S$555558SS PPPPPPPP EEEEEEEEEE L% VR 08 0% 0% OF o
$55S555SS PPPPPPPP EEEEEEEEEE L0 8 of oF of of of o
SS PP PP EE £c
SS PP pP EE cC
Ss PP ppP EE cC
SS PP PP EE £C
$558S8S PPPPPPPP EEEEEEEE cC
55558553 PPPPPPPP EEEEEEEE cC
Ss PP EE ceC
SS PP EE cc
SS PP EE £c
SS pp EE cC
5$S5555S5SS PP EEEEEEEEEE gecececcee
$53555SS PP EEEEEEEEEE ok o o8 oF of of ok o
LL PPPPPPPP IYTYTITTITYY 11
LL PPPPPPPP TYTTTITTITTTY 11
Lt PP PP T7 1111
Li. PP PP 7 1111
LL PP PP 17 11
LL PP PP T7T 11
LL PPPPPPPP 77 11
LL PPPPPPPP 17T 11
LL PP TT 11
LL PP TT 1
LL pp IT anme 11
LL PP TT -nw- 11
LLLLLLLLLL PP I7T saes 111111
LLLLLLLLLL PP T asme 111111
START Job SPEL Req #705 for EGB Date 3-Dec-82 1:58:40 Monitor: Rational M

File RM:<MICRO-ARCHLVALD>SPEC.LPT.1, created: 2-Aug-82 9:02:20

printed: 3=Dec=82 1:58:40
Job parameters: Request created: 3-Dec-82 1:56:48 Page l1imit:153 Forms:NORM2
File parameters: Copy: 1 of 1 Spacing:SINGLE File format:ASCII Print modec:i

Functional Specification of the Value Board

DRAFT &

People exaggerate the things they”“ve never had,
they admire values because they have no experience
with then.

-~ George Bernard Shaw

Rational Machines proprietary document.

1« Summary

This document completely describes the operational characteristics of
the Value board for the R1000. The purpose of this specification is to
formally define the operation of the Value board to a level of detail
that allows microcoder hardware, and packaging designers to interface
with this board correctly. The reader is presumed to be reasonably
familiar with the R1000 architecture and to have access to the
specifications of the other boards for explanations of their interface
and operation.

The organization of this document is as follows; Section 2 prowvides a
detailed definition of the capabilitiesr on a block by bleck basiss of
each block on the attached block diagram. Section 3 defines the Value
board microword along with its encodings. Section 4, 3long with the
previous section, defines the microcode interface to the Value board
by specifying what hardware resources are available to the microcoder
and the restrictions that are placed on these resources. Section 5
discusses the diagnostic strategies that are employed to debug the
board at both the hardware and microcode levels and what hardware
support is available to support these strategies. Finally, section. 6
details the issues that concern the hardware and packaging designers
when interfacing to the Value board. These 1issues include timing
considerationss, <chip count and pouwer estimates, and board layout
details.

2« Block Diagram Functional Definition

This section references the bleock diagram of the Value board attached
to this document. The operational characteristics of each block in the
diagram is discussed in detail in the following sections.

2.1« Register File

The principal resource for storing and retrieving data on the Value
board is the register file (RF). The RF is a ™three address”
structurer i.e. two locations {(designated A and B corresponding tc the
A and B inputs of the ALU) can be independently addressed and used
either as operands to the ALU or multiplier or as sources to the VAL
or FIU busses. On the same cycle as A and B are addresseds a third
location, named L, can be written into either to store the result of
an ALU operation or to store the data coming over the FIU bus. All of
the data contained in the RF is 64 bits wide.

The Register File memory is partitioned into three areas. The bottom
16 locations <contain the ggperal purpgose registers (GP"s). These
registerss in general, should be used to store temparary wvalues that
may be needed during execution of a microinstruction.

Rational Machines proprietary document DRAFT & August 2, 1982

Block Diagram Functional Definition 2

The next 156 locations‘in the RF contain the special pyrpose addresses.
These addresses give the microcode access to the following resources:

* The control stack accelerator {{SA). The LSA is a buffer that can
contain the top 15 elements of the currently executing control
stacke. To minimize the number of control bits, not all of these
addresses are immediately visible, however they are kept in the
RF for efficency of binary operations.

* The current value stored in the loop counter.
* The current contents of the zero detector circuit.
* The output of the multiplier.

The remaining 992 locations contain the gsgraitch pad registers. In
general, these registers should be used to store constants, templates
and maskss and temparary variables that are needed for longer than =a
single microinstruction. Further discussion about when to use GP's
and when to use scratch registers is contained in section 4.1 of this
document.

2.7.1. Register File Addressing

Since there are 1024 RF locations, a minimum of 10 bits each is
necessary in order for the A, B, and C address fields %o access the
entire RF (10410+#10 = 30 bits of microword control). To reduce the
number of microcode bits controlling RF addressesr, a 5 bit field
called the REGISTER_FRAME was introduced and each address field was
reduced to 6 bits (6+6+6+5 = 23 bits of <control). This addressing
scheme breaks +the 1024 RF locations into 32 frames of 32 locations
each., Frame 0 contains the 16 GP registers and all of the special
addressess, frames 1 through 31 contain the scratch pad registers. The
encodings of the three address fields are shown in Table 2-1. The
notation used in the table is as followsa.

GP XXXX Addresses the general purpose register specified by
the 4 least significant bits of the microcode address
field. The wupper 8 bdits of the address that specify
the registers frame are set to zero by the harduware.

REG{FRAME, XXXXX)
Addresses the register specified by the 5 offset bits
given 1in the microword. The upper 5 bits that specify
the registers frame are read from the REGISTER_FRAME
field of the microword.

TOP+/-N Addresses the element at offset N from the top of the
current control stack.

Rational Machines proprietary document DRAFT 4 August 2., 1982

Block Diagram Functional Definition 3

REGCLOOP_CNTR)
LOOP COUNTER
ZERO DETECTOR
PRODUCT

BOT

BOT-1

VAL BUS (CSAa)

Addresses the register pointed at by the loop counter.
Addresses the contents of the 10 bit loop counter.
Addresses the contents of the zero detector.

Addresses the output value of the multiplier.

Addresses the bottom valid element in the control
stack accelerator.

Addresses the element one below the bottom wvalid
element of the control stack accelerator.

Addresses either the data that is on the VAL bus this
cycles, or the location in the control stack
accelerator that corresponds to the contrel stack
address being requested. This mechanism, and the
operation of the control stack accelerator in general
is discussed in the next section.

