S3555SSS PPPPPPPP EEEEEEEEEE 0% 0 0 0% of of of o
$5S5SSSSsS PPPPPPPP EEEEEEEEEE {08 0% 0% o 0% 55 48 9
SS PP PP EE Lc
SS PP PP EE ceC
SS PP pP EE cc
SS PP PP EE £c
SS5SS8SS PPPPPPPP EEEEEEEE cC
S5355SsS PPPPPPPP EEEEEEEE e
SS pe EE e
SS PP EE cC
sS PP EE cc
S$S PP EE cC
$S5555S8S8S PP EEEEEEEEEE 0% 58 08 oF o8 08 % 5
$55558sS PP EEEEEEEEEE 198 08 08 08 0% o 01 o
LL ppeppPPPP TITTTITTTITY 44 44
LL PPPPPPPP TITTTTITYIYY 44 4
LL PP PP 7 44 4%
Li PP PP T7T 44 44
LL PP PP TT 1A 44
LL: PP PP IT 44 44
LL PPPPPPPP TT L444544444%
LL PPPPPPPP T7T GLLLGLE04Y
LL PP T7T 44
Li PP 77T 4%
LL PP TT sawa 44
LL PP I7T sene 44
LLLLLLLLLL 'PP T? seas 4‘
IRERERERERN PP T7T eawea 44
START Job SPEC Req #697 for EGB Date 3-Dec-82 2:02:54 Monitor: Rational M

File RM:<MICRO-ARCH.SEQUENCERD>SPEC.LPT.4, created: 21-0ct-82 23:45:44
printed: 3-Dec—82 2:02:54

Job parameters: Reguest created: 3-Dec-82

File parameters: Copy: 1 of 1 Spacing:SINGLE

Forms:zNORM
Print mode:

1253:38 Page limiti??i
File format:ASCII

R!DOO‘Microsequencer Specifications

Braft 3

Rational Machines proprietary document.

Microsequencer Specifications 1

1« Summary

This . document describes the functionality of the Microseguencer board
of the R1000. The specification defines in detail the microcode and
hardware interfaces to the board. The reader 1is assumed to be
familiar with both the R1000 architecture and the specifications of
the other boards in the R1000 processor.

2« Functional Description

The microcode controlling the operation of the R1000 is physically
separated on different boards in the processors, but all of the boards
operate in a2 lock~step fashion. The order of execution of the micro-
instructions. in the R1000 is determined by the microsequencer.

2.1« Branches

The (BRANCH_IYPE) field of the microword determines how the next
micro- address 1is selected. The (BRANCH_YYPE) field also determines
if the next micro-address selection is conditional or wunconditional.
(The condition under test is selected by the {(CONDITION) field of the
microsequencer microworda.)

The (BRANCH_ADDRESS) field in the microword is an absolute branch
addresss, which 1is wused as the next address if the branch is taken.
{(PC+] is pushed onto the micro-stack during a successful call.) The
{BRANCH_ADDRESS) is also selected during unsuccessful conditional
returns and conditional dispatches.

The microsequencer also maintains a2 15 word micro-stack that is used
during micro-calls and returns. {(The stack also maintains addresses
for micro event handler returns.) The (BRANCH_IYPE) field can specify
conditional and unconditional calls and returns, for both selected
condition true and selected condition false.

Rational Machines proprietary document Draft 3 October 21, 1982

Microseguencer Specifications Functional Description 2

The 16 branch types are:

brt

brf

br
cont
callt
callf
call
returnt
returnf
return
dispt
dispf
disp
casef

case_call *

push

-=conditional branch {(branch if true)
-=conditional branch {(branch if false)
--unconditional branch

-=continue (PC + 1)

--conditional call (call if true)

~-=-conditional call {call if false)
-=-unconditional call

~=conditional return {return if true)
--conditional return {return if false)
-=unconditional return

-=-conditional dispatch (dispatch if true)
-=-conditional dispatch {(dispatch if false)
-=-unconditional dispatch

-=jump to the branch address plus the 1lsb 14 bits
--of the FIU_DATA from the last cycle, 1if the
~=the condition is false

--same as the caser except PC + 1 is pushed onto
-=the stackrsand the call is unconditional.
-=-push the branch address onto the micro_stack

{NOTE: The case and case_call branch to an address which is the sum of

the branch
FIU_DATA busa.

address and the 14 1sb“s from the last value on: the
This "last value on the FIU_DATA bus™ is latched in a

register on the microsequencer. This register is neither readable nor

writable.

is therefore necessary to avoid taking micro~events

before a micro—instruction that uses these branch types?)

Rational Machines proprietary document ; Draft 3 October 21, 1982

Microsequencer Specifications Functional Description

The

next micro—address
branch type is shown in the following table.

for

each combination of condition value and

condition value

branch_type true false
brt branch_addr PC + 1
brf PC + 1 branch_addr
br branch_addr branch_addr
cont PL + 1 PC + 1
callt branch_addr PC + 1
callf PC + 1 branch_addr
call branch_addr branch_addr
returnt micro_stack branch
returnf branch micro_stack
return micro_stack micro_stack
dispt decode_ram branch
dispf branch_addr decode_ram
disp decode_ram decode_ram
casef . PL O+ 1 branch_addr +

FIU_data{50:63)
case_call branch_adr + - *
FIU_data(50:63)
push PC + 1% PC + 1
{* =~ For both cases true and false)
Table 2-7: Micro-Address Selection for Branch Types
Since it is useful to remember a condition for several micro-cyclessr

the microsequencer provides a latch that can store the currently
selected condition. The (LAICH) field of the microword specifies for.
each micro-instruction to either remember the previously latched
condition or to latch the currently selected condition. {(This feature
is also useful for branching on late conditions, see below.) The
contents of the latch will be saved a2nd restored on context switches.

Rational Machines proprietary document Draft 3 ODctober 21, 1982

Microsequencer Specifications Functional Description 4

Because of timing some conditions occur early in a micro- cycle and
some occur late. Early conditions may @always be selected for
branches. Late conditions, if selected for a branch conditions must
be followed by a hint. The hint informs the micro-seguencer of the
tested condition”s value {true or false). And the actual condition is
latched at the end of the cycle and tested during the next cycle. 1If
the hint is not correct the micro-seguencer will not execute the
selected micro~instruction, but will take one micro-cycle to calculate
the correct micro—~address. (If both a bad hint and late micro event or
a late macro event occur the harduare will take two micro—=cycles to
calculate the correct next micro—address?!) The (BRANCH_IIMING) field
for the early/late/hint conditions is interpreted as follows:

branch_timing

D 0 branch on the early condition

D 1 branch on the latched condition

1 0 branch on the late condition, hint is true
1 1 branch on the late condition, hint is false

‘Table 2-2: 8ranch Timing

To ease the complexity of the hardware a conditional dispatch true and
a hint false or a conditional dispatch false and a hint true are not
allowed?! (NO RARELY DISPATCHES.)

During a usually dispatch, memory might be started {depending on the
decoding instruction). If the hint is bad, memory is aborted during
the next cycle. When memory is aborted 2 memory read will finish and
a write command will change into a read. Therefore after a usually:
dispatch that is bad the RDR and the MAR may no longer contain wvalid
information.

2e2« Dispatch

During a successful dispatch, the microsequencer will do three things
in hardware:

1. Increment the Macro_pc.
2. Early abort memory if the dispatching instruction does not
require a memory read. {The translator must start a memory

read during every dispatch or conditional dispatch.)

