f Rational Machines Instruction Set Fage 1

’V v

-
IS

RATIONAL MACHINES INSTRUCTION SET

VERSION 1 . &5

Copyright (c) 1982 Rational Machines Incorporated

RMI FROPRIETARY DOCLMENT August 19832

,,,-——-—————-——-———————————‘

.
~

Rational Machines Instruction Set . Fage 2
TABLE OF CORNMTERNTS

Lo INTRODUCTION o\ w o va s umusmmmm wmnse s unsunnsnsnanassssnos
2. GENERAL CONCEPTS Bk E s M e e e e Wk e e e wwme e

vl DATA TYFES t it vmmmn s n s s nnvususnusnnnnnsnuaa

o
I

Z. IMPERATIVE INSTRUCTIONS ... i vuwuunocnunosnosunnnannsnan

- e
Aol ACTION W v en v wnvnssonsnnnea WA R W N e R B E e kU e u
-y

Al [..:f‘f“..,'... L R L I I R N AN R R R R R

g N

4. DECLARATIVE INSTRUCTIONS ... unsuuonuununnoonunsnnnsss

4.1 DECLARE _SUBFROGRAM @i e n v u e s um s u i nnsowsnnsnsna
R B B B B

4oF DECLARE VARIABLE W w e ne s n s emunauunonsuuennenns
J. MOVEMENT INSTRUCTIONS ... uuuuusnsannununsnnnnonanssnns

8 |
B]

B I

“. BRANCH INSTRUCTIONMS v v in v uuunom s nnmwnsuounmnssnnnna

B

e L Y1 Y
S A 1 T Y

Y I
7. RETURN INSTRUCTIONS ot v n v v umumowom s nomnsonsnnnsnnuss

Tl EXLT ACCEFT 4w u v uauuns anens n e mmnn e unnn e
TuR EXIT_FUNGTION v ou v a v usamananne e e n e ennnomwn e
7B EXTT_FROCEDURE v v s e v vneeeeeennn e e
7ol FOP_FUNGTIIN v wunawu s ue s koo en e n o m e e m e o mennnn s
7o 5 FOF_FROCEDURE v u v v s e w ven s s e nmnnennn e

8. LITERAL DECLARATIONS I N I I IR
O O
Bed LITERAL VALUE @ s in i v un s s nusnunnannnusnnnnwso
Bad SHORT LITERAL v w e i i n s n v masumooemasnmunes “ o

7. SEGMENT LABELS R R I .

Zol HANDLERS W uu i v o i v u i mmun e nn s s conunsunusnnesens
Fud HEADER & u aww w o mw woww w o mmwm s e wwu w w s e ek ko ks ke

T L

Fud GEGMENT VALLE o w e u i i umn s wmunnnsunssnmnnnws s

RMI FROFRIETARY DOCUMENT August 1982

Rational Machines Instruction Set FPage 3
e, INSTRUCTION SET SUMMARY & v v v v u s sssuuwunosununnnnsnnsusoa

11. OBJECT/OPERATION CROSS—REFERENCE ... uuuwsusnunavwnounnwas

12. EXCEPTION/INSTRUCTION CROSS—REFEREMNCE . . .vwwwwun W e

173, BLOSSARY v w e mwmwwum o s o mu s ons s wnnssssns W

14, INDEX i u v u v num o womumumm wmwnsns s nnwnnnao Bhwnuw e

RMI FROPRIETARY DOCUMENT August 1982

,i,_-——————————————————ﬁ

-
.

Rational Machines Instruction Set Fage 4

CHAaAFRFTER 1L
INTRODUCT IO

This document describes the instruction set as defined by
the Rational Machines Architecture. In particular, we provide detailed
information regarding the composition and functionality of each

instruction, ITmplementation—specific formats may be found in a
corresponding processor reference manual . Additionally, ©the Rational
Machines Systems Concept documsnt includes a rationale for the

arganization of this instruction set. In each of these documents, we
presume thalt the reader has an understanding of the semantics of the
AdaX programming language.

This document is divided into three major sections, namely:

¥ GENERAL CONCEFRTS == Chapter 2
¥ DETATLED DISCUSSTON = Chapters 3 - 9
¥ SUMMARY INFORMATION -- Chapters 1@ - 14

Chapter 2 introduces the primitive data types and exceptions that are
recognized by the instruction set. Chapters 3 through 9 are organized
by groups of functionally related instructions. These seven chapters
provide detailed information on the Fform and effect of every
instruction and their options. The last five chapters, Chapters 16
through 14, are provided as a convenience Lo the reader to aid in
laocating specific instruction set information.

For detailed information regarding the organization of each class
of stacks as defined by the architecture, consult the Rational
Machines Run—time Structure.

f Ada is & trademark of the Department of Defense, Ada Joint Frogeram O0ffice

RMI FROFRIETARY DOCUMENT August 1982

.

Rational Machines Instruchtion Set FPage 3

CHAaFRFTER 22
CENERAL CORNCEFRTS

The Rational Machines instruction set directly supports and
encowrages the wse of modern software engineering methodologies. In
particular, the instruction set is optimized for supporting the use of
object-oriented programming in Ada-like languages. The design of the
instruction set is heavily influenced by the premise that a well-
structured program consists of many small modular components with
controlled and well-specified interfaces, ‘

Evary program segment consists of one or more words, where each
word contains one or more instrucéions. A program segment represents
@ither a task or a package, and so the number of words per segment
will vary. On the other hand, the number of instructions per word is
generally a fixed number for each implementation. Each instruction is
further divided into an opoode and one or more Fields which provide
operand information for the instruction.

“Z.1 DATA TYPES

The Rational Machines instruction set is strongly typed, which
means that there exists a unique and well-defined set of operations
assorl ated with BVEIY primitive Jata type recognized by the
architectuwre. No other operations are legal, anc
furthermore, objects of incompatible types may not implicitly operate
with each other. '

This elementary set of data types was designed +to directly and
efficiently support the semantics of high-order programming languages
similar to Ada. Collectively, we call these primitive data types
the OPERAND_CLASS. The operations associated with obiects of each
OFERAND_CLASS are found in Chapter 11, the OBJECT/OFERATION CROSS-—
REFERENCE.,

The following types are recognized by the architecture:

type OFERAND DLASS is
(ACCESS DLASS, ANY _DLASS,
ARRAY _CLASS, DISCRETE CLASS,
ENTRY_CLASS, EXCEFTION CLASS,
FAMILY _CLASS, FLOAT _CLASS
MATRIX_CLASS, FACKAGE CLASS,
RECORD_CLASS, SEGMENT CLASS,
S0T_CLASS, SUBARRAY _CLASS,
AMATRIX_CLASS, SUBVECTOR_CLASS,
TASKE _CLASS, VARTANT _RECORD_CLASS,
VECTOR_CLASS) ;

Consult the Rational Machines Run—time Structure for a complete
axplanation regarding the characteristics of each of these types, and
their representation on the various machine stacks. In the following

sections we provide a summary description of the primitive tvpes.

Zvl.1 ACCESS_CLASS Denotes a pointer to an objisct of a specific hype.

FMTI PROFPRIETARY DOCUMENT Puigust 1992

D SSSImNGSSTETSTSESESESESESSSEESSESEEETEEEEEEEREEEEE AR

>
.

Rational Machines Instruction Set Fage &

Characteristics of ACCESS _CLASS aobjects include the type of the
designated access objects, reference to a specific collection and its
creator, and an indication of the designated objects being reclaimable
and/or homogensous.

2. 1.2 ANY_CLASS Denotes an object of arbitrary type. AONY_CLASS
aobjects are operands only of DECLARE_VARIABLE and EXECUTE, and so
represent generic declarative anc imperaltive instractions.
Characteristics of ANY_CLASS objects are determined at execution time.

2.1.% ARRAY_CLASS Denotes a composite object consisting of components
of the same component type, indexed by n-dimensions. Characteristics
of ARRAY_CLASS objiects include reference to the element Lype,
dimension data, item size, and subarray size.

Z2.1l.4 DISCRETE_CLASS Denotes an enumeration o integer object.
Characteristics of DISCRETE _CLASS objects include reference to its
minimuam and maximum values, and define if the object is unsigned.

2. 1.5 ENTRY_CLASS Denotes an entry of a task. Characteristics of
ENTRY _CLASS objects include the entry name and guewe information.

2.1.6 EXCEPTION_CLASS Denotes an exwception. Characteristics of
EXCEFTION_CLASS objects include its identity, scops, and where it was

ralsed.

C2.107 FAMILY_CLASS Denotes a family of entries. Characteristics of
FAMILY _CLASS objects include the entry name, gqueue information, and
references to members of the family.

#.1.8 FLDAT_CLASS Denotes a floating point value. Characteristics of
FLOAT _CLASS objects include references to its minimum and maximum
values and its acouwracy.

2.1.% MATRIX_CLASS Denotes a two dimensional array. Characteristics
of MATRIX _CLASS objects are identical to ARRAY_CLASS obiechts, except
that MATRIX _CLASS objects are uwsed entirely to support EXECUTE
instruction optimizations.

2.1.18 PACKAGE_CLASS Denotes a package. Characteristics of
PACKEAGE CLASS objects include the declarative level, privacy, import,
and generic information, and references to its corresponding code
segment .

?.,1.11 RECORD_CLASS Denotes a composite object consisting of named
components, which may be of different types. Characteristics of
RECORD _CLASS aobjects include & descriptor for sach named component,
which in tuwrn specify the field type, size, and placement within the
comnposite object.

201418 SELECT_CLASS Denotes an executable oblject that handl es
processing of a task select statement. Characteristics of SELECT_CLASS
ohiects include reference to the select statemant and additionally
provide information regarding component clauses such as accepht, delay,
terminate, and else.

RMI FROFRIETARY DOCUMENT _ August 1982

L T

~

Fational Machines Instruction Set ’ ' Fage 7

2.1.1% SEGMENT_CLASS Denotes a code segment. Objects of this type are
created and used to transform a data segment of some form into
executable code. Characteristis of SEGMENT_CLASHS obljects include its
size and its root.

2.1.14 SUBARRAY_CLASS Denotes an n—1 dimensional array AL a
substructuwre of an n-dimensional parent. SUBARRAY_CLASH objiects are
used entirely to support EXECUTE optimizations. Characteristics of
SUBARRAY _CLLASS objects include retference to bthe element Ltype,
dimension data, and item size. :

2.1.1% SUBMATRIX_CLASS Denotes a one dimensional array AL a
gsubstructure of a two dimensional parent. SUBMATRIX_CLASS objects are
used entirely to support EXECUTE optimizations. Characteristics of
SUBMATRIX _CL.ASS ohjects include reference to the element type,
dimension data, and item size.

