S$55S5SS PPPPPPPP EEEEEEEEEE ccoececece

5835355885 PPPPPPPP EEEEEEEEEE ccoecccee
SS PP PP EE cC
SS PP PP EE cC
SS PP PP £E cC
SS PP PP EE cC
$5855S PPPPPPPP EEEEEEEE (2
$SSSSS PPPPPPPP EEEEEEEE cc
SS PP EE cC
33 PP EE cc
SS PP EE (3
SS PP EE ccC
S$S5S5S8SSS PP EEEEEEEEEE cccccecce
SS5S5SSSSS PP EEEEEEEEEE cccecece
LL PPPPPPPP TITTITTYIYY 333333
Li PPPPPPPP TITTTITITITTITY 333333
LL PP PP 17 33 33
Lt PP ppP T 33 33
LL PP PP 17 33
LL PP PP 77 : 33
LL PPPPPPPP TT 33
Li PPPPPPPP 17 33
LL PP 17 33
LL PP T7 33
Li PP 17 anea 33 33
LL PP 17 seasw 33 33
LLLLLLLLLL. PP 1T anse 333333
LiLLLLLLLEL PP 17 asas 333333

*START» Job SPEL Reg #695 for EGB Date 3-Dec-82 2:00:44 Monitor: Rational M
File RM:<MICRO-ARCH.MEMORY>SPEC.LPT.3, created: 23-Nov—-82 21:02:48

printed:s 3-Dec—82 2:00:44
Job parameters: Reguest created: 3-Dec-82 1:53:01 Page 1limit:z171  Forms:NORM
File parameters: Lopy: 1 of 1 Spacing:SINGLE File format:ASCII Print mode:)



Functional Specification of the Memory Monitor

DRAFT 3

Rational Machines proprietary document.



1« Summary.

The RI10D00 memory system consists. of from two to four memory
boards and centralized control logic called the memory monitor. Each
memory board has a capacity of two megabytes, implemented as four
associative "sets” of 512 pages. Each board <consists of 2 set
associative tag store portion {where associative address translation
and access control information is stored) and a parallel data array
{where data is stored).

{4 boards * 4 sets * 512 pages * 1k Bytes = 8 Mbyte maximum storage)

The memory boards contain all the necessary logic to  accesss
update, and maintain up to sixteen associative sets in parallel.. The
control logic which need not be duplicated on each memory board is
implemented by the memory monitor. This logic resides on the FIU
board except for the ERCC checker/generator and the “dummy™ Read Data
Register which are implemented on the Sysbus Interface board.

The memory monitor contains the microcode rams for the memory
control fields, copies of various memory state registers (eliminating
the need for each memory board to drive them out during state saveld,
and the memory system control logic. The memory monitor also contains
circuitry which tests all Control Stack Addresses to determine whether
they point into the Control Stack Accelerator. If such a ™CSA hit™
occurss, the memory operation is redirected to the CSA {(on the Vvalue
and Type boards). Finallys there is another address monitoring
mechanism called the "scavenger monitor™, which tests all collection
addresses and traps if the addressed segment 1s potentially being
garbage collected.

2« Functional Description

The functional description of the memory monitor begins by
describing its role in managing the three registers defined in the
memory interface: the Memory Address Register, the Read Data
Register, and the Write Data Register. This section then describes
the memory system®s basic operations, follocuwed by an overview of the
memory mangement operations. This functional description concludes
with a discussion of the address monitoring circuits:z: the Control
Stack Accelerator Monitor and the Scavenger Monitor.

2«1« Address Bus

The ADDRESS BUS is a wunidirectional bus for routing address

information. It is split into two portions, the least significant 6%
bits transfer the logical bit address while the most significant 3
bits transfer the space specification. The +two portions are

controlled separately.

Rational Machines proprietary document DRAFT 3 November 23, 1982



Memory Monitor Specification Functional Description 2

The logical bit address portion 1is identical to the least
significant 54 bits of the MAR {see the desriptions of those fields in
the next section).

The driver of the address bus is determined by the memory monitor
using the ADDRESS_BUS_SOURCE microorder of the FIU boards, and the
MAR_CONTROL microorder of the memory monitora When the
ADDRESS_BUS_SOURCE specifies SEQUENCERs, both portions of the ADDRESS
BUS are driven by the sequencer board. Otherwise, the space portion
is driven by the memory monitor, while the address portion is  driven
by the selected source. '

When the MAR_LCONTROL microorder. specifies RESTORE_MAR or
RESTORE_MAR_WITH_REFRESH, the the space portion is sourced from the
least significant 3 bits of the TYPE bus {along with the state flags).
The SEQUENCER must not be specified as ADDRESS BUS source while
RESTORE_MAR or RESTORE_MAR_WITH_REFRESH is specified. Alsor in
general, the TYPE BUS must be specified as TI BUS source on the FIU
boarda.

For LOAD_MAR xxx CONTROL miroorders, the space portion is sourced
from the space literal of the memory monitor. For IN{_MAR, the space
portion is driven from the current contents of MAR. For other
MAR_CONTROL. microorders, the source of the space portion of the
ADDRESS BUS is undefined.

2e2« Memory Address Register

The memory monitor contains the only complete copy of the MAR.
This copy of the MAR is the source of the Value and Type busses during
a READ_MAR operation.

Each memory board contains 2 copy of the word address portion of
the MAR, but these can only be read by the diagnostic processor. The
fields of the <complete MAR are enumerated belouw. The least:
significant 67 bits «comprise %the actual logical addresss and are
always loaded from the Address bus. The indiwvidual fields on the
Address bus have separate parity bits. The most significant 61 bits
contain several fields, admittably throuwn together for the sake of
state save efficiency. These bits are loaded from the TI_BUS on a
RESTORE_MAR micro order (The MAR.SPACE field of the ADDRESS bus 1is
driven from TYPE_BUS(61:63) during a RESTORE_MAR by the monitor).

The 1low order 67 bits of the MAR are 2lways loaded from the
address bus. When the FIU is selected as source for the address buss

the low order 67 bits of the MAR are driven over the address bus to

the memory boardse.

If a microevent aborts the cycle in which the MAR is loaded, the
MARs on the memory boards are loaded, but not the MAR on the monitor.
This inconsistency must be resolved by loading the MAR before memory
is started.

Rational Machines proprietary document DRAFT 3 November 23, 1982



Memory Monitor Specification Functional Description 3

MEMORY ADDRESS REGISTER
{(format for READ_MAR and RESTORE_MAR microorders)

on the TI/TYPE bus:

P e e e e B o o T e B o . i s o i S 2 o i s

] Refrsh Intvl ] Refrsh Windw ] State § 1FfIU length] spare {Spacel

] {16) =+ ] {16) *» 1 19) ]=%x] {86) I 112 {1 3

o e e e P ——— P e i o e i . 1 i e e e i
0 15 16 ‘ 31 32 39 40 43 48 49 60 61 63

on the VI/VALUE bus and least significant 64 bits of the ADDRESS bus:

*c——————-—— ————————————— e - - o o v o i - -+ . - dp - - . -

i Segment Number ] VPid ] Page Number | HWord i Bit i

1 {24) ] (8 1} {19 ] {(6) 1 N ]

Fo e e o e e o o P ——— e Bt T pmm——————— +
0 23 24 31 32 50 51 56 57 63

* = Specified only for RESTORE_MAR_WITH_REFRESH.
returned by READ_MAR, ignored by RESTORE_MAR.
k% — gpareg, must be Zero.

2221« Memory State Field {(State)

The MAR in the memory monitor contains a nine=bit STATE field.
These bits are saved and restored using TI_BUS(32:40); some of these
bits are set by hardware and cleared as a side-effect of testing them.
All are loaded from- the 71 bus by the RESTORE_MAR and
RESTORE_MAR_WITH_REFRESH microorders. Briefly, the state flags are:

SCAVENGER_TRAP (TI_BUS<32>)

An address has been referenced which is specified to.
be trapped by the scavenger monitor. SCAVENGER_TRAP
is testable in the second cycle fellowing 1loading of
the MAR {until then, the o0ld value remains is
returned). This bit is set in the MAR during cycle 2
of a memory reference when the test condition is true,
and will cause a2 memory exception microevent. The MAR
bit (and the memory exception) is cleared by testing
this bits, but the test condition is only <cleared by
reloading the MAR or the scavenger ram contents.
NOTE: if scavenger trap occurs during a sriter data is
written to memory. The RDR containms the original
contents of the location; the handler may undo the
write using the contents of the RDR.

CONTROL_ADDRESS_OUTOF_RANGE {(TI_BUS<K33>»)
A Control Stack Address that is greater than  the
current Top of Control Stack was referenced. This bit
is available as a medium late test condition during
the second cycle following the 1loading of MAR or

Rational Machines proprietary document DRAFT 3 November 23, 1982



Memory Monitor Specification Functional Description 4

CONTROL TOP {until then, the old value is returned).
The value of the outof range condition is stored in
the corresponding MAR flag bit during cycle 2 of a
memory operationa. It will generate a microevent.
during cycle 2 of a memory .operation if the test
condition is true, or the MAR flag bit was already
set. If the start was a write, data are written
unless CACHE MISS is also set. The MAR bit (and the
microevent) 1is <cleared by testings, but the test
condition is cleared only when MAR or CONTROL TOP is
loaded with an address that is in range.

