and interface directly with the
packet layer, thereby avoiding unnecessary overhead.

The physical layer protocol manages the flow of bits across the Sysbus
itself, providing synchronizations, bus arbitration, and error
checking. ’

4.1.1« Packet layer protocol

Two packet types - data packets- and siatus pagkeis - are defineds,
although only data packets are visible to the packet layers; status

packets are fabricated and consumed by the physical layer. A data.
packet 1is composed of two parts: a header section of 16 bytes, and an
information section of up to 1K bytes; a status packet consists of a
16-byte header only. Both packetl types use 2 similarly formatted
header: :
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Field Length Description

FROM_PROC 4 bits source node”’s Sysbus address

TO_PROC L bits destination node”s Sysbus address

INFO_LENGTH 7 bits length of the information section
in half-words

SENDER_BUF 4 bits used to match status packets to
data packets

IS_STATUS 1 bit distinguishes between data and
status packets

ACK_CODE/ 108 bits available to the packet layer in

INFO_DESCRIPTOR data packetss contains an

- acknowledgement code in status

packets

Sysbus addresses are defined in table 4-1.

Table 4-1: Sysbus Addresses

Sysbus Address Node

- . A - A - - -

NONWU NN w0
4
o

Rational Machines proprietary document DRAFT 2 October 8, 1982



Interprocessor Lommunication subsystem 8

Once a packet is properly formatted, the sending node®s packet
layer presents it to the physical layer for transmission, and
starts a timeout. One of the following will then occur:

Positive The sending node”s physical layer has

acknowledge received a status packet indicating that some
lecus of control in the receiving node has
satisfactorily consumed the packeta.

Negative The sending node”s physical layer has
acknowledge received a status packet indicating that some
locus of control in the receiving node
detected an error in consuming the packet. A
status code <categorizing the failure is

presenteda.
Physical The sending node”s physical layer has
layer abort terminated its attempt to transmit the packet

for one of the following reasons:

- it could not obtain access to the Sysbus
after 16 attempts

-~ the destination node is broken, pouwered
downs or does not exist

- the destination node refused to accept the:
packet because it is either offline or out
of buffers

- the destination node detected a parity:
error during packet transmission

Packet No response was received from the physical
layer layer within X milliseconds, implying that
timeout the destination node has failed {though its

physical layer did receive the packet)

A node®s physical layer copies the SENDER_BUF field in a received data
packet’s header into the SENDER_BUF field of the status packet it
fabricates in response. This enables the sending node”s physical
layer to match incoming status packets with previously transmitted
data packets.

To simplify recovery, the physical layer maintains a copy of the data
packet in all «cases other than a positive acknouwledge; it can be

Rational Machines proprietary document : DRAFT 2 October 8, 1982



Interprocessor Communication subsystem 9

directed to retransmit this copy if appropriate. If the packet layer
elects to abandon delivery of a packet, it must inform the physical
layer so that resources maintaining the copy can be freed. Some form
of packet segquence number may be needed if duplicate packets and
spurious acknowledges can arise.

4.7a2« Physical layer protocol

The Sysbus contains the fellowing signalss

Name Source Sink Use
Sysbus.Data{0:63) sender all bidding and packet
transmission
Sysbus.Par (0:7) sender selected = byte parity for
receiver Sysbus.Data during

packet transmission

Sysbusa.Pak receiver sender indicates that the
receiver succesfully
captured the data
sent during the last
Sysbus cycle

Sysbusa.Nak sender or sender '8 immediately terminates
receiver receiver packet transmission
Sysbus.Sender{(0:7) sender receiver indicates whether

the Sysbus will be
used for data transfer
during the next cycles
and by which sender

A Sysbus <cycle has the same 192 ns. duration as a processor cycle -
the two are synchronized with nominally no phase shift (ignoring clock
skew). To minimize tha negative effects of bus turnaround and
tristate bus fighting, no node may actively drive a Sysbus signal
during the second guadrant of any Sysbus cycle {nominally 48
ns. through 96ns.). A node sourcing a Sysbus signal is expected to
actively drive it without transition from the third quadrant of the
current cycle through the end of the first quadrant of the next cycle.
A node sinking a2 Sysbus signal is expected to strobe it at the end of
each cyclea.