2.1.14 SUBVECTOR_CLASS Denotes a slice of a one dimensional parent.
SUBVECTOR_CLASS objects are used to entirely to support EXECUTE
optimizations. Characteristics of SUBVECTOR_CLASS objects include
referance to the element type, dimension data, and item data.

2.1.17 TASK_CLASS Denotes a task. Charscteristics of TASK _CLASS
objects include the declarative level, privacy, import, entry, and
generic information, and references to ite corresponding code segment.

2.1.18 VARIANT_RECORD_CLASS Denotes a discriminated union of objects
consisting of named components, whidh may be of different types. There
erists a firved part of the record object common to all variant, and
which containsg a discriminant field indicating which one of the
possible varianhts 1 contained in a particul ar instanoe.
Characteristics of VARIANT_RECORD_CLASS objects include references to
the fixed and variant parts, size and number of the discriminants, and
references to the nature of the variant fields.

VeEecron —cLASS

2.2 EXCEPTIONS

The Rational Machines instruction set defines facilities for
dealing with IO S that arise during program execution. In
particul ar, e instruction et rECOgnLEeS saveral
different excepéions that CALlSe SLISPeNS L on of normal program
execulion. These excephions include:

ALLOCATION ERROR, CARPABILITY _ERRDR,

CONSTRAINT _ERRDR, ELABORATION_ERROR,
INSTRUCTION_ERROR, MACHINE _RESTRICTION,

NLIMERTEC _ERROR, OFERAND _CLASS _ERROR,

RESOURCE _ERROR, SELECT _ERROR,

SOME __ERRDR, TASEING _ERROR,

TYPFE ERROR, VISIRILITY _ERROR : exceptiong

Chapter 12, EXCEFTION/INSTRUCTION CROSS-REFERENCE, lists each
exception and the instructions thalt may raise that exception. In the

RMI FROFRIETARY DOCUMENT August 1982

- . .

~

Rational Machines Instruchtion Set Fage &

following sections, we summarize the conditions that under which each
exception may be ralsed,.

Z2edel ALLOCATION_ERROR Not yet implemented.

2.2.2 CAPABILITY_ERROR Raised when attempting to access an entity
that is privete or otherwise out of scope.

2.2.7% CONSTRAINT_ERROR Raised in any of the following situations:
upon an attempt to violate a range constraint, an index constraint, or
a discriminant constrainty upon attempt to use a record component that
does not exist for the current discriminant values; and upon attempt
to use a selected component, an indexed component, & slice, or an
attribute, of an object designated by an access value i+ the object
does not exist because of the access value is null. '

2.2.4 ELABORATION_ERROR Raised when attempting to acoess an entity
other than a program unit that is not yvet completely elaborated.

2.2.5 INSTRUCTION_ERROR Faised when the machine attempits to executs
an illegal instruction.

2.2.46 MACHINE_RESTRICTION Raised when attempting to create an object
that is larger then the machine can allocate or index.

2.2.7 NUMERIC_ERROR Raised by the execution of a predefined numeric
operation that cannot deliver the mathematical result, and for real
types, within the declared accuracy.

2.2.8 OPERAND_CLASS _ERROR Raised when attempting to perform an
operation that is illegal for an object of the given DFERAND _CLASS.

2.2.%9 RESOURCE_ERROR Raised when wunable to extend a CIONTROL _STACK,
DATA_STACE, or TYPE_STACK.

2.2.1¢ SELECT_ERROR Raised dwing the execution of a selective wait
statement that has no else part, if this execution determines that all
alternatives are closed.

2.2.11 SOME_ERROR Raised upon an attempt to call & subprogeam,

activate a task, or instantiate a generic unit before elaboration of

the corresponding unit body. In addition, the exception is raised when.
dynamic storage allocation of a task or collection of designated

access objects is exceeded.

2.2l TASKING_ERROR Raised when exceptions arise dwing intertask
commuanication.

2.2.17% TYPE_ERROR Raised when attempting to perform an invalid type
derivation.

2.2.1 VISIBILITY_ERROR Raised when attempting to access an entity
that is not cuwrrently visible.

RMI FPROPRIETARY DOCUMENT August 1982

Fational Machines Instruction Set Fage 9

2.7 8TATE

Each processor within a given implementation contains a program
counter that points to the currently executing instruction. This
program counter contains an address that refers to a specific segment,
a word within that segment (the offset), and an instruction within
the word (the index). Generally, the state of a given program segment
includes the value of its corresponding program counter plus the
condition of each of the stacks associated with that segment.

RMI PROFRIETARY DOCUMENT August 1982

~

Rational Machines Instruction Set Fage 14

CHAaFRFTER =
IMFPFERATIVE IRNMSTRUCTIONS

an imperative instruction invokes an operation upon an abject of a
given type. This class of instructions is perhaps the most important
one, since its semantics forms the key to defining and enforcing data
abstraction and information hiding at even the lowest levels of the
architecture. Imperative instructions include the following opcodes:

¥ ACTION - Parform a system level operation
¥ CALL ~= Invoke a subprogram, block, accept, or select

¥ EXECUTE —— Perform an operation upon a typed object

In the following sections, we treat each opcode in detail.

Z.1 ACTION

The ACTION instruction performs a system level operation.
Formally, ACTION takes the form:

type ACTION_INSTRUCTION is
record
TO _FERFORM @ UNCLASSEDR_ACTIONG
end record; '

The operation TO_PERFORM is of the type UNCLASSED_ACTION, which we
further define as:

type UNCLASSED _ACTION is gligkf‘
(== ACTIVATION_QFERATLIONG /e
ACCEFT _ACTIVATION, ACTIVATE _TASKS, IMIE R A
SIGNAL_ACTIVATED, SIGNAL COMFLETION, @7 A0
e CREATION_OFPERATLONS
MAKE _NULL_UTILITY, MAKE _SELF,
MAME_MODLULE, NAME _FARTNER,
------ IMPORT _OFERATIONS
INTRODUCE _IMFORT, OVERWRITE _IMPORT,
REMOVE _IMFORT, CALl pr Pt
- INTERFAGE_OFERATIONS
AL.TER _BREAK_MASH, BREAK_OFTIONMAL ,
BREAE_UNCONDITIONAL, ESTABL ISH_FRAME,
EXIT_BREAK, RUERY BREAK_ADDRESS,
rirane O DUERY _BREAK_CALSE, QUERY_BREAK_MASE,
QUERY _FRAME, SET_BREAE _MASE ,
SET_INTERFACE_SCOFE, SET _INTERFACE_SUBFROGRAM,
e NO_OFERAT LON
IDLE,
e REFERENCE _OFERAT TONS
ACTIVATE_SUBFROGRAM, CALL _REFERENCE,
DELETE_ITEM, DELETE _SURFROGRAM,
SET VISIBILITY, SET A ees Peet

- RESOURCE _OFERATIONG

RMI FPROFPRIETARY DOCUMENT August 1982

Rational Machines Instruction Set

QUERY _RESOURCE_LIMITS,

RECOVER_RESOURCES,

SET _RESOURCE _LLIMITS,

- SLEEF _OFERATIONS

INTFIATE _DEUAY v

—— GTACK _OFERATIONS
MARE_ALIXILIARY,
MARKE_TYFE,

Fage 11

DUERY _RESOURCE _STATE,
RETURN _RESOURCES,

BORT,

MARE_DATA,
FOF_AUXILIARY,

FOF_CONTROL , FOF_DATA,
FOF_TYFPE, SR TONTROL

SWAF_CONTROL.D 3

In the following
UNCILASSED _ACTION.

sections we provide a detailed description of each

Z.1.1 ACTIVATION_OPERATIONS These operations provide the protocol for
the activation of a task or package. Since the Rational Machines
architecture treats each subprogram as subordinate to another package
or task, subprogram activation is achieved with a different set of

instructions, namely the CALL instruction (section 3.2) for activating

locally decl ared
ipstructions (section
SUbRIrOgrams .

ACTION
vigsible,

sLubprograms,
Foluh)y for

and REFERENCE _OFPERATION
activating ramote, vet

ACCERT _ACTIVATION
ACTIVATE_TASKS

SIGNAL_ACTIVATION
SIBNAL_COMPLET ION

W K W K

¥ FURFDSE: Signal that elaboration of visible part of
module is complete; module is now ready

tn accept activation from the parent.
Change module cuwrrent mode to ACTIVATING,
and send the message NOFIFY_DECLARED to the
declaring module.

No change exceph due Lo MesSSAgs PDASSAQEe.
None

¥ FUNCTION:

¥ BTACKS:

¥ EXCEPTIONG:
010102 ACTIVATE TASE

¥ PURFOSE: Signal all
exacution.
Send the message ACTIVATE _MODULE to each
child: execution of the current moduls may
proceed once all children have bheen
successfully activated.
No change ercept dus Lo mMessage PDASHAGE.
TASKING _ERROR may be raised if a child
cannot he achtivated.

children tasks that they may begin

¥ FUNCTION:

¥ STACKS:
EXCEFTIONSG:

€

B R

SlanaL._ aLTIvVaTED

y

¥ FURFOSE: Signal the creator of a module that

RMI FROPRIETARY DOCUMENT August 1982

Rational Machines Instruction Set Fage 12

@laboration of the module body is complete.
Faor a package module, this means that
the package bhody has been executed; in the
case of a task module, this means that the module
is activated and is running concuwrrently with
the parent.

¥ FUNMCTION: Change module current mode to EXECUTING, and
send the message NOTIFY_ACTIVATED to the
declaring module.

¥ STACKS: Mo change except due to message passage.

¥ EXCEFPTIONS: None. ‘

¥ FPLURFOSE: Signal the creator of a module that

processing of the module is complete.
X FUNCTION: It module is a task, mark the curraent mode

as TERMINATING and wait for all dependent
children to terminate. Additionally,

purge any entry gueues and send the message
END_RENDEZVOUS to any waiting callers.
Once all children are terminated

or are ready to terminate,

sand the message NOTIFY_TERMINATION to
the declaring module. When deallocation of
the dependent children and the module
iteelf begins, the module cuwrrent mode

is marked as COMPLETED.

I+ module is a package, wait for all dependent
children to terminate. Once all children are
terminated, send the message
MOTIFY_TERMINABLE to the declaring module.
Start deallocation of the dependent
children and the module itself, and mark
the module cwrent mode as TERMINATED.

¥ STACKS: Fostcondition:
QUELE_STACK is purged.
No other change except dug to message PDassage.
* EXCEPTIONS: I+ module is a task, and callers are waiting in any
entry gqueues, the message END_RENDEZVOUS has the
side effect of raising TASKING_ERROR in
any calling tasks.