1ERO The constant value zero is sourced from the A Port of
the Register File.
Table 2-1: Register File Addressing

Microword A B C

Field Address Field Address Field Address Field
00xxxx gp XXXX gp XXXX gp XXXX
010000 YOoP+(Q TO0P+0 T0P4+0D
010001 TOP+1 TOP+1 TOP+1
010010 spare spare ‘ spare
010011 reg{loop_cntr) reg{loop_cntr) reg{loop_cntr)
010100 zero BOT-1 BOT-1
010101 zero detector BOT BOT
010110 product VAL bus {or CSA) write disable
010111 loop counter spare loop counter
011000 TOP-8 TOP-8 T0P-8
011001 T0P-7 T0P-7 TOP-7
011010 TOP-6 TOP-% - TOP-6
011011 T0P-5 T0P-5 T0P-5
011100 T0P-4 TOP~-4 TOoP-4
011101 T0oP-3 TO0P-3 TO0P-3
011110 T0P=2 TOP-2 ToP-2
011111% T0P-1 TOP-1 ToP-1
Txxxxx reg{framesxxxxx) reg{framerxxxxx) regiframesxxxxx)

Rational Machines proprietary document DRAFT & August 2, 1982

Block Diagram Functional Definition 4

2.1.2. Control Stack Accelerator

The control stack accelerator {L{SA) is an area in the RF that contains
some number (up to 15) of the top elements of the currently executing
control stack. The VAL board hardware maintains two pointers into the
CSA. The TOP register, which points to the location in the (SA that
holds the current top of stack. And the BOT register, which points to
the botitom valid element that is in the (SA. When the machine first
starts runnings the CSA is initialized such that TOP points to the
location one below B80T (so that when the first element gets pushed
onto the CSA TOP and BOT will peint to the same location) and all
locations in the (S5SA are marked as invalid.

There are two methods of accessing the control stack accelerator. One
way 1is to explicitly address a CSA location under microcode control.
As indicated in the previous sections, not 3ll 15 elements in the CSA
are directly addressable by the microcode. The locations available for
direct reading (via an A or B address) or direct writing (via a C
address) are:

* +1 through -8 relative to the current top of the control stack
{The remaining elements are not explicitly addressable by the
microcode but can be accessed ‘when the CSA gets "hit™ on 2 memory
reference).

* The bottom valid entry in the CSA.
* The entry one below the bottom valid entry in the (S5A.

The other method of accessing locations in the CSA is not directly
under microcode control and occurs whenever a control stack location
that is being referenced {as though it were in memory) happens to
reside in the (SA.

When the microcode issues a "LOAD MAR™ command, the memory monitor
examines the address on the bus to see if it refers to the current
control stack, and compares it to the current contents of the CSA. If
the addressed location does reside in the C5Ar then the hardware flags
that the pending memory read has "hit” in the CSA. This HIT flag
persists until another LOAD MAR command is given. If another LOAD MAR
command is issued before the first location is accessed, the memory
monitor simply resets the HIT flag and repeats the comparison
procedure described above on the new memory address.

If a READ RDR command is issued, the hardware inhibits the {inwvalid)
memory data from being placed on the VAL and TYPE busses and instead
drives the value in the (SA out onto the busses. The timing of this
operation, i.e. when the data is placed on the bus or is available as
an operand to the ALU, is exactly the same {from a microcode point of
view) as if the data had come from memory. Similarly during a START
WRITE commands, if the addressed location is in the CSA the contents of
the WDR are written into the CSA location during the second cycle
after the START WRITE command instead of being written out to memory.

Rational Machines proprietary document DRAFT & August 2, 1982

Block Diagram Functional Definition ¢S

Since every time there is a reference made to memory {(actually control
stack space) there is a possibility that the data will come from the
CSA, a restriction is placed on the wmicrocode that nothing can be
sourced from the B address of the RF during a READ RDR cycle. Further
discussion of this and other microcode restrictions is given in
section 4.5 of this document.

The following operations on the locations in the CSA are available to
the microcode in the CSA micro—order of the FIU control word:

PUSH STALK The value of the top of stack pointer (TOP) gets
incremented by one.

POP STACK The value of TOP gets decremented by one.

INC BOT The pointer to the bottom valid location of the CSA
{BOT) gets incremented by one.

DEC B80T BOT gets decremented by one.

POP DOWN TO This operation loads the top of stack pointer with a

new address that is some number of locations below the
current top of stack. The seguence of events for this
operation are:

1. In "Cycle 0", the address of the new top of
stack is driven out onto the address bus.
During this cycle the POP_DOWN_TD0 command is
given by microcode to the memory monitor.

2« During Cycle 1, the CSA control logic in the
memory monitor computes the correct offset to
adjust the TOP register on the {S5A and at the
end of this cycle the new value is loaded into
this register. If the operation popped the
stack down by more than the number of wvalid
entries that were in the CSA, then the CSA will
be put into its initialized state (i.e. TOP =
BOT-=1 and all entries are invalid).

3. At the beginning of Cycle 2, the new value of
top of stack 1is ready to be wused for any
calculation.

2.2 ALU
The principal resource for manipulating data on the VAL board is the

64 bit ALU. The ALU has two inputs designated A_INPUT and B_INPUT. The
folllowing sources can be A_INPUT operands:

Rational Machines proprietary document DRAFT & August 2, 1982

Block Diagram Functional Definition 6

* The register file location pointed to by the A address field of
the microword.

* The output {(product) of the multiplier.

* The value stored in the Iero Detector.

* The value stored in the Loop Counter.
The following sources can be B_INPUT operands:

* The register file location pointed to by the B address field of
the microworde.

* The value on the VAL data buse.

The output of the ALU <can either be driven onto the address bus,
loaded into the Loop Counter {through the SHIFT MUX), or loaded into a
Register File L Address {through the SHIFT MUX).

The operations that the ALU can perform are specified by a 5 bit field
in the VAL microword. The most significant bit of this field breaks
the operations into two groups: logical {MSB = 1) and arithmetic {(MSB
= 0). Table 2-2 shows the microword encodingss names, and results of
all of the ALU operations.

O0f the 16 arithmetic ALU operations listed in the table, the last 8
are conditional operations. During each microcycler the microcode can.
select a testable condition on any one of the boards to be sent. over
to the SEQUENCER to participate in a conditional branching operation
{certain combinations of conditions from the VAL and YYPE board are
also possible For more information about how these combination
conditionss the reader is referred to the specification of the
microsequencer). At the end of every cycle that the microcede selects
a condition from +the VAL board, the value of the selected condition
gets latched on the VAL board and may be wused in the following
microcycle either to select the outcome of a <conditional ALU
operations or be sent over to the sequencer board to be used as a
branch condition. The value of this condition latch, called the
VAL_PREVIOUS latchs, only changes at the end of cycles when VAL board
conditions are selected by the sequencer. In generals this
VAL_PREVIOUS condition is the only condition that can participate in
the <conditional ALU ops the only exception to this rule is when the
DIVIDE random is selected. In this case, the Q_BIT condition is wused
to determine the result of the conditional add/subtract operation.
Additional details of the divide operation are described in section
LA | of this document. One note: about wsing conditional ALU
operations; Neither the VAL_PREVIOUS nor the Q_BIT gets saved when
handling an event. This implies, since event handlers can select
conditions alsor if an operation relies on the value of one of these
latched <conditions for a conditional ALU operation all events should
be disabled in order to guarantee that the <correct value of the

Rational Machines proprietary document DRAFT 4 August 2, 19382

Block Diagram Functional Definition 7

condition bit gets wused. A description of each conditional ALU
operation: is as follows:

plus_else_minus The ALU function is A_PLUS_B when the condition is
TRUE, A_MINUS_B when the condition is FALSE.

minus_else_plus The ALU function 1is A_MINUS_B when the condition is
TRUE,» A_PLUS_B8 when the condition is FALSE.

passA_else_passB
The ALU function is PASS_A when the condition is TRUE.,
PASS_B when the condition is FALSE.

passB_else_passA
The ALU function is PASS_B when the condition is TRUE.,
PASS_A when the condition is FALSE.

passA_else_incA The ALU function is PASS_A when the condition is TRUE,
INC_A when the condition is FALSE.

incA_else_passA The ALU function is INC_A when the condition is TRUE,
PASS_A when the condition is FALSE.

passA_else_decA The ALU function is PASS_A when the condition is TRUE.
DEL_A when the condition is FALSE.

decA_else_passA The ALU function is DEC_A when the condition is TRUE,
PASS_A when the condition is FALSE.