To maximize Sysbus utilization, neither the sending node nor the
receiving node can delay transmission of a data or status packet once
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it has begun. Thus the physical layer transmits packets from
dedicated buffers in the sending node and stores them in dedicated
buffers in the receiving node. A node”s packet layer may operate

directly on these dedicated buffers prior to transmission or after
reception, eliminating needless data movement.

A distributed arbitration mechanism known as bidding is employed to
mediate Sysbus access. Since a node generates status packets
involuntarily, the arbitration mechanism does not lower the priority
of 2 node just completing a status packet transmission a3s it would a
node Jjust <completing a data packet transmission. Thuss a node’s
ability to obtain the Sysbus for data packet transmission is not
unfairly impaired if it  happens %o be a popular destination. To
expedite the acknowledgement of already-~itransmitted data packetsr the
lowest—priority status packet request 1is given precedence over the
highest—priority data packet requesta. '

A rotating priority chain affords its reguestors ™fair™ access by
changing each node”s priority after each grant of bus access. During
a bid cycle, the highest-priority requesting node in the chain is
granted sole access to the Sysbus. All nodes whose current priority
is lower than that of this selected node increase their priority by
one unit. The selected node sets its priority to the lowest possible
value. Any nodes whose current priority was higher than that of the
selected node leave their priority unchanged. Physically absent nodes
will quickly drift into the highest priority positions in the chains
but have no effect since they never make reguests.

Each node maintains a priority wvariable representing its current
priority in the packet request chain. The values of these variables
range in ascending order of priority from 0 to 77 the <chain of
variables is initialized at system startup such that no two variables
contain the same value {(this invariant must be maintained throughout
normal operation). 1f 2 node has a buffered packet to transmit, the
current value of its priority variable determines at which priority
level it requests bus access.

The Sysbus.Sender signals allow each node to determine whether any
node presently "owns™ the next Sysbus cycle. If 3all 8 Sysbus.Sender
signals are negated, then the next Sysbus cycle = referred to as a
Sysbus bid cycle - is used to determine which node (if any) will
become the new "owner®™ of the Sysbuse.

A node having at 1least one data or status packet ready to transmit
takes several actions during a bid cycle. It asserts the
Sysbus.Sender signal associated with its node number, thereby
indicating that the Sysbus cycle following this bid cycle will pgot be
another bid cycle. The current value of the node”s priority variable
indicates which two Sysbus.Data signals will convey 1its data and
status packet requests, according to the bit assignments are shouwn in
table 4-2.
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Table 4-2: Bidding Assignments

Priority Request type Sysbus.Data
0 Status 18]
1 ” 1
2 » 2
3 e 3
4 ” 4
5 ” 5
6 " 6
7 " 7
1] Data 8
1 ” 9
2 " 10
3 »” 11
4 " 12
5 " 13
] " 14
7 b 15

A node with no data or status packets rezady to transmit must still
participate in the bid cycle: it negates the tuo Sysbus.Data bits
associated with its current priority.

At the end of the bid cycler ecach bidding node determines whether or
not it has "won™ by determining whether it submitted ¢the highest-
priority bid. Every noder, bidding or non-bidding, examines
Sysbus.Datal{0:15) in order to properly update its priority variable.
If there is at least one status bid, or if there are no bids at alls,
the priority variable is unchanged. If there are no status bids, Dbut
at least one data bid, then each node with a2 current priority less
than the winner”s increments its priority variable. The winner sets
its priority variable to (.

If there are no bids, then all Sysbus.Sender signals will be negated.,
indicating that the next cycle will be another bid cycle. Dtheruisesr
the "losing” bidders negate their Sysbus.Sender signals and wait for
the next bid cycle. The winner continues to assert its Sysbus.Sender
signal during each «cycle of its transmission except the last. The
selected receiver is responsible for verifying that one and only one
Sysbus.Sender signal is asserted throughout the transmission.

If a node is unable to win Sysbus ownership after 16 bid cycles, it
gives up and informs its physical layer.

On the Sysbus cycle following a successful bid, the sender places the
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first half-word of the packet header on the Sysbus, allowing every
other node to inspect the header”s TO_PROL field and thus determine if
it is the selected receivers; any node detecting a parity error in the.
header word asserts Sysbus.Nak. The receiver stores the packet header
along with the rest of the packet into a dedicated buffer, using the
length field of the header to determine when transmission is complete.