PAGE_CROSSING (TI_BUSK3I4>»)
Indicates +that an INCREMENT_MAR operation incremented
the word offset portion across a half-page boundary.
This will cause a microevent, whose handler must add
4094 to the MAR {4096 is 32 words times 128 bits per
word). This bit is set in the cycle following the
INC_MAR, and cleared when tested.

CACHE_MISS (TI_BUSK35>»)

The tag portion of a logical address did not match
during a logical querys, no invalid pages exist during
an available guery, no pages match the specified stack
name during a name query or a logical write was
attempted to a READ_ONLY page or any reference sas
attempted to a LOADING page. The CACHE_MISS condition
is derived combinatorially from the 1last completed
memory reference. During cycle 2 of a memory
operation the condition is updated and latched in the
MAR {until +then, the result of <the 1last memory
operation is returned). Latching a true value into
the CACHE_MISS MAR flag will cause 3 memory. exception
microevent to occur as soon as microevents are
enabled. Testing the CACHE_MISS condition clears the
corresponding MAR flagr, but the condition is only
changed by completing another memory operation
(CACHE_MISS will only cause 2 memory exception ewvent
when the MAR flag is set).

FILL_MODE (TI_BUS<K386>) : '
The FIU selected fill mode wvalue is returned in this
bit position. The latched fill mode value is always
returned by READ_MAR. When RESTORE_MAR is specified,
the microcode must explicitly latch the fill mode  bit
from the TI bus {see the FIU spec).

PHYSICAL_LAST (TI_BUS3I?>)
Saves whether the 1last memory start was 2 physical
reference or a logical reference. This is used by the
ERCL error event handler for error logging and
determining which +type of reference to wuse when

Rational Machines proprietary document DRAFT 3 November 23, 1982



Memory Monitor Specification Functional Description 5

writing back the corrected data. Set during cycle 2
of any START microorder which expects a frame address
in the MAR; cleared during cycle 2 of all other START
microorders.

WRITE_LAST (TI_BUS<338>) :
Saves whether the last memory start was a3 read or a
write; this bit <turns the START_LAST_COMMAND and
START_IF_INCOMPLETE microorders into START_READ or
START_WRITE for logical or physical memory query {(see
PHYSICAL_LAST and INCOMPLETE_MEMORY_CYCLE). Set
following a START microorder for logical or physical
writesr physical tag write, name query and LRU query.
Cleared by a START microorder for logical or physical
reads, physical tag reads available query and tag
gueryas Unmodified by IDLE, CONTINUE,
START_LAST_COMMAND or START_IF_INCOMPLETE microorder.
WRITE_LAST is set or <cleared during cycle 1 of a
memory starts and is testable as a2 <conditions and
readable in the MAR during cycle 2 of the memory:
start.

MAR_MODIFIED {(TI_BU3SK3I9®>)

Indicates that a microevent occurred the cycle
following an INCREMENT_MAR operation. Note the MAR
will be modified during a conditional continue even if
the continue does not occur. This bit must be queried
by any event handler which needs to determine the
address which caused the event {such as ERCL or page
faultd). This bit is set only on a microevent, and
cleared when tested. ‘

INCOMPLETE_MEMORY_CYCLE {(TI_BUS<40>)
Indicates that a microevent has aborted cycle 1 of a
memory cycle; if +this bit 1is set, it turns the
microevent return micro order {START_IF_INCOMPLETE)
into a START_READ or a START_WRITE for 1logical or
physical guery, depending on the WRITE_LAST and
PHYSICAL _LAST bits. If INCOMPLETE_MEMORY_CYCLE is
sets and a memory cycle is in progresses 2
START_IF_INCOMPLETE is turned into a CONTINUE {(this
combination will occur when a page fault event occurs
during a CONTINUE). The INCREMENT_MAR_IF_INCOMPLETE

microorder must be specified in the same
microinstruction for the CONTINUE to be ©properly

l

l

P

?

i

|

l

| initiated. This bit is cleared when a
i START_IF_INCOMPLETE micro order is specified.
|

\

|

|

spare {(TI_BUS<41..42>,<49..60>) these bit is currently not used.

MEMORY_EXCEPTION
An exception occurred during a memory operation. This

Rational Machines proprietary document DRAFT 3 ﬁovemher 23, 1982



Memory Monitor Specification Functional Description B -

will cause a microevent if not masked. This event is
caused by SCAVENGER_TRAP, CONTROL_ADDRESS_OUTOF_RANGE
or CACHE_MISS MAR flags being set or becoming set.
The MEMORY_EXCEPTION event handler will guery these
bits to distinguish the type of fault. This bit does

not exist separately and is not returned by the memory

monitor; it is simply the OR of these MAR flags. It
'is ‘testable by the microcoder but is reset only when
all component MAR flags are not true. Note thats, 1if
the MAR is restored such that one or more of the
memory exception <components Dbecomes set, a memory.
exception microevent will result, even though the
testable conditions corresponding to these flags are
not true. As always, testing the condition will clear.
the MAR flag.

MEMORY_EXCEPTION and its components are testable as
medium late conditions. MEMORY_EXCEPTION generates a
microevent in <cycle 2 of the memory operation which
caused the condition {see the discussion on Memory:
Operations), or in the cyle following the RESTORE_MAR
which caused the MAR flag bit{s) to become set. The
component flags are only set in the MAR when MEMORY
EXCEPTION condition is truer, and are visible in the
MAR during the cycle following that in which MEMORY
EXCEPTION becomes true {i.e.s the third cycle
following the memory start or the third cycle
following the INC _MAR which caused the
CONTROL_ADDRESS_OQUTOF_RANGE).

Testing a MEMORY_EXCEPTION component during cycle 2 of
a memory operation prevents that condition from being
latched in the MAR, and prevents the MEMORY_EXCEPTION
microevent.

20242« Fill Mode (FM) and Length (FIU length) Fields

These fields are used to save and restore the fill mode (FM) and
operand length state of the FIU using TI_BUS(36),(43:48),
respectively. The FIU can also lecad thse fields from micro literals
or from type descriptors. The only memory functions which will change
these field are the RESTORE_MAR microorders (see FIU spec for details
of field wuseld. The fill mode and 1length registers returned by
READ_MAR regardless of what might be selected by the current
microinstruction. To properly restore FIU state from a2 saved MAR, the
FIU must be instructed to latch fill mode and length from the TYP BUS
(TI BUS) in the same microinstruction that specifies RESTORE_MAR or
RESTORE_MAR_WITH_REFRESH.

Rational Machines proprietary document DRAFT 3 November 23, 1932



Memory Monitor Specification Functional Description 7

2.243. Refresh Lounts

The dynamic RAM°s in the R1000"s main memory are refreshed by

microcodea. This is accomplished by using two counters:
REFRESH_INTERVAL and REFRESH_WINDOW, which are read and written using
TI_BUS{0:2153,(16:31), respectively. REFRESH_WINDOW is set to be

greater than the 1longest macro event latency for the current rev of
the machine. REFRESH_INTERVAL is set to be the required 2 millisecond
refresh period minus the REFRESH_WINDOW.

REFRESH_INTERVAL counts by one every machine cycle. When
REFRESH_INTERVAL equals the REFRESH_INTERVAL preset by microcode (by
the RESTORE_MAR_WITH_REFRESH microorder from TI_BUSKD:z15>), the
REFRESH macro event 1is posted and REFRESH_WINDOW starts counting by
one each machine cycle. If the ACK_REFRESH microorder is issued ({by
the refresh macro event handler) before REFRESH_WINDOW equals the
REFRESH_WINDOW preset by microcode {in the last
RESTORE_MAR_WITH_REFRESH microorder from TI_8US €16:31>), the
REFRESH_INTERVAL and REFRESH_WINDOW counters are reset and the
FORCE_REFRESH machine <check event 1is avoided. The REFRESH_INTERVAL
counter is restarted by an ACK_REFRESH.

If the ACK_REFRESH microorder is not issued before REFRESH_WINDOW
reaches the preset valuer 2 FORCE_REFRESH machine <check occursr the
machine 1is frozem by the diagnostic system, and the memory boards
refresh themselves at the maximum clock rate.

REFRESH_INTERYAL and REFRESH_WINDOW are specified only in the
RESTORE_MAR_WITH_REFRESH microorder. TI_BUS{0:31) are ignored for
RESTORE_MAR. The preset REFRESH_INTERVAL and REFRESH_WINDOW values
are always returned by READ_MAR. READ_MAR must be specified when the
ACK_REFRESH MEM_START microorder is issued.

24244 Memory Space Field

The memory space 1is restored wusing the TYPE_BUS<61:63>, and
selects one from the following list:

0 - Reserved_for_Future_Use SPACE -- must never be used
1 - CONTROL SPACE 20 bit word displacement

2 - TYPE SPACE 20 bit word displacement

3 - QUEUE SPACE 20 bit word displacement

4 - DATA SPACE 25 bit word displacement

5 - IMPORTY SPACE 20 bit word displacement

Rational Machines proprietary document DRAFT 3 November 23, 1982



Memory Monitor Specification Functional Description 8

6 - CODE SPACE 20 bit word displacement

7 = SYSTEM SPACE 20 bit word displacement

The memory space field is usually loaded from a microliteral during
the LOAD_MAR micro order. The microsequencer drives this field
directly from the dispatch RAM®s during a dispatch. During one of the
RESTORE_MAR microorders, the memory monitor drives TYPE_BUS({61:63)
onto the space portion of the ADDRESS bus (see the ADDRESS_BUS
description).