F.1.2 CREATION_OPERATIONS These operations provide a facility for the

creating new subprograms, packages, or tasks within the current

context. : '
CREATION_DFERATIONS include:

¥ MAKE _NULL _UTILITY
¥ MAKE _SELF
¥ NAME_MODULE
¥ NAME_FARTNMER
Sl 201 MARE NULL UTILITY
X FPURFOSE: Create a null subprogram variable.

RMI FPROFRIETARY DOCUMENT August 1982

Rational Machines Instruction Set

¥ FUNCTIONS Fush a null SUBFROGRAM
CONTROL_STACE of the
¥ STACKS: Fostcondition:

SURFROGRAM_VAR word p
CONTROL _STACHK

¥ EXCEFTIONS: None.
e la202 MAKE SELE

¥ PURFOSE: Currently unimplemented

¥ FLUNCTION: Currently unimplemented

¥ STACKS: Currently unimplemented

¥ EXCEFTIONS: Currently wunimplemented
Sa 1200 NAME, MODULE

¥ FURFOSE:
¥ FUNCTION:

Create a module variabl
Create a module variabl
the current module (eit
FACEAGE_VAR) , and push
control word on thes COM
current module.
Fostoconcditions

X STACKS:

Fush a TASKE _VAR ar a
CONTROL._STACK.
¥ EXCEFPTIONS: None.
3010204 NAME FARTNER
¥ FURFOSE: Currently unimplemsnted

A FUNCTION:
X STACKS:
¥ EXCERTIONG:

Currently
Cuwrrently
Currently

unimplemented
unimplemented
unimplemanted

1.3 IMPORT_OPERATIONS These operations
manipulating the IMFORT_STACK.

IMPORT _OFERATIONS include:
¥ O INTRODUCE _IMFORT
¥ OVERWRITE IMPORT
¥ REMOVE _IMFORT

S

E.LMEOR

<1 INTRODUC I

X
X PUNLILDNu

Add an import item Lo
Fop the CONTROL_STACK
impoart, and follow the
current import informat
TYPE_STACK . Fop the CON
determine the entity th
and add a reference to
module®s THMPORT_STACK,
if necessary. A path is
module’s TYRE_STACK
mochal e’ import informa
to the imported entity.

=

=

2

RMI PROFRIETARY DOCUMENT

which

leading from

Fage 173

_VaR control word on the
current

mocdule.

ushed on top of

instruction.
instruction,
instruction.
instruction.

&,

e identical to that of

her a TASE_VAR or a
A cmrreqpondlng
TROL._STACK of the
FACFAGE _VAR on top of

instruction.
instruction.
instruction.
Lrstruction.
+ o

provide facilities

given module.

to determins the target of

type path to access its
ion on its corresponding
TROL._STACKE again to

at is to be imported,
that entity in the target
is extended

to the target

the target

and refering

added

tion

August 1982

Rational Machines Instruction Set Fage 14

¥ STACKS: Frecondition:
Top of CONTROL_STACE must contain a MODULE _VAR.
Top = 1 of CONTROL_STACE must contain an IMPORT_VA
Fostcondition:
Top of CONTROL_STACK is reduced by two.
IMFORT _VAR is added to target module
IMFORT_STACK.
Fath is added to target module’s TYFRE_STACE
from its import information and refering
to the imported entity.
X EXCEPTIONS: CAFABILITY_ERROR may be raised if the
module that is the target of the import is not
statically nested relative to the current module.
Se b ol OVERWRITE IMEORT
¥ FURFOSE: Write over an import item in a given module.
¥ FUNCTION: Fop the CONTROL_STACE to determine the target of
import, and follaow the type path to access its
current import information on the corresponding
TYFE_STACK. Fop the CONTROL_STACE again to
determine the site of the existing import that is
to be overwritten. Fop the IMFORT _STACK at that
site to remove the import entity.
¥ STACKS: Freconditions: .
Top of CONTROL_STACKE must contain a MODULE_VAR.
Top — 1 of CONTROL_STACE must contain a :
DISCRETE VAR indiceting the site scope delta.
Fostcondition:
Top of CONMNTROL_STALKE is reduced by two.
IMFORT _VAR is removed from target module
IMFORT_STACKE at the given site.
¥ EXCEFTIONS: CONMSTRAINT_ERROR may be raised if an import doss
not already exist at the given site.

F.1.4 INTERFACE_OPERATIONS These operations provide an interface
hetwesen modules and their external environment. INTERFACE _OFERATIONS
primarily are wsed in support of the programming environment
breakpoint and debugging facilities.

INTERFACE _OFERATIONS includes:s

ALTER_BREAK_MASE
BREAK_OFT IONAL
BREAK_UNCONDITIONAL
ESTABL ISH_FRAME
EXIT_EREAE

DUERY _BREAK_ADDRESS
RUERY_BREAK_CALISE
QUERY _BREAE_MASE
QUERY_FRAME

SET _BREAK_MASE

SET _INTERFACE _SCOPE
SET INTERFACE SUBFROGRAM

2 € € £ W HK W, X I XK K ¥

Selodll ALTER BREAE MOSK

RMI FROFRIETARY DOCUMENT August 1982

Rational Machines Instruction Set Fage 13

¥ FURFOSE: Modify the breakpoint mask for the current
madul e,
¥ FUNCTION: Fop the CONTROL_STACKE to get the site of the
current module key, and then read the
INTERFACE_FEY value at that site. Fop the
CONTROL._STACK again to access the new
breakpoint mask. Decode the mask, and write
the new value back to the INTERFACE _FEY.
¥ STACKS: Frecondition:
Top of CONTROL_STACKE must contain a
VARIABLE _REF the points to the INTERFACE_RKEY
site.
Top - 1 of CONTROL_STACE must contain a
DISCRETE _VAR that contains encoded
hreakpoint information.
Fostocondition:
Top of CONTROL_STACK is reduced by two.
Module INTERFACZE_EEY is altered.
¥ EXCEFTIONS: CAFARILITY_ERROR may be raised if key site is
rot local to the current module.
OFERAND_CLASS _ERROR is raised if INTERFACE_EEY
is not found.

Salodod BREAE OFTIONAL
X FURPOSE: Farce a breakpoint action i+ only if breakpoints
are enabled.
¥ FUNCTION: Examine the currently enabled breakpoint

conditions, and if optional breakpoints are
set, ralise the BREAKFOINT_ACLTION exception.
¥ STACKS: No change.
¥ EXCEFTIONS: BREAEFOINT _ACTION may be raised.

Iolu4.E BREAK

¥ FURFOSE: Force an unconditional breakpoint action,
¥ FUNCTIOM: Raise the BREAEFOINT_ACTION exception.
X STACKS: No change.
¥ EXCEPTIONS: BREAEFOINT _ACTION is raised.
e ludc 4 EGTABLISH FRAME
¥ FURFOSE : Establish a new frame on the current
CONTROL._STACE
¥ FUNCTION: Fop the CONTRIL_STACK to access the site of

the current INTERFACE _FEY. Fop the
CONTROL_STACK again to access the depth of the
frame to be established. Fop the CONTROL_STACE
a third time to get the name of the
caorresponding code segment. Fop the
CONTROL_STACKE a fouwrth time to get the
clisplacement within the segment marking the
start of the executable code. NMext, trace

1 down the cuwrrent activation links Lo find the
frame at the requested depth. Fush the state of the
frame (ACDCESSIBLE, INACCESSIRLE, NON_EXISTANT) on

RMI FROFRIETARY DOCUMENT August 1982

Rational Machines Instruction Set Fage 16

¥ STACKS:

¥ EXCEFTIONS:
Z.1.4.9 EXIT BREAL

¥ FURFOSE:

¥ FUNCTION:

¥ STACKS:

X EXCEFTIONS:

the CONTROL _STACK. I+ the frame is ACCESSIBLE,
mark the CONTROL_STACK to indicate the creation
of a new frame, with a subprogram using the given
code segment and displacement.
Freconditions:
Top of CONTROL_STACE contains a DISCRETE_VAR
indicating the iNTFhFACE FEY _SITE.
Top ~ 1 of CONTROL_STACE rmnfn1nb a
DISCRETE _VAR]nd1c4bing the frame depth.
Top - 2 of CONTROL_STACE contains a
DISCRETE VAR indicating the name of a
code segment.
Top ~ 3 of CONTROL_STACK contains a
DISCRETE _VAR indicating the start of
executable code within the code segment.
Fostcondition:
Top of COMTROL_STACE reduced by four, and then
FRAME_STATUS is pushed, followed by a new
ACTIVATION_STATE and a new ACTIVATION_LINE.
None.

Exit the current frame and establish
breakpoints.
The current INTERFACE_KEY is accessed, and
breakpoints are enabled according to the
key. The current frame is then popped.
Fostcondition:
The CONTROL_STACE, DATA_STACKE, and
TYFE_STaCK are popped to remove the
outer frame.
INSTRUCTION_ERROR may be raised if the
INTERFACE _KEY is not found, or is found
beyond the top of the CONTROL_STAGK.

Zuola4.6 QUERY BREAE _ADDRESS

€
o
cC
=i
~
T
"”;

¥ FUNCTION:

¥ STACKS:

¥ EXCEFTIONS:

Fush the cuwrrent breakpoint address on the
CONTROL_STACK.
Fop the CONTROL_STACK to access the site of
the INTERFACE EEY. Locate the key, and push
ites BREAE _ADDRESS value on the CONTROL_STAGCK.
Frecondition:

Top of CONTROL_STACK contains a

DISCRETE VAR indicating the key site.
Fostconditions

Top of CONTROL_STACK now contains

a DISCRETE VAR indicating the BREAE_ADDRESS.
CAFPABILITY _ERROR may bhe raised if key site

is not local to the cuwrrent module.
OFERAND _CLASS ERROR raised i€ INTERFACE_FEY

is not found.

ZT.1.4.7 QUERY BREAK CAUSE

RMI FROFPRIETARY DOCUMENT August 1982

Rational Machines Instruction Setl Fage 17

¥ FURFOSE: Fush the current breakpoint cause on the
CONTROL._STACE.,
¥ FUNCTION: Fop the CONMTROL_STACEK to access the site of
the INTERFACE _KEY. Locate the key, and push
ites BREAK_CAUSE value on the CONTROL_STACEK.
X STACKES: Frecondition: ,
Top of CONTROL_STACE contains a
DISCRETE VAR indicating the key site.
Fostcondition:
Top of CONTROL_STACE now contains a

¥ EXCERTIONS: CAPABILITY_ERRDR may be raised if key site
is not local to the current module.
OFERAND_CLASS _ERROR raised if INTERFALDE_KEY
is not found.
Selud. 8 QUERY BREAE MASE

¥ PURFOSE: Fush the current breakpoint mask on the
CONTROL _STACE.

