$55555SS
SSSS8S8SSS
SS
SS
SS
SS
SSSSSS
§S838SS
SS
SS
SS
SS
$S555555S
$S55S5SSS

Li
LL
Lt
LL
Li
LL
LL
LL
Lt
LL
LL
LL
IRRERRERERER
LLLLLLLLLL

START Job SPEC Req #703 for EGSB
File RM:<MICRO-ARCH.TYPE>SPEC.LPT.2, created:
3-Dec~-B2
Job parameters: Reques%~created: 3-Dec-82
File parameters: Copy: 1 of 1

printed:

PPPPPPPP
PPPPPPPP

PP PP

PP PP
PP PP
PP PP
PPPPPPPP
PPPPPPPP
PP

PP

PP

PP

PP

PP

PPPPPPPP
PPPPPPPP
PP PP
PP PP
PP PP
PP PP
PPPPPPPP
PPPPPPPP
PP

PP

PP

PP

PP

PP

EEEEEEEEEE
EEEEEEEEEE
EE
EE
EE
EE
EEEEEEEE
EEEEEEEE
EE
EE
EE
EE
EEEEEEEEEE
EEEEEEEEEE
TYTITTITTIYT
TITTTTTITITY

TT

T

1T

TT

T7T

17

™

7

17

1T

TT

17

1256:07

Date

cc

cC
cC
cc
cc
cC
cC
cc
cC
cC

3-Dec—-82

1:55:20
Spacing:SINGLE

(o168 o of o 1 o
198 91 53 L 08 o of &

cceeececce
ccceceece

- n.e
L]
LE B K J

» .. e

222222
222222
22 22
22 22

22

22
22
22

2222222222
2222222222

1:56:07 Monitor:
8~Aug—82 21:15:06

Page limit:72
File format:ASCII

Rational M

Forms:NORMAL
Print mode:,

Functional Specification of the Type Board

DRAFT 2

People exaggerate the things they“ve never had,
they admire types because they have no experience
with them.

- George Bernard Shaw

Rational Machines proprietary document.

1« Introduction

This document describes the functionality of the Type board of the
R1000. The specification defines in detail the microcode and hardware
interfaces to the board. The reader is assumed to be familiar with
both the R1000 architecture and the spec1f1catxons of the other boards
in the R1000 processor.

The type board is extremely similar to +the wvalue board. The
similarities are designed in to allow the microcode +to have the
resources of two 64 bit CPU"s operating in parallel. This point can
not be stressed enough! TWO 64 BIT CPU°S OPERATING IN PARALLEL.
Because of +this fact the functionality, hardware, and microcodes, for
the two boards are extremely similar.

in general the differences are the value board has a zero detector, 2
multiplierr, and a shift mux and the type board doesn”t. While the
type board has some checking circuitry {(privacy and <class) and the
value board doesn“t.

This spec will only explain the sections of the type board that are

drastically different from the value board. In most cases these
difference are obvious from the differences in the microword.

2« Block Diagram Functional Definition

This section refereces the block diagram of the Type board attached to
this document. The functionality of each block in the diagram is
discussed in detail in the following sections.

2e1a Register File

Same as the value board except there is no zero detector or
multiplier. ‘

2211« Register Filé Addressing

Same as the last comment.

2.122. Control Stack Accelerator

Identical to the value board.

Rational Machines proprietary document DRAFT 2 August 8, 1982

Block Diagram Functional Definition 2

2.2« ALU

The ALU control and operation is exactly the same as the value ALU»
except there are no conditional ALU operations. {See the microword
specification for the exact ALU control available.)

The random field of the type microword allows the selection of the Q
bit (a bit supplied by the value board over ¢the backplane) as the
carry=in to the ALU. {(See the random field of the microword.) When
this random micro-order is not selected the T_ALU field of the type
microword determines the carry-in to the ALU.