The memory monitor places no restrictions of the size of
displacements in addresses: it is the responsibility of the source of
the address to drive the proper number of significant displacement
bits, zero filled in the high order bits, onto the address bus.

Restrictions on the sizes of code and import spates are now
enforced by microcode and scftware policy, rather than hardware. Note
that architectural data structures 1limit +the range of  location
addressable using instruction fields or stack descriptors. In such
casess the proper number of leading zeres must be driven on the
ADDRESS_BUS to fill the word displacement to 25 bits.

The least significant 2 bits of the space field participate in
the <cache hash function. These must be set to zero for physical
memory references.

2.225. Stack Name Field (Segment Number, VPid)

The stack name field is actually two fields: the 24-bit Segment
Number and the B8~bit Virtu2l Processor ID (VPid). These bits are
saved using VI_BUS(0:31) and are aluways loaded from the ADDRESS bus.
The least significant eleven bits of the Segment Number participate in
the hash function.

These nine bits are also used to select the LINE_NUMBER during
Physical Tag Store or Physical Memory operations. The most
significant four bits of the VIRTUAL_PROCESSOR_ID select the
SET_NUMBER during these Physical operations.

2026 Word displacement field {(Page Numbers, uWord)

Since 1K byte pages are usedr and a word is 128 bits, this field
is split by the memory manager into two fields: Page Number
(VI_BUS<32:50> and Word (VI_BUS<51:56>). The 1least significant nine
bits of Page Number participate in the hash function, and must be zero
during a Physical operation. These bits are saved using
VAL _BUS{(32:56) and are aluways loaded from the ADDRESS bus.

Rational Machines proprietary document DRAFT 3 November 23, 1982



Memory Monitor Specification Functional Description 9

2e2e7e Bit Offset Field

The bit offset field is maintained by the FIU as the latched
offset field, rather than by the memory monitor {(the memory systenm
always deals with word addresses). During READ_MAR operations, the
last offset field latched by the FIU is returned as the bit offset
portion of the MAR {least significant 7 bits of the logical address.
During RESTORE_MAR operations, the least significant 7 bits of the
address bus are latched into the FIU offset latch.

The 7-bit Bit Offset Field is not used by the memory boards. The
most significant three bits of this field in the Program Counter (CODE
space only) select one of the eight, 16~bit macroinstructions stored
in the IBUFF..

22248« Address Arithmetic

The memory monitor makes no provision for detecting arithmetic
exception. conditions when arithmetic is performed on displacements.
In general, the operations allow displacements to wrap around some
number of sigificant bits (see the space encoding definitions for the
number of significant displacement bits in each of the memory spaces).
This wrap around is affected by driving +the appropriate number of
leading zeros in place of the extraneous high order result bits.

22«9« Event Handler Considerations

MEMORY_EXCEPTION event handlers and the CORRECTABLE_ERROR handler
must determine the address that caused the event. The PAGE_CROSSING
and MAR_MODIFIED conditions indicate if an INCREMENT_MAR occurred
before the event. If PAGE_CROSSING is set,r then 4096 must be added to
the MAR to compensate for the wraparound and RESTORE_MAR issued.,
thereby effectively handling the PAGE_CROSSING event. {(The additioen
should not allow carries to propagate into the stack name field.) The
event-causing condition is cleared as a side-effect of testing it.

If MAR_MODIFIED is true (always true on PAGE_CROSSING) then 128
must be subtracted from the MAR to determine the faulting address. If
both MAR_MODIFIED and PAGE_CROSSING are truer both conditions must be
handled in order to properly compute the exceptional memory address.

2+3. Read Data Register

There are actually ten potential sources of data when a READ_RDR
micro order is specified! There are two Read Data Registers on each
of four memory boards {one for each plane). The memory monitor
remembers which plane hit last and normally selects the corresponding
RDR Since each memory board does not contain a path to load its
ROR"s from a busr, (it loads them from its RAM s) a “"dummy”™ RDR is

Rational Machines proprietary document DRAFT 3 November 23, 1982



Memory Monitor Specification Functional Description 10

provided {on the Sysbus Interface board) for state restoring.
Whenever a RESTORE_RDR micro order is executed, the data is loaded
into the dummyr, and the monitor sources subseguent READ_RDR operations
{until the next LOAD_MAR) from the dummy. The tenth source is the
Control Stack Accelerator.

Read data is specified as the source for the VAL and TYP buses by
a combination of bus source microorders on the FIU board {see the FIU
Functional Specification).

The memory monitor determines which source of read data is valid
{memory becard, dummy RDR on the SYSBUS board or {SA), and causes the
appropriate source to drive the VAL and TYP buses. The memory boards
and dummy RDR are driven directly onto the VAL and TYYP buses, while
the (SA drives these buses wvia the B-port of the VAL and TYP register
file {respectively). Data from a memory board includes ERCC bitss,
which. are checked by the SYSBUS board and may cause an ERCC ewvent,
Data from the dummy RDR or CSA are parity checked only. See the
discussion of C3A in a later section.

Wwhen RDR is specified as the TYP_VAL bus source, if the dummy RDR
is wvalid, it is driven regardless of what other possible sources may
be valid. If the dummy is not valids, but the CS5A is hittingr, the CSA
is driven onto the TYP and VAL buses. If there is no CSA hit, which
aver memory board is hitting is chosen to drive the buses. If no
memory board is hittings then noone drives the TYP and VAL buses, and
a parity error machine check or spurious ERCC event may occur. unless
the CACHE MISS microevent is enabled. If microevents are disableds,
and this situation arises, the CACHE MISS condition must be tested in
the cycle in which RDR is being read, and, if CACHE MISS is true, the
data read must be discarded. Testing CACHE MISS in this situation
prevents TYP and VAL bus parity error machine checks and spurious ERCC
eventse.

The wvalidity of read data is maintained from cycle 2 of the last
memory read until the MAR is reloaded {except for page mode memory
operationss, where the the MAR is reloaded in a reversible way). If
the MAR is reloaded before read data is accessed, error correction is
impossible {(since the source address is 1lost) and results are
unpredictable. For page mode operations, the memory monitor maintains
state (MAR_MODIFIED, PAGE_CROSSING and INCOMPLETE_MEMORY_CYCLE flags)
for +the ERCC and MEMORY_EXCEPTION trap handlers to reconstruct the
erroneous memory address.

2e3<1e Error Checking

In the usual caser when data is sourced by the memory boardss, the
9-bit CHECK_BIT field is also driven. The ERCL checker on the sysbus

interface board checks for errorse. If a multiple bit error is
detecteds, the MULTI_BIT_ERROR machine check event occurs. If a single
bit error is detecteds, an ERCL micro event 1is posted. The event

Rational Machines proprietary document DRAFT 3 November 23, 1982



Memory Monitor Specification Functional Description 11

handler corrects the data, restores it into the Dummy RDR {(with byte
parity), writes the corrected data back, then logs the error.

The correction is done based on the 7-bit BAD_BIT_ID field and
the CHECK_BIT_ERROR <condition generated by the ERLL checker. First
CHECK_BIT_ERROR is tested to determine if the error is in the check
bitse If <true, no data correction is necessary since the check bits
will be regenerated during the write back. If false, then BAD_BIT_IDO
is tested to determine if the error is in the VALUE half or the TYPE
half. A constant "1" dis +then rotated by the FIU, selected by
BAD_BIT_ID(1:6) and is XOR“ed with the da2ta on the selected board.

In all cases of correctable errors, the corrected data is written
back to memory by microcode. The PHYSICAL_LAST monitor state bit must
be tested to determine if +the address in the MAR is logical or
physical. The error is logged by storing the MAR on the error leg
list in the scratchpad and incrementing the error count. If this
count exceeds a thresholds, a microcode initiated machine check occurs.
The refresh event handler maintains a count which causes periodic
flushes of this error log list to the diagnostic processors, using the
SYSBUS. As a side effect of chaecking for correctable errorss, the
Sysbus Interface board generates byte parity on both the VALUE and
TYPE halves of the read datar, and drives it on the parity lines.
Thereforer, all users of the read data can check parity.

2.4. Write Data Register

A LOAD_WDR microorder loads data from the VAL and TYP buses into
the WRITE DATA REGISTER of all memory boards and the copy of WOR on
the VAL and TYP boards (VAL and TYP boards maintain their respective
halves of the WDR). Since the VALUE and TYPE boards contain a copy of
the Write Data Registers, a3 dummy WDR is not necessary on the memory
monitor. A READ_WDR state—saving operation is performed 1locally on
those boardse. {The VALUE and TYPE board copies of the WDR are saved
in the register file by selecting the register file C(-mux source
appropriately.) {see the VALUE and TYP beoard Functional
Specifications).

On a LOAD_WDRs the ERCC circuit generates the check bits and
drives them to the memory boards. As a side effect of generating
these check bitss, it checks parity on the VALUE and TYPE busses. The
local VALUE and TYPE board copies of the WDR contain byte paritys, not
check bits.

If a microevent aborts the cycle in which LOAD_WDR is specified.,
the WDRs on the memory boards are loaded, but not the copy on the VAL
and TYP boards. This inconsistency must be resolved by loading WDR
before any start write memory operations are issued.

