55555555 PPPPPPPP EEEEEEEEEE Leeececee
$SSSSSSSS PPPPPPPP EEEEEEEEEE 0% 9L R 0% oF of o N
SS PP PP EE cC
SS PP PP EE cC
SS pp PP EE cC
SS PP PP £E cc
$555SS PPPPPPPP EEEEEEEE cc
$55S8sSS PPPPPPPP EEEEEEEE L9 o)
S3S PP EE cC
5SS PP EE ce
SS PP EE cC
SS PP EE ceC
$555555S PP EECEEEEEEE {08 of o8 o8 o8 o of o8
SS55558SS PP EEEEEEEEEE 0% o] 0 of of o of
Li PPPPPPPP TTTYTITYYTY 1
Ly PPPPPPPP TITTTYITTTT 11
Ly PP PP TT 1111
LL PP PP TT 1111
LL PP PP TT 11
LL PP PP TT 11
Ly PPPPPPPP TT 11
LL PPPPPPPP T7T 11
LL PP 7T 1
LL PP TY 11
LL PP T enen 11
LLLLLLLLLL pp 17T enasn 111111
LLLLLLiLiy PP 17 snas 111111
START Job SPEC Reqg #702 for EGB Date 3-Dec-82 1:57:21 Monitor: Rational M
File RM:<MICRO~ARCH.SYSBUS>SPEC.LPT.1s created: 21-Sep~82 9:21:24%
printed: 3-Dec—-82 1:57:21

Forms:NORMAL
Print mode:!

1:54:5%4 Page limit:99
File format:ASCII

Job parameters: Request created: 3-Dec-82
File parameters: Lopy: 1 of 1 Spacing:sSINGLE

Functional Speéification of the Sysbus Interface Board

DRAFT 2

Rational Machines proprietary document.

1+ Summary

This document describes the complete functionality of the Sysbus
Interface (S5BI) board for the R1000. The purpose of this specification
is to formally define the operation of the Sysbus board to a3 level of
detail that allows microcoder hardware, and packaging designers to
interface with this board correctly. The reader 1is presumed to be
reasonably familiar with the R1000 architecture and to have access to
the specifications of the other boards for explanations of their:
functionality.

The organization of this document is as follows; Section 2 defines
Sysbus messages and introduces the microcode level protocol for
interprocessor message communication along with the hardware resources
necessary for this communication. Section 3 provides a detailed
definition of the functionality, on a block by block basis, of each
block on the attached block diagram. Section 4 defines the Sysbus
board microword along with its encodings. Section S, discusses the
details of the microcode level transfer protocol ands, along with the
previous section, defines the microcode interface to the Sysbus board
by specifying what hardware resources are available to the microcoder
and the restrictions that are placed on these resources. Section §
discusses the diagnostic. strategies that are employed to debug the
board at both the hardware and microcode 1levels and what hardware
support is available to support these strategies. Finally, section 7
details the issues that concern the hardware and packaging designers
when interfacing to the Sysbus board. These issues include timing
considerationss, chip count and power estimates, and board layout
details.

2« Sysbus Messages and Message Transfers

Sysbus transfers occur as the result of 3 distinct types of processor
activity: cross—-processor memory accesss, Cross—processor package or
task elaboration and cross-processor entry calls. Each of these types
of transfers is mapped onto explicit Sysbus messages by the microcode
and hardware. The maximum number of devices that can be addressed on
a Sysbus is eight. This corresponds to a fully configured R1000
cluster with four Sysbus addresses occupied by RI1000 processors and
four addresses occupied by I/0 adapters (ICA"s). Table 2-1 lists each
device and its address on the sysbus. There is no distinction made in
the Sysbus protocol between processors and I0A"s. In the remainder of
this document, when a reference 1is made to a processors, it also
applies to an IDA unless otherwise noted.

The term "home processor™ is used in the remainder of this document
whenever a sysbus device {processor or IDA) is refering to itself. A
devices “home processor number™ corresponds to its address on the
sysbus {e.g. processor 0°s home processor number is 4).

Rational Machines proprietary document DRAFT 2 September 21, 19382

Sysbus Messages and Message Transfers 2

Table 2-1: Sysbus Addresses

Sysbus Address Sysbus device
0 170 adapter 0 (IO0AD)
1 170 adapter 1 {I0AY1)
2 170 adapter 2 (IDA2)
3 170 adapter 3 {IDA3)
4 Processor O {P0)

5 Processor 1 {P1)
6 Processor 2 {P2)
7 Processor 3

(P3)

2.1« Messages

There are two kinds of sysbus messages. The first kind, a sysbus daila
messagers is a variable sized data transfer between two processors in
an R1000 cluster. In order to meet hardware timing restrictions, these
messages are subdivided into packets. A packet is made up of two
partss the header and the data.