3. Select the next micro—address, based on the current decoding
macro-instruction.

The decode rams have a 3 bit field for each macro instruction that

Rational Machines proprietary document Draft 3 October 21, 1982

Microsequencer Specifications Functional Description 5

selects one of eight possible memory references. (Because a dispatch
can auto~ matically start memory, microcode <c¢an not allow memory
operations to extend across macro~instruction boundaries.) If the
decoded memory start field, in the decode ramss, is not a NOP it is one
of the following memory operations: '

011 CONTROL_READ_LL_DELTA :
Start a control or import read {if bits (3:4) of the
decoding instruction are 0 the read is a import read,
otherwise it”"s a control read). Bits (3:6) of the
decoding instruction are used as the address to the
resolve ram. The stack name portion of the address is
read directly from the resolve ram. The offset
portion of the address is the output of the resolve
rams plus bits (7:15) from the decoding instruction
{Zero extended if the lex lewvel is D or %1, and sign
extended is the lex level is 2-16.).

110 PROGRAM_READ_PL_PLUS_OFFSET
Start a program read. The program address is equal to
the current macro pc plus bits (5:15) ¢from the
~decoding instruction {sign extended).

001 TYPE_READ_TOS_PLUS_FIELD_NUMBER
Start a type read. The stack name portion of the
address is read from bits (0:31) of the TOS_LATCH.
The offset portion of the address is the sum of bits
(37:56) in the TOS_LATCH and bits (8:15) in the
decoding instruction {zero extended).

100 TYPE_READ_TOS_TYPE_LINK
Start a type read. Both the name and offset are read
from the TOS_LATCH (bits {0:31) and {37:58),
respectivelyd.

111 CONTROL_READ_VALUE_ITEM.NAME_AND_FIELD_NUMBER
Start a control read. The name portion of the address
is read from bits (64:95) of +the TOS_LATCH. The
offset portion of the address is bits {8:15) of the
decoding dinstruction (zero extended). {yseful on
module field_reads, module field_exes, etc.)

D10 CONTROL_READ_LONTROL_PRED
Start a control read. The stack name 1is the
current_name register and the offset is the control_
pred register.

000 CONTROL_READ_(INNER-PARAMS)
Start a2 control read. The stack name is the
current_frame name and the offset is the current_frame
offset minus bits (8:15) of the decoding instruction
{zero extended).

Rational Machines broprietary'document Draft 3 October 21, 1982

Microseqguencer Specifications Functional Description é

2.3« Macro Events

If any macro events are pending during a dispatchs. the dispatching
instruction will complete entirely, but the dispatch will not occur.
If the highest priority macro event pending is an early macro the next
micro instruction will be the first micro-instruction of the
corresponding macro event handler. If the highest priority macro
event pending is a late macro event the next micro—-instruction will be
a NOP, followed by the first micro—-instruction of the macro event
handler. If the macro event is TIBUFF_EMPTY the hardware will
automatically start a program read at {macro pc + 1),

All of the macro events are testable as conditions. The macro events
are cleared by some action that is taken during the handler. (All of
the early macros must be cleared at least two cycles before the
handler executes a return).

The macro events and some of the characteristics are:

Early ‘ memory micro
MEMORY /Late priority address address
refresh memory E D 0138
SYSBUS
sysbus_status £ 2 D128
sysbus_packet £ 3 0120
slice_timer £ S 0110
gp_timers E 6 0108
SPARES
spare E 1 0130
spare E 4 0118
spare £ 7 0100
SEQUENCER
CSA_underflow L 8 D178
CSA_overflouw L 9 0170
spare L 10 0168
resoive_ref L 11 0160
TOS_optimization_err L 12 0158
spare L 13 0150
break_class L 14 0148
IBUF_empty L 15 PL+1 0140

{0 is the highest priority event)

Table 2-3: Macro Events

The macro events generated by the sequencer are:

Rational Machines proprietary document Draft 3 Cctober 21, 1982

Microsequencer Specifications Functional Description 7

BREAK_CLASS

CSA_UNDERFLOW

CSA_OVERFLOW

The sequencer <contains a 16 bit register which
specifies 15 break classes. During each dispatch the
break class of the "current instruction™ is decoded.
{There are decode rams on the output of the current
instruction registera. The rams output 3 & bit field
for every instruction. This 4 bit field is either one
of the 15 break classes or it is the "no_break_class™
class.) If the break class of the current instruction
is set 1in the break class register the break_class
macro will occur. {NOTE: To break on every
instruction {except an instruction of the
"no_break_class”™) every bit of the break register must
be set. An instruction of the ™no_break_class™ will
never cause a break class macro, under any
circumstances.)

The conditions necessary for this macro event to occur:
are tested during each dispatch. If the macro event
occurses but the handler for a higher priority macro
event is esxecuted, this macro event is not 1atched
{not remembered). The event will reoccur during the
next dispatch.

Each 1instruction may requires some number of
operands, from 0 to 7, to exist in the control stack
accelerator, before the instruction can execute. If

the dispatching instruction requires more operands in
the CS5A, than currently exist, this macro event
OCCUrSe The handler for this macro event will then
read some number of entries {(probably fourd)s, from the
current top of the control stack not reflected in the
LSA, and write them into the bottom of the (SA. {The
CSA is 1located on both the type and value boards.)
{The decode rams contains a 3 bit field for each macro
instruction, which specifies the number of operands
that the instruction requires in the CS5SA.)

The conditions necessary for this macro event to occur
are tested during each dispatch. If the macro event
occurss but the handler for a higher priority macro
event 1is executeds this macro event is not latched
{not remembered). The event will reoccur during the
next dispatch.

Once the handler has filled the CSA appropriately the
macro event will not occur again. {NOTE: It is
legitimate to change the number of entries in the C3A
during the same micro-instruction that a dispatch is
occuring.)

Each instruction may alsec requires some number of
invalid locationss, from 0 to 3, to exist in the

Rational Machines proprietary document Draft 3 October 21, 1982

Microsequencer Specifications Functional Description 8

control stack accelerators, before the instruction can
execute. If the dispatching instruction requires more
invalid locations in the LSA, than currently exists,
this macro event occurs. The handler for this macro
event will then wuwrite into memory. some number of
entries {probably twod), from the bottom of the C(SA,
into the corresponding addresses in the control stacka.
{The decode ram contains 2 2 bit field for each macro
instruction, which specifies the <complement of the
number of holes that the instruction requires in the
€sa.)

The conditions necessary. for this macro event to occur
are tested during each dispatch. If the macro event
occurss, but the handler for a higher priority macre
event is executeds, this macro event is not latched
{not remembered). The event will reoccur during the
next dispatch.

Once the handler has emptied the CSA appropriately the
macro event will not occur again. {NOTEz It is
legitimate to change the number of entries in the (SA
during the same micro—-instruction that a dispatch is
occuring.)

RESOLVE_REF Any instruction that specifies a 1lex 1level, delta
position in the control stacks, requires that the
current resolve ram registers must contain the offset
of that specific 1lex: level. If the dispatching
instruction reguires a resolve and the specified 1lex
level offset is not valid in the current resolve ram
registers this macro event occurs. The event handler.
for this macro will chase activation states in the
control stack until the offset for the specified lex
level is found.

The conditions necessary for this macro event to occur
are tested during each dispatche I¥f the macro event
occursese but the handler for a higher priority macro
event 1is executed, this macro event is not latched
{not remembered). The event will reoccuyr during the
next¥ dispatch,.

As soon as the handler validates the lex levels in the
resolve ram, corresponding to the dispatching lex
level, the macro event will not occur again.