Normally, the selected receiving node indicates its ability to accept
the incoming packet by asserting Sysbus.Pak on a cycle by cycle basis.
Alternatively, a selected receiving node may refuse to accept the
incoming packet at some point in the transfer by asserting the
Sysbus.Nak signala During a Sysbus cycle following the receiver”s
assertion of Sysbus.Naks, the receiver plactes a <code explaining its
action onto Sysbus.Data’; the sender captures this code and negates its
Sysbus.Sender signals thereby relinquishing Sysbus ownership. A
newly_selected receiving node immediately aborts if it is offline
{eege 1in diagnostic mode)s, or if it has no buffer in which to place
the incoming packet. A receiving node asserts Sysbus.Nak in mid-
packet 1if it detects a parity error on the Sysbus, or if it changes
state to offline. o

when the physical layer in the receiving node buffers the last half-
word of +the incoming packet without errors, it informs its packet
layer. Generally, some locus of control in the receiving node
"consumes™ the packet, and informs its physical layer that the buffer
containing the packet is free to be reused. The physical 1layer then
fabricates a status packets which is transmitted back to the sender to
confirm  successful receipt - and in some casess, processing - of the
data packet. The sender is constrained to allocate buffers in such a
way that space for this incoming status packet is guaranteed. On
receiving a status packetr the sending node”s physical 1layer informs
its packet layer, which frees the buffer containing the original data
packeta.

1f the sender detects a parity error in the status packet, it asserts
Sysbus.Naks, which causes the receiving node’s physical layer to
terminate that status packets, negate its Sysbus.Sender during the next
Syshbus cyclers and retry status packet transmission. Up to. N
consecutive retries are attempted before the receiving node®s physical
layer gives up and informs its packet layer.

During transmission of a data or status packets, the transmitting node
may decide to abort the transfer {(perhaps due to a diagnostic event
somewhere). It does this by asserting Sysbus.Nak during the current
Sysbus cycle and placing a justification code on Sysbus.Data in the
subsequent cycle. To avoid bus fighting if sender and receiver happen
to abort simultaneouslys, receiver justification codes are defined to
occupy Sysbus.Data{0:15), and transmitter Justification codes are
defined to occupy Sysbus.Data(48:63). When driving a justification
code onto Sysbus.Data, a receiving node only enables drivers for. the
high-order two bytes. Similarly a transmitting node only enables
drivers for the low—-order two bytes.
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4e2« Sysbus Interface

The Sysbus Interface is dominated by two elements: the packet buffers,
and the microengine, named the Sysbus Controller, which manages the
packet buffers and implements parts of the Sysbus packet—-level and
low—level protocols.

The I0A dimplements the packet buffers with 16K bytes of static NMOS
RAM, organized as 2K 8~byte half-words; an additional array of 1K 8-
bit words provides byte parity checking. This memory is logically
subdivided into 16 1K-byte buffers named BUF0J through BUF1S. The
Unibus Interface maps each of the 64 1XK-byte logical pages of IOQOP
address space located in octal addresses 400000 through 5S77777 onto
one of these sixteen buffers. It accomplishes this by providing each
logical page with 2 4-bit BUF_SEL(D..63) control field whose contents
select a buffer. BUF_SEL{D..63) are located in IPC control words X
through Y.

BUF_SEL(0.«63) are not initialized at cluster power-up. Therefores
I0P software must establish initial wvalues before attempting to
reference any logical page associated with the packet buffers.. This

initialization may be included in the IOP"s bootstrap program.

BUFD through BUF14 are capable of storing a maximal—-length data packet
information section. The first 32 half-words of BUF15, named READD
through HEAD1S, buffer packet headers. The second 32 half-words of
BUF15, named STAT)D through STAT15, buffer status packets. Since BUF15
is neoet wused to store data packets, HEAD15 and STAT1S5 are not used.
The last 64 half-words of BUF1S are used by the Diagnostic Control
Subsystem. A map detailing this logical partitioning is shown belows:
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relative
half~uword
offset
{decimal)
o e e e +
0 i BUFD 1
7 ;
127 i ]
fomm i — - ————— +
128 | BUFT. |
/ 7
255 1 i
o e
256 1 BUF2 }
F/ 7
383 ] ]
P - 4+
384 i BUF3 ]
7 i
511 | 1
o o e o +
512 i BUF4& i
Fi 7
639 ] i
e ———— +
640 1 BUFS K
7/ FJ
767 ] 1
B o v e e o o +
768 ] BUFS i
/ 7
895 i |
o ———————— +
896 ] BUF? ]
/ 7
1023 |} i
F o o o s o e +
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G e o i e e i o o 2 S
1024 | BUFS