In addition to the explicit functions that microcode can choose from
with the ALU micro-orders, additional ALU operations can be specified
by some of the encodings in the RANDOM field of <the microword. In
particular, the PASS_A_HIGH AND PASS_B_HIGH random®s cause the 64 bit
ALU to perform as though it were two 32 bit ALU®s sitting side by
side. The "least significant™ alu (i.e. the portion of the ALU
operating on the 32 LSB"s of the A_INPUT and B_INPUT) will perform the
function specified by the ALU field of the microword, Just as the
normal 64 bit ALU would. The "most significant™ alusr however, will
perform the function PASS_A or PASS_3 {(depending on the random that is
specified) on the most significant 32 bits of the A_INPUT and B_INPUT.
An example of using this capability 1is. in address generation. The
upper 32 bits of the address (i.e. the module) can be passed through
the ALU while the lower 32 bits {(the offset of the address) can be
appropriately manipulated.

One note about split ALU operation. When selecting a condition on the
VAL board that is a function of the ALU output {e.g. A < B, MSB = 1}
etc.)s the entire 64 bits of the ALU participate in the generation of
the condition. This means for instance that if you PASS_A when
generating an addresss, you cannot test whether the louwer 32 bits (the
address offset), by themselves, equal zero.

Rational Machines proprietary document DRAFT 4 August 2, 1982

Block Diagram Functional Definition

Table 2=2: ALU Operatio

Microword
Field

Arithmetic Operations

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

OO0 LOOODOOULLOLOOO

Logical Operations

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

b ol D el ed D wd d D eed D D wd ved Wb weh

Operation

Name

dec_A

A_plus_B
inc_A_plus_B
left_1_A
left_1_A_inc
dec_A_minus_38
A_minus_B

inc_A
plus_else_minus

minus_else_plus

passA_else_passB
passB_else_passA
passA_else_incA
incA_else_passA
passA_else_dech
decA_else_passA

not_A
A_nand_B
not_A_or_B
ones
A_nor_B
not_B
A_xnor_ 8
A_or_not_8B
not_A_and_B
A_xor_38
pass_8B
A_or_8
pass_A
A_and_not_B
A_and_B
zeros

Rational Machines proprietary document

ns

Result
F=A-1

F = AR + B
F=A+8 + 1
F= A % A
F=A+A+1
F=A=-8~-1
F=24aA-28

F= A+ 1
CONDITIONAL
CONDITIONAL
CONDITIONAL
CONDITIONAL
CONDITIONAL
CONDITIONAL
CONDITIONAL
CONDITIONAL

F = A"

F = {A and B
F = AT or B

F = -1 (2°s comp)
F = (A or B)~
F = B”

F = (A xor B8)°
F= A or B™

F = A and B8
F = A xor B

F =8B

F = Aor B

F =2

F = A and B~
F = A and B

F =0

DRAFT 4 August 2, 1982

Block Diagram Functional Definition 9

2.3. Shift Mux

The Shift Mux is a device that selects one of four sources of data for
storage into the C address of the register file. The four data paths
that the Mux can select from are:

1« The unmodified output of the ALU.

2. The output of the ALU left shifted by one bit. In this case the
MSB of the ALU output is shifted out {(and therefore 1lost) and
the least significant bit of the shifted result is zero filled.

3. The output of the ALU right shifted by 186 bits. In this case
the least significant 16 bits of the ALU output are shifted out
(and therefore lost) and the most significant 16 bits of the
shifted result are zero filled.

4o The MWrite Data Register {(WDR). This option is selected by the
hardware when a START WRITE command has been issued and the
location being written to resides in the Control- Stack
Accelerator (see section 2.1.2). The microcode should only
select this option when the WDR needs to be saved in the RF as
2 piece of microstate.

In addition to selecting one of the above data paths, the microcoder
can specify two other sources of data to get stored into the register
file. One of these other sources, the FIU BUS, 1is described in
section 2.7.2 of this document. The final option when sourcing data to
a L address is to take half of the 64 bit data word from the FIU BUS
and half of it from +the SHIFT MUX. This option is exercised by
selecting the SPLIT_C_SOURCE encoding in the RANDOM field of the VAL
microword. When this random is selected, if the C_SOURCE field of the
VAL microword selects the SHIFT MUX as the source of T datar then the
lower 32 bits of data that actually get passed to the register file

are the lower 32 bits of the SHIFT MUX and the upper 32 bits of { data

are the upper 32 bits of the FIU BUS. Similarly, if the SPLIT_C_SOURCE

random is selected and the C_SOURCE field selects the FIU BUS, then

the lower 32 bits of L data come from the lower 32 bits of the FIU BUS
and the upper 32 bits of C data come from the upper 32 bits of the
SHIFT MUX.

2absa Multiplier

The multiplier logic operates on twosr, unsigned 16 bit quantities (one
from the A PORT of the RF the other from the B PORT) and produces a 32
bit unsigned product that can be used as an A INPUT to the AlU.
Internally, the multiplier contains three registers: two to latch the
64 bit values from the A and B ports of the RF and one to latch the 32
bit product. These three registers provide the microcoder flexibility
in selecting exactly which bits are to be multiplied and how to align
the producta.

Rational Machines proprietary document DRAFTY & August 2, 1982

Block Diagram Functional Definition 10

The two values that are driven onto the A and B ports of the register
file will be latched into the two multiplier dinput registers
simultaneously when the RANDOM micro-order START_MULTIPLY is invoked.
Once two values get into these input registers they remain there until.
new values are loaded in. Efach of the two 64 bit input registers is
divided into four 16 bit quarters. Two microword fields, MULT_A_SOURCE
and MULT_B_SOURCE, allow the microcoder to independantly decide for
each register which 16 bit quarter-register should be used as the
operands to the multiplier. The encodings of these fields is giwven in
Section 3 of this document.

The cycle after a multiply is beguns the product is available either
to be driven out to the FIU or to be used as an operand on the A_INPUT
of the ALU. Of course to access the multiplier product, the correct
register file A ADDRESS encoding must be selected. When the 32 bit
multiplier output is selected to be used, several options exist as to
how the output should be aligned within the 64 bit A PORT bus. The
normal (default) mode is to have the multiplier product in the 32
LSB"s of the bus with the upper 32 bits zero filled. Two other
alignments of the product can occur by selecting one of the following
VAL board randoms:

PRODUCT_LEFT_32 The product is left shifted 32 bits into <0..31> of
the A_INPUT. All other bits of the A_INPUT are zero
filled.

PRODUCT_LEFT_16 The product is left shifted 16 bits into <16..47> of
the A_INPUT. All other bits of the A_INPUY are zero
filled.

The encodings of these two functions are given in Section: 3 of this
document. Choosing either of these two special alignments does not
incur any time penalty and the shifted product can be used just as any
normal ALU A_INPUT. If one of these randoms is specified but the
multiplier product is not selected as the A_INPUT to the ALU, then the
random has no affect; operation of the VAL board logic proceeds as if
it were not specified. Selecting one of these two RANDOM instructions
is the only way to align the multiplier product in a non-standard
format.