TOS_OPTIMIZATION_ERROR ~
To optimize the execution speed of some instructions
the sequencer hardware attempts to keep a3 copy of the
current top of the control stack. During the dispatch
cycle of some macro instructions that require a2 memory

Rational Machines proprietary document Draft 3 October 21, 1982

Microsequencer Specifications Functional Description 9

read, based on the address in the T0S, the
microsequencer will start the memory read. If the
micro- sequencer does not have a copy of the current
T0S, and the dispatching instruction requires this
optimization, this macro event will occur. The
handler for this event will copy the current T0S from
the CSA and write it into the TOS_LATCH on the
microsequencer. Once the handler wvalidates the
TOS_LATCH the macro event will not reoccur. {(NOTE: If
the TJOS_LATCH 1is wvalidated during a dispatching
instruction this macro—event will NOT occur.)

The conditions necessary for this macro event to occur
are tested during each dispatch. If the macro event
occurss but the handler for a higher priority macro
event is executed, this macro event is not latched
{not remembered). The event will reoccur during the
next dispatch. ‘ '

IBUFF_EMPTY - The microsequencer keeps a copy of the currently
dispatching word from program segment memory. If the
dispatching instruction is the eighth instruction in
the buffer, and the instruction is not a call, exit,
caser or any unconditicnal branchs this macro event
will occur {(The instructions which do not cause an
ibuff_empty macro event, when they are the eighth in
the buffer, are marked by the IBUFF_FILL bit out of
the instruction decode. See the Instruction Decoder
section.) During the same cycle the hardware will
automatically start a memory read at address {(PC + 1)
in program memory. The handler for the event should
be one instruction which conditionally loads the read
data from memory into the IBUFF {(instruction buffer).,
{the hardware will disable the IBUFF macro event
automatically during any cycle where the IBUFF is
loaded). (The condition is that no other macro event
is occuring. This condition is necessary since the
ibuff load will uwrite over a macro-instruction +that
will not be dispatched if a macro event occurs.)

2e4. Micro Events

Micro events which are early cause the execution of the current micro-
instruction to be stopped. The next micro—instruction executed is a
NOP, and the following micro-instruction 1is the first micro-
instruction of the appropriate event handler {(Each event maps to 2
unique address). Events which are late allow the <current micro-
instruction to complete and inhibit the completion of the next micro-
instruction. The instruction following the inhibited micro-
instruction is the first micro-instruction of the event handler. {(In
either case the micro-PL that is pushed onto the stack is the PL of

Rational Machines proprietary document Draft 3 October 21, 1982

Microsequencer Specifications Functional Description 10

the micro—instruction that was inhibited or stopped.) If both early
and late micro ewvents happen during a micro cycler, the micro
instruction is not completed. And the EARLY EVENT of the highest
priority determines which handler is executed.

When an ewvent is taken the handler address is the address
corresponding to the highest priority event that is currently pending.
{Persistent Events are cleared either when tested or when cleared by a
micro-order. See the individual specs. for details.) ‘

The events can be cleared for one of two possible reasons, either A)
the event will occur again because the micro-instruction that caused
the event to occur will execute again or B) A higher priority event
detects an error that makes the other micro events insignificant (such
as class error). {Since privacy_check is an early event, the privacy
check will be performed again when the micro-code returns from the
handler. The type board allous the microcode to disable this check
for "one check cycle” in the handler.)

During a context switch only the persistent memory events must be
saved. These events, page_crossing and page_fault, are part of the
MAR and will be saved during the context switch. The other persistent
events, the sysbus events, are independent of the currently running
task and do not have to be saved.

Most of the events are testable as conditions and are maskable. The
masks for a micro event can be one of two types; Adthe mask bit is
kept in a register and is readable and writeable by microcode (marked
with a "X in the table below), or B) the mask bit is specified
{somehowr see the spec for the specific board in question) by the
microcode during every micro—-instruction {(marked with a "N” in the
table below). If an action occurs that zauses a micro event which is
masked off, the micro event will not occur until the mask is changed.
(If the micro event is non-persistant it will <clear if another
unmasked event occurs first. The micro event will also clear if it is
tested before the mask is changed.)

Some of the events are specifiablea These events are normally

disabled and are only enabled when specifically selected by the
microcode. {If a specifiable event is not selected it is not

remembered, but it is testable.)

Rational Machines proprietary document Draft 3 October 21, 1982

‘Microsequencer Specifications Functional Description

cond EJL mask specify ity tant addr
MEMORY MONITOR
cache_miss X € 1 X 188
ECC error E 2 190
page_crossing X E 12 X 108
TYPE CHECK ERRORS
class error X E E 5 148
binary_eg_privacy_check X £ E 6 180
binary_op_privacy_check X E E 7 188
Ltos]_op_privacy_check X E £ 8 1C0
{tos-1]_op_privacy_check X E E 9 1C8
SEQUENCER
field_number_error X E E 4 1A0D
S5YS8US
new_packet X L X 12 X 1€E0
new_status X L X 13 X 1£8
break X £ X 0 X 180
SPARES
E ? ? 3 ? 198
1 ? ? 14 ? 100
L ? ? 11 ? 1F0
{Highest priority is zero)
Table 2-4: Micro Events
Some examples of micro events and how they are handled.
10 I1 12 ECC ‘ 12 1322
Read0 Datal handler return : ‘
e |-=--- wan 1--=-- 1----- Jm===e- §===-=- j===-=1
! | 1
i 1 |
v v ¥
ECC_error, Privacy event {Privacy event
privacy_checka. has been cleared. may oOCCuri)

11

prior— persis— micro

{*%* A microcode cycle occurs, but the state change clocks are

inhibited.)

Rational Machines proprietary document Draft 3 October 21, 1982

Microsequencer Specifications Functional Description 12

10 11 ‘ cache_miss privacy
handler return I1 handler
| Eanbinind R dok & ettt BETTEE Rl etiabatal B L LN Rttt Rted
]] | |
i | | 1
v v 1 v
privacy_checks privacy is] I1 is re-
cache_miss. dropped. i executed.
i Privacy_check
| micro occurs
i again.
}
v
RDR is correct.

The microsequencer has 2 one bit microcode field which specifies
during each instruction if micro events are enabled or disabled. The
disabling will +turn off all events, except for ELL errors, which can
never disabled from <the micro-segquencer f{only from the memory
monitor). If micro events are disabled during a micro-instructions, no
early micro event will occur during that cycle {except for ECLC error).
If events are enabled during the following instructions, and the micro
event is persistents the early event will occur during that micro-
cycle. {If +this is undesirable, the micro event can be cleared, by
testing it, before the micro events are enabled again.) If a non-
persistent micro event occurs while interrupts are disabled, it is NOT
remembered.

If a 1late persistant micro event occurs and the following micro-

instruction has events disabled, the micro event will be remembered
and occur as soon as micro events are enabled again.

Rational Machines proprietary document Draft 3 October 2%, 19382

(

Microsequencer Specifications Functional Description 13

An example of timing for disabled micrc events.

This micro-cycle does NOT completer, but may add more
early and/or late micro events to the current outstanding
events.

12 12

events ’
dlsabled NOP handler return
““““““ === | Rttt it Ralndebatninb bt IEPREI by =}=-=-=-1

| 1] i

| | | v

i] i First cycle of handler.

| l v

i | The microsequencer calculates the address

| 1 of the handler, of the highest priority

i i pending micro event {either early or late).

} v

J

|

|

v

Events are disabled and a persistant early micro event occurse.

2e5« Resolve Circuit

The resolve <circuit has sixteen 52 bit registerss, corresponding to
each of the 16 lex levels. 32 bits of the register are stack name
bits {segment number and virtual processor ID) and 20 bits are an
offset. There are also 16 validity bits, one corresponding to each
lex level, which indicates if the contents of each register is valid.