The header is a maximum of B words {(one word equals 128 bits) long and
contains the following information: a from-processor ID {(FROM_PROC), a
to-processor {(TO_PROC), the size of the header in half-words(64 bits)
{HEADER_LENGTH)»,the size of the packet in half-words (PACKET_LENGTH),
the type of the packet (PACKEY_TYPE), possibly a from—task=-ids, a to-
task~ids, and various amounts of other information depending on what
type the packet is. The data part of a packet is a maximum of 64 words
long.

A data message is made up of one or more packet transfers. Each packet
of a data message may be a short packet; there is no hardware
restriction on the length of any packet.

The second kind of Sysbus message is 2 sysbus status pessage. This is
a one half-word message that is used to verify sysbus data messages.
Further discussion of status messages is given in section 2.3 of this
document.

2.2« Buffer Resources
Each processor contains a receive buffer and a transmit buffer for
each of the other addresses in the system making a total of B transmit

and 8 receive buffers on each processor. The receive buffers are used
to receive packets from each of the other processors of the sytem; the

Rational Machines proprietary document DRAFT 2 September 21, 1982

Sysbus Messages and Message Transfers 3

transmit buffers are wused to send packets to each of the other
processors. All transmit and receive buffers are exactly 64 words
longe.

22«1« Receive Buffers

The receive and transmit buffers are numbered to correspond with
device addresses on the Sysbus, from 0 to 7. The receive buffer
corresponding to the home processor {e.g. receive buffer & for
processor (0) is divided 1into 8 sections <c¢alled receix¥sz header
sections. The receive header sections are numbered from 0 to 7 to
correspond to the eight Sysbus addresses. Each section 1is 8 words
long. When @a processor receives a packet from device N, the hardware
puts the header part of the incoming packet into the receive header
section corresponding to that device (i.e. section N) and the data
part of the packet into the corresponding receive buffer.

The receive header section corresponding to the home processor
(e.g. receive header section & for processor 0) is also divided into 8
sections called rgceive status sections. Each of these sections
contains a one half-word status code that is used to send
HOME_PROCESSOR status to each of the other processors, and one half-
word that is not used. The contents of ecach of these receive status
sections is loaded by the microcode with the status of the packet last
received from the corresponding processor. Further discussion of how
packet status is communicated betuween processors is given in Section 5
of this document.

2222« Transmit Buffers

The eight transmit buffers are corganized very much like the receive
buffersa. The transmit buffer corresponding to the home processor is
divided into eight sections <called 1irapsmit bheader seciions. The
transmit header sections are numbered from 0 to 7 to correspond to the
eight sysbus addresses. Each section is 8 words long. When a processor
sends a packet to device N, the processor microcode puts the header
for the outgoing packet into the transmit header section corresponding
to that device (i.e. section N) and the packet data into the
corresponding transmit buffer.

The transmit header section corresponding to the home processor
(e.g. transmit header section & for processor 0) is also divided into
B sections <called 3iransmit st2tus sections. Each of these sections
contains a one half-word status code from each of the other processors
in the system, and one half-word that is not wused. These codes
indicate the status of the 1last packet +that was sent to the
corresponding processor. Further discussion of how packet status is
communicated between processors is given in Section 5 of this
document.

Rational Machines proprietary document DRAFT: 2 September 21, 1982

Sysbus Messages and Message Transfers ’ 4

23« Sysbus Transfers
A normal sysbus transfer consists of the following sequence:

1. Source processor loads header and packet into transmit buffer
for destination processor.

2. Header and data are sent to the corresponding receive huffer on
the destination processore.

3. A status response is sent back to the source buffer indicating
the disposition of the packet.

Sysbus transfers are handled by harduware from the time the packet is
fully loaded into the transmit buffer until it is completely moved
into the appropriate receive buffer. All other packet handling is
performed by microcode.

Each processor maintains three status bits for each of the other 7
processors in the system. These bits are:

SYSBUS_RECEIVE Indicates that the receive buffer for the
corresponding processor is not empty.

SYSBUS_TRANSMIT Indicates that the transmit buffer for the
corresponding processor is not emptyr, or that a status
reponse has not yet been received for the last packet
sent.

STATUS_RECEIVE 1Indicates that a status message was received from the
corresponding processor.

When processor S {source processor) sends a packet to processor D
{destination processor), the microcode on S loads the packet into. the
transmit buffer and transmit header section that correspond to D, then
sets the SYSBUS_TRANSMIT bit that corresponds to D. The hardware sends
the packet to the receive buffer on processor D that corresponds to 5,
sets S5°s SYSBUS_RECEIVE bit on D, and generates a NEW_PACKET micro
event on D. A TRANSFER_COMPLETE micro—event is generated on processor
Se This event will probably be disabled, but is implemented to allow
double-buffering of transmit buffers. Since more transfers could have
been initiated before the TRANSFER_COMPLETE 1is generateds the
processor number of D can be read in the micro—event handler.