X FUNCTION: Fop the CONTROL_STACK to access the site of
the INTERFACE_FEY. Locate the key, and push
ite RESTORE_ENABLE value on the CONTROL_STACE.

X STACKS: Freconditions:

Top of CONTROL_STACE contains a
DISCRETE_VAR indicating the key site.
Fostcondition:
Top of CONTROL_STACE now contains a
DISCRETE_VAR indicating the encoded
RESTORE _EMABLE mask.
¥ EXCEFTIONS: CAPARILITY_ERROR may be raised if key site
is not local to the cuwrent module.
OFERAND _CLLASS_ERROR raised if INTERFACE _KEY
is not found.

Iv1.4.9 QUERY FRAME
X FURFOSE: Fush the cwrrent state of the current

frame on the CONTROL_STACE.
¥ FUNCTION: Fop the CONTROL_STACE to access the site of
the current INTERFACE FEY. Fop the
CONTROL._STACKE again to access the depth of the
frame to be gqueried. If the frame is
ACCESSIBLE, push the scope of the outer frame
on the CONTROL_STACK, and push the return
address on the CONTROL_STACE. In all cases, next
push the encoded state of the frame (ACCESSIBLE,
INACCESSTRLE, NON_EXISTANT) on the
CONTROL _STALCK.
X STACKS: Frecondition:
Top of CONTROL_STACK contains a DISCRETE_VAR
indicating the INTERFACE _KEY SITE.
Top — 1 of CONTROL_STACE contains a
DIGCRETE_VAR indicating the frame depth.
Fostoconditions:

RMI FROFRIETARY DOCUMENT August 1982

Rational Machines Instruction Set Fage 18

Top of CONTROL_STACE reduced by four, and then,
if the frame is ACCESSIBLE, push a ,
DISCRETE_VAR indicating the frame outer scope,
followed by a DISCRETE_VAR indicating the frame
return address. Finally, push a DISCRETE VAR
indicating the encud@d frame stalte.

¥ EXCEFTIONS: None.

Zel.4.19 SET _BREAE_MASE
¥ FURFOSE: Establish a new breakpoint mask and :
debugging information for the current frame.
¥ FUNCTION: Fop the CONTROL_STACEK to access the name of the
: target module. Fop the CONTROL_STACK again
to get the new value of the breakpoint mask.
Write the value to that module®s
DEBUGGING _IMFO on the CONTROL_STACKE, and set
BREAKFOINT_ON in the CONTROL_STATE, also on
the CONTROL_STACK. '
X ‘TAquu Freconditions:
Top of CONTROL_STACK contains a
DISCRETE_VAR indicating the module name.
Top — 1 of COMTROL_STACE contains a
DISCRETE _VAR indicating the new breakpoint
masik .
Fostocondition: ,
Top of LDN1hUL STACE reuwduce by two.
¥ EXCEFPTIONS: None.

S.l.4011 SET INTERFACE SCOFE
¥ FURFODSE Establish a new debugging scope for the

current frame.
¥ FUNCTION: Fop the CONTROL_STACE to access the name of the
target module. Fop the CONTROL_STACKE again
to get the new valug of the breakpoint scope.
Write the value to that module’s
DEBUGEING_INFD on the CONTROL_STACE,
¥ STACKS: Freconditions
Top of CONTROL_STACK contains a
DISCRETE_VAR indicating the module name.
Toap — 1 of CONTROL._STACE contains &
DISCRETE VAR zndlcating the new debugging
BCOPE.
Fostocondition:
Top aof CONMTROL_STACE reuduce by two.
¥ EXCEFPTIONS: None.

Ko

e bada e GET INTERFACE SUBEROGRAM
¥ FPURFOSE: et the a reference to an interface subprogram
for a target moduale. -
¥ FUNCTION: Fop the COMTROL_STACK to access the name of the
target module. Fop the CONTROL _STADE again
to access the interface subprogram. Write
this value to the target maodule CONTROL_BTACK at

RMI FROFRIETARY DOCUMENT August 1982

~

Raltional.

Machines Instruction Set Fage 19

the offset for interface subpraograms.
¥ STACKS: Frecondition:
Top of CONTROL_STACE contains a
DISCRETE_VAR indicating the target
module name.
Top -~ 1 of CONTROL_STACK contains a
SUBFROGRAM_ VAR indicating the interface
subprogram.
Fostconditian:
Top of CONTROL_STACK is reduced by two.
¥ EXCEPTIONS: INSTRUCTION_ERROR is raised if the interface
subprogram is not code for call or for interface.

F.1.5 NO_DPERATION This operation provides a null execution facility.
NO_OFPERATION includes the single UNCLASSED_ _ACTIOM:

B T

¥ IDLE

IDLE

X FURFOSE: Frovide a null execution facility.
¥ FUNCTION: Do nothing.

¥ STACKS: No change.

¥ EXCEFTIONS: None.

Z.1.46 REFERENCE_OPERATIONS These operations provide facilities for v
activating remote subprograms. ’
REFERENCE_OFERATIONS includes

Falebad

Folub.2

ACTIVATE _SUBPROGRAM
CALL_REFERENCE

DELETE_ITEM

DELETE _SUBRFROGRAM
SET_VISIBILITY

3 I 3¢ I FK

ALTIVATE SURFROGRAL

¥ FURFOSE: Set an indirectly accessed subprogram as active.
¥ FUNCTION: Fop the CONTROL_STACE to get a subprogram

reference. Access the site of the subprogram,
and set the SURBFROG_ACTIVE at that site.
X STACKS: Frecondition: :
Top of CONTROL_STACK contains a SUBFROGRAM_REF.
Fostcondition:
Top of COMTROL_STACE reduced by one.
¥ EXCEFTIONS: INSTRUCTION thUh will be raised if reference
subprogram is not code for call, or if the
site of the subprogram is not found.

CALL_ REFERENGE
X FURFOSE: Call an indirectly accessed subprogram.

¥ FUNCTION: Fop the CONTROL_STACDE to get a subprogram
: reference. Access the site of the subprogram,
and establish a new frame for the referenced
subprogram.

RMI FROFRIETARY DOCUMENT August 19292

Rational

FulabaE

Zoluba 4

EZala bl E

Machines Inst

¥ STACKS:

¥ EXCEFTIONS:

DELETE ITEM

e 8 IR R et ST e e svem o e

¥ PURFOSE:

¥ FUNCTION:

¥ STACKS:

¥ EXCEFTIONMS:

¥ FURFOSE:

¥ FUNCTION:

¥ STACKS:

¥ EXCEPTIONS:

SET VISIRILITY
¥ FURFOSE:
¥ FUNCTION:

ruction Setb Fage 24

Frecondition:

Top of CONTROL_STACK contains a SUBFROGRAM_REF.
Fostcondition:

Top of CONTROL_STACE reduced by one, and then

a new ACTIVATION_STATE and a new ACTIVATION_ L. INE

are pushed to mark the new frame. ,
INSTRUCTION _ERRDR will be raised if reference
subprogram is not code for call.

Delete an entity. ‘
Fop the CONTROL_STACE to get a variable reference.
Fop the CONTROL_STACK again to access the
deletion key. Access the referenced variable,
and mark the location as deleted.
Frecondition: '
Top of CONTROL_STACE contains a VARIABLE_REF.
Top ~ 1 of CONTROL_STACE contains a
DELETION_EEY.
Fostcondition:
Top of CONTROL_STACK is reduced by two.
Refterenced variable is marked as delsted an
CONTROL._STACE.,
CAFARILITY_ERROR is raised i+ DELETION_KEY is not
found or if it is locked.
OFERAMD_CLASS _ERROR is ralsed if referenced
entity is not found.

Delete a subprogram.
Fop the CONTROL_STACK to ge a subprogram
reference. Fop the CONTROL_STACK again to get
a deletion key. Access the referenced subprogram
and mark the location as deleted.
Frecondition:
Top of CONTROL_STACE contains a SUBFROGRAM_REF.
Top — 1 of CONTROL_STACE contains a
DELETION_EEY.
Fostconditions:
Top of CONTROL_STACK reduced by two.
Refaerenced subprogram is marked as deleted on
the CONTROL_STACE.
CAFARILITY_ERROR is raised if DELETION_FEY is not
found or if it is locked.
DFERAND _CLASS ERROR is ralsed if referenced
subprogram is not found.

et the visibility of an entity.

Fop the CONTRDL_STACKE to access a variable
reference. Access the deletion key at that
site and marlk the key as locked and sets
vigibility.

RMI FROFPRIETARY DOCUMENT August 1982

Rational Machines

¥ STACkS:

¥ EXCERPTIONS:

Instruction

Set

Frecondition:

Top of CONTROL_STACE
Fostcondition:

Top of CONTROL_STACK
INSTHUCTIGN*ERHJR is ra

Fage 21

contains a VARIABLE _REF.

is reduced by one.
ised

if DELETION_EEY is
not found at the referenced site.

3. 1.7 RESOURCE_OPERATIONS These operations provide facilities far
allocating and recovering resources.
RESGOURCE_OFERATIONS include:
¥ QUERY_RESOURCE_LLIMITS
¥ RQUERY _RESOURCE_STATE
k% RECOVER_RESOURCES
¥ RETURN_RESQOURCES
X BET_RESOQURCE_LLIMITS
e la 701 QUERY RESOURCE LIMITS
¥ FURFOSE: Currently unimplemented instruction.
¥ FUNCTIONM: Currently unimplemented instruction.
¥ STACKS: Currently unimplemented instruction.
¥ EXCEFTIONS: Currently unimplemented instruction.
Fel.7.2 QUERY RESOURCE STATE
¥ FURFOSE: Currently unimplemented instruction.
¥ FUNCTION: Currently unimplemented instruction.
X STACES: Currently unimplemented instruction.
¥ EXCEPTIONS: Cwrrently unimplemented instruction.
Fele 7.0 RECOVER RESOURCES
¥ FURFOSE: Currently unimplemented instruction.
X FUNCTION:z Currently unimplemented instruction.
¥ STACES: Currently unimplemented instruction.
¥ EXCEFTIONS: Currently unimplemented instruction.
e lo 7.4 RETURN RESOURCES
¥ FURFOSE: Currently unimplemented instruction.
¥ FUNCTION: Currently unimplemented instruction.
¥ STACKS: Currently unimplemented instruction.
¥ EXCEPTIONS: Currently unimplemented instruchion.
3.01.7.8 SET_RESOURCE _LLIMITS
¥ FURPOSE: Currently unimplemented instruction.
% FUNPTIDN: Currently unimplemented insteruction.
¥ STACKES Durrently unimplemented insbruction.
X LXCE[TIDNS: Durrently unimplemented instruction.
Z. 1.8 SLEEP_OPERATIONS These operations provide facilities for
putting a module to sleep or to abort a task.
SLEEF_OFERATIONS include:
RMI FROFRIETARY DOCUMENT August 1982

+

. Rational

Tol1.8.2

Machines Instruction Set Fage 22

¥ INITIATE_DELAY
¥ PORFOGATE _ARORT

¥ PURFOSE: Fut a module to sleep for a specified delay.
¥ FLNCTION: Fop the CONTROL_STACK to access the delay
period. Put the module on a clock gueus, to
be awaken after the specified delay.
¥ STACKS: Frecondition:
Top of CONTROL_STACE containsg a VALUE_VAR
indicating the delay period.
Fostcondition:
Top of CONTROL_STACK is reduced by one. Other
changes result due to context swi tech from
heing placed on the clock gqueue.
¥ EXCEFTIONS: None.