Additional discussion of the multiplier and its wuse in extended
multiplications is given in section 4.4.2 of this document.

2e5. Zero Detector

The Zero Detector logic monitors the output of the ALU, generating

testable conditions that indicate whether certain ranges of the ALU
output are equal to zero. The conditions available for testing are:

Rational Machines proprietary document DRAFT & August 2, 1982

Block Diagram Functional Definition 11

1« All 64 bits of the ALU output = D.

2« Most significant 32 bits of the ALU output O.

3. Most significant 48 bits of the ALU output = 0.

4Le Bits <32:47>, i.2. the third most significant guarter of the
ALY output = D.

Each of the above ctonditions is available as a2 late condition in- the
cycle that it gets selected.

In addition to generating testable conditionss, the COUNY_ZEROS
encoding in the RANDOM field tells the hardware to count and latch the
number of leading zeros on the output of the ALU. The value of this
number is available as an operand on the A_INPUT of the ALU on the
next cycle following the COUNT_ZEROS instruction and remains available
until another one of these instructions is given. The format of the
number of leading zeros that is driven onto the A_INPUT is as follows.
The numbers wvalue is driven onto the seven LSB"s, i.e. bits <57:63>,
and all of the remaining bits are zero filled by the hardware. The
range of values this number can assume is 0 .. 64,

2.6. Loop Counter

The Loop Counter is a general purposer 10 bit counter that can be used
two different ways. Firsts, the value in the loop counter can be used
by the register file addressing logic to address any A, B, or C
location in the RF, This allows the microcode to get around the
restriction of only being able to address one of the 32 scratch
registers that reside in the frame currently pointed to by the
REGISTER_FRAME field of the microword. The second application of the
loop <counter value is as an operand to the A_INPUT of the ALU. The 10
bit value is read out of the counter onto the 10 LSB"s of the A_INPUT
while all of the remaining bits are zerc filled by the hardware.

The value <contained in the loop counter can be changed two ways. The
first way is to directly parallel load the loop counter with the 10
LSB"s of data from either the SHIFT MUX or the FIU BUS. This operation
is accomplished by selecting the loop counter as the C ADDRESS field
of the microword and then selecting the appropriate source of the C
data with the C_SOURCE field.

The second way to change the value of the loop counter is to use the
RANDOM micro-orders INC_LOOP_COUNTER or DEC_LOOP_COUNTER. (NOTE: The
DIVIDE micro-order of the RANDOM field will also decrement the loop
counter but this is implicit to that instruction and not under direct
microcode control. Further explanation of the divide instruction is in
section 4.4.71 of this document).

Finallys, 2 testable condition generated by the hardware is set to TRUE

Rational Machines proprietary document DRAFT & August 2, 1982

Block Diagram Functional Definition ‘ 12

whenever the value of the loop counter equals zero. This is an early
conditioen to the sequencer board. In the case where this condition is
testedr and in the same cycle the instruction to increment (or
decrement or load) the loop counter is issued, the test condition will
be TRUE only if the pre-incremented value of the 1loop counter was
Zero.

2.7« Bus Interfaces

The VAL board interfaces with three of the five major processor
busses: the VAL bus, the FIU bus, and the ADDRESS bus. The microcode
control for determining when a particular board should drive data onto
a bus resides in one place: the FIU board. The interactions betuween
the VAL board logic and each of +these busses 1is described in the
following sectionsa.

2e7«1. VAL Data Bus

The principal point of access to the VAL data bus is the B PORT of the
register file. Any piece of data on the VAL board that can be used as
an operand on the B_INPUT of the ALU can as well source data onto the
VAL Dbus. Similarly., in any cycle, the data that is currently on the
VAL bus can be used as the B_INPUT to the ALU {or multiplier). The
only other access to data on the VAL bus is through the copy of the
WDR that resides on the board. In general, this register 1is present
only for hardware timing reasons (involving memory writes that hit in
the CSA) and should only be accessed by the microcode when storing the
WDR as microstate. :

There are not many restrictions to fellow when interfacing with the
VAL bus. The only ones currently are the following:

* The board cannot read data from the VAL bus and drive data to the
bus in the same cycle. ' ‘

* Whenever a memory read is made, by any boards to a control stack
address spaces, in the same cycle of the read as READ RDR is
specified the CSA_VAL_BUS MUSI be specified as the B address of
the register file. Whenever a write is mader by any board, to a
control stack address space, in the second cycle after the START
WRITE instruction is given three restrictions are imposed: the
default (urite disable) C ADDRESS of the RF must be specifieds,
the C_SOURCE field must select the SHIFT MUX, and the MUX_SOURCE
field must select the WDR.

* When executing a POP DOWN TO instruction on the CSA; in the cycle
immediately after the one when the pop down address is put on the
address bus, the CSA_VAL_BUS MUSY be specified as the B address
of the register file. ‘

Rational Machines proprietary document DRAFT & August 2, 1982

Block Diagram Functional Definition 13

2-7-2- ?IU Bus

Data is driven ontd the FIU bus from the A PORT of the register file
and data received from the FIU bus can be stored into any location
that can be addressed 2s a { address. The primary use of the FIU is to
extract and align data that flows between processor memory and local
storage on the VAL and TYPE boards. The previous statement implies
the principal source of data that the VAL board receives over the FIU
bus is data that has come from main memory via the rotator and merger.
on the FIU. Howevers, since the FIU bus appears to provide a very
flexible data path between almost 211 of the boards in the processors
there is a posibility of assuming the existence of a data path between
the FIU and some other board when in fact that path does not legally
exist. The following are the legal and illegal data paths to the VAL
board over the FIU data bus:

LEGAL PATHS 1« Data coming from main memory over the VAL bus.
going through the FIU to the FIU bus and getting
storad directly in the VAL RF.

2. Data coming out of the A PORY of the TYPE board RF,
over the FIU bus and getting stored directly in the
VAL RF.. '

3. Data coming out of an isolated {i.e. non register
file) processor registers, going through the FIU to the
FIU bus and getting stored directly in the VAL RF.
Examples of isolated registers are Timer wvalues on the
SYSBUS board, SYSBUS status registers, MAR, and RDR.

4. Data coming out of the multiplier, going over the
FIU bus through the FIU and getting stored in the MDR,
VAR, or TAR. '

ILLEGAL PATHS 1. Data coming out of a RF {either VAL or TYPE), going
through the FIU to the FIU bus and getting stored back
into the VAL RF. :

2. Data, from any sourcer going through the FIU to the
FIU buss, then going through the VAL ALU and getting
stored into the VAL RF. (There is currently no way to
generate this path under microcode <control. It is
included here for information purposes onlyd.

3. Data coming from the TYPE RF across the FIU bus
through the VAL ALU and getting stored in the VAL RF.
{There is currently no way to generate this path under
microcode control. It is included here for information
purposes onlyla

4., Data coming out of the VAL RF, going over the FIU

Rational Machines proprietary document DRAFT 4 August 2-, 1982

Block Diagram Functional Definition 14

bus and through the FIU, then getting written into the
WOR.