The NEW_PACKET micro-event does not currently perform any major
function. It exists primarily to provide flexibility fer future.
implementations and improvements of the transfer protocol. Examination
of the SYSBUS_RECEIVE bits and processing of the receive buffers is
deferred wuntil +the SYSBUS_PACKEYT macro event.. Posting of the
SYSBUS_PACKET event is performed by the NEW_PACKET micro-event.

Rational Machines proprietary document DRAFT 2 September 21, 1982

Sysbus Messages and Message Transfers 5

When macro—events are next enabled (either at a dispatch or explicitly
by microcode in some very long microroutine), the SYSBUS_PACKET event -
handler examines the SYSBUS_RECEIVE bits - to determine which
processor{s) it has received packets from. When the packet in receiwve
buffer 3 is sufficiently processed to determine the appropriate
response to the message, the SYSBUS_RECEIVE bit corresponding to that
buffer is cleared and a one half-word status code is uwritten into the
RECEIVE_STATUS section that corresponds to processor S. The microcode
on D then issues a SEND_STATUS command and the hardware moves the
status code from the receive header section on D into the appropriate
TRANSMIT_STATUS section on S. g

When the hardware on processor S receives the status message from D,
it sets the STATUS_RECEIVE bit corresponding to D and generates a
NEW_STATUS micro-event. The NEW_STATUS event handler does not
currently perform any major function. It exists primarily to provide
flexibility for future implementations and improvements of the
transfer protocol. Examination of the STATUS_RECEIVE bits and
processing of the status message <code 1is deferred until the
SYSBUS_STATUS macro event. Posting of the SYSBUS_STATUS event is
performed by the NEW_STATUS micro-event handler. ‘

When this macro~event is taken by S, the SYSBUS_STATUS handler will
determine the number of the processor which responded and examine the
status code that was sent. When the status code for D is processed,
the microcode on S resets the SYSBUS_TRANSMIT bit corresponding to
processor D to indicate that D”s transmit buffer is no longer busysr
this Sysbus transaction is complete and the buffer may be used to
transmit ancther packet to D.

2e4. Error Handling

The Syshbus control logic and microcode <can detect and respond +to
various errors which occur during a Sysbus transfer. The primary
mechanism for this is a hardware Negative Acknowledge {(NAK) signal
between nodes on the Sysbus. Both transmit and receive nodes will
constantly monitor NAK during a transfer. 1If the either node detects
an error {such as parity or incorrect message length) it will assert
NAK and abort transfer activity. A set of error identification lines
will be driven with a code indicating the nature of the error. The
sending processor will then generate 2 TRANSFER_COMPLETE micro—event
with an error flag setr and await a status response from the
destination noder if NAK was activated by the receiver. This response
will describe the error in greater detail, which will allow the
microcode to make a3 decision whether to retry the transmission.

Timeouts are at the discretion of the microcode. These can be
implemented either by proper setup of one of the on-board timers, or
through the use of microcode loops. No timing checks are made by the
hardware during bus arbitration or message transfer. However, if the
receiving processor does not respond with 2 positive acknowledgement

Rational Machines proprietary document DRAFT 2 September 21, 1982

Sysbus Messages and Message Transfers 6

(PAK) within one bus cycle of transmission of the last word of the
packets, the TRANSFER_COMPLETE (with error) micro-event will be issued.
Since an error of this type could possibility preclude the receiving
processor from issuing a status response, the microcode should timeout
if the TRANSFER_COMPLETE micro—event is disabled.

During bus transmissions the hardware is also monitoring a set of
check=lines on the bus to determine if any other node is attempting to
drive the bus. If it is detected that there is bus contention, the
transfer will be immediately aborted, and a TRANSFER_COMPLETE (with
error) micro—-event generated.

3« Block Diagram Functional Definition

This section references the block diagram of the Sysbus board attached
to this document. The functionality of each block in the diagram is
discussed in detail in the following sections.