, .
1151 |

+ ..............
1152 | BUF9

7
1279 1}

B i e e o -
1280 | BUF1D

7
1407 |

G e o i o i i o
1408 | BUF11

/
1535 |

e
1536 | BUF12

/
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P e o e a0 o i e e e
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b e e
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1920
1922
1924
1926
1928
1930
1932
1934
1936
1938
1§40
1942
1944
1946
19438
1950
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1 HEADD i
Pomm e —————— i
1 HEAD1 ]
U SR +
1 HEAD? 1
pmm——————————— *
] HEAD3 i
$rmm e ——- +
i HEAD4 i
S
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P ————— +
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T
] HEAD? 1
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o —————— +
i HEAD? i
pom——————————— +
1 HEAD1D i
b ——— +
i HEAD11 |}
$mmm e ——— +
i HEAD12 ]
S +
] HEAD13 |
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i HEAD14 1
$mmm—————————— +
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1952
1954
1956
1958
1960
1962
1964
1966
1968
1970
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1974
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The Sysbus Controller maintains a state variable for each of the 15
BUFX/HEADX/STATx buffer +triplets. State names, binary codess, and
definitions follouw:

Name Code Definition

FREE 0 BUFx, HEADxs, and STAYx contain
unneeded data, and may be
allocated for transmission or
reception

LOADING 1 The IOP is loading BUFx and HEADx
with a data packet to be transmitted

READY 2 The data packet in BUFx and HEADx
is ready to transmit

UNACKED 3 The data packet in BUFx and HEADx
has been transmitted, but no
status packet has yet been received

ACKED 4 The data packet in BUFx and HEADX
has been transmitteds; STATx
contains a status packet received
in response, but the I0P has not
yet been informed

XMIT_HOLD 5 The ICP has been informed that
STATx contains a status packet
received in response to the
data packet in 8UFx and HEADxs, but
has not freed the triplet

RECEIVING 6 An incoming data packet has been
partially received into BUFx and
HEADx ‘

LATENT 7 An incoming data packet has been

stored in BUFx and HEADxs but the
I0P has not yet been informed

NOSTAT 8 The I0OP has been informed of the
\ incoming packet in BUFx and HEADx»,
but has not yet fabricated a status
packet in STATx

STAY 9 STATx contains a status packet to.
be transmitted in response to the
packet in BUFx and HEADx

RCV_HOLD 10 The status packet in STATx has
been transmitted
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IPC status registers X through X+3 contain 15 4-bit fields indicating

the current state of each

State transitions for a
by I0A initialization {al

triplet.

particular BUF/HEADSSTAT triplet are
variables are set to Free)d.,

1 state

caused
Sysbus

events, and I0P commands and queries, as followms:

} initialization

]

v

o — e >FREE(===m=mmemcee———— e e ——————— +
| / A 1
{ / A 1
| 7/ A\ i
i fmmm e ———— ———————————— + 1
| 1 1 I
i } iop.next_free j sysbus.incoming |}
| 1 i i
i v ; v sysbuse.error |
1 LOADING <========-= —rmmm————e +  RECEIVING---- ———t
] | i ]
] ] dop.transmit 1 ] sysbus.received
] 1 ] i
| v ] v
| READY i LATENT
|sysbus. /7 1\ i 1
| nak +- -+ sysbus.sent i 1 iop.next_packet
i I ] ] 1
| ! v 1 v
i ! UNACKED i NOSTAY
{ \ 7 ] ] ,
i ] | sysbus.acknowledged 1 ] iopestatus
] 11 1 v
J v v i STAY
I ACKED 1 i
i i i { sysbus.sent
} 1 iop.next_packet i 1
| ] i RCV_HOLD
] v 1 ] ,
} XMIT_HOLD | ifiop.reservg
| 1 1 i
l ] iopa.free PO +
1 ]
b ————— +

iop.free forces a triplet to be FREE unless

it is READY, RECEIVING, or STAY
iop.reserve forces a triplet to be LOADING unless

it is READY, RECEIVING, or STAT
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4ulele Packet transmission

Transmission of a data packet begins when packet—-layer software in the
I0P obtains an empty buffer triplet from the IOA by reading status
register X, which contains the FREE_AVAIL status bDit and the 4~bit
NEXT_FREE status field. If FREE_AVAIL is asserted, then NEXT_FREE
identifies a free triplet; as a side e2ffect, the state of this triplet
is set to LOADING. 1If FREE_AVAIL is not asserteds then no free
triplet presently exists. The ICA will generate the FREE interrupt
anytime one or more buffers is in the FREE state. FREE_INTEN resides
in IPC control register X, FREE_VECLT resides in IPL control register
Xs and FREE_PRI resides in control register X.