The resolve circuit also contains a current lex level register. {The
architecture and some documents, including this onesr refer to some of
the lex level ram registers by specific names. The lex 1level zero

register 1is importss, the lex level one register is the outer_frame.
The register pointed to by the current lex level is the inner_frame.
The register at the current lex minus one is the enclosing frame (if
the lex level is one, then the inner_f¥frame and enclosing frame are the
sameld.)

During the dispatch of @a macro—-instruction that requires the
resolution of a2 lex level, delta, the resolve circuit will calculate
the control stack address if the lex level is valid. If the lex lewel
is invalid a macro event will be generated. The control stack address
name is the name portion of the register specified by the 1lex level
{{bits 3:6) of the decoding instruction). The offset is the sum of
the offset portion of the specified register and bits (7:15) of +the
decoding instruction ({sign extended if the lex level is greater than
oned.

Microcode has the capabilities to both read and write registers in the
resolve circuit (but can NOT do both during the same cycled. The (LEX
LEVEL ADDRESS) field of the microcode specifies how the resolve
registers are addressed. The sources for the address are current lex-

Rational Machines proprietary document Draft 3 ODctober 2%, 1982

Microseguencer Specifications Functional Description 14

register, incoming 1lex 1level {(bits (124:127) of the seqguencer bus
minus 1), zero, one. {(The addresses can be used for either reads or
writes.) '

Microcode c¢an also change the validity bits. 1In general validity bits
are addressed at the same time the resolve registers are. During any
cycle the addressed wvalidity bit <can be setr cleareds, remain.
unchanged, all the validity bits at a greater lex level can be
cleared, or all the validity bits can be cleared. A three bit 1lex
level wvalidity command control field in the random field determines
the control of the validity bits during each micro-cycle.

The resolve circuit is also used to calculate the control or type
addresses that the sequencer starts during some dispatches (see the
dispatch section). Consequently the lex level address must be set to
the current lex level during dispatches, and the microcycle can NOT be-
writing into the resolve rams.

2.6« Tos_Latch

The (JQS_LAILH) on the microsequencer is used to latch 84 bits of the
sequencer bus. If during the execution of a2 macro—instruction the new
T0S (the control stack) is on the VAL and TYPE bussess the micro code
should read the value onto the sequencer bus and latch it into the
{JOS_LAICH). The (IOS_LAICH) 2lso has an associated wvalidity - bit.
During each successful dispatch the bit is cleared. The bit is set
when the latch is loaded. Some instructions will cause a macro event
if the validity bit is not set. The contents of the TOS_LATCH is used
during the calculation of some of the memory operations that the
sequencer starts during the dispatch of some macro—instructicns (see
the dispatch section). {During a bad hint cycle the wvalidity bit
associated with the tos_latch will be restored to it”s previous
value.)

2.7. Restartable State

For each executing macro—-instruction the microsequencer remembers if
the instruction is restartable and if restartable, the correct
macro_pc to use. If a micro_event handler checks the restartable
state before a context switchs, the amount of state that needs to be
saved <can be minimized. {The restartable state 1is testable as
conditions on the sequencer.) There are two bits of restartable
state. The restartable bit indicates if the macro-instruction is
restartable or not restartable. If the instruction is restartable,
the address bit indicates if the instruction should be restarted at
the current macro_pc or at the current macro_pc minus one. During the
dispatch of each macro-instruction the restartable bhit is set
restartable. During a dispatch that causes a macro event the second
bit is set to at macro pc. {During a bad hint both bits are restored
to their previous value.) The random field contains a two bit field

Rational Machines proprietary document Draft 3 October 21, 1982

Microsequencer Specifications Functional Description - 15

which allows microcode to set the restartable state tos; not
restartable, restartable 3{macro_pc), restartable @i{macro_pc - 1), or
nopa.

(Example: If the cache_miss handler checks the state of these bits it
can detect the case where a cache_miss is taken during a macro event.
The bits would be set +to restartabler, at current macro_pc. By
detecting this cases, the saving of unnecessary micro- state |is
avoided.)

2e8. Micro Stack

The microsequencer maintains a 15 word deep LIFD stack of micro
addresses. Micro addresses are automatically pushed and popped as a
result of some of the branches (call, return), and during events. The
microcode <can also push FIU_DATA{48:63) onto the stack, clear the
stacks read the top items, or pop an item off of the stack. {see the

random field) (The micro stack hardware has no capabilities for

overflow or underflow detection. The microcode must manage the stack
usage to ensure that neither microcode action, or event actions will
cause a underflow or overflow of the stack.) {(NOTE: The fiu_data that
is pushed onto or read the stack is negative logic. All other data
pushed onto or read from the stack is positive logic. These means
that the stack will only work properly if the data that is pushed onto
the stack from the fiu_buss, was read off of the stack wusing the fiu
buss or the data is complemented.)

Every time any item is pushed onto the stack the latched condition is
also pushed onto the stack. This bit of the micro stack is selectable
as a condition. This facility can be wuseful in the following
circumstancess:

1. If a micro event handler uses the condition latch, it doesn”t
need to execute any microcode to save the previously latched
condition. The condition is saved on the micro-stack. To
restore the condition the return instruction should 1latch the
condition ™saved bit from the micro-stack™. {(Notice the save
and restore take no extra micro- cycles.)

2« During a context switch, the latched condition can be sawved on
the micro-stack and restored from the micro—stack, just as in
the above example.

3. A subprogram call that uses the condition latch, but shouldn®t
destroy its value can also restore the condition.

NOTE: Many subprograms will not want to restore the condition latch

upon return. If a subprogram latches a condition (and doesn”t restore
the latchl), it actually returns a boolean to the caller.

Rational Machines proprietary document Draft 3 Dctober 21, 1982

Microsequencer Specifications Functional Description 16

2.9« Field Number Checker

The microsequencer has a comparator for checking field numbers during
the execution of the field ops. If enabled the checker will cause the
field number error micro event. The variant field check compares bits
{(79:88) of the sequencer bus to bits (6:215) of the current
instruction. An unequal comparison will generate the micro event.

2«10. Instruction Decoder

The instruction decode unit on the microseguencer outputs 23 bits of
information about the instruction in the IBUFF ({instruction bufferd,
pointed to by the macro pc. This information is divided into the
following five fields:

1. MEMORY_REF A 3 bit field that indicates the dispatch of this
instruction may need +to start one of seven possible memory
references. {(The memory references that may be started and
their encodings are enumerated in dispatch section.)

2. CSA_VALID A 3 bit field that indicates the number of entries,
from 0 to 7, that must be present in the CSA before the
instruction can successfully execute. (If the CSA does not
have at least that many entries valid a macro event will occur.
See the macro_event section.)

3. CSA_FREE A 2 bit field that indicates the number of locations
in the (SA, from 0 to 3, that must be free before the
instruction can successfully execute. (If the C(SA does not
have at 1least that many free locations a macro event will
occur. See the macro_event section,) {This field of the
decode rams is encoded by <complementing the number of free
locations!)

4o MICRO_ADDR A 14 bit field which is the starting micro—~ address
for the microcode that executes the decoding macro-
instruction.

5« IBUFF_FILL A 1 bit field which indicates if current instruction
does not need a IBUFF_empty macro event to occur if the
macro_pc mod 8, is 7. (For example: call, exit, unconditional
jump, etce) (A minor optimization wused by +the IBUFF_empty
macro event hardware.) (This field is also complemented in the
decode rams.)