3«1+« Sysbus

The Sysbus is the medium through which 2all interprocessor
communication and data pass. Input/Output operations alsoc are
performed over +the Sysbus, since the 170 adapters are considered as
processors for the purpose of this description. The Sysbus is etched
on the R1000 backplanesr and is connected only to the Sysbus Interface
board of each processor and each 170 adapter. It is driven by
standard Schottky tri-state TTL(data lines), and TTL open—-collector
{control lines) Termination is supplied by plug—ons to the backplane
{if needed). Etch 1lengths are kept to an absolute minimum on each
board, so that a calculated backplane trace impedance of 92 ohms
should yield little impedance mismatch (and associated reflections and
ringing). Logically the Sysbus consists of:

64 signal lines

8 byte parity lines

(8 priority arbitration/processor identification lines)x

status priority line

negative acknowledgment {(NAK) line

positive acknowledgment {PAK) line

BUS_BUSY 1line

error-id lines

* Priority lines may have to be timeshared on the signal lines, in
which case a 3 line processor id scheme would be used.

TN st wd il weh

Processor addresses are embedded in the packet header data and decoded.
by harduare.

Rational Machines proprietary document DRAFT 2 September 21, 1982

Block Diagram Functional Definition 7

A processor can gain control of the Sysbus by exercising a successful
bide Arbitration is performed via a modified rotating daisy chain
method. This method increments the priority of each processor at each
bid. A successful bidder has his priority rotated to zero {lowest).,
and the non—bidding processor with the highest priority is changed to
3@ priority that is one greater the winning bidder. This allows non-
bidding processors with high priorities to remain relatively high,
while also giving lower priority processors an opportunity to move upa.
Bidding <can occur in any cycle when the bus is not busy. The winming
processor 1is obligated to drive the BU5S_BUSY line the cycle
immediately following the bid, or else bus contention could result,

One extra bid line is provided for high priority responses. It should
only be wused by processors attempting to access the bus for 'a status
response to a previously transmitted message. If activated by one or.
more processorss all bidders not sending status responses are removed
from the bid lines, and arbitration 1is only among the processors
driving the status bid line. This mechanism allouws fast completion of
macro—-level transactions on a heavily loaded systen.

Once a processor has control of the bus, it immediately begins sending
header information. It also activates the BUS_BUSY liner and drives
its® decoded physical processor number onto the priority lines.
Although a processor can drive any of the priority lines during a bid
cycle depending on his rotated priorityr the processor number is
constant during the powered-up life of the R1000. Thus, by constantly
monitoring these 1lines during a bus transaction, a processor will be
able to detect one of several error conditions. If a processor 1in
control of the bus sees any but its” own line activated, it will
immediately terminate the transfer and report an error %to a micro-
handler.

Processors must also monitor the Negative Acknowledgment (NAK) 1line
during the transfer. If either node detects a parity errors incorrect
lengths, or some other error, it will activate NAK. This will abort
bus activityr, and a 2 bit code will be placed on the error id lines.
If possible, the detecting node will prepare a status message with
more information on the error. If the transfer terminates normally,
Positive Acknouwledgment {PAX) should be asserted. The source
processor will expect PAK to be active one cycle following the last
word transfer, and will report an error to the microcode if otheruise.

The 8 priority lines, the status priority liner, NAK, PAK, and BUS_BUSY
are all open—collector lines driven by all processors in the system.
3«2« Sysbus Buffer

The principal resource for storing and receiving data on the Sysbus is
the Sysbus Buffer. The buffer is 1024 words long and 128 bits wides

constructed of 32 1KX4 static memory chips. Its” bidirectional 1I/0
lines can be accessed by either the processor®™s TYPE and VAL busessr or

Rational Machines proprietary document DRAFT 2 September 21, 1982

Block Diagram Functional Definition 8

the Sysbus itself. Reads and writes from the Sysbus, and reads to the
TYP and VAL buses are pipelined through one level of registers,
Writes to the buffer from +the TYPE and VAL buses are performed
directly.

The buffer can be accessed by both the Sysbus and the processor in the
same cycle. This is accomplished by dividing each cycle into tuwo
partss with the Sysbus controlling the buffer in the first half, and
the processor in control during the second. Any combination of reads
and writes can be doner with Sysbus data transferred via registers,
and processor read data loaded into a register. Standard R1000 error
checking is performed on all data +to and from the processor. On
transfers to the Sysbuss parity is checked or generated on each byte.

Since the buffer 1is 128 bits wider, and the Sysbus only contains 64
bitss each buffer read or write requires two Sysbus cycles. This
alternating access is performed automatically by the hardware.

3.201« Buffer Addressing

The buffer is initially divided into 2 halves of 512 words each: one
for received data and one for transmitted data. Each of these bhalves
is further subdivided 1into individual buffer spaces of 64 words for
each of the B processors in the system. The buffer assigned to each
processor. itself {(the home processor) is used for storage of header
information. Within this header area, 8 words are allocated to each
processor in the system. The home processor’s area is used for status
words for each other processor. For each type of accesss, the buffer:
address breaks down as follows:

- ——— " - N - T 1 - - — T - - -

| T/ } Remote Proc #} Buffef Word # |
] RT 1 {3 Bits) 4 {6 Bits) ' 1
0 1 4 9

This format addresses a specific word in the transmit or receive
buffer of 2 given processor.