S5« Any time a reference is made to a Control Stack
address space {by any board), the data cannot go onteo
the VAL buss, through the FIU and then in the same
cycle get stored in the VAL board RF. This restriction:
is imposed because of hardware timing problems wshen
the control address hits in the (5A.

In addition to the legal data path functions described aboves, the
CONDITION_TO_FIU random 2allows the microcoder to merge certain
conditions on the VAL board into the L58 of the FIU bus. When this
random is selected, the currently selected testable condition is
"stuffed” into the LSB of the FIU bus receiver, the other bits of the
FIU bus are unaffected. Several restrictions are imposed when wusing
this operation. First, only five conditions are legal choices to get
merged with the FIU. They are : VAL_ALU_ZERO, VAL_ALU_NONZIERO,
VAL_ALU_A_LT_B, VAL_ALU_A_LE_B, and VAL_PREVIOUS. In additions,
specific ALU functions must be chosen when merging these conditions.
The correct ALU function for each of the legal conditions is shown in
Table 2-3. The principal use of this merging feature is when all zeros
are driven on the FIU bus. This zero extends the selected condition
and thus allows the microcode to store +the boolean value of the
selected condition in one cycle.

Table 2-3: ALU functions for Condition Merging

Merge ALU
Condition Function
VAL_ALU_ZERO A_XOR_B
VAL_ALU_NONZERO A_XOR_B
VAL_ALU_A_LT_B A_MINUS_B
VAL_ALU_A_LE_B DEC_A_MINUS_B

VAL_PREVIOUS any ALU function is allouwed

2.7+3. Address Bus
The address bus is driven by the output of the VAL board AlLU. All

addresses +that are generated on this board are bit addressess
i.2. when an ALU output is an addressr, the seven least significant

Rational Machines proprietary document DRAFT & August 2, 1982

Block Diagram Functional Definition 15

bits of that output specify which bit the data object of interest
begins at within the the 128 bit word that is accessed. Since the main
memory system only looks at word addresses, the seven bits of bit
address are fed directly into the FIU to be used for extracting fields
out of memory uwords.

For each address space defined in the R1000 architecture, the maximum
offset into that address space is, in general, different from any
other space. The microcode does not need to explicitly generate the
correct number of leading zeros to drive onto the address bus for each
different space. This detail is automatically done by the hardware by
truncating the output of the ALU at the correct bit position for the
particular address space and then zero filling.

3. Microword Specification

The following section summarizes the complete microword that controls
the operation of the VAL board. The organization of this section
specifies each field in the microword, the encoding and name of each
micro-order within a field, and, when neededs 2 brief description of
the function the micro—order performs. Since almost all of the micro-
orders are referenced in Section 2, the reader should refer to the
‘appropriate place in that section for a2 more detailed description of a
particular encoding. ,

Rational Machines proprietary document .~ DRAFT & August 2, 1982

Microword Specification

A_ADDRESS (6 bits):

- ENCODING

- - . -

00 xx xx
010000
010001
010010
010011
010100
010101
010110
010111
011000
011001
011010
011011
011100
011101
011110
011111

Txxxxx

B_ADDRESS {6 bits):

O0xxxx
010000
010001
010010
010011
010100
010101
010110
010111
011000
011001
011010
011011
011100
011101
011110
011111

Txxxxx

Rational Machines proprietary document

Default

NAME

- o -

a_gp

a_tos
a_tos_plusl
sparel
a_loop_reg
zero
zero_detect
product
a_loop_ctr
a_tos_minus8
a_tos_minus?
a_tos_minusb
a_tos_minus>
a_tos_minus4
a_tos_minus3
a_tos_minus?
a_tos_minus1
a_frame_reg

-
-
-
-
-
-
-

b_gp

b_tos
b_tos_plus1i
spareld
b_loop_reg

csa_bot_minus1

¢sa_bot

Default c¢sa_wval_bus

sparel
b_tos_minus8
b_tos_minus?
b_tos_minus$b
b_tos_minus5
b_tos_minusé
b_tos_minus3
b_tos_minus?2
b_tos_minus]
b_frame_reg

DRAFT 4

146

specify the A address of the register file

specify the B address of the register file.

-August 2., 1982

Microword Specification

C_ADDRESS (6 bits):

00 xxxx c_gp

010000 c_tos

010001 c_tos_plusi
010010 spareé

018011 c_loop_reg
D10100 c_csa_bot_minus?
010101 c_csa_bot
010110 Default write_disable
010111 c_loop_cir
011000 c_tos_minus8
011001 c_tos_minus?
011010 c_tos_minusé
011011 c_tos_minusS
011100 c_tos_minusé
011101 c_tos_minus3
011110 c_tos_minus?2
011111 c_tos_minus1
Txxxxx c_frame_reg

REGISTER_FRAME {5 bits):

XXXXX

in the RF

frame {11111

Default Vvalue)

17

specify the L address of the register file

specify one of the 32 possible frames

C_SOURﬁE‘{1 bit): specify which data source gets passed to the
£ PORT of the RF

-d O3

Default

MUX_SOURCE (2 bits):

00
01 Default
10
11

fiu
mux

will pass to the C address

alu_left
alu
alu_right
wdr

Rational Machines proprietary document

DRAFT &

specify the data socurce that the SHIFT MUX

August 2, 1982

Microword Specification

ALU-FUNCTION {5 bits): specify the ALU function

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
18001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111 Default

dec_A

A_plus_8B
inc_A_plus_B8
left_1_A
left_1_A_inc
dec_A_minus_B8
A_minus_B

inc_A
plus_else_minus
minus_else_plus
passA_else_passB
passB_else_passA
passiA_else_incA
incA_else_passA
passiA_else_decA
decA_else_passi
not_A

A_nand_8
not_A_or_B

ones

A_nor_B

not_B

A_xnor_B
A_or_not_B
not_A_and_3B
A_xor_8

pass_B

A_or_B

pass_A
A_and_not_B8
A_and_B

zeros

Rational Machines proprietary document

DRAFTY 4

18

August 2, 1982

Microword Specification

MULT _A_SOURCE

00
01
10
11

Default

MULT_B_SOURCE

00
01
10
11

Default

Q2

2

RANDOM {4 bits):

0000

0001

0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Default

19

bits): specify which group of 16 bits is used as

the multiplier A_INPDT

bits_0_15

bits_16_31
bits_32_47
bits_48_563

bits): specify uwhich group of 16 bits is used as

the multiplier B_INPUT

bits_0_15

bits_16_31
bits_32_47
bits_48_63

specify the described random operation

no_op
inc_loop_counter
dec_loop_counter
condition_to_fiu
split_C_source
count_zeros
spare5
product_left_32
product_left_146
pass_A_high
pass_B_high
divide
start_multiply
spareb

spare?

spare8

TOTAL NUMBER OF BITS IN MICROWORD = 39

Rational Machines proprietary document DRAFT 4

August 2, 1982

Microcode Considerations 20

4. Microcode Considerations

The following section describes in more detail some aspects of the
microcode interface to the VAL board. In general, the discussion in
this section is directed toward three areas: complex microcode
processes f{arithmetic operations, microstate saving and restoring).
condition and event handling, and microcode restrictions that are.
imposed by the harduyare.