HARDWARE NOTE: The decode rams are organized into two banks. The top
bank of rams (1K x 23) address from the top ten bits of the decoding
instruction. The bottom bank of rams {1X x 23) address from the
bottom ten bits of the decoding instruction. TIf the top six bits of
the instruction are zero the bottom bank”s output is enabled otherwise
the top bank is enabled.

Rational Machines proprietary document Draft 3 October 21, 1982

Microseguencer Specifications Functional Description 17

Information is also decoded about the currently executing instruction.
Another set of decode rams examines the currently executing
instruction and decodes its break class. The output is &4 bits of
break_class information. The instruction can belong to one {and only
one) of 15 break_classes {one of which is no break_class). {If the
instruction belongs to a break_class which is currently enabled, a
break_class macro will occur during a dispatch.)

2112 R1000 Processor conditions

The R1000 hardware has 128 testable conditions on the processor. The
conditions come from all of the boards in the processors, except for.
the memory boards. During each cycle, the harduware selects one of the
128 conditions for testing. This condition <can be latched on the
microseqguencer and/or wused to resolve a conditional branch or
conditional memory start. {(If some conditions are selected they will
also <clear the corresponding micro event. This is true of only a few
conditions. See the condition section of each spec for details.) The
microsequencer contains a 7 bit microcode field which selects the
condition during each cycle.

Each ©board in the R1000 produces some multiple of B conditions. The
128 conditions are divided between the hardware as shouwn in the
following table. :

BOARD CONDITION
NUMBER

Value 0000XXX
D001 XXX
0010xXX

Type 00711XxXXxX
0100XXX
07101X%XXX
0110XxXXxX
D111XXX

Microsequencer 1000X%XXX
1001XXX
1010XXX

Combos 10711XXX

Fiu (&Mem_M) 1100XXX
11071 XXX

Sysbus 1110XXX
17111XXX

Table 2-5: R1000 Londition Partioning

The Combo conditions are special combinations between the value board

Rational Machines proprietary document Draft 3 October 21, 1982

Microsequencer Specifications Functional Description 18

and the type board. Combo condition XXX is equal to the logical NAND
of condition DO000XXX and 00711XXX.

The conditions can be divided into three groups; L — late, ML - medium
lates and E - early. The early conditons can be wused as conditions
for conditional branch typess, and don”t require a hint. The medium
late and late conditions require hints if used with conditional branch
types. Only the early or medium 1late conditions <can be used as
conditions for conditional memory references. And believe it or not,
every condition can be 1latched in the microsequencer®s condition
latch.

2«12+ Memory Aborts

The memory monitor and the micro-sequencer have two abort controls of
memorys, early and late abort. The early aborts will prevent a new
memory operation from starting during the current micro—-cycle {without
affecting any memory operations already in progress). The late abort
will stop any memory operation in cycle 1» but will allow cycle O
memory operations {see the memory monitor spec. for the definition of
memory cycles).

The micro-sequencer will set the early abort during bad conditional
memory references, dispatches that don“t start memory, micro events
hiccupsr late macro event hiccupss and all bad hints {(a bad_hint
occurs the cycle after and incorrect hint is specified). The memory
monitor - provides two signals to the micro—-sequencer to identify:
conditional memory referencess memory_ref_is_conditional and
condition_polarity. If the memory reference is conditional and the
current condition doesn“t match the <condition_polarity the micro-
seguence detects a2 bad condition memory reference.

The micro-segquencer sets the 1late abort during bad hints that were
caused by hint dispatches and during micro event hiccups.

2.13. Miscellaneous Registers and other Junk

There are a few other register and function wunits that deserve
honorary mention.

1« CURR_NAME reg. == This register holds the name of the
currently running task (32 bits; vpid and segment). The
register is used when reading the new_offset, control_preds, or
contorl_top registers. The register can be loaded from bits
0231 of the type half of the sequencer bus, when specified in.
the random field. '

2. SAVE_QFFSET reg. == This 20 bit register input is the offset

output of +the resolve circuit. The register is clocked when
specified in the random field. The register should be clocked

Rational Machines proprietary document Draft 3 October 2%, 1982

3.

8.

Microsequencer Specifications Functional Description

during every dispatch, and is used to save the conrol offset
that is used by dispatching instructions that automatically
start a control read. (The register saves offsets during call
and exit instructions.)

CONTROL_PRED reg. == This 20 bit register is used to hold the
offset of the previous mark words (top of the previous frame).
This register is changed during context switch and all frame
changing instructions {(call, exits etc.). The clecking of this
register is specified in the random field.

CONTROL_TOP reg. == This 20 bit register is used to hold the
offset of the top of the current task®s control stack. The
clocking of the register is specified in the random field. (At
macro instruction boundaries this register should contain the
same value the control top register on the memory monitor board
contains.) The regester is increment and decremented every
cycle that a push_control_stack or pop_control_stack
respectively.

CONTROL_MUX == This mux selects between the type bits 37:56 of
the sequencer buss, and bit 37:56 of the fiu bus. The output of
the mux 1is the input +to both the CONTROL_PRED and the
CONTROL_TOP. The select is a field in the random.

MACRO_PC reg. == This 39 bit register (24 bits of segment, 12
bits of offsets, and 3 bits of index) contains the current macro
PCae The <clocking of the segment portion of the macro_pc is
controlled by a random field. The segment peortion of the
macro_pc <can only be loaded from the val have of the sequencer
bus. The offset and index portion of the macro_pc register are
countable. The random field contains 3 two bit mode field
which allouws four control operationss holds, increment,
decrement, and lcad. When loaded +the data comes from the
output of the MACRO_MUX (see below). The random field can also
specify that the macro_pc f{offset and index) and the ibuff
operations are done conditionally <{on +the <current EARLY
condition). If the <condition is FALSE the macro_pc mode is
changed to hold.

RETURN_PL rege == This 39 bit register (24 bits of segment, 12
bits of offset and 3 bits of index) contains the new macro pc,
to use after an exit macro—-instruction is used. The <clocking
of the register is controlled by a random field, and the data
is always the current macro_pc.

BRANCH_ADDER =- This adder is used to calculate the new macro
pcs 1if the dispatching or current macro-instruction is a jump.
{During ibuff macro events the adder will also calculate the
address of the new ibuff.) During dispatches the adder assumes
the dispatching instruction is a jump, and adds the offset and
index of the macro_pc to bits 5:15 of +the dispatching

Rational Machines proprietary document Draft 3 October 271, 1982

Microsequencer Specifications Functional Description

9.

10.

1.

12..

13.

14.

instruction (sign extended). During non-dispatching micro-
instructions the adder adds the macro_pc to bits 5:15 of the
current instruction {sign extended).

MACRO_MUX == This mux selects either the wval half of the

20

sequencer bus or the output of the branch added as input to the

offset and index half of the MACRO_PC. The select is a field
in the random.

CODE_MUX == The <code mux selects between the macro_pcs the
return_pcs and the output of the branch_adder. The output of
the code_mux may by read on the seguencer internal bus, or used

as a code address on the address bus. The select is a field in

the random. (During all dispatchs the random field must select
the output of the branch adder.)

MEMORY_ADDRESS_LOGIC == This logic determines which address to
drive onto the address bus; either from the CODE_MUX or from
the NAME and OFFSET busses. During dispatches that start a
read operation from memory, the select is chosen based. on the
output of the decode rams. During any other micro—-instruction
the select is based on the wvalue of a field in the random.