Rational Machines proprietary document DRAFT 3 November 23, 1982



Memory Monitor Specification Functional Description 12

2.5. Memory Operations

411 memory operations involve three microcycles. Cycle 0 of a
memory operation is defined to be the microcycle which issued 2 memory
start micro order. The MAR must be loaded no later than cycle 0.

Cycle 1 follows» and is the cycle in which the memory operation
actually takes place. If a micro event aborts cycle 1, the
INCOMPLETE_MEMORY_CYCLE condition is set, and the event return micro
order START_IF_INCOMPLETE will restart the operation. During a2 memory
write  operation, the LOAD_WDR must occur no later than cycle 1. The
Tag Store query implied by the particular memory start is performed in
cycle 1. If memory is interrupted during cycle 1» the operation is
terminated and LRU is not updated. No data is transferred to or. from
memory. RDR is destroyed.

Cycle 2 is the final cycle. At this time the read data is
available from the RDR and can be used by issuing a READ_RDR micro
order. If required, the LRU bits are updated during cycle 2.

If 2 MEMORY_EXCEPION is raised during the operation, it causes an

early micro event in cycle 2, if enabled. No tag store state is
updated and no data is written tc memoryr, although the contents of the
RBR are 1lost. The event 1is persistant and highest priority.

Therefore it will occur on the first cycle it is enabled wuntil the
event is taken or the causing conditions are tested.

The RDR remains valid until the next LOAD_MAR. After a LOAD_MAR
is executed, the MEMORY_EXCEPTION and CORRECTABLE_ERROR handler will
not be able to determine which address caused the event.

Overlapping memory operations are allowed. Cycle 2 of one memory
operation can be cycle 0 of the next. In the CONTINUE operation the
pipelining is doubly overlapped: <cycle 2 of the first operation
coincides with cycle 1 of the second operation and cycle 0 of the
third. This can only be done to tonsecutive address {refer below to a
more detailed explanation of CONTINUE).

This section discusses the standard memory operations: Read
Logicals Write logicalr, and C(ontinue. It also describes the
conditional memory reference mechanisme

2adel. Read Logical

Data whose address is in MAR are accessed. During cycle 2 of the
memory operation, data is available via the READ_DATA microorder.
Normally, the memory monitor transfers data from the proper read data
register. If the accessed data resides in the ({SA, data is accessed
there, and the memory data is ignored (the {(SA always contains the
most wup to date <copy of datar since the CSA is not a write—through
acceleration mechanism). Choice of RDR or LSA data is made by the
memory monitor transparently to requesting microcode.

Rational Machines proprietary document DRAFT 3 November 23, 1982



Memory Monitor Specification Functional Description 13

If +the specified 1logictal address is not encached by the memory
system, a MEMORY_EXCEPTION micro event is posted, and the CACHE_MISS
condition 1is set. The RDR is destroyed. If the specified logical
address 1is encached, but the PAGE_STATE 1is set to LOADING, 2

MEMORY_EXCEPTION micro event is posted, and the CACHE_MISS condition

is set. The RDR is destroyed.

2452 Write Logical

The contents of the WDR are written into the wmemory word whose
logical address is in the MAR. 1If the specified logical address is
not encached by the memory system, 2 MEMORY_EXCEPTION micro event is
posteds, and the CACHE_MISS condition is set. The RDR is destroyed,
but no cache location is uwritten. '

If the cache page being written is in either the LOADING or READ~
ONLY stater, a CACHE_MISS condition is generated. The MEMORY_EXCEPTION
event is raised as a cycle 2 event. The handler must query the tag
store and check page state to differentiate these states from true
cache miss.

It is important to note that, although the previous contents of
the written location is placed in RDR during a LOGICAL_WRITE, the
microcode should not Read_RDR. This could cause an ERCC error which
will write back the corrected, original contents and therefore undo
the write. This feature is implemented for diagnostic purposes.

2e5+3. Continue

For extremely high speed transfers (- 80 Megabytes per second !)
to or from consecutive words in memory, the page mode feature of the
dynamic RAM"s is exploited. This feature 1is enabled by specifying
CONTINUE in the cycle immediately following a memory start. The
INCREMENT_MAR micro order must also be issueds A CONTINUE can
immediately follow another CONTINUE, thereby 2llowing entire blocks of
data to be transferred at this clipa.

INCREMENT_MAR microorder increments the MAR by 128. If the MAR
displacement mod 4096 becomes zero as a result of this increments the
PAGE_CROSSING event is posted. The PAGE_CROSSING microevent occurs
after the MAR has been incremented (i.e.r the MAR contains an address
which is 4098 1less than the proper address). PAGE_CROSSING is an
early microevent in the cycle following the INCREMENT_MAR microorder.

A CONTINUE microorder {with its INCREMENT_MAR) must be issued
during cycle 1 of a preceeding START or CONTINUE memory operation
{there must be no idle memory cycles between the START of a page wmode
transfer, and any of the CONTINUE operations’.

The reason that a half-page boundary crossing triggers the event

Rational Machines proprietary document DRAFT 3 November 23, 1982



Memory Monitor Specification Functional Description 14

is dicatated by a low-level constraint from the dynamic RAM"s
themselves. They must be "precharged”™ every 10 microseconds. By
trapping at least every 32 cycles, this constraint is met. The time
penalty for the event is only 4 cycles (two dead cycles because it"s
an  early event plus the one microinstruction handlerd). Another
consideration is thats, since pages are 64 words in lengths each time 2
64 word page boundary is crossed by a page mode accesss, the tag store
must be queried again to obtain a new logical to physical association.

When INCREMENT_MAR is issued, the MAR is incremented and driven
over the address bus. The incremented version of MAR is 1loaded back
into the MAR from the address bus. (See the description of
MAR_MODIFIED state bit). Note that, when INCREMENT_MAR is selected as
the MAR_CONTROL microorder, the FIU board must be selected as source
for the address bus.

2eS5ebs Conditional Memory References

Conditional memory starts are supported. These can be based on
either polarity of an early or a "medium-late™ condition. If the
condition is not taken, another memory start may immediately follow.
If the condition is taken, only a CONTINUE or NO_MEMORY_OPERATION. may.
followa The INCREMENT_MAR is also required during conditional
CONTINUE"ss, but is unconditional. If the condition is not taken, the
MAR is still modified,r and the PAGE_CROSSING event can still occur.

The other +twoc conditional memory starts are used by event
handlers to reconstruct the memory cycle pipeline.

All events handlers must issue a START_IF_INCOMPLETE in the cycle
it returns. (Conditional returns are not allowed from event
handlers.) If the event aborted cycle 1 of a memory operations, that
operation is restarted by this command. If the event aborted cycle O
of an operations then the handler will return there and the microcode
will start the memory command. {By definition, cycle 0 1is the <cycle
which issues the start command.) If the event aborted cycle 2 of an
operation, the operation is not restarted since the operation uwas
completed before the event. {(Lycle 2 is defined as the first cycle
that READ_DATA can be used following a START_READ, and the first cycle
that a MEMORY_EXCEPTION will occur. The operation 1is considered
complete after cycle 1.)

MEMORY_EXCEPTION handlers must issue a START_LAST_COMMAND in the
microcycle immediately before it returns. This will restart the
command that caused the exception.  The last microcycle of these
handlers {as required of all micro event handlers) will issue the
START_IF_INCOMPLETE command. If there was a CONTINUE in cycle 1 of
the memory operation that caused the exception, this event return
action will restart the CONTINUE. This is the only circumstance in
which a START_IF_INCOMPLETE will resolve to a CONTINUE. The MAR must
be incremented to <correctly force a continue. Therefore the

Rational Machines proprietary document DRAFT 3 November 23, 1982



Memory Monitor Specification Functional Description 15

INC_MAR_IF_INCOMPLETE micro order must be issued on MEMORY_EXCEPTION
handler returns. Whenever INC_MAR_IF_INCOMPLETE is issued,
INCOMPLETE_MEMORY_CYCLE must be selected as test condition.

2.6. Memory Management Operations

Each' memory board manages four sets of Tag Stores used for
associative comparisons and memory management. Instead of four
parallel sets of RAM"s and comparatorss, the Tag Store is implemented
with two banks of 1K X 4 Static RAM®s and can be clocked at the double
frequency rate. Sets 0 and 1 are always referenced in the first half
of a cycles, sets 2 and 4 are referenced during the second half.

2.6212 Tag Value format

The contents of the Tag Store RAM"s can be read and written over
the VALUE_BUS by a combination of bus control microorders {(see the
SYSBUS specification) and memory commandsa

A tag wvalue 1is 1latched as the result of any memory operation.’
The START_PHYSICAL_TAG_READ operation latches the tag value associated
with a particular set wihout otherwise accessing memory. The tag
value may be read during cycle two or later (it must not be read
unless memory is idle). A SETUP_TAG_READ microorder must be issued
one cycle prior to reading the tag valuer, and must not be issued
earlier than cycle 1 of the operation which latches the tag value.
The tag value is returned over the VAL bus.

The tag store 1is written wusing the START_PHYSICAL_TAG_WRITE
microordera. START _PHYSICAL_TAG_WRITE is a three cycle operation
{cycleOzcyclel). The new tag value to be written must be loaded in
the value side of the WDR no later than cycle 1. Memory must remain
idle during cycle 2 (i.e., no memory start may be issued until after
cycle 2).