. — . T D S Y W - - - - — - . - -

] Home Proc #] Remote Proé #i Header Word #}
i {3 Bits)] {3 Bits) i {3 8its) i

. - D - ——— - D > W N W YD D T A S A B A UD T WD e Wl D

This format is used for addressing a header word for a remote
processor. The Home processor number is set in hardware and is not
normally accessible to the microcode.

Rational Machines proprietary document DRAFT 2 September 21, 1982

Y D - D D Y - D W T D - - - N - — . T W Y N -

] 7/ | Home Proc # | Home Proc # | Remote Proc #}
1 RT] {3 Bits) i {3 Bits)] (3 Bits) i

- - - - - - - - - - ——

0 1 4 7 9

This third format addresses the status of 2 remote processor.

These addressing formats are transparent to the microcode, which
simply specifies which type of buffer storage to access (datar, header,
or status), a processor number {which is set in 2a register), and
whether to address transmit or receive information., For the first two
formats, an address offset counter must also be set to an initial
value, from which it <can be incremented to access successive
locations. '

The buffer can also be addressed directly by an address counter of 10
bits, which is settable under microcode control from the VAL bus.
This counter can then be incremented as the buffer is accessed. This
feature would normally be used for diagnostic purposes only.

3.3« Sysbus Control
leaba Bus Interfaces

3ebale V2l and Type Busses

The Sysbus connects to the Vval and Type buses via transceivers which
also 1link to Internal Val and Internal Type buses. These buses are
used as input to the error correction circuits, as I/0 to the dummy
RDR,s and as 170 for buffer data. During reads from the buffer to the
Internal buses, 2 pipeline register is used. Data to be written into
the buffer memory is driven directly from the IVAL and ITYPE buses
onto the buffer®s bidirectional I/0 lines.

3abale Sysbus

Since the Sysbus is 64 bits wide and the buffer contains 128 bits,
data must be registered in and out of storage. Two 64 bit registers
capture data read out of the buffer and drive out onto 2 64 bit
internal bus {SOBUS). The SOBUS 1is driven directly out onto the
SYSBUS. Data coming in from the Sysbus 1is placed onto another
internal bus {SIBUS) which is driven onto the low or high %4 bits of
the buffer®s I/0 lines. Parity is checked on data from +the Sysbus

Rational Machines proprietary document DRAFT 2 September 2%, 1982

Block Diagram Functional Definition 10

when it is the SIBUS. A separate 8 bit parity register sits on the
Sysbus for latching the parity bits for checking.

3.5. Timers
3.6« Error CLhecking and Lorrection

3.6.1. Error Checking Theory

The error code implemented on the Sysbus board is a modified Hamming
code that <can correct single=~bit errors and detect all double-bit
errors {and some other multi-bit errors) on a 128-bit word. This
requires an extra 9 bits to be added to the word in storage for check
code bits. When a word is written to memory, the 128-bit value
presented on the TYPE and VAL buses is parity-checked owver 9 different
groups of 64 bits each. These 9 parity values become the check=bits
to be stored into memory. When read out of memory, the same bits are
parity—-checked agains, and the result 9 check—-bits compared against
those read from memory. If the two values matchs, there is no errors
but if different an error exists. The parity of the exclusive-0OR of
the two values {(called the syndrome) indicates whether the result is a
single-bit or double-bit error. The syndrome of a single-bit error
can be decoded to indicate which bit is in error. This result is then
passed to the microcoder which corrects the bad bit and rewrites the
good value to memory, as well as passing it on to the requesting
microroutine. AR double-bit error is flagged as uncorrectable, and a
machine check results.,

Tables 3=1 through 3~4 detail the bits used in the generation of check
bits.

326.2. Error Correction Implementation:

Error correction check bits are generated by running the data bits
through two levels of parity generators. In theory, each data bit
will go to either 3 or 5 different parity groups. However, due to the
fact that the code is designed <to yield byte parity, and careful
assignment of bits, several of the intermediate parity terms can be
used more than once. Thus, the first level of parity generators for
each check bit may vary from 4 to 8 chips each.