4.1. Context Switch Microstate
The sum total of microstate that exists on the VAL board consists of:

* The Register File. The Control Stack Accelerator ({SA) and
general purpose (GP) registers, in general, will need to be saved
on every context switch along with some {(small?) number of
scratch pad registers. There is no hardware checking of which RF
locations need to be saved as microstate. This must be totally
kept track of by microcode. (N bits)

* The value contained in the loop counter {10 bits).

Access to all of this microstate for saving and restoring on context
switch is very straightforward. All of the CSA, GP, and scratch
registers that need to be saved can be addressed on the B PORT of the
RF and immediately be saved or restored on the VAL data bus. The loop
counter can be accessed through an A PORT address of the RF. The wvalue
of the loop counter is packed into the least significant 10 bits of
the word (bits <54:63>) with the remaining bits of the word being zero
filled by the hardware. The 1loop counter word can immediately be
driven onto the FIU bus to get further packed into a “"microstate”
block (or whatever) that will be saved.

4,2. Conditions

The VAL board generates 18 testable conditions. On 2 given cycle, any
one of these conditions can be selecteds, using the microcode control
on the SEQUENLER boards, to participate in conditional sequencing
operations. Table 4-1 lists all of the VAL board conditions, the
SEQUENLCER board encoding to select each condition, and an indication
as to whether the condition is early or late.

The conditions on this board can be divided into two types: alu
conditions and non-alu conditions. All alu conditions are designated
as late conditions by the microsequencer and so can only be used
either as hints or 1latched on the sequencer and tested in the next
cycle. The following is a list of the 2lu conditions and a brief
description of what the condition means.

Rational Machines proprietary document DRAFT & August 2., 1982

Microcode Considerations 21

Table 4-1: Value Board Conditions

Each condition is selected by specifying its encoding in the
CONDITION_SELECT field of the SEQUENCER board microuword.

The selected condition also gets latched on the YAL board.
Early conditions to the SEQUENCER are indicated by an "E",
all other conditions are late.

Encoding Name

0000000 val_alu_zero
0000001 val_alu_nonzero
0000010 val_alu_A_1%t_B or val_alu_A_le_B (see text)
0000011 val_sparel
0000100 E val_cntr_zero
0000101 val_spare?
0000110 val_spare3
0000111 val_spare4
0001000 val_alu_carry
0001001 val_alu_overflow
0001010 val_alu_1t_zero
0001011 val_alu_1le_zero
0001100 val_sign_bits_equal
0001101 val_spareS5
0001110 val_sparebd
0001111 E val_previous
0010000 alu_32_zero
0010001 alu_48_zero
0010010 alu_middle_zero
0010011 E g_bit

0010100 E m_bit

0010101 val_spare?
0010110 E val_zero

0010111 E val_one

Rational Machines proprietary document DRAFT & August 2» 1982

Microcode lonsiderations 22

VAL_ALU_LZERDO This condition is TRUE whenever the 64 bit ALU output
equals zero. The ALU carry out and ALU overflow bits
are not taken into consideration when generating this
condition.

VAL _ALU_NONZERC This condition is TRUE whenever the 64 bit ALU output
does not equal zero. The ALU carry out and ALU
cverflow bits are not taken into consideration when
generating this condition.

VAL_ALU_A_LT_B This condition is TRUE when the A_INPUT of the ALU is .
less than the B_INPUT. The comparison treats A and B
as signed numbers (i.e. negative A is always less than
positive B). To generate this condition the ALU must
be executing the A_MINUS_B instruction on both halves
of the ALU {using either of the “pass high®™ randoms is
not allowed when selecting this condition). For
additional informations see the description of the
condition VAL _ALU_A_LE_B below.

VAL_ALU_A_LE_B This condition is TRUE when the A_INPUT of the ALU is
less than or equal +to the B_INPUT. The comparison
treats A and B as signed numbers {i.e. negative A is
always less than positive B). To generate this
condition the ALU must be executing the DEC_A_MINUS_B
instruction on both halves of the ALU {using either of
the "pass high™ randoms is not allowed when selecting
this <condition). Note, the hardware to generate this
condition 1is the same as that to generate the
VAL_ALU_A_LT_B condition., The distinction between:
these conditions, from a hardware perspectiver comes
from the different ALU operation +that must be
specified for each. For this reasons the two
conditions are assigned only one encoding 1in the
hardware, however the microcode may treat them as tuwo
distinct conditions for clarity.

VAL_ALU_CARRY This condition 1is TRUE when there is a carry out of
the most significant bit of the ALU.

VAL_ALU_OVERFLOW ‘ ,
This condition is TRUE when the result of an ALU
operation overflows a 64 bit representation.

VAL_ALU_LT_ZERO This <condition is TRUE when the MSB {sign bit) of the
ALU is a 1logical 1. Selecting this condition is
egquivalent to testing whether the 64 bit ALU output <
D. : :

VAL_ALU_LE_ZERO This condition is true uwhenever the 64 bit ALU output

<= O. This condition is 1logical “or® of the
VAL_ALU_ZERO and the VAL_ALU_LT_ZERO conditions.

Rational Machines proprietary document DRAFT & August 2, 1982

Microcode Considerations : 23

VAL_SIGN_BITS_EQUAL
This condition is TRUE whenewver the MSB {sign bit) of
the A_INPUT to the ALU is equal to the MSB of the
B_INPUT to the AlU.

ALU_32_1ERD This condition is TRUE when the wupper 32 bits
{ieee bits <D.<31>) of the ALU Output = Qe

ALU_4B_1ERO This condition is TRUE when the upper 48 bits
(i.e. bits <0..47>) of the ALU output = 0.

ALU_MIDDLE_ZERO This <condition is TRUE when bits <32..47> of the ALU
output = Da.

All non-alu conditions are designated as early conditions by the
microsequencer and so can be used either as branch conditions in the
current microcycle or latched on the seguencer and tested in the next
cycle« The following is a list of the non~alu conditions and a brief
description of what the condition meansa

VAL_ZERO When this condition is selected a logical zero is sent
to the sequencer as the YAL board condition.

VAL _ONE When this condition is selected a logical one is sent
to the seqguencer as the VAL board condition.

Q_BIT This <condition is TRUE when the Q_BIT is a logical 1.
The Q_BIT is a condition used by microcode during a
divide operaticn that determines the outcome of the
conditional add/subtract operation that needs to be
done by the VAL board ALU. For a more detailed
discussion of the Q_BIT, and the divide operation in
general, see Section %.4.71 of this document.

M_BIT This condition is TRUE when the M_BIT is a logical 1.
The M_BIT is a latched <copy of the VAL_ALU_LT_ZEROD
condition from the previous cycle and is used by the
hardware in the divide operation.

VAL _CNTR_ZIERD This condition is TRUE when the value of the 1loop
counter = Q. It is possible that in the same cycle
that the value of the loop counter is being testeds
the instruction to increment {or decrement or load)
the loop counter is issued. In this <caser the test
condition will be TRUE only if the pre~incremented
value of the loop counter was zero.

VAL _PREVIOUS At the end of every microcycle, the condition that was

selected on the VAL board gets 1latched on the VAL
board (this is different from the condition latch on

Rational Machines proprietary document DRAFT & August 2, 1982

Microcode Considerations 24

the microsequencer board). During any microcycle,
then, it is possible to select as a condition the
condition that was latched on the VAL board during the
previous cycle.