When a tag value is written, all fields are written, including

LRU. Therefore, care must bhe taken to make sure all sets on a
particular line have unigue LRU values between zero and the MRU set
number. Note also that, following power upr, all tags on each line of

the cache must be properly initialized before any memory operations
are issueds or parity errors or unpredictable behavior may result.
2e6a2. Tag Store Addressing

The tag Store is addressed with a frame address which is composed
of a nine-bit LINE_NUMBER field and a four—bit SET_NUMBER field.

The LINE_NUMBER is determined by a hash function operating on the
two least significant space bitss, the eleven least significant segment

Rational Machines proprietary document DRAFT 3 November 23, 1982



Memory Monitor Specification Functional Description ‘16

TAG_VALUE:

$omm——— ——————————— pr———— o —————————— O e s D Adatent 2
}] Segment Number i VPid ] Page Number 1D] LRUJST lresiSpci
| (24) i 8 I {19 191 (B JL2I1{3 (3>}
el S S S T S R P Tt St 3
0 24 32 52 56 58 61

23 31 50 51 55 57 60 63

name bits and the nine 1least significant page bitsr producing an
elevent bit line address. On the memory monitors, line address bits 0.
9 and 10 are computed combinatorially, while line address bits 1..8
are obtained from a RAM:

line address 0 := page address <18> x~or segment name <13>
line address 9 := space <1> x—or segment name <22>
line address 10 := space <2> x—or segment name <23>

line address <l..4> 2= RAM addressed by
page address<l4..18> and segment name <14..18>

line address <5..8> 2= RAM addressed by
page address<10..15> and segment name <18..21>

The RAM is programmed to produce the same hash function as the 2
MB memory board, namely the bit-wise exclusive~or of Segment<15:23>
{least significant 9 segment bits) as one component, and Page<18:12>
concatenated on the right with Space<1:2> (least significant 7 page
displacement bits, with +the bit significance reversed, concatenated
with the least significant two space bits) as the other component,
This pairs Segment<15> with Page<18>, Segment<16> with Page<17>, and
so forths, until Segment<23> is paired with Space<2>. The most
significant 2 bits of the line address are set to zero.

When the hash function needs to be bypassed because a particular
LINE_NUMBER wants to be addressed {such as in 2
START _PHYSICAL_TAG_WRITE), the desired LINE_NUMBER is placed in the
l. s. nine bits of the SEGMENT_NUMBER, and 0°s are placed in the rest
of the bits participating in the hash function.

Tag comparisons are implemented on two portions of the tag value:
the stack name and the full page logical address. The stack name
consists of the segment number (bits 0:23) and the VPid (bits 24:31).
The page 1logical address consists of the stack namer plus the page
number {(bits 32:50) and the Space {Spcs, bits 61:63).

The SET_NUMBER is determined by the particular guery mode implied

Rational Machines proprisztary document DRAFT 3 November 23, 1982



Memory Monitor Specification Functional Description 17

by the memory start. On physical Tag references the SET_NUMBER is
specified by the most significant 4 bits of the VIRTUAL_PROCESSOR_ID.
On Logical Tag aqueriesr, the set that contains the matching logical
page address is the selected set. The Least_Recently_Used set is
selected by a START_LRU_QUERY. The first available {(invalid) set is
selected by a START_AVAILABLE_QUERY. In a START_NAME_QUERY, only the
stack. pame portion of the tag is compared. In this querys., and in the
available query, multiple set could hit. This is resolved arbitrarily
by the memory hardware. (Actually, the lowest set number will win
out, but no code should be written that relies on this.)

The remaining tag value bits describe the state of the page. The
D bit is set whenewver the page is written to via a logical query (it
is not set for physical queries or maintenance or random operations).
The LRU is described later in this document. The reserved bits are
available for use by microcode and are not interpreted by hardware.

The page state (ST) field controls the kinds of access to each
page of the memory data array:

Loading {(00) This page is not yet ready to be accessed {(data is
being transferred to or from this page). Logical and
name queriss’ will match this entrys, but the
LOADING_FAULT state bit will be sets and a
MEMORY_EXCEPTION event will occur {(if enabled).

Read-Only {01) This page may be reads, but not written. Llogical and
name queries will match this entry, but logical writes
will set the WRITE_FAULY state bits and a
MEMORY_EXCEPTION event will occur (if enabled). Note
that data is written even though the page is Read-
Only. See the description of Logical Write.

Read-Write (10)
This page may be read or written. Logical and name
queries will match this entry. If a match occurse no
tag store related state bits will be set (CACHE_MISS,
LOADING_FAULTY, WRITE_FAULT).

Invalid {112 This page is not assigned any logical page? no logical
or name query will match this entry.

2abe3. Frame Address

A frame address is latched by the memory late in cycle 2 of each
memory operation. This may be read after cycle two. Unlike the tag
value, frame addresses may be read without any preceeding SETUP. The
frame address can be read by a combination of VI bus control
microorders {see the FIU specification).

Rational Machines proprietary document DRAFT 3  November 23, 1982



Memory Monitor Specification Functional Description 18

All physical memory and tag store accesses require a frame
address in the least significant 84 bits of the MAR. Further, all
fields except line number and set number must be cleared to zero prior
to 1loading into MAR. When read, the Frame Address returns the line
number to which the logical address in the MAR hashes, and the last
set number which hit (if no memory board is presently hitting, all
ones are returned as set number: the frame address may be read to
convert a logical address to a line number without cycling memory).a.

FRAME_ADDRESS {read over VI bus):

tmm————— trmm b ————— tmmmbm—— e —————————— - ————————F
JSCVNGR] 07s| Line No]Set]MRU]} 0"s i
(8 1(5) 1 111 1e it 24 ]
$m————— tm———t ———— Fomm e b ————————— cmmr e —— e ——————
0 7 8 12 13 23 24 31 63

* SCYNGR - bits <D..7> the contents of the scavenger ram are
returned. must be zero when loading a frame address into. the
MAR.

* LINE NO = bits <13..23> the line number to which the current
contents of MAR hashes is returned; the physical line number to
be accessed is loaded prior to starting a physical memory query.

* SET — bits <24..27> the set number which hit last is returned, or
all ones of no set is hitting’ contains the physical set number
to be accessed by the next physical memory guery. When loading a
physical frame address, the set number must be less than or egual
to MRU (the highest wvalid set number)s, or results will be
unpredictable.

* MRU - Dbits <28 31> the highest valid set number is computed and
latched during INITIALIZE_MRU, and is returned as part of the
frame addressa. These bits must be cleared to zero prior when
loading 2 frame address into the MAR. ‘

The 1line number portion of frame address is computed
combinatorially, wusing the hash function 1logic. The set number
portion is derived from the result of the specific query mode. The

MRU set number is latched 2t memory initialization time, and always
returned with the frame address. Finally, the scavenger ram contents
are read using the address in the MAR, and returned as part of the
frame address. The scavenger ram contents appear combinatorial in
that they are derived based on the current contents of the MARs, and do
not depend upon the last query mode. Note that scavenger ram contents
must be initialized after power up before any frame addresses are
reads, or a scavenger parity error may result.

" Rational Machines proprietary document DRAFT 3 November 23, 1982



Memory Monitor Specification Functional Description 19

2eb.4. LRU Management

Each tag value contains a four-bit LRU field. All the sets in a
line contain 3 unique value in these four bits.

The INITIALIZE_MRU microorder determines the highest implemented
SET_NUMBER, which 1is defined as the Most_Recently_Used (MRU) value.
MRU is returned as part of FRAME_ADDRESS. Note that INITIALIZIE_MRU
does not initialize any tag fieldss these must be initialized
explicitly by microcode.

When a particular set hits, and the query defines UPDATE_LRU as a
side-effect, that set”s original LRU value is broadcast, and replaced
with the MRU value. All sets whose LRU wvalue is greater than this
broadcasted value will decrement their LRU value. All sets whose LRU
value 1is 1less than this value will remain unchanged. Therefore the
Least_Recently_Used set will have a value = 0. Note that the LRU
value is updated on 2all sets including invalid sets, also the LRU
value is unchanged by 2 tag store write operation.

2.7« Contol Stack Accelerator Moniter

The VALUE and TYPE boards can encache as many as fifteen
locations on the +top of the currently executing Control Stack.
Microcode that references the L[SA directly uses the the Register File
Address fields to specify locations relative to T0S {(the top of the
Control Stack Accelerator) or to CSA_BOTTOM {the bottom of the Control
Stack Accelerator). These locations are guaranteed to be in the CSA
by the {SA underflow and overflow macro events. '

Any other address to the Control Stack must be monitored to
determine if the most recent version of that address resides in- the
CSA. The address. is also monitored for illegal references beyond
CONTROL_TOPa.

During exit operations, several locations are wiped off the stack
in one POP_DOWN_TO operation. After a POP_DOWN_TO0, the CSA monitor
must determine how wmany valid entries remain in the C(SAs, and
communicate this to the VALUE and TYPE boardse.

2.7«1- Control Stack Accelerator Hits

When MAR is loaded, the new MAR stack name is compared with the
stack name of the current control stack. If they match, the 20 bit
MAR displacement is subtracted from the displacement of the top of the
current control stack (CONTROL_TOP). If this result is negative,r the
reference is beyond the top of the <control stacks and the
CONTROL _ADDRESS_OUTOF_RANGE condition becomes true in the second cycle
following loading of the MAR. Under these circumstances, if a START
microorder is issueds CONTROL_ADDRESS_OUTOF_RANGE is set in cycle 2.