IBUFF rege —— The instruction buffer holds B8 macro—instructions
(128 bits) and is loadable from the type and val busses only.
The 1load <control is from load_ibuff field of the random. The
cond_load field of the randomr, when specified simultaneously
with the 1load_ibuff random, will only load the ibuff if the
current {early) condition is TRUE.

INSTR_MUX ~-= The instr_mux selects between the currently
selected macro—instruction in the ibuff and bits (48:63) of the
val half of the sequencer bus. The select is determined by the
load_curr_instr field of the random. Loading the current
instruction forces the mux to select the wval half of the
segquencer bus as input to the current instruction register.

CURR_INSTR == The current instruction register is automatically

loaded during every successful dispatch. The register can also
be loaded with data from val bits (48:63) of the sequencer bus
by specifying load_curr_instr field of the random. During ALL
bad hints the curr_instr is restored to it"s previous value.

3. Some Timing Examples

This
eventis.
micro—instruction.

section illustrates some timing examples for branch types and
{Instructions that do not complete are eguivalent to a null
Machine cycles that the hardware inserts, but no

micro-instruction is executed are indicated as nulls.)

Rational Machines proprietary document Draft 3 October 21, 1982

Each

* Microsequencer Specifications Some Timing Examples

microcycle the micro sequencer decides the flow of control based

on the following priorities (highest to lowest):

1a

4o

5a

6a

If the last instruction was a hint {and there were no macro or

micro events), check for correctness. If the hint was wrong
stop actions started by the uwrong hint {such as dispatch memory
starts), stop the current instruction from continuing, and
calculate the new micro—address. {(NOTE: Bad hints only stop
memory operations if the branch type was a dispatch.)

If the last instruction was a bad hint and there were macro
events, micro eventss, or both, stop actions started by the hint
{such as memory starts). Execute a null micro—instruction and
calculate the correct address {(forgetting the events). Then
follow the appropriate set of rules that follow for the
combination of events that occurrad.

. 1If there are any early micro events, stop the instruction from

completing, and push the current micro-address onto the stack.
During the next cycle execute a null and calculate the micro
address of the micro event handler. The next micro—-instruction
is the first instruction of the handler.

If the instruction is a dispatch and there are any early macro
eventss, the next micro—~instruction will be the first micro-
instruction of the macro event handler. ‘

If the instruction is a dispatch and there are only late macro
events, the next instruction is a null. The following micro~-
instruction will be the first instruction of the macro event
handler. :

If the instruction does not fall into one of the above
categories it has the best chance of working properlys and
probably does Jjust what you expecta.

Rational Machines proprietary document Draft 3 October 21, 1982

Microsequencer Specifications Some Timing Examples

Example 1: ™A bad hint on a usually return”

usually
return null

push item
back onto stack

pop stack
bad hint
uPC

Hardware cal
the micro—-ad
the event ha

the micro—address
of the event handler.
Push ID on the stack.

Example 2: "Two persistant micro esvents occur at on
cache_miss SysS_msg
I0 null handler return null “handler
|====- oo | i J aee j=m—me-- === j-—- ==
l i 1 i 1
| | v 1 v
i i First instr. i First
| } "~ of the cache_ i of the
] 1 miss handler.] msg_re
} v i event
] Hardware calculates v
i
|
|
v

Micro-instruction I0, starts

executions, a cache_miss event

{early) and a sys_msg_received

event (late) both occur.

The instruction deoes not

complete. The cache_miss
handler returns.
{(Micro events are
disabled.)

The
han

Rational Machines proprietary document Dra¥ft 3

ce”

return ID

-——m
L]
]
[]
-
]
L
|
i
'
I
—-—
{
|
i

instra.
Sys_

ceived

handler.

culates
dress of
ndler.

SYyS_msSg_rece
dler returns.

The original in-
terrupted micro-
instructon starts
execution again.

22

October 21, 1982

Microsequencer Specifications Microword Specifications

4. Microword Specifications

'BRANCH ADDRESS (14 bits)

14 bits The value of this field is the absolute branch

address.

LATCH {1 bit)

The microsequencer contains a one bit latch whose input is the
currently selected condition. During each micro-instruction a new
value can be latched or the currently latched condition can be.
remembered.

0
1

Don“t change the value of the condition latch.
Latch the selected condition.

BRANCH TYPE (4 bits)

0001 brt conditional branch {(branch if true)

0000 brf conditional branch {branch if false)

0011 br unconditional branch

0110 cont continue (PC + 1)

0101 callt conditional call {(call if true)

0100 callf conditional call {call if false)

0111 call unconditional call

1000 returnt conditional return {return if true)

1001 returnf conditional return (return if false)

1016 return unconditional return

1100 dispt conditional dispatch {dispatch if true)

1101 dispf conditional dispatch {(dispatch if false)

1110 disp unconditional dispatch

1011 casef jump to the branch address plus the 14 1lsb
bits of the FIU_DATA from the last cycle.,
if the condition is false

1111 case_call same as the case,r except PC + 1 is pushed
onto the stacks, and the bdranch is
unconditional

0010 push push the branch address onto the stack

Rational Machines proprietary document Draft 3

23

October 21, 1982

Microsequencer Specifications Microword Specifications 2%

BRANCH TIMING {2 bits)
If a conditiohal branch type is selected, this field indicates

which condition is used as test condition. (The translator default
should be early conditiona.)

00 EARLY CONDITION =-— Test the currently selected early

condition.
01 LATCHED CONDITION -- Use the output of the latch.
10 HINT TRUE == Take the reguested conditional branch.

During the next cycle the hardware will test
the outcome of the previous test condition
and ™undo™ the branch type if incorrect.

11 HINT FALSE -- Do not take the requested conditional
branch. During the next cycle the harduare
will test the outcome of the previous test
condition and take the branch type if
incorrect.

(NOTE: The translator must also set this field to "hint true”

during unconditional branch types.)

PROCESSOR_CONDITIONS (7 bits)

XXXXXXX This field selects the currently tested processor condition.
(See the function description of conditions for a detailed
description of how conditions work. See the condition
section in microcode considerations for the sequencer
generated conditions.)

LEX LEVEL ADDRESS (2 bits)

This field selects the address that is used to address the resolve:
ram.

00 CURRENT_LEX == Use the current lex level.

01 INCOMING_LEX —= Use the value on bits (12&:1275 of the
seguencer bus minus one.

10 1 -- Address the outer frame.

11 0 ==~ Address the import frame.

Rational Machines proprietary document Draft 3 Dctober 21, 1982

Microsequencer Specifications Microword Specifications 25

{NOTE: This field must be set to "CURRENT_LEX™ during dispatches
{conditional or otherwise).)

MICRO EVENT CONTROL (1 bit)

When a micro—instruction disables micro events, no micro eventé can
occur between the previous instruction and the currently executing
instruction. (This disabling includes the page_crossing event.)
{See the micro event section.)

0 DISABLE_ALL_MICROS

1 NOP

INTERNAL SEQUENCER READS (3 bits)

This field determines what data is driven onto the seguencer bus.
{The bit format, and the number of bits per field are indicated
in the right margin, for some of the internal reads.)