When a free triplet is available, IOP software proceeds to 1load the
BUF and HEAD porticons with the data packet; it can accomplish this
with memory reference instructions, or by instructing some other
peripheral device to transfer the data directly with Unibus NPR
transfers to the appropriate range of addresses. In either caser I0P
-software 1is responsible for computing the addresses of BUF and HEAD
from the triplet number contained in NEXT_FREE. When loading is
completer the I0OP initiates transmission by writing the triplet number
into the four—bit TRANSMIT control fiecld located in IPL control word
X« The I0A responds by changing the triplet state to READY.

The I0A"s Sysbus Controller is continuously aware of all triplets in
the READY or STAT states, as they represent data packets and status
packets which can immediately be transmitted. The controller gives
status packets priority over data packets, as specified by the Sysbus
protocol. The Sysbus Controller maintains the priority variabless,
monitors Sysbus.Sender{0:7), bids according to its current priority,
updates the priority variable, and {(if it wins the bid) asserts its
Sysbus.Sender and sequences the HEAD and BUF contents onto the Sysbus.
1f Sysbus.Pak remains asserted throughout the transfers the

transmitted triplet®s state is set to UNACKED. If Sysbus.Nak is
asserted, the Sysbus Controller captures the justification codes stops
the Sysbus transfer, negates its Sysbus.Sender, uwrites the

justification code into the rejected triplet®s STAT buffer, and sets
the triplet®s state to ACKED.

The triplet remains in the UNACKED state until either the sysbus
controller receives a status packet, or IDP software times out and
aborts. The header of each incoming status packet contains the
SENDER_BUF field, which identifies the +triplet containing the data
packet being acknowledged. The Sysbus Controller verifies that the
designated triplet is in the UNACKED state, stores the incoming status
packet in the triplet”s STAT buffer, and then changes triplet®s state
to ALKED.

If the designated triplet is not in the UNACKED states then the Sysbus
Controller freezes all +triplets in their present states places an
error code in the SYSBUS_ERR status field located in IPC status word
X, and generates the SYSBUS_ERR interrupt. SYSBUS_ERR_INTEN resides
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in IPC control register X, SYSBUS_ERR_PRI resides in IP{ control
register X, and SYSBUS_ERR_VECT resides in IPL control register X. The
I0OP can unfreeze the Sysbus Controller by asserting the UNFREELE
control bit located in IPC <control register X. In generals, I0OP
software would invoke the diagnostic subsystem to resynchonize and
verify the Sysbus hefore UNFREEIEing.

I1f a parity error is detected in an incoming status packets Sysbus.Nak
is asserteds, and a justification <code is subsequently placed on
Sysbus.Data. No triplets change state.

If one or more triplets are in the ACKED, LATENT, or RLV_HOLD states.,
the IOA to generates the NEW_PACK interrupt. NEW_PACK_INTEN resides
in IPC control register X, NEW_PACK_LEY resides in IPC control
register X, and NEW_PACK_VECT resides in IPC control register X.

IPC register X contains the NEW_AVAIL status bit, the 2-bit SITUATION
status fields, and the 4-bit NEW_PACKET status field. When TIOP
software reads this registers, the Sysbus Controller first checks for
any triplets in ACKED state; if one is founds, NEW_AVAIL is assertedsr
SITUATION is set to STATUS_IN, the triplet®s number is returned in
NEW_PACKET, and the triplet®s state is changed to XMIT_HOLD. If not,
the Sysbus Controller checks for triplets in the LATENT states if one
is found, it asserts NEW_AVAIL, sets SITUATION to DATA_IN, sets the
NEW_PACKET field +to the triplet number, and changes the triplet®s
state to NOSTAT. IF no triplets are ACKED or LATENT, the Sysbus
Controller <checks for packets in the RCV_HOLD state; if one is found,
the controller asserts NEW_AVAIL, sets SITUATION to STATUS_OUT, sets
the NEW_PACKET field to the triplet number, but does not change the
triplet”s state. If no triplets are found in the ACKED, LATENT, or
RCV_HOLD states, then NEW_AVAIL is negated.