4.3. Events

There are no micro—-events or macro—events generated by the VAL board.

b4ebo Special Arithmetic Dperaticns

Each. of the following sections describes the details of the harduware
support of the more complicated arithmetic functions that are handled
by the VAL board. For each section, the reader is refered to Section
2 of this document for a description of how these functions fit into
the operation of the hardware as a whole.

4.4.1. Divide

The divide operation is implemented in microcode with some specific
harduware support built into the VAL board. The goal of dedicating
hardware support is to allow a standard non-restoring algorithm that
executes a divide in approximately the same number of cycles as the
number of significant bits of quotient.

Three pieces of hardware logic are provided as hardware support: the
Q_BIT, the M_BIT, and the leading zero counter of the IERO DETECTOR.
The leading zero <counter has been described in section 2.5 of this
document but 3 brief description will also be given here. Essentially.,
the number of leading zeros of the ALU output can be counted at any
time (subject to the restrictions of section 4.5 of this document) by
selecting the RANDOM micro-order COUNT_ZEROS on the VAL board. On the
next cycle after countings the number of leading zeros can be accessed
by . an A PORT address of the RF and may be used in an ALU operation or
sent to the FIU. For the divide instruction, the number of 1leading
zeros of both the dividend {(numerator) and the divisor (denominator)
are counted to determine the number of significant bits of guotient
that will be produced for the current division (Quotient Bits =
Leading zeros of Denom. minus Leading zeros of Num.). As mentioned
beforer, since the number of quotient bits determines the number of
iterations in the divide loop, once this number is computed it can be
loaded into the loop counter and be used to determine when to end the
divide operation.

The M_BIT is simply a copy of the MSB of the ALU output that gets
latched for wuse in determining the value of the Q_BIT in the next
cycle of the divide. :

The Q_BIT is a condition whose value is determined by the following:

Rational Machines proprietary document DRAFT & August 2, 1982

Microcode Considerations , ‘ 25

VAL_ALU_CARRY === if no divide is in progress.

Q_BIT =
This is the initial value the Q
bit needs to begin a divide.
Q_BIT = (Q_BIT xor VAL_ALU_CARRY xor M_BIT)™ == when divide

in progress

On the VAL boards for each iteration in the non-restoring divide
algorithm, the denominator <conditionally gets either added to or
subtracted from the numerator, depending on the value of the Q_BIT.
The numerator then gets shifted left by oner, the 1loop counter gets
decremented by one, and the Q_BIT gets sent over to the TYPE board and
gets shifted in as the least significant bit of the quotient to
conclude the iteration. This process is repeated wuntil the 1loop
counter reaches zeror, at which point the quotient is complete and.
resides in a register on the TYPE board.

To simplify the microcode interface , some of the above operations are
performed automatically by the hardware when the microcode selects the
DIVIDE instruction in the VAL boards RANDOM field. During each cycle
of the principal 1loop in the divide algorithm the DIVIDE random and
the PLUS_ELSE_MINUS conditional ALU instruction should be specified.
For esach of these cycles the hardware will:

1. Decrement the loop counter.

2. Use the current Q_BIT +to select either the add or subtract
function for the VAL board ALU {(Q_BIT equal zero => add).

3. Provide a data path between the Q_BIT {generated on the VAL
board) and the carry in input of the TYPE board ALU so that the
quotient bit can get shifted into the LSB of that ALU on each
cycle.

All of the other details of the divide algorithm are left to the
specific microcode algorithm that gets chosen. One final note about
divider the values of the Q_BIT and the M_BIT are not currently packed
into the bits of random state that get saved and restored on context
switche It is possible to include these bits later, however it is not
thought to be necessary at this time. This does imply that care should
be taken by the microcode to make sure that these values never need to
be saveda.

Rational Machines proprietary document DRAFTY &4 August 2, 1982

Microcode Considerations 26

bebe2. Multiply

In general, there are two types of multiplies that need to be done:
those necessary for array index calculations and those that are just
regular multiplications. In terms of speed, array indexing operations
are a much higher priority and so the hardware is optimized for this
CasSea.

It is anticipated that a very high percentage of 3all array indexing
multiplications will have operands whose values are less than 16 bits
{It is possible for these operands to be up to 32 bits long and so
they must be explicitly checked to see that they fall in the 16 Dbit
range). The VAL board multiplier is optimized for the case of tuwo 16
bit operands, 1in this case the entire multiply and accumulate
operation needed for array indexing ¢an be done in only two cycles. In
the first cycle, the two 64 bit operands are latched into the
multiplier input registers by selecting the RANDOM instruction
START_MULTIPLY. At the same time, the correct 16 bits of each register
can be passed to the multiplier logic by choosing the appropriate
micro-orders of the MULT_A_SOURCE and MULT_B_SOURCE microword fields.
In the second cycle, the 32 bit product is available to be added with
the array”s base offset to complete the array index operation. The
product can be accessed by specifying the PRODUCT address of the A
PORT of the RF.

When doing an extended multiply (i.e. the input values are between 16
and 64 bits), the multiplier is wused to produce 32 bit partial
products (at a rate of one partial product per cycle) which must all
be accumulated together to form the final product. This type of
multiply is begun in the same way as a 16 by 16 multiply, by 1latching
the two 64 bit operands in the multiplier latches with the
START_MULTIPLY instruction and choosing the desired 1% bit multiplier
inputs with the MULT_A_SOURCE and MULY_B_SOURCE fields. In the next
cycle, the first partial product is available at the output of the
multiplier. This partial product is accessed through the A ports
PRODULT address and can either be passed through the ALU, or combined
with some other offset and then be stored in some scratch location.
The partial product does not have to be accessed immediately, it will
remain in the output latch of the multiplier until two new inputs are
chosen to be multiplied together. In the same cycle that the first
partial product first becomes available, the next 16 bit operands can
be selected from the 64 bit input latches to generate the second
partial product. On the following cycle the second partial product is
available at the output of the muliplier and the third set of 1§ bits
can. be <chosen for generating the third partial product. This loop of
generating partial products is repeated until the full multiplication
is completed. The full details of the algorithm are left up to the
microcode. :

When each partial product becomes availabler it must be accumulated

with the previous partial products to obtain the final result. Also.,
each partial product must be shifted left by the proper amount before

Rational Machines proprietafy document DRAFT & August 2, 1982

Microcode Considerations , | 27

it can be added ine This left shift operation is built into the
hardware and is used by selecting one of two RANDOM operations:
PRODUCT_LEFT_16 and PRODUCT_LEFT_32. When either of these two RANDOM
instructions is cthosenr the LSB of the multiplier output is shifted up
to bit 47 {left shift 18) or bit 31 {(left shift 32) before it is made
available to the ALU input. All other bits are zero filled by the
hardware on both of these shifts to allow immediate addition with
previous partial products.

Two final notes on multiplication. First, as previously mentioned, the
multiplier has been optimized to perform a 16 by 16 multiply as
quickly as possible for array indexing. Since array index calculations
are always done on unsigned numbers, this is the only capability built
into the multiplier. If two signed numbers need to be multiplied,
either some pre-processing or post-processing {or both) must be done
by the microcode such that only an unsigned multiply is necessary.

Second, none of the three registers in the multiplier are available to
be saved or restored as microstate. This implies that some care must
be taken by the microcode to make sure that these values never need to
be saved.