Sixteen of the intermediate parity terms provide byte parity for the
VAL and TYPE busess which are driven out ¢to the backplane on bus
sourcing cycless, or compared %o the driven bits during bus reads. The
ECC check bits are driven to the check bit bus on memory writes. On a
memory reads, the check bits are actually syndrome bits (0Old_check_bits
XOR New_check_bits), and are input to a PROM and a NAND checker. If
any syndrome bit is non~zero, an ELC error is indicated by. the NAND

Rational Machines proprietary document DRAFT 2 September 21, 1982

Block Diagram Functional Definition 11

Table 3-1: Error Correction - VAL Bits 0:3%1

{Check

VAL {git #
Data |
Bit # | 0 1 2 3 4 5 6 7 3
0 | X X X
1] X X X
2 1 X X X
3 i X X X
4 | X X X

5 | X X X

6 i X X X

7] X X X

8 | X X X
9] X X X
10] X X X

11 } X X X
12 ! X X X

13] X X X
14] X X X

15 i X X X

16 1 X X X
17 i X X X
18] X X X

19] X X X
20 | X X X

21 i X X X

22 | X X X

23 i X X X

24 | X X X

25 1 X X X

26] X X X

27 i X X X
28 | X X X
29 i X X X

30 i X X X

31 } X X X

(X indicates data bit participates in XOR generation of check bit)

Rational Machines proprietary document DRAFT 2 September 21, 1982

Block Diagram Functional Definition

12

Table 3-2: €rror Correction - VAL Bits 32:63

> >4
M X ¢ > X

>
>
PO B X D M M X

> M X X

A 4
KOG K

DE M DK S D S B M D I D D D M M B DK M DK DK KM M XK M DM MM R
>
>

&
[+]
DM OB D D M M DI P MM X I M I DK P DD DD DD MM X M X

Rational Machines proprietary document

5 6 7 8
X X X
X X X
X X X
X X
X
X X
X X
X X
X X
X
X
X
X
X
X
X X
X X
X X
X
X X
X X
X
X
X X
X X
X X
X
X X X
X X
X X
X X
DRAFTY 2 September 21, 1982

Block Diagram Functional Definition

13

Table 3-3: Error Correction - TYPE Bits 0:31
jCheck
TYPE |Bit #
Data |
Bit # | 0 1 2 3 A S) 7 8
00] X X X X X
01 | X X X X X
02] X X X X X
03 i X X X X X
04 1 X X X X X
05 | X X X X X
06 i X X X X X
07 i X X X X X
08] X X X X X
09] X X X X X
10 | X X X , X X
11 1 X X X X X
12 1 X X X X i
13] X X X X X
14] X X X X X
15 i X X X X X
16 X X X X X
17] X X X X X
18] X X X X X
19] X X X X X
20 i X X X X X
21] X X X X X
22 } X X X X X
23 i X X X X X
24 1 X X X X X
25] X X X X X
26 i X X X X X
27 } X X X X X
28 i X X X X X
29 1 X X X X X
30 i X X X X X
31 } X X X X X
Rational Machines proprietary document DRAFT 2 September 21, 1982

Block Diagram Functional Definition

14

Table 3-4: Error Lorrection - TYPE Bits 32:63

TYPE]JCheck
Data |Bit #

Bit # |) 1 2 3 4 5 é 7 8
32 | X X X X X
33 1 X X X X X
34 1 X X X X X
35 i X X X X X
36 i X X X X X
37] X X X X X
38 i X X X X X
39] X X X X X
40 i X X X X X
41 i X X X X X
42 i X X X X X
43 i X X X X X
44 i X X X X X
45 1 X X X X X
46 { X X X X X
&7 | X X X X X
48 i X X X X X
49 i X X X X X
50] X X X X X
51 | X X X X~ X
52 } X X X X X
53 | X X X X X
54 } X X X X X
55 l X X X X X
56] X X X X X
57] X X X X X
53] X X X X X
59 i X X X X X
60] X X X X X
61 | X X X X X
62] X X X X X
63 i X X X X X

Rational Machines proprietary document DRAFT 2 September 21, 1982

Block Diagram Functional Definition 15

check, and the PROM outputs indicate the bit_in_error for a single-bit
error. One of the PROM outputs shows that 2 multiple bit error has
occurreds unless both the bit_in_error is 127 (21l 1°s) and the multi-
bit error signal is truer in which <case a check=bit error has
occurred.. Check=bit errors are not corrected, but instead the data
word is rewritten with a new check code.

Any of the error types will generate a micro-event. This ewvent can be
disabled by the microcoder such as when the dummy RDR or the CSA is
being socurced to the buses.

A diagnostic feature is available to allow the microcode to specify
the 9 bit check code to be written to memory. This can be wused for

memory tests or generating known memory errors. The register for this
feature is loadable from the VAL bus.