¥ FURPOSE: Currently unimplemented instruction.
¥ FUNCTION: Currently unimplemented instruction.
X STACKS: Currently unimplemented instruction.
¥ EXCEPTIONS: Currently unimplemented instruction.

F.1.9 STACK_OPERATIONS These operations provide primitive facilities
for manipulating various stacks as defined by the architecture.)
STACE _OFERATIONS includes

Tolu901

MARE_AUX ILIARY
MARE _DATA

MARK _TYFE
FOF_AUXILIARY
FOF_CONTROL.
FOF_DATA
FOF_TYFE
FUSH_CONTROL.
SWAF_CONTROL

M I O 3 K W W HK I}

Makk AUXILIARY
¥ FURFOSE: Marlk bhoth the DATA_STACEK and TYPE_STACK.
$ FUNCTION: Read the top of both the DATA_STALE and the
TYFE_STACK, and save these values in an
AUXILIARY _MARKE on the CONTROL_STACE. In the
ACTIVATION LLINKE of the current frams, set
ALX TLLIARY _MAREED to TRUE.
¥ STACKS: Fostcondition:
AUXTLIARY _MARE pushed on top of CONTROL._STACK.
Current ACTIVATION_LINKE is updated.
¥ EXCERPTIONS: None.

» MARE_DATA

¥ PURFOSE: Mark Lthe DATA_STACE.
* FUNCTION: Fead the top of the DATA_STACK and save the

RMI FROFRIETARY DOCUMENT Angust 1982

Fational Machines Instruction Set Fage 23

value in an AUXILIARY_MARE on the CONTROL_STACK.

In the ACTIVATION_LINE of the current frame, set
AUXILTARY_MAREED to TRUE.
¥ STACKS: Fostcondition:

AUXTILTARY _MARE pushed on top of CONTROL_STACK.
Current AUTIVATION_LINK is updated.
¥ EXCEPTIONS: Nane.

¥ FURFOSE: Marlk the TYFE_STACK. :

¥ FUNCTION: FRead the top of the TYFE_STALK and save the
value in an AUXILIARY_MARE on the CONTROL_STACE.
In the ACTIVATION_LINE of the current frame, set
AUXTLLIARY _MARKEED to TRUE.

¥ STACKS: Fostcondition:

AUXILIARY _MAaREK pushed on top of CONTROL_STACK.
, Current ACTIVATION_LINE is updated.
¥ EXCEFTIONS: None. '

F.o1.9.4 POP_AUXILIARY

¥ FURFOSE: Fop to the last mark of the DATA_STACK and
the TYRE_STACK.
X FUNCTION: Fop the CONTROL_STACE to access the current
AUXILIARY _MARE. Fop both the DATA_STACKE and
TYFE_STACK down to the point of the last
mark. In the AUTIVATION_LINE of the current
frame, reset AUXILIARY_MARKED.
¥ STACKS: Frecondition:
Top of CONTROL_STACK must contain an
AUXTLIARY _MARE.
Fostcondition:
Top of CONTROL_STACE reduced by one.
Current ACTIVATION_LINE is updated.
DATA_STACE and TYFE_STACE both popped to
position hefore the last mark.
X EXCERPTIONS: INSTRUCTION_ERROR raised if CONTROL_STACE does
not have a valid AUXTLIARY_MARE.

Se 109,80 BEQE_CONTROL

¥ FURFOSE: Fop the CONTROL_STADE.
¥ FUNCTIOM: Fead the top of the CONTROL_STACE to determine
the natwe of the entity on type. Fop the
CONTROL._STACKE to remove this entity.
¥ STACKS: Frecondition:
Top of CONTROL_STACK must contain a
VALLE VAR or a STRUCTURE_VAR.
Fostcondition:
Top of CONTROL_STACE reduced by one.
¥ EXCEFPTIONS: OFERAND_CLASS_ERROR raised if top of
FDNFhULMS1ACL does not have a valid VALUE_VAR
or a STRUCTURE_VAR.

dul.9.0 B2OR_DATA

RMI FROFPRIETARY DOCUMENT August 19823

FRatianal Machines Instruction Set Fage 24

¥ FURFOSE: Fop to the last mark of the DATA_STALE.
¥ FUNCTIOM: Fop the CONTROL_STACE to access the cwrent
AUXTLLIARY _MARE. Fop both DATA_STACE
down to the point of the last mark. In
the ACTIVATION_LINE of the current
frame, reset AUXILIARY_MAREED.
3 Frecondition:
Top of CONTROL_STACE must contain an
ALXTL.TARY _MARE.
Fostcondition:
Top of CONTROL_STACK reduced by one.
Current ACTIVATION_LINE is updated.
DATA_STACE popped to position before
: the last mark.
¥ EXCEPTIONS: INSTRUCTION_ERROR raised if CONTROL_STACK does
not have a valid ALUXITLIARY _MARE.

\

¥ 85TA

3

in

3.1.9.7 FOF_TYFE

¥ PURFOSE: Fop to the last mark of the TYPE_STACK.
¥ FUNCTION: Fop the CONTROL_STALCE to access the current
AUXTLLIARY _MARE. Fop the TYPE_STACK
down to the point of the last mark. In
the ACTIVATIONM_LINE of the cuwrrent
frame, reset AUXILIARY_MaREED.
¥ STACKS: Freconditions:
Top of CONTROL_STACE must contain an
ALUXTL.IARY _MARK.
Fostcondition:
Top of CONTROL_STACEKE reduced by aone.
Current ACTIVATIOM_LINE is updated.
TYFPE_STACKE popped to position
bhetore the last mark.
¥ EXCEFTIONS: INSTRUCTION_ERROR raised if CONTROL_8TACKE does
not have a valid AUXILIARY _MARIK.

¥ FURFOSE: Duplicate the top entry on the CONTROL_STACK.
¥ FUNCTION: Read the top of the COMTROL_STADE. Fush the
game value on top of the CONTROL_STALCH.
¥ STACKS: Frecondition:
Top of CONTROL_STACE must contain a
VALUE VAR or a STRUCTURE_VAR..
Fostcondition: .
Top of CONTROL_STACK increassd by one.
Top two entities are identical.
¥ EXCEPTIONS: OFERAND_CLASS ERROR raised if top of CONTROL_STALCE
does not have a valid VALUE_VAR or a
STRUCTURE _VAR.
S.1.9.9 gWwak CONTROL

¥ FURFOSE: Feverse the top two elements of the CONTROL_STALDK.
¥ FUNCTIOM: Read the top element of the CONTROL_STACK, then read
the second elemant. Write sach wvalue in the opposite

RMI FROPRIETARY DOCUMENT August 1982

FRational Machines Instruction Set Fage &3

offset.
¥ STACKS: Frecondition:
Top of CONTROL_STACK and top — 1 of CONTROL_STACE
must bhoth contain either a VALUE_VAR or a
STRUCTURE_VAR.
Fostconditions
Top two elements of the CONMTROL_STACK are reversed
¥ EXCERTIONS: OFERAND_CLASS_ERROR is raised if gither the top or
the top — 1 of the CONTROL_STACE are not a VALUE_VAR
nor a STRUCTURE _VAR. :

Z.2 CALL

The CALL instruction invokes a subprogeam, block, accept, or
select. Formally, CALL takes the forms)

type CALL_INSTRUCTION is
record
OBJECT @ ORJECT REFERENCE;
end record;

The ORBRJECT to call is of the type OBJECT_REFERENCE, which we further
define as:

type OBJECT REFERENCE (LEVEL: LEXICAL_LEVEL 1= @) 1is
record .
case LEVEL 1is

when @ .. | =3 SCOPE_OFFSET @ SCOFPE_DELTA;
when others = FRAME_QOFFSET @ FRAME_DELTA;
end case;
end recaord;
To complete e detinition of the ORJECT _REFERENCE, we

define FRAME_DELTA, LEXICAL_LEVEL, ancd SCOPE_DELTA as:

MAX_FRAME @ constant INTEGER
MAX_LEVEL @ contstnt INTEGER
MAX _SCOFE @ constant INTEGER

= implementation.defined;
= implepentation.definedy
= implementation_definedy

£2 £z ==

type FRAME_DELTA is new INTEGER range - (MAX_FRAME + 1) .. MAX_FRAME;

type LEXICAL_LEVEL is new INTEGER range , @ .. MAX_LEVEL;
type SCOFE_DELTA is new INTEGER range : @ .. MAX_SCOPE;

Mote that if the LEXICAL_LEVEL of the CALL.OBJECT _REFERENCE has a
value of & or 1, this indicates that the called entity is in a local
scopey otherwise, the called entity will be found in an. enclosing
frrame. .

¥ FURPDSE: Invoke a subprogram, block, accept, or select.
¥ FUNCTION: Trace the ORJECT_REFERENCE to find the
corresponding SUBPROGRAM_VAR. Marbk the
CONTROL _STACKE to indicate the creation of
a new frame. Control is transfered to the

RMI FROPRIETARY DOCUMENT Auaust 1982

Rational Machines Instruction Set Fage 26

first instruction of the SUBFROGRAM_VAR.
¥ 8TACKS: Fostcondition: ‘ '
A new ACTIVATION_STATE and ACTIVATION_LINE are
pushed on the CONTROL_STADE.
¥ EXCEFTIONS: INSTRUCTIONM_ERROR is raised if the referenced
SUBPROGRAM_VAR is not found.