4.4.3. Floating Point Operations

There 1is no dedicated hardware support for floating point operations
on the VAL board. All floating point operations will be implemented
either directly by microcode using the existing capabilities of the
VAL, TYPE and FIU boardss, or by softuware.

445 Microcode Restrictions

This section summarizes all of the known restrictions that the
hardware imposes <{usually for timing reasons) on the microcode. Most
of these restrictions were discussed in previous sections of this
document and therefore the reader is refered, mainly to Section 2, for
further details of each of these restrictions.

CSA RESTRICTIONS '
The following restrictions are imposed by the CSA.

1. Whenever a memory read is made to a Control
Stack address spacer during the cycle when the
READ RDR instruction is issued the gnly legal B8
ADDRESS that may be specified for the VAL board
RF is the CSA_VAL_BUS address. Whenever a
memory write is made to a Lontrol Stack address
spacer three restrictions are imposed during
the second cycle after the START WRITE
instruction is issued: First, the ggly legal C

Rational Machines proprietary document DRAFT & August 2, 1982

Microcode Considerations

FIU RESTRICTIONS

2.

The

1.

ADDRESS that may be specified for the VAL board
RF dis the default {write disable) address.
Second, the [_SOURCE encoding must select the
shift mux as the source of L data. Third, the
MUX_SOURCE encoding myst select the WDR as the
data path selected bLy the shift mux. These
restrictions are imposed because it is
impossible +to determine 2 priori whether a
given control reference will "hit”™ in the (SA
and therefore necessitate the VAL and TYPE
boards accessing the CSA instead of memory.

When executing a POP DOWN instructions, the
cycle immediately after the address being
popped down to is driven onto the ADDRESS bus,
the g9oply legal B ADDRESS that may be specified
for: the VAL 'board RF 1is the CSA_VAL_BUS
address. This restriction is 1imposed Dby
hardwuare timing.

One note of <caution when executing Control
Stack POP_DOWN_TO0 instructions. The hardware
calculates whether a Control Stack address hits
the CSA in the same cycle that the MAR 1is
loaded with the address. Let us say in this
example that a particular control read hits the
CSA at the top of stack minus two (TOP-2)
location. Since the data from this read is not
driven onto the VAL bus until the READ RDR
command is issued (possibly many cycles later)
it is possible for the microcode to execute a
POP_DOWN_TO instruction before executing a READ
RDR and therefore move the top of the stack to
a point below where the address hit in the (SA.
In this case when the READ RDR command is
issued, wvalid data cannot be guaranteed since
the CSA will be reading a 1location abowe the
current top of stack. The hardware does not
protect against this scenario. It is up to the
microcoder to exercise restraint in wusing
POP_DOWN_TD0 instructions in this type of
situation. This restriction only applies to
POP_DOWN_TO instructions, similar constraints
do not apply to the PUSH and POP operations.

28

folldming restrictions on driving data onto the
FIU bus are imposed by hardware timing.

Data coming from the VAL board RF cannot go
across the FIU buss through the FIU and then
get stored back into the VAL RF,

Rational Machines proprietary document DRAFT & August 2, 19

82

Microcode Lonsiderations 29

2. Data, from gany VAL board sourcer cannot go
through the FIU, come bhack across the FIU buse
then go through the VAL ALU and get stored into
the VAL RF. {There is currently no way to
generate this path under microcode control. It
is included here for information purposes
Gﬂl}')n

3. Data cannot come from the TYPE RF across the
FIU bus, through the VAL ALU and get stored in
the VAL RF. ({Similarly VAL data cannot get
stored in the TYPE RF in this manner) (There is
currently no way to generate this path under
microcode controlse It is included there for
information purposes onlyl.

4. Data cannot come out of the VAL RF, go over the
FIU bus and through the FIU,r then get mritten
into the WDR.

S« Any time a reference is made to a Control Stack
address space {by any board), the data cannot
go onto the VAL bus, through the FIU and then
in the same cycle get stored in the VAL board
RF. This restriction 1is imposed because of
hardware timing problems when the control
address hits in the CSA.

6. Only certain testable conditions are allouwed to
be merged into the LSB of the FIU bus.
Additionally, specific ALU functions are
required to be selected during the cycle that
the condition is being merged. Refer to Table
2=3 of this document for a summary of the
2llowable conditions and their respective ALU
function.

OTHERS The following are 2all of the other restrictions
imposed by the VAL board harduware.

1. The COUNT_ZEROS random cannot be used to count
the number of 1leading zeros of the VAL ALU
output when either of the following two
conditions occur:

2« The B_INPUT to the ALU is coming from
the CSA_VAL_BUS address of the RF.

be. The A_INPUT to the ALU is coming from
the loop counter.

Rational Machines proprietary document DRAFT & August 2» 1982

Diagnostics 30

5. Diagnostics

This section, and 211 of the subsections that it contains, will not be
a part of the initial specification of this board. Rather they will be
added later as more cof the specific details become known. The outline
of this section is included at this point for the sake of
completeness, and to elicit suggestions as to what the content and
format of each section should be.

S5eles Philosophy

5«2« Hardware Support
523..5tand Alone Testing

Se%e System Integration Testing
545 Micro—-Diagnostics

6. Hardware Considerations

This sections, and all of the subsections that it containss, will not be
a part of the initial specification of this board. Rather they will be
added later as more of the specific details become known. The outline
of this section is included at this point for the sake of
completeness, and to elicit suggestions as to what the content and
format of each section should be.

6e1a Timing Issues
.11« Data Path Timing
6a1.2. Clocking Issues

613 Potential Problems and Restrictions

Raticnal Machines proprietary document DRAFT 4 August 2, 1982

Hardware Considerations

622« Chip Lount and Power Estimates

6.3. System Interconnections

6«3=1. Foreplane

6e3.2. Backplane

S5uba Layout

Rational Machines proprietary document

DRAFT &

31

August 2, 1982

Table of Contents

1.
2a

3.
be

5.

6.

Summary

Table of Contents

Block Diagram Functional Definition

2.1,

2.3.
2aba
2. S.

2eba

27w

Register File

2121 Register File Addressing
2-%1.2-. Control Stack Accelerator
ALY

Shift Mux

Multiplier

lero Detector

Loop Counter

Bus Interfaces

2.7.1. VAL Data Bus

2eTe2« FIU Bus

2.7.3. Address Bus

Microword Specification
Microcode Considerations

4.1.
4e2.

bod.

4.5,

Context Switch Microstate
Conditions

Events

Special Arithmetic Operations
babale Divide

boba2. Multiply

4.4.3. Floating Point Operations
Microcode Restrictions

Diagnostics

S.1.
5«2e
Sa3e
s.é.
5‘5-

Philosophy

Hardware Support

Stand Alone Testing

System Integration Testing
Micro—-Diagnostics

Hardware Considerations

6a1a

Sala

Timing Issues
6u.1-1. Data Path Timing
6.1e2« Clocking Issues

Ha1a3. Potential Problems and Restrictions

Chip Count and Power Estimates
System Interconnections

$3.1. Foreplane

6e3.2. Backplane

Layocut

Rational Machines proprietary document

DRAFT 4

August 2, 1982

Table of Contents

List of Tables

Table 2-1: Register File Addressing

Table 2-2: ALU Operations

Table 2-3: ALU functions for Condition Merging
Table 4-1: Value Board Conditions

Rational Machines proprietary document

DRAFT 4

14
21

August 2, 1982