3«7« Llock Distribution

4. Microword Description
4.1« Microword Field Definition
The microword used to control the SYSBUS appears as follows:

ADDR_MODE (2 bits)

00 Index by LOCAL_PROC register
01 Direct

10 Priority

11 Undefined

DATA_GROUP (3 bits)

000 Buffer

001 Header

010 Status Word

011 Flag display

100 Flag set

101 Flag clear

110 STATUS_RESPONSE flag
111 NOP

ACCESS_MODE (1 bit)

0 " Read or Receive {see context notes)
1 Write or Transmit {see context notes)

Rational Machines proprietary document DRAFT 2 September 21, 1982

Microword Description 16

GENERAL_CONTROL (5 bits)

00000 ‘Read HOME_PROL value
00001 Write HOME_PROC value (diagnostic function only)
00010 NOP

00011 NOP

00100 Read LOCAL_PROC wvalue
00101 Write LOCAL_PROC value
00110 Increment LOCAL_PROC value
001N NOP

01000 Read BUFFER_ADDR_REG
01001 Write BUFFER_ADDR_REG
01010 Increment BUFFER_ADDR_REG
01011 Decrement BUFFER_ADDR_REG
01100 Clear Sysbus Packet Event
01101 Clear Sysbus Status Event
01110 Clear Slice Timer Event
01111 Clear GP Timer Event
10000 Load Slice Timer

10001 Read Slice Timer

10010 Enable Slice Timer

10011 Inhibit Slice Timer

10100 Load GP Timer

10101 Read GP Timer

10110 Enable GP Timer

10111 Inhibit GP Timer

11000 Read Micro—-event Mask
11001 Load Micro—-event Mask
11010 NOP

11011 NOP

11100 Load Check-bit Register
11101 NOP

11110 Send STATUS_RESPONSE

11111 def NOP

TYPE_VAL_BUS_SOURCE (4 bits)

TYPE_BUS_SOURLE VALUE_BUS_SOURCE
DG00 TYPE board VALUE board
0001 TYPE board FIU board
D010 FIU board VALUE board
0011 FIU board FIU board
0100 MEMORY board MEMORY board
0101 SYSBUS board SYSBUS board
0110 MICRDSEQUENCER board MICROSEQUENCER board
0111 TYPE board MEMORY board
1000 FIU board MEMORY board
1001 NOP
1010 NOP
1011 NOP

Rational Machines proprietary document DRAFT 2 September 21, 1982

Microword Description 17

1100
1101
1110
1111

NOP

NOP

NOP

all boards disabled from driving the TYPE, VA
FIU busses

FIU_BUS_SOURCE (2 bits)

00
01
10
11

FIU board

VALUE board

TYPE board
MICROSEQUENCER board

ADDR_BUS_SOURCE (2 bits)

00
01
10
11

LOAD_WDR (1 bit)

FIU board

VALUE board

TYPE board
MICROSEQUENCER Board

BREAK_POINT (1 bit)

4.2. Microuword Field Context

Following are

the interpretations of the ACCESS_MODE and ADDR_MODE

fields for each of the group contexts:

Buffer Space {000)

ACCESS_MODE=0: Read from buffer

ACCESS_MODE=1: Write to buffer

ADDR_MODE=Index (00): Address buffer using LOCAL_PROC
register. HWrites occur to the associated transmit
buffersr reads from the receive buffer.
ADDR_MODE=Direct {01): Address buffer using
BUFFER_ADDR_REGISTER. Writes or reads may be to any
location.

ADDR_MODE=Priority (10): NfA. Undefined.

Header Block (001)

ACCESS_MODE=0: Read from receive header
ACCESS_MDDE=1: Write to transmit header
ADDR_MODE=Index {00): Address header of LOCAL_PROC
ADDR_MODE=Direct {(01): N/A

ADDR_MODE=Priority (10): N/A

Status Word {(J10)

ACCESS_MODE=0: Read received status word

Rational Machines proprietary document DRAFY 2 September 21, 1982

Microword Description 18

ACCESS_MODE=1: Write transmitted status word
ADDRESS MODE=Index (000):. Access status of LOCAL_PROC

ADDR_MODE=Direct (001): N/A
ADDR_MODE=Priority (010): N/A

Flag display {011)

ACCESS_MODE=0: Access receive flag

" ACCESS_MODE=1: Access transmit flag
ADDR_MODE=Index (000): Place status bit of LOCAL_PROC
onto VAL{63)
ADDR_MODE=Direct (0D1): Place status bits of all
processor buffers onto VAL{56:63)
ADDR_MODE=Pricority (070): Place status bit of highest
numbered active processor onto VAL{60), and processor
number onto VAL(51:63). If no processor has an active
flag, VALL{A0)=0 and VAL(61:63) are indeterminate.
ACCESS_MODE=1 will display number of highest processor
generating TRANSFER_COMPLETE. VAL(57) indicates an
error condition, with VYAL{S8:259) containing the error
code.