An acknowledged triplet remains in the XMIT_HOLD state until IOP
software interprets the STAT buffer and indicates it is "through” with
the triplet by writing the triplet’s number into the 4-bit FREE
control field, located in IPC control register X. The Sysbus
Controller then returns the triplet to the pool of empty buffers by
changing 1its state to FREE. IOP software can free any triplet not
presently in the READY, RECEIVING, or STAT states. I0OP software can
force any triplet into the LOADING state if that triplet is not
presently READY, RECEIVING, or STAT. This is accomplished by writing
the triplet®s number into the 4~bit RESERVE control field, located in
IPC register X.

I0OP software can abort a triplet®s transmission by writing the triplet
number into the four—bit XMIT_ABORT control field 1located in IPLC
control word X. XMIT_ABORY is ignored if the triplet is not in the
READY or UNACKED states. Therefore, IOP software should immediately
check the triplet®s state after aborting; if the state is ACKED, the
triplet®™s STAT buffer should be examined to determine whether the
abort command worked, or the data packet was transmitted and
acknowledged.
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4.2.2. Packet reception

The IOA”s Sysbus Controller continuously monitors each packet header
passing accross the Sysbus, comparing the TO_PROC field for a match.
If the header®s PACKEY_TYPE field indicates a status packets,

processing is handled as described above in packet transmission. If
the incoming packet is a data packet, the Sysbus Lontroller must first
allocate an empty Dbuffer triplet. If none is awailable, it
immediately asserts Sysbus.Nak and drives the apprepriate

justification code on Sysbus.Data during the next cycle’ otherwise, it
changes the empty triplet”s state to RECEIVING, copies the header into
the +triplet®s HEAD bufferr and sequentially copies the incoming
packet”s information field into the triplet”s BUF buffer. 1If a Sysbhus
parity error is detected during reception, the controller immediately
asserts Sysbus.Nak and resets the triplet”s state to FREE. '

When the &entire data packet has been received, the Sysbus Controller
changes the triplet’s state to LATENT, which may generate a NEW_PACK
interrupt. When the NEW_PACKET status field returns the triplet®s
number to the IOP, the triplet®s state is changed to NOSTAT,; operation
of the NEW_PACK interupt and status field are described above wunder
packet transmission.

The triplet remains in the NOSTAT state until IQOP softuware indicates
it has processed the information field contained in the triplet®s BUF
buffer and has fabricated a status packet in the triplet®s STAT
buffer. It does this by writing the triplet”s number into the 4&—bit
STATUS control field, located in IPC control word X. The sysbus
controller then changes the triplet®s state to STAT, and transmits the
status packet from the triplet”™s STAT buffer as soon as it wins Sysbus
accessa

If status packet transmission is completed with continuous assertion
of Sysbus.Paks, the controller negates the triplet®s STATUS_ERROR
status bit located in IPC control word X; otherwise, the  STATUS_ERROR
bit is asserted. The controller then changes the triplet®s state to
RCV_HOLD, which may generate a NEW_PACK interrupt.

A triplet in the RCV_HOLD state is disposed of in one of three wayse.
If its STATUS_ERROR bit 1is asserted, the status packet <can be
retransmitted by writing the triplet”s number into the STATUS <control
field. If a data packet response will be generated, the triplet can
be reserved by uwriting its number into the RESERVE control field. If
the transaction is complete, the triplet can be freed by writing its
number into the FREE controcl field.

If the Sysbus Controller receives a packet header with bad parityr it

asserts Sysbus.Nak and Abort.Coder and ignores all Sysbus data until
the next bid cyclea
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4.2.3. Sysbus Controller

The Sysbus Controller is composed of two synchronous microprogrammed
state machines: the buffer microenginer and the Sysbus microengine.

The buffer microengine manages the 15 +triplet state variables,
interacting. with both the Unibus and Sysbus microengines. The buffer
microengine and packet buffers cycle twice per Sysbus cycle; during
the first half, data can be transferred bhetween the packet buffer and
Sysbus microengine; during the second half, data can bDe transferred
between the packet buffer and Unibus microengine. This time-
multiplexing arrangement effectively dual-ports the packet buffers,

‘under control of the buffer microengine.