000 VAL_TYPE BUS =- Read the val and type busses. {(This
should be the assembler default.)

start end #_bits
111 RESOLVE_OUTPUT
resolve_frame.number 0 23 24
resolve_frame.proc 24 31 8
ZERODS 32 36 5
resolve_offset 37 56 20
LEROS 57 59 3
number_in_the_csakx 60 63 4
ZEROS 64 71 8
code.segment 72 95 24
LEROS 96 108 13
code.offset 109 120 12
code.index 121 123 3
current_lex_level 124 127 4

Rational Machines proprietary document Draft 3 Dctober 21, 1982

Microsequencer Specifications Microword Specifications

101

100

110

CONTROL_PRED

current_name.number
current_name.proc
ZEROS

control_pred

ZEROS
number_in_the_csa**
ZEROS

code.segment

LERDS

code.offset
code.index
current_lex_level

CONTROL_TOP

current_name.number
current_name.proc
ZEROS

control_top

ZERDS
number_in_the_csakx
ZERODS

code.segment

ZEROS

code.offset
codesindex
current_lex_level

SAVE_OFFSET

current_name.number
current_name.proc
LEROS

save_offset

ZEROS
number_in_the_csax*x*
ZEROS

codea.segment

IEROS

code.offset
code.index
current_lex_level

Rational Machines proprietary document

24
32
37
57
80
64
72
96
109
121
124

24
32
37
57
60
64
72
96
109
121
124

24
32
37
57
60
654
72
96
109
121
124

Draft 3

23
31
36
56
59
63
71
95
108
120
123

127

23
31
36
56
59
63
71
95
108
120
123
127

23
31
36

59
63

71

95
108
120
123
127

26

October 21, 1982

Microsequencer Specificatiens Microword Specifications 27

001 CURRENT_INSTRUCTION
current_name.number 0 23 2%
current_name.proc 24 31 8
ZEROS 32 36 5
control_pred 37 56 20
ZEROS 57 59 3
number_in_the _csaxx 60 83 4
ZEROS 64 71 8
code.segment 72 95 24
ZEROS 96 108 13
code.offset (3 msb®s) 109 111 3
current_instruction 112 127 16

010 DECODING_INSTRUCTION
current_name.number 0 23 24
current_name.proc 24 31 8
ZEROS 32 36 5.
save_offset 37 ‘56 20
ZEROS 57 59 3
number_in_the_csa** 60 63 4
ZERDS 64 71 8
code.segment 72 ' 95 24
LEROS 96 108 13
code.offset (3 msb”s) 109 111 3
decoding_instruction 112 127 16

011 TOP_OF_MICRO_STACK
resolve_frame.number 0 23 24
resolve_frame.proc 24 31 B
1EROS 32 36 5
resolve_offset 37 56 20
ZEROS 57 59 3
number_in_the_csax* 60 63 &
code.segment 72 95 24
ZEROS 96 108 13
code.offset (3 msb"s) 109 111 3
top_of_micro_stack 112 127 16

Where codes* is the output of the code_mux. This output
is either the macro_pcsr return_pcs, or the cutput of the branch
adder. The mux selects are determined by the random field.

** The number_in_the_csa is the number valid when the current
cycle starteds, and does not reflect any csa operations that
happen during the current cyclie. This value is not valid during
the two micro—-cycles that follow a micro-instruction that does
a pop_down_to.

Rational Machines proprietary document Draft 3 October 21, 1982

Microsequencer Specifications Microword Specifications 28

RANDOM FIELD (7 bits)

The random field controls the following specified sequencer
operations. The sequencer hardware will allow 128 combinations of
these operations to be programmed into a prom. The least significant
two bits of the random address are used to address the code_mux in
the following manner:

00 macro_pc.segment, macro_pc_address plus current_instr{5..15)
01 macro_pc.segment, macro_pc_address

10 return_pc.segment, macro_pc_address plus current_instr{5..15)
11 return_pc.segment, return_pc_address.

The operations controlled by the random are:

Addr_control (1)

Load_macro_pc_h

Macro_pc_low (2)

Macro_mux (1)

-= This random selects between control or import
memory addresses from the namer offset bus and a code
address from +the code bus. (During dispatches the
hardware will automatically override this field if the
dispatching insitruction needs to start a memory
operation.)

{1

== This random unconditionally 1loads the segment
portion of the macro pc from the val half bits (8:31)
of the sequencer bus.

== This random controls the offset and index portion
of the macro pc. The mode bits work as follows:

0 1 ioad

1 1 increment
0 0 decrement
1 0 hold (nop)

During a cycle that may dispatchs, this random must be
set to nop and the hardware will automatically perform
the increment if +the dispatch is done. If the
cond_load random is set and the current condition is
falsesr the macro pc will hold, regardless of the value
of this random. {The macro_pc is not changed until
the end of the cycle.)

-= This random selects between the val half of the
sequencer bus and the output of the branch adder, as
input to the low hal¥f¥ of the macro pc. If the bit is
set the ouput of the branch adder is selected.

Rational Machines proprietary document Draft 3 Octobgr 21, 1982

Microseguencer Specifications Microword Specifications 29

Load_return_pc (1)
-=- If set the return_pc register will be loaded from
the macro_pc during this cycle. {This random is
active low.)

Load_ibuff (1) ~-- If set the ibuff will be loaded with bits (0:63) of
the typ half of the sequencer bus and (0:63) of the
val half of the sequencer bus. If the Cond_load
random is set the load will only occur if the current
condition is true. (If the load_random is not set the
Cond_load random has no affect on the ibuff.) {This
random is active low.)

Cond_load (1) -= This random affects the operation of the low half
: of the macro pc and the loading of the ibuff. If this
random is set and load_ibuff is setr the load will
only occur if the current condition if true. If this
random is set and the macro_pc_low is set to anything
except hold, the operation will only occur if the
current condition is true. This random <can only be
used in <conjuction with a early condition. (This
random is active low.) ‘

Load_break_mask (1)
-=— I1f this random is set the bdreak mask will be loaded
from bits (32:47) of the val half of the sequencer
buss (This random is active low.)

Control_mux (1) == This random selects between the bits (37:56) of the
type half of the seguencer bus and bit (37:56) of the
fiu bus, as input to the control_top and control_pred
registers. If the random is set the type bits will be
selected.

Load_control_top (1)
-- If this random is st the control_top register will
be loaded from the output of the control_mux. (This
random is active low.)

Load_control_pred (1) ;
== 1f this random is set ¢the control_pred register
will be 1loaded from the output of the control_mux.
(This random is active low.)

Load_save_offset (1)
-— If this random is set the save_offset register will
be loaded from the offset portion of the resolwve
circuit. (This random is active low.)

Load_curr_name {1)

== If this random is set the current_name {curr_name
reg in the block diagram) register will be loaded from

Rational Machines proprietary document Draft 3 October 21, 1982

Microsequencer Specifications Microword Specifications : 30

bits (0:31) of the type half of the seguencer bus..
{This random is active low.)

Load_current_instr (1)
== If this random is set the current_instr register
will be loaded from bits (48:63) of the val half of
the sequencer bus. (This random is active low.)

Push_stack (1) == If this random is set the complement of the data on
bits {48:83) of the fiu bus will be pushed onte the
micro stack. {(This random is active low.)

Pop_stack (1) -= If this random is set the micro stack will pop one
item off of the stack.

Clear_stack (1) -- If this random is set the micro stack will be
cleared. (This random is active low.)

Restartable_contol {(2)
- This random controls the state of the +tuwo
restartable bits as follows:

not restartable

nop

restartable at macro pc
restartable at {macro pc = 1)

gy e X =)
- e O

Load_current_lex (1)
-~ If this random is set the current lex register will
be loaded with the value of bits {60:63) of the val
half of the sequencer bus. (This random is active
low.)

Load_resolve_name (1)
~= I1f this random is set the name half of the resolve
ram will be loaded with the value of bits (0:31) of
the type half of the sequencer bus. (This random is
active low.)

Load_resolve_offset (1) :
-=- 1f +this random 1is set the offset half of the
resolve ram will be loaded with the wvalue of bits
{37:56) of the type half of the sequencer buse. (This
random is active low.)