2e3e Mux

The type Mux determines the source of data for storage into the C
address of the register file. The two data paths that the Mux can
select are:

1. The unmodified output of the ALU.

2. The Write Data Register (WDR). This option is selected by the
hardware when a START WRITE command has been issued and the
location being written to resides in the Control Stack
Accelerator {(see the previous UCLSA section).. The microcode
should only select this option when the WDR needs to be saved
in the RF as a piece of microstate.

{This mux operates differently than the corresponding mux on the value
board.)
2«.4. Checker

The checker circuitry on the type board <can be divided into three
function units.

1. Privacy Checker ==~ does 2 first level privacy check on one or
two operands.

2. Class Check == <checks class compatability of one or two
operands.

3. 0f_Kind conditions -~ detects special type conditions.

The privacy and class check can cause micro events, and are testable
as conditions.:

Rational Machines proprietary document DRAFT 2 August 8, 1982

Block Diagram Functional Definition 3

2ebale Privacy Checker

The privacy checker 1is used to check if the operand{s) under test
is(are) in the scope of privacy. The check facilities are mostly used
for scalars, but additional testable conditions are available to test
for structures. The privacy checker has a 32 bit outer_frame_name
register that is loadable from bits (0:31) of the B8_bus. This
register must be reloaded during every context switch {and during some
instructions like call and exit). To use the privacy checker the
type~links of the control_stack operands{s) must be on the A_bus
and/or 3_busa The check is se;ected from the privacy check field of
the microcode.

The privacy checker can perform the following five checks:

1. Bin_egq == Privacy check for equality and assignment. The
operands on both the A and 8 bus are checked.

2« Bin_op =- Privacy check for 2 binary operation. The operands
on both the A and B bus are checked.

3. A_op == Privacy check for a unary operation. The operand on
the A_bus is checked.

4e B_op == Privacy check for a unary operation. The operand on
the 8_bus is checked.

5« Paths_equal == Binary check for the same paths{name and offset)
on both the A and B bus.

Using the following identifiers the privacy checks can be accurately
expressed as boolean eguations.

Rational Machines proprietary document DRAFT 2 August 8, 1982

Block Diagram Functional Definition ; 1/

\
T

o_f = outer_frame_name register{0:31)
A_name = A_bus{0:31)
B_name = B_bus(0:31)
A_path = A_bus{0:31,37:56)
B_path = B_bus{0:31,37:568)
A_is_priv = A_bus{34)
B_is_priv = B_bus{(34)
A_drv_priv = A_bus{35)
B_drv_priv = B_bus(35)

Paths_same == {(A_path = B_path)

A_op = {A_drv_priv) V (A_is_priv){o_f = A_name)”
B_op := {(B_drv_priv) V (B_is_priv){(o_f = B_name)”
Bin_op 2= (A_op) V (B_op)

Bin_eq := (Bin_opl){Paths_same)”

(The 1last four equations indicate that the first level check fails if
the equation is true.) ,

The privacy checker control logic can enable one of six possible
privacy <checks during a micro-instructione These six different
privacy checks can generate one of four possible micro events. The
following table indicates the correspondence between the privacy check
enables and the micro events generated. {See the privacy_check field
of the microword for the details on enabling a privacy micro event.)

Privacy Check Micro Event Generated
Bin_eq Bin_eq
Bin_op Bin_op
A_LT0S]_op £70S3_op
A_LT05-11_op {T0S-11_op.
B_LTOS]_op LT0S3_op
B_LTO0S-11_op {T05-13_op

Table 2-1: Privacy Micro Event Generation

(The hardware doesn”t check if a operand is {7T0S] or ([TOS-1l.
Therefore there is no guarantee that the correct micro-event is taken
if the microcode is incorrect.)

All of the privacy events are early and non-persistent. Since they

are early events the instruction that caused the event will be re-
executed if the micro event handler returns. To prevent the privacy

Rational Machines proprietary document DRAFT 2 August 8, 1982

Block Diagram Functional Definition 5

event from re-occcurings,. when the privacy event handler returns, a
"pass privacy state” exists in the 1logice. If the micro handler
decides that the operand{(s) passes the additional priwvacy check in the
handler, the handler should set the "pass privacy check™ state. This
state is set by specifying the "pass privacy check™ order of the
privacy check micro-field. If a privacy micro event is enabled and
the pass privacy state is set, the micro event doesn”t occur and the
pass privacy state 1is cleared. The pass privacy state can also be
cleared from the random field. (NOTE: The pass privacy state has ND
effect on the privacy test conditions.) The pass privacy state must
be cleared during context switches, but does not need to be restored
{(the event will occur again). {(NOTE: The pass privacy state will not
change when the privacy check micro order 1is a ™nop™, wunless the
random field clears the state.)