3.3 EXECUTE

The EXECUTE instruction performs an operation upon a typed object.
Formally, EXECUTE takes the form: :

type EXECUTE_INSTRUCTION is

record '
ON_CLASS ¢ OFERAND _CLASS;
OFERATION OFERATORS
FIELD FIELD _INDEX;
FIELD _ACCESS FIELD _ACCESS MODE;
FIELD _FEIND FIELD _S0ORTy

end record;

=z

&2 @2z B2

The operand ON_CLASY identifies the OPERAND_CLASS of the object that a
particular EXECUTE will operate upon (section 2.1). Generally, the
target operand will be on the top of the CONTROL_STACK. As the
tollowing sections will illustrate, not all ON_CLASS values are legal
for a given OFERATION;in addition, the specific function performed
depends upon both. If an attempt is made to EXECUTE an OPERATION that
ig not appropriate for the ON_CLASYE entilty, the excephtion
INGTRUCTION_ERROR will be raised. If the OFERATION is appropriate, but
the ON_CLASE entity is not found during execution (such as in the
correct position on The CONTROL._STACED then the exception
DFERAND _CLASS_ERROR is raised. Finally, if the ON_CLASS entity is
found but the object is private or otherwise out of scope, then the
exception CAFBATLITY_ERROR is raised.
OFERATION is of the type OPERATOR, which we further define as:

type OFERATOR is

(~~ ACCESS_OFERATIONS
ALL_READ_OF, ALL REFERENCE_DF,
AlL_WRITE_OF, BLLOCATE D,
ALLOCATE _WITH_CONSTRAINT _OF, ‘
ALLOCATE_WITH_INITIAL _VALUE_OF,
ALLOCATE _WITH_SUBTYRE_DF,
~IS_NULL_OP, ~NOT_NULL_DF,
NULL_OF,

e AL IGNMENT _OFERAT ION,
MAEE_ALIGNED _OF,

= ARITHMET IO _OFERATIONS
DIVIDE _OF, MINLUS _OF,
MODULD_OF, FLUS_OF,
REMATINDER_OF, TIMES_OF,

e QREAY _OFERAT IONS
AFFEND_OF, CONCATENATE _OF,

RMI FPROFRIETARY DOCUMENT August 1982

Rational

Machines Instruchtion Set

FREFEND_OF,
SLICE_WRITE_OF,
= ATTRIBUTE _OFERATIONS
ADDRESS_OF,
FIRST _OF,
1§ _CONSTRAINED OF,
LAST _0OF,
FREDECESSOR_OF,
SIZE_OF,
VALUE_OF,
BOUNDS_OFERAT IONS
BOUND _CHECE _OF,
REVERSE_BOUNDS_0F,
COMPLETION_OFERATIONS
COMPLETE _CONSTRAINED_OF,
COMPLETE_DERIVED _OF,
CONVERSION_OFERATIONG
. CONVERT_ACTUAL_OF,
e ELEMENT_OFERATION
ELEMENT_TYFE_OF,
EQUALITY _DFERAT IONS
EQUAL_OF,
EXCEFTION_OFERATIONS
RATISE _OF,
RATSED _NAME_OF,
RAISED VARIETY_OF,
FIELD DFERATIDNS

FIELD_REFERENCE_QF,
FIELD _WRITE_OF,

e TMPORT _OFERAT ION,
AUGMENT _IMPORTS _OF,

LOGICAL_DPERAT IONS
AND _OF,

XOR_OF,

- MEMBERSHIF_OPERAT IONS
CHECK _IN_TYFE_OF,
NOT _IN_TYFE_OF,

RANGE _OFERAT IONS
ABDVE_RANGE _DF,
IN_RANGE_OF,

RELATIONAL _OFERAT IONS
GREATER _EQUAL_OF,
LESS EQUAL_OF,

SEGMENT _OFERAT IONS
SEGMENT _NAME_0F,
SEGMENT _STORE_OF,

TASKING_OFERATIONS
ABDRT_OF,
COND_CALL_OF,

ENTRY _CALL_0P,
FAMILY _COND_OF,
BUARD _WRITE_OF,
RENDEZVOUS _0OF,

LNARY _OFERAT IONS

ABSOLUTE VALUE _DF,

RMYI FROFPRIETARY DOCUMENT

Fage |

8L.ICE_READ_OF,

SUBRARRAY _0OF,

COUNT _DF,

18 _COMPLETED _0F,
16 TERMINATED _OF,
LENGTH_OF,
FOSTTION_OF,
SUCCESSOR_OF,

BOUNDS_OF,
SET_BOUNDS_0OF,

COMPLETE _DEF INED_OF,
COMPLETE _TYFE_OF,

CONVERT _OF

NOT _EBRUAL_OF,
RAISED _ADDRESS OF,
RAISED _SCOFE_DF,

FIELD _READ_OF,
FIELD _TYFE_OP,

OR_0OF,
IN_TYFE_OF,

BELOW RANGE_OF,
NOT _IN_RANGE _0F,

BREATER_DF,
LESS_OF,

SEGMENT_NUMEBER_0OF

ACTIVATE_DF,
CONT INUE_OF,
FAMILY_CALL_0F,
FAMILY_TIMED_OF,
INTERRUPT _OF,
TIMED _CALL_OF,

DECREMENT _0F,

August 1962

Rational

The el
quality
particul
are app

FACKAGE _CLASS,
VARIANT _RECORD_CLASS objects.

whenever
qualific
complete

FIELD

type
type
type

N _VA

In the f
DFERATIO
CARABTLT
raised,

cdiscussi
F.3.1 AC

construc
ACCE

I R |

e K I e B H K K K

Machines Instruction Set

INCREMENT _0F,
UNARY _MINUS _0OF,

e VARIARLE _OFERATIONS
MAEE_CONSTANT _0OF,
RUN_UTILITY_OF,

— VARTANT _OFERAT IONS
MAEE_CONSTRAINED _OF,
SET_VARIANT _0OF)

ements FIELD, FIELD_ACCESS,

NOT _OF

MAKE VISIBELE OF,

SET _CONSTRAINED_OF,

anil FIELD_KIND serve

the ON_CLASS/0FPERATION combination, by
ar component of @ a composite structure.
licable only Ffor OFERATIONs that apply th

RECORD CLASS,

the
ation,

ON_CLASS/0FERATION
or if

FIELD INDEX
FTELD_SORT is
RIANTS

ollowing sections
M. Since we have
TY_ERROR, INSTRUCTION_ERROR,

Ol

ALL_READ O

ALL_REFERENCE_QF

AlL_WRITE _OF

ALLOCATE _OF

ALLDCATE _WITH_CONSTRAINT _OF
ALLODCATE WITH_INITIAL VALUE_OF
ALLOCATE WITH_SURTYRE_OF
I6_NULL_OF

NOT _NULL_OF

NULL._OF

Akl _READ _OF
¥ FURFOSE:

¥ ON_CLASS:
¥ FUNCTION:

ACCESS _CLASS only

and trace
cdesignated objech.
CONTROL._STACK.

FMT PFPROF

RIETARY DOCUMENT

Fop an ACCESS_VAR off

LSIZE i constant INTEGER
FIELD_ACCESS _MODE is (DIRECT,

Fush

SELECT _CLASS,
NO_VARIANTS is use as the value of FIELD
' combhination
further qualification
the form of the EXECUTE _ITNSTRUCTION with the following:

THDIRECT) 3
is new IMTEGER range @
(FIXED, VARIANMT);

we provide a detailed
already mentionsd the conditions under which
and OFERAND_CLLASS _ERROR will be
we will omit references to these exceptions in

requires

is meEaningless.

inplepentation.defined;

u ou

descrip

CESS_OPERATIONS These operations provide
ting and testing designated accoess objects.
GG _OFERATIONS include:

These three
ANY _CLASS,
TASE _CLASS,

=

na

tion

the

facilities

the CONTROL_STACK

its reference to the valus of the
the valus on
I+ the value is not composite,

to
referencing

Fage &8

further
elements
andl

further
We can

(2 %% FIELD_SIZE) - 1

1 constant FIELD_INDEX = FIELD_INDEXLAGT;

of each

following

+ o

Get value of a designated access object.

the

Auaust 1985

a

Rational

g

™A T

F.3.1.2 AL

ELE01.F ALL

¥ EXCEPTIONS:

*

FURFOSE:

L3

ON_CLASS:
X FUNCTION:

¥ STACKS:

¥ EXCEPTIONS:

WRITE OF

ot

¥ FURFOSE:
% ON_CLASS:
¥ FUNCTION:

¥ STACKS:

¥ EXCEFTIONS:

P9 eIrsrr T T AMNY MYOYM L UIVIETRILT

Machines Instruction Set

L. BEFERENGE

FPage 29

the value pushed will be a VALUE_VAR; for
structures, the value pushed will he an
INDIRECT _VAR. ‘
Frecondi tion:
Top of CONTROL_STACK contains
Fostcondition:
Top of CONTROL_STACE is reduced by one, and then
a VALUE VAR or an INDIRECT _VAR is pushed on
the stack.
CONSTRAINT _ERROR is raised of the ACCESS VAR is
null. '
TYFE_ERROR is raised if the referenced object is
not the type expected by the ALCESS VAR.

an ACCESS_VAR.

Qe

to the value of a
object.

Build a reference
designated access
ACCESS _CLASS only
Fop an ACCESS_VAR off the CONTROL_STACE
and trace its reference to the value of the
designated object. Create a reference to the
value, and push the reference on the
CONTROL._STACK. I+ the value is not composite,
the reference value pushed will be
a VARIARBLE REF; for structuwes, the
value pushed will be an INDIRECT_VAR.
Frecondition:
Top of CONTROL_STACE contains an ACCESS VAR.
Fostconditions ’
Top of CONTROL_STACE is reduced by one, and then
the stack.
CONSTRAINT _ERROR is raised of the ACCESS_VAR is
null. 4
TYFE _ERROR is raised if the referenced object is
not the type expected by the ALCESS_VAR.