Lex_validity (3)
-=- This random controls the 14 lex level wvalidity bits
associated with the resolve circuit. The commands are
encoded as follows: :

Rational Machines proprietary document Draft 3 October 21, 1982

Microsequencer Specifications Microuword Specifications 31

0 0 O Clear Lex Level

0 0 1 Set Lex Level

0 1 0 Illegal

0 1 1 Nop

1. 0 0 Llear Greater Than lex LlLewvel
1- 0 1 Illegal

11 0 Illegal

1 1 1 Clear all Lex Levels

The 1lex level wused is determined by the lex level
address field of the microuword.

Validate_tos_optimizer (1)
~= If set the Tos optimizing latch will be walid
during the current cycle. If the cycle doesn”t
perform a dispatch the valid bit will also stay set in
the subsequent cycle.

Check_field_number {1)
-= If set this the field check micro event is enabled
on the micro sequencer.

Disable_macro_events {1)
~-= 1f set macro events are disabled during the current
cycle.

Halt (1) -= If set the current cycle will not complete (no

state will be updated) and control will be transfered
to the diagnostic processor subsystem.

S5« Microcode Tonsiderations

The following subsections detail microcode constraints and
restrictions that are necessary for proper hardware operation,

Rational Machines proprietary document Draft 3 October 21» 1982

Microsequencer Specifications Microcode Considerations 32

5«1« Conditions

The following conditions are selectable on the microsequencers:

1000000 macro_restartable {E)
1000001 restartable_a{(PL-1) {B)
1000010 lex_level_is_import)
1000011 valid_lex™)
1000100 TOS_LATCH_valid™ -LL)
1000101 saved_latched_cond (E)
1000110 previously_latched_cond {£)
1000111 #_entries_in_stack_zero {E)
1001000 ME_CSA_underflou”™)
1001001 ME_CSA_overflou™ L)
1001010 ME_resolve_ref”)
1001011 ME_TO0S_opt_error”™ {1)
1001100 ME_break_class™ v
1001101 ME_ibuff_empty” (L
1001110 spare

1001111 spare

1010000 ME_refresh_memory {E)
1010001 ME_sysbus_status ()
1010010 ME_sysbus_packet (el
1010011 ME_slice_timer (£)
1010100 ME_gp_timer {E)
1010101 Any_early_macro {e)
1010110 spare

1010111 Field_#_error v

macro_restartable

This condition

is true if the current macro

instruction can be restarted {See next condition for.

starting PC).

restartable_a{(pPC-1)
If “"macro_restartable™ is truer this condition is true
if the task should be restarted after the macro pc has
been decremented. {If false the task should be
restarted without changing the macro pc.)

lex_level_is_import
This conditon is false if the currently selected
address to the resolve rams is zero.

TOS_LATCH_valid This <condition is false if the tos_latch is wvalid, or
is currently being validated. :

Rational Machines proprietary document Draft 3 October 21, 1982

Microsequencer Specifications Microcode Considerations 33

saved_latched_cond
This condition is true if the “saved latched bit™ on
the micros stack is currently one. .

previously_latched_cond
This condition is true if the previously latched
condition is true.

#_entries_in_stack_zero :
This condition is true if the micro stack is empty.

ME_CSA_underflouw”
This condition is false if the dispatching of the
decoding instruction would cause a CSA_underflow macro
event.,

ME_CSA_overflouw™ '
This condition is false 4if the dispatching of the
decoding instruction would cause a CSA_overflow macro
event.

ME_resolve_ref” This condition is false if +the dispatching of the
decoding instruction would cause a resolve_ref macro
event.

ME_TOS_opt_error”
This condition is false if the dispatching of the
decoding instruction would cause a TOS_opt_error macro
eventa.

ME_break_class™ This condition is false if +the dispatching of the
decoding instruction would cause a break_class macro
event.

ME_ibuff_empty” This condition is false if the dispatching of the
decoding instruction would cause a ibuff_empty macro
event,

Any_early_macro This condition is true if the dispatching of the
decoding instruction would cause an early macro 2vent.

uE_field_number_error
This condition is true if bits (6:15) of the
current_instruction are equal to bits (15:24) of the
val half of the sequencer bus.

ME_refresh_memory, ME_sysbus_status, ME_sysbus_packet, ME_slice_timer.,
and ME_gp_timer are generated on other boards and should be explained
in the appropriate spec.

Rational Machines proprietary document Draft 3 October 21, 1982

Microsequencer Specifications Microcode Considerations 34
5«2 Context Switch

5«3. Microcode Restrictions

There are certain combinations of microcode fields that are illegal or
at a minimum produce unexpected side effectis.

5.3.1. Branches

Because a dispatch may start a2 memory reference {depending on the
decoding macro—instruction), the following combinations of memory
requests and branches are illegal:

1« An unconditional dispatch and any memory reference.

2. A conditional dispatch on any early condition and any memory
reference. ‘

3. A conditional dispatch with a "usually® hint, and any memory
reference.

Therefore NO <conditional memory references may be started during a
micro-cycle where the branch type field 1is a conditional or
unconditional dispatch.

NOTE: A wusually dispatch may start memory. If the hint is wrong the
memory cycle will be aborted, and the contents of the MAR and the RDR
are destroyed.

Conditional dispatches may not be issued with the following
conditions: lex_level_is_import or valid_lex .

The casef and case_call branch types use the previous value on the
FIU_DATA bus as part of the branch address. The microcoder must
disable all events {macro and micro) during the micro—-instruction that
uses these branch types to ensure that the branch address is correct.

During returns from event handlers, events {(both micro and macro)
should be disabled to allow the stack to remain at 2 reasonable size.

S5e3ea2. Sequencer Address Enables

If the microsequencer 1is driving the address bus with control_pred,
resolve_outputs or control_top the internal seguencer read micro field
should be reading the same register if any are read. {ie.r the
combination SEQUENCER_BUS =:= CONTROL_PRED and ADDR := CONTROL_TOP is
illegal).

Rational Machines proprietary document Draft 3 October 21, 1982

Microsequencer Specifications Microcode Considerations 35

5334 CYA

The are a few other combinations, that are not listed herer, that
produce undesired side effects. The reader is warned not to use them.

Rational Machines proprietary document Draft 3 October 21, 1982

Microsequencer Specifications Table of fontents i

Table of Contents

1« Summary 1
2. Functional Description: 1
2.1+ Branches ’ 1
2.2. Dispatch 4
2«3. Macro Events 3

2.4« Micro Events 9

225 Resolve {ircuit : 13

2‘61 TQS‘LatCh 14

2«7« Restartable State 14

2«8« Micro Stack 15

29 Field Number Checker , 16
210« Instruction Deccder 16
211. R1000 Processor conditions 17
212. Memory Aborts 18
2-13. Miscellaneous Registers and other Junk 18

3. Some Timing Examples 20
4. Microword Specifications 22
S« Microcode Considerations 31
5«1« Londitions 31

5.2. Context Switch , 34

5«3« Microcode Restrictions ' 34
5«3.7. Branches ' 34

53.2. Sequencer Address Enables - 34

5<3.3. CYA 35

Rational Machines proprietary document Draft 3 October 2%, 1982

Microseguencer Specifications Table of Contents

List of Tables

Table 2-1: Micro—-Address Selection for Branch Types

Table 2-2: Branch Timing

Table 2-3: Macro Events

Table 2-4: Micro Events

Table 2-5: R1000 Condition Partioning

Rational Machines proprietary document

Draft 3

ii

T §
o I e O V]

October 21, 1982