2ebe2s Class Check

The <Class checker is used to compare the of_kind bits of a type_link
on the A_bus or B_bus tc the other bus and/or to 2 literal. This.
check provides a parallel mechanism for ensuring that operand{s) are
of the correct or same type for 2 specific instruction.

The class check hardware is capable of 3 different 7. bit comparese.
The conditions and events that <can Dbe generated are shown in the
following table.

Hardware Test Micro event Condition
A_bus(57:63)=ciass_lit X X
B _bus{57:63)=class_1lit X X
A_bus{57:63)=B_bus{57:263) X X
A_bus{57:63)=8B_bus{57:263)=class_1it X X

Table 2-2: C(Class Checks

Only one class check micro event can be enabled during any particular

micro=instruction. The random field of the type micromord selects
which class micro event is enabled (see the microword specification
section). All of the <c¢lass micro events are early events which

prevent the current instruction from completing. (All of the <class
micro checks <cause the SAME class event and branch to the same micro
event handler.) Any of the above conditions can also be selected as
the currently tested processor condition {see the microword
specification section).

Rational Machines proprietary document DRAFT 2 August 8, 1982

Block Diagram Functional Definition- ‘ <)

{Implementation Note: In an effort <to reduce the width of the
microword the frame bits of the type microword have been ' overloaded
‘with five bits of the class lit. The class lit is seven bits. The
most significant two bits are a field in the microword. The least
significant five bits are overloaded with the frame microbits. If a
micro~instruction uses both a2 frame address and a class check with a
class lit, the frame address must be the same as the least significant
five bits of the class 1lit. {For more details see the microword
specification section.))

2.4.3. 0f_Kind condition

The checker circuitry also provides a special test condition that can
be wused for “subrange”™ detection on the "of_kind”™ encodings. The
hardware has 64 patterns programmed into two proms. {(The class lit is
cverloaded to choose the patterns.) The first prom contains a seven
bit pattern which is compared %o bits (57:63) of the B8_bus. The
second prom contains a seven bit mask which indicates which bits are
tc be compared. The output of the comparator -is one of the selectable
conditions on the type board. The following table lists some of the
patterns that are currently included in the test conditions.

PATTERN NUMBER ' PATTERN NAME BIT PATTERN
{hex) {57:63)
00 TYPED XXXXX00
01 IMPORT XXXX0Xx0
02 VALUE XXXx000
03 SCALAR 000Xx000
04 ' INDIRECT XXXX100
05 VALUE REF 0xx0100
#1.) STRUCTURE 1XxX0100
vird SUBINDEXED 11Xx100
08 REFERENCE XXXXx010
09 - 1F unused
20 STATE_WORD XXXx001
21 CONTROL_KEY XXXX101
22 MARK_WORD XXXX111
23 - 3F unused

{The "X" bits are not compared.)

Table 2-3: Of_Kind condition.

Rational Machines proprietary document DRAFT 2 "August 8, 1982

Block Diagram Functional Definition - 7

(NOTE: The <checker circuit 2also provides tests for some of the
individual bits on the B_bus. These test conditions are very useful
for some type checking and are enumerated in the microword
specification section under the condition field.)

2«5« Loop Counter

Identical to the value board.

26+ Bus Interfaces

The type board bus interfaces are exactly the same as the value board,
except the type board connects to the TYPE bus where the wvalue bhoard
connects to the VALUE bus. {This section and the following three

sectionss are identical to the value board spec if ™TYPE" is
substituted for "VALUE™.)