Rational Machines proprietary document DRAFT 3 November 23, 1982



Memory Monitor Specification Functional Description 20

posting the MEMORY_EXCEPTION event and aborting memory. If memory is
not started, this condition is net set and MEMORY_EXCEPTION is not
posted. Since this is 2 cycle 2 event, if the memory operation was a
write, data is actually writen beyond the top of stacke.

If the MAR is incremented beyond the current CONTROL_TOP, the out
of range condition is set in the second cycle following the INC_MAR.,
memory is aborted {late abort) and MEMORY_EXCEPTION 1is posted.
MAR_MODIFIED will be set. If other memory exceptions are also
asserted (e.g.,r CACHE_MISS), the address in the MAR must be unwound to
determine the address responsible.

If the result of the subtraction 1is not negativer then the
difference plus one is subtracted from the number of wvalid entries
currently in the {SA. If this result is negative, the reference falls
below the CSAr and is directed to memory. I¥ the result is not
negativer the reference falls within the current contents of the CSA
on the VAL and TYP boards, and the CS5A_HIT condition exists. This
resulting difference is called the HIT_OFFSET, and 1is relative to
CSA_BOT. The memory monitor broadcasts both CSA_HIT and USA_OFFSET to
the VAL and 7TYP boards each cycle. YAL and TYP latch them for
accessing the (3A during the pext cycle. CSA_HIT AND HIT_OFFSET are
latched every cycle,r whether or not that cycle is being aborted due to
a bad hint or an event. When cycle 1 of a write operation is not
being aborted, the memory monitor broadcasts a write signal to the VAL
and TYP boardss, which is also always latched, and wused in the next
cycle {cycle 2) to gate data from their copies of the WDR into the
CSA. MWhen RDR is specified as the source of the TYP and VAL busess
the sysbus Dboard asserts a read_RDR signal to the TYP and VAL boards
in the same cycle that the RDR is being read. These boards use this
signal, along with the CSA_HIT and HIT_OFFSET values latched the
previous cycle, to read the data from the (SA.

While CSA_HIT is TRUE, memory starts are handled as wusual: read
operations access memory and load the RDR while writes write data to
memory. Cache hits are suppressed when CSA_HIT is true. entering
cycle 1 (effectively, memory is not started, memory state is Note that
the timing of {SA hits is identical to the timing of any other memory
operation.

During cycle 1 of a write operation, data are loaded into to the
VAL, and TYP board <copy of the WDR from the VAL and TYP buses (as
always). The memory monitor informs the VAL and TYP boards that a
memory uwrite <cycle 2 1is occuring. VAL and TYP use the {SA_OFFSET
latched in the previous cycle to gate their local copy of WOR into the
register file via the C-mux and (-port (see the VAL board spec for
required C—-mux and C-port microorders during cycle 2 of a write
operation).

Rational Machines proprietary document DRAFT 3 November 23, 1982



Memory Monitor Specification Functional Description 21

2ea722. LOAD CONTROL TOP, PUSH/POP and INCJDEC BOT

, The memory monitor maintains the number of valid CSA entries
{NUM_VALID). All CSA references from the memory monitor to the VAL
and TYP boards are relative to LSA_BOT (uwhich is maintained by the VAL
and TYP boards concurrently with the memory monitor and sequencer
copies). The monitor informs the other boards of changes in the
status of the CSA wvia the HIT_OFFSET and three additional wires:
POP_DOWN, LOAD_TO0S and LOAD_BOT. Normally, these latter three  wires
are not asserted. HWhen they are asserted, the {SA is being modified,
and the monitor suppresses CSA_HIT. None of the CSA modification
microorders should be specified during cycle 1 of a write which should
be directed to the CSA, nor in the cycle prior to reading the RDR if
the CSA may contain the valid copy of data (these restrictions really
apply to any CONTROL access, or any memory access whose memory SPACE
is not known). In these cases, the RDR must not be read until a full
memory read cycle has completed. : ‘

A LOAD_CONTROL_TOP microorder 1loads the address on the ADDRESS
BUS into CONTROL TOP, and clears NUM_VALID to zero. A minus one is
broadcast as HIT_OFFSET +to the TYP and VAL boards, along with the
POP_DOWN signal. HIT_OFFSET is added to BOT by the TYP and VAL
boards, and stored in T0S, invalidating the C35A.

PUSH and POP microorders broadcast plus one and minus ones
respectively, as HIT_OFFSET, along with LOAD_T0S. The TYP and VAL
boards add HIT_OFFSET +to B80T, storing the result in T0S. These
microorders add or subtract an entry from the top of the current (5A.

INC and DEC BOT microorders shrink or grows the C(35A from the
bottom (respectively) by adding one to or subtracting one from the BOT
register on the TYP and VAL boards. Plus or minus one is broadcast as
HIT_OFFSET by the monitor, along with LOAD_BOT.

2.7.3. START_POP_DOWN and FINISH_POP_DOWN

POP_DOWN_TO is a two cycle operation. START POP DOWN latches the
offset portion of the new CONTROL_TOP from the ADDRESS_BUS into
CONTROL TOP, and saves the old CONTROL TOP offset. The NUM VALID is
not cleared.

During FINISH POP DOWN, the new NUMBER_VALID is computed by
subtracting the CONTROL_TOP new offset from the saved offset. This
result is then subtracted from the number of valid entries in the CSA,
and a negative result is set to zero. A NUMBER_VALID of zero
indicates that the entire CSA has been invalidated. NUMBER_¥VALID
minus one is broadcast to the VALUE and TYPE boards during cycle 1 in
place of HIT_OFFSET, along with POP_DOWN. (If NUMBER_VALID is
negativer a minus 1 1is broadcast to the ¥YAL and TYP boards, which
invalidates the entire [SA contents).

Rational Machines proprietary document DRAFT 3 November 23, 1982



Memory Monitor Specification Functional Description 22

Events must be disabled betuween issuing START POP DOWN and
completing FINISH POP DOWN. The ERCC event handler must take case not
to modify the state of the {SA, since if CONTROL TOP is modified, the
saved top offset regquired by FINISH POP DOWN may be lost. Since
FINISH POP DOWN uses HIT_OFFSET and suppresses (SA_HIT, memory writes
must not be started in the <cycle which issues FINISH POP DOWN if
there”s any chance that the data should go to the (SA. Similarly, the
RDR must not be read in the cycle following a FINISH POP DOWN if the
valid <copy of data is in the CSA. These memory restrictions apply to
continues as well as starts. : :

2.8. Scavenger Monitor

The memory monitor contains a circuit that monitors 211 logical
memory references and can trap on certain patterns. As a bare minimum
this circuit must support the current approach to garbage collection
which dictates that each collection {collections are identified by the
MSB of the SEGMENT_NUMBER = 1) be split into eight parts. At any
time, three of these collection octants can be in the midst of garbage
collection and <could <contain forwarding addresses instead of actual
data. References to these active garbage collection octants must be
trapped.

If maximum flexibility is to be maintained for garbage
collections, and other potential requirements ¢to trap on certain
address patterns, this circuit can be implemented to perform a much
more general pattern match than the eight bits required for the
current approach to garbage collection.

The scavenger is addressed using the most significant nine bits
of the MAR segment number and a bit derived similarly to the
WRITE_LAST memory monitor state flag. These address bits are derived
combinatorially using the state of the memory monitor at the time a
START or READ_FRAME_ADDRESS microorder is issued. The 8 bit contents
of the addressed scavenger location is returned as part of the frame
address. .

When a START microorder is issued for a logical read or write, a
scavenger location is read, and the space specification of the MAR
address is used to select.2 bit within that location. If the selected
bit is oners the SCAVENGER_TRAP monitor flag 1is setr, and a
MEMORY_EXCEPTION event is posted during cycle 2 of the memory
operation. Memory is cycled and writes complete even when SCAVENGER
memory exception is taken. The original contents of a written
location are saved 1in the RDR. The SCAVENGER TRAP handler must undo
writes using the data in the RDR. '

The scavenger ram is not accessed during physical data accessess
or during any tag store maintenance or random operations..

Only  the first 7 scavenger bits are actually used to trap

Rational Machines proprietary document DRAFT 3 November 23, 1982



Memory Monitor Specification Functional Bescribtion 23

references. The eighth bits which would have traced referénces to
system spacess, is used to store byte parity. This precludes using the
scavenger to trace references to system address spaces.

The scavenger monitor ram is written over the VAL bus {least
significant 8 bits) using the WRITE_SCAVENGER_MONITOR microorder. The
MAR must have been loaded with a logical address prior to issuing this
microorder, and the proper Scavenger monitor address must be computed
by performing a NAME QUERY {write access +trapping) or an AVAILABLE
QUERY {read accessing trapping)le. The results of these operations may
be ignored: they are only used to set the internal state of the
scavenger moniter address data path.

The 8 bits transferred over the VAL bus must include parity in
bit 7, and 2 one bit in each of the preceeding 7 bDit positions
corresponding to the space which should be trapped {i.e.r one in bit 1
will trap accesses to control segments whose high order 9 segment bits

correspond to those currently in the MAR). The microcode must compute
correct parity.