Fut the value of a designated access object.
ACCESS CLASS only '
Fop an ACCESS VAR off the CONTROL _STACE
and trace its reference to the value of the
designated object. Fop the CONTROL _STAGK
again to access the new value. Copy this
value to the designated access obliect.
Freconditions:
Top of CONTROL_STACKE contains an ACCESS_VAR.
Tap — 1 of CONTROL_STACE contains a VaLUE VAR
the indicates the new designated access object
value.
Fostcondition:
Top of CONTROL_STACK is reduced by two.
CONSTRAINT _ERROR is raised of the ADCESS VAR is
il L

1 QED

FAYRIo IRk

Rational

AR

Z.301.4
o
on

ZaEOLLE
(.:.3
nts.
th

P

Machines Instruction Set Fage 2

TYPE_ERROR is raised if the referenced object or the
VALUE _VAR is not the type expected by the ACCESS V

ALLOCATE OF
¥ FURFOSE: Create a designated access object.
¥ ON_CLASS: ACCESS_CLASS only
¥ FUNCTION: Fop the CONTROL_STACK to get an ADDESS VAR
object. Trace the type path to determine the
type of the designated object. Allocate space in
the collection on the DATA_STACEK associated with
the ACCESS_VAR, and update the value of the
ACCESS VAR to point to the newly allocated object.
Fush the ADCESS_VAR back on the CONTROL_STACHK.
¥ STACKS: Freconditions A
Top of CONTROL_STACK must contain an ACCESS_VAR.
Fostocondi tion:
Top of CONTROL_STACK is reduced by one, and the
an ACCESS VAR that points to the newly allocated
object is pushed back on the CONMTROL_STACH.
¥ EXCEFTIONS: SOME_ERROR is raised when there is no space remainin
in a given collection.,
TYFE_ERROR is raised when the ACCESS VAR points to
an empty type, or if the ALCESS_VAR type informati
cannot be located.

¥ FURFOSE: Create a constrained designated access object.

¥ ON_CLASS: ACCESS _CLASS only ‘

¥ FUNCTION: Fop the CONTROL_STACE to get an ACCESS VAR
object. Trace the type path to determine the
type of the designated object. Fop the CONTROL_STACHK
to get the constraints upon the designated
object (see STACKS below). Allocate space in
the collection on the DATA_STACK associated with
the ACCESS VAR, and update the value of the
ACCESS VAR to point to the newly allocated object.
Fush the ACCESS VAR back on the CONTROL_STACK.

¥ STACKS: Freconditions
Tap of CONTROL_STACE must contain an ACCESS VAR.
If type of designated access object is an array,

the array bounds constraint paire are next on th
stack, in order of the indices; maximum bhound
constiraints are below the minimum bound constrai

I type of designated access object is a record wi
discriminants, the variant index information is
next on the stack, followed by each
diﬁcriminant‘cmngtraintﬂ in order.

Fostcondition:

Toap of CONTROL_STACK is reduced to below the

original ADCESS_VAR, and the an ACCESS_VAR that

points to the newly allocated object is

pushed back on the CONTROL_STACK.

The DATA_BTACKE is used for intermediate

calculations, bub is retwned to its initial state

Rational Machines Instruction Set Fage 21

¥ EXCEFTIONS: SOME _ERROR is raised when there is no space remainin
: in a given collection.

TYFE_ERFRDR is raised when the ACCESS_VAR points to
an empty type, if the ACCESS VAR type
information cannaot be found, or if the
designated access object cannot be further
constrained.

CONSTRAINT _ERROR is raised if the constraint
values are not compatible with the designated
access object.

T.%. 1.6 ALLOCATE WITH INITIAL

VALUE OF
¥ FURFOSE: Create a designated access object with an initial
value. '
¥ ON_CLASS: ACCESS _CLASS only :
¥ FUNCTION: Fop the CONTROL_STACE to get an ACCESS_VAR
' object. Trace the type path to determine the ,
type of the designated object. Pop the CONTROL_STACUE
to get the initial value of the designated
object (see S5TACKES below). Use this value to
determine any constraints upon the designated
access object. Allocate space in '
the collection on the DATA_STACKE associated with
the ACCESS VAR, selt the designated object to the
initial value, and update the value of the
ACCESS VAR to point to the newly allocated object.
Fush the ALDCESS VAR back on the CONTROL_STACE.
¥ STACKS: Preconditions: '
Top of CONTROL_STACE must contain an ACCESS_VAR.
Fostocondition:
Top of CONTROL_STACE is reduced to below the
original ACCESS VAR, and the ACCESS_VAR that
points to the newly allocated object is
pushed bhack on the CONMTROL _STACK.
The DATA_STACK is used for intermediate
calculations, but is returned to its initial state
¥ EXCEPTIONS: SOME_ERROR is raised when there is no space remainin
in a given collection.
TYFE_ERROR is raised when the ACCESS VAR points to
an ampty type, if the ACCESS_ VAR type
information cannot be found, or if the initial
value is not of the correct type.
CONSTRAINT _ERROR is raised if the initial value
i not compatible with the type of the
designated access objeoct.

Aade 17 ALLOCATE WITH SUBTYEE OF

X FURPOSE Create a designated access objsct constrained by
a subtype.
¥ ON_CLASS: ACCESS CLASS only
¥ FUNCTION: Fap the CONTROL_STACK to get an ALCESS VAR
object. Trace the type path to determine the
type of the designated object. Fop the CONTROL_STACE
to get the subtype constraint for the designated

FRMT FROFRTETARY DOCUMENT Auaust 1982

Rational Machines Instruction Set . Fage 32

object (see STACKES below). Allocate space in
the collection on the DATA_STACK associated with
the ACCESS_VAR, and update the value af the ,
ACCESS VAR to point to the newly allocated object.
Fush the ACCESS_VAR back on the CONTROL_STACK.
¥ STACKS: Frecondition:
Top of CONTROL_STACK must contain an ACCESS VAR.
Fostcondition: '
Top of CONTROL_STACKE is reduced to below the
ariginal ACCESS_VAR, and the ACCESS VAR that
points to the newly allocated object is
pushed back on the CONTROL_STADE.
The DATA_STACE is used for intermediate
calculations, but is returned to its initial state
¥ EXCEFTIONS: SOME_ERROR is raised when there is no space remainin
in a given collection.
TYPE_ERROR is raised when the ACCESS VAR points to
an empty type, if the ACCESS_VAR type
infaormation cannot be found, or if the initial
value is not of the correct type.
CONSTRAINT _ERROR is raised if the subtype is not
compatible with the designated access object.

SeZel.8 I8 NULL OF

¥ PURFOSE: Determine if an access variable is null

¥ ON_CLASS: ACCESS _CLASS anly

¥ FUNCTION: Fop the CONTROL_STACE to get the ACCESS VAR,
If it has a null value, push a TRUFE value on
the CONTROL _STACE, otherwise, push a FALSE
value. '

¥ 8TALCES: Frecondition:

Top of CONTROL_STACK must contain an ACCESS _VAR.
Fostconditions v
Top of CONTROL_STACE is reduced by one, and then
a boolean DISCRETE_VAR is pushed on the stack.
¥ EXCEFTIONS: None.
T30 1.9 NOT_NULL_OF
¥ PURFOSE: Determine if an access variable is not null
¥ ON_CLASS: ACCESS _CLASS only
¥ FUNCTION: Fop the CONTROL_STACK to get the ACCESS_VAK.
It it has a null value, push a FALSE value on

the CONTROL_STACE, otherwise, push a TRUE
val e,
¥ OTACKS: Frecondition:

Top of CONTROL_STACEKE must contain an ACCESS VAR.
Fostcondition: ‘
Top of CONTROL_STACEK is reduced by one, and then
a boolean DISCRETE_VAR is pushed on the stack.
K EXCEFTIONS: None.
FeE0l. 18 NULL OF

¥ FURFOSE s Give a null value to an access variable.

RMI PROFRIETARY DOCUMENT Ay s remde OICT

Rational

-

X
X

¥

Machines Instruction Set Fage 23
ON_CLASS: ACCESS _CLASYS only.
FLINCTION: Fop the CONTROL_STACK to get the ACCESS_VAR.
Set it to a null value, and push the ACCESS VAR
back on the CONTROL_STACKE. Note that this
action does not directly deallocate the
designated access abject. '
STACKS: Frecondition:

Top of CONTROL_STACE must conkain an ACCESS_VAR.
Fostcondition: :

Top of CONTROL_STACE is reduced by one, and then

a null ACCESS VAR is pushed on the stack.

¥ EXCEFTIONS: None.

[s Y

2 ALIGNMENT_OPERATION This operation provides a facility for

forcing a value into a given alignment.
ALIGNMENT _OFERATION includes the single OPERATOR:

br

a2 1 MAEE _ALIGNED _OF

RSCIYEREN

™ T

X MAKE_ALIGNED _OF

FURFOSE g
ON_CLASS:
FUNCT ION:
STACKS

EXCEFTIONS:

Currently wunimplemented instruction.
Currently unimplemented instruction.
Cuwrrently unimplemented instruction.
Currently unimplemented instruction.
Currently unimplemented instruction.

Fe = I ™ T 1T AP TN YN Ll P) ANt et 0T

Fational Machines Instruction Set . Fage 33

3€

ON_CLASS:
¥ FUNCTION:

¥ BTACKS:

ACCESS _CLASS only.
Fop the CONTROL_STACE to get the ACCESS VAR.
Set it to a null value, and push the ACCESS_VAR
back on the CONTROL_STACE. Note that this
action does not directly deallocate the
designated access object.
PFrecondition:
Top of CONTROL_STACE must corntain an ACCESS _VAR.
Fostocondition:
Top of CONTROL_STACK is reduced by one, and then
a null ACCESS VAR is pushed on the stack.

¥ EXCEFTIONS: None.

F.3.2 ALIGNMENT_OPERATION This mperatimn provides a facility for
forcing a value into a given alignment.
AL TENMENT _OFERATION includes the single DFERATOR:

¥ MAKE_ALTGNED_OF

IT.EGD. 1 MAKE_ALIGNED

FURFOSE s
ON_CLASS:
FUNCTION:

STACKS:

BE

Currently unimplemented instruction.
Currently unimplemented instruction.
Currently unimplemented instruction.
Currently unimplemented insbruction.

EXCERTIONS: Currently unimplemented instruction.

F.3.4 ARITHMETIC_OPERATIONS Thess operations provide facilities for
the wsual arithmetic functions.
ARTTHMETIC _OFERATIONS include:

DIVIDE_OF
MINUS_OF
MODUL.O_OF
FLUS_OF

¥ € 3£ K €

X TIMES OF

T.E.0 4.1 D

¥ FURPOSE:
¥ ON_CLASS:
¥ FUNCTION:

¥ STACKS:

REMATNDER,

_OF

Divide two values yielding & third
DISCRETE _CLASS and FLOAT_CLASS
Fop value 1 off the CONTROL_STACE. Fop
value 2 off the CONTROL_STACK. Divide value 2,
by valuewﬂu Fush the result of the operation
back on the CONTROL_STACE. The result type is
the same as the btypes of the btwo operands. [Tog-
Frecondition: G A /CT'IJ
Top of CONTROL_STACE contains a DISCRETE _VAR or
a FLOAT VAR,
Top - 1 of CONTROL_STACK contains a value of the
' same type.
FPostocondition:
Top of CONTROL_STACKE is reduced by two, and
then a value of type DISGCRETE_VAR or
FLOAT VAR is pushed on the stack.