2-6'1. VAL Data 805
22642, FIU Bus

2e623. Address Bus

Rational Machines proprietary document DRAFT 2 August 8, 1982

Microword Specification ' 8
3. Microword Specification

T_RF_A (6 bits): specify the A address of the register file

ENCODING NAME FUNCTION

D0 xxxx t_gp select GP register xxxx

010000 t_tos*) select current top of
control stack

010001 t_tos+1 :

010010 spare

D10011 t_reg{loop_counter) select reg. pointed
to by loop counter

010100 random statex outer_frame_name, pass_privacy bits

loop_counter

010101 spare

010110 spare

010111 loop_counter select output of loop counter

011000 t_tos—8

011001 t_tos-7

011010 t_tos-b

011011 t_tos-5

011100 t_tos-4

011101 t_tos-3

011110 t_tos=2

011111 t_tos~1

Txxxxx t_reg{t_frame,xxxxx) select register xxxxx

in the frame pointed
to by t_frame field

Rational Machines proprietary document DRAFT 2 August 8, 1982

Microword Specification

T_RF_8 {6 bits):

DOxxxx
010000
010001
010010
010011

010100

010101
010110
010111
011000
011001
011010
011011
011100

011101

011110
011111
Txxxxx

Rational Machines proprietary document

specify the B8 address of the register file.

t_gp
t_tos+0
t_tos+]
spare

t_reg{loop_counter)

t_bot-]
t_bot

type_bus {CS5A)

spare
t_tos—8
t_tos-7?
t_tos—é6
t_tos-5
t_tos=4

DRAFT 2

August 8, 1982

Microword Specification ' 10

T_RF_C (6 bits): specify the C address of the register file

OO0 xxxx t_gp

010000 t_tos+D

010001 t_tos+1

010010 random statex (write disable to RF)
outer_frame_name, pass privacy bit,
loop_counter

010011 t_reg{loop_counter)

010100 t_bot—1

010101 t_bot

010110 write disable

010111 loop_counter {write disable to RF)

011000 t_tos-38

011001 t_tos-7

011010 t_tos—-6

011011 t_tos-5

011100 t_tos—-4

0111 M t_tos-3

011110 t_tos-2

D11111 t_tos~1

TxxxxX t_regi{t_frame,xxxxx)

{* The format for the random state is as follows:

outer_frame_name bits 0231
pass_privacy_bit bit 32

zero”s bits 33:53
loop_counter bits 54:63)

T_FRAME (5 bits): specify one of the 32 possible frames in the RF
{(This field is overloaded with five bits of the class literal
and five bits of the type 0f_Kind condition number.)

XK XX X frames, class literal (2:86),
0f_Kind condition_number{2:4)
T_C_SRC {1 bit): specify which data source gets passed to the

L PORT of the RF

t_c_*fiu FIU =-> C address
t_c_mux MUX => C address

- O

Rational Machines proprietary document : DRAFY 2 August B, 1982

Microword Specification

T_MUX (1 bit):

pass to the { address

0
1

t_alu
t_uwdr

T.ALU {5 bits): specify the ALU function

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

dec_a

plus

plus_inc
left_1_a
left_1_inc_a
minus_dec

minus

inc_a.
plus_else_minus
minus_else_plus
passA_else_passB
passB_else_passA
passA_else_incA
incA_else_passA
passA_else_dech
decA_else_passA
not_a

nand

not_a_or_b

ones

nor

not_b

xnor

or_not
not_a_and_b

xor

pass_b

or

pass_a

and_not

and

zeros

b 1 B ¢ T £ M A M 4 B { M 1

Bt e £ ¢ e 1 e £ £ e ¢ I B B £ e £ e ¢ e ¢]

LU L L I I T

b0 - - 2 - b - B

(L I N | I N L T O U L O L B

(=200 -3 - 25 - /- B

A~
{A
A"
-1
a
e
(A

I
DWW D > W -

specify the data source that the MUX will

ALU
WDR register

I *
.