The Sysbus microengine handles biddings priority variable maintenancer
header and information section extractions, and parity error detection.

5. Cluster Management subsystem

5.1« Control panel

The R/71000 operator control panel is located on the left front door of
the mainframe. It consists of a three position power suwitch, and tuwo
light emitting diodesa.

In power switch position A, the I0OA power supply and I0Ps 0 through 3
are unpowered;, in positions B8 and C(C, these wunits are powered.
Position B indicates that IOP0 is “secure"” with respect to remote
diagnosiss; it will not answer incoming calls on the diagnostic modems
nor will it originate calls to a remote diagnostic center. Position C
enables remote diagnosis. The I0A presents the REM_DIAGEN status bit
in. CM status word X, REM_DIAGEN is set if the power switch is in
position L, and reset otherwise. No interrupt is generated on a
transition of REM_DIAGEN.

The first LED indicates that the I0A power subsystem is operational.
A comparator on the I0A {(powered by +12 wvolt and =12 wvolt outputs
"stolen"” from the IOP) determines whether the I0A power supply®s +5
volt output is within the range of 4.75 to 5.25 volts. If sor the LED
is illuminated. Note that illumination of this LED doées not imply
that IOP woltages are within limits.

The second LED indicates that the I0A®s diagnostic kernel controller
has successfully completed its self-test. Immediately after
illuminating this LED, the controller initiates verification of its
console interface and the operator console. As part of this
verification, the <controller 1loops its operator console and remote
diagnostic modem portse. If +this loopback fails, the controller
flashes the LED continuously. Thus, steady illumination of the LED
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but no operator console output indicts the operator console or its:
cable.

5«2« Pouwer control

Each of the R1000"s four processors has its own power supplyr named
PSO through PS3. CM control word X contains 3 bits for each supply:
PSEx, PSMAx, and PSMBx. Setting PSEx turns on PSx“s DC power’
resetting PSEx turns it off. the two PSM bits select one of three
output voltages: low, nominals, or high. The low and high selections
are used to margin the processors during system verification. At
power ups PSEx bits will be initialized to the reset state; PSMAx bits
will be initialized to select nominal outputs. {Specific encodings
will be specified later)

CM status word X contains one bit per processor power supply = PSVD
through PSV3 - indicating whether the output voltage of each is within
the range of 4.75 to 5.25 volts. The PROC_PWR interrupt is generated
on any transition of any of these four bits; this interrupt is enabled
by the PROC_PWR_INTEN bit located in CM control word X. CM control
word X <contains PROC_PWR_VECT, the 16-bit interrupt vector for
PROC_PWR. (M control word X contains PROC_PWR_PRI.

53« Thermal sensing

K +thermal sensors are mounted at critical points within the R1000.
The state of these sensors is reflected in bhits Y of CM status word
Xe The THERMAL interrupt 1is generated on any transition of any of
these K bits; this interrupt is enabled by the THERMAL_INTEN control
bit located in CM <control word X. UM control word X contains
THERMAL_VECT, the 16-bit interrupt vector for THERMAL. CM control
word X contains THERMAL_PRI. '

Se%s Time—~of—-day clock

The I0A will provide a battery—pouwered time-of-day clock and calender
which driven by a dedicated timing oscillator with accuracy of X
seconds per daye. The unit is expected to be used for keeping time
only when the R1000 is powered down; the I0P°s real-time <clocks
excited by power—line zero—-crossingsr, should provide timekeeping
functions during normal operations.

Specification of status word formats for determining the current times
and control word formats for specifying the current time will be
deferred pending part selection. These status and control words will
form a block referred to as TIME_KEEP. There may be an additional
status bit indicating whether the battery voltage is within specified
limits. The time~of-day clock will generate no interrupts.
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5.5. Clock generation

The I0A generates the master timing signals for the R1000 cluster.
Two control bits - CLKA and CLKB — located in CM control word X enable
the IOP to margin the master clock with the following encodings:

CLKA CLKB Basic cycle (ns.)

0 0 192 {nominal)

4] 1 173 (10X fast)

1 0 211 (10% slow)

1 1 clocks disabled (?)