RMI PROFRIETARY DOCLUMENT August 1982

«
.

Rational Machines Instruction Set Fage 24

¥ EXCEFTIONS:

SedeAas MINUG OF

L3

FURFOSE :
ON_CLASS:
¥ FUNCTION:

3%

¥ GTACKS:

¥ EXCEFTIONS:

T340 MODULD

o

¥ FURFOSE:
¥ ON_CLASS:
¥ FUNCTION:

* GTACKS:

OEXCERPTIONS:

3.3.4.4 BLUS_OF
X PURFOSE:
¥ ON_CLASS:
X FUNCTION:

NMUMERID_ERROR is raised if the divide operation
results in a value that cannot be represented
an the given implementation. gee Doy &y Lend

Subtract two values yielding a third
DISCRETE_CLASS and FLOAT_CLASS

Fop valu&mj off the LﬂNThDL“QTAEE, Feop
value 2 off the CON;RDL STACK., Take vqlu@ 2.
and subtract value_ K. Push the Lros<

result of the operation back on the J ETﬂ.SJ
CONTROL_STACK,. The resull type is

the same as the types of the two operands.
Frecondition:

Top nf &DN1?OL STACE Pmntaxnm a DISCRETE_VAR or

Top - 1 of LDN(RGL _ETACK contains a value of the
same type.
Fostocondition:
Top of CONTROL_STACK is reduced by two, and
then a value of type DISCRETE VAR or
FLOAT VAR is pushed on the stack.
NUMERIC_ERROR is raised if the minus operation
results in a value thalt cannot be represented
on the given implementation.

Find the modulus of 1wm values yvielding a third

SCRETE_CLASS & =
Fop value_ 1 off the FﬂNThﬂl_ﬁlﬁCH“ Fop
value_ 2 off the CONTROL_STACE. Take value 2
mmdu}u% .valuewl. Push the Cmstiq“,can
result of the operation back on the
CONTROL._STACK. The result type is
the same as the types of the two operands.
Frecondition:

Top of CONTROL_STACE contains a DISCRETE _VAR or

T VAR
Tap — 1 of CONMTROL_STACE contains a value of the
same type. i

Fostoondition:

Top of DONTROL_STACK is reduced by two, and

then a value, af Ly ype DIg CRETE VQR or

=T _VAR TS pusnett R
NUMFRICmtthh ig raised if 1hp modulus operataon
results in a value that cannot be represented
on the given implementation. @4 OiVib, 5y 44,

5w

Add two values yielding a thicrd

DISCRETE _CL.ASS and FLDAT_CLASEH

Fop value 1 off the CONTROL_STACE. Pop
value_2 off the CONTROL_STACKE. Take value_1

RMI FPROFPRIETARY DOCUMENT Aucust 1982

Rational Machines Instruction Setl Fage 23

and add value_2. Push the
result of the operation back on the
CONTROL._STACK. The result type is
the same as the types of the two op@rand%,
¥ STACKS: Freconditions
Tap of CONTROL_STACK contains a DISCRETE_VAR or
a FLOAT_VAaR.
Top - 1 of CONTROL_STACK contains a value of the
sams type.
Fostcondition:
Top of CONTROL_STACK is reduced by two, and
then a value of type DISCRETE VAR or
FLOAT_VAR is pushed on the stack.
¥ EXCEFTIONS: NUMERIC_ERROR is raised if the plus operation
results in a value that cannot be represented
aon the given implementation.
L3045 REL

EMAINDER_QF

Divide two values ytwldlnq a remainder value

z DISCRETE _CLASS 3 = s

INH Fop »dlue“l off the LDNThUL _S8TACk. FPop
value 2 off the CON1HQLM%TALi“ Take the Cros
remainder of value b divided by value_J. '()”“’CrJ
Fush the result of the operation back on the
CONTROL._STACE. The result type is
the same as the types of the two operands.,

¥ STACKES: Frecondition:

' Top of CONTROL_STACKE contains a DISCRETE_VAR ar

¥ FURFOSE:
¥ ON_CLABS
X FUNCTIO

Top - 1 of CONTROL._STACE contains a value of the
same type.
Fostcondition: .
Top of CONTROL_STACE is reduced by two, and
then A value of typ@ DIGCRETE _VAR or
£ T Hoon the stack.
¥ EXCEFTIONS: NUMERIC Fhﬁﬂﬁ i raj*@u if the
rvmannd@r oparation results in a value
that cannot be represented on the given

implementation. Divioy BY Twyg
Gellode s TIMES OF
X PURFOSE Multiply two values yielding a third

¥ ONM_CLASS: DISCRETE _CLASS and FLOAT _DLASS
¥ FUNCTIONG Fop value_ 1 off the CONTROL_STACK. Fop
value 2 off the CONTROL_STACK. Take value 1
and multiply by value 2. Push the
result of the operation back on the
CONTROL_STACE. The result type is
the same as the types of the two operands.
¥ STACKES: Frecondition:
Top of CONTROL_STACKE contains a DISCRETE VAR or
a FLOAT_Var.
Top - 1 of CONTROL_STACKE contains a value of the
same type.

P bl T Jm e s T " RN, TNV D ™ I B S

‘e

‘

Rational

“a3. 4 ARRAY_OPERATIONS

Machines

¥ EXCEPTIONG:

Ingstruction Set

Fage 2é&

Fostcondition:
Top of CONTROL_STACK is reduced by two,
then a value of type DISCRETE _VAR or
FLOAT_VAR is pushed on the stack.
NUMERIC_ERROR is raised if the times operation
results in a value that cannot be represented
orn the given implementation.

and

These provide facilities for

operations

handling basic array manipulation.
ARRAY _OFERATIONS include:

e

@

- RMI

w2

FROFRIETARY DOCUMENT

I

1

AFFEND_OF

FREFEND_OF

O I e I 2%

mEEND QF

ON_ClLABS:
¥ FUNCTION:

o
K
o
=
K
0
i3}
it
o

¥ S8TACKS:

¥ EXCEPTIONS:

LONCATENTATE 0

¥ FURFOSE
¥ ON_CLASS:
¥ FUNCTIOM:

¥ STACKS:

¥ EXCERTIONS:

CONCATENATE _OF

SLICE_READ _OF
SLICE_WRITE_OF
SUBARRAY _OF

Append one array to another.
VECTOR_CLASS, SUBVECTOR_CLASS
Fop the CONTROL_STACE to geb the
firset array value, and construct an
image of the value. Fop the CONTROL_STACE
again, and copy the value bheginning from the
the start of the first image. Push the result
back on the CONTROL_STACE.
Frecondition:
Top of CONTROL_STACE contains a VECTOR_VAR.
Top — 1 of CONTROL_STA&CE contains a '
VECTOR VAR,
Fostcondition:
Top of CONTROL_STACKE reduced by two,
a new VECTOR_VAR is pushed.
None.

and then

E

Concatenate one array to another.

VECTOR_CLASS, SUBVECTOR_CLASS

Fop the CONTROL_STACEK to get the

first array value, and construct an

image of the value. Fop the CONTROL_STACK

again, and copy the value beginning from the

the end of the first image. Push the resualt

back on the CONTROL_STACK.

Frecondition:
Top of CONTROL_STACEK contains a VECTOR_VAR.
Tap -~ 1 of CONTROL_STACDE contains a
VEDTOR_VAR.

Fostcondition:

Top of CONTRIL_STACK reduced by two,
a new VECOTOR_VAR is pushed.

Nome. '

and then

August 1982

e
4

Rational Machipes Instruction Set Fage =

ied
~d

I35 4.5 PREFEND_OF

¥ FURFPOSE: Currently unimplemented instruction.
¥ ON_CLASS: Currently unimplemented instruction.
¥ FUMCTION: Currently unimplemented instruction.
¥ STACKS: Currently unimplemented instruction.
¥ EXCERTIONS: Cwrrently unimplemented instruction.

dacdaeda 4 GLICE READ OF
¥ FURFOSE: Construct an array slice value.
¥ ON_CLASS: VECTOR_CLASS, SUBVELCTOR_CLASS.
¥ FUNCTION: Fop the CONTROL_STACK to access the target
VECTOR _VAR. Fop the maximum ARRAY _TNDEX INFO,
then pop the minimum ARRAY _INDEX INFDO. lUsing
these constraints, exbtract the slice from
the first array, and push the result on the
. CONTROL._STALEK.,
* GTACKS: Frecondition:
Top of CONTROL_STACE contains a VECTOR_VAR.
Top — 1 of CONTROL_STACK contains a
DISCRETE_VaR indicating the maximum index
hounds.
Tap — 2 of CONTROL_STACE contains a
DISCRETE VAR indicating the minimum index
bounds. : -
Fostcondition: '
Top of CONTROL._STACE reduced by three, and then
a VECTOR_VAR is pushed on the stack.
¥ EXCEFTIONS: None.

i oD SLICE WRITE OF

N

%

FLURFOSE » Write an array slice.

ON_CL.ASS VECTOR_CLASS, SUBVECTOR_CLASS.

FUNCTION: Fop the CONTROL_STACK Lo access bthe source
VECTOR_VAR. Pop the maximum ARRAY _TNDEX - INFQ,
then pop the minimum ARRAY _TNDEX _INFO. Using
thaese constraints, extract the slice from
the ftirst array. Fop the CONTROL_STALK again
Lo access the target VECTOR_VaR. Copy the
slice into the target.

¥ STACES: Frecondition:

Top of CONTROL_STACE contalns a VEOTOR VAR,

Top -~ 1 of CONTROL_SBTACE contains a
DISCRETE _VAR indicating the maximum index
bounds.

Top — 2 of CONTROL_STACE contains a
DISCRETE VAR indicating the minimum index
benands.

Tap -~ 3 of CONTROL_STACK contains a VECTOR_VAR.

Fostcondition:

Top of CONTROL_STACKE reduced by three.

¥ EXCEFTIONS: None.

.

I3 4.4 SUBARRAY OF

RMI FROFPRIETARY DOCLUMENT : Auaust 19892

L]

<

6

Rational Machines Instruction Set Fage 28

FURFOSE Currently unimplemented instruction.
ON_CIL.ASS: Cuwrrently unimplemented instruction.
FUNCTION: Currently unimplemented instruction.
STACKS Currently unimplemented instruction.
EXCEFTIONS: Currently unimplemented instruction.

¥ X %

RMI FROFRIETARY DOCUMENT N e g e g