and B)~

or B

{2°s comp)
or 8)7

xor BY~

A or B~

A-

Rational Machines proprietary document

X

0

a
2

and B
or B

r B

nd 87
nd B

DRAFT 2

11

August 8, 1982

Microword Specification 12

T_RAND (4 bits): specify the described random operation

0000 no_op

0001 inc_loop_cntr

0010 dec_loop_cntr

0011 carry_in_Q Carry_in = Q bit from val

0100 spare

0101 write outer_frame_name

0110 set pass privacy state

0111 spare

1000 spare

1001 pass_A_high pass upper 32 bits of
A INPUT to ALU

1010 pass_B_high pass upper 32 bits of
B INPUT to ALU

1011 class_check({A_bus, 1it)

1100 class_check{B_bus, 1lit)

1101 class_check{A_bus, B_bus)

1110 class_check{A_bus, B_buss, 1lit)

1111 spare

T_CLASS_LIT (2 bits): specify the literal that is compared against
during most of the class checks {(the other five bits of
the class literal are overloaded with the frame).

XX The 2 msb®s of the class literala.

PRIVACY_CHECK (3 bits): This field enables one of the four privacy
privacy micro events. ‘

000 check privacy for equality

001- check privacy for A_bus. and B_bus

010 check privacy for [T0SJ on the A_bus
011 check privacy for [T0S-11 on the A_bus
100 check privacy for [T0S] on the B_bus
101 check privacy for [T05-1] on the B_bus
110 nop

111 clear "pass privacy state”

Rational Machines proprietary document DRAFT 2 August 8, 1982

Microword Specification 13

T_LONDS: specify the selected condition to be sent to the
sequencer for processing. Selected condition also gets
latched on the TYPE board. The condition bit is set TRUE
if the equation below is satisfied.

0011000 alu_eq_z 646 bit ALU output = 0

0011001 alu_ne_z 64 bit ALU output /= 0
0011010 a_gt_b or a_ge_b

0011011 spare

0011100 loop_cntr_z loop counter = 0

o111 spare

0011110 spare

00711111 spare

0100000 alu_co 64 bit alu carry out

0100001 alu_of 64 bit alu overflow

0100010 alu_1t_z MSB of alu = 1 (ALU out < 0)
0100011 alu_le_z 64 bit ALY output <= 0
100100 t_last last cycle”s TYPE condition
0100101 spare

0100110 one condition bit = 1

0100111 zero condition bit = O

0101000 Of_Kind{&##) 0f_Kind condition

0101001 class{ar1) class_check{A_bus, 1it)
0101010 class{B,1) class_check{8_bus, 1it)
0101011 class{A,B) class_check{A_bus, B_bus)
0101100 class{A,B,1) class_check{A_bus, B_bus, 1lit)
0101101 privacy{A) privacy_check{A_bus)

0101110 privacy{(B) privacy_check{B_bus)

0101111 privacy{equal) privacy_check{eguality)
0110000 privacy(A,B) privacy_check{bin_op)

0110001 privacy{names) A_bus.path_name = B_bus.path_name
0110010 privacy{paths) A_bus.path = B_bus.path
0110011 privacy{struc.) both privacy{(A,B) and privacy{paths)
0110100 B_bus{(32) bit 32 of the B_bus

0110101 B_bus{33) bit 33 of the B_bus

0110110 B_bus(34) bit 34 of the B_bus

0110111 B_bus{35)

bit 35 of the B_bus

Rational Machines proprietary document DRAFT 2 August B8, 1982

Microword Specification ’ 14

0111000 B_bus{36) bit 38 of the B_bus ,
0111001 B_bus(34 or 38) B_bus{34) OR B_bus{36)
D111010 spare
0111011 spare
0111100 spare
0111101 spare
0111110 spare
0111111 spare

TOTAL NUMBER OF BITS IN THE MICROWORD = 39

4. Microcode Considerations

The following subsections detail microcode constraints, conditions,
and events.

4.7 Context Switch Microstate
The microstate that exists on the TYPE board consists of:

1« The Register File. The Control Stack Accelerator ({SA) and
general purpose (GP) registers, in general, will need to be
saved on every context switch along with some number of scratch
pad registers. There is no hardware checking of which RF
locations need to be saved as microstate.