No interrupts are generated by this logic. At power-ups both LLKA and
CLKB are initialized to the reset state. ‘

5.5 Processor Reset

CM control register X contains four control bits named RESETYO <through
RESET3. When asserted, +these bits DC reset PD through P3
respectively. The I0A initializes these bits to the asserted state.
No interrupts are generated by this logic. :

6. Diagnostic Control

6.1 Diagnostic Kernel

The Diagnostic Kernel is responsible for cluster initialization,
console multiplexings, and diagnostic bus control. The Xernel on IOAD
performs these functions differently than those on I0A1 through I0A3.
It is implemented with an 8031 microprocessor named the Diagnostic
Kernel Controller. The kernel controller executes code from an EPROM,
which effectively <contains +twec programs: one for I0A0"s kernel
controller, and cne for the rest. A backplane-keyed signal enables
I0AD0°s controller to identify itself.

belala INitialization

After cluster power—-up, the controller on IDAQ executes a test of
itself and its interfaces. If successful, it illuminates a front-
panel LED. Subsequent operator communication is wvia the control
console {if it works). IDAQ0"s controller then activates the bootstrap
logic for IOP0Os which continues the task of cluster initialization.
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Kernel <controllers on the other I0As execute the same self-tests, but
save the "results”™ for presentation {via the cluster diagnostic bus)
to I0OPD during a later stage of system initialization.

6.1.2. Console multiplexing

I0A0°s kernel <controller multiplexes IOP0"s SLU 1line between the
control console and the diagnostic modem. The CMUX control bit,
located in CM register X, specifies whether the SLU 1line is
"connected” to the control console (CMUX negated) or the diagnostic
modem {CMUX asserted). CMUX is negated during cluster powerup.

The kernel controller on I0As 1 through 3 intercepts 2all SLU character
traffic from their respective 1I0Ps and routes it over the cluster
diagnostic bus to IDAOs kernel controllers which forwards it to I0P0.
This enables I0PD to effectively multiplex the control console in such
a way as to allow the system operator to converse with standard DEC
software {e.g. diagnostics) executing on I0OP1, I0P2s» or I0P3,

The controller operates three full-duplex asynchronous communication
line interfaces via standard MOS VLSI interfaces. These interfaces
conform to EIA-RS232C, obtaining +12 volt and =12 volt power from the
I0P. The control <console and SLU interfaces operate at up to 9600
bauds but support no modem control. The diagnostic modem interface
operates at up to 1200 baud, and supports auto originate/answer/dial
modems.

6+.1.3. Diagnostic bus control

The diagnostic kernel controller®s integral serial port is connected
to the cluster diagnostic bus.

On I0AD, the kernel controller serves as master of this multiderop bus.
under the <control of I0P0. The primary communication path between
I0P0 and IDAD”s kernel controller is the upper 512 bytes of the I0AD s
BUF15s referred to as the diagnostic communication area. The kernel
controller is able to "steal™ packet buffer access timeslots from the
Unibus microengines and thereby directly access all 16K bytes of the
packet buffer. During normal operation, the diagnostic communication
area is utilized to buffer data transfers between the I0OP and cluster
diagnostic bus. The diagnostic kernel c¢an generate the DIAG interrupt
to IOP0 if DIAG_INTEN, a control bit located in CM register X, is
asserted. DIAG_VELT, located in (M register X, supplies the vector
for this interrupt, and DIAG_PRI, located in CM control register X,
specifies the interrupt priority level. I0P0 can generate an
interrupt to the diagnostic kernel by setting the INT_DIAG control
bit, located in CM register X.

On I0As other than 0, the diagnostic kernel is a slave with respect to
the cluster diagnostic bus. Any character cutput by the I0P to the
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SLU port is forwarded by the diagnostic kernel to IOAQ.
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Any character

received over the cluster diagnostic bus is transmitted on SLU1l.

6.2« Diagnostic Interface

7« Implementation notes
7«1« I0P Interface subsystem
7-1-.1. Data paths

7«1<2. Contrel

7ele3. Auto—-verification
Telabe Pbysical interfaces
7.2. IPC subsystem

7«21« Data paths

7«2.2. Control

7.2.3. Auto-verification
72«4« Physical interfaces
7<3. CM subsystem

7.3.1. Data paths

7e3.2. Control
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Te3e3. Auto-verification

7«34+ Physical interfaces
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