Flag set {(100) ACCESS_MODE=0: Access receive flag
ACCESS_MODE=1: Access transmit flag
ADDR_MODE=Index (000): Set status bit of LOCAL_PROC
ADDR_MODE=Direct (001): Set status bits of all
processors to value on VAL(56:63)
ADDR_MODE=Priority (D30): N7/A

Flag clear (101)
ACCESS_MODE=0:z Access receive flag
ACCESS_MODE=1: Access transmit flag
ADDR_MODE=Index (000): Set status bit of LOCAL_PROC
ADDR_MODE=Direct (001): Set status bits of all
processors to value on VAL{56:63)
ADDR_MODE=Priority {(010)z N/A

STATUS_RESPONSE flag (110)
ACCESS_MODE=0: Read flag(s)
ACCESS_MODE=1: (lear flagis)
ADDR_MODE=Index (00): Access STATUS_RESPONSE flag of
LOCAL_PROC
ADDR_MODE=Direct (01): Access STATUS_RESPONSE flags
of all processors. Rasads placte the flags onto the
Low-order bits of VAL.
"ADDR_MODE=Priority {(10): No action if ACCESS_MODE=1,
I¥f ACCESS_MODE=0, places STATUS_RESPONSE flag of
highest numbered active processor onto VAL{60) and
processor number on VAL{61:63). 1If there is no active
processors, VAL{60) will be 0.

Rational Machines proprietary document DRAFT 2 September 21, 1982

Microcode Usage 19

5« Microcode Usage

S5«1« Buffer Operations

The primary method of accessing the buffer will be with the Index
Mode. For transmits, the LOCAL_PROC register would be loaded from the
VAL bus with a processor number determined by a microroutine wuwhich
translated a Virtual Processor ID to a physical processor. Header
information would then be loaded with GROUP=Header and Index Mode.
The individual words in the header would be indicated by the wvalue in
the Buffer_Address_Register, which can be loaded and incremented by a
General_Control micro—-order. The packet data can then be loaded in
the same manner with Group=Buffer_Space. When the packet is fully
entereds it <can then be transferred by ACCESS=Transmit, GROUP=Flag
Set, which will cause the Sysbus logic to begin the interprocessor
transfer. When it is determined that the transfer is complete, either
through the TRANSFER_COMPLETE micro~-event or a SYSBUS_STATUS macro-~
events, GROUP=Flag_Clear will reset the transmit-busy flag.lNote:
After a SYSBUS_STATUS event, the STATUS_RESPONSE flag should be
checked to verify which processor responded, especially if more than
one transmit had been initiated.l

When a SYSBUS_PACKEY macro event is taken, the GROUP=Flag_Display with
Priority Mode <can be wused to determine which processocr has sent a
packet. This processor number can then be loaded intoc the LOCAL_PROC
register and the header and buffer read out. When the data has been
processeds ACCESS=Transmit, GROUP=Status w®will accept the return.
statuse. This status will then be sent back to the source processor by
a2 GENERAL_CONTROL micro—order.

The TRANSFER_COMPLETE micro~avent handler must determine which
processor generated the event by wusing the GROUP=0isplay flag in
Priority Mode with ACCESS=1. The display will also indicate whether
the transfer terminated normally or nots, and give a 2 bit error code
if there was an abort.

Rational Machines proprietary document DRAFT 2 September 21, 1982

Table of Contents

Table of Contents

1« Summary

2e Sysbus Méessages and Message Transfers

2-1. Messages
2«2+ Buffer Resources
20221« Receive Buffers
22a2e2s Transmit Buffers
23« Sysbus Transfers
2.4. Error Handling

3. Block Diagram Functional Definition

Jel. Sysbus
3e2. Sysbus Buffer
3alsl. Buffer Addressing
3.3. Sysbus Control
3.40 Bus Interfaces
3.41-. Val and Type Busses
3eb22« Sysbus
3<.5. Timers

3a6a Error Checking and Correction
348212 Error Checking Theory

3ebe2s Error Correction Implementation

3«7« Clock Distribution
4. Microuord Description
b4ele Microword Field Definition
4e2. Microword Field Context
5. Microcode Usage
Se1. Buffer Operations

Rational Machines proprietary document

DRAFT 2

CONVNUVIOOO O OOV OBRNOOU R UWNN

September 21, 1982

Table of Contents

Table
Table
Table
Table
Table

2-1z
3-1:

List of Tables

Sysbus Addresses
Error Correction
Error Lorrection
Error Correction
Error Correction

VAL Bits 0:31
VAL Bits 32:63
TYPE Bits 0:31
TYPE Bits 32:63

Rational Machines proprietary document DRAFT 2

ii

11
12
13
14

September 2%, 1982