2. The Outer_frame_name {in the checker). The outer_frame_name
register only needs to be loaded for the incoming taskse. {The
ocuter_frame must be saved on every context switchs but
presumably the full outer_frame from the sequencer is written
out during the context switch.)

3« The loop counter.

4. The pass privacy bita. Since privacy is an early events it
should be c.ke. %o NOT save the pass privacy bit during a
context switch. Then the bit only needs to be CLEARED during
each context switch.

4.2. Londitions

The TYPE board generates 32 testable conditions. The <conditions can
be divided 1into three groups L = later ML - meduim later and E -
early. The early conditions can be used as conditions for conditional
branch typess and don"t require a hint. The meduim late and late
conditions require hints if used with conditional branch types. Only
the early or medium late conditions can be wused as conditions for

Rational Machines proprietary document DRAFT 2 August 8-, 1982

Microcode Lonsiderations ’ 15

conditional memory references. And believe it or not, every condition
can be latched in the microsequencer”s latch.

ALU_EQ_Z

ALU_NE_Z

A_GT_B

A_GE_B

ALU_CO

ALU_OF

ALU_LT_Z

ALU_LE_Z

T_LAST

(6] ,
This condition is TRUE whenever the &84 bit ALU output

equals zero. The ALU carry out and ALU overflow bits

are not taken into consideration when generating this
condition.

(L)

This condition is TRUE whenever the 64 bit ALU output
does not equal zero. The ALU carry out and ALU
overflow bits are not taken .into <consideration -when
generating this condition,

)

This condition is TRUE when the A input of the ALU is
greater than the 8 INPUT. The comparison treats A and
B as signed numbers {i.e. negative A is always less
than positive B). To generate this condition the ALU
must be executing the SUBTRALT instruction. '

L)

This condition is TRUE when the A input of the ALU is
greater than or egual to the B INPUT. The comparison
treats A and B as signed numbers {i.e. negative A is
always 1less than positive B). To generate this
condition the ALU must be executing the SUBTRACT
instruction.

(L) ' <
This condition is TRUE when there is a carry out of
the most significant bit of the AlLU.

v :
This condition is TRUE when the result of an ALU
operation overflows a 64 bit representation.

v

This condition is TRUE when the MSB {sign bit) of the
ALU = 1. This is equivalent to testing whether the 64
bit ALU output < D.

w A
This condition is true whenever the 64 bit ALU output
<= (. This condition is logical or of the ALU_EQ_Z

and the ALU_LY_Z conditions.

{g)

At the end of every microcycle, the condition that uwas
selected on the TYPE board gets latched on the TYPE

Rational Machines proprietary document DRAFT 2 August 8, 1982

Microcode Considerations 18

TRUE

FALSE
OF_KIND(#)
CLASS(A,LIT)
CLASS(B,LIT)

CLASS(A,B)

CLASS{A,B,LIT)

PRIVACY_A
PRIVACY_B
PRIVACY_EQ
PRIVACY_ASS

PRIVACY_NAMES

board. During any microcycle this latched condition
can be selected as a testable condition. {This
condition 1is available mostly as a diagnostic feature
rather than a useful microcode feature. No provisions
are made to keep the value of this latch consistents,
across events or context switches.)

{E)
This condition is always true.

{(e)
This condition is always false.

{ML)

This condition is the result of the O0f_Xind condition
test. The number specified is wused +to. select the
pattern to match.

{ML)
This «condition 1is true if the class literal is egual
to bit (57:63) of the A_bus.

(ML) ;
This condition is true if the class literal is equal
to bits (57:63) of the B_bus.

(ML)
This condition is true if bits (57:63) of the A_bus
are equal to bits (57:63) of the B_bus.

(ML)

This condition is true if bits {57:63) of the A_bus
are equal to bits {57:63) of the B_bus and equal to
the class literazl.

(ML)
This condition is true if the first order privacy
check on the A_bus passes.

{ML)
This condition 1is true if the first order privacy
check on the B_bus passes.