3« Microword Specification
3.17. Field Specifications

3.1.7. MEMORY_START field - S5 bits

All of the following microorders expect a logical address to be
loaded into MAR, except those uwhose names specify "PHYSICAL™.
PHYSICAL starts require a frame address in the least significant 64
bits of the MAR, with all fields cleared to zero except the
LINE_NUMBER and SET_NUMBER.

The following are Data Query microorders, which access data in
the memory data array:

% NO_MEMORY_OPERATION {NOP)
*+ START_READ

* START_WRITE

* CONTINUE

* START_READ_IF_TRUE

* START_READ_IF_FALSE

* START_WRITE_IF_TRUE

Rational Machines proprietary document DRAFT 3 November 23, 1982



Memory Monitor Specification Microuword Specification 24

* START_WRITE_IF_FALSE

* START_CONTINUE_IF_TRUE

* START_CONTINUE_IF_FALSE

* START_LAST_COMMAND

* START_IF_INCOMPLETE

* START_PHYSICAL _READ

* START_PHYSICAL_WRITE

The following are tag store maintenance and random microorders.

These manipulate the tag store and control structures of the memory
monitor, and set up data paths for state transfers:

* START_PHYSICAL_TAG_READ

* START_PHYSICAL _TAG_WRITE

* START_TAG_QUERY

* START_LRU_QUERY

* START_AVAILABLE_QUERY

* START_NAME_QUERY |

* SETUP_TAG_READ

* INITIALIZE_MRU

* WRITE_SCAVENGER_MONITOR

* ACK_REFRESH

* IDLE

3.7.2. MAR_CONTROL field - 4 bits

* RESTORE_MAR

»

RESTORE_MAR_WITH_REFRESH

%»

INCREMENT_MAR

*

INC_MAR_IF_INCOMPLETE

*

LOAD_MAR xxx {space micro literal driven on ADDRESS.SPACE)

Rational Machines proprietary document DRAFT 3 November 23, 1982



Memory Monitor Specification Microword Specification 25

* RESTORE_RDR

* NO_MAR_CONTROL (NOP)
3.7<3. LOAD_WDR - 1 bit

3e1e4. CSA_CONTROL field - 3 bits
* LOAD_CONTROL_TOP

* START_POP_DOWN

* FINISH_POP_DOWN

* PUSH_CSA

x POP_CSA

* INCREMENT_CSA_BOTTOM

* DECREMENT_CSA_BOTTOM

* NO_CSA_CONTROL (NOP)

341e5. ADDRESS_SOURCE field - 3 bits

The centralized control of the source of the lLeast Significant 64§
bits of the Logical address is contained in the memory monitor. The
individual sources are responsible for monitoring ADDRESS.SPACE and

zeroing out the appropriate Most Significant bits of ADDRESS.PAGE.
This control has moved to the sysbus board.

4. Conditions

Refer to the following table for an enumeration of the memory
monitor conditions.

5« Memory Control Codes

The following table describes the control modes directed by the
memory monitor to the memory boards, and their side affects:

Rational Machines proprietary document DRAFT 3 November 23, 1982



Memory Monitor Specification Microcode Restrictions

When

.26

When active
Condition set Event cleared hillo
MAR_NEAR_TOPOFPAGE ML, LOAD_MAR C1  no LOAD_MAR R
REFRESH Es, U1 early macro ACK_REFRESH H
WRITE_LAST Er mem start (2 no mem start H
PHYSICAL _LAST Er mem start (2 no mem start L
INCOMPLETE_MEMORY_CYCLE
E, event (1 no START_IF_INC H

MAR_MODIFIED Esr event (1 no by testing H
PAGE_CROSSING Es, INC_MAR C1 early micro by testing L
MEMORY_EXCEPTION ML early micro by component L
CACHE_MISS =

{test condition) ML, mem start L2 no mem start i

{MAR state bit) ML, mem start C2 component by testing L
SCAVENGER TRAP =

{test condition) ML, LOAD_MAR (2 no load MAR L

{MAR state bit) ML, mem start L2 component by testing L
CONTRODL_ADDRESS_OUTOF _RANGE =

{test condition) ML, LOAD_MAR (2 no load MAR L

{MAR state bit) ML, mem start (2 component by testing L
CSA_HIT ML, LOAD_MAR {1 no LOAD_MAR H
CORRECTABLE_ERROR¥ ML, READ_ROR CO early micro by testing H
CHECKBIT_ERROR # E, READ_RDR €1 no READ_RDR H
BAD_B8IT_IDD # Es READ_RDR C1 no- READ_RDR H

These refer to the cycle during which the set value of the condition
is available for testing or event posting:

E = Early condition, ML = medium late condition, L - Late condition
CO0 = the cycle of the microorder causing the conditions

C1 = the cycle following the one in which the condition was caused

C2 = the second cycle following the one in which the condition was

caused.

a True value indicates the condition is asserted.

Active Hi/Lo: H
: 2 False value indicates the condition is asserted.

L =

* These conditions are components of the MEMORY_EXCEPTION condition
# - on Sysbus interface Board

. ————— -

6« Microcode Restrictions

Rational Machines proprietary document DRAFT 3 November 23, 1982



Memory Monitor Specification Microcode Restrictions

27

WRITE LAST/

OPERATION CODE QUERY LRU MODIFIED PHYS LAST
PHYSICAL MEMORY WRITE D PHYSICAL PASS PASS 1 1
PHYSICAL MEMORY READ 1 PHYSICAL PASS PASS 0 1
LOGICAL MEMORY WRITE 2 LOGICAL UPDATE SET 1 0

*LOGICAL MEMORY READ 3 LOGICAL UPDATE PASS 0 0
corPY_0_T0_1 A DIAG PASS PASS 1 0
SCAN_D 5 DIAG * % * % D 0
CoPY_1_7T0_0 6 DIAG PASS PASS 1 0
SCAN_1 7 DIAG * % * % 0 0
PHYSICAL_TAG_WRITE 8 PHYSICAL WRITE WRITE 1 1
PHYSICAL_TAG_READ 9 PHYSICAL PASS PASS 5] 1
INIT_MRU A CLEAR -= uyndefined -~ 1 0
TAG_QUERY B LOGICAL PASS PASS 0 0
NAME_QUERY C NAME PASS PASS 1 0.
AVAILABLE _QUERY D AVAIL PASS PASS 0 0
LRU_QUERY E LRU UPDATE PASS 1 0
IDLE F -= hold previous state =-

**x during scan operations, Tag Store 1 is used to save the read datas
therefore the LRU and modified bit fields of tag store 71 are written
with the corresponding data.

1.
2

3.

be

Sa

6a

8.

9

The MAR, RDR, and WDR must be saved by the memory monitor.
LOAD_MAR for next reference can”“t precede READ_RDR for last.

LOAD_WDR must be no later than one cycle after START_WRITE (or
anything that resolves to a START_WRITE).

Both the LOAD_MAR and START_READ microorders must be specified
whenever a DISPATCH or USUALLY_DISPATCH is specified. The
sequencer must be specified as source of the ADDRESS BUS. The
sequencer will abort the start, if it isn®t neededsr but MAR is
destroyed.

FIU must be specified as source of ADDRESS bus during
INCREMENT_MAR.

PHYSICAL_TAG_WRITEs for entire line must follow INITIALIZE_MRU.

The reserved_for_future_use Memory space should never be

referenced.

Micro events should be disabled when playing with the Tag
Store.

A READ_RDR should not be issued following a START_WRITE

Rational Machines proprietary document DRAFT 3 November 23, 19382



Memory Monitor Specification Microcode Restrictions 28

10. START_LASY_COMMAND and INC_MAR_IF_INCOMPLETE should only be
used by MEMORY_EXCEPTION handlers. INCOMPLETE_MEMORY_CYCLE
must be tested in the cycle that issues the START_IF_INCOMPLETE
or INC_MAR_IF_INCOMPLETE in order to select that condition.
Testing also clears the condition.

11. No Memory Start commands can be issued when a RESTORE_MAR is
done. Events must be disabled when doing a RESTORE_MAR; memory
must De 1idle. The space portion of the ADDRESS BUS is driven
from TYPE BUS <60..63>. If the new MAR Random. bits are
originating on the TYP boards they must be routed over the TYPE
bus to the TI bus {(specify TYP ad TI source on the FIU board).
When reading the MAR, the TI and VI buses must be routed to the
TYP and VAL buses {respectively). The random bits may be both
read and loaded at the same time by specifying MAR_MAR as TI_VI
sourcesr, and RESTORE_MAR, which drives the random bits onto the
Ti, and loads them from there.

12. An Event Handler should never return using a cdnditional
return.

13. START_PHYSICAL_TAG_WRITE 1is a three cycle operation. The new
tag value must be written to the WDR no later than cycle 1.
Lycle 2 must be -an idle memory cycle. The cycle following
cycle 2 is the first one in which a memory c¢peration may. be
specified. Events must be disabled during this operation.

14. A conditional start or conditional continue that fails must not
be followed by 2a continue or 2 conditional continue that
succeeds.

15« Control references to memory must not be started during START
POP DOWN. The RDR must not be read in the cycle follouwing
FINISH POP DOWN if there®s any chance the valid data is in the
CSA until the next full memory read completes (i.e., cycle 2 of
the next start read). Memory may be started during FINISH POP
DOWN. No CSA microorder other than NO LSA LONTROL {NOP) may be
issued between START POP DOWN and FINISH POP DOWN.