{ML)
This condition is true if the first order privacy for
equality check passes.

(ML)

This cdndition is true 1if the first order privacy
check for both A and B busses passa.

(ML)

Rational Machines proprietary document DRAFT 2 August 8, 1982

Microcode Considerations 17

This condition 1is true if bits {0:31) of the A_bus
equal bits {0:31) of the B_busa.

PRIVACY_PATHS {ML)
This condition is true if bits {(0:31,37:2568) of the
A_bus equal bits (0:31,37:56) of the B_bus.

PRIVACY_STRUCT. (ML)
This condition is true both PRIVACY_AZB and
PRIVACY_PATHS are both true.

B_BUS{(32) (ML) ,
This condition is true if and only if bit 32 of the
B_bus is a one.

B_BUS{(33) (ML)
This condition is +true if and only if bit 33 of the
B_bus is a onea.

B_BUS(34) {ML)
This condition is true if and only if bit 34 of +the
B_bus is a one.

8_BUS{(35) {ML)
This condition 1is true if and only if bit 35 0of the
B_bus is a one.

B_BUS{36) {ML)
This condition is true if and only if bit 386 of the
B_bus is a2 one.

B_BUS{34_0OR_36) (ML)
This condition is true if either bit 34 or bit 36 of
the B_bus are one.

423 Events

The type board can generate five micro events and no macro events.
All of the micro events are early and non—persistent, therefore there
are no mask bits for the events {(they are each enabled by specific
micro—-orders). The micro events are class_check, Bin_eqs Bin_ops
{T0S])_ops and L[TO0S-1]_op. The micro events are explained in detail in
previous sections.

beba Microcode Restrictions
The microcode restrictions for the TYPE board are exactly the same ‘as

the CSA RESTRILTIONS and FIU RESTRICTIDNS from the value spec. Please
consult the value spec for the details. : ‘

Rational Machines proprietary document DRAFT 2 August 8, 1982

Diagnostics

5. Diagnostics

S«1« Philosophy

5«2« Hardware Support

523+ Stand Alone Testing

Seb. System Integration Testing

545. Micro—-Diagnostics

6. Hardware Considerations

6«l- Timing Issues

6.1-.1. Data Path Timing

$ele2e Clocking Issues

6.1.3. Potential Problems and Restrictions

6.2. Chip Count and Power Estimates

6.3« System Interconnections

$«3.1. Foreplane

$e3e2. Backplane

6ea4. Layout

Rational Machines proprietary document

DRAFT 2

18

August B8, 1982

Table of Contents

Table of Contents

1« Introduction ,
2. Block Diagram Functional Definition
2.1« Register File

21271~ Register File Addressing
2.1«2« Control Stack Accelerator

242« ALU
2e3. Mux
2ebae Lhecker
2eb4ale Privacy Checker
2e%4.2a Class Check
2e4.3. Of_Kind condition
2e5. Loop Lounter
226a Bus Interfaces
2¢6.1. Vﬁi. Data Bus
2eabal2s FIU Bus
2ebea3a Address Bus
3. Microword Specification
4. Microcode Considerations
41 Context Switch Microstate
4.2. Conditions
4-3. Events
4obe Microcode Restrictions
5« Diagnostics
5«1« Philosophy
5«2« Hardware Support
 5.3. Stand Alone Testing
Seé. System Integration Testing
5«5. Micro—Diagnostics
6. Hardware Considerations
6.1« Timing Issues
6.1.1. Data Path Timing
68ale2« Clocking Issues

6.71.3. Potential Problems and Restrictions

6.2« Chip Count and Power Estimates
6.3« System Interconnections

6e3.1. Foreplane

6.3.2. Backplane
8.4. Layout

Rational Machines proprietary document

DRAFT 2

NWNNNNNOVNUWNNN G @

August 8, 1982

Table of Contents

List of Tables
Table 2-1: Privacy Micro Event Generation

Table 2-2: Class Checks
Table 2-3: Of_Kind condition

Rational Machines proprietary document

DRAFT 2

August 8, 1982

[+ SRV B o