16. LOAD_CONTROL_TOP must only be specified when memory is either
idle or in cycle 2. Following a LOAD_CONTROL_TCP» RDR must not
be read until a full memory read cycle completes (i.e., cycle 2
of the next start read).

17. Microevents  which abort 1loading of MAR or WDR leave these
registers in an inconsistent state {i.e., memory board copy is
loadeds, while the processor copy is not). These must be made
consistent by successfully loading the MAR or WDR before memory
is started. This is easily done by handlers always loading MAR
before issuing memory starts or reading RDOR {(which might result
in an ERCC event). As long as the  proper timing of
START_IF_INCOMPLETE and RETURN are observed, an interrupted
LOAD_WDR should be reexecuted correctly.

Rational Machines preprietary document DRAFT 3 November 23, 1982



Memory Monitor Specification Microcode Restrictions

18.

19.

20.

21.

22.

23.

24

The memory monitor conditions +table indicates which memory
monitor conditions are positive asserted, and which  are
negative asserted.

If a scavenger trap or out of range memory exception occurs
while writing to memory, data are written even though the
memory exception event is taken. In the latter case {(ocut of
range), the write may be ignored, since no valid data exists
beyond the top of the control stack for a running task. In the
former case {scavenger trap), the handler must undo the write,
if it chooses tor by reading the RDR on the memory board {(which
contains the old contents of memory)s, and writing it to the
offending location. Since the DUMMY_RDR is enabled following a
WRITE, the handler must issue DISABLE_DUMMY_NEXT MAR_CONTROL
random in the cycle prior to reading RDRr to get the old
contents from the memory board. This may cause ERCC events.
The RDR is not loaded during page mode writes, so the RDR 'will
maintain the contents of the first location written during page
mode writes.

DUT OF RANGE condition is testable in the second cycle
following loading of the MAR or the CONTROL TOP.

If you want the FRAME ADDRESS on the VAL bus you must specify
the FIU as VAL bus source. FRAME ADDRESS can”t be read until
CYCLE3 or later of a memory cycle. It must never be read
during cycle 2 of a memory cycle.

The Scavenger Ram is accessed using a bit derived similarly to
WRITE_LAST. 1In order to read or write the scavenger rams this
bit must be set properlyr, using NAME_QUERY to set it to one
(WRITE_LAST) or AVAILABLE_QUERY to set it to zero {READ_LAST).
Neither of these microorders will modify LRU or any other TAG
state. Note: the scavenger ram parity cannot be initialized
under microcode control without disabling parity checking for
both the memory board tag stores and the scavenger rams
themselves.

Testing a MEMORY EXCEPTION component or PAGE_CROSSING condition
during CYCLEZ of a memory reference will cause the
corresponding MAR state bit to get cleared. If events are
enabled, an event will occur in CYCLEZ2, but the MAR state bit
will be cleared, destroying evidence of why the event occurred.
Thus, events must be disabled when testing MEMORY EXCEPTION
component conditions or PAGE CROSSING. Note that
MEMORY_EXCEPTION may be tested without side affects.

MEMORY EXCEPTION components are cleared in the MAR when testeds,
which clears the event, but the test condition is not cleared
until the proper registers are reloaded, or (for CACHE_MISS) a
full memory operation completes.

29

Rational Machines proprietary document DRAFT 3 November 23, 1982



Memory Monitor Specification Microcode Restrictions 30

25. A MEMORY_EXCEPTION 1is posted during cycle 2 of a memory
operation in which cne of these components 1is becoming set
(CACHE_MISS) or is already set (possibly OUTOF_RANGE or
SCAVENGER_TRAP), or in the cycle following the one in which a
RESTORE_MAR sets one of these MAR flag bits.

In the latter casesr, the MAR flag bit may be set while the test
condition is not true. In such casesr, testing the condition
will yield a falser and clear the MAR flag bit, which may not
be what you want. The three memory exception MAR flagss and
the page <crossing flagr are testable from the TYPE_BUS {(they
fall in bits 32..35) independent of the current value of their
respective memory monitor test conditions.

26. READ_MAR must be specified (MAR_MAR in TI_VI_SRC) when the
ACK_REFRESH MEMORY_START microorder is issued.

7« Event Timing and Aborted Operations

The memory board pipelines operation directivesr meaning that the
memory board does not act on a directive {such as a start or an abort)
until the cycle after the microinstruction in which the directive is
issued. Thus, when a start microorder is issued in cycle zeros, it is
latched by the memory board at the end of cycle zero and examined and
executed during cycle one. Memory state changes are committed during
cycle 2. Thus, an operation must be aborted in cycle zero in: order
for the memory state machine to be stopped. Later than cycle zero.,
the state machine must run for its entire cycle before it is available
to accept new commands. An garly abort suppresses the memory finite
state machine such that a new operation may be started immediately.
An early abort is issued to the memory board during cycle 0 and

latched. During cycle 1, the board examines both early abort and the
memory control code and, if the operation is not aborted, initiates
the requested operation. Note that the memory control code must be

held stable during both cycle 0 and cycle 1, or the memory board will
get confused.

Even though the state machine”s timing can“t be altered, state
changes dur to a memory operation may be suppressed during cycle 1,
Such an operation 1is <called a late 2aborts, and turns the current
operation into a read, suppresses writing data to the ram arrays and
suppresses updating the tag store. Late abort is issued to the memory
board during cycle 1 and latched. The memory board only commits state
changes if +the 1latched late abort value allowssr although the RDR is
lost even when the operation is late aborted. RDR is preserved if the
an operation is early aborted.

Since memory is pipelined, up to three operations may be active

at once: an operation may be completing (in cycle 2), another may be
in progress (in cycle 1) and a third may be starting {in cycle 0).

Rational Machines proprietary document DRAFT 3 November 23, 1982



Memory Monitor Specification Event Timing and Aborted Operations = 31

Early and late abort apply to the operation in the appropriate stage
of the pipeline. For example, asserting early abort will abort the
operation in cycle 0, but not affect operations in cycle 1 or cycle 2.
Similarly, 1late abort affacts the operation in <cycle 1, but not
operations in cycle 0 or cycle 2. There is no way to abort an
operation in cycle 2. :

When a conditional memory start is issued, the memory mcaitaf
issues the memory start as it would for an unconditional start, and
asserts early abort is the condition proves false:

microcode: ' resulting action:
if FOO then START_MEMORY_READ;
START_READ ==> if not FOO then
end 1¥f; EARLY_ABORT>
end if;

When a microevent occurss both early and late abort are asserted:
in general, memory can”t be started until the second cycle of the
handler if the event was an early event, since the memory may still be
busSye

When a DISPATCH is issued, the microcode must specify START_READ,
LOAD_MAR, and the sequencer must be the ADDRESS_BUS_SOURCE for both
logical address and space portions. The sequencer supplies the memory
address from the dispatch ram. If no memory operation is required,
the sequencer asserts EARLY_ABORT in the cycle in which the dispatch
was issued.

A USUALLY_DISPATCH is handled similarly, except that, when the
hint proves false, the sequencer asserts LATE_ABORT and stops the
clock for a cycle. The next sequential microinstruction may start
memorys since it is delayed in time one <clocks, 2llowing the - memory
finite state machine to run its full (aborted) cycle.

Rational Machines proprietary document DRAFT 3 November 23, 1982



{ Memory Monitor Specification Table of Contents

»
)
l
r
!
!
r
!
r
!
r
r
r
»
|
l
r
l
i

1.
2a

3.

4.
S.
6.
7

Summary

Table of Lontents

Functional Description
Address Bus

227
2«24

2.3.

2.“
2.5‘

2.6-

2.8.
3.1.

Memory
2e2a1a
222a2.
2e2aba

2alaba
2'- 2.7.
2.2.8.
2‘2'9‘

Address Register

Memory State Field {State)

Fill Mode (FM) and Length {FIU length) Fields
Refresh Lounts

Memory Space Field

Stack Name Field (Segment Number, VPid)

Word displacement field {Page Number, Word)
Bit Dffset Field

Address Arithmetic

Event Handler Considerations

Read Data Register

23210

Error Checking

Write Data Register

Memory
225e1a
2ea5.2a
2e5.3.
2eSeba
Memory
Cabala
2ebala
2-6.3-
2-6.4.
Contel
2.7
2‘7.2‘
2723

Operations

Read Logical

Write Logical

Continue

fonditional Memory References
Management Operations

Tag Value format

Tag Store Addressing

Frame Address

LRU Management

Stack Accelerator Monitor

{ontrol Stack Accelerator Hits
LOAD CONTROL TOP, PUSH/POP and INC/DEC BOT
START_POP_DOKWN and FINISH_POP_DOWN

Scavenger Monitor
Microword Specification
Field Specifications

3a1.2.
3.1.4.
3.1.5.

Conditions
Memory Control Codes

Microcode Restrictions

Event Timing and Aborted DOperations

MEMORY_START field — 5 bits
MAR_CONTROL field - 4 bits
LOAD_WDR = 1 bit

CSA_CONTROL field - 3 bits
ADDRESS_SOURCE field - 3 bits

R N N e e e
VOONVMUUNHUUWNNCGOOVOOO00M NN WN

N k-

NIV N N
&

NN
w W

N NN
[V RV RV, ]

i N
< O

Rational Machines proprietary document DRAFT 3 November 23, 1982



